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Abstract. In the modern Internet era the usage of social networks such
as Twitter, Instagram and Facebook is constantly increasing. The analy-
sis of this type of data can help us understand interesting social phenom-
ena, because these networks intrinsically capture the new nature of user
interactions. Unfortunately, social network data may reveal personal and
sensitive information about users, leading to privacy violations. In this
paper, we propose a study of privacy risk for social network data. In par-
ticular, we empirically analyze a set of privacy attacks on social network
data by using the privacy risk assessment framework PRUDEnce. After
simulating the attacks on real data, we first analyze how the privacy risk
is distributed over the whole population. Then, we study the effect of
high-risk users sanitization on some common network metrics.
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1 Introduction

Social networks are used by people everyday for different purposes: for interact-
ing with friends (Facebook), for professional activities (LinkedIn), for spreading
information, news and multimedia material (Twitter and Instagram). Nowadays,
the analysis of social network data is fundamental to study and understand social
phenomena. The social network analysis can help in understanding customer
interactions and reactions [15], marketing strategies based on communities or
singles users, migration flows, fake news diffusion or virus spread [16], etc. How-
ever social network data may contain sensitive and private information about
the real people that actively operate in the network. Therefore, different tech-
niques have been used to anonymize the data, the simplest way being replacing
identity with pseudonymous keys. However, Backstrom et al. [3] showed that
this technique is not enough for privacy protection as malicious adversaries still
may succeed in re-identifying individuals using a background knowledge attack.

In order to enable a practical application of the privacy-preserving techniques
proposed in the literature, Pratesi et al. in [14] proposed PRUDEnce, a frame-
work for systematic privacy risk assessment. This framework follows the idea of
the EU General Data Protection Regulation, which explicitly imposes on data
controllers an assessment of the impact of data protection for the most risky
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processes.1 In [14], Pratesi et al. show the applicability of their framework on
mobility data. In this paper, we propose to apply PRUDEnce framework for the
privacy risk assessment in social network data. This requires to first formally
define a set of privacy attacks on social network data, then simulate them on
real data to empirically evaluate the individual privacy risks, and then, evaluate
the data utility by considering only non-risky data. In order to evaluate the data
utility, we perform an analysis that highlights the degradation of the social net-
work structure in case we only consider non-risky nodes and their connections.

The paper is organized as follows. In Sect. 2, we discuss some of the related
works in the literature. In Sect. 3, we define the data structures to describe social
network data according to different data aggregations. In Sect. 4, we introduce
the framework used for the privacy risk assessment. In Sect. 5, we formally define
the privacy attacks on social network data. In Sect. 6, we show the results of our
experiments on the attack simulations. In Sect. 8, we present an analysis on
the network degradation, discusses some related work. In Sect. 9, we draw our
conclusions and discuss future works.

2 Related Work

The concept of privacy-by-design was initially developed by Ann Cavoukian [5]
to address the ever-growing and systemic effects of Information and Communi-
cation Technologies, and of large-scale networked data systems in the 90’s. This
concept basically expresses the general approach of embedding privacy into the
design, development and management of information. A related study on the
application of the concept of privacy-by-design to social media is [7] where the
authors develop a social networking privacy framework and privacy model for
applying privacy-by-design principles to social networks for both desktop and
mobile devices. This approach mitigates many current social network privacy
issues, and leads to a more controlled form of privacy assessment.

One of the classical works in the field of privacy risk assessment is the
LINDDUN methodology [6], a privacy-aware threat analysis framework based
on Microsoft’s STRIDE methodology [19]. PRUDEnce [14] builds on these prin-
ciples, developing a privacy risk assessment framework applicable to any kind
of data [12]. While the models and methodology presented in these works have
been used previously on human mobility data, they are flexible enough to be
adapted to social network data. For modeling the attacks, we rely on the contri-
butions made in [1,9,17,20,21]. We apply the general structure of these attacks,
tweaking some of them to our specific need, as explained in Sect. 5.

