
Chapter 27 
Remote Sensing at Local Scales 
for Operational Forestry 

Udayalakshmi Vepakomma, Denis Cormier, Linnea Hansson, 
and Bruce Talbot 

Abstract The success of current and future forest management, particularly when 
dealing with triggered changes stemming from extreme climate change–induced 
events, will require prompt, timely, and reliable information obtained at local scales. 
Remote sensing platforms and sensors have been evolving, emerging, and converging 
with enabling technologies that can potentially have an enormous impact in providing 
reliable decision support and making forest operations more coherent with climate 
change mitigation and adaptation objectives. 

27.1 Introduction 

Forest operations are fundamental to the management needs specifically designed 
to respond to a trigger. These triggers are a planned sequence of events along 
the developmental stages of the stand that are set by the forest management plan 
during tactical or operational planning. Forest operations can also be a response
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Fig. 27.1 Schematic of the general information flow (gray arrows), feedback loops (blue arrows), 
and feedback loops induced by a modifier (dashed red arrows) 

to an unplanned change (unplanned trigger) that could alter the decision process 
and operation deployment, generating a feedback loop to the execution of the plan 
(Fig. 27.1). 

Forest operations include timber harvests, fiber recovery, site preparation for suit-
able establishment (natural regeneration, seeding, or planting), thinning, pruning, 
timber stand improvement, competitive vegetation control, sanitization, and salvage 
(Fig. 27.2). They are designed to meet management needs (Fig. 27.1) on the basis 
of the targeted ecological response, technical applicability, and economic feasi-
bility within compliance standards (Rummer, 2002). For example, harvesting within 
ecosystem-based management often prescribes the retention of legacy trees and the 
use of suitable techniques to avoid any damage to these trees. Whereas operations 
are a response to a planned trigger, they can also cause significant expected changes 
to the environment within a very short time; these changes also require tracking. For 
example, harvesting a matured stand will reset (change) the developmental process 
to its early-successional stages.

The effective implementation of sustainable forest management depends largely 
on carrying out sustainable forest operations (Marchi et al., 2018), which can prove 
to be more challenging in the context of climate change. The intensity and frequency 
of extreme climate events and severe insect outbreaks are predicted consequences of 
climate change and will alter the natural dynamics of the forests and drastically alter 
the local environment (Spittlehouse, 2005). For instance, operational deployment 
could be impeded by sudden flooding, early thawing, catastrophic tree damage, etc. 
The feedback loop to tactical planning in such situations happens rapidly and more 
frequently (Fig. 27.1).
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Fig. 27.2 Schematic showing various forest operations along the stand development stages (dark 
gray boxes), including the critical operations (bold)

The success and efficient deployment and the completion of any response or 
action depend on a prompt, timely, and reliable information feed at the planning, 
deployment, and operational stages. The status of vegetation (e.g., tree species or 
stem quality) and terrain (e.g., slope or ground-bearing capacity) features are crit-
ical information needs (Table 27.1). Their level of detail, intensity, and periodicity is 
defined by the complexity of the type of operation or the environmental conditions in 
which the operation must be completed along the stand developmental stages (Table 
27.1). For example, harvesting a sustainably managed mixedwood stand growing 
mainly on complex terrain conditions requires safe access to the site and detailed 
information on the targeted species, e.g., stem quality. It is critical to properly identify 
the seed trees and create microsites that favor natural regeneration during operations. 
Hence, information needs tend to relate to planning, i.e., a priori, and during the actual 
operation, i.e., real time. The recentness of the acquired data is also important. More-
over, detail intensity increases from a homogeneous plantation to a heterogeneous 
natural stand. The level of detail for planning a harvest operation may be at the tree to 
stand level for vegetation, whereas accessibility (surface, slope, skid trails, landings, 
and wood catchment zones) is generally required at the block level (Table 27.2). 
However, during the harvest operation itself, the required details are instantaneous, 
repetitive, and intense within the operator’s line of sight.

Traditionally, data used for planning purposes has been based mainly on a priori 
ground surveys (e.g., walk-throughs, cruising—a method to determine value of a 
specific area—or inventory of plot installations) or coarse interpreted images. Treat-
ment execution is completed using visual assessments and compliance reporting with 
independent surveys. Recent innovations in remote sensing technology for rapidly 
gathering, processing, and accessing information have significantly modernized how 
forest operations are planned and conducted. This chapter documents current remote
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Table 27.1 Required information for vegetation and the post-harvest to complete a forest operation 
along stand development stages 

