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Preface

The 42nd International Cryptology Conference (CRYPTO 2022) was held at the
University of California, Santa Barbara, California, USA, during August 15–18, 2022.
The conference had a hybrid format, with some presentations made in person, and some
delivered virtually. CRYPTO 2022 was sponsored by the International Association for
Cryptologic Research (IACR). The conference was preceded by two days of workshops
on various topics.

The conference set new records for both submissions and publications: 455 papers
were submitted, and 100 were accepted. Two papers were merged into a single joint
paper. Three pairs of papers were soft-merged, meaning that they were written sepa-
rately, but only one paper in each pair was given a presentation slot at the conference.
This resulted in 96 presentations, a record by some margin for a non-virtual edition
of Crypto. It took a Program Committee of 72 cryptography experts working with
435 external reviewers almost three months to select the accepted papers. We Chairs
extend our heartfelt gratitude for the effort and professionalism displayed by the Program
Committee; it was our pleasure to be your Chairs.

We experimented with some new policies and mechanisms this year. The most
important had to do with the quality of reviewing, author feedback and interaction with
the authors.

Shortly after the standard doubly-blind reviewing stage, we assigned a unique
discussion leader (DL) to every paper. The DL’s job was to make sure the paper received
a thorough and fair treatment, and to moderate interactive communication between the
reviewers and authors (described below). The DL also prepared a “Reviewers’ consen-
sus summary”, which provided the authors with a concise summary of the discussion,
the decision, and overall trajectory of the paper throughout the process. Many authors
expressed gratitude for receiving the Reviewers’ consensus summary, in addition to the
usual reviews and scores. Overall, feedback on our DL experiment was quite positive,
and we recommend it to future chairs to adopt this process as well.

We also experimented with an “interactive rebuttal” process. Traditionally, the
rebuttal process has consisted of a single round: the authors were provided with the
initial reviews, and had one opportunity to respond prior to the final decision. While
better than no opportunity to rebut, our opinion is that the traditional process suffers
from several important flaws. First, the authors were left to respond in (say) 750 words
to multiple reviews that are, each, much longer. Too often, the authors are left to divine
what are the crucial points to address; getting this wrong can lead to reviewers feel-
ing that the rebuttal has missed (or dismissed) what mattered to them. In any case, the
authors had no idea if their rebuttal was correctly focused, let alone convincing, until
the decisions and final reviews were released. In many instances, the final reviews gave
no signal that the rebuttal had been thoughtfully considered. In our view, and personal
experience, the traditional rebuttal process led to frustration on both sides, with review-
ers and authors feeling that their time had been wasted. Moreover, it had unclear benefits
in terms of helping the PC to pick the best possible program.
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To address this, we created a review form that required reviewers to make
explicit what were their core concerns and criticisms; and we allowed for multiple,
DL-moderated, rounds of communication between the reviewers and the authors.

Our review form had exactly one field visible to the authors during the initial rebuttal
round. The field was called “Question/Clarifications for Authors”, and reviewers were
instructed to include only those things that had significant bearing upon the reviewer’s
accept/reject stance. We gave all reviewers detailed guidance on things that must be
included. For example, any claimed errors, crucial prior work that was not cited, or
other objective weaknesses that appeared in the detailed review comments. In addition,
the reviewers were instructed to clearly state less objective concerns that factored into
their initial score and disposition towards the paper. Thus, the authors should know
exactly what to focus upon in their response. While not perfect, the new rebuttal format
was a resounding success. Very strong/weak papers typically had very short rebuttals,
allowing the PC to focus their time and energy on papers in need of extensive discussion
or additional reviews.

In concert with the new review form and detailed review instructions, we also
implemented interactive discussions between the reviewers and authors. The traditional
rebuttal round became the first round of the interactive discussion.One roundwas enough
for a fraction of the papers (primarily papers that were very strong or very weak), but the
evaluation of most submissions benefited from numerous rounds: reviewers were able to
sharpen their questions, authors were able to address points directly and in greater detail.
The whole review process shifted more towards a collegial technical exchange. We did
not encounter any problems that we initially feared, e.g., authors spamming the PC with
comment. We believe that having the DLs moderate these interactions was important
for keeping emotions and egos in check, and for encouraging reviewers to share any
significant new concerns with the authors.

A few minor hiccups notwithstanding, the focused review forms and the “interactive
rebuttal” mechanism received a lot of positive feedback, and we strongly encourage
future chairs to adopt this tradition.

We also mention several smaller details which worked well. First, our review form
included a “Brief Score Justification” field that remained reviewer-visible (only) for the
entire process. This was a space for reviewers to speak freely, but concisely, about how
they came to their scores. As Chairs, we found this extremely useful for getting a quick
view of each paper’s reviews. Second, we had an early rejection round roughly in the
middle of our reviewing process. This allowed us to reject roughly half of submissions,
i.e., those that clearly had no chance of being accepted to the final program. The process
generally worked, and we tried to err on the side of caution, keeping papers alive if
the PC was unsure of their seemingly negative views. For example, we allowed PC
members to tag papers that they wanted to keep alive, even to the point of overturning
a preliminary decision to early reject. However, we did feel slightly rushed in finalizing
the early reject decisions, as we made them after less than two weeks after the initial
reviewing round, and less than a week after the initial rebuttal round. Part of this rush
was due to late reviews. Thus, we recommend that future chairs give themselves a bit
more slack in the schedule, and perhaps add a second (less) early rejection round. Third,
we experimented with allowing PC members to have a variable number of submissions,
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rather than the usual hard limits (e.g., at most one or two). Concretely, at most 4 papers
could be submitted; the first paper was “free”, but every subsequent paper submitted by
the PC member resulted in this PC member getting roughly three more papers to review,
and one additional DL appointment. We adopted this policy to make it easier for experts
to accept our invitation to join the PC. (As always, the chairs were not allowed to submit
papers.) Despite some unexpected difficulties and complaints about this system, most
having to do with the logistic difficulty of assigning DLs to PC members with late initial
reviews, many PC members told us that they appreciated the flexibility to submit more
papers, especially when students were involved. We found no evidence that our system
resulted in more accepted papers that were co-authored by the PCmembers, or any other
biases and irregularities. Hence, we found it to be positive, overall.

The Program Committee recognized three papers and their authors for particularly
outstanding work

– “Batch Arguments for NP and More from Standard Bilinear Group Assumptions,” by
Brent Waters and David Wu

– “Breaking Rainbow Takes a Weekend on a Laptop”, by Ward Beullens
– “Some Easy Instances of Ideal-SVP and Implications to the Partial Vandermonde
Knapsack Problem”, by Katharina Boudgoust, Erell Gachon, and Alice Pellet-Mary

We were very pleased to have Yehuda Lindell as the Invited Speaker at CRYPTO
2022, who spoke about “The MPC journey from theoretical foundations to commercial
success: a story of science and business”.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2022. Additionally, we are
grateful to the following people for helping to make CRYPTO 2022 a success: Allison
Bishop (General Chair, CRYPTO 2022), Kevin McCurley and Kay McKelly (IACR IT
experts), Carmit Hazay (Workshops Chair), and Whitney Morris and her staff at UCSB
conference services.

We would also like to thank the generous sponsors, all of the authors of the
submissions, the rump session chair, the regular session chairs, and the speakers.

August 2022 Yevgeniy Dodis
Thomas Shrimpton
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Secret Sharing and Secure Multiparty
Computation



Sharing Transformation and Dishonest Majority
MPC with Packed Secret Sharing

Vipul Goyal1,2(B), Antigoni Polychroniadou3, and Yifan Song1

1 Carnegie Mellon University, Pittsburgh, PA, USA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, CA, USA
3 J.P. Morgan AI Research, New York, NY, USA

Abstract. In the last few years, the efficiency of secure multi-party
computation (MPC) in the dishonest majority setting has increased by
several orders of magnitudes starting with the SPDZ protocol family
which offers a speedy information-theoretic online phase in the prepos-
sessing model. However, state-of-the-art n-party MPC protocols in the
dishonest majority setting incur online communication complexity per
multiplication gate which is linear in the number of parties, i.e. O(n),
per gate across all parties. In this work, we construct the first MPC
protocols in the preprocessing model for dishonest majority with sub-
linear communication complexity per gate in the number of parties n.
To achieve our results, we extend the use of packed secret sharing to the
dishonest majority setting. For a constant fraction of corrupted parties
(i.e. if 99 percent of the parties are corrupt), we can achieve a commu-
nication complexity of O(1) field elements per multiplication gate across
all parties.

At the crux of our techniques lies a new technique called sharing
transformation. The sharing transformation technique allows us to trans-
form shares under one type of linear secret sharing scheme into another,
and even perform arbitrary linear maps on the secrets of (packed) secret
sharing schemes with optimal communication complexity. This technique
can be of independent interest since transferring shares from one type of
scheme into another (e.g., for degree reduction) is ubiquitous in MPC.
Furthermore, we introduce what we call sparsely packed Shamir sharing
which allows us to address the issue of network routing efficiently, and
packed Beaver triples which is an extension of the widely used technique
of Beaver triples for packed secret sharing (for dishonest majority).

1 Introduction

In this work we initiate the study of sharing transformations which allow us
to perform arbitrary linear maps on the secrets of (possibly packed) secret-
sharing schemes. More specifically, suppose Σ and Σ′ are two linear secret shar-
ing schemes over a finite field F. A set of n parties {P1, P2, . . . , Pn} start with
holding a Σ-sharing X. Here X could be the sharing of a single field element or

c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 3–32, 2022.
https://doi.org/10.1007/978-3-031-15985-5_1
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a vector of field elements (e.g., as in packed secret sharing where multiple secrets
are stored within a single sharing). The parties wish to compute a Σ′-sharing Y
whose secret is a linear map of the secret of X. Here a linear map means that
each output secret is a linear combination of the input secrets (recall that the
secret can be a vector in F). We refer to this problem as sharing transformation.

Restricted cases of sharing transformations occur frequently in the construc-
tion of secure computation protocols based on secret sharing. For example,

– In the well-known BGW protocol [BOGW88] and DN protocol [DN07] and
their followups (see [CGH+18,BGIN20,GLO+21] and the citations therein),
when evaluating a multiplication gate, all parties first locally compute a
Shamir secret sharing of the result with a larger degree. To proceed the com-
putation, all parties wish to transform it to a Shamir secret sharing of the
result with a smaller degree. Here the two linear secret sharing schemes Σ,Σ′

are both the Shamir secret sharing schemes but with different degrees.
– A recent line of works [CCXY18,PS21,CRX21] use the notion of

reverse multiplication-friendly embeddings (RMFE) to construct efficient
information-theoretic MPC protocols over small fields or rings Z/p�

Z. This
technique requires all parties to transform a secret sharing of a vector of
secrets that are encoded by an encoding scheme to another secret sharing of
the same secrets that are encoded by a different encoding scheme.

– A line of works [DIK10,GIP15,GSY21,BGJK21,GPS21] focus on the strong
honest majority setting (i.e., t = (1/2 − ε) · n) and use the packed secret-
sharing technique [FY92] to construct MPC protocols with sub-linear com-
munication complexity in the number of parties. The main technical difficulty
is to perform a linear map on the secrets of a single packed secret sharing
(e.g., permutation or fan-out). In particular, depending on the circuit, each
time the linear map we need to perform can be different.

Unlike the above results, our sharing transformation protocol (1) can perform
arbitrary linear maps (2) is not restricted to a specific secret-sharing scheme and
(3) can achieve optimal communication complexity1. Our transformation can
find applications to different protocols based on different secret sharing schemes.
In this work we focus on applications to information-theoretic (IT) MPC proto-
cols. Furthermore, since we can handle any linear secret sharing scheme, our shar-
ing transformation works for an arbitrary packing factor k as long as t ≤ n−2k+1
where n is the number of participants and t is the number of corrupted parties
by the adversary. This allows us to present the first IT MPC protocols with
online communication complexity per gate sub-linear in the number of parties in

1 To be more precise, our protocol achieves linear communication complexity in the
summation of the sharing sizes of the two secret sharing schemes in the transforma-
tion. This is optimal (up to a constant factor) since it matches the communication
complexity of using an ideal functionality to do sharing transformation: the size of
the input is the sharing size of the first secret sharing scheme, the size of the out-
put is the sharing size of the second secret sharing scheme, and the communication
complexity is the size of the input and output.
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the circuit-independent prepossessing model for a variety of corruption thresh-
olds based on packed secret sharing. That said, we are able to extend the use of
packed secret sharing beyond the strong honest majority setting.

For the case where t = n−1, any function can be computed with IT security
in the preprocessing model with online communication complexity of O(n) field
elements per gate across all parties [DPSZ12]. Existing protocols in the literature
even for t ∈ [(n − 1)/2, n − 1] still required communication complexity of O(n)
elements per gate. We note that most of these protocols follow the “gate-by-
gate” design pattern described in [DNPR16]. In particular, the work [DNPR16]
shows that any information-theoretic protocol that works in this design pattern
must communicate Ω(n) for every multiplication gate. However, recent protocols
in the strong honest majority setting, based on packed secret-sharing [FY92],
where the number of corrupted parties t = (1/2− ε) ·n and ε ∈ (0, 1/2) [GPS21]
do achieve O(1/ε) communication complexity per gate among all parties. Note
that the packed secret sharing technique evaluates a batch of multiplication
gates in parallel, which differs from the above “gate-by-gate” design pattern
in [DNPR16], and therefore does not contradict with the result in [DNPR16].
Our result closes the gap in achieving sub-linear communication complexity per
gate in the number of parties for the more popular settings of standard honest
majority and dishonest majority.

1.1 Our Contributions

Sharing Transformation. For our arbitrary linear-map transformation on
(packed) linear secret sharing schemes we obtain the following informal result
focusing on share size 1 (i.e., each share is a single field element).

Theorem 1 (Informal). Let k = (n − t + 1)/2. For all k tuples of
{(Σi, Σ

′
i, fi)}k

i=1 linear secret sharing schemes with injective sharing functions
and for all Σi-sharings {Xi}k

i=1, there is an information-theoretic MPC proto-
col with semi-honest security against t corrupted parties that transforms Xi to
a Σ′

i-sharing Yi such that the secret of Yi is equal to the result of applying a
linear map fi on the secret of Xi for all i ∈ {1, . . . , k} (Here the secrets of Xi

and Yi can be vectors). The cost of the protocol is O(n3/k2) elements of com-
munication per sharing in a (sharing independent) preprocessing stage leading to
preprocessed data of size O(n2/k), and O(n2/k) elements of communication per
sharing in the online phase. When t = (1 − ε) · n for a positive constant ε, the
overall communication complexity is O(n) elements per sharing transformation.

The formal theorem is stated in the full version of this paper [GPS22]. In
Sect. 4, we show that our sharing transformation works for any share size �
(with an increase in the communication complexity by a factor �), and in the
full version of this paper [GPS22], we show that it is naturally extended to any
finite fields and rings Z/p�

Z. The main application of our sharing transformation
technique is to construct MPC protocols. And we achieve malicious security
by directly compiling our semi-honest MPC protocol instead of relying on a
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maliciously secure sharing transformation protocol. Therefore, in this work, we
do not attempt to achieve malicious security for our sharing transformation
technique.

We now turn our attention to constructing general MPC using our sharing
transformation technique.

Dishonest Majority. In the setting of dishonest majority where the number of
corrupted parties t = (1 − ε) · n for a positive constant ε, our MPC protocol
achieves the cost of O(1/ε2) elements of (the size of) preprocessing data, and
O(1/ε) elements of communication per gate among all parties. Thus when ε is
a constant (e.g., up to 99 percent of all parties may be corrupted), the achieved
communication complexity in the online phase is O(1) elements per gate.

Honest Majority. As a corollary of our results in the dishonest majority setting,
we can achieve O(1) elements per gate of online communication and O(1) ele-
ments of preprocessing data per gate across all parties in the standard honest
majority setting (i.e., where the number of corrupted parties t is (n − 1)/2).

Our main results are summarized below. Note that we have omitted the
additive terms of the overhead of the communication complexity in the informal
theorems below. The additive terms are dependent on n and the depth of the
evaluated circuit. Our first theorem is for the semi-honest setting:

Theorem 2 (Informal). For an arithmetic circuit C over a finite field F of
size |F| ≥ |C|+n, there exists an information-theoretic MPC protocol in the pre-
processing model which securely computes the arithmetic circuit C in the presence
of a semi-honest adversary controlling up to t parties. The cost of the protocol
is O(|C| · n2/k2) elements of preprocessing data, and O(|C| · n/k) elements of
communication where k = n−t+1

2 is the packing parameter. For the case where
k = O(n), the achieved communication complexity in the online phase is O(1)
elements per gate.

Our theorem also holds in the presence of a malicious adversary for all
1 ≤ k ≤ [n+2

3 ]. The formal theorem for semi-honest security is stated in Theo-
rem 3. We refer the readers to the full version of this paper [GPS22] for the for-
mal theorem for malicious security. Moreover, using our sharing transformation
based on the construction of [GPS21], we can also achieve online communication
complexity of O(1) elements per gate for small finite fields of size |F| ≥ 2n. We
refer the readers to the full version of this paper [GPS22] for more details.

2 Technical Overview

In this section, we give an overview of our techniques. We use bold letters to
represent vectors.
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Reducing Sharing Transformation to Random Sharing Preparation. Usually,
sharing transformation is solved by using a pair of random sharings (R,R′)
such that R is a random Σ-sharing and R′ is a random Σ′-sharing which satis-
fies that the secret of R′ is equal to the result of applying f on the secret of R,
where f is the desired linear map. Then all parties can run the following steps
to efficiently transform X to Y .

1. All parties locally compute X + R and send their shares to the first
party P1.

2. P1 reconstructs the secret of X +R, denoted by w. Then P1 computes f(w)
and generates a Σ′-sharing of f(w), denoted by W . Finally, P1 distributes
the shares of W to all parties.

3. All parties locally compute Y = W − R′.

If we use rec, rec′ to denote the reconstruction maps of Σ and Σ′ (which are
linear by definition) respectively, the correctness follows from that

rec′(Y ) = rec′(W )−rec′(R′) = f(w)−f(rec(R)) = f(rec(X +R)−rec(R)) = f(rec(X )).

And the security follows from the fact that X+R is a random Σ-sharing and thus
reveals no information about the secret of X. Therefore, the problem of sharing
transformation is reduced to preparing a pair of random sharings (R,R′). Let
˜Σ = ˜Σ(Σ,Σ′, f) be the secret sharing scheme which satisfies that a ˜Σ-sharing of
a secret x consists of X which is a Σ-sharing of x, and Y which is a Σ′-sharing
of f(x). Then, the goal becomes to prepare a random ˜Σ-sharing.

The generic approach of preparing random sharings of a linear secret sharing
scheme over F is as follows:

1. Each party Pi first samples a random sharing Ri and distributes the shares
to all other parties.

2. All parties use a linear randomness extractor over F to extract a batch of
random sharings such that they remain uniformly random even given the
random sharings sampled by corrupted parties. For a large finite field, we can
use the transpose of a Vandermonde matrix [DN07] as a linear randomness
extractor. The use of a randomness extractor is to reduce the communication
complexity per random sharing. Alternatively, we can simply add all ran-
dom sharings {Ri}n

i=1 and output a single random sharing, which results in
quadratic communication complexity in the number of parties.

If t is the number of corrupted parties, all parties can extract n − t random
sharings when using a large finite field. Then, the amortized communication
cost per sharing is n2/(n− t) field elements (assuming each share is a single field
element). When n − t = O(n), e.g., the honest majority setting, the amortized
cost becomes n2/(n−t) = O(n), which is generally good enough since it matches
the communication complexity of delivering a random sharing by a trusted party,
which seems like the best we can hope, up to a constant factor.

Thus when we need to prepare many random sharings for the same linear
secret sharing scheme, the generic approach is already good enough. And in
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particular, it is good enough for random ˜Σ-sharings which are used for the same
sharing transformation defined by ˜Σ = ˜Σ(Σ,Σ′, f), since ˜Σ is also a linear secret
sharing scheme. This is exactly the case when we need to do degree reduction
in [BOGW88,DN07] and change the encoding of the secrets in [CCXY18,PS21,
CRX21]. However, it is a different story if we need to prepare random sharings
for different linear secret sharing schemes: If only a constant number of random
sharings are needed for each linear secret sharing scheme, the amortized cost per
sharing becomes O(n2) field elements. This is exactly the case when we need
to perform permutation on the secrets of a packed secret sharing in [DIK10,
GIP15,BGJK21,GPS21]. In their setting, the permutations are determined by
the circuit structure. In particular, these permutations can all be distinct in
the worst case. As a result, the cost of preparing random sharings becomes the
dominating term in the communication complexity in the MPC protocols. To
avoid it, previous works either restrict the number of different secret sharing
schemes they need to prepare random sharings for [DIK10,GIP15,GPS21] or
restrict the types of circuits [BGJK21].

This leads to the following fundamental question: Can we prepare random
sharings (used for sharing transformations) for different linear secret sharing
schemes with amortized communication complexity O(n)?

2.1 Preparing Random Sharings for Different Linear Secret Sharing
Schemes

To better expose our idea, we focus on a large finite field F. In the following, we
use n for the number of parties, and t for the number of corrupted parties. We
assume semi-honest security in the technical overview.

Linear Secret Sharing Scheme over F. For a linear secret sharing scheme Σ over
F, we use Z = F

k̃ to denote the secret space. k̃ is also referred to as the secret size
of Σ. For simplicity, we focus on the linear secret sharing schemes that have share
size 1 (i.e., each share is a single field element even though the secret is a vector
of k̃ elements). Let share : Z ×F

r̃ → F
n be the deterministic sharing map which

takes as input a secret x and r̃ random field elements, and outputs a Σ-sharing of
x. We focus on linear secret sharing schemes whose sharing maps are injective,
which implies that k̃ + r̃ ≤ n. Let rec : Fn → Z be the reconstruction map
which takes as input a Σ-sharing and outputs the secret of the input sharing.
As discussed above, we have shown that preparing many random sharings for
the same linear secret sharing scheme can be efficiently achieved.

We use the standard Shamir secret sharing scheme over F, and use [x]t to
denote a degree-t Shamir sharing of x. A degree-t Shamir sharing requires t + 1
shares to reconstruct the secret. And any t shares of a degree-t Shamir sharing
are independent of the secret.

Starting Point - Preparing a Random Sharing for a Single Linear
Secret Sharing Scheme. Let Σ be an arbitrary linear secret sharing scheme.
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Although we have already shown how to prepare a random sharing for a single
linear secret sharing scheme Σ, we consider the following process which is easy
to be extended (discussed later).

1. All parties prepare k̃ + r̃ random degree-t Shamir sharings. Let τ be the
secrets of the first k̃ sharings, and ρ be the secrets of the last r̃ sharings.
Our goal is to compute a random Σ-sharing of τ with random tape ρ, i.e.,
share(τ ,ρ).

2. Since share is F-linear, for all j ∈ {1, 2, . . . , n}, the j-th share of share(τ ,ρ)
is a linear combination of the values in τ and ρ. Thus, all parties can locally
compute a degree-t Shamir sharing of the j-th share of share(τ ,ρ) by using
the degree-t Shamir sharings of the values in τ and ρ prepared in Step 1
and applying linear combinations on their local shares. Let [Xj ]t denote the
resulting sharing.

3. For all j ∈ {1, 2, . . . , n}, all parties send their shares of [Xj ]t to Pj to let Pj

reconstruct Xj . All parties take X = (X1, . . . , Xn) as output.

Note that τ and ρ are all uniform field elements, and X = share(τ ,ρ). There-
fore, the output X is a random Σ-sharing.

We note that this approach requires to prepare k̃+ r̃ = O(n) random degree-t
Shamir sharings and communicate n2 field elements in order to prepare a random
Σ-sharing, which is far from O(n). To improve the efficiency, we try to prepare
random sharings for a batch of (potentially different) secret sharing schemes
each time.

Preparing Random Sharings for a Batch of Different Linear Secret
Sharing Schemes. We note that the above vanilla process can be viewed as all
parties securely evaluating a circuit for the sharing map share of Σ. In partic-
ular, (1) the circuit only involves linear operations, and (2) circuits for different
secret sharing schemes (i.e., share1, share2, . . . , sharek) all satisfy that each
output value is a linear combination of all input values with different coeffi-
cients. When we want to prepare random sharings for a batch of different secret
sharing schemes, the joint circuit is very similar to a SIMD circuit (which is a
circuit that contains many copies of the same sub-circuit). The only difference
is that, in our case, each sub-circuit corresponds to a different secret sharing
scheme, and therefore the coefficients used in different sub-circuits are distinct.
On the other hand, a SIMD circuit would use the same coefficients in all sub-
circuits. Thus, it motivates us to explore the packed secret-sharing technique
in [FY92], which is originally used to evaluate a SIMD circuit.

Starting Idea. Suppose Σ1, Σ2, . . . , Σk are k arbitrary linear secret sharing
schemes (Recall that we want to prepare random sharings for different sharing
transformations, and every different sharing transformation requires to prepare
a random sharing of a different secret sharing scheme). We assume that they
all have share size 1 (i.e., each share is a single field element) for simplicity. We
consider to use a packed secret sharing scheme that can store k secrets in each
sharing. Our attempt is as follows:
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1. All parties first prepare n random packed secret sharings (Our construction
will use the packed Shamir secret sharings introduced below). The secrets
are denoted by r1, r2, . . . , rn, where each secret rj is a vector of k random
elements in F.

2. For all i ∈ {1, 2, . . . , k}, we want to use the i-th values of all secret vectors
to prepare a random sharing of Σi. With more details, suppose Σi has secret
space Zi = F

k̃i , and the sharing map of Σi is sharei : Zi × F
r̃i → F

n.
Consider the vector (r1,i, r2,i, . . . , rn,i) which contains the i-th values of all
secret vectors. We plan to use the first k̃i values as the secret τi, and the next
r̃i values as the random tape ρi. Recall that we require sharei to be injective.
We have k̃i + r̃i ≤ n. Therefore, there are enough values for τi and ρi. The
goal is to compute a random Σi-sharing Xi of the secret τi with random tape
ρi, i.e., Xi = sharei(τi,ρi).

3. For each party Pj , let uj denote the j-th shares of X1, . . . ,Xk. We want to
use the packed secret sharings of r1, . . . , rn to compute a single packed secret
sharing of uj .

4. After obtaining a packed secret sharing of uj , we can reconstruct the sharing
to Pj so that he learns the j-th share of each of X1, . . . ,Xk. Thus, we start
with n packed secret sharings (of r1, . . . , rn) of the same secret sharing scheme
and end with k sharings X1, . . . ,Xk of k potentially different secret sharing
schemes.

Clearly, the main question is how to realize Step 3. We observe that, since
Σi is a linear secret sharing scheme, the j-th share of Xi can be written as a
linear combination of the values in τi and ρi. Therefore, the j-th share of Xi

is a linear combination of the values (r1,i, r2,i, . . . , rn,i). Since it holds for all
i ∈ {1, 2, . . . , k}, there exists constant vectors c1, . . . , cn ∈ F

k such that

uj := c1 ∗ r1 + . . . + cn ∗ rn,

where ∗ denotes the coordinate-wise multiplication operation. Thus, what we
need is a packed secret sharing scheme that supports efficient coordinate-wise
multiplication with a constant vector. We note that the packed Shamir secret
sharing scheme fits our need as we show next.

Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The
packed Shamir secret sharing scheme [FY92] is a natural generalization of the
standard Shamir secret sharing scheme [Sha79]. It allows to secret-share a batch
of secrets within a single Shamir sharing. For a vector x ∈ F

k, we use [x]d to
denote a degree-d packed Shamir sharing, where k − 1 ≤ d ≤ n − 1. It requires
d + 1 shares to reconstruct the whole sharing, and any d − k + 1 shares are
independent of the secrets. The packed Shamir secret sharing scheme has the
following nice properties:

– Linear Homomorphism: For all d ≥ k−1 and x,y ∈ F
k, [x+y]d = [x]d+[y]d.

– Multiplicative: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all
x,y ∈ F

k, [x∗y]d1+d2 = [x]d1 · [y]d2 , where the multiplications are performed
on the corresponding shares.
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Note that when d ≤ n − k, all parties can locally multiply a public vector
c ∈ F

k with a degree-d packed Shamir sharing [x]d:

1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of c,
denoted by [c]k−1. Note that for a degree-(k − 1) packed Shamir sharing, all
shares are determined by the secret c.

2. All parties then locally compute [c ∗ x]n−1 = [c]k−1 · [x]n−k.

We simply write [c ∗ x]n−1 = c · [x]n−k to denote the above process. We refer to
this property as multiplication-friendliness.

To make sure that the packed Shamir secret sharing scheme is secure against
t corrupted parties, we also require d ≥ t + k − 1. When d = n − k and k =
(n − t + 1)/2, the degree-(n − k) packed Shamir secret sharing scheme is both
multiplication-friendly and secure against t corrupted parties.

Observe that when we use the degree-(n − k) packed Shamir secret sharing
scheme in our attempt, all parties can locally compute a degree-(n − 1) packed
Shamir sharing of uj by

[uj ]n−1 = c1 · [r1]n−k + . . . + cn · [rn]n−k,

which solves the problem.

Summary of Our Construction. In summary, all parties run the following
steps to prepare random sharings for k different linear secret sharing schemes
Σ1, Σ2, . . . , Σk.

1. Prepare Packed Shamir Sharings: All parties prepare n random degree-(n−k)
packed Shamir sharings, denoted by [r1]n−k, . . . , [rn]n−k.

2. Use Packed Secrets as Randomness for Target LSSS: For all i ∈ {1, 2, . . . , k}, let
τi = (r1,i, . . . , rk̃i,i

) and ρi = (rk̃i+1,i, . . . , rk̃i+r̃i,i
). Let Xi = sharei(τi,ρi).

3. Compute a Single Packed Shamir Sharing for All j-th Shares of Target LSSS
via Local Operations: For all j ∈ {1, 2, . . . , n}, let uj be the j-th shares of
(X1, . . . ,Xk). All parties locally compute a degree-(n − 1) packed Shamir
sharing of uj by using [r1]n−k, . . . , [rn]n−k. The resulting sharing is denoted
by [uj ]n−1.

4. Reconstruct the Single Packed Shamir Sharing of All j-th Shares to Pj : For all
j ∈ {1, 2, . . . , n}, all parties reconstruct the sharing [uj ]n−1 to Pj to let him
learn uj = (u(1)

j , . . . , u
(k)
j ). Then all parties take {Xi = (u(i)

1 , . . . , u
(i)
n )}k

i=1 as
output.

We note that in Step 4, [uj ]n−1 is not a random degree-(n − 1) packed
Shamir sharing of uj . Directly sending the shares of [uj ]n−1 to Pj may leak
the information about honest parties’ shares. To solve it, all parties also pre-
pare n random degree-(n − 1) packed Shamir sharings of 0 ∈ F

k, denoted by
[o1]n−1, . . . , [on]n−1. Then all parties use [oj ]n−1 to refresh the shares of [uj ]n−1

by computing [uj ]n−1 := [uj ]n−1 + [oj ]n−1. Now [uj ]n−1 is a random degree-
(n − 1) packed Shamir sharing of uj . All parties send their shares of [uj ]n−1 to
Pj to let him reconstruct uj .
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Communication Complexity. Thus, to prepare random sharings for k linear
secret sharing schemes, our construction requires to prepare n random degree-
(n − k) packed Shamir sharings and n random degree-(n − 1) packed Shamir
sharings of 0 ∈ F

k. And the communication complexity is n2 field elements.
On average, each random sharing costs 2n/k packed Shamir sharings and n2/k
elements of communication. When we use the generic approach to prepare ran-
dom packed Shamir sharings, the total communication complexity per random
sharing is O(n2/k) elements.

Recall that k = (n−t+1)/2. When t = (1−ε)·n for a positive constant ε, the
communication complexity per random sharing is O(n) elements, which matches
the communication complexity of delivering a random sharing by a trusted party
up to a constant factor. In Sect. 4, we show that our technique works for any
share size � (with an increase in the communication complexity by a factor �),
and is naturally extended to any finite fields and rings Z/p�

Z.

Efficient Sharing Transformation. Recall that in the problem of sharing trans-
formation, all parties start with holding a sharing X of a linear secret sharing
scheme Σ. They want to compute a sharing Y of another linear secret sharing
scheme Σ′ such that the secret of Y is a linear map of the secret of X.

As we discussed above, sharing transformation can be achieved efficiently
with the help of a pair of random sharings (R,R′) such that R is a random
Σ-sharing and R′ is a random Σ′-sharing which satisfies that the secret of R′

is equal to the result of applying the desired linear map on the secret of R.
A key insight is that (R,R′) can just be seen as a linear secret sharing on its
own. With our technique of preparing random sharings for different linear secret
sharing schemes, we can efficiently prepare a pair of random sharings (R,R′),
allowing efficient sharing transformation from X to Y .

When t = (1 − ε) · n for a positive constant ε, each sharing transformation
only requires O(n) field elements of communication.

2.2 Application: MPC via Packed Shamir Secret Sharing Schemes

In this section, we show that our technique for sharing transformation allows us
to design an efficient MPC protocol via packed Shamir secret sharing schemes.
We focus on the dishonest majority setting and information-theoretic setting
in the circuit-independent preprocessing model. In the preprocessing model, all
parties receive correlated randomness from a trusted party before the computa-
tion. The preprocessing model enables the possibility of an information-theoretic
protocol in the dishonest majority setting, which otherwise cannot exist in the
plain model. The cost of a protocol in the preprocessing model is measured by
both the amount of preprocessing data prepared in the preprocessing phase and
the amount of communication in the online phase [Cou19,BGIN21].

Let n be the number of parties, and t be the number of corrupted parties. For
any positive constant ε, we show that there is an information-theoretic MPC pro-
tocol in the circuit-independent preprocessing model with semi-honest security
(or malicious security) that computes an arithmetic circuit C over a large finite
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field F (with |F| ≥ |C|+ n) against t = (1− ε) · n corrupted parties with O(|C|)
field elements of preprocessing data and O(|C|) field elements of communication.
Compared with the recent work [GPS21] that achieves O(|C|) communication
complexity in the strong honest majority setting (i.e., t = (1/2 − ε) · n), our
construction has the following advantages:

1. Our protocol works in the dishonest majority setting.
2. With our new technique for sharing transformation, we avoid the heavy

machinery in [GPS21] for the network routing (see more discussion in the
full version of this paper [GPS22]).

On the other hand, we note that the protocol in [GPS21] works for a finite field
of size 2n while our protocol requires the field size to be |C|+n. We discuss how
our technique for sharing transformation can be used to simplify the protocol
in [GPS21] and how to extend their protocol to the dishonest majority setting
using our techniques in the full version of this paper [GPS22]. We also refer the
readers to the full version of this paper [GPS22] for a more detailed comparison
with [GPS21] and other related works.

Review the Packed Shamir Secret Sharing Scheme. We recall the notion of the
packed Shamir secret sharing scheme. Let α1, . . . , αn be n distinct elements in F

and pos = (p1, p2, . . . , pk) be another k distinct elements in F. A degree-d (d ≥
k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ F

k is a vector (w1, . . . , wn)
for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that
f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all i ∈ {1, 2, . . . , n}. The
i-th share wi is held by party Pi.

In our protocol, we will always use the same elements α1, . . . , αn for the
positions of the shares of all parties. However, we may use different elements
pos for the secrets. We will use [x‖pos]d to denote a degree-d packed Shamir
sharing of x ∈ F

k stored at positions pos. Let β = (β1, . . . , βk) be distinct field
elements in F that are different from α1, . . . , αn. We will use β as the default
positions for the secrets, and simply write [x]d = [x‖β]d.

Recall that t is the number of corrupted parties. Let k = (n − t + 1)/2 and
d = n−k. As we have shown in Sect. 2.1, all parties can locally multiply a public
vector with a degree-(n−k) packed Shamir sharing, and a degree-(n−k) packed
Shamir sharing is secure against t corrupted parties.

An Overview of Our Construction. At a high-level,

1. All parties start with sharing their input values by using packed Shamir
sharings.

2. In each layer, addition gates and multiplication gates are divided into groups
of size k. Each time we will evaluate a group of k gates:
(a) For each group of k gates, all parties prepare two packed Shamir sharings,

one for the first inputs of all gates, and the other one for the second inputs
of all gates. Note that the secrets we want to be in a single sharing can
be scattered in different output sharings from previous layers. This step
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is referred to as network routing. Relying on our technique of sharing
transformation, we can use a much simpler approach to handle network
routing than that in [GPS21].

(b) After preparing the two input sharings, all parties evaluate these k gates.
Addition gates can be locally computed since the packed Shamir secret
sharing scheme is linearly homomorphic. For multiplication gates, we
extend the technique of Beaver triples [Bea91] to our setting, which we
refer to as packed Beaver triples. All parties need to prepare packed Beaver
triples in the preprocessing phase.

3. After evaluating the whole circuit, all parties reconstruct the sharings they
hold to the parties who should receive the result.

Sparsely Packed Shamir Sharings. Our idea is to use a different position to store
the output value of each gate. Recall that |F| ≥ |C| + n. Let β1, β2, . . . , β|C| be
|C| distinct field elements that are different from α1, α2, . . . , αn. (Recall that we
have already defined β = (β1, . . . , βk), which are used as the default positions
for a packed Shamir sharing.) We associate the field element βi with the i-th
gate in C. We will use βi as the position to store the output value of the i-th
gate in a degree-(n − k) packed Shamir sharing (see an example below).

Concretely, for each group of k gates, all parties will compute a degree-(n−k)
packed Shamir sharing such that the results are stored at the positions associated
with these k gates respectively. For example, when k = 3, for a batch of 3 gates
which are associated with the positions β1, β3, β6 respectively, all parties will
compute a degree-(n− k) packed Shamir sharing [(z1, z3, z6)‖(β1, β3, β6)]n−k for
this batch of gates, where z1, z3, z6 are the output wires of these 3 gates.

As we will see later, it greatly simplifies the protocol for network routing.

Network Routing. In each intermediate layer, for every group of k gates,
suppose x are the first inputs of these k gates, and y are the second inputs
of these k gates. All parties will prepare two degree-(n − k) packed Shamir
sharings [x]n−k and [y]n−k stored at the default positions using the following
approach. The reason of choosing the default positions is to use the packed
Beaver triples, which use the default positions since the preprocessing phase is
circuit-independent (discussed later). We focus on how to obtain [x]n−k.

Let x = (x1, x2, . . . , xk). For simplicity, we assume that x1, x2, . . . , xk are
output wires from k distinct gates. Later on, we will show how to handle the
scenario where the same output wire is used multiple times by using fan-out
operations. Since we use a different position to store the output of each gate, the
positions of these k gates are all different. Let p1, . . . , pk denote the positions of
these k gates and pos = (p1, . . . , pk). We first show that all parties can locally
compute a degree-(n − 1) packed Shamir sharing [x‖pos]n−1.

Selecting the Correct Secrets. For all i ∈ {1, 2, . . . , k}, let [x(i)‖pos(i)]n−k be the
degree-(n − k) packed Shamir sharing that contains the secret xi at position pi

from some previous layer. Let ei be the i-th unit vector in F
k (i.e., only the i-th
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term is 1 and all other terms are 0). All parties locally compute a degree-(k − 1)
packed Shamir sharing [ei‖pos]k−1. Consider the following degree-(n−1) packed
Shamir sharing:

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

We claim that, the resulting sharing satisfies that the value stored at position
pi is xi and the values stored at other positions in pos are all 0. To see this,
recall that each packed Shamir sharing corresponds to a polynomial. Let f be the
polynomial corresponding to [ei‖pos]k−1, and g be the polynomial corresponding
to [x(i)‖pos(i)]n−k. Then f satisfies that f(pi) = 1 and f(pj) = 0 for all j �= i,
and g satisfies that g(pi) = xi. Note that h = f ·g is the polynomial corresponding
to the resulting sharing [ei‖pos]k−1 ·[x(i)‖pos(i)]n−k, which satisfies that h(pi) =
f(pi) · g(pi) = 1 · xi = xi, and h(pj) = f(pj) · g(pj) = 0 · g(pj) = 0 for all j �= i.
Thus, the resulting sharing has value xi in the position pi and 0 in all other
positions in pos. Effectively, we select the secret xi from [x(i)‖pos(i)]n−k at
position pi and zero-out the values stored at other positions in pos.

Getting all Secrets into a Single Packed Shamir Sharing. Thus, for the following
degree-(n − 1) packed Shamir sharing

k
∑

i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k,

it has value xi stored in the position pi for all i ∈ {1, 2, . . . , k}, which means that
it is a degree-(n − 1) packed Shamir sharing [x‖pos]n−1. Therefore, all parties
can locally compute [x‖pos]n−1 =

∑k
i=1[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

Applying Sharing Transformation. Finally, to obtain [x]n−k = [x‖β]n−k, all
parties only need to do a sharing transformation from [x‖pos]n−1 to [x]n−k.
Relying on our technique for sharing transformation, we can achieve this step
with O(n) field elements of communication.

Therefore, our protocol for network routing only requires a local computation
for [x‖pos]n−1 and an efficient sharing transformation for [x]n−k with O(n) field
elements of communication.

Handling Fan-Out Operations. The above solution only works when all the wire
values of x come from different gates. In a general case, x may contain many
wire values from the same gate. We modify the above protocol as follows:

1. Suppose x′
1, . . . , x

′
k′ are the different values in x. Let x′ = (x′

1, . . . , x
′
k′ ,

0, . . . , 0) ∈ F
k. For all i ∈ {1, 2, . . . , k′}, let pi be the position associated with

the gate that outputs x′
i. We choose pk′+1, . . . , pk to be the first (k−k′) unused

positions and set pos = (p1, . . . , pk). Then, all parties follow a similar approach
to locally compute a degree-(n − 1) packed Shamir sharing of [x′‖pos]n−1.

2. Note that x′ contains all different values in x. Thus, there is a linear map
f : Fk → F

k such that x = f(x′). Therefore, relying on our technique for
sharing transformation, all parties transform [x′‖pos]n−1 to [x]n−k.

The communication complexity remains O(n) field elements.
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Evaluating Multiplication Gates Using Packed Beaver Triples. For a
group of k multiplication gates, suppose all parties have prepared two degree-(n−
k) packed Shamir sharings [x]n−k and [y]n−k. Let pos be the positions associated
with these k gates. The goal is to compute a degree-(n−k) packed Shamir sharing
of x ∗ y stored at positions pos. To this end, we extend the technique of Beaver
triples [Bea91] to our setting, which we refer to as packed Beaver triples. We
make use of a random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), where a, b
are random vectors in F

k and c = a ∗ b. All parties run the following steps:

1. All parties locally compute [x + a]n−k = [x]n−k + [a]n−k and [y + b]n−k =
[y]n−k + [b]n−k.

2. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and
reconstructs the secrets x + a,y + b. Recall that x = (x1, . . . , xk) and a =
(a1, . . . , ak) are vectors in F

k, and x + a = (x1 + a1, . . . , xk + ak). Similarly,
y+b = (y1+ b1, . . . , yk + bk). P1 computes the sharings [x+a]k−1, [y+b]k−1

and distributes the shares to other parties.
3. All parties locally compute

[z]n−1 := [x+a]k−1 ·[y+b]k−1−[x+a]k−1 ·[b]n−k−[y+b]k−1 ·[a]n−k+[c]n−k.

Here the resulting sharing [z]n−1 has degree n − 1 due to the second term
and the third term.

4. Finally, all parties transform the sharing [z]n−1 to [z‖pos]n−k. Relying on
our technique of sharing transformation, this can be done with O(n) field
elements of communication.

Note that in the above steps, all parties only reveal [x + a]n−k and [y + b]n−k

to P1. Recall that [a]n−k and [b]n−k are random degree-(n − k) packed Shamir
sharings. Therefore, [x + a]n−k and [y + b]n−k are also random degree-(n − k)
packed Shamir sharings, which leak no information about x and y to P1. Thus,
the security follows.

Therefore, to evaluate a group of k multiplication gates, all parties need to
prepare a random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), which is of size
O(n) field elements. The communication complexity is O(n) field elements.

Summary. In summary, our protocol works as follows. All parties first prepare
enough packed Beaver triples stored at the default positions in the preprocessing
phase. Then in the online phase, all parties evaluate the circuit layer by layer.
For each layer, all parties first use the protocol for network routing to prepare
degree-(n − k) packed Shamir sharings for the inputs of this layer. Then, for
every group of addition gates, all parties can compute them locally due to the
linear homomorhpism of the packed Shamir secret sharing scheme. For every
group of multiplication gates, we use the technique of packed Beaver triple to
evaluate these gates. In particular, evaluating each group of multiplication gates
will consume one fresh packed Beaver triple prepared in the preprocessing phase.

When t = (1−ε)·n for a positive constant ε, we have k = (n−t+1)/2 = O(n).
For the amount of preprocessing data, we need to prepare a packed Beaver triple
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for each group of k multiplication gates. Thus, the amount of preprocessing data
is bounded by O( |C|

k ·n) = O(|C|). For the amount of communication, note that
all parties need to communicate during the network routing and the evaluation
of multiplication gates. Both protocols require O(n) elements of communication
to process k secrets. Thus, the amount of communication complexity is also
bounded by O( |C|

k · n) = O(|C|).
Therefore, we obtain an information-theoretic MPC protocol in the circuit-

independent preprocessing model with semi-honest security that computes an
arithmetic circuit C over a large finite field F (with |F| ≥ |C| + n) against
t = (1− ε) · n corrupted parties with O(|C|) field elements of preprocessing data
and O(|C|) field elements of communication.

Other Results

Malicious Security of the Online Protocol. To achieve malicious security, we
extend the idea of using information-theoretic MACs introduced in [BDOZ11,
DPSZ12] to authenticate packed Shamir sharings. Concretely, at the beginning of
the computation, all parties will prepare a random degree-(n−k) packed Shamir
sharing [γ]n−k, where γ = (γ, γ, . . . , γ) ∈ F

k and γ is a random field element. The
secrets γ serve as the MAC key. To authenticate the secrets of a degree-(n − k)
packed Shamir sharing [x]n−k, all parties will compute a degree-(n − k) packed
Shamir sharing [γ ∗ x]n−k. We will show that almost all malicious behaviors of
corrupted parties can be transformed to additive attacks, i.e., adding errors to
the secrets of degree-(n − k) packed Shamir sharings.

Note that if the corrupted parties change the secrets x to x + δ1, they also
need to change the secrets γ∗x to γ∗x+δ2 such that δ2 = γ∗δ1. However, since γ
is a uniform value in F, the probability of a success attack is at most 1/|F|. When
the field size is large enough, we can detect such an attack with overwhelming
probability. See more details in the full version of this paper [GPS22].

Using the Result of [GPS21] for Small Finite Fields. Recall that our protocol
requires the field size to be at least |C| + n. On the other hand, the protocol
in [GPS21] can use a finite field of size 2n. This is due to the use of different
approaches to handle network routing.

When using a small finite field, we can use the technique in [GPS21] to
handle network routing. Our technique for sharing transformation also improves
the concrete efficiency of computing fan-out gates and performing permutations
in [GPS21]. More details can be found in the full version of this paper [GPS22].

3 Preliminaries

In this work, we use the client-server model for the secure multi-party compu-
tation. In the client-server model, clients provide inputs to the functionality and
receive outputs, and servers can participate in the computation but do not have
inputs nor get outputs. Each party may have different roles in the computation.
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Note that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n denote the number of servers. For all clients and servers, we assume that
every two of them are connected via a secure (private and authentic) synchronous
channel so that they can directly send messages to each other.

We focus on functions that can be represented as arithmetic circuits over a
finite field F with input, addition, multiplication, and output gates.2 We use κ
to denote the security parameter, C to denote the circuit, and |C| for the size
of the circuit. In this work, we assume that the field size is |F| ≥ 2κ. Note that
it implies |F| ≥ |C|+ n since both the number of parties and the circuit size are
bounded by poly(κ).

We are interested in the information-theoretic setting in the (circuit-
independent) preprocessing model. The preprocessing model assumes that there
is an ideal functionality which can prepare circuit-independent correlated ran-
domness before the computation. Then the correlated randomness is used in
a lightweight and fast online protocol. In particular, the preprocessing model
enables the possibility of an information-theoretic protocol in the dishonest
majority setting, which otherwise cannot exist in the plain model. The cost of a
protocol in the preprocessing model is measured by both the amount of commu-
nication via private channels in the online phase and the amount of preprocessing
data prepared in the preprocessing phase [Cou19,BGIN21].

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. One
benefit of the client-server model is that it is sufficient to only consider maximum
adversaries, i.e., adversaries which corrupt exactly t parties. We refer the readers
to the full version of this paper [GPS22] for more details about the security
definition and the benefit of the client-server model. In the following, we assume
that there are exactly t corrupted parties.

4 Preparing Random Sharings for Different Arithmetic
Secret Sharing Schemes

4.1 Arithmetic Secret Sharing Schemes

Let R be a finite commutative ring. In this work, we consider the following
arithmetic secret sharing schemes from [ACD+20] (with slight modifications).

Definition 1 (Arithmetic Secret Sharing Schemes). The syntax of an
R-arithmetic secret sharing scheme Σ consists of the following data:

– A set of parties I = {1, . . . , n}.
2 In this work, we only focus on deterministic functions. A randomized function can

be transformed to a deterministic function by taking as input an additional random
tape from each party. The XOR of the input random tapes of all parties is used as
the randomness of the randomized function.



Sharing Transformation and Dishonest Majority MPC with Packed SS 19

– A secret space Z = Rk. k is also denoted as the number of secrets packed
within Σ.

– A share space U = R�. � is also denoted as the share size.
– A sharing space C ⊂ UI , where UI denotes the indexed Cartesian product

∏

i∈I U .
– An injective R-module homomorphism: share : Z × Rr → C, which maps a

secret x ∈ Z and a random tape ρ ∈ Rr, to a sharing X ∈ C. share is also
denoted as the sharing map of Σ.

– A surjective R-module homomorphism: rec : C → Z, which takes as input
a sharing X ∈ C and outputs a secret x ∈ Z. rec is also denoted as the
reconstruction map of Σ.

The scheme Σ satisfies that for all x ∈ Z and ρ ∈ Rr, rec(share(x,ρ)) = x.
We may refer to Σ as the 6-tuple (n,Z, U,C, share, rec).

For a non-empty set A ⊂ I, the natural projection πA maps a tuple u =
(ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA.

Definition 2 (Privacy Set and Reconstruction Set). Suppose A ⊂ I is
nonempty. We say A is a privacy set if for all x0,x1 ∈ Z, and for all vector
v ∈ UA,

Pr
ρ
[πA(share(x0,ρ)) = v] = Pr

ρ
[πA(share(x1,ρ)) = v].

We say A is a reconstruction set if there is an R-module homomorphism
recA : πA(C) → Z, such that for all X ∈ C,

recA(πA(X)) = rec(X).

Intuitively, for a privacy set A, the shares of parties in A are independent of
the secret. For a reconstruction set A, the shares of parties in A fully determine
the secret.

Threshold Linear Secret Sharing Schemes and Multiplication-friendly Property.
In this work, we are interested in threshold arithmetic secret sharing schemes.
Concretely, for a positive integer t < n, a threshold-t arithmetic secret sharing
scheme satisfies that for all A ⊂ I with |A| ≤ t, A is a privacy set.

We are interested in the following property.

Property 1 (Multiplication-Friendliness). We say Σ = (n,Z = Rk, U, C, share,
rec) is multiplication-friendly if there is an R-arithmetic secret sharing scheme
Σ′ = (n,Z = Rk, U ′, C ′, share′, rec′) and n functions {fi : Rk × U → U ′}n

i=1

such that for all c ∈ Rk and for all X ∈ C,

– Y = (f1(c,X1), f2(c,X2), . . . , fn(c,Xn)) is in C ′, i.e., a sharing in Σ′. We
will use Y = c ·X to represent the computation process from c and X to Y .
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– rec′(Y ) = c ∗ rec(X), where ∗ is the coordinate-wise multiplication
operation.

Intuitively, for a multiplication-friendly scheme Σ, if all parties hold a Σ-
sharing of a secret x ∈ Z and a public vector c ∈ Rk, they can locally compute a
Σ′-sharing of the secret c∗x, where ∗ denotes the coordinate-wise multiplication
operation. We prove Lemma 1 in the full version of this paper [GPS22].

Lemma 1. If Σ is a multiplication-friendly threshold-t R-arithmetic secret
sharing scheme, and Σ′ be the R-arithmetic secret sharing scheme defined in
Property 1, then Σ′ has threshold t.

4.2 Packed Shamir Secret Sharing Scheme

In our work, we are interested in the packed Shamir secret sharing scheme. We
use the packed secret-sharing technique introduced by Franklin and Yung [FY92].
This is a generalization of the standard Shamir secret sharing scheme [Sha79].
Let F be a finite field of size |F| ≥ 2n. Let n be the number of parties and k
be the number of secrets that are packed in one sharing. Let α1, . . . , αn be n
distinct elements in F and pos = (p1, p2, . . . , pk) be another k distinct elements
in F. A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ F

k is
a vector (w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X] of degree
at most d such that f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all
i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi. Reconstructing a degree-
d packed Shamir sharing requires d + 1 shares and can be done by Lagrange
interpolation. For a random degree-d packed Shamir sharing of x, any d − k +1
shares are independent of the secret x.

In our work, we will always use the same elements α1, . . . , αn for the shares
of all parties. However, we may use different elements pos for the secrets. We
will use [x‖pos]d to denote a degree-d packed Shamir sharing of x ∈ F

k stored at
positions pos. In the following, operations (addition and multiplication) between
two packed Shamir sharings are coordinate-wise. We recall two properties of the
packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ F
k, [x + y‖pos]d =

[x‖pos]d + [y‖pos]d.
– Multiplicative: Let ∗ denote the coordinate-wise multiplication operation.

For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x,y ∈ F
k,

[x ∗ y‖pos]d1+d2 = [x‖pos]d1 · [y‖pos]d2 .

These two properties directly follow from the computation of the underlying
polynomials.

Note that the second property implies that, for all k − 1 ≤ d ≤ n − k, a
degree-d packed Shamir secret sharing scheme is multiplication-friendly (defined
in Property 1). Concretely, for all x, c ∈ F

k, all parties can locally compute
[c ∗ x‖pos]d+k−1 from [x‖pos]d and the public vector c. To see this, all parties
can locally transform c to a degree-(k − 1) packed Shamir sharing [c‖pos]k−1.
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Then, they can use the property of the packed Shamir sharing scheme to compute
[c ∗ x‖pos]d+k−1 = [c‖pos]k−1 · [x‖pos]d.

Recall that t is the number of corrupted parties. Also recall that a degree-d
packed Shamir secret sharing scheme is of threshold d − k + 1. To ensure that
the packed Shamir secret sharing scheme has threshold t and is multiplication-
friendly, we choose k such that t ≤ d − k + 1 and d ≤ n − k. When d = n − k
and k = (n − t + 1)/2, both requirements hold and k is maximal.

4.3 Preparing Random Sharings for Different Arithmetic Secret
Sharing Schemes

In this part, we introduce our main contribution: an efficient protocol that pre-
pares random sharings for a batch of different arithmetic secret sharing schemes.
Let R be a finite commutative ring. Let Π = (n, Z̃, Ũ , C̃, shareΠ , recΠ) be
an R-arithmetic secret sharing scheme. Our goal is to realize the functionality
Frand-sharing presented in Functionality 1.

Functionality 1: Frand-sharing(Π)

1. Frand-sharing receives the set of corrupted parties, denoted by Corr.
2. Frand-sharing receives from the adversary a set of shares {uj}j∈Corr where uj ∈

Ũ for all j ∈ Corr.
3. Frand-sharing samples a random Π-sharing X such that the shares of X held

by corrupted parties are identical to those received from the adversary, i.e.,
πCorr(X) = (uj)j∈Corr. If such a sharing does not exist, Frand-sharing sends
abort to all honest parties and halts.

4. Otherwise, Frand-sharing distributes the shares of X to honest parties.

Initialization. Let Σ = (n,Z = Rk, U, C, share, rec) be a multiplication-
friendly threshold-t R-arithmetic secret sharing scheme. In the following,
we will use [x] to denote a Σ-sharing of x ∈ Rk. Let Σ′ = (n,Z ′ =
Rk, U ′, C ′, share′, rec′) be the R-arithmetic secret sharing scheme in Prop-
erty 1. By Lemma 1, Σ′ has threshold t. We use 〈y〉 to denote a Σ′-sharing
of y ∈ Rk. For all c ∈ Rk, we will write

〈c ∗ x〉 = c · [x]
to represent the computation process from c and [x] to 〈c ∗ x〉 in Property 1.

Our construction will use the ideal functionality Frand = Frand-sharing(Σ)
that prepares a random Σ-sharing, and the ideal functionality FrandZero (Func-
tionality 2) that prepares a random Σ′-sharing of 0 ∈ Rk.

Let Π1,Π2, . . . , Πk be k arbitrary R-arithmetic secret sharing schemes with
the restriction that all schemes have the same share size, i.e., the share space



22 V. Goyal et al.

Functionality 2: FrandZero

1. Let Σ′ = (n, Z′ = Rk, U ′, C′, share′, rec′). FrandZero receives the set of cor-
rupted parties, denoted by Corr.

2. FrandZero receives from the adversary a set of shares {u′
j}j∈Corr, where u′

j ∈ U ′

for all Pj ∈ Corr.
3. FrandZero samples a random Σ′-sharing of 0 ∈ Rk, 〈0〉, such that the shares

of corrupted parties are identical to those received from the adversary, i.e.,
πCorr(〈0〉) = (u′

j)j∈Corr. If such a sharing does not exist, FrandZero sends
abort to all honest parties and halts.

4. Otherwise, FrandZero distributes the shares of 〈0〉 to honest parties.

Ũ = R�̃. Let Z̃i = Rk̃i be the secret space of Πi and sharei : Z̃i × Rr̃i → C̃i be
the sharing map. Since sharei is injective, and C̃i ⊂ ŨI , we have k̃i + r̃i ≤ n · �̃.

The goal is to prepare k random sharings X1,X2, . . . ,Xk such that Xi is a
random Πi-sharing, i.e., realizing {Frand-sharing(Πi)}k

i=1.

Protocol Description. The construction of our protocol Rand-Sharing appears
in Protocol 3. We prove Lemma 2 in the full version of this paper [GPS22].
Protocol Rand-Sharing requires n2 · �̃ · (� + �′) ring elements of preprocessing
data and n2 · �̃ · �′ ring elements of communication to prepare k random sharings
for Π1,Π2, . . . , Πk, one for each secret sharing scheme. The detailed cost analysis
can also be found in the full version of this paper [GPS22].

Lemma 2. For any k R-arithmetic secret sharing schemes {Πi}k
i=1 such that

they have the same share size, Protocol Rand-Sharing securely computes
{Frand-sharing(Πi)}k

i=1 in the {Frand,FrandZero}-hybrid model against a semi-
honest adversary who controls t parties.

4.4 Instantiating Protocol RAND-SHARING via Packed Shamir Secret
Sharing Scheme

Recall that when k = (n − t + 1)/2, a degree-(n − k) packed Shamir secret
sharing has threshold t and is multiplication-friendly. Therefore, we use a degree-
(n−k) packed Shamir secret sharing scheme to instantiate Σ in Protocol Rand-

Sharing. Then Σ′ is a degree-(n−1) packed Shamir secret sharing scheme. For
Σ and Σ′,

– The secret space is F
k, where k = (n − t + 1)/2.

– The share space is F, i.e., each share is a single field element. Therefore
� = �′ = 1.

Thus, we obtain a protocol that prepares random sharings for Π1,Π2, . . . , Πk

with 2·n2·�̃ = O(n2·�̃) field elements of preprocessing data and n2·�̃ field elements
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Protocol 3: Rand-Sharing

1. Let Π1, Π2, . . . , Πk be k arbitrary R-arithmetic secret sharing schemes such
that they have the same share size. Let Ũ = R�̃ denote the share space. For
all i ∈ {1, 2, . . . , k}, let Z̃i = Rk̃i be the secret space of Πi, and sharei :
Z̃i × Rr̃i → C̃i be the sharing map of Πi. We have k̃i + r̃i ≤ n · �̃.

2. All parties invoke Frand n· �̃ times and obtain n· �̃ random Σ-sharings, denoted
by [r1], [r2], . . . , [rn·�̃]. For all i ∈ {1, 2, . . . , k}, let τi = (r1,i, r2,i, . . . , rk̃i,i) ∈
Rk̃i , and ρi = (rk̃i+1,i, rk̃i+2,i, . . . , rk̃i+r̃i,i) ∈ Rr̃i . The goal of this protocol
is to compute the Πi-sharing Xi = sharei(τi, ρi).

3. All parties invoke FrandZero n · �̃ times and obtain n · �̃ random Σ′-sharings of
0 ∈ Rk, denoted by {〈o(1)

j 〉, 〈o(2)
j 〉, . . . , 〈o(�̃)

j 〉}n
j=1.

4. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , �̃}, let L(i,m)
j :

Z̃i × Rr̃i → R denote the R-module homomorphism such that for all τ ∈ Z̃i

and ρ ∈ Rr̃i , L(i,m)
j (τ , ρ) outputs the m-th element of the j-th share of the

Πi-sharing sharei(τ , ρ). Then there exist c
(i,m)
j,1 , . . . , c

(i,m)

j,k̃i+r̃i
∈ R such that

L(i,m)
j (τ , ρ) =

k̃i∑

v=1

c
(i,m)
j,v · τv +

r̃i∑

v=1

c
(i,m)

j,k̃i+v
· ρv.

For all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , �̃}, and v ∈ {1, . . . , n · �̃}, let

c
(�,m)
j,v = (c

(1,m)
j,v , c

(2,m)
j,v , . . . , c

(k,m)
j,v ) ∈ Rk,

where c
(i,m)
j,v = 0 for all v > k̃i + r̃i.

5. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , �̃}, let u
(i,m)
j =

L(i,m)
j (τi, ρi). Let u

(�,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). For all j ∈ {1, 2, . . . , n}

and m ∈ {1, 2, . . . , �̃}, all parties locally compute a Σ′-sharing

〈u(�,m)
j 〉 = 〈o(m)

j 〉 +
n·�̃∑

v=1

c
(�,m)
j,v · [rv].

Then, all parties send their shares of 〈u(�,m)
j 〉 to Pj .

6. For all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , �̃}, Pj reconstructs the Σ′-
sharing 〈u(�,m)

j 〉 and learns u
(�,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). Then for

all i ∈ {1, 2, . . . , k}, Pj sets his share of the Πi-sharing, Xi, to be u
(i)
j =

(u
(i,1)
j , u

(i,2)
j , . . . , u

(i,�̃)
j ). All parties take X1, X2, . . . , Xk as output.

of communication. On average, the cost per random sharing is O( n2

n−t+1 · �̃)
field elements of both preprocessing data and communication. Note that when
t = (1 − ε) · n for a positive constant ε, the achieved amortized cost per sharing
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is O(n · �̃) field elements. In particular, n · �̃ is the sharing size of Πi for all
i ∈ {1, 2, . . . , k}. Essentially, it costs the same as letting a trusted party generate
a random Πi-sharing and distribute to all parties.

In the full version of this paper [GPS22], we discuss how to instantiate Pro-
tocol Rand-Sharing for small fields Fq and rings Z/p�

Z.

4.5 Application of Frand-sharing

Let Σ and Σ′ be two threshold-t R-arithmetic secret sharing schemes. Let f :
Z → Z ′ be an R-module homomorphism, where Z and Z ′ are the secret spaces
of Σ and Σ′ respectively. Suppose given a Σ-sharing, X, all parties want to
compute a Σ′-sharing, Y , subject to rec′(Y ) = f(rec(X)), where rec and rec′

are reconstruction maps of Σ and Σ′, respectively. We refer to this problem as
sharing transformation.

As discussed in Sect. 2, sharing transformation can be efficiently solved with
the help of a pair of random sharings (R,R′), where R is a Σ-sharing, and
R′ is a Σ′-sharing subject to rec′(R′) = f(rec(R)). Consider the following
R-arithmetic secret sharing scheme ˜Σ = ˜Σ(Σ,Σ′, f):

– The secret space is Z, the same as that of Σ.
– The share space is U × U ′, where U is the share space of Σ and U ′ is the

share space of Σ′.
– For a secret x ∈ Z, the sharing of x is the concatenation of a Σ-sharing of x

and a Σ′-sharing of f(x).
– For a sharing X, recall that each share of ˜Σ consists of one share of Σ and

one share of Σ′. The secret of X can be recovered by applying rec of Σ on
the sharing which consists of the shares of Σ in X.

Then, (R,R′) is a random ˜Σ-sharing. The problem is reduced to prepare a
random ˜Σ-sharing, which can be done by Frand-sharing( ˜Σ).

We summarize the functionality Ftran in Functionality 4 and the protocol
Tran for Ftran in Protocol 5.

Lemma 3. For all threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and
for all R-module homomorphism f : Z → Z ′, Protocol Tran securely com-
putes Ftran in the Frand-sharing-hybrid model against a semi-honest adversary
who controls t parties.

A formal theorem of Theorem 1 can be found in the full version of this
paper [GPS22].

5 Semi-honest Protocol

In this section, we focus on the semi-honest security. We show how to use packed
Shamir sharing schemes and Ftran (introduced in Sect. 4.5) to evaluate a circuit
against a semi-honest adversary who controls t parties. Let k = (n − t + 1)/2.
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Functionality 4: Ftran

1. Ftran receives the set of corrupted parties, denoted by Corr. Ftran also receives
two threshold-t R-arithmetic secret sharing schemes Σ, Σ′ and an R-module
homomorphism f : Z → Z′.

2. Ftran receives a Σ-sharing X from all parties and computes f(rec(X)).
3. Ftran receives from the adversary a set of shares {u′

j}j∈Corr, where u′
j ∈ U ′

for all Pj ∈ Corr.
4. Ftran samples a random Σ′-sharing, Y , such that rec′(Y ) = f(rec(X)) and

the shares of corrupted parties are identical to those received from the adver-
sary, i.e., πCorr(Y ) = (u′

j)j∈Corr. If such a sharing does not exist, Ftran sends
abort to honest parties and halts.

5. Otherwise, Ftran distributes the shares of Y to honest parties.

Protocol 5: Tran

1. Let Σ, Σ′ be two threhsold-t R-arithmetic secret sharing schemes and f : Z →
Z′ be an R-module homomorphism. All parties hold a Σ-sharing, X , at the
beginning of the protocol.

2. Let Σ̃ = Σ̃(Σ, Σ′, f) be the threshold-t R-arithmetic secret sharing scheme
defined above. All parties invoke Frand-sharing(Σ̃) and obtain a Σ̃-sharing
(R, R′).

3. All parties locally compute X +R and send their shares to the first party P1.
4. P1 reconstructs the secret of X +R, denoted by w. Then P1 computes f(w)

and generates a Σ′-sharing of f(w), denoted by W . Finally, P1 distributes
the shares of W to all parties.

5. All parties locally compute Y = W − R′.

Recall that we use [x‖pos]d to represent a degree-d packed Shamir sharing
of x ∈ F

k stored at positions pos = (p1, p2, . . . , pk). Also recall that the shares
of a degree-d packed Shamir sharing are at evaluation points α1, α2, . . . , αn.
Let β = (β1, β2, . . . , βk) be k distinct elements in F that are different from
(α1, α2, . . . , αn). We use β as the default positions for a degree-d packed Shamir
sharing, and simply write [x]d = [x‖β]d.

5.1 Circuit-Independent Preprocessing Phase

In the circuit-independent preprocessing phase, all parties need to prepare
packed Beaver triples. For every group of k multiplication gates, all parties
prepare a packed Beaver triple ([a]n−k, [b]n−k, [c]n−k) where a, b are random
vectors in F

k and c = a ∗ b. We will use the technique of packed Beaver triples
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to compute multiplication gates in the online phase. The functionality Fprep for
the circuit independent preprocessing phase appears in Functionality 6.

Functionality 6: Fprep

For every group of k multiplication gates:

1. Fprep receives the set of corrupted parties, denoted by Corr.
2. Fprep receives from the adversary a set of shares {(aj , bj , cj)}j∈Corr. Fprep sam-

ples two random vectors a, b ∈ F
k and computes c = a ∗ b. Then Fprep com-

putes three degree-(n − k) packed Shamir sharings [a]n−k, [b]n−k, [c]n−k such
that for all Pj ∈ Corr, the j-th share of ([a]n−k, [b]n−k, [c]n−k) is (aj , bj , cj).

3. Fprep distributes the shares of ([a]n−k, [b]n−k, [c]n−k) to honest parties.

5.2 Online Computation Phase

Recall that for the field size it holds that |F| ≥ |C| + n, where |C| is the circuit
size. Let β1, β2, . . . , β|C| be |C| distinct field elements that are different from
α1, α2, . . . , αn. (Recall that we have already defined β = (β1, . . . , βk), which are
used as the default positions for a packed Shamir sharing.) We associate the field
element βi with the i-th gate in C. We will use βi as the position to store the
output value of the i-th gate in a degree-(n − k) packed Shamir sharing.

Concretely, for each layer, gates that have the same type are divided into
groups of size k. For each group of k gates, all parties will compute a degree-
(n − k) packed Shamir sharing such that the results are stored at the positions
associated with these k gates respectively.

Input Layer. In the input layer, input gates are divided into groups of size k
based on the input holders. For a group of k input gates belonging to the same
client, suppose x are the inputs, and pos = (p1, p2, . . . , pk) are the positions
associated with these k gates. The client generates a random degree-(n − k)
packed Shamir sharing [x‖pos]n−k and distributes the shares to all parties.

Network Routing. In each intermediate layer, all gates are divided into groups
of size k based on their types (i.e., multiplication gates or addition gates). For a
group of k gates, all parties prepare two degree-(n − k) packed Shamir sharings,
one for the first inputs of all gates, and the other one for the second inputs of
all gates.

Concretely, for a group k gates in the current layer, suppose x are the first
inputs of these k gates, and y are the second inputs of these k gates. All parties
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will prepare two degree-(n−k) packed Shamir sharings [x]n−k and [y]n−k stored
at the default positions. The reason of choosing the default positions is to use the
packed Beaver triples all parties have prepared in the preprocessing phase. Recall
that the packed Beaver triples all use the default positions. In the following, we
focus on inputs x.

Collecting Secrets from Previous Layers. Let x′
1, x

′
2, . . . , x

′
�1

be the different val-
ues in x from previous layers. Let c1, c2, . . . , c�2 be the constant values in x. Then
�1 + �2 ≤ k. For each of the rest of k − �1 − �2 values in x, it is the same as x′

i

for some i ∈ {1, 2, . . . , �1}. In this step, we will prepare a degree-(n − 1) packed
Shamir sharing that contains the secrets x′

1, x
′
2, . . . , x

′
�1

and c1, c2, . . . , c�2 .
Note that {x′

i}�1
i=1 are the output values of �1 different gates in previous layers.

Let p1, p2, . . . , p�1 be the positions associated with these �1 gates. We choose
another arbitrary k − �1 different positions p�1+1, . . . , pk which are also different
from α1, α2, . . . , αn, and set pos = (p1, p2, . . . , pk). Suppose for all 1 ≤ i ≤ �1,
[x(i)‖pos(i)]n−k is the degree-(n−k) packed Shamir sharing from some previous
layer that contains the secret x′

i stored at position pi.
Let ei be the i-th unit vector in F

k (i.e., only the i-th term is 1 and all other
terms are 0). All parties locally compute a degree-(k −1) packed Shamir sharing
[ei‖pos]k−1. Let x′ = (x′

1, . . . , x
′
�1

, c1, . . . , c�2 , 0, . . . , 0) be a vector in F
k. Then

all parties locally compute

�1
∑

i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +
�2

∑

i=1

ci · [e�1+i‖pos]k−1.

We show that this is a degree-(n − 1) packed Shamir sharing of x′ stored at
positions pos. It is clear that the resulting sharing has degree n − 1. We only
need to show the following three points:

– For all 1 ≤ j ≤ �1, the secret stored at position pj is equal to x′
j .

– For all �1 + 1 ≤ j ≤ �1 + �2, the secret stored at position pj is equal to cj−�1 .
– For all �1 + �2 + 1 ≤ j ≤ k, the secret stored at position pj is equal to 0.

For all 1 ≤ i ≤ �1 + �2, let fi be the polynomial corresponding to [ei‖pos]k−1.
For all 1 ≤ i ≤ �1, let gi be the polynomial corresponding to [x(i)‖pos(i)]n−k.
Then the polynomial corresponding to the resulting sharing is h =

∑�1
i=1 fi ·gi +

∑�2
i=1 ci · f�1+i.
Note that fi satisfies that fi(pi) = 1 and fi(pj) = 0 for all j �= i. And gi

satisfies that gi(pi) = x′
i. Therefore, for all 1 ≤ j ≤ �1,

h(pj) =
�1

∑

i=1

fi(pj) · gi(pj) +
�2

∑

i=1

ci · f�1+i(pj) = fj(pj) · gj(pj) = x′
j .

For all �1 + 1 ≤ j ≤ �2,

h(pj) =
�1

∑

i=1

fi(pj) · gi(pj) +
�2

∑

i=1

ci · f�1+i(pj) = cj−�1 · fj(pj) = cj−�1 .
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For all �1 + �2 + 1 ≤ j ≤ k,

h(pj) =
�1

∑

i=1

fi(pj) · gi(pj) +
�2

∑

i=1

ci · f�1+i(pj) = 0.

Thus, the resulting sharing is a degree-(n−1) packed Shamir sharing of x′ stored
at positions pos, denoted by [x′‖pos]n−1.

Transforming to the Desired Sharing. Now all parties hold a degree-(n − 1)
packed Shamir sharing [x′‖pos]n−1. Recall that x′ contains all different values
in x from previous layers and all constant values. For each of the rest of values
in x, it is the same as x′

i for some i ∈ {1, 2, . . . , �1}. Then there is a linear map
f : Fk → F

k such that x = f(x′). Recall that β = (β1, . . . , βk) are the default
positions. Let Σ be the degree-(n − 1) packed Shamir secret sharing scheme
that stores secrets at positions pos. Let Σ′ be the degree-(n− k) packed Shamir
secret sharing scheme that stores secrets at positions β. Then [x′‖pos]n−1 is a Σ-
sharing, and the sharing we want to prepare, [x]n−k = [x‖β]n−k, is a Σ′-sharing
with x = f(x′).

All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and obtain [x]n−k.

Summary of Network Routing. We describe the protocol Network of preparing
an input degree-(n − k) packed Shamir sharing [x]n−k in Protocol 7.

Evaluating Addition Gates and Multiplication Gates

Addition Gates. For a group of k addition gates, recall that all parties have
prepared two degree-(n − k) packed Shamir sharings [x]n−k, [y]n−k where x are
the first inputs of these k gates, and y are the second inputs of these k gates.
The description of Add appears in Protocol 8. Note that in Step 3 of Protocol
Add, we use the fact that a degree-(n−k) packed Shamir sharing can be viewed
as a degree-(n − 1) packed Shamir sharing.

Multiplication Gates. For a group of k multiplication gates, recall that all parties
have prepared two degree-(n−k) packed Shamir sharings [x]n−k, [y]n−k where x
are the first inputs of these k gates, and y are the second inputs of these k gates.
Let ([a]n−k, [b]n−k, [c]n−k) be the packed Beaver triple prepared in the prepro-
cessing phase. We will use the technique of packed Beaver triples to evaluate
multiplication gates. The description of Mult appears in Protocol 9.

Output Layer. In the output layer, output gates are divided into groups of size
k based on the output receivers. For a group of k output gates belonging to the
same client, suppose x are the inputs. All parties invoke the protocol Network

to prepare [x]n−k. Then, all parties send their shares to the client to allow him
to reconstruct the output.
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Protocol 7: Network

1. Suppose all parties want to prepare a degree-(n − k) packed Shamir sharing
of x stored at the default positions β.

2. Let x′
1, x

′
2, . . . , x

′
�1 be the different wire values in x from previous

layers. Let c1, c2, . . . , c�2 be the constant values in x. Let x′ =
(x′

1, . . . , x
′
�1 , c1, . . . , c�2 , 0, . . . , 0) ∈ F

k.
3. For all 1 ≤ i ≤ �1, let [x(i)‖pos(i)]n−k be the degree-(n − k) packed Shamir

sharing from some previous layer that contains the secret x′
i stored at position

pi. Let p�1+1, . . . , pk be the first k−�1 distinct positions that are different from
p1, . . . , p�1 and α1, . . . , αn. Let pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in F
k (i.e., only the i-th term is 1 and all

other terms are 0). All parties locally compute a degree-(k−1) packed Shamir
sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

�1∑

i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

�2∑

i=1

ci · [e�1+i‖pos]k−1.

6. Let f : Fk → F
k be a linear map such that x = f(x′). Let Σ be the degree-

(n − 1) packed Shamir secret sharing scheme that stores secrets at positions
pos. Let Σ′ be the degree-(n − k) packed Shamir secret sharing scheme that
stores secrets at positions β.
All parties invoke Ftran with (Σ, Σ′, f) and [x′‖pos]n−1, and output [x]n−k.

Protocol 8: Add

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the addition
gates.

2. All parties locally compute [z]n−k = [x]n−k + [y]n−k.
3. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k addi-

tion gates. Recall that β = (β1, . . . , βk) are the default positions. Let Σ be
the degree-(n − 1) packed Shamir secret sharing scheme that stores secrets at
positions β. Let Σ′ be the degree-(n−k) packed Shamir secret sharing scheme
that stores secrets at positions pos. Let I : Fk → F

k be the identity map.
All parties invoke Ftran with (Σ, Σ′, I) and [z]n−k, and output [z‖pos]n−k.

Main Protocol. Given the above protocols the main semi-honest protocol fol-
lows in a straightforward way. We refer the readers to the full version of this
paper [GPS22] for the description of our main protocol, the security proof, and
the analysis of the cost. Overall we obtain the following theorem.
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Protocol 9: Mult

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the mul-
tiplication gates. All parties will use a fresh random packed Beaver triple
([a]n−k, [b]n−k, [c]n−k) prepared in the preprocessing phase.

2. All parties locally compute [x + a]n−k = [x]n−k + [a]n−k and [y + b]n−k =
[y]n−k + [b]n−k.

3. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and
reconstructs the secrets x + a, y + b. Then, P1 computes the sharings [x +
a]k−1, [y + b]k−1 and distributes the shares to other parties.

4. All parties locally compute

[z]n−1 := [x+a]k−1 ·[y+b]k−1−[x+a]k−1 ·[b]n−k −[y+b]k−1 ·[a]n−k+[c]n−k.

5. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k mul-
tiplication gates. Recall that β = (β1, . . . , βk) are the default positions. Let Σ
be the degree-(n − 1) packed Shamir secret sharing scheme that stores secrets
at positions β. Let Σ′ be the degree-(n − k) packed Shamir secret sharing
scheme that stores secrets at positions pos. Let I : Fk → F

k be the identity
map.
All parties invoke Ftran with (Σ, Σ′, I) and [z]n−1, and output [z‖pos]n−k.

Theorem 3. In the client-server model, let c denote the number of clients, n
denote the number of parties (servers), and t denote the number of corrupted
parties (servers). Let F be a finite field of size |F| ≥ |C| + n. For an arith-
metic circuit C over F, there exists an information-theoretic MPC protocol in
the preprocessing model which securely computes the arithmetic circuit C in the
presence of a semi-honest adversary controlling up to c clients and t parties. The
cost of the protocol is O(|C| · n2

k2 +(Depth+c) · n2

k ) field elements of preprocessing
data and O(|C| · n

k + (Depth + c) · n) field elements of communication, where
k = n−t+1

2 and Depth is the circuit depth.
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Abstract. We introduce the problem of Verifiable Relation Sharing
(VRS) where a client (prover) wishes to share a vector of secret data
items among k servers (the verifiers) while proving in zero-knowledge
that the shared data satisfies some properties. This combined task of
sharing and proving generalizes notions like verifiable secret sharing and
zero-knowledge proofs over secret-shared data. We study VRS from a
theoretical perspective and focus on its round complexity.

As our main contribution, we show that every efficiently-computable
relation can be realized by a VRS with an optimal round complexity of
two rounds where the first round is input-independent (offline round).
The protocol achieves full UC-security against an active adversary that is
allowed to corrupt any t-subset of the parties that may include the client
together with some of the verifiers. For a small (logarithmic) number
of parties, we achieve an optimal resiliency threshold of t < 0.5(k + 1),
and for a large (polynomial) number of parties, we achieve an almost-
optimal resiliency threshold of t < 0.5(k+1)(1−ε) for an arbitrarily small
constant ε > 0. Both protocols can be based on sub-exponentially hard
injective one-way functions. If the parties have an access to a collision
resistance hash function, we can derive statistical everlasting security,
i.e., the protocols are secure against adversaries that are computation-
ally bounded during the protocol execution and become computationally
unbounded after the protocol execution.

Previous 2-round solutions achieve smaller resiliency thresholds and
weaker security notions regardless of the underlying assumptions. As a
special case, our protocols give rise to 2-round offline/online construc-
tions of multi-verifier zero-knowledge proofs (MVZK). Such construc-
tions were previously obtained under the same type of assumptions that
are needed for NIZK, i.e., public-key assumptions or random-oracle type
assumptions (Abe et al., Asiacrypt 2002; Groth and Ostrovsky, Crypto
2007; Boneh et al., Crypto 2019; Yang, and Wang, Eprint 2022). Our
work shows, for the first time, that in the presence of an honest majority
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these assumptions can be replaced with more conservative “Minicrypt”-
type assumptions like injective one-way functions and collision-resistance
hash functions. Indeed, our MVZK protocols provide a round-efficient
substitute for NIZK in settings where honest-majority is present. Addi-
tional applications are also presented.

1 Introduction

In recent years, a large amount of research was dedicated to the study of
zero-knowledge proofs in distributed settings, such as zero-knowledge proofs
with multiple verifiers [9,37,51] and zero-knowledge proofs over secret-shared
data [16,17,24,25]. Those variants of zero-knowledge proofs have applications
both in theory and practice, in round-optimal multiparty computation [2], pri-
vate data aggregation [24], and anonymous communication [25].

A typical scenario of interest consists of a client P (the prover) that holds
a vector of secret data items s, together with several servers V1, . . . ,Vk (the
verifiers). The client wishes to share s among the servers, and also prove in
zero-knowledge that the shared data satisfies some properties. Previous works
usually let P send each Vi its share, and then perform a zero-knowledge proof on
the shared data. A natural question is whether considering the sharing and the
proving as a single task could result in a protocol with better round-complexity
and better security guarantees. To capture this joint task of sharing-and-proving,
we present the notion of verifiable relation sharing (VRS).

Verifiable Relation Sharing. The VRS functionality of a public relation R
receives from the prover an input x = (x0, x1, . . . , xk), where we think of x0

as a private information of the prover, and of xi as the share of Vi. The func-
tionality verifies that R(x) = 1, and if the verification fails, then it returns a
failure-symbol ⊥ to all the verifiers. If the verification succeeds, the functionality
returns xi to Vi. Observe that the VRS functionality captures the typical scenario
discussed above, as well as several cryptographic primitives, including verifiable
secret sharing [23], verifiable function secret sharing [17], secure multicast [33],
and zero-knowledge proofs with multiple verifiers.

We formalize the VRS functionality under the definitions of secure multiparty
computation (MPC) in the universal-composability (UC) framework of [21]. We
strive for full-security, including guaranteed output delivery, at the presence of
an honest majority in the plain model. We note that honest-majority is necessary
due to impossibility of UC-secure Zero-knowledge proofs in the plain model [22].
The active (aka Byzantine or malicious) adversary is allowed to corrupt any
minority subset of the k + 1 parties {P,V1, . . . ,Vk} that may include the prover
together with some of the verifiers. The use of MPC-based “full-security” def-
initions provides strong guarantees that are not supported by related notions
of distributed zero-knowledge. Specifically, when the prover P is honest, we
get correctness, i.e., every honest Vi outputs xi even in the presence of cor-
rupt active verifiers, as well as simulation-based privacy, which implies that the
adversary only learns the outputs of the corrupt verifiers. For a corrupt P, we
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get soundness and knowledge extraction even when P colludes with some of the
verifiers. In contrast, previous works on weaker notions, such as zero-knowledge
proofs over secret-shared data, achieve correctness only for semi-honest veri-
fiers [16,17,24,25], and in some cases (e.g., [24,25]) provide soundness only when
all the verifiers are honest. Further discussion of related works and a comparison
of known results appear in Sect. 1.2 and Table 1.

We study the VRS problem from a theoretical perspective while focusing on
the best-achievable round complexity. It is known that VRS cannot be realized
in 1 round even for relatively simple relations (e.g., VSS [7]). Looking for the
second best, we ask:

Q1: Can VRS be realized by a 2-round protocol? Moreover, can we make
the first round input-independent (“offline round”)? If so, under what
assumptions?

The question of obtaining a 2-round protocol in the plain model is open even for
weaker notions like distributed zero-knowledge over secret-shared data.

Multi-verifier Zero-Knowledge. It is useful to consider the somewhat degenerate
version of VRS in which all the verifiers get the same information except for
some private witness that is kept by P. This variant essentially corresponds to
multi-verifier zero-knowledge proofs (MVZK) [20]. When modeled as an ideal
functionality, MVZK is parameterized by a public relation R, it receives from
P a statement x and a witness w, and verifies that R(x,w) = 1. If the verifica-
tion fails, then the functionality returns a failure-symbol ⊥ to all the verifiers
V1, . . . ,Vk, and if the verification succeeds, the functionality returns x to all the
verifiers. Again, we strive for a 2-round offline/online solution in the plain model.

Observe that the single verifier case (where the adversary can either corrupt
the verifier or the prover) corresponds to the standard notion of zero-knowledge
proofs. Classical impossibility results [36] show that a plain-model protocol that
consists of a single message from the prover to the verifier, also known as non-
interactive zero-knowledge (NIZK), exist only for languages in BPP, even when
one considers only stand-alone security. Assuming a minimal trusted setup in the
form of a common reference string (CRS), one can achieve NIZK for every lan-
guage in NP from public-key assumptions [13,15,30,38,48,50], or, alternatively,
in the random oracle model [11,31]. In a related notion, called Zaps [28], the CRS
is replaced with a preprocessing round in which only the verifier communicates
by broadcasting its random coins, at the expense of downgrading zero-knowledge
to witness-indistinguishability. Assuming the existence of one-way functions, it
is known that Zaps are equivalent to NIZK [28].

Let us move back to the setting of multiple verifiers. Striving for a 2-round
simulation-based zero-knowledge, we make the necessary assumption of an hon-
est majority among the set of all parties (including the prover).1 To the best
1 Without an honest majority, a 2-round plain-model MVZK protocol (where in each

round both the verifiers and prover can talk simultaneously) implies a 2-step ZK
protocol (where the verifier sends a message and gets a response from the prover)
which is ruled-out by [36] for non-trivial languages outside BPP.
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of our knowledge, the only known solution in this setting follows from the work
of Groth and Ostrovsky on Multi-string NIZK Proofs [37]. Specifically, their
work implicitly give rise to a 2-round offline/online honest-majority MVZK that
achieves simulation-based security based on Zaps and public-key encryption [37,
Theorem 3]. These assumptions are as strong (or even stronger) than the ones
needed for NIZK protocols in the seemingly “harder” 2-party settings. We there-
fore ask:

Q2: Are NIZK/Zaps assumptions inherently needed for an MVZK proto-
col with 1-offline and 1-online round in the honest-majority setting? Is it
possible to replace these assumptions with weaker assumptions?

1.1 Our Contribution

1.1.1 Round-Optimal VRS and MVZK in Minicrypt
We answer Questions 1 and 2 in the affirmative. Our main result is a protocol
with 1-offline round and 1-online round for VRS in the UC-framework, assuming
the existence of perfectly-binding non-interactive commitment scheme (NICOM)
with sub-exponential privacy. Such a NICOM scheme can be based on injec-
tive one-way functions with sub-exponential hardness or even on standard one-
way function with sub-exponential hardness assuming worst-case complexity-
theoretic derandomization assumptions [8,45].2 Throughout, we assume that
the parties communicate over pairwise secure and authenticated point-to-point
channels, as well as over a common broadcast channel, which allows each party to
send a message to all parties and ensures that the received message is identical.

Theorem 1. Assuming the existence of injective one-way functions with sub-
exponential hardness, for every ε > 0 the VRS functionality of every efficiently
computable relation R can be realized in 1-offline round and 1-online round, with
full security against an active rushing adversary, in any of the following settings.

– (Optimal resiliency for small number of verifiers) The number of verifiers k
is at most logarithmic in the security parameter, and the adversary corrupts
less than (k + 1)/2 parties.

– (Almost-optimal resiliency for polynomially-many verifiers) The number of
verifiers k grows polynomially with the security parameter and the adversary
corrupts less than (k + 1) · (12 − ε) parties.

Since MVZK is a special case of VRS, we obtain the following corollary.

Corollary 1. Assuming the existence of injective one-way functions with sub-
exponential hardness, the MVZK functionality of every efficiently computable
relation R can be realized in 1-offline round and 1-online round, with full security
against an active rushing adversary, in the same settings of Theorem 1.
2 For technical reasons, the NICOM should satisfy some level of security against selec-

tive opening that, by “complexity leveraging”, follows from the assumption that the
underlying one-way function (or injective one-way function) cannot be inverted in
polynomial-time with more than sub-exponential probability. This seems to be a
relatively mild assumption; See Remark 2.
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For optimal resiliency, we obtain a protocol with complexity polynomial in
the security parameter, but exponential in the number of verifiers k. On the
other hand, for every ε > 0 we obtain a protocol with resiliency (k + 1) · (12 − ε),
whose complexity is polynomial both in the security parameter and in k. (In
fact, we can push ε to be as small as ε = Ω( 1√

log k
); see the full version [6] for

full details.)
The difference between optimal resiliency and “almost-optimal resiliency”

is mostly relevant when the number of verifiers is small, e.g., constant. In this
setting, the first protocol provides an efficient solution. Specifically, we highlight
the case of 3-party computation, with a single prover and two verifiers, and
we note that by adding just a single verifier to the standard zero-knowledge
settings, we can obtain a protocol with 1-offline round and 1-online round for
the case of a single corruption from Minicrypt-type assumptions. (In contrast,
general-purpose 3-party MPC for honest majority requires 3 rounds [47].)

Still, the existence of a strict-honest-majority 2-round VRS protocol whose
complexity scales polynomially with the number of parties, remains an interest-
ing open problem. We show that such a protocol can be constructed if one is will-
ing to make stronger assumptions (e.g., random oracle or correlation-intractable
functions) or if the adversary is non-rushing. In fact, we note that a weak lim-
itation of the rushing capabilities of the adversary suffices, and present a new
notion of semi-rushing adversary to model such a behavior.3

1.1.2 VRS and MVZK with Everlasting Security in Minicrypt
It is known that if we do not put restriction on the round complexity, then,
in the setting of honest-majority, one can obtain unconditional results and no
assumptions are needed at all! Specifically, as shown by Rabin and Ben-Or [49],
every efficiently computable function can be securely computed with statistical
security against computationally-unbounded adversaries. While we do not know
whether it is possible to achieve statistical security in 2 rounds, we show that
VRS and MVZK can be implemented by a protocol that achieves statistical ever-
lasting security assuming an access to a collision-resistant hash function h. The
notion of statistical everlasting security [44] can be viewed as a hybrid version
of statistical and computational security. During the run-time, the adversary is
assumed to be computationally-bounded (e.g., cannot find collisions in the hash
function) but after the protocol terminates, the adversary hands its view to a
computationally-unbounded analyst who can apply arbitrary computations in

3 The difference between rushing and non-rushing adversary boils down to the schedul-
ing of the messages within a single round of a protocol. A non-rushing adversary
must send the messages of the corrupt parties in a given round before receiving the
messages of the honest parties in that round, whereas a rushing adversary may delay
sending the messages of the corrupt parties until receiving the messages from the
honest parties. Thus, the messages of the corrupt parties may depend on the mes-
sages of the honest parties in the same round. Our notion of semi-rushing adversary
allows the adversary to see all the messages of the honest parties, except for one.
For more about this model and its relevance, see the full version [6].
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order to extract information on the inputs of the honest parties (e.g., finding
collisions or even reading the whole truth table of h).4 This feature is one of the
main advantages of information-theoretic protocols: after-the-fact secrecy holds
regardless of technological advances and the time invested by the adversary.

Theorem 2. Given an access to a collision-resistant hash function, the VRS
and MVZK functionalities of efficiently computable relations can be realized in
1-offline round and 1-online round, with full security and everlasting security
against an active rushing adversary, in the same settings (honest-majority with
few verifiers or almost-honest majority with many verifiers) of Theorem 1.

Remark 1 (On the use of hash function). Our protocol assumes that all par-
ties are given an access to a collision resistance hash function h. Theoretically
speaking, such a function should be chosen from a family of functions H in
order to defeat non-uniform adversaries. One may assume that h is chosen once
and for all by some simple set-up mechanism. In particular, by using the stan-
dard concatenation-based combiner for hash functions [41], this set-up mecha-
nism may be realized distributively by a single round of public random coins
where security holds against an active rushing adversary that may corrupt all
the participants except for a single one. The choice of the hash function can be
abstracted by a CRS functionality, or even, using the multi-string model of [37]
with a single honestly-generated string. However, it should be emphasized that
this CRS is being used in a very weak way: It is “non-programmable” (the simu-
lator receives h as an input) and it can be sampled once and for all by using the
above trivial public-coin mechanism. Even if one counts this extra set-up step
as an additional round, to the best of our knowledge, everlasting security was
not known to be achievable regardless of the underlying assumptions.

The difference between everlasting and computational security is fundamen-
tal and is analogous to the difference between statistical commitments and com-
putational commitments or statistical ZK vs. computational ZK (see, e.g., the
discussions in [19,46]). Indeed, Theorem 2 provides (UC-secure) MVZK with a
statistical zero-knowledge property. As a side bonus, Theorem 2 does not require
sub-exponential hardness assumptions.

1.1.3 Round-Optimal Linear Function Computation in Minicrypt
Using the machinery we develop for VRS and MVZK, we obtain a 3-round pro-
tocol for linear function computation. By the lower-bound of [34] our protocol
has optimal round complexity. Like in previous results, we assume the existence
of injective one-way functions with sub-exponential hardness in order to obtain
a protocol with computational security in the plain model, or an access to a
collision resistance hash-function in order to obtain a protocol with everlast-
ing security. In contrast, previous works achieve only computational security by
assuming public-key encryption and Zaps [2]. We emphasize that in Theorem 3
4 Technically, in the UC-framework we allow the environment to output its view and

require statistical indistinguishability between the real and ideal experiments.
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we obtain optimal resiliency even when the number of parties is polynomial in
the security parameter.

Theorem 3. Assuming the existence of injective one-way functions with sub-
exponential hardness, every efficiently computable linear function can be realized
in 3 rounds, with full security against an active rushing adversary, that corrupts
a minority of the parties. If we replace the one-way function with an access to a
collision resistance hash-function, we also obtain everlasting security.

1.1.4 Applications
We present some applications of our protocols. For full details, see the full ver-
sion [6].

MVZK as a NIZK-Substitute for Honest Majority. We notice that our MVZK
protocol captures an important aspect of NIZK, its minimal round complex-
ity, while using only Minicrypt-type assumptions. Indeed, our MVZK protocol
implies that the CRS for NIZK is not required, and can be replaced with only a
single offline-round of communication. Similar to NIZK, the proof itself requires
only one online round. However, unlike NIZK, in our protocol all the parties
have to communicate in the online round.

Round-Efficient Manipulation of Non-homomorphic Commitments. In a com-
mon scenario in multiparty computation, a party P holds openings to public
commitments C1, . . . , C�. P wishes to apply some function f on the committed
values z1, . . . , z� and let the rest of the parties learn y := f(z1, . . . , z�), while
proving in zero-knowledge that she used the committed values in the compu-
tation of f . Alternatively, P may want to generate another commitment C,
that hides y, while proving in zero-knowledge that C was honestly generated.
Both the tasks can be solved in 1-offline round and 1-online round by using our
MVZK. Since the offline round can be executed in parallel to the generation of
C1, . . . , C�, both tasks require only one additional round!

Round-Efficient GMW-Type Compilers in Minicrypt. Using VRS one can obtain
round-efficient GMW-type compilers in Minicrypt, for the case of honest major-
ity. Given a protocol π which is secure against a semi-malicious adversary,5 we
obtain a protocol π′ with unanimous abort against an active adversary at the
expense of adding a single offline round. If π is secure against a passive (aka semi-
honest) adversary, the overhead grows to 4 rounds. Notably, unlike the GMW
compiler, our transformation avoids the use of public-key encryption.

Round-Optimal Honest-Majority MPC in Minicrypt. A followup work by the
same authors [5] shows that general secure multiparty computation with full-
security (including guaranteed output delivery) in the presence of an honest
5 A semi-malicious adversary is allowed to choose its input and randomness but oth-

erwise follows the protocol. Many passively secure protocols (e.g., [12]) actually offer
semi-malicious security.
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majority can be achieved in an optimal number of 3 rounds based on Minicrypt-
type assumptions (e.g., NICOMs). A main building block of the protocol is our
2-round offline/online VRS protocol.

Bibliographic Note. Previous unpublished version of [5] contained a weak form
of some of the current results based on the Fiat-Shamir heuristic. These results
were removed from the new version of [5], and are fully subsumed by the current
paper.

1.2 Related Works and Comparison

The VRS functionality was implicitly studied by Gennaro et al. [34], in the con-
text of single input functionalities. Gennaro et al. provided a two-round perfect
protocol with resiliency (k + 1)/6. The resiliency was improved to (k + 1)/3 by
Applebaum et al. [3], at the cost of degrading the perfect security to computa-
tional security, assuming the existence of NICOMs.

Boneh et al. [16] initiated the formal study of zero-knowledge proofs over
secret-shared data. They considered information-theoretic security in the follow-
ing models of corruptions: (1) the adversary corrupts the prover or up to k − 1
verifiers, and (2) the adversary corrupts the prover and less than k/2 verifiers. In
both corruption models, they only provide security with abort. Their protocols
exploit PCP machinery to achieve low communication complexity (sub-linear
in the description of the relation), but have a super-constant number of rounds.
Based on a random oracle, the number of rounds can be collapsed to 2, assuming
that the data is already secret-shared among the verifiers.

MVZKs were first introduced in [20]. The most relevant MVZK for us can
be derived from [37] which provides a construction of NIZK in the multi-string
model assuming the existence of Zaps. In the multi-string model, the CRS is
replaced with several authorities, each providing the protocol with a public ran-
dom string, and the protocol is secure as long as a majority of those authorities
are honest (that is, if a majority of the strings are uniformly distributed). An
MVZK protocol with an honest majority of parties can be obtained in the plain
model by letting each party broadcast a random string in the offline round,
so that a majority of the strings are uniformly distributed. Simulation-based
security can be obtained via the additional help of public-key encryption [37,
Theorem 3].

Other non-interactive variants of MVZK were presented in [1]. Translated to
our model, their work yield 2-round MVZK for t < k/3 and a 3-round protocol for
t < n/2. Both results hold under public-key (discrete-log) hardness assumptions.
Recently, [51] and [9] constructed MVZK with practical real-world efficiency in
honest and super-honest majority settings. However, their low round (2 or 3)
variants rely on random oracle and achieve either selective or identifiable abort.

Comparison. We compare our results with the relevant existing results in Table 1.
Except for this work and [37], none of the works achieves an offline/online
construction.
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Table 1. Comparison of our work with the state-of-the-art relevant results

Ref. Primitive Rounds Threshold Assumptions Security†

[34] VRS 2 t < (k + 1)/6 – it and full security

[3] VRS 2 t < (k + 1)/3 NICOM cs and full security

[16] ZK over shared data 2� t < (k + 1)/2‡ Random Oracle it and abort

[37] MVZK 2 t < (k + 1)/2 PKE cs and full security

[1] MVZK 3 t < (k + 1)/2 Discrete-log cs and full security

[51] MVZK 2 t < (k + 1)/2 Random Oracle it and abort

[9] MVZK 2 t < (k + 1)/3 Random Oracle it and identifiable abort

This paper VRS 2 t < (k + 1)( 1
2

− ε)§ NICOM�� cs/es and full security

† it: information-theoretic, es: everlasting security, cs: computational security,
‡ They assume the adversary corrupts (1) the prover or up to k − 1 verifiers, and (2)

the prover and less than k/2 verifiers
� The round complexity does not include the rounds needed for data sharing.
�� Perfectly-binding and sub-exponentially hiding NICOM for cs security and

Computationally-binding and statistically-hiding NICOM for es security.
§ We achieve t < (k + 1)/2 when k is logarithmic in the security parameter.

2 Preliminaries

Single-Input Functionalities. We adopt an MPC-based notation and replace VRS
with the following notion of single-input functionalities (SIF). We assume that
there are n parties, P = {P1, . . . , Pn}, where one party (e.g., Pn) takes the
role of a Dealer D. The SIF functionality F is parameterized with a function
f : {0, 1}∗ → ({0, 1}∗)n, it takes an input string z from the dealer, computes
the outputs (y1, . . . ,yn) = f(z) and delivers yi to the ith party Pi. It is not
hard to see that VRS is a special case of SIF, and that VRS implies SIF in a
round-preserving way. (Indeed, to realize F define the relation R that accepts a
vector (x0, x1, . . . , xn−1) if xi = fi(x0) for i ∈ [n − 1], and let D invoke a VRS
for R with the input (z, f1(z), . . . , fn−1(z)).) We will mostly focus on the special
case of public-SIF that delivers the same output to all the parties. In the full
version [6] we show that a 2-round offline/online general-SIF reduces to 2-round
offline/online public-SIF via the aid of NICOMs.

Security Model. We consider an active static, rushing adversary that may cor-
rupt up to t parties. We consider two main settings: the optimal resiliency setting
where n = 2t + 1 and the almost-optimal resiliency setting where n = (2 + ε)t
for some arbitrarily small constant ε > 0. The parties are connected by pairwise
secure channels and additionally a broadcast channel is available. We prove secu-
rity of our protocols in the UC-framework [21]. We identify the set of partiesPwith
{1, . . . , n}, and denote the set of honest parties by H ⊆ P, and the set of corrupt
parties by C ⊆ P. In our protocols, we follow the convention that the honest par-
ties can “disqualify” the dealer whenever it is clear from broadcast messages that
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the dealer misbehaves. This does not violate “guaranteed output delivery” since
in case of disqualification, the honest parties can always apply f on some predeter-
mined default value and output the result. We denote by κ the security parameter
and implicitly assume that all other parameters (e.g., the number of parties, and
the complexity of the functionalities and protocols) depend in κ.

NICOM. A NICOM consists of two PPT algorithms (commit, open) where
commit takes a security parameter κ, message x and random coins r, and outputs
a commitment C and a corresponding opening information o. The open algo-
rithm takes κ, and a commitment/opening pair (C, o) and outputs the message
x or a failure message ⊥. The algorithms should satisfy the standard proper-
ties of correctness, binding (i.e., it must be hard for an adversary to come up
with two different openings of any C) and hiding (a commitment must not leak
information about the underlying message) properties. NICOM comes in 2 main
flavors: (1) with computational hiding and perfect binding, and (2) with statis-
tical hiding and computational binding. Type (1) commitments can be based on
injective one-way functions [14,35,52], and type (2) commitments can be based
on collision resistance hash functions [27,39]. In the latter case, a description of
a collision resistance hash function h (that is sampled from a family H) is given
to the algorithms (commit, open) as an auxiliary public parameter. Our protocols
make use of NICOM in a modular way such that a type (1) instantiation (with
sub-exponential computational hiding) yield computational protocols and type
(2) instantiation yield protocols with everlasting security.

Remark 2 (Sub-exponential hiding). Assuming injective OWF over m-bit inputs
that cannot be inverted by a PPT adversary with probability better than 2−mδ

,
it is possible to construct [14,35,52] a plain-model (with no public parameters)
perfectly-binding NICOM whose computational hiding property holds for ε ≤
2−κ. We refer to such a commitment as perfectly binding sub-exponentially hid-
ing NICOM. Moreover, under worst-case derandomization assumptions [8], such
NICOMs can be based on general (not necessarily injective) sub-exponentially
hard OWFs. Similar sub-exponential hardness assumptions are quite common
in the literature and typical candidate one-way functions seem to achieve sub-
exponential hardness. In fact, our variant of sub-exponential hardness is rela-
tively mild compared to other notions, since we do not allow the adversary to
run in sub-exponential time, but only allow it to succeed with sub-exponentially
small probability.

3 Technical Overview

In this section we provide a high level overview of our SIF protocol. Full details of
the protocol appear in the full version [6]. Intuitively, a SIF protocol consists of
the following sequential parts: (1) The dealer presents a statement; (2) The other
parties challenge it via a random challenge; (3) The dealer sends a respond; and
(4) The other parties decide whether to accept or reject. Compressing these steps
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into 2 rounds is highly challenging. For comparison, even the task of verifiable
secret sharing (without revealing it) takes at least 2 rounds [7,33]. To bypass this
problem, we are forced to run sub-protocols in parallel and with some overlap.
Specifically, we make an extensive use of (1) tentative-output protocols that
prepare a tentative version of the output in an early round and only later, at the
end, approve/reject/correct the tentative output; and (2) offline-phase protocols
that begin with an offline, input-independent, round and only later receive the
inputs. This allows us to save some rounds by allowing partial overlap between
sub-protocols.

Our protocol makes an extensive use of verifiable secret sharing (VSS) [23].
For now, let us think about a VSS protocol as an actively-secure realization of
the ideal functionality that takes as an input a secret s ∈ F and randomness r
from a dealer, and delivers to each party Pi a share si that is generated from s
and r by using some threshold secret sharing scheme with threshold t. Here and
throughout the paper, F is a finite field whose size is assumed to be exponential in
the security parameter κ, by default, F = GF(2κ). The underlying secret sharing
scheme should be binding in the sense that a corrupted party cannot “lie” about
its share. (This property implies that correct reconstruction is achievable even
at the presence of an active adversary as long as we have n − t honest parties.)
To simplify the exposition, let us assume for now that the underlying secret
sharing is linearly homomorphic and that the VSS protocol takes a single round.
We emphasize that both features are unrealistic and even impossible to achieve
when t > n/3, let alone when t is close to n/2.6 Jumping ahead, a considerable
part of this work will be devoted to the removal of these assumption while
preserving the round complexity; see Sect. 3.3.

3.1 SIF for Few Parties

Let us restrict our attention to the case where the number of parties n is small,
i.e., n = O(log κ). Recall that our goal is to construct a 2-round protocol for
a general SIF functionality whose first round is an offline round that does not
depend on the input of the dealer. We will use standard techniques to reduce
this problem to the problem of constructing a 2-round protocol for a specific SIF
functionality known as triple secret sharing (TSS) where the dealer wishes to
share a triple (a, b, c) such that c = ab. For TSS, let us strive for a “standard” 2
round protocol whose first round is allowed to depend on the input.

2-Round TSS Against Non-rushing Adversary. Our starting point is the follow-
ing 2 round protocol that assumes that a corrupted dealer is non-rushing. In the

6 Even without homomorphism, computational VSS requires 2 rounds [7] when n <
3t. Moreover, even for such a large resiliency threshold, linear homomorphism is
non-trivial to achieve. Specifically, for 2-round VSS, it is unknown how to achieve
linear homomorphism without relying on strong primitives such as homomorphic
NICOMs. The latter are typically constructed based on “structured” (public-key
type) assumptions and are not known to follow from standard NICOMs.
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first round, the dealer D, that holds a triple (a, b, c) with c = ab, picks three
polynomials A(x), B(x) and C(x) of degree n, n and 2n, respectively, such that
A(0) = a, B(0) = b, C(0) = c and C(x) = A(x) · B(x). Let Ai, Bi and Ci be the
ith coefficient of A(x), B(x) and C(x), and note that A0 = a,B0 = b and C0 = c.
The dealer shares all the coefficients {Ai, Bi}i∈{0,...,n}, and {Ci}i∈{0,...,2n} via
VSS. The parties now hold the shares of a = A0, b = B0 and c = C0.

In order to ensure that c = ab, it suffices to verify that the polynomial
C(x) is equal to the polynomial A(x) · B(x). To this end, we want to compute
A(α), B(α) and C(α) for a random non-zero field element α, and verify that
C(α) = A(α)B(α). Indeed, if C(x) = A(x) · B(x) then equality always holds,
while if C(x) �= A(x) ·B(x) then the probability that the verification succeeds is
at most 2n/(|F|−1) = negl(κ). Therefore, in the first round, concurrently to the
sharing of the dealer, we let every party Pi broadcast a random non-zero field
element αi.

In the second round, our goal is to compute A(αi), B(αi), C(αi) for all
i ∈ {1, . . . , n} and “disqualify the dealer” if for some αi the test A(αi) ·B(αi) =
C(αi) fails. Recall that A(x) and B(x) are random polynomials of degree n condi-
tioned on A(0) = a and B(0) = b, and therefore one can safely release all these αi

evaluations without revealing any information on a, b and c. The actual computa-
tion of A(αi), B(αi), C(αi) makes use of the linear-homomorphism of the secret-
sharing. Specifically, observe that A(α) is just a linear function of A0, . . . , An

with coefficients (α0, . . . , αn) (and similarly for B(α) and C(α)), and therefore
each party can reveal in the second round its share of A(αi) (resp., B(αi), C(αi)).
The binding property of the VSS guarantees that a corrupted party cannot lie
about its shares and the existence of t + 1 honest parties guarantees success-
ful reconstruction. The protocol follows the standard commit-challenge-response
template with a minor tweak: many challenges are generated (one for each “ver-
ifier”) concurrently to the commitment stage, and each of the responses is being
computed collectively by the “verifiers”.

Coping with a Rushing Adversary. The above protocol is insecure against a
rushing adversary since such an adversary can wait to see the selected challenges
and then share triples that do not satisfy the product relation and yet pass the
tests. We solve this problem by hiding at least some of the challenges from
the adversary while revealing them to enough parties so that the response (via
reconstruction) can be computed in the second round. Details follow.

Consider all the possible (t + 1)-subsets of the parties, Q1, . . . , QN where
N =

(
n

t+1

)
. In the first round, we let each subset Qi generate a secret challenge

αi that is known only to the members of Qi. Specifically, we define some canonical
“leader” for Qi (e.g., the party with the smallest index) and let her sample a
random non-zero αi and send it to the other members of Qi over private channels.
Concurrently, the dealer shares the coefficients of the polynomials A,B,C among
the n parties as before, except that now the degree of A and B is taken to be
d = N(t + 1) and the degree of C is taken to be 2d. In the second round, each
party Pj in Qi broadcasts the value αi and uses local linear operations to reveal
to all the parties the jth share of A(αi), B(αi) and C(αi). After the second



VRS and MVZK in Two Rounds 45

round, for each i, each party P (possibly outside Qi) verifies that all the parties
in Qi broadcast the same point αi and that their shares are valid. If one of these
checks fail, we refer to the ith test as bad and ignore it; Otherwise, the i-th test
is called good, and P can recover the points A(αi), B(αi) and C(αi). If these
values satisfy the product relation, we say that the (good) test passes. Finally, P
accepts the triple if all the good tests pass, and disqualifies the dealer otherwise.

The analysis is fairly simple. For a corrupt D, we note that there exists (at
least) one set Qi in which all the parties are honest, and that a corrupt dealer
has no information about αi in the first round. The parties in Qi provide in
the second round t + 1 shares of A(αi), B(αi) and C(αi) and so these values
can be publicly recovered, and the probability that C(x) �= A(x) · B(x) and
C(αi) = A(αi) · B(αi) is at most 2d/(|F| − 1) = 2N(t + 1)/(|F| − 1) = negl(κ).
Thus, except with negligible probability, there will be at least one good test
that fails to pass. On the other hand, an honest dealer will never be disqualified
since, by the binding property of the secret sharing, even a fully corrupted set
of verifiers Qi cannot reveal incorrect shares. As for privacy, there are N sets,
and from each set the adversary can learn information about at most (t + 1)
points of A(x), B(x) and C(x) (a corrupt leader in a set Q can send different
evaluation points to the parties in Q). Since the degree of A(x) and B(x) is d,
and the adversary can learn information about at most N(t + 1) = d points, we
conclude that the adversary learns no information about A(0), B(0) and C(0),
as required. The complexity of the protocol is exponential in t = �n/2	 − 1 and
so the protocol is efficient (polynomial in the security parameter κ) only when
the number of parties n is logarithmic in κ. Indeed, this is the only place where
the assumption n = O(log κ) is really necessary.

From TSS to Public SIF. By the standard NP-completeness of quadratic equa-
tions, public SIF non-interactively reduces to public SIF where f computes a
vector of degree-2 polynomials over an arbitrary finite field [34] and the same
output is given to all the parties. One can easily adopt the TSS protocol to the
case of general degree-2 SIF functionality (e.g., share the input vector z and the
output vector y, prove that they satisfy a degree-2 relation and ask the parties to
publicly reconstruct y.) However, this will not lead to an offline/online protocol.
Instead, we use Beaver’s trick [10] to transform random triple sharing (realized
by TSS) into a degree-2 SIF. The standard transformation has an overhead of
2 additional rounds, and we avoid it by exploiting the SIF setting, i.e., the fact
that a single dealer knows all the secrets. A reduction from general SIF to public
SIF appears in the full version [6].

3.2 SIF for Any Number of Parties

We move on to the case where the number of parties, n, is large (polynomial in
κ) and the resiliency threshold t is almost optimal, i.e., n = (2 + ε)t for some
constant ε > 0. Our goal is to construct a 2-round offline/online protocol Π for
some public SIF functionality F that takes an input z from the dealer D and
delivers the same output y = f(z) to all the parties.
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We will handle this case by composing two protocols: (1) The aforementioned
2-round SIF protocol Πs (“s” for small) that achieves an optimal resiliency for
a small (logarithmic) number of parties; and (2) a perfectly-secure SIF protocol
Πb (“b” for big) with constant resiliency of, say 1/3, that works efficiently for
polynomially many parties. The latter protocol can have many rounds and can
be instantiated, for example, by the classical protocol of Ben-Or, Goldwasser
and Wigderson (BGW) [12]. We will combine the 2 protocols into a single SIF
protocol with almost-optimal threshold and poly(n) complexity via player vir-
tualization technique. This idea goes back to the work of Bracha [18] in the
context of Byzantine Agreement, and since then has been used several times in
the MPC literature [26,32,40] culminating in the celebrated MPC-in-the head
paradigm [42,43]. Here we show how to apply this idea in the context of SIF.
Unlike other contexts, we show that the combined protocol inherits the round
complexity of the first (“internal”) protocol, and therefore can be executed in 2
rounds! Details follow.

Let us partition the n parties to M = poly(n) committees A1, . . . , AM each
of size n′ for some constant n′ that depends on the constant ε. Call a committee
good if it contains at least (n′ + 1)/2 honest parties, and bad otherwise. We will
make sure that the fraction of bad sets is at most M/10 no matter which subset
of t parties the adversary decides to corrupt. Such a property can be guaranteed
by taking all n′ multisets or, more efficiently, based on expander graphs (see,
e.g., [26, Lemma 5]).7 Let Πb be the BGW protocol that realizes the SIF f
among the dealer D and M “virtual” parties Q1, . . . , QM .

In our new protocol, Π, the dealer D executes the BGW protocol Πb in her
“head” with the input z and then broadcasts a commitment to the transcript.
That is, D samples random tapes r1, . . . , rM for the virtual parties Q1, . . . , QM

and computes all the messages that are sent in Πb, both over private channels
and over broadcast channels. Then, D commits to each of these messages and to
the randomness ri of each party Qi, and broadcasts the tuple of commitments G.
We emphasize that every message from Qi to Qj has only one commitment, that
belongs both to the view of Qi and the view of Qj . In addition, D broadcasts the
value y = f(z). Now, we let each committee Ai verify, with the aid of the small
protocol Πs, that the view of Qi is self-consistent, i.e., that the (committed)
randomness and incoming messages of Qi yield the (committed) outgoing mes-
sages of Qi and that the final output is indeed y. More precisely, the committee
Ai together with D, compute the following public-SIF functionality Gzk:

– (Dealer’s input:) An index i ∈ {1, . . . , M}, a vector of commitments Gi,
supposedly to the randomness of Qi and his incoming and outgoing messages,
and the corresponding openings.

7 In principle, n′ should be taken to be Ω(1/ε2). Thus, in order to keep n′ small (e.g.,
logarithmic in the security parameter), one has to assume that ε is not too small,
e.g., at least Ω(1/

√
log κ). We limit the discussion to a constant ε only for the sake

of simplicity.
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– (Public output:) the tuple (vi,yi, Gi, i) where vi is a consistency bit that
indicates whether the committed values are self-consistent, and the value yi

is the output that the virtual party Qi outputs given the committed view.8

We realize this sub-computation by running the small SIF protocol Πs among
D and the sub-committee Ai while making sure that the final output is available
to all parties including ones that do not belong to Ai. This can be done (without
an extra round of communication) by passing all the broadcast messages of the
small protocol Πs over the external n-party broadcast channel. Indeed, we note
that, for public-output SIF, the public output of our protocol Πs can be fully
recovered based on its broadcast messages. Getting back to Π, we conclude
the protocol, by letting each party Pi accept the output y if at least 0.9M of
the committees approve this output (i.e., if the output of the ith committee is
(1,y, Gi, i) where Gi is consistent with G), and disqualify the dealer otherwise.

The protocol Π can be executed in 2 rounds where the first round is devoted
to the offline round of all the instances of the Πs protocol, and the second round
is devoted to the commitment generation and to the second online-round of the
Πs instances. Note that the first round of Π remains input-independent. Let us
briefly analyze the security of Π.

For an honest dealer, the verification Πs succeeds for every good committee
Qi that contains an honest majority, and may fail for a bad committee Qi that
contains a dishonest majority. We conclude that at most M/10 of the verifica-
tions fail, and so an honest dealer will never be disqualified. As for privacy, a
bad committee Qi may completely learn the input of the dealer D in the corre-
sponding SIF Gzk. This leakage is equivalent to learning the internal state of the
virtual party Qi in the external protocol Πb. Since there are at most M/10 bad
committees, the adversary can learn the state of at most M/10 parties of Πb.
The privacy of Πb therefore protects us against such a leakage. (In fact, for this
part we only use the privacy of Πb against a passive corruption.)

A corrupt dealer can commit to an illegal transcript while being approved
by all bad committees. So, in order to be approved, such a dealer must still get
the votes of at least 0.8M good committees. Hence, cheating in Π reduces to
cheating in Πb while actively controlling at most 0.2M of the virtual parties,
and while controlling the randomness of the honest virtual parties. Since Πb is
perfectly correct against 0.2M active corruptions, a cheating dealer will always
be caught. (For this part, no privacy is needed and Πb is only required to achieve
“perfect correctness with abort” against an active adversary.)

Remark 3 (Comparison to the MPC-to-ZK transformation of [42]). It is instruc-
tive to consider the following variant of the protocol. First, the dealer secret-
shares its input z to (z1, . . . , zM ) via some robust M/3-out-of-M secret sharing
then it virtually runs an MPC protocol among the parties Q1, . . . , QM for the
public SIF F ′ that takes (z1, . . . , zM ) from the parties, recovers z via robust
reconstruction, and delivers the output f(z). The dealer commits to the views

8 The circuit that realizes Gzk depends on the code of the NICOM, consequently, our
final construction makes a non-black-box use of the NICOM.
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and transcript and the committees A1, . . . , AM use the small SIF protocol to ver-
ify consistency for each virtual party. This description be can viewed as a special
case of the protocol Π in which Πb is realized by sharing z and computing F ′.

Under this choice, our transformation can be viewed as a multi-verifier version
of the MPC-to-ZK transformation of [42]. The two versions differ with respect
to the underlying secret sharing (M -out-of-M in [42] vs. M/3-out-of-M in our
case), and, more importantly, with respect to the verification part. In [42] a single
verifier opens few views (for soundness) while keeping other views unopened (for
zero-knowledge), whereas in our case multiple verifiers distributively open (all)
the views in a way that preserves soundness “globally”, and secrecy for bounded-
size coalitions. Furthermore, we show that verification can be realized with low
round complexity based on an “internal” SIF protocol.

3.3 Replacing the Idealised VSS with 1.5-Round Protocols

In the previous section, TSS and public SIF for logarithmic number of parties
are the direct consumers of the idealized VSS. In both, the scenario is as follows:
D has m inputs s1, . . . , sm and the parties want to compute a linear combination
of the inputs. The coefficients of the linear combination may be chosen by some
other party, and the output should be delivered by the end of second round.
For simplicity, we consider the somewhat degenerate case where the goal is to
compute z := s1 + . . . + sm. As mentioned earlier, two challenges arise: (a) VSS
sharing itself requires 2 rounds, whereas our requirement is to complete shar-
ing and reconstruction within 2 rounds and (b) the known 2-round VSS from
Minicrypt-like assumptions is not homomorphic. In a nutshell, we solve the first
issue by noting that the VSS of [7] is a “1.5-round” VSS in the sense that “ten-
tative shares” are distributed already in the first round, and any update that
may occur in the second round is publicly known to all parties. To solve the
second issue, we construct a novel protocol that allows a party to reveal a “certi-
fied” linear combination of its shares. This protocol, glinear, has 2 rounds where
the first round is an offline round. Since our protocols employ linear homomor-
phism during their second round, glinear forms a viable substitute. Related tools
have been developed in [4] for a smaller resiliency threshold (e.g., n ≥ 3t + 1),
and we extend them to the challenging setting of n = 2t + 1 while maintain-
ing efficiency for polynomially many parties n = poly(κ). Before describing our
solutions in more detail, we present some background on the underlying secret
sharing scheme.

The Underlying Secret Sharing Scheme. The secret sharing scheme is essentially
the classical t-out-of-n Shamir-like scheme (extended to bivariate polynomials as
in [12]) accompanied with public commitments to all the shares. To (honestly)
share a secret s ∈ F, one samples a random symmetric bivariate polynomial
F (x, y) of degree at most t in each variable conditioned on F (0, 0) = s, and hands
to each party Pi the vector (F (i, 0), . . . , F (i, n)) which fully defines the degree-t
univariate polynomial fi(x) = F (i, x). We embed these elements in an (n+1)-by-
(n + 1) matrix F = (F (i, j))i,j∈{0,...,n}, and note that this matrix is symmetric
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since F (i, j) = F (j, i). The 0th row of this matrix is referred to as the main
row and its ith entry F (0, i) = F (i, 0) is referred to as the main share of party
Pi. (The main row corresponds to the univariate polynomial f0(x) = F (0, x)
which forms a standard Shamir sharing of s.) As part of the secret sharing, we
publish a symmetric matrix, C = (Cij)i,j∈{0,...,n} of commitments to each entry
of F, and hand the openings, Oi = (oij)j∈{0,...,n}, of the ith row to party Pi.
We let O denote the matrix of openings (oij)i,j∈{0,...,n}. It is well-known that
this scheme is t-out-of-n secret sharing scheme. The commitment layer makes it
impossible for a corrupted party to lie about its share (the scheme is “binding”),
and so it enables robust reconstruction.9 We point out that a statistically-hiding
computationally-binding commitment leads to a secret sharing scheme with sta-
tistical privacy whose robustness holds only against computationally-bounded
adversaries whereas a computationally-hiding statistically-binding commitment
scheme yields a secret sharing scheme with computational privacy and robust-
ness against computationally-unbounded adversaries. Let us record the fact that
the “polynomial part” of the secret sharing is linearly homomorphic but the
“commitment part” is not.

1.5-Round VSS. Backes et al. [7] describe a 2-round protocol for securely dis-
tributing a secret according to the above secret sharing scheme. We note that
this protocol has the following structure. After the first (“sharing”) round, the
commitment matrix C is delivered to all the parties and each party holds a
private tentative share that may be invalid. During the second (“verification”)
round of the protocol, each party Pi who may be “unhappy” for some reason,
can form a “complaint” against the dealer D. At the end of this round, either
some complaint turns to be “justified”, or all the complaints are rejected as being
“unjustified”. In the former case, the dealer is being publicly disqualified, and in
the latter case, the private shares of all unhappy parties are publicly revealed.
(That is, all parties learn the openings (Oi)i∈W where W is the set of all unhappy
parties.) By design, an honest party never complains about an honest dealer. We
will make use of the fact that a tentative share either remains unchanged during
the second round, or becomes publicly available to all parties.

We formalize these properties via a new 2-phase functionality Fvss (a refined
version of VSS), and prove that the protocol UC-realizes it. The choice of being
unhappy is captured by an input flagi ∈ {0, 1} that is given to Pi at the beginning
of the verification phase. As a result Pi can ask to publicly reveal Oi even it is
unhappy with D due to some external reason, that does not depend on the VSS
execution (say, Pi thinks that D is corrupt in the outer-protocol).

9 We, in fact, consider a weak variant of this sharing in which for a pair of corrupted
parties, (Pi, Pj), the share fi(j) may be inconsistent with the commitment Cij . Still,
it can be shown that Pi and Pj cannot lie about their main shares and so this
scheme still allows robust reconstruction. For details, refer to the full version of this
paper [6].
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3.3.1 Supporting Linear Operations
Let us now go back to our goal of computing z := s1 + . . . + sm in two rounds
where the secrets s1, . . . , sm are given to D as inputs. We start by running the
first round of the VSS to distribute tentative shares for s1, . . . , sm via the polyno-
mials F 1, . . . , Fm and the commitments C1, . . . ,Cm. Our goal now is to publicly
reveal the value z := s1 + . . . + sm by using a single round of communication
that will be carried in parallel to the verification phase of the VSS. Denote by
F z(x, y) the bivariate polynomial F 1(x, y)+ . . . +Fm(x, y). Observe that it suf-
fices to design a single-round protocol that allows to each party Pi to publish
the univariate polynomial F z(i, ·) while providing a certificate for correctness
(and while hiding the original shares). Formally, for every “guide” Pi the parties
engage in a subprotocol glinear (“guided linear computation”) so that (1) if Pi

is honest then all parties output F z(i, x), and (2) if Pi is corrupt then all parties
output either F z(i, x) or an erasure ⊥. Since there are n − t ≥ t + 1 honest par-
ties, and all non-⊥ shares are consistent with F z(x, y), the parties can recover
the polynomial F z(x, y) and output z = F z(0, 0). Observe that we can restrict
our attention to the case where the guide is “happy” with the dealer D, since
the shares of a non-happy guide will be publicly released anyway in the end of
the second round by the verification phase of the secret sharing.

Guided Linear Computation from SCG. To explain how glinear is implemented,
let us focus, for concreteness, on the case where the guide is P1. After the
input sharing, the guide P1 holds all the information regarding the first rows
F 1(1, x), . . . , Fm(1, x), including the openings to the corresponding commit-
ments. In addition, every Pj holds all the information regarding the j-th share
of each first-row, F 1(1, j), . . . , Fm(1, j). The idea now is to let the guide P1 and
every Pj engage in a subprotocol for the computation of F z(1, j) where the role
of Pj is to guard the computation, i.e., to make sure that P1 uses the “correct”
values as inputs. Formally, we construct such a subprotocol, called secure com-
putation with a guard and denoted scg, that has essentially the following “patrial
security” guarantees:

– If both, P1 and Pj , are honest then the value F z(1, j) is given to all parties
while the values, F (1, j) := (F 1(1, j), . . . , Fm(1, j)), remain hidden.

– If P1 and Pj are both corrupt, there are no correctness or privacy guarantees.
– If exactly one party is corrupt (either P1 or Pj) then there are no privacy

guarantees and the public output is either F z(1, j) or an identifiable abort
(i.e., ⊥ symbol accompanied with the identity of the corrupt party).

We postpone the description of the scg protocol. For now, let us mention that
the protocol is publicly decodable (all honest parties receive the same output that
is computed based on broadcasted values), and has 2 rounds in the offline/online
model. Since the first round is input-independent we can execute it in parallel to
the first round of VSS. Now glinear can be reduced to n executions of scg between
P1 and each of the parties P1, . . . , Pn, where each Pj acts as the guard of the
computation of F z(1, j). Given the scg outputs, we output a degree-t polynomial
f1(·) if and only if (1) P1 was not disqualified by any of the scg calls, and (2)
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f1(·) is consistent with all the revealed points. Otherwise, we disqualify P1. The
analysis is straightforward. If P1 is honest, for every honest guard Pj all the
parties learn F z(1, j) (without leaking information on F (1, j)), while for every
corrupt Pj the parties either learn F z(1, j) or an erasure ⊥ (since the adversary
already knows F (1, j) we do not care about leakage in this case). Since there
are n − t ≥ t + 1 honest parties, the parties recover uniquely the polynomial
F z(1, x). If P1 is corrupt, then it is either being disqualified by one of the honest
guards, or release at least n − t ≥ t + 1 points that are consistent with F z(1, ·).
This means that the final outcome is either F z(1, ·) or ⊥. Before delving into
the scg construction, we mention that the VSS together with the guided linear
computation lead to a protocol for general linear function evaluation in 3 rounds
which is optimal by [34].

Realizing scg. Roughly speaking, in an scg protocol, the guide Alice is given
as an input a vector bA and the guard Bob receives a copy, bB , of this vector
that supposedly agrees with bA. Alice wishes to publicly reveal the value f(bA),
for some public function f , and the guard Bob should make sure that f is
computed consistently with respect to his input. This notion was introduced
by [3] who constructed a 2-round offline/online protocol that statistically realizes
the partial security properties defined above. However, their protocol works with
a designated receiver, and so multiple invocations of this protocol (with different
receivers) may lead to inconsistent outputs. (Such inconsistencies were tolerated
in [3] by leveraging the existence of a strong honest majority, i.e., t < n/3.) We
present a publicly decodable scg by exploiting the fact that all parties are given
external commitments C to the input bA and that the corresponding openings,
o, are given to Alice as certificates. Moreover, we make use of NICOM internally
in the scg itself, and so get only computational security. Details follow.

Thanks to the external commitments, it suffices to securely compute the
functionality F that takes x = (bA, o) from Alice and y = bB from Bob, and
outputs

y =

{
f(bA), if bA = bB ,

(bA, o) otherwise.

Indeed, if Alice and Bob are honest the output will be f(bA). If the parties dis-
agree (due to a single cheater) then the output reveals Alice’s certified input, and
one can check whether the released values (bA, o) are consistent with the external
commitments or not. In the former case, we can decode the output f(bA), and
in the latter case, we conclude that Alice aborted the computation. While we
will not be able to realize F with full security, we provide an instantiation that
suffices for “partial security”.

Our starting point is the following variant of private simultaneous message
(PSM) protocol of [29]. Bob samples a random string r and sends it to Alice
privately during the offline phase. Then, in the online phase, given the inputs,
x and y, Alice and Bob publish messages, A(x, r) and B(y, r), that publicly
reveal F and nothing else. Unfortunately, the standard PSM realization only
works when both parties are honest, and a dishonest party, say Alice, can violate
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correctness by sending an invalid message a′ that does not correspond to any
input x (with respect to the chosen r).

Focusing on the case of corrupt Alice, we modify the protocol as follows. At
the offline round, Bob broadcasts internal commitments to all the possible PSM
online-messages. That is, for every possible Alice-input x (resp., every possible
Bob-input y), Bob computes a commitment C ′

x to the PSM message A(x, r)
(resp., C ′

y to the PSM message B(y, r)). At the offline round, Bob broadcasts
the (randomly permuted) list of commitments (C ′

x)x and (C ′
y)y and privately

sends to Alice all the information: the PSM randomness r together with the
corresponding openings (o′

x)x and (o′
y)y. At the online round, Alice and Bob

compute the PSM messages that correspond to their inputs, and certify them
by opening the corresponding internal commitments. Now, assuming that Bob
is honest, Alice is forced to behave honestly in the PSM and must send a “valid”
PSM message that corresponds to an actual input x. This protocol achieves a
similar guarantee against a cheating Bob and honest Alice, provided that Bob
behaves honestly in the offline round. We handle the case where Bob misbe-
haves in the offline round (e.g., by committing to bad values or sending to Alice
bad openings) by letting Alice fully expose her certified input. That is, if Alice
sees that Bob misbehaved in the offline round, she simply broadcasts her inputs
together with the external openings as certificates while ignoring the PSM exe-
cution. Here we exploit the fact that no privacy is required at the presence of a
cheating Bob.

The above description is somewhat simplified and yields a solution whose
complexity is linear in the domain of F which is too expensive. Moreover, when
scg is modelled as a reactive functionality, simulation becomes somewhat subtle
and the commitments should satisfy some level of security under a selective-
opening attack. More details (including an efficient version based on multiparty
PSM protocols and a refined definition of scg) appear in the full version [6].
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Abstract. We revisit the problem of constant-round malicious secure
two-party computation by considering the use of simple correlations,
namely sources of correlated randomness that can be securely gener-
ated with sublinear communication complexity and good concrete effi-
ciency. The current state-of-the-art protocol of Katz et al. (Crypto 2018)
achieves malicious security by realizing a variant of the authenticated gar-
bling functionality of Wang et al. (CCS 2017). Given oblivious transfer
correlations, the communication cost of this protocol (with 40 bits of
statistical security) is comparable to roughly 10 garbled circuits (GCs).
This protocol inherently requires more than 2 rounds of interaction.

In this work, we use other kinds of simple correlations to realize the
authenticated garbling functionality with better efficiency. Concretely,
we get the following reduced costs in the random oracle model:

– Using variants of both vector oblivious linear evaluation (VOLE)
and multiplication triples (MT), we reduce the cost to 1.31 GCs.

– Using only variants of VOLE, we reduce the cost to 2.25 GCs.
– Using only variants of MT, we obtain a non-interactive (i.e., 2-

message) protocol with cost comparable to 8 GCs.
Finally, we show that by using recent constructions of pseudorandom
correlation generators (Boyle et al., CCS 2018, Crypto 2019, 2020), the
simple correlations consumed by our protocols can be securely realized
without forming an efficiency bottleneck.

1 Introduction

Practical protocols for low-latency secure 2-party computation typically rely on
Garbled Circuits (GC) [24]. Such protocols have constant round complexity,
online communication proportional to the input size, total communication pro-
portional to the circuit size, and good computational cost. We revisit the ques-
tion of concretely efficient GC-based protocols with malicious security, which has
been the topic of a long line of work originating from [16,17]. The authenticated
garbling approach of Wang et al. [21] and Katz et al. [15] gives the state-of-the-
art protocols along this line. This approach relies on oblivious transfers for a
cut-and-choose based implementation of a preprocessing functionality made up
of a collection of authenticated wire labels.
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This work is motivated by recent techniques for securely generating simple
forms of correlated randomness [3–7,19,23], which make it feasible to explore
practical alternatives to constructions based only on OTs. In this work, we give
three new constructions, including a non-interactive secure computation (NISC)
protocol [14], which use simple correlations that can be securely generated with
sublinear communication complexity and good concrete efficiency.

Table 1. Communication complexity for evaluating a large circuit after a “silent”
randomness generation step, as a ratio to the cost of a semi-honest garbled circuit,
with κ = 128 bits of computational security and ρ = 40 bits of statistical security. The
bucket size for KRRW is set to B = 3, which is a lower bound for circuits of size less
than 2ρ. Dep. + online communication refers to the higher of the two party’s one-way
circuit-dependent communication cost, including online and offline phase costs. The
total column adds in the cost of circuit-independent offline communication.

Protocol Correlation Cost (garbled circuits)

Dep. + online Total

WRK [21] OT 2.5 11.0

KRRW [15] v1 OT 1.5 7.75

KRRW [15] v2 OT 1 9.7

KRRW [15] with VOLE FVOLE 1 2.5

KRRW [15] with SPDZ MT 1 7

KRRW [15] with SPDZ and cert. VOLE MT-FVOLE-FsubVOLE 1 2.9

Ours, v1

(KRRW with FDAMT compiler to Fpre(κ))
FDAMT-FsubVOLE-FVOLE 1 1.31

Ours, v2 FbVOLE-FsubVOLE-FVOLE 1.47 2.25

NISC in the single-execution setting

Ours, v3 FOLE 8 8

AMPR14 [1] CRS 40 40

Our approach achieves significant savings over the approach of [15], reducing
the total communication cost from around 10 semi-honest GCs to 1.31 GCs in
our first protocol (comparing to the size of half-gates garbled circuits in both
cases). Our second protocol uses a compressed preprocessing functionality that
is expensive to generate for small circuits, but outperforms [15] in the large
circuit setting, requiring only 2.25 GCs and using only simple “VOLE-type”
correlations (see Sect. 1.1).

Our third protocol is non-interactive (NISC) and achieves comparable com-
munication complexity (8 GCs) than the variant of [15] with round complexity
proportional to the circuit depth, and roughly 5× the communication efficiency
of the best NISC protocols [1] in the single execution setting.

Part of our advantage comes from swapping out less efficient ways of gener-
ating correlated randomness with recent advantages. For example, a large part
of the cost of [15] comes from their methods of generating an authenticated
bits functionality, which can be realized without any communication given two
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instances of vector oblivious linear evaluation (VOLE), defined in Sect. 1.1. But
our main advantage comes from novel compilers from new forms of simple cor-
related randomness to authenticated garbling functionality, including the use of
efficient generalizations of certified VOLE protocols (see Sect. 3.2) that allow ver-
ification across more of the verification work to be done under statistical security
instead of computational security (see Sect. 4.2). As we show in Table 1, our most
efficient protocol still uses roughly 2× less communication than [15] would use,
even if we replaced their authenticated bits generation procedure with VOLE.

Alternatively, the SPDZ protocol [10] could be used to realize the prepro-
cessing functionality of [15] with authenticated multiplication triples (MTs) in a
black box way. Doing this would require 7 GCs. Applying our certified random-
ness optimization of Sect. 4.2 to this SPDZ approach would reduce communica-
tion to 2.9 GCs, which is still more than both our non-NISC variants.

As we further discuss below, the secure generation of the correlated ran-
domness required by our protocols is typically cheaper than the protocol that
consumes it, especially for VOLE-type correlations or when using multiple cores.
Moreover, this secure generation is circuit-independent and only involves local
computation without any interaction.

1.1 Simple Correlations

Our informal definition of a simple correlation is one that can be securely gener-
ated with sublinear communication complexity and good concrete efficiency. The
cost of sending a GC in the semi-honest setting is already linear in the circuit
size, and so will dominate the communication cost of setting up the randomness,
and any reasonably efficient randomness protocol can be run on multiple cores
in the background faster than the communication of the main protocol.

We note that all of the flavors of simple correlations discussed here can be
realized with a one-time setup step that generates randomness seeds. These
seeds can then be expanded into the full correlated randomness locally by each
party. This property facilitates running these protocols in a streaming mode,
where the randomness is unpacked as needed. To draw attention to this, and to
simplify the presentation, we write Extend(F) to denote unpacking additional
entries from the correlated randomness seeds. Additionally, this one-time setup
can be performed non-interactively, which we need to make step 2 of Fig. 12
non-interactive for our NISC protocol. We describe the correlation calculus more
formally in the full version of this paper [12].

We rely on two main flavors of simple correlations: vector oblivious linear
evaluation (VOLE)-type correlations, and multiplication triple (MT)-type cor-
relations. In VOLE, a receiving party learns v := aβ +c along with the scalar β,
while the sending party learns a, c. VOLE with sublinear communication com-
plexity was introduced by Boyle et al. [3] in 2019 and has been improved since
then, see [7] for the most efficient current variant.

In MT, parties learn shares of vectors x,y along with shares of the piecewise
product z, zi = xi · yi. MT have been studied as an important primitive for
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Table 2. Correlated randomness used throughout the paper. For programmable OLE,
the set Q is an arbitrary set of ordered pairs of indices. Cost comparison is given
with reference to the “base” randomness protocol, either VOLE or MT. Generating
1 million entries of VOLE costs roughly 0.05 s on standard computers. Generating 1
million entries of MT costs roughly 10 s.

Functionality F-notation Mathematical relation Cost comparison

VOLE-type correlations

Vector OLE FVOLE v = aβ + c, for a, c ∈ F2ρ 1 VOLE

Subfield Vector OLE FsubVOLE v = aβ + c, for a ∈ F2, c ∈ F2ρ ≈ 0.6 VOLE

Block Vector OLE FbVOLE vi = aβi + ci, for i = 1 . . . , L L VOLE

MT-type correlations

Two-sided authenticated

multiplication triples
FDAMT

Choose x · y = z, then share

[x], [y], [z], [αz], [βz]
2 MT

Programmable OLE FOLE
vi,j = ai · βj + ci,j

for (i, j) ∈ Q
|Q| MT

years, e.g. [10] but only recently have been able to be generated efficiently and
silently [6].

We require several variants of these two types of randomness, as summarized
in Table 2. We define all non-standard correlations as functionalities where they
arise in the presentation. Crucially, both flavors of randomness generation allow
for “programmability” in such a way that each new variant does not require an
entirely new protocol, see e.g. [4,6].

Indeed, we can think of VOLE-type and MT-type correlations in terms of
simple atomic operations under a “correlation calculus”. For VOLE, atomic oper-
ations consist of choosing a vector v ∈ Fn, for some field F , multiplying v by
a scalar β (possibly in an extension field E), sending a vector to a party, and
secret-sharing a vector between parties. Taking F = E = F2ρ or F2κ gives stan-
dard VOLE, taking F = F and E = F2ρ gives subfield VOLE. Reusing the vector
v with a set of scalars βi gives block VOLE and block subfield VOLE.

For MT-type correlations, atomic operations consist of picking a random vec-
tor x ∈ Fn, computing the scalar product βx, computing the point-wise product
x ·y, sending a vector to a party, and sharing a vector between parties. Standard
authenticated triples come from computing z := x ·y and βz and sharing all four
vectors. Our two-sided authentication triples come from additionally computing
αz, and sharing this as well.

Finally, programmable OLE consists of a family of OLE vectors vi,j = aiβj +
ci,j , where the parties agree to re-use certain vectors ai and βj on certain entries.
The generation time and seed size of programmable OLE scales linearly with the
number of pairs (i, j) for which we generate a vector of OLE entries.

The VOLE protocol of [7] can generate a million entries of VOLE correlations
in roughly 0.05 s, or a million entries of subfield VOLE in roughly 0.03 s. The
OLE protocol of [6] can generate a million OLE correlations in roughly 10 s. For
each of these protocols, the dominant cost is the secret sharing of vectors. We
therefore expect that block VOLE over L instances costs roughly L times as
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much computation as a single VOLE, that standard authenticated triples costs
two times as much communication as OLE, and two-sided authenticated triples
cost three times as much.

We remark here that the Ring-LPN approach only allows silent generation
of authenticated multiplication triples over large fields of characteristic 2 such
as F2ρ . If authenticated triples could be silently generated over F2, then the
preprocessing functionality of [15] could be generated with only 2 bits of com-
munication per gate, via a procedure similar to that given in Lemma 3. It is
precisely because there is no simple correlation that can generate the prepro-
cessing functionality directly that the question of the most efficient compiler
from simple correlations to that functionality arises.

1.2 Notation

We let f be a function realized by a circuit C, where C is made up of input gates
I, boolean gates G, and output gates O. Let the input I = IA ∪ IB be held by
two parties A and B, and define n to be the number of AND gates in G, and
m = |I| + |G|, including all gates in m.

We use κ and ρ as a computational and statistical security parameter, respec-
tively, and take κ = 128 and ρ = 40 for our concrete communication metrics.

During the evaluation of a garbled circuit, we write zi for the true value of
a wire, λi for the wire mask, and share λi among A and B as λi = ai ⊕ bi. We
use (⊕,∧) for field addition and multiplication over F2, any of (⊕,+,−) for field
addition over larger fields of characteristic 2, and · or concatenation for field
multiplication over larger fields of characteristic 2.

We use α, β for VOLE receiver inputs over F2ρ held by A,B respectively, and
ΔA for a VOLE receiver input held by A over F2κ .

When discussing randomness certification in Sect. 3.2, we need to distinguish
between an instance of FVOLE where party A is the receiver and party B the
sender with another instance of FVOLE with the roles reversed. In this instance,
we refer to the latter functionality as FELOV.

1.3 Our Contribution

Our first protocol relies on both VOLE-type and MT-type correlations. It
employs the same authenticated garbling technique as that in [15], but uses
authenticated triples over F2ρ , rather than cut-and-choose techniques, to gener-
ated authenticated wire labels. This construction relies on a new compiler from a
special flavor of authenticated triples to the desired preprocessing functionality
given in Sect. 4.1, as well as a lightweight compiler from preprocessing with sta-
tistical security to preprocessing with computational security, given in Sect. 4.2.

Theorem 1. There is a protocol that securely computes f against malicious
adversaries in the RO−FDAMT−FVOLE−FsubVOLE-hybrid model with the following
features:



62 S. Dittmer et al.

– Online Communication: O(κ(|I| + |O|)).
– Circuit Dependent Communication: (2κ + 2)n bits of communication.
– Total Communication: (2κ+2ρ+2)n (one-way) or (2κ+4ρ+2)n (two-way)

plus terms sublinear in n.
– Computation: O(κn).

Our second protocol relies only on VOLE-type correlations, and a modifica-
tion of the authenticated garbling protocol that, approximately, uses a garbling
approach from [21] to replace the authentication procedure in [15]. We give this
modified garbling protocol and prove its correctness in Sect. 5.1.

This modified approach increases the communication cost of the online plus
circuit dependent step, but allows the use of a simple block VOLE functionality
instead of one of the more computationally intensive PCGs used to build authen-
ticated triples. As written, the protocol uses quasi-linear work instead of linear
work, but this can be reduced to linear work by dividing the gates into blocks
of some large fixed size, and running the compressed preprocessing functionality
Fcp on each block in parallel.

This approach is best suited to the large circuit setting, since it requires
L ≈ ρ log |C| instances of VOLE (or for sufficiently large N and |C| > N ,
L = |C|ρ log N

N ), in order to construct the compressed functionality Fcp. Because
VOLE-type correlations are so much more efficient, the computation of the ran-
domness generation for this protocol is roughly comparable to that of the first
protocol, but the communication of the VOLE seeds is much larger.

Theorem 2. There is a protocol that securely computes f against malicious
adversaries in the RO−FVOLE−FsubVOLE−FbVOLE-hybrid model with the following
features:

– Online Communication: O(κ(|I| + |O|)).
– Circuit Dependent Communication: (2κ + 3ρ)n bits of communication.
– Total Communication: (2κ + 8ρ + 1)n + o(n).
– Computation: O(κn log n) or O(κn) with running Fcp on blocks.

Our third protocol relies only on MT-type correlations. It uses a similar
preprocessing functionality and authenticated garbling protocol as our first pro-
tocol, but combines them into a (single-use) NISC protocol. These protocols
require certain modifications in order to make them non-interactive. In partic-
ular, we require a conditional disclosure of secrets (CDS) functionality to allow
the receiver to authenticate their inputs without communication to the prover.
We give the details in Sect. 6.1.

Theorem 3. There is a NISC protocol that securely computes f against mali-
cious adversaries in the RO − FOLE-hybrid model with the following features:

– Online Communication: O(κ(|I| + |O|)).
– Circuit Dependent Communication: (2κ + 3ρ)n bits of communication.
– Total Communication: 16κn+ o(n) (one-way) or (29κ+3ρ)n+ o(1) (two-

way).
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– Computation: O(κn).

We expect the first and third protocols to be dominant in the secure 2PC and
NISC settings, respectively, in the million gate setting and the second protocol
to be competitive around ten million gates.

1.4 Structure of Paper

In Sect. 2, we give an overview of the construction of [15], and explain how this
construction can be treated as a blueprint pattern for a family of authenticated
garbling constructions. We then describe, at a high-level, how each level of the
blueprint is modified for each of our three protocols. In Sect. 3 we describe a
series of technical results about certified VOLE, combining correlated random-
ness functionalities, and conditional disclosure of secrets. Each of these results
serve the same general purpose of allowing one party to authenticate that their
inputs are well-formed to the other party. We give some additional protocols
and proofs in the full version of this paper [12]. We then give our three protocols
ΠDAMT

2pc , ΠVOLE
2pc and ΠNISC

2pc in Sects. 4, 5, 6, respectively.

2 Authenticated Garbling: Blueprints and Variations

We will present the authenticated garbling protocols in this paper as three dif-
ferent constructions following the same general blueprint design. The protocols
can be pictured as a series of structures built side-by-side with the same number
of levels, and corresponding levels play a similar role in each protocol. We begin
by reviewing the approach of [15] through this framework, and then go into more
detail about how our approaches differ.

2.1 Review: The Authenticated Garbling Blueprint of KRRW [15]

Authenticated Shared Bits. The first level of the construction is an authen-
ticated shared bits functionality. In [15], this functionality is presented through
the language of IT-MACs. We offer an equivalent definition in the language
of simple correlations: The authenticated shared bits functionality is a pair of
implementations of FsubVOLE, the first instance is over F2ρ , with party A act-
ing as sender and B acting as receiver, so that B receives β ∈ F2ρ , A receives
a ∈ F

m
2 and c ∈ F

m
2ρ , and B receives v := aβ + c. In the second instance, the

roles reversed and the FsubVOLE is given over F2κ , so that A receives α ∈ F2κ , B
receives b ∈ F

m
2 and d ∈ F

m
2κ , and A receives w := bα + d.

These shares will play the role of the wire masks in Yao’s garbled circuits.
For the i-th wire, party B will learn the value ai ⊕ bi ⊕ zi, where zi is the true
wire value under a plaintext evaluation of the circuit. Because the value ai is
unknown to B, B learns nothing from this value. Because the value bi is unknown
to A, A is unable to employ a selective-failure attack to deduce which row of the
garbled table B is attempting to read.
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Authenticated Parallel AND. To make the protocol secure against a mali-
cious A, party B needs to be able to verify that the row of the garbled table B is
reading from was constructed correctly. In order to do this, the parties augment
the authenticated bit randomness above with authenticated shares of the bits
(ai ⊕ bi) ∧ (aj ⊕ bj), for every AND gate Gk := (i, j, k,∧), as shown in Fig. 1.