Privacy for social media networks is a high interest topic, as show in works
such as [11] where the authors highlight how privacy awareness changes the
perspectives and motivations of users of a social media. In the context of privacy
for online social networks Liu and Terzi [10] propose a framework for computing
privacy scores for each user in the network. Such scores indicate the potential
risk caused by her participation in the network. Our effort in defining possible
1 The EU General Data Protection Regulation can be found at http://bit.ly/1TlgbjI.

http://bit.ly/1TlgbjI
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attacks and studying their applications on real network goes in the direction
of offering more tools to actually provide realistic evaluation of privacy risk to
individuals. In [4] Becker and Chen propose a framework called PrivAware, a
tool to detect and report unintended information loss in online social networks.
In [2] Ananthula et al. discuss a “Privacy Index” (PIDX) used to measure a user’s
privacy exposure in a social network. They have also described and calculated
the “Privacy Quotient” (PQ) i.e. a metric to measure the privacy of the user’s
profile using a naive approach. Pensa and Blasi in [13] have proposed a supervised
learning approach to calculate a privacy score of an individual in social network
data based on the actual people allowed to access the profile of the individual.

3 Data Definitions

Social network have traditionally been modeled as graphs:

Definition 1 (Social Network). We model a social network as a simple graph
G = (V,E,L, Γ ), where V is the set of vertices representing individuals, E ⊆ V
× V is the set of edges representing the relationships between individuals, L is
a set of labels, and Γ : V → l is a labeling function that maps each vertex to a
subset of labels l with l ⊆ L.

To keep our definition simple, we assume that edges do not have any labels.
In a social network, the direction of an edge indicates the relationship between
vertices and can be used to distinguish the type of relationship: single-sided or
mutual. For our purposes, we will assume that all relationships are mutual. From
the social network graph we can derive data structures representing aggregated
information. These are used to expose less information while still enabling the
computation of standard network metrics. Clearly, this data transformation helps
privacy preserving analyses and the respect of data minimization principle.

Definition 2 (Friendship Vector). The friendship vector Fv of an individual
v ∈ V is a set of vertices Fv = 〈v1, v2 . . . , vn〉 representing individuals connected
to v in the social network graph.

The friendship vector of a node v essentially represents the neighborhood of
the individual v at distance 1.

Definition 3 (Label vector). The label vector of an individual v is a set of
labels LAv = 〈la1, la2 . . . , lam〉. Each laj = (f, l) (with j ∈ {1, 2, . . . , |L|}) is a
pair composed of a feature name f and the associated label value l. The label
vector of an individual can be empty.

Each label describes a profile feature of an individual, for example gender:
‘female’ or ‘male’, educational information: ‘Pisa University’ or ‘Stanford Uni-
versity’, etc.
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Definition 4 (Degree vector). The degree vector of an individual v, denoted
by Dv = 〈dv1 , dv2 , . . . , dvn

〉, represents the number of friends of each friend of
v. Thus, each element dvi

is equal to the length of the friendship vector of the
individual vi in the social network graph, i.e., dvi

= |(Fvi
)|.

Definition 5 (Mutual Friendship vector). The mutual friendship vector of
an individual v, denoted by MFv = 〈mf1, . . . ,mfn〉, represents the number of
common friends of v with each one of its friends vi. Thus, each element mfi is
equal to the cardinality of the intersection between the friendship vector of v and
the one of vi, i.e., mfi = | Fv ∩ Fvi

| .

Taking in consideration all of the structures defined above we can define a
Social Network Dataset as follows:

Definition 6 (Social Network Dataset). A social network dataset is a set of
data structures S = {S1,S2, . . . ,Sk} where Sv (1 ≤ v ≤ k) is the social network
data structure of an individual v.

A Social Network Dataset represents a possible aggregation of a social net-
work that some data provider may share or publish for some usage. A malicious
adversary can attack a Social Network Dataset using some previously acquired
knowledge about one or more individuals in the dataset, i.e., a background knowl-
edge.

