
A Secure User-Centred Healthcare
System: Design and Verification

Eduard Baranov1(B) , Juliana Bowles2 , Thomas Given-Wilson1 ,
Axel Legay1 , and Thais Webber2

1 Computer Science and Engineering Department, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium

{eduard.baranov,thomas.given-wilson,axel.legay}@uclouvain.be
2 School of Computer Science, University of St Andrews, St Andrews KY16 9SX, UK

{jkfb,tcwds}@st-andrews.ac.uk

Abstract. With ever increasing amounts of travel, it is essential to
have access to a patient’s medical data from different sources including
many jurisdictions. The Serums project addresses this goal by creating
a healthcare sharing system that places privacy and security aspects at
the center. This raises significant challenges to both maintain privacy
and security of medical data and to allow for sharing and access. To
address these strict requirements the Serums system design is supported
by formal methods where design decisions are modelled and checked to
meet safety and security properties. We report an experience in support
of the system design with formal modelling with the Uppaal tool and
analysis with exhaustive and statistical model checking. Results show
that statistical model checking being a simulation-based technique can
significantly improve feasibility of analysis while providing support for
design decisions to ensure privacy and security.

Keywords: Healthcare · Data sharing · Privacy · Security · Design
verification · Formal modelling

1 Introduction

Improving patient care has become a priority across European healthcare
providers and government establishments [19]. There is an increasing movement
towards fulfilling patients’ rights to securely access and share their health data
across borders [27]. For example, when traveling abroad a patient may require a
specialist to follow up their ongoing treatment; the patient may even experience
some kind of medical emergency. Such data sharing can help healthcare profes-
sionals and organisations to improve their care services to patients in terms of
efficiency, effectiveness, and enhanced decision making [10]. However, a health-
care data sharing system must ensure data protection and security and be in
line with the European General Data Protection Regulation1 (GDPR).
1 Information on GDPR can be found at https://gdpr-info.eu/.

c© Springer Nature Switzerland AG 2022
J. Bowles et al. (Eds.): DataMod 2021, LNCS 13268, pp. 44–60, 2022.
https://doi.org/10.1007/978-3-031-16011-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16011-0_4&domain=pdf
http://orcid.org/0000-0002-7357-705X
http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0001-8700-2671
http://orcid.org/0000-0003-2287-8925
http://orcid.org/0000-0002-8091-6021
https://gdpr-info.eu/
https://doi.org/10.1007/978-3-031-16011-0_4


A Secure User-Centred Healthcare System: Design and Verification 45

The EU Horizon 2020 research project Serums2 aims to increase healthcare
provision in Europe through the proposal of a secure and transparent data shar-
ing platform able to ensure privacy when accessing patient data [23]. Serums
is grounded in two major pillars. First, the application of innovative techniques
and emergent technologies like Blockchain and Data Lake to increase reliability
and resilience against cyber-attacks. Second, to promote user trust in the safe
and secure operation of the system in hospitals and clinics. The literature points
out that Blockchain and smart contracts have great potential for enabling secure
medical data access to healthcare parties [30,35].

The core of the Serums Smart Health Central System (SHCS), which is the
focus of this paper, involves several software components interacting with each
other to provide fine-grained access control with audit trail to the patients’
medical information stored in multiple data vaults.

A mechanism to customise access control over medical records is put in place
between Blockchain and Data Lake technologies to allow authorised users to
access medical data on demand, following data access rules predetermined by
patients and healthcare organisations within the system. The data exchange
format provided by Data Lake in Serums is the Smart Patient Health Record
(SPHR), which provides metadata information linking the patients to subsets of
medical data distributed across different hospital databases. Access rules to the
SPHR are part of the smart contracts that can be customised by users in the
Blockchain.

Serums provides the means in which patients can create access rules over
personal records to healthcare professionals as well as healthcare organisations
(i.e., administrators) can manage its users and specific rules to establish the
boundaries for accessing patient data. For instance, the system allows authorised
users to define who and when exactly what parts of medical records can be
accessed. The Serums SHCS aims to maintain the system’s security with reduced
likelihood of privacy breaches. Due to the sensitive area that concerns Serums,
verifying its platform is an important step in the system development cycle of
the project [23]. Especially, one must prove that the architecture design choices
ensure meeting strict privacy and security requirements. Such validation shall
be done at design time as per request of the GDPR.