This construction requires two stages. The first stage we call authenticated
parallel AND. Let PAnd(n) be a circuit consisting of n AND gates executed
in parallel, so that the kth gate has input wires (2k − 1, 2k) and output wire
2n + k. To simplify notation, we write Fpre(κ) for F (PAnd(n),κ,ρ)

pre and Fpre(ρ) for
F (PAnd(n),ρ,ρ)

pre where n is clear from context. In [15], the parties realize the prepro-
cessing functionality in the special case of Fpre(κ). Equivalently, they construct
authenticated multiplication triples with entries in F2; as remarked above, there
is no simple correlation that can generate these triples silently.

In [15], these triples are generated using cut-and-choose techniques, which
makes up the lion’s share of the circuit-independent communication cost of that
protocol.

Remark 1. We note that, as well as translating the language of Fpre in [15] from
IT-MACs to VOLE, we now require that if A holds an input bit, B’s share of
that input bit’s wire mask is 0, and vice versa. This does not alter the security
of the protocol but it simplifies some of the proofs.

Functionality F (C,ρ,κ)
pre : Pre-processing of wire labels for authenticated garbling.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O. Recall that m := |I| + |G|.

– A chooses α ∈ F2κ and wire labels a ∈ F
m
2 , c ∈ F

m
2ρ and sends them to Fpre.

– B chooses β ∈ F2ρ and wire labels b ∈ F
m
2 , d ∈ F

m
2κ and sends them to Fpre.

– For each input wire i ∈ I, if i ∈ IA, set bi := 0, and if i ∈ IB , set ai := 0.
– For each gate G = (i, j, k, T ), in topological order:

• If T = ⊕, Fpre sets the values ak = ai + aj , bk = bi + bj , ck = ci + cj , and
dk = di + dj , where the addition is performed in the appropriate field of
characteristic 2.

• If T = ∧, Fpre chooses values âk uniformly at random from F2ρ , ĉk uniformly
at random from F, d̂k uniformly at random from F2κ , and b̂k = (ai + bi) ·
(aj + bj) + âk.

– Fpre computes

(v, v̂,w, ŵ) = (aβ + c, âβ + ĉ,bα + d, b̂α + d̂).

– Fpre sends (v, v̂, b̂, d̂) to B and (w, ŵ, â, ĉ) to A.

Fig. 1. Authenticated wire labels
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Authenticated Circuit Wires. The second step is to convert this generic
preprocessing Fpre(κ), which serves the parallel AND gate circuit only, to the
circuit-dependent preprocessing F (C,ρ,κ)

pre . In other words, we now want shares of
the bit (ai ⊕ bi)∧ (aj ⊕ bj) for arbitrary pairs of indices (i, j), and ai ⊕ bi, aj ⊕ bj

may in turn represent the XOR of several prior bits.
This conversion is done using standard Beaver triple techniques [2], as we

show below in Sect. 4.2. In one variant of [15] the triples are instead constructed
“in-place”, which gives a modified construction with less total communication,
but some additional communication in the circuit-dependent phase. The main
result of [15] can now be re-stated as follows:

Theorem 4 ([15]). The KRRW protocol [15] securely computes a functionality
f against malicious adversaries in the RO-Fpre-hybrid model, with 2κ+2 bits of
communication per AND gate, κ + 1 bits of communication per input gate, and
1 bit of communication per output gate.

Authenticated Garbling. The authenticated garbling protocols of both [21]
and the follow-up work [15] are both instructive here. After the authenticated
circuit wire labels are completed, party A plays the role of the sender in a semi-
honest evaluation of Yao’s garbled circuit, and some additional interaction allows
B to verify the correctness of the opened entry of each AND gate.

For an AND gate Gk := (i, j, k,∧), let âk, b̂k be the authenticated bit shares
of (ai ⊕ bi) ∧ (aj ⊕ bj), and let λk := ak ⊕ bk, with λ̂k defined similarly. If both
parties know the value (λi ⊕ zi), where zi is the true value of the wire, then they
can locally construct authenticated bit shares of

zi ∧ zj ⊕ λk = λk ⊕ λ̂k ⊕ (zi ⊕ λi)λj ⊕ (zj ⊕ λj)λi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj).

From there, B evaluates the garbled circuit, A securely opens their bit share of
zi ∧ zj ⊕ λk, and B verifies that the value zi ∧ zj ⊕ λk is equal to the wire label
zk ∧ λk computed from garbled circuit evaluation.

The primary distinction between [21] and [15] is how the value of λi ⊕ zi is
computed. In [21], party A computes all four possibilities of (λi ⊕ zi, λj ⊕ zj),
with the accompanying shares of zi ∧ zj ⊕ λk. They then construct what are
essentially two garbled circuits. The first garbled circuit, used for evaluation,
uses computational security to hide gate labels from B. The second garbled
circuit, used for authentication, hides only the masked wire labels zi ⊕λi and the
accompanying share of zi ∧ zj ⊕ λk, and uses statistical security to stop A from
flipping a bit of the masked wire label. In [21], the first garbled circuit requires
3κ communication per gate, and the second requires 4ρ bits of communication.

In the [15] protocol, the first circuit is improved to 2κ bits of communication
by applying the half-gate technique of Zahur et al. [25], and the second circuit
is replaced with one more round of communication wherein B opens all masked
wire labels to A, and A then batches together the proof of correct garbling on
the traveled path.

Remark 2. A recent advance due to Rosulek and Roy [18] reduces the cost of
semi-honest garbled circuits to 1.5κ+5 bits per AND gate and is compatible with
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free XOR. A natural question is whether the approach of [15] can be extended
to this new “three-halves” garbled circuit construction. We hope the answer is
yes, although there are some obstacles to overcome.

In the [18] construction, the gates and wire labels are “sliced and diced“ into
half labels, but there is no canonical way for the evaluator to perform a lin-
ear combination of these half labels and compute the output wire’s half labels.
Instead, the desired linear combination is garbling-dependent, and randomized
and encrypted in such a way that the evaluator learns the desired linear com-
bination without learning anything about the garbling. In the [15] paradigm,
the garbler cannot know the garbling, and naturally, it is harder to randomize
and encrypt something you do not know. We leave the study of this question to
future work.

2.2 New Ideas: Authenticated Shared Bits

We now go through the levels of this blueprint again, this time explaining the
changes that each of our three protocols make to the pattern laid out above. First,
for authenticated shared bits, as mentioned above, two instances of FsubVOLE

are sufficient to generate this randomness, and we use exactly this for our first
protocol, ΠDAMT

2pc .
For the protocol using only VOLE-type correlations, ΠVOLE

2pc , we introduce a
complication. We now generate all wire tags bi as a (public) linear combination
of entries of a vector ˜b of wire tags. The length of ˜b is O(ρ log n). This allows
us to generate shares of values ai ∧ bj as a linear combination of values ai ∧˜bj′ ,
which can in turn be represented as entries of VOLE.

To ensure that security against a malicious A remains, we have to verify that
we are still protected against selective failure attacks. Following the protocol of
[21], we do not allow A to learn the values zi ⊕ λi, and instead send a second
garbled circuit that allows B to learn zi ⊕ λi and the accompanying share of
zi ∧ zj ⊕ λk. If A corrupts only a single gate, then by the randomness of ˜b, A
will learn nothing from an abort. However, if A corrupts more gates, the values
bi may be linearly related, and so A could learn something from whether or
not B aborts. However, with an appropriate choice of parameters, the values bi

will only be linearly related if A has corrupted so many gates that an abort is
inevitable.

We note that a similar approach that generates the vector a as a linear
transformation of a shorter vector ã (i.e. a = MH ã) would be insecure. Indeed,
any vector w in the (non-empty) left kernel of MH is orthogonal to a. B must
learn the values zi ⊕ λi in order to evaluate the circuit, and can then subtract
their share to obtain zi ⊕ ai. Taking the dot product of a⊕ z with w gives w · z,
and B has broken the zero-knowledge property of the secure computation.

Finally, for the NISC protocol ΠNISC
2pc , we can not realize an instance of

FsubVOLE where B is the sender and A is the receiver non-interactively. Instead,
we let one of A’s inputs to programmable OLE be the vector α := (α, α, . . . , α),
and then B’s input b intended for FsubVOLE can instead be given to FOLE.
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2.3 Authenticated Parallel AND

For our first protocol, ΠDAMT
2pc , we construct authenticated parallel AND gates

from doubly authenticated multiplication triples in two steps. First, we con-
vert from F (ρ,n)

DAMT to Fpre(ρ) using a construction inspired by Beaver triples, see
Sect. 4.2. This conversion requires 2ρ bits of communication per AND gate.

We then convert from Fpre(ρ) to Fpre(κ), that is, from preprocessing for parallel
AND gates over F2ρ to parallel AND gates where bits held by party B are
authenticated over F2κ instead of F2ρ , using a lightweight protocol that requires
only 3 + o(1) bits per AND gate. This can be done with semi-honest security
using the usual compiler from random to fixed subfield VOLE (see e.g. [3]). To
make this secure against malicious B, B must convince A that the bits used for
this instance of fixed FsubVOLE match the authenticated bits generated by Fpre(ρ).
We give a lightweight protocol for this authentication in Sect. 4.2.

For our VOLE-only protocol, we instead use the block VOLE construction
(FbVOLE) to obtain bit shares of the product (a2i−1 ⊕ b2i−1) ∧ (a2i ⊕ b2i) term
by term. Party A holds the bit a2i−1 ∧ a2i locally, and can use this value as an
entry of its authenticated bits constructed above, and verify its correctness under
LPZK. Likewise party B holds the bit b2i−1 ∧ b2i locally and can authenticate
and verify under LPZK. The cross terms a2i−1 ∧ b2i and a2i ∧ b2i−1 are linear
combinations of terms of the form a2i−1 ∧ ˜bj and a2i ∧ ˜bj , respectively, and so
bit shares of these terms can be obtained from the block VOLE.

In order to obtain authenticated shares, we also need to generate shares of
(ai ∧˜bj)β. To do this, we double the size of B’s input to the block VOLE, so that
B’s inputs are ˜bj ,˜bjβ. (For security reasons, we need to shift all of B’s inputs by
a random value γ, which is an additional input. We give the details in Sect. 5.2
and additional details in the full version of this paper [12]. To verify that B’s
inputs satisfy the correct relation, B passes their inputs to an instance of FVOLE,
playing the role of Sender, and proves correctness under LPZK.

For technical reasons, our protocol does not guarantee that a cheating A is
detected immediately, but instead ensures that, if A cheats, A corrupts their own
share of b̂iα, which will then be detected during the evaluation of the garbled
circuit with overwhelming probability.

Because of the linear dependence on B’s bits, this is no longer a realization
of Fpre(ρ). We define a modified functionality Fcp and show that the converter
from Fpre(ρ) to Fpre(κ) can likewise convert from F (ρ)

cp to F (κ)
cp .

For our NISC protocol, we follow the same approach as in the VOLE-only
protocol to produce shares of (a2i−1 ⊕ b2i−1) ∧ (a2i ⊕ b2i) and (a2i−1 ⊕ b2i−1) ∧
(a2i ⊕ b2i)β, term by term. As discussed above, the parties have to generate
authenticated bits through a call to FOLE instead of FsubVOLE. To generate the
pairwise products b2i ∧ a2i−1 and b2i−1 ∧ a2i, and so-on, we re-use A’s input a
to the FOLE functionality, and pair it with a new vector b′, which reverses the
order of every pair (b2i−1, b2i).

Because the protocol is non-interactive, B cannot prove anything about their
inputs to A (in the CRS model, this would require a CRS generated by A and
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a message from B to A before A’s final message from A to B for the secure
computation, giving a 3 round protocol). Instead, A and B use a lightweight
conditional disclosure of secrets protocol (CDS) which ensures that either B’s
inputs are well-formed or A’s message to B in the NISC protocol appears uni-
formly random to B. We sketch the protocol briefly here, and describe it in more
detail in Sect. 6.1.

For the CDS protocol, parties A and B generate an instance of FOLE with A’s
input the vector α := (α, α, . . . , α), and B’s input the vector β := (β, β, . . . , β).
Call the resulting shares (v, c), so that if both parties are honest, we have vi+ci =
αβ for all i. Then likewise v1 − vi = c1 − ci for all i if both parties are honest,
and are otherwise offset by a term unknown to the cheating party.

Let the vector s := (ci − ci) be held by A and the vector t := (v1 − vi) be
held by B. Then A adds H(s) to all future messages, B subtracts H(t) from
all future messages. if B cheats, B will be unable to construct s, and so A’s
messages will appear random.

Similar protocols are used to guarantee that the vector b′ really holds the
desired re-ordering of b, and that all necessary polynomial relations on b hold.
We give more detail in Sect. 6.1.

We note that our converters from authenticated gates over ρ to authenticated
gates over κ (i.e. the conversion from Fpre(ρ) to Fpre(κ), and related protocols)
can no longer be applied in the NISC setting because this protocol requires
opening certain shared values publicly, and thus is interactive. This is one of the
reasons that our NISC protocol requires more communication than our other
two protocols.

2.4 Authenticated Circuit Wires

For our first interactive protocol, ΠDAMT
2pc , the converter from Fpre(κ) to F (C,κ,ρ)

pre

follows the approach of [15]. We give the protocol converting from Fpre(κ) to
F (C,κ,ρ)

pre in Sect. 4.2. For our VOLE-based protocol ΠVOLE
2pc , we give instead build

F (C,ρ,ρ)
cp directly and convert from that functionality to F (C,κ,ρ)

cp . We describe
these conversions in Sect. 5.2.

For our NISC protocol, we define a modified functionality F (C,ρ,κ)
pre−wbc which is

similar to the functionality Fpre, but has the property from Fcp that a cheating A
is not immediately detected but corrupts their own shares. We observe that the
protocol sketched above for obtaining authenticated parallel AND gates from
authenticated bits can be used to obtain authenticated wires for an arbitrary
circuit. Instead of swapping b2i−1 and b2i in a second input vector to FOLE, we
have one input vector bL to the FOLE of all left inputs bi to gates Gk = (i, j, k,∧),
and a second input vector bR of all right inputs bj . The same techniques are
used to ensure that bL and bR hold the correct linear transformations of b.

2.5 Authenticated Garbling

For our first protocol, we can use the authenticated garbling protocol of [15]
directly, once the functionality F (C,ρ,κ)

pre has been realized, with a small modifi-
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cation to the step where the initial gate labels are determined to account for our
small modification to F (C,ρ,κ)

pre where we allow a party’s wire mask zero when
the other party knows the true wire value. The protocol still requires, as in [15],
2κ + 2 bits of offline circuit dependent communication per AND gate.

For our VOLE-only protocol, we can no longer use the authentication app-
roach of [15] where B reveals to A the masked wire labels zi ⊕ λi = zi ⊕ ai ⊕ bi.
Of course, A can XOR these shares by the values ai that A holds, leaving zi ⊕bi,
and, because the values bi are computed as linear combinations of some shorter
vector ˜b, there is some linear combination of the zi ⊕ bi terms that causes the bi

terms to cancel identically, and A would learn some linear relation on the vector
z of true wire values.

Instead, we combine the techniques of [21] with Zahur’s half-gate techniques,
so that B can open exactly one authenticated bit, corresponding to (zi∧zj)⊕λk,
for the k-th multiplication gate. This requires only statistical security, since the
output is only used for verification, and does not play the role of a gate label for
an output wire. On the other hand, since the output is being used for verification,
we can no longer allow a term H(Li,0, k)⊕H(Lj,0, k) to be added to the output,
so we need to send an additional element of F2ρ as part of the garbled table. In
total, the authenticated garbling requires 2κ+3ρ bits of offline circuit dependent
communication per AND gate.

In our NISC protocol, we also cannot have party B revealing masked wire
labels to A, because that would require additional rounds of communication.
We use the same approach as in our VOLE-only protocol, but need to show
additional care to verify that the protocol can be made non-interactive. We give
the details in Sect. 6.2 and additional details in the full version of this paper [12].

3 Authenticating Correlated Randomness

Before we proceed with a technical description of our main protocols, we give an
overview of the techniques related to correlated randomness we use throughout
the rest of the paper.

3.1 Compilers from “Random” to “Fixed” Randomness Variants

There is a standard compiler from random VOLE to fixed VOLE (see e.g. [3])
that allows parties to replace a randomly selected vector v := aβ + c, where all
entries are chosen randomly, with a new vector v′ := a′β′ + c′, where a′, c′ are
chosen by the sender, β′ is chosen by the receiver, and the receiver additionally
learns v′ given above. The conversion protocol can be stated simply: the receiver
sends β′ −β to the sender, the sender sends a′ −a and c′ −c+(β′ −β) ·a′ to the
receiver, and both parties adjust their shares locally. In cases where the sender
does not need to control the value of c′, the sender sends only a′ − a, and sets
their pair of vectors to (a′, c − (β′ − β) · a).

We can use this same compiler with block VOLE, where a vector a is used
across several instances of VOLE. To replace a random a with a fixed vector a′,
party A only needs to send the message a′ − a once across all instances.
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A similar compiler exists for a batch of OLE correlations v := ab+ c, where
one party sends a′ −a, the other sends b′ −b, and both parties compute locally
to obtain v′ := a′b′ + c′. As with block VOLE, if the random vector a is used
in multiple instances of programmable OLE, a single message suffices to convert
this vector to a′ across all instances.

For a careful accounting of round complexity, we note that, when the value
of c can be chosen randomly, these messages can be sent concurrently or in
sequence, in either order. If one party does not require fixed inputs, that party
does not need to send a message at all.

3.2 Certification Between Varieties of Correlated Randomness

Recall the “correlation calculus” introduced in Sect. 1.1, that allows us to express
each of our randomness functionalities in terms of a short list of atomic oper-
ations. This same “correlation calculus” allows us to re-use vectors and scalars
across distinct flavors of correlated randomness as long as they are of the same
type (that is, VOLE-type or MT-type).

For example, if we wish to have an instance of FVOLE and an instance of
FsubVOLE using the same value β but different vectors a,a′, then we generate
a,a′ randomly, multiple each vector by β, and share each of the results over the
desired field. Similar approaches allow us to use the same vector and different
values β, β′, and can also be applied to use the same vectors or values between
instances of FsubVOLE or FVOLE over different (top-level) fields.

By combining this with the previous observation about compilers from ran-
dom to fixed VOLE and OLE, we can allow any vector or scalar to be used as
an input to any instance of FVOLE, FsubVOLE, or FbVOLE.

There are three situations that are not covered by this approach, for which
we require bespoke protocols. Each of them work by extending the randomness
instances with fresh randomness and evaluating some short polynomial expres-
sion on the outputs, which will produce equal outputs for both parties if and
only if the desired equality condition holds. A random oracle is applied to the
outputs and then the results are compared; any number of certifications of this
form can be batched together by applying the random oracle to the collection
of outputs.

First, in Sect. 4 we wish to authenticate that the same value α is used in a
call to FVOLE and a call to FDAMT. These are generated by different “correlation
calculuses”, and it would be a massive efficiency hit to generate FVOLE as MT-
type randomness. We give a lightweight protocol ΠDAMT∧VOLE

cert in the full version
of this paper [12].

Second, in Sect. 5, we wish to show that, for two calls to VOLE with the
parties switching between the role of receiver and sender, the constant value β
used by one party in their role as receiver matches another value b used by the
same party while playing the role of the sender. We give a lightweight protocol
ΠVOLE∧ELOV

cert in the full version of this paper [12].
Third, in Sects. 4 and 5, we wish to certify that two instances of subfield

VOLE with different receiver inputs α,ΔA over different fields F2ρ , F2κ have
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the same vector inputs b, even if one vector is generated via the compiler from
random to fixed VOLE, and another is generated using an unspecified possibly
interactive protocol. We give a lightweight protocol Πρ∧κ

cert in the full version of
this paper [12].

3.3 Line Point Zero Knowledge

In [11], Dittmer, Ishai and Ostrovsky introduced Line Point Zero Knowledge, or
LPZK, a protocol for building a NIZK for general circuits using a single instance
of VOLE. When working in the random oracle model on circuits corresponding to
low degree polynomials, LPZK is especially powerful, because many verifications
can be batched together. As shown in [22], any number of polynomials on a total
of n inputs of degree at most d can be verified with communication of (n + d)κ
bits communication. For completeness, and because we use similar arguments
elsewhere in this paper, we sketch the argument here.

A prover P wishes to convince a verifier V that P holds inputs a = (ai)
such that g(a) = 0. Each input ai becomes the entry of a VOLE vi = aiβ +
ci, and V evaluates g(v), which will be a polynomial in β of degree at most
d − 1 if P is telling the truth. After masking these values with an oblivious
polynomial evaluation of degree d − 1, P opens the coefficients and V confirms
the desired equality. In the ROM, many such checks can be batched together,
with V computing

∑

g(v)H(m; i) and P computing the coefficients of
∑

g(at+
c)H(m; i), where m represents some message transcript committing P to the
values a, and i is the index representing the number of times we’ve evoked this
batch check.

This construction includes the cost of the compiler from random VOLE to
fixed VOLE. In our case, where we wish to prove relations on an already set
fixed VOLE, we can omit the nκ bits of communication, and send only dκ bits.
In this paper, we exclusively apply LPZK to the setting where we wish to prove
that already set VOLE inputs satisfy some collection of polynomials of degree d,
and take d ≤ 3 throughout. We write ΠLPZK(a, c, β,v,R) for the protocol that
proves that a satisfies the set of relations R, when one party holds (a, c) and
the other party holds β and v := aβ + c.

4 Authenticated Garbling from Authenticated Garbled
Triples

We follow the blueprint laid out in Sect. 2, giving the full protocol description and
proofs. Recall that in Fig. 1, we gave the a preprocessing functionality F (C,ρ,κ)

pre

used in the constructions of [21] and [15]. Let PAnd(n) be a circuit consisting of n
AND gates executed in parallel, so that the kth gate has input wires (2k−1, 2k)
and output wire 2n+k. Recall that we write Fpre(κ) for F (PAnd(n),κ,ρ)

pre and Fpre(ρ)

for F (PAnd(n),ρ,ρ)
pre .
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4.1 From Authenticated Bits to Parallel and with Authenticated
Triples

The underlying correlated randomness we need for our protocol is subfield VOLE
for generating authenticated bits, VOLE, for running proofs of input correctness
under LPZK, and doubly authenticated multiplication triples, for converting
from authenticated bits to authenticated parallel AND.

Doubly authenticated multiplication triples can be generated from Ring-LPN
under the “correlation calculus” discussed in Sect. 1.1. This correlated random-
ness is nonstandard, although it can be viewed as a modified form of the authen-
ticated triples of SPDZ [10]. We give the functionality formally in Fig. 2. We then
prove the following lemma, which shows how to generate authenticated bits and
how to convert these bits to authenticated parallel AND gates.

Functionality F (ρ,n)
DAMT: Two-sided authenticated triple generation

Parametrized by values ρ, n ∈ N.

– A chooses α ∈ F2ρ and sends α to FDAMT.
– B chooses β ∈ F2ρ and sends β to FDAMT.
– FDAMT samples vectors (x,y) uniformly at random from F

n
2ρ .

– FDAMT sets z := x · y, where the multiplication is done element-wise.
– FDAMT generates random shares (xA,1,yA,1, zA,1) and (xB,1,yB,1, zB,1) of the

vectors (x,y, z), with random shares chosen in F2ρ .
– FDAMT generates random shares (xA,2,yA,2, zA,2) and (xB,2,yB,2, zB,2) of the

vectors (αx, αy, αz), with random shares chosen in F2ρ .
– FDAMT generates random shares (xA,3,yA,3, zA,3) and (xB,3,yB,3, zB,3) of the

vectors (βx, βy, βz), with random shares chosen in F2ρ .
– For i ∈ {1, 2, 3}, FDAMT sends (xA,i,yA,i, zA,i) to A and (xB,i,yB,i, zB,i) to B.

Fig. 2. Two-sided authenticated triples

Lemma 1. The protocol in Fig. 3 securely computes Fpre(ρ) against malicious
adversaries in the FDAMT − FsubVOLE − FVOLE-hybrid model with 2ρ bits of com-
munication from B to A and 2ρ bits of communication from A to B per AND
gate.

Completeness. Expanding as in the standard Beaver triple approach, we have

âk + b̂k = ef + ey + fx + z = (ai + bi)(aj + bj),

as desired. Then note that

ŵk + d̂k = (ai + bi)(aj + bj)α + âkα = b̂kα,
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Protocol Πpre(ρ)
DAMT: Circuit dependent pre-processing of wire labels from

authenticated parallel AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O.

1. A and B invoke FsubVOLE with A as sender and B as receiver so that A receives
α ∈ F2κ , B receives b ∈ F

m
2 and d ∈ F

m
2κ , and A receives w := bα + d.

2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B receives
β ∈ F2ρ , A receives a ∈ F

m
2 and c ∈ F

m
2ρ , and B receives v := aβ + c.

3. A and B invoke FDAMT with A’s input α, B’s input β, so that party P receives
(xP,�,i, yP,�,i, zP,�,i) for � ∈ {1, 2, 3} and 1 ≤ i ≤ n.

4. A and B compute the authentication messages (mA,mB) using ΠDAMT∧subVOLE
cert .

A sends H(mA) to B, who verifies that this equals H(mB), and otherwise
aborts.

5. Initialize a counter t ← 1.
6. For each gate G = (i, j, k, T ), in topological order:

– If T = ⊕:
• A sets the values ak = ai + aj , ck = ci + cj , and wk = wi + wj .
• B sets the values bk = bi + bj , dk = di + dj and vk = vi + vj .

– If T = ∧:
• A sends to B the messages

(mA
1 , mA

2 , mA
3 , mA

4 ) := (ai + xA,1,t, aj + yA,1,t, ci + xA,3,t, cj + yA,3,t).

• B sends to A the messages

(mB
1 , mB

2 , mB
3 , mB

4 ) := (bi + xB,1,t, bj + yB,1,t, di + xB,2,t, dj + yB,2,t).

• A locally verifies that (wi+αxA,1,t+xA,2,t+mB
3 , wj +yA,2,t+αyA,1,t+

mB
4 ) = (mB

1 α, mB
2 α) and aborts if not.

• B locally verifies that (vi + βxB,1 + xB,3 +mA
3 , vj + yB,3,t + βyB,1,t +

mA
4 ) = (mA

1 β, mA
2 β) and aborts if not.

• Both parties locally compute e := mA
1 + mB

1 and f := mA
2 + mB

2 .
• A locally computes

âk = ef + eyA,1,t + fxA,1,t + zA,1,t

ĉk = eyA,3,t + fxA,3,t + zA,3,t

ŵk = (ef + âk)α + eyA,2,t + fxA,2,t + zA,2,t.

• B locally computes

b̂k = eyB,1,t + fxB,1,t + zB,1,t

d̂k = eyB,2,t + fxB,2,t + zB,2,t

v̂k = (ef + b̂k)β + eyB,3,t + fxB,3,t + zB,3,t.

• t ← t + 1.
7. Party A performs

ŵ → ŵ + (a + lsb(â))α, â → lsb(â)

8. Party B performs

v̂ → v̂ + (b + lsb(b̂))β, b̂ → lsb(b̂),

Fig. 3. Authenticated parallel AND gates from FDAMT
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as desired. Similarly, we have âkβ + ĉk = v̂k, as desired.
At the end of the protocol, parties A and B locally adjust these shares so

that â and b̂ become vectors of bits. Since â+b̂ ∈ {0, 1}n, we have (a+ lsb(â)) =
(b + lsb(b̂)), so this adjustment preserves the desired relations.

Security. By the symmetry of the protocol, it is sufficient to consider the case
of a malicious A. Let A be an adversary corrupting A. First, we show that if A
sends incorrect values in a message, B will abort with overwhelming probability.
Indeed, if A sends ai + xA,1 + φ1 instead of ai + xA,1 and ci + xA,3 + φ2 instead
of ci + xA,3, B will verify whether

(ai + xA,1 + φ1)β = (ai + xA,1)β + φ2,

i.e. whether βφ1 = φ2.
We can then construct a simple simulator S that runs A as a subroutine

and plays the role of A in the ideal world. The simulator generates B’s last two
messages uniformly at random, and the first two messages so that they satisfy the
desired check. By the uniform randomness of yB,1 and yB,2, the distribution of
B’s messages di+yB,1, dj +yB,2 in the real world are identical to the distribution
of S’s simulation of B in the ideal world. Since bi + xB,1 and bj + xB,2 can be
computed from A’s data and the message di + yB,1, dj + yB,2, the distribution
of these values are identical as well.

S then sends B’s messages to A, and aborts if A responds with anything
besides (ai+xA,1, aj +yB,1, ci+xA,3, cj +yA,3). Otherwise, S outputs whatever A
outputs. As discussed above, with overwhelming probability an honest B aborts
in the real world whenever S aborts, so the joint distribution of the outputs
of A and an honest B in the real world are indistinguishable from the joint
distribution of the outputs of A and S in the ideal world.

4.2 Circuit-Dependent Preprocessing from Parallel and Gates

We now go from authenticated parallel AND gates over ρ to authenticated par-
allel AND gates over κ, and then to authenticated circuit wires. We begin with
the conversion from Fpre(ρ) to Fpre(κ).

Lemma 2. The protocol in Fig. 4 realizes F (C,ρ,κ)
pre securely in the F (C,ρ,ρ)

pre −
FsubVOLE-RO hybrid model, at the cost of an additional 3n+O(κ) bits of commu-
nication. In particular, Fpre(κ) is securely realizable in the Fpre(ρ) − FsubVOLE-RO
hybrid model.

Proof. Completeness. We have w′ = b′ΔA + d′ and ŵ′ = b̂′ΔA + d̂′ both
immediately before Step 4 and immediately after Step 5. The desired relations
on the vectors a+b, â+b̂ follow from the correctness of the F (C,ρ,ρ)

pre functionality.
Security. Security of steps 1,2, and 6 follow from the security of the under-
lying protocols. Security against a malicious B follows from the correctness of
Πρ∧κ

cert , shown in the full version of this paper [12], which guarantees that A (or
a simulator S) will detect an incorrect message with high probability.
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For security against a malicious A, note that A sends no message in steps
3 through 5, and that the messages m1, m2 can be simulated by sampling
uniformly random sequences of bits, by the security of FsubVOLE.

Complexity. We have |w| = 2n and |ŵ| = n, so the messages m1,m2 take
2n + n = 3n bits. The certification step calling Πρ∧κ

cert costs O(κ) bits, as shown
in the full version of this paper [12]. See Sect. 3.2 for an overview of this certified
functionality notation.

Protocol Πpre(κ)

pre(ρ) : Circuit dependent pre-processing of wire labels from
authenticated parallel ρ-AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O.

1. A and B invoke F (C,ρ,ρ)
pre , generating vectors a, c,w, â, ĉ, ŵ and a value α for A

and vectors b,d,v, b̂, d̂, v̂ and a value β for B.
2. A and B invoke FsubVOLE with B as sender and A as receiver for the fields

(F2,F2κ), so that B learns b′,d′, b̂′, d̂′, and A learns ΔA ∈ F2κ and vectors
w′ := b′ΔA + d′ and ŵ′ := b̂′ΔA + d̂′.

3. B sends to A the vectors m1 := b + b′ and m2 := b̂ + b̂′.
4. A adds to obtain w′ ← w′ + m1ΔA and ŵ′ ← ŵ′ + m2ΔA.
5. B adds to obtain b′ ← b′ + m1, b̂′ ← b̂′ + m2.
6. A and B invoke Πρ∧κ

cert to certify that the new values of b, b̂ match their original
values.

7. A and B return a, c,w′, â, ĉ, ŵ′, ΔA and b′,d′,v, b̂′, d̂′, v̂, β respectively.

Fig. 4. Authenticated wire labels over κ from wire labels over ρ

Next, for completeness, we give a protocol for converting from Fpre(κ) to
F (C,ρ,κ)

pre . The following result is implicit in [15] and [21].

Lemma 3. Let C be a circuit with n AND gates. Then the protocol in Fig. 5
securely computes F (C,κ,ρ)

pre against malicious adversaries in the RO-subVOLE-
Fpre(κ) hybrid model, with an additional 2n bits of communication.

Proof. The security of the first three steps follows from the security of the under-
lying protocols.

Correctness is immediate, and the proof of security against malicious parties
is similar to the proof of Lemma 1.
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Protocol Πpre(C)

pre(κ) : Circuit dependent pre-processing of wire labels from
authenticated parallel AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O.

1. A and B invoke FsubVOLE with A as sender and B as receiver, so that A receives
α ∈ F2κ , B receives b ∈ F

m
2 and d ∈ F

m
2κ , and A receives w := bα + d.

2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B receives
β ∈ F2ρ , A receives a ∈ F

m
2 and c ∈ F

m
2ρ , and B receives v := aβ + c.

3. A and B invoke F (PAnd(n),κ,ρ)

pre(ρ) so that A obtains (w′, ŵ′, â′, ĉ′) and B obtains
(v′, v̂′, â′, ĉ′).

4. For each gate G = (i, j, k, T ), in topological order:
– If T = ⊕:

• A sets the values ak = ai + aj , ck = ci + cj , and wk = wi + wj .
B sets the values bk = bi + bj , dk = di + dj and vk = vi + vj .

– If T = ∧ is the t-th AND gate:
• A sends (ai + a′

2t−1, aj + a′
2t) to B

• B sends (bi + b′
2t−1, bj + b′

2t) to A
• A and B locally compute ek := ai + bi + a′

2t−1 + b′
2t−1 and fk :=

aj + bj + a′
2t + b′

2t.
• A locally computes

âk = ekfk + ekaj + fkai + â′
t

ĉk = ekcj + fkci + ĉ′
t

ŵk = ekwj + fkwi + ŵ′
t.

• B locally computes

b̂k = ekbj + fkbi + b̂′
t

d̂k = ekdj + fkdi + d̂′
t

v̂k = ekfkβ + ekvj + fkvi + v̂′
t.

Fig. 5. Authenticated wire labels from authenticated parallel AND gates

Remark 3. As discussed in Sect. 2.1, Katz et al. in [15] realize Fpre(κ) using an
optimized version of the TinyOT protocol. Their protocol, in addition to the
cost of producing authenticated bits, which could be done with sublinear com-
munication under VOLE, requires Bκ bits of communication per gate, with
B ≈ ρ/ log |C|. In particular, B ≥ 3 for |C| < 2ρ. Adding back in the 2κ bits
required in the online phase, the cost of [15] is at least 2.5x the cost of a semi-
honest garbled circuit for circuits with size |C| < 2ρ. Unfortunately, Lemma 2
does not offer any improvements the approach of [15], since their compiler to
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Fpre(κ) requires computational security, and so replacing it with a compiler to
Fpre(ρ) would still require Bκ bits per gate.

An alternative realization of the Fpre(κ) functionality could be accomplished
by the SPDZ protocol [10]. This would consume 6 authenticated multiplication
triples per AND gate and require 12κ additional communication under a naive
implementation. Applying Lemma 2 to the naive SPDZ-style approach gives a
compiler to Fpre(κ) by way of Fpre(ρ) that costs 12ρ+3 bits of communication per
gate, and thus 2κ + 12ρ + 3 bits per gate for the entire protocol, approximately
3x the cost of a semi-honest garbled circuit.

4.3 Authenticated Garbling

The only changes we make to the authenticated garbling protocol of [15] are
after-effects of our decision to alter the preprocessing functionality so that A
does not hold a mask for a wire value that is one of B’s inputs, and vice versa.
The only steps that change materially therefore are steps 3 and 4. Step 3 in [15],
after translating into the language of VOLE, reads:

– For each i ∈ IB , A sends ai to B and invoke ΠLPZK to prove that this ai

matches the value in Fpre. B then sends yi ⊕ λi = yi ⊕ ai ⊕ bi to A. Finally,
A sends Li,yi⊕λi

to B.

We replace this step with the following:

– For each i ∈ IB , B sends yi ⊕ bi to A. Then A sends Li,yi⊕bi
to B.

It is possible to simulate the previous protocol from this version by having
B generate A’s messages ai uniformly at random for i ∈ IA, and adjusting
their value bi to keep the sum ai ⊕ bi constant, and having A set ai = 0. These
adjustments can occur without any communication, since the values ai, bi are
never used again by A, B respectively. Therefore the security of one protocol
implies the security of the other. We make similar adjustments to Step 4.

Proof of Theorem 1. Combining the three lemmas in this section gives a real-
ization of F (C,ρ,κ)

pre in the FDAMT −FVOLE −FsubVOLE model. Applying Theorem 4
and incorporating the minor changes to the authenticated garbling protocol out-
lined above gives that the desired ΠDAMT

2pc protocol.

5 Authenticated Garbling from Block VOLE

5.1 Compressed Authenticated Bits from Block VOLE

We begin by stating formally the compressed preprocessing functionality and
the block (subfield) VOLE functionality.
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The compressed preprocessing functionality compresses B’s wire labels
belonging to AND gates in b to a much shorter vector ˜b of length

L :=
ρ log n − ρ log ρ

log 2
+ 2ρ.

Write bI for input wires, and b′ for AND gate wires. Then the vector b is
determined from bI ∪b′ in the obvious way, and b′ is determined from ˜b by some
public linear transformation MH . Similarly B’s wire masks d′ are computed as
MH

˜d, where ˜d ∈ F
L
2κ (Fig. 6).

Functionality F (C,ρ)
cp : Compressed pre-processing of wire labels for authenticated

garbling.

Parametrized by the value ρ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O. Let n be the number of AND gates. Where clear from context, we
omit the parameters C, ρ, κ and write Fcp for F (C,ρ,κ)

cp .

– All parties compute

L =
ρ logn − ρ log ρ

log 2
+ 2ρ.

– A chooses α ∈ F2ρ and wire labels a ∈ F
n
2 , c ∈ F

n
2ρ and sends them to Fcp.

– B chooses β ∈ F2ρ and wire labels bI ∈ F
|I|, b̃ ∈ F

L
2 , dI ∈ F

|I|
2ρ , d̃ ∈ F

L
2ρ and

sends them to Fcp.
– Fcp chooses a random n × L matrix MH over F2 and sends MH to A and B.
– Fcp computes the vectors b′,d′ via b,= MH b̃ and d′ = MH d̃, and computes

b,d from b′,d′.
– As a sub-protocol, Fcp runs a simulation of the interaction of A, B, and F (C,ρ,κ)

pre

using α, β, a,b, c,d as the various parties’ inputs, and stores the output.
– Fcp sends (v, v̂, b̂, d̂) to B and (w, â, ĉ) to A.
– A sends either Honest or (Cheat,m∗) to Fcp.
– If A sent Honest, then Fcp sends (ŵ) to A.
– If A sent (Cheat,m∗), then Fcp sends (ŵ + m∗β−1) to A.

Fig. 6. Compressed authenticated wire labels

The other change made in this pre-processing functionality is that we allow
party A to cheat in such a way that is not immediately detected, but corrupts its
own output. Specifically, if A sends faulty messages, A can ensure both parties
hold shares of b̂iα+m∗β−1, rather than b̂iα. Since A does not know β, A cannot
use these corrupted shares, and B will discover the error and abort during the
execution of the authenticated garbling, as we show in Sect. 5.3.
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Functionality F (F,E,k,n)
bVOLE : Block VOLE

Parametrized by a pair of fields F ⊆ E and integers k and n. In this paper, we
have F ∈ {F2,F2ρ} and E = F2ρ . We refer colloquially to the first variant as block
subfield VOLE and the second as block VOLE.

– B chooses parameters β1, . . . , βk ∈ E and sends them to FbVOLE.
– FbVOLE chooses a collection of vectors b1, . . . ,bk ∈ En and sends the vectors to

A.
– A chooses a vector a ∈ F n and sends a to FbVOLE.
– For i = 1, . . . , k, the functionality FbVOLE computes vi = aβi + bi and sends

the result to B.

Fig. 7. Block subfield VOLE

5.2 From Block VOLE to Compressed Authenticated Wire Labels

We realize this preprocessing functionality using block VOLE, a collection of
VOLE or subfield VOLE instances where one party A uses the same inputs
across the VOLE calls. We define this protocol formally in Fig. 7, and give the
converter from block VOLE to Fcp in Fig. 8. We note that, in Step 12, if a is one
of A’s input to a block VOLE, and b + γ and γ are two of B’s inputs to that
block VOLE, then A and B can produce shares of the value ab by subtracting
their respective shares of a(b + γ) and aγ. All monomial terms in Step 12 can
be shared in this fashion. We defer the proof of the following lemma to the full
version of this paper [12].

Lemma 4. The protocol in Fig. 8 can securely compute F (C,ρ,ρ)
cp against mali-

cious adversaries in the FbVOLE − FVOLE − FsubVOLE model with 1 + O(L
n ) bits of

communication per gate from B to A and 5ρ + 1 bits of communication per gate
from A to B.

To convert from F (C,ρ,ρ)
cp to F (C,ρ,κ)

cp , we used almost the identical protocol
to that used to convert from Fpre(ρ) to Fpre(κ).

Lemma 5. The protocol in Fig. 4 realizes F (C,ρ,κ)
cp in the F (C,ρ,ρ)

cp − FsubVOLE-
hybrid model, replacing F (C,ρ,ρ)

pre with F (C,ρ,ρ)
cp in Step 1.

Proof. The argument is identical to the argument in Lemma 2. We need only
note that the messages m1,m2 are still uniformly random in A’s view, in spite
of the linear relations on b allowed by Fcp, because of the masks b′, b̂′.

5.3 Authenticated Garbling

In Fig. 9, we give our modified authenticated garbled circuit protocol. The wire
labels are computed as in [15], but in the authentication step we apply the half
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Protocol Πcp(C, ρ): Compressed pre-processing of wire labels for authenticated
garbling.

Parametrized by the value ρ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T ), for T ∈ {∧, ⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪ O. Let n be the number of AND gates.

1. All parties compute

L =
ρ logn − ρ log ρ

log 2
+ 2ρ

and choose a public n × L matrix MH over F2.
2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B learns

(̃b, d̃) and A holds w̃, with length of the VOLE equal to L.
3. The parties extend the VOLE by length n, with additional entries

(wi,j , bi,j , di,j) where bi,j is the (i, j)-th entry of (MH b̃)T · (MH b̃).
4. Party A locally computes w = MHw̃.
5. B constructs the vector b = b̃iβ + γ, β + γ, γ with γ ∈ F2ρ chosen randomly.
6. Party A constructs the vector a := a∪(aiaj)∪(âi). The first vector is A’s input

to Fcp, the second vector is the the values ai ∧ aj , for every multiplication gate
Gk = (∧, i, j), and the third vector is a string of random bits which will be part
of A’s output.

7. The parties call Extend(FsubVOLE), adding b as an additional L + 2 entries.
8. A and B perform F (F2ρ ,F2,L+2,n)

bVOLE , the subfield variant of block VOLE, with B’s
inputs the vector b and A’s inputs the vector a.

9. A and B invoke F (F2ρ ,F2ρ ,L+2,n)
bVOLE . B’s input to the block VOLE is again the

vector b with γ as above, and A’s input is the vector α · a ∪ (âi,2) ∪ {α}, that
is, A’s input above multiplied by α, along with a vector of masks âi,2 ∈ F2ρ

and the additional input α.
10. Both parties call ΠLPZK to prove correctness of the values ai ∧ aj , bi,j , and b̃iβ

under LPZK.
11. B certifies that their inputs to the block VOLE match their inputs to the VOLE

with A as receiver, with the ΠVOLE∧ELOV
cert protocol discussed in §3.2.

12. B locally computes:
v̂i := âiβ + ĉi

vi,2 := âi,2β + ci,2

vi,3 := âiαβ + ci,3

vi,4 := (aiaj + aibj + ajbi)β + ci,4

vi,5 := (aiaj + aibj + ajbi)αβ + ci,5

where all terms ĉi, ci,j can be computed locally by A.
13. A sends to B the terms (mi,1, mi,2) := (ĉi +ci,4, ci,2+ci,3+ci,5), and B defines

b̂i := (v̂i + vi,4 + mi,1)β−1 + bibj

and

d̂i := (vi,2 + vi,3 + vi,5 + mi,2)β−1 + di,j ,

respectively.
14. A adds locally to hold ŵi := âi,2 + wi,j .

Fig. 8. Compressed authenticated wire labels from block VOLE
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gate technique of Zahur et al. [25] to the secondary garbled circuit approach of
[21]. We also replace Fpre with Fcp, and modify Steps 3 and 4 by setting unneeded
wire masks to 0 as in Sect. 4.3.

Lemma 6. The protocol given in Fig. 9 securely computes a functionality f

against malicious adversaries in the RO-F (C,ρ,κ)
cp − FsubVOLE − FVOLE-hybrid

model, with 2κ + 3ρ bits of communication per AND gate, κ + 1 bits of com-
munication per input gate, and 1 bit of communication per output gate.

The key difficulty is protecting against a selective failure attack by A. Learn-
ing whether or not B aborts is equivalent to corrupting some subset of t table
entries (by corrupting the messages Gi,j or G′

i,j), and learning whether B opened
any of those table entries during circuit evaluation. If the t table entries chosen
correspond to rows of MH that are linearly independent, then the labels MH

˜b
are independent, and the probability of failure is 1 − 2−t.

We therefore give a simulator that aborts with probability 1−2−t, and restrict
our attention to the case where the t entries correspond to linearly dependent
rows of MH . To treat this case, we recall the notion of (t, k)-independent sets
(the concept was first introduced in [13], see [20] for a thorough treatment, and
[8,9] for additional discussion). A (t, k)-independent set over Fq is a subset of
F

k
q such that no t + 1 element subset is linearly dependent. For our purposes, it

is sufficient to construct a (ρ − 1, L)-independent set B ⊆ F
L
2 such that |B| = n

via a randomized algorithm. Then either the simulator gives the correct abort
probability or the protocol aborts almost surely, with probability at least 1−2−ρ,
and either way party A learns nothing. We give the full proof in the full version
of this paper [12].

Proof of Theorem 2. We begin with FbVOLE. We use Lemma 4 to construct
F (C,ρ,ρ)

cp , Lemma 5 to construct F (C,ρ,κ)
cp and prove the correctness of ΠVOLE

2pc in
Lemma 6.

6 NISC from Garbled Circuits

6.1 Conditional Disclosure of Secrets from Programmable OLE

We construct a NISC protocol with A as sender and B as receiver. We gener-
ate our authenticated bits and the related conversion protocol to authenticated
circuit wire labels using the programmable OLE functionality given in Fig. 10.
This protocol allows us to the piece-wise product of any pair of vectors selected
from a collection of p vectors from A and q vectors from B.

Two obstacles present themselves in the conversion from programmable OLE
to authenticated circuit wire labels. First, we can no longer use ΠLPZK to certify
B’s inputs, since this would violate non-interactivity. Instead, we use a special-
ized conditional disclosure of secrets (CDS) protocol that ensures that any future
messages from A will be uniformly random if B cheats. The second obstacle is
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Protocol ΠVOLE
2pc

Inputs: Party A holds x ∈ {0, 1}|I1| and B holds y ∈ {0, 1}|I2|. Both parties hold
a circuit C for a function f : {0, 1}|I1|+|I2| → {0, 1}|O|.

1. A and B call F (C,ρ,ρ)
cp and then the compiler from F (C,ρ,ρ)

cp to F (C,ρ,κ)
cp , so that

A holds ΔA,w, ŵ,a, â, c, ĉ and B holds β, ,v, v̂,b, b̂,d, d̂. For each i ∈ I1 ∪I2,
A also picks a uniform κ-bit string Li,0. The parties jointly determine keys to
hash functions H : F2κ × {1, . . . , n} → F2κ and H ′ : F2κ × {1, . . . , n} → F2ρ .

2. Following the topological order of the circuit, for each gate G = (i, j, k, T ),
– If T = ⊕, A computes Lk,0 := Li,0 ⊕ Lj,0

– If T = ∧, A computes Li,1 := Li,0 ⊕ ΔA, Lj,1 := Lj,0 ⊕ ΔA, and
• Gk,0 := H(Li,0, k) ⊕ H(Li,1, k) ⊕ wj ⊕ ajΔA

• Gk,1 := H(Lj,0, k) ⊕ H(Lj,1, k) ⊕ wi ⊕ aiΔA ⊕ Li,0

• Lk,0 := H(Li,0, k) ⊕ H(Lj,0, k) ⊕ (wk ⊕ ŵk) ⊕ (ak ⊕ âk) · ΔA

• G′
k,0 := H ′(Li,0, k) ⊕ H ′(Lj,0, k) ⊕ ck ⊕ ĉk

• G′
k,1 := H ′(Li,0, k) ⊕ H ′(Li,1, k) ⊕ cj

• G′
k,2 := H ′(Lj,0, k) ⊕ H ′(Lj,1, k) ⊕ ci

A sends Gk,0, Gk,1, G
′
k,0, G

′
k,1, G

′
k,2 to B.

3. For each i ∈ IB , B sends yi ⊕ bi to A. Then A sends Li,yi⊕bi to B.
4. For each i ∈ IA, A sends xi ⊕ ai and Li,xi⊕ai to B.
5. B evaluates the circuit in topological order. For each gate G = (i, j, k, T ), B

initially holds (zi ⊕ λi, Li,zi⊕λi) and (zj ⊕ λj , Lj,zj⊕λj ), where zi, zj are the
underlying values of the wires.
(a) If T = ⊕, B computes zk ⊕ λk := (zi ⊕ λi) ⊕ (zj ⊕ λj) and Lk,zk⊕λk :=
Li,zi⊕λi ⊕ Lj,zj⊕λj .
(b) If T = ∧, B computes G0 := Gk,0 ⊕ dj , G1 := Gk,1 ⊕ di, and evaluates the
garbled table (G0, G1) to obtain the output label

Lk,zk⊕λk := H ((Li,zi⊕λi), k) ⊕ H (Lj,zj⊕λj , k
) ⊕ (dk ⊕ d̂k)

⊕(zi ⊕ λi)G0 ⊕ (zj ⊕ λj)(G1 ⊕ Li,zi⊕λi).

Then B computes

bk ⊕ b̂k ⊕ (zi ⊕ λi)bj ⊕ (zj ⊕ λj)bi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj)

⊕ ((vk ⊕ v̂k ⊕ (zi ⊕ λi)vj ⊕ (zj ⊕ λj)vi)β−1

⊕
(
H ′(Li,zi⊕λi

) ⊕ H ′(Lj,zj⊕λj
) ⊕ G′

k,0 ⊕ (zi ⊕ λi)G′
k,1 ⊕ (zj ⊕ λj)G′

k,2

)
β−1

= λk ⊕ λ̂k ⊕ (zi ⊕ λi)λj ⊕ (zj ⊕ λj)λi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj)

= λk ⊕ zk

6. For each i ∈ O, A sends ai to B and calls ΠLPZK to prove these values are
correct. B computes zi := (λi ⊕ zi) ⊕ ai ⊕ bi.

Fig. 9. Authenticated garbling protocol in the Fcp hybrid model
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Functionality F (n,κ,p,q,Q)
OLE : Programmable OLE over a field F2κ and relations Q.

Parametrized by integers n, p, q, κ ∈ N and a set of relations Q ⊆ {1, . . . , p} ×
{1, . . . , q}, i.e. elements q ∈ Q are ordered pairs of integers.

– A chooses a collection of vectors a1, . . . , ap of length n and sends them to
F (n,κ,p,q,Q)

OLE .
– B chooses a collection of vectors b1, . . . ,bq of length n and sends them to

F (n,κ,p,q,Q)
OLE .

– For each entry q = (i, j) ∈ Q, F (n,κ,p,q,Q)
OLE chooses vectors vq, cq with vq +cq =

ai · bj .
– F (n,κ,Q)

OLE sends vq to A and cq to B, for all q ∈ Q.

Fig. 10. Programmable OLE

related to the task of minimizing p and q so that the protocol is concretely
efficient, and we cover it in Sect. 6.2.

For CDS, informally, B sends a message to A that allows A to learn a secret
value sB known to B if and only if B’s message satisfies a desired set of relations.
Otherwise, A will compute a guess sA, which on at least one entry will appear
random to B. Then A appends H(sA) to all future messages to B, so that B
can recover the underlying message if and only if sA = sB . We give a formal
definition of this functionality in Fig. 11.

We give a protocol realizing this functionality in Fig. 12, and prove its cor-
rectness in the full version of this paper [12]. Our protocol works by first proving
that A and B each have one input vector that is constant, and using that to
realize instances of subfield VOLE over A’s input α and each of B’s input vectors
bi. Write Q′ := Q ∪ {(p + 1, j)} ∪ {(i, q + 1)}, for 1 ≤ j ≤ q + 1 and 1 ≤ i ≤ p,
and Q′′ := Q′ ∪ {(p + 1, j} for j = q + 2, q + 3, q + 4.

It is possible to move Step 6 to Step 2, making the protocol non-interactive,
since the values ĉ

(j,k)
i used in Step 6 can be computed locally by B from the

output of the random FOLE functionality and B’s inputs. Step 6 is separated
from Step 2 because the most complicated part of the protocol is in Steps 6
and 7, which are used to verify the relations in R2. Removing Steps 6 and 7 and
using Q′ instead of Q′′ gives a warm-up CDS protocol for certifying the relations
in R1 only.

Lemma 7. The protocol in Fig. 12 realizes the functionality F (n,κ,p,q,Q,R)
CDS non-

interactively in the RO-F (n,κ,p+1,q+4,Q′′,R)
OLE -hybrid model.
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Functionality F (n,κ,p,q,Q,R)
CDS : CDS for F (n,κ,p,q,Q)

OLE over a field F2κ and relations
R.

Parametrized by integers n, κ, p, q, ∈ N, a set of relations Q ⊆ {1, . . . , p}×{1, . . . , q}
as above, and a set of relations R = R1 ∪ R2, where R1 is a collection of equality
constraints bj

i = b�
k, and R2 is a collection of quadratic relations of the form b1i ·b1j =

b1k. Additionally, let m be a message that A plans to send to B.

– A and B interact with FCDS playing the role of FOLE on B’s input vectors
bi ∈ F

n
2 for 1 ≤ i ≤ q and A’s input vectors ai,vq ∈ F

n
2κ for 1 ≤ i ≤ p and

q ∈ Q.
– If the vectors bi satisfies the relations in R, FCDS sends m to B.
– If any of the vectors bi do not satisfy the relations in R, FCDS sends a random

vector to B.

Fig. 11. Programmable OLE with conditional disclosure of secrets

6.2 Non-interactive Authenticated Circuit Wires and Authenticated
Garbling

The remainder of the construction is similar to the construction given in Sect. 5.
We give a brief overview here, and a more detailed description in the appendices.
As discussed in Sect. 1.1, the randomness computation time and the seed size
grow with the number of piece-wise products required, i.e. with |Q| using the
notation in the functionality description. In order to minimize the numbers p, q
required, we construct for A three vectors of inputs: a,aL, aR, where a, chosen
randomly, represents authenticated bits for all wires, aL represents only bit labels
for wires used as labels for left inputs to multiplication gates, so that aL

k is the left
input to the kth multiplication gate, and aR likewise represents only bit labels for
wires used as labels for right inputs to multiplication gates. We similarly define
b,bL,bR. The full construction of the preprocessing functionality is similar to
the protocol Πcp. We give this protocol and a proof of its correctness in the full
version of this paper [12].

The authenticated garbling functionality is also similar to the protocol ΠVOLE
2pc

used in the VOLE-only case, replacing Fcp with the NISC preprocessing func-
tionality. Besides the first step of generating the preprocessing functionality,
which is non-interactive by construction, the only message from B to A is given
in Step 3, when B sends bit masks of its input values yi ⊕ bi. This communica-
tion can be moved to Step 1 with no loss of security, making the entire protocol
non-interactive, which we prove in the full version of this paper [12].
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Protocol ΠCDS: Conditional disclosure of secrets over programmable OLE.

Parametrized by integers n, κ, p, q, ∈ N, a set of relations Q ⊆ {1, . . . , p}×{1, . . . , q}
as above, and a set of relations R = R1 ∪ R2 as above. Additionally, let m be a
message that A plans to send to B.

1. A and B choose random values α, β ∈ F2κ and define the vectors α :=
(α, . . . , α) and β := (β, . . . , β).

2. A and B invoke F (n,κ,p+1,q+1,Q′)
OLE with the additional inputs ap+1 := α, bq+1 :=

β. Let (mi
A) be the messages that A sends during the random-to-fixed OLE

compiler, and let ĉ(j,k)
i be the vectors held by B before receiving (mi

A).
3. A computes s1A := (v(p+1,q+1)

1 − v
(p+1,q+1)
2 , . . . , v

(p+1,q+1)
1 − v

(p+1,q+1)
n ).

4. B computes s1B := (c(p+1,q+1)
1 − c

(p+1,q+1)
2 , . . . , c

(p+1,q+1)
1 − c

(p+1,q+1)
n ).

5. For each relation bj
i = b�

k ∈ R1, A appends v
(p+1,j)
i − v

(p+1,�)
k to s2A and B

appends c
(p+1,j)
i − c

(p+1,�)
k to s2B

6. B constructs three additional vectors, each of length equal to |R2|, with
bq+2 = (b1i ĉ

(p+1,1)
j + (b1j ĉ

(p+1,1)
i ), bq+3 = (b1i b

1
j ), and bq+4 = ĉ

(p+1,1)
k for triples

(i, j, k) ∈ R2, and both parties call Extend(FOLE),so that A and B now hold
F (n,κ,p+1,q+4,Q′′)

OLE .
7. For each relation b1i · b1j = b1k ∈ R2, let r be the index of this relation in R2.

A appends v
(p+1,1)
i · v

(p+1,1)
j − αv

(p+1,1)
k − v

(p+1,q+2)
r − (v(p+1,q+3)

r ) · (m1
A,i +

m1
A,j)− (v(p+1,q+4)

r )m1
A,k to s3A, and B appends c

(p+1,1)
i · c(p+1,1)

j − (c(p+1,q+3)
r ) ·

(m1
A,i + m1

A,j) − (c(p+1,q+4)
r )m1

A,k to s3B .
8. Each party P computes sP := ∪isi

P .
9. A sends m1 := m + H(sA) to B.

10. B computes m2 := m1 + H(sB) and outputs m2.

Fig. 12. Conditional disclosure of secrets

Acknowledgements. Supported in part by DARPA Contract No. HR001120C0087.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of DARPA. Y. Ishai
supported in part by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant
2774/20.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-46766-1_34


86 S. Dittmer et al.

3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: CCS
2018, pp. 896–912 (2018)

4. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: CCS 2019, pp. 291–308 (2019)

5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 14

7. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 502–534. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84252-9 17

8. Damelin, S.B., Michalski, G., Mullen, G.L.: The cardinality of sets of k-independent
vectors over finite fields. Monatshefte für Mathematik 150(4), 289–295 (2007)

9. Damelin, S.B., Michalski, G., Mullen, G.L., Stone, D.: The number of linearly
independent binary vectors with applications to the construction of hypercubes
and orthogonal arrays, pseudo (t, m, s)-nets and linear codes. Monatshefte für
Mathematik 141(4), 277–288 (2004)

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

11. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its applica-
tions. In: ITC 2021 (2021). Full version: https://eprint.iacr.org/2020/1446

12. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Authenticated garbling from simple
correlations. Cryptology ePrint Archive (2022)

13. Dodis, Y., Khanna, S.: Space-time tradeoffs for graph properties. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 291–
300. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 26

14. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

15. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 13

16. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

17. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-642-32009-5_38
https://eprint.iacr.org/2020/1446
https://doi.org/10.1007/3-540-48523-6_26
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30


Authenticated Garbling from Simple Correlations 87

18. Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part
I. LNCS, vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84242-0 5

19. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
improved constructions and implementation. In: CCS 2019, pp. 1055–1072 (2019)

20. Tassa, T., Villar, J.L.: On proper secrets, (t, k)-bases and linear codes. Designs
Codes Cryptogr. 52(2), 129–154 (2009)

21. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS 2017, pp. 21–37 (2017)

22. Yang, K., Sarkar, P., Weng, C., Wang, X.: Quicksilver: efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: CCS (2021).
Full version: https://eprint.iacr.org/2021/076

23. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-
related OT with small communication. In: CCS 2020, pp. 1607–1626 (2020)

24. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

25. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://eprint.iacr.org/2021/076
https://doi.org/10.1007/978-3-662-46803-6_8


Unique Topics



Dynamic Local Searchable Symmetric
Encryption

Brice Minaud and Michael Reichle(B)

DIENS, École normale supérieure, PSL University, CNRS, INRIA,
75005 Paris, France

michael.reichle@ens.fr

Abstract. In this article, we tackle for the first time the problem of
dynamic memory-efficient Searchable Symmetric Encryption (SSE). In
the term “memory-efficient” SSE, we encompass both the goals of local
SSE, and page-efficient SSE. The centerpiece of our approach is a novel
connection between those two goals. We introduce a map, called the
Generic Local Transform, which takes as input a page-efficient SSE
scheme with certain special features, and outputs an SSE scheme with
strong locality properties. We obtain several results. (1) First, for page-
efficient SSE with page size p, we build a dynamic scheme with storage
efficiency O(1) and page efficiency ˜O (log log (N/p)), called LayeredSSE.
The main technical innovation behind LayeredSSE is a novel weighted
extension of the two-choice allocation process, of independent interest.
(2) Second, we introduce the Generic Local Transform, and combine it
with LayeredSSE to build a dynamic SSE scheme with storage efficiency
O(1), locality O(1), and read efficiency ˜O (log logN), under the condi-
tion that the longest list is of size O(N1−1/log log λ). This matches, in
every respect, the purely static construction of Asharov et al. presented
at STOC 2016: dynamism comes at no extra cost. (3) Finally, by apply-
ing the Generic Local Transform to a variant of the Tethys scheme by
Bossuat et al. from Crypto 2021, we build an unconditional static SSE
with storage efficiency O(1), locality O(1), and read efficiency O(logεN),
for an arbitrarily small constant ε > 0. To our knowledge, this is the con-
struction that comes closest to the lower bound presented by Cash and
Tessaro at Eurocrypt 2014.

1 Introduction

Searchable Symmetric Encryption. In Searchable Symmetric Encryption
(SSE), a client outsources the storage of a set of documents to an untrusted
server. The client wishes to retain the ability to search the documents, by issuing
search queries to the server. In the setting of dynamic SSE, the client may also
issue update queries, in order to modify the contents of the database, for instance
by adding or removing entries. The server must be able to correctly process all
queries, while learning as little information as possible about the client’s data and
queries. SSE is relevant in many cloud storage scenarios: for example, in cases
such as outsourcing the storage of a sensitive database, or offering an encrypted
messaging service, some form of search functionality may be highly desirable.
c© International Association for Cryptologic Research 2022
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In theory, SSE is a special case of computation on encrypted data, and could
be realized using generic solutions, such as Fully Homomorphic Encryption.
In practice, such approaches incur a large performance penalty. Instead, SSE
schemes typically aim for high-performance solutions, scalable to large real-world
databases. Towards that end, SSE trades off security for efficiency. The server
is allowed to learn some information about the client’s data. For example, SSE
schemes typically leak to the server the repetition of queries (search pattern),
and the identifiers of the documents that match a query (access pattern). The
security model of SSE is parametrized by a leakage function, which specifies the
nature of the information leaked to the server.

Locality. In the case of single-keyword SSE, search queries ask for all documents
that contain a given keyword. To realize that functionality, the server maintains
an (encrypted) reverse index, where each keyword is mapped to the list of identi-
fiers of documents that match the keyword. When the client wishes to search for
the documents that match a given keyword, the client simply retrieves the cor-
responding list from the server. A subtle issue, however, is how the lists should
be stored and accessed by the server.

The naive approach of storing one list after the other is unsatisfactory: indeed,
the position of a given list in memory becomes dependent on the lengths of
other lists, thereby leaking information about those lists. A common approach
to address that issue is to store each list element at a random location in mem-
ory. In that case, when retrieving a list, the server must visit as many random
memory locations as the number of elements in the list. This is also undesirable,
for a different reason: for virtually all modern storage media, accessing many
random memory locations is much more expensive than visiting one continuous
region. Because SSE relies on fast symmetric cryptographic primitives, the cost
of memory accesses becomes the performance bottleneck. To capture that cost,
[CT14] introduces the notion of locality : in short, the locality of an SSE scheme
is the number of discontinuous memory locations that the server must access to
answer a query.

The two extreme solutions outlined above suggest a conflict between security
and locality. At Eurocrypt 2014, Cash and Tessaro showed that this conflict
is inherent [CT14]: if a secure SSE scheme has constant storage efficiency (the
size of the encrypted database is linear in the size of the plaintext database),
and constant read efficiency (the amount of data read by the server to answer
a search query is linear in the size of the plaintext answer), then it cannot have
constant locality.

Local SSE Constructions. Since then, many SSE schemes with constant
locality have been proposed, typically at the cost of superconstant read effi-
ciency. At STOC 2016, Asharov et al. presented a scheme with O(1) storage
efficiency, O(1) locality, and ˜O (logN) read efficiency, where N is the size of the
database [ANSS16]. At Crypto 2018, Demertzis et al. improved the read effi-
ciency to O(log2/3+εN) [DPP18]. Several trade-offs with ω(1) storage efficiency
were also proposed in [DP17]. When the size of the longest list in the database is
bounded, stronger results are known. When such an upper bound is required, we
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will call the construction conditional. The first conditional SSE is due to Asharov
et al., and achieves ˜O (log logN) read efficiency, on the condition that the size of
the longest list is O(N1−1/log log N ). This was later improved to ˜O (log log logN)
read efficiency, with a stronger condition of O(N1−1/log log log N ) on the size of
the longest list.

Locality was introduced as a performance measure for memory accesses,
assuming an implementation on Hard Disk Drives (HDDs). In [BBF+21],
Bossuat et al. show that in the case of Solid State Drives (SSDs), such as flash
disks, locality is no longer the relevant target. Instead, performance is mainly
determined by the number of memory pages accessed, regardless of whether they
are contiguous. In that setting the right performance metric is page efficiency.
Page efficiency is defined as the number of pages read by the server to answer
a query, divided by the number of pages needed to store the plaintext answer.
The main construction of [BBF+21] achieves O(1) storage efficiency and O(1)
page efficiency, assuming a client-side memory of ω(log λ) pages.

To this day, a common point among all existing constructions, both local and
page-efficient, is that they are purely static, as known techniques for subloga-
rithmic read efficiency and page efficiency do not apply to the dynamic setting.
That may be because of the difficulty inherent in building local SSE, even in the
static case (as evidenced, from the onset, by the impossibility result of Cash and
Tessaro [CT14]). Nevertheless, many, if not most, applications of SSE require
dynamism. This state of affairs significantly hinders the applicability of local
and page-efficient SSE.

While one work [MM17] targets local SSE in a dynamic setting, and has
constant storage efficiency and locality, it has read efficiency O(LlogW ), where
L is the maximum list size. Further, [MM17] employs an ORAM-variant which
incurs a heavy computational overhead, in addition to the large read efficiency.
When reinterpreting [MM17] in the context of page-efficiency, its guarantees
improve to O(logW ) page efficiency and constant storage efficiency, but the
heavy computational cost of ORAM remains.

1.1 Our Contributions

In this article, we consider the problem of dynamic memory-efficient SSE, by
which we mean that we target both dynamic page-efficient SSE, and dynamic
local SSE.

The centerpiece of our approach is a novel connection between these two
goals. We introduce a map, called the Generic Local Transform, which takes as
input a page-efficient SSE scheme with certain special features, and outputs a
SSE scheme with strong locality properties. Our strategy will be to first build
page-efficient schemes, then apply the Generic Local Transform to obtain local
schemes. This approach turns out to be quite effective, and we present several
results.

(1) Dynamic page-efficient SSE. We start by building a dynamic page-efficient
SSE scheme, LayeredSSE. LayeredSSE achieves storage efficiency O(1), and
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page efficiency ˜O
(

log log N
p

)

, where p is the page size. In line with prior work
on memory-efficient SSE, the technical core of LayeredSSE is a new dynamic
allocation scheme, L2C. L2C is a weighted variant of the so-called “2-choice”
algorithm, notorious in the resource allocation literature. L2C is of indepen-
dent interest: the two-choice allocation process is ubiquitous in various areas
of computer science, such as load balancing, hashing, job allocation, or cir-
cuit routing (a survey of applications may be found in [RMS01]). Weighted
variants have been considered in the past, but have so far required a distribu-
tional assumption [TW07,TW14] or presorting [ANSS16]. What we show is
that by slightly tweaking the two-choice process, a dynamic and distribution-
free result can be obtained (Theorem 1). Such a distribution-free result is nec-
essary for cryptographic applications, where the adversary may influence the
weights (as in our case). Other uses beyond cryptography are discussed in the
full version.

(2) Generic Local Transform. We introduce the Generic Local Transform. On
input any page-efficient scheme PE-SSE with certain special features, called
page-length-hiding SSE, the Generic Local Transform outputs a local SSE
scheme Local[PE-SSE]. Roughly speaking, if PE-SSE has client storage O(1),
storage efficiency O(1), and page efficiency O(P ), then Local[PE-SSE] has stor-
ageefficiencyO(1), andreadefficiencyO(P ).Regarding locality, thekey feature
is that if PE-SSE has locality O(L) when querying lists of size at most one page,
thenLocal[PE-SSE]has localityO(L + log logN)whenquerying listsofanysize.
Thus, the Local construction may be viewed as bootstrapping a scheme with
weak locality properties into a scheme with much stronger locality properties.

The Generic Local Transform also highlights an interesting connection
between the goals of page efficiency and locality. Originally, locality and page effi-
ciency were introduced as distinct performance criterions, targeting the two most
widespread storage media, HDDs and SSDs respectively. It was already observed
in [BBF+21] that a scheme with locality L and read efficiency R must have page
efficiency at most R+2L. In that sense, page efficiency is an “easier” goal. With the
Generic Local Transform, surprisingly, we build a connection in the reverse direc-
tion: we use page-efficient schemes as building blocks to obtain local schemes. On
a theoretical level, this shows a strong connection between the two goals. On a
practical level, it provides a strategy to target both goals at once.

(3) Dynamic local SSE. By applying the Generic Local Transform to the
LayeredSSE page-efficient scheme, we immediately obtain a dynamic SSE
scheme Local[LayeredSSE], with storage efficiency O(1), locality O(1), and
read efficiency ˜O (log logN). The construction is conditional: it requires that
the longest list is of size O(N1−1/log log N ). The asymptotic performance
of Local[LayeredSSE] matches exactly the second static construction from
[ANSS16], including the condition on maximum list size: dynamism comes
at no extra cost. In particular, Local[LayeredSSE] matches the lower bound
from [ASS21] for SSE schemes built using what [ASS21] refers to as “alloca-
tion schemes”—showing that the bound can be matched even in the dynamic
setting.
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(4) Unconditional local SSE in the static setting. The original 1-choice
scheme from [ANSS16] achieves O(1) storage efficiency, O(1) locality, and
˜O (logN) read efficiency, unconditionally. The read efficiency was improved
to O(log2/3+εN) in [DPP18], for any constant ε > 0. This was, until now, the
only SSE construction to achieve sublogarithmic efficiency unconditionally.
By applying the Generic Local Transform to a variant of Tethys [BBF+21],
in combination with techniques inspired by [DPP18], we obtain an uncon-
ditional static SSE scheme with storage efficiency O(1), locality O(1), and
read efficiency O(logεN), for any constant ε > 0. To our knowledge, this
is the construction that comes closest to the impossibility result of Cash
and Tessaro, stating that O(1) locality, storage efficiency, and read efficiency
simultaneously is impossible.

Table 1. Page-efficient SSE schemes. N denotes the total size of the database, W
denotes the number of keywords, p is the number elements per page, ε > 0 is an
arbitrarily small constant, and λ is the security parameter.

Schemes Client st. Page eff. Storage eff. Dynamism

Πpack, Π2lev [CJJ+14] O(1) O(1) O(p) Static
TCA [ANSS16] O(1) ˜O (log logN) O(1) Static
Tethys [BBF+21] O(plog λ) 3 3 + ε Static
IO-DSSE [MM17] O(W ) O(logW ) O(1) Dynamic

LayeredSSE O(1) ˜O
(

log log N
p

)

O(1) Dynamic

Table 2. SSE schemes with constant locality and storage efficiency. N denotes the
total size of the database, and ε > 0 is an arbitrarily small constant.

Schemes Locality Read eff. St. eff. Max list size Dynamism

TCA [ANSS16] O(1) ˜O (log logN) O(1) O(N1−1/log log N ) Static
[ASS21] O(1) ˜O (log log logN) O(1) O(N1−1/log log log N ) Static
OCA [ANSS16] O(1) ˜O (logN) O(1) Unconditional Static

[DPP18] O(1) ˜O
(

log2/3+εN
)

O(1) Unconditional Static

Local[LayeredSSE] O(1) ˜O (log logN) O(1) O(N1−1/log log N ) Dynamic
UncondSSE O(1) ˜O (logεN) O(1) Unconditional Static

Remark on Forward Security. The SSE schemes built in this work have a stan-
dard “minimal” leakage profile during Search: namely, searches leak the search
pattern, the access pattern and the length of the retrieved list of document
identifiers. For our dynamic schemes, Update operations importantly leak no
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information about unqueried keywords, but leak an identifier of the list being
updated, as well as, in some cases, the length of the list. As a consequence,
our dynamic schemes are not forward-secure. The underlying issue is that the
goals of forward security and memory efficiency seem to be fundamentally at
odds. Indeed, locality asks that identifiers associated to the same keywords must
be stored close to each other; while forward-privacy requires that the location
where a new identifier is inserted should be independent of the keyword it is
associated with. That issue was already noted in [Bos16], who claims that “for
dynamic schemes, locality and forward-privacy are two irreconcilable notions”.
We refer the reader to [Bos16] for more discussion of the problem and leave
further analysis of this issue for future work.

Note that SSE has a very varied range of uses cases, for example private
database services, online messaging and encrypted text search. In practice, its
security requirements depend entirely on the use case. There are use cases where
forward secrecy is crucial. The argument for forward security that is often given
in the literature (e.g. [Bos16,BMO17,EKPE18,AKM19]) is to thwart file injec-
tion attacks in the style of [ZKP16]. Those attacks require injecting adversar-
ially crafted entries into the target database. In an online messaging scenario,
those attacks could be realistic, hence forward security is needed. In other cases,
adversarial file injection is much less of a threat, and forward security can be
reasonably dispensed with. For use cases where forward security is not required,
we show that dynamism and memory efficiency are achievable at the same time.

Remark on the Focus on the Reverse Index. As most SSE literature, this work
focuses on the (inverse) document index. The simplest usage scenario is to
retrieve document indices from the index, then fetch those documents from a
separate database. In reality, there are many other ways to use the index, for
example by intersecting the document indices from several queries before fetch-
ing, fetching only some of the documents (see [MPC+18]), or building graph
databases via several layers of inverse indices [CK10].

In most cases, the cost of fetching the actual documents is the same for the
encrypted database as it is for the equivalent plaintext database: the efficiency
overhead comes entirely from the inverse index. Schemes that hide access pattern
or volume leakage are a possible exceptions but are out of the scope of this work.

2 Technical Overview

This work contains several results, tied together by the Generic Local Transform.
As such, we believe it is beneficial to present them together within one paper.
This requires introducing a number of different allocation mechanisms. We have
endeavored to provide in this section a clear overview of those mechanisms. For-
mal specifications, theorems, and proofs will be presented in subsequent sections.

It is helpful to fist recall a few well-studied allocation mechanisms. In what
follows, “with overwhelming probability” is synonymous with “except with negli-
gible probability” (in the usual cryptographic sense), whereas “with high proba-
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bility” simply means with probability close to 1 in some sense, but not necessarily
overwhelming.

One-Choice Allocation. In one-choice allocation, n balls are thrown into n bins.
Each ball is inserted into a bin chosen independently and uniformly at random
(by hashing an identifier of the ball). A standard analysis using Chernoff bounds
shows that, at the outcome of the insertion process, the most loaded bin contains
O(log n) balls with high probability [JK77]. (And at most O(f(n)log n) balls with
overwhelming probability, for any f = ω(1).)

Two-Choice Allocation. Once again, n balls are thrown into n bins. For each ball,
two bins are chosen independently and uniformly at random (e.g. by hashing an
identifier of the ball). The ball is inserted into whichever of the two bins contains
the fewest balls at the time of insertion. A celebrated result by Azar et al. shows
that, at the outcome of the insertion process, the most loaded bin contains
O(log log n) balls with high probability [ABKU94]. (It was later shown that the
result holds with overwhelming probability [RMS01].)

2.1 Layered 2-Choice Allocation

Our first goal is to build a dynamic page-efficient scheme. Let us summarize
what this entails, starting with the static case. As explained in the introduction,
to realize single-keyword SSE, we want to store lists of arbitrary sizes on an
untrusted server. Hiding the contents of the lists can be achieved in a straight-
forward way using symmetric encryption. The main challenge is how to store the
lists in the server memory, in such a way that accessing one list does not reveal
information about the lengths of other lists.

In the case of page-efficient schemes, this challenge may be summarized as
follows. We are given a set of lists, containing N items in total. We are also
given a page size p, which represents the number of items that can fit within a
physical memory page. The memory of the server is viewed as an array of pages.
We want to store the lists in the server memory, with three goals in mind.

1. In order to store all lists, we use S�N/p� pages of server memory in total,
where S is called the storage efficiency of the allocation scheme. We want S
to be as small as possible.

2. Any list of length � can be retrieved by visiting at most P ��/p� pages in server
memory, where P is called the page efficiency of the allocation scheme. We
want P to be as small as possible.

3. Finally, the pages visited by the server to retrieve a given list should not
depend on the lengths of other lists.

The first two goals are precisely the aim of bin packing algorithms. The third goal
is a security goal: it stipulates that the pattern of memory accesses performed by
the server should not leak certain information. As such, the goal relates to obliv-
ious or data-independent algorithms. In [BBF+21], a framework for realizing the
three goals was formalized as Data-Independent Packing (DIP).



98 B. Minaud and M. Reichle

To ease presentation, we will focus on the case where all lists are of size at
most one page. If a list is of length more than one page, the general idea is that
it will be split into chunks of one page, plus one final chunk of size at most one
page; each chunk will then be treated as a separate list by the allocation scheme.
We assume from now on that lists are of length less than one page.

In a nutshell, the idea proposed by [BBF+21] to instantiate a DIP scheme
is to use weighted variant of cuckoo hashing [PR04]. In more detail, for each
list, two pages are chosen uniformly at random, by hashing an identifier of the
list. Each element of the list will then be stored in one of the two designated
pages, or a stash. The stash is stored on the client side. In order to choose how
each list is split between its three possible destinations (the two chosen pages,
or the stash), [BBF+21] uses a maximum flow algorithm. The details of this
algorithm are not relevant for our purpose. The important point is that when
retrieving a list, the server accesses two uniformly random pages. Clearly, this
reveals no information to the server about the lengths of other lists. The resulting
algorithm, called Tethys, achieves storage efficiency O(1), page efficiency O(1),
with client storage ω(log λ) pages (used to store the stash).

In this paper, we wish to build a dynamic SSE. For that purpose, the under-
lying allocation scheme needs to allow for a new update operation. An update
operation allows the client to add a new item to a list, increasing its length
by one. The security goal remains essentially the same as in the static case: the
pages accessed by the algorithm in order to update a given list should not depend
on the lengths of other lists.

Tethys is not a suitable basis for a dynamic scheme, because it does not allow
for an efficient data-independent update procedure: when inserting an element
into a cell, the update procedure requires running a max flow algorithm. This
either requires accessing other cells, with an access pattern that is intrinsically
data-dependent, or performing a prohibitively expensive data-oblivious max flow
computation each update. Instead, a natural idea is to use a weighted variant of
the two-choice allocation scheme. With two-choice allocation, the access pattern
made during an update is simple: only the two destination buckets associated
to the list being updated need to be read. The new item is then inserted into
whichever of the two buckets currently contains less items.

Instantiating that approach would require a weighted dynamic variant of
two-choice allocation, along the following lines: given a multiset of list sizes
{�i : 1 ≤ i ≤ k} with �i ≤ p and

∑

�i = N , at the outcome of a two-
choice allocation process into O(N/p) buckets, the most loaded bucket con-
tains O(plog logN) items with overwhelming probability, even if the weight of
balls is updated during the process. However, a result of that form appears
to be a long-standing open problem (some related partial results are discussed
in [BFHM08]). The two-choice process with weighted items has been studied in
the literature [TW07,TW14,ANSS16], but to our knowledge, all existing results
assume that (1) either the weight of the balls are sampled identically and inde-
pendently from a sufficiently smooth distribution or (2) the balls are sorted
initially and then allocated in decreasing order. Even disregarding constraints
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on the distribution, in our setting, we cannot even afford to assume that list
lengths are drawn independently: in the SSE security model, lists are chosen
and updated arbitrarily by the adversary. Also, presorting the lists according
to their length is not possible in a dynamic setting, as the list lengths can be
changed via updates.

For our purpose, we require a distribution-free statement: we only know a
bound p on the size of each list, and a bound N on the total size of all lists.
We want an O(plog logN) upper bound on the size of the most loaded bucket
that holds for any set of list sizes satisfying those constraints, even if list sizes
are updated during the process. A result of that form is known for one-choice
allocation processes [BFHM08] (with a O(plogN) upper bound), but the same
article shows that the same techniques cannot extend to the two-choice process.

To solve that problem, we introduce a layered weighted 2-choice allocation
algorithm, L2C. L2C has the same basic behavior as a (weighted) two-choice
algorithm: for each ball, two bins are chosen uniformly at random as possible
destinations. The only difference is how the bin where the ball is actually inserted
is selected among the two destination bins. The most natural choice would be
to store the ball in whichever bin currently has the least load, where the load
of a bin is a the sum of the weights of the balls it currently contains. Instead,
we use a slightly more complex decision process. In a nutshell, we partition the
possible weights of balls into O(log log λ) subintervals, and the decision process
is performed independently for balls in each subinterval. For the first subinterval
(holding the smallest weights), we use a weighted one-choice process, while for
the other subintervals, we use an unweighted two-choice process.

The point of this construction is that its analysis reduces to the analysis
of the weighted one-choice process, and the unweighted two-choice process, for
which powerful analytical techniques are known. We leverage those techniques
to show that L2C achieves the desired distribution-free guarantees on the load of
the most loaded bin. In practice, what this means is that we have an allocation
algorithm that, for most intents and purposes, behaves like a weighted variant
of two-choice allocation, and for which updates and distribution-free guarantees
can be obtained relatively painlessly.

The LayeredSSE scheme is obtained by adding a layer of encryption and key
management on top of L2C, using standard techniques from the SSE literature,
although some care is required for updates. We refer the reader to Sect. 5 for
more details.

2.2 Generic Local Transform

At Crypto 2018, Asharov et al. identified two main paradigms for building local
SSE [ASS18]. The first is the allocation paradigm, which typically uses variants of
multiple-choice allocation schemes, or cuckoo hashing. The second is the pad-and-
split approach. The main difficulty of memory-efficient SSE is to pack together
lists of different sizes. The idea of the pad-and-split approach is to store lists
separately according to their size, which circumvents the issue. The simplest
way to realize this is to pad all lists length to the next power of 2. This yields
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logN possible values for list lengths. All lists of a given length can be stored
together using, for instance, a standard hash table. Since we do not want to
reveal the number of lists of each length, the hash table at each level needs to
be dimensioned to be able to receive the entire database. As a result, a basic
pad-and-split scheme has storage efficiency O(logN), but easily achieves O(1)
locality and read efficiency.

For the Generic Local Transform, we introduce the notion of Overflowing
SSE (OSSE). An OSSE behaves like an SSE scheme in all aspects, except that,
during its setup and during updates, it may refuse to store some list elements.
Such elements are called overflowing. An OSSE is intended to be used as a
subcomponent within an overarching SSE construction. The OSSE scheme is
used to store part of the database, while overflowing elements are stored using
a separate mechanism. The notion of OSSE was not formalized before, but in
hindsight, the use of OSSE may be viewed as implicit in several existing con-
structions [DPP18,ASS18,BBF+21]. We choose to introduce it explicitly here
for ease of exposition.

We are now in a position to explain the Generic Local Transform. The chief
limitation of the pad-and-split approach is that it creates a logN overhead in
storage. The high-level idea of the Generic Local Transform, then, is to use an
OSSE to store all but a fraction 1/logN of the database. Then a pad-and-split
variant is used to store the N/logN overflowing elements. The intent is to benefit
from the high efficiency of the pad-and-split approach, without having to pay
for the logN storage overhead.

There is, however, a subtle but important issue with that approach. A given
list may be either entirely stored within the OSSE scheme, or only partially
stored, or not stored at all. In the OSSE scheme that we will later use (as well
as OSSEs that were implicit in prior work), those three situations should be
indistinguishable to the server, or else security breaks down. To address that
issue, we proceed as follows.

Let us assume all lists have been padded to the next power of 2. For the
pad-and-split part of the construction, we create logN SSE instances, one for
each possible list size. We call each of these instances a layer. The overflowing
elements of a list of size � will be stored in the layer that handles lists of size �,
regardless of how many elements did overflow from the OSSE for that list.

The OSSE guarantees that the total number of overflowing items is at most
n = O(N/logN). Thus, if we focus on the layer that handles lists of size �, the
layer will receive at most n elements. These elements will be split into lists of
size at most � (corresponding to the set of overflowing elements, for each list
of size � in the original database). To achieve storage efficiency O(S) overall,
we want the layer to store those lists using O(Sn) storage. To achieve read
efficiency R, the layer should also be able to retrieve a given list by visiting at
most R� memory locations. This is where everything comes together: an SSE
scheme satisfying those conditions is precisely a page-efficient SSE scheme with
page size �, storage efficiency S, and page efficiency R.
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The page-efficient scheme used for each layer is also required satisfy a few
extra properties: first, when searching for a list of size at most one page, the
length of the list should not be leaked. We call this property page-length-hiding.
(We avoid the term length-hiding to avoid confusion with volume-hiding SSE,
which fully hides lengths.) All existing page-efficient constructions have that
property. Second, we require the page-efficient scheme to have O(1) client stor-
age. All constructions in this article satisfy that property, but the construction
from [BBF+21] does not. Finally, we require the scheme to have locality O(1)
when fetching a single page. All existing page-efficient constructions have this
property. (The last two properties could be relaxed, at the cost of more com-
plex formulas and statements.) We call an SSE scheme satisfying those three
properties suitable.

Putting everything together, the Generic Local Transform takes as input a
suitable page-efficient scheme, with storage efficiency S and page efficiency P .
It outputs a local scheme with storage efficiency S + S′, read efficiency P + R′,
and locality L′, where S′, R′, and L′ are the storage efficiency, read efficiency,
and locality of the underlying OSSE. It remains to explain how to build a local
OSSE scheme with O(N/logN) overflowing items, discussed next.

2.3 ClipOSSE: An OSSE Scheme with O(N/log N) Overflowing
Items

At STOC 2016, Asharov et al. introduced so-called “2-dimensional” variants of
one-choice and two-choice allocation, for the purpose of building local SSE. The
one-choice variant works as follows. Consider an SSE database with N elements.
Allocate m = ˜O (N/logN) buckets, initially empty. For each list of length � in the
database, choose one bucket uniformly at random. The first element of the list is
inserted into that bucket. The second element of the list is inserted into the next
bucket (assuming a fixed order of buckets, which wraps around when reaching
the last bucket), the third one into the bucket after that, and so on, until all list
elements have been inserted. Thus, assuming � ≤ m, all list elements have been
placed into � consecutive buckets, one element in each. An analysis very similar
to the usual analysis of the one-choice process shows that with overwhelming
probability, the most loaded bucket receives at most τ = ˜O (logN) elements. To
build a static SSE scheme from this allocation scheme, each bucket is padded to
the maximal size τ and encrypted. Search queries proceed in the natural way.

Such a scheme yields storage efficiency O(1), locality O(1) (since retrieving
a list amounts to reading consecutive buckets), and read efficiency ˜O (logN)
(since retrieving a list of length � requires reading � buckets, each of size τ =
˜O (logN)). To build ClipOSSE, we start from the same premise, but “clip” buckets
at the threshold τ = ˜O (log logN). That is, each bucket can only receive up to
τ elements. Elements that cannot fit are overflowing.

In the standard one-choice process, where n balls are thrown i.i.d. into n bins,
it is not difficult to show that clipping bins at height τ = O(log log n) results
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in at most O(n/log n) overflowing elements with overwhelming probability. In
fact, by adjusting the multiplicative constant in the choice of τ , the number of
overflowing elements can be made O(n/logdn) for any given constant d. We show
that a result of that form still holds for (a close variant of) the 2-dimensional
one-choice process outlined earlier. The result is conditional: it requires that the
maximum list size is O(N/polylog N). (A condition of that form is necessary,
insofar as the result fails when the maximum list size gets close to N/logN .)
The proof of the corresponding theorem is the most technically challenging part
of this work, and relies on the combination of a convexity argument with a
stochastic dominance argument. An overview of the proof is given in Sect. 6.5,
so we omit more discussion here.

In the end, ClipOSSE achieves storage efficiency O(1), locality O(1), and read
efficiency O(log logN), with O(N/logdN) overflowing elements (for any fixed
constant d of our choice), under the condition that the maximum list size is
O(N/polylog N). All applications of the Generic Local Transform in this article
use ClipOSSE as the underlying OSSE. (That is why we write Local[PE-SSE] for
the Generic Local Transform applied to the page-efficient scheme PE-SSE, and
do not put the underlying OSSE as an explicit parameter.)

2.4 Dynamic Local SSE with ˜O (log log N) Overhead

By using the Generic Local Transform with ClipOSSE as the underlying OSSE,
and LayeredSSE as the page-efficient scheme, we obtain Local[LayeredSSE]. The
Local[LayeredSSE] scheme has storage efficiency O(1), locality O(1), and read
efficiency ˜O (log logN). This result follows from the main theorem regarding the
Generic Local Transform, and does not require any new analysis.

Local[LayeredSSE] is a conditional scheme: it requires that the longest list
is of length O(N1−1/log log λ). The reason is subtle. ClipOSSE by itself has a
condition that the longest list is O(N/polylog N), which is less demanding.
The reason for the condition comes down to the fact that LayeredSSE only
achieves a negligible probability of failure as long as the number of pages in
the scheme is at least Ω(λ1/log log λ). More generally, the same holds for the
number of bins in two-choice allocation processes in general, even the standard,
unweighted process. The condition is optimal: [ASS21] shows that any sublog-
arithmic “allocation-based” scheme must be conditional, and gives a bound on
the condition. Local[PE-SSE] matches that bound.

2.5 Unconditional Static Local SSE with O(logεN) Overhead

The (static) Tethys scheme from [BBF+21] achieves storage efficiency O(1) and
page efficiency O(1) simultaneously. It is also page-length-hiding. Since we have
the Generic Local Transform at our disposal, it is tempting to apply it to Tethys.
There is, however, one obstacle: Tethys uses ω(plog λ) client memory, in order to
store a stash on the client side. For the Generic Local Transform, we need O(1)



Dynamic Local Searchable Symmetric Encryption 103

client memory. To reduce the client memory of Tethys, a simple idea is to store
the stash on the server side. Naively, reading the stash for every search would
increase the page efficiency to ω(log λ). To avoid this, we store the stash within
an ORAM.

For that purpose, we need an ORAM with a failure probability of zero: indeed,
since we may store as few as log λ elements in the ORAM, a correctness guarantee
of the form negl(n), where n = log λ is the number items in the ORAM, fails to
be sufficient (it is not negl(λ)). We also need the ORAM to have O(1) locality.
An ORAM with these characteristics was devised in [DPP18], motivated by the
same problem. The ORAM from [DPP18] achieves read efficiency O(n1/3+ε), for
any arbitrary constant ε > 0. It was already conjectured in [DPP18] that it could
be improved to O(nε). We build that variant explicitly, and name it LocORAM.
Roughly speaking, LocORAM is a variant of the Goldreich-Ostrovsky hierarchical
ORAM, with a constant number of levels.

By putting the stash of Tethys within LocORAM on the server side, we nat-
urally obtain a page-efficient SSE scheme OramTethys, with O(logελ) read effi-
ciency, suitable for use within the Generic Local Transform. This yields a static
local SSE for lists of size at most N/polylog N . To handle larger lists, borrow-
ing some ideas from [DPP18], we group lists by size, and use again OramTethys
to store them. In the end, we obtain an unconditional SSE with O(1) store
efficiency, O(1) locality, and O(logελ) read efficiency.

Comparing with the O(log2/3+ελ) construction from [DPP18], we note that
the bottleneck of their construction comes from the allocation schemes the
authors use for what they call “small” and “medium” lists. This is precisely
the range where we use Local[OramTethys]. Our construction essentially removes
that bottleneck, so that the O(logελ) read efficiency bottlneck now comes entirely
from the ORAM component. A detailed description of the scheme is given in the
full version.

3 Preliminaries

Let λ ∈ N be the security parameter. For a probability distribution X, we denote
by x ← X the process of sampling a value x from the distribution. Further, we
say that x is We denote by [a, b]R the interval {x ∈ R | a ≤ x ≤ b} and extend
this naturally to intervals of the form [a, b)R, (a, b]R, (a, b)R.

3.1 Symmetric Searchable Encryption

A database DB = {wi, (id1, . . . , id�i
)}W

i=1 is a set of keyword-identifier pairs with
W keywords. We assume that each keyword wi is represented by a machine word
of O(λ) bits. We write DB(wi) = (id1, . . . , id�i

) for the list of identifiers matching
wi. Throughout the article, we set N =

∑W
i=1 �i and define p as the page size

(which we treat as a variable, independent of the size of the database N).
A dynamic searchable symmetric encryption scheme Σ is a 4-tuple of PPT

algorithms (KeyGen,Setup,Search,Update) such that
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– Σ.KeyGen(1λ): Takes as input the security parameter λ and outputs client
secret key K.

– Σ.Setup(K, N,DB): Takes as input the client secret key K, an upper bound
on the database size N and a database DB. Outputs encrypted database EDB
and client state st.

– Σ.Search(K, w, st;EDB): The client receives as input the secret key K, keyword
w and state st. The server receives as input the encrypted database EDB.
Outputs some data d and updated state st′ for the client. Outputs updated
encrypted database EDB′ for the server.

– Σ.Update(K, (w,L), op, st;EDB): The client receives as input the secret key
K, a pair (w,L) of keyword w and list L of identifiers, an operation op ∈
{del, add} and state st. The server receives as input the encrypted database
EDB. Outputs updated state st′ for the client. Outputs updated encrypted
database EDB′ for the server.

In the following, we omit the state st and assume that it is implicitly stored and
updated by the client. We say that Σ is static, if it does not provide an Update
algorithm. Further, we assume that the keyword w is preprocessed via a PRF by
the client, whenever the client sends w to the server in either Search or Update.
This ensures that the server never has access to w in plaintext and unqueried
keywords are distributed uniformly random in the view of the server.

Intuitively, the client uses Setup to encrypt and outsource a database DB to
the server. Then, the client can search keywords w using Search and receives
the list of matching identifiers DB(w) from the server. The list DB(w) can be
updated via Update, provided that the size of the database stays below N . Note
that we allow the client to add (or delete) multiple identifiers at once for a single
keyword (which is required for the Generic Local Transform Sect. 6).

Security. We now define correctness and semantic security of SSE. Intuitively,
correctness guarantees that a search always retrieves all matching identifiers
and semantic security guarantees that the server only learns limited information
(quantified by a leakage function) from the client.

Definition 1 (Correctness). A SSE scheme Σ is correct if for all databases
DB and N ∈ N, keys K ← Σ.KeyGen(1λ), EDB ← Σ.Setup(K,DB) and sequences
of search, add or delete queries S, the search protocol returns the correct result
for all queries of the sequence, if the size of the database remains at most N .

We use the standard semantic security notion for SSE (see [CGKO06]). Secu-
rity is parameterized by a leakage function L = (LStp,LSrch,LUpdt), composed
of the setup leakage LStp, the search leakage LSrch, and the update leakage
LUpdt. We define two games, SSEReal and SSEIdeal. First, the adversary
chooses a database DB. In SSEReal, the encrypted database EDB is generated
by Setup(K, N,DB), whereas in SSEIdeal the encrypted database is simulated
by a (stateful) simulator Sim on input LStp(DB, N). After receiving EDB, the
adversary issues search and update queries. All queries are answered honestly in
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SSEReal. In SSEIdeal, the search queries on keyword w are simulated by Sim
on input LSrch(w), and update queries for operation op, keyword w and identi-
fier list L are simulated by Sim on input LUpdt(op, w, L). Finally, the adversary
outputs a bit b.

We write SSEReal
adp and SSEIdeal

adp if the queries of the adversary
were chosen adaptively, i.e. dependant on previous queries. Similarly, we write
SSEReal

sel and SSEIdeal
sel if the queries are chosen selectively by the adver-

sary, i.e. sent initially in conjunction with the database before receiving EDB.

Definition 2 (Semantic Security). Let Σ be a SSE scheme and L = (LStp,
LSrch,LUpdt) a leakage function. Scheme Σ is L-adaptively secure if for all PPT
adversaries A, there exists a PPT simulator Sim such that

|Pr[SSEReal
adp
Σ,A(λ) = 1] − Pr[SSEIdealadpΣ,Sim,L,A(λ) = 1]| = negl(λ).

Similarly, scheme Σ is L-selectively secure if for all PPT adversaries A, there
exists a PPT simulator Sim such that

|Pr[SSEReal
sel
Σ,A(λ) = 1] − Pr[SSEIdealselΣ,Sim,L,A(λ) = 1]| = negl(λ).

Intuitively, semantic security guarantees that the interaction between client
and server reveals no information to the server, except the leakage of the given
query. The schemes from this article have common leakage patterns. We use the
standard notions of query pattern qp and history Hist from [Bos16] to formalize
this leakage: (1) The query pattern qp(w) for a keyword w are the indices of
previous search or update queries for keyword w. (3) The history Hist(w) is
comprised of the list of identifiers matching keyword w that were inserted during
setup and the history of updates on keyword w, that is each deleted and inserted
identifier. We can retrieve the number �i of inserted identifiers and the number
di of deleted identifiers from Hist(w) for each keyword.

We define two leakage patterns we use throughout the article. (1) We define
page-length hiding leakage Llen-hid. We set Llen-hid = (Llen-hid

Stp ,Llen-hid
Srch ,Llen-hid

Updt ),
where the setup leakage is Llen-hid

Stp (DB, N) = N is the maximal size N of the
database, the search leakage Llen-hid

Srch (w) = (qp, ��i/p� , �di/p�) is the query pat-
tern and the number of pages required to store the inserted and deleted items,
and the update leakage Llen-hid

Updt (op, w, L) = (op, qp, �(�i + |L|)/p� , �(di + |L|)/p� ,
��i/p� , �di/p�) is the operation, the query pattern and the number of pages
required to store the inserted and deleted items (before and after the update)1.
(2) Similarly, we define length reveiling leakage Llen-rev. We set Llen-rev = (Llen-rev

Stp ,

Llen-rev
Srch ,Llen-rev

Updt ) with Llen-rev
Stp (DB, N) = N , Llen-rev

Srch (w) = (qp, |L′|, �i, di) and lastly
Llen-rev
Updt (op, w, L′) = (op, qp, |L′|, �i, di).

We will use Llen-hid and Llen-rev for both dynamic and static schemes. When we
say that a static scheme is L-semantically secure, for L ∈ {Llen-hid,Llen-rev}, we
1 Note that we allow for inserting more than one identifier per keyword in a single

update operation in this work. Thus, the server will also learn (limited) information
about the number |L| of added or deleted identifiers.
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simply ignore the update leakage. Note that both leakage patterns, Llen-hid and
Llen-rev, have standard setup and search leakage, common in most SSE schemes.
The update leakage of Llen-hid and Llen-rev is similar to their search leakage, and
reveals nothing about unqueried keywords. While the update leakage is not for-
ward secure, similar leakage patterns are commonly considered in literature, for
example [CJJ+14]. We hope our techniques pave the way for future work on
dynamic schemes with forward security and memory efficiency.

Efficiency Measures. We recall the notions of locality, storage efficiency and
read efficiency [CT14], and page efficiency [BBF+21] (and extend them to the
dynamic SSE setting in a natural manner). In the following definitions, we set
K ← KeyGen(1λ) and EDB ← Setup(K, N,DB) given database DB and upper
bound N on the number of document identifiers. Also, S = (opi, ini)si=1 is a
sequence of search and update queries, where opi ∈ {add, del,⊥} is a operation
and ini = (opi, wi, Li, sti,EDBi) its input. Here, wi is a keyword and Li is a
(added or deleted) list of identifiers, and after executing all previous operations
opj for j ≤ i, sti is the client state and EDBi the encrypted database. We denote
by DBi the database after i operations. We assume that the total number of
identifiers never exceeds N . (If opi = ⊥, the query is a search query and Li is
empty.)

Definition 3 (Read Pattern). Regard server-side storage as an array of mem-
ory locations, containing the encrypted database EDB. When processing search
query Search(K, wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi),
the server accesses memory locations m1, . . . ,mh. We call these locations the
read pattern and denote it with RdPat(opi, ini).

Definition 4 (Locality). A SSE scheme has locality L if for any λ, DB, N ,
sequence S, and any i, RdPat(opi, ini) consists of at most L disjoint intervals.

Definition 5 (Read Efficiency). A SSE scheme has read efficiency R if for
any λ, DB, N , sequence S, and any i, |RdPat(opi, ini)| ≤ R · P , where P is the
number of memory locations needed to store all (added and deleted) document
indices matching keyword wi in plaintext (by concatenating indices).

Definition 6 (Storage Efficiency). A SSE scheme has storage efficiency E
if for any λ, DB, N , sequence S, and any i, |EDBi| ≤ E · |DBi|.
Definition 7 (Page Pattern). Regard server-side storage as an array of pages,
containing the encrypted database EDB. When processing search query Search(K,
wi, sti;EDBi) or update query Update(K, (wi, Li), opi, sti;EDBi), the read pattern
RdPat(opi, ini) induces a number of page accesses p1, . . . , ph′ . We call these pages
the page pattern, denoted by PgPat(opi, ini).

Definition 8 (Page Cost). A SSE scheme has page cost aX + b, where a, b
are real numbers, and X is a fixed symbol, if for any λ, DB, N , sequence S, and
any i, |PgPat(opi, ini)| ≤ aX+b, where X is the number of pages needed to store
document indices matching keyword wi in plaintext.
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Definition 9 (Page Efficiency). A SSE scheme has page efficiency P if for
any λ, DB, N , sequence S, and any i, |PgPat(opi, ini)| ≤ P · X, where X is
the number of pages needed to store document indices matching keyword wi in
plaintext.

4 Layered Two-Choice Allocation

In this section, we describe layered two-choice allocation (L2C), a variant of two-
choice allocation that allows to allocate n weighted balls (bi, wi) into m bins,
where bi is a unique identifier and wi ∈ [0, 1]R is the weight of the ball. (We often
write ball bi for short.) First, let 1 ≤ δ(λ) ≤ log (λ) be a function. We denote by
w =

∑n
i=1 wi the sum of all weights and set m = w/(δ(λ)log logw). We will later

choose δ(λ) = o(log log λ) such that allocation has negligible failure probability.
In the overview, we set δ(λ) = 1 and assume that m = Ω(λ) for simplicity (which
suffices for negligible failure probability).

Overview of L2C. L2C is based on both weighted one-choice allocation (1C)
and unweighted two-choice allocation (2C). On a high level, we split the set of
possible weights [0, 1]R into log logm subintervals

[0, 1/logm]R, (1/logm, 2/logm]R, . . . , (2log log m−1/logm, 1]R.

In words, the first interval is of size 1/logm and the boundaries between intervals
grow by a factor 2 every time. We will allocate balls with weights in a given
subinterval independently from the others.

Balls in the first subinterval have weights wi ≤ logm and are thus small
enough to apply weighted 1C. Intuitively, this suffices because one-choice (prov-
ably) performs worst for uniform weights of maximal size 1/logm. In that
case, there are at most n′ = wlogm balls and we expect a bin to contain
n′/m = logm · log logw balls of uniform weight, since m = w/(log logw). As
each ball has weight 1/logm, the expected load per bin is log logw. This trans-
lates to a O(log logw) bound with overwhelming probability after applying a
Chernoff’s bound.

For the other intervals, applying unweighted and independent 2C per interval
suffices, as the weights of balls differ at most by a factor 2 and there are only
log logm intervals. More concretely, let ni be the number of balls in the i-th
subinterval Ai = (2i−1/logm, 2i/logm]R for i ∈ {1, . . . , log logm}. Balls with
weights in subinterval Ai fill the bins with at most O(ni/m + log logm) balls,
independent of other subintervals. Note that we are working with small weights,
and thus potentially have ω(m) balls. Thus, we need to extend existing 2C results
to negligible failure probability in m for the heavily-loaded case. As there are
only log logm subintervals, and balls in interval Ai have weight at most 2i/logm,
we can just sum the load of each subinterval and receive a bound

log log m
∑

i=1

2i

logm
O(ni/m + log logm) = O(w/m + log logm).
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In total, we have O(w/m + log logm) = O(log logw) bounds for the first and
the remaining intervals. Together, this shows that all bins have load at most
O(log logw) after allocating all n items. This matches the bound of standard 2C
with unweighted balls if m = Ω(λ). For our SSE application, we want to allow
for negligible failure probability with the least number of bins possible. We can
set δ(λ) = log log log (λ) and obtain a bin size of ˜O (log logw) with overwhelming
probability, if m = w

δ(λ)log log w . The analysis is identical in this case.

Handling Updates. The described variant of L2C is static. That is, we have
not shown a bound on the load of the most loaded bin if we add balls or update
the weight of balls. Fortunately, inserts of new balls are trivially covered by
the analysis sketched above, if m was chosen large enough initially in order to
compensate for the added weight. Thus, we assume there is some upper bound
wmax on the total weights of added balls which is used to initially set up the
bins. We can also update weights if we proceed with care.

For this, let bi be some ball with weight wold. We want to update its weight to
wnew > wold. If wold and wnew reside in the subinterval, we can directly update the
weight of bi, as L2C ignores the concrete weight of balls inside a given subinterval
for the allocation. Indeed, in the first interval, the bin in which bi is inserted is
determined by a single random choice, and for the remaining subintervals, the 2C
process only considers the number of balls inside the same subinterval, ignoring
concrete weights.

When wnew is larger than the bounds of the current subinterval, we need to
make sure that the ball is inserted into the correct bin of its two choices. For
this, the ball bi is inserted into the bin with the lowest number of balls with
weights inside the new subinterval. Even though the bin of bi might change in
this process, we still need to consider bi as a ball of weight wold in the old bin
for subsequent ball insertions in the old subinterval. Thus, we mark the ball
as residual ball but do not remove it from its old bin. That is, we consider it
as ball of weight wold for the 2C process but assume it is not identified by bi

anymore. As there are only log logm different subintervals, storing the residual
balls has a constant overhead. The full algorithm L2C is given in Algorithm 1.
We parameterize it by a hash function H mapping uniformly into {1, . . . , m}2.
The random bin choices of a ball bi are given by α1, α2 ← H(bi).

Load Analysis of L2C. Let either δ(λ) = 1 or δ(λ) = log log log λ and m
sufficiently large such that m−Ω(δ(λ)log log w) = negl(λ). (Note that this is the
probability that allocation of 1C and 2C fails.)

We need to show that after setup and during a (selective) sequence of oper-
ations, the most loaded bin has a load of at most O(δ(λ)log logwmax), where
wmax is an upper bound on the total weight of the inserted balls. We sketch
the proof here and refer to the full version for further details. First, we mod-
ify the sequence S such that we can reduce the analysis to only (sufficiently
independent) L2C.InsertBall operations, while only increasing the final bin load
by a constant factor. This is constant factor of the load is due to the additional
weight of residual balls. Then, we analyze the load of the most loaded bin for the
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each subinterval independently. This boils down to an analysis of a 1C process
in the first subinterval and a 2C process in the remaining subintervals as in the
overview of L2C (see Sect. 4). Summing up the independent bounds yields the
desired result.

Theorem 1. Let either δ(λ) = 1 or δ(λ) = log log log λ. Let wmax = poly(λ)
and m = wmax/(δ(λ)log logwmax). We require that m = Ω(λ

1
log log λ ) if δ(λ) =

log log log λ or m = Ω(λ) otherwise. Let {(bi, wi)ni=1} be balls with (pair-wise
unique) identifier bi and weight wi ∈ [0, 1]. Further, let S = (opi, ini)s+n

i=n+1 be a
sequence of s insert or update operations opi ∈ {L2C.InsertBall, L2C.UpdateBall}
with input ini = (bi, wi, Bαi,1 , Bαi,2) for inserts and ini = (bi, oi, wi, Bαi,1 , Bαi,2)
for updates. Here, bi denotes the identifier of a ball with weight wi and old weight
oi ≤ wi before the execution of opi. Also, the bins are chosen via αi,1, αi,2 ←
H(bi).

Execute (Bi)mi=1 ← L2C.Setup({(bi, wi)ni=1}) and the operations opi(ini) for
all i ∈ [n + 1, n + s]. We require that

∑n+s
i=1 wi − oi ≤ wmax, i.e. the total weight

after all operations is at most wmax.
Then it holds that throughout the process, the most loaded bin of B1, . . . , Bm

has at most load O(δ(λ)log logwmax) except with negligible probability, if H is
modeled as a random oracle.

5 Dynamic Page Efficient SSE

We introduce the SSE scheme LayeredSSE based on L2C. Essentially, we interpret
lists Li of identifiers matching keyword wi as balls of a certain weight. Then, we
use L2C to manage the balls in m encrypted bins, where each bin corresponds
to a memory page, yielding page efficiency ˜O (log logN/p) and constant storage
efficiency. Let N be the maximal size of the database, p ≤ N1−1/log log λ be
the page size2 and H be a hash function mapping into {1, . . . ,m}2 for m =
�wmax/(log log log λ · log logwmax)� and wmax = N/p. Due to space limitations,
we assume that each keyword has at most p associated keywords, and outline
the scheme and its security analysis. We refer to the full version for details
(without restrictions on the database3).

For convenience, we adapt the notation of L2C to lists of identifiers. A ball
(w,L) of weight |L|/p ∈ [0, 1]R is a list of (at most p) identifiers matching
keyword w. The 2 bin choices α1, α2 for ball (w,L) are given via (α1, α2) ← H(w).
Now, L2C.Setup takes input balls {(wi, Li)}W

i=1 and maximal weight wmax, and
allocates them as before into m bins. L2C.InsertBall receives ball (w,L) and two
bins (Bα1 , Bα2), and inserts (w,L) into either bin Bα1 or bin Bα2 as before.

2 This condition is needed for the requirement m ≥ λ1/log log λ of L2C which guarantees
negligible failure probability (see Theorem 1). In practice, we have p � N .

3 For arbitrary lists sizes, we can split lists into sublists of size at most p and deal
with each sublist separately as before. Some care has to be taken, for example with
the random choices of the bins, but details are mostly straightforward.
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Algorithm 1. Layered 2-Choice Allocation (L2C)
L2C.Setup({(bi, wi)}n

i=1, wmax)

1: Receive n balls (bi, wi), and maximal total weight wmax

2: Initialize m = �wmax/(δ(λ)log logwmax)� empty bins B1, ..., Bm

3: for all i ∈ {1, . . . , n} do
4: Set α1, α2 ← H(bi)
5: InsertBall(bi, wi, Bα1 , Bα2)

6: Return B1, ..., Bm

L2C.InsertBall(bnew, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 , and ball (bnew, wnew)
2: Assert that α1, α2 are the choices given by H(bnew)
3: Split the set of possible weights [0, 1]R into log logm sub-intervals

[0, 1/logm]R, (1/logm, 2/logm]R, ..., (2log log m−1/logm, 1]R

4: Choose k ∈ N minimal such that wnew ≤ 2k/logm
5: if k = 1 then
6: Set α ← α1

7: else
8: Let Bα be the bin with the least number of balls of weight in

(

2k−1

log m
, 2k

log m

]

R

among Bα1 and Bα2

9: Insert ball bnew into bin Bα

L2C.UpdateBall(bold, wold, wnew, Bα1 , Bα2)

1: Receive bins Bα1 , Bα2 that contain ball (bold, wold), and new weight wnew ≥ wold

2: Assert that α1, α2 are the choices given by H(bold)

3: if wold, wnew ∈
(

2k−1

log m
, 2k

log m

]

R

for some k then
4: Update the weight of bold to wnew directly
5: else
6: Mark bold as residual ball (it is still considered as a ball of weight wold)
7: InsertBall(bold, wnew, Bα1 , Bα2)

L2C.UpdateBall receives old ball (w,L), identifiers L′ and bins (Bα1 , Bα2), and
updates ball (w,L) to ball (w,L ∪ L′) as before, while merging both identifier
lists L and L′. (The weight of the updated ball is |L ∪ L′|/p ∈ [0, 1]R.)

5.1 LayeredSSE

We describe LayeredSSE, focusing on insert operations. In the full version, we
describe LayeredSSE in more detail, and show how to treat arbitrary list sizes,
introduce delete operations and show how to obtain updates in 1 RTT. A detailed
description of LayeredSSE is given in Algorithm 2.

Setup. To setup the initial database DB = (w,Li)Wi=1, given upperbound N
on the number of keyword-identifiers, allocate the balls (w,Li) into m bins via
L2C. Next, each bin is filled up to maximal size p · clog log log (λ)log log (N/p),
for some constant c. Finally, the encrypted bins are output.
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Search. During a search operation on keyword w, the client retrieves
encrypted bins Bα1 , Bα2 for (α1, α2) ← H(w) from the server.

Update. During an update operation to add identifier list L′ to keyword w,
the client retrieves Bα1 , Bα2 , decrypts both bins and retrieves ball (w,L) from
the corresponding bin Bα ∈ {Bα1 , Bα2}. Then, she calls L2C.UpdateBall with
old ball (w,L), new identifiers L′ and bins Bα1 , Bα2 to insert the new identifiers
L′ into one of the bins. Finally, she reencrypts the bins and sends them to the
server. The server then replaces the old bins with the updated bins.

Algorithm 2. LayeredSSE
Global parameters: constant c ∈ N, page size p

LayeredSSE.KeyGen(1λ)

1: Sample KEnc for Enc with input 1λ

2: return K = KEnc

LayeredSSE.Setup(K, N,DB)

1: Set τ ← p · clog log log (λ)log log (N/p)

2: Sample bins B1, ..., Bm via L2C.Setup
with input ({(wi,DB(wi))}W

i=1, N/p)
3: Fill B1, ..., Bm up to size τ with zeros
4: Set Benc

i ← EncKEnc
(Bi) for i ∈ [1, m]

5: return EDB = (Benc
1 , ..., Benc

m )

LayeredSSE.Search(K, w;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1
, Benc

α2

LayeredSSE.Update(K, (w, L′), add;EDB)
Client:
1: return w

Server:
1: Set α1, α2 ← H(w)

2: return Benc
α1

, Benc
α2

Client:
1: Set Bαi ← DecKEnc

(Benc
αi

) for i ∈ {1, 2}
2: Retrieve ball (w, L) from Bα for appro-

priate α ∈ {α1, α2}
3: Run L2C.UpdateBall((w, L), L′, Bα1 , Bα2 )

4: Set Bnew
αi

← EncKEnc
(Bαi) for i ∈ {1, 2}

5: return Bnew
α2

, Bnew
α2

Server:
1: Replace Benc

αi
with Bnew

αi
for i ∈ {1, 2}

5.2 Security and Efficiency

Correctness. LayeredSSE is correct as each keyword has two bins that contain its
identifiers associated to it (and these bins are consistently retrieved and updated
with L2C). If the hash function is modeled as a random oracle, the bin choices
are uniformly random and Theorem 1 guarantees that bins do not overflow.

Selective Security. LayeredSSE is selectively secure and has standard setup leak-
age N , such as search and update leakage qp, where qp is the query pat-
tern4. This can be shown with a simple hybrid argument, sketched here. For
setup, the simulator Sim receives N , recomputes m and initializes m empty
bins B1, . . . , Bm of size p · clog log log (λ)log log (N/p) each. Sim then outputs
EDB′ = (EncK′

Enc
(Bi)mi=1) for some sampled key K′

Enc. As Enc is IND-CPA secure
(and bins do not overflow in the real experiment except with negligible proba-
bility), the output EDB′ is indistinguishable from the output of Setup in the real

4 This is equivalent to page length hiding leakage Llen-hid, as we only restrict ourselves
to lists of size at most p.
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experiment. For a search query on keyword w, Sim checks the query pattern qp
whether w was already queried. If w was not queried before, Sim a new uniformly
random keyword w′. Otherwise, Sim responds with the same keyword w′ from
the previous query. As we assume that keywords are preprocessed by the client
via a PRF, the keywords w and w′ are indistinguishable. For an update query
on keyword w, the client output in the first flow is the same as in a search query
and thus, Sim can proceed as in search. For the second flow, Sim receives two
bins Bα1 , Bα2 from the adversary, directly reencrypts them and sends them back
to the adversary. This behaviour is indistinguishable, as the bins are encrypted
and again, bins do not overflow except with negligible probability.

Adaptive Security. For adaptive security, the adversary can issue search and
update queries that depend on previous queries. As Theorem 1 assumes selec-
tively chosen InsertBall and UpdateBall operations, there is no guarantee that
bins do not overflow anymore in the real game. Thus, the adversary can poten-
tially distinguish update queries of the simulated game from real update queries
if she manages to overflow a bin in the real game, as she would receive bins with
increased size only in latter case. Fortunately, we can just add a check in Update
whether one of the bins overflows after the L2C.UpdateBall operation. In that
case, the client reverts the update and send back the (reencrypted) original bins.
Now, Theorem 1 still guarantees that bins overflow only with negligible proba-
bility after Setup and we can show that the simulated game is indistinguishable
from the real game as before. Note that LayeredSSE is still correct after this
modification, since updates that lead to overflows cannot occur by accident, but
only if the client systemically adapts the choice of updates to the random coins
used during previous update operations (see Theorem 1).

Note that when the client remarks that a bin overflowed in an Update in a
real world environment, this is due malicious Update operations. The client can
adapt his reaction accordingly, whereas the server learns no information about
the attack without being notified by the client. We can show that LayeredSSE
with the adjustment of Update is correct and Llen-hid-adaptively secure. The same
simulator Sim suffices and we omit the details.

Efficiency. LayeredSSE has constant storage efficiency, as the server stores m =
⌈

(N/p)/(log log log λ · log log N
p )

⌉

bins of O(plog log log λ · log log N
p ) identifiers

each. There is no client stash required. Each search and update query, the server
looks up 2 bins, and thus LayeredSSE has ˜O (log log (N/p)) page efficiency. Note
that LayeredSSE has O(1) locality if only lists up to size p are inserted.

Extensions. With some care, LayeredSSE can handle deletes and arbitrary lists
(without sacrificing security and efficiency). We refer to the full version for more
details. The results are formalized in Theorem 2.

Theorem 2 (LayeredSSE). Let N be an upper bound on the size of database
DB and p ≤ N1−1/log log λ be the page size. The scheme LayeredSSE is correct and
Llen-hid-adaptively semantically secure if Enc is IND-CPA secure and H is modeled
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as a random oracle. It has constant storage efficiency and ˜O (log logN/p) page
efficiency. If only lists up to size p are inserted, LayeredSSE has constant locality.

6 The Generic Local Transform

In this section, we define the Generic Local Transform (GLT), creating a link
between the two IO-efficiency goals of locality and page efficiency. Namely, the
GLT builds an SSE scheme with good locality properties from an SSE scheme
with good page efficiency. For a page-efficient scheme to be used within the
GLT, it needs to have certain extra properties. We define such schemes as suit-
able page-efficient schemes in Sect. 6.1. Next, we introduce the useful notion of
overflowing SSE. The GLT is then obtained by combining an overflowing SSE
with a suitable page-efficient scheme. The OSSE we will use for that purpose,
ClipOSSE, is presented in Sect. 6.2. Finally, the GLT is built from the previous
components in Sect. 6.4. An overview of the correctness and security proofs is
provided in section Sect. 6.5. Full proofs are available in the full version.

6.1 Preliminaries

Suitable Page-Efficient SSE. The GLT will create many instances of the
underlying page-efficient scheme, each with a different page size. For that rea-
son, for the purpose of the GLT, we slightly extend the standard SSE inter-
face defined in Section Sect. 3: namely, Setup(K, N,DB, p) takes as an additional
parameter the page size p. In addition, recall that, in Sect. 3, we have allowed
the Update(K, (w,L), op, st;EDB) procedure to add a set of matching documents
K to a given keyword w in a single call. Note that S is allowed to be empty, in
which case nothing is added.

If a scheme instantiates that interface, and, in addition, satisfies the following
three conditions, we will call such as scheme a suitable page-efficient SSE.

– The scheme has client storage O(1).
– The scheme has locality O(1) during searches and updates when accessing a

list of length at most one page.
– The leakage of the scheme is page-length-hiding.

Overflowing SSE. We introduce the notion of Overflowing SSE. An Overflow-
ing SSE (OSSE) has the same interface and functionality as a standard SSE
scheme, except that during a Setup or Update operation, it may refuse to store
some document identifiers. Those identifiers are called overflowing. At the out-
put of the Setup and Update operations, the client returns the set of overflowing
elements. Compared to standard SSE, the correctness definition is relaxed in the
following way: during a Search, only matching identifiers that were not overflow-
ing need to be retrieved.

The intention of an Overflowing SSE is that it may be used as a component
within a larger SSE scheme, which will store the overflowing identifiers using
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a separate mechanism. The use of an OSSE may be regarded as implicit in
some prior SSE constructions. We have chosen to introduce the notion explicitly
because it allows to cleanly split the presentation of the Generic Local Transform
into two parts: an OSSE scheme that stores most of the database, and an array
of page-efficient schemes that store the overflowing identifiers.

6.2 Dynamic Two-Dimensional One-Choice Allocation

The first component of the Generic Local Transform is an OSSE scheme,ClipOSSE.
In line with prior work, we split the presentation of ClipOSSE into two parts: an
allocation scheme, which specifies where elements should be stored; and the SSE
scheme built on top of it, which adds a layer of encryption, key management, and
other mechanisms needed to convert the allocation scheme into a full SSE.

The allocation scheme within ClipOSSE is called 1C-Alloc. Similar to
[ANSS16], the allocation scheme is an abstract construct that defines the mem-
ory locations where items should be stored, but does not store anything itself. In
the case of 1C-Alloc, items are stored within buckets, and the procedures return
as output the indices of buckets where items should be stored. From the point
of view of 1C-Alloc, each bucket has unlimited storage. In more detail, 1C-Alloc
contains two procedures, Fetch and Add.

– Fetch(m,w, �): given a number of buckets m, a keyword w, and a list length �,
Fetch returns (a superset of) the indices of buckets where elements matching
keyword w may be stored, assuming there are � such elements.

– Add(m,w, �): given the same input, Add returns the index of the bucket where
the next element matching keyword w should be inserted, assuming there are
currently � matching elements.

The intention is that Add is used during an SSE Update operation, in order
to choose the bucket where the next list element is stored; while Fetch is used
during a Search operation, in order to determine the buckets that need to be
read to retrieve all list elements. 1C-Alloc will satisfy the correctness property
given in Definition 10. Note that the number of buckets m is always assumed to
be a power of 2.

Definition 10 (Correctness). For all m, w, �, if m is a power of 2, then
⋃

0≤i≤�−1

Add(m,w, i) ⊆ Fetch(m,w, �).

To describe 1C-Alloc, it is convenient to conceptually group buckets into
superbuckets. For � = 2i ≤ m, an �-superbucket is a collection of � consecutive
buckets, with indices of the form k · �, k · � + 1, . . . , (k + 1) · � − 1, for some
k ≤ m/�. A 1-superbucket is the same as a bucket. Notice that for a given �, the
�-superbuckets do not overlap. They form a partition of the set of buckets. For
� > 1, each �-superbucket contains exactly two �/2-superbuckets.

Let H be a hash function, whose output is assumed to be uniformly random
in {1, . . . , m}. 1C-Alloc works as follows. Fix a keyword w and length � ≤ m
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(the case � > m will be discussed later). Let �′ = 2�log �� be the smallest power
of 2 larger than �. On input w and �, 1C-Alloc.Fetch returns the (unique) �′-
superbucket that contains H(w).

Algorithm 3. Dynamic Two-Dimensional One-Choice Allocation (1C-Alloc)
1C-Alloc.Fetch(m, w, �)

1: �′ ← 2�log ��

2: if �′ ≥ m then
3: return {0, ..., m − 1}
4: else
5: i ← 	H(w)/�′

6: return {�′ · i, ..., �′ · i + �′ − 1}

1C-Alloc.Add(m, w, �)

1: � ← � mod m
2: �′ ← 2�log (�+1)�

3: i ← 	H(w)/�′

4: if 	2H(w)/�′
 mod 2 = 0 then
5: return �′ · i + �
6: else
7: return �′ · i + � − �′/2

Meanwhile, 1C-Alloc.Add is designed in order to ensure that the first � suc-
cessive locations returned by Add for keyword w are in fact included within the
�′-superbucket above H(w) (that is, in order to ensure correctness). For the first
list element (when � = 0), Add returns the bucket H(w); for the second element,
it returns the other bucket contained inside the 2-superbucket above H(w). More
generally, if S is the smallest superbucket above H(w) that contains at least �+1
buckets, Add returns the leftmost bucket within S that has not yet received an
element. In practice, the index of that bucket can be computed easily based on
� and the binary decomposition of H(w), as done in Algorithm 3. (In fact, the
exact order in which buckets are selected by Add is irrelevant, as long as it selects
distinct buckets, and correctness holds.)

When the size of the list � grows above the number of buckets m, Fetch
returns all buckets, while Add selects the same buckets as it did for � mod m.

6.3 Clipped One-Choice OSSE

ClipOSSE is the OSSE scheme obtained by storing lists according to 1C-Alloc,
using m = O(N/log logN) buckets, with each bucket containing up to τ =
�αlog logN� items, for some constant α. Buckets are always padded to the
threshold τ and encrypted before being stored on the server. Thus, from the
server’s point of view, they are completely opaque. A table T containing (in
encrypted form) the length of the list matching each keyword w is also stored
on the server.

Given 1C-Alloc, the details of ClipOSSE are straightforward. A short overview
is given in text below. The encrypted database generated by Setup is essentially
equivalent to starting from an empty database, and populating it by making
repeated calls to Update, one for each keyword–document pair in the database.
For that reason, we focus on Search and Update. The full specification for Setup,
Search, and Update is given as pseudo-code in Algorithm 4.

Search. To retrieve the list of identifiers matching keyword w, ClipOSSE calls
1C-Alloc(m,w, �) to get the set of bucket indices where the elements matching
keyword w have been stored. The client retrieves those buckets from the server,
and decrypts them to obtain the desired information.
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Update. For simplicity, we focus on a the case where a single identifier is
added. The case of a set of identifiers can be obtained by repeating the process
for each identifier in the set. To add the new item to the list matching keyword w,
ClipOSSE calls 1C-Alloc(m,w, �) to determine the bucket where the new list item
should be inserted. The client retrieves that bucket from the server, decrypts it,
adds the new item, reencrypts the bucket, and sends it back to the server. If
that bucket was already full, the item is overflowing, in the sense of Sect. 6.1.

Algorithm 4. Clipped One-Choice OSSE (ClipOSSE)
Global parameters: constants d, α ∈ N

∗

ClipOSSE.KeyGen(1λ)

1: Generate keys K, KPRF for Enc, PRF
2: return K = (K, KPRF)

ClipOSSE.Setup(K, N,DB)

1: m ← 2�log (N/log log N)�

2: τ ← �αlog logN�
3: B0, ..., Bm−1, T,EDB, clip ← ∅

4: for all each (w, {e1, ..., e�}) in DB do
5: Kw ← PRFKPRF(w)
6: T [w] ← EncKw (�)
7: for all t from 1 to � do
8: C ← ∅

9: i ← 1C-Alloc.Add(m, w, t − 1)
10: if then|B[i]| < τ
11: B[i] ← B[i] ∪ {ei}
12: else
13: C ← C ∪ {ei}
14: if |S| > 0 then
15: clip ← clip ∪ (w, �, C)

16: Let BEnc[i] = EncK(Bi) for each i
17: return EDB = (T, (BEnc[i])), clip

ClipOSSE.Search(K, w, st;EDB)
Client: (search token)

1: send (w, Kw) = PRFKPRF(w)

Server:
1: � ← DecKw (T [w])
2: S ← 1C-Alloc.Fetch(m, w, �)
3: return {BEnc[i] : i ∈ S}

ClipOSSE.Update(K, (w, {e}), op, st;EDB)
Client: (update token)

1: send (w, Kw = PRFKPRF(w))

Server:
1: � ← DecKw (T [w])
2: i ← 1C-Alloc.Add(m, w, �)
3: send BEnc[i]

Client:
1: B ← DecK(BEnc[i])
2: if |B| < τ then
3: clip ← ∅

4: B ← B ∪ {e}
5: else
6: clip ← {e}
7: send B′ = EncK(B)

Server:
1: BEnc[i] ← B′

Client:
2: return clip

6.4 The Generic Local Transform

The Generic Local Transform takes as input a page-length-hiding page-efficient
SSE scheme PE-SSE. It outputs a local SSE scheme Local[PE-SSE].

To realize Local[PE-SSE], we use two structures. The first structure is an
instance of ClipOSSE, which stores most of the database. The second structure
is an array of nlevel instances of PE-SSE. The i-th instance, denoted PE-SSEi,
has page size 2i. The PE-SSEi instances are used to store elements that overflow



Dynamic Local Searchable Symmetric Encryption 117

from ClipOSSE. In addition, a table T stores (in encrypted form) the length of
the list matching keyword w, for each keyword5.

Fix a keyword w, matching � elements. Let �′ = 2�log �� be the smallest power
of 2 larger than �. Let i = log �′. At any point in time, the elements matching w
are stored in two locations: ClipOSSE, and PE-SSEi. Each of these two locations
stores part of the elements: ClipOSSE stores the elements that did not overflow,
and PE-SSEi stores the overflowing elements. Each element exists in only one
of the two locations. Again, for simplicity, we define updates for adding a single
identifier per keyword. The case of adding a set of identifiers at once can be
deduced by repeating the same process for each identifier in the set.

Algorithm 5. Generic Local Transform (Local[PE-SSE])
Global parameters: constant d ∈ N

∗

Local[PE-SSE].KeyGen(1λ)

1: Generate key KPRF for PRF
2: return K = (K, KPRF)

Local[PE-SSE].Update(K, (w, L);EDB)
Client: (update token)

1: send (w, L, Kw = PRFKPRF(w))

Server:
1: C ← ClipOSSE.Update(w, L)
2: � ← DecKw (T [w])
3: T [w] ← EncKw (� + 1)
4: send �

Client:
1: i ← �log ��
2: if �log �� = �log (� + 1)� then
3: PE-SSEi.Update(w, C)
4: else
5: S ← set of matches in

PE-SSEi.Search(w)
6: PE-SSEi+1.Update(w, S ∪ C)

Local[PE-SSE].Setup(K, N,DB)

1: nlevel ← �N/logdN�
2: for all (w, S) ∈ DB do
3: Kw ← PRFKPRF(w)
4: T [w] ← EncKw (|S|)
5: EDB, clip ← ClipOSSE.Setup(DB)
6: for all i from 0 to nlevel do
7: DBi ← {(w, C) : (w, �, C) ∈ clip

and 2i−1 < � ≤ 2i}
8: PE-SSEi ← PE-SSE.Setup(

�N/logN�, 2i,DBi)

Local[PE-SSE].Search(K, w, st;EDB)
Client: (search token)

1: send (w, Kw = PRFKPRF(w))

Server:
1: i ← �log (DecKw (T [w]))�
2: return ClipOSSE.Search(w)

∪ PE-SSEi.Search(w)

Search. During a search operation, Local[PE-SSE] queries both structures,
and combines their output to retrieve all matching elements.

Update. During an update operation to add element e, Local[PE-SSE] for-
wards the update query to ClipOSSE, and gets as output C = ∅ if the element
did not overflow, or C = {e} if the element did overflow. For now, assume
that �log �� = �log (� + 1)�, that is, the PE-SSEi instance associated with the
list remains the same during the update operation. In that case, PE-SSEi is
updated for the set C. (Recall from Sect. 6.1 that a length-hiding SSE such as
PE-SSE accepts sets of elements as input in Update.) The length-hiding prop-
erty is designed to guarantee that the content of C (including whether it is
empty) is not leaked to the server. Now assume �log �� < �log (� + 1)�. In that
5 The same table exists in ClipOSSE. In an actual implementation, they would be the

same table, but using ClipOSSE in black box eases the presentation.
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case, the PE-SSE instance associated with the list becomes PE-SSEi+1 instead
of PE-SSEi. The client retrieves all current overflowing elements from PE-SSEi,
adds the content of C, and stores the result in PE-SSEi+1.

6.5 Overflow of ClipOSSE

The main technical result in this section regards the number of overflowing items
in ClipOSSE.

Theorem 3. Suppose that ClipOSSE receives as input a database of size N ,
such that the size of the longest list is O(N/logdN) for some d ≥ 2.Then for any
constant c, there exists a choice of parameters of ClipOSSE such that the number
of overflowing items is O(N/logcN).

The proof of Theorem 3 is intricate. For space reasons, we only give a brief
overview here. A detailed overview and the full proof is given in the full version..
First, we show that the result holds in the special case where all lists have
length N/logdN . This uses a negative association argument, similar to the proof
of [DPP18, Theorem 1]. The core of the proof is to then show that this special
case implies the general case. This is done by iteratively merging short lists,
while showing that this merging process can only have a limited effect on the
number of overflowing elements. At the outcome of the merging process, all lists
have length N/logdN , which reduces the problem to the special case. The main
technique for the reduction is a stochastic dominance argument, combined with
a convexity argument (similar to the proof of [BBF+21, Theorem 5]).

The Generic Local Transform itself uses standard SSE techniques, and its
properties follow from previous discussions. We provide a formal statement
below.

Theorem 4 (Generic Local Transform). Let N be an upper bound on the
size of database DB. Suppose that PE-SSE is a suitable page-efficient scheme
with page efficiency P and storage efficiency S. Then Local[PE-SSE] is a correct
and secure SSE scheme with storage efficiency O(S), locality O(1), and read
efficiency P + ˜O (log logN).
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Abstract. A distributed point function (DPF) is a cryptographic prim-
itive that enables compressed additive sharing of a secret unit vector
across two or more parties. Despite growing ubiquity within applications
and notable research efforts, the best 2-party DPF construction to date
remains the tree-based construction from (Boyle et al., CCS’16), with no
significantly new approaches since.

We present a new framework for 2-party DPF construction, which
applies in the setting of feasible (polynomial-size) domains. This cap-
tures in particular all DPF applications in which the keys are expanded
to the full domain. Our approach is motivated by a strengthened notion
we put forth, of programmable DPF (PDPF): in which a short, input-
independent “offline” key can be reused for sharing many point functions.

– PDPF from OWF. We construct a PDPF for feasible domains from
the minimal assumption that one-way functions exist, where the sec-
ond “online” key size is polylogarithmic in the domain size N .

Our approach offers multiple new efficiency features and applications:
– Privately puncturable PRFs. Our PDPF gives the first OWF-based

privatelypuncturablePRFs (for feasible domains)with sublinear keys.
– O(1)-round distributed DPF Gen. We obtain a (standard) DPF with

polylog-size keys that admits an analog of Doerner-shelat (CCS’17)
distributed key generation, requiring only O(1) rounds (versus log N).

– PCG with 1 short key. Compressing useful correlations for secure
computation, where one key is of minimal size. This provides up to
exponential communication savings in some application scenarios.

Keywords: Distributed Point Function · Puncturable Psuedorandom
Function

1 Introduction

A distributed point function (DPF) [12,27] is a cryptographic primitive that
enables compressed sharing of a secret unit vector across two or more parties.
More concretely, a two-party DPF allows one to split any point function fα

(i.e., for which fα(x) = 1 if x = α, and 0 otherwise1) into succinctly described

1 Slightly more generally, fα,β with fα,β(α) = β for β ∈ {0, 1}.
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functions f0, f1, that individually hide fα, and which support a simple additive
per-input reconstruction fα(x) = f0(x) + f1(x).

DPFs with function share fi size (sometimes referred to as “key size”) com-
parable to the truth table of fα are trivially achievable, by simply taking the
function shares fi to be an additive secret sharing of the full truth table itself.
Efficient constructions with small key size, roughly logarithmic in the domain
size of fα, have been built from one-way functions [12,27].

The appealing compressing structure of DPF constructions has enabled a
wide range of cryptographic applications, ranging from Private Information
Retrieval (PIR) [18,27], to anonymous messaging systems [20], secure computa-
tion for RAM programs [25] and programs with mixed-mode operations [7,13],
and recently Pseudorandom Correlation Generators [8,10,13] for expanding
small correlated seeds into large pseudorandom instances of cryptographic cor-
relations, with applications to secure computation and beyond.

In many (if not most) of these applications, the parties perform a full eval-
uation of the DPF function shares, on every input within the domain of the
function fα. This means that, in particular, the necessary DPF constructions
are only relevant for relatively small, polynomial-size domains.

The growing list of applications has provided significant motivation for deeper
study of the DPF primitive, including alternative constructions and careful fine-
tuning of efficiency. However, despite notable research efforts, the best 2-party
DPF construction to date (even concrete constants) remains the tree-based con-
struction from [12]. In addition, no significantly new approaches toward con-
struction have emerged since this time.

1.1 Our Results

We present a new approach of DPF construction, whose structure dramatically
differs from existing DPFs, and which offers new efficiency features and applica-
tions in the setting of feasible (polynomial)-size domains.

Programmable DPF. Perhaps the primary downside of DPFs is that their
security guarantees inherently require the existence of two or more non-colluding
parties who receive shares f0 and f1 of the secret function. For example,
DPFs yield solutions to the problem of two-server PIR, but seem useless for
single-server PIR. Unfortunately, this non-collusion trust assumption is to some
degree unavoidable for efficient solutions. For problems like PIR, for example,
it is known that single-server cheap (symmetric-key) solutions simply cannot
exist [24]. However, the two-server state of affairs has a further downside beyond
the assumption of trust. Given two servers operating, DPF-based solutions incur
twice as much computation, communication, and coordination costs between
parties than if a single server could suffice.

Given the barrier of efficient single-server solutions, we consider a next best
alternative: a form of “1.5-server” DPF, or what we will refer to as a pro-
grammable DPF. The idea is that participation and cost to one of the two
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servers will be pushed to minimum, thus incurring the burden of only “half”
a server. Concretely, in a programmable DPF scheme, the share f0 given to the
first server is simply a random (i.e., “programmed”) 128-bit string,2 indepen-
dent of the choice of—or in some cases, even the parameters of—the secret point
function being shared. For example, one can execute the role of the first server
across several applications via a public service.

Naive PDPF. As a baseline, consider a naive construction of PDPF: The offline
key is a standard PRF key, and the online key is simply a domain-size string
which together with the full-doman expansion of the PRF form additive secret
shares of the desired truth table. The runtime of key generation is linear in
the domain size N (which, looking ahead, will match that of our construction).
However, the online key size is also linear in N , which we will succeed to compress
exponentially. In addition, for the case of sharing a random point function, we
will also obtain exponential improvement in the online key generation.

Related Notions. Our PDPF goal is related to two existing notions from the lit-
erature: privately puncturable PRFs [5], and two-server PIR in an offline/online
model recently studied by Corrigan-Gibbs and Kogan [21].

Privately puncturable PRFs are pseudorandom functions (PRFs) that sup-
port generation of punctured keys which enable evaluation of the PRF on all but
a single punctured input x∗, and which further hide the identity of x∗. (Single-
key) privately puncturable PRFs are in fact implied by programmable DPFs, by
taking the master PRF key to be the first-server DPF share, and generating a
punctured key at x∗ by computing a second-server DPF share for the function
fα,β with α = x∗ and β ← {0, 1} selected at random. In turn, privately punc-
tured PRF constructions can provide a direction toward programmable DPFs.
However, the only existing instantiations of privately puncturable PRFs make
use of heavy public-key cryptography machinery, and provide heavy costs for
concrete applications [4,16,17,36]. There is also no clear way “scale down” these
constructions to a polynomial-size domain in a way that circumvents these issues.

Analogous to the “half server” of programmable DPF, the offline/online 2-
server PIR protocols of [21,38] consider a setting where first server’s query and
response (analogous to our first-server DPF key) can be computed offline, before
the target input (analogous to the punctured point x∗) is specified. However, the
resulting schemes do not yield the stronger target of a DPF. Indeed, the clos-
est object they construct supports a nonlinear reconstruction procedure more
complex than simple addition, which precludes a large subset of DPF applica-
tions requiring this structure (such as secure aggregation). In addition, [38] uses
public-key cryptography.

Given the collective state of the art, no solutions exist for nontrivial pro-
grammable DPF without public-key cryptography, even for the restricted case
of polynomial-size domains.

2 Or rather, λ bits, where λ is the security parameter.
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Programmable DPF on Small Domains from OWF. We present a 2-party
programmable DPF (PDPF) construction for polynomial-size domains, relying
on the minimal assumption that one-way functions exist.

We begin with a basic construction which has a non-negligible privacy error
ε, which appears as a factor of log(1/ε2) in the key size and 1/ε2 in full-domain
evaluation, and which provides appealing concrete efficiency. For this reason,
we express the result statement in terms of a length-doubling pseudorandom
generator (whose existence is equivalent to one-way functions). We remark that
small constant privacy error is motivated in many applications in the context of
concrete efficiency, such as those anyway offering differential privacy guarantees
(e.g., use of DPFs for private aggregate statistics in [3]).

For the final feasibility result, we then reduce this to negligible error via
a nontrivial amplification procedure. Combining these two theorems provides
a construction of PDPF with polylogarithmic online key size, from one-way
functions.

Theorem 1 (1/poly-secure PDPF on small domains - Informal). Given
length doubling PRG G : {0, 1}λ → {0, 1}2λ, there exists a computationally ε-
secure Programmable DPF for point functions fα : [N ] → {0, 1} over output
group G = Z, with online key size |k1| = λ log(/ε2).

– Key generation makes (2N log(N/ε2))/λ invocations of G, and
– Full domain evaluation makes (2N log N)/(ε2λ) invocations of G.

Theorem 2 (Security amplification - Informal). Suppose there exists a
small-domain computationally 1/p(N)-secure PDPF for any polynomial p. Then
there exists a small-domain PDPF with negligible security error.

Corollary 1 (PDPF from OWF - Informal). Assuming the existence of
OWF, there exists a PDPF for point functions fα : [N ] → {0, 1} where the
runtime of key generation, single point evaluation, and full domain evaluation
is quasilinear in N , and with online key size poly(λ, log N).

A few remarks are in order.

Small Domains: Applications and Non-applications. Note that the key generation
and full evaluation algorithms of our construction run in time linear in N , and
as such we are restricted to polynomial-sized domains in order to execute within
polynomial time. As an additional point of interest, our techniques do not admit
a more efficient single-point evaluation algorithm than a full-domain evaluation.
An outstanding open problem in our work is to achieve a construction where the
running time of key generation and a single point evaluation is only poly log N .

For many applications of DPFs, the required parameters are anyway on small
(polynomial-size) domain. This captures a motivated range of applications and
implemented systems, including:

1. Private “reading” applications, such as PIR, or private tag-based search for
tag space of modest size. For example, the Popcorn system [29] ran 2-server
PIR on N = 8,000 Netflix movies.



Programmable Distributed Point Functions 125

2. Private “writing” applications, such as secure distributed storage [35], voting,
and aggregation. This includes Prio-style [19] applications for private collec-
tion of aggregate statistics, and Riposte [20], Blinder [1] and Spectrum [34]
for anonymous messaging.

3. Pseudorandom correlation generators (PCGs) for useful correlations. Rele-
vant correlation examples include “silent” generation of permuted one-time
truth table correlations, oblivious linear evaluation (OLE), or authenticated
multiplication triples [10] (for some simpler correlations the full power of DPF
is not needed – see below).

4. Mixed-mode secure computation with small-domain gates. DPFs and their
derivatives, most notably distributed comparison functions (DCF) (i.e. secret
sharing functions of the form f≤

α that evaluate to 1 on all inputs x ≤ α),
yield a method for highly efficient secure computation of certain types of non-
arithmetic gates in the preprocessing model [13]. A DCF can be implemented
by a logarithmic number of DPF invocations, one for each prefix of the shared
point. However, in our small-domain construction the communication and
computation for this DCF implementation essentially match those of a sin-
gle DPF since both require full domain evaluation. Small-domain DPFs and
DCFs suffice, e.g., for secure evaluation of zero-test, comparison/threshold,
ReLU, splines, or finite-precision fixed-point arithmetic gates, on moderate-
size inputs [7,13]. We remark that small domain sizes often arise naturally
in settings such as privacy-preserving machine learning, where computations
are frequently run in low precision.

Aside from the last (Item 4), each of the above application frameworks further
requires the parties to perform a full-domain evaluation of the corresponding
DPF function shares, inherently limiting the desired DPF tools to small domains.

The programmable feature of our PDPF, where the offline key is short and
reusable, offers beneficial properties in the above settings. For example, for pseu-
dorandom correlation generation, this enables a central server to have a single
short PCG key for generating authenticated multiplication triples or truth-table
correlations with many different users, requiring total storage of only 128 bits
improving over present solutions that require the server to store approximately
1 MB per user. Such a “short-key PCG” can make a big difference in certain
applications of secure two-party computation. For instance, this is the case when
during a setup phase one of the two parties can be temporarily trusted. In this
case, she can generate a pair of PCG seeds, send the short (128-bit) seed to the
other party, and keep the longer one to herself. We discuss this application in
more detail in Sect. 1.1.

There are, of course, application settings in which small-domain DPFs are
not relevant. Prominent examples include:

1. Private keyword search, corresponding to PIR-type private queries where the
space of possible inputs (e.g., universe of keywords) is large.

2. Simpler pseudorandom correlation generators, such as “silent” oblivious
transfer, vector OLE, or (unauthenticated) multiplication triples, do not
require the full 2-sided guarantees (so-called “puncturable PRFs” suffice).
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3. Mixed-mode secure computation with large-domain gates. The above mixed-
mode application is viable also for large domains, in which case our small-
domain DPFs do not provide a solution. This includes instances of the above
gates over large inputs.

Concrete Efficiency. In Table 1 we compare the efficiency of our programmable
DPF construction to a “naive” construction with O(N) key size, for domain
size N (see Sect. 5 for more details). The comparison is done with output group
Z and with payloads in {0, 1}, capturing a typical aggregation scenario. We
compare these solutions with respect to key size, and estimate the running time
of an AES-based implementation by using a standard benchmark of 1.8 · 108

length-doubling PRG calls per second on a single core.
To give one data point, for a domain of size N = 100,000 and security

error ε = 2−8, the naive construction has 97.7 KB key size, and the running
time for either key generation or full domain evaluation is 72.1µs, while our
construction achieves 0.5 KB key size, 548.3µs running time for key generation,
and 1.6 s running time for full domain evaluation3. In another data point, where
N = 20, 000 and ε = 2−6, the naive construction yields 14.7 KB key size and
running time of 12.4µs for both key generation and full domain evaluation, while
our constructions has 0.4 KB key size, 68.7µs running time for key generation,
and 17.3 ms running time for full domain evaluation. Note that in applications
that only require a random point α, the cost of Gen can be substantially smaller:
0.006µs for a domain of size N = 100,000 and security error ε = 2−8, and
0.005µs for N = 20,000 and ε = 2−6.

To conclude, for small input domains and small (but non-negligible) privacy
levels ε, our construction offers a big advantage in key size, a moderate slowdown
on the client side (running the key generation), and a more significant slowdown
on the server side (running the full domain evaluation). Overall, we expect it
to be attractive for applications where the client’s communication is the most
expensive resource.

Comparison to Standard DPF. Compared to a standard two-party DPF, our
PDPF construction offers several qualitative advantages which can be appealing
in the following settings:

– When simplifying the interaction pattern is important. For some DPF appli-
cations, the “1.5-server” feature means that online interaction only involves a
single message from the client to the online server (and no interaction between
servers). This offers several advantages for practical systems such as avoiding
the dependence on two online, synchronised servers, reducing network latency,
and also hiding the identity of the offline server, rendering the non-collusion
assumption more realistic.

3 In fact, the naive construction, as mentioned in Sect. 1.1, can provide a negligible
privacy error for small output groups. Nevertheless, in aggregation-type applications,
over output group Z, we get a constant privacy error. See Remark 3 for more details.
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– When the client can play the role of the online server, as in the “trusted-
offline PCG” application discussed in Sect. 4.3. In such cases, a PDPF yields
a near-exponential improvement in the total communication cost, since it
only requires a one-time communication of an offline key which is reused
many times without further interaction.

– When distributed key generation is carried out over a high-latency network,
the constant-round black-box protocol from Sect. 4.2 can offer significant
speedup.

All of the above advantages seem relevant for practical use cases. Our PDPF
construction has a reasonable concrete overhead (to be discussed below) when
settling for small but non-negligible values of ε, comparable to the acceptable
practices for differential privacy.