4 Privacy Risk Assessment Framework

Given the rapid growth in the number of services and applications based on
social networks, there is increasing concern about privacy issues in published
social network data. The prevention of node/individual re-identification is one
of the critical issues. With some background knowledge about an individual
in a social network, an adversary may perform a re-identification attack and
disclose the identity of the individual. To preserve privacy, it is not sufficient to
remove all identifiers, as shown in [20,21]. In this paper we want to empirically
study the privacy risk in social network data using the framework proposed in
[14]. PRUDEnce is a system enabling a privacy-aware ecosystem for sharing
personal data. The main components of its architecture are shown in Fig. 1.
The typical scenario considered is one where a Service Developer (SD) requests
personal data, such as social network data, from a Data Provider (DP) to develop
services or perform an analysis. The Data Provider has to guarantee the right to
privacy of the individuals whose data are recorded. Thus, the data stored by DP
cannot be shared directly without assessing the privacy risk of the individuals
represented in the data. Once privacy risk has been assessed, DP can choose how
to protect the data before sharing, selecting the privacy preserving methodology
most appropriate for the data to be shared. Assuming that the Data Provider
stores a database D, it aggregates, selects, and filters the dataset D to meet the
requirements of the Data Analyst and produces a set of social network datasets
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Fig. 1. PRUDence: privacy-aware data sharing ecosystem

{S1, S2, . . . , Sk} each with a different data structure and/or aggregation of the
data. The Data Provider then performs the privacy risk assessment.

The privacy risk assessment component of the framework has to produce
a quantitative measure of privacy risk. Such measure depends on the kind of
attack simulated, the kind of data, and on the aggregation on the data itself.
The simulation of a privacy attack takes place in two phases: first, we assume
that a malicious adversary gathers, in some way, a background knowledge about
an individual (e.g., a part of their friendship vector) and then the adversary uses
the acquired background knowledge to re-identify the individual in the social
network dataset. Every background knowledge can be configured in many ways,
and for each configuration there can be many background knowledge instances.
To explain how risk is computed, we give the formal definitions of these concepts:

Definition 7 (Background knowledge Category). A background knowledge
category B of an attack is the type of information known by the malicious adver-
sary. It represents the dimensions of data considered by the adversary, i.e., the
knowledge of the friendship vector, or the neighboring vector etc.

Definition 8 (Background Knowledge Configuration). A background
knowledge configuration Bk ∈ B = {B1, B2, ..., Bn} represents the k elements
of the background knowledge category B known to the adversary. For example,
the adversary might know k = 3 of the friends in the friendship vector of an
individual.

Definition 9 (Background Knowledge Instance). A background knowledge
instance b ∈ Bk is a specific information known by the adversary, i.e., the actual
portion of data structure known by the adversary.

As an example, suppose that an adversary has, as background knowledge
category, the friendship vector of a user, and suppose Fv = 〈v1, v2, v3, v4〉. If the
background knowledge configuration that we assume for the adversary is B2, a
possible instance could be b = v1, v4 or b = v3, v4 for example. Each instance
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gives to the adversary a probability of re-identifying the individual v in the
dataset.

Definition 10 (Probability of Re-identification). Given an attack, a func-
tion matching(s, b) indicating whether or not a record s ∈ S matches the
instance of background knowledge configuration b ∈ Bk, and a matching set
M(S, b) = {s ∈ S | matching(s, b) = True}, we define the probability of re-
identification of an individual v in dataset S as:

PRS(s = v|b) =
1

|M(S, b)|
that is the probability of correctly linking the data structure s ∈ S to v given the
background knowledge instance b.

Note that PRS(s = v|b) = 0, in case an individual v does not belong to S.
PRUDEnce is a worst-case scenario framework, so when simulating an attack

we have to assume that the adversary has access to the worst possible background
knowledge instance. We take the maximum probability of re-identification among
all b ∈ Bk as risk of the re-identification risk for that individual:

Definition 11 (Risk of re-identification). The risk of re-identification of an
individual v is Risk(v, S) = max PRS(s = v | b),∀b ∈ Bk, i.e., the maximum
probability of re-identification.

Our definition of probability of re-identification and privacy risk derives from
the work of Sweeney in [18].

To better understand these concepts, we provide an example of risk compu-
tation definitions of probability and risk of re-identification.