Matured Stand initiation Establishment Juvenile 

Vegetation features PHS Harv FibRec SitePrep Sd/Plnt Compet PCT CT 

Canopy 

Competing vegetation 

Crown balance 

Retention 

Species 

Stand structure 

Stem spacing/ 
occupancy/voids 
Stem location 

Tree height 

Vigor 

Stem 

Stem quality  

Tree damage 

Tree form 

Wood catchment/ 
volume 
Post-harvest 

Bucking/log sort 

Log scaling 

Residue distribution 

Residue geometry  

Stump 

Legend 

Action  Report Both 

A priori Real time Both 

PHS, preharvest survey; Harv, harvesting; FibRec, fiber recovery, i.e., the process of calculating the 
recovery rate, removing residual fiber, secondary use of fiber, piling, burning; SitePrep, site prepa-
ration; Sd/Plnt, seeding/planting; Compet, competition, i.e., weed control; PCT, precommercial 
thinning; CT, commercial thinning

sensing technologies suitable for understanding, monitoring, and mapping forest 
conditions at local scales to plan, perform, and report forest operations successfully.
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Table 27.2 Required information for the terrain and derived features to complete a forest operation 
along stand development stages 

Matured Stand Init Establishment Juvenile 
Terrain features PHS Harv FibRec SitePrep Sd/Plnt Compet PCT CT 
Roughness 
Ground bearing 

Obstacle 
Soil disturbance 
Slope 
Skid trails 
Drainage 

Derived features 
Accessibility 
Safety 
Cutblock boundary 
Hot spot 
Trafficability 
Protected zones 

Microsite 
availability 
Legend 

Action  Report Both 

A priori Real time Both 

PHS, preharvest survey; Harv, harvesting; FibRec, fiber recovery, i.e., the process of calculating the 
recovery rate, removing residual fiber, secondary use of fiber, piling, burning; SitePrep, site prepa-
ration; Sd/Plnt, seeding/planting; Compet, competition, i.e., weed control; PCT, precommercial 
thinning; CT, commercial thinning

27.2 Remote Sensing Platforms for Operational Forestry 

Remote sensing is a platform-sensor combination (PSC) used to gather information 
about an object without being in physical contact with the object. PSC has the advan-
tage of providing quick, synoptic, and repeated information over large and multiple 
spaces. The level of detail (coverage, resolution, timing, and frequency) varies with 
combinations of these various parameters (Table 26.2). Sensors are either passive 
(e.g., imaging/reflectance and thermal/radiation) or active (e.g., LiDAR or laser scan-
ners and RaDAR or microwave scanners). The periodicity of the satellite data is fixed 
on the basis of constellations (daily to a few days; see Table 26.2), whereas all other 
acquisitions are programmed as per need (Tables 27.3 and 27.4).

Perception sensors help describe surface objects or perceive the environment. 
Positional or pose sensors (e.g., Global Navigation Satellite System–Global Posi-
tioning System, GNSS-GPS; Realtime Kinematics, RTK; Inertial Navigation System, 
INS; Inertial Measurement Unit, IMU; gyros and wheel encoders) determine the loca-
tion and pose of the platform. A sensor platform refers to its carrier; these include
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Fig. 27.3 Comparison and coregistration of LiDAR point clouds of a coniferous stand as captured 
from various platforms. ALS, aerial LiDAR; ULS, UAV-based LiDAR; TLS, terrestrial LiDAR) 

mobile platforms, such as satellites, airborne platforms (aircraft and drones, also 
known as unmanned aerial vehicles or UAV), manned or unmanned ground vehi-
cles, and human or stationary platforms, such as towers and tripods. Sensors are also 
sometimes distinguished by the platform they carry; for example, Liang et al. (2015) 
classified laser scanners as being either airborne (ALS), terrestrial (TLS), mobile 
(MLS), or personal (PLS). Platforms above the forest canopy can provide a synoptic 
view over large contiguous areas to provide a top-to-bottom description. In contrast, 
platforms in proximity, below the canopy, or closer to the ground provide vertical 
stem information and a detailed terrain description that is not feasible or possible 
from above-canopy platform systems (Fig. 27.3). For example, Kankare et al. (2014) 
demonstrated that TLS produces preharvest tree- and stand-level bucking details at 
a greater degree of accuracy than conventional means. Such data can help estimate 
the stumpage value of a stand or more suitable wood assortments. 