Other than the application scenarios described above, our current PDPF
construction is less practical than existing DPF constructions. First, it cannot
offer negligible privacy error ε with good concrete efficiency; second, the running
time of Gen and (single-point) Eval scale linearly (rather than logarithmically)
with the domain size; finally, it has worse dependence (multiplicative rather than
additive) on the size of the payload β. These gaps are smaller in applications
that require a full-domain evaluation EvalAll, or alternatively only require key
generation for a random point α (see below).

Comparing the key size of the two constructions, note that the size of the
keys in PDPF is log(N/ε2) PRG seeds for the online party and just a single PRG
seed for the offline party, while the key size of both parties in standard DPF is
roughly log(N) PRG seeds. Ignoring the qualitative advantages of PDPF over
DPF, the total client communication, or total key size, of PDPF is smaller by
almost a factor of two for concretely relevant parameters.

In the case of a random-input PDPF, the client computation becomes roughly
equal to that of a standard DPF, i.e. dominated by log(N) calls to a PRG, since
the client generates one key which is a seed of a GGM PRF and another key
which is the same PRF punctured at a random point. A random-input PDPF is
good enough for some applications, such as distributed key generation, on which
we elaborate in Sect. 4.2. There, a random-input PDPF and can be converted to
a chosen-input DPF by sending a log(N)-bit offset to the offline server.

While our PDPF construction has higher overhead as the output size grows
compared to a standard DPF, in Proposition 3 we provide an optimization to our
construction for big payloads beyond the naive approach of executing a separate
PDPF instance for every bit of the payload.

Applications. We explore three applications of our programmable DPF con-
struction and associated techniques: (1) Privately Puncturable PRFs (on poly-
nomial size domains); (2) (Standard) Distributed Point Functions that admit
particularly efficient secure distributed key generation protocols; and (3) A new
application regime of trusted-offline pseudorandom correlation generators. We
additionally explore an optimization toward DPFs with larger payloads.
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Privately Puncturable PRFs (on Small Domains). As discussed, our construc-
tion directly implies the first nontrivial privately puncturable PRF for domain
size N = poly(λ) under the minimal one-way function assumption. Here, non-
triviality corresponds to requiring the key size of a (privately) punctured key
that is sublinear in the truth table output size.

Even given the restriction to feasible domain sizes, this constitutes the first
such construction without relying on structured public-key assumptions such as
the Learning with Errors assumption or multi-linear maps [4,16,17,36].

Proposition 1 (Privately puncturable PRF - Informal). Assuming the
existence of OWF, there exist (selectively secure, 1-key) privately puncturable
PRF (P-PPRF), where the runtime of punctured key generation and evaluation
is quasilinear in the domain size M , and with punctured key size poly(λ, log M).

DPF with Constant-Round Black-Box Distributed Key Generation. In any appli-
cation of (standard) DPFs where the role of “client” is jointly executed across
parties—including secure computation for RAM programs [25] or mixed-mode
operations [7,13], use of pseudorandom correlation generators for secure compu-
tation preprocessing [8,10,13], and more—the Gen algorithm of the DPF must
in turn be executed distributedly via a secure computation protocol. Minimizing
the costs of this procedure is a highly desirable target.

This was highlighted by the work of Doerner and shelat [25], which identi-
fied that the low cost of distributed DPF Gen makes it a strong approach for
secure computation of RAM programs. They presented a distributed DPF Gen
protocol, which remains the most efficient to date, requiring computation time
linear in the DPF domain size N , and runs in log N sequential communication
rounds, but which crucially makes only black-box use of oblivious transfer and
a pseudorandom generator. In contrast, alternative approaches each require the
expensive secure evaluation of (many instances of) a circuit evaluating the PRG.

In particular, for any DPF with key size polylogarithmic in the domain size
N ,4 no protocol exists for distributed Gen which is black-box in the underlying
cryptographic tools and lower than O(log N) round complexity.

The techniques behind our PDPF give the first DPF (for feasible domains)
which simultaneously achieves key size polylogarithmic in N , and admits a dis-
tributed Gen protocol that makes only black-box use of OT and a PRG, executing
in constant round complexity. More concretely, we show that 5 rounds suffice.

Proposition 2 (Constant-round distributed Gen - Informal). There
exists a small-domain DPF (Gen,Eval), with key size poly(λ, log N), where Gen
on secret-shared α, β can be implemented by a constant-round (5-round) protocol
making only a black-box use of oblivious transfer and a pseudorandom generator.

As with our PDPF constructions, the runtime of our DPF Eval algorithm
will be linear in the domain size N . Note, however, that the application of DPF

4 DPFs with significantly worse key size N ε for constant ε > 0 can be built with lower
depth Gen, e.g. by “flattening” the tree structure of current best DPF constructions.
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within secure computation of RAM programs anyway requires EvalAll as opposed
to individual Eval operations (where we achieve the same linear complexity). In
addition, our resulting DPF Gen procedure will only be logarithmic in N . This
will be result of modifying the PDPF, adding a short second “offset” message
to be added to the key k0 after the choice of the secret point function f̂α,β . This
extra step adds minor cost in regard to computation and key size, but means the
resulting construction is a DPF and not a programmable DPF which in particular
requires the first key k0 to be independent of the point function to be shared.

Compressing DPF Corelations. Standard DPFs have a variety of applications
in the context of secure 2-party computation (2PC). For instance, they serve
as crucial building blocks for concretely efficient 2PC of RAM programs [25] or
for pseudorandom correlation generators (PCGs) of truth-table correlations [11]
and (authenticated) multiplication triples [10]. Evaluating large circuits or mul-
tiple instances necessitates several DPF correlations. In particular, this strongly
motivates the goal of generating many independent instances of a random DPF
correlation with low communication cost. However, there are no known practical
methods for achieving this.

We observe that PDPF inherently provides a solution for generating many
such instances, where the size of one key scales with the number of instances,
but one key is short.

In turn, our PDPF provides a solution to the above problem within a subset
of interesting applications, captured by the following “trusted-offline” setting for
2PC. In an offline phase, Alice owns a long-term secret s (say, a secret key for
encryption, identification, or signature). To eliminate a single point of failure,
she splits s into two shares, sA and sB , sending sB to Bob and keeping sA to
herself. She then erases all information except sA. In the online phase, the parties
receive online inputs Pi (resp., ciphertexts to decrypt, nonces for identification,
or messages to sign) and wish to securely compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that in the above setting, Alice can be fully trusted
during the offline phase, since if she is corrupted at this phase (before erasing s)
then the long-term secret is entirely compromised. In fact, if Pi is public, then s is
the only secret in the system. For this reason, we can also trust Alice to generate
pairs of DPF keys (kj

0, k
j
1) in the offline phase, offload the keys kj

0 to Bob, and
keep ki

1 to herself. However, when Alice wants to generate many DPF instances
for the purpose of evaluating many g-gates, this has high communication cost.

A PDPF can provide a dramatic efficiency improvement in this scenario,
where Alice needs only to send the single short PDPF key to Bob, and simply
store the longer key locally. This reduces the communication requirements of
existing solutions within this setting by an exponential factor.

Big Payload Optimization. Some applications of DPF explicitly require the point
function payload to be larger than a single bit, e.g. an element in Z2� , and to be
random. A natural adaptation of our technique to this setting is to repeat the
programmable DPF scheme with binary outputs � times, once for each bit, and
then locally map the outputs to elements in Z2� . However, evaluation using this
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approach suffers from an O(�3) computational overhead compared to a binary
programmable DPF achieving the same security5.

We propose an optimization which maintains key size and reduces the com-
putational overhead by O(�) compared to the repetition method. In more detail,
each PRF value is a pair of a point x in the input domain [N ] and a value y ∈ Z2� .
One key of the programmable DPF is again the short PRF key, while the sec-
ond key is punctured at O(�) points which evaluate to (α, yi), i = 1, . . . , O(�).
The DPF evaluation at each point x is the sum of all yi such that the PRF (or
punctured PRF) evaluate to (x, yi) at some point. This approach leads to the
following:

Proposition 3 (Big payload optimization - Informal). Given length dou-
bling PRG G : {0, 1}λ → {0, 1}2λ, there exists a computationally ε-secure PDPF
for point functions fα : [N ] → Z2� , with online key size |k1| = O

(
λt log tN

ε2

)
for

t = � + 2log 1
ε . The number of invocations of G in the key generation algorithm

is O(tN log t
ε2 ), and in the full domain evaluation algorithm it is O(Nt2

ε2 ).

Due to space limitations, we defer the full treatment of this optimization to
the full version of the paper.

1.2 Overview of Techniques

We now proceed to describe our techniques in greater detail. We focus here on
the core construction of programmable DPF from OWF. We refer the reader to
the main body for further detail on the related applications.

1/Poly-Secure PDPF. We begin by describing our construction of a computa-
tionally secure PDPF, which takes inspiration from the puncturable pseudoran-
dom sets of Corrigan-Gibbs and Kogan [21].

Our construction relies on an underlying tool of Punctuarable Pseudorandom
Functions (PPRF) [6,14,31]. Puncturable PRFs are an earlier-dating, weaker
variant of privately puncturable PRFs discussed above, which similarly have the
ability of generating punctured keys kp from a master PRF key k enabling eval-
uation on all but a punctured input xp. Even given the punctured key kp, the
output of the PRF at input xp remains pseudorandom. Unlike privately punc-
turable PRFs, no hiding requirement is made for the identity of the punctured
input xp given the punctured key kp, which makes the goal significantly easier
to achieve. Such primitives can be constructed in a simple manner based on
one-way functions via a GGM [28] tree [6,14,31].

Our construction proceeds roughly as follows. Consider the first party in the
programmable DPF. The first (programmable) key of the DPF is simply the

5 In this approach, to get statistical error of ε we need to reduce the value of ε in
each of the � instances by a factor of �. Since the computational cost per instance
depends quadratically on 1/ε, this results in a total slowdown (compared to the 1-bit
baseline) of � · �2 = �3.
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master key k for a PPRF whose output space is the input space for the DPF,
[N ]. The PRF input space D will be selected in the discussion following, as a
function of the desired privacy error. (In particular, larger domain will yield
smaller error, but higher complexity).

In order to expand its DPF key to a full-domain evaluation on the input
domain [N ], the first party begins by evaluating its PRF tree on all inputs.
Recall that each leaf of the PRF evaluation tree is now labeled by some element
of [N ]. For each x ∈ [N ], the corresponding DPF output evaluation f1(x) is
defined to be the integer number of occurrences of the value x within the leaves
of the PRF tree: i.e., the number of values ζ in the input space D of the PRF
for which PRFk(ζ) = x.

Pictorially, each PRF leaf evaluation can be viewed as a “ball” thrown into
one of N bins, labeled 1, . . . , N . Evaluating on the complete PRF tree (given
the master key k) results in a histogram, of number of balls per bin, which
constitutes the evaluated DPF output share values.

The second key in the programmable DPF is generated given the target point
function fα∗ we wish to share. Observe that (for payload β = 1) the goal is to
recreate the same “balls in bins” histogram as above, but with 1 less ball in the
α∗ ∈ [N ] bucket.6 Indeed, if this can be achieved, then the parties’ shares differ
by 0 in all places apart from α∗, and precisely by 1 at α∗. To do so, the second
server will be given the PRF key punctured at a random input xp whose PRF
output is α∗. In effect, one (random) ball is removed from the α∗ bin.

Correctness of the construction holds as above. But, we find ourselves encoun-
tering a serious security challenge. While clearly the first party’s share is indepen-
dent of the secret function fα∗ , security against the second party must somehow
rely on hiding the punctured PRF evaluation given access to a punctured key.
However, in a puncturable PRF, pseudorandomness is only guaranteed when
the punctured input is chosen independently of the PRF evaluation values. In
contrast, the input we puncture is selected based on the PRF evaluations. In
fact, the issue is even worse. Even the stronger notion of adaptive security of
PPRF does not suffice, where the punctured input can be selected as function of
the PRF evaluations on other inputs. In our construction the punctured input is
chosen as function of its own evaluation—in general, one cannot hope to achieve
this kind of security.

Indeed, the resulting construction does not provide negligible leakage in pri-
vacy. This corresponds to the (non-negligible, efficiently identifiable) statisti-
cal difference in the N histogram counts when throwing a polynomial number
of balls and then removing a ball from one bin. This statistical difference can
be decreased by increasing the total number of balls thrown: this corresponds
directly to a larger choice of the puncturable PRF domain D. Roughly, increasing
D by a factor of c > 1 cuts the error by a factor of 1/

√
c.

6 To account for the fact that the payload could be β = 0, we actually introduce
dummy bucket N + 1 to the PRF output space; removing a ball from this bucket
means that all [N ] buckets remain equal across parties.
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We provide a tight analysis of privacy error via a careful sequence of hybrid
experiments, where the α∗-output-punctured key is ultimately replaced by a key
punctured at a random independent input. Each step within the proof introduces
negligible error, aside from one: in which we move from a PRF key where we
puncture an input with a random output value (i.e., the DPF construction for a
random α∗, to one where we puncture a random input.

It is interesting to observe that the construction is sensitive to specific design
choices. For example, slightly modifying the above procedure to instead puncture
the first input whose output α∗ (instead of a random such input) yields a serious
attack: given the punctured PRF key, the second party can directly infer for all
values α′ ∈ [N ] appearing as PRF evaluations before the punctured point that
fα′ is not the secret shared point function.

Amplification. To amplify a DPF with 1/poly privacy error into one with negli-
gible error, we apply a privacy amplification technique based on a locally random
reduction. The idea is to lift the input domain to a codeword in a Reed-Muller
code and decode along a random low-degree curve. This effectively reduces a sin-
gle DPF with secret input α to a small number of instances of DPF with secret
inputs αi, where the αi are λ-wise independent. By combining a “statistical-to-
perfect” lemma from [26,32] with a computational hardcore lemma of [33], the
1/poly leakage on each αi can be argued to be no worse than completely leaking
each αi with small probability, which by λ-wise independence suffices to hide α
except with negligible probability.

2 Preliminaries

Notation. For N ∈ N we let [N ] = {1, . . . , N}. We denote the inner product of
two vectors u and v of the same length by 〈u, v〉 =

∑
i uivi. We denote by negl

a negligible function.

Probability. For two distributions D1,D2 we denote by d(D1,D2) =
1
2

∑
ω |PrD1 [ω] − PrD2 [ω]| their statistical distance. We denote by U� uniformly

distributed random strings of length �.

Groups. We represent an Abelian group G of the form G = Zq1 × · · · × Zq�
, for

prime powers q1, . . . , q� by Ĝ = (q1, . . . , q�) and represent a group element of G
by a sequence of � non-negative integers. Unlike previous DPF definitions, here
we will also consider infinite groups, using qi = ∞ for the group of integers Z.

Point Functions. Given a domain size N and Abelian group G, a point function
fα,β : [N ] → G for α ∈ [N ] and β ∈ G evaluates to β on input α and to 0 ∈ G on
all other inputs. Unlike previous DPF definitions, here we will also consider the
case where the output β is guaranteed to be taken from a subset G′ ⊆ G, where
the subset G′ can be leaked. This extension is especially useful where G = Z, in
which we will typically let G′ = {0, 1}. When G′ is omitted, we assume G′ = G.
We denote by f̂α,β = (N, Ĝ, Ĝ′, α, β) the representation of such a point function.



Programmable Distributed Point Functions 133

2.1 Distributed Point Functions

We begin by defining a slightly generalized notion of distributed point functions
(DPFs), which accounts for the extra parameter G′.

Definition 1 (DPF [12,27]). A (2-party) distributed point function (DPF) is
a triple of algorithms Π = (Gen,Eval0,Eval1) with the following syntax:

– Gen(1λ, f̂α,β) → (k0, k1): On input security parameter λ ∈ N and point func-
tion description f̂α,β = (N, Ĝ, Ĝ′, α, β), the (randomized) key generation algo-
rithm Gen returns a pair of keys k0, k1 ∈ {0, 1}∗. We assume that N and G
are determined by each key.

– Evali(ki, x) → yi: On input key ki ∈ {0, 1}∗ and input x ∈ [N ] the (determin-
istic) evaluation algorithm of server i, Evali returns yi ∈ G.

We require Π to satisfy the following requirements:

– Correctness: For every λ, f̂ = f̂α,β = (N, Ĝ, Ĝ′, α, β) such that β ∈ G′, and

x ∈ [N ], if (k0, k1) ← Gen(1λ, f̂), then Pr
[∑1

i=0 Evali(ki, x) = fα,β(x)
]

= 1.
– Security: Consider the following semantic security challenge experiment for

corrupted server i ∈ {0, 1}:
1. The adversary produces two point function descriptions (f̂0 = (N, Ĝ, Ĝ′,

α0, β0), f̂1 = (N, Ĝ, Ĝ′, α1, β1)) ← A(1λ), where αi ∈ [N ] and βi ∈ G′.

2. The challenger samples b
$← {0, 1} and (k0, k1) ← Gen(1λ, f̂ b).

3. The adversary outputs a guess b′ ← A(ki).
Denote by Adv(1λ,A, i) = Pr[b = b′]−1/2 the advantage of A in guessing b in
the above experiment. For circuit size bound S = S(λ) and advantage bound
ε(λ), we say that Π is (S, ε)-secure if for all i ∈ {0, 1} and all non-uniform
adversaries A of size S(λ) and sufficiently large λ, we have Adv(1λ,A, i) ≤
ε(λ). We say that Π is:

• Computationally ε-secure if it is (S, ε)-secure for all polynomials S.
• Computationally secure if it is (S, 1/S)-secure for all polynomials S.

We will also be interested in applying the evaluation algorithm on all inputs.
Given a DPF (Gen,Eval0,Eval1), we denote by EvalAlli an algorithm which com-
putes Evali on every input x. Hence, EvalAlli receives only a key ki as input.

DPF Efficieny Measures. We will pay attention to the following efficiency mea-
sures of a DPF:

– The key sizes |k0|, |k1|.
– The running time of Gen,Eval0,Eval1.
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Small-Domain and Large-Domain DPF. We say that a DPF is small-domain
(resp., large-domain) if Gen,Eval0,Eval1 have running time polynomial in N
(resp., log N) and their input length.

Next, we introduce our new notion of programmable DPF.

Definition 2 (PDPF). We say that a small-domain DPF (Gen,Eval0,Eval1)
is a programmable DPF, or PDPF for short, if Gen can be decomposed into a
pair of algorithms Π = (Gen0,Gen1) with the following syntax:

– Gen0(1λ, N, Ĝ, Ĝ′) → k0: On input security parameter λ, domain size N and
output group description Ĝ, returns a key k0 = (k∗, N, Ĝ, Ĝ′) where k∗ ∈
{0, 1}λ.

– Gen1(k0, f̂α,β) → k1: On input key k0 = (k∗, N, Ĝ, Ĝ′) and point function
description f̂α,β = (N, Ĝ, Ĝ′, α, β), returns a key k1 ∈ {0, 1}∗.

Moreover, we require that k∗, returned by Gen0 as part of k0, is a uniform random
string, namely, k∗

$← {0, 1}λ.

Since the operation of Gen0 is fixed, in our PDPF constructions we will omit
the description of Gen0. Moreover, we will not be concerned with its running
time or the key length of k0. Finally, since our construction realizes EvalAll at
essentially the same cost as Eval, we will directly describe the EvalAll algorithm.

In the full version of the paper we define the reusability feature for DPFs
discussed in the Introduction, and show an easy construction of reusable DPF
from PDPF (and vice versa).

Simulation Based Security. While for both DPF and PDPF we use a definition
with indistinguishability-based security, there is an equivalent definition using
simulation-based security [12]. There, the simulator is given “leakage” which
is the description of the DPF function class. Simulation takes place by simply
generating a key for an arbitrary function in the function class.

2.2 Pseudorandom Generators and Functions

We defer the definitions of PRG, PRF and puncturable PRF (PPRF) to the full
version of the paper.

Theorem 3 ((P)PRF from OWFs [6,14,31]). If OWFs exist, there exists a
PPRF.

More concretely, given a black-box access to a PRG G : {0, 1}λ → {0, 1}2λ,
a PPRF, PPRF = (Eval,Punc,PuncEval), with input domain [M ] and output
domain [N ], can be implemented with punctured key length |kp| = λ log2 M ,
such that Eval,Punc,PuncEval make (log2(M/N) log2 N)/2λ calls to G.

Furthermore, if Eval or PuncEval is computed on all points in [M ], it requires
only ((2M − 1) log2 N)/2λ calls to G.
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3 Small-Domain PDPF from One-Way Functions

In this section we construct small-domain PDPFs. We will first obtain a con-
struction with inverse-polynomial security. Then, in Sect. 3.1, we will show how
to amplify security and get negligible security error.

As was discussed in the introduction, our construction relies on analyzing
the statistical distance between balls-and-bins experiments, where, after throw-
ing M balls into N bins, we remove a single ball (randomly) from either bin
i or bin j. The following lemma gives an exact expression for the statistical
distance between these two distributions, and also provides an estimate which,
numerically, is close up to a multiplicative factor of ≈0.564 (see Sect. 5).

Lemma 1. For integers M > N > 0 and i, j ∈ [N ], let Di and Dj be dis-
tributions over {1, . . . , N,⊥}M of the locations of M balls independently and
randomly thrown into N bins, such that we then change the position of a single
ball, chosen randomly from bin i and bin j, respectively, to ⊥ (this corresponds
to the ball’s “removal” from the bin). Then

d(Di,Dj) =
M∑

w=0

(
M

w

) (
1 − 2

N

)M−w
(

w
�w/2�

)

Nw
≤

√
N

M

We prove the lemma in the full version of the paper.
Next, we state Theorem 4, which constructs a PDPF (Fig. 1), restricted to

output group Z and to payloads β ∈ {0, 1}. Later, we extend this PDPF in
Theorem 5 to work over any finite Abelian group G and any payload β ∈ G.
The proof of the theorem below essentially mirrors that of Lemma 1 in the
computational world by replacing the random configuration of M balls thrown
into N bins by a pseudorandom configuration, using the truth table of a PPRF.
Compared to Lemma 1, this yields an additive error term which is negligible in
λ.

We defer the proofs of Theorem 4 and Theorem 5 to the full version of the
paper.

Theorem 4 (Small-domain PDPF with 1/poly(λ,N) privacy error).
Suppose that PPRF = (PPRF.Eval, PPRF.Punc,PPRF.PuncEval) is a secure
PPRF for input domain size M and output domain size N , with punctured key
size Kp(λ,M,N). In addition, let G : {0, 1}λ → [N+1]×{0, 1}λ be a PRG. Then,
the construction in Fig. 1 is a small-domain computationally ε-secure PDPF,

ε(λ,M,N) =

√
(N + 1)

M
+ negl(λ)

for point functions with output group G = Z, G′ = {0, 1}, domain size N ,
and key size |k1| = Kp(λ,M,N + 1). The number of invocations to PPRF in
Gen1,EvalAll0,EvalAll1 is at most O(M).
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Gen1(k0 = (k∗, N, ˆ, ′̂), f̂α,β = (N, ˆ, α, β)):

– Compute (s, kPPRF) = G(k∗).
– If β = 1 then α′ ← α, else α′ ← N + 1
– Find all indices

L ← {
� ∈ [M ] : PPRF.Eval(kPPRF, M, N + 1, �) + s = α′} .

– Pick a random � ∈ L, compute kp ← PPRF.Punc(kPPRF, M, N + 1, �), and
output k1 = (kp, s).

EvalAll0(k0 = (kPPRF, N, ˆ, ′̂)):

– Compute (s, kPPRF) = G(k∗).
– For every α ∈ [N ], simultaneously compute

Yα ← |{� ∈ [M ] : PPRF.Eval(kPPRF, M, N + 1, �) + s = α}| .
– Output Y = (Yα)α∈[N ].

EvalAll1(k1 = (kp, s)):

– For every α ∈ [N ], simultaneously compute

Yα ← (− |{� ∈ [M ] : PPRF.PuncEval(kp, �) + s = α}|) .

– Output Y = (Yα)α∈[N ].

Fig. 1. Small-domain computationally 1/poly(λ, N)-secure PDPF for point functions
with output group G = Z, payload set G′ = {0, 1}, and domain size N . Here M is a
parameter corresponding to the input space of the PPRF.

Theorem 5 (Small-domain PDPF over any payload set G′). If OWFs
exists, there exists a small-domain computationally log |G′|/poly(λ,N)-secure
PDPF for point functions with any allowed payload set G′, Abelian output group
G ⊇ G′, domain size N , and key size |k1| = O(log |G′|λ(log λ + log N)).

We finish this section with an optimization to Theorem 4.

Proposition 4 (Lazy Gen computation). When instantiated with a PPRF
from Theorem 3, the computation of Gen1 in Fig. 1 can be done in just ((N +
1) log2 M)/λ calls to a PRG, at the expense of an additional 2−(N+1) error in
correctness or privacy.
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Proof. Instead of having Gen1 compute the entire set L and picking � ∈ L at
random, it is sufficient to keep trying values � ∈ [M ] at random until one is
found such that PPRF.Eval(k∗,M,N + 1, �) + s takes the correct value. This has
a 1/(N + 1) probability of success. By making T queries, the chance of failure
is 1/(N + 1)T . If we pick T = (N + 1)/ log2(N + 1), the failure chance becomes
2−(N+1), which we can attribute to either correctness or privacy. Since each
PPRF evaluation takes (log2 M log2(N + 1))/λ calls to the PRG, we are done.

3.1 Security Amplification

To amplify security we rely on Locally Decodable Codes (LDC). Theorem 4 gives
us a PDPF with 1/poly leakage of α, which as we argue in the full version of the
paper, is no worse than α leaking completely with probability 1/poly, and stay-
ing (computationally) hidden otherwise. By utilizing a locally decodable code
with additive decoding we can essentially secret share α into shares α1, . . . , αq

which are λ-wise independent. Since every αi leaks independently with small
probability, by using a Chernoff bound, α leaks with negligible probability.

To describe the main idea of the security amplification construction (Fig. 2)
in more detail, note first that fα(x) = 〈ex, TT (fα)〉, where ex is a unit vector
with 1 at index x, and TT (fα) is the truth table of a point function fα (also a
unit vector). Now, we utilize a q-query LDC C with additive reconstruction and
choose α1, . . . , αq to be the queries to C for coordinate α, which by the additive
decoding of C yields

〈C(ex), TT (fα1) + . . . + TT (fαq
)〉 = 〈ex, TT (fα)〉 = fα(x).

Next, using the additive reconstruction of the PDPF, implying TT (fαj
) =

TT (f0
αj

) + TT (f1
αj

), j = 1, . . . , q, each server i = 0, 1 can locally compute
zi = 〈C(ex), TT (f i

α1
) + . . . + TT (f i

αq
)〉 using EvalAll of each of the q PDPF

keys, such that z0 +z1 = fα(x) (hence yielding a PDPF). Here, the offline server
will receive a single offline key, which it can expand to q offline keys using a
PRF, while the online server will receive the q matching online keys.

The following lemma provides the locally decodable code (LDC) with the
parameters we require (c.f. [15, Section 4]).

Lemma 2. Fix integers λ,w > 0, a prime p, and let r,N > 0 be such that
N =

(
r+w

r

)
and r = O(N1/w). There exist a deterministic mapping C : ZN

p → ZL
p

and a randomized mapping d : [N ] → [L]q, L, q ∈ N, such that for every z ∈ ZN
p

and α ∈ [N ] it holds that

Pr

[

Δ ← d(α) :
q∑

�=1

C(z)Δ�
= zα

]

= 1.

Moreover, the following properties hold:
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1. q = O(λ2N1/w) and L = O(pw+1λw+1N1+ 1
w ).

2. C, d are computable in polynomial time.
3. For every α ∈ [N ], the random variables Δ1, . . . ,Δq are λ-wise independent.

We prove this lemma in the full version of the paper. Intuitively, C cor-
responds to the LDC encoder taking N symbols to L > N , the randomized
mapping d determines the set of q queried symbols of the codeword given a tar-
get index α ∈ [N ] of the “message” vector z ∈ ZN

p , and the decoding procedure
is simply the sum of the queried symbols

∑q
�=1 C(z)Δ�

= zα. For example, these
requirements can be met by a form of Reed-Muller code, where the distribu-
tion of queried points Δ ← d(α) corresponds to random λ-degree polynomial
evaluations through the desired point (namely, Shamir secret sharing of α).

Next, we show that any small-domain computationally 1/poly(λ,N)-secure
PDPF can be transformed into a small-domain PDPF.

Theorem 6. Fix integers λ,w > 0, let r,N > 0 be such that N =
(
r+w

r

)

and r = O(N1/w), and let p = poly(λ,N) be a prime. Furthermore, let
L = L(w, λ,N), q = q(w, λ,N) be as in Lemma 2. Suppose there exists a small-
domain computationally O(1/L·q)-secure PDPF for point functions with Abelian
output group Zp, domain size L, and key size |k1| = K. Then, the construction
in Fig. 2 gives a small-domain computationally secure PDPF for point functions
with Abelian output group Zp, domain size N , and key size |k1| = q · K.

We give the proof of Theorem 6 in the full version of the paper.

Remark 1. Via CRT we can handle any smooth integer characteristic. By intro-
ducing a small correctness error and converting it to privacy error we can handle
any Abelian group.

Next, we prove the following corollary, in similar vein to how Theorem 5 was
derived from Theorem 4. Note, however, that here G cannot be a general (finite)
Abelian group, and we are restricted to G which is a product of Zp for prime p.

Corollary 2. Fix integers λ,w > 0, and let r,N > 0 be such that N =
(
r+w

r

)

and r = O(N1/w). If OWFs exist, there exists a
(
log |G| · 2−Ω(λ)

)
-secure PDPF

for point functions with Abelian output group G =
∏

i Zpi
, where pi are primes

such that
∑

i pi ≤ poly(λ,N), polynomial domain size N , and key size |k1| =
O(log |G|λ3N1/w(log λ + log N)).

Theorem 5 and Corollary 2 have the downside that their key length grows
multiplicatively with log |G|. We show in the full version of the paper that this
can be reduced to an additive term whenever log |G| � λ, at the cost of losing
programmability, which still has the benefit of a DPF with one short (λ+log |G|)-
length key.
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Notation: Let C : ZN
p → ZL

p and d : [N ] → [L]q be the mappings from Lemma
2. In addition, let (PDPF.Gen1,PDPF.EvalAll0,PDPF.EvalAll1) be a small-domain
computationally O(1/L ·q)-secure PDPF for point functions with Abelian output
group Zp, domain size L, and let PRF.Eval be a PRF.

Gen1(k0 = (k∗, N, Ĝ), f̂α,β = (N, Ĝ = ̂Zp, α, β)):
– Compute Δ ← d(α).

– For � = 1, . . . , q let k�
∗ = PRF.Eval(k∗, q, λ, �), k�

0 = (k�
∗, L, ̂Zp), and

k�
1 ← PDPF.Gen1(k�

0, (L, ̂Zp, Δ�, β)).

– Output k1 = (k1
1 . . . , kq

1).

Eval0(k0 = (k∗, N, Ĝ = ̂Zp), x):

– For � = 1, . . . , q let k�
∗ = PRF.Eval(k∗, q, λ, �) and k�

0 = (k�
∗, L, ̂Zp).

– Compute and output

〈

C(ex),

q
∑

�=1

PDPF.EvalAll0(k�
0)

〉

,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Eval1(k1 = (k1
1 . . . , kq

1), x):

– Compute and output

〈

C(ex),

q
∑

�=1

PDPF.EvalAll1(k�
1)

〉

,

where ex ∈ {0, 1}L is a unit vector with 1 at index x.

Fig. 2. Security amplification via LDC

4 Applications

In this section, we present three applications of our programmable DPF construc-
tion and associated techniques: (1) Privately Puncturable PRFs (on polynomial-
size domains) from the minimal assumption of one-way functions; (2) (Standard)
Distributed Point Functions that admit particularly efficient secure distributed
key generation protocols, namely the first to achieve constant round complex-
ity while making only black-box use of oblivious transfer and a pseudorandom
generator; and (3) A new application regime of trusted-offline pseudorandom
correlation generators. We discuss each in turn within the following subsections.
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4.1 Privately Puncturable PRFs

Our programmable DPF construction makes use of puncturable pseudorandom
functions (PRFs); namely, PRFs supporting generation of punctured keys that
enable evaluation of the PRF on all but a single punctured input x∗. Puncturable
PRFs are lightweight objects, with simple constructions known from one-way
functions [6,14,31] (for example, in a GGM-tree PRF on n-bit inputs, simply give
the n co-path PRG evaluations). However, all such known simple constructions
inherently reveal the identity of the punctured input x∗.

Interestingly, if one wishes to obtain the same functionality, while hiding
the identity of x∗, the corresponding object becomes much more challenging to
obtain. Such notion is known as a privately puncturable PRF [5]. In contrast
to the simple puncturable PRF constructions, despite significant effort, the only
known instantiations of privately puncturable PRFs make use of heavy public-
key cryptography machinery, and rely on structured public-key assumptions such
as the Learning with Errors assumption or multi-linear maps [4,16,17,36].

This challenging state of affairs remains the situation even for the case where
the domain of the PRF is of feasible size. Indeed, there is no clear way “scale
down” the constructions from above to a polynomial-size domain in a way that
lessens the computational assumption, without reverting to trivial constructions
where the key size grows to the entire truth table. Placing a requirement that
the key size be sublinear in the domain size (or polylogarithmic, to more closely
match the large-domain case), then the resulting notion falls in the same state
of knowledge as in the general case: necessitating one-way functions, but only
known to be achievable from the heavy public-key cryptography as above.

We observe that our notion of programmable DPF in fact directly implies
privately puncturable PRFs with the same parameters. In turn, we provide the
first construction of privately puncturable PRFs (on polynomial-size domains)
from the minimal assumption of one-way functions.

We next present the definition of privately puncturable PRFs, together with
our new feasibility result. We adapt the definition to mirror our PRF syntax,
where Eval and Punc explicitly take the input domain size M ∈ N as input. For
simplicity, we focus on the case of output space Z2, and thus omit output domain
size from the syntax (we can, however, support more general output spaces as in
Corollary 2). As with essentially all known constructions of privately constrained
PRFs, we consider a setting of selective security, with security against 1 key
query. We remark that in this setting, it was shown that indistinguishability-
based and simulation-based definitions are equivalent [17].

Definition 3 (Privately Puncturable PRF (1-Key, Selective Security)).
A puncturable PRF (Gen,Punc,Eval,PuncEval) is a (selectively secure, 1-key)
privately puncturable PRF family if for every non-uniform polynomial-time
stateful adversary A, there exists a polynomial-time simulator Sim such that
the following are computationally indistinguishable:

{REALA(1λ)}λ∈N

c∼= {IDEALA,Sim(1λ)}λ∈N,
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where the real and ideal experiments are defined as follows:

Experiment REALA(1λ) Experiment IDEALA,Sim(1λ)
x∗ ← A(1λ) x∗ ← A(1λ)
k ← Gen(1λ) k∗ ← Sim(1λ)
k∗ ← Punc(k,M, x∗) b ← A(k∗); Output b
b ← A(k∗); Output b

Intuitively, this notion of privately puncturable PRFs are directly implied by
programmable DPFs, by taking the master PRF key to be the first-server DPF
share, and generating a punctured key at x∗ by computing a second-server DPF
share for the function fα,β with α = x∗ and β ← {0, 1} selected at random.

Proposition 5 (Small-Domain Privately Puncturable PRF from
OWF). Assume the existence of a length-doubling PRG (implied by OWF).
Then there exists a (selectively secure, 1-key) privately puncturable PRF
(Gen,Punc,Eval,PuncEval), with the following complexity properties:

– Gen(1λ) outputs a master PRF key of size λ bits; PuncEval on domain size
M outputs a punctured key of size poly(λ, log(M)) bits.

– The runtime of Punc and PuncEval on domain size M consists of O(N) PRG
evaluations. In particular, for polynomial-size domain M = M(λ), then Punc
and PuncEval each run in probabilistic polynomial time.

The proof appears in the full version of the paper.

Remark 2 (Privately Puncturable PRF ⇔ PDPF). We note that in regard to
feasibility, this implication in fact goes in both directions. That is, existence
of a privately puncturable PRF (P-PPRF) additionally implies the existence of
a PDPF. Intuitively, a P-PPRF is precisely a PDPF but with random, versus
chosen, payload. For small output domains (such as Z2), however, this can be
addressed, e.g., by rejection sampling.

Namely, given a P-PPRF, the corresponding Gen0(1λ,M, Ẑ2) will sample
a random (“master”) PRF key k0. The algorithm Gen1(k0, f̂α,β) for a given
point function f̂α,β will run independent executions of the randomized proce-
dure Punc(k0,M, α) to generate a PRF key punctured at α, repeating until the
resulting punctured key k1 ← Punc(k0,M, α) yields the desired target offset
Eval(k0,M, α) + PuncEval(k1, α) = β. The algorithms Eval0 and Eval1 of the
PDPF then become the corresponding executions of Eval and PuncEval of the
P-PPRF. Security follows from the privacy of the identity of the punctured input
(intuitively, hiding α) together with pseudorandomness of the punctured evalu-
ation on feasible output domain (intuitively, a punctured key for the real offset
β is indistinguishable from a key for random β′ ← Z2, since there are polynomi-
ally many possible offsets). And, since the output domain size is feasible, these
algorithms remain polynomial time.

Overall, this close connection to P-PPRFs provides yet another motivation
for the study of PDPFs.
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4.2 DPF with Constant-Round Black-Box Distributed Gen

In this section we demonstrate that the techniques behind our PDPF construc-
tion can be used to give the first (standard) DPF construction (for feasible
domain sizes) in which the key size is polylogarithmic in the domain size N ,
and whose key generation Gen admits a particularly efficient secure distributed
generation procedure. Namely, the distributed Gen protocol makes only black-
box use of OT and a PRG, and executes in a fixed constant round complexity.
Concretely, we show that 5 rounds suffice.

As with the previous sections, the runtime of our DPF Eval algorithm (as
well as EvalAll) will be linear in the domain size N . Note that in this section,
however, our DPF Gen procedure will only be logarithmic in N .

Concretely, by “distributed Gen,” we refer to a secure computation protocol
between two parties. We consider only security against a semi-honest adver-
sary (i.e., who follows the protocol as prescribed but attempts to extrapolate
information beyond its own input and output). The input consists of the desired
security parameter 1λ and input/output domain descriptions of the desired point
function as common input, as well as secret shares of the desired point function
values α and β over the respective spaces. The output is a randomly sampled
key pair (k0, k1) ← Gen(1λ, f̂α,β), where each party learns its corresponding key.

Theorem 7 (Constant-round distributed Gen). There exists a small-
domain DPF (Gen,Eval), with key size poly(λ, log N), where Gen on secret-shared
α, β can be implemented by a 5-round protocol making only a black-box use of
oblivious transfer and a pseudorandom generator.

The DPF is based on our PDPF construction from Corollary 2: Given a point
function f̂α,β , the DPF keys are formed via poly(λ, log N) punctured PRFs, each
serving as a ε-secure PDPF for some related f̂αi,βi

. The choice of the values
(αi, βi) is computable via a small non-cryptographic randomized circuit as a
function of α, β. For simplicity we present the results for fixed payload β = 1
and output space Z; however, our construction extends naturally.

The main departure from our PDPF is that for each ε-secure DPF, instead
of puncturing the corresponding PRF key ki at a random input x∗

i with the
desired evaluation PRF.Eval(ki, x

∗
i ) = αi, we will instead simply puncture the

PRF at a completely random x∗
i , and provide both parties with the offset

Δi = (PRF.Eval(ki, x
∗
i ) − αi). Recall that puncturing at x∗

i corresponds to an
ε-secure DPF for α′ = PRF.Eval(ki, x

∗
i ). Thus the parties will simply “shift” all

evaluations by this offset Δi, effectively converting it to a DPF on αi. This is
possible due to the communication with both parties, which leads to computa-
tion being only logarithmic in N , as opposed to being linear in N in “1.5-server”
regime, where we cannot afford online communication with both parties.

Consider the security of this modified scheme. Since the PPRF is now punc-
tured at a random input, independent of any of its PRF evaluations, the punc-
tured key (corresponding to DPF key k1) now directly hides the punctured
evaluation; thus, the offset Δi completely hides the secret value αi. On the other
hand, given the PRF key (corresponding to DPF key k0), the evaluation of the
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PRF on a random input has a close-to-uniform, but biased distribution, corre-
sponding to the unequal representation of different output values. This will yield
the inverse-polynomial ε security for the corresponding DPF (where αi is masked
by a biased one-time pad). Here the bias ε is precisely as in the statistical balls
and bins analysis from Lemma 1 in the PDPF analysis.

Note that this offset-to-random simplifies the key generation procedure (e.g.,
the cost of Gen no longer scales with the full domain size N), and adds only minor
cost in regard to computation and key size. The reason this was not used in the
prior sections is because the resulting construction is no longer a programmable
DPF, which in particular requires the first key k0 to be completely independent
of the point function to be shared. However, this intermediate version is also a
compelling construction offering alternative complexity tradeoffs.

Given this modified DPF construction, the new Gen procedure takes the fol-
lowing form. We mark by (*) those steps whose computation requires evaluation
of a cryptographic PRG; all other computations are non-cryptographic.

Gen(1λ, f̂α), where α ∈ [N ]:

1. Compute the randomized mapping (α1, . . . , αq) ← d(α), where d : [N ] → [L]q

is as in Lemma 2 (security amplification).7

2. Sample q random PPRF keys: k1, . . . , kq ← {0, 1}λ.
3. For each i ∈ [q]:

(a) (*) Generate a punctured key k∗
i ← Punc(ki, x

∗
i ), for random input x∗

i .
(b) (*) Compute the punctured evaluation α′

i = PRF.Eval(ki, x
∗
i ).

(c) Compute offset Δi = α′
i − αi

4. Output DPF keys K0 = ((k1,Δ1), . . . , (kq,Δq)) and K1 = ((k∗
1 ,Δ1), . . . ,

(k∗
q ,Δq)).

Consider now a protocol ΠGen for securely evaluating distributed Gen, where
parties know only secret shares of α and must learn only their own resulting
DPF key. Note that each non-cryptographic computation step can be securely
evaluated in constant rounds and making only black-box use of oblivious transfer
by using generic secure computation techniques.

This leaves two additional steps to address: puncturing the PPRF keys, and
computing (secret shares of) the evaluations of the PRFs at the punctured inputs.
Note that the latter can be done directly if one party holds the full PRF key ki and
the other party holds the punctured PRF key k∗

i , by each simply computing the
sum of all computable PRF output values, which differ precisely by the punctured
output. For the former step, of puncturing the PPRF keys, we observe that a two-
round protocol for precisely this task were presented in the works of [9,37] (within
the context of an application of PPRFs to pseudorandom correlation generators
for the OT correlation), applying the techniques of the Doerner-shelat protocol for
DPFs [25] to the simpler setting of PPRFs. Intuitively, in order to puncture one

7 Note that d is non-cryptographic. Concretely, for the case of Reed-Muller locally
decodable codes, the mapping d corresponds to effectively generating Shamir secret
shares of the input value α.
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PPRF key, the protocol consists of a collection of string OTs executed in paral-
lel, one for each level in the evaluation tree of the PPRF, where the selection bits
correspond to the bits of the punctured input x∗, and the message strings are com-
putable as a function of the partial PRF evaluations at the given level. In particu-
lar, the protocol supports direct secure parallel composition of multiple instances.

Theorem 8 ([9,37]). Consider the GGM-based PPRF construction of [6,14,
31]. There exists a two-round secure two-party protocol ΠPunc making only a
black-box use of oblivious transfer and a pseudorandom generator, for eval-
uating the functionality with parties’ inputs ((ki)i∈[q], (x∗

i )i∈[q]) and outputs
(⊥, (k∗

i )i∈[q]), where each k∗
i = Punc(ki, x

∗
i ).

We next describe the constant-round distributed Gen protocol, making use
of ΠPunc (and, in turn, the GGM-based PPRF). In the protocol description we
refer to the two parties as P0 and P1.

Distributed Gen protocol, ΠGen:
Inputs: Common: 1λ, domain size N . P0, P1 hold secret shares α0, α1 of α ∈ [N ].8

1. Party P0 locally samples q random PPRF keys: k1, . . . , kq ← {0, 1}λ.
2. Party P1 locally samples q random PPRF inputs x∗

1, . . . , x
∗
q .

3. Parties P0, P1 jointly execute q parallel executions of protocol ΠPunc, on
respective inputs (ki)i∈[q] and (x∗

i )i∈[q]. As output, party P1 learns q punc-
tured keys (k∗

i )i∈[q].
4. For each i ∈ [q], each party locally computes the sum of all its computable

PPRF evaluations: For P0, this is σ0
i =

∑
x PPRF.Eval(ki, x). For P1, this

is σ1
i =

∑
x	=x∗

i
PPRF.PuncEval(k∗

i , x), where sums are taken over ZN (the
domain space of the DPF).

5. The parties jointly perform a (generic) secure computation protocol for eval-
uating the following functionality:

– Input: Each party Pb holds its original input share αb and (σb
i )i∈[q].

– Computation:
(a) Evaluate the randomized mapping (α1, . . . , αq) ← d(α0 + α1) ∈ [L]q

from Lemma 2, where α0 + α1 represents the reconstructed value of
the secret shared α (e.g., sum over ZN ).

(b) For each i ∈ [q], compute Δi = (σ0
i − σ1

i ) − αi. Recall σ0
i is equal to

σ1
i plus the ith punctured evaluation.

– Output: To both parties: (Δi)i∈[q].

Security of the protocol ΠGen follows by the security of the underlying ΠPunc

and generic constant-round secure computation protocols. The round complexity
of ΠGen consists of (1) an execution of ΠPunc, in 2 rounds, followed by (2) the
generic secure computation of a non-cryptographic functionality, in 3 rounds
(note that both parties receive output). Thus, the combined round complexity
is bounded by 5 rounds.
8 This secret sharing can be over ZN , bitwise over Z2, or otherwise, with insignificant

effect for the given protocol. We describe w.r.t. shares over ZN for simplicity.
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Comparison to Doerner-Shelat [25]. As stated, the round complexity of our DPF
distributed generation protocol is constant (5 rounds), as opposed to log N as
in [25]. The communication complexity of our distributed Gen is also better
than [25], due to the roughly 2× improvement in our key size and an additive
communication overhead in [25]. To give some data points, for N = 105, and
2−10 ≤ ε ≤ 2−4 the communication complexity of a single data access in our
scheme is in the range of 48–122 KB, while in [25] it is ∼240 KB.

The computational complexity of a data access is better than [25] for small
values of N and large errors, but the situation is reversed as N grows and the
linear scan of N data items in [25] vs. the M data items in our scheme dominates.
In [25] the access time for 103 ≤ N ≤ 105 is in the range 15–20 ms, while in our
scheme the access time is lower for the pairs (N = 103, ε = 10−8), (N = 20 ·104,
ε = 2−6), and (N = 105, ε = 2−4), but is higher for each N when ε is lower than
the quoted figure.

4.3 Compressing DPF Correlations

In this section we discuss an application of PDPFs for compressing correlated
randomness in certain secure computation applications.

Standard DPFs have a variety of applications in the context of secure 2-
party computation (2PC). For instance, they serve as crucial building blocks
for concretely efficient 2PC of RAM programs [25] or for pseudorandom cor-
relation generators (PCGs) of truth-table correlations [11] and (authenticated)
multiplication triples [10].

As an example, suppose the two parties would like to securely evaluate a
circuit which consists of arbitrary n-gates g : {0, 1}n → {0, 1} (e.g., computing
the AND or the majority of the n input bits). Using instances of a random OT
correlation, the communication complexity of mapping a secret-shared input to
a secret-shared output is linear in the circuit size of g and the round complexity
is linear in the circuit depth. But given a random DPF correlation, this only
requires n communication bits per party and a single communication round [23,
30]. Concretely, a random DPF correlation consists of secret-sharing of a random
α ∈ ZN , for N = 2n, and a pair of keys (k0, k1) ← Gen(1λ, f̂α,1) where f̂α,1 :
ZN → Z2. The idea is that the DPF correlation can be locally expanded into a
truth-table correlation [11], which can in turn be used to evaluate a g-gate with
minimal online communication and round complexity.

Given many independent instances of a DPF correlation, one can obtain a
generic speedup for 2PC of Boolean circuits by grouping small sets of Boolean
gates into bigger g-gates [22]. This strongly motivates the goal of generating
many independent instances of a random DPF correlation with low communica-
tion cost. However, there are no known practical methods for achieving this.

We observe that PDPF can be used to solve this problem in the following
“trusted-offline” setting for 2PC. In an offline phase, Alice owns a long-term
secret s (say, a secret key for encryption, identification, or signature). To elim-
inate a single point of failure, she splits s into two shares, sA and sB, sending
sB to Bob and keeping sA to herself. She then erases all information except
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sA. In the online phase, the parties receive online inputs Pi (resp., ciphertexts
to decrypt, nonces for identification, or messages to sign) and wish to securely
compute f(s, Pi) for i = 1, 2, . . . , t.

The key observation is that Alice can be fully trusted in the offline phase,
since if she is corrupted before erasing s then the long-term secret is entirely
compromised. In fact, if Pi is public, then s is the only secret in the system.
Consequently, we trust Alice to generate pairs of DPF keys (kj

0, k
j
1) in the offline

phase, offload the keys kj
0 to Bob, and keep ki

1. However, the communication
cost of generating DPF instances for evaluating many g-gates is high.

A PDPF can provide a dramatic efficiency improvement in this scenario.
To generate T independent instances of a DPF correlation, Alice generates and
communicates only a single reusable offline key k0 to Bob (128 communication
bits in practice). Then, for each j, she generates an online key kj

1 for a point
function fαj ,1 using the PDPF algorithm Gen1. She also derives Bob’s (fresh)
ZN -share of αj from the offline key and computes its own share αj

1. In the end
of the silent generation process, Alice erases all information except her DPF
correlation entries (kj

1, α
j
i ). Now the two parties hold T compressed instances of

a truth-table correlation that can be silently expanded just when needed.
Viewed more abstractly, the above PDPF-based solution yields a PCG for

generating T instances of a size-N truth-table correlation, where one of the keys
is of size λ and the other is of size ≈ T · λ log N . Thus, if Alice acts as a PCG
dealer (who is only trusted during the offline phase), the communication cost is
constant in T and N and the storage cost grows logarithmically with N . This
should be contrasted with two alternative solutions: (1) using a standard DPF,
both PCG keys are of size ≈ T · λ log N , and so the communication cost is high
when T is large; (2) using a naive PDPF, with online key linear in the domain
size, keeps Bob’s key (communication) small, but requires Alice’s key (storage)
to grow linearly with T ·N instead of T · log N . A similar improvement is relevant
to other applications of DPF in 2PC, including silent generation of multiplication
triples [10] or low-communication simulation of RAM programs [25].

Concrete Efficiency. We make a few remarks about the concrete efficiency of
using PDPF to generate truth-table correlations. First, because the above appli-
cations only require random DPF instances (where α is chosen at random), the
computational cost of the PDPF key generation is comparable to a standard
DPF. Second, while the PDPF evaluation of our constructions is only concretely
efficient for moderate values of N and ε (see Sect. 5), this can be good enough for
applications. In particular, even a relatively high value of ε (say ε = 2−6) only
amounts to a tiny (and easily quantifiable) leakage in the spirit of differential
privacy, which is often considered tolerable. Functions with a small truth-table
size N arise in many application scenarios, including S-box computations in dis-
tributed evaluation of block ciphers (cf. [23]) or nonlinear activation functions
in low-precision Machine Learning algorithms (cf. [2]).
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PDPF Correlations vs. FSS Correlations. The truth-table correlations we gen-
erate via PDPF are quite broadly applicable, since they effectively allow using a
richer set of (small-domain) gates instead of just standard Boolean or arithmetic
gates (see [22,23]). Their main disadvantage is the computational overhead inher-
ited from the evaluation algorithm of our PDPF, which scales linearly with the
truth-table size N . This should be contrasted with the recent use of FSS correla-
tions for secure computation with preprocessing [7,13], in which the computation
cost scales logarithmically with N . However, in applications where the value of N
is moderate, this computation overhead may not form an efficiency bottleneck.

5 Concrete Efficiency

In this section we compare the concrete efficiency of our construction from Theo-
rem 4 to a naive PDPF construction. For our comparison we will consider PDPFs
over G = Z and β ∈ G′ = {0, 1}. Throughout the section we model the PPRF as
an ideal PPRF, see the full version of the paper for further analysis.

While Theorem 4 gives a ε ≈ √
N/M security bound, we empirically find

that the real statistical distance in the statistical variant of the balls-and-bins
experiment, as in Lemma 1 is ε ≈ 0.564

√
N/M , and we use this estimate in the

tables below. For estimating the running time of EvalAll in our construction we
use Theorem 3, by which EvalAll makes (M log2(N +1)/λ PRG calls. In addition,
by Proposition 4, Gen1 makes ((N + 1) log2 M)/λ PRG calls.

The naive PDPF construction is obtained by having EvalAll0 treat k∗
(obtained by running Gen0) as a PRF key, expanding it to a truth table of
length N over {0, . . . , �1/ε� − 1} for an integer 1/ε. Denote by f0 : [N ] → Z the
function with this truth table. Then, Gen1 will generate k1 by simply computing
the truth table of the function f1 = fα,β − f0 (hence |k1| = N�log2(1/ε)�), and
EvalAll1 will output the truth table it got. Note that this naive PDPF construc-
tion is ε-secure. Because both Gen and EvalAll compute the PRF on all points,
by Theorem 3, they make (2N − 1)(log N)/(2λ) PRG calls.

Remark 3 (Privacy and key length for the naive PDPF). The naive construction
provides negligible privacy error and online key of N · log |G| for output group G.
In aggregation-type applications, one either needs to pick a very large finite G
or use the group of integers Z with key size N · c and settle for 2−c-privacy. To
make the comparison meaningful, we went for the latter option with ε = 2−c.

In Table 1 we compare the key size and running time of Gen and EvalAll of our
PDPF to the naive PDPF, for fixed λ = 128. Our time unit is PRG evaluations,
assuming 1.8 · 108 evaluations per second of G : {0, 1}128 → {0, 1}256.
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Table 1. Key size, running time of Gen1 and EvalAll of our PDPF construction from
Theorem 4 (left) compared to the naive one (right). For the PDPF from Theorem 4
there are two Gen1 running times, the smaller one corresponding to time needed to
generate a key for a random point function. Running times are based on an AES-
based PRG implementation benchmarked at 1.8 · 108 PRG calls per second on a
single core. For M = 0.318 · N/ε2 and λ = 128, in our construction, the key size
is λ log2 M , EvalAll makes (2M − 1)(log N)/(2λ) calls to the PRG, and Gen1 makes
(N + 1)(log(M/N))(log N)/(2λ) calls to the PRG (and (log(N))2/(2λ) PRG calls for
the random point function). In the naive construction, the key size is N log2(1/ε), and
EvalAll and Gen1 both make (2N − 1)(log N)/(2λ) calls to the PRG.

ε/N 1000 20000 100000

2−4

0.3KB/0.5KB

1.5µs,0.002µs/0.4µs

38.8µs/0.4µs

0.3KB/9.8KB

42.1µs,0.005µs/12.4µs

1.1ms/12.4µs

0.4KB/48.8KB

242.6µs,0.006µs/72.1µs

6.2ms/72.1µs

2−6

0.3KB/0.7KB

2.5µs,0.002µs/0.4µs

621.2µs/0.4µs

0.4KB/14.7KB

68.7µs,0.005µs/12.4µs

17.3ms/12.4µs

0.4KB/73.2KB

395.5µs,0.006µs/72.1µs

99.7ms/72.1µs

2−8

0.4KB/1.0KB

3.4µs,0.002µs/0.4µs

9.9ms/0.4µs

0.5KB/19.5KB

95.2µs,0.005µs/12.4µs

276.8ms/12.4µs

0.5KB/97.7KB

548.3µs,0.006µs/72.1µs

1.6 s/72.1µs

2−10

0.4KB/1.2KB

4.4µs,0.002µs/0.4µs

159.0ms/0.4µs

0.5KB/24.4KB

121.8µs,0.005µs/12.4µs

4.4 s/12.4µs

0.6KB/122.1KB

701.2µs,0.006µs/72.1µs

25.5 s/72.1µs
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Abstract. Oblivious RAM (ORAM) is a powerful technique to prevent harmful
data breaches. Despite tremendous progress in improving the concrete perfor-
mance of ORAM, it remains too slow for use in many practical settings; recent
breakthroughs in lower bounds indicate this inefficiency is inherent for ORAM
and even some natural relaxations.

This work introduces snapshot-oblivious RAMs, a new secure memory access
primitive. Snapshot-oblivious RAMs bypass lower bounds by providing security
only for transcripts whose length (call it c) is fixed and known ahead of time.
Intuitively, snapshot-oblivious RAMs provide strong security for attacks of short
duration, such as the snapshot attacks targeted by many encrypted databases.

We give an ORAM-style definition of this new primitive, and present several
constructions. The underlying design principle of our constructions is to store
the history of recent operations in a data structure that can be accessed oblivi-
ously. We instantiate this paradigm with data structures that remain on the client,
giving a snapshot-oblivious RAM with constant bandwidth overhead. We also
show how these data structures can be stored on the server and accessed using
oblivious memory primitives. Our most efficient instantiation achieves O(log c)
bandwidth overhead. By extending recent ORAM lower bounds, we show this
performance is asymptotically optimal. Along the way, we define a new hash
queue data structure—essentially, a dictionary whose elements can be modified
in a first-in-first-out fashion—which may be of independent interest.

1 Introduction

Users of cloud computing services trust providers to store sensitive data. Encryption can
protect the data itself, but cannot prevent information from being disclosed by attacks
on metadata like the memory access patterns. A long line of work has conclusively
demonstrated that access pattern attacks can be used to reveal sensitive information. In
some settings, access patterns alone can be used to completely decrypt data [9,14,22–
24,28,32,34,36,37].

Oblivious RAM (ORAM) is a technique that can hide memory access patterns and
therefore prevent these kinds of harmful attacks. ORAM is quite useful, but its strong
security guarantees come at a cost, both asymptotic and concrete. With the best known
constructions [4] achieving O(log n) overhead for an n-entry memory, and with a
matching Ω(log n) lower bound by [38], it seems impossible to have an ORAM scheme
where the cost of each memory access does not depend on the total memory size.
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 152–181, 2022.
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Unfortunately, even relaxing security requirements does not allow bypassing the
Ω(log n) lower bound. Indeed, similar lower-bounds have been shown for differen-
tially oblivious RAMs [42], or even when the memory access pattern is known ahead of
time [6,19]. The attempt to gain efficiency in various settings has led to primitives such
as structured/searchable encryption [11,13,48], which allows for fast database lookup at
the cost of allowing attacks in some settings [9]. Alternatively, prior works have assumed
the a-priori knowledge of a certain distribution of memory accesses [21], or provided an
ORAM-based mechanisms for adjusting searchable encryption leakage [15].

Motivated by the goal of securingworst-casememory access patterns without depen-
dence on the size of the entire memory, in this paper we tackle the following question:

How can we sidestep the Ω(log n) lower bound, while providing a meaningful and
general security guarantee for memory access patterns?

1.1 Our Contributions

We begin with the observation that many attacks on real systems follow a common pat-
tern: an attacker gains access to an already-running system, is present in the system for a
relatively short time, then either leaves or loses access because the attack was detected.
The Verizon Data Breach Incident Report (DBIR) underscores the commonality of these
kinds of attacks: for example, in 2021 it found nearly five thousand incidents of “Basic
Web Application Attacks”, simple attacks in which an attacker compromises the web
application and quickly performs only a few actions, such as downloading emails. DBIR
also found that roughly 50% of detected security incidents were detected within a few
days [1]. A limiting case of this model is the so-called “snapshot” threat model targeted
by many encrypted databases, where the attacker obtains only a one-time snapshot of
the database system, giving it only the currently-running queries [23].

Thus, for encrypted memory primitives it makes sense to consider an attack model
where the attacker sees only a “window” of memory access patterns of bounded size;
however, the attacker cannot see the system’s memory access pattern before the attack
began, nor can it see the access pattern after the attack has concluded. Thus, we define
the notion of c-Snapshot ORAM, which maintains ORAM-like security guarantees but
against a weaker adversary which is limited to observing only c memory operations.

Definition 1 (informal). We say a RAM emulator RE is c-snapshot oblivious in case
the following holds. For any two sequences of operations −→op1,−→op2 of the same length,
and for any subsequences of c operations:−→op1c ⊆ −→op1,−→op2c ⊆ −→op2, it holds that the access
patterns seen while executing −→op1c and −→op2c are computationally indistinguishable.
Next, withDefinition 1 in hand, we then present our first c-Snapshot ORAMconstruction
where the client’s overhead is polylogarithmic in c but independent of n. More formally,

Theorem 1 (informal). There exists a c-snapshot oblivious RAM emulator with
O(log2 c) bandwidth overhead, using Õ(log c) client storage.

In particular, Theorem 1 offers the “best of both words” ORAM construction, as the
client obtains a meaningful security guarantee against realistic adversaries while having
its overhead not depend on n. Next, we proceed to reduce the client’s storage to constant,
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while maintaining polylogarithmic (in c) overhead for the server. We achieve this in the
amortized setting. See Theorem 2 below.

Theorem 2 (informal). There exists a c-snapshot oblivious RAM emulator with
O(log c) amortized bandwidth overhead, using constant client storage.

Finally, we proceed to find the lower bound for c-snapshot ORAMs. Here, we show
that any c-snapshot secure construction with constant storage must have an Ω(log c)
amortized bandwidth overhead. In particular, this makes the construction in Theorem 2
asymptotically optimal.

Theorem 3. Any c-snapshot oblivious RAM emulator using constant client storage,
must have a lower bound of Ω(log c) amortized bandwidth overhead.

1.2 Technical Overview

Motivated by the challenge of bypassing the ORAM lower bound while still providing
meaningful security guarantees in a natural setting, in Sect. 3 we begin by presenting
our definition of a c-snapshot ORAM. Our aim is to provide security against an adver-
sary that is capable of only seeing a window of at most c operations. We formalize this
with an IND-CPA style game in which the adversary needs to distinguish which of two
chosen transcripts were executed, given only the access patterns of the last c opera-
tions and the state of the memory before these operations. We also prove our definition
has several desirable properties: notably, c-snapshot obliviousness implies security for
smaller snapshots as well.

In this paper, we do not assume any encryption on the memory content and let
adversary only see the accessed address. In practice, we can either use a standard “read,
re-encrypt, write back” paradigm, or secret-sharing under multi-party setting.

AFolklore 1-Snapshot Oblivious Scheme.With the definition of c-snapshot ORAM in
hand, we proceed to analyze a folklore RAM emulator which simply permutes memory
addresses using a PRP, while hiding the operation type by performing a read and a write
for both operation types. As we show in Sect. 4, this results in a 1-snapshot ORAM, as
the adversary only sees an access to a single pseudorandom memory location.

Getting c > 1. Moving to the more general goal of c-snapshot obliviousness, we pro-
ceed to hide repeated accesses to the same memory locations by the client using a size-c
queue. More specifically, we ask the ORAM client to maintain a queue of size O(c),
which intuitively acts as a cache for the last c accesses. While addresses the are not
present in the queue are fetched from the server’s memory, we access a dummy ele-
ment in case the address is present. Notably, as the attacker only sees a window of c,
we do not need to re-shuffle, as any eviction of the queue is guaranteed to be touch-
ing an address which was last accessed more than c operations ago. This ensures that
any address is accessed at most once in every size-c window, intuitively mimicking the
1-snapshot ORAM construction. See Sect. 5 for details.

Achieving Polylogarithmic Storage. Our next step is to reduce the storage required by
the client from O(c) to polylog(c). An intuitive approach will be to recursively delegate
the client’s storage to the server using an oblivious RAM. Because storage complexity
of the construction in Sect. 5 in linear in c, such a recursive composition will result in
reducing the client’s storage overhead.
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In Sects. 6 and 7.1 we present different constructions using a custom data structure
we call an Oblivious Hash Queue (OHQ). More specifically, we begin by observing that
obliviously delegating the client’s queue to the server is simpler than general ORAM, as
the queue only supports a limited set of operations. By efficiently solving the oblivious
queue delegation problem, in Sect. 6 we are able to obtain c-snapshot oblivious con-
struction with O(log2 c) bandwidth overhead, using Õ(log c) client storage. Further
refining our OHQ technique, in Sect. 7.1 we obtain a construction with O(log c) amor-
tized bandwidth and constant client overhead, albeit with a worse concrete efficiency
compared to the construction in Sect. 6.

A Matching Lower Bound. Directly following from Larsen and Nielsen lower
bound [38], in Sect. 7.3 we show a lower bound for obtaining c-snapshot ORAM, prov-
ing that every secure construction must have an Ω(log c) amortized bandwidth over-
head. We reuse Larsen and Nielsen’s result in the c-snapshot security setting. This
essentially proves the asymptotic optimality of the construction in Sect. 7.1, limiting
future improvements to lower order terms.

1.3 Related Work

ORAM. There are two kinds of oblivious RAM: hierarchical ORAM, initially proposed
in [19] and following works [4,19,20,35,41,43], and tree based ORAM, proposed
by Shi et al. in [47] and followed by [12,17,44,47,49,51]. Computationally secure
ORAM is optimized by [4] with an amortized bandwidth overhead of O(log n), and
de-amortized by [5]. These above ORAM constructions satisfies the most strict security
definition (see Sect. 2.2). ORAM can be more efficient if it is designed for a specific
usage, such as oblivious data structure [52] and zero-knowledge ORAM [26,27].

Variants of the basic ORAM model include the offline setting and the balls-in-bins
model. Boyle and Naor [6] showed how to construct an ORAM scheme in the offline
setting. Jafargholi et al. [30] gave a statistically secure offline ORAM with Ω(log n)
overhead, using an oblivious priority queue. Read only ORAM [53] supports only read
operation in the online setting. If we remove the ball-in-bin model, ORAM efficiency
can be enhanced given server computation ability [2,16,25,40]. Differentially private
ORAM [50] further weakens the security requirement by requiring that the access pat-
terns of adjacent transcripts (vs. any two transcripts) are statistically close.

Structured Encryption. Most of searchable encryption and structured encryption
schemes [15,18,21,31] assumes a fully persistent adversary. But there are works assum-
ing non-persistent adversary such as [3]. In their setting, adversary is only observing
snapshots of database but not access pattern of queries. A line of works on leakage sup-
pression [31] uses a cache to store most recent accessed queries, and retrieve from cache
if queried again. However this does not allowwriting things back tomainmemory unless
a rebuild, which incurs an amortized Ω(log n) overhead. Our schemes (Sect. 5, 6) allow
writes back to main memory because we require security to hold only for a short oper-
ation sequence. A follow-up on leakage suppression [18] allows addition and deletion
of keys in a multimap.

A recent line of work has studied intermediate security for persistent adversaries
that is stronger than typical structured encryption but weaker than ORAM. For example,
Pancake [21] shows how to do efficient key-value lookups with access pattern hiding in
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a setting where the distribution of queries is known a priori, and queries are independent.
SEAL [15] combines structured encryption with ORAM, allowing more fine-grained
tradeoffs between access pattern hiding (against persistent adversaries) and efficiency.

Lower Bounds. Larsen and Nielsen [38] gave the first cell-probe lower bound Ω(log n)
for online ORAM, answering the question asked in [6], which also reduced lower bound
for offline ORAM to sorting circuits. A follow-up work from Jacob et al. [29] gave
lower bounds for oblivious data structures. A recent work [33] generalized the over-
head to both online and offline ORAM. Weiss and Wichs [53] showed lower bound
for read only online ORAM, and Persiano and Yeo [42] gave a Ω(n) lower bound
for differentially private RAM. Larsen et al. [39] gave an ORAM lower bound under
multi-server setting. Recently, Patel et al. showed there is an inherent inefficiency in
encrypted multi-maps with even decoupled key-equality pattern leakage, which leads
to aΩ(log n) overhead in the leakage cell probe model. Cash et al. gave lower bound for
one-round ORAM [8], which requires either Ω(

√
N) bandwidth overhead or Ω(

√
N)

client storage. Our snapshot oblivious RAM (Sect. 5.2) is also one-round but has con-
stant overhead and needs Θ(c) client storage.

2 Preliminaries

2.1 Pseudorandom Permutation

Definition 2 (Pseudorandom permutation). A Pseudorandom permutation (PRP) is
a function family E : K × {0, 1}n → {0, 1}n. We define the PRP security game
PRP(E,A, i). First, a key k is randomly generated from K and a random permutation
π is randomly generated from all permutations of n elements Perms(n). The adversary
has access to an oracle Ok

i . When the adversary queries a string s, it receives either
Ek(s) in the case i = 0 or π(s) in the case i = 1. Finally the adversary outputs a bit b.
We say that E is a secure PRP if for all nuPPT adversaries A playing the PRP security
game.

Advprp
E (A) =

∣
∣Pr[PRP(E,A, 0) = 1] − Pr[PRP(E,A, 1) = 1]

∣
∣,

the advantage defined above is negligible.

2.2 ORAM

In this section, we describe the syntax of our execution model and RAM emulator. We
then proceed to define the correctness requirements of RAM emulators, as well as their
obliviousness security definitions.

Execution Model and Terminology. We define a random access memory (e.g., RAM)
DB to be an array of M entries, where each entry contains at least m ≥ �logM�-bits.
We define an operation to be a tuple (op, idx , val) where op is either read or write,
idx is an integer between 0 and M − 1, and val is either a bit string of length m or the
⊥ symbol. Finally, we define a transcript to be a sequence of operations.

A Note on “Blocks”. Many works on ORAM [4,41,49] additionally define a “block”
of memory to be a sequence of memory locations that can be accessed with unit cost.
While we do not use blocks in this paper, and for simplicity assume that one operation
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Fig. 1. RAM emulator correctness.

only reads or writes to a single memory location, we do note that our results can be
easily extended to account for block memory accesses.

RAM Emulators. A RAM emulator RE is a pair of algorithms (init, exec) that sim-
ulates a RAM. Both init and exec have oracle access to two procedures—MemR and
MemW—that allow reading and writing to an array Mem of size M . Below, we will
mostly leave implicit the length of each array entry, and simply assume they are large
enough. (To draw an analogy to encrypted databases, RE is the “client” and the array
Mem it reads and writes through its oracles is the “server”.)

The randomized initialization procedure RE.init(DB) takes an array of size N
where each input is m bits long, representing the initial state of the memory, as input.
It outputs an initial state st0. The randomized execute procedure RE.exec(st, (op, idx ,
val)) takes as input a state st and an operation. It executes the operation and outputs the
result and a new state. (Below, in cases where the result is not used, we will omit it.)

Access Pattern. We define an access pattern of an emulator RE on an array DB and
transcript T to be the sequence of MemR and MemW oracle calls, and the first argu-
ment (accessed index) made by RE during init and while calling exec on each operation
in the transcript. As an abuse of notation, we will sometimes use RE(DB,T ) to refer
to the access pattern corresponding to executing the operations in T on DB.

Correctness and Efficiency. Intuitively, a RAM emulator RE should always return the
same results as the “canonical” RAM implementation Execute outlined in Fig. 1 (right).
More formally, for a RAM emulator RE we define correctness using the pseudocode
in Fig. 1 (left). That is, we say that RE is correct if for any database DB and tran-
script T , the output of Run(RE,DB, T ) is equal to the output of Execute(DB,T ) with
probability 1 over the random choices made during init and exec.

Bandwidth Overhead. One of the main measures of efficiency for RAM emulators is
bandwidth overhead, namely the increase in memory usage compared to the baseline
of just executing the transcript directly. Formally, for an emulator RE, database DB,
and transcript T , we define the bandwidth overhead as Ex[|RE(DB,T )|/|T |] where the
expectation is taken over the randomness of RE.
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Fig. 2. ORAM security game definition in pseudocode.

Oblivious RAMEmulators.Next we define the notion of obliviousness for RAM emu-
lators, see Fig. 2. In this pseudocode, the adversary has two stages. The first stage adver-
sary A0 chooses the arrays (databases) DB0,DB1 and the transcripts T0, T1. Next, the
second stage adversary A1 tries to guess the bit b. We note that A1 is not given access
to the contents of memory: all its input AP contains is the memory address accessed
by each oracle call, and its type (r or w). This is make the definition agnostic to the
way the memory contents are hidden—i.e., our definition can just as easily apply to a
setting where the memory is encrypted as it can to one where RE is run in multi-party
computation.

Definition 3 (Oblivious RAM emulator security). We define the ObSec advantage of an
adversary A = (A0,A1) against RAM emulator RE as

Advobl
RE(A) =

∣
∣Pr[ObSec(RE,A, n, �, 0) = 1] − Pr[ObSec(RE,A, n, �, 1) = 1]

∣
∣ .

We say the RAM emulator RE is computationally oblivious if for any nuPPT adversary
A,Advobl

RE(A) = negl(n).

Semi-honest Security. Finally, we note that becauseMemR andMemW read and write
Mem, neither these ORAM definitions capture servers that modify memory contents or
reply with stale values. Such attacks can be prevented using standard techniques [45].

2.3 Oblivious Maps

Below, we will use oblivious maps, which are oblivious data structures akin to ORAM
but tailored for specific operation types (less generic than memory read/write).

As proposed in [52], we give oblivious map the following syntax. An oblivious
map OM has an initialize function OM.init(N) which takes N as the maximum capac-
ity and outputs an initial state. As with ORAMs, we view oblivious maps as hav-
ing oracle access to MemR and MemW oracles to manipulate their memory. OM
has an execution function that supports four operations: Find, Insert, Update, Delete.
OM.Find(key) returns the value associated to key . OM.Insert(key , val) inserts the key
value pair in to the map. OM.Update(key , val) replaces the value associated to key by
val . OM.Delete(key) deletes the key value pair whose key is key . The execute function
additionally inputs and outputs a state.
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We require oblivious maps to satisfy a variant of the ORAM security definition
defined above. Let OblivMapSec denote the security game. (We omit pseudocode since
it is almost identical to ObSec.)

Definition 4 (Oblivious map). We define the advantage of A against OM as

AdvOMap
OM (A) =

∣
∣Pr[OblivMapSec(OM,A, N, �, 0) = 1]

− Pr[OblivMapSec(OM,A, N, �, 1) = 1]
∣
∣.

If this advantage is negligible for all nuPPT adversaries, we say OM is an oblivious
map.

3 Snapshot-Oblivious RAM Emulators

In this section, we introduce our new primitive: c-snapshot oblivious RAM emulators.
(We will usually shorten this to c-snapshot ORAMs.) The syntax of the new primitive is
similar to ORAM, but with one important change: we allow the init procedure to take,
in addition to the initial array DB, a natural number c denoting the number of opera-
tions’ access patterns the adversary gets to see. The syntax is otherwise unchanged. The
correctness notion for RAM emulators must change slightly as well: for a RAM emula-
tor to be correct, the correctness condition defined in Sect. 2 must hold with probability
1 for every possible choice of c.

c-Snapshot Obliviousness. Next we explain our new security notion, c-snapshot obliv-
iousness. Before formally stating the definition, we will briefly discuss the space of
possible definitions, and identify some desirable properties of a snapshot-obliviousness
definition. First, we expect snapshot-obliviousness should be strictly weaker than plain
obliviousness. Namely, any ORAM should be c-snapshot oblivious for any c. Second,
for any c′ < c, it should be the case that c-snapshot obliviousness implies c′-snapshot
obliviousness. Finally, to meaningfully capture snapshot attacks on real systems, we
would like snapshot-obliviousness to allow the adversary to see any c operations of its
choosing, without restricting the adversary to any particular locations.

Our Definition. We give the pseudocode of our definition in Fig. 3. Like plain oblivi-
ousness, the definition allows the adversary to specify two pairs of an array and tran-
script. The game runs RE.init on the ith pair using the oraclesMRH andMWH, which
allow the emulator to manipulate the memory Mem without recording the access pat-
terns. Then the game runs RE.exec on all but the last c operations of Ti, again without
recording the access patterns. Next, the game proceeds to execute final c operations of
the transcript via RE.exec, but this time using MemR and MemW which record their
access patterns in AP. Finally, the game runs the second adversary A1 on the recorded
access patterns AP, and (implicitly) the state of A0. A1 in turn is expected to correctly
guess i.

Definition 5 (c-snapshot obliviousness). Let RE be a RAM emulator and c be a fixed
number, the c-SnapObSec advantage of the adversary A = (A0,A1) against RE is

Advsnap
RE (A) =

∣
∣Pr[SnapObSec(RE,A, n, c, 0) = 1]

− Pr[SnapObSec(RE,A, n, c, 1) = 1]
∣
∣ .
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Fig. 3. SnapORAM security game.

The emulator RE is said to be (computationally) c-snapshot oblivious if for any nuPPT
adversary A, Advsnap

RE (A) = negl(n).

Comparing to Obliviousness. We now argue that our c-snapshot obliviousness defi-
nition is a natural restriction of regular ORAM. In particular, if for a RAM emulator
RE there exists a c and an adversary A with non-negligible c-SnapObSec advantage,
we can build a reduction B = (B0,B1) that breaks ORAM security. The reduction B0

works by running A0 (with c as an argument) and outputting the two pairs it outputs.
Then, B1 uses its access patterns AP to construct A1’s inputs. (Note that A1 takes the
initial state of the memoryMem0 as well as the access patterns of the last c operations;
B1 can construct both with AP. Clearly, A’s c-SnapObSec advantage is a lower bound
on B’s ORAM advantage.

Requiring Equal Length Transcripts. In the SnapObSec game, as in ObSec above, we
require the adversary to output two equal length transcripts. This restriction is necessary
in ObSec to prevent a trivial distinguishing attack based on the transcript length. How-
ever, astute readers may notice that since an adversary can only view the access pattern
of c operations, specifying two differing-length transcripts does not give a SnapObSec
adversary a trivial win. The c-snapshot obliviousness definition could conceivably
be strengthened by removing the restriction that the transcripts are of equal length.
However, the security analyses of some c-snapshot ORAM constructions below—e.g.,
UHQoram in Sect. 7—would require a non-standard transcript-length-hiding property
of an underlying ORAM. Lifting the length restriction is a good question for future
work.

Observing the Last c Operations. Our c-snapshot obliviousness definition allows the
adversary to design the whole transcript but restricts the observing window to be the last
c operations at the end of the transcript. We claim this setting is as strong as allowing to
put the observing window anywhere in the middle of the transcript. For a typical ORAM
not handling batching transcripts, the way to access one physical memory position,
though randomized, does not depend on the remaining transcripts after that. This means
any operation after the observing window will not change the distribution of access
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Fig. 4. The FSO RAM emulator, and the definition of secure-read and secure-write. (Note that
both secure-read and secure-write implicitly have access to the same oracles as exec.)

patterns the adversary gets. Due to this independence, it is without loss of generality to
put the c accesses at the end of the transcript.

c′-Snapshot Obliviousness for c′ < c. The security definition immediately leads to
a result that any snapshot-oblivious RAM emulator initialized with a DB and some
number c is still secure if the adversary observes access pattern of c′ operations and
c′ < c. We note, however, that this is different from saying any c-snapshot oblivious
RAM emulator is c′-snapshot oblivious: this statement is not necessarily even correct.
In SnapObSec game, the RE is initialized by a parameter c, so an adversary against a c-
snapshot oblivious RAM emulator is getting access pattern from a RE is initialized by c.
However, proving this would require building a reduction that wins the c-snapshot game
given an adversary that wins the c′-snapshot game, and it’s not clear if the adversary
can simulate the view of a c′-snapshot adversary given its inputs (computed from a
c-snapshot ORAM initialized with c fixed). We believe that for restricted classes of
snapshot-oblivious RAMs, this statement is true, but we leave the details to future work.

4 FSO: A 1-Snapshot Oblivious RAM

Next we will give a “warm-up” analysis of a folklore snapshot-oblivious RAM, FSO,
and show that it meets 1-snapshot obliviousness.

The Scheme. In Fig. 4, we give the pseudocode of FSO. It uses a pseudorandom per-
mutation E. During init, FSO samples a PRP key, then loads the array into memory
according to the permutation E. (The parameter c is ignored during init.) Then, it out-
puts the keys as its initial state.

During exec, the scheme performs either secure-read or secure-write depending on
op. Both perform a writeback to hide the operation type: they first read index EkP

(idx )
with MemR, and write it back to the same location with MemW. If the operation was
a read, exec returns the value, else it returns nothing. Clearly, this scheme has both
constant bandwidth overhead and constant client storage.
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Fig. 5. ICQoram, an insecure queue-based scheme. The secure-read and secure-write procedures
are as defined in Fig. 4. Three stages are in execution function, the second one is shaded.

Security of FSO. The security of FSO for restricted adversaries seems to be folklore—
see, e.g., Cash [7]—but to our knowledge has never been formally proven. We validate
this folklore by showing FSO is c-snapshot oblivious for c = 1.

Theorem 4. If E is a secure PRP, then FSO RAM emulator is 1-snapshot oblivious.

Proof. We define G0 to be the case that FSO initializes on DB0 and executes on T0. In
G1 FSO initializes on DB1 and executes on T1. We want to show that both G0 and G1

are indistinguishable from Ghybrid where the adversary observes read and write a same
but random idx in the access pattern.

In G0, G1, Ghybrid, the adversary observes AP = (r, idx ′)||(w, idx ′). The first part
of AP comes from secure-read and the second part comes from secure-write.

The difference between Gi and Ghybrid is that the idx ′ in AP is EkP
(idx ) in Gi,

which is computed by a PRP; while in Ghybrid, it is truly random, or we can say it
is from a random permutation π, idx ′ = π(idx ) for fixed idx . If Gi and Ghybrid is
distinguishable, we can tell difference between PRP and truly random permutation by
a simple reduction, |Pr[Gi,hybrid = 1] − Pr[Ghybrid = 1]| ≤ Advprp

E (Ci). Therefore, by
the 2-step reduction, |Pr[G0 = 1] − Pr[G1 = 1]| ≤ 2Advprp

E (C).

5 The c-Queue Scheme

In the previous section, we showed a simple c-snapshot oblivious RAM. In this section
we will show how to get c > 1. Before giving our construction, we will describe a
natural approach that turns out to be insecure.

5.1 An Insecure Scheme

The FSO scheme in Sect. 4 is only 1-snapshot obliviousness because it leaks repetitions
in accesses: reading the same “logical” address twice causes the scheme to make the
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same physical accesses. To make a secure scheme for general c we’d like the property
that physical accesses are all distinct whether or not logical accesses are.

A natural way to ensure this is to augment FSO with a queue of recent accesses. It
keeps track of which entries were accessed in the last c operations, along with their val-
ues. If any recently-accessed entries are accessed again within c operations, the scheme
reads them from the queue instead of from the remote memory. To prevent the server
from learning if the queue was used, the scheme can access a fake element.

The ICQoram scheme in Fig. 5 formalizes this idea. ICQoram.init works as in FSO,
except it also adds 2c dummy elements. The procedure ICQoram.exec has three stages.
First, it fetches address idx to the queue Q. If idx is already in the queue, it fetches a
dummy element, otherwise reads idx into the queue. Second, it processes the operation
(op, idx , val). If the operation is a write, it updates the value of idx in the queue; else,
it stores val as the read’s return value. Finally, ICQoram performs eviction. If the size
of queue is greater than c, it writes the oldest element back to main memory, otherwise
it writes a dummy element.

This scheme is fairly efficient: it requires O(c) additional storage in physical mem-
ory, O(c) additional client state, and has constant bandwidth overhead.

Security. The access pattern for each operation is one secure-read and one secure-write.
If ICQoram could guarantee that for any c operations, the indices touched in the
2c secure-reads and secure-writes were different, it could be proven secure using a
straightforward extension of the proof for FSO in Sect. 4.

However, this guarantee does not hold. ICQoram only makes sure the c secure-read
have distinct indices; the c secure-write indices depend on what is residing in the queue
in a way that can be exploited by an attacker to distinguish between two transcripts.
We demonstrate this with a concrete example. (We remind the reader that although the
attacker can only observe the access pattern of c operations, it can choose the entire
transcript.) Let c = 3, |DB| = 10, and take the two transcripts

T0 = read(1), read(2), read(3), read(4), read(5),
T1 = read(1), read(2), read(3), read(4), read(1) .

At the end of the third operation, for both transcripts, there are three indices in the
queue, 1, 2, 3. Now we start the execution of the fourth and fifth operations. For T0, the
access pattern of last two operations is secure-read(4), secure-write(1), secure-read(5),
secure-write(2). But access pattern of transcript T1 is secure-read(4), secure-write(1),
secure-read(1), secure-write(2). Since the adversary can see access pattern for the last
three operations, it can tell T0 or T1 from whether the third to last secure-write touches
the same address with the second to last secure-read.

5.2 CQoram: A c-Snapshot ORAM

Though ICQoram is insecure, the queue-based approach can be fixed. Fixing ICQoram
is challenging because of a three-way tension between bounded state size, correctness,
and security: to keep the queue’s size bounded, elements in it must eventually be evicted.
For correctness, the evicted element must be written back to its location in main mem-
ory; otherwise, an element updated while in the queue will not have the correct value in
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CQoramMemR,MemW.init(DB, c):

WQ ← [ ] ; RQ ← [ ] ; f ← 0

kP ←$ K
For ı = 0 to c − 1:
WQ.push(⊥,⊥)

RQ.push(⊥,⊥)

For idx = 0 to |DB| + 2c − 1:
If E 1

kP
(idx) < N :

MemW(idx , DB[E 1
kP

(idx)])

Else:MemW(idx , 0m)

Return (WQ,RQ, kP )

CQoramMemR,MemW.exec(st, (op, idx , val)):

WQ,RQ, kP ← st

If idx in WQ:
WQ.push(⊥,⊥)

secure-read(kP , |DB| + f)

f ← (f + 1) mod 2c

Else if idx in RQ:
d ← RQ[idx ]

(continue)
WQ.push(idx , d)

secure-read(kP , |DB| + f)

f ← (f + 1) mod 2c

Else:
d ← secure-read(kP , idx)

WQ.push(idx , d)

If op = read:
resp ← WQ[idx ]

If op = write:
WQ[idx ] ← val

resp ←⊥
(idx ′, val′) ← WQ.pop()

RQ.push(idx ′, val′)
If val′ �=⊥:

secure-write(kP , idx ′, val′)
Else:

secure-write(kP , |DB| + f,⊥)

f ← (f + 1) mod 2c

RQ.pop()

Return (WQ,RQ, kP ), resp

Fig. 6. The CQoram scheme, a c-snapshot ORAM.

the future. But to maintain security—namely, the invariant that all 2c accesses are
distinct—this location must not be touched again after eviction.

We begin with the simple observation that a second “read-only” queue could be used
to keep track of the elements that were recently evicted from the main queue. This could
be checked during exec to prevent duplicate accesses, preventing the attack above. Our
CQoram scheme will use this idea; as we will see, there are several important subtleties
that must be dealt with. Notably, care must be taken if an element is written while it is
in this secondary read queue.

The CQoram Scheme. We give pseudocode of the scheme in Fig. 6. As with FSO,
CQoram uses a PRPE with key spaceK. The CQoram.init procedure is nearly identical
to ICQoram’s init, except it initializes two queues—the write queue WQ and the read
queue RQ—instead of just one, and fills the queues with dummies. The invariant of this
scheme is that at the beginning and end of CQoram.exec, both two queues have exactly
c elements, either real or dummy, in them.

As with ICQoram, the CQoram.exec procedure has three main phases. First, it
checks both WQ and RQ for the index idx to be accessed; like ICQoram, if either
queue contains idx it reads a dummy, else it reads idx from main memory. One impor-
tant new step is in the second branch, which checks RQ. Here, if idx is found in RQ,
it will move it and its value back into WQ to maintain the invariant that WQ always
contains the element. (We do not need to delete the element from RQ—the copy in RQ
will always be deleted before the element is evicted from WQ.)

The second phase is executing the operation on the element. This phase is the same
as in ICQoram. The third phase of CQoram.exec, eviction, is necessarily quite different
than in ICQoram. It begins by popping the front (oldest) element fromWQ and pushing
it into RQ anyway. Then it checks if that element is a dummy; if not, writes the element
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back to main memory, otherwise writes a dummy. Finally, pop the front element from
RQ and (implicitly) deletes it. Finally, we note that CQoram has the same asymptotic
performance as ICQoram; concretely, CQoram requires twice as much client storage as
ICQoram, but has identical bandwidth and storage overhead.

Security of CQoram. Next we prove that CQoram is a c-snapshot oblivious RAM
emulator for any c. We begin with a lemma showing that any size-2c subsequence of
accesses made with CQoram are to distinct memory locations. Below, we will treat
the pair of entries in AP made by our secure-read or secure-write procedures as one
“access”, since either procedure just performs a writeback—a read, then a write—on
one memory location.

Lemma 1. Let DB be an array of N m-bit strings, and T be a transcript of n oper-
ations. Let x1, x2, . . . , x2n be random variables denoting the sequence of indices in
Mem accessed by CQoram while executing T on DB. For any i ∈ [1, 2n] let {xi, . . . ,
xi+2c−1} be the subsequence of at most 2c accesses starting with xi. Then with proba-
bility 1 over the random coins of CQoram, all accesses in this subsequence are distinct.

Proof. We prove this statement in two steps. First, we observe that it is sufficient to
prove a weaker statement: namely that for any size-2c sequence of physical accesses, the
first access xi occurs only once in that sequence. This implies all size-2c subsequences
are distinct because if there was a subsequence where this did not hold, there would
also be a size-2c subsequence where the first access occurred more than once in that
subsequence.

Next we prove that the first access occurs only once. The 2c memory accesses
are either “real” array values or dummies. We know that real values are at position
EkP

(1), . . . , EkP
(N), and dummies are at position EkP

(N + 1), . . . , EkP
(N + 2c);

thus, dummies cannot have the same address as real values, and so xi = xi+j can only
be the case if they are either both dummies or both real values.

Since the subsequence has 2c memory accesses there are at most 2c dummies being
touched. During CQoram.init we add 2c dummies, and we use the counter f to make
sure each dummy is accessed only once. Thus, if the accesses are both to dummy values,
they must be distinct.

Now we only care about the case where xi and xi+j are both to real values, and let
idx i and idx i+j be the corresponding real indices. First, we will state three facts about
CQoram.exec. (1) Any access to a real value happens either because of secure-read or
secure-write. (2) secure-read(idx i) happens only if idx i is neither in WQ or RQ. (3)
secure-write(idx i) happens only when idx i is popped from WQ.

There are four cases to analyze.

– secure-read(idx i), . . . , secure-read(idx i+j)After idx i is read, it is pushed intoWQ.
idx i is popped after c new elements are pushed into WQ. Each operation will push
exactly 1 element into WQ. Therefore, in the next c − 1 operations, idx i is always
inWQ, so idx i �= idx i+j and xi = xi+j for all j.

– secure-read(idx i), . . . , secure-write(idx i+j)After idx i is read, it is pushed intoWQ
and it is written only when idx i is popped out. Thus, in the next c − 1 operations,
idx i is always inWQ, so idx i �= idx i+j for all j.

– secure-write(idx i), . . . , secure-read(idx i+j). First, idx i is pushed into RQ after
being written. We read the index idx i from the memory only if it is not in WQ or
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RQ. idx i is popped only after c new elements are pushed into RQ. Each operation
will push 1 element into RQ. Therefore, in the next c − 1 operations, idx i is always
in RQ, and idx i �= idx i+j for all j. (Note that this is the case where ICQoram fails
to prevent duplicate reads.)

– secure-write(idx i), . . . , secure-write(idx i+j). As above, idx i is popped from WQ
after being written. We write the index idx i to the memory only if it is already in
WQ. It takes one operation to read idx i to WQ again and at least c − 1 operations
before being popped out, so idx i �= idx i+j for all j.

Thus, we have proved that xi is only accessed once, and we are done.

Theorem 5. The CQoram scheme is a c-snapshot oblivious RAM emulator, for any c.

Proof. Each operation has one secure-read and one secure-write, whichwrites a (r, idx )||
(w, idx ) to the access patternAP. In c operations, the 2c read/write indices are distinct by
Lemma 1. Call these x1, . . . , x2c. Then AP has 2c copies of (r, idx∗)||(w, idx ∗) where
the 2c idx∗ = EkP

(xi) are distinct and pseudorandom,which are indistinguishable from
a hybrid game that idx∗ are π(1), · · · , π(2c) where π is a random permutation.

Discussion. The CQoram scheme has constant bandwidth overhead because each
plaintext operation is done by one secure-read and one secure-write, each of which
does two memory accesses. So |CQoram(DB,T )|/|T | = 4 = O(1). But it needs O(c)
client storage.

We can store the queue on the server, but during CQoram.exec, we need to check the
queues’ contents. This operation needs to iterate the entire queue, so it has to introduce
a linear overhead in c. Therefore on each queue operation, we scan and update the entire
queue, which gives us an O(c) bandwidth overhead and constant client storage. In the
next section, we will present a much more efficient way to outsource the queue’s storage
to the server.

Readers may find that different from the ICQoram scheme, we pad the size of
queues to c. Note that this does not fix the insecurity of ICQoram. Instead, if we choose
to store the queues on the client’s side, removing the paddings even enhances the effi-
ciency. However, if we popWQ only when |WQ| > c, the latest version of some mem-
ory contents may be arbitrarily old. Suppose the transcript is repeatedly writing some
values to address 1 to c − 1, then these updated values are never uploaded because the
queue has size c − 1. Therefore if a client is shutdown unexpectedly, the “back-up”
value on the server can be extremely out of date. Our CQoram scheme makes sure that
every updated memory value will be uploaded to the server every c operations.

6 Oblivious Hash Queue Based c-SnapORAM

As we described above, for the CQoram scheme, the read and write queues can be
stored on the server and simply streamed to the client during each CQoram.exec. This
allows constant client-side storage but incurs O(c) bandwidth overhead, which may be
prohibitive if c is large.

To reduce this overhead, we could instead store the queues in a smaller ORAM.
Since the amount of storage needed for the queues is only O(c), this would in principle
allow us to reduce the overhead of CQoram exponentially, to something like O(log c).
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However, making this strategy work is quite challenging. The read and write queues
in CQoram are used in several different ways in CQoram.exec: searching for (idx , val)
pairs, updating their values, and pushing and popping elements in a first-in, first-out
fashion. Ultimately, no existing data structure efficiently provides the combination of
dictionary and queue properties we need, so we invent our own novel data structure,
which we term the hash queue.

In this section, we will introduce the syntax of hash queue and give an oblivious
hash queue security definition. We show how to build a c-snapshot ORAM (PHQoram)
using an oblivious hash queue, and how to use oblivious map to build an oblivious
hash queue (OMOHQ). The PHQoram construction has polylogarithmic bandwidth
overhead, which will be further reduced in Sect. 7.

Definition 6 (Hash queue). A hash queue is a pair of algorithms: an initialization
function HQ.init(c) and an execution function HQ.exec(op, args) where args is a tuple
of arguments.

A hash queue is initialized by calling its initialization function with argument c,
which represents the maximum size of the hash queue. After initialization, the HQ.exec
function takes a state as input and output, and supports the following four types of
operation:

– op = Find, args = (key). The data structure searches on key and returns val if key
is found, otherwise returns ⊥.

– op = Push, args = (key , val). Insert the key value pair.
– op = Access, args = (op′, key , val). If op′ is read, searches for key and returns its

value. If op′ is write, searches on key and replaces its value by val and returns ⊥.
If key is not found, the data structure returns ⊥0, a reserved failure symbol distinct
from ⊥.

– op = Pop, args = (). Returns the oldest key-value pair and deletes it.

Below, we will abuse notation slightly and replace exec with the hash queue operation
it executes. E.g., HQ.Find(key) instead of HQ.exec(Find, (key)).

6.1 Hash Queue Security

A natural security definition for hash queues is an ORAM-style notion that requires
hiding everything except the operation count. This kind of definition is typical of other
oblivious data structures [52]. However, such a definition is stronger than what we need:
our goal is to replace the client-side queues in CQoram with hash queues; in CQoram
(Fig. 6). Notice that no matter what the transcript is, for each CQoram.exec, we always
search idx inWQ, then execute push, modify, and pop in theWQ. Likewise, we search
in RQ at the beginning (not always, but we can do a dummy search), then push and pop.
That is to say the sequence of operation executed on a queue which will be replaced by
an oblivious hash queue, is always the same and publicly known in advance. Because of
such observation, we propose our first obliviousness definition. We give the pseudocode
for our public operation obliviousness security notion for hash queues in Fig. 7.

Similar to the security game of RAM emulators, we define both of init, exec as rel-
ative to a pair of oracles MemR,MemW. Cryptographic primitives like hash queue
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Fig. 7. Game defining public operation obliviousness for a hash queue. AP is modified by oracles
MemR,MemW as defined in Fig. 2 during the execution of exec function.

use the same MemR,MemW oracles to access the entire physical memory. To make
sure the primitives do not overwrite others’ memory, each primitive is allocated a prim-
itive identifier pid and memory space when calling init.MemR,MemW implicitly take
pid as an argument and add a proper offset to get the physical memory address.

Definition 7 (Public-operation oblivious hash queue). For a two-part adversary A
playing game defined in Fig. 7, we define the public-operation obliviousness advantage
of A against HQ as

Advopo
HQ(A) =

∣
∣Pr[PublicOpOblivHashSec(n,HQ,A, 0) = 1]

− PublicOpOblivHashSec(n,HQ,A, 1) = 1
∣
∣.

If for a hash queue HQ, for any nuPPT adversary A, the above advantage is negligible,
we say that HQ is public-operation oblivious.

The game is similar to our obliviousness notion for RAM emulators in Sect. 2. It lets the
adversaryA0 output two pairs of transcripts with the same “operation pattern”, executes
the ith transcript, and gives the A1 the access patterns and outputs its guess b.

6.2 A c-Snapshot ORAM from Hash Queues

Next we describe a generic transformation that builds a c-snapshot ORAM from any
hash queue meeting the public-operation obliviousness property defined above. (In the
next subsection, we will construct a hash queue which enjoys this property.) We call our
construction PHQoram, and give its pseudocode in Fig. 8. At a high level, PHQoram
follows the strategy we outlined above of outsourcing CQoram’s read and write queues
to the server. PHQoram replaces RQ with a hash queue rOHQ, and likewise replaces
WQ with a hash queue wOHQ. The procedure PHQoram.init initializes the two queues
independently in non-overlapping regions of Mem (handled by MemR,MemW ora-
cles), then samples a PRP key and fills the rest of Mem with DB entries and dummy
elements. The procedure PHQoram.exec works similarly to CQoram.exec, with a few
important differences. Most notably, it executes both wOHQ.Find and rOHQ.Find,
whereas CQoram does not check RQ if the index is found inWQ. This prevents leaking
the hash queue contents based on the number of accesses to each hash queue.
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Fig. 8. Construction of PHQoram c-Snapshot ORAM emulator in pseudocode. The exec proce-
dure starts on the left and continues on the right.

It is not too hard to see that if wOHQ, rOHQ has bandwidth overhead g(c) for
each operation, then PHQoram has bandwidth overhead O(g(c)). Regardless of which
branch is taken, PHQoram does the following things on each RAM operation:

wOHQ.Find, rOHQ.Find, secure-read,wOHQ.Push,wOHQ.Access,

wOHQ.Pop, rOHQ.Push, secure-write, rOHQ.Pop.

Since there are a constant number (7) of hash queue operations each with g(c) overhead
and a constant number (2) of accesses to the “main” memory with O(1) overhead, the
overall bandwidth overhead is O(g(c)).

Theorem 6. Let E be a secure PRP and wOHQ, rOHQ be public-operation oblivi-
ous hash queues. Then the PHQoram scheme in Fig. 8 is a c-snapshot oblivious RAM
emulator.

Proof. We will prove c-snapshot obliviousness by reduction. The high-level strategy is
as follows: first, we will perform two game hops to “decouple” the operations made
against the two hash queues from the adversary’s chosen transcripts in SnapObSec.
(Specifically, we will simply execute the same operation sequence on wOHQ and
rOHQ, but with dummy arguments.) In these hybrid games we will ensure the correct-
ness of the distribution of accesses to the main memory using local queues; effectively,
after these two game hops, the access pattern to the main memory will be distributed as
in the CQoram scheme. Then, we can use a variant of the security argument for CQoram
to perform one more game hop which changes the PRP’s outputs to a random subset of
the memory locations.
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We now proceed more formally. Let A be a SnapObSec adversary. We will show
that there exists adversaries B, C, and D such that

Advsnap
PHQoram(A) ≤ 2Advopo

wOHQ(B) + 2Advopo
rOHQ(C) + 2Advprp

E (D) .

We do this via a sequence of games. Game G0 is SnapObSec(PHQoram,A, c, 0).
Game G1 is the same as G0 except for two additional (local) queues, WQ and RQ,
are added to PHQoram.exec that “mirror” (resp.) wOHQ and rOHQ: any modifica-
tions made to wOHQ or rOHQ are also made to their corresponding local queues, but
the access pattern is otherwise unchanged. Clearly, this does not affect A’s view, so
Pr[G0 = 1] = Pr[G1 = 1].

Next we define the game G2. This game is identical to G1, except the arguments
to all wOHQ operations (except the state) are replaced with fixed values: all indices
are replaced with zero. The local queue WQ is used in place of wOHQ. We can upper-
bound the difference in advantage between G1 and G2 by building a reduction B0 to
the public-operation obliviousness of wOHQ. The reduction B0 works as follows: first,
it runs A0 to get (DB0, T0), (DB1, T1). Then, it samples kP and with its own simu-
lated MemR,MemW oracles initializes rOHQ and executes PHQoram on (DB0, T0)
as in G1. However, B0 only usesWQ and does not perform wOHQ operations; instead,
it marks the access patterns of these operations in AP with ⊥ and records the opera-
tions that would have been executed against wOHQ. This is the “induced” transcript
of operations on wOHQ in G1. Call this transcript

−→opG1
w . Concretely, it consists of c

Push operations made during init, then for each RAM operation, the transcript contains
Find,Push,Access,Pop. (Note that the sequence of wOHQ operation types is fixed and
does not depend on the RAM operation.) Then, B0 constructs the “dummy” transcript−→opG2

w , containing the same operation types but with all-zero arguments; it then outputs−→opG1
w ,−→opG2

w as its chosen transcripts in its PublicOpOblivHashSec game. When B0 gets
the array of access patterns in the second stage of the PublicOpOblivHashSec game, it
uses them to fill in the entries of AP which were marked with ⊥ previously.

At this point, B0 has an access pattern array AP which is distributed as in G1 if
i = 0 in PublicOpOblivHashSec, and distributed as in G2 if i = 1. Thus, B0 can simply
truncate AP to the last c operations, compute the state ofMem before these operations,
run A1 as in SnapObSec, and return its output. By construction,

|Pr[G1 = 1] − Pr[G2 = 1]| ≤ Advopo
wOHQ(B0) .

Next we define G3, which is the same as G2 except we also replace the
arguments to rOHQ with “dummy” all-zeros strings. (Note that, like wOHQ, the
operation types executed on rOHQ while PHQoram executes a RAM operation
are fixed to Find,Push,Pop.) By an argument similar to the above, we can con-
struct a reduction C0 to the public-operation obliviousness of rOHQ, giving us that
|Pr[G2 = 1] − Pr[G3 = 1]| ≤ Advopo

rOHQ(C0) .
In G3, only the accesses to the “main” memory (i.e., the permuted array) depend

on (DB0, T0). Dummy operations are made against wOHQ and rOHQ; the actual state
of those queues is kept track of locally, as in the CQoram scheme in Sect. 5. Next, we
construct game G4, where the “main” memory consists of indices of the 2c accesses to
the main memory (secure-reads and secure-writes) seen by A are chosen by sampling a
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Fig. 9. The OMOHQ hash queue construction. All operations input and output the state returned
from init; we leave this implicit for brevity. († We leave implicit the domain separation in these
MemR/MemW oracles. See Sect. 6.)

subset of [1, . . . , |DB| + 2c] uniformly at random. By an argument very similar to the
proof of Theorem 5, we can build D0 and E0 so that

|Pr[G3 = 1] − Pr[G4 = 1]| ≤ Advprp
E (D0) .

In gameG4,A’s view does not depend on either (DB0, T0) or (DB1, T1). Thus, we can
perform the previous game transitions in reverse to get to SnapObSec(PHQoram,A,
c, 1). A standard argument lets us build B, C,D whose advantages are at most twice the
right-hand sides of the above terms; applying the triangle inequality yields the result.

6.3 Constructing Public-Operation Oblivious Hash Queues

Now that we have shown that c-snapshot ORAMs can be built from hash queues with
public-operation obliviousness, we just need to construct a hash queue meeting this
security notion. In this subsection we will give such a construction, which we call
OMOHQ.

The OMOHQ Construction. In Fig. 9, we give the pseudocode of OMOHQ. It is built
from an oblivious map which supports Insert,Find,Delete,Update, and an array which
serves as a queue. The init function initializes OM, chooses a key k′

E , and writes an
array of all-zeros to the memory. It also initializes two queue pointers head , tail to zero.
The Find and Access procedures are essentially pass-throughs to their corresponding
oblivious map operations, where Access branches on the op input. The Push and Pop
procedures use both the array and OM. Push inserts key , val in the end of the hash
queue, by storing it at the tail position and inserting the key/value pair in OM. Pop
does the reverse—removing the key/value pair at the front of the hash queue. It does
this by reading and decrypting the key stored at head and using two OM operations to
read its value val ′ and delete it.

Theorem 7. If OM is an oblivious map, then OMOHQ in Fig. 9 is a public operation
oblivious hash queue.



172 Y. Du et al.

Proof. The high-level strategy is similar to the proof of Theorem 6: we will transition
from PublicOpOblivHashSec with i = 0 to a game where all OM operations take fixed,
dummy arguments, and use a local map to ensure the accesses to the array have the
correct distribution. From there, we will transition to a game where the accesses in
the array depend on the transcripts output by the adversary in PublicOpOblivHashSec.
Reversing these transitions will get us to PublicOpOblivHashSec with i = 0.

We proceed via a sequence of game transitions. Let A be an adversary, and let
game G0 be PublicOpOblivHashSec(PHQoram,A, n, 0). We transition to game G1,
where a local map data structure “mirrors” the oblivious map OM. Then, we tran-
sition to game G2, where the arguments to OM operations are fixed to be all-zeros,
and the array’s contents are determined using the local map. We can upper-bound the
difference in these two games outputting 1 by building a reduction B0 to the oblivi-
ousness of OM. The reduction B0 runs A to obtain T0, T1, then simulates OMOHQ
on T0 to determine the induced OM transcript. Then, B submits this along with the
fixed all-zeros OM transcript as its chosen transcripts in the OblivMapSec game. It uses
the access patterns it receives to simulate A’s access pattern input. By construction,
|Pr[G1 = 1] − Pr[G2 = 1]| ≤ Advom

OM(B0) .
We next move to game G3, which is the same as G2 except the array accesses

depend only on the operation type, but not the arguments. The access pattern to the
array is actually identically distributed in G2 and G3: observe that in OMOHQ, the
way the array is accessed depends only on the operation type: init writes to it n times,
Push writes to position tail , and Pop reads from head . Thus, for any pair of transcripts
output by the adversary in PublicOpOblivHashSec, the access pattern to the array is
fixed because the transcripts must have the same operation sequence. Thus, the game
G3 is identical to G2, giving Pr[G2 = 1] = Pr[G3 = 1].

In game G3, the access patterns and the memory contents do not depend on
either of A’s output transcripts; thus, we can reverse these game transitions to get to
PublicOpOblivHashSec with i = 1. By applying an argument similar to the one at the
end of the proof of Theorem 6, the result follows.

Asymptotic and Concrete Performance. The asymptotic performance of the c-
snapshot ORAM PHQoram depends on howOM inOMOHQ is instantiated. A special-
purpose oblivous map data structure (e.g. [52]) is likely to be the most efficient choice.
The best-known oblivious maps achieve O(log2 n) bandwidth overhead for size-n
memory. This implies that the bandwidth overhead ofOMOHQ, and thus the PHQoram
construction, is O(log2 c) for c-snapshot obliviousness.

The concrete performance of PHQoram is a more complex question, as it depends
greatly on implementation specifics. The best-known oblivious map construction has
good asymptotics, but its concrete bandwidth overhead is still quite large for small
databases: for example, the evaluation of [46] shows that reading an eight-byte
key/value pair requires communicating over 100 KBs to the client. Despite exponen-
tially worse asymptotics, it may be the case that the CQoram scheme is more efficient
than PHQoram for practical values of c, due to its small constants. It does not seem
inherent that oblivious maps perform poorly for small memory sizes; we leave improv-
ing them in this parameter regime to future work.
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Fig. 10. Unique insertion oblivious hash queue security definition. The function UI(T ) returns 1
if the keys given to Push operations are all distinct, and 0 otherwise.

7 Asymptotically-Optimal c-Snapshot ORAM

In this section, we give tight upper and lower bounds on the asymptotic performance
of c-snapshot ORAMs. Beginning with the upper bound, we propose a new oblivious
hash queue security definition different from Sect. 6 and show the UHQoram construc-
tion in Sect. 7.1 using an instance (CCOHQ) of our new oblivious hash queue vari-
ant. UHQoram is a modification of PHQoram which guarantees an important unique-
insertion property for the queues: namely, that duplicate keys are never Pushed. Though
a seemingly small change, we show that guaranteeing unique insertions is crucial
because it allows weakening the security requirements on UHQoram’s hash queues,
admitting more efficient instantiations.

We show CCOHQ, a hash queue construction meeting this weakened security
requirement with O(log n) bandwidth overhead for n items. Instantiating UHQoram
with CCOHQ gives a c-snapshot ORAM with O(log c) bandwidth overhead. Finally,
in Sect. 7.3, we extend the seminal Ω(log n) lower bound of [38]. Our lower bound
implies that any c-snapshot ORAM must have Ω(log c) bandwidth overhead, implying
UHQoram is asymptotically optimal in terms of bandwidth overhead.

We first define the weakened hash queue security notion that UHQoram will use.

Definition 8 (Unique-insertion oblivious hash queue). Let HQ be a hash queue, and
let −→op be a sequence of hash queue operation types. Let UniqInsertOblivHashSec be
the game in Fig. 10. We define the −→op-unique insertion obliviousness advantage of an
adversary A against HQ as

Advuio
HQ,−→op(A) =

∣
∣Pr[UniqInsertOblivHashSec−→op(HQ,A, n, 0) = 1]

− Pr[UniqInsertOblivHashSec−→op(HQ,A, n, 1) = 1]
∣
∣ .

We call HQ −→op-unique-insertion oblivious if for all nuPPT adversaries A, Advuio
HQ(A)

is negligible. If HQ is −→op-unique-insertion oblivious for all −→op, we simply say it is
unique-insertion oblivious.

Looking ahead, we will only analyze −→op-unique-insertion oblivious for our CCOHQ
hash queue construction for the fixed −→op induced by the UHQoram c-snapshot ORAM;
thus, below we will always refer to −→op-unique-insertion oblivious.
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Fig. 11. Construction ofUHQoram c-snapshot ORAM. The function gvr is a helper function used
during exec. All hash queue operations in exec input and output a state. OraclesMemR,MemW
are as defined in Fig. 2.

7.1 The UHQoram Construction

The UHQoram construction is depicted in pseudocode in Fig. 11. It is substantially sim-
ilar to PHQoram above, with two important differences. First, in addition to the counter
f , there is another counter h for the total number of operations executed. This counter
is used to derive a “round” number, which is prepended to the index when it is written
to either of the hash queues. This round number ensures all keys written to the hash
queues are distinct (we will argue this more formally in Theorem 8). Another change
from PHQoram is the addition of two calls to Find at the beginning of UHQoram.exec.
Because each hash queue entry has a round number prepended, we need to check all
possible round numbers to be sure to find an entry.

The final change is the use of a helper function gvr during exec. This helper function
takes the result of the four Find operations, and outputs the correct value and the round
number needed to modify the correct element in wOHQ.Access. The case logic in gvr
looks complex, but it is just ensuring the newest copy of the element is always selected.
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UHQoram has the same asymptotic overhead as the hash queue: if each hash queue
operation takes g(c) bandwidth, each UHQoram operation takes O(g(c)) bandwidth.

Next we will state and prove a security theorem for UHQoram. This theorem will
prove it is a c-snapshot ORAM by reduction to the PRP security, and the unique-
insertion obliviousness of wOHQ, rOHQ.

We do not need unique-insertion obliviousness of wOHQ, rOHQ to hold for any
operation sequences; for simplicity we instead focus on the two sequences induced by
our UHQoram construction above. Specifically, define

−→opw = Push, . . . ,Push,Find,Find,Push,Access,Pop, . . .

where there are c Pushes, then copies of the Find,Find,Push,Access,Pop sequence.
This is the sequence run on wOHQ by UHQoram above. Likewise, define

−→opr = Push, . . . ,Push,Find,Find,Push,Pop, . . . .

This is the operation sequence for the rOHQ hash queue in UHQoram. The next theo-
rem proves that as long as wOHQ and rOHQ are (resp.) −→opw and −→opr-unique-insertion
oblivious hash queues, UHQoram in Fig. 11 is a c-snapshot oblivious RAM emulator.

Theorem 8. Let E be a secure PRP and wOHQ be −→opw-, and rOHQ be −→opr-unique-
insertion oblivious hash queues. Then UHQoram in Fig. 11 is a c-snapshot oblivious
RAM emulator.

Proof. The proof is substantially similar to that of Theorem 6 above; the chief differ-
ence is that we reduce to a weaker security property of the hash queues (unique-insertion
obliviousness for −→opw and −→opr). Thus, we only need to extend our previous argument
to explain why the unique-insertion property holds for wOHQ and rOHQ. First, define
a “round” to be a group of c operations. We begin by proving there are no duplicate
key insertions into wOHQ. An array entry idx , val can be inserted into wOHQ in only
three places, namely the three branches of the first if-statement of UHQoram.exec. If it
is inserted in the first branch, it is a dummy; since there are 2c dummies but the round
counter h′ increments every c operations, duplicate insertion is impossible there.

If it is inserted in the second branch, it is being re-added to wOHQ from rOHQ.
In this case, the element had been in wOHQ previously; however, the round counter h′

must be different from the one that was used in the previous insertion to wOHQ—this
second branch can only happen c operations after the initial insertion.

If idx , val is inserted in the third branch, idx was neither in wOHQ nor rOHQ.
Since the round counter for this insertion is always the current one, this insertion must
be unique, since idx was last in wOHQ (with any round counter) at least c opera-
tions ago.

We’ve proven that wOHQ never sees a duplicate insertion, but still need to prove
this holds for rOHQ. Observe that rOHQ contains exactly the same keys as wOHQ
did c operations ago—essentially, rOHQ is an older replica of wOHQ. Thus, because
wOHQ has the unique-insertion property, rOHQ does as well, and we are done.
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Fig. 12. Pseudocode for cuckoo hashing algorithms. For space reasons we leave the definition of
the rehashing procedure implicit.

7.2 Constructing Unique-Insertion Oblivious Hash Queues

Now, we give an oblivious hash queue called CCOHQ. Our pseudocode is in Fig. 13. As
with OMOHQ, our construction consists of two parts: an array to maintain first-in-first-
out order and a dictionary data structure. In CCOHQ, though, we do not use a generic
oblivious map: instead, we use a specific construction, namely cuckoo hashing running
on top of a generic ORAM. We give pseudocode for cuckoo hashing in Fig. 12. (Recall
that cuckoo hashing supports O(1) time worst case lookup and delete, and expected
O(1) time insert.) Note that to achieve bandwidth overhead O(log c), we need to use an
ORAM whose bandwidth overhead O(logN), such as OptORAMa [4]. We depict this
in the figure by having the cuckoo hash CKH use simulated memory read/write oracles
built from ORAM, denoted OMR and OMW. We also apply a PRP to the keys before
they are inserted into the cuckoo hash table. As we will see below, this is important
to ensure security. We draw the reader’s attention to the fact that this is different from
oblivious cuckoo hashing in [4,10]. Their hash tables only support one-time lookups
after being initialized but we need multiple time lookups and modifications.

Security of CCOHQ. Recall that UHQoram only needs hash queues that are unique-
insertion oblivious for the two fixed operation sequences —−→opw and −→opr—defined
above. Thus, we only need to prove CCOHQ satisfies −→opw and −→opr-unique-insertion
obliviousness to conclude that UHQoram in Fig. 11 is a c-snapshot oblivious RAM
emulator when instantiated with CCOHQ.

Theorem 9. Let E be a secure PRP and ORAM be an oblivious RAM. Then CCOHQ
in Fig. 13 is a −→opw- and −→opr-unique insertion oblivious hash queue.
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Fig. 13. The CCOHQ hash queue. All operations take a state as input and output. All operations
executed by the cuckoo hash table CKH are executed with simulated memory read/write oracles
built from ORAM.

Before the proof we give an idea of why a simple combination of cuckoo hash-
ing and an ORAM does not give us an oblivious data structure that supports arbitrary
insertion, even if we do not hide operation type. This is because the number of mem-
ory accesses made during insertion depends on the number of swaps. Take these two
transcripts:

T1 = Insert(1), . . . , Insert(100), Insert(0),Delete(0), Insert(0),Delete(0), . . .
T2 = Insert(1), . . . , Insert(100), Insert(101),Delete(1), Insert(102),Delete(2), . . . .

Both transcripts insert 1 to 100 at the beginning. Then the first one repeatedly inserts
0 and deletes 0, while the second one inserts new keys and deletes old keys. Now let’s
analyze the transcripts starting the first Delete operation. In the first transcript, since
0 is always deleted before being inserted, inserting 0 takes only one ORAM access.
However, in the second transcript, inserting new keys such as 101, 102, ... is very likely
to incur swaps, and therefore makes the access pattern longer than the previous one.

Proof. At a high level, the proof has the following steps. We will begin in game
UniqInsertOblivHashSec−→opw

with i = 0. Then, we move to a game where the array
is replaced by all zeros, and the queue is stored locally. Then, we use the obliviousness
of ORAM to make a series of changes to the transcript of cuckoo hash operations: in
one game transition, we change all Update operations to Finds. Then, we change the
arguments of all Finds to all-zeros, and all second arguments of Insert to zeros (keeping
the indices the same). At this point, we are in a game where only the indices passed
to CKH.Insert and CKH.Delete depend on the adversary’s chosen transcript. However,
since we can guarantee duplicate indices are never passed to CKH.Insert, we can apply
the PRP security to swap the set of indices for a random subset of [|DB|].

We now proceed formally. Let A be an adversary, and let game G0 be
UniqInsertOblivHashSec−→opw

(CCOHQ,A, n, 0). Let T0 be A’s left transcript.
We build the gameG1, which is just likeG0 except in all CCOHQAccess operations,

CKH.Find is always executed instead of choosing between Find and Update based
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on whether the operation is a read or a write. Again, the correctness of the values is
maintained locally instead of by writing them to the cuckoo hash table. Note that this
does not change the number of (oblivious) memory accesses made by CKH, since both
Find and Update only access two locations. We can build a reduction B to the oblivi-
ousness of ORAM to get |Pr[G1 = 1] − Pr[G0 = 1]| ≤ Advobl

ORAM(B) .
Next is game G2, which is the same as G1 except all CKH.Find operations have

all-zeros arguments, and values written using CKH.Insert are replaced with zeros; cor-
rectness is ensured with local copies. Since this also does not change the number of
operations executed, we can use a similar argument to build another reduction C to the
obliviousness of ORAM, yielding |Pr[G2 = 1] − Pr[G1 = 1]| ≤ Advobl

ORAM(C) .
In game G2, only the indices passed to CKH.Insert and CKH.Delete depend on

the adversary’s transcript T0. In game G3, we replace the set of indices passed to
CKH.Insert with a random subset of [|DB|]. This will change the number of mem-
ory accesses made by CKH.Insert, since a different number of swaps will be needed to
insert the indices into the hash table. However, because of the unique-insertion prop-
erty, in game G2 the hash table contains the PRP evaluated on distinct keys; thus,
by PRP security, the distribution of these inputs (and therefore of the swaps) is very
similar in game G3. We can build a reduction D to the PRP security of E to get
|Pr[G3 = 1] − Pr[G2 = 1]| ≤ Advprp

E (D) .
Reversing these game transitions in a manner similar to the proofs above lets us

transition to game UniqInsertOblivHashSec−→opw
(CCOHQ,A, n, 1), and we are done.

Finally, the proof for −→opr-unique-insertion obliviousness is similar, so we omit it.

7.3 Lower Bound

The lower bound for snapshot-oblivious RAM emulator follows from Larsen &
Nielsen’s lower bound [38]. In this subsection we first restate the main theorem of [38],
then show that c-snapshot ORAM can simulate a normal ORAM in a parameter regime
where the Larsen & Nielsen lower bound applies.

Theorem 10. (Larsen & Nielsen lower bound [38]). Any online ORAM with n blocks
of memory, consisting of r ≥ 1 bits each, must have an expected amortized bandwidth
overhead of Ω(log(nr/m)) on a sequence of Θ(n) operations. Here m denotes the
client memory in bits.

Applying this theorem to our setting where each block is only one address and the client
memory is constant, which means r,m are constant, we obtain the following corollary.

Corollary 1. Any RAM emulator defined in Sect. 2.2 initialized with a database of size
N , executing on a sequence of N operations, with constant client storage, is secure
only if it has an expected amortized bandwidth overhead of Ω(log(N)) .

The idea of our result is to use a snapshot-oblivious RAM emulator to simulate a
full ORAM. Notice that if the transcript is of length c, and the memory is at least of size
c, the c-snapshot-oblivious RAM emulator becomes a secure RAM emulator executing
a sequence of c operations, and the corollary above applies. Thus, the lower bound of
amortized bandwidth overhead is Ω(log(c)).
Theorem 11. Let c > 0 be an integer. If RE is a c-snapshot oblivious RAM emulator,
then RE must have Ω(log c) expected amortized bandwidth overhead if the client has
constant memory.
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Proof. Suppose for contradiction that RE is a c-snapshot oblivious RAM emulator,
and it has o(log c) bandwidth overhead. We initialize RE on any database of size c.
Given a transcript of c operations, RE can securely emulate the RAM by the def-
inition of c-snapshot obliviousness, but its o(log c) bandwidth overhead contradicts
Corollary 1.

8 Conclusion

In this work, we initiated the study of snapshot-oblivious RAMs, a new oblivious mem-
ory primitive. There are many interesting open questions which we leave for future
work.

First, while we prove that our UHQoram scheme is asymptotically optimal in terms
of bandwidth overhead, its concrete performance is likely to be quite poor. Evaluating
the concrete performance of c-snapshot ORAMs, and improving concretely upon the
constructions of this paper, is a clear interesting question.

In this work we do not tackle the question of how system designers should choose
c. This is a complex and highly contextual question; it is natural to imagine system
designers choosing c by weighing the risks of different compromises in their systems.
Which risks to consider, are questions we leave to future work.

For our security model to be an accurate characterization of real compromises, it
should be the case in real systems that the amount of information about past operations
is limited. If, for example, a system stored the history of every memory access on disk,
the limited-time compromise model in this paper would be unrealistic.

Prior work found that existing systems do, in fact, store a great deal of information
about past operations [23]. Realizing our security model in today’s systems is indeed a
challenge. We believe building systems with limited memories is ultimately tractable,
and a fascinating research problem in its own right. In addition to being of theoretical
interest today, our work builds a foundation for cryptography that can take advantage
of these kinds of system-level guarantees in the future.

Finally, there are many interesting ways to extend and enrich our snapshot security
model. One very clear open question is building schemes that remain secure even for
multiple snapshot compromises that are separated in time. Real systems are sometimes
compromised multiple times, so this extension is well-motivated practically. Another
interesting enhancement is transcript-length-hiding: namely, requiring that the number
of total operations executed is hidden by the snapshot-oblivious RAM.
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Abstract. The cryptographic sponge is a popular method for hash func-
tion design. The construction is in the ideal permutation model proven
to be indifferentiable from a random oracle up to the birthday bound in
the capacity of the sponge. This result in particular implies that, as long
as the attack complexity does not exceed this bound, the sponge con-
struction achieves a comparable level of collision, preimage, and second
preimage resistance as a random oracle. We investigate these state-of-
the-art bounds in detail, and observe that while the collision and second
preimage security bounds are tight, the preimage bound is not tight. We
derive an improved and tight preimage security bound for the crypto-
graphic sponge construction.

The result has direct implications for various lightweight crypto-
graphic hash functions. For example, the NIST Lightweight Cryptogra-
phy finalist Ascon-Hash does not generically achieve 2128 preimage secu-
rity as claimed, but even 2192 preimage security. Comparable improve-
ments are obtained for the modes of Spongent, PHOTON, ACE, Sub-
terranean 2.0, and QUARK, among others.

Keywords: sponge · hash function · preimage security · tightness

1 Introduction

The sponge construction of Bertoni et al. [9] is a popular approach for crypto-
graphic hashing. At a high level, the sponge operates on a state of size b bits,
which is split into an inner part of size c bits (the capacity) and an outer part of
size r bits (the rate), where b = c+r. The sponge consists of an absorbing phase
and a squeezing phase. In the absorbing phase, data is compressed into the state
r bits at a time, interleaved with an evaluation of a b-bit permutation P. In the
squeezing phase, a digest is extracted from the state r bits at a time, again inter-
leaved with an evaluation of P. A slight relaxation of this approach, introduced
by the developers of PHOTON [18], is to squeeze at a slightly larger rate r′ ≥ r.
Throughout this work, we will in fact consider this generalized description of the
sponge, as depicted in Fig. 1, but we will stick to calling it the “sponge”.

The sponge found quick adoption right after its introduction, and its popu-
larity is ever-increasing. Most notably, the eventual winner of the NIST SHA-3
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 185–204, 2022.
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competition [22], Keccak [11], relies on the sponge methodology. It was quickly
acknowledged that the sponge was particularly well-suited for lightweight hash-
ing, see, e.g., QUARK [3], Spongent [12], and PHOTON [18], and in the ongoing
NIST Lightweight Cryptography competition [23], no less than 22 submissions
(including 5 finalists) offer hashing via the sponge construction or a derivative
thereof.

Two causes for this quick adoption were the conceptual simplicity of the
sponge, and its ability to offer variable output length digests (later, functions that
facilitate this were dubbed extendable output functions (XOFs) [22]). Another
main cause was that the developers [10] proved security of the sponge construc-
tion in the indifferentiability framework [13,20]. In a bit more detail, the authors
proved that if P is assumed to be a random permutation, no adversary with an
attack complexity less than 2c/2 can differentiate the sponge construction from
a random oracle. (For the PHOTON construction with larger squeezing rate
r′ ≥ r, a comparable bound was proven by Naito and Ohta [21].) The result,
in words, implies that the sponge “behaves” like a random oracle and that it
can be used in (most) applications that were proven secure in the random ora-
cle model. This result also implies that, assuming that the query complexity is
at most 2c/2, finding collisions, preimages, or second preimages for the sponge
is not easier than for a random oracle. Andreeva et al. [2, Appendix A] made
this implication explicit and demonstrated that for a sponge construction that
outputs a digest of (fixed length) n bits, finding collisions requires at least

q ≈ min{2c/2, 2n/2} (1)

work, and finding preimages or second preimages requires at least

q ≈ min{2c/2, 2n} (2)

work (see also Sect. 3.1). These bounds have directly influenced the parameter
choices of many sponge-based hash designs. Most notably, the SHA-3 hash func-
tion family consists of four functions: SHA3-n where n ∈ {224, 256, 384, 512}
defines the output size. Each of these four functions has its capacity c equal to
twice the digest length n (see also Table 1).

It was clear from the start that the indifferentiability bound of Bertoni et al.
[10] was tight. As a matter of fact, in around 2c/2 work, an adversary can find
inner collisions, i.e., different sponge evaluations that collide on the c-bit inner
part, and it can use these inner collisions to form a full collision for the sponge
and this way distinguish it from random. Likewise, the collision security bound
of (1) is tight, as a collision for a sponge with fixed n-bit output can be obtained
either by finding a c-bit inner collision or an n-bit output collision. Finally,
for second preimage resistance, tightness of the bound of (2) can be argued
in a comparable way. Clearly, one approach the adversary can take to find a
second preimage is an exhaustive search in 2n work. Alternatively, given the
first preimage, the attacker can recompute the sponge on input of this first
preimage to determine the final state value before squeezing. Then, it computes
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the sponge forward from the initial value 0b and backward from the state value
before squeezing in order to find a collision on the c-bit inner part.

For preimage security, the situation is different, and it appears that for cer-
tain values c and n, the bound of (2) is not tight. This is mainly caused by
the fact that, unlike for second preimage security, the final state before squeez-
ing cannot always be easily found. Already in the original introduction of the
sponge construction in 2007, it was claimed that a preimage attack can only
be found in max{2n−r′

, 2c/2} work [9, Section 5.3], where we recall that c is the
capacity during absorbing and r′ the rate during squeezing (in the original pro-
posal, r′ = r). In 2011, both the developers of PHOTON and Spongent made a
comparable claim regarding the preimage security of their construction [12,18].
We discuss this generic attack in detail in Sect. 3.2. Here, we also elaborate a
bit more on the generic collision and second preimage attacks, noting that they
are de facto simplifications of the preimage attack. Unfortunately, proving tight
preimage security of this level has remained an open problem since.

1.1 Tight Preimage Security

We solve this open problem and prove tight preimage security of the sponge
construction. In detail, assuming that the underlying permutation P is random,
we prove that the sponge achieves preimage security up to around

q ≈ min
{

max
{

2n−r′
, 2c/2

}
, 2n

}
(3)

work, where we recall that n is the digest size, c the capacity of the sponge
(during absorption), and r′ the rate (during squeezing). A detailed bound is
given in Sect. 4, and the bound tightly matches the generic attack of Sect. 3.2
(up to constant). The security relies on a careful investigation of what events
are needed to happen in order for a preimage to be found, and subsequently a
detailed computation of the probability of these events to occur.

At a very high level, suppose the attacker aims to obtain a preimage for a
digest Z consisting of � r′-bit blocks Z1‖ · · · ‖Z�, assuming r′ | n for the sake
of simplicity. We assume, by definition, that the attacker is required to make
all permutation queries that are required for the computation of its eventual
preimage, and in particular, it must definitely obtain a cascaded evaluation of
�−1 permutation queries that correspond to outputs Z1, . . . , Z�. In Fig. 1, these
are the first permutation evaluation after outputting Z1 up to and including
the last permutation evaluation before outputting Z�. As we demonstrate in our
proof, the attacker succeeds in finding such a path only after around q ≈ 2n−r′

queries.
However, the adversary is not done after just finding such cascade of per-

mutation evaluations: the evaluations must also be reached from 0b through the
absorption of certain message blocks—these message blocks eventually consti-
tute the preimage that the adversary would output. The adversary could succeed
in this in two ways: either the last permutation query before squeezing is made
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in forward direction, or it is made in inverse direction. If it is made in forward
direction, we have to go one step back in our reasoning, namely to the discussion
of the squeezing cascade, and observe that in this case the cascade of � permuta-
tion evaluations can only be found in q ≈ 2n queries. If it is in inverse direction,
this particular permutation query can be made for free from the cascade of above
�−1 evaluations, but in order to then connect the cascade to the initial value 0b,
the adversary must necessarily ever find a forward and an inverse permutation
evaluation that collide on the inner part. This, in turn requires approximately
2c/2 work.

In summary, finding a preimage requires either around 2n work, or the max-
imum of 2n−r′

and 2c/2 work, exactly as expressed in (3). Needless to say, the
actual security analysis, and in particular the derivation of an upper bound on
the probability of finding a matching cascaded permutation evaluation of length
�−1 or �, is much more involved, among others as any permutation query of the
adversary may appear at any position in this cascade.

1.2 Application

For hash functions with a large capacity, e.g., Keccak and eventually the SHA-3
hash function family, the old bound of (2) accurately described the preimage
security. However, with the advent of lightweight cryptography, many sponge
constructions with small permutation size b, small capacity c, and small squeez-
ing rate r′ have appeared. In many of these cases, our bound has immediate
implications as it confirms higher preimage security.

The ISO/IEC standardized Spongent hash function of Bogdanov et al. [12]
and the PHOTON hash function of Guo et al. [18] are two such cases. Spon-
gent consists of five hash functions, all of which are sponges instantiated with
a permutation of size b ∈ {88, 136, 176, 240, 272} bits, a rate of r = r′ = 8
bits for the smallest two versions and r = r′ = 16 for the larger three, and a
capacity c = b − r. The smallest version outputs n = b = 88 bits whereas the
other versions output n = c bits. The old bound of (2) implied that a preimage
attack required at least 2c/2 work, whereas our new bound (3) implies that a
preimage attack requires at least 2n−r work. For the smallest version of Spon-
gent, this is an improvement from 240 to 280, and for the largest version, this is
an improvement from 2128 to 2240. PHOTON, likewise, consists of five sponge
hash functions (with larger squeezing rate than absorbing rate), instantiated
with a permutation of size b ∈ {100, 144, 196, 256, 288}, corresponding capacities
c ∈ {80, 128, 160, 224, 256}, and with output size n = c. The squeezing rate dif-
fers for the five versions, but also here, a significant gain in the security bound
is achieved: 240 to 264 for the smallest variant and 2128 to 2224 for the largest
variant.

More recently, a notable example is Ascon-Hash, the hash function in the
Ascon [17] finalist in the NIST Lightweight Cryptography competition [23]. Ascon-
Hash is a plain sponge construction on top of a b = 320-bit permutation, with a
capacity c = 256 and a rate r′ = 64. It outputs digests of size n = 256 bits,
which are thus generated in four squeezes. In this case, the old bound of (2) implied
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generic preimage security up to 2128 work, whereas our new bound (3) implies
generic preimage security up to 2192 work. A similar effect is achieved for the modes
of other second round and final candidates in the NIST Lightweight Cryptogra-
phy competition, such as ACE [1], KNOT [25], SKINNY-HASH [6], Subterranean
2.0 [15], the hash proposal of Isap [16], and PHOTON-Beetle [4]. These sponge-
based functions all have their parameters (c, r′, n) satisfying n − r′ > c/2.

In Table 1, we give a summary of these hash function constructions, and
show how the new preimage security bound improves over the earlier bound.
A more detailed evaluation of our new bound for SHA3-256, Spongent with
n = 256, and Ascon-Hash with n = 256 is given in Sect. 5. We remark that in
Table 1, we did not include hash functions that are sponge(-like) but squeeze
digests in one round, such as Grindahl [19] and CubeHash [7], as our bound
only improves over the state-of-the-art bound for sponge(-like) constructions
that squeeze their digest in multiple rounds. Likewise, we did not include hash
functions that squeeze digests over multiple rounds but that have a large enough
c such that n − r′ ≤ c/2, such as Gimli [8], ESCH [5], and Xoodyak [14].

2 Preliminaries

2.1 Notation

We use x := y to define x as being equal to y. For b ∈ N, we denote by {0, 1}b the
set of binary strings of size b. Moreover, {0, 1}∗ is defined to be

⋃
b∈N

{0, 1}b. For
a b-bit string s and 0 ≤ x ≤ y ≤ b − 1, s[x : y] denotes the substring containing
the bits of s from position x to y. Moreover, innerx(s) := s[b − x : b − 1],
outerx(s) := s[0 : x − 1]. For a finite set S, x

$←− S means that x is sampled
uniformly at random from S. The set Perm(b) denotes the set of permutations
over {0, 1}b. For any P ∈ Perm(b) and i ∈ N

∗, P0 denotes the identity function
and Pi is i iterations of P. For n, k ∈ N such that k ≤ n, we use [n]k to denote
the falling factorial of n of depth k, i.e., the product

∏k−1
i=0 (n − i). We remark

that, provided k2 ≤ n, we have

[n]k = nk
k−1∏
i=0

n − i

n

≥ nke
∑k−1

i=0
−i
n−i

≥ nke
∑k−1

i=0
−i

n−k

= nke
−k(k−1)
2(n−k)

≥ nke−1/2

≥ nk

2
, (4)

where the first inequality uses 1 + x ≤ ex applied with x = i
n−i .
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Table 1. Preimage security of the modes of SHA-3 (added for reference only, as our
bound does not improve the state-of-the-art bound) and selected lightweight hash func-
tions. Security bounds only hold under the assumption that the underlying permuta-
tions are ideal.

Scheme
Parameters Security bound

Note
b c r r′ n � Old (2) New (3)

SHA3-n 1600 448 1152 1152 224 1 2224 2224 SHA-3 standard [22]
1600 512 1088 1088 256 1 2256 2256 (included for reference)
1600 768 832 832 384 1 2384 2384

1600 1024 576 576 512 1 2512 2512

Spongent 88 80 8 8 88 11 240 280 ISO/IEC standard [12]
136 128 8 8 128 16 264 2120

176 160 16 16 160 10 280 2144

240 224 16 16 224 14 2112 2208

272 256 16 16 256 16 2128 2240

PHOTON 100 80 20 16 80 5 240 264 ISO/IEC standard [18]
144 128 16 16 128 8 264 2112

196 160 36 36 160 5 280 2124

256 224 32 32 224 7 2112 2192

288 256 32 32 256 8 2128 2224

U-QUARK 136 128 8 8 128 16 264 2120 [3]
D-QUARK 176 160 16 16 160 10 280 2144

T-QUARK 256 224 32 32 224 7 2112 2192

ACE-Hash 320 256 64 64 256 4 2128 2192 NIST LWC round 2 [1]

KNOT Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2 [25]
384 256 128 128 256 2 2128 2128

384 336 48 192 384 2 2168 2192

512 448 64 256 512 2 2224 2256

SKINNY-tk2-Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2 [6]

Subterranean 2.0 257 248 9 32 256 8 2124 2224 NIST LWC round 2 [15]

Ascon-Hash 320 256 64 64 256 4 2128 2192 NIST LWC finalist [17]

PHOTON-Beetle-Hash 256 224 32 128 256 2 2112 2128 NIST LWC finalist [4]

2.2 Generalized Sponge Construction

Let b, c, r, c′, r′, n ∈ N with b = c+r = c′+r′. Let P ∈ Perm(b) be a cryptographic
permutation. Let pad be an injective padding function that transforms a message
M of arbitrary length into k blocks of r bits such that the last block is non-
zero. A minimal example is the 10∗-padding that appends M with a one and
(−|M | − 1) mod r zeros. We will restrict our focus to the sponge construction
with a fixed-length output of size n, and we define � = �n/r′	.

Let M ∈ {0, 1}∗ be an input message. The sponge construction instantiated
with the permutation P, denoted by HP : {0, 1}∗ → {0, 1}n, is now defined as
follows.
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– M is first padded into k message blocks using pad : M1‖ · · · ‖Mk ← pad(M);
– Absorbing phase: the state S is initialized as 0b, and at the ith iteration, for

i = 1, . . . , k, the state is updated as S ← P(S ⊕ (Mi‖0c));
– Squeezing phase: at the ith iteration, for i = 1, . . . , �, the outer r′ bits of S

are extracted as Zi ← outerr′(S) and the state is updated as S ← P(S);
– The digest is computed as Z ← (Z1‖ · · · ‖Z�)[0 : n − 1].

The sponge construction is illustrated in Fig. 1.

0b

r

c

M1

P · · · P

Y0

Mk

P

Y1X1

r′

c′

Z1

P

Y2

Z2

P · · · P

Z�

Y�

Fig. 1. Generalized sponge construction as described in Sect. 2.2. The values Yi and
Xi will be used in the proof in Sect. 4.

2.3 Security Model

An adversary A is a probabilistic algorithm. It has oracle access to a permutation
P sampled uniformly at random. A is computationally restricted only by its
number of evaluations of P and P−1, that we denote by q. We summarize all
queries made by A in a query history Q, an ordered list of tuples of the form
(X,Y,d) ∈ {0, 1}b × {0, 1}b × {fwd, inv}, where P(X) = Y and where d denotes
the query direction. We denote by Qi the query history containing only the first
i queries. Without loss of generality, we can assume that the adversary never
makes a query that it already made before.

Preimage Resistance. We focus on everywhere preimage resistance [24]. In
this model, we consider any image Z ∈ {0, 1}n of length n and consider the
adversary A that can query P and has as goal to eventually output a message
M such that HP(M) = Z. We require that the query history of A contains all
evaluations of P required for the computation of HP(M).

Definition 1. Let b, n, q ∈ N, consider the sponge construction H of Sect. 2.2.
For any adversary A, we define its everywhere preimage advantage as

Advepre
H (A) = max

Z∈{0,1}n
Pr

(
P $←− Perm(b), M ← AP(Z) : HP(M) = Z

)
.



192 C. Lefevre and B. Mennink

We define by Advepre
H (q) the supremum advantage over all adversaries making

at most q queries.

3 State-of-the-Art Generic Security Results

We will discuss the best known security lower bound in Sect. 3.1 and the best
known generic attack in Sect. 3.2.

3.1 Security Lower Bound

Maurer et al. [20] introduced the indifferentiability framework as an extension of
the notion of indistinguishability. The notion was tailored towards hash functions
by Coron et al. [13]. One says that a hash function H based on an ideal permu-
tation P is indifferentiable from a random oracle R if there exists a simulator
S (based on the random oracle) such that (HP ,P) is hard to distinguish from
(R,SR). Denote by Advindif

H (q) the indifferentiability of H against any attacker
with total complexity q (the number of primitive evaluations in (HP ,P)).

Bertoni et al. [10] proved that the sponge is indifferentiable from a random
oracle up to bound Advindif

H (q) ≤ q(q+1)
2c+1 . Naito and Ohta [21] proved that for

the PHOTON construction, indifferentiability holds with a bound of the form
O

(
q

2c/2
+ q

2c′

)
(refer to [21] for the details).

Indifferentiability of a hash function H from a random oracle R in words
means that the hash function “behaves” like a random oracle. In the context of
preimage resistance, this means that [2, Appendix A]

Advepre
H (q) ≤ Advindif

H (q) + Advepre
R (q),

where we are slightly abusing notation for the latter term: to be precise, for
Advepre

R (q) we consider the adversary to have query access to the random oracle
R and its goal is to output a message M such that R(M) = Z for the predeter-
mined Z. Clearly, Advepre

R (q) = q/2n, and we thus obtain the state-of-the-art
bound for preimage resistance of the sponge:

Advepre
H (q) ≤ q(q + 1)

2c+1
+

q

2n
. (5)

Note that this is the bound that supports the complexity estimation given in (2):
generically finding a preimage for HP requires at least min{2c/2, 2n} evaluations.
A comparable reasoning applies to the second preimage and collision resistance
bounds.

3.2 Security Upper Bound

The best known attack, however, does not meet the first term of (5). In this
section, we describe the best known preimage attack against the sponge con-
struction. The attack de facto resembles the generic exhaustive preimage search
attack and the attack that the sponge developers described in [9].
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Let Z ∈ {0, 1}n be any given image. W.l.o.g., we assume the minimal padding
of Sect. 2.2. We make a case distinction depending on the values c, n. As we will
focus on tightness up to constant, we will sometimes ignore the fact that any
sponge evaluation of a message M of length k costs k + � permutation calls, and
simply count any such evaluation as 1 query.

– Case n ≤ c/2. The adversary fixes a message M and queries it to the con-
struction. The query satisfies HP(M) = Z with probability around 1/2n.
After q ≈ 2n attempts, the adversary has with high probability found a
preimage M .

– Case c/2 < n. The attack consists of two sequential parts.
• First, the adversary fixes a state value Y1 such that Z1 = outerr′(Y1). It

queries Y2 = P(Y1), Y3 = P2(Y1), . . . , Y� = P�−1(Y1). The queries satisfy

Zi =

{
outerr′(Yi) for i = 2, . . . , � − 1,

outern−(�−1)r′(Yi) for i = �,

with probability approximately
(

1
2r′

)�−2

· 1
2n−(�−1)r′ =

1
2n−r′ .

After q ≈ 2n−r′
attempts, the adversary has found a state value Y1 such

that � squeezes result in Z.
• Starting from 0b, it computes Y →

0 := P(M1‖0c) for q different values
M1. Starting from the value Y1 found in the first part of the attack, it
computes Y ←

0 := P−1(P−1(Y1)⊕ (M3‖0c)) for q different non-zero values
M3. If q ≈ 2c/2, there will with high probability be two values M1, M3

such that

innerc(Y →
0 ⊕ Y ←

0 ) = 0c.

Let M2 := outerr(Y →
0 ⊕Y ←

0 ). Define the preimage as the unique message
M such that pad(M) = M1‖M2‖M3. We remark that if r ≤ c/2 one will
need multiple message blocks for both the forward and the inverse part in
order to make q ≈ 2c/2 evaluations, but the attack works in a comparable
way.

In total, in this case the attack requires q ≈ 2n−r′
+ 2c/2 evaluations.

In general, the attack thus has a complexity of around

q ≈ min{2n−r′
+ 2c/2, 2n}

evaluations. We remark that the generic second preimage attack, as sketched in
Sect. 1, is basically a simplification of above preimage attack, where in the case
of c/2 < n, the attacker does not need to perform the first part of the attack but
can rather compute Y1 in a constant number of permutation evaluations from
the first preimage. The generic collision attack, also as sketched in Sect. 1, in
turn differs from this second preimage attack in the sense that for n/2 ≤ c/2
the attacker can perform exhaustive collision search in around 2n/2 evaluations
(instead of 2n).
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4 Improved Preimage Resistance Lower Bound

In the following theorem, we state our main result.

Theorem 1. Let b, c, r, c′, r′, n, q ∈ N with b = c+ r = c′ + r′, and let � :=
⌈

n
r′

⌉
.

If q ≤ 2c′−1/3 and (� − 1)2 ≤ 2b the sponge construction H of Sect. 2.2 satisfies
the following bound:

Advepre
H (q) ≤ 4q

2n
+ min

{
4�q

2n−r′ ,
q(q + 1)

2c

}
. (6)

The proof is given in the remainder of this section. We note that the bound
indeed matches the generic attack of Sect. 3.2 up to constant. In Sect. 5, we will
evaluate the bound of Theorem 1 more closely, and compare it with the generic
attack of Sect. 3.2 and the state-of-the-art bound of Sect. 3.1.

4.1 Setup

Let Z ∈ {0, 1}n be any image, and write Z = Z1‖Z2‖ · · · ‖Z�, where |Zi| = r′

for i ∈ {1, . . . , � − 1} and |Z�| = s ≤ r′. Consider any adversary A as defined
in Sect. 2.3. To represent its knowledge from the query history, we use a graph
representation as done for example in [10,21]. Initially, the graph contains the
nodes {0, 1}b, which represent all possible internal states of the sponge. For each
query (X,Y,d) ∈ Q with d ∈ {fwd, inv}, and for any M ∈ {0, 1}r, the edge
Y ′ M−→Y is added, where Y ′ := X ⊕ (M‖0c). Note that in the squeezing phase,
such edge must appear for a zero-block message. In this case, the label is omitted.
Let Zi be defined as follows:

Zi :=

{
{Yi ∈ {0, 1}b | outerr′(Yi) = Zi}, for i ∈ {1, . . . , � − 1},

{Yi ∈ {0, 1}b | outers(Yi) = Zi}, for i = �.

Then, the goal of A is to find a preimage of Z, which implies the following event
PRE(Q):

PRE(Q) : Q defines a path 0b M1−−→ · · · Mk−1−−−−→ Y0
Mk−−→ Y1 −→ · · · −→ Y�

such that Yi ∈ Zi for i = 1, . . . , �.

We refer to Fig. 1 for a depiction of these parameters. In the case of the
minimal injective padding presented in Sect. 2.2, finding a preimage corresponds
to PRE(Q) with the restriction that the last message block is not zero. In such
case, the preimage found by A is the unique message M such that pad(M) =
M1‖ · · · ‖Mk.
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4.2 Logic

We separate the event PRE(Q) as the disjoint union of the following two events:

PREFWD(Q) : PRE(Q) with the restriction that the query
linking Y0 and Y1 must be made in forward direction,

PREINV(Q) : PRE(Q) with the restriction that the query
linking Y0 and Y1 must be made in inverse direction.

Clearly,

PRE(Q) ⇐⇒ PREFWD(Q) ∨ PREINV(Q). (7)

We will consider dedicated trigger points for PREFWD(Q) and PREINV(Q). Let
S = {Y1 | Pi−1(Y1) ∈ Zi for all i ∈ {1, . . . , �}} ⊆ Z1. We define the set Sfwd

and the multiset Sinv as follows:

Sfwd = {P−1(Y1) | Y1 ∈ S},
Sinv = {Y1,P(Y1), . . . ,P�−1(Y1) | Y1 ∈ S}.

Intuitively, Sinv includes all the nodes Y1, . . . , Y� appearing in paths which set
PRE(Q) if discovered, while Sfwd captures all values X1 from which such path
Y1 → · · · → Y� starts. Looking ahead, Sfwd includes the set of trigger points
for PREFWD(Q), and Sinv, as a multiset, includes the set of trigger points for
PREINV(Q). These trigger points can be repeated in Sinv when some values Zi

are colliding. (Based on this, we will typically simply refer to Sinv as a set.) We
now introduce the following three events:

BADFWD(Q) : ∃(X,Y, fwd) ∈ Q such that X ∈ Sfwd,

BADINV(Q) : ∃(X,Y, fwd) ∈ Q such that X ∈ Sinv or
∃(X,Y, inv) ∈ Q such that Y ∈ Sinv,

INNER(Q) : ∃(X,Y, fwd), (X ′, Y ′, inv) ∈ Q ∪ {(, 0b, fwd)}
such that innerc(Y ) = innerc(X ′).

Note that for INNER(Q), the tuple (, 0b, fwd) is explicitly added to cover the
case where the adversary ever makes an inverse query that hits the initial state
0b. Here, the first element of the tuple is irrelevant, and henceforth omitted.