In this paper, we focus on this validation objective using formal methods, i.e.,
by applying approaches that work on a formal representation of both the system
and the requirements under validation. Such representation is language agnostic
which allows us to concentrate on the requirements to be verified. Another advan-
tage of formal representation is that this naturally offers a clear semantics, which
are particularly useful to improve the system in case of bug detection. Formal
methods have been used in multiple projects to support the analysis of systems
and their design, e.g. [8,13,21,24,26]. One of the commonly used representations
for systems is transition systems [4] where system behaviour is modelled with a
set of states and a relation between them describing how the system can change
states. In formal methods, requirements are represented with temporal logic [5].

2 For more information refer to https://www.serums-h2020.org.

https://www.serums-h2020.org


46 E. Baranov et al.

Such logic is a temporal extension of the classical Boolean logic that permits the
validation of a hypothesis on sequences of transitions.

Among existing formal methods that can be applied to transition systems
and temporal logic, there is Model checking (MC) [14,32]. MC offers an exhaus-
tive exploration of the state space of the system. Contrary to software testing,
MC guarantees that any behaviour of the model satisfies the property. Unfor-
tunately, albeit the approach has been widely deployed, it is still subject to the
so-called state space explosion problem: state space of non-trivial systems can be
extremely large making exhaustive exploration infeasible. To avoid these issues,
several authors have proposed Statistical Model Checking (SMC) [22,28,29,34]
as a compromise between testing and MC. The core idea of SMC is to run many
simulations on which a property is checked and to use a statistical algorithm
to decide the probability of the property to be satisfied with a selected degree
of confidence. SMC has been broadly applied in different areas and projects
including [6,7,18,25,36,38].

The contribution of the paper is to provide a formal representation of the
Serums platform and to validate Serums requirements on the formal represen-
tation. The SMC approach has been implemented in a wide range of tools (a
comparison can be found in [3]), among which we have selected the Uppaal
toolset [1,9,16] that includes an SMC engine. Uppaal supports both MC and
SMC, is efficient, and has been used in many projects, e.g. [20,31,33]. The Serums
platform in Uppaal is represented with stochastic timed automata, i.e., tran-
sition systems equipped with both timed and stochastic information [17]. The
timing constraints are currently not being used, though the tool support offers a
possibility to extend the model and to consider time-dependent properties in the
future. Our model is parametrisable, scalable, and modular in such a way that
we offer a library of automata to represent and hence duplicate at will each piece
of the system. This aspect allows easy incorporation of any conceptual change
that may occur in the project and simulation of real-life situations.

We first verified a set of safety and reachability properties on increasing model
size (obtained by increasing the number of users of the model). This allowed us to
show that the system behaves correctly in non-trivial instantiations with many
users. While MC can only be applied to a significantly simplified model, SMC
can verify the full model. In a second step, we proposed a transition-system
based representation of an attacker, i.e., a malicious user that would try to have
access to Serums Data Lake without going through the central system. In case
of success, such attacker could get access to private data of others which would
compromise the security of the entire design. With our model we were able to
show that the first version of the platform integration was indeed subject to
such attack. By using Uppaal, we were able to correct our model and hence the
corresponding concrete design.

The structure of the paper is as follows. Section 2 introduces Uppaal tool
and related concepts. Section 3 overviews the Serums platform architecture detail
specifying components and interactions in the form of a workflow. Section 4
presents the model created with the Uppaal tool that is used for the evaluation



A Secure User-Centred Healthcare System: Design and Verification 47

of the Serums platform design. Subsection 4.1 demonstrates the model checking
process considering reachability and safety properties and providing a compar-
ison between MC and SMC approaches. Section 5 introduces a security aspect
to the verification process exploring the resilience of the design to attacks and
the necessity of security consideration at design stage. Section 6 highlights the
applicability and the need for SMC in cases like Serums to ensure the system
reaches the expected behaviour providing privacy and security to end-users.

2 Background

Systems in Uppaal are modelled as a set of timed automata interacting with
each other via channels controlling the synchronisation of transitions of several
automata and shared variables. Uppaal also provides a mechanism to model
multiple automata with identical behaviour - a template that can have param-
eters and be instantiated any number of times for the simulation. Templates
provide means to analyse different scenarios with various number of automata.