Let us consider a set of individuals (nodes) V = {1, 2, 3, 4, 5, 6, 7} and the
corresponding dataset S composed of the friendship vectors of individuals:

F1 = 〈‘3’, ‘4’, ‘6’〉 F2 = 〈‘4’, ‘6’〉
F3 = 〈‘1’, ‘5’, ‘7’〉 F4 = 〈‘1’, ‘2’, ‘6’〉
F5 = 〈‘3’, ‘7’〉 F6 = 〈‘1’, ‘2’, ‘4’, ‘7’〉
F7 = 〈‘3’, ‘5’, ‘6’〉
Let us assume an adversary wants to perform an attack on individual 6 and

knows two friends of that individual. The background knowledge configuration
in this case is B2. We compute the privacy risk of the individual 6, given the
dataset S of friendship vectors and the knowledge of the adversary as follows:

1. We compute every possible instance b ∈ B2 which are: {(1, 2), (1, 4), (1, 7),
(2, 4), (2, 7), (4, 7)}

2. We compute the probability of re-identification for each background knowl-
edge instance, matching it with the dataset S and counting the matching
individuals. For example, the first instance b = (1, 2) has the probability of
re-identification PRS(s = 6|(1, 2)) = 1

2 because both 4 and 6 include b =
(1, 2) in their friendship vectors. We do this for every instance, obtaining the
following values: 1

2 , 1, 1
2 , 1, 1, 1.

3. We take the maximum probability of re-identification as risk for individual 6:
Risk(6, S) = max(12 , 1, 1

2 , 1, 1, 1) = 1
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5 Privacy Attack on Social Networks

Given the privacy framework we presented, the definition of an attack depends
entirely on the matching function used to understand if a particular background
knowledge instance can be found in the data structure of an individual. In this
section, we describe the different type of attacks detailing their matching func-
tion.

5.1 Neighborhood Attack

The neighborhood attack considers an adversary who only knows a certain num-
ber of friends/neighbors of an individual. More technically, the adversary has
an information about the nodes which are connected to the victim node in the
social network graph. This type of attack was introduced in [20]. Background
knowledge instances for this kind of attack are portions of the friendship vector
Fv of an individual.

Definition 12 (Neighborhood Attack Matching). Given the instance b, we
define the matching function of the neighborhood attack as follows:

Matching(b, Fv) =

{
true b ⊆ Fv

false otherwise
(1)

5.2 Label Pair Attack

The label pair attack considers an adversary who knows a certain number of pairs
of features with their values of an individual. Each label pair in key-value format
lai = (f, l) is distinct in a label vector of an individual. Similar type attack has
been defined in [9] by using the label pair knowledge on two connected nodes.
In our work, we consider that an adversary uses label pair knowledge of just one
individual and it may be sufficient for his re-identification within S. Therefore,
background knowledge instances for this kind of attack are portions of the label
pair vector LAv of an individual.

Definition 13 (Label Pair Attack Matching). Given the instance b, we
define the matching function of the label pair attack as:

Matching(b,LAv) =

{
true b ⊆ LAv

false otherwise
(2)

5.3 Neighborhood and Label Pair Attack

Starting from the previous two attacks, we define a new and stronger attack
that we call neighborhood and label pair attack. In this case, we consider an
adversary knowing a certain number of friends/neighbors and a certain number
of feature labels of an individual at the same time. In other words, it combines
the background knowledge of the two previous attacks.
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Definition 14 (Neighborhood and Label Pair Attack Matching). Given
the instance b = (b′, b′′), we define the matching function of the neighborhood
and label pair attack as:

Matching(b, Fv,LAv) =

{
true b′ ⊆ Fv ∧ b′′ ⊆ LAv

false otherwise
(3)

5.4 Friendship Degree Attack

In a friendship degree attack, the adversary knows the degree of a number of
friends of the victim as well as the degree of the victim. This type of attack has
been defined in [20]. A background knowledge instance for this kind of attack
will be a portion of the degree vector Dv of an individual.

Definition 15 (Friendship Degree Attack Matching). Given the instance
b, we define the matching function of the friendship degree attack as:

Matching(b,Dv) =

{
true len(Dv) ∧ d ∈ Dv∀d ∈ b

false otherwise
(4)

5.5 Mutual Friend Attack

In a mutual friend attack, the adversary knows the number of mutual friends
of the victim and some of its neighbors. This type of attack has been already
defined in [17]. A background knowledge instance for this kind of attack will be
a portion of the mutual friendship vector MFv of an individual.