Intuitively, for PREFWD(Q) to be set, the adversary must among others
make a query P(X1) with X1 ∈ Sfwd. Thus, PREFWD(Q) implies BADFWD(Q).
Likewise, for PREINV(Q) to be set, the adversary must ever make a query that
appears in a path Y1 → · · · → Y� in a query direction. In other words, it must
ever query a value in Sinv. Hence, PREINV(Q) implies BADINV(Q). Moreover,
given that PREINV(Q) defines a path starting from 0b that contains an edge
between Y0 and Y1 corresponding to an inverse query, somewhere in this path
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from 0b to Y1 there must be a collision between an inverse query and a descendant
of 0b. This means that PREINV(Q) also implies INNER(Q). More formally:

PREFWD(Q) =⇒ BADFWD(Q), (8)
PREINV(Q) =⇒ BADINV(Q) ∧ INNER(Q). (9)

From (7) to (9), we logically obtain

PRE(Q) =⇒ BADFWD(Q) ∨ (BADINV(Q) ∧ INNER(Q)), (10)

and thus

Pr (PRE(Q)) ≤ Pr (BADFWD(Q)) + min {Pr (BADINV(Q)) ,Pr (INNER(Q))} .
(11)

4.3 Probability Computation

We upper bound the three probabilities of (11), starting with Pr (INNER(Q))
in Lemma 1, then Pr (BADFWD(Q)) in Lemma 2, and finally Pr (BADINV(Q))
in Lemma 3.

Lemma 1. We have

Pr (INNER(Q)) ≤ q(q + 1)
2c

. (12)

Proof (Proof of Lemma 1). We index the queries by the query number, i.e., the
ith query is denoted by (Xi, Y i,di). INNER(Q) translates to the fact that either
there is an inner collision between the set of forward and inverse queries, or
that the output of an inverse query inner collides with 0c. More formally, this
implies that there exists i ∈ {1, . . . , q} such that one of the following two events
happens:

HITfwd
i (Q) : (Xi, Y i, fwd) ∈ Q and

innerc(Y i) ∈ {innerc(X1), . . . , innerc(Xi−1)},

HITinv
i (Q) : (Xi, Y i, inv) ∈ Q and

innerc(Xi) ∈ {innerc(Y 1), . . . , innerc(Y i−1), innerc(0c)}.

By basic probability theory,

Pr (INNER(Q)) ≤
q∑

i=1

Pr (INNER(Qi) ∧ ¬INNER(Qi−1))

≤
q∑

i=1

Pr
(
HITfwd

i (Qi) ∨ HITinv
i (Qi)

∣∣∣ ¬INNER(Qi−1)
)

.



Tight Preimage Resistance of the Sponge Construction 197

For any i, the query is either in forward direction or in inverse direction, so it
can only set one of the two events. The response at the ith query is uniformly
drawn from a set of size at least 2b − q, among which at most i2r elements set
HITfwd

i (Qi) or HITinv
i (Qi). Thus:

Pr
(
HITfwd

i (Qi) ∨ HITinv
i (Qi)

∣∣∣ ¬INNER(Qi−1)
)

≤ i2r

2b − q
.

Then, as q ≤ 2b−1,

Pr (INNER(Q)) ≤
q∑

i=1

2i

2c
≤ q(q + 1)

2c
. ��

Remark 1. We remark that the PHOTON construction [18] in fact differs from
the sponge construction [9] not only in the size of the squeezing blocks (as
explained in Sect. 1), but also in the absorption of the first message block.
To be precise, the PHOTON construction allows the first message block to be
of size r′′ bits. Extending our analysis, this would only affect the analysis of
Pr (INNER(Q)) in Lemma 1 above. In this case, the event HITinv

i (Q) would be
triggered if innerc(Xi) ∈ {innerc(Y 1), . . . , innerc(Y i−1)} or if innerc′′(Xi) = 0c′′

,
where c′′ := b − r′′. This change would eventually result in a bound of the form:

Pr (INNER(Q)) ≤ q(q + 1)
2c

+
q

2c′′ .

Lemma 2. We have

Pr (BADFWD(Q)) ≤ 4q

2n
. (13)

Proof (Proof of Lemma 2). By basic probability theory,

Pr (BADFWD(Q))

=
2c

′∑
y=1

Pr (BADFWD(Q) | |Sfwd| = y) · Pr (|Sfwd| = y) . (14)

We start by upper bounding the probability of the conditioned BADFWD(Q)
event for any y = 1, . . . , 2c′

, which is similar to a guessing game: in order to
win, the adversary must guess X1 ∈ Sfwd with a forward query. We start by
remarking that Sfwd is defined via inverse P-calls, and that the adversary has no
a priori knowledge about those. Thus, one single query P(X) from the adversary
succeeds with probability at most y

2b
. Moreover, one query eliminates at most

one candidate: if the query (X,Y,d) does not set BADFWD(Q), then X can be
removed from the set of candidates values to be in Sinv. If additionally d = inv
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and X ∈ Sfwd, the adversary cannot guess this value anymore. Thus, defining
BADFWD(Q0) := ⊥,

Pr (BADFWD(Q) | |Sfwd| = y)

≤
q∑

i=1

Pr (BADFWD(Qi) | |Sfwd| = y ∧ ¬BADFWD(Qi−1))

≤
q∑

i=1

y

2b − i + 1
≤ yq

2b − q
≤ 2

yq

2b
, (15)

where in the last inequality, we used q ≤ 2b−1.
Plugging this bound into (14) gives

Pr (BADFWD(Q)) ≤ 2q

2b

2c
′∑

y=1

y · Pr (|Sfwd| = y)

≤ 2q

2b
E (|Sfwd|) . (16)

It remains to compute E (|Sfwd|) = E (|S|). For any Y ∈ {0, 1}b, define Bernoulli
variable IY as

IY = 1 ⇐⇒ Y ∈ S.

Note that IY = 0 whenever Y /∈ Z1. We have

E (|S|) = E

⎛
⎝ ∑

Y ∈{0,1}b

IY

⎞
⎠

=
∑

Y ∈Z 1

E (IY )

=
∑

Y ∈Z 1

Pr (Y ∈ S)

≤
∑

Y ∈Z 1

2c′

2b

2c′

2b − 1
· · · 2b−s

2b − (� − 2)

=
(2c′

)�−1 · 2b−s

[2b]�−1

≤ 2
(2c′

)�−1 · 2b−s

(2b)�−1
,

where the last inequality uses (4). Therefore,

E (|S|) ≤ 2
2b

2n
. (17)
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Finally, from (16) and (17), we thus obtain

Pr (BADFWD(Q)) ≤ 4q

2n
, (18)

which completes the proof. ��
Lemma 3. We have

Pr (BADINV(Q)) ≤ 4�q

2n−r′ . (19)

Proof (Proof of Lemma 3). We first note that if � = 1, |Sinv| = 2c′ ≤ 2b−n, and
the result will be meaningless as BADINV(Q) can be set with probability 1. We
will henceforth focus on the case � ≥ 2.

Similar to the proof of Lemma 2, by basic probability we obtain

Pr (BADINV(Q))

=
2c

′∑
y=1

Pr (BADINV(Q) | |Sinv| = �y) · Pr (|Sinv| = �y) , (20)

where we used that Sinv is a multiset with a size multiple of �. We start by
investigating the conditioned BADINV(Q) event for any y = 1, . . . , 2c′

, which is
more involved than BADFWD(Q) studied in Lemma 2. Because of the condition
|Sinv| = �y, there are y paths Y1 → · · · → Y� with Yi ∈ Zi for i = 1, . . . , �. The
adversary wins if it ever queries a value that is on any of these paths. Note that
this is different from the proof of Lemma 2, where the adversary had to guess any
starting point of a path. In the current setting, the attacker learns additional
information of failed attempts. For example, suppose that Z1 �= Z2 and the
adversary makes a forward query P(X) = Y , where X ∈ Z1 and Y ∈ Z2 but
which does not set BADINV(Q). As it does not set BADINV(Q), the adversary
knows that querying P(Y ) (i.e., guessing Y ∈ Z2 as candidate value for a chain)
is fruitless.

To simplify our reasoning, we will be more generous to the adversary, and
for each query input X that the adversary makes, it receives both the forward
evaluation P(X) and the inverse evaluation P−1(X). Stated differently, for the
current game the query direction does not matter, and for each attempt X it
learns P−1(X) → X → P(X). The adversary wins if this is a proper subpath of
any of the y target paths X1 → Y1 → · · · → Y� → Y�+1, where X1 = P−1(Y1)
and Y�+1 = P(Y�).1

A visualization of this game is given in Fig. 2 for � = 4. For this example, recall
that for i = 1, 2, 3, Zi consists of all values Y ∈ {0, 1}b such that outerr′(Y ) = Zi,
and that Z4 consists of all values Y ∈ {0, 1}b such that outers(Y ) = Z4. By

1 The usage of parameter X1 in this path, as opposed to Y0, appears illogical at first
sight, but fits the parameter definitions as outlined in Fig. 1.
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the conditioned event, there exist y paths through the sets Z1, . . . ,Z4. In the
example, y = 2, hence there are two such paths. The adversary sets BADINV(Q)
if and only if it ever queries one of the at most �y nodes on these lines (not
including the ones on the outer shores {0, 1}b). It is noteworthy that these paths
are disjoint: they never cross the same node in the same shore.

Now, suppose the adversary makes a query X, it thus results in a path
P−1(X) → X → P(X). The query is considered a failed query if it is not
a proper subpath of any of the y paths. In particular, a failed query either
does not intersect with any of the y paths, or it intersects with one of the y
paths at their very ends. In other words, a query is considered a failed one for
path X1 → Y1 → · · · → Y� → Y�+1 if and only if it intersects with either of
∅,X1,X1 → Y1, Y� → Y�+1, Y�, as illustrated in Fig. 2 (up to symmetry). Any
other intersection of the failed query result with the path is impossible, as e.g.,
depicted in Fig. 2, due to the fact that P is a permutation.

We remark that for 0 ≤ i < j ≤ � + 1, a query can be successful for one
target path at position i, and failed for another target path at position j at the
same time. In this case, the adversary is nevertheless successful. From this, we
can conclude that any query attempt either is successful or it eliminates at most
3 possible values from further guessing.

In summary, to win, the adversary must make a query in Sinv. This set is of
size at most �y and is a subset of the set

⋃�
i=1 Zi of size at least 2c′

.2 Since one
query eliminates at most 3 candidates and this is the only information available
for the adversary, after i − 1 unsuccessful attempts, the ith attempt succeeds
with probability at most �y

2c′ −3(i−1)
. Thus, defining BADINV(Q0) := ⊥,

Pr (BADINV(Q) | |Sinv| = �y)

=
q∑

i=1

Pr (BADINV(Qi) | |Sinv| = �y ∧ ¬BADINV(Qi−1))

≤
q∑

i=1

�y

2c′ − 3(i − 1)
≤ �yq

2c′ − 3q
≤ 2

�yq

2c′ , (21)

where in the last inequality, we used q ≤ 2c′−1/3.
Now, it remains to plug the bound into (20). We can copy the analysis of

Lemma 2 verbatim and obtain

Pr (BADINV(Q)) ≤ 2
q

2c′

2c
′∑

y=1

�y · Pr (|Sinv| = �y)

≤ 2
q

2c′ E (|Sinv|)

≤ 4�q

2n−r′ , (22)

2 Note that this correctly captures the case i = �, as |Z�| = 2n−s ≥ 2c′
.
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where the last inequality uses |Sinv| = �|S| and (17). This completes the proof.
��

Remark 2. In the proof of Lemma 3, we bounded the probability that the ith

query is successful by y

2c′ −3(i−1)
. There is a small loss in this bound due to various

simplifications we had to make. First note that as we provide the adversary both
directions of the queries, we slightly increase its knowledge and thus success
probability. In addition, each query attempt X has its leftmost r′ bits outerr′(X)
fixed, and the adversary thus commits itself to the value Zi and thus to the
position in Fig. 2 the query could occur. However, there is no way to make use
of this property, as in the general case, the values Z1, . . . , Z� may be equal and
the query can nevertheless occur at multiple positions. Finally, in the specific
case where some values Zi are mutually equal, this basically reduces the set of
candidates to be in S, thus also the set of possibly successful values, and possibly
also the amount of information the adversary learns from a failed attempt.

4.4 Conclusion

From (11), Lemma 1, Lemma 2, and Lemma 3, we obtain

Pr (PRE(Q)) ≤ 4q

2n
+ min

{
4�q

2n−r′ ,
q(q + 1)

2c

}
, (23)

and this completes the proof of Theorem 1.

Z1Z1Z1Z1Z1 Z2Z2Z2Z2Z2 Z3Z3Z3Z3Z3 Z4Z4Z4Z4Z4

{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b{0, 1}b {0, 1}b

failed

failed

successful

impossible

failed

impossible

impossible

Fig. 2. Illustration of the conditioned BADINV(Q) event for � = 4 and y = 2. To win,
the adversary must guess any node from

⋃4
i=1 Zi on any of the y = 2 dotted blue

paths. A query attempt X is successful if and only if P−1(X) → X → P(X) (depicted
solid red) is a proper subpath of any of the blue lines. As P is a permutation, a failed
query attempt is either non-overlapping with any of the dotted blue paths, or it may
partially overlap only at the ends of a blue line, the other cases are impossible and
illustrated as such. (Color figure online)
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5 Conclusion

In this section, we compare our result with the state-of-the-art bound of (5)
(Sect. 3.1) and the best existing attack. Recall that in Theorem 1, we obtained
the following bound:

Advepre
H (q) ≤ 4q

2n
+ min

{
4�q

2n−r′ ,
q(q + 1)

2c

}
.

If � = 1, our security bound matches the state-of-the-art bound up to a factor
of 4, while if � > 1, our bound improves the existing state of the art significantly.
In both cases, the bound matches the best known attack outlined in Sect. 3.2 (up
to constant). In the following, we show the improvement with the parameters
used in the modes Ascon-Hash [17] and Spongent [12].

First consider the Ascon-Hash mode with parameters (b, c, r, r′, n) =
(320, 256, 64, 64, 256). In this case, � = n/r′ = 4. In Fig. 3, we compare the
state-of-the-art bound of Sect. 3.1, our new bound of (6), and the best known
attack of Sect. 3.2. We observe that our new bound significantly improves the
state-of-the-art bound starting at a very low value of q. In detail, the adversarial
advantage is approximately 1.5 × 10−36 for q ≈ 269 at the intersection point as
shown in Fig. 3b, i.e., at the point where the old bound starts to degenerate but
our new bound stays low.

It is also interesting to consider the largest mode of Spongent, i.e., with
parameters (b, c, r, r′, n) = (272, 256, 16, 16, 256). It has a small rate, and conse-
quently a high value � = n/r = 16, but the same capacity and output size as
the ones of Ascon-Hash. A comparison of the old bound, new bound, and best
known attack is given in Fig. 4. Here, the intersection point occurs at q ≈ 223,
with an advantage of approximately 3 × 10−64. Our bound thus improves even
more the state-of-the-art bound to reach a preimage resistance close to 240 bits.

(a) Security bound (b) Close-up of intersection

Fig. 3. Comparison of the state-of-the-art security bound, new security bound,
and best known attack for the Ascon-Hash mode with parameters (b, c, r, r′, n) =
(320, 256, 64, 64, 256).
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(a) Security bound (b) Close-up of intersection

Fig. 4. Comparison of the state-of-the-art security bound, new security bound,
and best known attack for the Spongent mode with parameters (b, c, r, r′, n) =
(272, 256, 16, 16, 256).
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Abstract. First of all we take a thorough look at an error in a paper
by Daemen et al. (ToSC 2018) which looks at minimal requirements for
tree-based hashing based on multiple primitives, including block ciphers.
This reveals that the error is more fundamental than previously shown
by Gunsing et al. (ToSC 2020), which is mainly interested in its effect on
the security bounds. It turns out that the cause for the error is due to an
essential oversight in the interaction between the different oracles used
in the indifferentiability proofs. In essence, it reduces the claim from the
normal indifferentiability setting to the weaker sequential indifferentia-
bility one. As a matter of fact, this error appeared in multiple earlier
indifferentiability papers, including the optimal indifferentiability of the
sum of permutations (EUROCRYPT 2018) and the recent ABR+ con-
struction (EUROCRYPT 2021). We discuss in detail how this oversight
is caused and how it can be avoided.

We next demonstrate how the negative effects on the security bound of
the construction by Daemen et al. can be resolved. Instead of only allow-
ing a truncated output, we generalize the construction to allow for any
finalization function and investigate the security of this for five different
types of finalization. Our findings, among others, show that the security
of the SHA-2 mode does not degrade if the feed-forward is dropped and
that the modern BLAKE3 construction is secure in principle but that its
use of the extendable output requires its counter used for random access
to be public. Finally, we introduce the tree sponge, a generalization of the
sequential sponge construction with parallel absorbing and squeezing.

Keywords: Hash Functions · Block Ciphers · Tree Hashing ·
Indifferentiability

1 Introduction

1.1 Hash Functions

Hash functions, which are functions H : {0, 1}∗ → {0, 1}n that compress an
arbitrarily-sized message M to a fixed sized output h, form a fundamental part
of many cryptographic constructions. In practice they are not built directly,
but from a smaller compression function that only takes a fixed sized input,
for example f : {0, 1}2n → {0, 1}n. A popular and simple method for this is the
Merkle-Damg̊ard construction [Mer89,Dam89], which uses a fixed-sized compres-
sion function in a sequential manner to obtain the hash digest. This construction
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13510, pp. 205–233, 2022.
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is sometimes ‘strengthened’ by appending an encoding of the length of the mes-
sage to the end, giving a collision resistant hash function as long as the internal
compression function is collision resistant, a fact proven by Merkle and Damg̊ard
independently.

However, it turned out that collision resistance is not strong enough for some
situations. For example, strengthened Merkle-Damg̊ard is susceptible to another
attack, called the length extension attack: given the hash digest H(M) of a
message M and its length |M | it is possible to compute H(pad(M) ‖ M ′) for
any M ′, without knowing the original message M . This is possible as the digest
H(M) leaks the internal state of the hash function when the blocks of pad(M)
are processed. By using this state as the initial value, it is straightforward to
compute H(pad(M) ‖ M ′) for any M ′. This is especially troublesome when the
function is used in the keyed fashion as H(K ‖ M), noting it should be possible
to build a MAC in this way, as the output of the hash should be unpredictable
when K is unknown. The attack above shows that this construction is insecure
when the hash function is instantiated with (strengthened) Merkle-Damg̊ard,
even when the internal compression function is secure. A remedy for this is the
HMAC construction [KBC97,Bel06], but this is less efficient and unsatisfying.

This weakness asks for a more sophisticated security analysis for hash func-
tions, namely one that guarantees that the hash function behaves like a random
oracle, which gives an randomly generated and independent output for every
input. The most general security notion we have is the one of indifferentiability
introduced by Maurer et al. [MRH04], which is further applied to hash functions
by Coron et al. [CDMP05].

1.2 Previous Work

Using this stronger security notion of indifferentiability, multiple constructions
have been shown indifferentiable. For example, prefix-free Merkle-Damg̊ard
[CDMP05,LGD+09,LLG11] and Merkle-Damg̊ard with truncation [CDMP05,
CN08,LGD+09,LLG11] have been shown indifferentiable, all assuming that
the underlying compression function is an ideal compression function. How-
ever, this is a very strong and unrealistic assumption: most constructions
use a block-cipher-based design with commonly the Davies-Meyer transforma-
tion [PGV93] on top. This transformation defines the compression function
f : {0, 1}κ × {0, 1}b → {0, 1}b as f(k, x) = Ek(x) ⊕ x for a block cipher
E : {0, 1}κ × {0, 1}b → {0, 1}b. This transformation does make it hard to find
collisions or an inverse, but it is not indifferentiable from an ideal compression
function and has some undesirable properties. For example, the computation of
E−1

k (0b) = x for an arbitrary k ∈ {0, 1}κ immediately gives a fixed point x where
f(k, x) = Ek(x) ⊕ x = 0b ⊕ x = x, while finding such fixed point is very diffi-
cult for an ideal compression function. This means that one cannot directly use
this compression function in a construction that expects an ideal compression
function; additional analysis is required. In short, we cannot use constructions
based on an ideal compression function to argue security of block-cipher-based
constructions.
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There have been some constructions shown to be indifferentiable from an
ideal compression function [Men13,LMN16,GBK16], but these are very complex
and inefficient. There is some work that have dedicated analysis of block-cipher-
based constructions: for example, prefix-free Merkle-Damg̊ard with Davies-
Meyer [CLNY06,GLC08] or Merkle-Damg̊ard with Davies-Meyer with trunca-
tion [GLC08], etc. Another approach for creating a hash function is by processing
the message in parallel by using a tree hash, a direction looked at by for exam-
ple Dodis et al. [DRRS09], where an ideal compression function is used as a
primitive. They also show that one can use a truncated permutation to create
a compression function that is indifferentiable from a random function, which is
later improved upon [CLL19], however, this gives an unoptimized construction
and inferior security bounds as the abstraction to an ideal compression function
requires extra overhead.

The most promising work for this approach was by Daemen et al. [DMA18]
who looked at general tree hashing based on, among others, block ciphers. This
paper defined very general properties that a tree hash should satisfy in order
to be indifferentiable from a random oracle. Importantly, it supposedly proved
that truncation nor a feed-forward is not one of the required properties. However,
Samuel Neves pointed out a critical error in the paper indicating that truncation
should be required, which was also the formal fix used in the errata by Gunsing
et al. [GDM20]. This still leaves us with an unsatisfactory situation as truncation
is not always a desirable option when the size of the block cipher is small.

1.3 Our Contribution

1.3.1 Identification of the Flaw
In Sect. 3 we will discuss the nature of the error in more depth. It turns out
that there is more to the error than the superficial correction of the bound
in [GDM20] indicates. The original paper implicitly ignores some fundamental
interaction between the primitive and construction oracles that appear in the
definition of indifferentiability as they, after a transformation, incorrectly discard
all queries made to the construction oracle. This can only be done when the
construction queries are made after the primitive ones. In essence, one could
reinterpret the proof to happen in the weaker sequential indifferentiability setting
[MPS12] where all primitive queries happen before the construction queries,
making this reasoning valid. The same reasoning error occurs in other papers
as well [CN08,MPN10,MP15,Lee17,BN18,ABR21]. One [CN08] is about hash
functions as well, but it does not make use of any invalid properties, which
means that the bounds are not influenced at all and that the proof could be
fixed in a straightforward manner. Most other ones [MPN10,MP15,Lee17,BN18]
are about the indifferentiability of the sum of permutations and are all based
on [MPN10] which contains the same error and the other papers copy the same
faulty reasoning. At least the proof of the most recent work [BN18], claiming
optimal indifferentiability of the sum of permutations, is significantly impacted.
More recent work with the ABR+ construction [ABR21] also contains the same
error, although it should not influence its result.
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1.3.2 Block-Cipher-Based Tree Hashing with General Finalization
We improve the state of the art by generalizing the the construction of Daemen
et al. [DMA18], which only considers a truncated output. We generalize the
construction to allow for any finalization function and analyze the security of
this for five different types of finalization. These constructions and their security
properties are summarized in Table 1. Section 4 contains the full security bounds.

Normal Truncation. First of all we re-prove the same construction as in [DMA18]
but with more care where we take the error into account. This proves that the
original properties are indeed sufficient when truncation is properly account for,
as is also shown in the fixed version. Additionally, we generalize some properties
slightly, allowing for a more flexible length of the initial value and digest size.

Truncation Without Subtree-Freeness. The most natural way to prevent the
length extension attack is by requiring subtree-freeness, where the result of a
hash can never be part of another hash. However, in order to prevent this situ-
ation, the mode has to use extra bits to mark, for example, the final node. This
introduces extra overhead compared to a simpler mode. A different solution is
to require more truncation, which was already done previously for the Merkle-
Damg̊ard mode specifically. We generalize this solution to tree hashes. It turns
out that one can drop the subtree-freeness property by truncating to an even
smaller digest, where the exact cost depends on the specific mode. In Sect. 5.1
we use this to prove the security of the mode used in truncated SHA-2 [SHA08],
without requiring any feed-forward. This is a significant efficiency improvement,
as SHA-2 uses a feed-forward in every compression call.

Chopping. Thirdly we look at chopping instead of truncating. Truncation keeps
the first few bits of a string and drops the other bits, while chopping does the
inverse: it drops the first few bits and keeps the remaining ones. At a first glance
this should not make a difference, as the operations are symmetrical. However,
as in our definition of tree hashes we assume that the chaining values are always
the result of truncated outputs, it turns out that chopping the final value instead
of truncating gives a superior security bound. It essentially voids the stronger
requirement with respect to the digest size that the previous mode lost. In short,
by using chopping as the finalization instead of truncation, we can drop the
subtree-freeness requirement without compromising any security. In Sect. 5.3 we
introduce the tree sponge, a generalization of the sponge construction allowing
for parallel absorbing and squeezing, making full use of this result.

Enveloped. Fourthly we look at a generalized enveloped mode. This mode uses
a fixed value in the data path of the final compression call, generalizing the
Enveloped Merkle-Damg̊ard construction [BR06]. Compared to normal Merkle-
Damg̊ard this switches the position of the chaining value from the data input to
the key input. This simple change allows for a secure mode that does not require
much overhead. We show that this approach generalizes from the sequential
Merkle-Damg̊ard mode to general tree-based hashes.
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Feed-Forward. Fifthly we look at a feed-forward. We show that by having a
feed-forward in the final compression call we do not need any truncation. The
conventional approach, which has also been adopted in SHA-2, is that all com-
pression calls use a feed-forward. However, we show that only the final one is
required. More importantly, its use does not negate other conditions. For exam-
ple, subtree-freeness is still required, which is not satisfied in SHA-2 and trunca-
tion is still required. In Sect. 5.2 we use this to analyze the security of the mode
used in BLAKE3 [OANW20] when based on a block cipher. We show that the
mode is secure in principle, but there is a non-negligible factor in the complex-
ity of the simulator. As a consequence, the extendable output mode becomes
insecure when a secret value is used for its offset.

Table 1. Summary of the indifferentiability bounds. The conditions MD, LA, RD, SF
and FA stand for message-decodability, leaf-anchoring, radical-decodability, subtree-
freeness and final-anchoring, respectively. The bits of security are with respect to the
number of primitive queries either direct or indirect, where constant and logarithmic
terms are ignored. b is the length of the data input of the block cipher, c � b the
capacity of the chaining values, n � b the digest length and m � c the length of IV1

which is used for leaf-anchoring. For the finalization, x denotes the data input to the
final block cipher call and y the output. The notations �y�n and �y�n denote truncation
and chopping respectively (i.e. x = �x�n ‖ �x�|x|−n for all n). Note that all chaining
values are truncated block cipher outputs, hence the asymmetry between truncation
and chopping. For the enveloped and feed-forward modes there is no truncation or
similar hence n = b. The proofs are in the full version [Gun22].

mode MD+LA+RD SF FA finalization bits of security

truncation
� � — �y�n min(m, c/2, b − n)

� — — �y�n min(m, c/2, c − n)

chopping � — — �y�n min(m, c/2, b − n)

enveloped � � full y min(m, c/2)

feed-forward � � partial x ⊕ y min(m, c/2)

1.3.3 Comparison of the Variants
The different modes above all come with different trade-offs:

– Truncation/Chopping is useful when the block length b is sufficiently large.
This is often the case for permutations (which is simply the special case κ = 0)
or large block ciphers. The results show that chopping is basically superior
to truncation, when the chaining values are constructed using truncation.
If this is the other way around the same result holds by symmetry. The
important observation is that dropping a different part of the output in the
finalization compared to the internal chaining values is superior to doing the
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same operation twice. This is shown by the fact that an extra condition in
the form of subtree-freeness can be dropped, or that the efficiency can be
significantly improved: the change in the security term from c − n to b − n
allows for a larger n with the same security level.

– If a large block size is not available, the enveloped mode is useful. This mode
does not have any extra security terms and can achieve b/2 bits of security.
The biggest disadvantage is that it requires one full extra block cipher call.

– The feed-forward mode is commonly used, but it does not reduce the
required conditions compared to the other finalizations. For example, radical-
decodability and subtree-freeness are still necessary. Its advantage compared
to the enveloped mode is that it only requires partial final-anchoring, making
it possible to process a larger message block in the final compression call,
increasing its efficiency slightly.

2 Preliminaries

2.1 Notation

Our setup is in the ideal model and we denote E : {0, 1}κ × {0, 1}b → {0, 1}b

for an ideal cipher with key length κ and block length b that is uniformly drawn
from the set of all such block ciphers. For a bit string x of size at least n bits, we
denote �x�n for the first n bits of x (truncation) and �x	n for the last n bits of
x (chopping). Note that for any such x we have that x = �x�n ‖ �x	|x|−n, where
|x| denotes the length of a string x in bits and ·‖· concatenation. The uniform
random drawing of an element x from a finite set X is denoted by x

$←− X. We
denote n � b for the digest length, c � b for the capacity, which is the size of
the chaining values, and m � c for the length of IV1 which will be used for
leaf-anchoring.

2.2 Tree Hashing

We follow the same tree hashing paradigm as in [DMA18], but specialized for
block ciphers and with some small generalizations.

For our definition we use an explicit intermediate step of template generation
in order to be able to reason about the hashing mode. It will consist of three
steps: template construction, template execution and a finalization.

A block-cipher-based tree hashing mode T = (Z, ζ) consists of a template
generating function Z : N × A → X and a finalization function ζ : {0, 1}b ×
{0, 1}b → {0, 1}n. Here, A is a set of parameters chosen by the mode and X is
the set consisting of all possible templates and is independent of the mode. The
resulting hash function HT [E ] : {0, 1}∗ ×A → {0, 1}n is based on an ideal cipher
E and computes the hash digest of a message M ∈ {0, 1}∗ with parameters
A ∈ A in multiple steps:

– First it computes the tree template Z = Z(|M |, A) based on the message
length |M | and the parameters A. This step is elaborated on in Sect. 2.2.1.
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– Then it executes the template based on an ideal cipher E to get the in- and
output of the final node (x, y) = Y[E ](M,Z), with Y[E ] : {0, 1}∗ × X →
{0, 1}b ×{0, 1}b. This function is the same for all modes and is elaborated on
in Sect. 2.2.2.

– As the last step it applies the finalization function ζ to the in- and output to
get the digest h = ζx(y). If the input x is not used we simply write ζ(y). This is
a generalization compared to [DMA18], where only ζ(y) = �y�n is considered.
The major alternative is the feed-forward defined as ζx(y) = x ⊕ y. It has to
be possible to randomly compute an inverse given some input x and digest h

as y
$←− ζ−1

x (h).

2.2.1 Template Construction
Based on the message length μ ∈ N and the parameters A ∈ A a tree template
is constructed. The template consists of a number of block cipher calls called
nodes, where the inputs of the block ciphers are already determined as virtual
bits. These come in three flavors:

– Frame bits: these are fixed bits that are determined solely on the message
length μ and the parameters A. For example, these can be used for domain
separation or can encode the length of the message.

– Message pointer bits: these bits reference specific bits in M . For example, a
bit can reference the ‘fifth bit of M ’, but this bit is currently unknown.

– Chaining pointer bits: these bits refer to the result of another compression
call. We require that all first c bits of every compression call are used exactly
once (except the final one which is special) and consecutively, where c � b is
the capacity. For example, if c consecutive bits refer to the result of (k, x) it
will equal �Ek(x)�c when instantiated.

There is one special block cipher call whose output is not used in the tree. This
is called the final node and is denoted by final(S) for an instantiation S. A leaf
node is a node that does not contain any chaining pointer bits.

E E

E E

E

IV1

M0−2 ‖ 0 M3−5 ‖ 0

IV1

M6‖10 ‖ 0 |M | ‖ 0

1

y

Fig. 1. Basic example of a block-cipher-based tree hashing mode with key size κ = 4,
block size b = 3, capacity c = 3 and message length μ = 7.
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A basic example of a block-cipher-based tree hash is displayed in Fig. 1. The
different kind of virtual bits in the example are:

– Frame bits: the two IV1’s, the 10 (padding), the four 0’s, the 1 and the
encoding of the message length |M |.

– Message pointer bits: the three blocks of M0−2, M3−5 and M6.
– Chaining pointer bits: the four outputs of a call to E that are fed into another

block cipher call.

Note that the output of the final node is denoted by y, which is not necessarily
the hash digest; there is an additional finalization function ζ applied to get the
hash digest. In other words, h = ζx(y), with h the hash digest and x and y the
in- and outputs of the final node. Furthermore, it is possible to have a capacity
c < b, in which case the chaining values are truncated.

2.2.2 Template Execution
The procedure Y[E ](M,Z) executes the tree template Z on a message M with
compatible length to get the hash digest h ∈ {0, 1}n. It uses the following
procedure:

– It instantiates the template to get the corresponding tree S. This means that
all message pointer bits are instantiated with their respective value of M
and similarly for all chaining pointer bits, whose values depend on the block
cipher E .

– It gets the inputs of the final node (k, x) = final(S).
– It computes the output of the final node y = Ek(x).
– It returns the data input and output of the final node (x, y).

The tree S is represented as a list composed of values of the form (k, x, α), each
representing one node. k and x are the key and data inputs to the block cipher
and α denotes a different location in the tree. This value means that there is a
block cipher call of the form y = Ek(x) and that the output �y�c is used in the
position α. The output of the final node is not used in the tree, which is denoted
by α = ⊥. An example is displayed in Table 2.

2.2.3 Definitions
Now we define a few terms that allow us to reason about hashing modes. First of
all we define the tree template set ZT as the set of all possible tree templates.

Definition 1 (tree template set [DMA18,BDPV14]). For a mode of opera-
tion T we define tree template set ZT ⊆ X as the range of the template con-
struction function Z:

ZT = {Z(μ,A)|μ ∈ N, A ∈ A} ,

where μ covers all message lengths and A all parameters.

Next, we define some useful subsets of trees that correspond to the tree templates.
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Table 2. List representation of the example mode displayed in Fig. 1. The nodes are
numbered 0 to 4, with the key input denoted by 0k

0 and data input denoted by 0x
0 (for

node 0), where the subscript denotes the offset. The k, x and α denote the key input,
the data input and the location the output is used (⊥ for the final node), respectively.

node k x α

0 10−2 ‖ 1 20 ⊥
1 M3−5 ‖ 0 30 0k

0

2 |M | ‖ 0 40 0x
0

3 M0−2 ‖ 0 IV1 1x
0

4 M6‖01 ‖ 0 IV1 2x
0

(a) List representation of the template
of the example mode.

node k x α

0 1101 101 ⊥
1 0010 100 0k

0

2 1110 010 0x
0

3 0110 000 1x
0

4 1010 000 2x
0

(b) List representation of the instanti-
ation of the example mode, with IV1 =
000, M = 011 001 1 and random block
cipher outputs.

Definition 2 ((sub)tree set [DMA18,BDPV14]). We say that a tree S com-
plies with a template Z if it has the same tree topology and the frame bits in Z
match those in S.

For a mode of operation T we define the following sets:

– ST is the set of all trees S such that there exists a Z ∈ ZT such that S
complies with Z.

– Ssub
T is the set of trees S such that there exists a S′ ∈ ST such that S is a

proper subtree of S′.
– S leaf

T is the subset of trees S ∈ Ssub
T such that there exists a S′ ∈ ST such that

S is a proper subtree of S′ and S contains all its descendants in S′.
– Sfinal

T is the subset of trees S ∈ Ssub
T such that there exists a S′ ∈ ST such

that S is a proper subtree of S′ and S contains the root node of S′.

Intuitively, ST denotes the set of all possible trees, Ssub
T the set of all their proper

subtrees, S leaf
T the set of trees that cannot be extended backwards, i.e. ones that

contain all necessary leafs and Sfinal
T the set of proper subtrees that contain the

final node. Now we define the notion of a radical, which is an essential part of
our requirements. Intuitively, a radical identifies bit positions which can only
refer to a chaining value, but has no such value associated yet.

Definition 3 (radical [DMA18]). A radical α in a tree instance S ∈ Ssub
T

identifies c bit positions such that no node is attached to α in S, but in any
S′ ∈ ST , with S a subtree of S′, the value located by α is a chaining value (CV).
This value is called the radical CV and is denoted as S[α].

For example, take a Merkle-Damg̊ard mode with the domain separation on the
leaf node. That is, all templates are of the form displayed in Fig. 2. Given just
the final two nodes (which is 0 : (1,M4‖0,⊥);1 : (x,M3‖0,0x) in the list
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representation) with arbitrary M3, M4 and data input x for the node with key
M3‖0, this x will always be a chaining value. Only for leaf nodes the data input
is not a chaining value, but we know that this is not a leaf node by the domain
separation. This means that this position (1x) is a radical.

E EM1

M2 ‖ 1 M3 ‖ 0

E

M4 ‖ 0

y

Fig. 2. A Merkle-Damg̊ard mode with leaf-node separation. This means that data
inputs are unambiguously either a chaining value or a message block, hence non-leaf
subtrees have radicals.

Another example is displayed in Fig. 3. This mode is similar, but with
domain separation on the final node instead of the leaf node. However, this does
mean that the similar final two nodes as before (which is 0 : (1,M4‖1,⊥);1 :
(x,M3‖0,0x) in the list representation) with arbitrary M3, M4 and data input
x for the node with key M3‖0 do not have a radical. The data input x could be
a chaining value, but it could also represent a message block, in which case the
message would be x‖M3‖M4. As the role of this x is ambiguous its position (1x)
is not a radical, nor is any other position.

E EM1

M2 ‖ 0 M3 ‖ 0

E

M4 ‖ 1

y

Fig. 3. A Merkle-Damg̊ard mode with final-node separation. This means that data
inputs are ambiguous and no radicals exist.

2.2.4 Conditions
We look at the conditions that a tree hashing mode has to satisfy in order
to be secure. Message-decodability states that a message can be successfully
extracted from a full tree, leaf-anchoring requires the first few bits of every node
to either denote a fixed value or a chaining value and radical-decodability states
that the previously defined radicals can efficiently be identified from chosen set
Srad

T . In general, message-decodability is trivially satisfied and leaf-anchoring is
a straightforward property. Radical-decodability is a more tricky definition and
sometimes requires more work to show.
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Definition 4 (message-decodability [DMA18]). A mode of operation T is
message-decodable if there is an efficient function extract() that on input of
S ∈ ST returns the template Z it complies with and the message M , and on
input of S /∈ ST returns ⊥.

Definition 5 (leaf-anchoring [DMA18]). A mode of operation T is leaf-
anchored if for every template Z ∈ ZT , the first m � c of every leaf node
encode IV1 ∈ {0, 1}m as frame bits and the first c bits of every non-leaf node are
chaining pointer bits.

Definition 5 is a minor generalization of the original definition in [DMA18] as it
allows for a more flexible length of IV1.

Definition 6 (radical-decodability [DMA18]). A mode of operation T is
radical-decodable if there exists a set Srad

T such that all trees S ∈ Srad
T have a

radical, and there exists an efficient deterministic function radical() that returns
a radical upon presentation of an S ∈ Srad

T , and ⊥ otherwise. The set Srad
T must

satisfy Sfinal
T ⊆ Srad

T ⊆ Ssub
T \ S leaf

T .

In essence, radical-decodability requires the existence of an efficient function
radical() that finds chaining values in a tree such that:

1. it only finds radicals (so they are chaining values in every possible tree),
2. it always reconstructs the full tree when starting at the final node and extend-

ing the tree based on the found radicals.

Note that Sfinal
T and Ssub

T only contain proper subtrees, so if a full tree consists of
a single node, i.e. it hashes a message consisting of a single block, it is not part
of Sfinal

T or Ssub
T hence it should not be in Srad

T as the tree is already complete.
As a first example we take a Merkle-Damg̊ard mode with leaf-anchoring,

depicted in Fig. 4. We take Srad
T = Ssub

T \ S leaf
T , the largest possible set. This

means that we have to identify a radical for any subtree that is not in S leaf
T .

We do this by identifying radicals by the absence of IV1. Our function radical()
works as follows: first we identify the leftmost node (which exists as it is a
sequential mode), then we return its data input if it is not equal to IV1 and
return ⊥ otherwise. An implementation of radical() is illustrated in Algorithm 2.
We check the two requirements for radical-decodability.

1. Radicals: indeed, by definition of the mode any data input that is not IV1

has to be a chaining value.
2. Reconstruction: strictly speaking, it does not satisfy this property. If a chain-

ing value is equal to IV1 the function will stop too soon. However, this has a
negligible probability of occurring and in fact our proof already takes it into
account. This means that we can assume that no chaining value hits IV1,
hence our function will always reconstruct the message.

An implementation of extract() is also illustrated in Algorithm 3. It is similar
to the procedure radical(), but it extracts the message instead of the radicals.
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E EIV1

M1 M2

E

M3

y

Fig. 4. A Merkle-Damg̊ard mode with leaf-anchoring. Radical-decodability can be
achieved by identifying radicals by the absence of IV1 in the data input.

Algorithm 1. Helper function to lookup the node pointing to a location

Interface: lookup(S, α′)
for all i : (k, x, α) ∈ S do

if α = α′ then
return i : (k, x, α)

end if
end for
return ⊥

As a second example we take a Merkle-Damg̊ard mode with final-node sepa-
ration and length encoding, but without leaf anchoring, depicted in Fig. 5. This
means that we cannot identify radicals by the absence of IV1 anymore. However,
we can make use of the other properties. We take Srad

T = Sfinal
T , the smallest pos-

sible set. This means that we only have to identify a radical for any subtree that
contains the final node. As we have final-node separation we can identify this.
If the given tree does not contain a final node, we always return ⊥ as we do
not know how long the message is, which is allowed by the definition of radical-
decodability as those trees are not in Srad

T . If a tree does contain a final node we
can read the length of the message from it. Using this, we know the number of
block cipher calls, from which we can deduce whether the data input is a chaining
value or a message block, satisfying radical-decodability. An implementation of
radical() is illustrated in Algorithm 4. The procedure extract() is not illustrated
but is again very similar to radical(), but it extracts the message instead of the
radicals.

E EM1

M2 ‖ 0 M3 ‖ 0

E

2 ‖ 1

y

Fig. 5. A Merkle-Damg̊ard mode with final-node separation and length encoding.
Radical-decodability can be achieved by identifying the final node and using the length
to know when to stop extending the tree.
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Algorithm 2. Implementation of radical() for the mode pictured in Figure 4

Interface: radical(S)
α′ ← ⊥ � initialize with the final node
while lookup(S, α′) �= ⊥ do

i : (k, x, α) ← lookup(S, α′) � lookup the chaining value
if x = IV1 then � apply leaf-anchoring

return ⊥ � full tree
end if
α′ ← ix0 � the data input contains the next potential radical

end while
return α′ � radical found

Algorithm 3. Implementation of extract() for the mode pictured in Figure 4

Interface: extract(S)
M ′ ← ε � initialize with the empty string
α′ ← ⊥
while lookup(S, α′) �= ⊥ do

i : (k, x, α) ← lookup(S, α′)
M ′ ← k ‖ M ′ � the key input contains a message block
if x = IV1 then

return (M ′, ∅) � return the message and no parameters
end if
α′ ← ix0

end while
return ⊥

Finally we may revisit the example in Fig. 3. We already noted that no rad-
icals exist for this mode, meaning that only Srad

T = ∅ is possible. However, this
contradicts the requirement that Sfinal

T ⊆ Srad
T , hence this construction is not

radical-decodable.
Now we define subtree-freeness, which is a generalization of the problem in

length-extension attacks and states that a full tree can never be a subtree of a
different tree.

Definition 7 (subtree-freeness [DMA18]). A mode of operation T is subtree-
free if

ST ∩ Ssub
T = ∅.

Next, we introduce some new conditions not present in [DMA18]. These are
about full and partial final-anchoring. Full final-anchoring states that the full
input of the final node should contain a fixed value, while partial final-anchoring
additionally allows for a single chaining value to be present.

Definition 8 (full final-anchoring). A mode of operation T that is leaf-
anchored is fully final-anchored if for every template Z ∈ ZT the first b bits
of the final node encode IV2 ∈ {0, 1}b as frame bits.
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Algorithm 4. Implementation of radical() for the mode pictured in Figure 5

Interface: radical(S)
i : (k, x, α) ← lookup(S, ⊥)
� ‖ s ← k � with |s| = 1
if s = 0 then

return ⊥ � fail if it is not a final node
end if
α′ ← ix0
for j ← 0 to � do � process � blocks based on the length encoding

if lookup(S, α′) = ⊥ then
return α′

end if
i : (k, x, α) ← lookup(S, α′)
α′ ← ix0

end for
return ⊥

Strictly speaking, a mode cannot satisfy both leaf-anchoring and full final-
anchoring as the definitions conflict on the first c bits of the final node. Leaf-
anchoring requires these bits to be chaining pointer bits, while full final-anchoring
requires them to encode IV2. However, in our definition, we make an exception for
this: the requirement of full final-anchoring overwrites the one of leaf-anchoring
for the final node.

The final block cipher call of a mode with full final-anchoring will always
look like the example in Fig. 6.

EIV2 y

E

M2

E

M1

IV1

Fig. 6. Example mode using full final-anchoring.

Definition 9 (partial final-anchoring). A mode of operation T that is leaf-
anchored is partially final-anchored if for every template Z ∈ ZT the following
holds for the final node:

– When it is a leaf node, it encodes IV′
1 as frame bits, where IV′

1 ∈ {0, 1}b with
�IV′

1�m = IV1.
– When it is a non-leaf node, the first c bits are chaining pointer bits and its

last b − c bits encode IV2 ∈ {0, 1}b−c as frame bits.
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There may be P different possibilities for IV2, denoted by the set IV2.

An example of a mode using partial final-anchoring is depicted in Fig. 7.

E

M2

yE

M1

IV1 IV2

Fig. 7. Example mode using partial final-anchoring.

2.3 Indifferentiability

We use the indifferentiability framework introduced by Maurer et al. [MRH04]
applied to hash functions by Coron et al. [CDMP05].

Definition 10. Let T = (Z, ζ) be a hashing mode, with template generating
function Z : N × A → X and finalization function ζ : {0, 1}b × {0, 1}b →
{0, 1}n, based on an ideal cipher E : {0, 1}κ × {0, 1}b → {0, 1}b and let Y[E ] :
{0, 1}∗ × X → {0, 1}b × {0, 1}b be the template execution function as described
in Sect. 2.2.2. Let RO be a random oracle with the same domain and range as
ζ ◦ Y[E ] and S be a simulator with oracle access to RO. The indifferentiability
advantage of a distinguisher D is defined as

Advdiff
T [E],S(D) =

∣
∣
∣P

[

Dζ◦Y[E],E,E−1
= 1

]

− P

[

DRO,S[RO],S−1[RO] = 1
]∣
∣
∣ ,

where D can only make construction queries (M,Z) such that Z = Z(|M |, A)
for some A ∈ A.

2.4 Elementary Results

Our proof will rely on the H-coefficient technique introduced by Patarin [Pat08]
and modernized by Chen and Steinberger [CS14]. Let D be a information-
theoretic deterministic distinguisher trying to distinguish O1 = (ζ ◦Y[E ], E , E−1)
and O2 = (RO,S[RO],S−1[RO]). Let ν be the view of D after interacting with
either oracle, consisting of a list of all its queries made. Let DO1 denote the
probability distribution of views of D interacting with O1 and DO2 likewise for
O2. A view ν is attainable if it can be observed by D in the ideal world, i.e.
P [DO2 ] > 0. We define V as the set of all attainable views. The H-coefficient
technique states the following for Advdiff

T [E],S(D).

Lemma 1 (H-coefficient Technique [Pat08,CS14]). Let O1 = (ζ ◦
Y[E ], E , E−1) and O2 = (RO,S[RO],S−1[RO]). Let D be a deterministic
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distinguisher and V = Vgood ∪ Vbad be a partition of the set of views into good
and bad views. Let ε � 0 be such that for all ν ∈ Vgood:

P [DO1 = ν]
P [DO2 = ν]

� 1 − ε.

Then Advdiff
T [E],S(D) � ε + P [DO2 ∈ Vbad].

We will have to upper bound the probability of multi-collisions. We use the
following result based on Choi et al. [CLL19] for this.

Lemma 2. Suppose we have a sequence of s elements where every element is
randomly chosen from {0, 1}a and let Fx denote the number of elements that hit
the value x ∈ {0, 1}a. Then we have that

E

[

max
x

Fx

]

� 2s

2a
+ ln(s) + a + 1.

The proof is given in the full version [Gun22].

3 Errors

The faulty bounds in the original analysis in [DMA18] were superficially cor-
rected in [GDM20]. Nevertheless, a more thorough investigation reveals that the
root cause is more fundamental and applies to many earlier indifferentiability
proofs.

3.1 Description of the Flaw

The main error is that the calls to the random oracle from the simulator are
considered to be random. The output of the random oracle is indeed random.
However, as the distinguisher also has access to this random oracle, it might know
the output beforehand. Let us take a look at a simple example of this. Let D
be a distinguisher that makes the following queries, where T is the construction
oracle of a simple Merkle-Damg̊ard-like mode and E the primitive oracle, with
the message M consisting of one block:

– query T (M) = h,
– query Eh(IV1) = y,
– query EM (IV1) = h.

The final output needs to be h, as this computes the hash of M .
As the simulator simulates E , the only queries that it sees are (h, IV1) with

output y and (M, IV1) with output h. Although this h comes from the random
oracle, its value is magically equal to the key input of the first query, from the
simulator’s point of view.

When presented in this way, it may be obvious that the output of (M, IV1)
cannot be considered random as it is part of the fundamental interaction between
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the oracles. However, it becomes more subtle when it is more abstractly pre-
sented and when some simplifications are made. It is very common to rep-
resent the queries to the oracle as two separate lists. In the above example
we would get the list M = ((M,h)) for the construction oracle and the list
L = ((h, IV1, y), (M, IV1, h)) for the primitive oracle. These lists contain dupli-
cate information, as from either (M,h) or (M, IV1, h) we can derive the fact that
the hash of the message M is equal to h. In order to simplify the analysis we
might be tempted to drop one of these queries. For example, we might drop all
queries from M which can be derived from L. In this case this means that M
becomes empty and we would only have to consider L = ((h, IV1, y), (M, IV1, h)).
However, this is a faulty reasoning as the output of (M, IV1) is always h and
cannot be considered to be randomly generated.

3.2 Occurrence in Other Works

Besides [DMA18], where the error had a significant influence on the proven
security bound, the same error appeared in multiple other papers as well [CN08,
MPN10,MP15,Lee17,BN18,ABR21].

– In [CN08], the authors use the following reasoning in the Section ‘Some Impor-
tant Observations’:
“Thus, we assume that A do not make any O1-query which is computable
from the previous query-responses of O2. More particularly, we can remove
all those O1-queries from the final view which are computable from the query-
responses of O2.”
Here, A denotes the distinguisher, O1 the construction oracle and O2 the
primitive oracle. The first sentence is correct, but the second one is not. The
error can be fixed in a straightforward manner by not removing those queries
from the final view. The probabilities have to be computed in a slightly dif-
ferent way, as some output will be known. However, as the only way these
known outputs are used is in upper bounding the probability of a mutlicolli-
sion, whose analysis remain exactly the same, this does not have any influence
on the bound.

– The same error appeared in work on the indifferentiability of the sum of
permutations [MPN10,MP15,Lee17,BN18]. In the original paper [MPN10]
they apply a common transformation to the distinguisher D. The new distin-
guisher D′ is the same as D, but it additionally verifies all the construction
queries. This transformation is fine as it simplifies some analysis, we use this
transformation as well. However, after this transformation they simply ignore
the queries to the random oracle, which is not correct. The other papers
[MP15,Lee17,BN18] are based on this and also copy the same error. As a
matter of fact [DMA18] copied the approach from them as well.
Looking at the most recent work with the best bound [BN18], the error does
have a significant impact on the proof. The primitive queries are viewed as
random variables, without taking possible construction queries into account.
These queries influence the distributions, which has a significant effect on the
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proof as these distributions are used in the χ2-technique. This does not mean
that the bound is necessarily incorrect, but the proof has to be significantly
changed.

– The same error appeared in recent work of Andreeva et al. [ABR21]. In Sect. 5
the authors show that their ABR+ mode is indifferentiable. However, again,
after the common transformation to D′ at the start of Sect. 5.3 the construc-
tion queries are incorrectly ignored. Nevertheless, in this case the error should
not have an impact on the result. As the construction is fixed-length and uses
a different random function (not permutation) in all locations, including the
final one, the knowledge of the construction results will be independent and
not influence other parts. In short, although the paper makes the same com-
mon error, the result should still be correct because of the specifics of the
construction.

3.3 Possible Cause and Resolution

A possible cause for the error can be from the notations of the views. It is
convenient to denote the interaction of the construction and primitive oracles
separately. However, this notation can be misleading. It implies that the inter-
action between the two different oracles is somewhat disconnected, while this is
not the case. The common error of dropping all the queries to the construction
oracles is basically equivalent to changing the security model. Instead of always
having access to both oracles, the adversary instead operates in two phases: first
it is only allowed access to the primitive oracle and after it is done with this
oracle, it is allowed to only query the construction oracle. This exact model
does actually exist as sequential indifferentiability [MPS12]. In this setting the
previously faulty transformation is valid, meaning that any proofs using it can
be reinterpreted as occurring in the weaker sequential indifferentiability model,
making them still proving a positive, but significantly weaker, result.

A way to prevent the faulty reasoning is to denote the view in one list. In
our example we would denote the view as ν = ((M,h), (h, IV1, y), (M, IV1, h)),
where the final h contains no randomness. This can complicate the analysis,
depending on the used mode. It can be easier to use this reasoning when there
is truncation involved, as that means that there is still some randomness in the
query that can be used. For example, the work [CLL19] does do this correctly:
they denote the view as a single list and also have a mode using truncation.

4 Results

For all results stated below we consider a tree hashing mode based on a b-bit
block cipher and with capacity c denoting the size of the chaining values. These
results are also summarized in Table 1.

Theorem 1. Let T be a mode that is subtree-free, radical-decodable, message-
decodable, leaf-anchored with IV1-length m and has finalization function
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ζ(y) = �y�n. Then there exists a simulator S such that for any distinguisher
D that makes q queries total and r queries to the construction oracle we have

Advdiff
T [E],S(D) � q

2m
+

q2

2c
+

q2 + 2qr

2b
+

(ln(r) + n + 1)q
2b−n

.

The simulator S makes at most q queries to the random oracle.

Theorem 2. Let T be a mode that is radical-decodable, message-decodable, leaf-
anchored with IV1-length m and has finalization function ζ(y) = �y�n. Then
there exists a simulator S such that for any distinguisher D that makes q queries
total and r queries to the construction oracle we have

Advdiff
T [E],S(D) � q + r

2m
+

q2 + 2qr

2c
+

q2 + 2qr

2b
+ (ln(r) + n + 1)

( q

2c−n
+

q

2b−n

)

.

The simulator S makes at most q queries to the random oracle.

Theorem 3. Let T be a mode that is radical-decodable, message-decodable, leaf-
anchored with IV1-length m and has finalization function ζ(y) = �y	n. Then
there exists a simulator S such that for any distinguisher D that makes q queries
total and r queries to the construction oracle we either have

Advdiff
T [E],S(D) � q

2m
+

q2

2c
+

q2

2b−n
,

if b − n � c, and

Advdiff
T [E],S(D) � q + r

2m
+

q2

2c
+

q2 + 2qr

2b
+

(2 ln(r) + 2n + 2)q
2b−n

otherwise. The simulator S makes at most q queries to the random oracle.

Theorem 4. Let T be a mode that is subtree-free, radical-decodable, message-
decodable, leaf-anchored with IV1-length m, fully final-anchored and has final-
ization function ζ(y) = y. Then there exists a simulator S such that for any
distinguisher D that makes q queries total and r queries to the construction
oracle we have

Advdiff
T [E],S(D) � q

2m
+

3q2 + q

2c
+

3q2 + 2qr

2b
.

The simulator S makes at most q queries to the random oracle.

Theorem 5. Let T be a mode that is subtree-free, radical-decodable, message-
decodable, leaf-anchored with IV1-length m, partially final-anchored with P pos-
sibilities for IV2 and has finalization function ζx(y) = x ⊕ y. Then there exists
a simulator S such that for any distinguisher D that makes q queries total and
r queries to the construction oracle we have

Advdiff
T [E],S(D) � q

2m
+

3q2 + 4qr + 4r2 + 2r

2c
+

3q2 + 2Pqr

2b
.

The simulator S makes at most Pq2 queries to the random oracle.

The proofs are given in the full version [Gun22].



224 A. Gunsing

5 Applications

5.1 Truncated SHA-2

SHA-2 [SHA08] uses a straightforward Merkle-Damg̊ard mode based on a block
cipher with the Davies-Meyer feed-forward on top of it. By using Theorem 2
we are able to prove this mode secure, without requiring any feed-forward. The
mode is illustrated in Fig. 8.

E

M3

hEE

M1 M2

IV1

Fig. 8. Illustration of the Merkle-Damg̊ard mode used in SHA-2, but without any
feed-forward.

We show that this mode satisfies the required conditions. First of all, it is
message-decodable as the message can be retrieved from the tree and it is also
leaf-anchored by definition. For radical decodability we take Srad

T = Ssub
T \ S leaf

T
as the largest possible set and identify radicals by the absence of the IV1. This
means that we can apply Theorem 2 with m = c = b ∈ {256, 512} the internal
state size and n ∈ {224, 256, 384, 512} (the latter two only for b = 512) the
digest length. If n is close to b this gives an insecure bound, as then the mode is
vulnerable to a length extension attack.

5.2 BLAKE3

BLAKE3 [OANW20] is a recently introduced tree hash that makes full use of
the parallelism that it provides. We will not describe the hashing mode in detail,
but we show that with our results we can analyze the security of the mode of
operation of BLAKE3. The BLAKE3 paper cites the article by Daemen et al.
[DMA18] in the security analysis and show that it satisfies the required condi-
tions. This works for the truncated version, but a full-length output version is
also used. For this they informally state that the feed-forward is sufficient for
this. Using our Theorem 5 we are able to show that this informal reasoning is
not completely correct, as the extendable output mode introduces new security
considerations.

We succinctly describe what the final compression call looks like, as that
one is relevant for the applicability of the feed-forward and the partial final-
anchoring. The data input to the final call is of the for form CV‖IV2‖t‖b‖d with
key a message M ∈ {0, 1}512, where CV ∈ {0, 1}256 is the chaining value (or
the initial value, if the block consists of one block), IV2 ∈ {0, 1}128 a fixed value
used for every compression call, t ∈ {0, 1}64 a counter for extendable output,
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b ∈ {0, 1}32 the number of bytes in the message M and d ∈ {0, 1}32 some
flags. The output of the block cipher is VL‖VH = EM (CV‖IV2‖t‖b‖d), with
VL, VH ∈ {0, 1}256. The final digest is h = (VL ⊕ VH) ‖ (VH ⊕ CV). This is also
illustrated in Fig. 9.

E
CV

IV2‖t‖b‖d

VL

VH

hL

hH

M

Fig. 9. Illustration of the final compression call of BLAKE3.

5.2.1 Fixed Output
In the fixed output mode of BLAKE3 the final digest h is truncated to 256 bits,
which corresponds to VL ⊕ VH , where VL‖VH is the output of the final block
cipher call. This means that no feed-forward with the previous chaining value
is used. Although this finalization is different from truncation, which would be
just VL, this difference is not essential and the result could be easily modified
for this finalization. Therefore, we do get an appropriate bound from Theorem 1
with b = 512, m = 256, c = 256 and n = 256.

5.2.2 Extendable Output
In addition to a fixed output mode, BLAKE3 also introduces an extendable out-
put mode, allowing for an arbitrary number of output bits, similar to the sponge
construction [BDPV07]. In contrast to the sponge construction, which uses a
sequential output, BLAKE3 uses a counter for its extendable output. It behaves
similar to the generic construction where the counter is appended to the mes-
sage, which would result in the output H(M‖0) ‖ H(M‖1) ‖ H(M‖2) ‖ . . . for
a generic hash function H. In contrast to this generic construction, the counter
is placed in the final compression call, making computing successive outputs
much more efficient, while still allowing efficient random access in contrast to
the sponge. However, as we will see, this feature of allowing efficient random
access comes with new security considerations which BLAKE3 does not adhere
fully.

For the extendable output mode the full output h = (VL ⊕ VH) ‖ (VH ⊕ CV)
of the compression function is used. To get an arbitrary number of output bits
BLAKE3 uses a counter t that is part of the final compression call. Let ht denote
the output with size b stated above when a counter t is used. Then the full output
is equal to h0‖h1‖h2‖ . . ..

Our definition of a tree hashing mode does not directly include this extend-
able output, but it can be achieved by making use of the parameters. Recall
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that the tree template does not only depend on the length of the message |M |,
but also on the parameters A which can be chosen freely from a custom defined
set A. In this case we choose A = {0, 1, . . . , � − 1}, where � is the maximum
number of allowed output blocks, to represent the value of the counter t. This
means that the output can be computed by computing the hashes of (M, t) for all
relevant counters t. Note that definition allows for more freedom than a sequen-
tial construction as this t can start at any arbitrary offset. This extra freedom
does correspond to the use of BLAKE3, as it indeed can efficiently compute the
output starting at any offset.

As with the fixed output, this finalization does not directly correspond to our
definition of the feed-forward. But, again, the proof only uses the randomness
of the chaining value, which is included, so the bound of Theorem 5 is still
applicable for this finalization.

A more significant problem arises when we look at the other new requirement
for a secure mode that uses feed-forwarding. The mode should also satisfy partial
final-anchoring, which means that there should be a limited number of possibil-
ities for the input of the final compression call other than the chaining value. As
stated earlier, for BLAKE3 this consists of IV2‖t‖b‖d, where our main focus will
be t, which is the counter that underlies the extendable output. This t has � pos-
sible values, which is maximum number of allowed output blocks. As BLAKE3
allows for a maximum of 264 output bytes we get � = 264/64 = 258, although
the counter can in principle be any 64-bit value. The values b and d both have
26 possibilities, hence partial final-anchoring is satisfied with P = � · 212, which
is typically dominated by �.

This means that we can apply Theorem 5 to this mode with P = � · 212,
b = 512, m = 256 and c = 256, with � � 258 the maximum number of output
blocks in the extendable output mode. Although P is quite large, this still gives
the expected security level as P · 2c � 2b. There is a downside to the large P ,
though, as the simulator becomes quite inefficient with its query complexity of
Pq2. This is actually reflected in some non-ideal behavior of BLAKE3 that we
describe next.

5.2.3 Computing the Counter
Suppose that a query of the form hL‖hH = h = H(M, t) is performed, where M is
the message and t the block offset in the extendable mode, which corresponds to
the counter. Assume that M and h are known to an attacker, but t is not. Ideally,
the only way to retrieve t is to try all possible t′ � � and check whether H(M, t′)
equals h. However, in the case of BLAKE3 this t can be retrieved much more effi-
ciently. Recall that digest is defined as (VL ⊕ VH) ‖ (VH ⊕ CV), with VL‖VH the
output of the final block cipher call. As M is known to the attacker, it can compute
CV. Furthermore, hL = VL ⊕ VH and hH = VH ⊕ CV are also known, so it can
compute VH = hH ⊕ CV and VL = hL ⊕ VH . This means that it can perform
the inverse of the final block cipher call as E−1

m (VL‖VH) = CV‖IV2‖t‖b‖d, with
m the message input to the final block, and retrieve t this way. This operation
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costs just one query to E (and some to compute CV), which is significantly less
than the expected �, which can be as high as 258.

This problem can be illustrated by the following example. Suppose that
BLAKE3 is used as the following illustrative MAC. This MAC gets as input a key
K ∈ {0, 1}128 and a message M ∈ {0, 1}∗. It splits the key as K = K1‖K2 with
K1 ∈ {0, 1}70 and K2 ∈ {0, 1}58 and computes the MAC as H(M‖K1, t = K2).
For an ideal hash function this construction gives a secure MAC, as the offset
can essentially be viewed as part of the input. However, when instantiated with
BLAKE3 this is not the case. Given h = H(M‖K1, t = K2) and M , but not K,
an adversary can compute K in roughly 270 queries, instead of the expected 2128.
This is done by first guessing an arbitrary K1 ∈ {0, 1}70. Then the adversary
can compute the offset K2 from h and M‖K1 as described above. If the guess
of K1 is correct, this computes the value of K2 ∈ {0, 1}58 using a single query,
performing a key-recovery attack. As there are 270 possible values for K1 this
attack succeeds using roughly 270 queries. Although BLAKE3 supports a dedi-
cated keyed mode that is preferred, the previous example should still be secure.
This shows that the counter in BLAKE3 can only contain public information.

5.2.4 Conclusion
BLAKE3 makes full use of tree hashing capabilities with an interesting way
of generating extendable output by making use of a counter. Although its tree
structure is secure, its use of a counter, which makes efficient random access
possible, comes with new security considerations. In particular, from a usage
perspective it behaves similar to an extra small efficient message input. However,
its security properties do not align with this behavior as the counter can be
efficiently computed by knowing the message and the hash output. This is not
the case for a normal message input, making BLAKE3 in essence add an extra
requirement in that the counter should always be public.

5.3 Tree Sponge

Here we introduce a tree generalization of the sponge construction [BDPV07].
The absorbing phase is generalized to have a tree structure, allowing for paral-
lel compression. Additionally, the squeezing phase is modified to likewise allow
for parallel expansion by making use of a counter. The construction requires a
minimal number of frame bits: the only ones present are initial values required
to prevent inverse queries from succeeding.

First of all we note that all our results also apply to permutations by simply
setting κ = 0. The tree sponge makes use of the flexible conditions present
in Theorem 3. The main observation is that subtree-freeness can be dropped
without negative consequences when the chaining values and the hash digests
originate from different parts of the output of the permutation. This is the same
as in the original sponge construction, which has an inner part that outputs
chaining values, which are secret, and an outer part that outputs hash digests,
which are public.
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Fig. 10. Example of the minimal permutation-based tree hashing mode with w = 2
giving two blocks of output. The order in which the radicals are identified is indicated
by the gray numbers 1–11, starting from the final permutation call resulting in h0.
Underlined numbers indicate a radical, while the other numbers indicate a different
value: either a leaf or a counter value. The dashed permutation call resulting in h1 is
not part of the tree found by the radical finding algorithm.

5.3.1 Description
The tree sponge contains three different phases and depends on a fixed parameter
w ∈ N>0 representing the width:

– Absorbing. In this phase the message is split such that every part can be
absorbed by a sponge of width w. The final part may be smaller. All different
parts are absorbed this way in parallel and each generate their own chaining
value.

– Combining. The chaining values generated in the previous phase are combined
by using a tree structure. The chaining values are split into two non-empty
parts, with the first part the largest possible power of two. The two parts are
recursively reduced to a single chaining value and combined using a permu-
tation call.
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Algorithm 5. Implementation of the tree sponge mode pictured in Figure 10
Interface: TreeSponge(M, t)

CV ← combine(M)
return �p(CV ‖ IV1 ‖ t)�3b/4

Interface: combine(M)
W ← w · b/2 + b/4 � maximum sequential absorption
if |M | � W then

return absorb(M)
end if
k ← �log2(|M |/W )� � largest k such that W · 2k � |M |
ML ‖ MR ← M � with |ML| = W · 2k

CVL ← combine(ML)
CVR ← combine(MR)
return �p(CVL ‖ CVR)�b/2

Interface: absorb(M)
M0 ‖ M1 ‖ · · · ‖ M�−1 ← M � with |M0| = 3b/4 and |Mi| = b/2
x ← IV1 ‖ M0

for i ← 1 to � do
x ← �p(x)�b/2 ‖ Mi

end for
return �p(x)�b/2

– Squeezing. The resulting chaining value is fed into multiple final permutation
calls appended by IV1‖t, with t = 0, 1, . . . a counter for an arbitrary long
output.

An example of this mode is pictured in Fig. 10 and an implementation is illus-
trated in Algorithm 5.

5.3.2 Security
We show that this mode satisfies the required conditions. Again, message-
decodability and leaf-anchoring are satisfied in a straightforward way. Radical-
decodability is more interesting for this mode.

We take Srad
T = Ssub

T \ S leaf
T as the largest possible set and use leaf-anchoring

to identify most radicals. We identify leaf nodes by the occurrence of IV1, which
do not have any radical. If we do not find a leaf node, we do not immediately
know whether the node has one or two chaining values. However, we only have
to find one radical at a time and we know that the first c bits will always point
to a chaining value. We continue this process for the topmost chaining value until
we hit a leaf node. Then we know that the first w calls after the leaf node are
sequential and do not have any other chaining values. All the other nodes do have
a chaining value in the bottom halve and we recursively continue the process on
all those values. The only exception is the counter in the end, but we can recog-
nize this again by the presence of IV1. Furthermore, the fact that the final mes-
sage block may have a width smaller than w does not matter as it is the final
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block the algorithm finds. An example of this process is pictured in Fig. 10 by the
gray numbers and an implementation is illustrated in Algorithm 6.

Algorithm 6. Implementation of radical() for the tree sponge mode pictured
in Figure 10
Interface: radical(S)

(α, depth) ← radical′(S, ⊥)
return α

Interface: radical′(S, α′)
if lookup(S, α′) = ⊥ then

return (α′, ⊥)
end if
i : (k, x, α) ← lookup(S, α′)
if �x�b/4 = IV1 then

return (⊥, 1) � end of path by leaf-anchoring
end if
α′ ← ix0
(α′, depth) ← radical′(S, α′) � scan the top half for radicals
if α′ �= ⊥ then

return (α′, ⊥)
end if
if depth �= ⊥ ∧ depth < w then

return (⊥, depth + 1) � absorb phase
else

x1 ‖ x2 ← x � with |x1| = |x2| = b/2
if �x2�b/4 = IV1 then

return (⊥, ⊥) � squeeze phase
else

α′ ← ixb/2 � combine phase
return radical′(S, α′) � scan the bottom half for radicals

end if
end if

Given a permutation of size b we choose c = b/2 as we have a binary tree.
This leads to a security level of at most b/4, which is inherently the maximum
for a permutation-based tree hash. Given this security level we are additionally
able to choose m = b/4 and n = 3b/4 to optimize the efficiency while keeping
the same security level.

6 Proof Sketch

The full proof is given in the full version [Gun22], but the main ideas in it are
the following:
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– The simulator uses radical-decodability to reconstruct the tree corresponding
to a (potential) message. Message-decodability is used to reconstruct the mes-
sage in order to be consistent with the random oracle. Otherwise randomly
generated values are used.

– Various bad events are defined to make sure the following properties hold for
good views:

• The simulator is consistent with the random oracle.
• The simulator is consistent as a permutation, i.e. Sk(x1) = Sk(x2) implies

x1 = x2 and similar for the inverse.
The main goal of the bad events is to prevent various collisions and to prevent
inversions of the final compression call. This last property was not handled
appropriate in [DMA18] and is solved by the various finalization functions:

• Truncation/Chopping: by throwing away part of the input the inverse
calls can only succeed by guessing the discarded bits, which is negligible
for sufficient truncation.

• Enveloped: as in the final compression call the message related can only
be part of the key input, no information can be gained from an inverse
call. The output contains the data input, which is constant. Notably, the
inverse simulator has to modified to account for the possibility of making
an unorthodox query by computing the hash normally, except for the final
call for which the inverse is used.

• Feed-forward: this case is similar to the enveloped case. A key difference
is that the final inverse call does not necessarily correspond to a single
message, making the inverse simulator having to loop over all possibilities.

These bad events occur with negligible probability as all the values are ran-
domly generated. Most of the difficulty comes from identifying the faulty
queries. As the wrong simplification discussed in Sect. 3 cannot be applied, it
becomes more tricky to identify the faulty queries, which become more varied.
This is especially true for the feed-forward mode as the inverse queries can
correspond to multiple messages.
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Abstract. This paper provides the first analysis of reflection ciphers
such as Prince from a provable security viewpoint.

As a first contribution, we initiate the study of key-alternating reflec-
tion ciphers in the ideal permutation model. Specifically, we prove the
security of the two-round case and give matching attacks. The resulting
security bound takes form O(qp2/22n + q2/2n), where q is the number of
construction evaluations and p is the number of direct adversarial queries
to the underlying permutation. Since the two-round construction already
achieves an interesting security lower bound, this result can also be of
interest for the construction of reflection ciphers based on a single public
permutation.

Our second contribution is a generic key-length extension method for
reflection ciphers. It provides an attractive alternative to the FX con-
struction, which is used by Prince and other concrete key-alternating
reflection ciphers. We show that our construction leads to better secu-
rity with minimal changes to existing designs. The security proof is in
the ideal cipher model and relies on a reduction to the two-round Even-
Mansour cipher with a single round key. In order to obtain the desired
result, we sharpen the bad-transcript analysis and consequently improve
the best-known bounds for the single-key Even-Mansour cipher with two
rounds. This improvement is enabled by a new sum-capture theorem that
is of independent interest.

Keywords: Reflection ciphers · Public random permutations · Ideal
cipher model · Sum capture theorem · Prince

1 Introduction

Cryptographers have long been fascinated by self-inverse, or almost self-inverse,
encryption schemes. For example, the Enigma rotor machine has the surpris-
ing property that its encryption and decryption operations are identical. This
feature, enabled by the middle reflector or Umkehrwalze, made the encryption
device considerably more compact.

Although the reflector ultimately contributed to the demise of Enigma, the
use of self-inverse structures was not abandoned and persists in modern cryp-
tography. Feistel ciphers such as the DES, for instance, are equal to their own
inverse up to a reordering of the round keys. Despite this property, it was later
c© International Association for Cryptologic Research 2022
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shown by Luby and Rackoff [28] and follow-up work that the generic Feistel
construction is indeed sound.

Many traditional key-alternating ciphers also use involutions, i.e. self-inverse
functions, as their components in order to keep the hardware implementation
costs for encryption and decryption similar and to save area. The block ciphers
anubis [3], khazad [4] and noekeon [16] are early examples of this strategy.
Key-alternating ciphers have been extensively analyzed from the perspective
of provable security [7,13,20,21,25], with results demonstrating their resistance
against generic attacks. The provable security of key-alternating ciphers based
on an involution instead of permutations has been studied by Lee [26].

At ASIACRYPT 2012, Borghoff et al. [8] introduced the block cipher Prince
as an alternative approach to minimizing the overhead of supporting both effi-
cient encryption and decryption. Prince has the following reflection property :
decryption is the same as encryption using a related key. This feature is achieved
by using the structure shown in Fig. 1, which we will call the key-alternating
reflection cipher. Although the use of both permutations and their inverse risks
increasing area requirements, this is not a concern for the low-latency use-case
that Prince aims for. Indeed, Prince targets fully unrolled hardware imple-
mentations that encrypt a plaintext in a single cycle.

K1

π1

K2

π2

K3

π3

Kr

πr

Kr+1

R

Kr+2

π−1
r

Kr+3

π−1
3

K2r

π−1
2

K2r+1

π−1
1

K2r+2

Fig. 1. A 2r-round key-alternating reflection cipher based on r public permutations
π1, . . . , πr and 2r + 2 keys K1, . . . , K2r+2. Various key-schedules are possible. In the
Prince core cipher K1 = . . . = Kr+1 and Kr+2 = . . . = K2r+2 ⊕ α for some constant
α �= 0. The reflector R is an involution.

Following increased interest in lightweight cryptography, and low-latency
encryption in particular, several other key-alternating reflection ciphers were
subsequently proposed. For example, Princess [10] and Prince v2 [11] are
variants of Prince. The tweakable block ciphers Mantis [5] and Qarma [1]
combine the key-alternating reflection cipher structure with involutive compo-
nents and target applications such as memory encryption.

Despite their widespread use, the generic security of key-alternating reflection
ciphers has not been analyzed from a provable security viewpoint. This stands in
sharp contrast to Feistel ciphers and traditional key-alternating ciphers, which
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have been a regular subject of study in symmetric-key provably security. This is
remarkable, since it is natural to wonder whether or not the additional structure
of reflection ciphers leads to generic flaws.

Related Work. The block cipher Prince has been extensively analyzed from a
cryptanalytic point of view, see for instance the results of the Prince crypt-
analysis challenge which ran between 2014 and 2016 [9]. Boura et al. [10] discuss
the choice of the reflector R and the key-schedule of general key-alternating
reflection ciphers.

No results, for any number of rounds or any kind of key-schedule, are known
about the provable security of key-alternating reflection ciphers. The study of
traditional key-alternating ciphers, in contrast, goes back to Even and Man-
sour [20] for one round. The analysis of multiple rounds was initiated by Bog-
danov et al. [7] and continued in [13,21,25]. Their results consider the case with
independent round keys. For the two-round case, the security with three equal
keys was shown by Chen et al. [12] at CRYPTO 2014.

Despite the lack of results about the provable security of key-alternating
reflection ciphers, the design of Prince does rely on results from provable secu-
rity for the purpose of key-length extension. Specifically, Prince uses a variant
of the FX construction [24] to extend the key-length of its 64-bit core reflection
cipher from 64 to 128 bits. This construction is shown in Fig. 2. The designers of
Prince prove that, under the strong assumption that E∗ is an ideal reflection
cipher, the resulting construction is secure up to the tradeoff curve pq = 2128

with p the number of queries to E∗ and q the number of construction queries.
Mantis uses the same approach to key-length extension.

K

E�

L σ(K)

E

L

R E−1

L + α

Fig. 2. The structure of Prince and Mantis, with secret keys K and L, and E a block
cipher. The map σ is an invertible linear map and R is a linear involution.

Although the construction in Fig. 2 can offer reasonable security when the
number of construction queries q is limited, it has been observed that the security
margin offered by the pq = 2128 tradeoff may be less comfortable than expected.
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In particular, at EUROCRYPT 2015, Dinur [18] proposed new time-memory-
data tradeoff attacks against Prince. Recently, Prince v2 [11] was proposed
with the explicit goal of obtaining improved security with minimal changes to the
original design. The approach taken by Prince v2 is to use alternating round
keys, i.e. K2i−1 = K1 and K2i = K2 for i = 1, . . . , r in Fig. 1. They also slightly
modify the reflector R.

Contribution. The contribution of this paper is twofold. First, we initiate the
study of the provable security of key-alternating reflection ciphers. Second, we
provide a simple and generic key-extension method for reflection ciphers that
achieves much better security than the FX construction.

For the first contribution, we analyze the security of the two-round variant of
the general construction from Fig. 1 in the ideal permutation model. Specifically,
our results focus on the case with a linear reflector R and two alternating round
keys (i.e. K3 = K1, K4 = K2), similar to the Prince v2 construction. Decryp-
tion is then the same as encryption up to swapping of the keys K1 and K2. We
denote this construction by KARC2. Our Theorem 1 shows that any adaptive
distinguisher making p primitive queries and q construction queries to KARC2
achieves an advantage of at most O(p2q/22n + q2/2n). In Sect. 3.2, alternative
key-schedules are discussed, and we show that reducing the number of round
keys is nontrivial and even results in insecure constructions for many natural
choices of the key-schedule.

The KARC2 construction is the first generic reflection cipher construction
with a security proof. This resolves the first case of a problem of intrinsic the-
oretical interest, similar to the study of key-alternating ciphers. From a more
practical perspective, the result limits the power of generic attacks and moti-
vates the general soundness of a widely used construction.

Although KARC2 achieves only birthday-bound security with respect to the
number of construction queries q, the best tradeoff between primitive and con-
struction queries satisfies p2q = 22n. Since the amount of data q is often limited
in practice, the latter tradeoff is usually dominant. Hence, we believe the KARC2
construction could also be instantiated directly with concrete reduced-round per-
mutations to build an attractive reflection cipher. Although many permutations
are only designed to be efficient in the forward direction, there are exceptions
such as Friet [32].

In Sect. 4, we show that Theorem 1 is tight for general choices of the reflector
R, by providing two matching generic attacks. The first attack is information-
theoretic and shows that the tradeoff curve p2q = 22n cannot be improved.
The second attack is a variant of the mirror slide attack of Dunkelman, Keller
and Shamir [19]. It uses O(2n/2) construction queries and has a similar time-
complexity. The advantage achieved by the attack is lower bounded in Theorem
2, thereby showing that the q2/2n term in Theorem 1 can not be avoided in gen-
eral. Although this may suggest that the reflector R is not that important from a
generic viewpoint, it is important from the viewpoint of dedicated cryptanalysis
(when all permutations are instantiated). Another reason for considering R is
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simply that all practical reflection ciphers have such a layer, and we want our
results to say something about their generic security.

The proof of Theorem 1 is given in Sect. 5. It relies on Patarin’s H-coefficient
technique [13,29]. The good transcript analysis resembles ideas of the first itera-
tion of Patarin’s mirror theory [30,31], but additional difficulties appear due to
the fact that the underlying permutation can be queried by the distinguisher.
Note that the framework of Chen et al. [14] relies on mirror theory for two inde-
pendent permutations, so it cannot be applied to KARC2, which requires the
single permutation variant of mirror theory. For the secret permutation case,
different techniques can be used in order to obtain domain separation [17,30]. In
our proof, the domain separation is covered by a bad event, which leads to the
q2/2n term in the final security bound. The proof, like many proofs in provable
security, is in an idealized model. The assumption that the primitive is ideal will
never be satisfied in practice. For this reason, it is good practice to complement
the provable security analysis (which rules out generic attacks) with dedicated
cryptanalysis when all components are instantiated.

Our second contribution is a general method to extend the key-length of
reflections ciphers, similar to the FX construction shown in Fig. 2, but achieving
much better security. Specifically, our proposal is to add the keys K and σ(K)
again before and after the reflector R respectively. For this construction, we
model the block cipher E as an ideal cipher. Our Theorem 7 shows that any
distinguisher making adaptively chosen plaintext and ciphertext queries to this
construction achieves an advantage of at most ˜O(p

√
q/2n+k), with n the block

size and k the key-length of the ideal cipher.
The proof of Theorem 7 is by a reduction to the security of the two-round

Even-Mansour cipher with a single key. However, in order to be able to prove that
p2q = 22(n+k) is the optimal tradeoff for our ideal cipher construction, we had to
sharpen the analysis of two-round Even-Mansour by Chen et al. [12]. Hence, as a
side-result that is of independent interest, we improve the best known bounds for
the two-round Even-Mansour cipher with identical round keys. Figure 3 shows
the difference between our new bound and the bound of Chen et al.. This result
is presented in Theorem 3.

The proof of Theorem 3 is given in Sect. 6. Our improvement over the result
of Chen et al. [12] is due to a sharpening of their bad-transcript analysis. This
sharpening is made possible by an improved sum-capture theorem, which we
present in Theorem 5 and prove in Sect. 6.1. Our sharpened sum-capture theorem
is also of independent interest, as it is applicable to all other proofs relying on
this result. In a nutshell, the new result removes the unnecessary discrepancy
between the best-known sum-capture theorems for random functions and random
permutations. Hence, we are able to avoid a term of order p2

√
pq/22n in the

security bound. A detailed discussion of this result is given in Sect. 6.
Section 7 presents our ideal cipher construction and the proof of Theorem7.

When applied to Prince or Mantis, we obtain a reflection cipher with an
optimal tradeoff of p2q = 2256. This should be compared to the tradeoff curve
pq = 2128 for the FX construction. Hence, our construction can tolerate far
more construction queries before becoming insecure. Compared to the dedicated
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0 n/4 n/2 3n/4 n0

n/4

n/2

3n/4

n

q

p

pq = 2n

Theorem 3

Chen et al.

Fig. 3. Comparison between the result of Chen et al. [12] for 2-round Even-Mansour
and Theorem 3. The lines correspond to an advantage upper bound equal to one.

construction Prince v2, it has the advantage of introducing a more minimal-
ist change. In addition, Prince v2 does not completely preserve the reflection
property of Prince due to the changes it introduces in the reflector R.

Future Work. Our work opens up several directions for interesting future
research. Currently, our results only apply when two independent keys are used.
Several difficulties in using a single key are discussed in Sect. 3.2, but we believe
that using a nonlinear involution σ could resolve these issues. However, this
seems to require novel proof techniques, as the sum-capture theorem requires
linear mappings. Likewise, it is an open question to categorize all strong linear
key schedules using two independent master keys.

Another challenging problem is that the mirror slide attack from Sect. 4.2
suggests that a good choice of the reflector may improve the security of KARC2,
in the sense that the birthday bound term q2/2n can be avoided. However,
proving this seems difficult with state-of-the-art techniques.

A third tantalizing open problem is to generalize our results to a larger
number of rounds. Namely, for r > 1, can we find sufficient conditions on the
key-schedule such that the 2r-round key-alternating reflection cipher achieves
tight security?

It would also be interesting to reduce the time complexity of attacks against
the KARC2 construction (potentially down to ˜O(22n/3)). Note that the analogous
problem for two-round Even-Mansour cipher is also open, with the best attack
due to Leurent and Sibleyras [27] having a time-complexity of O(2n/

√
n).

Another possible future research direction is to design tweakable reflection
ciphers from public random permutations. Finally, it could be interesting to study
the related key security of KARC2 – apart from the intentional reflection relation,
and to perform cryptanalysis of concrete instances of the KARC2 construction.
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2 Preliminaries

For a non-negative integer n, the set of bitstrings of length n will be denoted by
{0, 1}n. For any two bitstrings X,Y ∈ {0, 1}n, we denote their bitwise exclusive-
or as the bitstring X ⊕ Y ∈ {0, 1}n.

For any finite set S, the notation S
$←− S indicates that S is a random

variable uniformly distributed on S. In particular, Perm(n) denotes the set of
all permutations on {0, 1}n and π

$←− Perm(n) defines π as a uniform random
permutation. For a list of input-output tuples Qπ = {(x1, y1), . . . }, we denote
by π � Qπ the event that the permutation π is consistent with the queries-
response tuples in Qπ, i.e. that π(x) = y for all (x, y) ∈ Qπ.

Finally, for any non-negative integers b ≤ a, the falling factorial of a with
respect to b will be denoted by (a)b. The value (a)b is equal to the number of
injections from a set of size b to a set of size a. In particular,

(a)b =

{

1 if b = 0,

a(a − 1) . . . (a − b + 1) otherwise.

2.1 Block Ciphers

For non-negative integers k and n, a block cipher is a function F : {0, 1}k ×
{0, 1}n → {0, 1}n, such that for every fixed key K ∈ {0, 1}k, the function
FK(·) = F (K, ·) is a permutation on {0, 1}n. The inverse of FK will be denoted
by F−1

K (·) = F−1(K, ·).
We will consider block ciphers F based on r public random permutations

π1, . . . , πr
$←− Perm(n). Our analysis of such constructions will use the strong

pseudorandom permutation (sprp) security notion. Specifically, let D be a distin-
guisher with bi-directional access to either (FK [π1, . . . , πr], π1, . . . , πr) for secret
key K

$←− {0, 1}k, or (π, π1, . . . , πr) for π
$←− Perm(n). The goal of D is to deter-

mine which oracle it was given access to and its advantage with respect to this
task is defined as

Advsprp
F (D) =

∣

∣

∣Pr
[

DF ±
K [π1,...,πr],π

±
1 ,...,π±

r = 1
]

− Pr
[

Dπ±,π±
1 ,...,π±

r = 1
]∣

∣

∣ .

It is possible to build a new block cipher F from an ideal cipher E. The sprp
security notion carries over to this case, but the distinguisher D is given access
to the ideal cipher E rather than to r random permutations. This means that D
can query the random permutations F (K, ·) or its inverse for any chosen key K.
Formally, let D be a distinguisher with bi-directional access to either (FK [E], E)
for a secret key K

$←− {0, 1}n, or (π,E) with π
$←− Perm(n). The sprp-advantage

of D against F is defined as

Advsprp
F (D) =

∣

∣

∣Pr
[

DF ±
K [E],E±

= 1
]

− Pr
[

Dπ±,E±
= 1

]∣

∣

∣ .

Here DO denotes the value returned by D when interacting with the oracle O
and the superscript ± indicates that the distinguisher has bi-directional access.
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2.2 Patarin’s H-Coefficient Technique

We use the H-coefficient technique of Patarin [29], and our description of it
follows the modernization of Chen and Steinberger [13].

Consider a deterministic distinguisher D that is given access to either a real
world oracle O or an ideal world oracle P. The distinguisher’s goal is to determine
which oracle it is given access to and we denote its advantage by

Adv(D) =
∣

∣Pr
[

DO = 1
]

− Pr
[

DP = 1
]∣

∣ .

The query-response tuples learned by D during its interaction with the oracle
O or P can be summarized in a transcript τ . Let XO (respectively XP) be a
random variable equal to transcript produced by the interaction between D and
O (respectively P). A particular transcript τ is called attainable if Pr[XP = τ ] >
0 and the set of all attainable transcripts is denoted by T .

Lemma 1 (H-coefficient technique). Let D be any deterministic distin-
guisher. Define a partition T = Tgood ∪Tbad, where Tgood is the subset of attain-
able transcripts T which contains all the “good” transcripts and Tbad is the subset
with all the “bad” transcripts. If there exists an ε ≥ 0 such that for all attainable
τ ∈ Tgood,

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − ε ,

then Adv(D) ≤ ε + Pr[XP ∈ Tbad].

3 Construction Based on a Public Permutation

In this section, we consider the two-round variant of the general construction
shown in Fig. 1. In particular, as shown in Fig. 4, we consider the case with
K3 = K1 and K4 = K2 and a linear reflector R. This case is of particular
interest because it is both a natural choice for the key-schedule, and one which
is used by concrete reflection ciphers such as Prince v2 [11]. A few alternative
choices of the key-schedule are discussed in Sect. 3.2 below.

K1

π

K2

R

K1

π−1

K2

M
u v v′ u′

C

Fig. 4. The KARC2 construction based on a public permutation π and with secret keys
K1 and K2.

The construction shown in Fig. 4 will be referred to as KARC2, for key-
alternating reflection cipher with two rounds. Formally, let n be a positive
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integer, π ∈ Perm(n), and R : {0, 1}n → {0, 1}n a linear involution. The generic
construction KARC2: {0, 1}2n × {0, 1}n → {0, 1}n is defined as

KARC2K1,K2 [π](M) = π−1(R(π(M ⊕ K1) ⊕ K2) ⊕ K1) ⊕ K2 .

The KARC2 construction has the following reflection property:
(

KARC2K1,K2 [π]
)−1 = KARC2K2,K1 [π]

The security of KARC2 is discussed in Sect. 3.1.

3.1 Security Lower Bound

In Sect. 5, we prove the following security bound for KARC2. As will be shown
in Sect. 4, it is also the case that this bound is tight for general choices of the
reflector R, i.e., there are specific R (such as the identity) with a matching
attack.

Theorem 1. Let n be a positive integer, π
$←− Perm(n) and K1,K2

$←−
{0, 1}n. Let R be a linear involution on {0, 1}n. For any distinguisher D for
KARC2K1,K2 [π] making at most q construction queries, and at most p primitive
queries to π± such that p + 2q < 2n−1, we have

Advsprp
KARC2(D) ≤ 3qp2

22n
+

q2

2n
+

4q3/2

2n
+

4q(p + 2q)(p + 2q + 1)
22n

.

On the one hand, Theorem 1 ‘only’ shows that KARC2 achieves birthday-bound
security with respect to the number of construction queries q. On the other hand,
it also shows that the best possible tradeoff curve between construction and
primitive queries is p2q = 22n up to a small constant. This is much better than
the typical birthday-bound tradeoff pq = 2n. This result is especially important
since in practice the number of construction queries is usually limited by the
application. The number of primitive queries, however, is only limited by the
computational power of the adversary.

The attacks that will be presented in Sect. 4 show that the term q2/2n cannot
be avoided unless the reflector R is carefully chosen. However, for any linear invo-
lution R, there is an attack with advantage approximately 2−n/2 using q = 2n/2

construction queries and no primitive queries. Hence, some terms independent
of p cannot be avoided. It will also be shown that the term p2q/22n is tight
from an information-theoretic point of view, but we are not aware of any attacks
achieving the p2q = 22n tradeoff with reasonable time complexity.

3.2 Variants

The choice of the key-schedule in Fig. 4 is not the only possibility. One tempting
option is to further reduce the number keys by setting K2 = σ(K1) for some
involution σ. However, when σ is linear, this construction would not even be
secure up to q2/2n for general choices of R. The reason is that K1 ⊕ K2 = K1 ⊕
σ(K1) can then no longer be uniform random, and this significantly facilitates
the attack presented in Sect. 4.2 below. Indeed, one has the following result.
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Lemma 2. Let n be a positive integer and σ : {0, 1}n → {0, 1}n a linear invo-
lution. Then σ has at least 2n/2 fixed points and the image of σ ⊕ id, where id is
the identity function, contains at most 2n/2 distinct values.

Proof. Since f = σ ⊕ id is linear, the cardinality of its image is 2dim(imf). Fur-
thermore, f2 = 0, so im(f) ⊆ ker(f) and

dim(imf) ≤ dim(ker f) = n − dim(imf) .

It follows that dim(imf) ≤ n/2. The claim about the number of fixed points
follows from the observation that the fixed points of σ are precisely the elements
of ker f . �


Due to the above issue, we focus on constructions with two keys. The case
of one key, which necessarily requires either a special choice of R or a nonlinear
σ, will be left as interesting (but likely challenging) future work. However, even
with two keys, several constructions are possible. For example, Boura et al. [10]
propose general key-schedules in which the third and fourth key-addition in Fig. 4
(counting from the left) are replaced by F2(K1,K2) and F1(K1,K2) respectively,
where F1 and F2 are (possibly nonlinear) functions. The construction we analyze
is arguably the simplest secure case: F1(K1,K2) = K1 and F2(K1,K2) = K2.

4 Attacks on the Public Permutation Construction

This section shows that the security bound in Theorem 1 is essentially tight
by providing two matching generic attacks. The first attack is only information
theoretic and has no practical significance: it shows that the tradeoff curve p2q =
22n between the number of construction queries q and the number of primitive
queries p can be achieved with a time-complexity of O(22n). The second attack
only uses construction queries and corresponds to the q2/2n term in Theorem 1.
Contrary to the first attack, the time-complexity of the second attack is limited
to ˜O(2n/2) operations.

4.1 Information Theoretic Attack

Suppose the attacker makes 2q construction queries and p primitive queries
with inputs-output pairs denoted by (u1, v1), . . . , (up, vp). If p2q = 22n, then
the expected number of plaintext-ciphertext pairs (M,C) and primitive query
indices (i, j) such that

M ⊕ K1 = ui

C ⊕ K2 = uj ,
(1)

is equal to two. Whenever the above conditions hold, one also has R(vi) ⊕ vj =
K1 ⊕ R(K2). This suggests the following method for obtaining the keys K1 and
K2. For each possible choice of K1 and K2, the adversary proceeds as follows:



244 T. Beyne and Y. L. Chen

(i) Identify the pairs (M,C) and (i, j) for which a collision of type (1) occurs.
(ii) For each of the cases identified in step i , check that R(vi)⊕vj = K1⊕R(K2).

If this relation holds for all pairs that were identified, add (K1,K2) to a list
of candidate keys.

Since the expected number of pairs satisfying (1) is equal to two, each incorrect
key (K1,K2) has an average probability of 1/22n of being accepted. Hence, the
adversary obtains a list of a constant number of candidate keys. These candidate
keys can be checked using a few additional queries.

The attack sketched above is purely information theoretic and does not
account for the computational cost of the procedure. Since the attack uses O(22n)
table lookups, it indeed has no practical significance. Nevertheless, it shows that
the p2q/22n term in Theorem 1 cannot be avoided.

Finding attacks with lower computational cost is left for future work and
we believe this is an interesting problem, as the situation for the two-round
Even-Mansour cipher is similar. In that case, the best known attack is due to
Leurent and Sibleyras [27] and has a time-complexity of O(2n/

√
n) [27]. Their

attack is based on a reduction to the 3-XOR problem. However, since the KARC2
construction has two keys, this approach does not help to reduce the time-
complexity below O(2n).

4.2 Mirror Slide Attack

The second attack is a variant of the mirror slide attack of Dunkelman, Keller
and Shamir [19]. The attack is applicable whenever R has many fixed points and
recovers the value of K1 ⊕ K2.

The original mirror slide attack is applicable to the one-round Even-Mansour
cipher with an involutive permutation. To apply a similar technique to KARC2,
we let

I(x) = π−1(K1 ⊕ R(K2) ⊕ R(π(x))) .

The KARC2 construction can then be written as M �→ I(x⊕K1)⊕K2. In general,
I is not an involution since

I−1(x) = π−1(K2 ⊕ R(K1) ⊕ R(π(x))) .

Nevertheless, the equation above shows that I is an involution iff K1 ⊕ K2 is
a fixed point of the reflector R. Since by Lemma 2 any linear involution has at
least 2n/2 fixed points, the mirror slide attack is applicable for a fraction of at
least 2−n/2 weak keys. However, if R is chosen as the identity map, then all keys
are weak.

The attack is based on the following observation. Let (M,C) and (M∗, C∗)
be two input-output pairs for the construction such that M ⊕ C∗ = K1 ⊕ K2

with K1 ⊕ K2 a fixed point of R. Since M ⊕ K1 = C∗ ⊕ K2, it then follows that

M∗ = K1 ⊕ I−1(C∗ ⊕ K2) = K1 ⊕ I(M ⊕ K1) = K1 ⊕ K2 ⊕ C .
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The attack itself is then simple: choose Θ(2n/2) distinct values M1,M2, . . . and
C1, C2, . . .. With high probability, there exist indices i �= j such that Mi ⊕ Cj =
K1 ⊕ K2 = Mj ⊕ Ci. Furthermore, since the expected number of collisions is
small, one obtains a short list of candidates for K1 ⊕ K2.

Theorem 2 gives a lower bound on the advantage of a distinguisher based on
the same principle. Hence, the security lower bound in Theorem 1 is tight in the
sense that the O(q2/2n) term cannot be avoided for some choices of R. Finding
matching attacks when R has only 2n/2 fixed points, or improving the security
lower bound in this case, will be left as future work.

Theorem 2 (Mirror slide attack). Let n ≥ 2 be an even integer, π
$←−

Perm(n), and K1,K2
$←− {0, 1}n. Let R be a linear involution on {0, 1}n with

� ≥ 4 fixed points. There exists a distinguisher D for KARC2K1,K2 [π] making
3 · 2n/2 + 1 construction queries such that

Advsprp
KARC2(D) ≥ �

2n
− 4

2n
.

Proof. Let Δ be an arbitrary constant which is zero on the first n/2 bits, such
as Δ = 0n−1‖1. The distinguisher D follows the approach described above, but
using a slightly different approach to make the attack deterministic in the real
world (assuming K1 ⊕ K2 is a fixed point of R). Specifically, D operates as
follows:

(i) For i = 1, . . . , 2n/2, query Mi = 〈i〉n/2 ‖ 0n/2 to obtain its encryption Ci.
Likewise, query ˜Mi = Mi ⊕ Δ to obtain its encryption ˜Ci.

(ii) For i = 1, . . . , 2n/2, query C∗
i = 0n/2 ‖ 〈i〉n/2 to obtain M∗

i . Likewise, define
˜C∗

i = Ci ⊕ Δ and denote the corresponding plaintext by ˜M∗
i .

(iii) If there exists a pair of indices (i, j) such that Mi ⊕ C∗
j = M∗

i ⊕ Cj and
˜M i ⊕ ˜C∗

j = ˜M∗
i ⊕ ˜Cj , then output 1. Otherwise, output 0.

Since in step ii only 2n/2 + 1 new queries are made, the total number of queries
made is 3 · 2n/2 + 1. The distinguisher’s advantage satisfies

Advsprp
KARC2(D) =

∣

∣

∣Pr
[

DKARC2±
K1,K2

[R,π],π±
= 1

]

− Pr
[

Dπ±
I ,π±

= 1
]∣

∣

∣ .

Suppose that K1⊕K2 is a fixed point of R. In the real world, there is a unique pair
(i, j) such that Mi⊕C∗

j = K1⊕K2. It then also holds that (Mi⊕Δ)⊕(C∗
j ⊕Δ) =

K1 ⊕ K2. Hence, as detailed in the explanation of the mirror slide attack above,
the following two events then necessarily hold:

Ai,j : Mi ⊕ C∗
j = M∗

j ⊕ Ci

Bi,j : ˜Mi ⊕ ˜C∗
j = ˜M∗

j ⊕ ˜Ci .

Thus, since the number of fixed points of R is �,

Pr
[

DKARC2±
K1,K2

[R,π],π±
= 1

]

≥ �/2n .
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For the ideal world, we have

Pr
[

Dπ±
I ,π±

= 1
]

= Pr

⎡

⎣

∨

i,j

Ai,j ∧ Bi,j

⎤

⎦ ≤ 2n Pr [A1,1 ∧ B1,1] ≤ 4
2n

.

Hence, the result follows provided that � ≥ 4.

5 Security Proof for the Public Permutation Construction

In this section we prove Theorem 1. Let K1,K2
$←− {0, 1}n and πI , π

$←− Perm(n).
Consider any computationally unbounded and deterministic distinguisher D with
access to the oracles (KARC2±

K1,K2
[π], π±) in the real world and (π±

I , π±) in the
ideal world.

The distinguisher makes q construction queries to KARC2±
K1,K2

[π] or π±
I , and

these are summarized in a transcript of the form τ0 = {(M1, C1), . . . , (Mq, Cq)}.
It also makes p primitive queries to π±, and these are summarized in the tran-
script τ1 = {(u1, v1), . . . , (up, vp)}. Without loss of generality, it can be assumed
that the distinguisher does not make duplicate construction or primitive queries.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the keys K1 and K2 to the distinguisher. This can only increase its
advantage. In the real world, these are the keys used in the construction. In
the ideal world, K1 and K2 are dummy keys drawn uniformly at random. The
complete view is denoted by τ = (τ0, τ1,K1,K2).

5.1 Bad Events

Throughout the proof, let U = {u | (u, v) ∈ τ1} and V = {v | (u, v) ∈ τ1}. Recall
that R : {0, 1}n → {0, 1}n is an involution, i.e. R−1 = R. We say that τ ∈ Tbad if
and only if there exist construction queries (Mi, Ci), (Mj , Cj) ∈ τ0 and primitive
queries (u, v), (u′, v′) ∈ τ1 such that one of the following conditions holds:

bad1 : Mj ⊕ Ci = K1 ⊕ K2 , (2)
bad2 : Mj ⊕ u = K1 and Cj ⊕ u′ = K2 , (3)
bad3 : Mj ⊕ u = K1 and R(v) ⊕ v′ = K1 ⊕ R(K2) , (4)
bad4 : Cj ⊕ u′ = K2 and v ⊕ R(v′) = R(K1) ⊕ K2 , (5)

When p < q, we also need the following two bad events for our good transcripts
analysis:

bad5 : α1 = |{(Mj , Cj) ∈ τ0 | Mj ⊕ K1 ∈ U}| ≥ √
q , (6)

bad6 : α2 = |{(Mj , Cj) ∈ τ0 | Cj ⊕ K2 ∈ U}| ≥ √
q . (7)

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.
We give an informal explanation of the definition of the first four bad events.

The first bad event is necessary to exclude the mirror slide attack that was
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described in Sect. 4.2. The second bad event is exploited by the information-
theoretic attack from Sect. 4.1. The motivation behind bad3 and bad4 is similar.
In fact, note that R(v)⊕ v′ = K1 ⊕R(K2) in bad3 and v ⊕R(v′) = R(K1)⊕K2

in bad4 express the same equation. In the real world, if bad1 does not hold, then
every construction query j induces exactly two evaluations (u, v), (u′, v′) of the
underlying public permutation π, and these two pairs satisfy

Mj ⊕ u = K1 ,

Cj ⊕ u′ = K2 ,

R(v) ⊕ v′ = K1 ⊕ R(K2) .

Clearly, u and u′ are fixed by Mj (if in the forward direction) or Cj (if in the
inverse direction) and K1,K2, but there is “freedom” in the value R(v) ⊕ v′.
If it happens to be that the distinguisher queried u, i.e., that (u, v) ∈ τ1, the
construction query also fixes the input-output tuple (u′, v′). However, in the ideal
world, there is no such dependency. This means that if the adversary queries u =
Mj ⊕K1 and u′ = Cj ⊕K2 to π, with high probability the third equation would
not hold. An identical reasoning applies for the case where the distinguisher
happened to have set any other two out of three equations.

5.2 Probability of Bad Events in the Ideal World

We want to bound the probability Pr[XP ∈ Tbad] that an ideal world transcript
τ satisfies either of (2)–(7). Therefore, by the union bound, the probability that
XP ∈ Tbad can be bounded as

Pr[XP ∈ Tbad] ≤
6
∑

i=1

Pr[badi] .

1 st Bad Event. We first consider the bad event bad1. Here, we rely on the ran-
domness of K1⊕K2. Since K1 and K2 are dummy keys generated independently
of τ0 and τ1, the probability that (2) holds for fixed i and j is 1/2n. Summing
over q2 possible choices of the pair (i, j), we have

Pr[bad1] ≤ q2

2n
.

2nd Bad Event. We now consider the event bad2. For any construction query
(Mj , Cj) ∈ τ0 and any primitive queries (u, v) and (u′, v′), the only random-
ness in the first equation of (3) is K1 and the only randomness in the second
equation is K2. This means that the event that one of the equations defining
bad2 holds is independent of the event that the other one holds. Since the keys
K1,K2

$←− {0, 1}n are dummy keys generated independently of τ0 and τ1, the
probability that bad2 holds for a fixed choice of j, (u, v), and (u′, v′) is 1/22n.
Summing over the q possible construction queries and p2 possible pairs of prim-
itive queries, we get

Pr[bad2] ≤ qp2

22n
.
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3 rd Bad Event. Next, we consider the bad event bad3. Note that in the second
equation of (4), we can replace K1 by Mj ⊕u. Hence, the only randomness in the
first equation is K1 and the only randomness in the second equation (conditional
on the first) is K2. The events that one of the equations defining bad2 holds is
therefore independent of the other. Summed over q possible construction queries
and p2 possible pairs of primitive queries, we get

Pr[bad3] ≤ qp2

22n
.

4 th Bad Event. The same reasoning as in the case of bad3 applies to bad4. Hence,
it also holds that Pr[bad4] ≤ qp2/22n.

5 th Bad Event. Finally, if p < q, we also consider the bad event bad5. Note that
α1 is a random variable over the random choice of K1, and it is independent of
K2. Furthermore, by the uniformity of K1,

E[α1] =
q
∑

j=1

∑

u∈U

Pr[Mj ⊕ K1 = u] =
qp

2n
,

Hence, by Markov’s inequality and because we only consider this event for p < q,

Pr[bad5] ≤
√

qp

2n
≤ q3/2

2n
.

6 th Bad Event. The analysis of the last bad event is similarly to that of bad5.
Hence, we also have Pr[bad6] ≤ q3/2/2n.

Conclusion. Summing the probabilities of the bad events, we get

Pr[XP ∈ Tbad] ≤ 3qp2

22n
+

q2

2n
+

2q3/2

2n
. (8)

This concludes the analysis of the bad transcripts in the ideal world.

5.3 Ratio for Good Transcripts

Before we continue with the proof, we present the following lemma, which will
be useful in the good transcript analysis.

Lemma 3. Let a, b, c ≥ 0 and N ≥ 1 be integers such that 2a + b ≤ N/2 and
2a + c + 1 ≤ N/2. Then

a
∏

i=1

(N − i)(N − b − c − 3i)
(N − b − 2i)(N − c − 2i − 1)

≥ 1 − 4a(2a + b)(2a + c + 1)
N2
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Proof. One has
a
∏

i=1

(N − i)(N − b − c − 3i)
(N − b − 2i)(N − c − 2i − 1)

≥
a
∏

i=1

N2 − N(b + c + 4i) − N

N2 − N(b + c + 4i + 1) + (b + 2i)(c + 2i + 1)

=
a
∏

i=1

(

1 − (b + 2i)(c + 2i + 1)
N2 − N(b + c + 4i + 1) + (b + 2i)(c + 2i + 1)

)

=
a
∏

i=1

(

1 − (b + 2i)(c + 2i + 1)
(N − b − 2i)(N − c − 2i − 1)

)

≥ 1 − a(2a + b)(2a + c + 1)
(N − b − 2a)(N − c − 2a − 1)

≥ 1 − 4a(2a + b)(2a + c + 1)
N2

,

where for the last inequality we used 2a + b ≤ N/2 and 2a + c + 1 ≤ N/2. �


Consider an attainable transcript τ ∈ Tgood. We now lower bound Pr[XO = τ ]
and compute Pr[XP = τ ] in order to obtain a lower bound for the ratio of these
probabilities. For the ideal world oracle P, the probability of any good transcript
τ is equal to

Pr[XP = τ ] =
1

22n
· (2n − p)!

2n!
· (2n − q)!

2n!

=
1

22n
· 1
(2n)p

· 1
(2n)q

.

The first factor is due to the number of possible keys K1 and K2. The second
and third factors correspond to the probability that the uniform random per-
mutations π and πI are consistent with the transcripts τ1 and τ0 respectively.

Similarly, the real world oracle O is compatible with a good transcript τ if
and only if it is compatible with τ0 and τ1. Hence,

Pr[XO = τ ] =
1

22n
· 1
(2n)p

· Pr[KARC2±
K1,K2

[π] � τ0 | π � τ1] ,

where the probability is taken with respect to π
$←− Perm(n) and conditional on

the keys. As before, the first factor corresponds to the number of possible keys
K1 and K2. The second factor is the probability that π is consistent with τ1. The
third factor is the probability that the construction KARC2±

K1,K2
[π] is consistent

with τ0, given the keys K1,K2, and given that π is compliant with τ1.
If we let ρ(τ) = Pr[KARC2±

K1,K2
[π] � τ0 | π � τ1], then from the above we

obtain that

Pr[XO = τ ]
Pr[XP = τ ]

= (2n)q ρ(τ) . (9)
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In order to bound ρ(τ), we re-group the construction queries in τ0 according to
their collisions with the primitive queries:

QU1 = {(Mj , Cj) ∈ τ0 | Mj ⊕ K1 ∈ U} ,

QU2 = {(Mj , Cj) ∈ τ0 | Cj ⊕ K2 ∈ U} ,

Q0 = {(Mj , Cj) ∈ τ0 | Mj ⊕ K1, Cj ⊕ K2 /∈ U} .

By definition, α1 = |QU1 | and α2 = |QU2 |. Also note that QU1 ∩ QU2 = ∅ by
¬bad2, QU1 ∩ Q0 = ∅ and QU2 ∩ Q0 = ∅ by the definition of QU1 , QU2 , and Q0.
Denote respectively by E1, E2, and E0 the events that KARC2±

K1,K2
[π] � QU1 ,

QU2 , and Q0 such that

ρ(τ) = Pr[E1 ∧ E2 | π � τ1] Pr[E0 | E1 ∧ E2 ∧ π � τ1] . (10)

Lower Bounding Pr[E1 ∧ E2 | π � τ1]. The consistency condition π � τ1 already
defines exactly p distinct input-output relations for π. We know that for each
(Mj , Cj) ∈ QU1 , there is an unique (u, v) ∈ τ1 such that Mj ⊕ K1 = u, and
π(Mj ⊕ K1) = v. We define

Ṽ2 = {R(π(Mj ⊕ K1) ⊕ K2) ⊕ K1 : (Mj , Cj) ∈ QU1} ,

Ũ2 = {Cj ⊕ K2 : (Mj , Cj) ∈ QU1} .

Similarly, for each (Mj , Cj) ∈ QU2 , there is a unique (u, v) ∈ τ1 such that
Cj ⊕ K2 = u, and π(Cj ⊕ K2) = v. Again, define

Ṽ1 = {R(π(Cj ⊕ K2) ⊕ K1) ⊕ K2 | (Mj , Cj) ∈ QU2} ,

Ũ1 = {Mj ⊕ K1 | (Mj , Cj) ∈ QU2} .

Note that all values in Ũ1 and all values in Ṽ2 are distinct since the Mj ’s are
distinct, and all values in Ũ2 and all values in Ṽ1 are distinct since the Cj ’s are
distinct. We also have Ũ1 ∩ Ũ2 = Ṽ1 ∩ Ṽ2 = ∅ by ¬bad1, U ∩ Ũ1 = U ∩ Ũ2 = ∅ by
¬bad2, V ∩ Ṽ2 = ∅ by ¬bad3, and V ∩ Ṽ1 = ∅ by ¬bad4. Hence, the events E1

and E2 define exactly α = |QU1 | + |QU2 | new and distinct input-output pairs of
π and it follows that

Pr[E1 ∧ E2 | π � τ1] =
1

(2n − p)α
. (11)

Lower Bounding Pr[E0 | E1∧E2∧π � τ1]. The conditions π � τ1, E1 and E2 now
define exactly p′ = |U ∪ Ũ1 ∪ Ũ2| = |V ∪ Ṽ1 ∪ Ṽ2| = p + α distinct input-output
pairs of π. Our goal now is to count the number of new distinct input-output
relations for π induced by the event E0. Recall that the event E0 holds if and
only if the reflection cipher is consistent with the construction queries in Q0, i.e.
KARC2K1,K2 [π] � Q0. The queries in Q0 can be labeled as

Q0 = {(Ml1 , Cl1), . . . , (Mlq′ , Clq′ )} ,

where q′ = |Q0| = q − α is the total number of these queries.
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The event E0 defines exactly 2q′ relations for π of the form π(ū2i−1) = v̄2i−1

and π(ū2i) = v̄2i, where ū2i−1 = Mli ⊕ K1 and ū2i = Cli ⊕ K2 for i = 1, . . . , q′.
By the definition of Q0 and because bad1 does not hold for good transcripts, it
follows that

{ū1, . . . , ū2q′} �⊆ U ∪ Ũ1 ∪ Ũ2 .

Hence, taking into account that π is a permutation, the values v̄1, . . . , v̄2q′ must
satisfy the following conditions (for i = 1, . . . , q′) in the real world:

(1) R(v̄2i−1) ⊕ v̄2i = K1 ⊕ R(K2).
(2) The variables v̄2i−1 additionally satisfy:

(a) v̄2i−1 /∈ V ∪ Ṽ1 ∪ Ṽ2,
(b) v̄2i−1 /∈ {v̄1, . . . , v̄2i−2} if i > 1.

(3) The variables v̄2i additionally satisfy:
(a) v̄2i /∈ V ∪ Ṽ1 ∪ Ṽ2,
(b) v̄2i /∈ {v̄1, v̄3, . . . , v̄2i−1} if i > 1.

Observe that whenever conditions (1) and (2b) are satisfied, then it also holds
that v̄2i /∈ {v̄2, v̄4, . . . , v̄2i−2}, since K1 ⊕ R(K2) is a fixed value. It follows that
conditions (1), (2b) and (3b) ensure that the values v̄1, . . . , v̄2q′ are distinct.

For any positive integer m ≤ q′, let Nm denote the number of distinct tuples
(v̄1, . . . , v̄2m) satisfying the conditions above for i = 1, . . . , m. In particular,
for each of the Nq′ possible consistent choices of (v̄1, . . . , v̄2q′), the event E0 is
equivalent to exactly 2q′ new input-output relations for π. Hence,

Pr[E0 | E1 ∧ E2 ∧ π � τ1] =
Nq′

(2n − p′)2q′
. (12)

Below, a recursive formula for Nm in terms of Nm−1 will be determined. This
formula leads to a lower bound for Nm/Nm−1. Finally, in order to lower bound
Nq′ , the following telescoping product will be used (N0 = 1):

Nq′ =
q′
∏

m=1

Nm

Nm−1
. (13)

Define Rm as the set of all tuples (v̄1, . . . , v̄2m) that satisfy all conditions
above for i = 1, . . . , m − 1 and satisfy condition (1) for i = m, but not (2)
and (3) . It is easy to see that |Rm| = 2nNm−1.

Furthermore, let Sm be the set of values (v̄1, . . . , v̄2m) also satisfying all
conditions for i = 1, . . . , m − 1, and additionally satisfying (1) and (2) but
not (3) for i = m. Define Tm analogously but with values satisfying (1) and (3)
but not (2) for i = m. The set of complete solutions can then be written as
Rm \ (Sm ∪ Tm). Hence, by the union bound,

N2m+2 = |Rm \ (Sm ∪ Tm)| = |Rm| − |Sm ∪ Tm| ≥ |Rm| − |Sm| − |Tm| . (14)

Since any (v̄1, . . . , v̄2m) ∈ Sm satisfies v̄2m−1 ∈ {v̄1, . . . , v̄2m−2} ∪ V1 ∪ Ṽ1 ∪ Ṽ2,
one has that |Sm| ≤ (p′ + 2m − 2)Nm−1. Similarly, |Tm| ≤ (p′ + m − 1)Nm−1.
Hence, substituting these inequalities and |Rm| = 2nNm−1 in (14) and dividing
out Nm−1 yields
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Nm

Nm−1
≥ 2n − (p′ + 2m − 2) − (p′ + m − 1) = 2n − 2p′ − 3m + 3 .

Using the telescoping product (13), it follows that

Nq′ ≥
q′
∏

m=1

(2n − 2p′ − 3m + 3) ≥
q′−1
∏

i=0

(2n − 2p′ − 3i) .

Combining (10), (11) and (12), we obtain

Pr[XO = τ ]
Pr[XP = τ ]

≥ Nq′
(2n)q

(2n − p′)2q′ (2n − p)α

≥ Nq′
(2n)q′

(2n − p′)2q′
︸ ︷︷ ︸

A

· (2n − q′)α

(2n − p)α
︸ ︷︷ ︸

B

. (15)

Plugging in the lower bound for Nq′ in A yields

A ≥
∏q′−1

i=0 (2n − i)(2n − 2p′ − 3i)
(2n − p′)2q′

≥
q′−1
∏

i=0

(2n − i)(2n − 2p′ − 3i)
(2n − p′ − 2i)(2n − p′ − 2i − 1)

≥ 1 − 4q′(p′ + 2q′)(p′ + 2q′ + 1)
22n

≥ 1 − 4q(p + 2q)(p + 2q + 1)
22n

, (16)

where we used Lemma 3 with a = q′ and b = c = p′, and the fact that q′ ≤ q
and p′ + 2q′ + 1 ≤ p + 2q + 1 ≤ 2n/2.

Next, we consider the factor B in (15). Note that for p ≥ q ≥ q′ and using
the fact that q = q′ + α, we have B ≥ 1. For p < q, we have

B ≥ (2n − q′)α

2αn
≥

(

2n − q

2n

)α

≥ 1 − 2q3/2

2n
, (17)

where we used α = α1 + α2 ≤ 2
√

q, which is due to ¬bad5, and ¬bad6.

Conclusion. From (15), (16), and (17) we conclude that

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − 4q(p + 2q)(p + 2q + 1)
22n

− 2q3/2

2n
=: 1 − ε ,

using (1 − x)(1 − y) ≥ 1 − x − y.

5.4 Conclusion

Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advsprp
KARC2(D) ≤ 3qp2

22n+1
+

q2

2n
+

4q(p + 2q)(p + 2q + 1)
22n

+
4q3/2

2n
.
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6 Sharpened Analysis of Two-Round Even-Mansour

As an intermediate result that will be used to prove the security of our ideal
cipher construction, we consider the following single-key variant of the 2-round
Even-Mansour cipher. For any positive integer n, let π1, π2 ∈ Perm(n), and
let γ1, γ2 : {0, 1}n → {0, 1}n be arbitrary invertible linear maps on {0, 1}n with
respect to ⊕. Define the generic construction EMIP2: {0, 1}n ×{0, 1}n → {0, 1}n

as
EMIP2K [π1, π2](M) = π2(π1(M ⊕ K) ⊕ γ1(K)) ⊕ γ2(K) .

Chen et al. [12] showed that for γ1 = γ2 = id, EMIP2 is secure up to ˜O(22n/3)
queries. In this section, the following sharpened result will be shown. The result
is sharper because, as explained below, our proof avoids the term p2

√
qp/22n in

the bad transcript analysis. The latter term can play an important role when
p is large. The difference between Theorem 3 and the result of Chen et al. is
illustrated in Fig. 3 in the introduction.

Theorem 3. Let n ≥ 4 be an integer, let K
$←− {0, 1}n and π1, π2

$←− Perm(n)
independent and uniform random permutations. Let D be any distinguisher for
EMIP2K [π1, π2] making at most q > 1 construction queries, at most p primitive
queries to π±

1 and at most p primitive queries to π±
2 . For all q < 2n−1 or q = 2n,

we have

Advsprp
EMIP2(D) ≤ 12

22c−n
+

7qp2

22n
+

6
√

3cqp2

2n
,

with c > 0 an arbitrary real number.

We prove Theorem 3 in Sect. 6.2. The bad transcript analysis of Chen et al. [12]
relies on a sum-capture theorem. The sharpened bound in Theorem 3 is due to
a sharpening of this result. Several variants of the sum-capture theorem exist
for different situations [12,15]. These results build on the work of Babai [2] and
Steinberger [33]. Typically, a sum-capture theorem states that for a random
subset Z of {0, 1}n of size q, the quantity

μ(Z,A,B) = |{(z, a, b) ∈ Z × A × B : z = a ⊕ b}|

is not much larger than q |A| |B| /2n for any possible choice of A and B, except
with negligible probability. In our setting, Z will consist of query-response tuples
from a permutation, i.e. Z consists of values ui⊕vi where {(u1, v1), . . . , (uq, vq)} is
a permutation transcript. For this case, Chen et al. [12] proved the following result.

Theorem 4 (Chen et al. [12]). Let Γ be an invertible linear map on the
F2-vector space {0, 1}n. Let π

$←− Perm(n), let D be some probabilistic algorithm
making exactly q distinct two-sided adaptive queries to π. Let Z = {(u1, v1), . . . ,
(uq, vq)} be the transcript of the interaction of D with π, which consists of q ≥ 1
pairs such that either vi = π(ui) or ui = π(vi) for all i = 1, . . . , q. For any two
subsets A,B ⊆ {0, 1}n, let
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μ(Z,A,B) = |{((u, v), a, b) ∈ Z × A × B : u ⊕ a = Γ (v ⊕ b)}| .

Then, for 9n ≤ q ≤ 2n−1, we have

Pr

[

μ(Z,A,B) ≥ q |A| |B|
2n

+
2q2

√

|A| |B|
2n

+ 3
√

nq |A| |B|
]

≤ 2
2n

.

In Sect. 6.1, we prove the following sharpened and simplified version of their
result. For c = n, the bound in the theorem below is essentially identical to the
one given in the sum-capture theorem of Cogliati et al. [15, Lemma 1] for the
case where Z results from the interaction with a random function. Hence, our
result removes the unnecessary discrepancy between the sum-capture theorems
for random functions and random permutations.

Theorem 5 (Sum-capture theorem). Let Γ be an invertible linear map on
the F2-vector space {0, 1}n. Let π

$←− Perm(n), and let D be some probabilistic
algorithm making exactly q distinct two-sided adaptive queries to π. Let Z =
{(u1, v1), . . . , (uq, vq)} be the transcript of the interaction of D with π, which
consists of q ≥ 1 pairs such that either vi = π(ui) or ui = π(vi) for all i =
1, . . . , q. For any two subsets A,B ⊆ {0, 1}n, let

μ(Z,A,B) = |{((u, v), a, b) ∈ Z × A × B : u ⊕ a = Γ (v ⊕ b)}| .

For any real number c > 0, it then holds that

Pr
[

μ(Z,A,B) ≥ q |A| |B|
2n

+ 2
√

3cq |A| |B|
]

≤ 4
22c−n

.

As can be seen by comparing Theorem 4 and Theorem 5, our version of the
sum-capture theorem does not contain the term 2q2

√

|A| |B|/2n and avoids the
condition 9n ≤ q ≤ 2n−1. This eliminates the terms 2q2p/22n and 4p2

√
qp/22n

in our bad transcript analysis. The latter term can play an important role when
p is large.

6.1 Proof of the Sharpened Sum-Capture Theorem

For a subset Z of {0, 1}n×{0, 1}n and an invertible linear map Γ of the F2-vector
space {0, 1}n, we define the quantity

ΦΓ (Z) = max
α∈{0,1}n

α�=0

∣

∣

∣

∑

(x,y)∈Z

(−1)〈α,x〉⊕〈α,Γ (y)〉
∣

∣

∣ .

In the expression above, 〈α, x〉 = ⊕n
i=1αixi denotes the standard dot product

between bitstrings of length n. The following lemma was proven by Chen et al.
[12], but in the statement of their result they replaced the smaller quantity
ΦΓ (Z) by the quantity

Φ(Z) = max
α,β∈{0,1}n

α,β �=0

∣

∣

∣

∑

(x,y)∈Z

(−1)〈α,x〉⊕〈β,y〉
∣

∣

∣ ≥ ΦΓ (Z) .

However, their proof carries over essentially completely.
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Lemma 4 (Chen et al. [12]). Let Γ be an automorphism of the F2-vector space
{0, 1}n. For all sets Z ⊆ {0, 1}n × {0, 1}n and A,B ⊆ {0, 1}n, define

μ(Z,A,B) = |{((u, v), a, b) ∈ Z × A × B : u ⊕ a = Γ (v ⊕ b)}| .

Then it holds that

μ(Z,A,B) ≤ |Z| |A| |B|
2n

+ ΦΓ (Z)
√

|A| |B| .

In order to obtain the simplified sum-capture theorem, it suffices to compute
a tail bound for the quantity ΦΓ (Z). Our improvement over the result of Chen
et al. is enabled by the following theorem of Hoeffding [22], which is stated for
the special case of zero-mean uniformly bounded populations below.

Theorem 6 (Hoeffding [22]). If x1, x2, . . . , xq is a random sample without
replacement from a finite population (multiset) {{c1, c2, . . . , cN}} such that a ≤
ci ≤ b for all i = 1, . . . , N and

∑N
i=1 ci = 0, then for all δ > 0, it holds that

Pr

[

q
∑

i=1

xi ≥ √
qδ

]

≤ exp
(

−2δ2

(b − a)2

)

.

Theorem 6 is precisely the same bound as the classical Hoeffding inequality
for sampling with replacement [22, Theorem 2]. It is not surprising that the same
result should be true for sampling without replacement, since the latter tends to
decrease variability. To prove Theorem 6, Hoeffding first showed that the average
of any continuous convex function of

∑q
i=1 xi is less than the same function of

an equivalent sum involving random variables sampled with replacement. The
result then follows by applying this argument for the exponential function (which
is clearly convex) and by using Markov’s inequality.

Lemma 5. Let π
$←− Perm(n) and let D be some probabilistic algorithm making

exactly q distinct two-sided adaptive queries to π. Let Z = {(u1, v1), . . . , (uq, vq)}
be the transcript of the interaction of D with π, which consists of q ≥ 1 pairs
such that vi = π(ui) or ui = π(vi). For any real number c > 0, the tail of ΦΓ (Z)
can be bounded as

Pr[ΦΓ (Z) ≥ 2
√

3cq] ≤ 4
22c−n

.

Proof. By swapping inputs and outputs where necessary for i = 1, . . . , q, there
exist pairs (xi, yi) such that yi = π(xi) and

ΦΓ (Z) = max
α∈{0,1}n

α�=0

∣

∣

∣

q
∑

i=1

(−1)〈α,xi〉⊕〈α,Γ (yi)〉
∣

∣

∣ .

For any α �= 0 the values zi = 〈α, Γ (yi)〉 with i = 1, . . . , q are random samples
without replacement from a population consisting of 2n−1 values 0 and 2n−1 values
1. Indeed, any nonzero linear combination of the output bits of a uniform random



256 T. Beyne and Y. L. Chen

permutation is a uniform random balanced Boolean function and no queries to π
can be repeated. Furthermore, due to the fact that π is a uniform random permu-
tation, z1, . . . , zq are independent of x1, . . . , xq. Hence, consider the sum

Sα =
q
∑

i=1

(−1)〈α,xi〉 (−1)zi .

Note that Sα is a symmetric random variable and E[Sα] = 0. Applying the
union bound1 and Theorem 6 to the terms with positive and negative coefficients
separately gives the tail bound

Pr
[

|Sα| ≥ δ
√

q | x1, . . . , xq

]

≤ 4 e−δ2/8 .

The law of total probability then directly yields the upper bound Pr
[

|Sα| ≥
δ
√

q
]

≤ 4 e−δ2/8. By the union bound,

Pr [ΦΓ (Z) ≥ δ
√

q] = Pr
[

max
α�=0

|Sα| ≥ δ
√

q
]

≤ 2n+2 e−δ2/8 .

Let δ = 2
√

3c > 4
√

ln 2c for c > 0, then

Pr [ΦΓ (Z) ≥ 2
√

3cq] ≤ 2n+2 e−2 ln 2c

=
4

22c−n
.

This concludes the proof. �


6.2 Proof of Theorem 3

In this section we prove Theorem 3. Let K
$←− {0, 1}n and πI , π1, π2

$←− Perm(n).
Consider any computationally unbounded and deterministic distinguisher D with
access to the oracles (EMIP2±

K [π1, π2], π±
1 , π±

2 ) in the real world and (π±
I , π±

1 , π±
2 )

in the ideal world.
The distinguisher makes q construction queries to EMIP2±

K [π1, π2] or π±
I , and

these are summarized in a transcript of the form τ0 = {(M1, C1), . . . , (Mq, Cq)}.
It also makes p primitive queries to π±

1 , and p primitive queries to π±
2 , these

are respectively summarized in the transcript τ1 = {(u1, v1), . . . , (up, vp)} and
τ2 = {(x1, y1), . . . , (xp, yp)}. Without loss of generality, it can be assumed that
the distinguisher does not make duplicate construction or primitive queries.

After D’s interaction with the oracles, but before it outputs its decision, we
disclose the key K to the distinguisher. In the real world, this is the key used in
the construction. In the ideal world, K is a dummy key that is drawn uniformly
at random. The complete view is denoted by τ = (τ0, τ1, τ2,K).

Bad Events. We say that τ ∈ Tbad if and only if there exist a construction
query (Mj , Cj) ∈ τ0 and primitive queries (u, v) ∈ τ1 and (x, y) ∈ τ2 such that
one of the following conditions holds:
1 In the form Pr[X + Y ≥ t] ≤ Pr[X ≥ t/2] + Pr[Y ≥ t/2].
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bad1 : Mj ⊕ u = K and Cj ⊕ y = γ2(K) , (18)
bad2 : Mj ⊕ u = K and v ⊕ x = γ1(K) , (19)
bad3 : Cj ⊕ y = γ2(K) and v ⊕ x = γ1(K) . (20)

Any attainable transcript τ for which τ /∈ Tbad will be called a good transcript.

Probability of Bad Events in the Ideal World. We want to bound the
probability Pr[XP ∈ Tbad] that an ideal world transcript τ satisfies either of
(18)-(20). Therefore, the probability that XP ∈ Tbad is given by

Pr[XP ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] .

Throughout the proof, let U = {u | (u, v) ∈ τ1}, V = {v | (u, v) ∈ τ1}, X =
{x | (x, y) ∈ τ2} and Y = {y | (x, y) ∈ τ2}. In addition, denote

Ω1 =
∣

∣

{(

j, (u, v), (x, y)
)

| Mj ⊕ u = γ−1
2 (Cj ⊕ y)

}∣

∣ ,

Ω2 =
∣

∣

{(

j, (u, v), (x, y)
)

| Mj ⊕ u = γ−1
1 (v ⊕ x)

}∣

∣ ,

Ω3 =
∣

∣

{(

j, (u, v), (x, y)
)

| Cj ⊕ y = γ2 ◦ γ−1
1 (v ⊕ x)

}∣

∣ .

In the ideal world, Ω1, Ω2, and Ω3 only depend on π1, π2 and π, and not on
the key K

$←− {0, 1}n, which is drawn uniformly at random at the end of the
interaction. For any i ∈ {1, 2, 3} and λi > 0 a real constant, we have

Pr[badi] ≤ Pr[Ωi ≥ λi] +
λi

2n
.

To upper bound the first term above, the sharpened sum-capture theorem (The-
orem 5) will be used. This application of the sum-capture theorem will also rely
on the linearity of γ1 and γ2.

1 st Bad Event. The first bad event can be rewritten as Mj ⊕ u = γ−1
2 (Cj) ⊕

γ−1
2 (y) = K. To apply the sum-capture lemma, define

Z1 = {Mj ⊕ γ−1
2 (Cj) | (Mj , Cj) ∈ τ0} ,

A1 = U ,

B1 = {γ−1
2 (y) | y ∈ Y } .

Since γ−1
2 is a permutation, Lemma 4 can be applied with Ω1 = μ(Z1, A1, B1),

Pr
[

μ(Z1, A1, B1) ≥ qp2

2n
+ 2

√

3cqp2
]

≤ 4
22c−n

.

We thus set λ1 = qp2/2n + 2
√

3cqp2 and obtain

Pr[bad1] ≤ 4
22c−n

+
qp2

22n
+

2
√

3cqp2

2n
.
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2nd Bad Event. For i = 2, we rewrite bad2 as Mj ⊕ u = γ−1
1 (v) ⊕ γ−1

1 (x) = K,
and we define

Z2 = {u ⊕ γ−1
1 (v) | (u, v) ∈ τ1} ,

A2 = {Mj | (Mj , Cj) ∈ τ0} ,

B2 = {γ−1
1 (x) | x ∈ X} .

Then, since γ−1
1 is a permutation, we can apply Lemma 4 with Ω2 = μ(Z2, A2, B2),

Pr
[

μ(Z2, A2, B2) ≥ qp2

2n
+ 2

√

3cqp2
]

≤ 4
22c−n

.

We thus set λ2 = qp2/2n + 2
√

3cqp2 and obtain

Pr[bad2] ≤ 4
2c−2n

+
qp2

22n
+

2
√

3cqp2

2n
.

3 rd Bad Event. For i = 3, we rewrite bad3 as Cj ⊕y = γ2◦γ−1
1 (v)⊕γ2◦γ−1

1 (x) =
γ2(K) and we define

Z3 = {γ2 ◦ γ−1
1 (x) ⊕ y | (x, y) ∈ τ2} ,

A3 = {Cj | (Mj , Cj) ∈ τ1} ,

B3 = {γ2 ◦ γ−1
1 (v) | v ∈ V } .

Then, since γ2 ◦ γ−1
1 is a permutation, we can apply Lemma 4 with Ω3 =

μ(Z3, A3, B3),

Pr
[

μ(Z3, A3, B3) ≥ qp2

2n
+ 2

√

3cqp2
]

≤ 4
22c−n

.

We thus set λ3 = qp2/2n +
√

5nqp2 and obtain

Pr[bad3] ≤ 4
22c−n

+
qp2

22n
+

2
√

3cqp2

2n
.

Conclusion. Summing the probabilities of the three bad events, we get

Pr[XP ∈ Tbad] ≤ 12
22c−n

+
3qp2

22n
+

6
√

3cqp2

2n
. (21)

Probability Ratio for Good Transcripts. Since our bad events are the
same as in the analysis of Chen et al. [12], their analysis of the good transcript
ratio can be recycled. In particular, their Lemma 8 (i) implies that for any good
transcript τ and any integers q and p such that 2q + 2p ≤ 2n,

Pr[XO = τ ]
Pr[XP ∈ τ ]

≥ 1 − 4qp2

22n
.

However, the above bound is trivial whenever p ≥ 2n−1/
√

q. Hence, 2q + 2p ≤
2n/

√
q + 2q and for n ≥ 4 this is lower than 2n whenever q > 1 and q < 2n−1.

Furthermore, by [12, Lemma 8 (ii)], the result also holds for q = 2n.
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Conclusion. Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advsprp
EMIP2(D) ≤ 12

22c−n
+

3qp2

22n
+

6
√

3cqp2

2n
+

4qp2

22n
.

7 Construction Based on an Ideal Cipher

We now turn to our second reflection cipher construction, which is illustrated in
Fig. 5 below. Theorem 7 will show that, for an n-bit ideal block cipher with a
k-bit key, this construction achieves a ˜O(p

√
q/2n+k) security bound. The proof

of this result is based on a reduction to our sharpened security bound for the
two-round Even-Mansour cipher from Theorem 3.

K

E

L K

R

σ(K)

E−1

L + α σ(K)

Fig. 5. The KARC-IC construction uses two secret keys K and L, and a block cipher
E. The reflector R is a fixed linear involution and σ is an invertible linear map. To
obtain a pure reflection property with respect to both keys, σ should be an involution.

Although the construction in Fig. 5 is based on the more powerful ideal
cipher model, it is of considerable practical interest. Indeed, block-ciphers such
as Prince [8], Mantis [5] and Qarma [1] are designed to support a 64 bit block
size with 128 bit keys (internally split into two 64 bit keys), and claim a security
tradeoff of pq = 2128.

In the case of Prince and Mantis, this is achieved by instantiating the
XEX-construction [23] with an ideal reflection cipher. Their construction is
shown in Fig. 2 (in the introduction). Importantly, although this achieves the
desired tradeoff, the construction of the ideal reflection cipher E∗ in Prince and
Mantis closely follows our proposed construction: the only difference is the pres-
ence of key-additions in the middle layer of our construction. Hence, by minimally
modifying Prince and Mantis, our results show that an improved security
tradeoff of pq2 = 2256 can be achieved. However, it should be stressed that our
results only establish security against generic attacks. Careful analysis by crypt-
analysts remains necessary, even for minor changes such as the one proposed by
our construction. For instance, in the case of Mantis, reduced-round nonlinear
invariant attacks have been discovered [6]. The presence of key additions in the
middle could provide additional flexibility to propagate the invariant property
over more rounds. We believe a detailed analysis of this case would make for
interesting future work.
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The design of Qarma follows a very similar approach to our construction.
In fact, Avanzi [1] remarks that the true security of the Qarma construction is
likely to exceed the claimed pq = 2n trade-off. Our results corroborate this to
some extent. However, our Theorem 7 is not directly applicable because Qarma
uses a nonlinear reflector R between the middle key-additions. Analyzing the
security of such construction would be possible if the sum-capture theorem could
be extended to allow for nonlinearity. This is an interesting problem by itself.

Before giving Theorem 7 and its proof, we formalize our second construction.
For any positive integers n and k, let E be a block cipher with key L ∈ {0, 1}k, and
let K ∈ {0, 1}n be a second construction key. Furthermore let R be a linear invo-
lution and σ an invertible linear map on {0, 1}n such that id +R ◦ σ is invertible.
The generic construction KARC-IC2: {0, 1}n+k × {0, 1}n → {0, 1}n is defined by

KARC-IC2K,L[E](M) = E−1
L+α(R(EL(M ⊕ K) ⊕ K) ⊕ σ(K)) ⊕ σ(K) , (22)

with α ∈ {0, 1}k a nonzero constant. The condition that id+R◦σ is invertible is
an important one, since Theorem 3 requires that γ2 is invertible. Note that this
condition is equivalent to the requirement that R ◦ σ does not have any fixed
points. The security of KARC-IC2 is given in Theorem 7, which can be proven
by a reduction to the security of EMIP2.

Theorem 7. For any positive integers n ≥ 2 and k, let K
$←− {0, 1}n and

L
$←− {0, 1}k be uniform random keys and E an ideal cipher. If D is any dis-

tinguisher for KARC-IC2K,L[E] making at most q > 1 construction queries, and
at most p primitive queries to E±, then for all q < 2n−1 or q = 2n it holds that:

Advsprp
KARC-IC2(D) ≤ 12

2n+k
+ 9

√
2n + k

√
q p

2n+k
.

Proof. Enumerate all � = 2k possible ideal cipher keys as L1, . . . , L�. Suppose
the distinguisher D makes p1,i queries to E±1 with key Li. Likewise, let p2,i

denote the number of queries to E±1 with key Li ⊕ α. For convenience, let
pi = max{p1,i, p2,i} be the maximum number of queries made for either Li or
Li ⊕ α. Since the total number of queries is equal to p, we have

�
∑

i=1

pi ≤
�

∑

i=1

p1,i + p2,i = 2p .

It follows from the law of total probability and the triangle inequality that

Advsprp
KARC-IC2(D) ≤

�
∑

i=1

1
�
Advsprp

KARC-IC2K,Li
[E](D) .

Let Di be a distinguisher running D to play the indistinguishability game against
the EMIP2K [π1, π2] construction with π1 = ELi

and π2 = E−1
Li⊕α using p1,i

primitive queries to π1, p2,i primitive queries to π2 and q construction queries.
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In order to do this, Di simulates D’s queries to E whenever the key is different
from Li or Li ⊕ α. A standard hybrid argument then shows that

Advsprp
KARC-IC2K,Li

[E](D) ≤ Advsprp

EMIP2K [ELi
,E−1

Li+α]
(Di) .

Since Li �= Li ⊕ α, the permutations π1 and π2 are indeed independent and
uniform random. Hence, Theorem 3 (with c = n + k/2) yields the upper bound

Advsprp

EMIP2K1 [ELi
,E−1

Li+α]
(Di) ≤ 12

2n+k
+

7qp2i
22n

+ 6
√

3(n + k/2)
√

q pi

2n

≤ 12
2n+k

+ (6
√

3(n + k/2) +
√

7)
√

q pi

2n

≤ 12
2n+k

+ 9
√

2n + k

√
q pi

2n
,

where the second inequality follows from x2 ≤ x for all x ∈ [0, 1]. Hence, it
follows that

Advsprp
KARC-IC2(D) ≤ 12

2n+k
+ 9

√
2n + k

√
q p

2n+k
.

This concludes the proof. �


To apply Theorem 7 to Prince, it remains to show that the linear map R◦σ does
not have any fixed points when R is the linear reflector and σ the whitening-key
orthomorphism2 of Prince. Specifically, σ : {0, 1}n → {0, 1}n is defined by

σ(x) = (x ≫ 1) ⊕ (x � 63) . (23)

One can verify that rank(id + R ◦ σ) = 64. That is, R ◦ σ does not have any
fixed points.

Observe that the σ defined by (23) is not an involution. Hence, the Prince
decryption algorithm is not the exactly same as the encryption algorithm: K and
σ(K) must also be swapped. Our construction preserves the same property, but
we note that it is also possible to choose an involution σ such that R◦σ does not
have any fixed points. In this case, decryption and encryption are purely related
by the coupling map (K,L) �→ (σ(K), L ⊕ α).

However, since the block cipher E used in Prince starts by xoring L to the
state, using an involution σ has the potential downside that (K + L, σ(K) + L) is
no longer jointly uniform for uniform random keys K and L. Indeed, for any linear
involution σ, it holds that rank(id+σ) ≤ n/2. This may facilitate partial key guess-
ing. Again, this illustrates the importance of performing additional cryptanalysis
when instantiating our (or, more generally, any) generic construction.
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2 An orthomorphism such as σ is a linear map such that both σ and σ⊕id are invertible.
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Abstract. We introduce a new security notion that lies right in between
pseudorandom permutations (PRPs) and strong pseudorandom permu-
tations (SPRPs). We call this new security notion and any (tweakable)
cipher that satisfies it a rugged pseudorandom permutation (RPRP).
Rugged pseudorandom permutations lend themselves to some interest-
ing applications, have practical benefits, and lead to novel cryptographic
constructions. Our focus is on variable-length tweakable RPRPs, and
analogous to the encode-then-encipher paradigm of Bellare and Rog-
away, we can generically transform any such cipher into different AEAD
schemes with varying security properties. However, the benefit of RPRPs
is that they can be constructed more efficiently as they are weaker prim-
itives than SPRPs (the notion traditionally required by the encode-then-
encipher paradigm). We can construct RPRPs using only two layers of
processing, whereas SPRPs typically require three layers of processing
over the input data. We also identify a new transformation that yields
RUP-secure AEAD schemes with more compact ciphertexts than previ-
ously known. Further extending this approach, we arrive at a new gener-
alized notion of authenticated encryption and a matching construction,
which we refer to as nonce-set AEAD. Nonce-set AEAD is particularly
well-suited in the context of secure channels, like QUIC and DTLS, that
operate over unreliable transports and employ a window mechanism at
the receiver’s end of the channel. We conclude by presenting a generic
construction for transforming a nonce-set AEAD scheme into an order-
resilient secure channel. Our channel construction sheds new light on
order-resilient channels and additionally leads to more compact cipher-
texts when instantiated from RPRPs.

Keywords: Rugged Pseudorandom Permutations · UIV ·
Authenticate with Nonce · QUIC · DTLS · Tweakable Ciphers

1 Introduction

The modern view of symmetric encryption follows a nonce-based syntax. At
first, this may seem like a superficial detail but it has important ramifications
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both practically and theoretically. When first conceived by Rogaway in [31],
its primary motivation was to position the security of symmetric encryption on
more solid ground by lifting its reliance on good sources of randomness. It thus
replaced an initialization vector, required to be uniformly random, for a nonce
that instead is only required to never repeat. Besides significantly reducing sus-
ceptibility to implementation errors, it added versatility by elegantly aligning
the two main flavours of symmetric encryption—randomized and stateful—into
a single unified syntax from which they can easily be realized. The resistance to
misuse was later fortified in the strengthened security notion by Rogaway and
Shrimpton in [32]. On the more theoretical side, this seemingly minor syntacti-
cal change has major consequences on how symmetric encryption and message
authentication compose together to form authenticated encryption. In contrast
to the traditional view that only encrypt-then-MAC results in a generically
secure composition [7], all three composition paradigms become secure under
the nonce-based syntax and the mild requirement of tidiness [26].

Secure Channels. A major application of nonce-based AEAD is to realize
secure channels in protocols like TLS, SSH, and QUIC. Here, a number of options
arise on how to handle the nonce, initialize it, update it, and communicate it
to the other party. Typically, secure channels need to protect against the replay
and reordering of ciphertexts, which in turn necessitates the receiver to be state-
ful [6]. Accordingly, a common approach is to initialize the nonce to a common
value and each party increments it (independently) upon every encryption and
decryption. This works well as long as the transport protocol, upon which the
secure channel is realized, is reliable and order-preserving, meaning that cipher-
texts are delivered in the same order as they were sent and without being lost.
TLS and SSH operate over TCP, which is reliable and order-preserving, but at
the same time introduces issues such as head-of-line blocking1 which degrades
performance. This motivated the emergence of protocols like DTLS and QUIC,
which operate over UDP, thereby avoiding head-of-line blocking at the expense
of having to deal with out-of-order delivery and dropped ciphertexts.

Operating secure channels over UDP means that the receiver cannot predict
the nonce as ciphertexts may arrive out of order. Accordingly, the nonce has to
be communicated together with each ciphertext. Moreover, if the nonce is set
to be a message number, the receiver can use it to recover the correct ordering
of the messages. In fact, because in nonce-based AEAD the nonce is implicitly
authenticated, the above approach works even against adversarial reordering
strategies. Indeed, this is roughly the approach adopted in DTLS 1.3 and QUIC.
Thus, while the nonce was originally only intended to diversify ciphertexts, in
these protocols it is ‘overloaded’ to additionally serve a secondary purpose for
recovering the correct message ordering. This is yet another example of the
beauty and versatility of a well-crafted definition like nonce-based AEAD. How-
ever, attaching the nonce to the ciphertext in the clear exposes metadata which
can undermine privacy [13] and possibly confidentiality [8]. Accordingly QUIC
1 https://en.wikipedia.org/wiki/Head-of-line blocking.

https://en.wikipedia.org/wiki/Head-of-line_blocking
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and DTLS 1.3 separately encrypt the nonce before attaching it to the ciphertext.
In turn this has led to the notion of nonce-hiding AEAD [8], an idea that can
be traced back to Bernstein [10].

Encode-then-Encipher. A classical technique for constructing an authenti-
cated encryption scheme is the encode-then-encipher paradigm by Bellare and
Rogaway [9]. The technique builds an authenticated encryption scheme from a
variable-input-length cipher by properly encoding the message with randomness
and redundancy in order to obtain confidentiality and integrity. A more mod-
ern take on the encode-then-encipher paradigm was put forth by Shrimpton and
Terashima in [34] where it was extended to obtain nonce-based authenticated
encryption with associated data (AEAD) from tweakable variable-input-length
ciphers. A noteworthy feature of the encode-then-encipher paradigm is that it
yields AEAD schemes that satisfy the strongest possible security—misuse resis-
tance [32] and release-of-unverified plaintext (RUP) security [1,3,21] simultane-
ously. Despite their strong security, such schemes are scarce in real-world systems.
In all likelihood, this is due to tweakable ciphers generally being heavy primi-
tives whose performance lags behind that of more efficient AEAD schemes. In this
respect, one exception is AEZ [21] which offers competitive speeds although requir-
ing three layers of processing. However its security relies on a non-standard heuris-
tic analysis and, in addition, it is also a significantly complex scheme to implement.

1.1 Contribution

Rugged Pseudorandom Permutations. Our first contribution is a novel
security definition for tweakable ciphers that sits between a pseudorandom
permutation and a strong pseudorandom permutation. The security definition
assumes a cipher defined over a ‘split’ domain, meaning that its inputs and out-
puts will typically consist of a pair of strings, possibly of different sizes, rather
than a single string. A salient characteristic of our security definition is that it
imposes stronger security requirements on the enciphering algorithm than on the
deciphering algorithm. Intuitively, we will still require an adversary to distinguish
between the cipher and a random permutation. However, while the adversary
will have full access to the enciphering algorithm its access to the decipher-
ing algorithm will be restricted, thereby giving rise to the asymmetric security
between the two algorithms. Due to the uneven domain and the asymmetry in
the cipher’s security we choose to call such a cipher a rugged pseudorandom
permutation (RPRP).