For the properties, Uppaal provides a query language based on a simplified
version of Timed Computation Tree Logic (TCTL). Temporal operators require
a property to hold in either all execution paths, denoted with A, or in at least one
execution path, denoted with E. In addition, operators have different modalities
quantifying over specific paths. For example, A�p requires proposition p to hold
in all states of all execution paths and E�p requires p to hold in at least one
state of at least one execution path. Note that Uppaal does not allow nesting
of formulas involving temporal operators, i.e. temporal operator can only be the
outermost operator in the formula, therefore formulas like E�p && E�q shall
be separated into 2 queries for p and q respectively.

Contrary to MC exhaustively exploring the state space, SMC is based on
the idea of performing large number of system executions and monitoring the
desired property on the executions. For non-deterministic systems, each execu-
tion would be different, thus multiple executions would explore various parts of
the system behaviour. Being a simulation-based approach, SMC is known to be
less time and memory consuming than MC. Uppaal SMC [16] is an extension
of Uppaal to perform Statistical Model Checking. The extension works with
stochastic timed automata, adds probabilistic choice between enabled transi-
tions and probability distribution for time delays. For the interaction between
automata only broadcast channels are allowed to be used to ensure components
be non-blocking.

For the queries, Uppaal SMC uses an extension of Metric Interval Temporal
Logic (MITL). Note that property check with SMC engine is performed on finite
traces unlike in original Uppaal tool, therefore linear time is considered instead
of branching. Basic temporal operators in Uppaal SMC are �p and �p checking
that p holds in all or at least one state of the trace respectively. There are
different types of SMC queries supported by Uppaal, the following ones are
used further in the paper. The first type computes a probability of a property to
be satisfied and is specified with Pr[# ≤ N ] F , where F is a property specified



48 E. Baranov et al.

Fig. 1. An instance of the Serums platform with local Blockchain, Data Lake, and
Authentication Components.

with MITL, N is the maximal trace length and # indicates that we consider
number of transitions in the trace length instead of time. The result of such
query would be an interval [x − ε, x + ε] with a confidence α, where ε and α are
selected parameters. Another query type checks a hypothesis that probability of
a property to be satisfied is above a given threshold: Pr[# ≤ N ] F ≥ p0, where
F and N are defined as above. For each query Uppaal SMC builds a monitor
that can check the property during the simulation, thus avoiding creation of a
full simulation trace if the property can be decided on the first few steps. For
the details of the monitoring, we address the reader to [12].

3 Serums System Design

The Serums project [23] addresses the need to securely share medical data to
allow healthcare provision across different healthcare providers. For a patient
visiting a new hospital, e.g., after the relocation to a different city or country,
there shall be a simple way to access the patient’s medical history as it is essen-
tial to provide effective healthcare. In contention with data sharing, the GDPR
requires that the data shall be under the control of the patient: a patient’s con-
sent and approval are necessary for data access. The project goal is to create
a platform for accessing and transferring these medical records in a secure and
privacy-preserving manner among parties [23] that also meet regulatory require-
ments.

The overall architecture of the proposed platform is shown in Fig. 1. Serums
platform architecture consists of several components interacting with a Smart
Health Centre System (SHCS) [37]. The SHCS is a front-end that interacts with
users (patients and professionals) and it is connected directly to other architec-
tural components [11]. The Authentication component, which is central to check
users’ credentials, enables users’ requests placed to other core components, like



A Secure User-Centred Healthcare System: Design and Verification 49

Fig. 2. Serums sequence diagram design showing the workflow for the main function-
alities in the system.

Blockchain and Data Lake. The Data Lake component is responsible for per-
forming on-demand data acquisition and data processing: it can retrieve data
from different sources and create a Smart Patient Health Record (SPHR) [10]
structuring medical data as metadata. Upon request a patient’s data can be
securely retrieved and visualised by a given authorised healthcare professional.

Patients can control the data sharing with fine-grained access rules stored
in smart contracts in the Blockchain component. The smart contracts contain
access rules defining the access granted or denied to individuals, to parts of
the patient’s record, and for a given period of time. For example, a patient can
make general information such as name and blood type be available to all medical
personnel while specific test results shall be visible to the treating doctor only.