Optical sensors capture the reflectance from materials within, e.g., standard digital 
RGB camera, and beyond the visible spectrum, e.g., infrared, whereas thermal 
sensors capture radiation from materials. Multispectral sensors (MSS) capture 
reflectance in limited or broad spectral regions (bands), and hyperspectral sensors 
have narrower but multiple bands. The spatial resolution of the image represents the 
ground sampling distance (GSD), which varies on the basis of the focal length of 
the sensor, the altitude at which the sensor is placed, and the speed with which the 
platform moves (Table 26.2). For instance, depending on the sensor platform, GSD 
may vary from a subcentimeter (e.g., drone), to submeter (e.g., WorldView series) to 
kilometer (e.g., AVHRR) scale. GSD is important in determining the spatial resolv-
ability (mappability) of the feature on the image. Typically, assuming a reasonable 
contrast of the target feature from its background, more than 3 cm GSD is recom-
mended for manually discerning trees as small as 0.4 m in height with a 35 cm crown 
diameter or form on an image (Pitt et al., 1997). 

LiDAR (light detection and ranging) and RaDAR (radio detection and ranging) are 
active ranging sensors. RaDAR transmits microwave radio signals, whereas LiDAR 
transmits infrared energy. Both emit pulses that can penetrate through smoke, cloud, 
and small openings in tree canopies to reach the forest floor as well as measure the
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reflected backscatter. The range is converted to distance to provide precise locations 
(x, y, z) of the point of interaction with an object in space, and these sensors are 
best suited to describing the structure of an object, e.g., crown shape or tree height. 
Available radar systems provide a spatial resolution larger than 1 m and are better 
suited for large-scale mapping relevant to strategic or tactical forest management. 

In terms of the capabilities of data recording, LiDAR systems can be fullwave 
(complete distribution of intercepted and returned laser pulse along the pathway) 
or discrete return (few observations are recorded from a laser pulse that is inter-
cepted and reflected from targets). As they record the entire pathway along with the 
additional attributes of amplitude and intensity, fullwave systems are better suited 
for detailed above- and below-canopy characterization. Fullwave recording requires 
large-scale data management and algorithms, and this approach still remains at the 
experimental stage; however, discrete LiDAR is currently in operational use (Crespo-
Peremarch et al., 2020). LiDAR systems are also differentiated by laser footprint size. 
A small footprint (less than one meter) on the ground provides a good link between 
the LiDAR beam and the structural vegetation attributes that are subtle among or 
within individual trees. By segregating the returns, e.g., vegetation versus ground, 
the points can be interpolated to describe continuous object (digital surface model, 
DSM) and terrain (digital terrain model, DTM) surfaces. Their arithmetic differ-
ences represent the aboveground surfaces, e.g., canopy height model (CHM). Point 
clouds, as well as surface models, are used to extract features. Point density and 
the power of the laser signal to penetrate through the canopy define feature resolv-
ability and the estimated dimensions. Because imaging sensors receive the resulting 
light reaction from a particular surface, they tend to be best suited for understanding 
floristic compositional/structural characteristics related to the object, e.g., species, 
vigor, canopy cover, and density. Imagery is a 2D raster, and LiDAR is 3D point data 
or vertical profile; however, when images are gathered either as a stereo or overlap-
ping sequence, they can provide photogrammetric 3D data useful for describing the 
structure of objects, such as canopy structure. Table 26.2 highlights the estimable 
direct/indirect features relevant to forestry on commonly available platforms. 

The selection of PSC for a forest operation depends on the spatial extent and 
patterns of the area of interest, the timing, the recentness of the acquired informa-
tion, and the repetitiveness between triggers for the required monitoring/reporting, 
specifically for vegetation status. Preharvest surveys should be within a year of the 
operation, whereas site preparation for competition control is conducted within a 
month, and regeneration surveys are two to five years after stand initiation (Table 
26.1). The availability of certain RS platforms, such as satellite or aerial platforms, 
may be limited. Similarly, the phenology of target vegetation is an important consid-
eration, as coniferous crops remain distinctly visible during the early spring or late 
fall, whereas deciduous vegetation is transparent during these periods. 

Measurements with static terrestrial platforms provide a single or a small number 
of viewpoints and hence are limited to the validation or calibration of models built 
on higher platforms (Liang et al., 2018). On the other hand, mobile systems have the 
potential to provide near-real-time data and detailed below-canopy data relevant for 
operational decisions (Holmgren et al., 2019).
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27.2.1 Positioning and Tracking Systems 