The benefit of this security definition is that it strikes a new balance in which
security is sufficiently weakened to allow for more efficient cipher constructions
while still being strong enough to be of use in practice. Our RPRP construction
is inspired by the PIV construction by Terashima and Shrimpton [34] and the
GCM-RUP construction by Ashur, Dunkelman, and Luykx [2]. Our construction,
Unilaterally-Protected IV (UIV), is directly obtained from the PIV construction
by shaving off its last layer. GCM-RUP is similarly derived from PIV by shaving
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off the first layer and then augmenting it to obtain a nonce-based AEAD scheme
that is RUP secure. Like GCM-RUP, UIV can be instantiated from GCM compo-
nents and benefit from GCM’s now-ubiquitous hardware support that enables its
superior performance. The benefit of drawing the boundary around UIV is that
firstly it is a length-preserving cipher which is advantageous in settings such
as disk encryption. Secondly, it is a more versatile primitive which, as we shall
see, can be easily augmented to yield different AEAD schemes. Indeed, one spe-
cific transformation recovers GCM-RUP, but our general treatment allows us to
uncover several new AEAD schemes with differing properties and improvements.

Constructing AEAD from RPRPs. We revisit the encode-then-encipher
paradigm in the context of RPRPs. The asymmetry in the RPRP security def-
inition prompts us to consider two variations of this paradigm: Encode-then-
Encipher (EtE) and Encode-then-Decipher (EtD), where the latter uses the deci-
phering algorithm to encrypt and the enciphering algorithm to decrypt. We show
that EtE yields misuse-resistant AEAD and that EtD yields RUP-secure AEAD.
A notable instantiation of the encode-then-encipher paradigm is to ‘overload’ the
use of the nonce to additionally serve as the redundancy in the encoding that
provides integrity. This approach appears to have been missed in prior works. For
instance, GCM-RUP simultaneously encrypts the nonce and adds redundancy
in the message, resulting in an unnecessary expansion in the ciphertext. On the
other hand, when EtD is instantiated this way with UIV we obtain a RUP-secure
scheme with more compact ciphertexts than GCM-RUP.

Nonce-Set AEAD and Its Construction from RPRPs. Taking this idea of
overloading the nonce for integrity a step further, we arrive at a new AEAD con-
struction with novel functionality. This functionality is motivated by the use case
of AEAD in secure channels like QUIC and DTLS. We formalize this functional-
ity as a new primitive that we call nonce-set AEAD, which extends and general-
izes the standard definition of nonce-based AEAD. Nonce-set AEAD alters the
decryption algorithm to additionally take a set of nonces instead of a single one.
Intuitively decryption will succeed if the correct nonce is among this set. More-
over, the decryption algorithm will return the nonce in the supplied set that was
deemed correct as part of its output. We show how to generically construct such a
scheme from an RPRP through a construction we call Authenticate-with-Nonce
(AwN) and show that it even achieves misuse-resistance AEAD security. The AwN
construction requires a mechanism for representing nonce-sets compactly and
efficiently testing for membership in this set. Of course, since any SPRP is auto-
matically an RPRP, AwN can also be instantiated using other well-known SPRP
constructions.

Order-Resilient Secure Channels from Nonce-Set AEAD. In order-
resilient channels, the nonce is often overloaded to serve as a message num-
ber that can be used to recover the correct ordering of the decrypted messages.
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Nonce-set AEAD facilitates such an approach and can be plugged in directly
with the window mechanisms that are used in real-world protocols like QUIC
and DTLS. Such window mechanisms can be fairly complex and hard to under-
stand when presented as code. Moreover, they affect the security of the channel,
and as a result, analyzing the security of these channels can become rather
daunting at times. Our treatment based on nonce-set AEAD will help tame this
complexity. The other reason for introducing nonce-set AEAD is that it will
allow for more bandwidth-efficient constructions from RPRPs by additionally
overloading the nonce to provide integrity in a way that is compatible with the
window mechanisms in the channel.

Recent work by Fischlin, Günther, and Janson [18] introduces a formal frame-
work for analyzing the security of order-resilient secure channels like QUIC
and DTLS. Central to the framework is a support predicate that expresses the
expected behaviour of such channels. Many possibilities exist here in terms of
how much reordering should be tolerated, the specific window mechanism to use,
and how to handle replays, but the support predicate neatly captures these vari-
ations in their full generality. We build on the framework in [18] to show how to
generically transform any nonce-set AEAD scheme into a secure channel for any
support predicate that may be required. Besides having practical value, that
of offering order-resilient secure channels with more compact ciphertexts, our
construction is also instructive in that it decomposes the structure of complex
secure channels into a handful of much simpler and manageable components.
It should be noted that nonce-set AEAD can also be realized through other
constructions—such as the nonce-hiding schemes in [8]. As such, our approach
is very general and versatile.

1.2 Relation to Counter Galois Onion

This work stemmed out from other work, concurrent to this one, on the design
of Counter Galois Onion (CGO), a proposal for a new onion encryption scheme
for Tor [15]. Under the hood, CGO employs an extended Rugged PRP to pro-
cess each layer of encryption. In particular, the notion of a Rugged PRP was
developed in both works in parallel and went through a number of iterations. It
was initially conceived as an abstraction to facilitate the security proof of CGO,
but we later realised that it had applications beyond onion encryption which
motivated the research in this paper.

2 Preliminaries

Notation. For any non-negative integer n ∈ N, {0, 1}n denotes the set of bit
strings of size n, {0, 1}∗ denotes the set of all finite binary strings, and {0, 1}≥n

denotes the set of all finite bit strings of size greater or equal to n. The empty
string is denoted by ε. For any string X, |X| denotes its length in bits. Then
for any non-negative integer n ≤ |X|, �X�n and �X�n denote respectively the
substrings of the leftmost and rightmost n bits of X, and X � n denotes the
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bit string of size |X| obtained by truncating its leftmost n bits and appending n
zeros to its right. For any two strings X and Y , of lengths |X| = n and |Y | = m,
where n < m, X ⊕Y denotes the operation of appending m−n zeros to the left
of X, and then XORing the expanded string X with Y . For any pair of strings
(X,Y ) we define their combined length |(X,Y )| as |X| + |Y | and we use 〈X,Y 〉
to denote an injective mapping from string pairs into single strings.

For any set S, we use |S| to denote its cardinality, P(S) to denote its power
set, i.e., the set of all its subsets, and Perm[S] to denote the set of all permuta-
tions over the elements of S. The empty set is denoted by ∅. For any two sets
T and X , IC(T ,X ) denotes the set of all ciphers over the domain X and key
space T , Func(X ,∞) denotes the set of all functions mapping elements in X to
elements in {0, 1}∞, and ±Func(T ,X ) denotes the set of all functions mapping
elements in {+,−} × T × X to elements in X . In our pseudocode we use lists as
an abstract data type. We use [ ] to denote the empty list, and for any two lists
L1 and L2, we use L1‖L2 to denote the list obtained by appending L2 to L1.
Lists are indexed starting at position zero, and L1[i] denotes the element in L1

at position i. For a string X and a list L, the function index(X,L) returns the
smallest index in L in which X is located, if X is contained in L, and returns ⊥
otherwise.

For events E and F , we use ¬E to denote the complement event of E, Pr [E]
to denote the probability of E, and Pr [E |F ] to denote the probability of E
conditioned on F . Finally, Pr [P : E] denotes the probability of E occuring after
executing some random process P .

Tweakable Ciphers. A tweakable cipher is an algorithm

˜EE : K × T × X → X

such that for any (K,T ) ∈ K × T the mapping ˜EE(K,T, ·) identifies a permu-
tation over the elements in X . We refer to K as the key space, T as the tweak
space, and X as the domain. We use ˜EEK(T, ·) as shorthand for ˜EE(K,T, ·) and
˜EE

−1

K (T, ·) to denote the corresponding inverse permutation. A tweakable cipher
is required to be length preserving, meaning that for all (K,T,X) ∈ K × T × X
it holds that |˜EEK(T,X)| = |X|. We also refer to ˜EE and ˜EE

−1
as the enci-

phering and deciphering algorithms of the tweakable cipher. In the special case
where X = {0, 1}n, for some positive integer n, we call the cipher a tweak-
able blockcipher and denote it by ˜E. Thus we generally reserve ˜EE to denote a
variable-input-length tweakable cipher, which may itself be constructed from an
underlying tweakable blockcipher ˜E.

Security. The typical security requirement for tweakable ciphers is the well-known
(SPRP) notion. The formal definition can be found in the full version [16].

Nonce-Based AEAD. A nonce-based encryption scheme SE = (Enc,Dec) is
a pair of algorithms to which we associate a key space K, a nonce space N , a
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VerK(N, H, C)

M ← DecK(N, H, C)

if M ∈ M
M ← �

return M

$(

$

N, H, M)

C ← {0, 1}clen(|N|,|H|,|M|)

return C

⊥(N, H, C)

return ⊥

Fig. 1. Oracles used to define nAE, MRAE, and RUPAE security.

header (associated data) space H, a message space M and a ciphertext space
C, all of which are subsets of {0, 1}∗. The encryption algorithm Enc and the
decryption algorithm Dec are both deterministic and their syntax is given by

Enc : K × N × H × M → C and Dec : K × N × H × C → M ∪ {⊥} .

The special symbol ⊥ serves to indicate that the decryption algorithm deemed
its input to be invalid. A nonce-based encryption scheme is required to be correct
and tidy [26]. Correctness requires that for all (K,N,H,M) ∈ K × N × H × M
it must hold that

DecK(N,H,EncK(N,H,M)) = M.

Tidiness, on the other hand, requires that for any (K,N,H,C) ∈ K×N ×H×C
if DecK(N,H,C) �= ⊥ then EncK(N,H,DecK(N,H,C)) = C.

We further require that encryption be length-regular, meaning that the size of
ciphertexts depend only on the sizes of N,H and M . Accordingly, we associate
to every nonce-based AEAD scheme a ciphertext length function clen, mapping
the triple (|N | , |H| , |M |) to the ciphertext length in bits.

Security. A nonce-based encryption scheme is said to be AEAD if it additionally
satisfies (nAE) security. We use a variant of nAE from [5] which is equivalent to
the usual formulation. Namely we require that no efficient adversary be able to
distinguish between oracle access to the real encryption algorithm EncK(·, ·, ·)
and the real verification algorithm VerK(·, ·, ·) (defined in Fig. 1) from their corre-
sponding idealisations $(·, ·, ·) and ⊥(·, ·, ·). Throughout this distinguishing game,
the adversary is required to be nonce-respecting, meaning that it never repeats
nonce values across encryption queries, and must not forward queries from the
encryption oracle to the decryption oracle, meaning that it cannot make a query
(N,H,C) if it previously queried (N,H,M) and got C in return.

Definition 1 (nAE Advantage). Let SE = (Enc,Dec) be a nonce-based encryp-
tion scheme and let A be a nonce-respecting adversary that does not make for-
warding queries. Then the nAE advantage of A with respect to SE is defined
as

Advnae
SE (A) =

∣

∣

∣Pr
[

K ←$K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]

−Pr
[

A$(·,·,·),⊥(·,·,·) ⇒ 1
]∣

∣

∣ .
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The stronger notion of misuse-resistant AEAD MRAE is defined analogously
by replacing the requirement on the adversary that it be nonce-respecting with
the requirement that it never repeat an encryption query.

Definition 2 (MRAE Advantage). Let SE = (Enc,Dec) be a nonce-based
encryption scheme and let A be an adversary that never repeats encryption
queries and does not make forwarding queries. Then the MRAE advantage of
A with respect to SE is defined as

Advmrae
SE (A) =

∣

∣

∣Pr
[

K ←$K : AEncK(·,·,·),VerK(·,·,·) ⇒ 1
]

−Pr
[

A$(·,·,·),⊥(·,·,·) ⇒ 1
]∣

∣

∣ .

Release of Unverified Plaintext. In practice, in the event of a decryption fail-
ure, the decryption algorithm may leak more information than what is captured
by the standard security notions. Prior works proposed strengthened notions
which modelled such leakage as distinguishable decryption failures [11], release
of unverified plaintexts (RUP) [1], and robust authenticated encryption [21].
Then in [3] Barwell et al. introduced subtle authenticated encryption to compare
and unify these three security models. Here we will utilise the RUPAE security
definition as defined by Barwell et al. through their subtle AE framework.

Subtle AE (c.f. [3]). A subtle encryption scheme SSE = (Enc,Dec, Λ) is a nonce-
based encryption scheme (Enc,Dec) augmented with a (deterministic) decryption
leakage function Λ intended to model the protocol leakage from decryption fail-
ures. The leakage function takes the same inputs as the decryption algorithm
but instead returns either a leakage string or the special symbol �. The symbol
� indicates that decryption was successful, and thus for any subtle encryption
scheme it must hold that for any K,N,H and C exactly one of the following be
true:

⊥ ← DecK(N,H,C) or � ← ΛK(N,H,C).

That is, for any input either decryption returns ⊥ and a leakage string is returned
by Λ, or decryption succeeds thereby returning the full plaintext but Λ returns
no leakage string. In practice the leakage depends on how the scheme is imple-
mented, how it is integrated into the larger system, and the scheme itself. Thus
a subtle encryption scheme aims to model any potential leakage, via Λ, in order
to show that the underlying scheme remains secure even in the presence of this
additional leakage. This is formalised through the following security notion.

Security. In rough terms, RUPAE security can be understood as extending nAE
security by additionally giving the adversary oracle access to the decryption
leakage function. For a subtle encryption scheme to be RUPAE secure we then
require the existence of a corresponding leakage simulator S which can simu-
late this leakage in the ideal world for any adversary. Intuitively, if the leakage
function can be simulated without the secret key it is of no use to the adversary.
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Definition 3 (RUPAE Advantage). Let SSE = (Enc,Dec, Λ) be a subtle AE
encryption scheme and let A be a nonce-respecting adversary that does not for-
ward encryption queries to the decryption and leakage oracles. Then the advan-
tage of A with respect to SSE and the leakage simulator S is defined as

Advrupae
SSE (A,S) =

∣

∣

∣Pr
[

K ←$K : AEncK(·,·,·),DecK(·,·,·),ΛK(·,·,·) ⇒ 1
]

−Pr
[

A$(·,·,·),⊥(·,·,·),S(·,·,·) ⇒ 1
]∣

∣

∣ .

Nonce-Hiding AEAD. In the full version of this paper [16] we cover the
syntax of nonce-hiding AEAD and how the security definitions covered so far
adapt to that setting.

Encodings and Redundancy Functions. In the encode-then-encipher para-
digm one typically requires some encoding scheme that maps messages to some
sparse set of strings [9,34]. In our case, we will additionally require the ability to
“localize” the redundancy within the encoding. Accordingly we will instead use a
redundancy function for generating the redundancy which will then be joined to
the message to form the encoded input to the tweakable cipher. More specifically,
this redundancy function will satisfy one of the following two syntaxes:

Func2 : N × H → X
or

Func3 : N × H × M → X .

Furthermore, we will require Func3 to be collision resistant over inputs with
distinct nonces. We say that Func3 is (δ, t)-collision resistant if for all efficient
adversaries A running in time t it holds that:

Pr [((N,H,M), (N ′,H ′,M ′)) ← A :
Func3(N,H,M) = Func3(N ′,H ′,M ′) ∧ N �= N ′] ≤ δ.

3 Rugged Pseudorandom Permutations

We now introduce a new security notion for tweakable ciphers that provides inter-
mediate security. We call this notion, and by extension, any tweakable cipher that
satisfies it a rugged pseudorandom permutation (RPRP). A distinctive charac-
teristic of RPRPs is that they are tweakable ciphers over a split domain XL×XR,
where we refer to XL as the left set and XR as the right set. Note that the split
domain is an implicit requirement of the security definition which would not
make sense otherwise. We will typically let XL = {0, 1}n and XR = {0, 1}≥m

for some non-negative integers n and m, but other choices are possible. Fur-
themore, for ease of notation, we will simply write ˜EEK(T,XL,XR) instead of
˜EEK(T, (XL,XR)) and apply the same rule to ˜EE

−1
.
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For sufficiently large n, RPRP security sits right in between PRP security
and SPRP security. This is achieved by giving the adversary only partial access
to the decipher algorithm. This partial access is provided via two separate ora-
cles, a partial decipher oracle and a guess oracle. Each oracle limits access to the
decipher algorithm in a different way. The decipher oracle severely restricts the
set of values on which it can be queried. In contrast, the guess oracle imposes no
significant restrictions on the inputs, but it only returns a single bit of informa-
tion. The combined effect of these restrictions is to relax the extent to which the
decipher algorithm needs to be pseudorandom. As a result, there is an asymme-
try between the encipher and decipher algorithms in that the former is required
to be more pseudorandom than the latter. The term rugged in the name is meant
to reflect this asymmetry in security and the uneven split in the domain.

The full formal security definition is presented in the next subsection. As
we will show in later sections, this notion suffices to generically transform any
tweakable cipher that satisfies it into an AEAD scheme with strong security
properties. In Sects. 4 and 5.3 we present three such transformations. At the same
time, the notion is significantly weaker than strong pseudorandom permutations
as it allows for more efficient constructions. Strong pseudorandom permutations
typically require three layers of processing, where each layer consists of processing
the data through a block cipher or a universal hash, and both enciphering and
deciphering are two-pass algorithms. In contrast, the UIV construction which we
present in this section consists of two processing layers where enciphering is a
two-pass algorithm but deciphering requires only a single pass over the data as
the two layers can be processed in parallel. Admittedly some of the definitional
choices, particularly the restrictions imposed on the decipher oracle and the
introduction of the guess oracle, in the RPRP definition may seem arbitrary at
first. Part of the rationale behind these definitional choices is to require the bare
minimum from the tweakable cipher to make the generic transformations, shown
in Sects. 4 and 5.3, go through.

3.1 RPRP Security

Let ˜EE be a tweakable cipher over a split domain XL×XR with an associated key
space K and tweak space T . Then for any cipher ˜EE, RPRP security is defined
via the RPRP game shown in Fig. 2. Here the adversary is given access to either
the real tweakable cipher construction ˜EE or an ideal cipher ˜Π and its task is
to determine which of the two it is interacting with. It interacts with the cipher
through three oracles: encipher (En), decipher (De), and guess (Gu).

The En oracle provides full access to the encipher algorithm, whereas De
provides only partial access to the decipher algorithm. In De access is restricted
by checking YL for membership in the sets F and R and then suppressing the
output (via �) when this is the case. This check translates to two types of decipher
queries that the adversary cannot make. The first is a decipher query where the
left value was previously output by the encipher oracle. That is, if an encipher
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Game RPRPA,v
˜EE

K ← K
b ← {0, 1}
F , R, U ← ∅, ∅, ∅
˜Π ← IC(T , XL × XR)

b′ ← AEn,De,Gu

return b = b′

En(T, XL, XR)

if b = 0

(YL, YR) ← ˜Π(T, XL, XR)

else

(YL, YR) ← ˜EEK(T, XL, XR)

F ∪← {YL} ; U ∪← {(T, YL, YR)}
return (YL, YR)

De(T, YL, YR)

if YL ∈ F ∪ R
return

if b = 0

(XL, XR) ← ˜Π−1(T, YL, YR)

else

(XL, XR) ← ˜EE
−1

K (T, YL, YR)

R ∪← {YL}; U ∪← {(T, YL, YR)}
return (XL, XR)

Gu(T, YL, YR,V )

if ((T, YL, YR) ∈ U) ∨ (|V | > v)

return

if b = 0

return false

else

(XL, XR) ← ˜EE
−1

K (T, YL, YR)

return XL ∈ V

Fig. 2. The game used to define RPRP security for a tweakable cipher ˜EE.

query was made such that (YL, YR) ← En(T,XL,XR), then no query of the form
De(T ′, YL, Y ′

R) is allowed for any values of T ′ and Y ′
R. The second is a decipher

query that repeats a left value from a prior decipher query. Namely, a query
De(T, YL, YR) when a query of the form De(T ′, YL, Y ′

R), for some T ′ and Y ′
R,

was already made.
The Gu oracle provides an additional interface to the decipher algorithm.

It takes an input to the decipher algorithm together with a set of guesses V
for the corresponding left output. In the real world, Gu returns a boolean value
indicating whether any of the guesses is correct, whereas it always returns false in
the ideal world. To avoid trivial-win conditions, we need to restrict the adversary
to only make guess queries for which it does not already know the answer.
Accordingly, guess queries are required to be “unused”, meaning that they have
not been already queried on De or returned by En. The set U serves to keep track
of used triples (T, YL, YR) and suppress the output in Gu when such a query is
detected. Finally, the game is parametrized by a positive integer v, limiting the
size of V in every query. We quantify the RPRP security of a tweakable cipher
via the usual advantage measure shown below.
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˜EEK1,K2(T, XL, XR)

YL ← ˜

˜

EK1((T, XR), XL)

YR ← FK2(YL, |XR|) ⊕ XR

return (YL, YR)

˜EE
−1

K1,K2(T, YL, YR)

XR ← FK2(YL, |YR|) ⊕ YR

XL ← E−1
K1((T, XR), YL)

return (XL, XR)

Fig. 3. Pseudocode description of the UIV construction, a variable-input-length tweak-
able cipher realised from a tweakable blockcipher ˜E and a VOL-PRF F.

Definition 4 (RPRP Advantage). Let ˜EE be a tweakable cipher over a split
domain (XL × XR). Then for a positive integer v and an adversary A attacking
the RPRP security of ˜EE the corresponding advantage is defined as

Advrprp
˜EE

(A, v) =
∣

∣

∣2Pr
[

RPRPA,v
˜EE

⇒ 1
]

− 1
∣

∣

∣ .

3.2 Unilaterally-Protected IV (UIV)

We next present a variable-input-length tweakable cipher construction, called
Unilaterally-Protected IV (UIV), that achieves RPRP security. It is easily derived
from the three-round Protected IV construction from [34] by simply eliminating
the last layer and using a slightly different abstraction. Shrimpton and Terashima
noted that all three rounds are necessary for SPRP security, but as we show in
Theorem 1, two rounds suffice for RPRP security. The construction is composed
of a tweakable blockcipher ˜E over the domain XL = {0, 1}n with tweak space
T × XR and a matching variable-output-length pseudorandom function F with
domain XL and range XR. The tweak space of the resulting UIV cipher is T . A
pseudocode description of the construction is given in Fig. 3 and Fig. 4 shows
a graphical representation of its encipher algorithm. The RPRP security of the
UIV construction is stated formally in Theorem 1, the proof of which can be
found in the full version of this paper [16].

Theorem 1. Let UIV be the construction defined in Fig. 3 over the domain
{0, 1}n ×{0, 1}≥m. For a positive integer v and an adversary A making qen enci-
pher queries, qde decipher queries and qgu guess queries under the constraint that
qguv ≤ 2n−1, there exist adversaries B and C such that

Advrprp
UIV (A, v) ≤ Advsprp

˜E
(B) + Advprf

F (C)

+
qguv

2n−1
+

q1(q1 − 1)
2n+1

+
qen(qen − 1)

2n+1
+

q2(q2 − 1)
2n+m+1

,

where q1 = qen + qde + qgu and q2 = qen + qde. The SPRP adversary B makes
at most qen encipher queries and qde + qgu decipher queries, whereas the PRF
adversary C makes at most qen + qde + qgu queries.
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XL

˜EK1

T XR

FK2

YL YR

Fig. 4. Graphical representation of the UIV enciphering algorithm.

Concrete UIV Instantiations. We described the UIV construction generi-
cally in terms of a fixed-input-length tweakable cipher (FIL-TBC) with variable
tweak length and a variable-output-length pseudorandom function (VOL-PRF).
The tweakable cipher can be instantiated either via the LRW2 construction [24]
using a blockcipher like AES and an Almost XOR-Universal (AXU) hash func-
tion like POLYVAL [20]. Alternatively one can use an off-the-shelf tweakable
blockcipher with a fixed-size tweak, like Deoxys-TBC [23] or SKINNY [4] and
augment it with an AXU hash via the XTX transform [25].

As for the VOL-PRF, it can be instantiated by a blockcipher operated in
counter mode. In this case, the tricky part is to match the block size of the
FIL-TBC with the input size of the VOL-PRF (equivalent to the IV in the
counter mode instantiation). If counter mode uses a blockcipher with a block
size equal to the block size of the FIL-TBC then the IV needs to be blinded with
an additional key, acting as a universal hash, to avoid colliding counter values.
Alternatively, if one is using an off-the-shelf tweakable blockcipher, the VOL-
PRF can be instantiated using the Counter-in-Tweak mode of operation [28],
circumventing this issue entirely.

Notably, UIV can be fully instantiated from AES and POLYVAL, using
LRW2 and counter mode, which benefit from the native instruction sets on many
modern-day processors. The corresponding instantiation, GCM-UIV, shares
many similarities with GCM-SIV [20] (e.g. two-pass enciphering/encryption and
one-pass deciphering/decryption), and its performance profile is also similar.

4 Encode-then-Encipher from Rugged PRPs

The encode-then-encipher paradigm is a generic approach, dating back to Bel-
lare and Rogaway [9], for turning a variable-length cipher into an authenticated
encryption scheme. Shrimpton and Terashima later extended this paradigm to
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cater for modern primitives such as tweakable ciphers and nonce-based AEAD
[34]. However, both works require that the variable-length cipher satisfy SPRP
security for the resulting authenticated encryption scheme to be secure. In this
section, we show how to construct nonce-based AEAD from tweakable ciphers
that are only RPRP secure. The asymmetric security properties of RPRPs
prompt us to consider two schemes with complementary security properties,
EtE and EtD, as well as nonce-hiding variants of each.

4.1 Encode-then-Encipher (EtE) Scheme

The first scheme, EtE, achieves misuse-resistance (MRAE) security and is the
most natural as it uses the encipher algorithm to encrypt and the decipher
algorithm to decrypt. It employs a rugged pseudorandom permutation ˜EE with
domain {0, 1}n × {0, 1}≥m and tweak space {0, 1}∗, an injective mapping 〈·, ·〉
from string pairs to single strings, and a function Func2 : {0, 1}∗ → {0, 1}n. Its
pseudocode is presented in Fig. 5. Note that since C1 is of fixed size, C1 and
C2 can be concatenated into a single-string ciphertext to fit the usual AEAD
syntax, and any such ciphertext can easily be parsed back into such a pair.

Intuitively, the scheme is misuse resistant since altering any of N , H, or M
results in an almost uniformly random ciphertext, by the pseudorandomness of
the encipher algorithm. Authenticity is achieved via the function Func2 under the
sole assumption that it be deterministic. Namely, it can be instantiated through
a hash function or more simply via truncation (assuming (N,H) is always at
least n bits long), or by the constant function (e.g. Func2(N,H) = 0n). Then, by
RPRP security, it follows that altering either C1 or C2 will result in a value of
Z ′ that is unpredictable. Accordingly, the condition Z ′ = Z will only be satisfied
with small probability, irrespective of the specific value of Z ← Func2(N,H). It
is worth noting that in reducing the MRAE security of EtE to the RPRP security
of ˜EE, the reduction only makes encipher and guess queries (with v = 1), i.e., the
decipher oracle is not used at all. This is because in the EtE construction, the
verification algorithm can be simulated entirely through the guess oracle. Below
is the formal security theorem and its proof is presented in the full version of
this paper [16].

Theorem 2. Let EtE be the nonce-based AEAD scheme defined in Fig. 5 realized
from a tweakable cipher over the domain {0, 1}n×{0, 1}≥m. Then for any adver-
sary A making qe encryption queries and qv verification queries, there exists an
adversary B such that

Advmrae
EtE (A) ≤ Advrprp

˜EE
(B, 1) +

q2e
2n+m+1

,

where B makes qe encipher queries, qv guess queries, and its runtime is similar
to that of A.
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EncK(N, H, M)

T ← 〈N, H〉
Z ← Func2(N, H)

(C1, C2) ← ˜EEK(T, Z, M)

return (C1, C2)

DecK(N, H, C1, C2)

T ← 〈N, H〉
Z ← Func2(N, H)

(Z′, M ′) ← ˜EE
−1

K (T, C1, C2)

if Z′ = Z then

return M ′

else

return ⊥

Fig. 5. The EtE construction transforming a variable-length RPRP into a misuse-
resistant nonce-based AEAD scheme.

4.2 Encode-then-Decipher (EtD) Scheme

In our second scheme, EtD, we switch the roles of the encipher and decipher
algorithms, i.e., we decipher to encrypt and encipher to decrypt. By making
this switch, we now obtain an AEAD scheme that is secure against the release
of unverified plaintext (RUPAE). The EtD construction is presented in Fig. 6
together with the associated leakage function used to prove it RUPAE secure. In
addition to the variable-length tweakable cipher, the construction makes use of
an injective mapping 〈·, ·〉 from string pairs to single strings and a (δ, t)-collision
resistant deterministic function Func3.

The full pseudorandomness of the encipher algorithm, which is now used
for decryption, is what makes the scheme RUPAE secure. However, using the
decipher algorithm to encrypt presents some new challenges in the security proof
due to the constraints in the RPRP security definition. The requirement to
never repeat YL values across decipher queries is easily satisfied by ensuring that
distinct nonces result in distinct Z values. In our generic treatment we fulfill this
condition by requiring that the function Func3 be (δ, t)-collision resistant. On the
other hand, the requirement to not forward YL values from the encipher oracle
to the decipher oracle is a bit more challenging to address in the security proof.
Finally, a peculiarity of the EtD construction is that the nonce is included both
in the evaluation of Z as well as the tweak, which may seem unnecessary at first.
However, its inclusion in the evaluation of Z is necessary to ensure that YL values
do not repeat as it is the only AEAD input that is guaranteed to be distinct
across encryption calls. At the same time its inclusion in the tweak is necessary
for RUPAE security, as otherwise the adversary could forward a ciphertext from
the encryption oracle to the leakage oracle with a different nonce and, in the real
world, recover the original message. The security of EtD is formally stated below
in Theorem 3 and its proof can be found in the full version of this paper [16].

Theorem 3. Let EtD be the subtle AEAD scheme defined in Fig. 6 composed
from a tweakable cipher over the domain {0, 1}n × {0, 1}≥m, and let Func3 be a
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EncK(N, H, M)

T ← 〈N,H〉
Z ← Func3(N,H,M)

(C1, C2) ← ˜EE
−1
K (T, Z,M)

return (C1, C2)

DecK(N, H, C1, C2)

T ← 〈N,H〉
(Z

′
,M

′
) ← ˜EEK(T,C1, C2)

Z ← Func3(N,H,M
′
)

if Z
′
= Z then

return M
′

else

return ⊥

ΛK(N, H, C1, C2)

T ← 〈N,H〉
(Z

′
,M

′
) ← ˜EEK(T,C1, C2)

Z ← Func3(N,H,M
′
)

if Z
′
= Z then

return �
else

return M
′

Fig. 6. The EtD construction, presented as a subtle AEAD scheme, transforming a
variable-length RPRP into a RUPAE-secure AEAD scheme.

(δ, t)-collision resistant deterministic function. Then there exists a leakage simu-
lator S, such that for any adversary A making qe ≤ 2n−1 encryption queries, qd
decryption queries, ql queries to the leakage oracle and running in time t, there
exist RPRP adversaries B and C such that

Advrupae
EtD (A,S) ≤ Advrprp

˜EE
(B, 1) + Advrprp

˜EE
(C, 1) + δ

+
(qe + 1)(qd + ql)

2n−1
+

(qe + qd + ql)2

2n+m
+

qe(qd + ql)
2n

.

The adversary B makes qe queries to En oracle, qd+ql queries to De oracle, and
its runtime is similar to that of A. The adversary C makes at most qe queries
to En oracle, at most qd + ql queries to De oracle, and its runtime is similar to
that of A.

4.3 Nonce-Hiding Variants of EtE and EtD

Up to this point our treatment has focused on the classical nonce-based syn-
tax, but both constructions can be adapted to the nonce-hiding syntax while
retaining analogous security properties. Intuitively, the main differences are that
encryption now needs to embed the nonce in the ciphertext and the nonce is
no longer available during decryption. We describe below how these differences
affect each construction.

In the case of EtE, as before the redundancy Z must be located in the left
input for security and consequently the nonce has to be embedded in the right
input. As the nonce is not available to the decryption algorithm, Z can no longer
depend on it. Furthermore Z cannot depend on any value contained in the right
part. This is because in the security proof decryption is simulated through the
Gu oracle, which does not return the right part, and thus the reduction would
not be able to evaluate Z. As a result, the possibilities for instantiating the
redundancy function are severely restricted here and we simply set Z = 0n

instead.
In the case of EtD, since we are using the decipher algorithm to encrypt the

left input must not repeat, and thus this makes it the natural choice of location
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for embedding the nonce. Accordingly the redundant value Z has to be moved
to the right input, which is now possible in the case of EtD since the encipher
algorithm is fully pseudorandom and non-malleable. Again, the nonce is not an
input to the decryption algorithm, but in this case Z can depend on the nonce
as the decryption algorithm can use the nonce that it recovers from the left part.
However the nonce still cannot be included in the tweak. Interestingly, the attack
that required us to include the nonce in the tweak for EtD is no longer applicable
in the nonce-hiding setting, and thus this variant is also RUPAE secure. Note
that for this construction Func3 is only required to be a deterministic function
and need not be collision resistant.

Pseudocode descriptions of the nonce-hiding variants of EtE and EtD are
provided in the full version of this paper [16]. The security proofs for these
variants proceed in a similar fashion to the original nonce-based schemes and we
omit them to avoid tedious repetition.

4.4 Instantiations and Related Constructions

Compared to prior works [8,9,21,34], our treatment of the encode-then-encipher
paradigm is the first to prove the security of the resulting AEAD by assuming a
strictly weaker security notion than SPRP on the part of the cipher. In this light,
our results on the MRAE security of EtE and its nonce-hiding variant are anal-
ogous to the construction in [34] and the HN5 construction in [8], respectively.
Similarly, our result on the RUPAE security of nonce-based EtD is analogous to
that in [21] for the closely-related notion of robust AEAD.

For generality, we specified the nonce-based constructions through the redun-
dancy functions Func2 and Func3 which can be instantiated in a number of
ways. Note that the redundancy functions are generally only required to be
deterministic functions, except in nonce-based EtD, which additionally requires
Func3 to be (δ, t)-collision resistant. Thus, one could instantiate these with hash
functions or, when applicable, more simply as constant functions that always
return 0n. Clearly, some instantiations are more advantageous in terms of effi-
ciency, while others may prove to be beneficial in extended security models that
we did not consider here. Instantiating the nonce-hiding variant of EtD with
Func3(N,H,M) := 0n and GCM-UIV recovers the GCM-RUP scheme from [2].
However our treatment exposes other possibilities, such as Func3(N,H,M) := N ,
which is trivially (0,∞)-collision resistant. In particular, instantiating the nonce-
based variant of EtD with this redundancy function gives rise to a RUPAE-secure
AEAD scheme with more compact ciphertexts than GCM-RUP or HN5, as it
makes do without the extra n zero bits (assuming the nonce is also n bits long).

When instantiated with Func3(N,H,M) := N the nonce-based variants of
EtE and EtD will also conceal the nonce, even if decryption does not strictly
fit the nonce-hiding syntax. Such a combination of nonce-concealing and com-
pact ciphertexts is beneficial for constructing secure channels over a transmission
protocol with out-of-order delivery, like UDP. Indeed, DTLS 1.3 and QUIC go
through considerable efforts to achieve this. In Sect. 6 we will show how this
approach, of employing an RPRP and overloading the use of the nonce for both
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authentication and message indexing, can be used to construct such secure chan-
nels more simply and in a more modular fashion. However, we first need to intro-
duce a new type of authenticated encryption that better fits this purpose and
allows the receiver to adopt different policies as to how to process ciphertexts
that are delivered out of order. In the next section, we present this new and
more general type of authenticated encryption and show how it can be realised
generically from any nonce-hiding AEAD scheme or directly from an RPRP with
the additional benefit of more compact ciphertexts.

5 Nonce-Set AEAD

A secure channel protocol operating over UDP, which may deliver ciphertexts
out of order, requires some mechanism to recover the original ordering of the
messages. Typically, such secure channels employ an AEAD scheme and over-
load the nonce to act as the message number. Here, nonce-hiding AEAD is
advantageous because it attaches the nonce in encrypted form to the ciphertext,
thereby making it available to the receiver for recovering the original ordering
of messages without leaking the side information contained in the nonce. In
Sect. 4.4 we showed how in the encode-then-encipher paradigm the nonce could
be additionally overloaded to act as the redundant bits in the encoding that
provide authenticity. This resulted in more compact ciphertexts, but it required
that the nonce be already available to the receiver before decryption takes place.
Thus, our technique of overloading the nonce for providing authentication is not
compatible with a scenario where ciphertexts are delivered out of order, as the
receiver is unable to determine the nonce associated with a ciphertext before
decrypting it.

In practice, the amount of reordering that takes place over UDP will, on
average, be limited. Accordingly, secure channel protocols will typically employ
some form of window mechanism which determines which message numbers (and
corresponding ciphertexts) can be accepted. If the message number of a cipher-
text falls outside the window, it means that the ciphertext is either too old or
too far ahead of the ones received and will be discarded. Such window mecha-
nisms can take various forms and can implement a variety of different policies
that determine how to deal with replays, when and how to change the window
size, and when to advance the window ahead. Nevertheless, at an abstract level,
they all specify a limited set of message numbers that can be accepted at that
particular point in time.

We propose nonce-set AEAD as a new type of authenticated encryption
that lends itself particularly well to this kind of scenario. The main change is
that decryption will now additionally take a set of nonces as its input, and for
it to succeed, the ciphertext has to be deemed valid with respect to that set
of nonces. The motivation for introducing this primitive is twofold. The first
is that it will enable the generic construction, which we present in the next
section, for a secure channel operating over UDP that can support multiple
different window policies. At a very high level, this construction combines a
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nonce-set AEAD scheme together with a tuple of algorithms that emulate the
window mechanism by generating the nonce set for the decryption algorithm
and updating it accordingly. This construction is appealing because although
the security of the secure channel depends crucially on this tuple of algorithms,
it turns out that they only need to satisfy a “functional” requirement and need
not at all be cryptographic. In addition, this single construction can be tuned
to realize various types of secure-channel behaviour. As such, nonce-set AEAD
appears to be the right place for drawing the boundary between cryptographic
and non-cryptographic processing. The second and complementary reason for
introducing nonce-set AEAD is that we can realize it directly from an RPRP
through an encode-then-encipher approach where authentication is achieved by
overloading the nonce, thereby yielding more compact ciphertexts. Thus, by
introducing nonce-set AEAD, we are now able to simultaneously accommodate
these two mechanisms, which were otherwise incompatible. Below is the formal
definition.

5.1 Formal Definition

Syntax. A nonce-set encryption scheme NSE = (Enc,Dec) is a pair of algorithms
with an associated key space K, a nonce space N = {0, 1}t for some t ∈ N,
a nonce-set space W ⊆ P(N ), a header space H, a message space M and a
ciphertext space C.

– The encryption algorithm follows the usual syntax, i.e.,

Enc : K × N × H × M → C.

As before, encryption must be length-regular, thereby requiring the existence
of a function clen, mapping the triple (|N | , |H| , |M |) to the ciphertext length.

– The decryption algorithm works analogously to that in a nonce-hiding encryp-
tion scheme but additionally takes a set of nonces W ∈ W as part of its input.
That is, its syntax is given by

Dec : K × W × H × C → (N × M) ∪ {(⊥,⊥)} .

In addition, for all valid inputs (K,W ,H,C) it must hold that:

if DecK(W ,H,C) = (N ′,M ′) �= (⊥,⊥) then N ′ ∈ W .

Correctness. For every nonce-set encryption scheme, it must hold that for all
(K,N,H,M) ∈ K × N × H × M and every W ∈ W such that N ∈ W ,

if C ← EncK(N,H,M) then (N,M) ← DecK(W ,H,C).
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Security. As before, security requires that no adversary can distinguish the real
encryption and decryption algorithms (Enc(·, ·, ·), Dec(·, ·, ·)) from the ideal ones
($(·, ·, ·), ⊥(·, ·, ·)), under the condition that its encryption queries be nonce-
respecting and it does not forward queries from the encryption oracle to the
decryption oracle. The main difference to the classical nonce-based AEAD lies
in how a forwarding query is defined. This is a query (W ,H,C) to the decryption
oracle where C was returned in a prior encryption query (N,H,M) and N ∈
W . In other words, the adversary cannot query a ciphertext under a nonce-set
containing the nonce with which it was produced. The security of a nonce-set
encryption scheme is expressed through the following advantage measure.

Definition 5 (nsAE Advantage). Let NSE = (Enc,Dec) be a nonce-set based
encryption scheme with associated spaces (K,N ,W,H,M, C). Then for any
nonce-respecting adversary A that does not make forwarding queries its advan-
tage is defined as

Advnsae
NSE (A) =

∣

∣

∣Pr
[

K ←$K : AEncK(·,·,·),DecK(·,·,·) ⇒ 1
]

−Pr
[

A$(·,·,·),⊥(·,·,·) ⇒ 1
]∣

∣

∣ .

Misuse Resistance. The above security notion can be strengthened to the
misuse-resistance setting in the usual way. Namely by lifting the nonce-respecting
requirement and simply requiring that the adversary never query the same triple
(N,H,M) to the encryption more than once.

Unpacking the Definition. Note that if we set W = {{N} : N ∈ N} then
nonce-set AEAD effectively reduces to standard nonce-based AEAD with a nonce
space N . Thus, nonce-set AEAD can be seen as a natural extension of nonce-
based AEAD. Our syntax requires that when decryption succeeds, it associates
the decrypted ciphertext to a nonce in W . Conversely, this means that if W is
the empty set then decryption must fail. In addition, correctness guarantees that
when W contains the nonce that was used to produce that ciphertext, decryp-
tion will recover the plaintext and will additionally recover that nonce. Finally,
besides ruling out forgeries involving new ciphertexts, security also ensures that
an adversary is unable to associate an honestly generated ciphertext to a differ-
ent nonce. These features will come in handy in the next section where we show
how to generically transform a nonce-set AEAD into an order-resilient channel.

A practical scheme must specify a format for representing W as a string.
In general, this formatting must be concise for the scheme to be efficient. This
will, in turn, impose heavy restrictions on the space W of all possible nonce sets
that the decryption algorithm can accept. Thus, an important parameter of a
nonce-set AEAD scheme is the maximum nonce set size w, defined as

w := max
W ∈W

|W |.
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EncK(N, H, M)

l ← |M |

(C1, C2) ← ˜EEK(H, N‖
M�n−t, �M�l−n+t)

return (C1, C2)

DecK(W , H, C1, C2)

(XL, XR) ← ˜EE
−1

K (H, C1, C2)

N ′ ← 
XL�t
M ′ ← �XL�n−t‖XR

if N ′ ∈ W then

return (N ′, M ′)

else

return (⊥, ⊥)

Fig. 7. The AwN construction, transforming an RPRP-secure cipher ˜EE over the domain
{0, 1}n × {0, 1}≥m into a nonce-set AEAD scheme that is MRAE secure. The scheme
is parametrized by the nonce length t, where t ≤ n.

The specific value of this parameter may be a result of the formatting used to
represent W , or it may need to be specifically restricted in order to guarantee
a certain level of security. In addition, the formatting used to represent W will
typically require an efficient means to do membership testing. This aspect of
a nonce-set AEAD is beyond our scope. Still, it suffices to say that various
instantiations exist that satisfy these requirements, including the formatting
used in the window mechanisms employed by existing internet protocols.

5.2 Nonce-Set AEAD from Nonce-Hiding AEAD

Nonce-set AEAD can be easily realized from any nonce-hiding AEAD scheme
simply by following decryption with a test verifying that the recovered nonce is
in W . This construction is described in the full version of this paper [16]. Thus
the nonce-hiding constructions by Bellare, Ng, and Tackmann in [8] which are
nonce-recovering, namely HN1, HN2, HN4, and HN5, can be readily transformed
into nonce-set AEAD schemes. However, these constructions all incur a cipher-
text expansion resulting from the underlying integrity mechanism as well as a
second ciphertext expansion arising from the nonce encryption. In contrast, the
construction we present next reduces this overhead by constructing a nonce-set
AEAD scheme directly from a RPRP via the encode-then-encipher paradigm.

5.3 The Authenticate-with-Nonce (AwN) Construction

The Authenticate-with-Nonce (AwN) construction is similar in spirit to the EtE
construction instantiated with Func2(N,H) = N , but it gives rise instead to a
nonce-set AEAD scheme. A pseudocode description is provided in Fig. 7. Note
that the integrity check is now done by verifying that N ′ ∈ W , rather than an
equality test as in EtE. By RPRP security, any mauled ciphertext will produce a
left output that is hard to guess, thereby limiting the probability of this condition
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being satisfied, as long as W is not too large. As a result, the MRAE security of
AwN depends on the maximum nonce set size w. Moreover, for added generality,
we allow the nonce size t to be smaller or equal to the size of the left domain
n. This too bears influence over the security of AwN. In combination, these two
aspects give rise to the w2n−t term in the RPRP advantage term within the
security bound. The MRAE security of AwN is formally stated in Theorem 4, the
proof of which can be found in the full version of this paper [16].

Theorem 4. Let AwN be the nonce-set AEAD scheme defined in Fig. 7, realized
from a tweakable cipher over the domain {0, 1}n × {0, 1}≥m, with nonce size t
and maximum nonce set size w. Then for any MRAE adversary A making qe
encryption queries and qv verification queries, there exists an RPRP adversary
B such that

Advmrae
AwN (A) ≤ Advrprp

˜EE
(B, w2n−t) +

q2e
2n+m+1

.

The adversary B makes qe queries to the En oracle and qv queries to the Gu
oracle, and runs in time similar to that of A.

6 Application to Order-Resilient Secure Channels

Equipped with the notion of nonce-set AEAD, we now turn our attention to
constructing secure channels over an unreliable transport. QUIC [22,35] and
DTLS [29,30], which operate over UDP, are two prime examples of order-resilient
secure channels. Two recent works [17,18] have analyzed the security of QUIC.
Here we will follow in large part the formal security model of Fischlin, Günther,
and Janson [18] which builds on and improves over prior works [6,12,33] and is
the most versatile.

As pointed out already in [12,13] several strategies are possible for dealing
with out-of-order delivery and replay protection. However, their models fail to
capture the more elaborate ones that rely on window mechanisms, as in the case
of QUIC and DTLS. These window mechanisms can handle out-of-order delivery
and replay protection without consuming too much memory and bandwidth.
This comes, however, at the expense of added complexity that is harder to model
mathematically. Even formulating correctness for such secure channels becomes
rather challenging. To overcome the limitations of prior security models, Fischlin
et al. replace the level-sets in [33] with a support predicate, which essentially
serves to determine which ciphertexts should be accepted by the receiver. The
point of this predicate is that it considers the receiver’s perspective in making
this determination. As is the case with QUIC and DTLS a ciphertext deemed
invalid at a certain point in time (due to it falling outside the current window)
may become valid later (when the window has shifted sufficiently ahead).

Our focus in this section is not to analyze the security of QUIC or DTLS.
Instead, we take a fresh perspective on how such secure channels can be con-
structed differently and more simply through nonce-set AEAD. More specifically,
we provide a generic construction for transforming any nonce-set AEAD scheme
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into a secure channel parametrized by a support predicate. Notably, the con-
struction works for any desired support predicate by employing a quadruple of
relatively simple algorithms. In turn, the security of the channel construction
relies on the security of the nonce-set AEAD scheme and a mild requirement on
the quadruple of algorithms with respect to the support predicate. We tame the
complexity in constructions like QUIC and DTLS by introducing modularity into
the picture and identifying the role of each component. Here the introduction of
nonce-set AEAD plays a key role in glueing the different components together
and permitting us to generically express the logic behind the support predicate
by processing nonce values. We also strengthen the security definition from [18]
to reflect the privacy requirement to conceal message numbers from eavesdrop-
pers. In contrast, in [18] message numbers were required to be transmitted in
the clear.

In addition, when the nonce-set AEAD scheme is instantiated with our
RPRP-based construction, we end up with a secure channel construction that is
competitive in comparison to QUIC and DTLS. To start with, it only requires
a single key (instead of two) to process each ciphertext. Our nonce-set AEAD
scheme can be realized with GCM components, leading to comparable perfor-
mance to GCM-SIV and offering misuse-resistance. QUIC only transmits a par-
tial nonce in the ciphertext in order to save bandwidth at the expense of an
additional window mechanism to reconstruct it. In contrast, our construction
transmits the full nonce, thereby simplifying the processing at the receiver’s end,
but saves bandwidth nonetheless from its overloaded use of the nonce (within
the nonce-set AEAD construction) to provide integrity without a MAC tag.

6.1 Order-Resilient Channels

We start by defining the syntax of order-resilient channels. The definitions below
are reproduced from [18] and we do not claim any novelty in them. We do,
however, make some alterations in them which we point out along the way.

Definition 6 (Channel Syntax). A channel consists of a triple of algorithms
Ch = (Init,Send,Recv) with associated spaces ST S, ST R, MN , A, M and C
such that:

• (sts, str)←$ Init(). The probabilistic initialization algorithm that takes no
input and returns an initial sender state sts ∈ ST S and an initial receiver
state str ∈ ST R.

• (st′
s, C)←$ Send(sts, A,M). The send algorithm, may be probabilistic or state-

ful and takes as input a sender state sts ∈ ST S, associated data A ∈ A and a
message M ∈ M, and returns as output an updated sender state st′

s ∈ ST S

and a ciphertext C ∈ C or the error symbol ⊥.
• (st′

r,mn,M) ← Recv(str, A,C). The deterministic receive algorithm takes as
input a receiver state str ∈ ST R, associated data A ∈ A and a ciphertext
C ∈ C. It then returns an updated receiver state st′

r ∈ ST R together with,
either a message number mn ∈ MN and a message M ∈ M, or a pair of
error symbols (⊥,⊥).
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In comparison to [18] we augmented the Recv algorithm to return the message
number together with the message. This reflects the real-world necessity that a
higher layer needs such information to correctly position each message in the
sequence in which it was sent. We also expanded Send with associated data A,
and removed the auxiliary data and accompanying function as they are no longer
needed in our setting.

The Support Predicate. There are varying degrees to which a channel may be
order resilient. As explained in [18] the prior models by [12,33] are not expressive
enough to capture the order resilience of real-world protocols like QUIC and
DTLS. To address this, they introduced the support predicate. In essence, the
support predicate expresses the channel’s tolerance to reordered, replayed, or
dropped ciphertexts. It essentially captures the ‘character’ of the channel, which
permeates into every aspect of it—from correctness to robustness (which we
explain shortly) to security. Indeed, this conforms with and is reminiscent of the
silencing approach in [33], but generalizes it further.

The support predicate takes three inputs: a list CS of the sent ciphertexts,
a list DCR of the received ciphertexts together with a boolean value indicating
whether each was deemed supported or not, and a candidate ciphertext C and
returns a boolean indicating whether C is supported or not. Thus, whether a
ciphertext is supported may depend on the ciphertexts sent, the ones received,
and how the current ciphertext relates to them.

In conformance with [18], any ciphertext not in CS must not be supported.
However, whereas in [18] the list CS is allowed to contain repeating ciphertexts, we
specifically prohibit this. In particular, we require that every entry in CS be identi-
fied uniquely. Whether two messages encrypt to the same ciphertext (a possibility
with stateful schemes) or not depends on the scheme at hand. Thus allowing this
to occur would render the support predicate scheme-specific, thereby introducing
a circularity in the correctness and security definitions—which is why we avoid
this possibility. Moreover, the representation of ciphertexts should not bear any
weight on the predicate’s value. Therefore, we allow ciphertexts to be identified by
integers or other strings as long as the entries in CS are unique.

There are two other minor points where we deviate from [18]. One is that
we require that every support predicate accept perfectly-in-order delivery. The
other is that we allow the support predicate to only return a boolean value,
whereas in the formulation in [18] it could also return an integer. This seems to
have been required due to the possibility of repeating ciphertexts in CS , which
we specifically rule out.

An example support predicate, reflecting the required functionality of a typ-
ical real-world protocol, can be found in the full version of this paper [16]

Channel Correctness. Different support predicates identify different channel
functionalities. Nevertheless, we can define channel correctness generically for
any possible support predicate. Intuitively, correctness requires that for any
supported (and thus honestly generated) ciphertext, the receiver must always be
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Game CORRA
Ch,supp

(sts, str) Ch.Init()

DCR, CS , T ← [ ], [ ], [ ]

mn ← 0

win ← false

ASend,Recv

return win

Procedure Send(A, M)

(sts, C) Ch.Send(sts, A,M)

CS ← CS‖C
T ← T ‖(mn,A,M,C)

mn ← mn + 1

return C

Procedure Recv(j)

if j > |T | then

return

(mn,A,M,C) ← T [j]

d ← supp(CS ,DCR, C)

if d = false then

return

(str,mn
′
,M

′
) ← Ch.Recv(str, A, C)

if mn
′ �= mn ∨ M

′ �= M then

win ← true

DCR ← DCR‖(d, C)

return (mn
′
,M

′
)

Fig. 8. The game CORR used to define channel correctness.

able to recover the original message contained in that ciphertext together with
its corresponding message number. Thus correctness ensures that the receiver is
able to recover the original sequence of messages in the exact ordering in which
they were sent. This is formally defined via the game in Fig. 8.

Definition 7 (Channel Correctness). A channel Ch is said to be correct with
respect to a support predicate supp, if for all possible adversaries A it holds that

Pr
[

CORRA
Ch,supp ⇒ 1

]

= 0.

6.2 The Robustness Property

Unlike TLS and similar protocols, where one invalid ciphertext typically results
in the connection being torn down, order-resilient channels are inherently
required to tolerate a significant amount of decryption failures during their oper-
ation. Such decryption failures may arise from the unreliable nature of the under-
lying protocol, or due to manipulation by a malicious adversary. Furthermore, the
receiver will generally be unable to distinguish between these two cases. Thus,
order-resilient channels must maintain their correct operation in the presence
of adversarial manipulation. However, the above correctness requirement does
not capture such a scenario as it considers only honestly-generated ciphertexts.
Accordingly, [18] introduced the notion of robustness to capture this stronger
requirement.

Robustness is formally defined through the ROB game located in the full
version of this paper [16]. Here, the Recv oracle maintains internally two Recv
instances, the real one, which is supplied with all queried ciphertexts, and the
correct one, which is only supplied with supported ciphertexts. Then if at any
point the adversary queries a supported ciphertext that causes the outputs of
the two Recv instances to differ, it will constitute a win for the adversary. The
advantage of an adversary is quantified as its probability of winning this game.
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Definition 8 (ROB Advantage). For a channel Ch = (Init,Send,Recv) and a
support predicate supp, the corresponding robustness advantage of an adversary
A is defined as:

Advrob
Ch,supp(A) = Pr

[

ROBA
Ch,supp ⇒ 1

]

.

Note that in the ROB game both Recv instances are initialized with the same
state. Thus, for the adversary to win, the states of the two instances must at
some point diverge. On the other hand, only unsupported ciphertexts can cause
such a divergence in their states. Therefore, a sufficient condition for satisfying
robustness is that unsupported ciphertext do not change the state.

6.3 Channel Security

We use a single-game definition of channel security that combines confidential-
ity and integrity into one notion. It is heavily based on the security definitions
from [18], without robustness, and adapted with some of the ideas from sim-
ulatable channels in [14]. Security is defined via the indistinguishability game
INT-SIM-CCA shown in Fig. 9. Here, we essentially require the existence of a
stateless algorithm S that can simulate the Send oracle to the adversary and
that the adversary is unable to query an unsupported ciphertext to Recv that
decrypts successfully, i.e., a forgery. Note that, as shown in [14], requiring the
simulator S to be stateless results in a stronger security notion. Namely, it pro-
vides key privacy and ensures that ciphertexts do not leak the message number
since the simulator cannot keep track of the number of messages that are sent.
Below is the formal definition.

Definition 9 (INT-SIM-CCA Advantage). Let Ch = (Init,Send,Recv) be a
channel protocol realizing the functionality corresponding to the support predicate
supp. Then, Ch is INT-SIM-CCA secure if there exists a stateless encryption
simulator S such that for any adversary A the following quantity is small

Advint-sim-cca
Ch,supp (A,S) =

∣

∣

∣2Pr
[

INT-SIM-CCAA,S
Ch,supp ⇒ 1

]

− 1
∣

∣

∣ .

6.4 From Nonce-Set AEAD to Order-Resilient Secure Channels

We are now ready to present this section’s main contribution - a generic con-
struction for transforming any nonce-set AEAD scheme into an order-resilient
channel. This construction consists of a nonce-set AEAD scheme combined with a
tuple of four basic algorithms called the nonce set processing scheme algorithms.
This construction has some notable features. Firstly, it works for any support
predicate. This means that this template construction can be used to realize any
channel functionality that can be expressed via the support predicate introduced
by Fischlin et al. in [18]. In addition, any instantiation will automatically satisfy
robustness and channel security for that support predicate. The main conditions
for this to hold are that the underlying nonce-set AEAD be secure and that the
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INT-SIM-CCAA,S
Ch,supp

(sts, str) ← Ch.Init()

CS ,DCR ← [ ], [ ]

b ← {0, 1}
b

′ ← ASend,Recv

return b = b
′

Procedure Send(A, M)

if b = 0 then // ideal world

C ← S(A, |M |)
else // real world

(sts, C) ← Ch.Send(sts, A,M)

CS ← CS‖C
return C

Procedure Recv(A, C)

(str,mn,M) ← Ch.Recv(str, A, C)

if b = 0 then // ideal world

(mn,M) ← (⊥,⊥)

else // real world

d ← supp(CS ,DCR, C)

if d = true then

(mn,M) ← (⊥,⊥)

DCR ← DCR‖(d, C)

return (mn,M)

Fig. 9. The INT-SIM-CCA game used to define channel security.

nonce set processing scheme faithfully reproduce the functionality of the support
predicate.

As the name implies, the nonce set processing scheme algorithms are pri-
marily concerned with generating and updating the nonce-set that is fed to the
nonce-set AEAD. The faithfulness property ensures that the nonce set processing
scheme accurately reflects the channel behaviour corresponding to the support
predicate. Recall that we required the support predicate to be defined over any
possible way of identifying the ciphertexts as long as it uniquely represented
each ciphertext in CS . This means that we can identify each ciphertext with the
nonce it is assigned in the Send algorithm. Accordingly, the role of the nonce set
processing algorithms is to identify the set of supported nonces at every stage of
the Recv algorithm. Our channel construction will then use the set of supported
nonces as the nonce set to be fed to the nonce-set AEAD. Thus our generic
construction can be viewed as decomposing a channel into these constituent
components, thereby adding to our understanding of order-resilient channels.

We start by describing the syntax of the nonce set processing scheme algo-
rithms. A nonce set processing scheme NSP consists of the following constituent
algorithms:

• (sts, str)←$ StInit(). A probabilistic initialization algorithm, that returns the
initial sender state sts and the initial receiver state str.

• (st′
s, N) ← NonceExtract(sts). A deterministic nonce extraction algorithm,

that takes as input the non-key component of the sender state and returns a
(possibly) updated state together with a unique nonce N or the symbol ⊥.

• W ← NonceSetPolicy(str). A deterministic nonce-set policy algorithm that
takes as input the non-key component of the receiver state and returns a
nonce set.

• (st′
r,mn) ← StUpdate(str, N). A deterministic state-update algorithm that

takes as input the non-key component of the receiver state together with
a nonce, and returns an updated state together with the message number
corresponding to that nonce.
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Game FAITHFULA
NSP,supp

(sts, str) ← StInit()

NS ,DCR ← [ ], [ ]

win ← false

A(sts,str),F-Send,F-Recv

return win

Procedure F-Send()

(sts, N) ← NonceExtract(sts)

NS ← NS‖N
return N

Procedure F-Recv(N)

if N N∈� S then

return

W ← NonceSetPolicy(str)

if N ∈ W then

(str,mn) ← StUpdate(str, N)

else

mn ← ⊥
d ← supp(NS ,DCR, N)

DCR ← DCR‖(d, N)

if d = true ∧
(N �∈ W ∨ N �= NS [mn]) then

win ← true

if d = false ∧ N ∈ W then

win ← true

return (str,mn)

$

Fig. 10. The game FAITHFUL used to define faithfulness for a tuple of nonce set
processing algorithms.

The Faithfulness Property. The only property that we require from a nonce
set processing scheme is that it faithfully reproduces the functionality of the
channel’s support predicate. Note that none of the nonce set processing scheme
algorithms makes use of a secret key. This is because faithfulness is a property
that can be satisfied without cryptographic means. For any scheme, NSP and
support predicate supp, faithfulness is defined via the game FAITHFUL shown
in Fig. 10. The adversary’s goal is to cause the nonce set processing algorithms
and the support predicate to be misaligned or recover the wrong message num-
ber from a nonce. Note that the receiver is only allowed to query nonces to
the F-Recv oracle that the F-Send oracle has returned. A win occurs if the
submitted nonce is supported, but not contained in the nonce set returned by
NonceSetPolicy or the message number returned by StUpdate for that nonce is
incorrect. Alternatively, if the nonce is not supported but the nonce set does
contain that nonce, it is also a win for the adversary.

Definition 10 (FAITHFUL Advantage). Let NSP be a nonce set processing
scheme. Then for any adversary A and any support predicate supp, the corre-
sponding advantage is defined as

Advfaithful
NSP,supp(A) = Pr

[

FAITHFULA
NSP,supp ⇒ 1

]

.

We say that a nonce-set scheme NSP faithfully reproduces the support predicate
supp, if for all possible adversaries A it holds that Advfaithful

NSP,supp(A) = 0.

Generic Channel Construction. Our generic construction of an order-
resilient secure channel ChNS = (Init,Send,Recv) from a nonce-set AEAD scheme
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Init()

(sts, str) ← StInit()

K ← {0, 1}k

stks ← (sts, K)

stkr ← (str, K)

return (stks, stkr)

Send(stks, A, M)

(sts, K) ← stks

(st
′
s, N) ← NonceExtract(sts)

if N = ⊥ then

return (st
′
s,⊥)

C ← Enc(K,N,A,M)

stk
′
s ← (st

′
s, K)

return (stk
′
s, C)

Recv(stkr, A, C)

(str,K) ← stkr

W ← NonceSetPolicy(str)

(N,M) ← Dec(K,W , A, C)

if (N,M) = (⊥,⊥) then

mn ← ⊥
else

(st
′
r,mn) ← StUpdate(str, N)

stk
′
r ← (st

′
r,K)

return (stk
′
r,mn,M)

Fig. 11. A generic construction of an order-resilient secure channel ChNS from a nonce-
set AEAD scheme and a nonce set processing scheme.

NSE = (Enc,Dec) and a nonce set processing scheme NSP = (StInit,NonceExtract,
NonceSetPolicy,StUpdate) is presented in Fig. 11.

Channel Correctness. The proof of correctness for this generic construction
is provided in the full version of this paper [16].

Theorem 5. If the nonce-set AEAD scheme NSE is correct and the nonce set
processing scheme NSP faithfully reproduces the support predicate supp, then the
channel construction ChNS presented in Fig. 11 is correct with respect to supp.

Channel Robustness. We argue robustness based on our earlier observation
that a sufficient condition for robustness is that unsupported ciphertexts never
affect the channel state. The faithfulness of NSP guarantees that only the nonces
used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security. The security of ChNS is formally stated in the following
theorem, the proof of which is presented in the full version of this paper [16].

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 11, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}≥� and a nonce set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp (A,S) ≤ Advnsae

NSE (B) + Advfaithful
NSP,supp(C) +

qs(qs − 1)
2�

.
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Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.
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Abstract. Zero-knowledge proof is a powerful cryptographic primitive
that has found various applications in the real world. However, existing
schemes with succinct proof size suffer from a high overhead on the proof
generation time that is super-linear in the size of the statement repre-
sented as an arithmetic circuit, limiting their efficiency and scalability
in practice. In this paper, we present Orion, a new zero-knowledge argu-
ment system that achieves O(N) prover time of field operations and hash
functions and O(log2 N) proof size. Orion is concretely efficient and our
implementation shows that the prover time is 3.09 s and the proof size
is 1.5 MB for a circuit with 220 multiplication gates. The prover time
is the fastest among all existing succinct proof systems, and the proof
size is an order of magnitude smaller than a recent scheme proposed in
Golovnev et al. 2021.

In particular, we develop two new techniques leading to the efficiency
improvement. (1) We propose a new algorithm to test whether a random
bipartite graph is a lossless expander graph or not based on the densest
subgraph algorithm. It allows us to sample lossless expanders with an
overwhelming probability. The technique improves the efficiency and/or
security of all existing zero-knowledge argument schemes with a linear
prover time. The testing algorithm based on densest subgraph may be of
independent interest for other applications of expander graphs. (2) We
develop an efficient proof composition scheme, code switching, to reduce
the proof size from square root to polylogarithmic in the size of the com-
putation. The scheme is built on the encoding circuit of a linear code and
shows that the witness of a second zero-knowledge argument is the same
as the message in the linear code. The proof composition only introduces
a small overhead on the prover time.

1 Introduction

Zero-knowledge proof (ZKP) allows a prover to convince a verifier that a state-
ment is valid, without revealing any additional information about the prover’s
secret witness of the statement. Since it was first introduced in the seminal
paper by Goldwasser, Micali and Rackoff [GMR89], ZKP has evolved from
a purely theoretical interest to a concretely efficient cryptographic primitive,
c© International Association for Cryptologic Research 2022
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leading to many real-world applications in practice. It has been widely used
in blockchains and cryptocurrencies to achieve privacy (Zcash [BCG+14,zca])
and to improve scalability (zkRollup [zkr]). More recently, it also found applica-
tions in zero-knowledge machine learning [ZFZS20,LKKO20,LXZ21,FQZ+21,
WYX+21], zero-knowledge program analysis [FDNZ21], and zero-knowledge
middlebox [GAZ+22].

There are three major efficiency measures in ZKP: the overhead of the prover
to generate the proof, which is referred to as the prover time; the total commu-
nication between the prover and the verifier, which is called the proof size; and
the time to verify the proof, which is called the verifier time. Despite its recent
progress, the efficiency of ZKP is still not good enough for many applications.
In particular, the prover time is one of the major bottlenecks preventing exist-
ing ZKP schemes from scaling to large statements. As pointed out by Golovnev
et al. in [GLS+], to prove a statement that can be modeled as an arithmetic
circuit with N gates, existing schemes with succinct proof size either perform
a fast Fourier transform (FFT) due to the Reed-Solomon code encodings or
polynomial interpolations, or a multi-scalar exponentiation due to the use of
discrete-logarithm assumptions or bilinear maps, over a vector of size O(N).
The former takes O(N log N) field additions and multiplications and the latter
takes O(N log |F|) field multiplications, where |F| is the size of the finite field.
With the Pippenger’s algorithm [Pip], the complexity of the multi-scalar expo-
nentiation can be improved to O(N log |F|/ log N), which is still super-linear as
log |F| = ω(log N) to ensure security. These operations are indeed the domi-
nating cost of the prover time both asymptotically and concretely. See Sect. 1.3
for more discussions about existing ZKP schemes categorized by the underlying
cryptographic techniques.

The only exceptions in the literature are schemes in [BCG+17,BCG20,
BCL22,GLS+]. Bootle et al. [BCG+17] proposed the first ZKP scheme with
a prover time of O(N) field operations and a proof size of O(

√
N) using a linear-

time encodable error-correcting code. The proof size is later improved to O(N1/c)
for any constant c via a tensor code in [BCG20], and then to polylog(N) via a
generic proof composition with a probabilistic checkable proof (PCP) in [BCL22].
These schemes are mainly for theoretical interests and do not have implementa-
tions with good concrete efficiency. Recently, Golovnev et al. [GLS+] proposed a
ZKP scheme based on the techniques in [BCG20] by instantiating the linear-time
encodable code with a randomized construction. However, the security guarantee
(soundness error) is only inverse polynomial in the size of the circuit, instead of
negligible. Moreover, the proof size of the implemented scheme is O(

√
N) (more

details are presented in Sect. 1.3). Therefore, the following question still remains
open:

Can we construct a concretely efficient ZKP scheme with O(N) prover time
and polylog(N) proof size?
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Table 1. Comparison to existing ZKP schemes with linear prover time. N is the size
of the circuit/R1CS and c ≥ 2 is a constant.

Prover time Proof size Verifier time Soundness error Concrete efficiency

[BCG+17] O(N) O(
√
N) O(N) negl(N) ✗

[BCG20] O(N) O(N1/c) O(N) negl(N) ✗

[BCL22] O(N) polylog(N) O(N) negl(N) ✗

[GLS+] O(N) O(
√
N) O(N) O( 1

poly(N)
) ✓

our scheme O(N) O(log2 N) O(N) negl(N) ✓

1.1 Our Contributions

We answer the question above positively in this paper by proposing a new ZKP
scheme. In particular, our contributions include:

– First, we propose a random construction of the linear-time encodable code
that has a constant relative distance with overwhelming probability. Such
a code was used in all existing linear-time ZKP schemes [BCG+17,BCG20,
BCL22,GLS+] and thus our new construction also improves their efficiency.
The key technique is a new algorithm to test whether a random graph is a
good expander graph based on the densest sub-graph algorithm, which may
be of independent interest for other applications of expander graphs [SZT02].

– Second, we propose a new reduction that achieves a proof size of O(log2 N)
efficiently. Our new technique is a proof composition named “code switching”
that reduces the proof size of the schemes in [BCG20,GLS+] from O(

√
N) to

O(log2 N) with a small overhead on the prover time.
– Finally, we implement our new ZKP scheme, Orion, and evaluate it experi-

mentally. On a circuit with 220 gates (rank-1-constraint-system (R1CS) with
220 constraints), the prover time is 3.09 s, the proof size is 1.5 MBs and the
verifier time is 70 ms. Orion has the fastest prover time among all existing
ZKP schemes in the literature. The proof size is 6.5× smaller than the system
in [GLS+]. The scheme is plausibly post-quantum secure and can be made
non-interactive via the Fiat-Shamir heuristic [FS86].

Table 1 shows the comparison between our scheme and existing schemes with
linear prover time and succinct proof size.

1.2 Technical Overview

Testing Expander Graphs via Densest Sub-graph. All existing ZKP
schemes with linear prover time and succinct proof size [BCG+17,BCG20,BCL22,
GLS+] use linear-time encodable codes with a constant relative distance pro-
posed in [Spi96,DI14,GLS+], which in turn all rely on the existence of good
expander graphs. In a good expander graph, any subset of vertices expands to
a large number of neighbors. Figure 1 shows an example of a bipartite graph
where any subset of vertices on the left of size 2 expands to at least 5 vertices on
the right. See Sect. 2.1 for formal definitions and constructions. However, how to
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Fig. 1. An example of lossless expander. k = 6, k′ = 9, g = 3, δ = 1, ε = 1
6
.

construct such good expanders remain unclear in practice. Explicit construc-
tions [CRVW02] have large hidden constants in the complexity and thus are not
practical. A random graph tends to have good expansion, but the probability
that a random graph is not a good expander is inverse polynomial in the size
of the graph. The code constructed from such a non-expanding graph does not
have a good minimum distance, making the ZKP scheme insecure. Therefore, a
randomly sampled graph is not good for cryptographic applications.

In this paper, we propose a new algorithm to efficiently test whether a random
graph is a good expander or not. With the new testing algorithm, we are able to
re-sample the random graph until it passes the test, obtaining a good expander
with an overwhelming probability and boosting the soundness error of the ZKP
scheme to be negligible. The testing algorithm is based on the densest sub-graph
algorithm [Gol84]. The density of a graph G = (V,E) is defined as the number
of edges divided by the number of vertices |E|

|V | , and the densest sub-graph is
simply the sub-graph in a graph with the maximum density. We observe that a
good expander graph tends to have a small maximum density. This is because
assuming the degree g of each vertex is a constant, e.g. g = 3 for all vertices on
the left in Fig. 1, given any subset of vertices of size s in the graph, the total
number of edges is fixed as |E| = gs in the sub-graph defined by this subset and
its neighbors. For example, any two vertices on the left in Fig. 1 as highlighted
always have 6 outgoing edges. Then we differentiate two cases:

– In a good expander graph, any subset expands to a large number of neighbors,
thus the total number of vertices in this sub-graph is large. Therefore, the
density of any sub-graph is small;

– In contrast, if the graph is not a good expander, there is at least one subset
that does not expand. Taking the sub-graph defined by this subset and its
neighbors, again the number of edges is fixed, while the number of vertices is
small. Therefore, the density of this sub-graph is large, which will be detected
by the densest subgraph algorithm.

This observation gives us a way to differentiate good expanders. To the best of
our knowledge, we are the first to make the connection between expander and
the densest subgraph problem.
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The real testing algorithm involves random sampling and repeating the dens-
est sub-graph algorithm because of additional conditions of the expander. The
formal algorithm, theorem and proofs are presented in Sect. 3.

Proof Composition via Code-Switching. With the expander graph sampled
above and the corresponding linear code, we are able to build efficient ZKP
schemes following the approaches in [BCG+17,BCG20,GLS+]. However, the
proof size is O(N1/c) instead of polylog(N). To reduce the proof size, a common
technique in the literature is proof composition. Instead of sending the proof
directly to the verifier, the prover uses a second ZKP scheme to show that the
proof of the first ZKP is indeed valid. In particular, in [BCG+17,BCG20,GLS+],
the proof is a codeword of the linear-time encodable code, and the checks can
be represented as several inner products between the message in the codeword
of the proof and some public vectors.

Unfortunately, we do not have a second ZKP scheme with a polylog(N) proof
size to prove inner products. If we had it, we would already be able to build a
ZKP scheme with polylog(N) proof size in the first place. Instead, we rely on the
fact that the proof is a codeword of the linear code and construct the second ZKP
scheme as follows. One component of the second ZKP scheme is the encoding
circuit of the linear-time encodable code. It takes the witness of the second ZKP
scheme, encodes it and outputs several random locations of the codeword. The
verifier checks that these random locations are the same as the proof of the first
ZKP scheme, without receiving the entire proof. By the distance of the linear-
time encodable code, we show that the witness of the second ZKP must be the
same as the message in the proof of the first ZKP with overwhelming probability.
After that, the other component of the second ZKP checks the inner product
relationship modeled as an arithmetic circuit.

With this idea, we can use any general-purpose ZKP scheme on arithmetic
circuits with a polylog(N) proof size as the second ZKP scheme in the proof
composition. The size of this circuit is only O(

√
N), thus the second ZKP does

not introduce any overhead on the prover time as long as its prover time is no
more than quadratic. In our construction, we use the ZKP scheme in [ZXZS20] as
the second ZKP. The scheme is based on the interactive oracle proofs (IOP) and
the witness is encoded using the Reed-Solomon code. Therefore, the technique
is called code switching. The formal protocols are presented in Sect. 4.

1.3 Related Work

Zero-knowledge proof was introduced in [GMR89] and generic constructions
based on PCPs were proposed by Kilian [Kil92] and Micali [Mic00] in the
early days. Driven by various applications mentioned in the introduction, there
has been significant progress in efficient ZKP protocols and systems. Catego-
rized by their underlying techniques, there are ZKP systems based on bilinear
maps [PHGR13,BSCG+13,BFR+13,BSCTV14,CFH+15,WSR+15,FFG+16,
GKM+18,MBKM19,GWC19,CHM+20,KPPS20], MPC-in-the-head [GMO16,
CDG+17,AHIV17,KKW18], interactive proofs [ZGK+17a,ZGK+17b,WTS+18,
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ZGK+18,XZZ+19,ZLW+21], discrete logarithm [BBB+18,BFS20,Set20,SL20],
interactive oracle proofs (IOP) [BSCR+19,BSBHR19,ZXZS20,BFH+20,COS20,
BDFG20], and lattices [BBC+18,ESLL19,BLNS20,ISW21]. As mentioned in the
introduction, these schemes perform either an FFT (such as schemes based on
MPC-in-the-head and IOP) or a multi-scalar exponentiation (such as schemes
based on discrete-log and bilinear pairing), making the complexity of the prover
time super-linear in the size of the circuit.

With the techniques proposed in [XZZ+19,ZLW+21], the prover time of the
schemes based on the interactive proofs (the GKR protocol [GKR08]) is linear if
the size of the input is significantly smaller than the size of the circuit. However,
the goal of this paper is to make the prover time strictly linear without such a
requirement, and our polynomial commitment scheme can also be plugged into
these schemes to improve their efficiency.

Schemes with Linear Prover Time. As mentioned before, schemes in
[BCG+17,BCG20,BCL22,GLS+] are the only candidates in the literature with
linear prover time and succinct proof size. They all use linear-time encodable
codes based on expander graphs and our first contribution applies to all of them.
Moreover, our ZKP scheme is based on the polynomial commitment in [GLS+]
and the tensor IOP in [BCG20], and we improve the proof size to O(log2 N)
through a proof composition. In fact, the scheme in [BCL22] also proposes a
proof composition with the PCP in [Mie09]. However, the complexity of the
PCP is polynomial time. That is why the scheme in [BCL22] has to be built
on the scheme in [BCG20] with a proof size of O(N1/c) and is not concretely
efficient, while our scheme can be built on top of the efficient scheme in [GLS+]
with a proof size of O(

√
N). A similar proof composition with PCP was also used

in [RZR20] for a different purpose. We view our approach using the encoding
circuit as a variant of the proof composition that is efficient in practice, and we
inherit the name “code switching” from [RZR20].

Finally, the scheme in [GLS+] samples a random graph to build the linear-
time encodable code. The scheme achieves a soundness error of O( 1

poly(N) ) and
the authors spent great efforts to calculate parameters to achieve a concrete
failure probability of 2−100 for large circuits in practice [GLS+, Claim 2 and
Fig. 2]. Our sampling algorithm provides the provable security guarantee for a
negligible soundness error for their scheme. Moreover, we improve the proof size
from O(

√
N) to O(log2 N) efficiently, solving an open problem left in [GLS+].

Schemes with Linear Proof Size. Recently, there is a line of work construct-
ing ZKP based on secure multiparty computation (MPC) techniques [WYKW20,
DIO21,BMRS21,YSWW21] and these schemes have demonstrated fast prover
time in practice. If one treats a block cipher (e.g., AES) as a constant-time oper-
ation because of the CPU instruction, these schemes indeed have a linear time
prover (we are using a similar CPU instruction for the hash function SHA-256 in
our scheme to achieve linear prover time). However, they have linear proof size in
the size of the circuit, are inherently interactive, and are not publicly verifiable,
which are not desirable in many applications. We mainly focus on non-interactive
ZKP with succinct proof size and public verifiability in this paper.
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Expander Testing. Testing the properties of expander graphs is a deeply
explored area in computer science. Many works [NS07,CS07,GR11] have pro-
posed efficient testing algorithms without accessing the whole graph. However,
these algorithms do not directly apply to our testing of lossless expander. For
example, the algorithm in [NS07] based on random walks can differentiate good
expanders from graphs that are far from expanders, while our scheme can differ-
entiate whether a graph is a lossless expander or not with overwhelming prob-
ability. Of course our algorithm accesses the entire graph, which is fine in our
application of linear-time encodable code. To the best of our knowledge, we are
not aware of any testing algorithm with such properties.

There are also impossibility results on expander testing [KS16]. Due to differ-
ent definitions of expansion, our testing algorithm cannot distinguish the cases
in [KS16, Theorem 1.1] and thus it does not violate the impossibility results.

2 Preliminary

We use [N ] to denote the set {0, 1, 2, ..., N −1}. poly(N) means a function upper
bounded by a polynomial in N with a constant degree. We use λ = ω(log N) to
denote the security parameter, and negl(N) to denote the negligible function in
N , i.e. negl(N) ≤ 1

poly(N) for all sufficiently large N and any polynomial. Some
papers define negl(λ) as the negligible function. As λ is a function of N , they are
essentially the same and negl(N) ≤ 1

2λ . “PPT” stands for probabilistic polyno-
mial time. 〈A(x), B(y)〉(z) denotes an interactive protocol between algorithms
A,B with x as the input of A, y as the input of B and z as the common input.

2.1 Linear Time Encodable Linear Code

Definition 1 (Linear Code). A linear error-correcting code with message
length k and codeword length n is a linear subspace C ∈ F

n, such that there
exists an injective mapping from message to codeword EC : Fk → C, which is
called the encoder of the code. Any linear combination of codewords is also a
codeword. The rate of the code is defined as k

n . The distance between two code-
words u, v is the hamming distance denoted as Δ(u, v). The minimum distance
is d = minu,v Δ(u, v). Such a code is denoted as [n, k, d] linear code, and we also
refer to d

n as the relative distance of the code.

Generalized Spielman Code. In our construction, we use a family of lin-
ear codes that can be encoded in linear time and has a constant relative dis-
tance [Spi96,DI14,GLS+]. The code was first proposed by Daniel Spielman
in [Spi96] over the Boolean alphabet. Druk and Ishai [DI14] generalized it to
a finite field F, and introduced a distance boosting technique to achieve the
Gilbert-Varshamov bound [Gil52,Var57]. We only use the basic construction over
F without the distance boosting, and thus refer to it as the generalized Spielman
code in this paper. The code relies on the existence of lossless expander graphs,
which is defined below:
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Definition 2 (Lossless Expander [Spi96]). Let G = (L,R,E) be a bipartite
graph. 0 < ε < 1 and 0 < δ be some constants. The vertex set consists of L and
R, two disjoint subsets, henceforth the left and right vertex set. Let Γ (S) be the
neighbor set of some vertex set S. We say G is an (k, k′; g)-lossless expander
if |L| = k, |R| = k′ = αk for some constant α, and the following property hold:

1. Degree: The degree of every vertex in L is g.
2. Expansion: |Γ (S)| ≥ (1 − ε)g|S| for every S ⊆ L with |S| ≤ δ|L|

g .

Intuitively speaking, a lossless expander has very strong expansion. As the
degree of each left vertex is g, a set of |S| left vertices have at most g|S| neighbors,
while the second condition requires that every set expands to at least (1− ε)g|S|
vertices for a small constant ε. Meanwhile, as the right vertext set has |R| = αk
vertices, such an expansion is not possible if |S| > αk

(1−ε)g , thus there is a condition
|S| ≤ δk

g bounding the size of S. An example is shown in Fig. 1.

Construction of Generalized Spielman Code. With the lossless expander, we
give a brief description of the generalized Spielman code. Let G = (L,R,E)
be a lossless expander with |L| = 2t, |R| = 2t−1. Let At be a 2t × 2t−1 matrix
where At[i][j] = 1 if there is an edge i, j in G for i ∈ [2t], j ∈ [2t−1]; otherwise
At[i][j] = 0. The generalized Spielman code is constructed as follows:

1. Let Et
C(x) be the encoder function of input length |x| = 2t, and its output

will be a codeword of size 2t+2. We use EC to denote the encoder function
when length is clear.

2. If |x| ≤ n0 then directly output x, for some constant n0.
3. Compute m1 = xAt. Each entry of m1 can be viewed as a vertex in R, and

value of each vertex is the summation of its neighbors in L. The length of m1

is 2t−1.
4. Recursively apply the encoder Et−1

C on m1, let c1 = Et−1
C (m1).

5. Compute c2 = c1At+1.
6. Output x 
 c1 
 c2 as the codeword of size 2t+2. 
 denotes concatenation.

Lemma 1 (Generalized Spielman code, [DI14]). Given a family of lossless
expander, that achieves (1 − ε)g|S| expansion with |S| ≤ δ|L|

g , for input size k,
the generalized Spielman code is a [4k, k, δ

8g k] linear code over F.

The code in [GLS+] is a variant of generalized Spielman code. In their con-
struction, random weights are assigned to each edge of lossless expander at line
3, 5. And randomize the output at line 6: (x⊗r)
c1
c2, here ⊗ is element-wise
multiply, r is a random vector.

Definition 3 (Tensor code). Let C be a [n, k, d] linear code, the tensor code
C⊗2 of dimension 2 is the linear code in F

n2
with message length k2, codeword

length n2, and distance nd. We can view the codeword as a n × n matrix. We
define the encoding function below:
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1. A message of length k×k is parsed as a k×k matrix. Each row of the matrix
is encoded using EC , resulting in a codeword C1 of size k × n.

2. Each column of C1 is then encoded again using EC . The result C2 of size n×n
is the codeword of the tensor code.

2.2 Collision-Resistant Hash Functions and Merkle Tree

Let H : {0, 1}2λ → {0, 1}λ be a hash function. A Merkle Tree is a data structure
that allows one to commit to l = 2dep messages by a single hash value h, such
that revealing any bit of the message require dep + 1 hash values.

A Merkle hash tree is represented by a binary tree of depth dep where l
messages elements m1,m2, ...,ml are assigned to the leaves of the tree. The
values assigned to internal nodes are computed by hashing the value of its two
child nodes. To reveal mi, we need to reveal mi together with the values on the
path from mi to the root. We denote the algorithm as follows:

1. h ← Merkle.Commit(m1, ...,ml).
2. (mi, πi) ← Merkle.Open(m, i).
3. {accept, reject} ← Merkle.Verify(πi,mi, h).

2.3 Zero-Knowledge Arguments

An argument system for an NP relation R is a protocol between a computa-
tionally bounded prover P and a verifier V. At the end of the protocol V will
be convinced that there exits a witness w such that (x,w) ∈ R for some public
input x. We focus on arguments of knowledge which require the prover know the
witness w. We formally define zero-knowledge as follows:

Definition 4 (View). We denote by View(〈P,V〉(x)) the view of V in an
interactive protocol with P. Namely, it is the random variable (r, b1, b2, ..., bn,
v1, v2, ..., vm) where r is V’s randomness, b1, ..., bn are messages from V to P,
and v1, ..., vm are messages from P to V.

Definition 5. Let R be an NP relation. A tuple of algorithm (G,P,V) is a
zero-knowledge argument of knowledge for R if the following holds.

– Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

Pr[〈P(w),V()〉(pp, x) = accept] = 1.

– Knowledge Soundness. For any PPT adversary P∗, there exists a PPT
extractor ε such that for every pp output by G(1λ) and any x, the following
probability is negl(N):

Pr[〈P∗(), V()〉(pp, x) = accept, (x, w) /∈ R|w ← ε(pp, x,View(〈P∗(), V()〉(pp, x)))]
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– Zero knowledge. There exists a PPT simulator S such that for any PPT
algorithm V∗, (x,w) ∈ R, pp output by G(1λ), it holds that

View(〈P(w),V∗()〉(x)) ≈ SV∗
(pp, x)

Where SV∗
(x) denotes that S is given oracle accesses to V∗’s random tape.

We say that (G,P,V) is a succinct argument system if the total communication
between P and V (proof size) is poly(λ, |x|, log |w|).
Definition 6 (Arithmetic circuit). An arithmetic circuit C over F and a set
of variables x1, ..., xN is a directed acyclic graph as follows:

1. Each vertex is called a “gate”. A gate with in-degree zero is an input gate and
is labeled as a variable xi or a constant field element in F.

2. Other gates have 2 incoming edges. It calculates the addition or multiplication
over the two inputs and output the result.

3. The size of the circuit is defined as the number of gates N .

2.4 Polynomial Commitment

A polynomial commitment consists of three algorithms:

– PC.Commit(φ(·)): the algorithm outputs a commitment R of the polynomial
φ(·).

– PC.Prove(φ, �x,R): given an evaluation point φ(�x), the algorithm outputs a
tuple 〈�x, φ(�x), π�x〉, where π�x is the proof.

– PC.VerifyEval(π�x, �x, φ(�x),R): given π�x, �x, φ(�x),R, the algorithm checks if φ(�x)
is the correct evaluation. The algorithm outputs accept or reject.

Definition 7 ((Multivariate) Polynomial commitment). A polynomial
commitment scheme has the following properties:

– Correctness. For every polynomial φ and evaluation point �x, the following
probability holds:

Pr

⎛
⎜⎜⎜⎝

PC.Commit(φ) → R
PC.Prove(φ, �x,R) → �x, y, π

y = φ(�x)
PC.VerifyEval(π, �x, y,R) → accept

⎞
⎟⎟⎟⎠ = 1

– Knowledge Soundness. For any PPT adversary P∗ with PC.Commit∗,
PC.Prove∗, there exists a PPT extractor E such that the probability below
is negligible:

Pr

⎛
⎜⎝

PC.Commit∗(φ∗) → R∗

PC.Prove∗(φ∗, �x, R∗) → �x, y∗, π∗

PC.VerifyEval(π∗, �x, y∗, R∗) → accept

∣∣∣∣∣∣∣
φ∗ ← E(R∗, �x, π∗, y∗) ∧ y∗ 	= φ∗(�x)

⎞
⎟⎠
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– Zero-knowledge. For security parameter λ, polynomial φ, any PPT adver-
sary A, there exists a simulator S = [S0,S1], we consider following two
experiments:

RealA,φ(pp):
1. R ← Commit(pp, φ)
2. �x ← A(R, pp)
3. (�x, y, π) ← Prove(φ, �x, R)
4. b ← A(π, �x, y, R)
5. Output b

IdealA,SA(pp):
1. R ← S0(1

λ, pp)
2. �x ← A(R, pp)
3. (�x, y, π) ← SA

1 (�x, pp), given oracle
access to y = φ(�x)

4. b ← A(π, �x, y, R)
5. Output b

For any PPT adversary A, two experiments are identically distributed:

Pr[|RealA,f (pp) − IdealA,SA(pp)| = 1] ≤ negl(N)

3 Testing Algorithm for Lossless Expander

As explained above, the generalized Spielman code relies on the existence of loss-
less expanders. On one hand, there are explicit constructions of lossless expanders
in the literature [CRVW02]. However, there are large hidden constants in the
complexity and the constructions are not practical. On the other hand, a random
bipartite graph is a lossless expander with a high probability of 1 − O( 1

poly(k) ),
where k is the size of the left vertex set in the bipartite graph. However, this is
not good enough for cryptographic applications.

In this section, we propose a new approach to sample a lossless expander
with a negligible failure probability. The key ingredient of our approach is a
new algorithm to test whether a randomly sampled bipartite graph is a lossless
expander or not. We begin the section by introducing the classical randomized
construction of a lossless expander and its analysis.

3.1 Random Construction of Lossless Expander

As defined in Definition 2, a lossless expander graph is a g-left-regular bipartite
graph G = (L,R,E). Wigderson et al. [HLW06, Lemma 1.9] showed that a ran-
dom bipartite graph is a lossless expander with a high probability. In particular,
we have the following lemma:

Lemma 2 ([HLW06]). For fixed constant parameters g, δ, α, ε, a random g-
left-regular bipartite graph is a (k, k′; g)-lossless-expander with probability 1 −
O( 1

poly(k) ).

Proof. Let G = (L,R,E) be a random bipartite graph with k vertices on the
left and k′ = O(k) vertices on the right, where each left vertex connects to a
randomly chosen set of g vertices on the right.

Let s = |S| be the cardinality of a left subset of vertices S ⊆ L such that
s ≤ δk

g , and let t = |T | be the cardinality of a right subset of vertices T ⊆ R such
that t ≤ (1−ε)gs. Let XS,T be an indicator random variable for the event that all
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the edges from S connect to T . Then for a particular S, if
∑

T∈R XS,T = 0, then
the number of neighboring vertices of S must be larger than (1−ε)gs. Otherwise,
if there exists a T ∈ R such that XS,T = 1, i.e., all edges from S connect to T ,
the graph is not a lossless expander. As the edges are sampled randomly, the
probability of this non-expanding event is ( t

k′ )sg. Therefore, summing over all S
and by the union bound, the probability of a non-expanding graph is:

Pr[(
∑
S,T

XS,T ) > 0] ≤
∑
S,T

Pr[XS,T = 1] =
∑
S,T

(
t

k′ )
sg

≤
δk
g∑

s=2

(
k

s

)(
k′

t

)
(

t

k′ )
sg ≤

δk
g∑

s=2

(
k

s

)(
k′

(1 − ε)gs

)
(
(1 − ε)gs

k′ )sg

Using the inequality
(
k
s

) ≤ (ke
s )s, the probability above is

≤
δk
g∑

s=2

(
ke

s
)s(

k′e
(1 − ε)gs

)(1−ε)gs(
(1 − ε)gs

k′ )sg

=

δk
g∑

s=2

(
ke

s
)se(1−ε)gs(

(1 − ε)gs

k′ )εgs

=

δk
g∑

s=2

e(1−ε)gs+s · (
k

s
)s · (

(1 − ε)gs

k′ )εgs (1)

When s, ε, g are constants and k′ = O(k), e(1−ε)gs+s is a constant, (k
s )s is

O(poly(k)), and ( (1−ε)gs
k′ )εgs is O( 1

poly(k) ). Therefore, the overall upper bound is
at least O( 1

poly(k) ).

The derivation above shows that the probability that a random graph is
not a lossless expander is upper-bounded by O( 1

poly(k) ), which is not negligible.
Furthermore, we show that the lower-bound of the non-expanding probability is
also not negligible through a simple argument here.

We focus on the case where s is a constant. The number of all possible sub-
graphs induced by a left subset of vertices S is at most k′sg = O(poly(k)). That is,
the size of the entire probability space is bounded by a polynomial. The number
of non-expanding graphs is at least 1 (e.g., all edges from S connect to a single
vertex in R). Therefore, the non-expanding probability is at least O( 1

poly(k) ).

Lossless Expander in [GLS+]. As explained in Sect. 2.1, in [GLS+], the authors
extended the generalized Spielman code by adding random weights to the edges
in the bipartite graph. However, the graph still needs to be a lossless expander in
order to achieve a constant relative distance, and the same issue above applies to
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their construction. In particular, as shown by [GLS+, Claim 2], the probability
of not sampling a lossless expander is

2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 ,

where H(x) = −x log x − (1 − x) log(1 − x). We show that the probability above
is not negligible. First, for any constant const,

xH(const/x) = x(−const

x
log

const

x
− (1 − const

x
) log(

x − const

x
)

= (const log(x) − const log const) + (1 − const

x
) log(

x − const

x
).

By taking the limit, we have limx→∞ xH(const/x) = (const log(x) −
const log const) + 1 × 0. Therefore, xH(const/x) = O(log x). Applying this
fact to the equation above, kH(15/k) + αkH(19.2/(αk)) = O(log k), and
−15g log αk

19.2 = −O(log k). Therefore, 2kH(15/k)+αkH(19.2/(αk))−15g log αk
19.2 is at

least 2−O(log k) = 1
poly(k) . The failure probability is similar to the upper bound

in Eq. 1.

3.2 Algorithm Based on Densest Sub-graph

To reduce the non-expanding probability of the random construction, we take a
closer look at the equations above. Equation 1 shows that the probability that a
random bipartite graph is a not lossless expander is upper bounded by 1

poly(k) .
However, we observe that within the summation, the probability is actually
negligible when s is large. In particular, if we decompose the summation in Eq. 1
into two sums, one for 2 ≤ s ≤ log log k, and the other for s ≥ log log k, the
second part is

δk
g∑

s=log log k

e(1−ε)gs+s · (
k

s
)s · (

(1 − ε)gs

k′ )εgs. (2)

Lemma 3. Equation 2 is negligible if the following conditions are met:

1. (1 − ε)δ + δ
g + δ

g log( g
δ ) + log( δ

α )εδ < −0.001,
2. εd > 2.

Here –0.001 is just any small constant that is less than 0. We give a proof in
the full version of the paper. To provide an intuition on how these parameters
are set, we give an example here: δ = 1

11 , ε = 7
16 , g = 16, k′ = 1

2k. We can verify
the condition:

1. εg = 7 > 2.
2. (1 − ε)δ + δ

g + δ
g log( g

δ ) + log( δ
α )εδ = −0.009 < −0.001.
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Sampling Lossless Expander with Negligible Failure Probability. The
observation above shows that the non-expanding probability is dominated by
small sub-graphs with size 2 ≤ s ≤ log log k. This actually matches our lower
bound in Sect. 3.1, as there are only polynomially many such sub-graphs and
there exist ones that do not expand. Therefore, in order to reduce the non-
expanding probability, we propose a new algorithm that detects small sub-graphs
of size s ≤ log log k that do not expand. The algorithm is based on the densest
sub-graph problem, and we are the first to make the connection between the
densest sub-graph and the lossless expander.

Definition 8 (Densest Sub-graph Problem). Let G = (V,E) be an undi-
rected graph, and let S = (ES , VS) be a subgraph of G. The density of S is
defined to be den(S) = ES

VS
. The densest sub-graph problem is to find S such that

it maximizes den(S). We denote the maximum density by Den(G).

Theorem 1 [Gol84]. For any graph G = (V,E), there is a polynomial time
algorithm that find the densest sub-graph G′ = (V ′, E′) such that V ′ ⊆ V and
G′ is the sub-graph. And |E′|

|V ′| is maximized. The running time of the algorithm
is O(|V ||E| log |E| log |V |).

We will use this algorithm as a building block of our testing algorithm. First,
we define a notion of perfect expander, and then derive the density of a perfect
expander.

Definition 9 (Perfect expander). Let G = (L,R,E) be a bipartite graph.
We say G is an (k∗, k′; g)-perfect expander if |L| = k∗, |R| = k′, the following
property holds (where Γ (S) denotes the set of neighbors of a set S in G):

1. Degree: every vertex a ∈ L, it has constant degree g.
2. Expansion: |Γ (S)| ≥ (1 − ε)g|S| for every S ⊆ L.

Compared to lossless expander, the perfect expander does not have the upper
bound on |S| in the expansion property. Therefore, k′ has to be much larger than
k∗, unlike the case of lossless expander where k′ = O(k). Now we show that the
density of a perfect expander is low:

Theorem 2. If a bipartite graph is a perfect expander, its density is at most
g

1+(1−ε)g ; otherwise, the density of the graph is larger than g
1+(1−ε)g .

Proof. We first show that the density of a perfect expander is at most g
1+(1−ε)g .

For any subset L′ ⊆ L, we prove that among all sub-graphs that L′ is the left
vertex set, the graph induced by (L′, Γ (L′)) has the maximum density.

To see this, suppose V ′ = (L′, R′), R′ �= Γ (L′) has density |E′|
|V ′| that is the

densest sub-graph with L′ as its left vertex set.

Case 1: If there exists a vertex y ∈ R′, y /∈ Γ (L′), then there is no edge
between y and L′. We can increase the density by removing y from R′, as

|E′|
|V ′|−1 > |E′|

|V ′| . This is a contradiction. Therefore, R′ ⊆ Γ (L′).
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Case 2: If there exists an element y ∈ Γ (L′), y �∈ R′, let c ≥ 1 be the number of
edges between y and L′, by adding y to R′, the density becomes |E′|+c

|V ′|+1 > |E′|
|V ′| .

This is a contradiction again and thus Γ (L′) ⊆ R′.

Therefore, we have Γ (L′) = R′ and V ′ = (L′, Γ (L′)) maximizes the den-
sity among all sub-graphs with L′ as the left vertex set. Let that sub-graph
be G′. By the expansion property of the perfect expander, den(G′) = |E′|

|V ′| ≤
|L′|g

|L′|+(1−ε)g|L′| = g
1+(1−ε)g . Therefore, the maximum density Den(G) = maxL′⊆L

den(G′) ≤ g
1+(1−ε)g .

Next, we show that if a bipartite graph is not a perfect expander, its density is
larger than g

1+(1−ε)g . Let S∗ be the set such that |Γ (S∗)| < (1−ε)g|S∗|, then the

density of the sub-graph G′ = (V ′ = (S∗, Γ (S∗)), E′) is |E′|
|V ′| > g|S∗|

|S∗|+(1−ε)g|S∗| =
g

1+(1−ε)g , so Den(G) ≥ den(G′) > g
1+(1−ε)g .

3.3 Testing Random Lossless Expander

Theorem 2 suggests a way to test whether a random graph is a lossless expander.
As discussed in Lemma 3, when s ≥ log log k the non-expanding probability is
negligible. Thus, it suffices to test whether there is a sub-graph of size s <
log log k that does not expand. In particular, we are trying to distinguish the
following two cases:

1. Yes case: For G = (L,R,E), ∀S ⊆ L, |S| ≤ log log k, we have |Γ (S)| ≥
(1 − ε)g|S|.

2. No case: For G = (L,R,E), there exists a subset S∗ ⊆ L, |S∗| ≤ log log k,
such that |Γ (S∗)| < (1 − ε)g|S0|.
To distinguish these two cases, we cannot directly apply the densest sub-

graph algorithm on the entire bipartite graph, because the expansion property
only holds for |S| ≤ δk

g by Definition 2 of the lossless expander. The densest
sub-graph algorithm would return a large sub-graph with |S| > δk

g even if it is
a lossless expander, as the density of the large sub-graph could be larger than

g
1+(1−ε)g by Theorem 2.

Instead, we randomly sample sub-graphs G∗ = ((L′, Γ (L′)), E′) with δk
g ver-

texes in the left vertex set. If there exists a small non-expanding sub-graph
with at most log log k vertices on the left, the density of this small sub-graph
is larger than g

1+(1−ε)g and the probability of it is in the sub-graph G∗ is at
least ( δ

g )log log k. Once it is contained in G′, the densest-sub-graph algorithm
will output a sub-graph with density larger than g

1+(1−ε) . We will sample G∗

g
δ
log log k times to amplify the probability. The formal algorithm is presented in

Algorithm 1.

Theorem 3 (Distinguisher). Algorithm 1 achieves the following properties:

1. If G is a Yes case, then the algorithm will return SUCC with probability 1.
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Algorithm 1. Distinguisher
1: Let G = (L, R, E) be the random bipartite graph.
2:
3: for i ∈ [( g

δ
)log log k] do

4: Sample a random set L′, where |L′| = δk
g

.

5: Run densest graph algorithm in [Gol84] on the subgraph induced by L′: G∗ =
((L′, Γ (L′)), E′) to find its densest subgraph.

6: if Den(G∗) > g
1+(1−ε)g

then
7: return FAIL
8: return SUCC

2. If G is a No case, then the algorithm will return FAIL with probability at
least 1 − 1

e .

Proof. By Theorem 2, if the random graph is in Yes case, then the dis-
tinguisher will always return SUCC, since for every induced sub-graph G∗,
it is a perfect expander. Otherwise, if the random graph contains a subset
S0 ⊆ L, |S0| ≤ log log k such that |Γ (S0)| < (1 − ε)g|S0|, then with prob-

ability at least (
δk
g

k )log log k = ( δ
g )log log k, S0 will be a subset of L′ sampled

by the algorithm. In this case, L′ is not a perfect expander graph and by
Theorem 2, Den(G∗) > g

1+(1−ε)g and the algorithm will return FAIL. Since

we repeat it g
δ
log log n times, the probability that we did not successfully sam-

ple S0 is (1 − ( δ
g )log log k)(

g
δ )

log log k

. By the inequality (1 − 1
n )n ≤ 1

e , we have

(1 − ( δ
g )log log k)(

g
δ )

log log k ≤ 1
e .

By repeating the distinguisher λ times, we can amplify the detection prob-
ability of the No case to 1 − 1

eλ . Finally, we re-sample the random graph until
the distinguisher returns SUCC. The successful probability of one sampling is
1 − O( 1

poly(k) ), so the expected number of sampling is a constant. The algorithm
runs λ( g

δ )log log k instances of the densest sub-graph algorithm, and each instance
involves a graph with at most δ k

g vertices and δk edges, so the total running time is
O(λ( g

δ )log log kk2 log2 k) = O(λpolylog(k)k2). The same algorithm can also apply
to the lossless expander graph in [GLS+]. Our sampling algorithm is very efficient
in practice. First, it does not involve any cryptographic operations and is done
once. Second, k =

√
N in our protocol of the polynomial commitment in the next

section, so the complexity is actually quasi-linear in the size of the zero-knowledge
argument instance. Finally, the complexity of the densest sub-graph algorithm in
Theorem 1 is for arbitrary graphs. As observed in our experiments, the algorithm
is faster on random bipartite graphs and we conjecture that there is a better com-
plexity analysis, which is left as an interesting future work.

4 Our New Zero-Knowledge Argument

In this section, we present the construction of our zero-knowledge argu-
ment scheme. Many existing papers show that one can build zero-knowledge
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arguments from polynomial commitments [WTS+18,ZXZS20,CHM+20,Set20,
GWC19,BFS20,GLS+]. We adopt the same technique and focus on construct-
ing a polynomial commitment because of its simplicity and efficiency, but our
approach can be applied directly to the zero-knowledge arguments for R1CS
in [BCG20,BCL22] to improve the prover time and the proof size. We start the
section by describing the polynomial commitment scheme in [GLS+] based on
the tensor IOP protocol in [BCG20] with a proof size of O(

√
N).

4.1 Polynomial Commitment from Tensor Query

In [GLS+], Golovnev et al. observed that a polynomial evaluation can be
expressed as a tensor product. Here we only consider multilinear polynomial
commitments, which can be used to construct zero-knowledge arguments based
on the approaches in [ZGK+17b,WTS+18,XZZ+19,ZXZS20,Set20], but our
scheme can be extended to univariate polynomials. In particular, given a multi-
linear polynomial φ, its evaluation on input vector x0, x1, ..., xlog N−1 is:

φ(x0, x1, ..., xlog N−1) =
1∑

i0=0

1∑
i1=0

...
1∑

ilog N−1=0

wi0i1...ilog N−1x
i0
0 xi1

1 ...x
ilog N−1
log N−1.

The degree of each variable is either 0 or 1 by the definition of a multilinear poly-
nomial, and thus there are N monomials and coefficients with log N variables. We
let i =

∑log N−1
j=0 2jij , that is, i0i1...ilog N−1 is the binary representation of num-

ber i. We use w to denote the coefficients where w[i] = wi0i1...ilog N−1 . Similarly
we define Xi = xi0

0 xi1
1 ...x

ilog N−1
log N−1. Let k =

√
N , r0 = {X0,X1, ...,Xk−1}, r1 =

{X0×k,X1×k,X2×k, ...,X(k−1)×k}. Then we have X = r0 ⊗ r1. The polynomial
evaluation is reduced to a tensor product φ(x0, x1, ..., xlog N−1) = 〈w, r0 ⊗ r1〉.
Using the tensor IOP protocol in [BCG20], one can build a polynomial commit-
ment [GLS+] and we present the protocol in Protocol 2 for completeness. Here
we reuse the notation k as it is exactly the message length of the linear code.

As shown in the protocol, to commit to a polynomial, PC.Commit parses
the coefficients w as a k × k matrix and encodes it using the tensor code with
dimension 2 as defined in Definition 3. Then the algorithm constructs a Merkle
tree commitment for every column C2[:, i] of the n × n codeword C2, and finally
builds another Merkle tree on top of their roots as the final commitment.

To answer the tensor query, there are two checks in the protocol: a proximity
check and a consistency check. The proximity check ensures that the matrix in
the commitment is indeed close to a codeword of the tensor code. The consistency
check ensures that y = 〈r0 ⊗ r1, w〉 assuming R is a commitment of a codeword.

Proximity Check. The proximity heck has two steps. First, the verifier sends a
random vector γ0 to the prover, and the prover computes the linear combination
of all rows of C1 and w with γ0, as in Step 8 in Protocol 2. Because of the property
of a linear code, cγ0 is a codeword with message yγ0 , and this step is referred to
as the “fold” operation in [BCG20]. Second, the prover shows that cγ0 is indeed
computed from the committed tensor codeword. To do so, the verifier randomly
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Protocol 2. Polynomial commitment from [BCG20,GLS+]
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ, the coefficient of φ is denoted by w.
Let C be the [n, k, d]-linear code, EC : Fk → F

n be the encoding function, N = k×k.
If N is not a perfect square, we can pad it to the next perfect square.
We use a python style notation to select the i-th column of a matrix mat[:, i].

1: function PC.Commit(φ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3. Here C1 is a k×n matrix and C2 is a n×n matrix.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-

put R as the commitment.

6: function PC.Prove(φ, �x, R)
7: The prover receives a random vector γ0 ∈ F

k from the verifier.
8: cγ0 =

∑k−1
i=0 γ0[i]C1[i], yγ0 =

∑k−1
i=0 γ0[i]w[i]. 
 Proximity

9: c1 =
∑k−1

i=0 r0[i]C1[i], y1 =
∑k−1

i=0 r0[i]w[i]. 
 Consistency
10: Prover sends c1, y1, cγ0 , yγ0 to the verifier.
11: Verifier randomly samples t ∈ [n] indexes as an array Î and send it to prover.
12: for idx ∈ Î do
13: Prover sends C1[:, idx] and the Merkle tree proof of Rootidx for C2[:, idx] under

R to verifier
14: function PC.VerifyEval(π�x, �x, y = φ(�x), R)
15: ∀idx ∈ Î , cγ0 [idx] == 〈γ0,C1[:, idx]〉 and EC(yγ0) == cγ0 . 
 Proximity
16: ∀idx ∈ Î , c1[idx] == 〈r0,C1[:, idx]〉 and EC(y1) == c1. 
 Consistency
17: y == 〈r1, y1〉. 
 Tensor product
18: ∀idx ∈ Î, EC(C1[:, idx]) is consistent with Rootidx, and Rootidx’s Merkle tree proof

is valid.
19: Output accept if all conditions above holds. Otherwise output reject.

selects t columns and the prover opens them with their Merkle tree proofs. The
verifier checks that the inner product between each column and the random
vector γ0 is equal to the corresponding element of cγ0 (Step 15). As shown
in [BCG+17,BCG20], if the linear code has a constant relative distance, the
committed matrix is close to a tensor codeword with overwhelming probability.

Consistency Check. The consistency check follows exactly the same steps of the
proximity check. Instead of using a random vector from the verifier, the linear
combination is done with r0 of the tensor query r0⊗r1. Similarly, c1 is a codeword
of the linear code with message y1, and φ(x) = 〈y1, r1〉 by the definition of
tensor product and polynomial evaluation. As shown in [BCG20], by the check
in Step 16, if the committed matrix in R is close to a tensor codeword, then
y = φ(x) with overwhelming probability. In particular, there exist an extractor
to extract a polynomial φ from the commitment such that y = φ(x).

Theorem 4 (Polynomial commitment [BCG20,GLS+]). Protocol 2 is a
polynomial commitment that is correct and sound as defined in Definition 7.
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Fig. 2. An illustration of code switching. The circuit on the right for Check 1, 2 and
Check 3, 4 are the same.

Efficiency. The prover’s computation is dominated by encoding the tensor code,
which takes O(N) time using a linear-time encodable code such as the generalized
Spielman code. The proof size is O(t

√
N), as the prover opens t random columns

of size
√

N to the verifier. The verifier time is also O(t
√

N) to check the inner
products and to encode t columns.

4.2 Efficient Proof Composition via Code Switching

The proof size of the polynomial commitment in Protocol 2 is O(
√

N) (the
complexity hides a security parameter t). There are three steps that incur O(

√
N)

proof size in Protocol 2: Step 8, 9, and 13. In this section, we present a new
protocol that reduces the proof size to O(log2 N) via the technique of proof
composition. The idea is to use a second proof system to prove that the checks
of these three steps are satisfied, without sending the proofs of these steps to
the verifier directly.

To design the second proof system efficiently, our key observation is that the
values sent by the prover in these three steps are messages of the linear-time
encodable code. That is, yγ0 is the message of cγ0 in Step 8, y1 is the message
of c1 in Step 9 and C1[:, idx] is the message of C2[:, idx] for every idx in Step 13.
Therefore, the second proof system takes yγ0 , y1 and C1[:, idx] for idx ∈ I as the
witness, and performs the following computations:

1. It encodes the witness using the encoding circuit of the linear-time encodable
code.

2. It outputs a subset of random indices of the codewords chosen by the veri-
fier. By checking whether the values of these indices are consistent with the
commitments by the prover via the Merkle tree, it guarantees that the wit-
ness is indeed the same as the messages specified above with overwhelming
probability because of the minimum distance property of the code.
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Protocol 3. Code Switching Statement CCS

Witness: yγ0 , y1, C1[:, idx] ∀idx ∈ Î in Protocol 2.
Public input: γ0, r0, r1, y.
Public information: Î and I chosen by the verifier.

1: Encode cγ0 := EC(yγ0), c1 := EC(y1).
2: for idx ∈ Î do
3: Encode C2[:, idx] := EC(C1[:, idx)
4: for idx ∈ Î do
5: Check if cγ0 [idx] == 〈γ0,C1[:, idx]〉. 
 Proximity
6: Check if c1[idx] == 〈r0,C1[:, idx]〉. 
 Consistency

7: Check if 〈r1, y1〉 == y. 
 Tensor product
8: for 0 ≤ j < |I| do 
 Encoder check
9: Output c1[I[j]], cγ0 [I[j]].

10: for idx ∈ Î do
11: Output C2[I[j], idx]

3. Finally, it checks that these messages and their codewords satisfy the condi-
tions in line 15, 16 and 17 of Protocol 2.

The idea is illustrated in Fig. 2, and we formally present the statement of the
second proof system in Protocol 3. Note that Î is the random set chosen by
the verifier in Protocol 2, and is only used as a notation for the subscripts in
Protocol 3. I is the random set chosen by the verifier for the code switching. In
this way, we switch the message encoded using the linear-time encodable code to
the witness of the second proof system. In our implementation, we are using an
IOP-based zero-knowledge argument with the Reed-Solomon code, we use the
name “code switching” as in [RZR20].

We apply any zero-knowledge argument scheme ZK on the statement and
then check the consistency between the output and the Merkle tree commitment
R of the codeword of the linear-time encodable code. We present the new proto-
col in Protocol 4 and highlight the differences from Protocol 2 in blue. As shown
in the protocol, instead of sending c1, y1, cγ0 , yγ0 , the prover commits to c1 and
cγ0 in Step 8 and 9. The codeword C2 was already committed column-wise in
R. The prover then proves the constraints of c1, y1, cγ0 , yγ0 and C1[:, idx] using
the code switching technique in Step 13. In this way, we are able to reduce the
proof size and the verifier time of Protocol 2 to O(log2 N).

Theorem 5. Protocol 4 is a polynomial commitment as defined in Definition 7.

The proof is presented in the full version of the paper.

Complexity of Protocol 4. The prover time remains O(N). This is because in
Step 8 and 9, the prover additionally commits to c1, cγ0 , which only takes O(n) =
O(

√
N) time. In Step 13, the prover invokes another zero-knowledge argument

on CCS. CCS consists of t + 2 encoding circuits EC of the linear-time encodable
code and t + 2 inner products. As the encoding circuit is of size O(k), we will
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Protocol 4. Polynomial commitment with code-switching
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ with coefficients w.

1: function Commit(φ)
2: Parse w as a k×k matrix. The prover computes the tensor code encoding C1,C2

locally as defined in Definition 3.
3: for i ∈ [n] do
4: Compute the Merkle tree root Rooti = Merkle.Commit(C2[:, i]).
5: Compute a Merkle tree root R = Merkle.Commit([Root0, ...,Rootn−1]) and out-

put R as the commitment.

6: function Prove(φ, �x, R)
7: The prover receives a random vector γ0 ∈ F

k from the verifier.
8: c1 =

∑k−1
i=0 r0[i]C1[i], y1 =

∑k−1
i=0 r0[i]w[i], Rc1 = Merkle.Commit(c1)

9: cγ0 =
∑k−1

i=0 γ0[i]C1[i], yγ0 =
∑k−1

i=0 γ0[i]w[i], Rγ0 = Merkle.Commit(cγ0)
10: The prover computes the answer y := 〈y0, r1〉. Prover sends Rc1 , Rγ0 , y to the

verifier.
11: The verifier randomly samples t ∈ [n] indexes as an array Î and send it to

prover.
12: The verifier randomly samples another index set I ⊆ [k], |I| = t and sends it to

the prover.
13: The prover calls the zero-knowledge argument protocol ZK.P on CCS. Let πzk

be the proof of the zero-knowledge argument. The prover sends the output of CCS:
C2[I[j], idx] ∀idx ∈ Î , c1[I[j]], cγ0 [I[j]] and πzk to the verifier.

14: The prover sends the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î under Rootidx.
15: The prover sends the Merkle tree proofs of Rootidx ∀idx ∈ Î under R.
16: The prover sends the Merkle tree proofs of c1[I[j]], cγ0 [I[j]] under Rc1 , Rcγ0

.

17: function VerifyEval(π�x, �x, y = φ(�x), R)
18: The verifier calls the zero-knowledge argument protocol ZK.V on CCS.
19: The verifier checks the Merkle tree proofs of C2[I[j], idx] ∀idx ∈ Î.
20: The verifier checks the Merkle tree proofs of Rootidx ∀idx ∈ Î using R.
21: The verifier checks the Merkle tree proofs of c1[I[j]], cγ0 [I[j]] using Rc1 , Rcγ0

.
22: Output accept if all checks pass. Otherwise output reject.

present the analysis in the full version of the paper, and the circuit to compute an
inner product is of size O(k), the overall circuit size is O(t ·k). By using any zero-
knowledge argument scheme with a quasi-linear prover time, such as [ZXZS20],
the prover time of this step is O(t · k log k). Since k =

√
N , the prover time is

still O(N) dominated by the encoding and the commitment of the k × k matrix
in COMMIT(). With the code switching technique, the proof size and the verifier
time becomes O(t log2 k) = O(t log2 N).

4.3 Putting Everything Together

In this section, we show how to achieve zero-knowledge on top of our new poly-
nomial commitment in Protocol 4, and sketch how to build a zero-knowledge
argument using the polynomial commitment.
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Protocol 5. zk-Polynomial commitment
Public input: The evaluation point �x, parsed as a tensor product r = r0 ⊗ r1;
Private input: the polynomial φ with coefficients w.

1: function zkCommit(φw)
2: The prover randomly samples m ∈ F

|w|.
3: Output Rw+m = COMMIT(w + m), Rm = COMMIT(m).

4: function zkProve(φ, �x, R)
5: Let φm be the masking polynomial, φm+w be the masked polynomial.
6: Run Prove(φm+w, �x, Rm+w). Let the random index set used during the protocol

be Î0, I0.
7: Run Prove(φm, �x, Rm). In this step, the verifier samples the random index set

Î1, I1. used during the protocol such that Î0 ∩ Î1 = ∅ ∧ I0 ∩ I1 = ∅.

8: function zkVerify(πw+m
�x , πm

�x , �x, yw+m, ym, Rw+m, Rm)
9: The final polynomial evaluation φ(�x) should be yw+m − ym.

10: Execute VerifyEval(πw+m, �x, yw+m, Rw+m).
11: Execute VerifyEval(πm, �x, ym, Rm).
12: Output accept if all checks above passes, otherwise output reject.

Achieving Zero-Knowledge. We apply a masking technique similar to the one
in [BCG+17]. The codeword C2 is masked by a codeword MSK of a mask-
ing polynomial with random coefficients m. We use our proof system to prove
yw+m = 〈(w + m), r0 ⊗ r1〉 and ym = 〈m, r0 ⊗ r1〉 simultaneously, and the final
answer of the polynomial evaluation is y = yw+m − ym. We present the protocol
in Protocol 5.

Theorem 6. Protocol 5 is a zero-knowledge polynomial commitment scheme by
definition 7.

We present the proof in the full version of the paper.

Zero-Knowledge Argument. Finally, we build our zero-knowledge argument sys-
tem by combining the multivariate polynomial commitment with the sumcheck
protocol as in [Set20,GLS+]. We state the theorem here and refer the readers
to [Set20,GLS+] for the construction and the proof.

Theorem 7. There exists a zero-knowledge argument scheme by definition 5
with O(N) prover time, O(log2 N) proof size and O(N) verifier time.

As we are using the IOP-based scheme in [ZXZS20] as the second zero-
knowledge argument in the proof composition, our scheme is an IOP with a
linear proof size and logarithmic query complexity. The scheme can be made
non-interactive via the Fiat-Shamir [FS86] heuristic, and has plausible post-
quantum security. Following the frameworks in [CHM+20,COS20,Set20,GLS+],
our scheme can be turned into a holographic proof with a polylog(N) verifier time
in a straight-forward way.
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Fig. 3. Running time of our expander testing algorithm.

5 Experiments

We have implemented our scheme, Orion, and we present the evaluations of the
system and the comparions to existing ZKP schemes in this section.
Settings and Parameters. Our polynomial commitment scheme is imple-
mented in C++ with 6000 lines of code. The proof composition uses Virgo
in [ZXZS20] and its open-source implementation. We combine the polynomial
commitment with a sumcheck protocol to get our zero-knowledge argument fol-
lowing the approach in [Set20] and we implement our own code for this part.
Expander Graph used in Our Implementation. We use a modified version of gen-
eralized Spielman code in [GLS+]. The code assigns a random weight to each
edge of the expander graph, achieving a better minimum distance. We take a step
further and fine-tune the dimensions more aggressively. With our testing algo-
rithm, the failure probability of the expander sampling remains negligible. There
are two types of expander graph used in our construction and the parameters
are G1: α = 0.33, δ = 0.6, ε = 0.78, g = 6; G2: α = 0.337, g = 6, δ = g, ε = 0.88.
Parameters of the our Linear Code. With expanders above, the final relative
distance is 0.055. We set the security parameter λ = 128. This leads to opening
t = −128

log (1−0.055) = 1568 columns and locations in Protocol 4.

Hash Function and Finite Field. We use the SHA-256 hash function implemented
by [arm]. We use the extension field of GF((261 − 1)2) as our underlying field to
be compatible with the zero-knowledge argument in [ZXZS20].
Environment and Method. We use an AWS m6i-32xlarge instance with Intel(R)
Xeon(R) Platinum 8375C CPU @ 2.90 GHz CPU and 512 GB memory to execute
all of our experiments. However, the largest instance in our experiment only
utilize 16 GB of memory. All experiments are using a single thread except the
expander testing algorithm. For each data point, we run the experiments 10
times and report the average.

5.1 Expander Testing

We first show the performance of our expander testing algorithm in Sect. 3. We
implemented the densest sub-graph algorithm in [Gol84], which uses network-
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Fig. 4. Performance of polynomial commitments.

flow algorithm as a black-box. In our implementation, we use Dinic’s algo-
rithm [Din70], the complexity of which is O(|V |2|E|) on general graphs. However,
on random bipartite graphs, the Dinic’s algorithm runs significantly faster and
as observed in our experiments, it scales almost linearly in the size of the graph.

Figure 3 shows the running time of the algorithm. We vary the size of left vertex
set L in the random bipartite graph from 212 to 218, and the size of R is set to be
|L| × α. The implementation uses multi-threading utilizing all 128 CPU cores. As
shown in the figure, it only takes 163 s to test whether a random bipartite graph
with |L| = 215 vertices is a lossless expander with a failure probability negl(N) =
2−128. The running time almost grows linearly in |L|. As k =

√
N in our zero-

knowledge argument, this is enough for our experiments. As the sampling of the
lossless expander is done once, our testing algorithm is very practical.

5.2 Polynomial Commitment

In this section, we report the performance of our polynomial commitment scheme
and compare it with the scheme Brakedown in [GLS+], which is the only imple-
mented polynomial commitment scheme with a linear prover time. We use the
open-source implementation of Brakedown at [Wla] in the comparison. Our cur-
rent implementation is for the plain version of the polynomial commitment with-
out zero-knowledge, which is the same as Brakedown.

Figure 4 shows the performance of our polynomial commitment and the poly-
nomial commitment in Brakedown. We vary the size of the polynomials from 215
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to 229 and measure the prover time, the proof size and the verifier time. As shown in
the figure, our prover time is even slightly faster thanBrakedown. It only takes 115 s
for a polynomial with 227 coefficients, while it is 132 s inBrakedown. This is because
we use more aggressive parameters of the expander code, while still achieving 128-
bit of security thanks to our expander testing algorithm. Moreover, the additional
proof composition in our scheme involves a second zero-knowledge argument on
a circuit of size O(

√
N). In our experiments, this extra zero-knowledge argument

takes less than 20% of the total prover time, justifying that our code switching
technique only introduces a small overhead on the prover time.

Our proof size and verifier time is significantly smaller than Brakedown. The
proof size is only 6 MBs for a polynomial of size 227, 16× smaller than Brakedown.
The verifier time is 70 ms for N = 227, 33× faster than Brakedown. The result
shows the improvement of the O(log2 N) proof size in our scheme.

Note that there is a jump from N = 221 to N = 223 in the proof size and
verifier time. This is because in our implementation, instead of directly parsing
the coefficients into

√
N × √

N matrix, we optimize the dimensions for better
performance. When N < 223, it is not meaningful to do code-switching on the
columns. The prover only does the code-switching on the row (Protocol 4 Step 8
and 9), but opens the columns directly. We observe that this gives the best prover
time and the proof size. When N ≥ 223, the prover does the code-switching for
both the row and the columns (Protocol 4, Step 8–13). Therefore, the proof size
and the verifier time have a big increase because of the larger column size and
the additional code-switching protocol.

5.3 Zero-Knowledge Arguments

Finally, we present the performance of our zero-knowledege argument scheme for
R1CS as a whole in this section. We focus the comparison to existing schemes
that work on R1CS and have transparent setup and plausible post-quantum secu-
rity. They include Brakedown [GLS+], Aurora [BSCR+19] and Ligero [AHIV17].
We use the implementation of Brakedown at [Wla], and the open-source code of
Ligero and Aurora at [aur] in the experiments.

We randomly generate the R1CS instances and vary the number of con-
straints from 215 to 220. As shown in Fig. 5, Orion has the fastest prover among
all schemes. It only takes 3.09 s to generate the proof for N = 220. This is slightly
faster than Brakedown for the same reason as explained in Sect. 5.2. It is 20×
faster than Ligero and 142× faster than Aurora because of the linear prover time
and the simplified reduction via polynomial commitments.

The proof size of Orion is significantly smaller than Brakedown and Ligero. It
is only 1.5 MB for N = 220, 6.5× smaller than Brakedown and 12.5× smaller than
Ligero. The proof size is even comparable to Aurora, which has O(log2 N) proof
size and uses the Reed-Solomon code with a much better minimum distance than
our linear code. The result justifies the improvement of our code switching.
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Fig. 5. Performance of zero-knowledge arguments on R1CS.

The verifier time of all schemes grow linearly with N and the comparisons
are similar to the prover time. One can reduce the verifier time to sublinear in
the holographic setting using the techniques in [CHM+20,COS20,Set20].

Other Related Schemes. There are several other existing transparent zero-
knowledge argument schemes. Hyrax [WTS+18], Virgo [ZXZS20] and Virgo++
[ZLW+21] work on layered arithmetic circuits and STARK [BSBHR19] works on
an algebraic intermediate representation that is close to a RAM program. It is
hard to compare directly to R1CS, but we expect our prover time to be faster
than these systems for similar computations based on the results shown in prior
papers [ZXZS20,ZLW+21]. Spartan and schemes in [SL20] are using the same
framework of polynomial commitment and sumcheck as in our scheme. However,
they are based on discrete-log and bilinear pairing and thus are not post-quantum
secure. As shown in [GLS+], their prover time is slower than Brakedown while
the proof size is better (tens of KBs). Finally, Bulletproofs [BBB+18] and Super-
sonic [BFS20] are also based on discrete-log and group of unknown order. Their
prover time is orders of magnitude slower than schemes mentioned above, while
providing the smallest proof size (1–2 KBs) because of the underlying crypto-
graphic techniques.
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Abstract. Zero-knowledge proof systems are usually designed to sup-
port computations for circuits over F2 or Fp for large p, but not for
computations over Z2k , which all modern CPUs operate on. Although
Z2k -arithmetic can be emulated using prime moduli, this comes with
an unavoidable overhead. Recently, Baum et al. (CCS 2021) suggested
a candidate construction for a designated-verifier zero-knowledge proof
system that natively runs over Z2k . Unfortunately, their construction
requires preprocessed random vector oblivious linear evaluation (VOLE)
to be instantiated over Z2k . Currently, it is not known how to efficiently
generate such random VOLE in large quantities.

In this work, we present a maliciously secure, VOLE extension proto-
col that can turn a short seed-VOLE over Z2k into a much longer, pseudo-
random VOLE over the same ring. Our construction borrows ideas from
recent protocols over finite fields, which we non-trivially adapt to work
over Z2k . Moreover, we show that the approach taken by the QuickSilver
zero-knowledge proof system (Yang et al. CCS 2021) can be generalized
to support computations over Z2k . This new VOLE-based proof system,
which we call QuarkSilver, yields better efficiency than the previous zero-
knowledge protocols suggested by Baum et al. Furthermore, we imple-
ment both our VOLE extension and our zero-knowledge proof system,
and show that they can generate 13–50 million VOLEs per second for
64 bit to 256 bit rings, and evaluate 1.3 million 64 bit multiplications per
second in zero-knowledge.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that some
statement is true, without revealing any additional information. They are a
fundamental tool in cryptography with a wide range of applications. A common
way of expressing statements used in ZK is with circuit satisfiability, where the
prover and verifier hold some circuit C, and the prover proves that she knows a
witness w such that C(w) = 1. Typically, C is an arithmetic circuit defined over
a finite field such as F2 or Fp for a large prime p, but the same idea works for
any finite ring.
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A recent line of work [7,16,25,26] builds highly scalable zero-knowledge
proofs based on vector oblivious linear evaluation, or VOLE. VOLE is a two-
party protocol often used in secure computation settings, which allows a receiver
holding Δ to learn a secret linear function w − Δ · u = v of a sender’s private
inputs u,w. VOLE-based ZK protocols have the key feature that the overhead
of the prover is very small: compared with the cost of evaluating the circuit C in
the clear, few additional computational or memory resources are needed. This
allows proofs to scale to handle very large statements, such as proving properties
of complex programs. On the other hand, potential drawbacks of using VOLE
are that the communication complexity is typically linear in the size of C – unlike
SNARKs (e.g. [8,22]) and MPC-in-the-head techniques (e.g. [2]), which can be
sublinear – and proofs are only verifiable by a single, designated verifier.

VOLE Constructions. In a length-n VOLE protocol over some ring R, the sender
has input two vectors u,w ∈ Rn, while the receiver has input Δ ∈ R, and
receives as output v ∈ Rn as defined above. In applications such as ZK proofs,
it is actually enough to construct random VOLEs, or VOLE correlations, where
both parties’ inputs are chosen at random. The most efficient approaches for
generating random VOLE are based on the method of Boyle et al. [11], which
relies on an arithmetic variant of the learning parity with noise (LPN) assump-
tion. The protocol has the key feature that the communication cost is sublinear
in the output length, n.

The original protocol of [11] has only semi-honest security (or malicious
security using expensive, generic 2-PC techniques). Later, dedicated maliciously
secure protocols over fields were developed [12,25], which essentially match the
cost of the underlying semi-honest protocols, by using lightweight consistency
checks for verifying honest behavior. In general, these protocols assume that R
is a finite field.

ZK Based on VOLE. The state-of-the-art, VOLE-based protocol for proving
circuit satisfiability in zero-knowledge is the QuickSilver protocol. QuickSilver,
which builds upon the previous Line-Point ZK [16] protocol, works for circuits
over any finite field Fq, and has a communication cost of essentially 1 field ele-
ment per multiplication gate. Concretely, QuickSilver achieves a throughput of
up to 15.8 million AND gates per second for a Boolean circuit, or 8.9 million mul-
tiplication gates for an arithmetic circuit over the 61-bit Mersenne prime field.
Another approach is the Mac’n’Cheese protocol [7], which can also achieve an
amortized cost as small as 1 field element, but with slightly worse computational
costs and round complexity.

ZK Over Rings. While most ZK protocols are based on circuits over fields, it
can in certain applications be more desirable to work with circuits over a finite
ring such as Z2k . For instance, to prove a property of an existing program (such
as proving a program contains a bug, or does not violate some safety property)
the program logic and computations must all be emulated using a circuit. Since
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CPUs perform arithmetic in Z2k , this is a natural choice of ring that leads to a
simpler translation of program code into a satisfiable circuit C.

Unfortunately, not many existing ZK proof systems can natively support
computations over rings. The recent work of [5] gave the first ZK protocol over
Z2k based on VOLE over Z2k , obtaining a proof system with a communication
cost of O(1) ring elements per multiplication gate (for large rings), asymptot-
ically matching QuickSilver over large fields. However, a major drawback of
their protocols is that they require maliciously secure VOLE over Z2k , which is
much more expensive to build: the only known instantiation of this [23] would
increase the concrete communication of their ZK protocol by 1–2 orders of mag-
nitude. Finally, another approach to zero-knowledge proof systems over rings
has been proposed based on SNARKs [17]. When using Z2k , this work obtains
a designated-verifier SNARK, however, the scheme has not been implemented,
and suffers from a dependency on expensive, public-key cryptography, as in many
field-based SNARKs.

1.1 Contributions

In this work, we address the question of building efficient protocols for VOLE
and zero-knowledge proofs over Z2k . Firstly, we show how to build a maliciously
secure VOLE protocol over Z2k , with efficiency comparable to state-of-the-art
protocols over finite fields [12,25]. Our protocol introduces new consistency
checks for verifying correctness of VOLE extension, which are tailored to over-
come the difficulties of working with the ring Z2k . Secondly, using our VOLE
over Z2k , we show how to adapt the QuickSilver protocol [26] to the ring set-
ting, obtaining an efficient ZK protocol called QuarkSilver that is dedicated to
proving circuit satisfiability over Z2k . Here, we extend techniques from the MPC
world [15] to be suitable for our ZK proof. Finally, we implemented and bench-
marked both our VOLE and ZK protocols to demonstrate their performance. In
a high-bandwidth, low-latency setting, our implementation achieves a through-
put of 13–50 million VOLEs per second for 64 bit to 256 bit rings with 40 bit
statistical security while transmitting only ≈1 bit per VOLE. Our QuarkSilver
implementation is able to compute and verify 1.3 million 64 bit multiplications
per second.

1.2 Our Techniques

Below, we expand on our contributions, the techniques involved and some more
relevant background.

Challenge of Working in Z2k . Before delving into our protocols, we first briefly
recap the main challenges when working with rings like Z2k , compared with finite
fields. When using VOLE for zero-knowledge, VOLE is used to commit the
prover to its inputs and intermediate wire values in the circuit. This is possible
by viewing each VOLE output M [x] = Δ · x + K[x] as an information-theoretic
homomorphic MAC in the input x.
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When working over a finite field, it’s easy to see that if a malicious prover
can come up with a valid MAC M [x] on an input x �= x, for the same key K[x],
then the prover can recover the MAC key Δ from the relation:

M [x] − M [x] = Δ · (x − x)

However, this relies on x−x being invertible, which is usually not the case when
working over a ring such as Z2k . Indeed, if x − x = 2k−1, then the prover can
forge a MAC M [x] with probability 1/2, since M [x] − M [x] mod 2k now only
depends on the least significant bit of Δ.

The SPDZ2k protocol [15] for multi-party computation showed how to work
around this issue by extending the modulus to 2k+s, for some statistical security
parameter s. This way, it can be shown that the lower s bits of the key Δ are
still enough to protect the integrity of the lower k bits of the message x.

Indeed, this was exactly the type of MAC scheme used in the recent work on
conversions and ZK over rings [5]. However, as in the SPDZ2k protocols, further
challenges arise when handling more complex protocols for verifying computation
on MACed values.

Maliciously Secure VOLE Extension in Z2k . Current state-of-the-art VOLE
protocols all stem from the approach of Boyle et al. [11], which builds a pseu-
dorandom correlation generator based on (variants of) the learning parity with
noise (LPN) assumption. This approach exploits the fact that sparse LPN errors
can be used to compress secret-sharings of pseudorandom vectors, allowing the
two parties to generate a long, pseudorandom instance of a VOLE correlation in
a succinct manner.

These protocols proceed by first constructing a protocol for single-point
VOLE, where the sender’s input vector has only a single non-zero entry. Then,
the single-point VOLE protocol is repeated t times, to obtain a t-point VOLE
where the sender’s input is viewed as a long, sparse, LPN error vector. Finally,
by combining t-point VOLE and the LPN assumption, the parties can locally
transform this into pseudorandom VOLE by applying a linear mapping.

Using this blueprint leads to (random) VOLE protocols with communication
much smaller than the output length. This can be seen as a form of VOLE
extension, where in the first step, a small “seed” VOLE of length m � n is used
to create the single-point VOLEs, and then extended into a longer VOLE of
length n. In the Wolverine protocol [25], it was additionally observed that when
repeating this process, it can greatly help communication if m of the n extended
outputs are reserved and used to bootstrap the next iteration of the protocol,
saving generation of fresh seed VOLEs.

With semi-honest security, the above approach can easily be instantiated over
rings, following the protocols of [12,24]. When adapting this protocol to malicious
security, our main technical challenge is that previous works over fields [12,25]
used a consistency check to verify correctness of the outputs, which involved
taking random linear combinations over the field. Due to the existence of zero
divisors, this technique does not directly translate to Z2k . One possible approach,
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similarly to the MAC scheme described above, is to increase the size of the ring
to, say, Z2k+s , and use computations in the larger ring to ensure that the VOLEs
are correct modulo 2k. However, the problem is, it would then no longer be
compatible with the bootstrapping technique of [25]: to check consistency, the
seed VOLE must be in the larger ring Z2k+s , however, since the outputs are only
in Z2k , they can’t then be used as a seed for the next execution! One solution
would be to start with an even larger ring (Z2k+2s), and keep decreasing the
ring size after each iteration, but this would be far too expensive when done
repeatedly.

Instead, we take a different approach. First, we adopt a hash-based check
from [12], which verifies correctness of a puncturable pseudorandom function
based on a GGM tree, created during the protocol. This hash check (which we
optimize by using universal hashing instead of a cryptographic hash function)
works over rings as well as fields, however, it does not suffice to ensure consistency
of the entire protocol. On top of this, we incorporate a linear combination check,
however, one with binary coefficients instead of coefficients in the large ring.
This type of check can be used over a ring, but allows a cheating prover to try
to bypass the check and cheat successfully with probability 1/2. Nevertheless,
we show that by allowing some additional leakage in the single-point VOLE
functionality, we can still simulate the protocol with this check. For our final
VOLE protocol, this leakage implies that a few noise coordinates of the LPN
error vector may have leaked.

While previous protocols also allowed a limited form of leakage [12,25], in
this case, ours is more serious since entire noise coordinates can be leaked with
probability 1/2. To counter this, we analyze the state-of-the-art attacks on LPN,
and show how to adjust the parameters and increase the noise rate accordingly.

Similarly to [25], we focus on using the “primal” form of LPN, which was
also used for semi-honest VOLE over Z2k in [24]. While the “dual” form of LPN,
as considered in [11,12,14], achieves lower communication costs (and does not
rely on bootstrapping), it involves a more costly matrix multiplication, which is
expensive to implement. In [12], dual-LPN was instantiated using quasi-cyclic
codes to achieve Õ(n) complexity, but this approach does not readily adapt
to rings instead of fields; it is plausible that the fast, LDPC-based dual-LPN
variant proposed in [14] can be adapted to work over rings, but the security of
this assumption has not been analyzed thoroughly.

Efficient Zero-Knowledge via QuarkSilver in Z2k . Given VOLE, the stan-
dard approach to obtaining a ZK proof is using the homomorphic MAC scheme
described above. There, the prover first commits to the input w as well as all
intermediate circuit wire values of C(w). Then, the prover must show consis-
tency of all the wire values and that the output wire indeed contains 1. Since
the MACs are linearly homomorphic, the main challenge is verifying multiplica-
tions. In QuickSilver [26], to verify that committed values x, y, z satisfy x ·y = z,
the parties locally compute a quadratic function on their MACs and MAC keys,
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obtaining a new value which has a consistent MAC only if the multiplication is
correct.

The catch is that this new MAC relation being checked leads to a quadratic
equation in the secret key Δ, instead of linear as before, which is chosen by a
possibly dishonest prover. If this quadratic equation has a root in Δ, then the
check passes. In the field case, this is not a problem as there are no more than
two solutions to a quadratic equation, so we obtain a soundness error of 2/|F|.
However, with rings, there can be many solutions. For instance, with

f(X) = aX2 + bX + c (mod 2k),

if a = 2k/2 and b = c = 0 then any multiple of 2k/4 is a possible choice for
X, i.e. the check would erroneously pass for 23k/4 choices of Δ. To remedy this,
we reduce the number of valid solutions by working modulo 2� for some � > k,
and adding the constraint on the solution that Δ ∈ {0, . . . , 2s − 1}, where s is a
statistical security parameter.

An additional challenge is that when checking a batch of multiplications, we
actually check a random linear combination of a large number of these equations,
which again leads to complications with zero divisors. By carefully analyzing the
number of bounded solutions to equations of this type, and extending techniques
from SPDZ2k [15] for handling linear combinations over rings, we show that it
suffices to choose � ≈ k + 2(σ + log σ) to achieve 2−σ failure probability in the
check. Overall, we obtain a communication complexity of � bits per input and
multiplication gate in the circuit.

2 Preliminaries

2.1 Notation

We use lower case, bold symbols for vectors x and upper case, bold symbols
for matrices A. We use κ as the computational and σ as the statistical security
parameter. In our UC functionalities and proofs, Z denotes the environment,
and S is the simulator, while A will refer to the adversary.

2.2 Vector OLE

Vector OLE (VOLE) is a two party functionality between a sender PS and a
receiver PR to obtain correlated random vectors of the following form: PS obtains
two vectors u,w, and PR gets a random scalar Δ and a random vector v so that
w = Δ · u + v holds.

We parameterize the functionality with two values � and s such that s ≤ �.
The scalar Δ is sampled from Z2s , and the vectors u,v,w are sampled from
Z

n
2� where n denotes the size of the correlation. We require that the equation

w = Δ · u + v holds modulo 2�. The ideal functionality is described in Fig. 1.
As in SPDZ2k [15], we can implement F�,s

vole2k using the oblivious transfer
protocol (OT) of [23]. Basing VOLE on OT has the drawback of quadratic
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communication costs in the ring size, since it requires one OT of size �bit for
each of the � bits of a ring element. Hence, we would use this approach only
once to create a set of base VOLEs. Then we can use the more efficient protocol
presented in Sect. 4 to repeatedly generate large batches to VOLEs.

VOLE for Z2k : F�,s
vole2k

Let � ≥ s.

Init This method is the first to be called by the parties. On input (Init) from
both parties proceed as follows:
1. If PR is honest, sample Δ ∈R Z2s and send Δ to PR.

2. If PR is corrupt, receive Δ ∈ Z2s from S.

3. Δ is stored by the functionality.
All further (Init) queries are ignored.

Extend On input (Extend, n) from both parties proceed as follows:
1. If PR is honest, sample v ∈R Z

n
2� . Otherwise receive v ∈R Z

n
2� from S.

2. If PS is honest, sample u ∈R Z
n
2� and compute w := Δ · u + v ∈ Z2� .

Otherwise receive u ∈ Z
n
2� and w ∈ Z

n
2� from S and then recompute v :=

w − Δ · u ∈ Z
n
2�

3. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, Δ′) from S with Δ′ ∈
Z2s . If Δ′ = Δ, send success to PS and ignore subsequent global-key queries.
Otherwise, send abort to both parties and abort.

Fig. 1. Ideal functionality VOLE over Z2k .

2.3 Equality Test

In our work, we use an equality test functionality FEQ (Fig. 2) between two
parties P,V where V learns the input of P. The equality check functionality
can be implemented using a simple commit-and-open protocol, see e.g. [25].
When using a hash function with 2κ bit output (modeled as random oracle) to
implement the commitment scheme, the equality check of �bit values can be
implemented with � + 3κ bit of communication.

2.4 Zero-Knowledge Proofs of Knowledge

In Fig. 3 we provide an ideal functionality for zero-knowledge proofs. The func-
tionality implies the standard definition of a ZKPoK as it is complete, knowledge
sound and zero-knowledge.
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Equality Test: FEQ

On input VP from P and VV from V:

1. Send VP and (VP
?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then

send (VP
?
= VV) to P

3. If V is honest and VP �= VV , or V is corrupted and sends abort, then send
abort to P.

Fig. 2. Ideal functionality for equality tests.

Zero-Knowledge Functionality Fk
ZK

Prove: On input (prove, C, w) from P and (verify, C) from V where C is a
circuit over Z2k and w ∈ Z

n
2k for some n ∈ N: Send true to V iff C(w) = 1, and

false otherwise.

Fig. 3. Ideal functionality for zero-knowledge proofs for circuit satisfiability.

2.5 The LPN Assumption over Rings

The Learning Parity with Noise (LPN) assumption [9] states that, given the
noisy dot product of many public vectors ai with a secret vector s, the result
is indistinguishable from a vector of random values. Adding noise to indices is
done by adding a noise vector e at the end, consisting of random values.

We rely on the following arithmetic variant of LPN over a ring ZM , as also
considered in [11,24].

Definition 1 (LPN). Let DM
n,t be a distribution over Z

n
M such that for any

t, n,M ∈ N, Im(DM
n,t) ∈ Z

n
M . Let G be a probabilistic code generation algorithm

such that G(m,n,M) outputs a matrix A ∈ Z
m×n
M . Let parameters m, n, t be

implicit functions of security parameter κ. The LPNG
m,n,t,M assumptions states

that:

{(A,x) | A ← G(m,n,M), s ∈R Z
m
M , e ← DM

n,t,x := s · A + e}
≈C {(A,x) | A ← G(m,n,M),x ∈R Z

n
M}.

There exists two flavours of the LPN assumption; the primal (Definition 1)
and the dual (see e.g. [12]).

Informally, the main advantage of the primal version of LPN is that there
exist practical (and implemented) constructions of the LPN-friendly codes
required for this. Specifically, one can choose the code matrix A from a family
of codes G supporting linear-time matrix-vector multiplication, such as d-local
linear codes so that each column of A has exactly d non-zero entries. According
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to [1], the hardness of LPN for local linear codes is well-established. Its main
disadvantage however, is that its output size can be at most quadratic in the
size of the seed, as intuitively, a higher stretch would make it significantly easier
for an adversarial verifier to guess enough noiseless coordinates to allow efficient
decoding via Gaussian Elimination [4].

The main advantage of the dual variant is that it allows for an arbitrary
polynomial stretch. However, the compressive mapping used within the dual
variant cannot have constant locality and is more challenging to instantiate.
Recently, Silver [14] proposed an instantiation of dual-LPN based on structured
LDPC codes, which have been practically implemented over finite fields, and
may plausibly also work over rings.

Dealing with Reduction Attacks over Rings. When working over a ring
ZM instead of a finite field, we must take care that the presence of zero divisors
does not weaken security. For instance, a simple reduction attack was pointed out
in [21], where noise values can become zero after reducing modulo a factor of M
(for instance, in Z2k , reducing the LPN sample modulo 2 cuts the number of noisy
coordinates in half, significantly reducing security). To mitigate this attack, we
always sample non-zero entries of the error vector e and matrix A to be in Z

∗
M ,

that is, invertible mod M .1 While [21] did not consider the effect on the matrix
A, we observe that if A is sparse then its important to ensure that its sparsity
cannot also be decreased through reduction.2 With these countermeasures, we
are not aware of any attacks on LPN in ZM that perform better than the field
case.

We elaborate below on our choice of primal-LPN distribution.

Choice of Matrix over ZM . We choose a random, sparse matrix A with d
non-zero entries per column. We choose each non-zero entry randomly from Z

∗
M ,

to ensure that it remains non-zero after reduction modulo any factor of M . We
fix the sparsity to d = 10, as in previous works [11,24,25], which according
to [3,28] suffices to ensure that A has a large dual distance, which implies the
LPN samples are unbiased [14].

Noise Distribution in ZM . The noise distribution DM
n,t is chosen to have t

expected non-zero coordinates. This can be done on expectation with a Bernoulli
distribution, where each coordinate is either zero, or non-zero (and uniform
otherwise) with probability t/n. In our applications, we instead use an exact
noise weight, where DM

n,t fixes t non-zero coordinates in the length-n vector.

1 This countermeasure was missing from the original version of this paper, before [21]
was available.

2 On the other hand, the LPN secret s must not be chosen over Z
∗
M , but instead

uniformly over ZM , since if e.g. s was known to be odd over Z2k then solving the
reduced instance modulo 2 would be trivial.
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Invertible Noise Terms. When working over a ring ZM , we sample the non-zero
noise values to be in Z

∗
M , that is, invertible mod M . This prevents the reduction

attack mentioned above, which would otherwise reduce the expected noise weight
by a factor of two for M = 2k.

Uniform vs Regular Noise Patterns. For fixed-weight noise, we speak of two
types of error; regular or uniform. We call uniform errors the case where DM

n,t is
the uniform distribution over all weight-t vectors of Zn

M with non-zero values in
Z

∗
M . Implementing LPN-based PCGs with uniform errors has previously been

investigated by [24,27]. It is commonly implemented by utilising a sub-protocol
to place a single non-zero value within a vector of length n′ � n and then using
Cuckoo hashing to generate a uniform distribution over n from several of these
smaller vectors, ending up with the t points distributed randomly across the n
coordinates.

Our construction uses a regular noise distribution for the primal-LPN
instance. Here, the noise vector in Z

n
M is divided into t blocks of length �n/t	,

such that each block has exactly one non-zero coordinate. Generally, using LPN
with regular errors is practically more efficient than for uniform errors [25,27].

3 Single-Point Vector OLE

Single-point VOLE is a specialized functionality that generates a VOLE corre-
lation w = Δ · u + v (see Sect. 2.2) where u has only one non-zero coordinate
α ∈ [n]. We consider a variant where uα is not only non-zero, but additionally
also required to be invertible.

We present an ideal functionality for single-point VOLE F�,s
sp-vole2k in Fig. 4.

In the functionality, PS obtains u,w ∈ Z
n
2� ×Z

n
2� , and PR gets Δ,v ∈ Z2s ×Z

n
2� .

As in the full VOLE functionality F�,s
vole2k we allow PS to attempt to guess Δ.

Additionally, F�,s
sp-vole2k also allows PR to obtain leakage on the non-zero index:

1. PR is allowed to guess a set I ⊆ [n] that should contain the index α. Upon
correct guess, if |I| = 1 then it learns uα while if |I| > 1 the functionality
continues. If α /∈ I then the functionality aborts.

2. PR is also allowed a second query for a set J ⊂ [n] that might contain α where
|J | = n/2. If PR guesses correctly then the functionality outputs α, while it
aborts otherwise.