The main workflow of the Serums system is shown in Fig. 2. At first step
(1) a patient tries to connect to the Serums SHCS and the request (1.1) is
processed by the Authentication component. Authentication is done via JSON
Web Token (JWT): a user after successful login receives a token that identifies
him in all subsequent requests. At the next step (2) the patient can create a
data access rule, for example, allowing a given healthcare professional to see
his treatment history. This rule is added to the Blockchain (2.1), which first
checks the forwarded access token for eligibility (2.1.1). At any further time, a
healthcare professional can login (similarly via authentication component) and



50 E. Baranov et al.

Fig. 3. SHCS component model.

choose to request patient’s record (3). The request is sent to Blockchain (3.1)
which confirms the access token eligibility (3.1.1) and afterwards returns to the
SHCS the authorised metadata (3.2) that can be retrieved to the user according
to the current rules in place for him. The SHCS then requests the medical data
retrieval to the Data Lake component (3.3), which acquires data from varied
data sources (3.3.1) and return the SPHR data to the requester in the front-end
(3.4).

4 Serums System Modelling and Verification

Formal model being developed during design time can vastly improve safety and
security of the resulted system. Building models of well-defined design decisions
is straightforward and these models can then be analysed or verified using tech-
niques such as MC and SMC. Given such a set of requirements, MC and SMC
can provide insight on which decisions provide more guarantees.

For the verification of the Serums system design we are building a model
within the Uppaal tool and using it to check properties and to test different
design options. In the figures automata are represented with a graph where



A Secure User-Centred Healthcare System: Design and Verification 51

Fig. 4. Data Lake component model.

nodes are states of the system (their names are labelled with maroon) and edges
are transitions defining how the system change states. Transitions have optional
labels: tan label defines local variables to be used in other labels; green label is a
guard controlling transition availability; turquoise label specifies synchronisation
channel; blue label describe variables updates. Committed states marked with
symbol C provide an additional control over system execution: if at least one
automaton is in committed state then next transition shall be from one of such
states. Detailed description of Uppaal models can be found in [9].

The model follows the Serums platform (Fig. 1) design and involves one or
several automata for each component. The SHCS automaton shown in Fig. 3
is the central component interacting with users and other Serums components.
Automata modelling patients and healthcare professionals are quite similar: they
first can try to login to the Serums SHCS which includes interaction with the
front-end Authentication automaton and then send one of the requests depicted
in the sequence diagram in Fig. 2. In the model and properties, the term doctor
is used in place of healthcare professional.

Login requests are initialised by users via interaction with SHCS that trans-
fers them to the Authentication component modelled with two automata. The
first automaton interacts with users during login and sign-up procedures and
the second serves as a back-end simply responding to requests. Upon successful
login, the back-end automaton generates an abstracted JWT that is shared with
the user. The JWT is included in all subsequent user requests.

To create and modify access rules, user interacts with SHCS which forwards
the request to the Blockchain automaton. Currently, we do not check properties
of the Blockchain technology or smart contracts. Therefore, we abstract the



52 E. Baranov et al.

Blockchain as a matrix storing data access rules. Whenever a patient creates or
modifies access rule for a doctor, a corresponding cell of the matrix is updated.

Requests for medical data are performed in two steps. At first, SHCS interacts
with the Blockchain automaton checking the access. If the access is granted,
SHCS interacts with the Data Lake modelled with two types of automata. A
single automaton shown in Fig. 4 represents the central part of the Data Lake: it
receives a request for a patient’s SPHR, collects it from local hospitals’ databases
and transfers the combined data. In addition, there is a set of automata modelling
local data storage in multiple hospitals; the data can be updated by the hospital
and been requested by the central Data Lake automaton.

4.1 Verification: Model Checking vs. Statistical Model Checking

We are now ready to analyse properties of the model with Uppaal. In order to
show that the system behaves correctly with many users, we would vary the num-
ber of users by changing the number of instantiated doctor and patient automata
during the analysis. For the paper, we consider two properties described here-
after.

1. Reachability property: doctors are able to receive an SPHR, in particular for
any doctor there exists an execution path where the doctor can receive an
SPHR of some patient.

2. Safety property: a doctor receives a patient’s SPHR only if there is an access
rule allowing the doctor to do so at the moment of request.

Uppaal encoding of the reachability property consists of a set of queries; each
query concerns a single doctor. The queries are E�(di.SPHRReceived), where di
is the ith doctor and SPHRReceived is a state of doctor’s automaton in which
SPHR is received. We consider a property satisfied if all queries are satisfied, the
property checking time is computed as a sum of query times, and the memory
consumption is the maximal consumption among all queries. Note that in the
query we check presence of at least one execution path reaching SPHRReceived
state rather than all paths; indeed one potential execution is all patients blocking
some doctor forever.