Precise positioning in space and navigation is essential for safe and effective target 
action through localization (e.g., fire, salvage, or herbicide sprays) or tracking activity 
data (e.g., machine movements or harvest operations) for assessing efficiency, quality, 
and productivity (Keefe et al., 2019). The most commonly used positioning tools are 
global positioning systems (GPS) operating via a constellation of satellites, 24 as 
in GNSS. A GPS receiver can provide latitude, longitude, elevation, and the vector 
heading to monitor one’s location on topographic/thematic maps or imagery (Picchio 
et al., 2019). This information is generally integrated with a geographic informa-
tion system (GIS) and can be visualized by the operator. Differential GPS or RTK 
systems can improve locational accuracy. Given the poor precision in forested envi-
ronments because of canopies blocking satellite signals, additional sensors like INS 
can be used to estimate relative position and orientation of a mobile vehicle, e.g., an 
operating forestry machine. The heart of INS is the IMU—a combination of gyro-
scopes, accelerometers, and magnetic sensors used for determining translational and 
rotational velocity to provide a navigational solution. More recently, simultaneous 
localization and mapping (SLAM), a technique popular with autonomous systems, 
has also been tested for use in forestry (Chandail & Vepakomma, 2020; Tang et al., 
2015). SLAM involves creating a map for an unknown environment while simulta-
neously determining the agent’s location using a laser or RGB-D camera to estimate 
depth in combination with other location sensors, such as GPS and IMU. 

27.3 Remote Sensing–Based Feature Extraction for Forest 
Operations 

In the context of a forest operation deployment sequence, we can essentially discuss 
remote sensing technologies as those (1) providing information on the forest environ-
ment for operational planning, monitoring, or assessing the effectiveness of an oper-
ation and/or reporting compliance; (2) gathering environmental information during 
the operations; and (3) relating to the operations themselves. Essentially, planning 
is a priori information that has a recentness from the day to a few months previous 
and helps determine the selection and use of machine systems. Information used 
for compliance or when monitoring effectiveness following a treatment must also 
be recent, whereas data needs are real time to near–real time for the deployment of 
actual operations. Above-canopy platforms are more suitable for planning and moni-
toring, especially in contiguous spaces, whereas close-range, terrestrial, and mobile 
platforms are most suitable for real-time operations. The following subsections are 
organized to understand how remote sensing, especially using platforms closer to 
the canopies, can be used for information feed, particularly in relation to vegeta-
tion and the underlying terrain, as highlighted in Table 27.1, along the sequence of 
a forest operation deployment. We provide, where possible, examples of different 
applications.
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27.3.1 Vegetation Features 

During the stand development stages, many prescriptions call for vegetation changes 
to the established stands, e.g., harvesting of crop trees, regeneration cuttings in shel-
terwood or group selection systems, thinning, sanitation removals of diseased or 
infested trees, or the spraying of herbicides on competing shrubs that affect crop 
tree growth. These prescriptions require accurate data at the subtree, tree, or, at 
the least, microstand level for efficient and effective management. This relevant 
data includes assessing tree height, form, quality, vigor, and species, as well as 
the tree’s surrounding environment, e.g., stocking, growing space, species mix, and 
competition. 

27.3.1.1 Pretreatment Assessment 

Given its ability to reconstruct 3D forest structures and reliably estimate several 
biophysical parameters describing within- and below-canopy structure and func-
tion, LiDAR has become an essential component of operational forest inventories in 
numerous countries (Maltamo et al., 2021; Næsset, 2007; White et al., 2016). Two 
main approaches for LiDAR have been developed: an area-based and an individual-
tree approach. The former is aimed at large-scale assessments that have a coarse point 
density effective for producing a stand portrait. As the name suggests, the individual-
tree approach relies on identifying and delineating trees, including species identifi-
cation, direct estimation of height and crown parameters, modeled diameter at breast 
height, basal area, and volume. The area-based approach (ABA) is a model-based 
estimate in which canopy descriptors or metrics are predicted on the basis of regres-
sion or discriminant analysis using accurate in situ plot data and height distribution 
(quantiles, percentiles, etc.) of LiDAR beam reflection (White et al., 2013). This 
method has demonstrated an accuracy of 4–8% for stem height, 6–12% for mean 
stem diameter, 9–12% for basal area, 17–22% for stem density, and 11–14% for 
volume estimates in boreal forest studies attempting to capture within-stand vari-
ability (Holmgren, 2004; Maltamo et al., 2010; Næsset, 2007; Sibona et al., 2017; 
White et al., 2013). In the absence of tree-level information, this stand or micro-
stand level of characterization has been applied in eastern Canada to aid silvicultural 
prescriptions, such as commercial thinning or salvaging (Lussier & Meek, 2014; 
Meek & Lussier, 2008). Integrating vigor information with LiDAR canopy stratifi-
cation helped machine operators improve productivity by 4% (Fig. 27.4; Gaudreau & 
Lirette, 2020). Area-based estimates using digital aerial photogrammetry collected 
across a range of boreal forest types is comparable with that obtained via aerial 
LiDAR (Goodbody et al., 2019). McRoberts et al. (2018) and Fekety et al. (2015) 
note, however, some challenges of using ABA models in relation to their shelf life 
and temporal transferability.
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Fig. 27.4 LiDAR-based stratification combined with image-based vigor for silvicultural prescrip-
tion and operator assistance a ortho image, b vigor class, c canopy height model, and d logging 
map 