The leakage is somewhat inherent to our protocol which we use to realize
F�,s

sp-vole2k.

Protocol Overview. Our protocol Π�,s
sp-vole2k (Fig. 5) achieves active security

using consistency checks inspired by the constructions from [12] and [25]. We
now give a high-level overview.

As a setup, we assume functionalities F�,s
vole2k, FOT and FEQ. For F�,s

vole2k we
assume that PR called (Init) already, thus setting Δ. Additionally, we require two
pseudorandom generators (PRGs; with certain extra properties that we clarify
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Single-Point VOLE for Z2� : F�,s
sp-vole2k

This functionality extends the functionality F�,s
vole2k (Fig. 1). In addition to the

methods (Init) and (Extend), it also provides the method (SP-Extend) and a
modified global-key query.

SP-Extend On input (SP-Extend, n) with n ∈ N from both parties the func-
tionality proceeds as follows:
1. Sample u ∈R Z

n
2� with a single entry invertible modulo 2� and zeros every-

where else, v ∈R Z
n
2� , and compute w := Δ · u + v ∈ Z

n
2� .

2. If PS is corrupted, receive u ∈ Z
n
2� with at most one non-zero entry and

w ∈ Z
n
2� from S, and recompute v := w − Δ · u.

3. If PR is corrupted:
(a) Receive a set I ⊆ [n] from S. Let α ∈ [n] be the index of the non-zero

entry u, and let β := uα. If I = {α}, then send (success, β) to PR. If
α ∈ I and |I| > 1, then send success to PR and continue. Otherwise
send abort to both parties and abort.

(b) Receive either (continue) or (query, J) from S. If (continue) was
received, continue with Step 3c. If (query, J) with J ⊂ [n] and |J | = n

2

was received and α ∈ J , then send α to S. Otherwise, send abort to all
parties, and abort.

(c) Receive v ∈ Z
n
2� from S, and recompute w := Δ · u + v.

4. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, Δ′, s′) from S with

s′ ≤ s and Δ′ ∈ Z2s′ . If Δ′ = Δ (mod 2s′
), send success to PS. Otherwise, send

abort to both parties and abort.

Fig. 4. Ideal functionality for a leaky single-point VOLE.

in Sect. 3.1) to create a GGM tree. Recall, the GGM construction [18] builds a
PRF from a length-doubling PRG, by recursively expanding a PRG seed into 2
seeds, defining a complete binary tree where each of the n leaves is one evalu-
ation of the PRF. We use this to build a puncturable PRF, where a subset of
intermediate tree nodes is given out, enabling evaluating the PRF at all-but-one
of the points in the domain.

The sender PS begins by picking a random index α from [n], and β randomly
from Z

∗
2� . This defines the vector u where uα = β and every other index is 0.

PS and PR use a single VOLE from F�,s
vole2k to authenticate β, resulting in the

receiver holding γ and the sender holding δ, β such that δ = Δ · β + γ.
To extend this correlation to the whole vector u, PR computes a GGM tree

with 2n leaves. We consider all n leaves that are “left children” of their parent
as comprising the vector v. Using log2(n) instances of FOT, PS learns all “right
children” as well as all of the “left children” except the one at position α –
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meaning that the sender learns v for all indices except α. PS now sets wi = vi

for i �= α. This gives a valid correlation on these n − 1 positions, because since
ui = 0 for i �= α, we have that wi = Δ · ui + vi.

What remains in the protocol is for PS to learn wα = Δ · uα + vα without
revealing α and β to PR. Using the output of the VOLE instance, if PR computes
d ← γ − ∑n

j=1 vj and sends d to PS, then PS can compute

wα = δ − d −
∑

j∈[n]\{α}
wj

= δ −
(
γ −

∑

i∈[n]

vi

)
−

∑

j∈[n]\{α}
wj

= δ − γ + vα = Δ · β + vα

which is exactly the missing value for the correlation. While this protocol can
somewhat easily be proven secure against a dishonest PS (assuming that the
hybrid functionalities are actively secure), a corrupted PR can cheat in two ways:

1. It can provide inconsistent GGM tree values to the FOT instances, thus leading
to unpredictable protocol behavior.

2. It can construct d incorrectly.

To ensure a “somewhat consistent” GGM tree (and inputs to FOT) we use a
check that sacrifices all the leaves that are “right children”. Here, PR has to
send a random linear combination of these, over a binary extension field, with
PS choosing the coefficients. The check makes sure that if it passes, then the
“left children” are consistent for every choice of α that would have made PS

not abort. This reduces arbitrary leakage to an essentially unavoidable selective
failure attack (due to the use of FOT).

To prevent the second attack, the sender and receiver use an additional VOLE
from F�,s

vole2k and perform a random linear combination check to ensure correct-
ness of the value d. Due to the binary coefficients used in the linear combination
over Z2� , our check only has soundness 1/2. This, however, suffices to prove
security if we relax the functionality by allowing a corrupt receiver to learn α
with probability 1/2. This way, in the simulation in our security proof, if the
challenge vector χ is such that the receiver passes the check despite cheating,
the simulator can still extract a valid input using its knowledge of α.

The full protocol is presented in Fig. 5. Before proving security of it, we first
recap the Puncturable PRF from GGM construction and its security properties.

3.1 Checking Consistency of the GGM Construction

We use the GGM [19] construction to implement a puncturable PRF F with
domain [n] and range {0, 1}κ.

In a puncturable PRF (PPRF), one party P1 generates a PRF key k, and
then both parties engage in a protocol where the second party P2 obtains a
punctured key k{α} for an index α ∈ [n] of its choice. With k{α}, it is possible
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Single-Point VOLE for Z2� : Π�,s
sp-vole2k

For the (Init) and (Extend) operations, the parties simply query F�,s
vole2k.

SP-Extend For (SP-Extend, n): Let h := �log n	 and σ′ := σ + 2h.
1. The parties send (Extend, 1) to F�,s

vole2k. PS receives a, c ∈ Z2� and PR receives
b ∈ Z2� such that c = Δ · a + b (mod 2�) holds.

2. PS samples α ∈R [n], β ∈R Z
∗
2� and lets u ∈ Z

n
2� be the vector with uα = β

and ui = 0 for all i �= α.

3. PS sets δ := c and sends a′ := β − a ∈ Z2� to PR. PR computes γ :=
b − Δ · a′ ∈ Z2� . Now, δ = Δ · β + γ (mod 2�).

4. PR computes k ← GGM.KeyGen(1κ), runs (v, t, (K
i
0, K

i
1)i∈[h], K

h+1
1 ) ←

GGM.Gen(n, k), and sends K
h+1

:= K
h+1
1 ∈ F2σ′ to PS.

5. Write α =
∑h−1

i=0 2i · αh−i, for αi ∈ {0, 1}. For i ∈ [h], the parties call FOT

where PS, acting as the receiver, inputs αi and PR inputs (K
i
0, K

i
1)i∈[h] to

FOT. PS receives K
i
:= K

i
αi

.

6. Check the GGM tree:
(a) PS samples ξ ∈R F

n
2σ′ and sends ξ to PR.a

(b) PR computes Γ := 〈ξ, t〉 ∈ F2σ′ and sends Γ to PS.

(c) PS runs vα ← GGM.PuncEval(n, α, (K
i
)i∈[h+1]) followed by

GGM.Check(n, α, (K
i
)i∈[h+1], ξ, Γ ). If the latter returns ⊥, PS aborts.

Otherwise it has obtained (vj)j∈[n]\{α}.

7. PR sends d := γ − ∑n
j=1 vj ∈ Z2� to PS. PS defines w ∈ Z

n
2� such that

wj := vj for j ∈ [n]\{α} and wα := δ−d−∑
1≤j≤n

j �=α
wj . Then w = Δ ·u+v.

8. Check consistency of d:
(a) The parties send (Extend, 1) to F�,s

vole2k. PS receives x, z ∈ Z2� and PR

receives y∗ ∈ Z2� such that z = Δ · x + y∗ (mod 2�) holds.

(b) PS samples χ ∈R {0, 1}n with HW(χ) = n
2

and sends it to PR.b

(c) PS computes x∗ := χα · β − x ∈ Z2� and sends x∗ to PR. PR computes
y := y∗ − Δ · x∗ ∈ Z2� . Then z = y + Δ · χα · β.

(d) PS computes VPS :=
∑n

i=1 χi ·wi −z, and PR computes VPR :=
∑n

i=1 χi ·
vi − y. They send VPS , VPR to FEQ. If it returns (abort), then abort.

9. PS outputs (u,w), and PR outputs v.

a Instead of sending the whole vector ξ, PS can send a κ bit random seed which
is then expanded with a PRG to obtain ξ.

b Again, PS can send a short seed instead of χ.

Fig. 5. Protocol instantiating F�,s
sp-vole2k in the (F�,s

vole2k, FOT, FEQ)-hybrid model.
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for P2 to evaluate F at all points [n]\{α} so that F (k, i) = F (k{α}, i) for i �= α,
while nothing about F (k, α) is revealed. More formally:

Definition 2 (Adapted from [12]). A puncturable pseudorandom function
(PPRF) with keyspace K, domain [n] and range {0, 1}κ is a pseudorandom func-
tion F with an additional keyspace Kp and 3 PPT algorithms KeyGen, Gen,
PuncEval such that

KeyGen on input 1κ outputs a random key k ∈ K.
Gen on input n, k outputs {F (k, i), k{i}}i∈[n] where k{i} ∈ Kp.
PuncEval on input n, α, k{α} outputs vα such that vα ∈ ({0, 1}κ)n.

where F (k, i) = vα
i for all i �= α and no PPT adversary A, given n, α, k{α} as

input, can distinguish F (k, α) from a uniformly random value in {0, 1}κ except
with probability negl(κ).

For simplicity, we describe the algorithms for domains of size n = 2h for
some h ∈ N. By pruning the tree appropriately, the procedures can be adapted
to support domain sizes that are not powers of two. Throughout the coming
sections, we let α1, . . . , αh be the bit decomposition of α =

∑h−1
i=0 2i · αh−i, and

let αi denote the complement. Let κ be a computational and σ be a statistical
security parameter. Define σ′ := σ + 2 log n and let G : {0, 1}κ → {0, 1}2κ and
G′ : {0, 1}κ → Z2� × F2σ′ be two PRGs.

Recall that to achieve malicious security when generating a PPRF key in our
protocol, we use the redundancy introduced from extending the domain to size
2n, and check consistency by letting the receiver provide a hash of all the right
leaves of the GGM tree. In order for the right leaves of the GGM tree to fix a
unique tree, we require the PRG used for the final layer G′ : {0, 1}κ → Z2� ×F2σ′

to satisfy the right-half injectivity property3 as defined below.

Definition 3. We say that a function f = (f0, f1) : {0, 1}κ → Z2� × F2σ′ , x 
→
(f0(x), f1(x)) is right-half injective, if its restriction to the right-half of the out-
put space f1 : {0, 1}κ → F2σ′ is injective.

In order to achieve active security of our construction, we provide an addi-
tional algorithm Check, together with a finite challenge set Ξ. This algorithm,
on input n, α, k{α}, a challenge ξ and a checking value Γ outputs � or ⊥.

Definition 4 (PPRF consistency). Let F be a PPRF and let Ξ be a chal-
lenge set whose size depends on a statistical security parameter σ. Consider the
following game for Check:

1. (k{1}, . . . , k{n}, state) ← A(1κ, n).
2. ξ ∈R Ξ
3. Γ ← A(1κ, state, ξ)
4. For all α ∈ [n], let vα ← PuncEval(1κ, α, k{α}).

3 As noted in [12], this can be replaced with a weaker notion of right-half collision
resistance, which is easier to achieve in practice.
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5. Define I := {α ∈ [n] | � = Check(n, α, k{α}, ξ, Γ )}.
6. We say A wins the game if there exists α �= α′ ∈ I such that there is an index

i ∈ [n] \ {α, α′} with vα
i �= vα′

i .

We say that F has consistency if no algorithm A wins the above game with
probability more than 2−σ.

Our algorithms GGM.KeyGen,GGM.Gen, GGM.PuncEval, GGM.Check, which
are used to generate the key, set up the punctured keys, evaluate and check
consistency of the punctured keys in our protocol are then as follows:

1. GGM.KeyGen(1κ) samples k ∈ {0, 1}κ uniformly at random and outputs it.
2. GGM.Gen(n, k) where n = 2h and k ∈ {0, 1}κ is a key:

(a) Set K0
0 ← k.

(b) For each level i ∈ [h], and for j ∈ {0, . . . , 2i−1 − 1} compute (Ki
2j ,

Ki
2j+1) ← G(Ki−1

j ).

(c) For i ∈ [h], set K
i

0 ← ⊕2i−1−1
j=0 Ki

2j and K
i

1 ← ⊕2i−1−1
j=0 Ki

2j+1.
(d) For j ∈ [2h] compute vj , tj ← G′(Kh

j−1), and set v := (v1, . . . , v2h) and
t := (t1, . . . , t2h).

(e) Compute K
h+1

1 ← ∑
j∈[2h] ti.

(f) Output (v, t, (K
i

0,K
i

1)i∈[h],K
h+1

1 ).
3. GGM.PuncEval(n, α, (K

i
)i∈[h+1]) where n = 2h, α ∈ [n], and K

i ∈ {0, 1}κ:
(a) Set K1

α1
← K

1
.

(b) For each level i ∈ {2, . . . , h}:
i. Let x :=

∑i−1
j=1 2j−1 · αi−j

ii. For j ∈ {0, . . . , 2i−1 − 1} \ {x}, compute (Ki
2j ,K

i
2j+1) ← G(Ki−1

j ).

iii. Compute Ki
2x+αi

← K
i ⊕ ⊕

0≤j<2i−1

j �=x

Ki
2j+αi

.

(c) For the last level h + 1:
i. For j ∈ [2h] \ {α} compute (vj , tj) ← G′(Kh

j−1)
(d) Output (vj)j∈[2h]\{α}.

4. GGM.Check(n, α, (K
i
)i∈[h+1], (ξi)i∈[n], Γ ) where n = 2h, and K

i ∈ {0, 1}κ,
ξi ∈ F2σ′ , and Γ ∈ F2σ′ :
(a) For j ∈ [2h] \ {α} recompute tj as in GGM.PuncEval.
(b) Compute tα ← K

h+1 − ∑
j∈[2h]\{α} tj .

(c) If Γ =
∑

i∈[n] ξi · ti, output �. Otherwise, output ⊥.

In comparison to Definition 2 GGM.Gen computes a compressed version of all
keys. The pseudorandomness for GGM, as defined in Definition 2, follows from
the standard pseudorandomness argument of the GGM construction [10,13,20].

The following theorem shows that the check ensures that a corrupted P1 can-
not create an inconsistent GGM tree, where P2 obtains different values depending
on α. We give the proof in the full version [6].

Theorem 5 (Consistency of the GGM Tree). Let n = 2h ∈ N, σ′ = σ+2h,
and G,G′ as above, and let A be any time adversary. If G′ is right-half injective,
then A can win the game in Definition 4 with probability at most 2−(σ+1).
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3.2 Security of Π�,s
sp-vole2k

Theorem 6. The protocol Π�,s
sp-vole2k (Fig. 5) securely realizes the functionality

F�,s
sp-vole2k in the (F�,s

vole2k, FOT, FEQ)-hybrid model: No PPT environment Z can
distinguish the real execution of the protocol from a simulated one except with
probability 2−(σ+1) + negl(κ).

In the proof, we construct simulators for a corrupted sender and receiver.
For the corrupted sender, the simulator follows the protocol by behaving like an
honest receiver, but additionally extracts α from the interactions of the dishonest
sender with FOT and β from the VOLE. Its choice of GGM tree as well as
other messages are used to define a consistent vector w that it sends to the
functionality. A subtlety here is simulating the equality check in Step 8d of the
protocol, as a corrupt sender can pass this with an ill-formed x∗ if it can guess
a portion of Δ used in the VOLE-functionality correctly. The simulator must
make a key query to F�,s

sp-vole2k to simulate the success event correctly. Another
issue is that d sent by an honest receiver has a different distribution than how
it is chosen in the simulation, but we show that any distinguisher can break the
pseudorandomness of the GGM PPRF.

In the simulation for the corrupted receiver, the simulator first translates
FOT inputs into leakage queries to the functionality. For this, we know that due
to Step 6c any adversarial choice leads to consistent GGM tree leaves, so the
simulator chooses the set of indices where the check in this Step would pass as
leakage input to the functionality F�,s

sp-vole2k. This query then allows the simulator
to create a valid transcript: if the attacker guessed α exactly correct (the set is
of size 1), then the simulator obtains β from the functionality and can directly
follow the protocol with the honest inputs. If the adversary instead guessed a set
of size > 1 correctly that contains the secret α, then the simulator can reconstruct
the whole GGM tree and thus a potential input v. This furthermore allows the
simulator to detect an inconsistent d that is sent by the corrupt receiver. An
inconsistent d can be shown to translate into a selective failure attack on the
equality check in Step 8d of the protocol, which requires the simulator to make
the second leakage query. If it succeeds, then it obtains α and can adjust vα

accordingly.
The full proof of Theorem 6, together with a summary of the protocol com-

plexity, can be found in the full version [6].

4 Vector OLE Construction

Given our single-point VOLE protocol, we build a protocol for random VOLE
extension over Z2� by running t single-point instances of length n/t, and concate-
nating their outputs to obtain a weight t VOLE correlation of length n. Then,
these (together with some additional VOLEs) can be extended into pseudoran-
dom VOLEs by applying the primal LPN assumption over Z2� with regular noise
vectors of weight t. Since our single-point protocol introduces some leakage on
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the hidden point, we need to rely on a variant of LPN with some leakage on the
regular noise coordinates.

4.1 Leaky Regular LPN Assumption

The assumption, below, translates the leakage from the single-point VOLE func-
tionality (Fig. 4) into leakage on the LPN error vector. Note that there are two
separate leakage queries: the first of these allows the adversary to try and guess
a single predicate on the entire noise vector, and aborts if this guess is incor-
rect. This is similar to previous works [12,25], and essentially only leaks 1 bit
of information on average on the position of the non-zero entries. The second
query, in Step 5 is more powerful, since for each query made by the adversary,
the exact position of one noise coordinate is leaked with probability 1/2. Intu-
itively, this means that up to c coordinates of the error vector can be leaked with
probability 2−c.

Definition 7. Let A ← G(m,n, 2�) ∈ Z
m×n
2� be a primal-LPN matrix, and con-

sider the following game Gb(κ) with a PPT adversary A, parameterized by a bit
b and security parameter κ:

1. Sample e = (e1, . . . , et) ← Z
n
2� , where each sub-vector ei ∈ Z

n/t

2� has exactly
one non-zero entry in Z

∗
2� , in position αi, and sample s ← Z

m
2� uniformly

2. A sends sets I1, . . . , It ⊂ [n/t]
3. If αj ∈ Ij for all j ∈ [t], send OK to A, otherwise abort. Additionally, for

any j where |Ij | = 1, send ej to A
4. A sends sets J1, . . . , Jt ⊂ [n/t]
5. For each Ji where |Ji| = n/(2t): if αi ∈ Ji, send αi to A, otherwise abort
6. Let y0 = s · A + e and sample y1 ← Z

n
2�

7. Send yb to A
8. A outputs a bit b′ (if the game aborted, set the output to ⊥)

The assumption is that |Pr[AG0(κ) = 1] − Pr[AG1(κ) = 1]| is negligible in κ.

4.2 Vector OLE Protocol

Our complete VOLE protocol is given in Fig. 6. It realises the functionality F�,s
vole2k

(Fig. 1), which is the same functionality used for base VOLEs in our single-point
protocol. This allows us to use the same kind of “bootstrapping” mechanism
as [25], where a portion of the produced VOLE outputs is reserved to be used
as the base VOLEs in the next iteration of the protocol.

In the Init phase of the protocol, the parties create a base VOLE of length m,
defining the random LPN secret u, given to the sender, and the scalar Δ, given to
the receiver. Then, in each call to Extend, the parties run t instances of F�,s

sp-vole2k to
generate c = (c1, . . . , ct) and e = (e1, . . . , et) for the sender and b = (b1, . . . , bt)
for the receiver. The sender then simply computes x ← u · A + e ∈ Z

n
2r and

z ← w · A + c ∈ Z
n
2r and the receiver computes y = v · A + b ∈ Z

n
2r . This
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results in the sender holding x, z and the receiver holding y such that z = x·Δ+y.
The first m entries of these are reserved to define a fresh LPN secret for the next
call to Extend, while the remainder are output by the parties.4

VOLE for Z2k : Π�,s
vole2k

Parameters Fix some parameters:
– n: LPN output size

– m: LPN secret size

– t: number of error coordinates for LPN (assume that t | n)

– n/t: size of a block in regular LPN

– A ∈ Z
m×n

2� is the generator matrix used in primal-LPN

Init This must be called by the parties first and is executed once.
1. PS and PR send (Init) to F�,s

sp-vole2k, and PR receives Δ ∈ Z2s .

2. PS and PR send (Extend, m) to F�,s
sp-vole2k. PS receives u,w ∈ Z

m
2� , and PR

receives v ∈ Z
m
2� , such that w = Δ · u + v over Z2� .

Extend This protocol can be executed multiple times.
1. For i ∈ [t], PS and PR send (SP-Extend, n/t) to F�,s

sp-vole2k which returns ei, ci

to PS and bi to PR such that ci = Δ · ei + bi over Z
n/t

2� , and ei ∈ Z
n/t

2� has

exactly one entry invertible modulo 2� and zeros everywhere else.

2. Define e := (e1, . . . , et) ∈ Z
n
2� , c := (c1, . . . , ct) ∈ Z

n
2� , and b :=

(b1, . . . ,bt) ∈ Z
n
2� . Then PS computes x := u · A + e ∈ Z

n
2� , and

z := w · A + c ∈ Z
n
2� . PR computes y := v · A + b ∈ Z

n
2� .

3. PS updates u,w by setting u := x[0 : m) ∈ Z
m
2� and w := z[0 : m) ∈ Z

m
2� ,

and outputs (x[m : n), z[m : n)) ∈ Z
�
2� × Z

�
2� . PR updates v by setting

v := y[0 : m) ∈ Z
m
2� and outputs y[m : n) ∈ Z

�
2� .

Fig. 6. Protocol for VOLE over Z2k in the F�,s
sp-vole2k-hybrid model. Based on [25].

Theorem 8. The protocol Π�,s
vole2k in Fig. 6 securely realizes the functionality

F�,s
vole2k in the F�,s

sp-vole2k-hybrid model, under the leaky regular LPN assumption.

The proof, given in the full version [6], is straightforward for the malicious
sender, and for the malicious receiver we translate the protocol into an instance
of primal LPN from Definition 1, which yields indistinguishability.

Communication Complexity. When we instantiate the single-point VOLE
with our protocol Π�,s

sp-vole2k from Sect. 3, use the equality test sketched in
Sect. 2.3, and Silent OT [12,14,27], our VOLE extension protocol Π�,s

vole2k with
4 In our implementation, we actually reserve m + 2t of the outputs, since we need 2

extra VOLEs for each execution of the protocol for F�,s
sp-vole2k.
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LPN parameters, (m, t, n) requires m + 2t base VOLEs and 4t� + 2tσ +
4t�log n/t� + (5 + 2�log n/t�)tκ bit of communication. The costs for the single-
point VOLE protocol are broken down in the full version [6].

5 QuarkSilver: QuickSilver Modulo 2k

We now construct the QuarkSilver zero-knowledge proof system, which is based
on a similar principle as the QuickSilver protocol. The main technique to achieve
soundness in QuickSilver [26], similar to LPZK [16], is that a dishonest prover
can only cheat in multiplication checks if it can come up with a quadratic poly-
nomial of a certain form, which has a root Δ unknown to the prover. This is
straightforward over fields, but over Z2k there might be many more than just
two roots for a polynomial. Before constructing the zero-knowledge protocol, we
therefore give upper-bounds on the number of roots of certain quadratic poly-
nomials over Z2k .

5.1 Bounding the Number of Solutions to Quadratic Equations

In the following theorem, we analyze a security game that corresponds to our
amortized check for verifying t multiplications. At the core of this, we need to
upper bound the number of solutions to quadratic equations in Z2� , where both
the coefficients and solutions are bounded in certain ways.

Theorem 9. Let �, s, k ∈ N
+ so that � ≥ k+2s and consider the following game

between a challenger C and an adversary A:

1. C chooses Δ ∈ Z2s uniformly at random.
2. A sends δ0, . . . , δt ∈ Z such that not all δi for i > 0 are 0 mod 2k.
3. C chooses χ1, . . . , χt ← Z2s uniformly at random and sends these to A.
4. A sends b, c ∈ Z.
5. A wins iff (δ0 +

∑
i χiδi)Δ2 + bΔ + c = 0 mod 2�.

Then A can win with probability at most (� − k + 2) · 2−s+1.

The proof of Theorem 9 follows a similar way as Lemma 1 of [15]. The key
observation is that Step 3 determines an upper-bound on r, the largest number
such that 2r divides all coefficients of the polynomial. This is because no choice
of b, c can increase r as it also must divide the leading coefficient, which is
randomized. By the random choice of the χi, one can show that the larger r is,
the smaller the chance that it divides δ0 +

∑
i χiδi.

Since a larger r leads to more roots of the polynomial, we can then bound
the overall attack success for each possible r. The full proof can be found in the
full version [6], where we also show the following corollary.

Corollary 10. Let σ ≥ 7 be a statistical security parameter. By setting s :=
σ+log σ+3 and � := k+2s, any adversary A can win the game from Theorem 9
with probability at most 2−σ.
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5.2 QuarkSilver

We now construct the QuarkSilver zero-knowledge proof system. Its main building
block are linearly homomorphic commitments instantiated from VOLEs over Z2� .

Linearly Homomorphic Commitments. As in the A2B [5] zero-knowledge
protocols, we use linearly homomorphic commitments from VOLE to authenti-
cate values in Z2k : Define a commitment [x] to a value x ∈ Z2k known to the
prover by a global key Δ ∈R Z2s and values K[x],M [x] ∈R Z2� with � ≥ k + s
so that

K[x] = M [x] + x̃ · Δ (mod 2�) (1)

holds for x̃ = x (mod 2k). Here the prover knows x̃ and M [x], and the verifier
knows Δ and K[x]. To open the commitment, the prover reveals x̃,K[x] to the
verifier who checks that the aforementioned equalities hold.

The commitment scheme is linearly homomorphic, as no interaction is needed
to compute [a · x + b] from [x] for publicly known a, b ∈ Z2k : P,V simply update
x̃,K[x] and M [x] in the appropriate way modulo 2�. The same linearity also holds
when adding commitments. Unfortunately, the upper � − k bits of x̃ may not
be uniformly random when opening a commitment. To resolve this, the prover
instead opens [x + 2ky] using a random commitment [y].

How QuarkSilver Works. QuarkSilver follows the established commit-and-
prove paradigm for zero-knowledge proofs. For the commitments, we use the
linearly homomorphic commitments described above. For a circuit with n inputs
and t multiplications, we start by generating n + t + 2 authenticated random
values [r1], . . . , [rn+t+2] with r̃i ∈R Z2� for i ∈ [n + t + 2], i.e. commitments
to random values. For this, P and V call (Extend, n + t + 2) to F�,s

vole2k. P then
commits to w using the first n random commitments. Next, the parties evaluate
the circuit topologically, computing commitments to the outputs of linear gates
using the homomorphism of [·]. For each multiplication gate, P commits to the
output using another unused random commitment. It then remains to show that
the commitment to the output of the circuit is a commitment to 1 and that
all committed outputs of multiplication gates are indeed consistent with the
committed inputs.

To verify the committed output wire, QuarkSilver uses the “blinded open-
ing” procedure that was introduced above. This procedure will consume another
random commitment. To check validity of a multiplication, observe that for 3
commitments [wα], [wβ ], [wγ ] with γ = α · β mod 2k it holds that

K[wα] · K[wβ ] − Δ · K[wγ ]
︸ ︷︷ ︸

B

=

M [wα] · M [wβ ]
︸ ︷︷ ︸

A0

+Δ · (w̃α · M [wβ ] + w̃β · M [wα] − M [wγ ])
︸ ︷︷ ︸

A1

,
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QuarkSilver Πk
QS

The prover P and the verifier V have agreed on a circuit C over Z2k with n
inputs and t multiplication gates, and P holds a witness w ∈ Z

n
2k so that

C(w) = 1.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.
1. P and V send (Init) to F�,s

vole2k, and V receives Δ ∈ Z2s .

2. P and V send (Extend, n + t + 2) to F�,s
vole2k, which returns authenticated

values ([μi])i∈[n], ([νi])i∈[t], [o], and [π], where all μ̃i, ν̃i, õ, π̃ ∈R Z2� .

Online phase
1. For each input wi, i ∈ [n], P sends δi := wi − μ̃i to V, and both parties

locally compute [wi] := [μi] + δi.

2. For each gate (α, β, γ, T ) ∈ C, in topological order:
– If T = Add, then P and V locally compute [wγ ] := [wα] + [wβ ].

– If T = Mul and this is the ith multiplication gate, then P sends di :=
wα · wβ − ν̃i, and both parties locally compute [wγ ] := [νi] + di.

3. For the ith multiplication gate, the parties hold ([wα], [wβ ], [wγ ]) with
K[wi] = M [wi] + w̃i · Δ for i ∈ {α, β, γ}.

– P computes A0,i := M [wα] · M [wβ ] ∈ Z2� and A1,i := w̃α · M [wβ ] +
w̃β · M [wα] − M [wγ ] ∈ Z2� .

– V computes Bi := K[wα] · K[wβ ] − Δ · K[wγ ] ∈ Z2� .

4. P and V run the following check:
(a) Set A∗

0 := M [o], A∗
1 := õ, and B∗ := K[o] so that B∗ = A∗

0 + A∗
1 · Δ.

(b) V samples χ ∈R Z
t
2s and sends it to P.

(c) P computes U :=
∑

i∈[t] χi ·A0,i +A∗
0 ∈ Z2� and V :=

∑
i∈[t] χi ·A1,i +

A∗
1 ∈ Z2� , and sends (U, V ) to V.

(d) V computes W :=
∑

i∈[t] χi · Bi + B∗ ∈ Z2� , and checks that W =

U + V · Δ (mod 2�). If the check fails, V outputs false and aborts.

5. For the single output wire wh, both parties hold [wh]. They first compute
[z] := [wh] + 2k · [π]. Then P sends z̃ and M [z] to V who checks that z̃ = 1
(mod 2k) and K[z] = M [z] + z̃ ·Δ. V outputs true iff the check passes, and
false otherwise.

Fig. 7. Zero-knowledge protocol for circuit satisfiability in the F�,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and � := k + 2s for statistical security parameter σ.

where P can compute A0, A1 while V can compute B. Hence, by sending A0, A1

to V the latter can check that the relation on B,Δ holds. Instead of sending
these for every multiplication, we check all t relations simultaneously by having V
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choose a string χ ← Z
t
2s , so that the prover instead sends (

∑
i χiA0,i,

∑
i χiA1,i)

while the verifier checks the relation on
∑

i χiBi and Δ. Since revealing these
linear combinations directly might leak information, P will first blind the opening
with the remaining random commitment from the preprocessing.

While the completeness and zero-knowledge of the aforementioned protocol
follows directly, we will explain the soundness in more detail in the security
proof. The full protocol is presented in Fig. 7.

Security of the QuarkSilver Protocol

Theorem 11. The protocol Πk
QS (Fig. 7) securely realizes the functionality Fk

ZK

in the F�,s
vole2k-hybrid model when instantiated with the parameters s := σ +

log(σ)+3 and � := k+2s: No unbounded environment Z can distinguish the real
execution of the protocol from a simulated one except with probability 2−σ+1.

As our protocol is an adaption of QuickSilver [26], the structure of our proof
is also similar. The main difference, lies in the proof of soundness of the mul-
tiplication check. We will sketch the argument briefly, while the full proof of
Theorem 11 can be found in the full version [6].

For the ith multiplication gate (α, β, γ), let w̃γ = w̃α · w̃β + ei (mod 2�),
where w̃α, w̃β , w̃γ ∈ Z2� are the committed values in [wα], [wβ ], [wγ ] and ei ∈ Z2�

is a possible error. Suppose that not all ei = 0 (mod 2k) for i ∈ [t]. Then

K[wγ ] = M [wγ ] + w̃γ · Δ = M [wγ ] + (w̃α · w̃β) · Δ + ei · Δ (mod 2�)

and (also modulo 2�)

Bi = K[wα] · K[wβ ] − Δ · K[wγ ]

= (M [wα] · M [wβ ]) + (w̃α · M [wβ ] + M [wα] · w̃β − M [wγ ]) · Δ − ei · Δ2

= Ai,0 + Ai,1 · Δ − ei · Δ2

where Ai,0 and Ai,1 are as above the values that an honest P would send. The
equations for all gates are aggregated using a random linear combination:

W =
∑

i∈[t]
χi · Bi + B∗

=
∑

i∈[t]

χi · Ai,0 + A∗
0

︸ ︷︷ ︸
U

+(
∑

i∈[t]

χi · Ai,1 + A∗
1

︸ ︷︷ ︸
V

) · Δ − (
∑

i∈[t]

χi · ei) · Δ2 (2)

Here, U, V denote the values that an honest P would send. The corrupted P∗

may choose to send U ′ := U + eU and V ′ := V + eV instead, and V accepts if
W = U ′ + V ′ · Δ holds. Rearranging Eq. 2, we get that V accepts if

0 = eU + eV · Δ +
(∑

i∈[t]
χi · ei

)

· Δ2 (mod 2�) (3)

holds. The key observation is that the steps in the protocol correspond exactly
to the game defined in Theorem 9 and the dishonest prover wins the game, i.e.,
cheats successfully, if Equation (3) holds. By Corollary 10 the probability that
this happens is at most 2−σ.
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General Degree-2 Checks. Yang et al. [26] also provide zero-knowledge proofs
for sets of t polynomials of degree d in n variables (in total), where the com-
munication consists of n + d field element – independent of t. With the results
proved in Sect. 5.1, we can directly instantiate this protocol with d = 2. This
allows us to verify arbitrary degree-2 relations including the important use case
of inner products. Extending the check for higher-degree relations is principally
possible. However, the number of roots of the corresponding polynomials grows
exponentially with increasing degree. Hence, to achieve the same soundness, we
would need to increase the ring size further, which reduces the efficiency. We
give the full protocol and its security proof in the full version [6].

6 Experiments

In this section we report on the performance of our VOLE protocol Πr,s
vole2k

(Sect. 4) and our zero-knowledge proof system QuarkSilver (Sect. 5). We imple-
mented the protocols in the Rust programming language using the swanky
framework5. Our implementation is open source and available on GitHub under
https://github.com/AarhusCrypto/Mozzarella.

Our implementation is generic, it allows to plugin any ring type that imple-
ments certain interfaces. We implement Z2� based on 64, 128, 192 and 256 bit
integers. Depending on the size of �, we choose the smallest of these types.
Hence, running the protocol with, e.g., � = 129 and � = 192 has exactly the
same computational and communication costs. In our experiments, we choose
one representative ring for each considered size. It is possible to further optimize
the communication cost of the implementation by transmitting exactly � bits
instead of the complete underlying integer value at the additional cost for the
(un)packing operations.

6.1 Benchmarking Environment

All benchmarks were run on two servers with Intel Core i9-7960X processors
that have 16 cores and 32 threads. Each server has 128 GiB memory available.
They are connected via 10 Gigabit Ethernet with an average RTT of 0.25 ms.

We consider different network settings: For the LAN setting, we use the
network as described above without further restrictions. To emulate a WAN
setting, we configure Traffic Control in the Linux kernel via the tc (8) tool
to artificially restrict the bandwidth to 100 Mbit/s, and increase the RTT to
100 ms. Finally, to explore the bandwidth dependence of our VOLE protocol,
we consider a set of network settings with 20, 50, 100 and 500 Mbit/s as well as
1 and 10 Gbit/s bandwidth, and an RTT of 1ms.

6.2 VOLE Experiments

In this section, we evaluate the performance of our VOLE protocol Π�,s
vole2k

(Sect. 4). We consider the setting of batch-wise VOLE extension: Given set of nb

5 swanky: https://github.com/GaloisInc/swanky.

https://github.com/AarhusCrypto/Mozzarella
https://github.com/GaloisInc/swanky


352 C. Baum et al.

base VOLEs, we use our protocols to expand them to no +nb VOLEs to obtain a
batch of no VOLEs plus nb VOLEs that can be used as base VOLEs to generate
the next batch. We do not consider here how the initial set of base VOLEs are
created. As performance measure we use the run-time and communication per
generated VOLE correlation in one iteration of the protocol.

LPN Parameter Selection. For a triple of LPN parameters (m, t, n), our pro-
tocol extends nb = m+2 ·t base VOLEs to n new ones. Hence, for a target batch
size no, we need to find (m, t, n) such that n ≥ no + nb and the corresponding
LPN problem is still considered infeasible w.r.t. the security parameters.

As suggested in prior work [24,25,27], we pick the public LPN matrix A ∈
Z

m×n
2� as a generator of a 10-local linear code (i.e. each column of A contains

exactly 10 uniform non-zero entries). As discussed in Sect. 2.5, each non-zero
entry is picked randomly from Z

∗
2� (i.e. odd), to ensure that reduction modulo

2 does not reduce sparsity. This results in fast computation of the expansion
u · A (for some u ∈ Z2�), as each entry involves only 10 positions of u. We then
pick (m, t, n) such that all known attacks on the LPN problem require at least
2κ operations [12,25] (see also full version [6]). Note that, as our variant of the
regular LPN assumption (Definition 7) leaks blocks of the noise vector, we must
pick t such that our protocols are secure in advent of leaking up to σ ∈ {40, 80}
blocks. To do this, we assume that leaking the noisy index within a single block
of Π�,s

sp-vole2k directly gives an index of the secret and then subtract the leaked
block from the noise vector as well as the corresponding index from the secret
and make sure that the new problem is still infeasible to solve.

For a given no we experimentally find the LPN parameter set (m, t, n) that
gives us the best performance while satisfying the above conditions.

We chose LPN parameters targeting a level of κ = 128 bits of computational
security, and used the approach of Boyle et al. [11] to estimate the hardness of
the LPN problem. Recently, Liu et al. [21] noted that this significantly underesti-
mates the hardness of the LPN problem. Using their estimation, our parameters
yield about 153–158 bits of security. Hence, we could reduce the parameters to
get a more efficient instantiation of our protocol. We chose to use LPN with
odd noise values in Z2k to resist the reduction attack of Liu et al. [21], which
otherwise reduces the effective noise rate by half. In case of a potential future
attack on LPN with odd noise, with the same impact, we would still achieve
103–109 bits of security.

For more details regarding the choice of LPN parameters and how we estimate
the hardness of the leaky LPN problem, we refer to the full version [6].

General Benchmarks. For each statistical security level σ ∈ {40, 80}, we
selected two LPN parameter sets (m, t, n) targeting VOLE batch sizes of no ∈
{107, 108}. We execute the protocol in two different network settings with four
different ring sizes � ∈ {64, 104, 144, 244} (one representative for each of the
underlying integer types) for each of the parameter sets. Table 1 contains the
results of our experiments.
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With increasing ring size � the costs increase as the arithmetic becomes more
costly and more data needs to be transferred. Moreover, with a larger batch size
the costs per VOLE decrease. In terms of run-time and communication costs, it
is more efficient to generate a larger amount of VOLEs at once. However, the
required resources, e.g., memory consumption, also increase with the batch size.
In the WAN setting, a larger batch size is especially more efficient, since the
effect of the higher latency is less pronounced on the amortized run-times.

Although the chosen LPN parameter sets worked well in our case, other
combinations of m and t can yield a similar performance with same security,
while influencing the computation and communication cost slightly. Such an
effect can be noticed in the first parameter sets, where the communication cost
decreases when going from σ = 40 to σ = 80. It is a trade-off, and we deem
experimental verification necessary to choose the best-performing parameter set.

Table 1. Benchmark results of our VOLE protocol. We measure the run-time of the
Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size � (i.e., using Z2�). The computational
security parameter is set to κ = 128. For statistical security σ ∈ {40, 80}, we target
batch sizes of no = 107 and no = 108, and use the stated LPN parameters (m, t, n).

σ �
Run-time Communication

LAN WAN PS → PR PR → PS total

40

m = 553 600, t = 2 186, n = 10 558 380

64 27.3 190.8 0.467 0.927 1.394

104 40.7 186.7 0.509 0.955 1.464

144 55.2 212.6 0.551 0.983 1.534

244 80.7 255.0 0.593 1.011 1.604

m = 773 200, t = 15 045, n = 100 816 545

64 20.1 46.0 0.318 0.636 0.954

104 33.2 58.9 0.347 0.655 1.002

144 46.7 75.1 0.376 0.674 1.050

244 76.7 102.8 0.405 0.694 1.098

80

m = 830 800, t = 2 013, n = 10 835 979

64 27.6 171.9 0.431 0.853 1.284

104 42.6 194.1 0.469 0.879 1.349

144 59.4 217.1 0.508 0.905 1.413

244 89.3 277.4 0.547 0.931 1.477

m = 866 800, t = 18 114, n = 100 913 094

64 21.4 48.2 0.383 0.765 1.148

104 34.3 61.0 0.418 0.789 1.206

144 49.2 76.0 0.453 0.812 1.264

244 79.8 106.8 0.487 0.835 1.322
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Comparison with Wolverine. We compare the efficiency of our VOLE exten-
sion protocol with that of Wolverine [25]. While we use different hardware, we
try to replicate their benchmarking setup by restricting our benchmark to maxi-
mal 5 threads and up to 64 GiB memory, and select LPN parameters to generate
no ≈ 107 VOLEs. The results are given in Table 2, where we list our run-times
in different bandwidth settings with the corresponding numbers given in [25].
Note that Wolverine uses the prime field F261−1, whereas we instantiate our pro-
tocol with different larger rings Z2� . In network settings with at least 50Mbit/s
bandwidth, we achieve similar or better performance for the ring sizes up to
128 bit.

Table 2. Run-times in ns per VOLE in different bandwidth settings, when generating
ca. 107 VOLEs with 5 threads and statistical security σ ≥ 40. The parameter � denotes
the size of a ring or field element. The numbers for Wolverine are taken from [25].

� 20 Mbit/s 50 Mbit/s 100 Mbit/s 500 Mbit/s 1 Gbit/s 10 Gbit/s

this work

64 110.0 68.7 55.0 50.2 50.6 50.4

104 142.0 95.2 80.1 73.2 71.5 73.6

144 178.6 134.7 119.3 111.6 112.6 113.3

244 266.3 219.1 201.7 194.5 193.7 196.5

Wolverine 61 101 87 85 85 85 —

Bandwidth Dependence. Table 2 also shows how the available bandwidth
affects the performance of our protocol. We observe that increasing the network
bandwidth beyond 100 Mbit/s does not improve the run-time significantly. This
indicates that the required computation is the bottleneck above this point.

6.3 Zero-Knowledge Experiments

We explore at what rate our QuarkSilver protocol (Sect. 5) is able to verify the
correctness of multiplications. In our experiments we check for N ≈ 107 triples
of the form ([wi,α], [wi,β ], [wi,γ ]) for i ∈ [N ] that wi,α · wi,β = wi,γ (mod 2k)
holds. Assuming the prover has already committed to 2N values ([wi,α], [wi,β ]),
we execute the following three steps:

1. vole: Perform the Extend operation of Πs,�
vole2k to create the necessary amount

of VOLEs (at least N + 1).
2. mult: Step 2 of Πk

QS (Fig. 7) to commit to the results wi,γ := wi,α ·wi,β of the
multiplications.

3. check: Steps 3 and 4 of Πk
QS to verify that the multiplications are correct

modulo 2k.
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While the execution of Πs,�
vole2k in Step 1 is parallelized, the further steps are

executed in a single thread, and there is still room for optimizations, e.g., using
smaller integers for the coefficients of the random linear combination and better
interleaving computation and communication.

For statistical security levels of σ = 40 and σ = 80, we run the protocol with
ring sizes � = 162 and � = 244, respectively. This corresponds to the required
ring size � to enable zero-knowledge proof over Z2k with k = 64. It also covers
the k = 32 setting, since the corresponding rings (with � ∈ {130, 212}) are
implemented in the same way.

In Table 3 we list the achieved run-times and communication costs per multi-
plication and show how they are distributed over the three steps of the protocol.
We clearly see that the costs are dominated by Step 2, where the majority of
the communication happens (one Z2� element per multiplication). Additional
benchmarks show that increasing the bandwidth to more than 500 Mbit/s does
not increase the performance.

Table 3. Benchmark results of our QuarkSilver protocol. We measure the run-time of
a batch of ≈ 107 multiplications and their verification in ns per multiplication and the
communication cost in bit per multiplication. The benchmarks are parametrized by
the statistical security parameter σ, and the computational security parameter is set
to κ = 128. For σ = 40, we use the ring of size � = 162, for σ = 80, we use � = 244.

σ
Run-time Communication

LAN WAN PS → PR PR → PS total

40

vole 78.5 265.5 0.5 1.0 1.5

mult 663.2 2101.5 192.0 0.0 192.0

check 28.2 38.2 0.0 0.0 0.0

total 769.9 2405.2 192.5 1.0 193.5

80

vole 125.3 345.5 0.5 0.9 1.5

mult 680.7 2767.2 256.0 0.0 256.0

check 42.3 52.4 0.0 0.0 0.0

total 848.3 3165.2 256.5 0.9 257.5

With a completely single-threaded implementation (including single-threaded
VOLEs), we can verify about 0.9 million multiplications per second for statis-
tical security parameter σ = 40 and ring Z2162 , compared to (single-threaded)
QuickSilver’s up to 4.8 million multiplications per second over the field F261−1,
as reported by Yang et al. [26]. This is a factor 5.3 difference.

When looking at the performance of Z2162 compared to F261−1, we see that
Z2162 ring elements are represented by three 64 bit integers compared to F261−1

field elements which fit into a single integer. While this results in 3× more
communication, the computational costs are also higher: In microbenchmarks,
arithmetic operations in Z2162 are 2.1−2.5× slower compared to the correspond-
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ing operations in F261−1 (e.g., Z2162 multiplications require 6 IMUL/MULX
instructions, F261−1 multiplications need one MULX instruction). Moreover, the
compiler can automatically vectorize element-wise computations on vectors of
field elements with AVX instruction due to the smaller element size, but this is
(at least currently) not possible with the larger ring. Computation on rings also
results in a slightly higher rate of cache misses, which we attribute to the fact
that more field elements than ring elements fit in a cache line, simply due to
their size.

We want to stress that this direct comparison is not necessarily fair, though:
The Mersenne prime modulus p = 261 − 1 has been chosen because it allows to
implement the field arithmetic very efficiently. The plaintext space has roughly
the same size in both settings (64 vs. 61 bit), but the arithmetic on the secrets
is entirely different which is the main difference of our work to the field-based
approach of QuickSilver. While QuarkSilver supports 64 bit arithmetic natively
(which is one of the main points of considering Z2k protocols), things are more
complicated with fields. To emulate 64 bit arithmetic in a prime field, the prime
modulus has to have size ≥ 128 bit (so no modular wraparound occurs during
multiplications) which means more communication and more complicated arith-
metic. Then, one also has to commit to the correct reduction modulo 264 and
prove that the reduction is computed correctly, e.g., with range proofs or using
the truncation protocols of Baum et al. [5] – both are not cheap, in particular
given they are needed for each multiplication mod 264 (and possibly additions,
too). Moreover, with a prime modulus of this size one cannot take advantage
of a Mersenne prime (the nearest Mersenne primes would be p = 2127 − 1 (too
small) and p = 2521 − 1 (much larger)) to increase computational efficiency.
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Abstract. We introduce a new approach to realize incrementally verifi-
able computation (IVC), in which the prover recursively proves the correct
execution of incremental computations of the form y = F (�)(x), where F is
a (potentially non-deterministic) computation, x is the input, y is the out-
put, and � > 0. Unlike prior approaches to realize IVC, our approach avoids
succinct non-interactive arguments of knowledge (SNARKs) entirely and
arguments of knowledge in general. Instead, we introduce and employ fold-
ing schemes, a weaker, simpler, and more efficiently-realizable primitive,
which reduces the task of checking two instances in some relation to the
task of checking a single instance. We construct a folding scheme for a char-
acterization of NP and show that it implies an IVC scheme with improved
efficiency characteristics: (1) the “recursion overhead” (i.e., the number of
steps that the prover proves in addition to proving the execution of F ) is a
constant and it is dominated by two group scalar multiplications expressed
as a circuit (this is the smallest recursion overhead in the literature), and
(2) the prover’s work at each step is dominated by two multiexponentia-
tions of size O(|F |), providing the fastest prover in the literature. The size
of a proof is O(|F |) group elements, but we show that using a variant of
an existing zkSNARK, the prover can prove the knowledge of a valid proof
succinctly and in zero-knowledge with O(log |F |) group elements. Finally,
our approach neither requires a trusted setup nor FFTs, so it can be instan-
tiated efficiently with any cycles of elliptic curves where DLOG is hard.

1 Introduction

We revisit the problem of realizing incrementally-verifiable computation (IVC)
[43]: a cryptographic primitive that enables producing proofs of correct execution
of “long running” computations such that a verifier can efficiently verify the correct
execution of any prefix of the computation. IVC enables a wide variety of applica-
tions including verifiable delay functions [9,45], succinct blockchains [13,31], and
incrementally-verifiable versions of verifiable state machines [33,39].

A well-known approach to construct IVC is to use succinct non-interactive
arguments of knowledge (SNARKs) forNP [23,24,29,36]: at each incremental step
i, the prover produces a SNARK proving that it has applied F correctly to the out-
put of step i−1 and that the SNARK verifier represented as a circuit has accepted
c© International Association for Cryptologic Research 2022
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the SNARK from step i − 1 [6,8]. However, it is well-known that this approach is
impractical [6,19]. Alternatively, one can use SNARKs without trusted setup [17,
21,38,41] but their verifiers aremore expensive than those of SNARKswith trusted
setup, both asymptotically and concretely. Recent works [10,12,15,16] aim to
address the inefficiency of SNARK-based IVC, with an innovative approach: at
each step, the verifier circuit “defers” expensive steps in verifying a SNARK for
NP instances (e.g., verifying polynomial evaluation proofs) by accumulating those
steps into a single instance that is later checked efficiently. However, these works
still require the prover to produce a SNARK at each step and the verifier circuit
to partially verify that SNARK.

We introduce a new approach that avoids SNARKs (and more generally argu-
ments of knowledge) entirely and relies purely on deferral to realize IVC. In a
nutshell, instead of accumulating expensive steps of verifying a SNARK for NP
instances, the verifier circuit in our approach accumulates the NP instances them-
selves. We formalize this technique as a new and minimal primitive, which we refer
to as a folding scheme. A folding scheme is weaker, simpler, and far more efficient
compared to arguments of knowledge including SNARKs. Indeed, realizing IVC
via folding schemes results in improved efficiency over prior work (Fig. 3): (1) the
verifier circuit is constant-sized and its size is dominated by two group scalar mul-
tiplications; this is the smallest verifier circuit in the literature (in the context of
recursive proof composition); and (2) the prover’s work at each step is dominated
by two multiexponentiations of size O(|F |), providing the fastest prover in the lit-
erature, both asymptotically and concretely. Section 1.4 provides a detailed com-
parison between our approach and prior work.

1.1 Folding Schemes

A folding scheme is defined with respect to an NP relation, and it is a proto-
col between an untrusted prover and a verifier. Both entities hold two N -sized
NP instances, and the prover in addition holds purported witnesses for both
instances. The protocol enables the prover and the verifier to output a single
N -sized NP instance, which we refer to as a folded instance. Furthermore, the
prover privately outputs a purported witness to the folded instance using pur-
ported witnesses for the original instances. Informally, a folding scheme guarantees
that the folded instance is satisfiable only if the original instances are satisfiable.
A folding scheme is said to be non-trivial if the verifier’s costs and the communica-
tion are lower in the case where the verifier participates in the folding scheme and
then verifies a purported NP witness for the folded instance than the case where
the verifier verifies purported NP witnesses for each of the original instances.

Several existing techniques exhibit the two-to-one reduction pattern of folding
schemes. Examples include the sumcheck protocol [35] and the split-and-fold
techniques in inner product arguments [11]. [30, App. A] provides further details.

Remark 1 (Folding Schemes vs. SNARKs). SNARKs for NP [7,23,24,29,36]
trivially imply a folding scheme for NP: given two NP instances u1 and u2 and
the corresponding witnesses, the prover proves u1 by producing a SNARK. The
verifier checks that SNARK and then sets u2 to be the folded instance. However,
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we construct a folding scheme for NP without relying on SNARKs (or more gen-
erally arguments of knowledge). Specifically, our folding scheme is weaker than
any argument of knowledge (succinct or otherwise) because it merely reduces the
satisfiability of two NP instances to the satisfiability of a single NP instance.1

To design a folding scheme for NP, we start with a popular NP-complete lan-
guage that generalizes arithmetic circuit satisfiability: R1CS (Definition 10). As
we illustrate later, it is difficult to devise a folding scheme for R1CS. To address
this, we introduce a variant of R1CS, called relaxed R1CS, which, like R1CS,
not only characterizes NP, but, unlike R1CS, can support a folding scheme. The
following theorem captures the cryptographic and efficiency characteristics of
our folding scheme for relaxed R1CS.

Theorem 1. There exists a constant-round, public-coin, zero-knowledge folding
scheme for relaxed R1CS where for N -sized relaxed R1CS instances over a finite
field F with the same “structure” (i.e., R1CS coefficient matrices), the prover’s
work is Oλ(N), and the verifier’s work and the communication are both Oλ(1),
assuming the existence of any additively-homomorphic commitment scheme that
provides Oλ(1)-sized commitments to N -sized vectors over F (e.g., Pedersen’s
commitments), where λ is the security parameter.

Because our folding scheme is public coin, it can be made non-interactive in
the random oracle model using the Fiat-Shamir transform [22], and be instan-
tiated (heuristically) in the standard model using a concrete hash function. We
rely on such a non-interactive folding scheme to construct IVC.

1.2 IVC from Non-interactive Folding Schemes

We show how to realize IVC using a non-interactive version of our folding scheme
for relaxed R1CS. We refer to our construction as Nova.

Recall that an IVC is an argument of knowledge [29,36]2 for incremental
computations of the form y = F (�)(x), where F is a (possibly non-deterministic)
computation, � > 0, x is a public input, and y is the public output. At each
incremental step, the IVC prover produces a proof that the step was computed
correctly and it has verified a proof for the prior step. In other words, at each
incremental step, the IVC prover produces a proof of satisfiability for an aug-
mented circuit that augments the circuit for F with a “verifier circuit” that
verifies the proof of the prior step. Recursively, the final proof proves the cor-
rectness of the entire incremental computation. A key aspect of IVC is that
neither the IVC verifier’s work nor the IVC proof size depends on the number of
1 This work realizes IVC using our folding scheme. As IVC implies SNARKs (e.g.,

see [6]), one might wonder whether folding schemes are in general weaker than
SNARKs. However, existing constructions of IVC (including our own) rely on addi-
tional assumptions (§4.2), which the resulting IVC-based SNARK inherits.

2 An argument of knowledge for circuit satisfiability enables an untrusted polynomial-
time prover to prove to a verifier the knowledge of a witness w such that C(w, x) = y,
where C is a circuit, x is some public input, and y is some public output.
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steps in the incremental computation. In particular, the IVC verifier only verifies
the proof produced at the last step of the incremental computation.

In Nova, we consider incremental computations, where each step of the incre-
mental computation is expressed with R1CS (all the steps in the incremental
computation share the same R1CS coefficient matrices). At step i of the incre-
mental computation, as in other approaches to IVC, Nova’s prover proves that
the step i was computed correctly. Furthermore, at step i, instead of verifying a
proof for step i−1 (as in traditional approaches to IVC), Nova’s approach treats
the computation at step i−1 as an R1CS instance and folds that into a running
relaxed R1CS instance. Specifically, at each step, Nova’s prover proves that it has
performed the step’s computation and has folded its prior step represented as an
R1CS instance into a running relaxed R1CS instance. In other words, the circuit
satisfiability instance that the prover proves at each incremental step computes
a step of the incremental computation and includes a circuit for the computation
of the verifier in the non-interactive folding scheme for relaxed R1CS.

A distinctive aspect of Nova’s approach to IVC is that it achieves the smallest
“verifier circuit” in the literature. Since the verifier’s costs in the non-interactive
version of the folding scheme for relaxed R1CS is Oλ(1), the size of the compu-
tation that Nova’s prover proves at each incremental step is ≈|F |, assuming N -
sized vectors are committed with an Oλ(1)-sized commitments (e.g., Pedersen’s
commitments). In particular, the verifier circuit in Nova is constant-sized and
its size is dominated by two group scalar multiplications. Furthermore, Nova’s
prover’s work at each step is dominated by two multiexponentiations of size ≈|F |.
Note that Nova’s prover does not perform any FFTs, so it can be instantiated
efficiently using any cycles of elliptic curves where DLOG is hard.

With the description thus far, the size of an IVC proof (which is a purported
witness for the running relaxed R1CS instance) is Oλ(|F |). Instead of sending
such a proof to a verifier, at any point in the incremental computation, Nova’s
prover can prove the knowledge of a satisfying witness to the running relaxed
R1CS instance in zero-knowledge with an Oλ(log |F |)-sized succinct proof using
a zkSNARK that we design by adapting Spartan [38]. The following theorem
summarizes our key result.

Theorem 2. For any incremental function where each step of the incremental
function applies a (non-deterministic) function F , there exists an IVC scheme
with the following efficiency characteristics, assuming N -sized vectors are com-
mitted with an Oλ(1)-sized commitments.

– IVC proof sizes are O(|F |) and the verifier’s work to verify them is Oλ(|F |).
The prover’s work at each incremental step is ≈|F |. Specifically, the prover’s
work at each step is dominated by two multiexponentiations of size ≈|F |.

– Succinct zero-knowledge proofs of valid IVC proofs are size Oλ(log |F |), and
the verifier’s work to verify them is either Oλ(log |F |) or Oλ(|F |) depending
on the commitment scheme for vectors. The prover’s work to produce this
succinct zero-knowledge proof is Oλ(|F |).
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1.3 Implementation and Performance Evaluation

We implement Nova as a library in about 6,000 lines of Rust [3]. The library is
generic over a cycle of elliptic curves and a hash function (used internally as the
random oracle). The library provides candidate implementations with the Pasta
cycle of elliptic curves [4] and Poseidon [2,26]. Finally, the library accepts F (i.e.,
a step of the incremental computation) as a bellperson gadget [1].

Recursion Overheads. We measure the size of Nova’s verifier circuit, as it deter-
mines the recursion overhead : the number of additional constraints that the prover
must prove at each incremental step besides proving an invocation of F .

We find that Nova’s verifier circuit is ≈20,000 R1CS constraints. This is the
smallest verifier circuit in the literature and hence Nova incurs the lowest recursion
overhead. Specifically, Nova’s recursion overhead is >10× lower than in SNARK-
based IVC [6] with state-of-the-art per-circuit trusted setup SNARK [27], and over
100× smaller than with a SNARK without trusted setup [21]. Compared to recent
works, Nova’s recursion overhead is over 7× lower than Halo’s [12], and over 2×
lower than the scheme of Bunz et al. [15] (Fig. 1).

Primary Curve Secondary Curve

Scalar multiplications 12,362 12,362
Random oracle call 1,431 1,434
Collision-resistant hash 2,300 2,306
Non-native arithmetic 3,240 3,240
Glue code 1,251 1,782

421,12485,02latoT

Fig. 1. A detailed breakdown of sub-routines in Nova’s verifier’s circuit and the associ-
ated number of R1CS constraints. The verifier circuit on each of the curves in the cycle
are not identical as they have slightly different base cases. We find that a majority of
constraints in the verifier circuit step from the group scalar multiplications.

Performance of Nova. We experiment with Nova on an Azure Standard
F32s v2 VM (16 physical CPUs, 2.70 GHz Intel(R) Xeon(R) Platinum 8168,
and 64 GB memory). In our experiments, we vary the number of constraints in
F . Our performance metrics are: the prover time, the verifier time, and proof
sizes. We measure these for Nova’s IVC scheme as well as its Spartan-based
zkSNARK to compress IVC proofs. Figure 2 depicts our results, and we find the
following.

– The prover’s per-step cost to produce an IVC proof and compress it scale
sub-linearly with the size of F (since the cost is dominated by two multiex-
ponentiations, which scale sub-linearly due to the Pippenger algorithm and
parallelize better at larger sizes). When |F | ≈ 220 constraints, the prover’s
per-step cost to produce an IVC proof is ≈1µs/constraint. For the same F ,
the cost to produce a compressed IVC proof is ≈24µs/constraint.3

3 If the prover produces a compressed IVC proof every ≈24 steps, the prover incurs
at most 2× overhead to compress IVC proofs. Similarly, if the prover compresses its
IVC proof every ≈240 steps, the overhead drops to ≈20%.
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Fig. 2. Performance of Nova as a function of |F |. See the text for details.

– Compressed IVC proofs are ≈8–9 KB and are significantly shorter than IVC
proofs (e.g., they are ≈7,400× shorter when |F | ≈ 220 constraints).

– Verifying a compressed proof is only ≈2× higher costs than verifying a sig-
nificantly longer IVC proof.

1.4 A More Detailed Comparison with Prior Work

Figure 3 compares Nova with prior approaches. Nova’s approach can be viewed
as taking Halo’s approach to the extreme. Specifically:

– At each incremental step, Halo’s verifier circuit verifies a “partial” SNARK.
This still requires Halo’s prover to perform |F |-sized FFTs and O(|F |) expo-
nentiations (i.e., not an |F |-sized multiexponentiation). Whereas, in Nova,
the verifier circuit folds an entire NP instance representing computation at
the prior step into a running relaxed R1CS instance. This only requires Nova’s
prover to commit to a satisfying assignment of an ≈|F |-sized circuit (which
computes F and performs the verifier’s computation in a folding scheme for
relaxed R1CS), so at each step, Nova’s prover only computes an O(|F |)-
sized multiexponentiation and does not compute any FFTs. So, Nova’s prover
incurs lower costs than Halo’s prover, both asymptotically and concretely.

– The verifier circuit in Halo is of size Oλ(log |F |) whereas in Nova, it is Oλ(1).
Concretely, the dominant operations in Halo’s circuit is O(log |F |) group
scalar multiplications, whereas in Nova, it is two group scalar multiplications.

– Halo and Nova have the same proof sizes Oλ(log |F |) and verifier time Oλ(|F |).
Bünz et al. [16] apply Halo’s approach to other polynomial commitment

schemes. Halo Infinite [10] generalizes the approach in Halo [12] to any homo-
morphic polynomial commitment scheme; they also obtain PCD (and hence IVC)
even when polynomial commitment schemes do not satisfy succinctness.

Bünz et al. [15] propose a variant of the approach in Halo, where they realize
PCD (and hence IVC) without relying on succinct arguments. Specifically, they
first devise a non-interactive argument of knowledge (NARK) for R1CS with
Oλ(N)-sized proofs and Oλ(N) verification times for N -sized R1CS instances.
Then, they show that most of the NARK’s verifier’s computation can be deferred
by performing Oλ(1) work in the verifier circuit. For zero-knowledge, Nova relies
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“Verifier circuit” Prover Proof size Verifier assumptions
(dominant ops) (each step)

BCTV14 [6] with [27]† 3 O(C) FFT Oλ(1) Oλ(1) q-type
O(C) MSM

Spartan [38]-based IVC O(
√
C) O(C) MSM Oλ(

√
C) Oλ(

√
C) DLOG, RO

Fractal [21] Oλ(log
2 C) O(C) FFT Oλ(log

2 C) Oλ(log
2 C) RO

O(log2 C) O(C) MHT

Halo [12] O(logC) O(C) FFT Oλ(logC) Oλ(C) DLOG, RO
O(C) EXP

BCLMS [15]� 8 O(C) FFT Oλ(C) Oλ(C) DLOG, RO
O(C) MSM

Nova (this work) 2 O(C) MSM Oλ(logC) Oλ(C) DLOG, RO

Nova (this work) 2 T O(C) MSM Oλ(logC) Oλ(logC) SXDH, RO
† Requires per-circuit trusted setup and is undesirable in practice
O(C) FFT: FFT over an O(C)-sized vector costing O(C logC) operations over F
O(C) MHT: Merkle tree over an O(C)-sized vector costing O(C) hash computations
O(C) EXP: O(C) exponentiations in a cryptographic group
O(C) MSM: O(C)-sized multi-exponentiation in a cryptographic group

Fig. 3. Asymptotic costs of Nova and its baselines to produce and verify a proof for an
incremental computation where each incremental step applies a function F . C denotes
the size of the computation at each incremental step, i.e., |F | + |CV |, where CV is the
“verifier circuit” in IVC. The “verifier circuit” column depicts the number of dominant
operations in CV , where P denotes a pairing in a pairing-friendly group, F denotes
the number of finite field operations, H denotes a hash computation, and G denotes a
scalar multiplication in a cryptographic group. The prover column depicts the cost to
the prover for each step of the incremental computation, and proof sizes and verifier
times refer respectively to the size of the proof of the incremental computation and the
associated verification times. For Nova’s proof sizes and verification times, we depict the
compressed proof sizes (otherwise, they are Oλ(C)) and the time to verify a compressed
proof (otherwise, they are Oλ(C)). Rows with RO require heuristically instantiating
the random oracle with a concrete hash function in the standard model.

on zero-knowledge arguments with succinct proofs, whereas their approach does
not rely on succinct arguments. However, Nova’s approach has several conceptual
and efficiency advantages over the work of Bünz et al. [15]:

– Nova introduces a new primitive called a folding scheme, which is conceptually
simpler and is easier to realize than prior notions such as (split) accumulation
schemes used in prior work [15,16]. Furthermore, a folding scheme for NP
directly leads to IVC and is again easier to analyze than with prior notions.

– At each step, their prover performs an O(|F |)-sized FFT (which costs
O(|F | log |F |) operations over F). Whereas, Nova does not perform any FFTs.

– Their prover’s work for multiexponentitions at each step and the size of their
verifier circuit are both higher than in Nova by ≈4×.

– Proof sizes are Oλ(|F |) in their work, whereas in Nova, they are Oλ(log |F |).
We believe, in theory, they can also compress their proofs, using a succinct
argument, but unlike Nova, they do not specify how to do so in a concretely
efficient manner. Furthermore, using succinct arguments is inconsistent with
their goal of not employing them.
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Concurrent Work. In an update concurrent with this work, Bünz et al. [15]
provide an improved construction of their NARK for R1CS, which leads to an
IVC that, like Nova, avoids FFTs. Furthermore, they improve the size of the
verifier circuit by ≈2×, which is still larger than Nova’s verifier circuit by ≈2×.
The per-step computation of the prover remains 4× higher than Nova.

1.5 An Overview of the Rest of the Paper

Section 2 provides the necessary background. Section 3 formally defines folding
schemes and their properties. In Sect. 4, we introduce a variant of R1CS called
relaxed R1CS for which we provide a folding scheme satisfying Theorem1. Then,
in Sect. 5, we use a non-interactive version of the folding scheme (§4.2) to con-
struct an IVC scheme and a scheme to compress IVC proofs satisfying Theorem 2
by assuming the existence of a zkSNARK for relaxed R1CS with logarithmic-
sized proofs. Finally, in Sect. 6, we construct such a zkSNARK.

2 Preliminaries

Let F denote a finite field with |F| = 2Θ(λ), where λ is the security parameter. Let
∼= denote computational indistinguishability with respect to a PPT adversary.
We globally assume that generator algorithms that produce public parameters
are additionally provided appropriate size bounds.

2.1 A Commitment Scheme for Vectors over F

We require a commitment scheme for vectors over F that is additively homo-
morphic and succinct. We formally define these two properties and others noted
below in [30, App. F]. Below, we define the syntax for commitment schemes.

Definition 1 (A Commitment Scheme for Vectors). A commitment
scheme for F

m is a tuple of three protocols with the following interface.

– Gen(1λ,m) → pp: takes length parameter m; produces public parameters pp.
– Com(pp, v, r) → C: takes vector v ∈ F

m and r ∈ F; produces commitment C.
– Open(pp, C, v, r) → {0, 1}: verifies the opening of commitment C to v ∈ F

m.

A commitment scheme satisfies hiding (the commitment reveals no information),
binding (a PPT adversary cannot open a commitment to two different values),
and succinctness (the commitment size is logarithmic in the opening size).

2.2 Non-interactive Arguments of Knowledge

Definition 2 (Non-Interactive Argument of Knowledge). Consider a
relation R over public parameters, structure, instance, and witness tuples. A non-
interactive argument of knowledge for R consists of PPT algorithms (G,P,V)
and deterministic K, denoting the generator, the prover, the verifier and the
encoder respectively with the following interface.
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– G(1λ) → pp: On input security parameter λ, samples public parameters pp.
– K(pp, s) → (pk, vk): On input structure s, representing common structure

among instances, outputs the prover key pk and verifier key vk.
– P(pk, u, w) → π: On input instance u and witness w, outputs a proof π proving

that (pp, s, u, w) ∈ R.
– V(vk, u, π) → {0, 1}: Checks instance u given proof π.

An argument of knowledge satisfies completeness if for any PPT adversary A

Pr

⎡
⎢⎢⎢⎢⎣

V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u,w)) ← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk) ← K(pp, s),
π ← P(pk, u, w)

⎤
⎥⎥⎥⎥⎦

= 1.

An argument of knowledge satisfies knowledge soundness if for all PPT adver-
saries A there exists a PPT extractor E such that for all randomness ρ

Pr

⎡
⎢⎢⎣

V(vk, u, π) = 1,
(pp, s, u, w) �∈ R

∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, u, π) ← A(pp; ρ),
(pk, vk) ← K(pp, s),
w ← E(pp, ρ)

⎤
⎥⎥⎦ = negl(λ).

Definition 3 (Zero-Knowledge). An argument of knowledge (G,K,P,V) for
relation R satisfies zero-knowledge if there exists PPT simulator S such that for
all PPT adversaries A

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u,w)) ← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk) ← K(pp, s),
π ← P(pk, u, w)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣

(pp, τ) ← S(1λ),
(s, (u,w)) ← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk) ← K(pp, s),
π ← S(pp, u, τ)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Definition 4 (Succinctness). A non-interactive argument system is succinct
if the size of the proof π is polylogarithmic in the size of the witness w.

2.3 Incrementally Verifiable Computation

Incrementally verifiable computation (IVC) [43] enables verifiable computation
for repeated function application. Intuitively, for a function F , with initial input
z0, an IVC scheme allows a prover to produce a proof Πi for the statement
zi = F (i)(z0) (i.e., i applications of F on input z0) given a proof Πi−1 for
the statement zi−1 = F (i−1)(z0). Formally, IVC schemes additionally permit
F to take auxiliary input ω. We recall the definition of IVC using notational
conventions of modern argument systems.

Definition 5 (IVC). An incrementally verifiable computation (IVC) scheme is
defined by PPT algorithms (G,P,V) and deterministic K denoting the generator,
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the prover, the verifier, and the encoder respectively. An IVC scheme (G,K,P,V)
satisfies perfect completeness if for any PPT adversary A

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

V(vk, i, z0, zi,Πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
F, (i, z0, zi, zi−1, ωi−1,Πi−1) ← A(pp),
(pk, vk) ← K(pp, F ),
zi = F (zi−1, ωi−1),
V(vk, i − 1, z0, zi−1,Πi−1) = 1,
Πi ← P(pk, i, z0, zi; zi−1, ωi−1,Πi−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

where F is a polynomial time computable function. Likewise, an IVC scheme
satisfies knowledge-soundness if for any constant n ∈ N, and expected polynomial
time adversaries P∗ there exists expected polynomial-time extractor E such that
for any input randomness ρ

Pr

⎡
⎢⎢⎢⎢⎣

zn �= z,
V(vk, n, z0, z,Π) = 1

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
F, (z0, z,Π) ← P∗(pp; ρ),
(pk, vk) ← K(pp, F ),
(ω0, . . . , ωn−1) ← E(pp, z0, z; ρ),
zi ← F (zi−1, ωi−1) ∀i ∈ {1, . . . , n}

⎤
⎥⎥⎥⎥⎦

≤ negl(λ).

An IVC scheme satisfies succinctness if the size of the IVC proof Π does not
grow with the number of applications n.

We note that in the definition above, the number of steps n is treated as
a fixed environment variable that characterizes the extractor. This model is
required for all known general recursive techniques as they rely on recursive
extractors that blowup polynomially for each additional recursive step [10,13,
15,16,21]. Bitansky et al. [8] avoid such a restriction by making non-blackbox
assumptions about the extractors runtime with respect to that of the malicious
prover. In any case, there are no known attacks on arbitrary depth recursion.

3 Folding Schemes

This section formally defines folding schemes. Intuitively, a folding scheme for a
relation R is a protocol that reduces the task of checking two instances in R to
the task of checking a single instance in R.

Definition 6 (Folding Scheme). Consider a relation R over public parame-
ters, structure, instance, and witness tuples. A folding scheme for R consists of
a PPT generator algorithm G, a deterministic encoder algorithm K, and a pair
of PPT algorithms P and V denoting the prover and verifier respectively, with
the following interface:

– G(1λ) → pp: On input security parameter λ, samples public parameters pp.
– K(pp, s) → (pk, vk): On input pp, and a common structure s between instances

to be folded, outputs a prover key pk and a verifier key vk.
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– P(pk, (u1, w1), (u2, w2)) → (u,w): On input instance-witness tuples (u1, w1)
and (u2, w2) outputs a new instance-witness tuple (u,w) of the same size.

– V(vk, u1, u2) → u: On input instances u1 and u2, outputs a new instance u.

Let

(u,w) ← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

denote the the verifier’s output instance u and the prover’s output witness w
from the interaction of P and V on witnesses (w1, w2), prover key pk, verifier
key vk and instances (u1, u2). Likewise, let

tr = 〈P(pk, w1, w2),V(vk)〉(u1, u2)

denote the corresponding interaction transcript. A folding scheme satisfies perfect
completeness if for all PPT adversaries A

Pr

⎡
⎢⎢⎢⎢⎣

(pp, s, u, w) ∈ R

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u1, w1), (u2, w2)) ← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk) ← K(pp, s),
(u,w) ← 〈P(pk, w1, w2),V(vk)〉(u1, u2)

⎤
⎥⎥⎥⎥⎦

= 1.

A folding scheme satisfies knowledge soundness if for any expected polynomial-
time adversary P∗ there is an expected polynomial-time extractor E such that

Pr

⎡
⎣ (pp, s, u1, w1) ∈ R,

(pp, s, u2, w2) ∈ R

∣∣∣∣∣∣
pp ← G(1λ),
(s, (u1, u2)) ← P∗(pp, ρ),
(w1, w2) ← E(pp, ρ)

⎤
⎦ ≥

Pr

⎡
⎢⎢⎣ (pp, s, u, w) ∈ R

∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u1, u2)) ← P∗(pp, ρ),
(pk, vk) ← K(pp, s),
(u,w) ← 〈P∗(pk, ρ),V(vk)〉(u1, u2)

⎤
⎥⎥⎦ − negl(λ)

where ρ denotes arbitrary input randomness for P∗. We call a transcript an
accepting transcript if P outputs a satisfying folded witness w for the folded
instance u. We consider a folding scheme non-trivial if the communication costs
and V’s computation are lower in the case where V participates in the folding
scheme and then checks a witness sent by P for the folded instance than the case
where V checks witnesses sent by P for each of the original instances.

Definition 7 (Non-Interactive). A folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as an output of P, and an input to V.

Definition 8 (Zero-Knowledge). A folding scheme (G,K,P,V) satisfies
zero-knowledge for relation R if there exists a PPT simulator S such that for all
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PPT adversaries A, and V∗, and input randomness ρ

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tr

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u1, w1), (u2, w2)) ← A(pp),
(pk, vk) ← K(pp, s),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
tr = 〈P(pk, w1, w2),V∗(vk, ρ)〉(u1, u2)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∼=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tr

∣∣∣∣∣∣∣∣∣∣

pp ← G(1λ),
(s, (u1, w1), (u2, w2)) ← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk) ← K(pp, s),
tr ← SV∗(vk,ρ)(pk, u1, u2)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Definition 9 (Public Coin). A folding scheme (G,K,P,V) is called public
coin if all the messages sent from V to P are sampled from a uniform distribution.

Typically, knowledge soundness is difficult to prove directly. To assist these
proofs, prior works employ the forking lemma [11], which abstracts away much
of the probabilistic reasoning. The original forking lemma shows that to prove
knowledge soundness it is sufficient to construct a PPT extractor that takes as
input a “tree” of accepting transcripts and outputs a satisfying witness. How-
ever, in our setting, this extractor must additionally take as input the prover’s
output (i.e., the folded instance and witness) for each of these transcripts, which
contains information needed to reconstruct the original witness. So, we introduce
a small variant of the forking lemma that captures this modification.

Lemma 1 (Forking Lemma for Folding Schemes). Consider a (2μ + 1)-
move folding scheme Π = (G,K,P,V). Π satisfies knowledge soundness if there
exists a PPT X such that for all input instance pairs u1, u2, outputs satisfy-
ing witnesses w1, w2 with probability 1 − negl(λ), given public parameters pp,
structure s, and an (n1, . . . , nμ)-tree of accepting transcripts and corresponding
folded instance-witness pairs (u,w). This tree comprises n1 transcripts (and cor-
responding instance-witness pairs) with fresh randomness in V’s first message;
and for each such transcript, n2 transcripts (and corresponding instance-witness
pairs) with fresh randomness in V’s second message; etc., for a total of

∏μ
i=1 ni

leaves bounded by poly(λ).

Proof Intuition. A proof for our variant of the forking lemma is similar to that
of Bootle et al. [11]. We present a formal proof in [30, App. F]. �

4 A Folding Scheme for NP

In this section, we describe a public-coin, zero-knowledge interactive folding
scheme for NP. We additionally discuss how to make it non-interactive. We
leverage the non-interactivity property to realize IVC in the next section, and
the zero-knowledge property to achieve zero-knowledge IVC proof compression.
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4.1 A Public-Coin, Zero-Knowledge Folding Scheme

To design a folding scheme for NP, we need an NP-complete language. While the-
oretically any NP-complete language is a viable candidate, we focus on R1CS,4 a
popular algebraic representation that generalizes arithmetic circuit satisfiability.

Definition 10 (R1CS). Consider a finite field F. Let the public parameters
consist of size bounds m,n, � ∈ N where m > �. The R1CS structure consists
of sparse matrices A,B,C ∈ F

m×m with at most n = Ω(m) non-zero entries
in each matrix. An instance x ∈ F

� consists of public inputs and outputs and is
satisfied by a witness W ∈ F

m−�−1 if (A·Z)◦(B ·Z) = C ·Z, where Z = (W, x, 1).

As we show in the next section, to realize IVC, we only need a folding scheme
that can fold two R1CS instances with the same R1CS matrices (A,B,C). Specif-
ically, given R1CS matrices (A,B,C), and two corresponding instance-witness
pairs (x1,W1) and (x2,W2), we would like to devise a scheme that reduces the
task of checking both instances into the task of checking a single new instance-
witness pair (x,W ) against the same R1CS matrices (A,B,C). Unfortunately,
as we illustrate now, it is difficult to devise a folding scheme for R1CS such that
it satisfies completeness, let alone knowledge soundness.

First Attempt. As R1CS is an algebraic system, the most direct approach
would be to take a random linear combination. Ignoring efficiency concerns,
suppose that the prover sends witnesses W1 and W2 in the first step. The verifier
responds with a random r ∈ F; the prover and the verifier both compute

x ← x1 + r · x2
W ← W1 + r · W2,

and set the new instance-witness pair to be (x,W ). However, for non-trivial
Z1 = (W1, x1, 1) and Z2 = (W2, x2, 1), and Z = (W, x, 1), we roughly have that

AZ ◦ BZ = A(Z1 + r · Z2) ◦ B(Z1 + r · Z2)

= AZ1 ◦ BZ1 + r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1) + r2 · (AZ2 ◦ BZ2)
�= CZ.

The failed attempt exposes three issues. First, we must account for an addi-
tional cross-term, r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1). Second, the terms excluding the
cross-term combine to produce a term that does not equal CZ:

AZ1 ◦ BZ1 + r2 · (AZ2 ◦ BZ2) = CZ1 + r2 · CZ2 �= CZ1 + r · CZ2 = CZ.

Third, we do not even have that Z = Z1+r·Z2 because Z1+r·Z2 = (W, x, 1+r·1).

4 R1CS is implicit in the QAPs formalism of GGPR [23], but it was made explicit in
subsequent work [40]; they refer to it as a “constraint system in quadratic form”.
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Second Attempt. To handle the first issue, we introduce a “slack” (or error)
vector E ∈ F

m which absorbs the cross terms generated by folding. To handle
the second and third issues, we introduce a scalar u, which absorbs an extra
factor of r in CZ1 + r2 · CZ2 and in Z = (W, x, 1 + r · 1). We refer to a variant
of R1CS with these additional terms as relaxed R1CS.

Definition 11 (Relaxed R1CS). Consider a finite field F. Let the public
parameters consist of size bounds m,n, � ∈ N where m > �. The relaxed R1CS
structure consists of sparse matrices A,B,C ∈ F

m×m with at most n = Ω(m)
non-zero entries in each matrix. A relaxed R1CS instance consists of an error
vector E ∈ F

m, a scalar u ∈ F, and public inputs and outputs x ∈ F
�. An instance

(E, u, x) is satisfied by a witness W ∈ F
m−�−1 if (A ·Z)◦(B ·Z) = u ·(C ·Z)+E,

where Z = (W, x, u).

Note that any R1CS instance can be expressed as a relaxed R1CS instance by
augmenting it with u = 1 and E = 0, so relaxed R1CS retains NP-completeness.

Building on the first attempt, the prover and verifier can now use E to
accumulate the cross-terms. In particular, for Zi = (Wi, xi, ui), the prover and
verifier additionally compute

u ← u1 + r · u2

E ← E1 + r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1 − u1CZ2 − u2CZ1) + r2 · E2,

and set the new instance-witness pair to be ((E, u, x),W ). Conveniently, updat-
ing u in this manner also keeps track of how the constant term in Z should
be updated, which motivates our choice to use u in Z = (W, x, u) rather than
introducing a new variable. Now, for Z = (W, x, u), and for random r ∈ F,

AZ ◦ BZ = AZ1 ◦ BZ1 + r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1) + r2 · (AZ2 ◦ BZ2)

= (u1CZ1 + E1) + r · (AZ1 ◦ BZ2 + AZ2 ◦ BZ1) + r2 · (u2CZ2 + E2)
= (u1 + r · u2) · C(Z1 + rZ2) + E

= uCZ + E.

This implies that, for R1CS matrices (A,B,C), the folded witness W is a satis-
fying witness for the folded instance (E, u, x) as promised. A few issues remain:
in the above scheme, the prover sends witnesses (W1,W2) for the verifier to
compute E. As a result, the folding scheme is not non-trivial; it is also not
zero-knowledge.

Final Protocol. To circumvent these issues, we use succinct and hiding addi-
tively homomorphic commitments to W and E in the instance, and treat both
W and E as the witness. We refer to this variant of relaxed R1CS as commit-
ted relaxed R1CS. Below, we describe a folding scheme for committed relaxed
R1CS, where the prover sends a single commitment to aid the verifier in com-
puting commitments to the folded witness (W,E).
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Definition 12 (Committed Relaxed R1CS). Consider a finite field F

and a commitment scheme Com over F. Let the public parameters consist of
size bounds m,n, � ∈ N where m > �, and commitment parameters ppW

and ppE for vectors of size m and m − � − 1 respectively. The committed
relaxed R1CS structure consists of sparse matrices A,B,C ∈ F

m×m with at
most n = Ω(m) non-zero entries in each matrix. A committed relaxed R1CS
instance is a tuple (E, u,W, x), where E and W are commitments, u ∈ F,
and x ∈ F

� are public inputs and outputs. An instance (E, u,W, x) is satis-
fied by a witness (E, rE ,W, rW ) ∈ (Fm, F, Fm−�−1, F) if E = Com(ppE , E, rE),
W = Com(ppW ,W, rW ), and (A·Z)◦(B ·Z) = u·(C ·Z)+E, where Z = (W, x, u).

Construction 1 (A Folding Scheme for Committed Relaxed R1CS).
Consider a finite field F and a succinct, hiding, and homomorphic commitment
scheme Com over F. We define the generator and the encoder as follows.

– G(1λ) → pp: output size bounds m,n, � ∈ N, and commitment parameters
ppW and ppE for vectors of size m and m − � − 1 respectively.

– K(pp, (A,B,C)) → (pk, vk): output pk ← (pp, (A,B,C)) and vk ← ⊥.

The verifier V takes two committed relaxed R1CS instances (E1, u1,W 1, x1)
and (E2, u2,W 2, x2). The prover P, in addition to the two instances, takes wit-
nesses to both instances, (E1, rE1 ,W1, rW1) and (E2, rE2 ,W2, rW2). Let Z1 =
(W1, x1, u1) and Z2 = (W2, x2, u2). The prover and the verifier proceed as fol-
lows.

1. P: Send T := Com(ppE , T, rT ), where rT ←R F and with cross term

T = AZ1 ◦ BZ2 + AZ2 ◦ BZ1 − u1 · CZ2 − u2 · CZ1.

2. V: Sample and send challenge r ←R F.
3. V,P: Output the folded instance (E, u,W, x) where

E ← E1 + r · T + r2 · E2

u ← u1 + r · u2

W ← W 1 + r · W 2

x ← x1 + r · x2
4. P: Output the folded witness (E, rE ,W, rW ), where

E ← E1 + r · T + r2 · E2

rE ← rE1 + r · rT + r2 · rE2

W ← W1 + r · W2

rW ← rW1 + r · rW2

Theorem 3 (A Folding Scheme for Committed Relaxed R1CS). Con-
struction 1 is a public-coin folding scheme for committed relaxed R1CS with per-
fect completeness, knowledge soundness, and zero-knowledge.
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Proof Intuition. With textbook algebra, we can show that if witnesses (E1, rE1 ,
W1, rW1) and (E2, rE2 ,W2, rW2) are satisfying witnesses, then the folded witness
(E, rE ,W, rW ) must be a satisfying witness. We prove knowledge soundness via
the forking lemma (Lemma 1) by showing that the extractor can produce the ini-
tial witnesses given three accepting transcripts and the corresponding folded wit-
nesses. Specifically, the extractor uses all three transcripts to compute Ei and rEi

,
and any two transcripts to compute Wi and rWi

for i ∈ {1, 2}. The choice of which
two transcripts does not matter due to the binding property of the commitment
scheme. We present a formal proof in [30, App. B]. �

4.2 Achieving Non-interactivity via the Fiat-Shamir Transform

To design Nova’s IVC scheme, we require our folding scheme for committed
relaxed R1CS to be non-interactive in the standard model. To do so we first
achieve non-interactivity in the random oracle model using the (strong) Fiat-
Shamir transform [22]. Next, we heuristically instantiate the random oracle using
a cryptographic hash function. As a result, we can only heuristically argue the
security of the resulting non-interactive folding scheme. Note that all existing
IVC constructions in the standard model require instantiating the random oracle
with a cryptographic hash function [12,15,21,43].

Construction 2 (A Non-Interactive Folding Scheme). We achieve non-
interactivity in the random oracle model using the strong Fiat-Shamir trans-
form [22]. Let ρ denote a random oracle sampled during parameter genera-
tion and provided to all parties. Let (G,K,P,V) represent our interactive fold-
ing scheme (Construction 1). We construct a non-interactive folding scheme
(G,K,P,V) as follows:

– G(1λ): output pp ← G(1λ).
– K(pp, (A,B,C)): vk ← ρ(pp, s) and pk ← (pp, (A,B,C), vk); output (vk, pk).
– P(pk, (u1, w1), (u2, w2)): runs P((pk.pp, pk.(A,B,C)) to retrieve its first mes-

sage T , and sends T to V; computes r ← ρ(vk, u1, u2, T ), forwards this to P,
and outputs the resulting output.

– V(vk, u1, u2, T ): runs V with T as the message from the prover and with
randomness r ← ρ(vk, u1, u2, T ), and outputs the resulting output.

Assumption 1 (RO instantiation). Construction 2 is a non-interactive fold-
ing scheme that satisfies completeness, knowledge soundness, and zero-knowledge
in the standard model when ρ is instantiated with a cryptographic hash function.

5 Nova: An IVC Scheme with Proof Compression

This section describes Nova, an IVC scheme designed from a non-interactive
folding scheme, which when instantiated with any additively-homomorphic
commitment scheme with succinct commitments achieves the claimed effi-
ciency (Lemma 4). In addition, Nova incorporates an efficient zkSNARK to prove
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the knowledge of valid IVC proofs succinctly and in zero-knowledge, providing
a succinct, zero-knowledge proof of knowledge of a valid IVC proof.

In Nova, at each incremental step, the prover folds a particular step of the
incremental computation (represented as a committed relaxed R1CS instance-
witness pair) into a running committed relaxed R1CS instance-witness pair.
At any step in the incremental computation, a valid “IVC proof”, in a nut-
shell, is a satisfying witness of the running committed relaxed R1CS instance
(which an honest prover can compute by folding witnesses associated with each
step of the incremental computation) along with the running committed relaxed
R1CS instance. Furthermore, at any incremental step, Nova’s prover can prove
in zero-knowledge and with a succinct proof—using a variant of an existing
zkSNARK [38] (Sect. 6)—that it knows a valid IVC proof (i.e., a satisfying wit-
ness) to the running committed relaxed R1CS instance (Construction 4).

Note that Nova is not a zero-knowledge IVC scheme, as that would addition-
ally require an IVC proof to be zero-knowledge (in Nova’s case, an IVC proof
does not hide witnesses associated with steps of the incremental computation).
This difference is immaterial in the context of a single prover since it can use
Nova’s auxiliary zkSNARK to provide a zero-knowledge proof of knowledge of a
valid IVC proof; we leave it to future work to achieve zero-knowledge IVC.

5.1 Constructing IVC from a Folding Scheme for NP

Recall that an IVC scheme allows a prover to show that zn = F (n)(z0) for some
count n, initial input z0, and output zn. We now show how to construct an IVC
scheme for a non-deterministic, polynomial-time computable function F using our
non-interactive folding scheme for committed relaxed R1CS (Construction 2).5

In our construction, as in a SNARK-based IVC, the prover uses an augmented
function F ′ (Fig. 4), which, in addition to invoking F , performs additional book-
keeping to fold proofs of prior invocations of itself.

We first describe a simplified version of F ′, to provide intuition. F ′ takes
as non-deterministic advice two committed relaxed R1CS instances ui and Ui.
Suppose that Ui represents the correct execution of invocations 1, . . . , i−1 of F ′

so long as ui represents the correct execution of invocation i of F ′. F ′ performs
two tasks. First, it executes a step of the incremental computation: instance ui

contains zi which F ′ uses to output zi+1 = F (zi). Second, F ′ invokes the verifier
of the non-interactive folding scheme to fold the task of checking ui and Ui into
the task of checking a single instance Ui+1. The IVC prover then computes a
new instance ui+1 which attests to the correct execution of invocation i+1 of F ′,
thereby attesting that zi+1 = F (zi) and Ui+1 is the result of folding ui and Ui.
Now, we have that Ui+1 represents the correct execution of invocations 1, . . . , i
of F ′ so long as ui+1 represents the correct execution of invocation i + 1 of F ′.

The above description glossed over a subtle discrepancy: Because F ′ must
output the running instance Ui+1 for the next invocation to use, it is contained

5 While, in theory, we can use any folding scheme for NP, we specifically invoke our
construction for committed relaxed R1CS for a simpler presentation.
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Fig. 4. Overview of F ′. F ′ represented as a committed relaxed R1CS instance
ui+1 encodes the statement that there exists ((i, z0, zi, ui,Ui),Ui+1, T ) such that
ui.x = hash(vk, i, z0, zi,Ui), hi+1 = hash(vk, i + 1, z0, F (zi),Ui+1), Ui+1 =
NIFS.V (vk,Ui, ui, T ), and that F ′ outputs hi+1. The diagram omits depicting vk, ω,
and T .

in ui+1.x (i.e., the public IO of ui+1). But, in the next iteration, F ′ must fold
ui+1.x into Ui+1.x, meaning that F ′ is stuck trying to squeeze Ui+1 into Ui+1.x.
To handle this inconsistency, we modify F ′ to output a collision-resistant hash
of its public IO rather than producing it directly (this ensures that the public
IO of F ′ is a constant number of finite field elements). The next invocation of F ′

then additionally takes the preimage of this hash as non-deterministic advice.
We assume that the hash function takes an additional random input (which
provides hiding) but for notational convenience we do not explicitly depict this.

Producing IVC Proofs. Let (u⊥,w⊥) be the trivially satisfying instance-
witness pair, where E,W, and x are appropriately-sized zero vectors, rE = 0,
rW = 0, and E and W are commitments of E and W respectively.

Now, in iteration i + 1, the IVC prover runs F ′ and computes ui+1 and Ui+1

as well as the corresponding witnesses wi+1 and Wi+1. Because ui+1 and Ui+1

together attest to the correctness of i+1 invocations of F ′ (which indirectly attests
to i+1 invocations of F ) the IVC proof Πi+1 is ((Ui+1,Wi+1), (ui+1,wi+1)). More-
over, succinctness ismaintained by the properties of the underlying folding scheme.
We formally describe our construction below.

Construction 3 (IVC). Let NIFS = (G,K,P,V) be the non-interactive folding
scheme for committed relaxed R1CS (Construction 2). Consider a polynomial-
time function F that takes non-deterministic input, and a cryptographic hash
function hash. We define our augmented function F ′ as follows (all arguments
to F ′ are taken as non-deterministic advice):

F ′(vk,Ui, ui, (i, z0, zi), ωi, T ) → x:

If i is 0, output hash(vk, 1, z0, F (z0, ωi), u⊥);
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otherwise,

(1) check that ui.x = hash(vk, i, z0, zi,Ui), where ui.x is the public IO of ui,
(2) check that (ui.E, ui.u) = (u⊥.E, 1),
(3) compute Ui+1 ← NIFS.V(vk,U, u, T ), and
(4) output hash(vk, i + 1, z0, F (zi, ωi),Ui+1).

Because F ′ can be computed in polynomial time, it can be represented as a
committed relaxed R1CS structure sF ′ . Let

(ui+1,wi+1) ← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T ))

denote the satisfying committed relaxed R1CS instance-witness pair (ui+1,wi+1)
for the execution of F ′ on non-deterministic advice (vk,Ui, ui, (i, z0, zi), ωi, T ).

We define the IVC scheme (G,K,P,V) as follows.

G(1λ) → pp: Output NIFS.G(1λ).

K(pp, F ) → (pk, vk):

Compute (pkfs, vkfs) ← NIFS.K(pp, sF ′) and output (pk, vk) ← ((F, pkfs),
(F, vkfs)).

P(pk, (i, z0, zi), ωi,Πi) → Πi+1:

Parse Πi as ((Ui,Wi), (ui,wi)) and then
(1) if i is 0, compute (Ui+1,Wi+1, T ) ← (u⊥,w⊥, u⊥.E);

otherwise, compute (Ui+1,Wi+1, T ) ← NIFS.P(pk, (Ui,Wi), (ui,wi)),
(2) compute (ui+1,wi+1) ← trace(F ′, (vk,Ui, ui, (i, z0, zi), ωi, T )), and
(3) output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1)).

V(vk, (i, z0, zi),Πi) → {0, 1}:

If i is 0, check that zi = z0;
otherwise,

(1) parse Πi as ((Ui,Wi), (ui,wi)),
(2) check that ui.x = hash(vk, i, z0, zi,Ui),
(3) check that (ui.E, u.u) = (u⊥.E, 1), and
(4) check that Wi and wi are satisfying witnesses to Ui and ui respectively.

Lemma 2 (Completeness). Construction 3 is an IVC scheme that satisfies
completeness.

Proof Intuition. Given a satisfying IVC proof Πi = ((Ui,Wi), (ui,wi)) sup-
pose that P outputs Πi+1 = ((Ui+1,Wi+1), (ui+1,wi+1)). Because Πi is a valid
IVC proof, (ui,wi) and (Ui,Wi) are satisfying instance-witness pairs. Because
(Ui+1,Wi+1) is obtained by folding (ui,wi) and (Ui,Wi), it must be satisfying
by the folding scheme’s completeness. By construction, (ui+1,wi+1) is satisfy-
ing instance-witness pair that satisfies the IVC verifier’s auxiliary checks. Thus,
Πi+1 is satisfying. [30, App. C] provides a formal proof. �
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Lemma 3 (Knowledge Soundness). Construction 3 is an IVC scheme that
satisfies knowledge soundness.

Proof Intuition. For function F , constant n, pp ← G(1λ), and (pk, vk) ←
K(pp, F ), consider an adversary P∗ that outputs (z0, z,Π) such that
V(vk, (n, z0, z),Π) = 1 with probability ε. We construct an extractor E that
with input (pp, z0, z), outputs (ω0, . . . , ωn−1) such that by computing zi ←
F (zi−1, ωi−1) for all i ∈ {1, . . . , n} we have that zn = z with probability
ε − negl(λ). We show inductively that E can construct an extractor Ei that out-
puts (zi, . . . , zn−1), (ωi, . . . , ωn−1), and Πi such that for all j ∈ {i + 1, . . . , n},
zj = F (zj−1, ωj−1), V(vk, i, z0, zi,Πi) = 1, and zn = z with probability
ε − negl(λ). Then, because in the base case when i = 0, V checks that z0 = zi, it
is sufficient for E to run E0 to retrieve values (ω0, . . . , ωn−1). Initially, En simply
runs the assumed P∗ to get a satisfying Πn. Given extractor Ei that satisfies the
inductive hypothesis, we can construct extractor Ei−1. [30, App. C] provides a
formal proof. �

Lemma 4 (Efficiency). When instantiated with the Pedersen commitment
scheme, we have that |F ′| = |F |+o(2 ·G+2 ·H+R), where |F | denotes the num-
ber of R1CS constraints to encode a function F , G is the number of constraints
required to encode a group scalar multiplication, H is the number of constraints
required to encode hash, and R is the number of constraints to encode the RO ρ.

Proof. On input instances U and u, NIFS.V computes E ← U.E + r ·T + r2 · u.E
and W ← U.W +r ·u.W . However, by construction, u.E = u⊥.E = 0. So, NIFS.V
computes two group scalar multiplications, as it does not need to compute r2 ·
u.E. NIFS.V additionally invokes the RO once to obtain a random scalar. Finally,
F ′ makes two additional calls to hash (details are in the description of F ′). �

5.2 Compressing IVC Proofs with zkSNARKs

To prove a statement about an incremental computation, the prover can produce
an IVC proof using the construction in the prior section and send the IVC
proof to the verifier. However, this does not satisfy zero-knowledge (as the IVC
proof described in the prior section does not hide the prover’s non-deterministic
inputs) and succinctness (as the IVC proof size is linear in the size F ). In theory,
one can address this problem with any zkSNARK for NP. Specifically, P can
produce a zkSNARK proving that it knows Πi such that IVC verifier V accepts
for statement (i, z0, zi). Naturally, the proof sent to the verifier is succinct and
zero-knowledge due to the corresponding properties of the zkSNARK.

Unfortunately, employing an off-the-shelf zkSNARK makes the overall solu-
tion impractical as the zkSNARK prover must prove, among other things, the
knowledge of vectors whose commitments equal a particular value; this requires
encoding a linear number of group scalar multiplications in the programming
model of zkSNARKs (e.g., R1CS or circuits). To address this, we design a
zkSNARK tailored for our particular purpose and we describe it in Sect. 6. Below,
we describe how to use a zkSNARK to prove the knowledge of a valid IVC proof.
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Construction 4 (A zkSNARK of a Valid IVC Proof). Let IVC denote
the IVC scheme in Construction 3, let NIFS denote the non-interactive folding
scheme in Construction 2, and let hash denote a randomized cryptographic hash
function. Assume a zero-knowledge succinct non-interactive argument of knowl-
edge (Definition 2), zkSNARK, for committed relaxed R1CS. That is, given public
parameters pp, structure s, and instance u, zkSNARK.P can convince zkSNARK.V
in zero-knowledge and with a succinct proof (e.g., Oλ(log N)-sized proof) that it
knows a corresponding witness w such that (pp, s, u,w) is a satisfying committed
relaxed R1CS tuple.

Consider a polynomial-time computable function F . Suppose pp ← IVC.G(1λ)
and (pk, vk) ← IVC.K(pp, F ). Suppose the prover P and verifier V are provided
an instance (i, z0, zi). We construct a zkSNARK that allows the prover to show
that it knows an IVC proof Πi such that IVC.V(vk, i, z0, zi,Πi) = 1.

In a nutshell, we leverage the fact that Π is two committed relaxed R1CS
instance-witness pairs. So, P first folds instance-witness pairs (u,w) and (U,W)
to produce a folded instance-witness pair (U′,W′), using NIFS.P. Next, P runs
zkSNARK.P to prove that it knows a valid witness for U′. In more detail,
for polynomial-time computable function F and corresponding function F ′ as
defined in Construction 3 (and instantiated with hash), we define (G,K,P,V) as
follows.

G(1λ) → pp:

(1) Compute ppNIFS ← NIFS.G(1λ)
(2) Compute ppzkSNARK ← zkSNARK.G(1λ)
(3) Output (ppNIFS, ppzkSNARK)

K(pp, F ) → (pk, vk):

(1) Compute (pkNIFS, vkNIFS) ← NIFS.K(pp.ppNIFS, sF ′).
(2) Compute (pkzkSNARK, vkzkSNARK) ← zkSNARK.K(pp.ppzkSNARK, sF ′).
(3) Output ((pkNIFS, pkzkSNARK), (vkNIFS, vkzkSNARK)).

P(pk, (i, z0, zi),Π) → π:

If i is 0, output ⊥;
otherwise,

(1) parse Π as ((U,W), (u,w))
(2) compute (U′,W′, T ) ← NIFS.P(pkNIFS, (U,W), (u,w))
(3) compute πU′ ← zkSNARK.P(pkzkSNARK,U′,W′)
(4) output (U, u, T , πU′).

V(vk, (i, z0, zi), π) → {0, 1}:

If i is 0, check that z0 = zi;
otherwise,
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(1) parse π as (U, u, T , πU′),
(2) check that u.x = hash(vkNIFS, i, z0, zi,U),
(3) check that (u.E, u.u) = (u⊥.E, 1),
(4) compute U′ ← NIFS.V(vkNIFS,U, u, T ), and
(5) check that zkSNARK.V(vkzkSNARK,U′, πU′) = 1.

Theorem 4. Construction 4 is a zkSNARK of a valid IVC proof produced by
Construction 3.

Proof Intuition. Completeness and knowledge soundness hold due to the com-
pleteness and knowledge soundness of the underlying zkSNARK and the non-
interactive folding scheme. Assuming the non-interactive folding scheme satis-
fies succinctness (e.g., by using the Pedersen commitment scheme), succinctness
holds due to the fact that u, U, and T are succinct, and due to the succinctness
of the underling zkSNARK.

To prove zero-knowledge, we construct a simulator S that first iteratively
simulates (Ui, ui) for all i ∈ {1, . . . , n}. Specifically, given a simulated proof
(Ui, ui), S first uses the simulator of the non-interactive folding scheme to sim-
ulate T i. S then folds Ui and ui using T i to produce Ui+1. S simulates ui using
the observation that all terms are randomized. In the final round, S folds un

and Un (again using a simulated Tn) to produce an instance U′, and then uses
the simulator of the zkSNARK to produce πU′ . S outputs (Un, un, Tn, πU′). We
provide a formal proof in [30, App. D]. �

6 A zkSNARK for Committed Relaxed R1CS

As described in Sect. 5.2, Nova needs a zkSNARK for committed relaxed R1CS
to prove the knowledge of a valid IVC proof succinctly and in zero-knowledge.
This section presents such a zkSNARK by adapting Spartan [38]. We build on
Spartan [38] to avoid FFTs and a trusted setup.

6.1 Background

We assume familiarity with polynomials. We provide background in [30, App. G].

Definition 13 (Polynomial Extension). Suppose f : {0, 1}� → F is a func-
tion that maps �-bit strings to an element of F. A polynomial extension of f
is a low-degree �-variate polynomial f̃ : F

� → F such that f̃(x) = f(x) for all
x ∈ {0, 1}�. A multilinear extension (MLE) of a function f : {0, 1}� → F is a
low-degree polynomial extension where the extension is a multilinear polynomial.

Every function f : {0, 1}� → F has a unique MLE, and conversely every
�-variate multilinear polynomial over F extends a unique function mapping
{0, 1}� → F. Below, we use f̃ to denote the unique MLE of f .
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Lemma 5 (The Sum-Check Protocol [35]). For �-variate polynomial G over
F with degree at most μ in each variable, there exists a public-coin interactive
proof protocol (known as the sum-check protocol) to reduce the task of checking∑

x∈{0,1}� G(x) = T to the task of checking G(r) = e for r ∈ F
�. The interaction

consists of a total of � rounds, where in each round the verifier sends a single
element of F and the prover responds with μ + 1 elements of F.

6.2 A Polynomial IOP for Idealized Relaxed R1CS

Our exposition below is based on Spartan [38] and its recent recapitulation [34].
The theorem below and its proof is a verbatim adaptation of Spartan’s polyno-
mial IOP for R1CS to relaxed R1CS.

Recall that an interactive proof (IP) [25] for a relation R is an interactive
protocol between a prover and a verifier where the prover proves the knowledge
of a witness w for a prescribed instance u such that (u,w) ∈ R. An interactive
oracle proof (IOP) [5,37] generalizes interactive proofs where in each round the
prover may send an oracle (e.g., a string) and the verifier may query a previously-
sent oracle during the remainder of the protocol. A polynomial IOP [17] is an
IOP in which the oracle sent by the prover is a polynomial and the verifier may
query for an evaluation of the polynomial at a point in its domain. We consider
a (minor) variant of polynomial IOPs, where the verifier has oracle access to
polynomials in the R1CS structure and instance.

We first construct a polynomial IOP for an idealized version of relaxed
R1CS (Definition 14) where the instance contains a purported witness. We then
compile it into a zkSNARK for committed relaxed R1CS (Definition 12).

Definition 14 (Idealized Relaxed R1CS). Consider a finite field F. Let the
public parameters consist of size bounds m,n, � ∈ N where m > �. The idealized
relaxed R1CS structure consists of sparse matrices A,B,C ∈ F

m×m with at most
n = Ω(m) non-zero entries in each matrix. A idealized relaxed R1CS instance
consists of an error vector E ∈ F

m, a scalar u ∈ F, witness vector W ∈ F
m,

and public inputs and outputs x ∈ F
�. An instance (E, u,W, x) is satisfying if

(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

Construction 5 (Polynomial IOP for Idealized Relaxed R1CS). Con-
sider an idealized relaxed R1CS statement ϕ consisting of public parameters
(m,n, �), structure (A,B,C), and instance (E, u,W, x), Without loss of general-
ity, we assume that m and n are powers of 2 and that m = 2 · (� + 1).

Let s = log m. We interpret the matrices A,B,C as functions with signa-
ture {0, 1}log m × {0, 1}log m → F in a natural manner. In particular, an input
in {0, 1}log m ×{0, 1}log m is interpreted as the binary representation of an index
(i, j) ∈ [m] × [m], where [m] := {1, . . . , m} and the function outputs (i, j)th
entry of the matrix. As such, let Ã, B̃, and C̃ denote multilinear extensions of
A, B, and C interpreted as functions, so they are 2 log m-variate sparse multi-
linear polynomials of size n. Similarly, we interpret E and W as functions with
respective signatures {0, 1}log m → F and {0, 1}log m−1 → F. Furthermore, let Ẽ
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and W̃ denote the multilinear extensions of E and W interpreted as functions,
so they are multilinear polynomials in log m and log m−1 variables respectively.

As noted earlier, the verifier has an oracle access to the following polynomials:
Ã, B̃, C̃, Ẽ, and W̃ . Additionally, the verifier reads u and x in entirety.

Let Z = (W, x, u). Similar to how we interpret matrices as functions, we
interpret Z and (x, u) as functions with the following respective signatures:
{0, 1}s → F and {0, 1}s−1 → F. Observe that the MLE Z̃ of Z satisfies

Z̃(X1, . . . , Xs) = (1 − X1) · W̃ (X2, . . . , Xs) + X1 · (̃x, u)(X2, . . . , Xs) (1)

Similar to [38, Theorem 4.1], checking if ϕ is satisfiable is equivalent, except
for a soundness error of log m/|F| over the choice of τ ∈ F

s, to checking if the
following identity holds:

0 ?=
∑

x∈{0,1}s

ẽq(τ, x) · F (x), (2)

where

F (x) =

⎛
⎝ ∑

y∈{0,1}s

Ã(x, y) · Z̃(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B̃(x, y) · Z̃(y)

⎞
⎠

−
⎛
⎝u ·

∑
y∈{0,1}s

C̃(x, y) · Z̃(y) + Ẽ(x)

⎞
⎠ ,

and ẽq is the multilinear extension of eq : {0, 1}s×{0, 1}s → F where eq(x, e) = 1
if x = e and 0 otherwise.

That is, if ϕ is satisfiable, then Eq. (2) holds with probability 1 over the
choice of τ , and if not, then Eq. (2) holds with probability at most O(log m/|F|)
over the random choice of τ .

To compute the right-hand side in Eq. (2), the prover and the verifier apply
the sum-check protocol to the following polynomial: g(x) := ẽq(τ, x) · F (x) From
the verifier’s perspective, this reduces the task of computing the right-hand
side of Eq. (2) to the task of evaluating g at a random input rx ∈ F

s. Note
that the verifier can locally evaluate ẽq(τ, rx) in O(log m) field operations via
ẽq(τ, rx) =

∏s
i=1 (τirx,i + (1 − τi)(1 − rx,i)). With ẽq(τ, rx) in hand, g(rx) can

be computed in O(1) time given the four quantities:
∑

y∈{0,1}s Ã(rx, y) · Z̃(y),∑
y∈{0,1}s B̃(rx, y) · Z̃(y),

∑
y∈{0,1}s C̃(rx, y) · Z̃(y), and Ẽ(rx).

The last quantity can be computed with a single query to polynomial Ẽ.
Furthermore, the first three quantities can be computed by applying the sum-
check protocol three more times in parallel, once to each of the following three
polynomials (using the same random vector of field elements, ry ∈ F

s, in each
of the three invocations): Ã(rx, y) · Z̃(y), B̃(rx, y) · Z̃(y), and C̃(rx, y) · Z̃(y).

To perform the verifier’s final check in each of these three invocations of the
sum-check protocol, it suffices for the verifier to evaluate each of the above three
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polynomials at the random vector ry, which means it suffices for the verifier to
evaluate Ã(rx, ry), B̃(rx, ry), C̃(rx, ry), and Z̃(ry). The first three evaluations
can be obtained via the verifier’s assumed query access to (Ã, B̃, C̃). Z̃(ry) can
be computed (via Eq. (1)) from a query to W̃ and from computing (̃x, u).

In summary, we have the following polynomial IOP.

1. V → P: τ ∈R F
s

2. V ↔ P: run the sum-check protocol to reduce the check in Eq. (2) to checking
if the following hold, where rx, ry are vectors in F

s chosen at random by the
verifier over the course of the sum-check protocol:

– Ã(rx, ry) ?= vA, B̃(rx, ry) ?= vB , and C̃(rx, ry) ?= vC ;
– Ẽ(rx) ?= vE ; and
– Z̃(ry) ?= vZ .

3. V:
– check if Ã(rx, ry) ?= vA, B̃(rx, ry) ?= vB , and C̃(rx, ry) ?= vC , with a query

to Ã, B̃, C̃ at (rx, ry);
– check if Ẽ(rx) ?= vE with an oracle query to Ẽ; and
– check if Z̃(ry) ?= vZ by checking if: vZ = (1 − ry[1]) · vW + ry[1] ·

(̃x, u)(ry[2..]), where ry[2..] refers to a slice of ry without the first ele-
ment of ry, and vW ← W̃ (ry[2..]) via an oracle query (see Eq. (1)).

Theorem 5. Construction 5 is a polynomial IOP for idealized relaxed R1CS
defined over a finite field F, with the following parameters, where m denotes
the dimension of the R1CS matrices, and n denotes the number of non-zero
entries in the matrices: Soundness error is O(log m)/|F|; round complexity is
O(log m); The verifier has query access to 2 log m-variate multilinear polyno-
mials Ã, B̃, C̃ in the structure, and (log m)-variate multilinear polynomial Ẽ,
and (log m − 1)-variate multilinear polynomial W̃ in the instance; the verifier
issues a single query to polynomials Ã, B̃, C̃, and W̃ , Ẽ, and otherwise per-
forms O(log m) operations over F; the prover performs O(n) operations over F

to compute its messages in the polynomial IOP and to respond to the verifier’s
queries to (W̃ , Ẽ, Ã, B̃, C̃).

Proof. Perfect completeness follows from perfect completeness of the sum-check
protocol and the fact that Eq. (2) holds with probability 1 over the choice of
τ if ϕ is satisfiable. Applying a standard union bound to the soundness error
introduced by probabilistic check in Eq. (2) with the soundness error of the
sum-check protocol [35], we conclude that the soundness error for the depicted
polynomial IOP as at most O(log m)/|F|.

The sum-check protocol is applied four times (although three of the invoca-
tions occur in parallel and in practice combined into one [38]). In each invocation,
the polynomial to which the sum-check protocol is applied has degree at most 3
in each variable, and the number of variables is s = log m. Hence, the round com-
plexity of the polynomial IOP is O(log m). Since each polynomial has degree at
most 3 in each variable, the total communication cost is O(log m) field elements.
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The claimed verifier runtime is immediate from the verifier’s runtime in the
sum-check protocol, and the fact that ẽq can be evaluated at any input (τ, rx) ∈
F
2s in O(log m) field operations. As in Spartan [38], the prover’s work in the

polynomial IOP in O(n) operations over F using prior techniques [42,46]. �

6.3 Compiling Polynomial IOPs to zkSNARKs

As in prior works [17,20,38], we compile our polynomial IOP into a zkSNARK
using a polynomial commitment scheme [28] and the Fiat-Shamir transform [22].

Interpreting Commitments to Vectors as Polynomial Commitments.
It is well known that commitments to m-sized vectors over F are commit-
ments to log m-variate multilinear polynomials represented with evaluations over
{0, 1}m [32,38,44,47]. Furthermore, there is a polynomial commitment scheme
for log m-variate multilinear polynomials if there exists an argument protocol
to prove an inner product computation between a committed vector and an m-
sized public vector ((r1, 1− r1)⊗ . . .⊗ (rlog m, 1− rlog m)), where r ∈ F

log m is an
evaluation point. There are two candidate constructions in the literature. Note
that the primary difference between two schemes is in the verifier’s time.

1. PCBP. If the commitment scheme for vectors over F is Pedersen’s commit-
ments, as in prior work [44], Bulletproofs [14] provides a suitable inner prod-
uct argument protocol. The polynomial commitment scheme here achieves
the following efficiency characteristics, assuming the hardness of the discrete
logarithm problem. For a log m-variate multilinear polynomial, committing
takes Oλ(m) time to produce an Oλ(1)-sized commitment; the prover incurs
Oλ(m) costs to produce an evaluation proof of size Oλ(log m) that can be
verified in Oλ(m). Note that PCBP is a special case of Hyrax’s polynomial
commitment scheme [44].

2. PCDory. If vectors over F are committed with a two-tiered “matrix” commit-
ment (see for example, [18,32]), which provides Oλ(1)-sized commitments to
m-sized vectors under the SXDH assumption. With this commitment scheme,
Dory [32] provides the necessary inner product argument. The polynomial
commitment here achieves the following efficiency characteristics, assuming
the hardness of SXDH. For a log m-variate multilinear polynomial, commit-
ting takes Oλ(m) time to produce an Oλ(1)-sized commitment; the prover
incurs Oλ(m) costs to produce an evaluation proof of size Oλ(log m) that can
be verified in Oλ(log m).

Polynomial Commitments for Sparse Multilinear Polynomials. In our
constructions below, we require polynomial commitment schemes that can effi-
ciently handle sparse multilinear polynomials. Spartan [38, §7] (and its opti-
mization [41, §6]) provides a generic compiler to transform existing polynomial
commitment schemes for multilinear polynomials into those that can efficiently
handle sparse multilinear polynomials. Specifically, we apply [34, Theorem 5])
(which captures Spartan’s compiler in a generic manner) to PCBP and PCDory to
obtain their variants that can efficiently handle sparse multilinear polynomials;
we refer to them as “Sparse-PCBP” and “Sparse-PCDory” respectively.
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Theorem 6 (A zkSNARK from PCBP). Assuming the hardness of the dis-
crete logarithm problem, there exists a zkSNARK in the random oracle model for
committed relaxed R1CS with the following efficiency characteristics, where m
denotes the dimensions of R1CS matrices and n denotes the number of non-zero
entries in the matrices: The encoder runs in time Oλ(n); The prover runs in
time Oλ(n); The proof length is Oλ(log n); and the verifier runs in time Oλ(n).6

Proof. For R1CS structure (A,B,C), we first have the encoder directly pro-
vide (Ã, B̃, C̃) in the prover key, and additionally provide sparse polynomial
commitments to Ã, B̃, C̃ using Sparse-PCBP in both the prover and verifier keys.
Next, we apply the compiler of [17] using PCBP to the polynomial IOP from Con-
struction 5. At a high level, this replaces all of the oracles provided to the verifier
with PCBP commitments, which the prover and verifier then use to simulate ideal
queries to a committed oracle. By [17, Theorem 6] this provides a public-coin
honest-verifier zero-knowledge interactive argument of knowledge. In particu-
lar, we can treat the resulting protocol as an argument for committed relaxed
R1CS because the verifier is now provided with (polynomial) commitments to E
and W . Applying the Fiat-Shamir transform [22] achieves non-interactivity and
zero-knowledge in the random oracle model.

The claimed efficiency follows from the efficiency of the polynomial IOP,
PCBP, and Sparse-PCBP. In more detail, using Sparse-PCBP, the encoder takes
Oλ(n) time to create commitments 2 log m-variate sparse multilinear polynomi-
als Ã, B̃, C̃. The prover’s costs in the polynomial IOP is O(n). Furthermore,
proving the evaluations of two O(log m)-variate multilinear polynomials using
PCBP, it takes Oλ(m) time. And, to prove the evaluations of three 2 log m-variate
sparse multilinear polynomials of size n, using Sparse-PCBP, it takes Oλ(n) time.
In total, the prover time is Oλ(n). The proof length in the polynomial IOP is
O(log m), and the proof sizes in the polynomial evaluation proofs is Oλ(log n),
so the proof length is Oλ(log n). The verifier’s time in the polynomial IOP is
O(log m). In addition, it verifies five polynomial evaluations, which costs Oλ(n)
time: the two polynomial in the instance take Oλ(m) time using PCBP, and
the three polynomials in the structure takes Oλ(n) time using Sparse-PCBP. So,
in total, the verifier time is Oλ(n). �

Corollary 1 (A zkSNARK from PCDory). Assuming the hardness of the
SXDH problem, there exists a zkSNARK in the random oracle model for commit-
ted relaxed R1CS with the following efficiency characteristics, where m denotes
the dimensions of R1CS matrices and n denotes the number of non-zero entries
in the matrices: The encoder runs in time Oλ(n); The prover runs in time Oλ(n);
The proof length is Oλ(log n); and the verifier runs in time Oλ(log n).

6 [30, App. H] describes a minor optimization and a corresponding Corollary.
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Abstract. Non-malleable zero-knowledge, originally introduced in the
context of man-in-the-middle attacks, serves as an important building
block to protect against concurrent attacks where different protocols may
coexist and interleave. While this primitive admits almost optimal con-
structions in the plain model, they are several orders of magnitude slower
in practice than standalone zero-knowledge. This is in sharp contrast
to non-malleable commitments where practical constructions (under the
DDH assumption) have been known for a while.

We present a new approach for constructing efficient non-malleable
zero-knowledge for all languages in NP, based on a new primitive called
instance-based non-malleable commitment (IB-NMC). We show how to
construct practical IB-NMC by leveraging the fact that simulators of
sub-linear zero-knowledge protocols can be much faster than the hon-
est prover algorithm. With an efficient implementation of IB-NMC, our
approach yields the first general-purpose non-malleable zero-knowledge
protocol that achieves practical efficiency in the plain model.

All of our protocols can be instantiated from symmetric primitives
such as block-ciphers and collision-resistant hash functions, have rea-
sonable efficiency in practice, and are general-purpose. Our techniques
also yield the first efficient non-malleable commitment scheme without
public-key assumptions.

Keywords: Non-malleability · Efficiency · Symmetric assumptions

1 Introduction

Non-Malleable Zero-Knowledge. Dolev, Dwork, and Naor [27] introduced
the notion on non-malleable cryptography. They also provided constructions
of non-malleable zero-knowledge and non-malleable commitments in the plain
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model assuming only the existence of one-way functions (OWFs). While these
primitives were originally introduced in the context of “man-in-the-middle”
attacks, they were soon used as a building block for constructing secure computa-
tion protocols. For example, non-malleable commitments were used extensively
to improve their round-efficiency [3,20,33,41,49,69,81], and non-malleable zero-
knowledge played a central role in protecting them against concurrent attacks
[12–14,19,62,71,76].

A long line of research has since focused on several aspects of these prim-
itives, including their round-complexity [5,21,27,41,50,55,57,60,74,81], black-
box usage of underlying primitives [42,45], and even concrete efficiency [11]
without assuming any trusted setup. Notably, constant-round non-malleable
commitments assuming only OWFs were first constructed in independent and
concurrent works of Goyal [41] and Lin and Pass [57]. Finally, four-round non-
malleable zero-knowledge assuming only OWFs was first achieved by Goyal et al.
[45] for all of NP; and three-round non-malleable commitments assuming injec-
tive OWFs were constructed by Goyal, Pandey, and Richelson [43,44]. Under
falsifiable assumptions [34,65], these rounds are optimal for commitments [72],
and likely to be optimal for zero-knowledge as well [32,39]. Stronger forms of
this notion such as concurrent non-malleability, eventually achieved optimally in
a series of works [21,60,73], are not considered in this work. We note that non-
malleability has been explored in several other contexts as well [10,26,27,30].

Efficient Constructions. While the aforementioned results are almost opti-
mal for non-malleable zero-knowledge, their focus is primarily on feasibility as
opposed to actual efficiency. To the best of our knowledge, the actual efficiency of
non-malleable zero-knowledge has never been explicitly addressed before. This is
in sharp contrast to non-malleable commitments, for which efficient plain-model
constructions are known (under the DDH assumption) [11].

We therefore consider the efficiency of some of the main approaches for
non-malleable zero-knowledge. Unless stated otherwise, we are concerned with
general-purpose protocols (that work for all languages in NP) in the plain model.

– The most common approach for non-malleable zero-knowledge is “commit-
and-prove.” At a high level, the prover first sends a non-malleable commit-
ment to the witness, and then uses (ordinary) zero-knowledge to prove that
the committed value is a valid witness [7,21,27,45]. If the commitment sup-
ports k-bit identities and has λ-bit security, the circuit corresponding to the
state-of-the-art non-malleable commitment [11] is at least 16k2λ2, or over
100 million gates for k = 32, λ = 80. Zero-knowledge proofs for such circuits
would take more than one minute using state-of-the-art (plain-model) proto-
cols such as Ligero [2] (even taking advantage of the amortization admitted by
Ligero). This is true even if the actual statement, say proving y = SHA256(x),
requires less than a second [2] in the standalone case.1

1 Although details may vary, known protocols in this paradigm generally require some
form of non-algebraic consistency proof over a non-malleable commitment supporting
large identities and message spaces.
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It is worth noting that using state-of-the-art commitments [11] addi-
tionally requires assuming DDH, whereas “symmetric assumptions” such as
OWFs are sufficient in theory. Efficient non-malleable commitments without
relying on public-key assumptions such as DDH are therefore also not known.
One option here is to implement the consistency proofs in [11] with Ligero to
avoid DDH. However, this also results in large circuits.2 Jumping ahead, our
techniques offer new results for efficient non-malleable commitments, too.

– Non-malleable zero-knowledge without relying on non-malleable commitments
was first constructed by Barak [5], and by Pass and Rosen [74] under improved
assumptions. Both of these constructions were based on Barak’s non-black-
box simulation [4]. A critical component of these protocols is a universal
argument [6], which consists of a Merkle tree commitment to a Probabilisti-
cally Checkable Proof (PCP), parts of which are opened later in the protocol.
Unfortunately, as shown by Ben-Sasson et al. [9], the underlying PCP proof
in the universal argument can be astronomically large even for moderate
parameters. To the best of our knowledge, the true efficiency of non-black-
box simulation based constructions is currently not well understood.

– A third approach, due to Ostrovsky, Pandey, and Visconti [68], relies on
the DDH assumption, and efficiently converts any public-coin honest-verifier
statistical zero-knowledge argument into a (concurrent) non-malleable one
[7]. While this approach uses non-malleable commitments, it avoids general-
purpose proofs over them using ideas from the “simulatable commitment” of
Micciancio and Petrank [63]. Though efficient, this transformation quickly
becomes pretty slow. For example, for the standalone setting, it requires
roughly 20kλ log λ group exponentiations to support k bit identities at 2−λ

security level;3 this is roughly 0.32 million exponentiations for k = 32, λ = 80.
In addition, it requires efficient non-malleable commitments as well as efficient
(and compatible) simulatable commitments, both of which are only known
from DDH. Ideally, we would like to use only symmetric assumptions.

Constructions in the Random Oracle Model (ROM). The protocols we
seek are straightforward to construct in the ROM [8] (see, e.g., [31,70]). Briefly,
a random oracle (RO) is non-malleable by design, which completely sidesteps
this issue. Furthermore, zero-knowledge is also trivial since the simulator and
the reduction are allowed to see adversary’s queries to the oracle and control the

2 We remark that for non-malleable commitments based on non-malleable codes such
as [43], it is hard to estimate the overall complexity; the asymptotic analysis of under-
lying codes such as [1] has astronomically large constants, making them unsuitable
in practice.

3 The analysis in [68] does not separate identity lengths from security levels; it further
provides only asymptotic analysis which hides multiplicative constants and does not
specify the exact negligible and super-logarithmic functions. This makes it difficult
to assess the security level supported by their protocol. If the analysis is performed
to support λ-bit security and k-bit identities, the overhead is at least 20kλ log λ
group exponentiations.
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responses. In the real world, a cryptographic hash function is used to replace the
RO, thus providing a concrete construction. This is an attractive methodology
that often leads to practical constructions. That being so, there are several rea-
sons to pursue constructions in the plain model, even if efficient constructions
are already known in the ROM. We highlight some of them here.

– A protocol such as a zero-knowledge proof in the ROM can be particularly
troublesome when it is used as a sub-protocol in a larger protocol. If the RO is
shared by other parts of the larger protocol, the security is jeopardized since
the security reduction for the sub-protocol does not hold when a particular
RO has already been selected by the larger protocol (see, e.g., [15,70,79]).
In addition, security proofs in this model often program the oracle, resulting
in loss of properties such as deniability which are otherwise implied by zero-
knowledge (see [70,80]). Deniability is a natural and useful property that has
been explored in other contexts as well [16,29,67,78].

– Using random oracles often sidesteps the main difficulty in achieving a partic-
ular task, such as CCA secure encryption or non-malleable commitments from
standard assumption. Therefore, a construction or security proof in the ROM,
while valuable, is usually not as insightful as its plain-model counterparts.

– Finally, while security proofs in the ROM are valuable, it requires a leap
of faith to believe that instantiating the random oracle with a real world
hash function maintains claimed security. Indeed, this is not always the case
[17,28,40,66]. It stands to reason that whenever possible the ROM should be
avoided.

Improved constructions can be achieved in other trusted setup models as well.
Di Crescendo, Isiah, and Ostrovsky [24] construct non-interactive non-malleable
commitments in the CRS model, and Di Crescenzo et al. [25] do so efficiently
under DDH. Lower rounds can also be achieved in the plain model under non-
falsifiable assumptions [51,58,69,72].

1.1 Our Results

We present a new approach for constructing efficient and general-purpose non-
malleable zero-knowledge in the plain model. Our protocols can be viewed as a
transformation which takes as input an efficient general-purpose zero-knowledge
protocol, such as Ligero [2], and yields a non-malleable zero-knowledge protocol
of (less but still) comparable efficiency. To the best of our knowledge, this is the
first construction of general-purpose non-malleable zero-knowledge that achieves
practical efficiency in the plain model. Our approach has the additional benefit
of requiring only symmetric assumptions (in addition to the assumptions of the
given proof system). Specifically, it suffices to assume collision-resistant hash
functions.
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Table 1. Performance of our protocols for λ-bit security and k-bit identities. NMZK
proves a witness for SHA256.

Param NMZK NMCom

(k, λ) P time (s) V time (s) Comm. (MB) P time (s) V time (s) Comm. (MB)

(32, 40) 1.68 0.74 19.68 2.52 1.12 19.74

(32, 80) 3.56 1.49 24.88 4.68 2.06 24.97

(64, 80) 5.04 2.23 28.84 6.72 3.09 28.93

While our primary focus is on non-malleable zero-knowledge, we also get new
results for non-malleable commitments. Specifically, we get the first efficient con-
struction of non-malleable commitments with large identities and message space
under symmetric assumptions. Though this improves upon the DDH assumption
required by the state-of-the-art construction [11], our construction is somewhat
slower in comparison.

Even though our focus is on efficiency, our results are theoretical in nature.
Our transformation makes use of non-malleable commitments in a fundamen-
tally new way. We define and construct a new primitive called instance-based
non-malleable commitments (IB-NMC), which admit more efficient modes than
a traditional non-malleable commitment. We show how IB-NMC can be used in
conjunction with the OR-Composition technique from [22,23] to obtain efficient
simulation-sound protocols, which in turn yields efficient non-malleable proto-
cols for both zero-knowledge and commitments. This primitive may be useful in
other contexts as well.

The overhead of our transformation is within reach of practical computing.
Table 1 shows the running times and communication for our non-malleable pro-
tocols for some sample parameters. Due to space constraints, a detailed analysis
of the empirical results is postponed to the full version [53].

1.2 Overview of Techniques

We start by recalling the central efficiency bottleneck in constructing non-
malleable zero-knowledge for NP. We assume that efficient standalone zero-
knowledge (ZK) proofs already exist for all languages L ∈ NP in the plain
model such as [2,35]. For concreteness, we will use Ligero [2].

The main inefficiency of non-malleable zero-knowledge stems from the fact
that almost all known constructions [7,56,59] make a non-black-box use of non-
malleable commitments. More specifically, the prover commits to a witness or a
trapdoor string using a non-malleable commitment and later relies on expensive
NP reductions to prove that it either committed a valid witness or a trapdoor
(i.e., an OR-statement); the latter is shown difficult to do for the man-in-the-
middle adversary M by relying on the non-malleability of the commitment. The
NP reduction corresponding to the OR-statement typically results in a circuit
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description of formidable size since the non-malleable commitment usually con-
tains many calls to cryptographic functions such as block-ciphers. The resulting
protocols are prohibitively inefficient even with state-of-the-art ZK construc-
tions. Other approaches (based on non-black-box simulation or DDH outlined
earlier) are irrelevant to our construction.

The starting point of our work is the observation that the use of non-malleable
commitments in these protocols is merely a means to an end. In particular, the
honest prover generally commits to a random or an all-zero string in these com-
mitments; it is the simulator who makes real use of their non-malleable proper-
ties. Therefore, if we can create a situation in our protocols where the honest
prover does not have to execute even a single full non-malleable commitment,
we can improve the computational efficiency of these protocols. Let us briefly
highlight why achieving this property is extremely important for our goals: As
noted above, efficient non-malleable commitments in the plain model are based
on DDH [11,68]. One option to avoid public-key assumptions is to instantiate
the scheme in [11] with Ligero; However, the running time of the resulting com-
mitment scheme alone (under moderate parameters) will run in more than one
minute. The actual non-malleable zero-knowledge protocol which depends on
these commitments in a non-black-box way will be much worse. We therefore
seek to avoid even one full execution of a non-malleable commitment in our ZK
protocol.

It is worthwhile to note that black-box constructions of non-malleable ZK
from non-malleable commitments are (surprisingly) not known. The closest work
in this regard is by Jain and Pandey [48], who construct simulation-sound ZK
from a stronger version of non-malleable commitments (called 1-1 CCA [18,54])
in black-box. Currently, it is unclear if their approach can yield an efficient
protocol that avoids even one execution of the non-malleable commitment.

Instance-Based Non-Malleable Commitments. Returning back to our goal
of avoiding even one execution of full non-malleable commitment during the
proof, we consider a new relaxation of such commitments which we call instance-
based non-malleable commitments (IB-NMCs). Roughly speaking, an IB-NMC is
just like an ordinary non-malleable commitment except that it takes as input
a statement y (from an implicit NP language Y ). The commitment has two
modes: if y /∈ Y , then it is an ordinary non-malleable commitment, and the
committer commits to any desired value v by following the actual commitment
algorithm C. Otherwise, if y ∈ Y , then the commitment is not guaranteed to
have any non-malleability property. However, in this case, there exists a much
faster algorithm C∗ that, with the help of a witness for y ∈ Y , can fake (or
simulate) an execution that looks indistinguishable from the real execution with
C for any value v.

To construct IB-NMC, we combine the following key ideas:

– The simulator of a general-purpose zero-knowledge proof can be much faster
than the real prover algorithm. This is best seen by considering the sub-
linear zero-knowledge arguments based on PCPs [52,61]. In such protocols,



A New Approach to Efficient Non-Malleable Zero-Knowledge 395

a prover commits to a full Merkle tree over the PCP proof; but note that the
simulator does not have to construct the whole tree. Instead, the simulator
can simply prepare the nodes of the opened paths in a consistent manner,
which is much faster. In particular, this is true for our chosen ZK system
Ligero.

– The well-known OR-Composition technique developed for Σ-protocols [22,23]
can be applied in our setting to give proofs for statements of the type “either
x ∈ L or y ∈ Y .” Recall that under this technique, a prover with a witness
for x constructs proofs correctly for the “x ∈ L” part, but uses the simulator
of the Σ-protocol for the “y ∈ Y ” part. Observe that if the simulator for the
“y ∈ Y ” part is fast (as discussed in the previous item), then the composed
proofs can be almost as fast as a proof only for x ∈ L.

– Finally, we apply the aforementioned observations to a suitable non-malleable
commitment scheme to get an efficient IB-NMC. In particular, we apply it to
a modification of the BGRRV protocol [11], leading to a construction based
solely on symmetric-key (or Minicrypt) assumptions (referred to as ΠMini

bgrrv).
More specifically, ΠMini

bgrrv has a commit phase and a proof phase where the
latter proves the “consistency” of the former. To get IB-NMC, we simply
change the proof phase to prove that either the first phase is consistent or
y ∈ Y (where y is an additional input to the committer); this proof is done
using the OR-composition of two Ligero protocols as described above.

We remark that this approach runs into several other issues that are not discussed
here, e.g., OR-composition in general applies only to Σ-protocols but Ligero is
not a Σ-protocol, the role of Y and how to choose it, etc. We will handle them
in Sect. 5. The use of a honest-verifier simulator to protect against malicious
attacks first appears in the work of Cramer, Damg̊ard, and Schoenmakers [22].

Non-Malleability via Simulation Soundness. While IB-NMC is an interest-
ing primitive, it is not clear how to use it at all to construct non-malleable zero
knowledge. Instead, we show that IB-NMC can be used successfully to construct
a fast simulation-sound ZK protocol [48,77]. Constructing this protocol requires
repeated applications of the OR composition and the fake-proof technique dis-
cussed above. The simulation-sound protocol can be directly useful in larger
protocols since this notion suffices for typical applications of non-malleability.
Finally, we show how to use this protocol to get an efficient and full-fledged non-
malleable ZK as well as an efficient non-malleable commitment. In both cases,
the transformation inherits the assumptions of the underlying zero-knowledge
and IB-NMC, which in our case, are symmetric primitives only.

2 Preliminaries

We use λ ∈ N to denote the security parameter. Symbols
c≈,

s≈, and id= are
used to denote computational, statistical, and perfect indistinguishability respec-
tively. Let negl(λ) denote negligible functions. Familiarity with basic definitions
including commitments, witness indistinguishability, zero-knowledge, arguments
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of knowledge, etc. is assumed; we refer to [36,37] for formal treatment of these
notions. We also recall the definitions of CRHFs, extractable commitments, and
statistically-hiding commitments in [53, Appendix A].

Non-Malleable Interactive Proofs. We work with identity-based (or “tag-
based”) definitions of non-malleability and follow the definitions and conventions
from [74]. Let A be a (non-uniform) probabilistic Turing machine, specifying a
man-in-the-middle strategy. A runs in time polynomial in the security parameter
λ. Let z ∈ {0, 1}∗ be an arbitrary string (denoting the non-uniform “advice” for
A). Let 〈P, V, 〉 be an interactive proof system for an NP complete language L.
Let x ∈ L be a statement of length λ; we assume that P is PPT and receives
a witness w ∈ RL(x) as its auxiliary input. The definition is based on the
comparison between a man-in-the-middle execution and a stand-alone execution
among the above parties.

The man-in-the-middle experiment begins by selecting uniform randomness
for A, and honest parties P and V . A(x, z) interacts with P (x,w) on left acting
as a verifier in the proof for x ∈ L; A simultaneously participates in a right
proof with V , proving a related statement x̃, supposedly in L.4 Let the tag (or
“identity”) strings on left and right be id and ˜id respectively with |id| = |˜id| = λ.
We let mimA

V (id, ˜id, x, x̃, w, z) be a random variable describing the output of V
in the man-in-the-middle execution.

In the stand-alone execution, a machine S interacts with the honest verifier
V . As in the man-in-the-middle execution, V receives as input an instance x̃
and the identity ˜id. S receives x, an auxiliary input z and id as input. We let
staS

V (id, ˜id, x, x̃, z) be a random variable describing the output of V in the stand-
alone execution.

Definition 1 (Non-Malleable Interactive Proof). An interactive proof
〈P, V 〉 for language L is said to be non-malleable w.r.t. tags of length m
if for every PPT man-in-the-middle adversary A, there exists a PPT stand-
alone prover S and a negligible function negl such that for every x ∈ L, every
w ∈ RL(x), every x̃ ∈ {0, 1}|x|, every id, ˜id ∈ {0, 1}m so that id �= ˜id, and every
z ∈ {0, 1}∗, it holds that

Pr[mimA
V (id, ˜id, x, x̃, w, z) = 1] < Pr[staS

V (id, ˜id, x, x̃, z) = 1] + negl(|x|).

We will refer to synchronizing adversaries: they are the man-in-the-middle
attackers who, upon receiving a message in one session, immediately respond
with the corresponding message in the other session. An adversary is said to be
non-synchronizing if it is not synchronizing.

Definition 2 (Non-Malleable Zero Knowledge). An interactive proof
between prover P and verifier V is said to be non-malleable zero knowledge if it
is a non-malleable interactive proof that also has the zero-knowledge property.

4 We remark that statement x̃ may be chosen either adaptively depending on the left
execution, or statically by announcing it before the left execution begins.
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Simulation Soundness. The notion of simulation soundness [77] is a form
of non-malleable ZK. Typically it is all one needs when building higher-level
constructs using non-malleable ZK. In the non-interactive setting, it requires
that a man-in-the-middle adversary cannot generate convincing proofs for false
statements, even given access to a simulator who can generate false proofs.

The definition for the interactive setting appears in [48]. It requires a single
machine S—the simulator—which guarantees indistinguishability of the view for
true statements (to capture ZK), and the soundness for statements on the right
hand side even in the presence of simulated false proofs on the left hand side.
We use MIMA

〈P,V 〉(x,w, z, id) to denote the joint view of the adversary A in the
same man-in-the-middle execution described above.

Definition 3 (Simulation-Sound Zero-Knowledge). An interactive argu-
ment 〈P, V 〉 for a language L is said to be a simulation-sound zero-knowledge
argument if for every PPT man-in-the-middle algorithm A, there exists a
expected PPT algorithm S (the simulator) such that:

– (Indistinguishable Simulation) For every x ∈ L, every w ∈ RL(x), every
id ∈ {0, 1}λ, and every (auxiliary input) z ∈ {0, 1}∗:

S(x, z, id)
c≈ MIMA

〈P,V 〉(x,w, z, id)

– (Simulation Soundness) There exists a negligible function negl(·) such that
for every x ∈ {0, 1}λ, every id ∈ {0, 1}λ, and every z ∈ {0, 1}∗:

Pr
[

ν ← S(x, z, id) : x̃ /∈ L ∧ ˜id �= id ∧˜b = 1
]

≤ negl(λ)

where x̃, ˜id and ˜b denote the statement, identity, and verifier’s decision in the
right-side view of the simulated joint-view ν.

Non-Malleable Commitments. We use the tag-based definition from [43,
60]. Specifically, we compare an ideal interaction with a real one. In the ideal
interaction, a man-in-the-middle adversary A interacting with a committer C
in the left session, and a receiver R in the right. We denote the relevant entities
used in the right interaction as “tilde’d” version of the corresponding entities
on the left. In particular, suppose that C commits to v in the left interaction,
and A commits to ṽ on the right. Let MIMv denote the random variable that
is the pair (View, ṽ), consisting of the adversary’s entire view of the man-in-the-
middle execution as well as the value committed to by A on the right (assuming
C commits to v on the left). The ideal interaction is similar, except that C
commits to some arbitrary fixed value (say 0|v|, i.e. an all-zero string of length
|v|) on the left. Let MIM0 denote the pair (View, ṽ) in the ideal interaction. We
ensure that A uses a distinct identity (or “tag”) ˜id on the right from the identity
id it uses on the left. This is done by stipulating that MIMv and MIM0 both
output a special value ⊥id when A uses the same identity in both the left and
right executions. Let MIMv(z) and MIM0(z) denote real and ideal interactions
resp., when A’s auxiliary input is z.
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Definition 4 (Non-Malleable Commitments). A tag-based statistically
binding commitment scheme 〈C,R〉 is non-malleable if ∀ PPT A, and ∀v ∈
{0, 1}λ, it holds that {MIMv(z)}λ∈N,z∈{0,1}∗

c≈ {MIM0(z)}λ∈N,z∈{0,1}∗ .

3 Preparatory Work

In this section, we prepare the ingredients for use in the construction of our
non-malleable zero-knowledge protocol. More specifically, we recall how Ligero’s
ZK simulator works (from [2]). Also, we show a slightly-modified version of the
non-malleable commitment from [11]. We will recall related notation/techniques
only to the extent that is adequate to understand our construction. See the full
version of the current paper for a more detailed review of Ligero [53].

On Notation. In [2], the authors first built a public-coin zero-knowledge inter-
active PCP (ZKIPCP) scheme. They then converted the ZKIPCP to a 6-round
honest-verifier ZK protocol relying on Kilian’s transformation [52,61]. Finally,
they further converted it to a 7-round (fully) zero-knowledge protocol using the
techniques from [46,47]5. Henceforth, we will use Ligero to denote their honest-
verifier ZK protocol, and use Ligero′ to denote their fully ZK construction.

Simulator HVSim for Ligero. We will use the fact that simulating a Ligero
(i.e., the honest-verifier version of [2]) proof is much faster than the real prover
algorithm if the challenge of the verifier is known. The simulator’s algorithm
will be denoted by HVSim (HV for “honest-verifier”). There are two parts to
be simulated: the first one is simulating the ZKIPCP interaction (a.k.a. the
challenge-response slot); and the second one is simulating paths of the Merkle
tree that are consistent with opened parts of the ZKIPCP proof string π (a.k.a.
the oracle query-answer slot). The full description of HVSim is presented in
Algorithm 1.

Algorithm 1: HVSim: Honest-Verifier Zero-Knowledge Simulator for Ligero

Input: a statement x, a collision-resistant hash function h, and a ZKIPCP query b:

1. Run the honest-verifier simulator algorithm corresponding to the ZKIPCP system for
statement x and verifier randomness (h, b) to obtain a (perfectly) simulated ZKIPCP
transcript. By definition, the transcript contains simulated parts of the “proof string” π.
Let L = {(i, πi)} denote these simulated parts where i ∈ [|π|] denotes position in the
proof. Thus, L is simply the list of opened leaves in a Merkle tree (constructed below).
Note that n = |π| is the total number of leaves and known in advance. The simulated
transcript also contains the honest verfier’s challenge, which is simuilated as a random
string b, and the corresponding (simulated) response c

2. Generate the paths of the Merkle tree that are consistent with L = {(i, πi)}. This is
straightforward, we provide the steps below for completeness:

5 We remark that [2] also presented another approach—applying Fiat-Shamir trans-
formation to their ZKIPCP will give a (fully) ZK protocol directly; moreover, the
resulting protocol will be non-interactive. But this approach is irrelevant in the cur-
rent paper as we are interested in constructions in the plain model (without random
oracles).
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(a) For every element z = (i, πi) in L, let i′ represent the index corresponding to the
sibling of z in the Merkle tree (note that i′ exists for every i by definition). We first
check if the sibling of z exists in L by checking if any element in L contains index i′.
If no sibling for z exists in L, we add a new element z′ = (i′, ri) into L, where ri is
a random string with length equal to the output length of h.

(b) Let L∗ be the empty set. For every z, along with its sibling z′, in L, we let z∗ =
h(z||z′). We add z∗ to L∗. In the end, the cardinality of L∗ is equal to |L|/2.

(c) Set L = L∗ and L∗ = ∅. Repeat Steps 2a to 2c while |L| > 1.

(d) The remaining element in L is the root of the Merkle tree.

Instantiating BGRRV with Symmetric Primitives. We will need an
extractable non-malleable commitment (ENMC) that is fast and, preferably,
based only on symmetric-key primitives. We work with a modified version of
Brenner et al.’s protocol [11] (which is in turn based on [45]). This modified ver-
sion uses Ligero′ (the malicious-verifier version of Ligero) as the ZK proof system
in the consistency-proof stage of the protocol. For concreteness, this instantiation
is completely specified in Protocol 1. We refer to it as ΠMini

bgrrv.

Protocol 1: ΠMini
bgrrv: Extractable Non-Malleable Commitment in Minicrypt

Public Input: an identity id ∈ {0, 1}k, a large prime q, an integer �, and vector spaces
V1, . . . , Vn ⊂ Z

�
q which are derived from id. These parameters satisfy the following relation:

� = 2(k + 1) and n = k + 1. (For the meanings of these parameters, we refer the readers to
[11].)

Private Input: commiter C takes m ∈ Z
�−1
q as its private input (the value to be committed).

Committing Stage. The committing stage consists of the following steps.

1. R → C: Send the first message ρ of the Naor’s commitment scheme [64].

2. C → R: C chooses random values r1, . . . , rn ∈ Zq . This defines vectors z1, . . . , zn ∈ Z
�
q

where zi = (ri,m). C sends commitments (m̂, r̂) where:

m̂ =
(

Comρ(m1; s1), . . . ,Comρ(m�−1; s�−1)
)

, r̂ =
(

Comρ(r1; s
′
1), . . . ,Comρ(rn; s′

n)
)

,

where Comρ denotes the second round of Naor’s commitment w.r.t. first message ρ. Note
that this commits C to every coordinate of zi. For future reference, define the following
language which contains valid commitment and message pairs:

LComρ :=
{

(c, a) : ∃b s.t. c = Comρ(a; b)
}

.

3. R → C: Send random challenge vectors {vi}i=1,...,n where each vi ∈ Vi ⊂ Z
�
q .

4. C → R: C sends evaluations {wi}, where each wi = 〈vi, zi〉 ∈ Zq .

Consistency Proof. Using Ligero′, C proves that the preamble was executed correctly. That
is, C proves the following statement: ∃(

(m1, s1), . . . , (m�−1, s�−1), (r1, s′
1), . . . , (rn, s′

n)
)

such
that

– m̂ =
(

Comρ(m1; s1), . . . ,Comρ(m�−1; s�−1)
)

, and

– r̂ =
(

Comρ(r1; s′
1), . . . ,Comρ(rn; s′

n)
)

, and

– wi = 〈zi,vi〉 ∀i ∈ [n] where zi = (ri, m1, . . . , m�−1).

Notation: Henceforth, we denote the above language as Lρ
consis. We say that the above

Consistency Proof stage is proving that (m̂, r̂, {wi}i∈[n]) is in language Lρ
consis.
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Observe that each message from the ΠMini
bgrrv receiver, informally speaking,

is efficiently simulatable during “rewindings” given all prior information. That
is, each message must be of one of the following three types: (i) it is a public
random string; (ii) it can be sampled from scratch; or (iii) it is simply a complete
opening of a previous commitment (and thus repeatable in rewind threads if
needed). This observation will play an important role later when we prove the
non-malleability of our ZK protocol (more specifically, in Claim 1). But we also
emphasize that this observation is crucial only in the non-synchronous setting
(but not in the synchronous setting).

Extractability of BGRRV. We remark that BGRRV is an extractable com-
mitment scheme. Extraction can be performed from the preamble stage by sim-
ply rewinding to the second message, obtaining a valid answer for a different
challenge, and then solving two equations in Zp.

4 Our Non-Malleable Zero Knowledge Protocol

In this section, we present the generic framework of our non-malleable zero-
knowledge. Later in Sect. 5, we will instantiate each component of this protocol
in special ways so that the final protocol admits an efficient implementation
using only symmetric-key primitives. We use the following ingredients:

1. An extractable commitment scheme ExtCom. We will use the standard 3-
round scheme from [75]. Note that the first committer message of this scheme
is statistically-binding.