Definition 16 (Mutual Friend Attack Matching). Given the instance b,
we define the matching function of the mutual friend attack as:

Matching(b,MFv) =

{
true b ⊆ MFv

false otherwise
(5)

5.6 Neighborhood Pair Attack

In a neighborhood pair attack, the adversary knows subset of the friends of the
victim who are friends with each other, that is a subset of Fv in which vi and
vj are connected to each other vi ∈ Fvj

, vj ∈ Fvi
and vi, vj ∈ Fv. Similar type

of attack has been already defined in [1]. With respect to the original definition,
in our work, we reduce the knowledge of adversary by eliminating the degree
knowledge of the victim about the individual, because we would like to simulate
a less powerful kind of attack.

Definition 17 (Neighborhood Pair Attack Matching). Given the instance
b, we define the matching function of the neighborhood pair attack as:

Matching(b, Fv) =

{
true vi ∈ Fvj

∧ vj ∈ Fvi
∧ vi, vj ∈ Fv∀(vi, vj) ∈ b

false otherwise
(6)
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6 Experimental Dataset

In our work, we use the Facebook Dataset provided by Stanford University’s
“Stanford Large Network Dataset Collection” [8]. This dataset includes node
features (profiles), circles and ego networks. Nodes have been anonymized by
replacing the Facebook-internal id’s for each user with a new value. Feature
vectors from this dataset have also been provided while the interpretation of
those features has been anonymized. After aggregating all data, we obtain a
social network graph of 4039 nodes and 88,234 edges. Roughly half of the all
individuals have 30 friends/neighbors or less. In Fig. 2 we can see some visual
information about the dataset.

(a) Degree Statistics (b) Network Visualization

Fig. 2. Visual information about Stamford Facebook dataset

7 Privacy Risk Assessment Results

In this section, we present the results of the simulation of attacks defined in
Sect. 5. We simulated all the defined attacks setting the background knowledge
configuration value to k = 1, 2, 3, 4, that is with four different lengths of the
adversary background knowledge. We discretized the privacy risk in six intervals:
[0.0], (0.0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.5] and (0.5, 1.0] from the lowest privacy
risk to the highest.

Figure 3 shows as privacy risk for the attacks on network data varies signifi-
cantly. In general and as expected, the number of individuals in the highest risk
level and lowest risk level increases while the background knowledge configura-
tion value k increases. We can observe that, for most of the attacks, we reach a
sort of plateau increasing k to values 3 and 4. This is a phenomenon observed
also in other types of data [12]. The most interesting results can be seen for
the neighborhood label pair attack: with respect to the simple label attack or
neighborhood attack, the mixed attack leads to an increase of the number of
high risk individuals by a great margin. The mutual friend attack is weaker with
respect to all the others. Indeed, in each setup of the background knowledge con-
figuration value k, many individuals belong to the privacy risk level (0.0, 0.1].
This is not surprising since the Mutual Friend attacks uses the number of mutual
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(a) Friendship Degree (b) Label Pair (c) Mutual Friend

(d) Neighborhood (e) Neighborhood Label
Pair

(f) Neighborhood Pair

Fig. 3. Cumulative distributions of privacy risk for social network data.

friends of one node, which has a pretty even distribution over the entire network.
Overall, the results suggest that basic topological information such as immediate
neighborhood yield sufficient information for powerful privacy attacks, and that
even a small amount of information can result in significant risk for the entire
network.

8 Analysis on Network Degradation

Given the risk found in our assessment, we now remove from the data those
individuals that are at or above a certain threshold of privacy risk and try to
understand what impact will this have on the network: removing certain nodes
from the network may lead to a disconnected networks. In these cases we compute
the metrics and statistics on the biggest component of the unconnected network,
thus we exclusively study the network’s giant component. In order to verify the
network degradation varying the minimum privacy risk guaranteed we compute:
the total number of nodes preserved in the network, number of nodes preserved
in the giant component, the total number of edges between individuals in the
giant component and number of disconnected components generated.
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We chose four thresholds of the privacy risk for all possible attacks. Thus,
for each attack and background knowledge configuration value we created four
distinct datasets which are:

– D1: The dataset with all individuals
– D0.5 The dataset with individuals whose privacy risk is between 0.0 and 0.5

included.
– D0.33 The dataset with individuals whose privacy risk is between 0.0 and

0.333 included.
– D0.25 The dataset with individuals whose privacy risk is between 0.0 and 0.25

included.