The extended history of aerial and satellite platforms carrying optical sensors, 
more recently combined with LiDAR, has produced a large body of work demon-
strating the successful implementation of remote sensing to studies of canopy vegeta-
tion (Cerrejón et al., 2021). Multiple approaches exist for quantifying and estimating 
the structural and compositional parameters of interest and spatially mapping these 
parameters at various spatial scales. Generally, very-high-resolution imagery in 2D, 
stereoscopic, or overlapping imagery in 3D is visually interpreted based on the cali-
bration of a series of field plots combined with guidelines related to the vegetation in 
terms of foliage color, texture, crown shape, and branching structure (Corbane et al., 
2015). Semi- or fully automated workflows can be summarized as segmenting the 
image into homogeneous objects (a tree, a collection of trees, or a stand) and then (1) 
estimating directly the structural or compositional parameters of interest or (2) esti-
mating these parameters indirectly through proxy variables. Segmentation, in partic-
ular individual tree crowns (ITC), is 2D raster-based (either multispectral images, 
grayscale images, or CHM) and 3D point clouds (photogrammetric or LiDAR). 

Separating vegetation from its background and assuming the brightest pixel to 
the highest point of the foliage on high-resolution 2D images (similar to raster-based 
CHM models), rule-based semi- or fully automated approaches can then extract tree 
crowns. Accuracy varies with GSD and by partitioning images into homogeneous 
forest stands; for instance, an accuracy of 60% (70 cm resolution) to 89% (31 cm) 
has been estimated for open coniferous to more complex mixedwood boreal forests, 
respectively (Katoh & Gougeon, 2012; Leckie et al., 2005). The number of trees 
per species depends on ITC accuracy, which improves when understory species 
are eliminated. Two-dimensional models may help with segmentation when esti-
mating species density, although the structural assessment of canopies also requires 
determining canopy height.
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Digital aerial photos (DAPs) combined with stereoscopic (visual) or digital 
photogrammetry can reconstruct a 3D forest canopy. Image matching and, more 
recently, computer-vision techniques such as SIFT (scale-invariant feature trans-
form) combined with structure from motion (SfM) are very commonly used to esti-
mate the 3D forest canopy from sequences of overlapping 2D images, e.g., images 
captured from a drone. If an accurate DTM is derivable, which can be difficult in 
complex, mature stands, DAPs can estimate the structural variables of the uppermost 
canopy, e.g., height, basal area, volume, quite accurately, comparable with the accu-
racy obtained using aerial LiDAR (Baltsavias, 1999; Goodbody et al., 2019). When 
DTM from an image is not derivable, a simple solution is to have a coregistered 
LiDAR or SRTM DTM for DAP point normalization or canopy surface generation 
(St-Onge et al., 2015). Three-dimensional forest canopy models can be useful for 
silvicultural prescriptions when data acquisition is optimally timed before an oper-
ation is planned. It is also possible that rapid and near-real-time inventory measure-
ments, e.g., canopy cover, based on ocular estimates are made with an improved 
precision using nadir—the sensor looking vertically downward—images from a 
drone. UAV-SfM estimates of several inventory variables are comparable to those 
of LiDAR in terms of root mean square error for dominant height (3.5%), Lorey’s 
height (13.3–14.4%), stem density (38.6%), basal area (15.4–23.9%), and timber 
volume (14.9–26.1%) (Puliti et al., 2015; Tuominen et al., 2015). 

Although raster-based ITC approaches can segment most of the top canopy, 
potential segmentation within the multilayered vertical structure of the canopy to 
capture subcanopy elements—especially using LiDAR echoes from above-canopy 
platforms—is possible through point-based clustering. Hamraz et al. (2016) obtained 
>94% detection rate for dominant and codominant trees in complex stands. Because 
of the ultra-high-density data in current LiDAR systems, there is also a greater possi-
bility of extending techniques to direct and nondestructive estimates of a suite of stem-
quality determinants with a high level of accuracy, including estimates of crown base, 
clear stem, stem taper, stem straightness, and branchiness (Vepakomma & Cormier, 
2017, 2019). This offers great potential in the more refined selection of trees on the 
basis of target mill product specifications and automated bucking, where each tree 
can be analyzed at the stump to optimize its market value (Fig. 27.5).