2. A tag-based commitment scheme ENMC that is both non-malleable and
extractable; for concreteness, we will use scheme ΠMini

bgrrv specified in Proto-
col 1. We assume for convenience that the commitments are generated using
Naor’s scheme [64] w.r.t. an implicit first string ρ chosen by the receiver of
the commitment (and dropped from the notation henceforth).
We assume that the first committer message of ENMC is statistically binding.
For concreteness, we say that a string c is an honest ENMCcommitment
to a value v with tag id if there exists randomness r such that c is the first
committer message of ENMC produced by the honest committer algorithm
on input value v, tag id, and randomness r.

3. A statistically witness-indistinguishable argument of knowledge sWIAoK.

Our construction is shown in Protocol 2 below. At a high level, the protocol
is as follows: V starts by committing to a random string σ. P then uses an
extractable non-malleable commitment ENMC to commit to an all-zero string.
Then V decommits to its commitment made at the beginning of the protocol.
Finally, P and V execute a sWIAoK protocol, where P proves to V that either
it knows a witness to x, or that the commitment in ENMC equals σ.
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Protocol 2: 〈P, V 〉NMZK: Non-Malleable Zero-Knowledge

Public input: Security parameter λ, statement x (supposedly in an NP language L), and

a tag id ∈ {0, 1}≤λ.
Private input: P takes the witness w as its private input.

1. V commits to a random string σ ← {0, 1}λ, using the extractable commitment scheme
ExtCom. We denote the first committer message by com1.

2. P commits to σ′ = 0λ using the extractable non-malleable commitment ENMC with tag
id. We denote the first committer message of this stage by com2.

3. V sends σ along with decommitment information for com1.

4. If Step 3 decommitment is valid, P proves the following compound statement to V using
a statistical witness-indistinguishable argument of knowledge sWIAoK:

– there exists a w such that R(x, w) = 1; or

– com2 is an honest ENMC commitment to σ with tag id.

For future reference (σ′, r) is called the trapdoor witness for statement (com2, id) if r is

s.t. com2 is the 1st committer message of ENMC on input σ′, tag id, and randomness r.

Theorem 1. The protocol 〈P, V 〉NMZK (shown in Protocol 2) is a non-malleable
zero-knowledge argument of knowledge for NP.

To prove Theorem 1, we first need to prove that 〈P, V 〉NMZK is a zero-
knowledge argument of knowledge. This follows from standard techniques. Due
to space constraints, we postpone it to the full version [53]. In the following, we
show the non-malleability of 〈P, V 〉NMZK.

Lemma 1. 〈P, V 〉NMZK is non-malleable.

We prove Lemma 1 in subsequent subsections. We first present in Sect. 4.1
the proof regarding synchronous adversaries (who send their right messages as
soon as they receive the corresponding left message). Then, we deal with the
general case of non-synchronous adversaries in Sect. 4.2.

When reading the proofs in the synchronous setting, it would be helpful to
keep in mind also the non-synchronous case. We add remarks at the end of each
hybrid to address this. We hope it can improve the readability when we talk
about the non-synchronous setting later.

4.1 Non-Malleability Against Synchronous Adversaries

To prove non-malleability, we need to build a simulator which can convince V
with roughly the same probability as a man-in-the-middle adversary Amim (up
to some negligible difference), but without the help of the left interaction. We
first define the following invariant condition.

Definition 5 (Invariant Condition). The probability that the value σ̃′ com-
mitted in com2 by Amim is equal to σ̃ committed in com1 by the honest verifier
is negligible.
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Note that if the invariant condition holds and Amim gives a convincing proof,
we can extract the witness w̃ for x̃ by running the sWIAoK extractor.

At a high level, our proof goes in the following way. We start with the man-
in-the-middle setting, where an honest prover P (x,w) interacts with Amim in
the left interaction, and Amim proves to an honest verifier V for a statement
x̃ �= x in the right. We will build a sequence of hybrids, where we gradually
substitute P (x,w) and V (x̃) with our simulator. Between each pair of adjacent
hybrids, we show that the view of Amim does not change and that the invariant
condition holds. In the last hybrid, we do not need the real witness w in the
left interaction, and we can extract Amim’s witness w̃ via the sWIAoK extractor
(we are guaranteed to extract w̃ because of the invariant condition). With the
extracted w̃, our simulator can give a “straight-line” proof for the statement x̃ to
V , which completes the proof of non-malleability. Next, we describe the hybrids.

Hybrid H0. This is the real execution of the MIM game. Specifically, H0 sets
up the left and right executions for Amim with P (x,w) and V , respectively. H0

outputs the joint view of Amim containing both left and right executions.

Invariant Condition. If the invariant condition does not hold, then consider the
prover machine P ∗ which behaves identically to H0 except that it forwards the
right ExtCom to an external committer. Using this P ∗ we can violate the hiding
of ExtCom by extracting the value committed in the right ENMC.

Hybrid H1. This hybrid is identical to H0, except that whenever the left ExtCom
is accepting, H1 extracts the committed value σ in the left ExtCom. If the extrac-
tor fails (σ = ⊥), H1 outputs ⊥ and halts; otherwise it continues as H0.

H0
s≈ H1. The outputs of H0 and H1 differ only when σ = ⊥; and due to the

extractability of ExtCom, that happens with only negligible probability.

Invariant Condition. The invariant condition holds in H1 since it holds in H0

and the two hybrids are statistically close.

Remark 1. Note that the above proofs for both indistinguishability and invariant
condition are independent of Amim’s scheduling of the messages. Thus, they also
hold in the non-synchronous scenario.

Hybrid H2. This hybrid is identical to H1, except that H2 sets σ′ = σ in
Stage-2 ENMC on left.

H1
c≈ H2 follows immediately from the computational-hiding property of ENMC.

Invariant Condition. The fact that the invariant condition holds can be reduced
to the non-malleability of ENMC. Specifically, we consider a man-in-the-middle
adversary AENMC for ENMC that acts as follows: AENMC internally runs H2 except
that it obtains the left ENMC execution from an outsider committer on the
left and forwards the right ENMC interaction to an external receiver. Further-
more, the external committer commits as follows: recall that H2 already has the
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extracted value σ before the left ENMC begins; AENMC forwards σ′
0 = 0λ and

σ′
1 = σ to the external committer who then commits to one of them at random.

AENMC halts when H2 halts. Now consider a distinguisher D (that incorporates
the above adversary AENMC), and by definition of non-malleability, receives the
value AENMC commits to in the right interaction, say σ̃. Clearly, if the invariant
condition does not hold in H2 then the distribution of σ̃ is different depending on
whether AENMC receives commitment to σ′

0 or σ′
1. This condition can be tested

by D (which incorporates AENMC), thus violating the non-malleability of ENMC.

Remark 2. Observe that in the non-synchronous case, the proof of indistin-
guishability will go through, but the proof of invariant condition will not. This
is because the extraction of α on left from ExtCom may rewind some parts of
ENMC on right, and this is not allowed by the non-malleability definition. We
will deal with this issue in Sect. 4.2.

Hybrid H3. Identical to H2 except that it switches from real witness w to the
trapdoor witness (i.e., values and randomness corresponding to σ′ = σ) in the
Stage-4 sWIAoK on left.

H3
s≈ H2 follows directly from the statistical WI property of sWIAoK.

Invariant Condition. Since we are in the synchronous setting, the invariant con-
dition holds since the executions in the two hybrids are identical up to the end
of Stage-2, at which point the invariant condition is already determined; any
changes after that stage have no effect on the invariant condition.

Remark 3. As in Remark 2, in the non-synchronous case, the argument for indis-
tinguishability still holds, but the argument for the invariant condition will
require extra caution. This is because the left sWIAoK may get aligned with
the right ENMC so that the switch of witness may affect the invariant condition.
We will deal with this issue in Sect. 4.2.

Simulator for Non-Malleability. The indistinguishability among the above
hybrids implies that: if Amim gives a convincing proof in the right interaction
of H0, it should also give a convincing proof in the right interaction of H3.
We construct a simulator Sim in the following way. Given a man-in-the-middle
adversary Amim, Sim first invokes H3 with Amim. If Amim indeed gives a convincing
proof in the right interaction, Sim extracts Amim’s witness w̃ from sWIAoK on the
right execution; otherwise, Sim aborts. The invariant condition in H3 guarantees
that Sim can extract such a w̃. With w̃, Sim then executes protocol 〈P, V 〉NMZK

(in “straight-line”) with an honest verifier. It convinces the honest verifier with
roughly the same probability as Amim (except for negligible difference due to
Sim’s failure in extracting w̃). This finishes the proof of non-malleability against
synchronous adversaries.
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4.2 Non-Malleability Against Non-Synchronous Adversaries

As mentioned in Remarks 1 to 3, the proofs for indistinguishability among all
hybrids, as well as the invariant condition for H0 and H1, remain unchanged
in the non-synchronous setting. Therefore, we only need to prove the invariant
conditions for H2 and H3, which will be done in the sequel. (We first show the
proof for H3 since it is simpler.)

The Invariant Condition for H3. Recall that the witness indistinguishability
of the sWIAoK is statistical. It follows that the invariant condition must hold in
H3 for non-synchronous adversaries as well. If not, an exponential time distin-
guisher can recover the value committed by Amim, thus breaks the statistical WI
by testing whether the invariant condition.

The Invariant Condition for H2. Before giving the formal lemma and proof,
we provide the high-level idea. As mentioned in Remark 2, the problem hap-
pens if the Amim interleaves the left ExtCom messages with the right ENMC
messages. In such a schedule, we cannot reduce the invariant condition to the
non-malleability of ENMC without rewinding the outside challenger in ENMC’s
man-in-the-middle game. Recall that both H1 and H2 rewind the left ExtCom
to extract the committed value σ.

We first note that if the reduction can simulate the receiver-to-committer
messages in ENMC, then there is no issue during rewinding since in the right
interaction, the reduction can forward messages between Amim and the out-
side challenger to the “main thread” and simply simulate them in “rewinding”
threads. This (informally-explained) property is indeed satisfied by our ΠMini

bgrrv

commitment (Protocol 1).
In the following, we show the formal claim and its proof.

Claim 1. The invariant condition holds in Hybrid H2 described in Sect. 4.1 for
non-synchronous adversaries.

Proof. This proof relies on the special structure of ENMC (when instantiated
as the ΠMini

bgrrv protocol shown in Protocol 1). We will refer to different rounds
of ΠMini

bgrrv, which are recalled below for convenience (see and compare with
Protocol 1):

– (1): R sends the first message for Naor’s commitment, which consists of public
coins only.

– (2): C sends the second message of Naor’s commitment.
– (3): R sends some (public) random vectors as his challenge.
– (4): C responds to R’s challenges. C also sends the first message (which

consists of some public coins that specifies a CRHF) of a Ligero′ instance,
which is used for consistency proof.

– (5)-(10): These are rounds 2 to 7 of Ligero′ between C and R. Note that
(5) is the (statistically-hiding) commitments to verifier’s random challenge
Γ1 and Γ2; (7) is R’s decommitment to Γ1 and (9) is R’s decommitment
to Γ2.
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With the structure of ENMC in mind, we now start to prove Claim 1. First,
observe that ExtCom has only one “slot” that is rewound to extract σ. Therefore,
we only need to worry about the schedule where some messages of the right
ENMC are “nested” in this slot. In the following, we show that the invariant
condition hold for all schedules.

In the following, we use (i) (i ∈ [10]) to denote the i-th step of the right ENMC
(as recalled above). We denote the first message of the rewindable slot in the left
ExtCom as top, and the last message as bottom. See Fig. 1 for an illustration of
these notations. Note that in Fig. 1, no messages can appear between “adjacent
messages” of the right ENMC, for example, message (2)-(3), (6)-(7) etc. This
is because honest parties send their next message as soon as they receive the
previous message.

Easy Cases. First, note that if bottom happens before (1), we can rewind
the slot without rewinding the right ENMC. Therefore, the same proof for the
invariant condition in H2 in the synchronous setting also applies here. Also, it
is an easy case when (10) happens before bottom. In this case, Amim cannot
generate the right ENMC messages based on the left ENMC interactions, since
the left ENMC has not started yet. Therefore, the invariant condition holds
automatically. Another easy case is when (1) gets nested in the slot. In such a
case, rewinding the slot will cause a fresh execution of the right ENMC, so it
will not cause any problem when we try to reduce the invariant condition to the
non-malleability of ENMC. At a high level, this is because we can always forward
the messages when we do the last rewinding to the outside non-malleability
challenger in the reduction. But we suppress the details here since we will provide
a formal argument of such type when we handle the hard cases next.

Hard Cases. We now focus on the remaining schedules (beyond those discussed
in Easy cases). These schedules consist of the situations where

– (1) happens before top, and
– (10) happens after bottom.

There are 10 such cases in total. Since these 10 schedules can be handled via
similar arguments, in the following, we will use the one in Fig. 1 as a represen-
tative to present a full proof, and then discuss how to extend the same proof to
the remaining 9 cases in the full version [53].

For the schedule shown in Fig. 1, we build a man-in-the-middle adver-
sary AENMC attacking the non-malleability of ENMC. Recall that in the non-
malleability game, the man-in-the-middle adversary AENMC talks to an honest
committer in the left, and to an honest receiver in the right. We will refer to
them as the left challenger and right challenger respectively. Our AENMC acts in
the following way:

1. AENMC starts by running the hybrid experiment H2 internally with Amim

up to the step right before (1). It then invokes the right challenger for the
non-malleability game of ENMC, and forwards the messages between the
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Fig. 1. Special Schedules in the Non-Synchronous Scenario

challenger and Amim as the right interaction. It plays the left interaction
in the same way as the simulator in H2, until the execution reaches top for
the first time.

2. AENMC now needs to execute the slot (top, bottom) in the “main-thread”, and
then rewind this slot for (w.l.o.g.) k = poly(λ) times to extract the σ value
in the left interaction. To do that, AENMC proceeds as follows:
(a) For the main-thread execution, AENMC plays the right interaction by for-

warding messages between Amim and the outside right challenger.
(b) From the 1st to the k-th rewinding, AENMC will prepare the right ENMC

incoming messages (i.e. (5), (7), and (9)) by himself, instead of forward-
ing them between Amim and the outside right challenger. To do that,
AENMC samples fresh Γ1 and Γ2, and commits to them as message (5); it
sends the honest decommitments to (the fresh) Γ1 as message (7); sim-
ilarly, it sends the honest decommitments to (the fresh) Γ2 as message
(9). We emphasize that AENMC can indeed decommit to them because
the commitments in (5) (in these rewinding threads) are generated by
himself.

Note that the simulated messages during rewinding have identical distribution
as the main-thread (5), (7), and (9), which guarantees that Amim’s view does
not change. Thus, after the above rewindings, σ can be extracted except for
negligible probability, for which AENMC just halts outputting ⊥.

3. AENMC continues the internal (main-thread) interaction until the left ENMC
starts. He then invokes the outside left challenger by sending the values σ′

0 =
0λ and σ′

1 = σ. Then, ENMC forwards the messages between Amim and the
outside left challenger and Amim as the left ENMC interaction. In the right
interaction, ENMC acts as the simulator in H2 except that when Amim sends
the message (10), it forwards the message to the outside right challenger.

4. AENMC continues to finish the internal interaction with Amim as in H2 for the
remaining parts of the protocol.
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Now consider a distinguisher D (that incorporates the above adversary AENMC),
and by definition of non-malleability, receives the value AENMC commits to in
the right interaction, say σ̃. Clearly, if the invariant condition does not hold in
H2 then the distribution of σ̃ is different depending on whether AENMC receives
commitment to σ′

0 or σ′
1. This condition can be easily tested by D (since it

incorporates AENMC), thus violating the non-malleability of ENMC.
The above argument proves Claim 1 for the special scheduling shown in Fig. 1.

Due to space constraints, we postpone the discussion for the other 9 schedules
to the full version [53]. �

4.3 Generalization to “Almost Public-Coin” Statistically ZK

In this part, we take another look at the proof in Sect. 4.2 with the following
purpose: in Sect. 4.2, we proved the invariant condition in H2, relying on the
special structure of ΠMini

bgrrv. In particular, we assumed that the Consistency
Proof stage of ΠMini

bgrrv is conducted by Ligero′. However, we argue that Ligero′

can be replaced by any “almost public-coin” (explained below) statistically zero-
knowledge argument.

Motivation. Before delving into the details, let us first explain why we want
to generalize the proof to almost public-coin ZK protocols: While Ligero′ is effi-
cient, using it directly in the Consistency Proof stage of ΠMini

bgrrv results in
unacceptable running time. This is because the language Lρ

consis (defined toward
the end of Protocol 1) has a huge circuit size. As mentioned in Sect. 1.2, we
will (in Sect. 5.3) introduce the new idea of converting ΠMini

bgrrv to an instance-
based non-malleable commitment to achieve better efficiency. Looking ahead,
the instance-based ΠMini

bgrrv shares the same structure of the original ΠMini
bgrrv, with

the only difference being that the Consistency Proof stage is not conducted
by Ligero′ anymore. Instead, it will be done using a customized statistical ZK
protocol called Π′

or, which we construct by applying (a modified version of)
the OR-composition technique [22] on Ligero (i.e., the honest-verifier version of
Ligero′). We need to show that the same proof in Sect. 4.2 will still go through
when we replace (the original) ΠMini

bgrrv with this instance-based ΠMini
bgrrv (i.e., when

we replace Ligero′ in the Consistency Proof stage with Π′
or). Fortunately, this

is possible because Π′
or shares the same structure as Ligero′, in terms of the

application in Sect. 4.2. In particular, Π′
or also enjoys the same “almost public-

coin” property of Ligero′, and this is exactly why the same proof in Sect. 4.2
can be applied when we replace Ligero′ with Π′

or. The purpose of this subsection
is to distill this “almost public-coin” property and explain how it helps in the
proof in Sect. 4.2.

Almost Public-Coin Protocols. Let us summarize how the proof in Sect. 4.2
makes use of the structure of ΠMini

bgrrv. As we mentioned in the beginning of Sect.
4.2, ΠMini

bgrrv has 10 rounds that can be understood as two stages:

1. Commit Stage: This includes rounds (1) to (4), and
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2. Consistency Proof: This includes rounds (4) to (10), which is exactly the
statistically ZK protocol Ligero′.

We emphasize that all the receiver’s messages are public coins except for rounds
(5) and (7), which constitute the commitment and corresponding decommit-
ment to some random coins. This public-coin property is the main reason that
AENMC works properly: in Step 2, AENMC needs to simulate the receiver’s message
in rewinding threads; because all the receiver’s messages (except for rounds (5)
and (7)) are public-coin, AENMC can simply sample them freshly for each rewind-
ing; moreover, round (5) (resp. (7)) is a commitment (resp. the corresponding
decommitment) to random coins, so AENMC can also sample and commit to (resp.
decommit honestly to) random coins itself. Therefore, the rewinding threads can
be shown to be identically distributed as the main thread.

In light of the above, it is clear that the ΠMini
bgrrv can be replaced with any

ENMC that enjoys the above public-coin property. In particular, the Commit
Stage of ΠMini

bgrrv is public-coin by design; the Consistency Proof stage, when
implemented with Ligero′, is public-coin (again, except for (5) and (7) as dis-
cussed above) because Ligero′ is obtained in a special way: it is obtained by
applying the Goldreich-Kahan transform on the honest-verifier version Ligero,
which is a public-coin protocol.

Looking ahead, our Π′
or enjoys the above public-coin property. As we will

show in Sect. 5.3, Π′
or is obtained by applying Goldreich-Kahan transform on a

protocol Πor (which will appear in Sect. 5.2), which is also a public-coin honest-
verifier ZK argument. Therefore, the above argument applies.

In summary, when we replace ΠMini
bgrrv with its instance-based version, the

same proof in Sect. 4.2 will still go through.

5 Improving Efficiency Through Fake Executions

5.1 Road Map of This Section

In this section, we describe how to instantiate our NMZK protocol 〈P, V 〉NMZK

(shown in Protocol 2) to achieve concrete efficiency. The major bottlenecks are:

1. Step 4 of 〈P, V 〉NMZK is a statistical WIAoK on the OR-composition of the
statement x and a trapdoor statement (let us denote it as (x ∨ xtr)). This
proof is non-black-box on the Step 2 commitments and involves expensive
NP reduction.

2. Step 2 of 〈P, V 〉NMZK is instantiated with ΠMini
bgrrv (Protocol 1), whose Con-

sistency Proof step involves an expensive ZK proof.

To address Item 1, we want to employ the OR-composition technique in [22]
to construct the desired sWIAoK from Ligero. This will allow the prover to finish
the proof for (x ∨ xtr) by conducting a (light) proof for x, and running the fast
Ligero simulator HVSim for the xtr part. This will be much more efficient than
running Ligero on (x∨xtr) directly. However, this approach encounters obstacles:
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Ligero does not have the properties required by [22]. We show how to solve related
problems in Sect. 5.2.

To address Item 2, we wish to reuse the OR-composition technique described
above. But it does not immediately apply because the target statement of the
Consistency Proof does not have the (x ∨ xtr) structure; instead, it is a single
statement xcom ∈ Lρ

consis, which is related to some vector of commitments6. Run-
ning Ligero for xcom is prohibitively expensive. To handle this issue, observe that
this ΠMini

bgrrv protocol is executed as a part of our 〈P, V 〉NMZK protocol on some
statement xzk. Therefore, we change the statement of Consistency Proof to
(xzk ∨ xcom), and then use the above OR-composition technique to boost the
efficiency. We denote this extended non-malleable commitments as instance-
based non-malleable commitments (IB-NMC). We elaborate on the above idea
in Sect. 5.3.

Non-Malleability from Simulation-Soundness. Unfortunately, the above
strategy induces an extra problem—replacing the Step 2 ENMC by the above
instance-based version (i.e. the IB-NMC) jeopardizes the security of 〈P, V 〉NMZK

(Protocol 2). Specifically, it is not clear whether the resulting protocol is still
non-malleable. However, we will be able to prove that it is a simulation-sound ZK
protocol (which is already sufficient for many applications). Finally, we show in
Sect. 5.4 (resp. Sect. 5.5) how to use this simulation-sound ZK protocol to obtain
non-malleable ZK protocols (resp. non-malleable commitments), with (almost)
no efficiency overhead.

5.2 OR-Composition of Ligero

The OR-composition [22] was originally designed for Σ protocols, i.e., 3-round
public-coin HVZK protocols with special soundness, which requires that a wit-
ness can be extracted from two convincing transcripts with distinct challenges.
To prove an OR statement x ∨ x′, the OR-composition invokes a parallel exe-
cution of two Σ-protocol instances: (a1, b1, c1) for proving x and (a2, b2, c2) for
proving x′, which are called the left and right execution respectively. But the
verifier sends only a single round-2 challenge b; the prover has the freedom to
“decompose” it as b = b1 ⊕ b2 to finish the two parallel executions. The prover
may only have a witness for, say, the x part; since it can always “equivocate”
one share of b, it will first “finish” (in other words, fake) the left execution by
running the HVZK simulator for the Σ-protocol by setting b2 in advance; it can
answer any b1 = b ⊕ b2 as it has the witness for x.

We want to apply the above OR-composition to Ligero. However, Ligero is
not a Σ-protocol—it has six rounds (i.e., two challenge-response slots). Indeed,
it is known that straightforward generalization of OR-composition to multi-slots
protocols (i.e., the original OR-composition is applied on each slot separately)
will yield an unsound protocol.

The First Attempt. In more detail, recall that Ligero’s messages are denoted
as (h, a, b, c,˜b, c̃), where (h, b,˜b) are nothing but public random coins. If we do
6 Recall that the language Lρ

consis is defined toward the end of ΠMini
bgrrv (Protocol 1).
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the straightforward generalization of the above OR-composition (to prove an OR
statement x ∨ x′), it will work as follows: assuming P knows witness w for x, P

uses HVSim(x′) to simulate a proof (h2, a2, b2, c2,˜b2, c̃2) for the x′ part (because
P does not have witness for it). Meanwhile, P generates the proof for x honestly,
in the following manner: V sends h and P derives h1 as h1 = h ⊕h2; P runs the
honest Ligero prover’s algorithm on input (x,w) to generate a1, assuming the
first Ligero verifier’s message is h1. Similarly, when V sends b (resp. ˜b), P will
set b1 = b ⊕ b2 (resp. ˜b1 = ˜b ⊕˜b2), and compute the response c1 (resp. c̃1) using
the honest Ligero prover’s algorithm (as it has witness w for x).

However, the above approach suffers from the following “cross attack”: Since
P ∗ has the opportunity to decide how to decompose h, b, and ˜b, it can pick a bad
b1 and a bad ˜b2. That is, a cheating prover can choose malicious challenges in
the first slot of the left execution and the second slot of the right execution, and
there is no soundness guarantee for Ligero when a malicious prover can control
(even) one challenge out of the two slots.

Solution. To resolve this problem, we ask P to commit to its decomposition
in advance. More accurately, we ask P to generate com = SHCom(h2‖b2‖˜b2; r)
at the very beginning of the protocol, where SHCom is a statistically-hiding
commitment. Then, we continue as the above. At the end of the execution, we
ask P to give a statistical WI argument of knowledge sWIAoK for the following
statement:

– com is committing to either (h1, b1,˜b1) or (h2, b2,˜b2).7

Intuitively, due to the (knowledge) soundness of sWIAoK, P ∗ cannot conduct the
above “cross attack” anymore.

We denote this protocol as Πor. Due to space constraints, we put the formal
description of Πor in the full version [53], where we also provide the complete
security proof. Here, we want to emphasize that this approach invokes very small
efficiency overhead compared with the plain OR-composition described in The
First Attempt: what we add is simply a statistically-hiding commitment and a
sWIAoK for its consistency. Using a modified version of Ligero as the underlying
sWIAoK (see [53, Appendix C.3]), this only adds an extra computation cost of
32 milliseconds and an extra communication cost of 6.4MB. See [53, Appendix
C.2] for more details.

Regarding Malicious-Verifiers ZK. It is not hard to see that the above Πor

is also an honest-verifier ZK argument (of knowledge). Using the Goldreich-
Kahan technique [38] (as done in [2,46]), we can convert it to a fully-secure ZK
argument, i.e., against malicious verifiers. We denote the resulting protocol as
Π′

or, and present the full description of it in [53, Protocol 11]. Looking ahead,
Π′

or will be used in the instance-based non-malleable commitment in the next
subsection (in Protocol 3).

7 Note that (h1, b1,˜b1) and (h2, b2,˜b2) will be known to V when the protocol reaches
the final sWIAoK stage.
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5.3 Instance-Based Non-Malleability

Recall that we use ΠMini
bgrrv (Protocol 1) as our ENMC. The primary efficiency

bottleneck in ΠMini
bgrrv is the consistency proof, which is done using Ligero′. Since

an honest committer is never cheating, our goal is to provide the prover an easier
way to get through this proof. Toward this goal, we first show an instance-based
version of ΠMini

bgrrv, denoted as 〈CL, RL〉. The instance-based version simply gives
the option of using a witness for a true statement in the consistency proof phase
of ΠMini

bgrrv. At a high level, the parties get a statement x as input which may
or may not be true. If x is true, the committer can additionally take as input
a witness w ∈ RL(x) and succeed in the proof phase by using w instead of
completing the consistency proof for any message m. This allows the honest
prover to fake the ENMC execution using a faster simulator thanks to the OR-
composition. If x is false, the committer commits to a valid value m. It is also
possible to do both: commit to m properly and execute consistency proof as well
as proof for x. We present the full construction in Protocol 3,8 and establish its
security in Lemmas 2 and 3.

Protocol 3: 〈CL, RL〉(x): Instance-Based Non-Malleable Commitment

Instance-based ΠMini
bgrrv is the following commitment scheme, denoted as 〈CL, RL〉, defined

for an arbitrary NP language L: the common input to both algorithms is a statement x;
in addition, CL takes a (private) auxiliary input that is either of the form (m, ⊥) or (⊥, w)
where w is a witness for x ∈ L. Recall that ΠMini

bgrrv is denoted by 〈C, R〉 and depicted in Prot.
1. The protocol proceeds in two phases:

– Commit Stage: In this stage RL proceeds identically to algorithm R of ΠMini
bgrrv and let ρ

be its first message. For input (m, ⊥), CL proceeds exactly as C proceeds in the commit
stage on input m. For input (⊥, w), CL simply sends random values of appropriate size
as the second and fourth messages of the commit stage (when interacting with RL).
Recall that the execution of the Commit Stage of ΠMini

bgrrv will yield messages m̂, r̂, and
{wi}i∈[n]) (see Prot. 1). We denote st := (m̂, r̂, {wi}i∈[n]).

– Proof Stage: In this stage, CL proves that (x, st) ∈ L ∨ Lρ
consis using Π′

or, i.e., the fully
ZK version of Πor (see [53, Protocol 11]). For input (m, ⊥), CL uses the simulator HVSim
for the left part (i.e., for x), and completes right part (i.e., for st) honestly by using the
witness for st (from the first phase). For input (⊥, w) it uses w to succeed in the left part
of the proof and simulator HVSim to succeed in the right part.

If the common statement is fixed to x, we denote the instance-based ΠMini
bgrrv by 〈CL, RL〉(x).

The executions corresponding to inputs (m, ⊥) will be called real or honest executions,

and those corresponding to (⊥, w), fake or simulated executions of ΠMini
bgrrv (or ENMC).

Lemma 2. Let L be an NP language. For every x /∈ L protocol 〈CL, RL〉(x)
(Protocol 3) is an extractable non-malleable commitment scheme.

Proof. We observe that for every x /∈ L, the Proof Stage of the protocol is a
ZK argument for st ∈ Lρ

consis (i.e., consistent execution of the commit stage). In
this case, 〈CL, RL〉(x) is simply an instantiation of the original ΠMini

bgrrv protocol.
The claim then follows from the security of ΠMini

bgrrv. �

8 We warn that this version cannot be used in our NMZK protocol yet. See Sect. 5.4.
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Lemma 3. Let L be an NP language with witness relation RL. For every mes-
sage m and every (x,w) ∈ RL, the following holds:

{view0 ← 〈CL((m, ⊥)), RL〉(x) : view0} c≈ {view1 ← 〈CL((⊥, w)), RL〉(x) : view1} .

Proof. This lemma follows from the following two observations: (i) committer’s
messages in the commit stage are pseudorandom (since second message of Naor’s
commitment is pseudorandom), and (ii) the proof stage is WI (it is indeed ZK).
Since the proof follows from a standard hybrid argument, we omit the details. �

Remark 4 (On Efficiency). It is worth noting that if x admits a fast Ligero proof,
then fake executions are faster than the real executions since the simulator for
Ligero for the right part (i.e., the real consistency proof for st) is much faster
than the prover. As mentioned in Sect. 1.2, this is how we manage to obtain
significant improvement on the efficiency.

5.4 Efficient Simulation-Sound Zero-Knowledge

The main benefit of the instance-based ΠMini
bgrrv in Protocol 3 is that if x ∈ L

admits fast proofs, it can be used in place of standard ΠMini
bgrrv in our NMZK

protocol. Unfortunately, the resulting protocol is not a NMZK for true x! Nev-
ertheless, the resulting protocol is simulation-sound (as per Definition 3), and
equally importantly, efficient. We refer to this protocol by Πss and specify it in
Protocol 4.

Protocol 4: Πss: Simulation-Sound ZKAoK

The common input is x and prover’s input is a witness w for x ∈ L, where L is the desired

NP language. This protocol is identical to protocol 〈P, V 〉NMZK (Prot. 2) except that the

Step 2 ENMC is replaced with the instance-based non-malleable commitment (Prot. 3) with

the following inputs: the common input is x and committer’s auxiliary input in the Proof

Stage of the commitment is (⊥, w). Observe that the honest prover only performs a simulated

execution of the non-malleable commitment.

Theorem 2. Protocol Πss (Protocol 4) is a simulation-sound zero-knowledge
argument of knowledge.

Due to space constraints, we postpone the proof of Theorem 2 to the full
version [53].

5.5 Putting It All Together: Fast NMZK and NMCom

Now we show how to get efficient and full-fledged non-malleable zero-knowledge
and commitment protocols with the help of our efficient simulation-sound
ZKAoK protocol Πss and the statistically WIAoK protocol Πor.

Fast NMZKProtocol. We present our final NMZK protocol in Protocol 5. At
a high level, the prover in Protocol 5 sets up a “trapdoor statement” in the
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form of a commitment cm, and proves using Πss that cm is a commitment to
0. Later, the prover proves using protocol Πor that either the statement is true
or that cm is a commitment to 1. The honest prover always commits to 0 and
thus remains fast. The simulator commits to 1 instead. The security of Protocol
5 can be proven Following a similar proof as that of Lemma 1. Due to space
constraints, we postpone the proof to the full version [53].

Protocol 5: 〈P , V 〉final: Non-Malleable ZKAoK

The common inputs are statement x, tag id, and security parameter λ. Prover’s private
input is a witness w ∈ RL(x), where L is the desired NP language. The protocol proceeds
as follows:

1. P commits to 0λ using 2-round Naor commitment; let ρ be the first message of this
commitment and cm = Comρ(0λ) the second message.

2. P and V execute Πss with tag id, where P proves that cm is a valid commitment to 0λ.

3. P and V execute Πor, where P proves that:

– x ∈ L, or

– cm is a valid commitment to 1λ, i.e., (cm, 1λ) ∈ LComρ .

Fast NMCom Protocol. Our non-malleable commitment protocol is presented in
Protocol 6. At a high level, Protocol 6 works in the same way as the non-malleable
zero-knowledge protocol above, except that x is replaced with a commitment to
the desired value. Its security proof follows closely from the proof Lemma 1. The
details are omitted.

Protocol 6: 〈C, R〉final: Non-Malleable Commitment

The common input is a tag id and the security parameter λ. Private input of the committer
is a value v ∈ {0, 1}λ. The protocol proceeds as follows:

1. C commits to v using two-round Naor commitment; let R’s first message be ρ, and
c = Comρ(v) denote the second message.

2. C further commits to 0λ using ρ as first message. Let cm = Comρ(0λ).

3. C proves that cm is valid commitment to 0λ using Πss with tag id.

4. C proves using Πor that:

– there exists v such that c is a valid commitment to v, i.e., (c, v) ∈ LComρ , or

– cm is a valid commitment to 1λ, i.e., (cm, 1λ) ∈ LComρ .
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Abstract. Recently, number-theoretic assumptions including DDH,
DCR and QR have been used to build powerful tools for secure compu-
tation, in the form of homomorphic secret-sharing (HSS), which leads
to secure two-party computation protocols with succinct communica-
tion, and pseudorandom correlation functions (PCFs), which allow non-
interactive generation of a large quantity of correlated randomness. In this
work, we present a group-theoretic framework for these classes of construc-
tions, which unifies their approach to computing distributed discrete log-
arithms in various groups. We cast existing constructions in our frame-
work, and also present new constructions, including one based on class
groups of imaginary quadratic fields. This leads to the first construction of
two-party homomorphic secret sharing for branching programs from class
group assumptions.

Using our framework, we also obtain pseudorandom correlation func-
tions for generating oblivious transfer and vector-OLE correlations from
number-theoretic assumptions. These have a trustless, public-key setup
when instantiating our framework using class groups. Previously, such
constructions either needed a trusted setup in the form of an RSA modu-
lus with unknown factorisation, or relied on multi-key fully homomorphic
encryption from the learning with errors assumption.

We also show how to upgrade our constructions to achieve active secu-
rity using appropriate zero-knowledge proofs. In the random oracle model,
this leads to a one-round, actively secure protocol for setting up the PCF,
as well as a 3-round, actively secure HSS-based protocol for secure two-
party computation of branching programs with succinct communication.

1 Introduction

Homomorphic secret sharing (HSS) [BGI16] can be seen as a relaxed form of
fully-homomorphic encryption (FHE), where two non-colluding servers evaluate
a function on private inputs without interaction. At the end of the computation,
the servers each obtain a secret share, and these can be combined to obtain
the result. At the core of existing HSS constructions is a procedure for dis-
tributed discrete log, where two parties are given group elements g0, g1 such that
g1 = g0 · gx for some fixed base g, and want to convert these multiplicative
shares into additive shares x0, x1, where x1 = x0 + x over the integers. The
c© International Association for Cryptologic Research 2022
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method from [BGI16], which is based on the decisional Diffie-Hellman (DDH)
assumption, allows doing this conversion without interaction, however, there is
an inherent correctness error. This results in significant extra work to ensure
that the magnitude of the error is small. Moreover, the error cannot be made
negligible. This limitation carries over to the final HSS construction, which has
a non-negligible probability that the result of the computation is incorrect.

Recently, it was shown that the non-negligible correctness error of the DDH
construction can be overcome, when switching to the Paillier [Pai99] or Damg̊ard-
Jurik [DJ01] cryptosystems based on the decisional composite residuosity (DCR)
assumption. With these encryption schemes, which work over Z

∗
N2 for an RSA

modulus N , discrete logarithms can be computed in a distributed manner with
a very simple and perfectly correct algorithm [OSY21,RS21]. This avoids the
challenges of the DDH setting, by exploiting the fact that the messages in these
schemes lie in a subgroup where solving discrete log is easy.

In [OSY21], the same distributed discrete log technique was used for several
other applications in secure computation. In particular, they constructed pseu-
dorandom correlation functions based on the Paillier and quadratic residuosity
assumptions. A pseudorandom correlation function (PCF) is a way of generat-
ing two short, correlated keys, such that when evaluating the function on each
of the keys, the two outputs are correlated in some secret manner. This gen-
eralizes the notion of a pseudorandom correlation generator [BCG+19], which
only supports a bounded number of outputs. Examples of useful correlations
for PCFs and PCGs are random oblivious transfer correlations, or secret-shared
multiplication triples, which can be used in GMW-style multi-party computation
protocols [GMW87] with very lightweight online computation.

An appealing feature of the PCFs from [OSY21] is that the PCF keys can
be generated in a public-key manner, where after publishing just a single, short
message, each party can locally derive their PCF key and compute the correlated
randomness. However, a major drawback is that to achieve this public-key setup,
the parties first need to have a trusted setup in the form of a public RSA modulus
with unknown factorisation.

1.1 Our Contributions

It may seem from the previous work in [OSY21,RS21] that their efficient app-
roach to distributed discrete log depends on very specific properties of Paillier,
or more generally Damg̊ard-Jurik encryption.

However, we show that this is not the case: in Sect. 3 we present a general
framework, where we demonstrate that the approach from previous works can
be phrased in terms of abstract group-theoretic properties. Naturally, the known
methods based on Paillier and Damg̊ard-Jurik become special cases of our frame-
work, but we also show instantiations under different assumptions in Sect. 4.

Below, we describe the main applications of our framework to secure two-
party computation, and the results obtained from our new instantiations.
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Homomorphic Secret Sharing. We show in Sect. 5 that any instantiation
of our framework that supports superpolynomially large plaintexts can be used
to build homomorphic secret sharing for the class of polynomial size branch-
ing programs. This construction follows the same blueprint as previous works
that obtain HSS for branching programs [BGI16,BKS19,OSY21,RS21]. Using
this, two new instantiations of our framework imply two new constructions of
HSS based on a flavour of the decisional Diffie-Hellman assumption for short
exponents.

Firstly, we obtain HSS from a variant of the Joye-Libert cryptosystem [JL13,
BHJL17], modified to work over a modulus that is a product of many small,
distinct primes; compared with the analogous constructions based on Paillier,
this has the advantage that ciphertexts are only a single element of ZN , and
we can be more flexible in our choice of plaintext space, which is limited to
ZNs otherwise. For a plaintext space modulo Q, we need to choose N such that
p − 1, q − 1 are divisible by Q, so when Q is large we should clearly increase p, q
to compensate, however, for reasonable sizes of Q the resulting ciphertext size
should still be smaller than Paillier, which is an element of ZN2 .

Secondly, we obtain HSS from the DDH assumption in class groups of imag-
inary quadratic fields, based on the CL cryptosystem [CL15]. Class groups have
recently seen many cryptographic applications, since they offer a way to generate
a group of unknown order, without relying on any trusted setup to create the
group parameters. Using class groups in HSS, we avoid the need for a setup with
an RSA modulus where no party knows the factorization, instead only relying on
a CRS that can be sampled with public randomness. For security, we rely on the
DDH assumption with short exponents, where the short exponents are used to
ensure that the secret key fits in the message space of the scheme, which allows
us to easily encrypt functions of the secret key without introducing a circular
security assumption.

Public-KeyPseudorandomCorrelationFunctionswithTrustless Setup.
Our starting point here is the PCFs from Paillier and quadratic residuosity
from [OSY21], which give PCFs for generating vector-OLE and OT correlations,
respectively.

PCFs, by definition, involve a setup procedure where a trusted dealer dis-
tributes a pair of short keys to the two parties. In [OSY21], it was shown that
given a 1-round protocol for vector-OLE, where each party sends one parallel
message, the PCF setup procedure can be replaced with a simple public-key
setup, where each party publishes one message, which is then used to derive
a PCF key. To realize the 1-round vector-OLE protocol, they give a dedicated
construction based on distributed discrete log from Paillier, however, this still
relies on a trusted setup in the form of an RSA modulus with unknown fac-
torisation. We show in Sect. 6 that this construction can be generalised to work
under any instantiation of our framework; with our class groups instantiation,
we then obtain vector-OLE with a trustless setup. Put together with the PCFs
from [OSY21], this leads to a public-key PCF with trustless setup for vector-
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OLE based on the combination of class group assumptions and DCR, or one for
OT by combining class groups and quadratic residuosity.

Active Security. Given a public-key PCF, where after exchanging public keys,
two parties can compute as much correlated randomness as they need, it is natural
to ask, can this type of protocol be made actively secure? Although there are many
ways of generically compiling passively secure protocols into active ones [GMW86,
IPS08], we want to achieve something reasonably practical, in particular, to avoid
using generic zero-knowledge techniques that require expressing group operations
as circuits or similar. We show in Sect. 7 how to upgrade our PCFs to achieve
active security, while preserving their public-nature by using Fiat-Shamir based
NIZKs in the random oracle model. We do this via a careful combination of sigma
protocols, which all make black-box use of the group, so avoid the complications
of generic techniques. One challenge is that to build the public-key PCF, we need
one party to prove that their input to the vector-OLE protocol corresponds to a
secret key for an RSA modulus used in the PCF. As an essential tool, we use an
integer commitment scheme which we show can be built from class groups and
a trustless set-up. Thus, even our actively secure PCF does not need a trusted
dealer. See the next section for details on the assumption required for this.

Finally, in the full version of the paper [ADOS22, Section 8], we also show how
to add active security to our HSS construction. In the random oracle model, this
gives a 3-round protocol for actively secure two-party computation of branching
programs, which makes black-box use of the operations needed by our group-
theoretic framework. Here, as well as proving that ciphertexts used to the secret-
share HSS inputs are well-formed, we also need range proofs to ensure that the
inputs are bounded in size.

A Comparison to [OSY21] and [RS21]. As summarised above, previous work
focuses its analysis on Paillier and Goldwasser-Micali [OSY21], and Damg̊ard-
Jurik [RS21]. Both [OSY21] and [RS21] describe how to solve distributed discrete
log in the setting they study and use the techniques to build HSS for branching
programs. In [OSY21], the authors also explain how to build public-key PCFs for
OT and VOLE using the distributed discrete log techniques. All the construc-
tions presented in [OSY21] and [RS21] rely on a trusted setup for the generation
of a public RSA modulo of unknown factorisation.

The main contribution of this work is to generalise the techniques of [OSY21]
and [RS21] to an abstract algebraic framework. We characterise the assumptions
that the framework needs to satisfy to solve distributed discrete log, build HSS
for branching programs and public-key PCFs for OT and VOLE. We present
also new instantiations of the framework in addition to Paillier, Goldwasser-
Micali and Damg̊ard-Jurik, namely variants of the Joye-Libert cryptosystem
and class groups. The latter allows us to build HSS and public-key PCFs that
do not need trusted setups. Finally, while [OSY21] and [RS21] limit their study
to passive security only, this work explains how to upgrade the constructions
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to active security obtaining implementable solutions that make black-box use of
the underlying group.

1.2 An Overview of the Framework

In a nutshell, our framework consists of a large, finite group G, where G = F ×H.
In the subgroup F , which is cyclic with generator f , discrete log is easy, and
the order of F is public (whereas this is not the case for H). In the distributed
discrete logarithm problem, two parties are given group elements g0, g1 ∈ G, with
the condition that g0/g1 = fm for some message m. The goal is for the parties
to convert this into shares m0,m1, where m0 + m1 = m modulo the order of F .
The crucial ingredient we need for distributed discrete log is a function we call a
coset labelling function, which, for each coset C of F in G, maps all elements in
C to a specific element in C. Existence of a coset labelling function turns out to
be enough to solve distributed discrete log assuming that the two parties start
from elements in the same coset, and it further turns out that this is sufficient
to implement all our constructions, as long as some appropriate computational
assumptions hold in G.

Instantiations. This framework easily encompasses previous constructions
where distributed discrete logs are computed with Paillier, Damg̊ard-Jurik, or
Goldwasser-Micali ciphertexts. We also show that a natural variant of the Joye-
Libert cryptosystem can be used (although it remains open to find a coset
labelling function for the original Joye-Libert scheme, with plaintexts mod-
ulo 2k). Finally, we give an instantiation based on class groups over imaginary
quadratic fields. Here, we essentially apply the framework of the CL cryptosys-
tem [CL15] for linearly homomorphic encryption, and combine it with the obser-
vation that the coset labelling function can be obtained via a special surjective
map, which was previously used in the NICE cryptosystem [PT00] and its crypt-
analysis [CJLN09].

Trustless Setup and the DXDH Assumption. For all applications of our frame-
work, we rely on the standard DDH assumption in the group G. In settings
where we need a trustless setup, we sometimes use a new assumption we call the
decisional cross-group Diffie-Hellman, or DXDH, assumption. This states that
for group elements g, h ← G sampled with random coins ρg, ρh, and random
exponents r, s,

(ρg, ρh, g, h, gr, hr) ∼= (ρg, ρh, g, h, gr, gs)

This assumption arises in settings where we have a CRS with two group
elements g, h, and we want the CRS to be public-coin. Having a public-coin
CRS implies a trustless setup, since in practice the parties can derive randomness
using e.g. a random oracle, and use this to sample the group elements. Note that
in a standard cyclic DDH group (such as with elliptic curves), DXDH and DDH
are equivalent because g, h always generate the same group, and furthermore,
given a group element g it is easy to find some random coins that ‘explain’ it.
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With class groups, however, this is not the case, since we are not aware of any
invertible sampling algorithm, nor any method for sampling g and h such that
they lie in the same subgroup.

Thus, when aiming for a trustless setup, we need DXDH. An additional
complication of this setting is that the assumption makes it harder to use a CRS
in security proofs: there is no way to introduce a trapdoor in the CRS by picking
h = gt in the simulation, as we do not know how to explain the random coins
used to sample h (without leaking t).

We note that recently, [CKLR21] presented zero-knowledge proofs built using
integer commitments from class groups, which require a CRS (g, h) and the
assumption that (g, h) is indistinguishable from (g, gs). Note that this assump-
tion is incompatible with a trustless setup: if the CRS contains the random
coins used to sample g and h, then the assumption doesn’t hold as it is hard
for the simulator to come up with the random coins needed to explain sampling
h = gs.1 However, in Sect. 7 we show that the same commitment scheme does
permit a trustless setup under the DXDH assumption, and we use this in our
zero-knowledge proofs to obtain active security.

Recap of the Framework. We now summarise the description of our frame-
work. Our setting is an finite, Abelian group

G ∼= F × H where F = 〈f〉.

The group G needs to satisfy these properties:

1. The discrete log function over F is efficiently computable.
2. There exists an efficiently computable coset labelling function π.
3. There exists an efficiently computable function δ (the lifting function) such

that π
(
δ(x)

)
= x for every input x.

In order to build HSS for branching programs and public-key PCFs for OT and
VOLE, the group needs to satisfy additional computational assumption which
are summarised in Table 1.

Table 1. Computational assumptions needed by our constructions. Elements written
in between brackets are needed only for active security.

Construction Assumptions and Model

HSS for branching programs DDH, small exponent (DXDH, weak hidden order + RO)

Public-Key PCF for VOLE DCR, DXDH, DDH (weak hidden order, QR) + RO

Public-Key PCF for OT QR, DXDH, DDH (weak hidden order) + RO

1 The authors of [CKLR21] have acknowledged. They claim to have found a solution
and are going to update their work.
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2 Notation and Preliminaries

Let λ denote the security parameter. Our constructions are restricted to the
two-party setting and we denote them P0 and P1. For any a, b ∈ Z with a < b,
we represent the set of integers {a, a + 1, . . . , b} by [a, b]. We use [b] to represent
[0, b − 1]. We assume that by reducing an element modulo t ∈ N, we obtain a
value in [t].

Given a deterministic algorithm Alg, we denote its evaluation on an input x
and the assignment of the result to a variable y by y ← Alg(x). If Alg is instead
probabilistic, we write y

R← Alg(x). The operation assumes that the random bits
used by the algorithm are sampled uniformly. When we want to use a specific
random string r, we write instead y ← Alg(x; r). Finally, if the element y is
uniformly sampled from a set X , we write y

R← X .
We denote vectorial elements using the bold font, the i-th entry of a vector

v is denoted by vi or by v[i]. The cyclic subgroup generated by a group element
g is represented by 〈g〉. Finally, we denote secret-shared elements y using the
y-in-a-box notation, i.e. [y]. It will be clear from the context if that denotes a
secret-sharing or the set {0, 1, . . . , y − 1}.

In the full version of the paper [ADOS22, Section 2], we provide an overview
on homomorphic secret-sharing (HSS) and pseudorandom correlation functions
(PCFs).

3 A Group-Theoretic Framework

We will assume we have a probabilistic polynomial time algorithm Gen that takes
1lλ as input where λ is a security parameter. When running Gen, we get output

par
R← Gen(1lλ), where par = (G,F,H, f, t, �, aux).

Here, G is a finite Abelian group with subgroups F,H such that G = F × H,
f is a generator of F and t is the order of F . We assume we can compute the
group operation and inverses in time polynomial in λ. The natural number � will
be used in the following: when we select a random exponent r and compute gr

where g ∈ G, r will usually be chosen uniformly between 0 and �2. Finally, we
say that Gen is public-coin if the random coins used by Gen appear in the string
aux.

We also assume a probabilistic polynomial time algorithm D for sampling
random elements in G. We will use the notation (g, ρ) R← D(1lλ, par), where
g ∈ G is the sampled element and ρ contains the random coins used in the
sampling (i.e., the sampling of g is always public-coin). We do not require that
g is uniform in G, but we do require f is in the subgroup generated by g, except
perhaps with negligible probability.
2 We will always choose � large enough so that gr is statistically indistinguishable from

uniform in 〈g〉. This is possible, even if |H| is sometimes not known by anyone, since
an upper bound is always known.
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We assume that discrete log base f is easy, that is, given fa for any a ∈ Zt,
a can be computed in polynomial time in λ.

In the following sections, we will specify a number of computational problems
that we need to assume are hard to solve, given par and various elements sampled
by D. Loosely speaking, the most basic one is that the order of the subgroup
H is hard to compute, and that the DDH assumption holds in the subgroup
generated by g where g is sampled by D. More details will be given in Sect. 3.1.

The main problem we want to solve in the context of the framework is the
following, which we call Non-Interactive Discrete Log Sharing (NIDLS). This is
defined as follows:

Definition 1. The NIDLS problem involves two parties, A and B. A gets as
input α ∈ G, while B gets β ∈ G. It is promised that αβ−1 ∈ F , so that
αβ−1 = fm for some m ∈ Zt. A and B now do only local computation and A
outputs a number a, while B outputs b. The goal is that a + b ≡ m mod t.

It will be convenient to introduce the following notation: for g ∈ G, we denote
by Cg be the coset of F in G that contains g. As we explain in a moment, the
NIDLS problem can be solved using the following tool:

Definition 2. A coset labelling function for F in G is an efficiently computable
function φ : G �→ G with the following property: for any g ∈ G we have φ(g) ∈ Cg

and furthermore, for any h ∈ Cg we have φ(h) = φ(g).

In other words, for every coset Cg, φ defines a fixed element c ∈ Cg and c
can be efficiently computed given any element in Cg.

Given a coset labelling function the NIDLS problem can be solved using the
following protocol:

1. A computes φ(α)−1 · α which is in F since α and φ(α) are in the same coset.
Using that discrete log in F is easy, A computes a such that φ(α)−1 ·α = fa,
and outputs a.

2. B computes φ(β) · β−1 which is in F since β and φ(β) are in the same coset.
Using that discrete log in F is easy, B computes b such that φ(β) · β−1 = f b,
and outputs b.

This works because the property of φ guarantees that φ(α) = φ(β). Therefore

fa · f b = φ(α)−1 · α · φ(β) · β−1 = α · β−1 = fm,

from which it follows immediately that a + b ≡ m mod t.

It turns out that if F is small, then a coset labelling function always exists:

Lemma 1. Let G = F × H be groups as described above, where the order t of
F is polynomial. Then a coset labelling function for F in G always exists.
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Proof. We define the desired function φ as follows: on input g, compute a list
of all elements in Cg by multiplying g by all powers of f . This is feasible since
t is polynomial. Sort the elements in lexicographical order and output the first
element. As the content of the list is the same no matter which element in the
coset we start from, this function has the desired property. 
�

There is also a different approach to constructing a coset labelling function
which, as we shall see, sometimes works for superpolynomial size F .

Namely, assume that for every G that Gen can produce, there exists an effi-
ciently computable and surjective homomorphism π : G �→ G′ (for some group
G′), where ker(π) = F . This implies that for each coset of F in G, π maps
all elements of the coset to a single element in G′, and that distinct cosets are
mapped to distinct elements.

Note that π(g) is actually a unique “label” for the coset Cg, the only problem
is that it is in G′ and not in G.

To get around this, we assume that outputs from π can be “lifted” determin-
istically to G such that we land in the coset we came from. That is, we assume
there exists an efficiently computable function δ : G′ �→ G such that for any
x ∈ G′ we have that δ(x) is in the coset of F in G that is mapped to x by π.
Put slightly differently, what we want is that π(δ(x)) = x for all x ∈ G′.

Now, observe that δ(π(g)) only depends on which coset g belongs to, since
π(g) already has this property. Therefore, the following lemma is immediate:

Lemma 2. Let G = F ×H, G′ be groups as described above and π, δ be functions
as described above, with π(δ(x)) = x for all x ∈ G′. Then φ defined by φ(g) =
δ(π(g)) is a coset labelling function for F in G.

3.1 Assumptions

In this section we list the computational assumptions we need in order to prove
our constructions secure.

Definition 3 (Weak Hidden Order Assumption). We say that the weak
hidden order assumption holds in the NIDLS framework if for any PPT adver-
sary A:

Pr[A(par, g, ρ) = x and gx = 1] = negl(λ)

when par := (G,F,H, f, t, �, aux) R← Gen(1lλ) and (g, ρ) R← D(1lλ, par).

Notice that in the standard hidden order assumption [Tuc20], the adversary
is let free to choose any g �= 1. We rely instead on a weaker assumption in which
g is sampled according to D.

Definition 4 (DDH Assumption). We say that the DDH assumption holds
in the NIDLS framework if for any PPT adversary A the following quantity is
negligible:

|Pr[A(par, ρ, g, gx, gy, gxy) = 1] − Pr[A(par, ρ, g, gx, gy, gz) = 1]| = negl(λ)
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when par := (G,F,H, f, t, �, aux) R← Gen(1lλ), (g, ρ) R← D(1lλ, par), (x, y, z) R← [�]3.

We introduce a new variant of the DDH assumption that allows us to infer
the security of our protocols that use two generators g, C which are generated
with a trustless setup i.e., the adversary is allowed to see the random coins used
for their generation. In some settings, this assumption is equivalent to DDH but
this does not cover all our instantiations of the framework3.

Definition 5 (Decisional Cross-Group DH Assumption (DXDH)). We
say that the DXDH assumption holds in the NIDLS framework if for any PPT
adversary A:

|Pr[A(par, g, ρ0, C, ρ1, g
r, Cr) = 1] − Pr[A(par, g, ρ0, C, ρ1, C

s, Cr) = 1]| = negl(λ)

when par := (G,F,H, f, t, �, aux) R← Gen(1lλ), (g, ρ0)
R← D(1lλ, par), (C, ρ1)

R←
D(1lλ, par), C �= g and (r, s) R← [�]2.

Finally, in our HSS constructions, we would like to have ElGamal-style secret
keys bounded by �sk < t, which may be significantly smaller than �. This allows
to encrypt the private key under its public counterpart without worrying about
wrap-arounds. In order for security to hold in these conditions, we rely on the
small exponent assumption defined below.

Definition 6 (Small Exponent Assumption). We say that the small-
exponent assumption with length �sk(λ) holds in the NIDLS framework if for
any PPT adversary A:

|Pr[A(par, �sk, g, ρ, gx) = 1] − Pr[A(par, �sk, g, ρ, gy) = 1]| = negl(λ)

when par := (G,F,H, f, t, �, aux) R← Gen(1lλ), (g, ρ) R← D(1lλ, par), x
R← [�] and

y
R← [�sk].

4 Instantiations of the Framework

In this section, we give a number of concrete instantiations of the framework we
just discussed. Some were already known, and some are new.

4.1 Paillier and Damg̊ard-Jurik

This example was already known from [OSY21] who presented a NIDLS protocol
based on Paillier encryption and independent work from [RS21] who did it from
Damg̊ard-Jurik encryption.
3 For equivalence, it is needed that g and C are random generators of the same sub-

group and that D is invertible, i.e., that given any group element h in the output
domain, one can efficiently compute random coins that would cause D to output h.
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These instantiations are closely related and we cover them in one go as fol-
lows: we let Gen(1lλ) output an RSA modulus n = pq of bit length λ, where
p′ = (p − 1)/2 and q′ = (q − 1)/2 are also prime and where gcd(n, φ(n)) = 1.
We set G = Z

∗
ns , for some constant natural number s ≥ 2 and it now holds that

G = F × H where F is the subgroup of order ns−1, and H is the subgroup of
order (p−1)(q −1). Discrete log in F is easy in this case (see [DJ01] for details).
This generator is not public-coin, as the prime factors of n must remain secret.

To get a coset labelling function for this example, we use Lemma 2: we set
G′ = Z

∗
n and π(g) = g mod n. Since n divides ns, it is clear that π is a surjective

homomorphism from G to G′. Therefore its kernel has order |G|/|G′| = ns−1.
Note that all non-trivial elements in F must have orders relatively prime to
φ(n) = |G′| and hence the homomorphism into G′ must send all these elements
to 1. It follows that F is contained in the kernel and so is in fact equal to the
kernel because |F | = ns−1. We define the function δ : G′ �→ G by δ(x) = x, that
is, δ just returns its input, but now understood as a number modulo ns (instead
of n).

With these definitions, it is clear that π(δ(x)) = x, so by Lemma 2, φ(g) =
δ(π(g)) is a coset labelling function.

The sampling algorithm D will output a random g ∈ Z
∗
ns , such that the

Jacobi symbol of g modulo n is 1. Note that because |F | = ns−1 contains only
large prime factors, a random g will contain F in the subgroup it generates
except with negligible probability. Similarly, reducing modulo n, we see that
g mod n has order divisible by p′q′ except with negligible probability since p′, q′

are prime.
As for the assumptions, computing the order is trivially equivalent to fac-

toring n. The DDH assumption was introduced in [DJ03] and used there for
an “El-Gamal style” variant of Paillier encryption. In this setting, we can claim
that if you can break the DXDH assumption, you can also break DDH. This
is because g (or C) sampled as above have order ns−1p′q′ or 2ns−1p′q′ except
with negligible probability. Whether 2 divides the order cannot be efficiently
determined (by the standard quadratic residuosity assumption). Further, the
sampling algorithm is clearly invertible. All this means that, given an element
gx from a DDH challenge, we can claim it was instead sampled by D and let it
play the role of C in the DXDH setting.

Finally, the small exponent assumption is reasonable in a setting where dis-
crete log and DDH are hard, as we do assume here, as long as the domain from
which the exponent is chosen is exponentially large. Also, this type of assump-
tion has been used several times before, for instance in [BCG+17] to optimize
an HSS construction.

4.2 Joye-Libert Variants

Small Order F . In this example, the generator outputs an RSA modulus n = pq
where 2� is the maximal 2-power that divides p − 1, and q − 1. It also outputs
an element f ∈ Z

∗
n of order 2� modulo both p and q (and so it also has order

2� modulo n). Let p′ = (p − 1)/2�, q′ = (q − 1)/2�, where we assume that p′, q′
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are prime. Then we let F = 〈f〉, we let H ≤ Z
∗
n be the subgroup of order p′q′,

and we set G = F × H. The group G is actually not all of Z
∗
n, but this is of no

consequence in the following. Discrete log in F is easy by the Pohlig-Hellman
algorithm.

For this variant, as long as 2� is polynomial, we can use Lemma 1 to get
a coset labelling function. Doing it for larger values of 2� is an open problem.
When � = 1, we can set f = −1 and we get a setting closely related to the
Goldwasser-Micali cryptosystem, as observed in [OSY21].

Large Order F . We now construct a different variant of the Joye-Libert case
where we are able to accommodate an exponentially large order subgroup F .
Once again, the generator outputs an RSA modulus n = pq. This time, both
p − 1 and q − 1 are divisible by the product of the first � primes q�, that is
q� =

∏�
i=1 pi where pi is the i’th prime.

We let f ∈ Z
∗
n be an element of order q� modulo both p and q. Let p′ =

(p − 1)/q�, q
′ = (q − 1)/q�. As before, we let F = 〈f〉, we let H ≤ Z

∗
n be the

subgroup of order p′q′, and we set G = F × H.
It is not hard to see that since the i’th prime is approximately i ln i, we can

arrange for q� to be exponentially large, while each prime in the product is only
polynomial.

We now show that if all primes in the product q� are polynomial size, we can
solve the NIDLS problem in this setting, basically by using Lemma 1 for each pi

and then assembling a complete solution using the Chinese remainder theorem
(CRT).

Some notation: we have F = F1 × ... × F�, where Fi is of order pi. So it
follows from Lemma 1 that we have a coset labelling function φi for the group
Gi = Fi × H. Also, if we let ui = q�/pi, then fi = fui is a generator of Fi. Now
observe that if α, β is an instance of the NIDLS problem in G = F × H, then
αui , βui is an instance of the NIDLS problem in Gi = Fi × H. This is simply
because α · β−1 = fm implies αui · (βui)−1 = (fui)m = fm mod pi

i . Using this
notation, the protocol works as follows:

1. For each i = 1...�, A uses φi to compute a solution ai to the NIDLS problem in
Gi. Finally, using CRT, A computes and outputs a ∈ Zt such that a mod pi =
ai for all i.

2. For each i = 1...�, B uses φi to compute a solution bi to the NIDLS problem in
Gi. Finally, using CRT, B computes and outputs b ∈ Zt such that b mod pi =
bi for all i.

This works because (a + b) mod pi = (ai + bi) mod pi by definition of a, b, and
since ai, bi solves the NIDLS problem in Gi we further have

(a + b) mod pi = (ai + bi) mod pi = m mod pi.

Since this holds for all i, CRT implies that a + b mod q� = m.
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For this instantiation, the sampling algorithm D will choose a random r ∈ Z
∗
n

and output g = f · rq� mod n. Note that rq� mod n has order p′q′ except with
negligible probability, in particular, the order is prime to q� so g has order q�p

′q′,
and hence f is in the group generated by g.

The assumptions for this instantiation can be motivated similarly to what was
done for Paillier above, as also here we rely on factoring to hide the order of the
group. For this to be reasonable, we need, of course, that q� is much smaller than
n so that enough uncertainty remains about p, q even given q�. The exception
is that in this case, D is not invertible, so we cannot claim that DDH implies
DXDH. The assumptions are also closely related to what Joye and Libert [JL13]
assumed for their cryptosystem, but one should note that our assumptions are
stronger because we need to make an element of order exactly 2� (or q�) public,
while they just needed an element of order divisible by 2�. When 2� is small,
such an element can be guessed with good probability while it is not clear how
to efficiently compute an element of order exactly 2� given only n.

4.3 Class Groups

We explain here how to instantiate our framework on top of the CL frame-
work [CL15] (see also [Tuc20] for an excellent introduction to class groups).
Basically, we take the CL framework, and combine this with the observation
that a coset-labelling function can be obtained from a surjective homomorphism
used previously in the NICE cryptosystem [PT00,CJLN09].

Let Gen(1lλ) output two primes p and q such that pq ≡ 3 (mod 4) and (p/q) =
−1. This generator is public-coin, p and q will be public. We set ΔK = −pq and
Δq = −pq3. We set G = Cl(Δq), the class group of the quadratic order OΔq

of
discriminant Δq and G′ = Cl(ΔK) the class group of the maximal order OΔK

.
The size of pq is chosen such that computing the class number |G′| is intractable.

Let f ∈ G be the class of the ideal q2Z + (−q +
√

Δq)/2Z then f has order
q and the discrete logarithm problem in F , generated by f , is easy.

If q has λ bits then q is prime to |G′| except with negligible probability by
the Cohen-Lenstra heuristics. Then G � F × H where H is a subgroup of order
|G′|.

We denote by I(OΔq
, q) (resp. I(OΔK

, q)) the subgroup of fractional ideals
generated by OΔq

-ideals prime to q (resp. of OΔK
-ideals prime to q). Then, the

map ϕq : I(OΔq
, q) → I(OΔK

, q), a �→ aOΔK
is an isomorphism. The reverse

map is ϕ−1
q : I(OΔK

, q) → I(OΔq
, q), a �→ a ∩ OΔq

. Both maps are efficiently
computable knowing q. The map ϕq induces a surjective homomorphism from
G to G′. This will be the surjection π of the framework. The kernel of π is F .

We then define the function δ : G′ �→ G by δ(x) = [ϕ−1
q (a)] where a is an

ideal in the class of x prime to q (it can also be found efficiently).
We then have π(δ(x)) = x by construction, so by Lemma 2, φ(g) = δ(π(g))

is a coset labelling function.
As sampling algorithm D we use the one introduced in [CL15], and also

described in [Tuc20], Sect. 3.1.2. It outputs g of large order such that f is
guaranteed to be in the subgroup generated by g. Very briefly, it works by



434 D. Abram et al.

selecting a small prime r such that ΔK is a square modulo r. From this r, we
can construct an element in G′ by considering the ideal that lies “above r” and
the class of this ideal squared. We then lift this element to G as explained above,
to get a group element h. Finally, we output g = f · ht.

With this sampling algorithm, the DDH assumption is the same that has been
used before in the CL framework, sometimes known as the DDH-CL assumption.
The DXDH assumption in this setting is not implied by DDH, since elements
sampled from different randomness do not necessarily generate the same group.
Nevertheless, we can argue that the assumption is reasonable: to break it, one
needs to decide, for given g, C if a pair of group elements is of form gr, Cr.
The natural approach to this is to use index calculus type methods to find a
relation of form ga = Cb which, for a pair of the form mentioned would imply
(gr)a = (Cr)b. However, once such an attack succeeds one would also be in a
position to find orders of elements and hence break the (much more standard)
hidden order assumption.

5 HSS Constructions

In this section, we explain how any instantiation of the framework can be used
to build a cryptosystem and a homomorphic secret-sharing scheme (HSS) for
restricted multiplication straight-line programs (RMS). Note that given the
NIDLS-ElGamal encryption and a distributed DDLOG procedure, construct-
ing an HSS follows in a more or less direct way by following the blueprint of the
HSS in [OSY21]. However, since upcoming sections build on top of the HSS we
provide the full description of the HSS anyway to make the paper self-contained.

5.1 NIDLS ElGamal

Our HSS construction is based on an ElGamal-style encryption scheme instanti-
ated over our group-theoretic framework. We refer to the construction by NIDLS
ElGamal, the cryptosystem is formally described in Fig. 1. Correctness of the
construction follows immediately as for standard ElGamal.

CPA Security. Similarly to [CL15], the security of NIDLS ElGamal is implied
by the DDH assumption, which states that random tuples (g, gx, gy, gxy) are
indistinguishable from (g, gx, gy, gz). Since D outputs elements g for which f ∈
〈g〉, we can use gz to hide fx.

Generating Encryptions of the Secret Key. Note that in addition to the stan-
dard algorithms (Gen,Enc,Dec), we have included an additional algorithm SkEnc
which encrypts the message “in the wrong place”. It turns out that this results
in a valid encryption of the value s · x mod t i.e., an encryption of the secret key
s times the input value x. In particular

c1 · c−s
0 = hr · (gr · f−x)−s = (grs · g−rs) · fsx

This will be useful in our HSS construction. Formal proofs of the security of
the scheme are in the full version of the paper [ADOS22, Section 5.1].
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ElGamal Cryptosystem

EG.Gen(1λ):

1. Sample par := (G, F, H, f, t, �, aux) R← Gen(1lλ)
2. Sample a random (g, ρ) R← D(1lλ, par)
3. Sample a random s

R← [�], and let h = gs

4. Output pk = (par, g, ρ, h) and sk = s.

EG.Enc(pk, x):

1. Sample a random r
R← [�]

2. Output ct = (gr, hr · fx)

EG.Dec(sk, ct = (c0, c1)):

1. Output x = DLogf (c1 · c−s
0 )

EG.SkEnc(pk, x):

1. Sample a random r
R← [�]

2. Output ct = (gr · f−x, hr)

Fig. 1. A description of the ElGamal cryptosystem in the NIDLS framework.

5.2 Public-Key HSS

We now present a homomorphic secret-sharing scheme (HSS) for RMS programs
based on the NIDLS framework. The main advantage of our NIDLS-based HSS
compared to the Paillier-based HSS of [OSY21] is that we remove any need for
trusted setups when instantiating the NIDLS over class groups, while previous
constructions had to rely on a trusted dealer for the generation of an RSA
modulus.

RMS Programs. Restricted multiplications straight-line (RMS) programs are
arithmetic circuits over Z that never compute multiplications between two inter-
mediate value of the computation: at least one of the two factors must be an
input. Intermediate values of the computation are often referred to as memory
values. This class includes also branching programs, which likewise contains NC1.

Definition 7 (RMS Programs). An RMS program consists of a bound B ∈ N,
a modulo nout ∈ N and a polynomial-sized circuit in which the only gate types
allowed are the following.

– ConvertInput(Ix) → Mx. Load the value of the input wire Ix to the memory
wire Mx.
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– Add(Mx,My) → Mz. Add the values of the memory wires Mx and My and
assign the result to the memory wire Mz.

– Mult(Ix,My) → Mz. Multiply the value of the input wire Ix by the value of the
memory wire My. Assign the result to the memory wire Mz.

– Output(Mz) → z. Output the value of the memory wire Mz reducing it modulo
nout.

The circuit accepts only integral inputs. Whenever the absolute value |x| of any
wire exceeds the bound B, the output of the execution is ⊥.

The Public-Key HSS Scheme. We are now ready to present our construction,
which is formally described in Fig. 2. We discuss the main ideas.

Our HSS scheme allows two parties to non-interactively apply an RMS pro-
gram C on secret-shared inputs, obtaining additively secret-shared outputs. The
scheme relies on a setup procedure4 that provides the parties with a PRF key
k, a NIDLS ElGamal public key pk, and a subtractive secret-sharing over the
integers of the private counterpart s = s1 − s0. We assume that the length lensk
of the private key is sufficiently small, so that s < t. If this condition is not
satisfied, we need to proceed as in [OSY21], splitting the private key into small
blocks and providing the parties with an encryption of each of them.

Input Wires and Memory Wires. During the evaluation of the circuit C, each
input wire Ix is associated with two NIDLS ElGamal ciphertexts: an encryption
of the value of the wire x and an encryption of the product between x and
the ElGamal secret key s. Such ciphertexts are produced and broadcast by the
party providing the input. Remember that one does not need to know s in
order to encrypt x · s. Indeed, the algorithm SkEnc described in Sect. 5.1 can be
used instead. Each memory wire Mx is instead associated with two subtractive
secret-sharings over the integers: a secret-sharing of the value of the wire x and
a secret-sharing of x′ := x · s.

Linear Operations. Performing additions between memory values is straightfor-
ward due to the linearity of subtractive secret-sharing, i.e. to add Mx and My, it
is sufficient to compute [z] ← [x]+[y] and [z′] ← [x′]+[y′] = [x·s]+[y ·s]. Observe
that additions allow us to model also multiplications by public constants in Z.

Multiplications Between Input Wires and Memory Wires. Multiplications
between input wires and memory wires require more interesting techniques based
on DDLOG. Let ctx = (c0, c1) be the ElGamal encryption of x, the value of the
input wire Ix. Moreover, let [y] and [y′ = y · s] be the subtractive secret-sharings
associated with the memory wire My. In particular, the parties P0 and P1 own
integers y0, y

′
0 and y1, y

′
1 such that y1 = y0 + y and y′

1 = y′
0 + y · s. Now, observe

that cy0
1 · c

−y′
0

0 and cy1
1 · c

−y′
1

0 are a divisive secret-sharing of fxy. Indeed,

cy1
1 · c

−y′
1

0 = cy0+y
1 · c

−(y′
0+y·s)

0 = (c1 · c−s
0 )y · cy0

1 · c
−y′

0
0 = fxy · cy0

1 · c
−y′

0
0 .

4 Following the blueprint of [OSY21], it is possible to substitute the setup with a
one-round protocol.



An Algebraic Framework for Silent Preprocessing 437

HSS Scheme

Setup(1lλ):
1. Let par := (G, F, H, f, t, �, aux) R← Gen(1lλ) and �sk be the parameter for

the small-exponent assumption.
2. (g, ρ) R← D(1lλ, par)
3. s0, s1

R← [�sk]
4. pk ← gs1 · g−s0

5. k
R← {0, 1}λ

6. Output par, g, ρ, �sk, pk, k, (s0, s1)
)
.

Input(pk, x):
1. ctx

R← EG.Enc(pk, x)
2. ctxs

R← EG.SkEnc(pk, x)
3. Output Ix ← (ctx, ctxs).

Eval i, si, (I1, I2, . . . , In), P
)
:

Party Pi evaluates the RMS program P gate by gate as follows.
– Mx ← ConvertInput(Ix):

Compute Mx ← Mult Ix,M1 := (i, si)
)
.

– Mz ← Add(Mx,My):
Compute zi ← xi + yi and z′

i ← x′
i + y′

i and set Mz ← (zi, z
′
i).

– Mz ← Mult(Ix,My):
Let ctx = (c0, c1) and ctxs = (d0, d1). Let id be the label of the gate.
1. zi ← (−1)1−i · DDLog cyi

1 · c
−y′

i
0

)
+ Fk(id, 0) mod t

2. z′
i ← (−1)1−i · DDLog dyi

1 · d
−y′

i
0

)
+ Fk(id, 1) mod t

3. Mz ← (zi, z
′
i)

– Output(Mz):
1. Output (−1)1−i · zi mod nout

Fig. 2. The HSS scheme for RMS programs based on the NIDLS framework.

By applying DDLOG on the respective divisive shares, the parties are therefore
able to obtain a secret-sharing of the product x · y over Zt (we recall that t :=
ord(f)). By repeating the procedure for the other ciphertext associated with the
input wire Ix, namely the encryption of x · s, the parties can non-interactively
obtain also a secret-sharing of x · y · s. Observe that the additive secret-sharings
over Zt can be easily converted into subtractive ones by simply changing the
signs of the shares of P0. In order to be sure that the shares are random over
Zt, we rerandomise them using the PRF key k. As a consequence, as long as
|x · y · s| � t, with overwhelming probability, the difference of the shares does
not wrap around t, so the parties actually obtain a subtractive secret-sharing
over Z.
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Input Conversions and Outputs. It remains to explain how to perform the input
conversions and how to retrieve the outputs. Both operations are now rather
straightforward. In order to convert an input to a memory element, it is indeed
sufficient to multiply it by a memory value containing 1. The latter corresponds
to a subtractive secret-sharing of 1, e.g. y1 = 1 and y0 = 0 and a subtractive
secret-sharing of s, which was provided to the parties by the initial setup. Out-
putting the value of a memory wire Mz is even simpler, the parties just broadcast
their share of z reducing it modulo nout. By subtracting the two messages modulo
nout, the players can obtain the final result of the computation.

On the Bound on the Values of the Wires. The correctness of the HSS scheme
described above relies on the assumption that |x · y · s| � t for every multi-
plication. If this condition is not satisfied, there is a non-negligible probability
that the secret-sharing over Zt obtained as result cannot be converted into an
integer secret-sharing of the same value. Observe, anyway, that denoting by B
the bound of the RMS circuit, |x · y · s| ≤ B · 2lensk , so, in order to circumvent
the problem, we can choose the parameters of the NIDLS framework so that
B · 2lensk · 2λ < t.

Theorem 1. If the DDH assumption and the small exponent assumption hold
in the NIDLS framework and F is a secure PRF outputting values in Zt, the
construction in Fig. 2 is a correct and secure HSS scheme for RMS circuits with
bound B < t/2lensk+λ. The ring where the computation takes place is R = Znout .
Assuming nout < B, the input space is I = R.

We prove Theorem 1 in the full version of the paper [ADOS22, Section 5.2].

5.3 Implementing the Setup Using One Round

The HSS scheme described in Fig. 2 relies on a setup producing a NIDLS ElGa-
mal public key and a subtractive secret-sharing over the integers of the private
counterpart. One of the main goals of this work is to improve upon the results of
[OSY21] by removing the need for trusted dealers. In this section, we therefore
explain how the parties can setup the HSS material in one round. The protocol,
which is formally described in Fig. 3, relies on a CRS providing the parties with
the parameters of the NIDLS framework and a PRF key k. When the framework
is instantiated over class groups, the generation of the CRS does not need any
trusted dealer. Indeed, the parties just need to produce public, random coins
and input them into the algorithm producing the CRS. In the random oracle
model, this procedure can be performed non-interactively. In [OSY21], the HSS
scheme was based on Paillier. Since the associated group is described by an RSA
modulo N where ϕ(N) needs to remain secret, designing an efficient setup for
the HSS scheme without relying on trusted dealers is a challenging task in that
case.

Our setup protocol is very simple. Each party just generates a NIDLS ElGa-
mal key pair, publishing the public counterpart. The parties then output the
quotient between the two public keys and their respective secret key.
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Function FHSS-Setup

1. Compute par, g, ρ, �sk, pk, k, (s0, s1)
) R← Setup(1lλ)

2. Output (par, g, ρ, �sk, pk, si, k) to every party Pi.

Protocol ΠHSS-Setup

CRS:

1. Let par := (G, F, H, f, t, �, aux) R← Gen(1lλ) and �sk be the parameter for the
small-exponent assumption.

2. (g, ρ) R← D(1lλ, par)
3. k

R← {0, 1}λ

4. Output (par, �sk, g, ρ, k)

Procedure:

1. Every party Pi samples si
R← [�sk]

2. Every party Pi sends pki ← gsi to P1−i

3. Every party Pi outputs pk ← pk1/pk0, si and k.

Fig. 3. The HSS setup functionality and a one-round protocol implementing it.

Theorem 2. The protocol ΠHSS-Setup implements the functionality FHSS-Setup

against a semi-honest adversary with perfect security.

Proof. Suppose that Pi is corrupted. The simulator receives (par, g, ρ, �sk, pk, si, k)
from the functionality. It can then simulate the CRS by providing the adversary
with (par, �sk, g, ρ, k). The view of Pi is perfectly simulated by sending si and pk·gsi

if i = 0 or gsi/pk if i = 1. Observe that the output of P1−i is consistent with the
elements sent to the adversary. 
�

6 Public-Key PCFs and One-Round VOLE Protocol
Without Trusted Setup

In [OSY21], the authors designed a one-round VOLE protocol based on the
Paillier cryptosystem and the NIDLS problem on the underlying group. A VOLE
protocol involves two parties, the input of the first one is a element in a ring
R, the input of the second party is a R-vector a. The output of the protocol
consists of an additive secret-sharing of the product x · a.

We now present a version of such protocol in the NIDLS framework (see
Fig. 5). By generalising the techniques to a more abstract setting, we are able to
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Function FVOLE

Initialisation: The functionality waits for a value t ∈ N from the adversary.
Evaluation: On input x ∈ Zt from P0 and a ∈ Z

m
t from P1, the functionality

sends m to the adversary.

– If both parties are honest, FVOLE samples y0
R← Z

m
t and sets y1 ← a · x −y0.

Then, it outputs yi to Pi for every i ∈ {0, 1}.
– If Pi is corrupt, FVOLE waits for yi ∈ Z

m
t from the adversary and sets y1−i ←

a · x − yi. Then, it outputs y1−i to P1−i.

Function FNIKE

If both parties are honest, sample k
R← {0, 1}λ and output it to all the parties.

If one party is corrupted, wait for k ∈ {0, 1}λ from the adversary and output it
to the other party.

Fig. 4. The NIKE and vector-OLE functionalities

leverage the properties of the various instantiations. In the case of class groups,
that allows us to not rely on any trusted setup. In order to achieve this goal,
we had to slightly modify the CRS used by the protocol. In [OSY21], the latter
consisted of a pair of group elements (g, C) where C = gr for some unknown r.
In order to avoid trusted setups, we now need to provide the parties with the
randomness used for the generation of the CRS. Unfortunately, in class groups,
such randomness would leak the value of r to the adversary, compromising secu-
rity. In order to circumvent the problem, in this work, g and C are sampled
independently using D(1lλ), so with high probability C �∈ 〈g〉. We prove security
by relying on the DXDH assumption.

The construction makes use of a non-interactive key exchange functionality
FNIKE (see Fig. 4). The latter provides the parties with a random PRF key k ∈
{0, 1}λ. When one of the parties is corrupt, the functionality lets the adversary
choose k, forwarding it to the honest party. It is possible to implement FNIKE in
one round using NIKE constructions such as Diffie-Hellman.

Correctness. To understand why the protocol works, observe that

Dri
1 · Eai = gr0·ri

1 · fx·ai · Cr0·ai = fx·ai · Ar0
i .

In other words, for every index i, the elements Dri
1 · Eai and A−r0

i are a multi-
plicative secret-sharing of fx·ai . Using DDLog for every i ∈ [m], the parties are
therefore able to obtain an additive secret-sharing of x ·a without any additional
interaction.
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Protocol ΠVOLE

Inputs: The first party P0 has input x ∈ Zt. The other party P1 has input a ∈ Z
m
t

for some m ∈ N.
Setup Setup(1lλ):

1. par := (G, F, H, f, t, �, aux) R← Gen(1lλ)
2. (g, ρ0)

R← D(1lλ, par)
3. (C, ρ1)

R← D(1lλ, par)
4. If g = C, go to step 3.
5. Output (par, g, ρ0, C, ρ1)

Procedure:

1. The parties call FNIKE to obtain a key k ∈ {0, 1}λ.
2. ∀i ∈ [m] : P1 sends Ai ← gri

1 · Cai where ri
1

R← [�].
3. P0 sends (D, E) ← (gr0 , fx · Cr0) where r0

R← [�].
4. P1 outputs y1 where y1[i] ← DDLogpar(D

ri
1 · Eai) + Fk(i) for every i ∈ [m].

5. P0 outputs y0 where y0[i] ← DDLogpar(A
r0
i ) − Fk(i)

Fig. 5. A one-round VOLE protocol based on the NIDLS framework.

Security. At first glance, it might seem that the security of the protocol follows
from the fact that the Ai’s are Pedersen commitments with respect to (g, C).
However, note that the element C is not guaranteed to be in the cyclic group
generated by g. As a consequence, Ai does not hide the input ai with information-
theoretic security and we need instead to rely on a computational assumption.
The same happens also in step 3, where C plays the role of the public key in an
NIDLS ElGamal encryption. However, again, C is not guaranteed to belong to
〈g〉. Therefore, we need to argue for security in a different way. To solve both
issues, we use the DXDH assumption (see Definition 5).

Observe that under the DXDH assumption, gr looks like Cs even when the
randomness used for the generation of the CRS is known. As a consequence,
no adversary can distinguish Ai = gri

1 · Cai from Cs · Cai . The latter contains
no information about ai. The privacy of x is instead preserved as (D,E) =
(gr0 , fx · Cr0) is indistinguishable, under our assumption, from (Cs, fx · Cr).
Since the distribution D outputs an element C such that f ∈ 〈C〉, the pair
(Cs, fx · Cr) hides all the information about x. The proof of the next theorem
is omitted, as it easily follows from the arguments sketched above.

Theorem 3. If the DXDH assumption holds and F is a secure PRF outputting
pseudorandom elements in Zt, the protocol ΠVOLE UC implements the function-
ality FVOLE against a semi-honest adversary in the FNIKE-hybrid model.
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6.1 Public-Key PCFs Without Trusted Setup

In [OSY21], Orlandi et al. present PCFs for vector-OLE and OT based on Paillier
and the Goldwasser-Micali cryptosystem respectively (see the full version of the
paper [ADOS22, Fig. 8–9]). The interesting property of both constructions is
that, thanks to the one-round VOLE protocol of [OSY21], the PCF keys can be
set up using only one round of interaction and low-communication in the output
size. For this reason, the authors introduced the notion of public-key PCF to
refer to them.

On the downside, as we mentioned in the previous subsection, the one-round
VOLE protocol of [OSY21] needs a trusted setup. The issue is immediately
inherited by the public-key PCFs. Now, by plugging our new VOLE protocol,
we obtain public-key PCFs with no need for trusted setups. We describe the
resulting protocols in the full version of the paper [ADOS22, Section 6.1].

On the Need for the Hardness of Factoring. The security of both our public-key
PCFs still relies on the hardness of factoring. This requirement is inherited from
the original PCFs of [OSY21]. At first, it may seem possible to generalise the two
constructions to the NIDLS framework, potentially obtaining public-key PCFs
based on class groups only. Unfortunately, this turns out to be false.

Indeed, in the public-key PCFs for VOLE and OT, we need to non-
interactively sample random ciphertexts without leaking any information about
the plaintext to P1. For Paillier, this is not a problem as any element in Z

×
N2

is a valid encryption. For Goldwasser-Micali instead, it is sufficient to sample a
random element in ZN with Jacobi symbol 1. Now, if we try to move the construc-
tions to class groups, we need to use the ElGamal cryptosystem. By modifying
the PCF keys and using techniques as in the HSS scheme (see Sect. 5), it is still
possible for the parties to non-interactively obtain an additive secret-sharing of
a · x given the encryption of a random a. The issue is that the only known way
to sample such encryption is to directly encrypt a (not every pair of elements in
the class group is an ElGamal ciphertext). That would leak the value of a to P1.

7 Actively Secure Public-Key PCFs

In addition to requiring a trusted setup, the public key PCFs in [OSY21] achieve
security in the semi-honest setting only. In this section, we explain how to
upgrade the constructions described in Sect. 6 to active security, while preserv-
ing, at the same time, their round-complexity properties, namely that the parties
need to speak only once. When the NIDLS framework is instantiated over class
groups, the constructions do not need any trusted setup.

The particular interaction pattern limits the techniques we can rely on. For
instance, we cannot perform checks that verify the correctness of the outputs,
as that would require an additional round of interaction after the outputs are
derived. For this reason, we develop NIZKs for our framework which might be of
independent interest. We start presenting some building blocks (commitments
in Sect. 7.1 and ZK proofs in Sect. 7.2). Then, we describe an actively secure
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public-key PCF for vector-OLE (Sect. 7.3). In the full version of the paper
[ADOS22, Section 7.4], we also present an active public-key PCF for OT.

7.1 An Integer Commitment Scheme in the NIDLS Framework

Our NIZKs follow a commit-and-prove approach. Notice that in order to achieve
active security, party P0 has to prove that its input to the one-round vector-OLE
protocol is the private key associated with the RSA modulo N . For this reason,
we need to prove particular number-theoretic relations for which commitment
schemes based on modular rings such as Zt are not really suited.

Recall that, in the NIDLS framework, determining the order of the group
from its parameters is assumed to be hard. This property crucially allows us
to design integer commitment schemes. This fact was already noticed for class
groups by Couteau et al. [CKLR21]. In this work, we adopt a generalisation of
their construction to the NIDLS framework (see Fig. 6), basing however its secu-
rity on the DXDH assumption. As we discuss at the end of this section, despite
the claims in [CKLR21], their construction is not compatible with trustless setup.

Integer commitment scheme

Crs:

1. par′ := (G, F, H, f, t, �, aux) R← Gen(1lλ)
2. (g, ρ0)

R← D(1lλ, par)
3. (C, ρ1)

R← D(1lλ, par)
4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1)

Commitment: Commit(par, x)

1. r
R← [�]

2. Output the commitment X ← Cx · gr and the opening information r.

Verification: Verify(par, X, x, r)

1. If X = Cx · gr output 1 otherwise output 0.

Fig. 6. Integer commitment scheme in the NIDLS framework.

Theorem 4. If the DXDH assumption and the weak hidden order assumption
hold, the construction in Fig. 6 is a hiding and binding integer commitment
scheme. Moreover, the scheme is linearly homomorphic.
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Proof. It is straightforward to see that the construction is correct and linearly
homomorphic.

Binding. The proof for binding is made interesting by the fact that C is not
(necessarily) an element in the group generated by g. Suppose that we have an
adversary that breaks binding e.g., after being provided with the parameters,
the adversary returns (x, r) and (y, s) with x �= y such that Cxgr = Cygs, and
therefore Cx−y = gs−r. Let α := x − y �= 0 and β = s − r. Since the order of
the group is unknown we cannot invert these elements. Instead, we resort to the
DXDH assumption, which implies the following claim:

Claim. Assume there exists an adversary A that, on input (g, C), returns (α, β)
with Cα = gβ and α �= 0. Then, with overwhelming probability over u, v

R← [�],
it holds that:

(gu)α = (gv)β (1)

Proof (of claim). The reduction is given a DXDH tuple (g, C, gu, T ) where T is
either Cu or gv for random u, v

R← [�], and feeds (g, C) to A. Now the reduction
concludes that T = Cu when

(T )α = (gv)β (2)

or T = gv otherwise. Note that if T = Cu then Eq. 2 is trivially true. Thus if
(gu)α �= (gv)β the reduction correctly distinguished between DXDH tuple and
non-DXDH tuples. 
�

We now go back to the proof of the binding property and argue that under
the weak hidden order assumption, no adversary can output α, β such that Eq. 1
holds for random (u, v). We first rewrite (gu)α = (gv)β as u·α ≡ v ·β mod ord(g).
We argue the following:

Claim. Let α, β be such that

u · α ≡ v · β mod ord(g)

with overwhelming probability for uniform u, v
R← [�]. Then ord(g)|α.

Proof (of claim). For the sake of contradiction assume that this is not the case,
e.g., ord(g) � α. Then there is a non-negligible probability that u · α �≡ v ·
β mod ord(g). Indeed, let p be a prime that divides ord(g) but not α, it must
hold that u ≡ v · β · α−1 mod p. This happens with probability 1/p < 1/2, so it
must be that α is a multiple of ord(g). 
�

We have reached a contradiction. Indeed, under the weak hidden order
assumption, no adversary can output α such that gα = 1.
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Hiding. We show that no adversary can distinguish a commitment to x0 from
a commitment to x1. Indeed by the DXDH assumption, (g, C, gr, Cr) with r
uniform in [�], is indistinguishable from (g, C,Cs, Cr) with s again uniform in
[�]. Thus Cxb ·gr is indistinguishable from Cxb ·Cs. From the way � is chosen, Cs

is statistically close to the uniform distribution over 〈C〉. So, as commitments
to both x0, x1 are indistinguishable from random elements in 〈C〉, no adversary
can distinguish between a commitment to x0 and a commitment to x1. 
�

In [CKLR21], the authors proved the security of this commitment scheme in
the class group setting by relying on the subgroup indistinguishability assump-
tion. The latter states that no PPT adversary can distinguish between a pair of
random elements (g, C) both sampled according to D and a pair (g, gs) where s
is uniform over [�]. Despite what the authors claim, this assumption is not suffi-
cient to prove security when we do not rely on a trusted dealer for the generation
of the CRS. Indeed, in order to remove trusted setups, we need to provide the
parties with the random coins used for the generation of the CRS. That pre-
vents us from substituting C with gs in the security proofs. The reason is that
the distribution D is, surprisingly, not invertible over class groups. Specifically,
given C ∈ Supp(D), it is hard to find a bit string r such that D(1lλ; r) = C.

7.2 Zero-Knowledge Proofs in the NIDLS Framework

We describe how to build useful ZK-proofs in the NIDLS framework such as:
range proofs, multiplication proofs, proofs of knowledge of openings and proofs
of commitment to the plaintext. In particular, we build sigma protocols that use
the NIDLS framework in a black-box way, independently of its instantiation.
Thus, our proofs do not need to express operations in the NIDLS framework as
circuits. Since these tools are all based on fairly standard techniques, we will
only give a brief overview and direct the reader to the full version of the paper
[ADOS22, Appendix A] for more details.

Proof of Knowledge of Openings. Πcom allows to convince a verifier holding a
commitment X that the prover knows integers x and r such that X = Cx · gr.

Compared to standard Σ-protocols for proving knowledge of a (Pedersen)
commitment in a prime order group, we need two major changes: First, all the
computation between scalars is done over the integers (since the order of the
group is unknown) and therefore, the random strings chosen in the first round
must be larger than an upper bound on the witness (x, r). Second, we can only
use binary challenges: this is due to the fact that, again, the order of the group
is unknown and therefore, we cannot invert the challenge when extracting the
witness in the special soundness property. Thus, we need to repeat the proofs
λ times. Note that for most of our instantiations there usually are ways around
this issue, mostly relying on instantiation-dependent assumptions (such as the
strong root problem and the low order assumption for class groups). However,
those do not carry over to our general framework.
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Multiplication Proofs. Πmult allows to convince a verifier with commitments X,Y
and Z, that the prover knows x, y, z ∈ Z and r1, r2, r3 ∈ Z such that X = Cx ·gr1 ,
Y = Cy · gr2 , Z = Cz · gr3 and z = x · y. We construct Πmult by adapting the
protocol of [DF02] to our framework, similarly to what we did for Πcom.

Range Proofs. Πrange allows to convince a verifier holding a commitment X and a
bound B ∈ N that the prover knows x, r ∈ Z such that x ∈ [0, B] and X = Cx·gr.
Our protocol is based on a technique by Groth [Gro05], who observed that

x ∈ [0, B] ⇐⇒ ∃x1, x2, x3 ∈ Z s.t. 1 + 4x · (B − x) = x2
1 + x2

2 + x2
3.

The protocol can be therefore constructed exploiting multiplication proofs just
introduced and the linearity of the commitment.

We remark that in [CKLR21], the authors designed a range proof for our
commitment scheme in the class group setting. Their solution never relies on
binary challenges, so its efficiency is better by a factor of λ. However, their
construction is only proven secure when the CRS is generated by a trusted
dealer. This is due to the issue described at the end of Sect. 7.1.

Proof of Commitment to the Plaintext. Πplain can be used to convince a verifier
holding group elements D,E,X that the prover knows x, r, s ∈ Z such that
X = Cx · gs, D = gr and E = fx · Cr. The protocol uses standard techniques
adapted to our framework as sketched for Πcom.

7.3 Actively Secure Public-Key PCF for Vector-OLE

In the semi-honest public-key PCF for vector-OLE (Fig. 5 and [ADOS22, Fig. 8]),
the only message sent by party P0 consists of an RSA modulo N and a pair of
groups elements D,E where D = gr0 and E = fd · Cr0 . Here, the exponent d
represents the Paillier private key associated with the RSA modulo N , whereas
g and C are groups elements described in the CRS. We recall that d is the only
element in [0, N · ϕ(N) − 1] satisfying d ≡ 0 mod ϕ(N) and d ≡ 1 mod N .

The only message sent by party P1 is instead A := Cx · gr1 . In order for the
construction to be correct, the value of x needs to be smaller than 2λ · 2lenN .

An active adversary can always deviate from the protocol and send mal-
formed material. For this reason, it is fundamental that our NIZKs prove the
well-formedness of the messages of the parties. In the case of P1, the task is
rather simple. Using the Fiat-Shamir heuristic, we can indeed convert Πrange

into the NIZK we are looking for. Proving the well-formedness of P0’s message
is however more challenging.

Proving the Well-Formedness of P0’s Message. As usual we first design a
public coin honest-verifier zero-knowledge proof and then convert it into a NIZK
by applying the Fiat-Shamir heuristic. Our protocol makes use of a public-coin
HVZK Πsemiprime for proving that the RSA modulo N is the product of two
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distinct primes p and q. Moreover, Πsemiprime proves that gcd
(
N,ϕ(N)

)
= 1.

Such protocol can be found e.g., in [GRSB19].
The main idea of our protocol is as follows: the prover commits to d, the

primes p and q and integers k1 and k2 satisfying d = k1 · ϕ(N) and d = k2 ·
N + 1. We denote the five commitments by Z,X1,X2, Y1 and Y2 respectively.
The parties run Πsemiprime to verify that N is semiprime. By relying on Πmult,
the prover also shows that X1 and X2 are commitments to a factorisation of N .
Furthermore, using Πrange, the verifier checks that the value committed in X1

belongs to [2, N − 1] (this is done by showing that C−2 · X1 is a commitment
to a value in [0, N − 3]). In this way, it is sure that the prover committed to
a proper factorisation and not just N · 1. Now, the verifier is also certain that
W := CN ·X−1

1 ·X−1
2 ·C is a commitment to N − p− q +1 = ϕ(N). Next, using

Πrange, the prover shows that the value committed in Y1 belongs to [0, N − 1].
Using Πcom, it also proves the knowledge of opening for Y2. The verifier also
checks that Y1 is a commitment to d/ϕ(N). This is done by running Πmult

on Y1, W and Z. If the check passes, the verifier is also sure that the value
committed in Z belongs to [0, N · ϕ(N) − 1]. In the end, the prover shows that
Y2 is a commitment to (d − 1)/N by proving that Z · C−1 · Y −N

2 opens to 0.
Finally, the prover uses Πplain to convince the verifier that the values hidden
in Z and in (D,E) coincide. The formal description of the protocol, which we
call ΠPaillier, and the proof of the following theorem are in the full version of the
paper [ADOS22, Section 7.3].

Theorem 5. Let Πsemiprime be a honest-verifier zero-knowledge public-coin proof
proving that N is the product of two distinct primes and gcd

(
N,ϕ(N)

)
= 1. If

the commitment scheme in Fig. 6 is hiding and binding, the construction ΠPaillier

(see [ADOS22, Fig. 11]) is a complete, special-sound public-coin proof for the
relation

RPaillier :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D,E,N), (d, p, q, r)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N = p · q, where p, q are positive primes

gcd
(
N,ϕ(N)

)
= 1

D = gr, E = fd · Cr

d ≡ 0 mod ϕ(N)
d ≡ 1 mod N

0 ≤ d < N · ϕ(N)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Moreover, when r ∈ [�], the proof is honest-verifier zero-knowledge.

Deploying the NIZKs to Obtain Active Security. We can finally present
our active public key PCF for vector-OLE. The construction, called ΠActive

VOLE , is
described in Fig. 7.

We prove that the pk-PCF protocol implements the random vector-OLE
functionality Fr-VOLE (see Fig. 8) in the UC model. Fr-VOLE is a functionality
that, during the initialisation, samples a random RSA modulo N and a value
x ∈ ZN , which outputs to P1. Upon any request for a vector-OLE tuple, the
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Active PK-PCF for VOLE ΠActive
VOLE

Let F be a PRF. Let lenN denote the length of the Paillier modulo and let t, the
order of the NIDLS group, be greater than 2λ · 22lenN · 2λ+lenN .
Initialisation:

1. The parties initialise FNIDLS-ZK obtaining par := (par′, g, ρ0, C, ρ1).
2. The parties call FNIKE to obtain a PRF key k.
3. P0 computes (N, d) R← Paillier.Gen(1lλ) where N = p · q.
4. P1 samples x

R← [B] where B := 2λ+lenN .
5. P0 samples r0

R← [�] and sets D ← gr0 , E ← fd · Cr0 .
6. P0 sends N, D, E.
7. P1 samples r1

R← [�] and computes A ← Cx · gr1

8. P1 sends A.
9. The parties call FNIDLS-ZK with input (Paillier, D, E, N). P0 inputs also

(p, q, r0). The parties abort if the functionality outputs 0 or if N > 2lenN .
10. The parties call FNIDLS-ZK with input (range, A, B). P1 inputs also (x, r1). The

parties abort if the functionality outputs 0.
11. The parties query (A, D, E, N) to the random oracle and obtain a random

u ∈ Zt as a reply.
12. P0 computes v0 ← DDLogpar(A

r0) − u mod t
13. P1 computes v1 ← DDLogpar(D

r1 · Ex) + u mod t
14. P0 stores k0 ← (N, k, y0 := −v0, d).
15. P1 stores k1 ← (N, k, y1 := v1, x mod N).

Evaluation: Query the label id to the oracle. Let ct ∈ Z
×
N2 be the response:

1. P0 computes a ← Paillier.Dec(d, ct) mod N .
2. Each Pi computes zi ← (−1)1−i · DDLogPaillier(ctyi) + Fk(ct) mod N .
3. P0 outputs (a, z0), P1 outputs (x mod N, z1).

Fig. 7. Active public-key PCF for vector-OLE

functionality samples a random a ∈ ZN and computes a subtractive secret-
sharing of z1 − z0 = a · x over ZN . Then, Fr-VOLE outputs (a, z0) to P0 and z1 to
P1. If one of the parties is corrupted, the functionality let the adversary choose
the outputs of the corrupt player, then it samples the outputs of the honest
party at random conditioned on z1 = z0 +a ·x. Moreover, if P0 is corrupted, the
functionality lets the adversary select the RSA modulo N . When P1 is corrupt,
instead, Fr-VOLE lets the adversary choose x after providing it with N .

The Resources. The protocol ΠActive
VOLE relies on the non-interactive key-exchange

functionality FNIKE (see Fig. 4) and a ZK functionality FNIDLS-ZK (see Fig. 9). The
former provides the parties with a random PRF key k ∈ {0, 1}λ. When one of
the parties is corrupt, the functionality lets the adversary choose k, forwarding
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Function Fr-VOLE

Initialisation:

– If both parties are honest, generate (N, p, q) R← Paillier.Gen(1lλ) and sample
x

R← ZN .
– If P0 is corrupt, wait for N from the adversary and sample x

R← ZN . If the
adversary sends ⊥, abort.

– If P1 is corrupt, generate (N, p, q) R← Paillier.Gen(1lλ), send N to the adversary
to the adversary and wait for x ∈ ZN as a reply. If the adversary sends ⊥,
abort.

Evaluation: On input a fresh label id from an honest party Pi.

– If both parties are honest, the functionality samples a, z0
R← ZN and sets

z1 ← a · x − z0. Then, it sets R0 ← (a, z0) and R1 ← (x, z1). Fr-VOLE outputs
Ri to Pi and stores (id, 1 − i, R1−i).

– If i = 1 and P0 is corrupted, the functionality waits for a, z0 ∈ ZN from the
adversary and sets z1 ← a · x − z0. Then, it outputs (x, z1) to Pi.

– If i = 0 and P1 is corrupted, the functionality waits for z1 ∈ ZN from the
adversary, samples a

R← ZN and computes z0 ← a · x − z1. Then, it outputs
(a, z0) to Pi.

If id is not fresh, retrieve the triple (id, i, Ri) and output Ri to Pi.

Fig. 8. The random vector-OLE functionality

it to the honest party. It is possible to implement FNIKE in one round using NIKE
constructions such as Diffie-Hellman, augmenting them with NIZKs to achieve
security against an active adversary.

The functionality FNIDLS-ZK is instead used to prove statements for a fixed set
of NP relations. We can assume that this set includes range proofs and RPaillier.
Upon initialisation, FNIDLS-ZK outputs the parameters of the NIDLS framework,
including the random coins used for their generation. When FNIDLS-ZK is provided
with a statement x for one of the supported NP relations, the functionality waits
for the prover to provide the corresponding witness w. If the verification fails,
FNIDLS-ZK outputs 0 to both parties, otherwise, it outputs 1. The functionality
FNIDLS-ZK is also equipped with a different predicate for each supported NP-
relation. Such predicate makes sure that the witness satisfies the properties for
zero-knowledge. If that is not the case, the w is leaked to the adversary.

Note that Fiat-Shamir NIZKs, including the ones we designed, do not imple-
ment the functionality FNIDLS-ZK in the UC model. Indeed, in order to extract
the witness w, we need to rewind the adversary and this operation is incompat-
ible with UC. Using Fiat-Shamir NIZKs to implement FNIDLS-ZK is, however, a
common practice, which is considered secure. Moreover, the resulting protocols
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Function FNIDLS-ZK

Let U be a finite set of NP relations. Let PL be a predicate corresponding to the
relation RL ∈ U .
Initialisation:

1. par′ := (G, F, H, f, t, �, aux) R← Gen(1lλ)
2. (g, ρ0)

R← D(1lλ, par)
3. (C, ρ1)

R← D(1lλ, par)
4. If C = g, go to step 3.
5. Output par := (par′, g, ρ0, C, ρ1) to all the parties.

Verify:
On input an NP relation RL ∈ U and a statement st from both parties and a
witness w from only one of the parties, FNIDLS-ZK checks whether (st, w) ∈ RL. If
that is the case, FNIDLS-ZK outputs 1 to all the parties, otherwise it outputs 0. If
PL(par, w) = 0, the functionality leaks w to the adversary.

Fig. 9. The NIDLS ZK functionality

can be proven secure in weaker models that allow sequential composability only.
Finally, using standard techniques [DP92], it is still possible to adapt our NIZKs
so that they implement FNIDLS-ZK in the UC model. The proof of the following
theorem is in the full version of the paper [ADOS22, Section 7.3].

Theorem 6. Let lenN (λ) be the length of the RSA modulo and assume that
t > 22λ+3lenN . Let F be a secure PRF outputting pseudorandom elements in
[2λ+lenN ]. If the DXDH assumption holds, the protocol ΠActive

VOLE UC-implements
the functionality Fr-VOLE against an active adversary in the (FNIDLS-ZK,FNIKE)-
hybrid model with random oracle.
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Abstract. Multiparty randomized encodings (Applebaum, Brakerski,
and Tsabary, SICOMP 2021) reduce the task of securely computing a
complicated multiparty functionality f to the task of securely computing
a simpler functionality g. The reduction is non-interactive and preserves
information-theoretic security against a passive (semi-honest) adversary,
also referred to as privacy. The special case of a degree-2 encoding g
(2MPRE) has recently found several applications to secure multiparty
computation (MPC) with either information-theoretic security or mak-
ing black-box access to cryptographic primitives. Unfortunately, as all
known constructions are based on information-theoretic MPC protocols
in the plain model, they can only be private with an honest majority.

In this paper, we break the honest-majority barrier and present the
first construction of general 2MPRE that remains secure in the pres-
ence of a dishonest majority. Our construction encodes every n-party
functionality f by a 2MPRE that tolerates at most t = �2n/3� passive
corruptions.

We derive several applications including: (1) The first non-interactive
client-server MPC protocol with perfect privacy against any coalition of
a minority of the servers and up to t of the n clients; (2) Completeness of
3-party functionalities under non-interactive t-private reductions; and (3)
A single-round t-private reduction from general-MPC to an ideal oblivi-
ous transfer (OT). These positive results partially resolve open questions
that were posed in several previous works. We also show that t-private
2MPREs are necessary for solving (2) and (3), thus establishing new
equivalence theorems between these three notions.

Finally, we present a new approach for constructing fully-private
2MPREs based on multi-round protocols in the OT-hybrid model that
achieve perfect privacy against active attacks. Moreover, by slightly
restricting the power of the active adversary, we derive an equivalence
between these notions. This forms a surprising, and quite unique, con-
nection between a non-interactive passively-private primitive to an inter-
active actively-private primitive.
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1 Introduction

Information-theoretic secure multiparty computation (IT-MPC) deals with the
problem of jointly computing a function over distributed inputs while provid-
ing information-theoretic privacy against an adversary that may corrupt a sub-
set of the parties. IT-MPC has several important features. It does not rely on
unproven intractability assumptions and does not depend on the computational
power of the adversary. This notion also tends to provide clean frameworks (e.g.,
in the form of idealized models) for studying more complicated cryptographic
questions without facing our ignorance regarding the nature of efficient compu-
tation. Moreover, apart from being a playground for basic theoretical feasibility
results, IT-based solutions often lead to highly efficient protocols with a good
concrete computational complexity. Finally, IT-MPC solutions typically form
the basis for efficient computational MPC solutions that make a black-box use
of cryptographic primitives.

In this paper, we consider several basic questions in the domain of IT-MPC
and reveal new connections between them. By default, we consider n parties
and assume that at most t of them can be passively corrupted by a (semi-
honest) computationally unbounded adversary.1 We refer to this as t-privacy.
The following questions are open for any t ≥ n/2.

MPC in the Client-Server Model. Suppose that n ≥ 2 parties, called clients, wish
to employ m ≥ 3 external parties, called servers, in order to securely compute
some (possibly complex) function of their inputs. We would like to obtain a non-
interactive protocol in which each client sends a single message to each server,
depending on its input and its local randomness, and gets a single message from
each server in return without any additional interaction.

Question 1. Is there a non-interactive client-server MPC protocol with privacy
against any (semi-honest) adversary who corrupts a minority of the m servers
and up to t of the n clients?

This question dates back to the work of Barkol, Ishai and Weinreb [6], who noted
that even the 3-server case is open. Earlier client-server protocols [15,22] only
apply to the settings where less than one third of the servers (and t < n clients)
can be corrupted. The work of Applebaum, Brakerski and Tsabary [4] presented
a client-server protocol that can tolerate any minority of corrupted servers,

1 For simplicity, here and throughout the paper, we think of functionalities as finite
objects and accordingly derive protocols and simulators with finite fixed complexity.
All our statements carry over to the asymptotic setting (possibly with a tiny loss
of the privacy threshold) and yield constructions whose complexity is polynomial
in the size of the formulas (or branching program) of the underlying functionality.
Furthermore, if one is willing to make a black-box use of a PRG and relax privacy to
computational, these results also extend to size-s circuits, where the complexity is
linear in s [8,15,32]. In fact, all these “liftings” can be done automatically by using
appropriate completeness results from [2–4,22]. See the full version for details.
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but at the expense of tolerating only t < n/2 corrupted clients. The case t ≥ n/2
remains open. In this context, even a computationally-private solution with good
concrete efficiency would be useful. However, the only known computationally-
secure solution (which is in fact secure against an arbitrary strict subset of
servers) makes a non-black-box use of OT. This solution is obtained by apply-
ing a general transformation from [19] to the 2-round (non-black-box) OT-based
MPC protocols from [11,20].

Completeness of 3PC Under Non-interactive Reductions. Let us move to the
standard model where no servers are available. Classical completeness results, by
Yao [32] and Goldreich, Micali and Wigderson [21], show that, for an arbitrary
corruption threshold t ≤ n, the problem of securely computing a general n-
party functionality t-privately reduces to the problem of securely computing the
elementary finite 2-party Oblivious Transfer (OT) functionality [18,31]. The OT
functionality takes a bit x from the Receiver and a pair of bits (m0,m1) from
the Sender, and delivers to the Receiver the message mx while hiding m1−x from
the Receiver and x from the Sender. In the 2-party setting, Yao’s reduction [32]
is completely non-interactive and makes only parallel invocations of an ideal
OT-oracle without any further interaction. In the multiparty setting, known
reductions are either interactive (i.e., make sequential calls to the OT) [21] or
make a non-black-box use of the underlying OT [20], leading to computational
security and to a large, typically impractical, computational overhead. In [3]
it was shown that this limitation is inherent: No 2-party functionality can be
complete under round-preserving black-box (RPBB) reductions. The same paper
also established the completeness of 4-party functionalities, and stated the case
of 3-party functionalities as an open question:

Question 2. What is the minimal primitive that is non-interactively complete
for t-private MPC? Are 3-party functionalities complete?

The Round Complexity of Protocols Based on Ideal-OT. Let us move back to
OT-based protocols. In light of the negative result of [3], it is natural to ask
what is the best achievable round complexity given a black-box access to an
OT oracle. A partial answer was recently given by Patra and Srinivasan [30]
who showed that, given a black-box access to a 2-round OT protocol, general
secure multiparty computation with full computational privacy (t ≤ n) can be
realized in 3 rounds. This result falls short of providing information-theoretic
security and, more importantly, it strongly relies on an access to an OT protocol.
Consequently, we do not know whether a 3-round protocol can be based on other
realizations of 2-round OT such as ones that are based on physical means such
as noisy channels or secure hardware, or on some limited form of a trusted party
(e.g., [13,14,16,17,27,29]).2 To capture such scenarios, we consider a refined
version of the OT-hybrid model in which the OT takes 2 rounds. That is, if
2 More generally, one may ask whether k+1 round protocols can be based on k-round

OT, i.e., is it possible to obtain a single-round reduction. We focus on the minimal
case of k = 2 for simplicity, though all our results actually hold for the general case.
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both parties send their inputs to an OT in round i, the output is delivered to
the receiver at the end of round i + 1. In addition, the parties are allowed to
exchange messages via standard point-to-point private channels. We refer to this
model as the 2-round OT hybrid model.3 (See Remark 10 for further discussion
about the model). Refining an open question from [3], we ask

Question 3. What is the minimal number of rounds that are needed for t-private
MPC in the 2-round OT hybrid model? Are 3-rounds achievable?

MPC with Active Perfect Privacy in the OT-hybrid Model. Let us change gears
and move to the problem of perfect privacy under active attacks in the (stan-
dard) OT-hybrid model without putting any limitation on the round complexity.
The results of Kilian [26] and Ishai, Prabhakaran, and Sahai [25] show that in
this model one can achieve information-theoretic security with abort against a
computationally unbounded adversary that corrupts an arbitrary subset of the
parties. However, unlike the passive case, where one can achieve perfect simula-
tion, current constructions suffer from a negligible statistical simulation error. It
is known that one cannot simultaneously achieve perfect correctness and perfect
privacy (aka perfect security) unless NP is contained in BPP (see, e.g., [23]).
Still one can hope for a protocol that achieves perfect privacy against active
attacks (i.e., a perfect simulation of the adversary’s view) together with some
weak form of correctness. Partial positive results are known for special classes of
functionalities either in the correlated randomness setting [23] or in the 2-party
setting [1]. Remarkably, for general functionalities the following basic question
is wide open:

Question 4. Is general MPC feasible in the OT-hybrid model with perfect pas-
sive correctness and perfect active t-privacy feasible?

The difference between prefect privacy to statistical privacy is analogous to the
difference between perfect zero-knowledge and statistical zero-knowledge. Fur-
thermore, since the communication complexity grows logarithmically with the
inverse error, perfectly-private protocols may lead to more economical solutions.

2MPREs Beyond Honest Majority. In the honest-majority setting (t < n/2),
Questions 1–3 can be settled in the affirmative based on the existence of t-private

3 In the terminology of [3] the reduction of Patra and Srinivasan [30] is a “free Black-
Box” reduction, whereas the (2-round) OT hybrid model corresponds to so-called
“strict Black-box reduction”. To illustrate the distinction between the two notions,
note that in a free-BB reduction, party A can, for example, generate several different
“first messages” of the OT protocol, manipulate them (e.g., encrypt them) and
deliver them to B or to a third party. Moreover, the 2nd part of these OT invocations
can be later continued or withdrawn based on additional information (e.g., the inputs
of B). In a strict BB reduction there is no notion of “first message” and the parties
can only feed their inputs into the OT functionality and obtain the output. Thus a
strict-BB reduction implies a free-BB reduction. See further discussion in [30].
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quadratic multiparty randomized encoding (MPRE).4 The MPRE notion was
introduced in [4] as a multiparty generalization of the notion of randomized
encoding of functions from [2,22]. Roughly speaking, a functionality f has a
t-private quadratic-MPRE (2MPRE) if the task of securely-computing f non-
interactively reduces to a single call to a degree-2 functionality g via a t-private
information-theoretic reduction. In [4] it was shown that every functionality
can be realized by an honest-majority 2MPREs. Other constructions were also
given in [19,28]. All these constructions are essentially based on plain-model
MPC protocols and are therefore limited to the honest-majority setting. In an
attempt to understand whether this limitation is inherent, we ask:

Question 5 ([4]). Is t-private 2MPRE feasible with t > n/2?

2 Our Results

We construct new 2MPREs and derive new connections between Questions 1–5.

2.1 New 2MPREs Beyond Honest-Majority

We present the first construction of perfect 2MPRE that achieves privacy against
coalitions of size at most �2n/3�.
Theorem 1 (main theorem). Every n-party functionality can be perfectly
realized by �2n/3�-private 2MPRE.

The theorem “separates” the model of 2MPRE from plain-model MPC, demon-
strating the power of the former. We will later discuss the implications of The-
orem 1. For now observe that for 3-party functionalities the theorem provides
privacy against coalitions of size at most 2. Since privacy against 3-party func-
tionalities vacuously hold, we derive the following corollary.

Corollary 1 (2MPRE for 3PC). Every 3-party functionality can be perfectly
realized by a 3-private 2MPRE.

Note that any tiny improvement to Theorem1, e.g., from �2n/3�-privacy
to �2n/3�-privacy would allow us to obtain fully-private MPRE for 4-party
functionalities. Since 4-party functionalities are known to be complete under
non-interactive reductions [3], such an improvement would immediately yield
n-private 2MPREs for any n-party functionality! Thus, the �2n/3� bound is a
natural intermediate point between the case of full corruption t = n and the
honest-majority setting t < n/2. This puts 2MPRE somewhere between the
OT-hybrid model, in which n-privacy can be achieved, to the plain model that
is restricted to (n − 1)/2-privacy.

4 To the best of our knowledge, for Question 4, no solution is known beyond the
trivial case of t < n/3 in which perfect active security can be achieved in the plain
model [10].
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Indeed, while proving Theorem 1, we show that 2MPREs are equivalent to
an MPC model where the parties are allowed to communicate via private point-
to-point channels for an arbitrary number of rounds and at the end are allowed
to make a single call to a degree-2 functionality. If we remove this last round,
we get the standard plain model and if we allow to call degree-2 functionalities
in every round we get the standard OT-hybrid model. In fact, by preprocessing
OTs [7], the OT-hybrid model is equivalent to a model where all the OT-calls
are performed in the first round and all other rounds use private point-to-point
channels. Thus, the “only difference” between the 2MPRE model and the OT-
hybrid model is whether the degree-2 functionality is being invoked before the
plain-model sub-protocol or after it.

2.2 Equivalences and Implications

Theorem 1 implies affirmative answers to Questions 2 and 3 with t = �2n/3�. We
prove that 2MPREs are also necessary for the resolution of these questions.

Theorem 2 (Necessity of 2MPRE). The following holds for every n-party
functionality f and privacy threshold 1 ≤ t ≤ n.

1. If f non-interactively t-privately reduces to some 3-party functionality, then
f has a t-private 2MPRE.

2. If f can be t-privately computed in 3 rounds in the 2-round OT hybrid model,
then f has a t-private 2MPRE.

The results of [3] imply that if f has t-private 2MPREs then it non-
interactively t-privately reduces to the following 3-party variant of OT (hereafter
referred to as TOT). Given a pair of bits (x1, y1) from Alice, and a pair of bits
(x2, y2) from Bob, the functionality delivers to Carol the value x1x2 + y1 + y2
where addition and multiplication are computed over the binary field. Alice and
Bob receive no output.5 TOT takes its input from only 2 parties and deliver it to
the third party and so it can be seen as an extremely simple variant of a 3-party
functionality. Nevertheless, by combining Theorem2 with the above implication,
we conclude that TOT is complete for 3-party functionalities. Finally, we observe
that TOT can be easily computed in 3 rounds in the 2-round OT hybrid model
(see Sect. 6). We therefore derive the following equivalence.

Corollary 2. Let f be an n-party functionality and let 1 ≤ t ≤ n be some
integers. The following statements are equivalent:

1. f can be realized by t-private 2MPRE.
2. f non-interactively t-privately reduces to TOT.
3. f non-interactively t-privately reduces to some 3-party functionality.
4. f can be t-privately computed in 3 rounds in the 2-round OT hybrid model.
5 We refer to this as “3-party OT” since the 2-party version of this functionality,

where the output is delivered to, say, Alice, is essentially equivalent to the standard
1-out-of-2 OT.
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The theorem yields an equivalence between Questions 2, 3 and 5. This equiva-
lence is fairly strong: it holds for each functionality separately and carries to the
statistical setting as well while preserving correctness and privacy errors.

The Client-Server Model. Let us get back to the client-server model (Question 1).
It was shown in [4] that t-private 2MPREs imply non-interactive t-private client-
server protocols. As an immediate corollary of Theorem1, we derive the following
statement.

Corollary 3. Every n-party functionality has a non-interactive client-server
MPC with privacy against any coalition that consists of a minority of the m
servers and up to �2n/3� of the n clients. For the case of 3 clients, we derive
privacy against an arbitrary (mixed) coalition of clients and a minority of the
servers.

Being an information-theoretic protocol, our construction is fairly efficient and
may turn to be useful in 3PC applications.

2.3 2MPREs vs Active Perfect-Privacy

In an attempt to obtain better 2MPREs with privacy threshold larger than
�2n/3�, we reveal a new connection to the problem of achieving perfect-privacy
under active attacks (Question 4). Specifically, we show that any protocol in the
OT-hybrid model with perfect t-privacy under active attacks and passive perfect
(or statistical) correctness can be turned into a t-private 2MPRE with statistical
correctness error. We find this implication quite surprising; the protocol is an
actively-secure primitive with no round-complexity requirements, whereas the
2MPRE is a passively-secure object whose main feature is low interaction. In
fact, by weakening the notion of active attacks we derive a surprising equivalence
between these 2 objects. Loosely speaking, we consider a weakly-active adversary
that corrupts a subset T of the parties and deviates from the protocol as follows:
For every OT-call between two corrupted parties, the adversary is allowed to
replace the receiver’s received message m with some arbitrary value m′. Once this
value is replaced, the adversary must consistently use this fake value according
to the instructions of the protocol. For example, if the protocol instructs the
receiver to pass m to all the parties, then the adversary passes m′ to all the
parties. (See Sect. 7 for a formal definition.)

We prove the following theorem.

Theorem 3. Let f be an n-party public-output functionality and let 0 ≤ t ≤ n
be an arbitrary privacy threshold. The functionality f has a protocol in the OT-
hybrid model with statistical (passive) correctness and t-perfect privacy against
weakly-active adversaries if and only if f has a t-private 2MPRE with statistical
correctness error.
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The error can be reduced to an arbitrarily small ε with O(log(1/ε)) overhead
via standard error-reduction techniques. A public-output functionality is a func-
tionality that delivers the same output to all the parties; it is known that gen-
eral functionalities can be reduced to public-output functionalities via a non-
interactive reduction.

Note that in the honest-majority setting, any protocol with perfect passive
t-privacy is also t-perfectly private against a weakly-active adversary (since there
are no calls to OT). In this setting, Theorem 3 yields a new alternative construc-
tion of 2MPREs. In fact, as a by-product, we derive a new completeness result
in the honest-majority setting.

Theorem 4 (completeness of AND◦EQ for honest majority). In the hon-
est majority setting, every n-party functionality f non-interactively reduces to
multiple parallel calls to AND ◦ EQ functionality. The reduction has perfect pri-
vacy and an arbitrarily small 1-sided statistical correctness error.

For parameters � and k, the predicate AND ◦ EQ takes � pairs of k-bit strings,
computes for each pair an equality bit vi that determines whether the ith pair
is equal, and outputs the logical AND of all the bits v1, . . . , v�. Specifically, we
allocate a single equality for each pair of parties (i.e., � =

(
n
2

)
).

Features of the AND ◦EQ Predicate. Since EQ(x, y) =
∧

i(xi ⊕ ȳi), the AND ◦EQ
predicate can be replaced by a conjunction of parities of pairs of bits. Another
feature of this predicate is the following physical implementation: suppose each
pair of parties are connected by pipes (alternatively, electrical wires), one for
each comparison of two bits held by these parties. For each pipe (wire), one can
ensure that water (electricity) flows through only if equality holds. For instance,
an input bit may determine the position of a switch, where the two switches need
to be aligned to enable flow. Finally, connecting all pipes via an Euler path, the
output of the AND ◦ EQ predicate corresponds to whether or not the flow gets
through the system.

2.4 Techniques

To illustrate some of our techniques, let us focus on the 2MPRE construction
and on the implications of protocols that achieve perfect-privacy under active
attacks.

Constructing 2MPREs. Our new construction (Theorem 1) is based on two
components. First, we introduce a new round-collapsing lemma that turns a 2-
round protocol that satisfies some “nice” form into a 2MPRE. Then, we design a
nice protocol with �2n/3�-privacy and collapse it into a 2MPRE. Let us elaborate
on these steps.
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Round-Collapsing Lemma. Recall that a 2MPRE can be viewed as a non-
interactive protocol that makes only parallel calls to some degree-2 functionali-
ties (WLOG, we may use only TOT calls). Consider the seemingly more liberal
model where the parties are allowed to make a single round of communication
over private point-to-point channels before calling the TOT functionalities. We
prove that such a nice protocol π can be turned into a 2MPRE. To explain
the high-level idea, let us assume that the protocol π makes a single call to
TOT where A and B are the senders with inputs f and g, respectively, and C
receives TOT(f, g). The messages f and g are computed based on first-round
messages that were sent to A and B during the first round by all the parties
P1, . . . , Pn. Denote by a = (a1, . . . , an) and b = (b1, . . . , bn) the vectors of these
first-round messages. Our goal is to replace the second-round call to TOT with
many first-round calls to TOT. All these TOTs are delivered to the receiver C
and the pair of senders range over all possible pairs of the form (A,B), (A,Pi)
or (B,Pi). Let us imagine, for a moment, that the original TOT computation
TOT(f, g) is replaced with some multi-output function H(f, g) in which each
output depends on a single bit either of f or of g. Moreover, let us assume
that each bit of f = f(a) and g = g(b) depends on a single bit of the input.
In this case, each output of H depends on some message, ai or bi, that some
Pi have sent in the first round. Therefore, the corresponding bit of H could be
delivered to C directly at the first round by some party Pi. Of course, we can-
not really hope for such single-bit dependencies. Instead, we replace each of the
above computation with a fully-decomposable randomized encoding [2,22]. Such
an encoding preserves the original information while maintaining privacy, at the
expense of using some secret randomness. The crucial observation is that in our
case the randomness can be chosen either jointly by A and B (for randomizing
the TOT part), or solely by A (for randomizing the f part) or solely by B (for
randomizing the g part). This is due to the fact that we do not need to hide
f (resp., g) from A (resp., B). Overall, this allows us to collapse the computa-
tion to first-round calls to multiple 2-party functionalities.6 The latter can be
trivially encoded by 2MPRE, which, by a proper form of composition, leads to
2MPRE for the entire computation. For full details see Lemma1 and its proof.
By applying the reduction repeatedly, one can turn a multi-round plain-model
protocol whose last round makes calls to degree-2 ideal functionalities into a
2MPRE, establishing the equivalence of these 2 models. The round-preserving
lemma plays a central role in our constructions as well as in our negative results
about the necessity of 2MPREs.

Nice Protocols. Equipped with the round-collapsing lemma, we explore the power
of nice protocols. To illustrate the power of the model, let us start by observing

6 A related observation is in the heart of other recent round reduction techniques
[4,11,20], though we do not see a way to obtain our result based on their techniques.
Specifically, [11,20] makes a non-black-box use of OTs and [4] exploit the specific
properties of Yao’s based randomized encodings. In particular, the latter result does
not seem to extend to arithmetic protocols while our result does.
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that for degree-3 computation (which is known to be complete [22]), the passive
honest-majority version of the BGW protocol [10] gives rise to a nice protocol!
In the standard description of the protocol, in (R1) the parties secret share their
inputs, then the parties multiply their shares locally and (R2) apply a round of
degree-reduction, then the parties apply another local multiplication and (R3)
publish the randomized shares. Since degree reduction is a linear operation one
can replace the last 2 rounds (including the second local multiplication) with a
call to a degree-2 functionality, and derive a “nice” protocol. The resulting con-
struction can be viewed as an abstract version of a recent algebraic construction
of honest-majority arithmetic 2MPREs [28]. The round-collapsing lemma allows
us to derive this result immediately in a conceptually clean way.

Observe that the BGW-based 2MPRE works even if the ideal degree-2 func-
tionality is only private against a corrupted minority. Put differently, we did
not use the full power of the degree-2 oracle that provides privacy against an
arbitrary coalition. Our result for t = �2n/3� is derived by making a stronger
use of this resource. Following BGW, we dedicate the first round to input shar-
ing, except that this time we use a CNF-based secret sharing scheme. That is,
we additively share each input into

(
n
t

)
shares where each share corresponds

to some “unauthorized” t-subset T of the parties, and hand the corresponding
share to all parties outside T . Now a degree-3 computation boils down to a sum
of degree-3 monomials over the additive shares. A threshold of t = �2n/3� − 1
guarantees that for each monomial there must exists a party who holds 2 vari-
ables of the monomials. (A slightly modified version yields t = �2n/3�). By
locally computing these values, we can realize the remaining parts via a call to a
degree-2 functionality. See Sect. 5. We note that a similar degree-reduction tech-
nique was previously used in the contexts of communication complexity [5] and
information-theoretic private information retrieval [9]. The current application
is unique in that it applies this technique in the context of feasibility rather than
efficiency.

2MPREs from Perfect Active Privacy. Consider the following MPC-in-the-
head type approach [24,25] for transforming a plain-model (passively) t-private
protocol π to a t-private 2MPRE. Each party Pi samples locally a random tape
and guesses randomly a sequence of incoming messages. Then Pi computes,
based on this random view, the vector of outgoing messages that should be sent
in π given this view. Finally, Pi sends her guesses for the incoming messages
together with the computed outgoing messages to an ideal functionality V . The
functionality V checks that the local views match; namely, that each guessed
incoming message is equal to the corresponding outgoing message. If all these
tests pass, V returns the output of the protocol (assume wlog that this output
appears in the transcript), say to all the parties. Otherwise, V outputs zero.

It can be shown that the resulting protocol σ is perfectly private. Correctness
holds when all the guesses succeed which happens with probability 2−c where c
is the communication complexity of π. Since privacy is perfect we can arbitrarily
reduce the correctness error via repetition. The ideal functionality V can be
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written as a conjunction of Equality tests. Since Equality of two bits is a linear
function over F2, and since AND has a degree-2 RE (with statistical correctness
error), V can be replaced with a degree-2 functionality. By instantiating π with
a perfect plain-model honest majority protocol (e.g., BGW) we obtain another
construction of honest-majority 2MPRE, this time with a statistical correctness
error. (Note that so far π is only required to be passively private).

In order to obtain an MPRE in the honest-minority setting, we start with a
protocol π that operates in the OT-hybrid model and add pair-wise consistency
checks over OT values. That is, each party guesses the incoming messages and
incoming OT messages and computes the corresponding outgoing messages and
OT-inputs. Now V verifies that the local views are pair-wise consistent. Unfortu-
nately, an OT consistency check corresponds to a quadratic relation. Since these
tests are being fed into a degree-2 function (the randomized encoding of AND),
we get a degree-3 encoding of V . We bypass the problem by letting the pair of
parties that use the OT call to locally sample part of the randomness of the RE.
This allows us to reduce the degree at the expense of leaking some information
about the inputs of V . We show that this leakage can still be simulated if the
original protocol π is weakly-active perfectly private. See Sect. 7 for more details.

Organization. Following some preliminaries in Sect. 3, we relate 2MPREs to non-
interactive protocols in the TOT-hybrid model and prove the round-collapsing
lemma in Sect. 4. We present our main construction in Sect. 5, and dedicate
Sect. 6 to the equivalence between 2MPREs and protocols in the 2-round-OT
hybrid model. Finally, in Sect. 7, we establish the equivalence between 2MPREs
and perfect privacy under weakly-active attacks. Due to space limitations some
of the proofs are deferred to the full version.

3 Preliminaries

We assume familiarity with standard MPC definitions. Some background is omit-
ted and can be found in the full version. We will extensively use randomized
encoding (RE) of functions and multiparty randomized encoding as means for
transforming and manipulating protocols.

Definition 1 (Randomized Encoding of functions [22]). Let f : X → Y

be a function. We say that a function f̂ : X ×R → Z is a δ-correct and ε-private
randomized encoding (RE) of f if the following holds:

– (δ-correctness) There exists a randomized algorithm Dec such that for every
input x ∈ X,

Pr
r←R

[
Dec(f̂(x; r)) �= f(x)

]
≤ δ

– (ε-privacy) There exists a randomized algorithm Sim such that for every x ∈
X, the distributions

Sim (f(x)) and f̂(x; r), where r ← R,

are ε-close in statistical distance.
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By default, we assume that both correctness and privacy are perfect, i.e., ε and
δ are both zero.

By default, the set X (resp., R,Z) is a set of strings of some fixed length. An
RE, f̂ , is fully decomposable if each of its outputs f̂i(x; r) depends on at most
a single input bit of x. The encoding f̂ has degree d if each of its outputs can
be written as a degree-d polynomial over a field F (by default the binary field).
If X = F

n, R = F
ρ and Z = F

s, then each output f̂i(x, r) can be written as
a degree-d polynomial in the inputs (x1, . . . , xn, r1, . . . , rρ). The encoding is d-
local if each output depends on at most d inputs (x1, . . . , xn, r1, . . . , rρ). The
complexity of an encoding f̂ is s if the encoding can be computed, simulated,
and decoded by s-size circuits. In the asymptotic setting, when f is treated as a
polynomial-time uniform family of circuits, s is required to be polynomial-time
bounded and the circuits for encoding, decoding and simulating should all be
uniform. All known RE constructions satisfy these properties.

Functionalities. An n-party functionality is a function that maps the inputs of
n parties to a vector of outputs that are distributed among the parties. Without
loss of generality, we assume that the inputs and outputs of each party are taken
from some fixed input and output domains X and Y (e.g., bit strings of fixed
length). We will also make use of randomized functionalities. In this case, we let
f take an additional random input r0 that is chosen uniformly from some finite
domain R, and view r0 as an internal source of randomness that does not belong
to any party. We typically write f(x1, . . . , xn; r0) and use semicolon to separate
the inputs of the parties from the internal randomness of the functionality.

Definition 2 (Multiparty Randomized Encoding (MPRE) [4]). Let f :
Xn → Y n be an n-party functionality. We say that an n-party randomized func-
tionality f̂ : (X × R)n × R → Zn is a multiparty randomized encoding of f if
the following holds:

– (δ-correctness): There exists a decoder Dec such that for every party i ∈ [n],
and every input x = (x1, . . . , xn) it holds that

Pr
(r0,r1,...,rn)←Rn+1

[Dec(i, ŷ[i], xi, ri) = y[i]] ≤ δ,

where y = f(x1, . . . , xn), ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0), and y[i] and ŷ[i] are
the restrictions of y and ŷ to the coordinates delivered to party i by f and f̂ ,
respectively.

– ((t, ε)-privacy): There exists a randomized simulator Sim such that for every
t-subset T ⊆ [n] of parties and every set of inputs x = (x1, . . . , xn) it holds
that the distributions

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)



Quadratic MPREs Beyond Honest Majority and Their Applications 465

and the distributions
(x[T ], r[T ], ŷ[T ])

where

ŷ = f̂ ((x1, r1), . . . , (xn, rn); r0) , and (r0, r1, . . . , rn) ← Rn+1

are ε-close in statistical distance.

We say that f̂ is perfectly correct if it has δ-correctness for δ = 0, and perfectly
t-private if it has (t, ε)-privacy for ε = 0. We say that f̂ is t-private if it is both
perfectly correct and perfectly t-private.

Definition 3 (Effective degree and 2MPRE). A (possibly randomized) n-
party functionality f : Xn × R → {0, 1}m has effective degree d if there exist a
tuple of local preprocessing functions (h1, . . . , hn) and a degree-d function h such
that

h (h1(x1), . . . , hn(xn); r) = f(x1, . . . , xn; r),

for every input x1, . . . , xn and internal randomness r.
A functionality f has a t-private quadratic MPRE (2MPRE) if it has a t-

private MPRE with an effective degree of 2. Unless stated otherwise, we assume,
by default, that the privacy and correctness errors are zero.

If f has a t-private 2MPRE h (h1(x1), . . . , hn(xn); r) then it can be computed
by a non-interactive t-private reduction: First, the ith party locally computes
hi on her input and random tape; then she sends the result to the degree-2
functionality h; and finally she locally computes her output by using the MPRE
decoder. In fact, the converse direction also holds, and so f has a t-private
2MPRE if and only if it reduces to a degree 2 functionality g via a non-interactive
t-private reduction that makes a single call to g.7 Despite this equivalence, the
MPRE abstraction will be useful as it will allow us to conveniently manipulate
protocols and gradually turn them into 2MPREs. Specifically, we will often use
the composition lemma [4, Lemma 3.3] that asserts that if f is encoded by an
MPRE g, and g is encoded by an MPRE h then h encodes f . Finally, let us
make the following simple, yet useful, observation. (The proof appears in the
full version).

Observation 5. Let f be a 3-party functionality that takes its input from only
2 parties (aka 2-input functionality). Then, f has a 3-private 2MPRE.

4 2MPRE and TOT-hybrid Model

The TOT-hybrid Model. A protocol in the TOT-hybrid model consists of black-
box calls to the TOT functionality. We assume that each 3-tuple of parties

7 The requirement for a single call is without loss of generality in the semi-honest
setting, since multiple parallel calls can be packed in a single call.
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(A,B,C) can make a call to an ideal TOT functionality TOT : {0, 1}2×{0, 1}2×
{⊥} → {⊥} × {⊥} × {0, 1} where

TOT
(
(x1, y1), (x2, y2),⊥

)
= (⊥,⊥, x1x2 + y1 + y2).

By letting A = C or A = B respectively, TOT calls can emulate OT calls as
well as 2-wise private channels. Still, it will be sometimes convenient to make
explicit use of private point-to-point channels. We will mainly be interested in
non-interactive protocols in this model where the parties make a single round of
parallel calls to the TOT functionality.

The following claim can be derived from [3] who studied a close variant of
TOT known as (2, 3)-MULTPlus. (See the full version for a proof).

Claim 6. If a functionality F has a t-private 2MPRE then it has a t-private
non-interactive protocol in the TOT-hybrid model.

The converse direction trivially holds since by definition, a non-interactive
protocol in the TOT-hybrid model is also a non-interactive reduction to a degree-
2 functionality. The following lemma provides a stronger converse: It shows that
a 2MPRE can be derived even if we start from a 2-round protocol in the TOT-
hybrid model whose first round only consists of private messages (carried over
private point-to-point channels) and its second rounds consists of parallel calls
to the TOT functionality.

Lemma 1 (Collapsing a round in TOT-hybrid model). Suppose that the
n-party functionality f can be realized by a t-private protocol π in the TOT-
hybrid model whose first round only consists of private messages (carried over
private point-to-point channels) and its second round consists of parallel calls to
the TOT functionality. Then f has a t-private 2MPRE f ′. Moreover, f can be
realized by a t-private non-interactive protocol σ in the TOT-hybrid model. The
transformation holds even if π has a correctness error or a privacy error while
preserving these errors.

Before proving the lemma, we note that once we can collapse a single plain-
model round, we can also collapse multiple plain-model rounds. Specifically,

Corollary 4 (Collapsing multiple rounds in TOT-hybrid model). Sup-
pose that the n-party functionality f can be realized by a t-private multi-round
protocol π in the TOT-hybrid model that makes TOT calls only in the last round
(all other rounds are in the plain model). Then f has a t-private 2MPRE f ′.
Moreover, f can be realized by a t-private non-interactive protocol σ in the TOT-
hybrid model. The transformation holds even if π has a correctness error or a
privacy error while preserving these errors.

The proof is deferred to the full version. We move on and prove Lemma1.

Proof (Proof of Lemma 1). Let f : Xn → {0, 1}m be an n-party functionality,
and let π be δ-correct (t, ε)-private protocol in the TOT-hybrid model whose
first-round only consists of private messages and its second-round consists of
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parallel calls to the TOT functionality. For each call to the TOT functionality
with parties A ∈ P and B ∈ P and receiver C ∈ P, the protocol π can be viewed
as computing the following functionality o:

– Each party Pi locally computes messages ai and bi based on its private input
and randomness and sends ai to A and bi to B. As part of this step, A (resp.,
B) sends her private input/randomness to herself.

– The receiver C gets the TOT output

TOT((f0(a), f1(a)), (g0(b), g1(b))),

where a = (ai)i∈[n] and b = (bi)i∈[n] and f0, f1, g0, g1 are some Boolean
functions. (In π the party A computes f0 and f1 locally and the party B
locally computes the functions g0, g1).

To prove the lemma it suffices to encode the functionality o by a perfect
MPRE of effective degree-2. To gain some intuition, imagine the case where a and
b are selected by A and B, respectively. Then the output that is delivered to C is a
2-party functionality that depends only on values that can be computed by either
A or B. Such a function trivially has an effective degree of 2 as per Observation 5.
Our setting is slightly more involved: While some inputs are neither chosen by
A nor by B, each of these inputs is being leaked either to A or to B. We show
that in this case one can still obtain a 2MPRE.

As our first step, we construct an MPRE for o based on degree-3 RE as
follows. Let ô(a, b; r) be the standard degree-3 fully-decomposable RE from [2,22]
where r = (r1, . . . , rm) is the internal randomness of the RE. Consider the
functionality ô1 in which party A randomly samples α = (αi)i∈[m], party B
randomly samples β = (βi)i∈[m], and party Pi locally computes ai and bi as
before. The functionality ô1 delivers the value

ô(a, b;α + β)

to C and the vector a to A and b to B. We claim that ô1 is an MPRE of o.
Indeed, correctness follows from the correctness of the RE. As for privacy, fix a
set T ⊆ [n] that contains the receiver C (if C /∈ T simulation is trivial). Observe
that if A or B are not in T , then privacy follows from the privacy of the RE
(since, conditioned on the view of the parties in T , the distribution of C’s output
in ô1 is identical to the distribution of ô(a, b;α + β)). Finally, if both A and B
are in T , then simulating C’s output is trivial since we have both a and b as part
of T ’s view in o.

Next, our goal is to construct a 2MPRE for ô1. First, let us take a step
backward and recall that the degree-3 RE ô(a, b; r) is so-called fully-decomposable
RE, which means that each of its outputs is either a degree-2 function (of the
form ri + rj + rk or rirj + rk or xiri + rj) or an expression of the form

xrjrk + r�

where x is either ai, bi or ri and ri, rj , rk, r� are part of the internal random bits
r = (r1, . . . , rm) of the RE. Recalling that r = α + β, observe that each output
bit that ô1 delivers to C is of the form
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x(αj +βj)(αk +βk)+(α�+β�) = xαjαk +xαjβk +xβjαk +xβjβk +(α�+β�) (1)

where x is either ai, bi or αi + βi. Let us start by breaking this sum to separate
monomials. That is, we define the functionality ô2 that operates identically to
ô1 except that each bit in (1) that ô1 delivers to C is replaced with the tuple

(xαjαk + s1, xαjβk + s2, xβjαk + s3, xβjβk + (α� + β�) − (s1 + s2 + s3)) (2)

where s1, s2 and s3 are uniform bits that are sampled as part of the internal
randomness of the functionality ô2.8 The tuple in (2) is a tuple of 4 random bits
whose sum equals to (1). Therefore, (2) perfectly encodes (1) and so ô2 perfectly
encodes ô1.

Observe that the first entry of (2) has an effective degree of 2 since A can
precompute αj ·αk. Similarly, the last entry has an effective degree 2 since B can
precompute βj · βk. Moreover if x = αi + βi then the second and third entries
of (2) have also an effective degree of 2. It remains to handle the second and
third entries in the case where x is either ai or bi. Let us focus on the second
entry and assume that x = ai (the other cases are handled similarly). Consider
the functionality ô3 that is identical to ô2 except that instead of delivering the
second entry of (2) to C we deliver to C the tuple

(ai + α′, αjβk + s′, ais
′ + α′αjβk + α′s′ − s2) . (3)

Here s′ is sampled as part of the internal randomness of the functionality, and,
crucially, α′ is sampled uniformly by A. Therefore, (3) has an effective degree
of 2. We claim that ô3 perfectly encodes ô2. Indeed, given an output (y1, y2, y3)
of (3), we can decode the second entry of (2) by outputting the value y1y2 − y3.
As for privacy, consider a set T � [n] and assume that C ∈ T (again the other
case is trivial). If A /∈ T , then simulation is simple: given y, the second entry of
(2), sample y1, y2 uniformly at random and set y3 = y1y2 − y. If A ∈ T , then
the simulator is given y,ai and α′ as part of A’s private tape, accordingly we set
y1 = ai + α′, sample y2 uniformly and set y3 = y1y2 − y. It is not hard to verify
that the simulation is perfect.

By handling the third entry of (2) similarly, we derive an MPRE of effective
degree 2 that encodes ô2. By the MPRE composition lemma [4, Lemma 3.3],we
conclude that the functionality o admits a perfect 2MPRE. Overall, we encoded
f by a a δ-correct (t, ε)-private f ′.

To prove the “Moreover” part, observe that, by Claim6, f ′ can be per-
fectly realized by a non-interactive protocol π′ in the TOT-hybrid model. By
[4, Prop. 3.1],π′ admits a non-interactive protocol σ in the TOT-Hybrid model
that realizes f with δ-correctness and (t, ε)-privacy, as required. ��

8 In fact, we could take si to be the sum of a random bit that is sampled by A and a
random bit that is sampled by B.
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5 New 2MPRE Construction

In this section we present our main construction and prove Theorem1.

5.1 2MPREs for 3-party Functionalities

We begin with the following simple observation that deals with a degree-3 func-
tion whose output is delivered to one of the parties who owns one of the multi-
plicands as an input.

Claim 7. The Boolean n-party functionality

f ((x1, y1) , (x2, y2) , (x3, y3) , y4, . . . , yn) =

(

x1x2x3 +
n∑

i=1

yi,⊥, . . . ,⊥
)

(where additions and multiplications are in F2) that delivers the output to P1

admits a 2MPRE with perfect correctness and perfect privacy against arbitrary
coalitions.

Proof. The MPRE f̂ employs private randomness r that is sampled internally
by the functionality. (By [4, Prop. 3.2], one can always replace it by the sum∑

ri where ri is sampled locally by Pi). The output of f̂ is delivered to P1 and
it consists of two entries:

(
x1r +

∑

i

yi, (1 − x1)r + x2x3 +
∑

i

yi

)
.

Given the output (z0, z1), party P1 decodes the value of f by outputting zx1 .
Indeed, if x1 = 0 then the output z0 is

∑
i yi and if x1 = 1 then the output z1 is

x2x3 +
∑

i yi, as required. To prove privacy, consider a set of corrupted parties
T � [n] and assume that P1 ∈ T (the other case is trivial). Given the output y,
the inputs x1, y1 and possibly the inputs of other parties, the simulator samples
a random bit b and outputs the value (z0, z1) where zx1 = y and z1−x1 = b. It is
not hard to verify that this is a perfect simulator. ��
As an immediate corollary we derive the following theorem which implies
Corollary 1.

Theorem 8 (Corollary 1 restated). Every 3-party functionality f admits a
2MPRE with perfect correctness and perfect privacy against arbitrary coalitions.

Proof. By the completeness of degree-3 REs [22], f can be perfectly encoded
by a degree-3 RE f ′ where each of its outputs is of the form x1x2x3 + r1 +
r2 + r3 where xi is an input of Pi and ri is a linear combination of the random
inputs of Pi. Therefore, by composition [4, Lemma 3.3], the theorem follows from
Claim 7. ��
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5.2
⌊2n

3

⌋
-private2MPRE

Theorem 9 (Theorem 1 restated). Let n and t be positive integers for which
t < 2n+1

3 . Then, every n-party functionality admits a t-private 2MPRE.

Unfortunately, the complexity of the resulting MPRE is exponential in n. (This
is the only result in this paper that suffers from this drawback). However, by
using “player virtualization”, one can derive an efficient poly(n)-time version of
the 2MPRE at the expense of reducing the privacy threshold to 2

3 − ε for an
arbitrary small constant ε > 0. In fact, we can even take ε = on(1). (See the full
version for details).

Proof. Consider the n-party functionality f that takes a pair of bits (a, α) from
P1, (b, β) from P2 and (c, γ) from P3 and delivers the value

abc + α + β + γ

to some designated receiver R ∈ {P1, . . . , Pn}. Since this functionality is known
to be complete under non-interactive reductions [2,12,22] (for an arbitrary pri-
vacy threshold), it suffices to focus on f . Observe that if R ∈ {P1, P2, P3}
the theorem follows from Claim 7, hence we will focus on the case where
R /∈ {P1, P2, P3}. For concreteness, set R = Pn.

We will construct a t-perfect 2-round protocol π for f whose first round
makes use of only private point-to-point channels and its second round makes
parallel calls to TOT. By Lemma 1, such a protocol can be compiled back into
an MPRE with an effective degree of 2.

Before presenting the protocol π, let us start with the following simple pro-
tocol π0:

– At the first round, P1 shares its input a via a t-private CNF secret sharing
among the parties P. That is, for each t-subset S ⊂ P, party P1 samples a
random bit aS conditioned on a =

∑
S aS and delivers aS to all the parties

Pi, i /∈ S. Similarly, P2 shares b into b =
∑

T⊂P,|T |=t bT and sends bT to every
party Pi, i /∈ T and P3 shares c into c =

∑
U⊂P,|U |=t cU and sends cU to every

party Pi, i /∈ U .
– At the second round, the parties make a call to an ideal functionality g that

delivers the value
⎛

⎝
∑

S⊂P,|S|=t

aS

⎞

⎠ ·
⎛

⎝
∑

T⊂P,|T |=t

bT

⎞

⎠ ·
⎛

⎝
∑

U⊂P,|U |=t

cU

⎞

⎠ + α + β + γ

to Pn.