Committed states in the model forbid parallel execution of SPHR requests
and access rule modifications ensuring that no rule can be added or modified
during SPHR request. Therefore, the safety property can be checked by the
presence of [rules in the blockchain allowing access to the doctor at the state
where the doctor receives SPHR. It must hold for any doctor at any point of time.
The property is specified with the formula A� ∀d :Doctor (d.SPHRReceived =⇒
blockchain.rules[d][sphr.patient] = ALLOW).

In our experiments we are interested in a verification result as well as in
time and memory required to perform them. Properties have been checked on a
laptop with i7-8650U CPU and 16 Gb of RAM.

Exhaustive MC is known to be afflicted by state space explosion [15]. On our
model, MC quickly runs out of available RAM. One option to perform MC is to



A Secure User-Centred Healthcare System: Design and Verification 53

Fig. 5. Simplified automaton of a doctor.

simplify the model: we only keep automata and transitions directly related to
request SPHR routine (cf. Fig. 2) and remove everything else. In particular, we
keep:

1. automata for doctors, assuming them to be logged in and having an access
token (i.e. all transitions related to login and to sign up are removed) shown
in Fig. 5;

2. SHCS keeping only top part of the Fig. 3 (Request SPHR area);
3. Blockchain processing a single request to check access rules with assumption

that rules are already created by patients and cannot be changed ensuring
that for each doctor there is at least 1 patient providing access to the data;

4. Data Lake with an assumption that all patients’ data in the model is accessible
directly from central automaton without requesting storage at the hospitals.

The model checking results are shown in Fig. 6. Reachability property queries
are evaluated within milliseconds: there are only a few available execution paths,
and the desired state is reachable in less than 20 transitions. The safety property
requires checking all the states of the model and, since the number of states grows
exponentially with the number of doctors, there was not enough RAM to check
the model with 8 doctors3.

SMC provides an alternative to the exhaustive method since the simulation
does not require computation of full state space while high confidence can be
achieved without large time expenses [22,28]. Memory consumption is also low
since states that are not visited during the simulation are not generated. Encod-
ing of properties is adapted as follows. For the reachability property we compute
the probability of the state to be reached on traces of bounded length. In the
original property we were checking the existence of at least one path, therefore
for SMC we consider the property to be satisfied if the resulting probability is
not close to 0. Note that the results of the SMC query provide more information:
it also provides an estimation of the number of paths visiting the state.
3 It is possible to simplify the property by checking it separately for each doctor,

however the simplification doesn’t affect RAM consumption while single doctor check
takes almost the same time as the check for all doctors.



54 E. Baranov et al.

Fig. 6. Model checking time and memory with respect to the number of doctors on the
simplified model. Safety property for 8 doctors runs out of RAM after 10 min execution
without providing the result.

Fig. 7. SMC time on a simplified model
for the reachability property with differ-
ent confidence levels.

Fig. 8. SMC time on a simplified model
for the safety property with different con-
fidence levels.

The safety property has been checked with a hypothesis testing: H0 states
that the property is satisfied with a probability above a selected threshold θ
and H1 that the probability is below. An indifference region around θ covers the
cases when it is not possible to select one of the hypotheses.

To compare results with the exhaustive model checking we used the same
model and the following parameters for the SMC: traces are bounded with 1, 000
transitions, ε value for approximation interval for reachability property is 0.01,
threshold for safety hypothesis is 0.99 with indifference region [0.985, 0.995],
confidence levels are 0.95, 0.99, 0.999, and 0.9999. The SMC engine is also able
to estimate the number of data requests done within traces of given length, for
1, 000 transitions the expected value is 75.

The results of SMC evaluation are shown on Fig. 7 and Fig. 8. Reachability
property is computed slower than with exhaustive model checking due to fact
that evaluation is not stopped after finding a single trace reaching the desired
state but exploring multiple traces until the probability is computed with the



A Secure User-Centred Healthcare System: Design and Verification 55

Fig. 9. SMC time on a complete Serums
model for the reachability property.

Fig. 10. SMC time on a complete Serums
model for the safety property.

desired confidence. Confidence level 0.95 requires almost 200 simulations and
level 0.9999 requires more than 500 simulations. Safety property can be validated
with SMC within 3 s even with 20 doctors, while the exhaustive method requires
more than 40 s for 7 doctors and 1 Gb of RAM. All SMC checks required just
50 Mb of RAM.