Distinct tree architecture and branching patterns can be observed from high density 
LiDAR (Fig. 27.5). A 77.8% accuracy has been achieved in distinguishing predom-
inantly boreal tree species by correlating estimated LiDAR features to vertical and 
horizontal foliage patterns (Li & Hu, 2012). Use of the textural or spectral intensity 
of multiwavelength LiDAR improved the accuracy (Budei et al., 2018). However, 
given the easy availability of optical images, spectral-based species discrimination 
is the most suitable, rapid, and pragmatic means of mapping large forest spaces. 

Accuracy in tree species classification has improved through a priori crown extrac-
tion (Dalponte et al., 2014), although Heinzel and Koch (2011) found pixel-based 
classification improved the undersegmentation of crowns. While very-high spatial 
and super-spectral-resolution images such as the Worldview series are promising, the 
automated discrimination of more than ten tree species has been achieved with 82% 
accuracy using high-spatial-resolution MSS data (Immitzer et al., 2019). Accuracy
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Fig. 27.5 Estimating 
wood-quality determinants 
using ultra-high-density 
LiDAR. Modified from 
Vepakomma and Cormier 
(2019), CC BY 4.0 license

improved greatly when models were adapted to narrowband hyperspectral sensors 
(Fassnacht et al., 2014; Modzelewska et al., 2020). Hyperspectral data, neverthe-
less, is data- and process-intensive and is restricted to being the most successful 
when collected in bright light conditions. Some researchers have found that sensor-
fusion approaches, such as MSS or hyperspectral data with LiDAR, have improved 
species discriminability in boreal regions (Dalponte et al., 2014; Trier et al., 2018). 
These models identified as many as 19 species at 87% accuracy. Because temporal 
variability is a critical factor for species discrimination and there is an existing insuf-
ficiency of training samples, drone-based solutions can serve to map at local scales 
and develop a reference database (Fassnacht et al., 2014; Natesan et al., 2020). After 
iteratively building tree libraries from drone-based simple RGB images acquired 
in variable light-season-year conditions, Natesan et al. (2020) discriminated five 
conifer species at 73–91% accuracy (Fig. 27.6) and adaptively improved this library 
to identify six more deciduous taxa at over 79% accuracy in boreal regions.

An indicator of forest health is a forest’s resistance and resilience to disturbances 
and its ability to adapt to climate change over the long term. Altered structure, 
functioning, or taxonomy because of the physiological stress of resource limitation, 
disease, or disturbances occur at all spatial (vertical and horizontal) and temporal
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Fig. 27.6 Tree species recognition using an extensive image library from UAV-based RGB images; 
a automated crown delineation, b extracted crowns for training, c softwood species classifica-
tion. Modified with permission from Canadian Science Publishing, permission conveyed through 
Copyright Clearance Center, Inc., from Natesan et al. (2020)

scales; nevertheless, capturing early signs can help minimize disturbance-related 
damage. Using the concepts of spectral traits and their variability (direct or proxy 
variables of forest health), Lausch et al. (2013) conducted an extensive review of the 
best PSC and available techniques for quantifying or qualifying short- to long-term 
monitoring of vigor. Close-range sensing improves precision or calibrates spectral 
responses of stress or disturbance in airborne remote sensing (Fassnacht et al., 2014). 
Slight declines in chlorophyll or moisture levels (identifiable through hyperspectral 
sensing) have helped provide early warnings of bark beetle (Fassnacht et al., 2014; 
Safonova et al., 2019) and herbivorous insect (Cardil et al., 2017; Meng et al., 2018; 
Vepakomma et al., 2021) infestations. There has been some success in identifying 
isolated impacted trees to group mortality (Fassnacht et al., 2014; Sylvain et al., 
2019) and distinguishing the effects of multiple disturbances, e.g., pine blister rust 
and mountain pine beetle (Coops et al., 2003; Hatala et al., 2010). 

27.3.1.2 During Treatment 

Planning and executing forest operations is as much about following best practices 
as it is avoiding changing or damaging cultural remnants and special biotopes or 
transgressing property borders. LiDAR has been used to detect cultural heritage 
sites (Risbøl et al., 2014) and map habitat characteristics with the possibility of 
earmarking areas that must be avoided (Evju & Sverdrup-Thygeson, 2016). Proximal
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scanning also shows a strong potential in providing decision support during opera-
tions. For example, the rapid detection and estimates of stand density, tree position, 
and stem diameter (Holmgren et al., 2019) has helped with thinning tree selection 
and allowed data to be collected on individual tree selection by harvester opera-
tors through modeling of which tree the operator might select a priori (Brunner & 
Gizachew, 2014) or during operations (Gaudreau & Lirette, 2020). 