Tables 1 and 2 show the results of degradation analysis for the above statis-
tics. For each attack the tables report the statistics for both k = 1 and k = 4
(the lowest and the greatest adversary knowledge). In these tables we indicate
with NA the neighborhood attack, LA the label pair attack, NLA the neigh-
borhood and label pair attack, FDA the friendship degree attack, MFA the
mutual friend attack and NPA the neighborhood pair attack.

The results indicates that also considering an attack with a weak background
knowledge the effect of taking into consideration only non-risky nodes has an
important negative impact on the network quality. First of all, we can observe
that for any attack there is an increment of the disconnected components in the
networks (Table 1), that leads to a decrease in connectivity for the network. This
effect is present even with weak attacks such as the mutual friend attack.

Tables 2 and 3 show that both the number of nodes in the whole network
and in the giant component are mainly affected by the consequences of attacks
based on the neighborhood information such as neighborhood attack, friendship
degree attack and neighborhood pair attack.

Instead, Table 4 show that the number of edges is sensitive to the attacks that
take into consideration the relationship between nodes such as the friendship
degree attack.

Figure 4 shows what happens to the social network structure under the
mutual friend attack, varying k. We can see how the network changes when
we remove individuals with risk equal to 1 varying the background knowledge
configuration. Even more evident effects can be seen for more powerful attacks.
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Fig. 4. Cumulative distributions of privacy risk for social network data.

Table 1. Number of disconnected components varying privacy risk.

NA LA NLA FDA MFA NPA

k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4

D1 1 1 1 1 1 1 1 1 1 1 1 1

D0.5 91 453 1 160 246 150 131 247 1 120 1 431

D0.33 171 460 78 159 227 143 143 239 19 120 112 413

D0.25 226 412 84 157 203 140 162 239 19 120 112 405

Table 2. Number of Nodes in the network varying privacy risk.

NA LA NLA FDA MFA NPA

k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4

D1 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039

D0.5 4029 907 4026 1282 883 976 2573 295 4039 2982 3971 511

D0.33 3940 700 3251 1178 648 937 1836 276 4021 2982 3351 488

D0.25 3792 579 2885 1131 498 925 1378 276 4021 2982 3313 472

Table 3. Number of nodes in the giant component varying privacy risk.

NA LA NLA FDA MFA NPA

k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4

D1 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039 4039

D0.5 3732 25 4026 506 192 348 1426 7 4039 2226 3971 13

D0.33 3507 23 2995 451 118 337 800 6 4003 2226 2566 13

D0.25 3293 20 2618 429 83 335 326 6 4003 2226 2532 13
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Table 4. Number of edges in the giant component varying privacy risk.

NA LA NLA FDA MFA NPA

k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4 k = 1 k = 4

D1 88234 88234 88234 88234 88234 88234 88234 88234 88234 88234 88234 88234

D0.5 82305 88 87688 2940 545 1587 12310 21 88234 15160 87744 71

D0.33 80335 223 46610 2506 851 1528 4527 15 82800 15160 30900 71

D0.25 77368 163 34520 2276 211 1503 1753 15 82800 15160 30758 71

9 Conclusions and Future Works

Social network data are a precious proxy to improve our understanding of social
dynamics. Nevertheless, it contains sensitive information which, if analyzed with
malicious intent, can lead to privacy violations for the individuals involved. In
this paper, we proposed to apply PRUDEnce framework for assessing privacy
risk in social networks and for evaluating the network degradation in case we
consider only non-risky individuals and their connections. Our study indicates
that for social network, privacy attacks can yield high privacy risk, even when
the background knowledge is based on aggregated structures. We also showed
how basic sanitization of the network is difficult, due to several properties of
the network being disrupted by the cancellation of high risk nodes. PRUDEnce
demands high computational costs for attack simulations. In order to address this
problem it would be interesting to investigate the possibility to apply machine
learning methods able to learn the relationship between some graph properties
and the privacy risk, in order to predict the node privacy exposure.
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