While MC fails to check properties on a complete Serums model, SMC due to
low memory requirements can provide results on the complete model. It involves
patients modifying access rules at runtime; therefore, doctors could have access
to the data during a limited interval of time and there is no guarantees that a
doctor would have any access granted. Since the complete model is much larger,
we raised the trace length to 10, 000; and expected number of SPHR requests to
450.

The plots presented in Fig. 9 and Fig. 10 show the computation times for
both properties. Again, 50 Mb of RAM was sufficient to calculate the results.
Safety property can be evaluated within 1 min even for a 0.9999 confidence.
For the reachability property, we report time for a single query for one doctor.
This property requires a large number of simulations to provide the satisfaction
probability interval with the desired confidence due to high randomness of the
system (the SPHR can be received only after a patient creates a rule allowing
that). For 20 doctors, the confidence level of 0.9999 requires more than 20, 000
simulations, thus taking about 12 min.

Figure 11 and Fig. 12 show the average time needed for a single simulation
on simplified and complete models respectively computed as a total verification
time divided by the number of simulations. Unsurprisingly, simulation time is
independent from the desired level of confidence. Simulations for the reachability
property are on average faster than for safety: the former ones can often be
decided after few simulation steps while the latter ones (in case of being satisfied)
requires simulating steps until the trace length bound. Note that the complexity
of the model does not have a big impact on the simulation time: switching from
a simplified model to a much more complex complete model and raising trace
length by a factor of 10 affects the simulation time by a factor of 20.



56 E. Baranov et al.

Fig. 11. SMC average time per simula-
tion on a simplified model.

Fig. 12. SMC average time per simula-
tion on a complete model.

5 Adding Security Requirements

Systems working in the real world should consider not only reachability and
safety properties but security properties as well. Security properties shall check
correctness of system behaviour in the presence of attackers. One cannot expect
that users would follow the behaviour expected by the developers and the system
must prevent all threatening interactions. Consideration of security properties
shall be done at the design stage since vulnerabilities can be introduced there. In
this section we show a simple attack vector and illustrate how formal modelling
can help with detection of vulnerabilities.

The modular structure of the Serums system enables a distributed setup. In
this case the components’ API becomes available to the attackers. A problem
arises with API of the Data Lake component. Considering an SPHR retrieval
request (step 3.3 in Fig. 2), the only information received by the Data Lake is
metadata about which part of patient’s data shall be collected. The information
of the original requester is not provided.

The existence of the Serums formal model allows us to validate whether this
decision and the presence of an attacker can violate some of the properties.
The modifications applied to the model are the following. Firstly, we model an
attacker that imitates a doctor, but sending a request to the Data Lake instead of
SHCS system. Metadata is not taken from the Blockchain rule but generated by
an attacker. Secondly, we add a transition to the Data Lake automaton to receive
request from the attacker (like receiving request from SHCS) and a transition to
send the reply back. The modification has been done on both complete Serums
model and its simplified version.

Exhaustive MC performed on the modified simplified model shows that the
safety property defined in Subsect. 4.1 is violated. There is a possibility to receive
patient data without the stored rule allowing this. Indeed, an attacker can fab-
ricate metadata granting unrestricted access to the patient’s record and request
all the data allowed by this fabricated metadata. SMC performed on both ver-
sions of the modified model rejects the hypothesis that the property is satisfied



A Secure User-Centred Healthcare System: Design and Verification 57

Fig. 13. Sequence diagram with alternate design for the SPHR data request function-
ality in the system.

with probability above 0.99, i.e., there exist simulations on which the property
is violated. This conclusion was drawn in less than 10 simulations.

The presence of this attack required us to modify the design of the system.
The second proposed version of this functionality has a different behaviour and
is illustrated with bold arrows in Fig. 13. Arrows depicted in light grey represent
the previous interactions among components to make clear the system changes
towards increased security. In this new version, the SHCS component directly
sends all information to the Data Lake (3.1) and it is the Data Lake’s respon-
sibility to interact with the Blockchain and collect the data access rules (3.1.2).
The Data Lake receives a patient id, a doctor id, and a doctor’s access token
and checks that the data is requested for the owner of the access token.