27.3.1.3 Post-operation Monitoring 

In most jurisdictions, standard practice involves compliance of contractual or regu-
latory frameworks and a post-operation follow-up; for example, these can entail 
assessment of post-harvest renewal or establishment monitoring to ensure sustain-
able production. The desired management objectives are typically to control stocking, 
species composition, survival, and growth. The distinct conical shape of conifer 
seedlings allows their easy detection for both planted trees and natural irregularly 
spaced stems. Vepakomma et al. (2015) distinguished conifer seedlings at least 0.3 m 
in height and estimated their size with a low average bias of 0.02 m through simple 
RGB images obtained from a drone. The data formed a basis for evaluating stocking, 
growing space, and regeneration gaps. By distinguishing competitive species, the 
models were further extended to qualify free-growing trees and assess regenera-
tion compliance (Fig. 27.7). Pouliot et al. (2002) found that although the automated 
detection of six-year-old planted conifers was significantly high (at 91%), crown size 
extraction was sensitive to pixel resolution. In their case, they noted an 18% error 
compared with field assessments.

27.3.2 Terrain Features 

The cost, efficiency, and potential environmental impact of forest operations all 
depend greatly on terrain features, e.g., surface roughness, slope, obstacles, and 
hydrographic data (flow channels, slope, drainage, and wet areas). These features 
can be described at macro-, meso-, and microlevels. DTM at corresponding resolu-
tions are derivable using RaDAR interferometry, e.g., inSAR from satellite, avail-
able SRTM (Shuttle RaDAR Topographic Mission) data, LiDAR, or images using 
photogrammetric techniques where the ground is visible (Talbot & Rahif, 2017). 
Given the current technologies, LiDAR has proven to be the best available and most 
accurate tool for terrain assessments of mature stands. However, ALS with coarse 
data density can still provide a resolution greater than what planning methods can 
actually use (Talbot & Rahif, 2017). 

Knowledge of terrain surface roughness and the number of potential hazards, 
especially under a dense canopy or on steep slopes, is critical for operational safety. 
Full-waveform LiDAR has a higher chance of returns from dense terrain and enables 
the successful detection of hazards, such as protruding rocks over 2 m wide (Chhatkuli
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Fig. 27.7 Automated coniferous regeneration assessment for UAV-based RGB images for reporting 
compliance; a orthorectified image, b species group map, c species-wise detected individual stems, 
d stem height calibration model

et al., 2012). Slope and hydrographic features are directly derivable from a DTM, 
and model-based indices are used to identify wet areas and surface roughness (Ågren 
et al., 2014; Murphy et al., 2008). Identifying surface features that could be potential 
hazards helps ensure the safe driving of machinery at a harvest site (Fig. 27.8; Li  
and Vepakomma, 2020). Wet-area maps, which are characterized by indices such as 
cartographic depth-to-water (DTW) or the topographic wetness index (TWI) help 
to assess soil, vegetation, and drainage type and are used by the machine operators 
during forest operations to avoid or mitigate site damage (Ring et al., 2020). Such 
maps constitute a considerable improvement in recent forest management data and 
the planning of forest operations (Talbot & Astrup, 2021).

27.3.2.1 Pretreatment Assessment 

Harvesting planning. Forest operations alter the environment, which, most often, 
is desired and intended. Undesirable impacts occur in particular when moving mate-
rial or equipment into the forest (Rummer, 2002). In practice, machine operators in 
Europe and the Americas use tree cover and ground information as a canvas to plan 
harvesting or the moving of equipment. Providing an automated feature extraction
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Fig. 27.8 Hazard detection and model-based drivability map using ultra-high-density LiDAR data 
from a UAV; a detected hazards overlying an orthorectified RGB image, b modeled drivability 
index showing a gradient of drivable (green) to no-go areas (red), c digital elevation model, d rock 
outcrops captured by mobile LiDAR, e extracted stumps. Modified with permission from Li and 
Vepakomma (2020)

from remote sensing as part of harvest planning can significantly minimize detri-
mental factors. These features can then be fed into algorithms to identify potential 
landings adjacent to roads or aid route optimization (Flisberg et al., 2021). In ground-
based harvesting, the skid trail layout should be adapted to both the topography and 
the soil bearing capacity. Rönnqvist et al. (2020) combined digital elevation models, 
depth-to-water maps, and LiDAR-based tree volumes to spatially optimize extrac-
tion routes. In steep terrain, identifying suitable load paths for cable yarding and 
maximizing the use of each yarder setup is essential for optimizing economic perfor-
mance. Detection of suitable end trees (tail spars) and intermediate support trees 
and discerning actual terrain form between contour lines—previously carried out by 
manual profile surveys—can now be easily replaced by LiDAR assessments (Dupire 
et al., 2015; Søvde, 2015). 

Roads and transport. Monitoring forest road conditions includes gathering infor-
mation on road geometries, surface conditions, condition of the drainage system, 
the presence of vegetation, and seasonal damage (Talbot & Rahif, 2017). Regular 
geometric shapes such as roads are easily discernable on images and high-resolution



676 U. Vepakomma et al.

LiDAR, which can be used to provide information on widths, curve geometries, and 
slope (White et al., 2010). Similar to the in-field driving applications, Waga et al. 
(2020) used LiDAR-derived TWI models to predict road quality. They obtained an 
accuracy of up to 70 and 86% when the models were combined with other vari-
ables, such as surface quality index and soil type. Surface quality factors, including 
roughness, gradient, and camber, can also be recorded from a vehicle using a profilo-
graph and then entered into the model to determine the effect of these factors on fuel 
consumption during timber hauling (Svenson & Fjeld, 2016). 

27.3.2.2 Post-treatment Assessment of Disturbances 

Harvest compliance in many jurisdictions includes minimizing rutting and damage to 
soils (Talbot & Rahif, 2017). Remote sensing can help locate and characterize ruts and 
assess the level of soil disturbance caused by an operation (Pierzchała et al., 2016). 
Haas et al. (2016) used photogrammetry to quantify variations in rutting related to 
tires of differing dimensions and the use of steel bands on forwarders. In a similar 
analysis, Marra et al. (2018) considered differences in tire pressure and the effect of 
several forwarder passes on rut development. Although this information is helpful at 
an individual rut level, remote sensing can also help locate and characterize ruts at the 
site level. Nevalainen et al. (2017) proposed a method for measuring rut depths from 
point clouds derived from images captured from a UAV. Talbot et al. (2018) usedUAV-
based orthomosaics to determine the extent and severity of rutting at a stand level and 
developed a method to reduce the need for field sampling in assessing site impacts. 
However, photogrammetry-based solutions have their limitations; for example, light 
and weather conditions can affect accuracy. Moreover, although surface models can 
be generated, occlusion greatly limits information related to site conditions for sites 
under a partial canopy or under brush mats on the ground. 

27.4 Remote Sensing–Enabling Autonomy 

The automation of the remote sensing information feed for active decision support 
and adaptive forest management is very close to reality. Embedded sensors that 
were used to remotely monitor hazardous or inaccessible environments (e.g., nuclear 
reactors or rail tracks) are being applied to the proximal monitoring of machine 
movements and perception of surrounding forest environments (Holmgren et al., 
2019). SLAM, through onboard sensors such as 2D LiDAR scanners and stereo-
cameras, has demonstrated its potential in estimating machine pose with reference 
to its complex unstructured forest surroundings either in combination with GPS 
(Pierzchała et al., 2018; Tang et al., 2015) or using only visual odometry in GPS-
denied environments (Chandail & Vepakomma, 2020). 

The last decade has seen a gradual paradigm shift toward developing “intelli-
gent” machines converging with sensing systems, thereby moving from automation
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to autonomously navigating and negotiating different entities. In the aerial sector, 
miniaturized vision systems and artificial intelligence (AI) combined with remotely 
piloted systems or fully autonomous UAV swarms can now monitor and provide 
real-time situational awareness. For example, Hummingbird drones mounted with 
infrared-sensing instruments and AI are now used for fire monitoring (www.hum 
mingbirddrones.ca). There is a movement away from man-heavy to man-light oper-
ations in manufacturing, agriculture, and mining sectors focusing on improving 
productivity or safety under challenging conditions. Although the forestry sector 
mandates environmentally friendly systems, the harsh diverse forest environment 
and obstacle-ridden forest floor may tax the limits and the reliability of all types 
of instruments (Billingsley et al., 2008). Although challenging to implement, the 
automation and autonomizing of future forestry is the focus of considerable research 
through programs, such as Forestry 4.0 (Canada, https://web.fpinnovations.ca/for 
est-operations-solutions-to-help-the-canadian-forest-industry/forestry-4-0/, https:// 
www.youtube.com/watch?v=r4vhLQ8OEP0) or Auto2 (Sweden, Gelin et al., 2021), 
and the application of such programs to forestry issues (e.g., forest fire management, 
Sahal et al., 2021). 

The success of any current or future forest management, particularly when dealing 
with triggered changes from extreme climate change–induced events, will require a 
prompt, timely, and reliable information feed. Remote sensing has been evolving, 
emerging, and converging with enabling technologies and offers reliable decision 
support and can ensure safer forest operations. 
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