The Serums model has been updated to respect the new design flow. An
attacker in this model can try to send any patient and any doctor id, however
we assume that attacker cannot steal or forge someone else’s access token. Ver-
ification of the properties with both exhaustive and statistical model checking
showed that the properties are satisfied even with the presence of an attacker.
The reachability property shows that the attacker can still receive some patient’s
data, however the safety property guarantees that the access to such data has
been granted. Thus, we can conclude that the new design prevents the considered
attack and covers the vulnerability.

Under the assumption that components’ API is available from the outside
world and that the request source cannot be identified, the model checking shows
that the first version of the design has a vulnerability breaching the data con-
fidentiality. For the second design the considered attack vector does not work.
Thorough exploration of the design with the formal modelling allows us to find
issues at the design time.



58 E. Baranov et al.

6 Conclusion

The Serums project aims to provide more secure smart health care provision
with reduced potential for data breaches, and significantly improved patient
trust and safety. This paper shows that formal methods and SMC in particular
can provide significant support for architectural design decisions to ensure data
sharing among healthcare providers with privacy and security.

Modelling of real-world projects that have multiple complex components
results in large formal models on which exhaustive MC is infeasible. Only extrac-
tion of the behaviour related to a specific property results in a model small
enough to be verified. Extraction requires manual work; in addition, it loses the
ability to detect problems caused by interaction of different parts of the sys-
tem. Alternatively, SMC can provide results with a high level of confidence on
a complete model, exploring interactions between different functionalities and is
capable of finding design flaws.

Future work includes two main directions. Verification of the Serums design
to satisfy the remaining requirements and resilience against other attack vectors,
including modelling and verification of smart contracts used in the blockchain
model based on the approach from [2]. The other is the evaluation of the effec-
tiveness of this proposed design on real-world healthcare environments provided
by the Use Case partners in the project.

Acknowledgements. This research is funded by the EU H2020 project SERUMS
(grant 826278). We thank Matthew Banton from the University of St Andrews for
comments that greatly improved the platform security properties and Serums partners
from Accenture and Sopra Steria for their help on the architectural diagrams design.

References

1. Uppaal. https://www.uppaal.org
2. Abdellatif, T., Brousmiche, K.L.: Formal verification of smart contracts based on

users and blockchain behaviors models. In: 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2018)

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

4. Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems.
Prentice Hall International Series in Computer Science, Prentice Hall (1994)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

6. Baranov, E., Given-Wilson, T., Legay, A.: Improving Secure and Robust Patient
Service Delivery. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 404–418. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 23

7. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction
and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol.
Transfer 14(1), 53–72 (2012)

https://www.uppaal.org
https://doi.org/10.1007/978-3-030-61362-4_23
https://doi.org/10.1007/978-3-030-61362-4_23


A Secure User-Centred Healthcare System: Design and Verification 59

8. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30942-8 46

9. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Formal Meth-
ods for the Design of Real-Time Systems, pp. 200–236. Springer (2004). https://
doi.org/10.1007/978-3-540-30080-9 7

10. Bowles, J., Mendoza-Santana, J., Vermeulen, A.F., Webber, T., Blackledge, E.:
Integrating healthcare data for enhanced citizen-centred care and analytics. Stud.
Health Tech. Inf. 275, 17–21 (2020)

11. Bowles, J., Mendoza-Santana, J., Webber, T.: Interacting with next-generation
smart patient-centric healthcare systems. In: UMAP’20 Adjunct: Adjunct Publi-
cation of the 28th ACM Conference on User Modeling, Adaptation and Personal-
ization, pp. 192–193, July 2020

12. Bulychev, P., et al.: Monitor-based statistical model checking for weighted metric
temporal logic. In: International Conference on Logic for Programming Artificial
Intelligence and Reasoning, pp. 168–182. Springer (2012). https://doi.org/10.1007/
978-3-642-28717-6 15

13. Cerone, A., Elbegbayan, N.: Model-checking driven design of interactive systems.
Electron. Notes Theor. Comput. Sci. 183, 3–20 (2007)

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

15. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

16. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transfer 17(4), 397–415 (2015)

17. David, A., et al.: Statistical model checking for networks of priced timed automata.
In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–
96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3

18. Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic
hybrid systems involving nondeterminism over continuous domains. Int. J. Softw.
Tools Technol. Transfer 17(4), 485–504 (2014). https://doi.org/10.1007/s10009-
014-0329-y

19. Gavrilov, G., Vlahu-Gjorgievska, E., Trajkovik, V.: Healthcare data warehouse
system supporting cross-border interoperability. Health Informat. J. 26(2), 1321–
1332 (2020)

20. Gu, R., Enoiu, E., Seceleanu, C.: TAMAA: Uppaal-based mission planning for
autonomous agents. In: Proceedings of the 35th Annual ACM Symposium on
Applied Computing, pp. 1624–1633 (2020)

21. Harrison, M.D., Masci, P., Campos, J.C.: Formal modelling as a component of user
centred design. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS,
vol. 11176, pp. 274–289. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-04771-9 21

22. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 8

https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-28717-6_15
https://doi.org/10.1007/978-3-642-28717-6_15
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-24310-3
https://doi.org/10.1007/s10009-014-0329-y
https://doi.org/10.1007/s10009-014-0329-y
https://doi.org/10.1007/978-3-030-04771-9_21
https://doi.org/10.1007/978-3-030-04771-9_21
https://doi.org/10.1007/978-3-540-24622-0_8


60 E. Baranov et al.

23. Janjic, V., Bowles, J., Vermeulen, A., et al.: The serums tool-chain: ensuring secu-
rity and privacy of medical data in smart patient-centric healthcare systems. In:
2019 IEEE International Conference on Big Data, pp. 2726–2735, December 2019

24. Jetley, R., Iyer, S.P., Jones, P.: A formal methods approach to medical device
review. Computer 39(4), 61–67 (2006)

25. Kalajdzic, K., et al.: Feedback control for statistical model checking of cyber-
physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 46–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 4

26. Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and
validation of rate-adaptive pacemakers. In: 2014 IEEE International Conference on
Healthcare Informatics, pp. 23–32. IEEE (2014)

27. Larrucea, X., Moffie, M., Asaf, S., Santamaria, I.: Towards a GDPR compliant way
to secure European cross border healthcare industry 4.0. Comput. Stand. Interf.
69, 103408 (2020)

28. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
International Conference on Runtime Verification, pp. 122–135. Springer (2010).
https://doi.org/10.1007/978-3-642-16612-9 11

29. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Computing and Software Science, pp. 478–504. Springer
(2019). https://doi.org/10.1007/978-3-319-91908-9 23

30. McGhin, T., Choo, K.K.R., Liu, C.Z., He, D.: Blockchain in healthcare applica-
tions: research challenges and opportunities. J. Netw. Comput. Appl. 135, 62–75
(2019)

31. Mercaldo, F., Martinelli, F., Santone, A.: Real-time SCADA attack detection
by means of formal methods. In: 2019 IEEE 28th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
pp. 231–236. IEEE (2019)

32. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: International Symposium on Programming. pp. 337–351. Springer
(1982). https://doi.org/10.1007/3-540-11494-7 22

33. Ravn, A.P., Srba, J., Vighio, S.: Modelling and verification of web services business
activity protocol. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 357–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19835-9 32

34. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

35. Tanwar, S., Parekh, K., Evans, R.: Blockchain-based electronic healthcare record
system for healthcare 4.0 applications. J. Inf. Secur. Appl. 50, 102407 (2020)

36. Ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: A framework for quan-
titative modeling and analysis of highly (re) configurable systems. IEEE Trans.
Software Eng. 46(3), 321–345 (2018)

37. Webber, T., Santana, J.M., Vermeulen, A.F., Bowles, J.K.F.: Designing a patient-
centric system for secure exchanges of medical data. In: Gervasi, O., et al. (eds.)
ICCSA 2020. LNCS, vol. 12254, pp. 598–614. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58817-5 44

38. Zuliani, P.: Statistical model checking for biological applications. Int. J. Softw.
Tools Technol. Transfer 17(4), 527–536 (2014). https://doi.org/10.1007/s10009-
014-0343-0

https://doi.org/10.1007/978-3-319-47166-2_4
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-642-19835-9_32
https://doi.org/10.1007/978-3-642-19835-9_32
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-030-58817-5_44
https://doi.org/10.1007/978-3-030-58817-5_44
https://doi.org/10.1007/s10009-014-0343-0
https://doi.org/10.1007/s10009-014-0343-0

	A Secure User-Centred Healthcare System: Design and Verification
	1 Introduction
	2 Background
	3 Serums System Design
	4 Serums System Modelling and Verification
	4.1 Verification: Model Checking vs. Statistical Model Checking

	5 Adding Security Requirements
	6 Conclusion
	References