It is not hard to verify that the protocol π0 achieves perfect correctness and
perfect t-privacy.

Our next protocol, π1 is obtained by replacing the call to g by a call to
a perfect MPRE for g (with full privacy) and by letting Pn apply the MPRE
decoder. Specifically, the MPRE ĝ is defined via
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(aS · bT · cU + rS,T,U )S,T,U , α + β + γ −
∑

S,T,U

rS,T,U ,

where S, T, U range over all t-subsets of P, and where each random bit rS,T,U

is taken to the sum of random bits rS,T,U,1, . . . , rS,T,U,n that are sampled locally
by P1, . . . , Pn, respectively. By [4, Prop. 3.1],the privacy and correctness of π1

are inherited from π0.
Next, we claim that each output of ĝ can be perfectly encoded by a func-

tionality of effective degree-2 (with full privacy). Fix some S, T and U , and let
us focus on the output y = aS · bT · cU + rS,T,U . Define the complement sets by

S := P \ S, T := P \ T, U := P \ U,

and let V = S ∪ T ∪ U . Recall that aS (resp., bT , cU ) is known to all the parties
in S (resp., T ,U). We distinguish between two cases.

If Pn ∈ V , then the output y can be perfectly encoded by an MPRE of
effective degree 2 by Claim 7. Next, suppose that Pn /∈ V . We claim that in this
case there must exist a party that owns at least 2 out of the 3 elements aS , bT , cU ,
and so the effective degree is 2. Indeed, assume towards a contradiction, that
such a party does not exist. That is, the sets S, T , U are pairwise disjoint. Since
|S| = |T | = |U | = (n − t), it follows that |V | = 3(n − t). Since t < 2n+1

3 ,
|V | > n − 1. But V ⊂ {P1, . . . , Pn−1} and so |V | ≤ n − 1, a contradiction.

Overall, the second round of π1 can be realized by a call to a functionality
ĝ of effective degree 2. Hence, by Claim 6, the second round can be replaced by
parallel calls to TOT, and by Lemma 1, the resulting protocol can be compiled
back into an MPRE with an effective degree of 2, as required. ��

6 2MPREs vs. 2-round-OT-hybrid Model

The equivalence between t-private 2MPREs and the completeness of 3-party
functionalities under non-interactive t-private reductions follows from Corollary 1
and Claim 6. In this section we establish an equivalence between 2MPREs and
3-round protocols in the 2-round-OT-hybrid Model. Recall that in the 2-round
OT hybrid model we assume that OT takes 2 rounds. That is, if both parties
send their inputs to an OT in round i, the output is delivered to the receiver at
the end of round i+1. In addition, the parties are allowed to exchange messages
via standard point-to-point private channels.

Remark 1 (On the 2-round-OT-hybrid Model). The 2-round-OT-hybrid Model
attempts to capture an information-theoretic reduction to OT with the min-
imal possible interaction. (Recall that a single-round reduction in which the
parties exchange messages over private channels and make parallel calls to OT
was shown to be impossible in [3]). A natural suggestion is to consider a 2-
round reduction that is allowed to make oracle calls to OT. However, this allows
the reduction to make calls to OT both in the first round and in the second
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round, which leads to an actual round complexity of 4 when the OT is real-
ized via a 2-round protocol. Our refined notion of 2-round-OT-hybrid Model
is therefore stronger than 2-round reduction to OT. One could also consider a
seemingly stronger model in which the reduction has 2 rounds but only the first
round is allowed to make calls to an ideal OT. Our theorem shows that such
a 2-round “OT-then-plain” reduction is actually equivalent to the 2-round-OT-
hybrid Model.

Theorem 10. The following holds for every n-party functionality f and every
privacy threshold 1 ≤ t ≤ n. The functionality f can be t-privately computed
by a 3-round protocol π in the 2-round OT hybrid model if and only if it has
a t-private 2MPRE. Furthermore, for the “if” direction the resulting protocol
makes OT calls only at the first round and no private messages are exchanged
in the second round and so derive a 2-round “OT-then-plain” reduction. The
transformation preserves the privacy and correctness errors.

The “only if” direction establishes the second item of Theorem 2 (whose first
item follows from Corollary 1).

Proof. We begin with the easy “if” direction. It suffices to realize the TOT
functionality with a 2-round protocol π′ in the OT-hybrid model with perfect
correctness and perfect privacy against any coalition, in which only the first
round consists of OT calls. Consider a TOT between the parties, Alice, Bob and
Carol, where Alice holds the inputs (x1, y1), Bob holds the inputs (x2, y2), and
Carol should receive z = x1x2 + y1 + y2. The protocol proceeds as follows:

1. (Round 1) Alice samples a random bit α, she sends to Carol the value a =
y1 − α and initiates an OT with Bob.9 In this invocation, Alice plays the
Sender with inputs (α, x1 + α) and Bob uses x2 as the selection bit.

2. (Round 3) Given the output m = x1x2 + α of the OT, Bob sends to Carol
the value b = m + y2.

3. (Output) Carol outputs the sum a + b.

Clearly, the protocol can be realized in 3 rounds in the 2-round OT-hybrid
model . Correctness can be easily verified. For privacy, consider any coalition
that contains Carol and either Alice or Bob (all other cases are trivial). Given
z = x1x2 + y1 + y2, sample a random bit a and set Carol’s view to (a, b = z −a).
A corrupted Alice adds nothing to the view (except for her inputs). If Bob is
corrupted, then we are also given the inputs (x2, y2) and we can simulate m by
b − y2. It is not hard to verify that the simulation is perfect.

We move on to prove the more interesting “only if” direction. We show that
any 3-round protocol in the 2-round OT-hybrid model can be transformed into
a protocol in which the party first exchanges private messages and then makes
parallel calls to 3-party functionalities. These functionalities can be replaced

9 Despite the equivalence of addition and subtraction over the binary field, we use
both signs to indicate that the construction generalizes to general fields.
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by 2MPREs (based on Corollary 1) and the resulting 2-round protocol can be
compiled into a 2MPRE via the aid of the round-collapsing lemma (Lemma1).
Details follow.

Consider the protocol π. For any round number 1 ≤ R ≤ 3 and parties
Pi, Pj , let mR

i,j be the private message sent from Pi to Pj on round R. Without
loss of generality, we further assume that in each round each party Pi sends to
herself her entire private view, including the input xi and the private random
tape ρi. Since the protocol has only 3 rounds and the OT takes 2 rounds, we may
assume that OT calls are performed either on the first round or on the second
round. Let us further assume that, both in round 1 and in round 2, each pair
of parties (Pi, Pj) performs exactly � OT-calls in which Pi is the sender and Pj

is the receiver. Denote by o2i,j = (o2i,j,1, . . . , o
2
i,j,�) and o3i,j = (o3i,j,1, . . . , o

3
i,j,�)

the vector of OT-outputs of the first-round calls and the second-round calls,
respectively. Observe that oR

i,j arrives at the end of round R. For every round
R ∈ [3] and party i, let

mR
i =

(
mR

1,i, . . . ,m
1
n,i

)
and oR

i =
(
oR
1,i, . . . , o

R
n,i

)
.

By definition, for R ∈ [3] and i, j ∈ [n] there exist functions fR
i,j , g

R
i,j such that

m1
i,j = f1

i,j(xj , ρi),

m2
i,j = f2

i,j

(
m1

i

)
, o2i,j = g2i,j

(
m1

i,i,m
1
j,j

)
,

m3
i,j = f3

i,j

(
m2

i , o
2
i

)
, o3i,j = g3i,j

(
m1

i ,m
1
j

)
.

Note that the g functions “merge” together the OT computation with the local
computation that is being used in order to generate the input to the OT. To
prove the lemma it suffices to securely compute each of these values by a non-
interactive TOT-hybrid protocol with perfect correctness and perfect privacy
against an arbitrary coalition. In fact, by Lemma1, it suffices to obtain a 2-round
protocol π′ that makes TOT calls only in the second round. First observe that the
values m1

i,j ,m
2
i,j can be easily computed by a 2-round protocol via private point-

point channels in which m2
i,j can be transferred using a TOT call in the round

2. Moreover, since the messages o2i,j = g2i,j
(
m1

ii,m
1
jj

)
and o3i,j = g3i,j

(
m1

i ,m
1
j

)

depend only on values that are known to Pi and Pj after the first round, we can
use Observation 5, and deliver them to Pj by making parallel calls to TOT in
the second round (where Pi is the sender and Pj is the selector and receiver). It
is left to deliver the value m3

i,j .
Fix some i, j ∈ [n], and let f̂ be a fully decomposable RE of f3

i,j , e.g., from [2].
Observe that it suffices to deliver the value of f̂(m2

i , o
2
i ;w) to Pj where the

randomness w is chosen solely by Pi. (Indeed, privacy for coalitions that do not
contain Pi follows from the RE privacy and privacy for coalitions that contain
Pi vacuously holds, since m2

i and o2i are given to the simulator). Being fully-
decomposable, each output of f̂ depends on the randomness w, selected by Pi,
and on at most a single input bit y of m2

i or o2i . Thus, after some reordering of
the outputs, we can write f̂(m2

i , o
2
i ;w) as
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f̂1(m2
1,i, o

2
1,i, w), . . . , f̂n(m2

n,i, o
2
n,i, w)

where the functions f̂1, . . . , f̂n are multi-output functions. Note that o2k,i itself
is the result of g2k,i(m

1
k,k,m1

i,i). Therefore there exist functions h1, . . . , hn such
that for all k ∈ [n] we can write f̂k(m2

k,i, o
2
k,i, w) = hk(m1

k,i,m
1
k,k,m1

i,i, w). Since
the input to hk is being held by only two parties, Pi and Pj , and is available at
the end of the first round, it can be encoded by a 2MPRE (Observation 5). It
follows, by Claim 6, that hk can be computed by making parallel calls to TOT
at the second round. The theorem follows. ��

7 2MPREs vs Perfect Privacy Under Active Attacks

In this section we will prove Theorem 3. Most of the work will be devoted to
the construction of 2MPREs, the converse direction will be proved in Sect. 7.3.
Along the way, we will also prove Theorem4.

Recall that a public-output functionality is a function that delivers the same
output to all the parties. We begin with the following basic construction.

Construction 11. Let π be a protocol that realizes some Boolean public-output
functionality f(x1, . . . , xn). The protocol π may have an arbitrary number of
rounds, and may use OT calls as well as private channels. We construct a non-
interactive protocol σ that realizes f and makes use of an ideal functionality V
as follows.

1. (Local pre-computation) First, each party Pi uniformly samples a local view
of π. That is, Pi samples a private random tape ri, and randomly “guesses” a
vector of incoming private messages, and a vector of incoming OT messages
corresponding to all the OT calls in which Pi plays the receiver. Then, Pi

appends her input xi to the sampled view, and computes the corresponding
outgoing messages that she would send in π either over private channels or
as inputs to the OT functionality.

2. (Calling V ) The parties send their sampled views and the computed outgoing
messages to an ideal functionality V . We further assume that P1 sends to V
her final π-output. The functionality V verifies that for every pair of parties,
(Pi, Pj), the sampled views are consistent in the following sense:
– For every message m that is delivered from Pi to Pj it holds that the guess

of Pj for m is equal to the value of the outgoing message m as computed
by Pi.

– For every OT-call in which the sender Pi computes her inputs as (a0, a1)
and the receiver Pj computes her input as s, it holds that the value a′ that
is guessed by the receiver equals to a0 if s = 0 and to a1 if s = 1.

If all these pair-wise tests succeed and P1’s output is 1, the functionality V
outputs 1 to all the parties. Else, it outputs 0.

3. (Output) The parties terminate with the output that V passes.
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Lemma 2. If π realizes f with perfect correctness, perfect privacy against a
coalition T , and a total communication of c bits (where each OT call is counted
as a single bit), then the protocol σ defined in Construction 11 realizes f with
perfect privacy against T , and a 1-sided correctness error of 1 − 2−c.

Proof. Fix an input x = (x1, . . . , xn) for f . It is not hard to see that if f(x) = 0,
the protocol σ always outputs 0. On the other hand, when f(x) = 1 the protocol
σ outputs the correct result only when the sampled views are consistent. Fix the
local random tapes r = (r1, . . . , rn) in π. Under this fixing, all the communication
in a real execution of π is fully determined, and can be represented by a transcript
string Cx,r ∈ {0, 1}c whose ith bit corresponds to the ith bit that is delivered in
π from party A = A(i) to party B = B(i) either via OT or via a private channel.
(We assume, wlog, that the communication in π is ordered in some canonical
way). Since each bit of communication is being guessed by the receiving party
uniformly and independently, the parties submit the consistent transcript Cx,r

with probability exactly 2−c.
We move on to privacy. Fix some coalition T . Syntactically, the view of T in

π consists of the input xT = (xi)i∈T the local random tapes rT = (ri)i∈T and
all the incoming messages that a party in T receives. Let IT denote the set of
all indices i ∈ [c], such that the ith message in π is received by a party in T .
Given a full transcript C ∈ {0, 1}c, we denote by C[IT ] the restriction of C to
the messages that are delivered to members in the coalition T . For convenience,
let us further assume that the final output of the protocol, y, appears as part of
the view. Similarly, the view of T in σ consists of (xT , rT , C ′[IT ], v) where C ′[IT ]
are the guessed incoming messages, and v is the bit that V delivers.

Consider the following randomized mapping g that maps a T -view
(xT , rT , C[IT ], y) under π to a T -view (xT , rT , C ′[IT ], v) under σ: First, uni-
formly sample a sequence e = (e1, . . . , ec) of random bits (where ei = 1 indicates
an “incorrect” guess for the ith bit in the full transcript). Then, copy C[T ] to
C ′[T ] and flip the value of the ith entry if i ∈ IT and ei = 1. Finally, set v to
zero if some ei is‘ one, and otherwise set v = y.

We can define a simulator Sim′ for σ as follows. Given xT and an output y,
use the simulator Sim of π to sample a view (xT , rT , C[IT ], y) under π, apply
the mapping g and output the resulting σ view (xT , rT , C ′[IT ], v). To analyze
the simulator, fix an input x to all the parties. By the privacy of π, the distri-
bution generated by Sim′(xT , f(x)) is identically distributed to the distribution
g(xT , rT , Cx,r[IT ], f(x)) where Cx,r[IT ] is the vector of incoming messages to T
in a real execution of π over the input x and fresh randomness r = (r1, . . . , rn),
and rT = (ri)i∈T .

We complete the argument by showing that g(xT , rT , Cx,r[IT ], f(x)) is dis-
tributed identically to the real execution of σ. We prove that this is the case for
every fixing of r. Indeed, in σ the entire vector of guesses C ′ ∈ {0, 1}c is chosen
uniformly at random, and the coalition T receives the restricted transcript C ′[IT ]
together with a bit v which is equal to 0 if C ′ �= Cx,r and to f(x) otherwise.
Equivalently, we could sample an error vector e ← {0, 1}c, set C ′ = Cx,r ⊕ e and
deliver to T the restricted vector C ′[IT ] with the bit v which is set to 0 if some
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bit of e is 1, and otherwise takes the value f(x). The resulting distribution is
exactly the one that is sampled by g. The lemma follows. ��
Remark 2 (Handling protocols with imperfect correctness). One can use a vari-
ant of Construction 11 in which V outputs an additional consistency bit b that
indicates whether the views were consistent. (Our simulator can simulate this
additional information). At the post-processing stage, the parties output a spe-
cial “I do not know”, ⊥, symbol when b = 0 and otherwise output the main
output v of V . Assuming that the original protocol π is perfectly correct, the
resulting protocol never errs and outputs a non-⊥ symbol with probability 2−c.

This variant also allows us to handle protocols that have imperfect correct-
ness. Specifically, if the original protocol π suffers from some correctness error
of δ < 0.5 we get a protocol with similar correctness error (conditioned on not
outputting ⊥). Such an error can be reduced to an arbitrary ε by taking a major-
ity vote over k = O(log(1/ε)2c/(1 − 2δ)) independent parallel copies of the new
protocol. This new protocol σk is syntactically similar to σ except that it makes
k calls to (the extended version of) V . This allows us to extend the above lemma
(and all the subsequent results) to the case where π has a correctness error of
δ < 0.5. For simplicity, we omit these extensions from the current version.

7.1 2MPRE for Protocols Without OT Calls

Observation 12. If π does not use OT calls then the functionality V can be
written as

∧
i,j∈[n] zi,j where zi,j is computed by taking the equality between a

string ai,j, computed locally by Pi, and a string bi,j computed locally by Pj. The
length of ai,j and bi,j equals to the number of bits that Pi delivers to Pj in π.

Indeed, ai,j is the vector of messages that Pi should deliver to Pj according to
her local computation (under the sampled view) and bi,j is vector of incoming
messages that Pj receives from Pi according to her guesses.

Corollary 5 (Theorem 4 restated). In the honest majority setting, every
n-party functionality f non-interactively reduces to multiple parallel calls to
AND ◦ EQ functionality. The reduction has perfect privacy and an arbitrarily
small 1-sided statistical correctness error of ε. The complexity of the protocol is
O(log(m/ε)) where m is the number of outputs of f and the hidden constant in
the O-notation depends on the complexity of f .

Proof. Every n-party functionality f has a protocol in the plain model (i.e.
does not use OT calls) that is perfectly correct and perfectly

⌊
n−1
2

⌋
-private [10].

Assuming that f is a Boolean public-output functionality, we can use Lemma2
and Observation 12 to non-interactively reduce f to AND ◦ EQ with perfect pri-
vacy and a constant 1-sided correctness error δ against minority coalitions. (The
constant δ depends on the description of f). We can reduce the error to ε′ by
executing the reduction � = O( log(1/ε′)

1−δ ) times in parallel and outputting 1 if
and only if at least one of these executions outputs 1. (The latter step is com-
puted locally, i.e., by the decoder). Since σ has perfect privacy, repeating it in



Quadratic MPREs Beyond Honest Majority and Their Applications 477

parallel does not affect privacy. Finally, since every m-output functionality non-
interactively reduces to m parallel calls to Boolean public-output functionalities,
the statement extends to such functionalities as well, while the error grows to
ε = mε′ where m is the number of outputs. ��
Remark 3 (The complexity of the construction). Recall that every n-party multi-
output functionality f that is computable by s-size formula (or even s-size
branching program) non-interactively n-privately reduces to a functionality g
with poly(s) outputs and each of its output is a constant-size deterministic
public-output functionality (that takes a constant number of input bits from
a constant number of parties) [2,3,22]. Therefore, by Corollary 5, f reduces to
poly(s) log(1/ε) calls to AND ◦ EQ over constant fan-in.

Observe that the equality function over k-bit strings, EQ(x, y) can be written as
a linear function L(x, y) = (xi − yi + 1)i∈[k] over an arbitrary finite field F such
that L(x, y) = 1k iff x = y. In addition, the AND predicate admits a degree-2
statistical randomized encoding as follows.

Fact 13 (Encoding AND by Inner-Products [22]). Fix an arbitrary finite
field F. Let v = (v1, . . . , v�) be a vector of 0–1 values. Consider the randomized
function

g(v; ρ) :=
∑

i∈[�]

ρi · (1 − vi),

where ρ ← F
� and the addition and multiplication are taken over F. Then, g

is a randomized encoding of
∧

i∈[�] vi with perfect privacy and correctness error
of 1/|F|. When all vis are 1, we get 0 from g. So the output is decoded as (a)
1 when g outputs 0 and (b) 0 otherwise. Note that when we output 0, this is
always correct. But when we output 1, it may not be correct, since the sum of
ρi’s can lead to zero. Since the sum is random, the probability that it can be 0
is 1/|F|. Lastly, in this case g is a degree-2 function over the binary field. By
default, we let F be a binary extension field. In this case, g can be written as
a degree-2 function over the binary field, and it can be computed by a Boolean
circuit of size � log |F|. Unless stated otherwise, we assume that F is the field of
size 2�+1.10

It follows that AND◦EQ reduces non-interactively to a degree-2 functionality
(with statistical correctness error) and so Corollary 5 yields a new alternative
construction of honest-majority 2MPRE, alas with statistical correctness.

7.2 2MPRE for Protocols with OT Calls

Note that when the underlying protocol is the OT-hybrid channel, the function-
ality (also a predicate) V has a slightly more complicated form. In particular,

10 Alternatively, one can instantiate g over the binary field, and reduce the error to ε by
repeating the encoding log(1/ε) times with fresh independent randomness. See [22].
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it computes an AND over degree-2 functions. As a result, we cannot use Fact 13
directly to derive a 2MPRE. We bypass the problem by letting the pair of par-
ties that use the ith OT call, to locally select the ith randomizer ρi of the AND
in the inner-product based RE of Fact 13. (Note that previously we treated the
randomizers as being part of the internal randomness of the MPRE). Unfortu-
nately, this leads to a “leaky” 2MPRE of V . We show that this leakage can still
be simulated if the original protocol π is weakly-active private. Details follow.

Definition 4 (Weakly-active adversaries). Let π be an n-party protocol in
the OT-hybrid model. A weakly-active adversary A that corrupts a subset T is
defined by deviating from the protocol π as follows. For every OT-call between
two corrupted parties, a sender S with values (a0, a1) ∈ {0, 1}2 and a receiver
R with selector bit s ∈ {0, 1}, the adversary sets the received value to be some
fixed value a′ ∈ {0, 1}. After these modifications, the adversary honestly follows
the protocol where a′ is used as the received value of the OT instance with inputs
(a0, a1) and s. Such a deviation can be fully specified by a vector a′ = (a′

i)i∈OT

where i ∈ OT if the ith bit that is exchanged in π is delivered via an OT between
2 corrupted parties. We write πa′ to denote the protocol that is obtained for a
given fixing of a′.

A protocol π in the OT-hybrid model computes a (deterministic) functionality
f with t-perfect privacy against weakly-active adversaries if for every t-bounded
subset T , and every vector a′ = (a′

i)i∈OT
, it holds that

Sim(T, a′, xT , fT (x)) ≡ ViewT,πa′ (x, r),

where r = (r1, . . . , rn) are chosen uniformly at random and ViewT,πa′ (x, r)
denotes the view of coalition T when running the protocol πa′ with input
x = (x1, . . . , xn) and randomness r = (r1, . . . , rn).

We also require either statistical or perfect correctness against a passive
adversary, i.e.,

Pr
r1,...,rn

[π(x1, . . . , xn; r1, . . . , rn) �= f(x1, . . . , xn)] ≤ δ,

where ri is the randomness used by the ith party in π.

A Leaky Version of Construction 11. Before introducing the leaky 2MPRE of
V , it will be useful to consider an intermediate case where V itself is leaky.
Let Ṽ denote the corruption-aware predicate that takes the same input as V
in Construction 11, delivers the same output as V to all the honest parties, but
leaks some additional information to the adversary. Specifically, Ṽ leaks to the
adversary the consistency bit that verifies consistency of the transcript without
taking into account the OT-messages that are exchanged between pairs of cor-
rupted parties. Formally, for a set of corrupted parties T ⊂ [n], the functionality
Ṽ is defined as follows.

– Input: For each index i ∈ [c], (a) if the ith bit in π is a private-channel message
from a sender A(i) to a receiver B(i), then Ṽ receives a bit mi from A(i) and
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m′
i from B(i); (b) if the ith bit in π is transferred over an OT-channel then

Ṽ receives (ai,0, ai,1) from the sender A(i) and (si, a
′
i) from the receiver B(i).

In addition, the functionality Ṽ receives from the first party P1 her output
vc+1 (computed based on her guesses).

– Output: The parties receive the output

V =
∧

i∈[c+1]

vi

where for vi is defined as follows. If the ith communication bit of π is deliv-
ered over a private-channel then vi = 1 if and only if mi = m′

i. If the ith
communication bit of π is delivered over an OT-channel then vi = 1 if and
only if a′

i = si · ai,1 + (1 − si) · ai,0. Lastly, recall that vc+1 = 1 if and only if
the output of P1 is 1. In addition, the adversary receives the value

VT =
∧

i/∈OT

vi

where i ∈ OT if the ith communication bit in π is an OT-message that is
delivered between a pair of corrupted parties A(i), B(i) ∈ T .

Claim 14. Suppose that π realizes f with perfect passive correctness and t-
perfect privacy against weakly-active adversaries. Let σ̃ denote the protocol that
is obtained by instantiating Construction 11 with the functionality (predicate) Ṽ
instead of V . Then, σ̃ realizes f with perfect t-privacy and 1-sided correctness
error of 1 − 2−c.

The proof is deferred to the full version.
In order to obtain a 2MPRE we will need the following extension to the

inner-product encoding from Fact 13.

Fact 15 (leaky inner products). Under the notation of Fact 13, the following
holds. For every set S ⊆ [�], let ρS = (ρi)i∈S and vS = (vi)i∈S. There exists a
simulator SimS that, for every v ∈ {0, 1}�, perfectly samples the distribution

(g(v; ρ), ρS , vS) where ρ ← F
�

given ρS , vS and
∧

i/∈S vi.

Lemma 3 (2MPRE from weak-active privacy). Suppose that the function-
ality f can be realized in the OT-hybrid model by a protocol π with t-perfect pri-
vacy against weakly-active adversaries and perfect passive correctness. Then f
can be realized by t-private 2MPRE with an arbitrarily small correctness error of
ε and with complexity of log(1/ε)(n + Tπ)2O(c) where n is the number of parties
and Tπ is the computational complexity of π.

The proof is deferred to the full version.
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7.3 2MPRE Implies Weak-Active Perfect Privacy

We prove the converse of Theorem 3.

Lemma 4. If the functionality f has t-private 2MPRE, then it can be realized
in the OT-hybrid model with perfect (passive) correctness and t-perfect privacy
against weakly active adversaries. The transformation carries to the statistical
setting while preserving the error.

Proof. Suppose that f has t-private 2MPRE. By Theorem10, f can be computed
by a protocol in which the result of OT messages only affect the last-round
messages of the parties. This means that a deviation of a weakly-active adversary
can only affect the view of an honest party after the last round of messages. Put
differently, at the beginning of the last round the view of all honest parties
is consistent with an honest execution of the protocol. Consequently, all the
messages that are being sent to the adversary (including the last round messages)
are consistent with an honest execution of the protocol, and so weak-active
perfect privacy follows from passive perfect privacy, as required. ��
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Abstract. We revisit the question of minimizing the randomness com-
plexity of protocols for secure multiparty computation (MPC) in the set-
ting of perfect information-theoretic security. Kushilevitz and Mansour
(SIAM J. Discret. Math., 1997) studied the case of n-party semi-honest
MPC for the XOR function with security threshold t < n, showing that
O(t2 log(n/t)) random bits are sufficient and Ω(t) random bits are nec-
essary. Their positive result was obtained via a non-explicit protocol,
whose existence was proved using the probabilistic method.

We essentially close the question by proving an Ω(t2) lower bound on
the randomness complexity of XOR, matching the previous upper bound
up to a logarithmic factor (or constant factor when t = Ω(n)). We also
obtain an explicit protocol that uses O(t2 · log2 n) random bits, matching
our lower bound up to a polylogarithmic factor. We extend these results
from XOR to general symmetric Boolean functions and to addition over
a finite Abelian group, showing how to amortize the randomness com-
plexity over multiple additions.

Finally, combining our techniques with recent randomness-efficient
constructions of private circuits, we obtain an explicit protocol for evaluat-
ing a general circuit C using only O(t2 ·log |C|) random bits, by employing
additional “helper parties” who do not contribute any inputs. This upper
bound too matches our lower bound up to a logarithmic factor.

1 Introduction

The randomness complexity of probabilistic algorithms and distributed proto-
cols is an important complexity measure that has been the subject of a large
body of research. From a practical point of view, the design of algorithms and
protocols that use a minimal amount of randomness is motivated by the diffi-
culty of generating high-quality randomness from physical sources. While pseu-
dorandomness provides a generic way of reducing the amount of randomness
in a computational setting, this solution (besides requiring unproven crypto-
graphic assumptions) is not always practical, especially in a distributed setting
or when parties may be subject to resetting attacks. This motivated a line of
work on minimizing the amount of randomness used by secure cryptographic
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hardware [2,3,14,17,19,22,24]. From a theoretical perspective, the goal of min-
imizing the use of randomness is a fundamental challenge that has driven many
important developments in computer science, including a rich theory of pseudo-
randomness and randomness extraction.

This work studies the randomness complexity of secure multiparty computa-
tion (MPC) in the simplest setting of perfect security against a passive (semi-
honest) adversary who may corrupt up to t parties. Such an MPC protocol
allows n parties, each holding a local input xi ∈ Di, to jointly compute a func-
tion f : D1 × D2 × . . . × Dn → Z of their inputs by exchanging messages over
secure point-to-point channels. At the end of the protocol, all parties should learn
f(x1, x2, . . . , xn). We say that the protocol is t-secure if every set of at most t
parties jointly learn nothing beyond what follows from their inputs and the out-
put. To achieve this goal, the parties may toss random coins at any time during
the protocol’s execution, possibly depending on their inputs and the messages
they receive. The randomness complexity of the protocol is the total number of
random bits used by all parties.

Classical MPC protocols for this setting [4,11] can compute every function
f with randomness complexity Õ(s · t2), where s is the Boolean circuit size of f ,
as long as t < n/2. (For bigger thresholds t, most functions cannot be realized
at all in the information-theoretic setting.) In the useful special case of the XOR
function, where f(x1, x2, . . . , xn) = x1⊕x2⊕· · ·⊕xn (or more generally, addition
over a finite Abelian group), the “textbook” protocol from [5,13] requires O(nt)
random bits for any t < n.

The question of minimizing the randomness complexity of MPC has been the
topic of a fairly large body of work [6,7,9,16,18,21,22,25,27–31]. While some of
these works focus on the minimal security thresholds of t = 1 or t = 2, here we
are interested in how the randomness complexity grows with t.

We will be mainly interested in the simple special case of computing the XOR
function and, more generally, addition over finite Abelian groups, but will also
consider other classes of functions f , including symmetric functions and even
general functions. The case of addition is particularly well motivated because of
its usefulness for many applications, including secure voting [5], anonymous com-
munication [10], linear sketching [23], privacy-preserving analytics [15], federated
learning [8], and more.

The randomness complexity of XOR was studied by Kushilevitz and Man-
sour [27], who proved that O(t2 log(n/t)) random bits are sufficient and Ω(t)
random bits are necessary. This leaves a quadratic gap between the two bounds.
Another question left open by [27] is the existence of an explicit protocol meeting
the upper bound. The positive result was obtained via a non-explicit protocol,
relying on a combinatorial object that can either be generated by an efficient
probabilistic construction (with small but nonzero failure probability) or gener-
ated deterministically in super-polynomial time. Blundo et al. [6] obtain a lower
bound of Ω(t2/(n − t)), which is asymptotically matched by the upper bound
of [5,13] when t = n − Ω(1), but still leaves a quadratic gap when t ≤ (1 − ε)n.
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1.1 Our Contribution

In this work, we settle the main open questions about the randomness complexity
of t-secure MPC for XOR and addition over finite Abelian groups, and obtain
similar results for other functions. Concretely, we obtain the following results.

Lower Bounds. We prove an Ω(t2) lower bound on the randomness complexity
of XOR, matching the previous upper bound of Kushilevitz and Mansour [27]
up to a logarithmic factor (or even a constant factor when t = Ω(n)). Our lower
bound extends to arbitrary symmetric Boolean functions, including AND and
majority. It applies also when the output is revealed to a strict subset of the
parties and even in the case where there are additional participating parties who
do not hold an input.

Our lower bounds do not apply to statistically private (let alone computa-
tionally private) MPC for the following inherent reason: in the setting of statis-
tical privacy, one of the parties can pick a random committee P of σ parties,
for a statistical security parameter σ, and the parties can securely add their
inputs by secret-sharing them among the parties in P. This folklore protocol,
which is statistically 2−Ω(σ)-secure against any (non-adaptive) adversary cor-
rupting t = 0.99n parties, has randomness complexity O(n · σ), which beats our
Ω(n2) lower bound when σ = o(n). This explains the quick deterioration of the
information-theoretic lower bound technique from [6], which is robust to small
statistical deviations, when t gets farther away from n. Indeed, our lower bound
proof relies on combinatorial rather than information-theoretic methods.

Explicit Upper Bounds for XOR and Addition. To complement our lower
bounds, we obtain an explicit protocol for XOR that uses O(t2 · log2 n) random
bits, matching our lower bound up to a polylogarithmic factor and at most a
polylog-factor worse than the non-explicit protocol from [27]. We extend the
protocol from XOR to general symmetric Boolean functions as well as addition
over any finite Abelian group, and show that t additions can be performed using
only Õ(t2) random bits, namely essentially for the same price as one.

Upper Bounds for General Functions. Finally, building on the techniques
with recent randomness-efficient constructions of private circuits [19], we obtain
an explicit protocol for evaluating a general circuit C using only O(t2 · log |C|)
random bits, but in an easier setting that allows for additional “helper parties”
who do not contribute any inputs but still participate in the protocol. This
upper bound too matches our lower bound up to the logarithmic factor, and
gives at least a factor Ω(t) improvement over previous randomness-efficient MPC
protocols from [9,22].

We leave open the question of characterizing the randomness complexity of
general MPC without helper parties, as well as closing the remaining (polylog-
arithmic) gaps between our lower bounds and upper bounds. Evidence for the
difficulty of these questions in some parameter regimes was given by Kushilevitz
et al. [29], who showed a two-way relation between the randomness complexity
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of f for t = 1 and its circuit complexity. We refer the readers to the full version
of this paper [20] for discussion about other related directions.

2 Technical Overview

In this section, we give an overview of the technical ideas behind the main results.

2.1 Background: Secure Multiparty Computation

We consider the standard model of information-theoretic MPC: a set of n parties
{P1, P2, . . . , Pn}, each holding an input xi from a finite domain Di, jointly run
a protocol Π to compute a function f : D1 × D2 × . . . × Dn → Z. At the end of
the protocol, all parties will receive the function output f(x1, x2, . . . , xn).

During the protocol execution, when needed, each party can toss a random
coin and use this random bit in the computation. The randomness complexity
of the protocol Π is measured by the total number of random bits that are used
during the protocol execution.

In the following, we will use x = (x1, x2, . . . , xn) to denote the input, and
r = (r1, r2, . . . , rn) to denote the random tapes of all parties. The function
output is denoted by f(x), and an execution of the protocol Π with input x and
random tapes r is denoted by Π(x, r).

We consider the standard definition of correctness and semi-honest security.

– The correctness of the protocol Π requires that, when all parties honestly
follow the protocol, they will finally output f(x) at the end of the protocol.

– Let t be the number of corrupted parties. The semi-honest security of the
protocol Π requires that the joint view of any set of t parties can be perfectly
simulated by their inputs and the function output.

Note that the semi-honest security implies that, for any set T of t parties, and
for all x,x′ such that f(x) = f(x′) and xi = x′

i for all i ∈ T , the distribution of
the joint view of parties in T of a random execution with input x is identical to
that of a random execution with input x′.

2.2 Randomness Lower Bound for XOR and Symmetric Functions

To better exhibit our idea, we begin with an n-ary XOR function for simplicity.
Concretely, we consider the function f : ({0, 1})n → {0, 1} defined by

f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ . . . ⊕ xn.

Suppose Π is an MPC protocol that computes f . Our result shows that any
such protocol must use Ω(t2) random bits, improving the previous Ω(t) lower
bound from [27] and matching their O(t2 log(n/t)) upper bound up to at most
a logarithmic factor.

We start with the following known fact:
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Fact 1. For every Pi, the messages exchanged with Pi together with f(x) fully
determine its input xi.

A similar fact was proved and used in [13] to show a lower bound on the
communication complexity of the XOR function, and in [6] to show a lower
bound on the randomness complexity of the XOR function.1

Ideas Behind Fact 1. To see why this fact is true, suppose that there are two
executions, Π(x, r) and Π(x′, r′), such that xi and x′

i are different, but the
messages exchanged with Pi and the function output are identical. Now consider
a third execution Π(x̃, r̃) where x̃ = x except that x̃i = x′

i, and r̃ = r except
that r̃i = r′

i. I.e., the third execution Π(x̃, r̃) is the first execution Π(x, r) except
that we replace Pi’s input and random tape by those in the second execution
Π(x′, r′). Consider the messages exchanged with Pi in these three executions:

– From the point of view of the party Pi, Pi uses the same input and random
tape in Π(x′, r′) and Π(x̃, r̃). Therefore, if Pi always receives the same mes-
sages from other parties in these two executions, he cannot distinguish these
two executions, and thus will always send the same messages to other parties.

– Similarly, from the point of view of all other parties {Pj}j �=i, they use the
same input and random tapes in Π(x, r) and Π(x̃, r̃). Therefore, if {Pj}j �=i

always receive the same messages from Pi in these two executions, they cannot
distinguish these two executions, and thus will always send the same messages
to Pi.

Note that before the first message exchanged with Pi, Pi cannot distinguish
Π(x′, r′) and Π(x̃, r̃), and all other parties {Pj}j �=i cannot distinguish Π(x, r)
and Π(x̃, r̃). It implies that the first message exchanged with Pi is always the
same in these three executions. Thus, by induction, the messages exchanged with
Pi are identical in these three executions.

It follows that parties other than Pi cannot distinguish between Π(x, r) and
Π(x̃, r̃) at the end of the protocol, which means that they will output the same
value in both executions. However, since x and x̃ only differ in the i-th input,
for the XOR function f , we must have f(x) �= f(x̃). It means that at least one
of Π(x, r) and Π(x̃, r̃) outputs an incorrect result, which contradicts with the
correctness of Π. Thus, Fact 1 holds.

With Fact 1, we can view the messages exchanged with Pi together with
the function output as an encoding of Pi’s input xi. Moreover, we observe that
this encoding is t-private, i.e., the distribution of any t messages in a random
codeword of xi is independent of xi.

Fact 2. For every Pi, the messages exchanged with Pi together with f(x) form
a t-private encoding of xi.

1 [6] focuses on a broader class of functions which they refer to as functions with
sensitivity n. The XOR function is a concrete instance in this class.
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Ideas Behind Fact 2. Intuitively, it follows from the semi-honest security of Π:
for any t messages, the joint view of the senders and the receivers (other than
Pi) of these t messages should not reveal the input of Pi. To formally argue it,
we consider the following encoding scheme:

– Let x = (0, 0, . . . , 0, 1), i.e., all inputs are 0 except the last input is 1. And
let x′ be the input subject to x′

i = 1 and x′
j = 0 for all j �= i. Then f(x) =

f(x′) = 1 but xi �= x′
i.

– The encoding of 0 is the messages exchanged with Pi in a random execution
with input x. And the encoding of 1 is the messages exchanged with Pi of a
random execution with input x′.

For t ≤ n−2 and any t messages, we want to show that the distribution of these
t messages in a random codeword of 0 is identical to that in a random codeword
of 1. To this end, we consider the set T of t parties which are senders or receivers
(other than Pi) of these t messages.

If Pn �∈ T , then we have xj = x′
j = 0 for all j ∈ T . Since f(x) = f(x′), by

the semi-honest security of Π, the distribution of the joint view of parties in T
of a random execution with input x is identical to that of a random execution
with input x′. Note that these t messages are in the joint view of parties in T .
Therefore, the distribution of these t messages in a random execution with input
x is identical to that in a random execution with input x′.

When Pn ∈ T , the above argument fails because xn = 1 while x′
n = 0. To

fix it, we consider another input x̃ as an intermediate step towards proving the
t-privacy. Since t ≤ n−2, there is a party Pi� which is not in T

⋃{Pi}. We choose
x̃ subject to x̃i� = 1 and x̃j = 0 for all j �= i�. Then f(x) = f(x′) = f(x̃) = 1.

On one hand, since xi = x̃i = 0 and f(x) = f(x̃), by the semi-honest
security of Π, Pi cannot distinguish a random execution with input x from a
random execution with input x̃. Note that these t messages are in the view of
Pi. Therefore, the distribution of these t messages in a random execution with
input x is identical to that in a random execution with input x̃.

On the other hand, since x′
j = x̃j = 0 for all j ∈ T and f(x′) = f(x̃), by

the semi-honest security of Π, {Pj}j∈T cannot distinguish a random execution
with input x′ from a random execution with input x̃. Note that these t messages
are also in the joint view of parties in T . Therefore, the distribution of these t
messages in a random execution with input x′ is identical to that in a random
execution with input x̃.

Combining these two parts together, we have shown that the above encoding
scheme is t-private.

With Fact 2, we are interested in the randomness complexity of a t-private
encoding scheme. In our work, we show that for any t-private encoding scheme
for a single bit, the support of 0 (i.e., the set of all possible codewords of 0) is of
size at least 2t. In Sect. 2.2, we will discuss how we prove this result. Jumping
ahead, this implies that when the input is x, the view of each party Pi has at
least 2t possibilities.
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Connection to Randomness Complexity. In [21,31], it has been shown that for a
fixed input x, if the protocol execution with input x has 2d different transcripts
(i.e., the joint view of all parties), then the protocol uses at least d random bits.
Thus, the result that the view of Pi has at least 2t possibilities implies that the
protocol requires at least t random bits.

Final Piece. Indeed, the above result is when we only consider the view of a single
party. We note that, if we fix the view of the first party P1 (by corrupting P1), the
protocol Π effectively computes the XOR function for the rest of n − 1 parties
that is secure against t−1 parties. In particular, we show that the above argument
continues to work for the view of the second party: given the view of P1, the view
of P2 has at least 2t−1 possibilities. In general, we show the following:

Fact 3. For all i ∈ {1, 2, . . . , t}, for a fixed input x and given the views of the
first i − 1 parties, the view of Pi has at least 2t−i+1 different possibilities.

Thus, for a fixed input x, the joint view of the first t parties has at least∏t
i=1 2t−i+1 = 2t(t+1)/2 different possibilities. It implies that the protocol Π

requires Ω(t2) random bits.
We note that this lower bound argument holds even if the output is only

given to a strict (nonempty) subset of the parties and even if there is an arbitrary
number of additional “helper” parties who do not have an input.

Extending to Symmetric Functions. We generalize the previous lower bound
to an arbitrary (nontrivial) symmetric Boolean function. For this, it suffices to
prove that the above three facts still hold.

– For Fact 1, the main task is to find two executions Π(x, r) and Π(x′, r′)
such that (1) xi �= x′

i but the messages exchanged with Pi together with
the function output in Π(x, r) are identical to those in Π(x′, r′), and (2)
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) �= f(x′). We show that such two executions

exist for any symmetric function that outputs a single bit.
– For Fact 2, it relies on Fact 1 and the semi-honest security of the protocol.

Beyond that, we also need to find proper inputs x,x′ for the encoding scheme
and x̃ that is used to prove the t-privacy of the encoding scheme. We observe
that for a symmetric function, we can continue to use the inputs we construct
above.

– For Fact 3, it follows from Fact 2 and the randomness complexity of t-private
encoding schemes.

Thus, we show that for any non-constant n-ary symmetric function that outputs
a single bit, any MPC protocol requires Ω(t2) random bits.

Randomness Complexity of t-Private Encoding Schemes. Let (Enc, Dec)
be a t-private encoding scheme for a single bit. Here t-privacy means that the
distribution of any t bits in a random codeword is independent of the input bit.
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Our goal is to show that the support of 0 (i.e., the set of all possible codewords
of 0) is of size at least 2t. Let supp(m) denote the support of m ∈ {0, 1}. The
lower bound is proved using the following simple inductive argument:

1. When t = 1, we show that the support of 0 is of size at least 2. Let c be a
codeword of 0 and c′ be a codeword of 1. By the correctness of the encoding
scheme, c �= c′. Without loss of generality, assume the first bits of c and c′ are
different. Since the encoding scheme is 1-private, the distribution of the first
bit in a random codeword of 0 is identical to that in a random codeword of 1.
Then the first bit in a random codeword of 0 is not a constant bit. Otherwise,
the first bit in a random codeword of 1 should be the same constant bit, which
contradicts with the assumption that the first bits of c and c′ are different.
Since the first bit can take both 0 and 1, there are at least two codewords of
0. The statement holds for t = 1.

2. Suppose the statement holds for t − 1. With the same argument as above,
there exists a bit in a random codeword of 0 which is not a constant bit.
Without loss of generality, assume that it is the first bit.
Since the encoding scheme is t-private, the distribution of any t bits in a
random codeword of 0 is identical to that in a random codeword of 1. Then,
given the first bit, the encoding scheme is (t − 1)-private. Thus, according
to the induction hypothesis, there are at least 2t−1 codewords of 0 given the
first bit. Note that the first bit can take both 0 and 1, and in each case, there
are at least 2t−1 codewords of 0 given the first bit. Thus, there are at least
2t codewords of 0. The statement holds for t.

3. By induction, we conclude that |supp(0)| ≥ 2t.

In the full version of this paper [20], we provide an alternative proof (due
to Yuval Filmus) of a slightly weaker lower bound using Fourier analysis. This
alternative proof also applies to t-private encodings with imperfect correctness.

2.3 Explicit Randomness Upper Bounds for XOR and Addition

In [27], Kushilevitz and Mansour gave an n-party MPC protocol for the XOR
function with semi-honest security against t corrupted parties, which uses
O(t2 · log(n/t)) random bits. This upper bound matches our lower bound, Ω(t2)
random bits, up to (at most) a logarithmic factor. However, the construction
in [27] is non-explicit, relying on a combinatorial object that can either be gener-
ated by a probabilistic construction (with small but nonzero failure probability)
or generated deterministically in time (n/t)O(t). In this part, we introduce our
techniques towards constructing an explicit n-party computation protocol for
the XOR function, which uses O(t2 · log2 n) random bits, and where the running
time of all parties is polynomial in n.

Basic Protocol. We start with describing the construction in [27]. Following [27],
we first assume that there is an ideal functionality Frand that generates correlated
random bits for all parties. The protocol is as follows:
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1. Frand first prepare n random bits r1, r2, . . . , rn subject to ⊕n
i=1ri = 0. We will

specify the distribution of these n bits later. Then Frand sends ri to Pi.
2. Each party Pi uses ri to mask its input xi by computing gi = xi ⊕ ri. Note

that ⊕n
i=1gi = (⊕n

i=1xi) ⊕ (⊕n
i=1ri) = ⊕n

i=1xi. Therefore, the task becomes to
compute the XOR of g1, g2, . . . , gn.

3. From i = 2 to n, the party Pi receives the partial result Gi−1 = ⊕i−1
j=1gj from

Pi−1 and computes the partial result Gi = Gi−1 ⊕ gi. Then this result is sent
to Pi+1. Thus, the last party Pn learns Gn = ⊕n

i=1gi = ⊕n
i=1xi and distributes

the function output to all other parties.

The correctness of the protocol follows from the description. As for security,
note that when (r1, r2, . . . , rn) are uniformly random subject to ⊕n

i=1ri = 0,
(g1, g2, . . . , gn) are also uniformly random subject to ⊕n

i=1gi = f(x), where
f(x) is the function output. Thus, even learning all {gi}n

i=1 reveals no infor-
mation about honest parties’ inputs. Therefore, the protocol is secure when
(r1, r2, . . . , rn) are uniformly random subject to ⊕n

i=1ri = 0.
Kushilevitz and Mansour [27] noted that, as long as the distribution of the

joint view of corrupted parties remains unchanged, we can relax the requirement
of the distribution of r = (r1, r2, . . . , rn) without breaking the security. Con-
cretely, let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly random bits subject to ⊕n

i=1r̃i = 0.
Let View(Pi,x, r) denote the view of Pi in an execution with input x and ran-
dom bits r. A sufficient condition of maintaining the protocol security is that,
for all x and for all set T of t parties, the random variables r satisfy that

{View(Pi,x, r)}i∈T ≡ {View(Pi,x, r̃)}i∈T .

Note that View(Pi,x, r) contains (xi, ri, Gi−1, Gn) (Here Gn is the value received
from Pn). Recall that gi = xi ⊕ ri for all i ∈ {1, 2, . . . , n}. Given x, we are
interested in (ri,⊕i−1

j=1rj ,⊕n
j=1rj). Let W = {ri,⊕i−1

j=1rj}i∈T

⋃{⊕n
j=1rj}. Then

the above condition can be interpreted as

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) refer to the distributions of the variables in W
instantiated by r and r̃ respectively.2

Based on this observation, Kushilevitz and Mansour [27] showed the existence
of a sampling space of r of size (n/t)O(t). Therefore, sampling a random r requires
O(t · log(n/t)) random bits. Finally, to obtain a protocol in the standard model,
it is sufficient to realize Frand. This is done by letting each of the first t + 1 par-
ties sample a fresh copy of the random string r. Then all parties use the XOR of
all random strings in the protocol. Intuitively, since there are at most t corrupted
parties, at least one copy of the random string is generated by an honest party,
which is unknown to the corrupted parties. Therefore, given the random strings
generated by corrupted parties, the XOR of all random strings has the same dis-
tribution as that generated by Frand. In this way, Kushilevitz and Mansour [27]
obtained an MPC protocol for XOR with randomness complexity O(t2 · log(n/t)).
2 This formalization is from [19].
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Parity Sharing Generator [19]. In [19], Goyal et al. generalized the approach of
Kushilevitz and Mansour [27] to support any order of computing the XOR of
g1, g2, . . . , gn.3 Similarly to [19], our protocol is based on a tree Tr with n leaf
nodes that represents a possible way of computing the parity of n bits. However,
unlike [19], for our explicit construction it is crucial that Tr be a low-depth
full binary tree (i.e., each node has either two children or no child). Then Tr
has exactly n − 1 internal nodes and logarithmic depth. The tree Tr defines
the following order of computing the XOR of n bits: All parties start with n
bits g1, g2, . . . , gn associated with all leaf nodes. Each time, Pi is responsible to
compute the bit associated with the i-th internal node by querying from other
parties the bits associated with the two children of the i-th internal node and
XORing these two bits. Finally, Pn−1 computes the bit associated with the root
node, which is equal to

∑n
i=1 gi.

For a node v ∈ Tr, let gv denote the value associated with v, and Sv denote
the set of all leaf nodes that are descendants of v. Then {gv}v∈Tr satisfy that for
all internal node v, gv =

∑
i∈Sv

gi. For a set T of t corrupted parties, let V be the
set of nodes such that for all v ∈ V , gv is in the joint view of all corrupted parties.
Note that the view of each party only contains gv’s for a constant number of
nodes v. We have |V | = O(t). Consider the set W := {⊕i∈Sv

ri | v ∈ V }. With a
similar argument, a sufficient condition of proving security is that, the random
variables r satisfy that

D(r,W ) ≡ D(r̃,W ),

where r̃ = (r̃1, r̃2, . . . , r̃n) are uniformly random subject to ⊕n
i=1r̃i = 0.

To generate such random bits r, Goyal et al. [19] introduced the notion of
parity sharing generators.4

Definition 1 (Access Set [19]). An access set A of a set of random variables
{r1, r2, . . . , rn} is a set of jointly distributed random variables satisfying the fol-
lowing requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.
2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Definition 2 (Parity Sharing Generators [19]). Let G : {0, 1}m → {0, 1}n

be a function, u = (u1, u2, . . . , um) be a vector of random variables in {0, 1}m

that are uniformly distributed, and r = (r1, r2, . . . , rn) = G(u). Let A be an
access set of the random variables {r1, r2, . . . , rn}. The function G is a t-resilient
parity sharing generator with respect to A if the following holds:

1. The output r = (r1, r2, . . . , rn) satisfies that r1 ⊕ r2 ⊕ . . . ⊕ rn = 0.

3 The work [19] focuses on the private circuits model of [24]. However, it can be
transformed to the setting of MPC.

4 In fact, Goyal et al. [19] introduced the stronger notion of robust parity sharing
generators, but only gave a probabilistic construction. See more discussion in the
full version of this paper [20].
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2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in {0, 1}n which are
uniformly distributed subject to r̃1 ⊕ r̃2 ⊕ . . . ⊕ r̃n = 0. For any set W of t
variables in A, the output r satisfies that

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when they are instantiated by r and r̃ respectively.

Note that when we choose the access set A = {⊕i∈Sv
ri | v ∈ Tr}, the output of

an O(t)-resilient parity sharing generator with respect to A satisfies the sufficient
condition. Thus, to obtain an explicit MPC protocol for the XOR function, it is
sufficient to construct an explicit parity sharing generator with respect to A.

Explicit Construction of Parity Sharing Generators. For a set of random vari-
ables {r1, r2, . . . , rn} and a full binary tree Tr with n leaf nodes, an access set
A with respect to Tr is defined by A = {⊕i∈Sv

ri | v ∈ Tr}. We are interested
in access sets that are based on full binary trees. Our construction uses a t-wise
independent pseudo-random generator in a black box way.

Our idea is to assign a bit to each node in Tr such that for all internal node
v and its two children c0, c1, the bit assigned to v is equal to the XOR of the
bits assigned to c0 and c1. Then the bits associated with the leaf nodes are the
output. Note that the access set A consists of the bits associated with all nodes
in Tr. For a node v ∈ Tr, we use val(v) to denote the bit associated with v.

Let D be the depth of Tr. Our construction works as follows:

1. We start with the root node. We set val(rt) = 0. This ensures that the XOR
of the bits associated with all leaf nodes is equal to 0.

2. From d = 2 to D, assume that we have assigned bits to nodes of depth d − 1.
Let �d denote the number of nodes of depth d. Since Tr is a full binary tree, �d

is even. We use c1, c1, . . . , c�d
to denote the nodes of depth d such that for all

i ∈ {1, 2, . . . , �d/2}, (c2i−1, c2i) are the two children of a node vi of depth d− 1.
Since val(c2i) = val(c2i−1) ⊕ val(vi), we only need to assign a bit to the
node c2i−1 and then compute the bit associated with c2i accordingly. For
{c2i−1}�d/2

i=1 , we use the output of a t-wise independent PRG.

Consider a set W of t bits in A. Let V = {v | val(v) ∈ W}. Then |V | = t. We
want to prove that

D(r, {val(v)}v∈V ) ≡ D(r̃, {val(v)}v∈V ).

For a node v in Tr, we say v is a left node if v is a left child of some node in
Tr. Similarly, we say v is a right node if v is a right child of some node in Tr.
Effectively, we only assign bits to all left nodes in Tr. For each depth d ≥ 2, the
bits associated with all left nodes of depth d are t-wise independent. Thus, we
want to find a set V ′ ⊂ Tr such that V ′ only contains left nodes and the bits in
V ′ fully determine the bits in V .

Consider the following process:
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– For each right node in V , since the bit associated with this node is determined
by the bits associated with its left sibling and its parent, we can remove this
right node from V and add its left sibling and its parent in V . We repeat the
same step for its parent until the parent node is a left node or a root node.

– Note that the bit associated with the root node is a constant 0. We can always
remove the root node from V .

In this way, we obtain the set V ′ that only contains left nodes such that the bits
in V ′ fully determine the bits in V . Thus, it is sufficient to prove that

D(r, {val(v)}v∈V ′) ≡ D(r̃, {val(v)}v∈V ′).

We observe that, to remove a right node in V , we may need to insert a left
node of each depth. In other words, for all d ≥ 2, removing a right node in V may
insert at most 1 left node of depth d. Therefore, the number of left nodes in V ′ is
bounded by |V | = t. Recall that in our construction, we use t-wise independent
random bits for all left nodes of each depth. It means that the bits associated
with nodes in V ′ are uniformly random. Thus D(r, {val(v)}v∈V ′) is identical to
the distribution of |V ′| random bits.

We can show that D(r̃, {val(v)}v∈V ′) is also identical to the distribution of
|V ′| random bits. Intuitively, this is because r̃ is already the most uniform output
we can hope. Since {val(v)}v∈V ′ are uniformly random bits when instantiated
by r, they should also be uniformly random when instantiated by r̃. Thus, our
construction yields a t-resilient parity sharing generator.

Regarding the input size of our construction (i.e., the number of random
bits), we need to invoke a t-wise independent PRG for each depth. Therefore,
the input size of our construction is D times the input size of a t-wise independent
PRG. It is well-known that when the output size is n, there is an explicit t-wise
independent PRG with input size O(t · log n). Also, we can choose to use a full
binary tree of depth log n. Therefore, we obtain an explicit construction of a t-
resilient parity sharing generator that uses O(t·log2 n) random bits. When we use
our explicit construction to instantiate the MPC protocol for XOR from [19,27],
we obtain an MPC protocol that uses O(t2 · log2 n) random bits.

From a Single Parity to Multiple Additions. All of the above techniques (includ-
ing the techniques from [19,27] and our techniques of constructing parity sharing
generators) can be naturally extended to addition over any Abelian group G,
increasing the randomness complexity by a log |G| factor. We show that one can
in fact do better in the amortized setting of computing many additions. Con-
cretely, the asymptotic randomness cost of computing t additions is essentially
the same computing a single addition. We outline the techniques below.

First, we naturally extend the notion of a parity sharing generator to a general
Abelian group G, referring to the generalized notion as a zero sharing generator.
We show that our technique also yields an explicit construction of zero-sharing
generator. We then amortize the randomness complexity by using the following
natural randomness extraction approach. Consider the case of Z2 for simplicity.
Suppose all parties want to compute the XOR function � times. We can first
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prepare the random strings r(1), r(2), . . . , r(�) in a batch way, and then use one
fresh copy in each execution. Finally, we use a t-resilient randomness extractor
Ext : {0, 1}m → {0, 1}� for bit-fixing sources [12], guaranteeing that when the
input is randomly sampled from {0, 1}m, the output is uniformly random even
when conditioned on any t input bits.

To prepare the random strings r(1), r(2), . . . , r(�), we will let each Pi of the
first m parties distribute a fresh copy of the random string, denoted by τ (i).
Then all parties use Ext to extract � random strings. By the property of a t-
resilient randomness extractor, the output strings {r(i)}�

i=1 are random given
the random strings {τ (i)}i∈T generated by corrupted parties.

It is known that there is a t-resilient randomness extractor based on Vander-
monde matrices with input size m = � + t · log(� + t). Thus, we obtain an MPC
protocol for � XOR computations that uses O((�+t · log(�+t)) ·t · log2 n) random
bits, giving an amortized cost of only O(t · log2 n) random bits per XOR.

2.4 Upper Bounds Beyond Linear Functions

The previous upper bounds apply only to linear functions over an Abelian group.
Building on these results, we obtain near-optimal upper bounds for general
symmetric functions, or even general circuits if additional “helper parties” are
allowed.

Upper Bound for Symmetric Functions. For any symmetric function f : {0, 1}n →
{0, 1}, we show that there is an explicit MPC protocol that uses O(t2 · log3 n) ran-
dom bits. This includes useful functions such as majority or threshold, and matches
the previous lower bound for nontrivial symmetric functions up to a polylogarith-
mic term. Our protocol uses the standard Shamir secret sharing scheme and the
BGW protocol [4,11]. We will use [r]t to denote a degree-t Shamir sharing of r.
Our idea works for all t < n

�log n� :

1. For a symmetric function f , the output only depends on the number of 1s in
the input bits. Let p be a prime such that n < p < 2n. Consider the finite
field Fp. All parties will first compute a degree-t Shamir secret sharing of the
summation of all input bits in Fp, denoted by [s]t. This is achieved by the
following steps:
(a) All parties first prepare a random degree-t Shamir sharing [r]t by let-

ting each of the first t + 1 parties distributes a random degree-t Shamir
sharing and using the summation of these t + 1 sharings. They transform
[r]t to a random additive sharing by locally multiplying proper Lagrange
coefficients with their shares.

(b) All parties compute the summation of all input bits together with all
shares of the random additive sharing by using our protocol for addition
over Fp (recall that we extend the protocol for XOR to addition over
any Abelian group). Then the output is equal to s + r, where s is the
summation of all input bits.

(c) Finally, all parties locally compute [s]t = (s + r) − [r]t.
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2. Note that s is the number of 1s in the input bits, and s ∈ {0, 1, . . . , n}.
Therefore, there exists a function g : {0, 1, . . . , n} → {0, 1} such that f(x) =
g(s), where s =

∑n
i=1 xi. We note that g can be represented by a degree-n

polynomial in Fp. Our idea is to compute a Shamir sharing of the output
g(s).
(a) All parties first use the BGW protocol to compute [s2

i

]t for all i ∈
{0, 1, . . . , 
log n� − 1}. This step requires O(log n) multiplications.

(b) Then, all parties can use {[s2
i

]t}�log n�−1
i=0 to locally compute a Shamir

sharing of sj for all j ∈ {1, 2, . . . , n}. In particular, the resulting sharing
has degree at most t · 
log n� < n. Therefore, the resulting sharing can
still be reconstructed by all parties. Thus, they can locally compute a
Shamir sharing of the output g(s) of degree at most t · 
log n� < n.

3. Finally, all parties reconstruct the Shamir sharing of g(s). This is achieved by
first transforming it to an additive sharing of g(s) and then using our protocol
for addition over Fp.

In summary, we need 2 invocations of the addition protocol over Fp and O(log n)
multiplications using the BGW protocol [4] (the preparation of a degree-t Shamir
sharing costs the same amount of randomness as doing 1 multiplication in [4]).
In [4], doing O(log n) multiplications require O(t2 · log n) random field elements.
Our addition protocol over Fp requires O(t2 · log2 n) random field elements. Since
each element in Fp is of size O(log n), for any symmetric function, we obtain an
explicit construct that uses O(t2 · log3 n) random bits. We refer the readers to
the full version of this paper [20] for more details.

Upper Bound for General Circuits with Helper Parties. Finally, we consider the
goal of evaluating general functions in a relaxed setting where there are extra
helper parties that can participate in the protocol but do not have inputs nor
receive the output. In this model, we give an explicit MPC protocol for a general
circuit C that uses O(t2 · log |C|) random bits, where |C| is the circuit size. Since
our lower bound for XOR extends to the setting of helper parties, this upper
bound is essentially optimal.

Our construction uses a variant of the private circuits model from [24] referred
to as a leakage-tolerant private circuit [1,22], building on the recent randomness-
efficient construction from [19].5 Informally, a leakage-tolerant private circuit
with (unprotected) input x and output y is a randomized circuit such that the
values of any t internal wire values can be simulated by probing t input and
output wires. Letting each party simulate a single gate in such a tolerant circuit,
we obtain an MPC protocol with helper parties in which corrupting t parties
reveals at most t inputs and outputs. Note that it does not directly give us an

5 In the current context, one could plausibly use the explicit construction of a pri-
vate circuit with quadratic randomness complexity in [14] as a substitute for the
quasilinar-randomness construction from [19]. However, the analysis of [14] only
considers standard leakage-resilience whereas here we need the stronger leakage-
tolerance property analyzed in [19].
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MPC protocol in the usual sense, since the revealed inputs and outputs may
belong to honest parties.

Our idea is to first let all parties secret-share their inputs among the helper
parties. Then all helper parties together emulate a leakage-tolerant private cir-
cuit to compute a secret-sharing of the function output. Finally, the output
is reconstructed to the parties who should receive it. To make this idea work,
we need to design an efficient protocol that allows parties to secret-share their
inputs:

1. We note that, for each party Pi, it is sufficient to use a t-private encoding
of its input. This is because corrupting any t helper parties reveals at most
t input and output values, which are independent of Pi’s input. We borrow
the encoding scheme from [19], which is based on a strong t-wise independent
PRG. It requires O(t · log m) random bits to encode m bits.

2. However, we cannot afford the cost of allowing each party to use fresh random
seeds to encode their inputs, since it requires O(t ·n · log m) random bits. We
observe that all parties can actually use t-wise independent random seeds.
This is because each corrupted party who holds an input only observes its
own random seed, and each corrupted helper party receives at most one bit of
the encoding of some input. Thus, the joint view of corrupted parties depends
on the encoding of at most t inputs, which in turn depend on at most t random
seeds. Therefore, t-wise independent random seeds are sufficient. Generating
these random seeds (via a trusted party) require O(t2 · log m) random bits.

3. Finally, note that we cannot use the same method as that in [27] to generate
these random seeds in a distributed way because the random seeds have size
O(t2 · log m). If we ask each of the first t + 1 parties to generate a fresh
copy of the random seeds, we would need O(t3 · log m) random bits. Our
idea is to use a t-resilient randomness extractor. We ask each of the first
2t parties to generate t-wise independent random seeds of size O(t · log m).
Then, all parties use a t-resilient randomness extractor to extract t copies of
fresh random seeds. Finally, each party concatenates its t copies and obtains
a random seed of length O(t2 · log m).

We use the construction of a leakage-tolerant private circuit from [19], which
uses O(t · log t|C|) random bits. Since the input size m is upper bounded by
the circuit size, we obtain an MPC protocol for a general circuit that uses only
O(t2 · log |C|) random bits.

As a final challenge, note that the leakage-tolerant private circuit in [19] is
not explicit. In the full version of this paper [20], we show that our technique
allows us to obtain an explicit multi-phase parity sharing generator, which out-
puts multiple additive sharings of 0. Then, we show how to use our explicit
construction of multi-phase parity sharing generators to instantiate the private
circuit in [19]. The instantiation only requires O(t2 · log2 t|C|) random bits. We
use it to obtain an explicit construction of an MPC protocol (with helper parties)
for a general circuit C that uses O(t2 · log2 t|C|) random bits.
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3 Preliminaries

3.1 Secure Multiparty Computation

In this work, we consider the setting where a set of n parties, {P1, P2, . . . , Pn},
each holding an input xi from a finite domain Di, jointly run a protocol to
compute a function f : D1 × . . . × Dn → Z. At the end of the protocol, all
parties receive the function output f(x1, . . . , xn).

Each party has a private random tape which contains uniformly random
bits. We use x = (x1, x2, . . . , xn) to denote the inputs of all parties and
r = (r1, r2, . . . , rn) to denote the random tapes of all parties. For a party Pi,
we use View(Pi,x, r) to denote the information that is observed by Pi in an
execution with inputs x and random tapes r, which includes his input, ran-
dom tape, messages received from other parties, and the function output. We
use View(Pi,x) to denote the random variable over the distribution induced by
View(Pi,x, r) when r is sampled uniformly.

In this work, we consider perfect correctness and semi-honest security with
perfect privacy, defined as follows.

Definition 3 (Correctness and Security). Let f : D1 × . . . × Dn → Z be an
n-ary function. For an n-party computation protocol Π that computes f ,

– (Correctness). We say Π achieves perfect correctness if for all input x, when
all parties honestly follow the protocol Π, they will finally output f(x).

– (Security). We say Π achieves semi-honest security with perfect privacy if
for all set T of at most t parties, and for all input x, there is a probabilistic
algorithm S, which takes as input the inputs of parties in T and the function
output, and outputs the views of parties in T , such that the following two
distributions are identical:

{S({xi}i∈T , f(x)), f(x)} ≡ {{View(Pi,x)}i∈T , f(x)}.

If Π achieves both perfect correctness and semi-honest security with perfect pri-
vacy, we say Π achieves perfect semi-honest security.

Intuitively, the security requires that the joint view of all corrupted parties
only depends on their inputs and the function output. We have the following
property of a protocol Π with semi-honest security and perfect privacy.

Property 1. Let f : D1 × . . . Dn → Z be an n-ary function. Let Π be an n-
party protocol that computes f with semi-honest security and perfect privacy
against t corrupted parties. Then for all set T of at most t parties, and for all
x,x′ ∈ D1 × . . . × Dn such that f(x) = f(x′) and xi = x′

i for all i ∈ T , the
following two distributions are identical:

{View(Pi,x)}i∈T ≡ {View(Pi,x
′)}i∈T .
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Randomness Complexity of a Protocol. We follow the definition of randomness
complexity from [27]. At the beginning of the protocol, each party has a private
random tape that contains uniformly random bits. Each time a party needs to
use a random bit, he reads the rightmost unused bit on his random tape. Note
that each party may use different number of random bits in different executions.
The number of random bits that is used by the protocol is the total number of
random bits used by all parties. The randomness complexity is the worst case
(over all inputs and all executions) number of random bits. The same model for
randomness complexity is also used in [21,29,31].

We will use the following lemma from [21,31].

Lemma 1 ([21,31]). For a given input x, let d be the maximum, over all protocol
executions on x, of the number of random bits used by all parties during a given
execution. Then, the number of different transcripts (i.e., the joint view of all
parties) of the protocol execution on x is at most 2d.

For some of our positive results, it is convenient to use a natural generaliza-
tion of this model where parties can sample a uniform value from {1, 2, . . . , p}
for any choice of integer p > 1. We assume that 
p� = O(log p) random bits
are consumed. This can be justified by either entropy considerations, or by the
fact that O(log p) random bits are sufficient to generate a uniform value from
{1, 2, . . . , p} in expectation [9,26].

We note that our lower bound also applies to the generalized model with the
help of Lemma 1 in the generalized model, of which we provide a proof in the
full version of this paper [20].

Helper Parties. We also consider a general model where there are extra k parties
{Pn+1, Pn+2, . . . , Pn+k}. These parties can participate in the computation but
do not have inputs, nor receive the output. We refer to these parties as helper
parties. The randomness complexity of a protocol in the general model also
counts the random bits used by helper parties. The perfect semi-honest security
in the general model is defined similarly.

Functions with Minimal Input Domain. For a party Pi, and two distinct inputs
xi �= x′

i, we say a function f is sensitive to (Pi, xi, x
′
i) if there exists {xj}j �=i such

that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) �= f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

We say a function f has minimal input domain if f is sensitive to all possible
(Pi, xi, x

′
i).

Note that if f is not sensitive to (Pi, xi, x
′
i), it means that the function

behaves identically on input xi and x′
i. Then, Pi can always use xi when his input

is x′
i without changing the output of the function, which reduces the size of Pi’s

input domain. Thus, for a function f that is not sensitive to all (Pi, xi, x
′
i), we

can repeat the above step and reduce the input domain of f . Therefore, without
loss of generality, it is sufficient to only consider functions with minimal input
domain.
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Symmetric Functions. We say a function f is a symmetric function if it satisfies
that:

– All inputs have the same input domain. I.e., D1 = D2 = . . . = Dn.
– The output of the function f is independent of the order of the inputs. I.e., for

all x = (x1, x2, . . . , xn) and x′ = (x′
1, x

′
2, . . . , x

′
n), where x′ is a permutation

of x, f(x) = f(x′).

3.2 t-Private Encoding Schemes

Definition 4 (Encoding Scheme). Let �, n be positive integers. Let M ⊂
{0, 1}� be the message space and C ⊂ {0, 1}n be the codeword space. An encoding
scheme consists of a pair of algorithms (Enc, Dec) where:

– Enc is a randomized algorithm which takes as input a message m ∈ M and a
random tape r ∈ R, and outputs a codeword c ∈ C, denoted by c = Enc(m; r).
When r is not important in the context, we will omit r and simply write
c = Enc(m).

– Dec is a deterministic algorithm which takes as input a codeword c ∈ C and
outputs a message m ∈ M.

The correctness of an encoding scheme requires that for all m ∈ M, the following
holds:

Pr[Dec(Enc(m)) = m] = 1

Definition 5 (t-Private Encoding Scheme). We say an encoding scheme
(Enc, Dec) is t-private, if for all m,m′ ∈ M and for all t indices i1, i2, ..., it ∈
{1, 2, . . . , n}, the following two distributions are identical:

{c ← Enc(m) : c[i1], c[i2], . . . , c[it]} ≡ {c′ ← Enc(m′) : c′[i1], c′[i2], . . . , c′[it]},

where c[i] (resp., c′[i]) is the i-th bit of c (resp., c′).

Strong t-wise Independent Pseudo-random Generators. Our work will use the
standard notion of (strong) t-wise independent pseudo-random generators.

Definition 6 ((Strong) t-wise Independent PRG). Let G be a finite
Abelian group. A function G : G� → G

n is a t-wise independent pseudo-random
generator (or t-wise independent PRG for short) if any subset of t group ele-
ments of G(x) are uniformly random and independently distributed when x is
uniformly sampled from G

�.
If any subset of t group elements of (x,G(x)) are uniformly random and

independently distributed when x is uniformly sampled from G
�, then we say G

is a strong t-wise independent PRG.
We say that a (strong) t-wise independent PRG G is linear if every output

group element is a linear combination of the input group elements. In particular,
a linear (strong) t-wise independent PRG G satisfies that for all x, x′ ∈ G

�,
G(x) + G(x′) = G(x + x′).
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For a finite field F, it is well known that there is a linear and strong t-wise
independent PRG G : F� → F

n based on Reed-Solomon codes with input size
� = O(t · log n). (See [19] for a construction over binary field, which can be
extended to any finite field.)

Theorem 1. Let F be a finite field and n, t be positive integers. Then there
is a linear and strong t-wise independent PRG G : F

� → F
n with input size

� = O(t · log n).

Randomness Efficient t-Private Encoding Scheme. We borrow the following lin-
ear t-private encoding scheme from [19].

Let G : {0, 1}� → {0, 1}n be a linear and strong t-wise independent PRG.
The encoding scheme (Enc, Dec) works as follows:

– The message space is M = {0, 1}n and the codeword space is C = {0, 1}�+n.
– The encoder Enc takes x ∈ {0, 1}n as input and ρ ∈ {0, 1}� as random tape.

Then
Enc(x;ρ) = (ρ, G(ρ) ⊕ x).

– The decoder Dec takes (c1, c2) ∈ {0, 1}� × {0, 1}n as input and outputs

Dec(c1, c2) = G(c1) ⊕ c2.

The linearity follows from that the t-wise independent PRG G is linear. As
for t-privacy, since G is a strong t-wise independent PRG, any t bits of (ρ, G(ρ))
are uniformly random when ρ is uniformly sampled from {0, 1}�. Therefore, any
t bits of (ρ, G(ρ) ⊕ x) are also uniformly random and thus, independent of x.

3.3 Zero Sharing Generators

We first define the notion of access set of a set of random variables {r1, r2, . . . , rn}.

Definition 1 (Access Set [19]). An access set A of a set of random variables
{r1, r2, . . . , rn} is a set of jointly distributed random variables satisfying the fol-
lowing requirements:

1. For all i ∈ {1, 2, . . . , n}, ri ∈ A.
2. Every variable in A is a linear combination of r1, r2, . . . , rn.

Let r = (r1, r2, . . . , rn). For a set W ⊂ A, we use D(r,W ) to denote the
distribution of the variables in W when they are instantiated by r.

We follow [19] and define the notion of zero sharing generators. In [19], Goyal,
et al. focuses on the binary field. We extend this notion to any finite Abelian
group G.

Definition 7 (Zero Sharing Generators [19]). Let G be a finite Abelian
group. Let G : Gm → G

n be a function, u = (u1, u2, . . . , um) be a vector of ran-
dom variables in G

m that are uniformly distributed, and r = (r1, r2, . . . , rn) =
G(u). Let A be an access set of the random variables {r1, r2, . . . , rn}. The func-
tion G is a t-resilient zero sharing generator with respect to A if the following
holds:
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1. The output r = (r1, r2, . . . , rn) satisfies that r1 + r2 + . . . + rn = 0.
2. Let r̃ = (r̃1, r̃2, . . . , r̃n) be a vector of random variables in G

n which are
uniformly distributed subject to r̃1 + r̃2 + . . . + r̃n = 0. For any set W of t
variables in A, the output r satisfies that

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when they are instantiated by r and r̃ respectively.

One can view a t-resilient zero sharing generator as a generalization of a
t-wise independent PRG in the following two ways:

– First, the output vector should satisfies that the summation of all entries is
equal to 0.

– Second, for a t-wise independent PRG, one may think that there is an adver-
sary which can access any t entries in the output vector. A t-resilient zero
sharing generator allows an adversary to access any t variables in the access
set A which contains all entries of the output vector.

We can extend a t-resilient zero sharing generator to generating multiple zero
sharings with different number of shares as follows.

Definition 8 (Multi-Phase Zero Sharing Generators [19]). Let G be a
finite Abelian group. Let p and n1, n2, . . . , np be positive integers, G : G

m →
G

n1 ×G
n2 × . . .×G

np be a function, u = (u1, u2, . . . , um) be a vector of random
variables in G

m that are uniformly distributed, and r = (r(1), . . . , r(p)) = G(u)
where r(j) = (r(j)1 , . . . , r

(j)
nj ) for all j ∈ {1, 2, . . . , p}. For each r(j), let Aj be

an access set of the random variables {r
(j)
1 , . . . , r

(j)
nj }, and A =

⋃p
j=1 Aj. The

function G is a multi-phase t-resilient zero sharing generator with respect to A
if the following holds:

1. For all j = {1, 2, . . . , p}, the output vector r(j) = (r(j)1 , . . . , r
(j)
nj ) satisfies

r
(j)
1 + . . . + r

(j)
nj = 0.

2. Let r̃ = (r̃(1), . . . , r̃(p)) ∈ G
n1 × . . . × G

np be uniformly random variables
such that for all j = {1, 2, . . . , p}, the vector r̃(j) = (r̃(j)1 , . . . , r̃

(j)
nj ) satisfies

r̃
(j)
1 + . . . + r̃

(j)
nj = 0. For any set W of t variables in A, the output r satisfies

D(r,W ) ≡ D(r̃,W ),

where D(r,W ) and D(r̃,W ) denote the distributions of the variables in W
when instantiated by r and r̃ respectively.

We say a (multi-phase) t-resilient zero sharing generator G is linear if every
output group element is a linear combination of the input group elements. In
particular, a linear (multi-phase) t-resilient zero sharing generator G satisfies
that for all u,u′ ∈ G

m, G(u) + G(u′) = G(u + u′).
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Tree Based Access Sets. In our work, we are interested in access sets that are
based on full binary trees. A full binary tree Tr satisfies that every node has
either no children (i.e., a leaf node) or 2 children. For a set of random variables
{r1, r2, . . . , rn} and a full binary tree Tr with n leaf nodes, an access set A with
respect to Tr is defined as follows: We first associate the i-th leaf node with
the random variable ri. Then, each internal node is associated with a random
variable which is equal to the sum of the random variables associated with its
two children. The set A contains the random variables associated with all nodes
in Tr.

4 Lower Bound for Symmetric Functions

In this section we prove our main lower bound, improving over the previous
lower bound of [27]. We start with a technical lemma about the randomness
complexity of a t-private encoding scheme and then use it to obtain the lower
bound.

4.1 Lower Bound for t-private Encoding Schemes

In this section, we discuss the randomness complexity of a t-private encoding
scheme. We focus on t-private encoding schemes that encode a single bit. We
will show that, for any t-private encoding scheme and any input bit m ∈ {0, 1},
the number of codewords of m is at least 2t. Note that it implies that any such
a t-private encoding scheme requires at least t random bits. This result will be
used to prove the lower bound of the randomness complexity of secure multiparty
computation in the next section.

Lemma 2. For any t-private encoding scheme (Enc, Dec) and any bit m ∈
{0, 1}, |supp(m)| ≥ 2t.

Proof. We prove the lemma by induction.

When t = 1, we show that the support of 0 is of size at least 2. Let c be
a codeword of 0 and c′ be a codeword of 1. By the correctness of the encoding
scheme, c �= c′. Without loss of generality, assume the first bits of c and c′ are
different. Since the encoding scheme is 1-private, the distribution of the first
bit in a random codeword of 0 is identical to that in a random codeword of 1.
Then the first bit in a random codeword of 0 is not a constant bit. Otherwise,
the first bit in a random codeword of 1 should be the same constant bit, which
contradicts with the assumption that the first bits of c and c′ are different. Since
the first bit can take both 0 and 1, there are at least two codewords of 0. The
statement holds for t = 1.

Now suppose the statement holds for t−1, i.e., for any (t−1)-private encoding
scheme (Enc, Dec) and any bit m ∈ {0, 1}, |supp(m)| ≥ 2t−1. Consider a t-private
encoding scheme (Enc, Dec). With the same argument as above, there exists a
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bit in a random codeword of 0 which is not a constant bit. Without loss of
generality, assume that it is the first bit.

Consider the following encoding scheme (Enc′, Dec′):

– For m ∈ {0, 1}, Enc′(m) outputs a random codeword c = Enc(m) subject to
c[1] = 0. Here c[1] refers to the first bit of the codeword c.

– Dec′ = Dec.

We show that (Enc′, Dec′) is a (t − 1)-private encoding scheme. Let supp′(m)
denote the set of codewords of m defined by (Enc′, Dec′).

The correctness of (Enc′, Dec′) follows from the correctness of (Enc, Dec): if
there exists a codeword c ∈ supp′(m) such that Dec′(c) �= m, since supp′(m) is
a subset of supp(m) and Dec′ = Dec, we have c ∈ supp(m) and Dec(c) �= m,
which contradicts with the correctness of (Enc, Dec).

As for (t − 1)-privacy, recall that (Enc, Dec) is t-private. Therefore, for any t
bits, the distribution of these t bits in c = Enc(0) is identical to the distribution
of these t bits in c′ = Enc(1). Then, fixing the first bit to be 0, for any t− 1 bits,
the distribution of these t−1 bits in c = Enc(0) subject to c[1] = 0 is identical to
the distribution of these t−1 bits in c′ = Enc(1) subject to c′[1] = 0. Recall that
Enc′(m) outputs a random codeword c = Enc(m) subject to c[1] = 0. Therefore
(Enc′, Dec′) is (t − 1)-private.

According to the induction hypothesis, |supp′(0)| ≥ 2t−1. I.e., there are 2t−1

different codewords in supp(0) whose first bit is 0. By the same argument, there are
2t−1 different codewords in supp(0) whose first bit is 1. Therefore, |supp(0)| ≥ 2t.

By induction, we conclude that the lemma holds for all t.

We note the following direct corollary.

Corollary 1. Any t-private encoding scheme (Enc, Dec) uses at least t random
bits.

Proof. According to Lemma 2, |supp(0)| ≥ 2t. Therefore, Enc(0) has at least 2t

different output. Thus the random seed has length at least t.

In the full version of this paper [20], we give an alternative proof (due to Yuval
Filmus) of a variant of Lemma2 by relying on Fourier analysis of Boolean func-
tions and a known bound on the number of roots of a low-degree polynomial
over the Boolean hypercube. This variant applies also to t-private encoding with
imperfect correctness, to which the above simple combinatorial argument does
not apply.

4.2 Randomness Lower Bound for Symmetric Functions

In this section we prove a lower bound on the randomness complexity of secure
multiparty computation protocols that compute symmetric functions with a sin-
gle output bit. This includes parity and threshold functions (including AND,
OR, majority) as special cases.
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Theorem 2. For all n ≥ 3 and t ≤ n − 2, and for all non-constant symmetric
functions f that outputs a single bit, any n-party protocol Π that computes f

with perfect semi-honest security against t corrupted parties requires at least t2

2
random bits. Moreover, this holds even with an arbitrary number k of helper
parties.

Proof. Recall that, without loss of generality, it is sufficient to only consider
functions with minimal input domain. In the following, we assume that f is
a non-constant symmetric function with minimal input domain. Without loss
of generality, we assume that in every round, each party sends a message in
{0, 1,⊥} to every other party. This can be achieved by requiring that in each
round, every party Pi sends a ⊥ to every party Pj if Pi does not need to send
any bit to Pj in this round, which does not change the randomness complexity
of the protocol.

Note that an execution is determined by the inputs and random tapes of all
parties. For an execution with inputs x and random tapes r, we use MPi

(x, r)
to denote the messages that Pi receives from or sends to other parties. We use
MPi

(x) to denote the random variable over the distribution induced by MPi
(x, r)

when r is sampled uniformly.
By the definition of symmetric functions, all parties have the same input

domain. Recall that we have assumed that f is a non-constant symmetric func-
tion with minimal input domain. Also recall that f outputs a single bit.

We first prove the following lemma:

Lemma 3. For all Pi ∈ {P1, P2, . . . , Pn}, and for all (x, r) and (x′, r′) such
that xi �= x′

i,
(MPi

(x, r), f(x)) �= (MPi
(x′, r′), f(x′))

Proof. For the sake of contradiction, assume that this lemma is not true. Then
there exists two executions, one with inputs x and random tapes r and the other
one with inputs x′ and random tapes r′, such that xi �= x′

i but

(MPi
(x, r), f(x)) = (MPi

(x′, r′), f(x′))

Since f has minimal input domain, f is sensitive to (Pi, xi, x
′
i), which means

that there exists {x̃j}j �=i such that

f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) �= f(x̃1, . . . , x̃i−1, x
′
i, x̃i+1, . . . , x̃n).

Let x̃ = (x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) and x̃′ = (x̃1, . . . , x̃i−1, x
′
i, x̃i+1, . . . , x̃n).

Then x̃i = xi, x̃′
i = x′

i, x̃j = x̃′
j for all j �= i, but f(x̃) �= f(x̃′). Since f outputs

a single bit, either f(x) = f(x′) = f(x̃) or f(x) = f(x′) = f(x̃′). Without loss
of generality, assume that f(x) = f(x′) = f(x̃).

We first show that there exists r̃ such that (MPi
(x, r), f(x)) =

(MPi
(x̃, r̃), f(x̃)). Since x, x̃ satisfy that xi = x̃i and f(x) = f(x̃), by Prop-

erty 1, the following two distributions are identical:

{View(Pi,x)} ≡ {View(Pi, x̃)}
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Thus, there exists r̃ such that View(Pi,x, r) = View(Pi, x̃, r̃). Since (MPi
(x, r),

f(x)) is determined by Pi’s view, we have (MPi
(x, r), f(x)) = (MPi

(x̃, r̃), f(x̃)).
Recall that (MPi

(x, r), f(x)) = (MPi
(x′, r′), f(x′)). Therefore, (MPi

(x̃, r̃),
f(x̃)) = (MPi

(x′, r′), f(x′)).
Let r̃′ = (r̃1, . . . , r̃i−1, r

′
i, r̃i+1, . . . , r̃n), i.e., r̃′ = r̃ except r̃′

i = r′
i. We will

prove that MPi
(x̃′, r̃′) = MPi

(x̃, r̃) = MPi
(x′, r′) by induction:

– Consider the first message in MPi
(x̃′, r̃′). If it is a message sent from Pi to

another party, then this message is fully determined by x̃′
i = x′

i and r̃′
i = r′

i

since Pi does not receive any message from other parties. Thus, this message
is identical to the first message in MPi

(x′, r′). Since MPi
(x̃, r̃) = MPi

(x′, r′),
the statement holds for the first message.
If the first message in MPi

(x̃′, r̃′) is received from another party, then this
message is fully determined by {x̃′

j , r̃
′
j}j �=i since Pi does not send any message

to other parties. Note that {x̃′
j , r̃

′
j}j �=i = {x̃j , r̃j}j �=i. Thus this message is

identical to the first message in MPi
(x̃, r̃). Since MPi

(x̃, r̃) = MPi
(x′, r′),

the statement holds for the first message.
– Assume the statement holds for the first � − 1 messages. For the �-th message,

if it is a message sent from Pi to another party, then this message is determined
by x̃′

i = x′
i, r̃

′
i = r′

i and the first �− 1 messages in MPi
(x̃′, r̃′). According to the

induction hypothesis, the first �−1 messages in MPi
(x̃′, r̃′) are identical to the

first � − 1 messages in MPi
(x′, r′). We also have (x̃′

i, r̃
′
i) = (x′

i, r
′
i). Thus, the �-

th message in MPi
(x̃′, r̃′) is identical to the �-th message in MPi

(x′, r′) as well.
Since MPi

(x̃, r̃) = MPi
(x′, r′), the statement holds for the first � messages.

If the �-th message of Pi is received from another party, then this mes-
sage is fully determined by {x̃′

j , r̃
′
j}j �=i and the first � − 1 messages in

MPi
(x̃′, r̃′). According to the induction hypothesis, the first �−1 messages in

MPi
(x̃′, r̃′) are identical to the first �−1 messages in MPi

(x̃, r̃). We also have
{x̃′

j , r̃
′
j}j �=i = {x̃j , r̃j}j �=i. Thus, the �-th message in MPi

(x̃′, r̃′) is identical
to the �-th message in MPi

(x̃, r̃) as well. Since MPi
(x̃, r̃) = MPi

(x′, r′), the
statement holds for the first � messages.

– Therefore, by induction, the statement holds for all �. We have MPi
(x̃′, r̃′) =

MPi
(x̃, r̃) = MPi

(x′, r′).

Recall that f(x̃′) �= f(x̃). On the other hand, for parties in {Pj}j �=i,
their views are determined by {x̃′

j , r̃
′
j}j �=i and MPi

(x̃′, r̃′). Since {x̃′
j , r̃

′
j}j �=i =

{x̃j , r̃j}j �=i and MPi
(x̃′, r̃′) = MPi

(x̃, r̃), parties in {Pj}j �=i,j≤n will obtain the
same output in both the execution with (x̃′, r̃′) and the execution with (x̃, r̃),
which contradicts with f(x̃′) �= f(x̃).

Lemma 3 shows that the messages a party (of the first n parties) receives
or sends together with the output can determine his input. Without loss of
generality, assume that 0, 1 are in the input domain. Now consider the first t
parties P1, P2, . . . , Pt. For all 1 ≤ i ≤ t, and for all vectors V subject to

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ] �= 0,

we define an encoding scheme (Enc, Dec) for the message space {0, 1} as follows:
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– Let x = (0, 0, ..., 0, 1) (i.e., all inputs are 0 except the last input is 1) and
x′ ∈ {0, 1}n subject to x′

i = 1 and x′
j = 0 for all j �= i. Since f is a symmetric

function, we have f(x) = f(x′) but xi �= x′
i.

Enc(0) samples r uniformly subject to {View(Pj ,x, r)}i−1
j=1 = V and outputs

MPi
(x, r).

Enc(1) samples r′ uniformly subject to {View(Pj ,x
′, r′)}i−1

j=1 = V and outputs
MPi

(x′, r′).
– The decoding algorithm takes as input a codeword c = MPi

(x̃, r̃), where
x̃ ∈ {x,x′}. Recall that f(x) = f(x′). Therefore, f(x̃) = f(x) = f(x′).
According to Lemma 3, (MPi

(x̃, r̃), f(x̃)) can determine the input x̃i. Dec(c)
outputs the input determined by (c, f(x)).

We first show that supp(0) and supp(1) of the encoding scheme are not
empty. It is sufficient to show that there exist r and r′ such that

(View(P1,x, r), . . . , View(Pi−1,x, r)) = V

and
(View(P1,x

′, r′), . . . , View(Pi−1,x
′, r′)) = V.

Recall that V satisfies that Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ] �= 0.
Therefore, the existence of r follows. Recall that f(x) = f(x′) and xj = x′

j for
all j ∈ {1, 2, . . . , i − 1}, by Property 1, we have

{View(P1,x), . . . , View(Pi−1,x)} ≡ {View(P1,x
′), . . . , View(Pi−1,x

′)}.

Thus,

Pr[(View(P1,x), . . . , View(Pi−1,x)) = V ]
= Pr[(View(P1,x

′), . . . , View(Pi−1,x
′)) = V ] �= 0.

The existence of r′ follows. This implies that the encoding scheme (Enc, Dec) is
well defined.

Lemma 4. The encoding scheme (Enc, Dec) constructed above is (t − i + 1)-
private.

We refer the readers to the full version of this paper [20] for the proof of Lemma4.
According to Lemma 2, |supp(0)| ≥ 2t−i+1. That is, for inputs x =

(0, 0, . . . , 0, 1), when fixing the views of the first i − 1 parties, the view of the
i-th party has at least 2t−i+1 different possibilities. Consider the joint view of
the first t parties when the inputs are x. It has at least

∏t
i=1 2t−i+1 = 2t(t+1)/2

different views. It implies that the number of random bits required by the pro-
tocol in the worst case is at least t(t + 1)/2 ≥ t2/2. Therefore, the randomness
complexity of the protocol is at least t2/2.
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Remark 1. We note that Theorem 2 holds even if the output is only given to a
strict (nonempty) subset of the parties.

To see it, note that for Lemma 3, the statement holds for Pi as long as there
is a party Pj �= Pi that receives the function output. Therefore, if there are
at least two parties that receive the output, Lemma 3 holds. If only one party
receives output, say Pn, then the statement holds for all parties other than Pn.
Then in the rest of the proof, we can continue to focus on the number of views of
the first t parties. With the same argument, we can show that the randomness
complexity is at least t2/2.

5 Explicit Construction of Zero Sharing Generators

In this section, we will give an explicit construction of a linear (multi-phase)
t-resilient zero sharing generator by using a linear t-wise independent PRG in a
black box way.

Theorem 3. Let G be a finite Abelian group. Let p and n1, n2, . . . , np be positive
integers, and Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes
for all j ∈ {1, 2, . . . , p}. For each tree Trj, let Aj denote the access set determined
by Trj. Set n = n1 + n2 + . . . + np, A =

⋃p
j=1 Aj, and D to be the largest depth

of Tr1, Tr2, . . . , Trp. Suppose F : Gm → G
n is a linear t-wise independent PRG.

Then there exists an explicit linear multi-phase t-resilient zero sharing generator
with respect to the access set A that uses (D − 1) · m random group elements
in G.

Proof. For every tree Trj and every node v ∈ Trj , the depth of v is the length
of the path towards the root of Trj plus 1. I.e., the root node of Trj has depth
1, the two children of the root node of Trj have depth 2, and so on. Note that
leaf nodes of Trj do not necessarily have the same depth.

Let Fr denote the collection of the trees Tr1, Tr2, . . . , Trp. Fr is also referred
to as a forest. Recall that F : Gm → G

n is a linear t-wise independent PRG.
To construct a linear multi-phase t-resilient zero sharing generator G, we will
assign to each node v in Fr a linear combination of the outputs of F , denoted
by val(v), such that for all internal node v and its two children c0, c1, val(v) =
val(c0) + val(c1). Then the values associated with the leaf nodes in Fr represent
the output of G.

Explicit Construction of Linear Multi-Phase Zero Sharing Generator. The con-
struction works as follows:

1. Let u = (u(1),u(2), . . . ,u(D−1)) ∈ G
(D−1)×m be the input of G, where D is

the largest depth of Tr1, Tr2, . . . , Trp.
2. For all root node rtj , we set val(rtj) = 0.
3. From d = 2 to D, we will assign values to all nodes of depth d in Fr. Let

�d denote the number of nodes of depth d. Since Tr1, Tr2, . . . , Trp are full
binary trees, �d is even. We use c1, c1, . . . , c�d

to denote the nodes of depth
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d such that for all i ∈ {1, 2, . . . , �d/2}, (c2i−1, c2i) are the two children of a
node vi of depth d − 1.
Suppose we have assigned values to all nodes of depth d−1 in Fr. We compute
y(d) = F (u(d−1)). Then for all i ∈ {1, 2, . . . , �d/2}, we set val(c2i−1) = y

(d)
i

and val(c2i) = val(vi) − y
(d)
i . In this way, for the node vi and its two children

c2i−1, c2i, we have val(vi) = val(c2i−1) + val(c2i).
4. The output of G are the values associated with the leaf nodes in Fr. In partic-

ular, for all j ∈ {1, 2, . . . , p}, r(j) = (r(j)1 , . . . , r
(j)
nj ) are the values associated

with the leaf nodes of Trj .

Lemma 5. The above construction is a linear multi-phase t-resilient zero shar-
ing generator.

We refer the readers to the full version of this paper [20] for the proof of Lemma5.

When G is a finite field F, by Theorem 1, we can instantiate the linear t-
wise independent PRG F : Fm → F

n with input size m = O(t · log n). For all
j ∈ {1, 2, . . . , p}, we can use a full binary tree Trj with nj leaf nodes of depth
O(log nj) = O(log n). Thus, we have the following corollary.

Corollary 2. Let F be a finite field. Let p and n1, n2, . . . , np be positive integers,
and Tr1, Tr2, . . . , Trp be full binary trees such that Trj has nj leaf nodes of depth
O(log nj) for all j ∈ {1, 2, . . . , p}. For each tree Trj, let Aj denote the access set
determined by Trj. Set n = n1 + n2 + . . . + np and A =

⋃p
j=1 Aj. Then there

exists an explicit linear multi-phase t-resilient zero sharing generator that uses
O(t · log2 n) random elements in F.

6 Upper Bound for Addition

In this section we prove our main new upper bounds, obtaining an explicit version
of the previous upper bound for XOR from [27] and extending it to Abelian
group addition. In the full version of this paper [20], we show (1) how to amortize
randomness complexity over multiple executions, (2) how to construct an explicit
protocol for any symmetric Boolean functions with O(t2 · log3 n) random bits,
and (3) how to construct an explicit protocol for general circuits with helper
parties, which uses O(t2 · log s) random bits, where s is the circuit size.

We start by considering a function f that computes addition of n elements
in a finite Abelian group G. Concretely, f takes xi ∈ G from the party Pi and
computes

∑n
i=1 xi. Assuming the existence of a linear t-resilient zero sharing

generator G : Gm → G
n, we construct an n-party computation protocol for f

against t corrupted parties with perfect semi-honest security.

Theorem 4. Let m,n, t be positive integers, Tr be a full binary tree with n leaf
nodes, and G be a finite Abelian group. Let f : Gn → G be the addition function
which is defined by f(x1, x2, . . . , xn) =

∑n
i=1 xi. Assume that G : Gm → G

n is
a linear (4t + 1)-resilient zero sharing generator with respect to the access set
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A determined by Tr. There is an n-party computation protocol for f against t
corrupted parties with perfect semi-honest security, which uses (t+1) ·m random
group elements in G.

Proof. We first construct a protocol for f assuming the existence of an ideal
functionality Frand that distributes correlated randomness to all parties. For a
full binary tree Tr with n leaf nodes, it has exactly n − 1 internal nodes. We use
{1, 2, . . . , n} to label the leaf nodes in Tr, and {n + 1, n + 2, . . . , 2n − 1} to label
the internal nodes in Tr. We also use rt to denote the root of Tr.

Protocol with Ideal Functionality Frand. Consider an ideal functionality Frand

that samples u ∈ G
m uniformly, computes r = (r1, r2, . . . , rn) = G(u), and

distributes ri to the party Pi for all i ∈ {1, 2, . . . , n}. All parties run the following
steps:

1. Each party Pi locally computes gi = xi + ri.
2. For each node v in Tr, let Sv be the set of indices of leaf nodes that are

descendants of v. We will ask a single party to compute gv :=
∑

i∈Sv
gi.

Note that for all leaf nodes v ∈ {1, 2, . . . , n}, we have already computed
gv = xv + rv in Step 1. Now we describe how parties compute gv for all
internal nodes. Recall that Tr has n − 1 internal nodes. From i = 1 to n − 1,
all parties run the following steps:
(a) Let v be the first internal node in Tr such that gv has not been computed

but gc0 , gc1 have been computed, where c0, c1 are the two children of v.
Suppose that gc0 is computed by Pj0 , and gc1 is computed by Pj1 .

(b) Pi receives gc0 from Pj0 and receives gc1 from Pj1 . Then Pi computes
gv = gc0 + gc1 .

3. Note that in the last iteration of Step 2, Pn−1 computes grt for the root node
rt. Then

grt =
n∑

i=1

gi =
n∑

i=1

xi +
n∑

i=1

ri.

Since G is a zero sharing generator and r = (r1, r2, . . . , rn) is the output of
G, we have

∑n
i=1 ri = 0. Therefore, grt =

∑n
i=1 xi. Thus, Pn−1 learns f(x).

Pn−1 sends the result to all other parties.

The correctness of our construction follows from the description. we show
that our construction is secure in the full version of this paper [20].

Realizing Frand. To obtain an n-party computation protocol for f in the plain
model, it is sufficient to realize Frand. We simply follow the approach in [27]:
Recall that G is a linear zero sharing generator. To realize Frand, we ask each
party Pi of the first t + 1 parties randomly samples u(i) ∈ G

m, computes r(i) =
G(u(i)), and distributes r

(i)
j to Pj for all j �= i. Then all parties locally set

r = r(1) + . . . + r(t+1) = G(u(1) + . . . + u(t+1)). The security follows from
the fact that at least one of the first t + 1 parties is not corrupted. Therefore,
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u =
∑t+1

i=1 u(i) is uniformly random and r = G(u) has the same distribution as
that generated by Frand.

In summary, the whole protocol uses (t + 1) · m random elements in G.

When G is a finite field F, and when we use a full binary tree Tr with n
leaf nodes of depth O(log n), by Corollary 2, there is an explicit linear (4t + 1)-
resilient zero sharing generator G : Fm → F

n with input size m = O(t · log2 n).
We have the following corollary.

Corollary 3. Let n, t be positive integers, F be a finite field, and f : Fn → F

be the addition function which is defined by f(x1, x2, . . . , xn) =
∑n

i=1 xi. There
is an n-party computation protocol for f against t corrupted parties with perfect
semi-honest security, which uses O(t2 · log2 n) random field elements in F.
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25. Jakoby, A., Lískiewicz, M., Reischuk, R.: Private computations in networks: topol-
ogy versus randomness. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607,
pp. 121–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36494-
3 12

26. Knuth, D., Yao, A.: The complexity of nonuniform random number generation. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press
(1976)

27. Kushilevitz, E., Mansour, Y.: Randomness in Private Computations. SIAM J. Dis-
crete Math. 10(4), 647–661 (1997). Earlier version in PODC 1996

https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-031-07082-2_8
https://eprint.iacr.org/2022/799
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-36494-3_12
https://doi.org/10.1007/3-540-36494-3_12


Tight Bounds on the Randomness Complexity of Secure MPC 513

28. Kushilevitz, E., Ostrovsky, R., Prouff, E., Rosén, A., Thillard, A., Vergnaud, D.:
Lower and upper bounds on the randomness complexity of private computations
of AND. SIAM J. Discret. Math. 35(1), 465–484 (2021). Earlier version in TCC
2019

29. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Characterizing linear size circuits in
terms of privacy. In: STOC 1996, pp. 541–550 (1996)

30. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Amortizing randomness in private mul-
tiparty computations. SIAM J. Discrete Math. 16(4), 533–544 (2003)

31. Kushilevitz, E., Rosén, A.: A randomness-rounds tradeoff in private computation.
SIAM J. Discrete Math. 11(1), 61–80 (1998)



Threshold Signatures



Better than Advertised Security for
Non-interactive Threshold Signatures

Mihir Bellare1 , Elizabeth Crites2(B), Chelsea Komlo3, Mary Maller4,
Stefano Tessaro5, and Chenzhi Zhu5(B)

1 Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

mihir@eng.ucsd.edu
2 University of Edinburgh, Edinburgh, UK

ecrites@ed.ac.uk
3 University of Waterloo, Zcash Foundation, Waterloo, Canada

ckomlo@uwaterloo.ca
4 Ethereum Foundation, London, UK

mary.maller@ethereum.org
5 Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

Abstract. We give a unified syntax, and a hierarchy of definitions of
security of increasing strength, for non-interactive threshold signature
schemes. These are schemes having a single-round signing protocol, pos-
sibly with one prior round of message-independent pre-processing. We
fit FROST1 and BLS, which are leading practical schemes, into our hier-
archy, in particular showing they meet stronger security definitions than
they have been shown to meet so far. We also fit in our hierarchy a more
efficient version FROST2 of FROST1 that we give. These definitions
and results, for simplicity, all assume trusted key generation. Finally,
we prove the security of FROST2 with key generation performed by an
efficient distributed key generation protocol.

1 Introduction

Threshold signatures, which originated in the late 1980s [17,18], are seeing
renewed attention, driven in particular by an interest in using them to secure
digital wallets in the cryptocurrencies ecosystem [22]. Parallel IETF [32] and
NIST [35] standardization efforts are evidence as to the speed at which the area
is moving into practice.

Whether securing a user’s digital wallet, or being used by a CA to create
a certificate, forgery of a digital signature is costly. The rising tide of system
breaches and phishing attacks makes exposure of a signing key too plausible
to ignore. The idea of a threshold signature scheme is to distribute the secret
signing key across multiple parties who then interact to produce a signature,
the intent being to retain security even in the face of compromise of up to a
threshold number of these parties. Over the years, threshold versions of many
schemes have been presented, including RSA [16,26,37], DSA/ECDSA [9,13,21–
23,25,34], Schnorr signatures [24,30,39] and BLS signatures [8].
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Today, we see interest converging on schemes that are non-interactive. The
representative examples are BLS [8,12], and FROST [30]. FROST is a partially
non-interactive threshold signature scheme, consisting of a message-independent
pre-processing round and one round of signing. Threshold BLS is fully non-
interactive, i.e., consists of a single round, but it does require pairings.

Our Contributions. We advance the area of non-interactive threshold signa-
ture schemes via the following contributions.

1. Framework and Stronger Security. We contend that schemes like FROST and
BLS are better than advertised, meeting definitions of security that are stronger
than ones that have been previously defined, or that these schemes have been
shown to meet in existing literature. Furthermore, these definitions capture nat-
ural strengths of the schemes that may be valuable for applications.

The classical development paradigm in theoretical cryptography is to ask what
security we would like, define it, and then seek schemes that meet it. Yet if we look
back, there has been another path alongside: canonical, reference schemes guided
a choice of definitions that modeled them, and, once made, these definitions went
on to be influential targets for future schemes. (The formal definition of trapdoor
permutations [27], for example, was crafted to model RSA). We are inspired by
the latter path. BLS [11] yields a threshold scheme [8] so natural and simple that
it is hard to not see it as canonical, and, within the space of Schnorr threshold
schemes, FROST [30] has a similarly appealing minimality. Examining them, we
see strengths not captured by current definitions or results. We step back to create
corresponding abstractions, including a unified syntax and a hierarchy of defini-
tions of security for non-interactive threshold signature schemes. We then return
to ask where in this hierarchy we can fit the starting schemes, giving proofs that fit
BLS and FROST as high as possible. The proofs this requires, and that we provide,
turn out to be challenging and technically interesting.

Although inspired by specific schemes, our definitional development, once
begun, unfolds in a logical way, and yields definitions that go beyond even what
BLS and FROST achieve. These make intriguing new targets. We show how to
achieve them, with minimal modifications to the existing schemes.

2. FROST2 and its Security with DKG. We introduce FROST2, a variant of the orig-
inal FROST scheme (we hereafter refer to the original as FROST1) that reduces
the number of exponentiations required for signing and verification from linear in
the number of signers to constant. We analyze the security of FROST2 in our above
security framework, and highlight subtle differences between it and FROST1.

The above-discussed results are all in a setting with (ideal) trusted key gen-
eration. In practice however it is desirable that key generation itself be done
via a threshold, distributed key generation protocol (DKG). Accordingly, we
prove the security of FROST2 with a DKG, namely an efficient variant of Peder-
sen’s DKG (PedPoP) introduced in conjunction with FROST1 [30]. Unlike prior
proofs that modeled key generation using Pedersen’s DKG [24], our security
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proof allows concurrent executions of the signing protocol once key generation
has completed, and generalizes which honest parties are assumed to partici-
pate. We demonstrate that FROST2 instantiated with PedPoP is secure in the
random oracle model (ROM) [5] assuming extractable proofs of possession and
the one-more discrete logarithm (OMDL) assumption of [2]. The assumption of
extractable proofs of possession is required only for the simulation of PedPoP.
Indeed, our proofs for FROST1 and FROST2 without ideal key generation only
rely on the OMDL assumption, along with random oracles.

Our proofs here fill a gap towards demonstrating security with respect to well-
understood assumptions. We have a complete implementation of our security
proof in python1 in which we see that our reduction accurately outputs a valid
OMDL solution and that our simulated outputs pass verification.

Non-interactive threshold schemes. We consider schemes where the sign-
ing operations involve a leader and a set of ns nodes, which we refer to as servers,
with server i holding a secret share ski of the secret signing key sk. Signing is
done via an interactive protocol that begins with a leader request to some set of
at least t number of servers and culminates with the leader holding the signature,
where t ≤ ns, the threshold, is a protocol parameter.

In a fully non-interactive threshold signature scheme, this protocol is a sim-
ple, one-round one. The leader sends a leader request lr , which specifies a message
M and possibly other things, to any server i and obtains in response a partial
signature, psig i, that i computes as a function of ski and M . The leader can
request partial signatures asynchronously, at any time, and independently for
each server, and there is no server-to-server communication. Once it has enough
partial signatures, the leader aggregates them into a signature sig of M under
the verification key vk corresponding to sk. The canonical example is the thresh-
old BLS scheme [8,12], where sk, sk1, . . . , skns ∈ Zp for a public prime p, and
psig i ← h(M)ski where h : {0, 1}∗ → G is a public hash function with range
a group G of order p. Aggregation produces sig as a weighted product of the
partial signatures.

A partially non-interactive threshold signature scheme adds to the above
a message-independent pre-processing round in which, pinged by the leader at
any point, a server i returns a pre-processing token ppi. The leader’s request
for partial signatures will now depend on tokens it has received. The canonical
example is FROST [30]. This understanding of a non-interactive scheme encom-
passes what FROST calls flexibility: obtaining psig i from any ≥ t servers allows
reconstruction of the signature.

Which forgeries are non-trivial? For a regular (non-threshold) signature
scheme, the first and most basic notion of security is un-forgeability (UF) [27].
The adversary (given access to a signing oracle) outputs a forgery consisting of a
message M and a valid signature for it. To win, the forgery must be non-trivial,
meaning not obtained legitimately. This is naturally captured, in this context,
as meaning that M was not a signing query.

1 https://github.com/mmaller/multi and threshold signature reductions.

https://github.com/mmaller/multi_and_threshold_signature_reductions
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Turning to define un-forgeability for a non-interactive threshold signature
scheme, we assume the adversary has corrupted the leader and up to t − 1
servers, where 1 ≤ t ≤ ns is the threshold. Furthermore, it has access to the hon-
est servers. Again, it outputs a forgery consisting of a message M and valid sig-
nature for it, and, to win, the forgery must be non-trivial, meaning not obtained
legitimately. Deciding what “non-trivial” means, however, is now a good deal
more delicate, and interesting, than it was for regular signatures.

In this regard, we suggest that many prior works have set a low bar, being
more generous than necessary in declaring a forgery trivial, leading to definitions
that are weaker than one can desire, and weaker even than what their own
schemes seem to meet. The definitions we formulate rectify this by considering
five non-triviality conditions of increasing stringency, yielding a corresponding
hierarchy TS-UF-0 ← TS-UF-1 ← TS-UF-2 ← TS-UF-3 ← TS-UF-4 of notions
of un-forgeability of increasing strength. (Here an arrow B ← A means A implies
B: any scheme that is A-secure is also B-secure). TS-UF-0, the lowest in the
hierarchy, is the notion currently in the literature.

Returning to regular (non-threshold) signature schemes, strong un-
forgeability (SUF) has the same template as UF, but makes the non-triviality
condition more strict, asking that there has been no signing query M that
returned sig . We ask if SUF has any analogue in the threshold setting. For non-
interactive schemes, we suggest it does and give a hierarchy of three definitions
of strong unforgeability TS-SUF-2 ← TS-SUF-3 ← TS-SUF-4. The numbering
reflects that TS-UF-i ← TS-SUF-i for i = 2, 3, 4.

The case of BLS. Boldyreva’s analysis of threshold BLS [8] adopts the for-
malism of Gennaro, Jarecki, Krawczyk, and Rabin [23,25,26]. The non-triviality
condition here is that no server was asked to issue a partial signature on the
forgery message M . This is TS-UF-0 in our hierarchy. But allowing asynchronous
requests is a feature of this scheme and model. A corrupted leader could ask one
honest server i for a partial signature. No other server would even be aware
of this request, but the adversary would now have psig i. Under TS-UF-0, the
forgery is now trivial, and the adversary does not win. Yet (assuming a thresh-
old t ≥ 2), there is no reason possession of just psig i should allow creation of a
signature, and indeed for threshold BLS there is no attack that seems able to
create such a signature, indicating the scheme is achieving more than TS-UF-0.
This leads to the next level of our hierarchy, TS-UF-1, where the non-triviality
condition is that a partial signature of M was requested from at most t − 1 − c
honest servers, where c is the number of corrupted servers. Does threshold BLS
achieve this TS-UF-1 definition? As we will see, proving this presents challenges,
but we will succeed in showing that the answer is yes, under a variant of the
computational Diffie-Hellman (CDH) assumption. (The proof is deferred to [7]
for lack of space). Yet, TS-UF-1 was not considered in the literature, and only
TS-UF-0 is proved for many other non-interactive schemes [10,29,37,40]. The
only exceptions are the work of Libert, Joye, and Yung [33] and recent concur-
rent work by Groth [28], which comes to a similar conclusion/result on BLS.
(We discuss the relation below). We note that Shoup [37] implicitly tackles a
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similar technical challenge by dealing with differing corruption and reconstruc-
tion thresholds, but the resulting security notion is not TS-UF-1.

The distinction between TS-UF-1 and TS-UF-0 is not just academic. Implicit
in applications of threshold signing in wallets is the fact that servers also perform
well-formedness checks of what is being signed (typically, as part of a transac-
tion). TS-UF-1 guarantees that every issued signature has been inspected by
sufficiently many servers, but TS-UF-0 does not.

The case of FROST. Yet the hierarchy needs to go higher, and this becomes
apparent when looking at partially non-interactive schemes like FROST1 [30],
and its optimized version, FROST2, which we introduce. Here, the discussion
becomes more subtle, and interesting.

In more detail, a FROST1 pre-processing token takes the form of a pair
ppi = (gri , gsi) of group elements for one-time use. (A server will ensure that
the pre-processing token in its name in the leader request is one it has previously
sent, and will never use it again). An honest request lr includes, along with the
message M to be signed, a sufficiently large server set lr .SS ⊆ [1..ns], and, for
each i in this set, a pre-processing token ppi that i previously sent. Each server
i ∈ lr .SS will then generate a signature share psig i = (R, zi), where R is a value
which can be computed (publicly) from the tokens included in lr , whereas zi

depends on the discrete logarithms of the server’s token and its own key share
ski. The zi’s can then be aggregated into a value z such that (R, z) is a valid
Schnorr signature for M .

In terms of our framework, we show that FROST1 achieves TS-SUF-3 secu-
rity. This considers a signature trivial even if some of the honest servers in lr .SS
do not respond to a (malicious) leader request, as long as the tokens associated
with these servers are not honestly generated. In particular, the honest servers
may not respond because they recognize these tokens as invalid, or because
the malicious leader did not submit the request to them. We show that, while
FROST2 fails to achieve TS-SUF-3, it achieves the next step down in our hier-
archy, TS-SUF-2. This is still stronger than the notions lower in the hierarchy.
Our proofs for FROST1 and FROST2 signing operations rely on the OMDL
assumption and the ROM.

Stronger goals. A stronger security goal (TS-UF-4 in our hierarchy) is to
expect that the only way to obtain a signature for a message M is to follow the
above blueprint, i.e., to issue the same honest leader request lr to all servers in
lr .SS. In fact, we may even ask for more, in terms of strong unforgeability—the
value R is uniquely defined by lr , and, along with the message M , it defines
a unique signature (although not efficiently computable given the verification
key alone). An ideal goal, which corresponds to our strongest security goal, is to
ensure that the only way to generate the signature associated with lr is to obtain
a signature share for lr from every honest server whose tokens are included in
lr . This is a notion we refer to as TS-SUF-4.

We will however show that neither FROST1 nor FROST2 meet TS-SUF-4.
To overcome this, we will show a general transformation which can boost
the security of a TS-SUF-3-secure scheme like FROST1 to achieve TS-SUF-4.
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Our framework allows schemes more general than the FROST ones, and also
leaves the question open of better and more efficient designs achieving the
stronger notions. Moreover, we provide simple reference schemes for all of our
notions, which, while inefficient, guide us in understanding the subtle differ-
ences among notions and baseline requirements. In particular, these schemes
will enable us to separate the proposed notions.

A summary for our notions. In summary, our unforgeabilty notions declare
a signature for a message M trivial in the following cases:

– TS-UF-0: A partial signature for the message M was generated by at least
one honest server.

– TS-UF-1: A partial signature for the message M was generated by at least
t − c honest servers, where c is the number of corrupted servers.

– TS-UF-2: There exists a leader request lr for the message M which was
answered by at least t − c honest servers.

– TS-UF-3: There exists a leader request lr for the message M such that every
honest server i ∈ lr .SS either answered lr or the token ppi associated with i
in lr is maliciously generated.

– TS-UF-4: There exists a leader request lr for the message M such that every
honest server i ∈ lr .SS answered lr .

Analogous notions of strong unforgeability are obtained by further associat-
ing a request lr to a (unique) signature, in addition to a message M .

We stress that it is not clear which scenarios demand which notions in our
hierarchy. This is especially true because we are still lacking formal analyses of
full-fledged systems using threshold signatures, but it is not hard to envision a
potential mismatch between natural expectations from such schemes and what
they actually achieve. In both FROST variants, for example, it is natural to
expect that a signature can only be generated by a sufficient number of hon-
est servers answering the same request, a property which we show is actually
achieved. Further, one may also expect that all honest servers that generated
these honest tokens need to be involved in the generation of a valid signature, but
this stronger property is actually not achieved by either of the FROST variants.

FROST2 with DKG. Our syntax above assumes key generation is carried out
by a trusted algorithm, which allows us to focus on the signing protocol. However,
security in practice is enhanced when the key generation itself is a distributed
threshold protocol, so that the key is never in the clear in any one location,
even ephemerally. In this setting, we prove the security of FROST2 with the
distributed key generation protocol (DKG) originally proposed in [30], which
we refer to as PedPoP. Our proof for the combination of FROST2 and PedPoP
relies on the ROM, the OMDL assumption, and a new knowledge-type assump-
tion. However, we stress that the latter assumption is only necessary to handle
PedPoP, as indeed we give stronger proofs of security without this assumption
in a setting with ideal key generation.

What we do not do. Our framework does not handle adaptive corruptions,
i.e., we demand instead that the adversary declares its corruption set initially.
We could extend our definitions to adaptive corruptions rather easily, but our



Non-interactive Threshold Signatures 523

concrete bounds would be impacted. In particular, we would resort to a generic
reduction guessing the corrupted set beforehand, with a multiplicative loss of
2ns, which is acceptable for the smaller values of the number ns of parties that
we consider common in practice.

Our framework cannot cover recent protocols, like that of Canetti et al. [13],
which combine a multi-round message-independent pre-processing phase with a
final, message-dependent, round. (Conversely, their UC security analysis does
not give definitions which help our fine-grained framework).

Many prior works also consider robustness, i.e., the guarantee that a signature
is always produced. Here, we follow the same viewpoint as in FROST, and do
not focus on robustness explicitly. This allows us to prevent imposing a small t
(relative to ns) just for the sake of ensuring it. However, our schemes all implicitly
give verification keys vki for each server, and it is not hard to verify individual
partial signatures psig i. Any t valid partial signatures will always aggregate into
a valid signature.

Related and concurrent work. A recent preprint by Groth [28] presents
a general definition for fully non-interactive schemes in a setting with a (non-
interactive) DKG. His definition implies TS-UF-1, and he also provides a proof
sketch that BLS (with his newly proposed non-interactive DKG) is secure under a
variant of the OMCDH assumption, which is closely related to our variant of the
CDH assumption and which we also show to be hard in the GGM. Groth’s frame-
work is not suitable for partially non-interactive schemes like FROST, which are
the main focus of our work.

History of this paper. This paper is the result of a (hard) merge imposed
by the Crypto 2022 PC on two submissions. CKM [14] introduces FROST2.
BTZ [7] introduces the framework and definitions for non-interactive schemes
with trusted key generation and proofs for BLS, FROST1 and FROST2 in this
framework. CKM [14] provides a proof of security for FROST2 that includes dis-
tributed key generation. Most security proofs have been deferred to the respective
full versions. We see each group of authors as responsible for the contribution
relevant to their part of the work.

2 Preliminaries

Notation. If b ≥ a ≥ 1 are positive integers, then Za denotes the set {0, . . . , a−
1} and [a..b] denotes the set {a, . . . , b}. If x is a vector then |x| is its length (the
number of its coordinates), x[i] is its i-th coordinate and [x] = { x[i] : 1 ≤
i ≤ |x| } is the set of all its coordinates. A string is identified with a vector over
{0, 1}, so that if x is a string then x[i] is its i-th bit and |x| is its length. By ε
we denote the empty vector or string. The size of a set S is denoted |S|. For sets
D,R let FNS(D,R) denote the set of all functions f : D → R.

Let S be a finite set. We let x ←$ S denote sampling an element uniformly
at random from S and assigning it to x. We let y ← AO1,...(x1, . . . ; r) denote
executing algorithm A on inputs x1, . . . and coins r with access to oracles O1, . . .
and letting y be the result. We let y ←$ AO1,...(x1, . . .) be the result of picking r
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at random and letting y ← AO1,...(x1, . . . ; r). Algorithms are randomized unless
otherwise indicated. Running time is worst case.

Games. We use the code-based game playing framework of [6]. (See Fig. 2 for
an example). Games have procedures, also called oracles. Among the oracles are
Init (Initialize) and Fin (Finalize). In executing an adversary A with a game
Gm, the adversary may query the oracles at will, with the restriction that its
first query must be to Init (if present), its last to Fin, and it can query these
oracles at most once. The value returned by the Fin procedure is taken as the
game output. By Gm(A) ⇒ y we denote the event that the execution of game
Gm with adversary A results in output y. We write Pr[Gm(A)] as shorthand for
Pr[Gm(A) ⇒ true], the probability that the game returns true.

In writing game or adversary pseudocode, it is assumed that Boolean vari-
ables are initialized to false, integer variables are initialized to 0 and set-valued
variables are initialized to the empty set ∅.

Groups. Let G be a group of order p. We will use multiplicative notation for the
group operation, and we let 1G denote the identity element of G. We let G∗ =
G\{1G} denote the set of non-identity elements, which is the set of generators of
G if the latter has prime order. If g ∈ G∗ is a generator and X ∈ G, the discrete
logarithm base g of X is denoted DLG,g(X), and it is in the set Z|G|.

3 A Framework for Non-interactive Threshold Signatures

We present our hierarchy of definitions of security for non-interactive threshold
schemes, formalizing both unforgeability (UF) and strong unforgeability (SUF)
in several ways. We provide relations between all notions considered.

3.1 Syntax and Correctness

Maintaining state. Parties as implemented in protocols would maintain state.
When activated with some inputs (which include messages from other parties),
they would apply some algorithm Alg to these and their current state to get
outputs (including outgoing messages) and an updated state. To model this, we
do not change our definition of algorithms, but make the state an explicit input
and output that will, in definitions, be maintained by the overlying game. Thus,
we would write something like (· · · , st) ←$ Alg(· · · , st).

Syntax. A non-interactive threshold signature scheme TS specifies a number
ns ≥ 1 of servers, a reconstruction threshold t, a set HF of functions from
which the random oracle is drawn, a key generation algorithm Kg, a server
pre-processing algorithm SPP, a leader pre-processing algorithm LPP, a leader
signing-request algorithm LR, a server partial-signature algorithm PS, a leader
partial-signature aggregation algorithm Agg and a verification algorithm Vf. If
disambiguation is needed, we write TS.ns,TS.t,TS.HF,TS.Kg,TS.SPP,TS.LPP,
TS.LR,TS.PS,TS.Agg,TS.Vf, respectively. We now explain the operation and
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Game Gts-cor
TS

Init:

1 h ←$ TS.HF ; sk0 ← ⊥ ; (vk, aux, sk1, . . . , skns) ←$ Kg[h]
2 For i = [0..ns] do // Initialize party states with keys
3 sti.sk ← ski ; sti.vk ← vk ; sti.aux ← aux
4 Return vk, aux, sk1, . . . , skns

PPO(i): // i ∈ [1..ns]

5 (pp, sti) ←$ SPP[h](sti) ; st0 ← LPP[h](pp, st0)
6 Require: pp �= ⊥
7 Return pp

PPO(M,SS):

8 Require: SS ⊆ [1..ns] and |SS | ≥ t // Set of signers
9 (lr , st0) ←$ LR[h](M,SS , st0)

10 Require: lr �= ⊥ // Leader accepts request
11 If (lr .msg �= M or lr .SS �= SS) then win ← true
12 For i ∈ SS do
13 (psigi, sti) ←$ PS[h](lr , i, sti) // Server partial signatures
14 (sig , st0) ←$ Agg[h](lr , {psigi}i∈SS , st0)
15 If Vf[h](vk, M, sig) = false then win ← true

RO(x): // Random oracle

16 Return h(x)

Fin:

17 Return win

Fig. 1. Game used to define correctness of threshold signature scheme TS with thresh-
old t.

use of these components, the understanding of which may be aided by already
looking at the correctness game Gts-cor

TS of Fig. 1.
Parties involved are a leader (numbered 0, implicit in some prior works, but

made explicit here) and servers numbered 1, . . . , ns, for a total of ns+ 1 parties.
Algorithms have oracle access to a function h that is drawn at random from HF
in games (line 1 Fig. 1) and plays the role of the random oracle. Specifying HF
as part of the scheme allows the domain and range of the random oracle to be
scheme dependent.

The key generation algorithm Kg, run once at the beginning (line 1 of
Fig. 1), creates a public signature-verification key vk, associated public auxil-
iary information aux and an individual secret signing key ski for each server
i ∈ [1..ns]. (Usually, sk1, . . . , skns will be shares of a global secret key sk, but
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the definitions do not need to make sk explicit. The leader does not hold any
secrets associated to vk). While key generation may in practice be performed by
a distributed key generation protocol, our syntax assumes it done by a trusted
algorithm to allow a modular treatment. Keys are held by parties in their state,
encoded into dedicated fields of the latter as shown at line 3 of Fig. 1. For specific
scheme, we will typically use aux to model additional information that can be
leaked by key generation step without violating security (e.g., the values gski in
most cases).

The signing protocol can be seen as having two rounds, which we think as
a pre-processing and online stage. In a pre-processing round, any server i can
run (pp, sti) ←$ SPP[h](sti) to get a pre-processing token pp which it sends to the
leader. (Here sti is the state of i.) Via st0 ← LPP[h](pp, st0), the leader updates
its state st0 to incorporate token pp. (In Fig. 1, this is reflected in lines 5–7).

In a signing round the leader begins with a message and a choice of a signer
set SS ⊆ [1..ns] of size at least t. Via (lr , st0) ←$ LR[h](M,SS , st0) it generates
a leader request lr that, through st0, implicitly depends on a choice of pre-
processing tokens. (Lines 8,9 of Fig. 1). The leader request is sent to each i ∈
SS , who, via (psig i, sti) ←$ PS[h](lr , sti), computes a partial signature psig i and
returns it to the leader. Via (sig , st0) ←$ Agg[h](lr , {psig i}i∈SS , st0), the leader
aggregates the partial signatures into a signature sig of M , the desired output
of the protocol. (Lines 12–14 of Fig. 1).

The verification algorithm, like in a standard signature scheme, takes vk, a
message M and a candidate signature, and returns a boolean validity decision.

Echo schemes. We define a sub-class of non-interactive threshold schemes that
we call echo schemes. Recall that a leader request lr is mandated to specify a
message lr .msg and a set lr .SS ⊆ [1..ns] of servers from whom partial signa-
tures are being requested. In an echo scheme, lr additionally specifies a function
lr .PP : lr .SS → {0, 1}∗. If the leader is honest, lr .PP(i) is a token pp that i had
previously sent to the leader. That is, the leader is echoing tokens back to the
servers, whence the name. In considering security, of course, lr .PP(i) is picked
by the adversary and may not be a prior token. As we will discuss in Sect. 4.1,
FROST is a typical example of an echo scheme.

Correctness of a TS scheme. The game of Fig. 1 defines correctness, and
serves also to detail the above. Recall that TS specifies a threshold t ∈ [1..ns].
The adversary will make the leader’s pre-processing requests, via oracle PPO.
It will likewise make signing requests via oracle PPO. If any condition listed
under Require: fails the adversary is understood as losing, the game automatically
returning false. We let Advts-corr

TS (A) = Pr[Gts-cor
TS (A)] be the advantage of an

adversary A. The default requirement is perfect correctness, which means that
Advts-corr

TS (A) = 0 for all A, regardless of computing time and number of oracle
queries, but this can be relaxed, as may be necessary for lattice-based protocols.

The way in which we are supposed to interpret the correctness definition
is that a request lr is associated with a set SS and a message M , and if such
a request is issued successfully by the leader (i.e., lr 
= ⊥), then the servers
in SS would all accept lr producing partial signatures which aggregate into a
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Games Gts-uf-i
TS (i = 0, 1, 2, 3, 4) and Gts-suf-i

TS (i = 2, 3, 4)

Init(CS):

1 Require: CS ⊆ [1..ns] and |CS | < t // Set of corrupted parties
2 h ←$ TS.HF ; (vk, aux, sk1, . . . , skns) ←$ Kg[h]
3 HS ← [1..ns] \ CS // Set of honest parties
4 For i ∈ HS do
5 sti.sk ← ski ; sti.vk ← vk ; sti.aux ← aux
6 Return vk, aux, {ski}i∈CS

PPO(i):

7 Require: i ∈ HS
8 (pp, sti) ←$ SPP[h](sti) ; PPi ← PPi ∪ {pp} ; Return pp

PSignO(i, lr):

9 M ← lr .msg
10 Require: lr .SS ⊆ [1..ns] and M ∈ {0, 1}∗ and i ∈ HS
11 L ← L ∪ {lr} ; (psig , sti) ←$ PS[h](lr , i, sti)
12 If (psig �= ⊥) then
13 S1(M) ← S1(M) ∪ {i} ; S2(lr) ← S2(lr) ∪ {i}
14 Return psig

RO(x): // Random oracle

15 Return h(x)

Fin(M, sig):

16 For all lr ∈ L do
17 S3(lr) ← { i ∈ HS ∩ lr .SS : lr .PP(i) ∈ PPi } ; S4(lr) ← HS ∩ lr .SS
18 If (not Vf[h](vk, M, sig)) then return false
19 Return (not tfi(M)) // Game Gts-uf-i

TS for i = 0, 1
20 Return (not ∃ lr ( lr .msg = M and tfi(lr) )) // Game Gts-uf-i

TS for i = 2, 3, 4
21 Return (not ∃ lr ( lr .msg = M and tsfi(lr , vk, sig) )) // Game Gts-suf-i

TS

Fig. 2. Games used to define TS-UF-i and TS-SUF-i unforgeability of threshold sig-
nature scheme TS. Line 20 is included only in game Gts-uf-i

TS and line 21 only in game
Gts-suf-i

TS . These lines refer to the trivial-forgery predicates tfi(lr) and trivial-strong-
forgery predicates tsfi(lr , vk, sig) from Figure 3. In particular, the set S3(lr) and, thus,
TS-UF-3 and TS-SUF-3 unforgeability are defined only if TS is an echo scheme.

valid signature for M . We note that this definition assumes that we submit
requests to all servers in the same order. One can give a stronger (but more
complex) definition which ensures correctness even when servers process requests
in different orders, but note that for all schemes we discuss below they will be
equivalent, and we hence omit the more cumbersome game to define it.
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3.2 Unforgeability and Strong Unforgeability

Unforgeability. Unforgeability as usual asks that the adversary be unable to
produce a valid signature sig on some message M of its choice except in a trivial
way. The question is what “trivial” means. For regular signatures, it means that
the adversary did not obtain a signature of M from the signing oracle [27]. For
threshold signatures, it is more subtle. We will give several definitions.

Figure 2 simultaneously describes several games, Gts-uf-i
TS for i = 0, 1, 2, 3, 4,

where Gts-uf-3
TS is only defined if TS is an echo scheme. (We will get to the second

set of games later). They are almost the same, differing only at line 20. The cor-
responding advantages of an adversary A are Advts-uf-i

TS (A) = Pr[Gts-uf-i
TS (A)].

The adversary calls Init with a choice of a set of servers to corrupt. It is also
viewed as having corrupted the leader. Playing the leader role, it can request
pre-processing tokens via oracle PPO. It can provide a server with a leader-
request lr of its choice to obtain a partial signature psig . At the end, it outputs
to Fin its forgery message M and signature sig . If the signature is not valid,
line 18 ensures that the adversary does not win. Now, to win, the signature must
be non-trivial. It is in how this is defined that the games differ. Associated to
i is a trivial-forgery predicate tfi that is invoked at line 20. The choices for
these predicates are shown in the table in Fig. 3, and the notion corresponding
to game tfi is denoted TS-UF-i. When i = 0 we have the usual notion from the
literature, used in particular in [8,23,25]. As i increases, we get more stringent
(less generous) in declaring a forgery trivial, and the notion gets stronger.

Concretely, TS-UF-0 considers a signature for a message M trivial if a request
lr with lr .msg was answered by server with a partial signature. Moving on,
TS-UF-1 strengthens this by declaring a signature trivial only if at least t−|CS |
servers have responded to some request for message M , where these requests
could have been different. In turn, TS-UF-2 strengthens this even further by
requiring that there was a single prior request lr for M which was answered by
t − |CS | servers.

The notion TS-UF-3 only deals with echo schemes. Recall that for these
schemes, a request lr contains a map lr .PP : lr .SS → {0, 1}∗, where lr .PP(i) is
meant to be a token issued by server i. Here, we consider a signature for message
M trivial if there exists a request lr for M which is answered by all honest servers
i for which lr .PP(i) is a valid token previously output by i, and this set consists of
at least t−|CS | servers. Finally, our strongest notion, TS-UF-4 simply considers
a signature trivial if there exists a request lr for M which is answered by all
honest servers in i ∈ lr .SS.

It is natural to expect TS-UF-3 and TS-UF-4 to be similar, but as we will see
below, they are actually not equivalent. (Although we will give a transformation
that boosts an TS-UF-3-secure scheme into an TS-UF-4-secure one).

Strong unforgeability. For standard signatures, strong unforgeability asks,
in addition to unforgeability, that the adversary be unable to produce a new
signature on any message, where new means different from any obtained legit-
imately for that message. We ask, does this have any counterpart in threshold



Non-interactive Threshold Signatures 529

tf0(M) : S1(M) 
= ∅
tf1(M) : |S1(M)| ≥ t − |CS |
tf2(lr) : |S2(lr)| ≥ t − |CS |
tf3(lr) : tf2(lr) and S2(lr) = S3(lr)

tf4(lr) : tf2(lr) and S2(lr) = S4(lr)

tsf2(lr , vk, sig) : tf2(lr) and SVf[h](vk, lr , sig)

tsf3(lr , vk, sig) : tf3(lr) and SVf[h](vk, lr , sig)

tsf4(lr , vk, sig) : tf4(lr) and SVf[h](vk, lr , sig)

TS-UF-0 TS-UF-1 TS-UF-2 TS-UF-3 TS-UF-4

TS-SUF-2 TS-SUF-3 TS-SUF-4

Fig. 3. Top: Trivial-forgery conditions tfi(lr) (i = 0, 1, 2, 3, 4) and trivial-strong-
forgery conditions tsfi(lr , vk, sig) (i = 1, 2, 3, 4) used to define TS-SUF-i and TS-SUF-
i security in games Gts-uf-i

TS and Gts-suf-i
TS , respectively. Bottom: Relations between

notions of security.

signatures? In fact, FROST seems to have such a property. We now provide
formalisms to capture such properties.

It turns out that giving a general definition of strong unforgeability is rather
complex, and we will restrict ourselves to a natural sub-class of schemes (which
includes FROST). Concretely, we ask that there is an algorithm SVf, called a
strong verification algorithm, that takes a public key vk, a leader request lr , and
a signature sig as inputs and outputs true or false. We require that for any vk, lr
there exists at most one signature sig such that SVf(vk, lr , sig) = true. Also,
TS is asked to satisfy a strong correctness property which is defined using the
same game as Gts-cor

TS except the condition Vf[h](vk,M, sig) = false in line 15 is
replaced with SVf[h](vk, lr , sig) = false.

For a scheme TS with a strong verification algorithm, we consider the Gts-suf-i
TS

(i = 2, 3, 4) games in Fig. 2, where Gts-suf-3
TS is only defined if TS additionally is

an echo scheme. The differences (across the different values of i) are only in the
trivial-strong forgery predicates tsfi used at line 21, and the choices are again
shown in the table in Fig. 3. The corresponding advantage of an adversary A is
Advts-suf-i

TS (A) = Pr[Gts-suf-i
TS (A)]. The ensuing notion is called TS-SUF-i.
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3.3 Relations and Transformations

Relations between notions. Figure 3 shows relations between the notions
of unforgeability and strong unforgeabilty that we have defined. A (non-dotted)
arrow A → B is an implication, saying that A implies B: any scheme that is
A-secure is also B-secure. Now see the nodes as forming a graph with edges the
non-dotted arrows. The thin arrow from TS-UF-0 to TS-UF-1 indicates us that
the implication only holds under a quantitatively loose reduction. (We prove this
in Theorem 1). We claim that in this graph, if there is no path from a notion
B to a notion A, they are separate or distinct: there exists a scheme that is
B-secure but not A-secure. The dotted arrows are separations that we explicitly
prove. These, together with the full arrows, prove the claim just made. The thick
dotted arrows indicate the existence of a generic transformation lifting security
of a scheme to achieve a stronger notion. (We establish this below as part of
Theorem 2).

Reference schemes and proofs of relations. In [7], we give a set of
(fully) non-interactive threshold schemes that we call reference schemes. They
represent simple, canonical ways to achieve the different notions. They may not
be of practical interest, because they have key and signature sizes proportional
to ns, but the point is to embody notions in a representative way. A few things
emanate from these schemes. One is that we use them to establish the sepa-
rations given by the dotted lines in Fig. 3, thereby showing that any notions
between which there is no path, in the graph given by the full arrows, are indeed
separate. Second, we get a scheme that achieves our strongest notion, TS-SUF-4,
which neither FROST nor BLS achieve. (Although we can get such a scheme
by applying our transformation from Theorem2 to FROST1). Finally, reference
schemes, as canonical examples, are ways to understand the notions.

From TS-UF-0 to TS-UF-1, loosely. The following theorem shows TS-UF-1
security is implied by TS-UF-0 security, although with an exponential loss in t,
which is acceptable in settings where t is expected to be constant.

Theorem 1. Let TS be a threshold signature scheme. For any TS-UF-1 adver-
sary A there exists a TS-UF-0 adversary B such that Advts-uf-1

TS (A) ≤ (
ns

t−1

) ·
Advts-uf-0

TS (B). Moreover, B runs in time roughly equal that of A, and the number
of B’s queries to each oracle is at most that of A.

If the adversary always corrupts t − 1 parties, it is clear that TS-UF-0 and
TS-UF-1 are equivalent. Otherwise, in general, for an adversary that breaks TS-
UF-1 security and corrupts a subset CS of servers with size less than t−1, if the
adversary wins the game Gts-uf-1

TS by outputting (M∗, sig∗), we know |S1(M∗)| <
t − |CS |. Therefore, we can modify the adversary to initially guess a subset
ECS ⊆ [1..ns] \CS with size t−|CS |− 1 and corrupt all parties in ECS . If ECS
happens to contain S1(M∗), the adversary actually wins. It is not hard to see
that the probability that this is true is 1/

( ns−|CS|
t−|CS|−1

) ≥ 1/
(

ns
t−1

)
. We give a formal

proof in [7].
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Protocol ATS[TS,DS]

Kg[h]:

1 vk, taux, {tski}i∈[1..ns] ← TS.Kg
2 For i ∈ [1..ns] do
3 (svki, sski) ←$ DS.Kg
4 ski ← (tski, sski)
5 aux ← (taux, svk1, . . . , svkns)
6 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):

7 (tpp, sti) ←$ SPP[h](sti)
8 (tski, sski) ← sti.sk
9 tsig ←$ DS.Sig(sski, tpp)

10 Return ((tpp, tsig), sti)

LPP[h](i, pp, st0):

11 (tpp, tsig) ← pp
12 st0.SigMap(i, tpp) ← tsig
13 Return TS.LPP[h](i, tpp, st0)

OriginLR(lr):

14 For i ∈ lr .SS do
15 (tpp, tsig) ← lr .PP(i)
16 lr .PP(i) ← tpp
17 Return lr

LR[h](M,SS , st0):

18 (lr , st0) ← TS.LR[h](M,SS , st0)
19 For i ∈ SS do
20 tppi ← lr .PP(i)
21 lr .PP(i) ← (tppi, st0.SigMap(i, tppi))
22 Return (lr , st0)

PS[h](lr , i, sti):

23 (taux, svk1, . . . , svkns) ← sti.aux
24 For i ∈ lr .SS do
25 (tppi, tsigi) ← lr .PP(i)
26 If DS.Vf(svki, tppi, tsigi) = false then
27 Return ⊥
28 Return TS.PS[h](OriginLR(lr), i, sti)

Agg[h](PS, st0):

29 Return TS.Agg[h](PS, st0)

Vf[h](vk, M, sig):

30 Return TS.Vf[h](vk, M, sig)

SVf[h](vk, lr , sig):

31 Return TS.SVf[h](vk,OriginLR(lr), sig)

Fig. 4. The threshold signature ATS[TS,DS] constructed from an echo scheme TS
and a digital signature scheme DS such that ATS.ns = TS.ns and ATS.t = TS.t. The
algorithm OriginLR transforms a well-formed leader request lr for ATS to a well-formed
leader request in TS. st0.SigMap is a table that stores the signature corresponding to
each token generated by honest servers, which is initially set to empty. PS denotes a
set of partial signatures.

From TS-(S)UF-3 to TS-(S)UF-4. Figure 4 gives a general transformation from
TS-(S)UF-3 security to TS-(S)UF-4 security. Concretely, we give a construction
ATS from any TS-(S)UF-3-secure echo scheme TS and a digital signature scheme
DS. The size of signatures produced by ATS and the verification algorithm Vf are
exactly the same as TS. The main idea is to use signatures to authenticate each
token contained in a leader request lr from TS, so that an honest server only
answers the request if all the authentications are valid. The rest of the protocol
remains the same.

In the game Gts-(s)uf-4
ATS , we can show that as long as the adversary does

not break the strong unforgeability of DS, for any leader request lr such that
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Game Gsuf-cma
DS

Init:

1 (vk, sk) ←$ DS.Kg
2 Return vk

PPO(M):

3 sig ←$ DS.Sig(sk, M)
4 Q ← Q ∪ {(M, sig)}
5 Return sig

Fin(M, sig):

6 If DS.Vf(vk, M, sig) and (M, sig) �∈ Q

then
7 Return true
8 Return false

Fig. 5. The game Gsuf-cma
DS , where DS is a digital signature scheme.

S2(lr) > 0, it holds that S3(lr) = S4(lr), which implies the conditions tf3 and
tf4 are equivalent. Therefore, we can reduce TS-(S)UF-4 security of ATS to
TS-(S)UF-3 security of TS and SUF-CMA security of DS. (The latter notion
is formally defined via the game in Fig. 5). This is captured by the following
theorem. (The proof is in [7]).

Theorem 2. Let XX ∈ {SUF ,UF}. Let TS be an echo scheme and DS be a
digital signature scheme. For any TS-XX-4 adversary A there exists a TS-XX-3
adversary B and a SUF-CMA adversary C such that

Advts-xx-4
ATS[TS,DS](A) ≤ Advts-xx-3

TS (B) + ns · Advsuf-cma
DS (C).

Moreover, B and C run in time roughly equal that of A. The number of B’s
queries to each oracle is at most that of A. The number of C’s PPO queries is
at most the number of PPO queries made by A.

4 The Security of FROST

4.1 The FROST1 and FROST2 Schemes

Scheme descriptions. This section revisits the security of FROST, first pro-
posed in [31] by Komlo and Goldberg, as a (partially) non-interactive threshold
signature scheme.

First, we consider the original scheme, which we refer to as FROST1. We then
present FROST2, an optimized version that reduces the number of exponentia-
tions required for signing and verification from |lr .SS| to one. We give a detailed
description of both schemes in Fig. 6. The leader state st0 contains a set curPPi

for each server i representing the set of tokens generated by server i that has not
yet been used in a signing request. The state sti for server i contains a function
mapPP that maps each token pp to the randomness that is used to generate pp
and sti.mapPP(pp) = ⊥ if pp is not generated by server i yet or has already
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Protocol FROST1 , FROST2 [G]

Kg[h]:

1 For i ∈ [0..t − 1] do
2 ai ←$ Zp

3 For i ∈ [1..ns] do
4 ski ←$

∑t−1
j=0 ij · aj ; vki ← gski

5 vk ← ga0

6 aux ← (vk1, . . . , vkns)
7 Return vk, aux, {ski}i∈[1..ns]

SPP[h](sti):

8 r ← Zp ; s ← Zp

9 pp ← (gr, gs)
10 sti.mapPP(pp) ← (r, s)
11 Return (pp, sti)

LPP[h](i, pp, st0):

12 st0.curPPi ← st0.curPPi ∪ {pp}
13 Return st0

LR[h](M,SS , st0):

14 If ∃ i ∈ SS : st0.curPPi = ∅ then
15 Return ⊥
16 lr .msg ← M ; lr .SS ← SS
17 For i ∈ SS do
18 Pick ppi from st0.curPPi

19 lr .PP(i) ← ppi

20 st0.curPPi ← st0.curPPi\{ppi}
21 Return (lr , st0)

Vf[h](vk, M, sig):

22 (R, z) ← sig
23 c ← h2(vk, M, R)
24 Return (gz = R · vkc)

CompPar[h](vk, lr):

25 M ← lr .msg
26 For i ∈ lr .SS do
27 di ← h1(vk, lr , i)
28 di ← h1(vk, lr)
29 (Ri, Si) ← lr .PP(i)
30 R ← ∏

i∈lr.SS RiS
di
i

31 c ← h2(vk, M, R)
32 Return (R, c, {di}i∈lr.SS)

PS[h](lr , i, sti):

33 ppi ← lr .PP(i)
34 If sti.mapPP(ppi) = ⊥ then
35 Return (⊥, sti)
36 (ri, si) ← sti.mapPP(ppi)
37 sti.mapPP(ppi) ← ⊥
38 (R, c, {dj}j∈lr.SS)

← CompPar[h](sti.vk, lr)
39 zi ← ri + di · si + c · λlr.SS

i · sti.sk
40 Return ((R, zi), sti)

Agg[h](PS, st0):

41 R ← ⊥ ; z ← 0
42 For (R′, z′) ∈ PS do
43 If R = ⊥ then R ← R′

44 If R �= R′ then return (⊥, st0)
45 z ← z + z′

46 Return ((R, z), st0)

SVf[h](vk, lr , sig):

47 (R∗, z∗) ← sig
48 (R, c, {dj}j∈lr.SS)

← CompPar[h](vk, lr)
49 Return (R = R∗) ∧ (gz∗

= R · vkc)

Fig. 6. The protocol FROST1[G] and FROST2[G], where G is a cyclic group with prime
order p and generator g. Further, ns is the number of parties, and t is the threshold
of the schemes. We require t ≤ ns ≤ p − 1. The protocol FROST1 contains all but the
dashed box, and the protocol FROST2 contains all but the solid box. The function hi(·)
is computed as h(i, ·) for i = 1, 2. PS denotes a set of partial signatures.
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Game Gomdl
G

Init:

1 cid ← 0; � ← 0; T ← ()

Chal():

2 cid ← cid + 1; xcid ←$ Zp

3 Return gxcid

Dlog(X):

4 If T (X) �= ⊥ then return T (X)
5 � ← � + 1; T (X) ← DLG,g(X)
6 Return T (X)

Fin({yi}i∈[cid]):

7 If � ≥ cid then return false
8 If ∀ i ∈ [cid] : yi = xi then
9 Return true

10 Return false

Fig. 7. The OMDL game, where G is a cyclic group with prime order p and generator g.

been used in a signing request. The coefficient λlr .SS
i in line 39 is the Lagrange

coefficient for the set lr .SS, which is defined (for any set S ⊆ [1..ns]) as

λS
i :=

∏

j∈S,i�=j

j

j − i
.

The algorithm CompPar is a helper algorithm that computes the parame-
ters R, c, {di}i∈lr .SS used during signing. The difference between FROST1 and
FROST2 is the way di is computed in CompPar. In FROST1, each di is a differ-
ent hash value for each server i, while in FROST2, di’s are the same hash value
for all servers.

It is not hard to verify that both schemes satisfy perfect correctness.

Overview of our results. We begin by showing that FROST2 is TS-SUF-2-
secure (under OMDL) but not TS-UF-3-secure. We then show that FROST1 is TS-
SUF-3-secure but not TS-UF-4-secure. Theoretically, our results imply the sepa-
rations between TS-(S)UF-2 and TS-(S)UF-3 and between TS-(S)UF-3 and TS-
(S)UF-4. Practically speaking, our results indicate a separation between the secu-
rity of FROST1 and FROST2. To complete the picture, a TS-SUF-4-secure vari-
ant of FROST1 can be obtained via the general transformation from Theorem2,
although it is an interesting open question whether a more efficient variant exists.

4.2 TS-SUF-2 Security of FROST2

We first show that FROST2 is TS-SUF-2-secure in the ROM under the OMDL
assumption, which is formally defined in Fig. 7. Formally, we show the following
theorem.

Theorem 3. For any TS-SUF-2 adversary A making at most qs queries to
PPO and at most qh queries to RO, there exists an OMDL adversary B making
at most 2qs + ns queries to Chal such that

Advts-suf-2
FROST2[G](A) ≤

√
q · (Advomdl

G (B) + 3q2/p) ,
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where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that
of A, plus the time to perform at most (4ns+ 2) · q + 2qs + 2ns2 exponentiations
and group operations.

The core of the proof is a reduction from OMDL [2], which will need to
use rewinding (via a variant of the Forking Lemma). The main challenge is to
ensure that the reduction can simulate properly with a number of queries to
Dlog which is smaller than the number of DL challenges. Further below, we
are going to show that FROST2 is not TS-UF-3 secure, thus showing the above
result is optimal with respect to our hierarchy.

Proof (of Theorem 3). Let A be an adversary as described in the theorem. Denote
the output message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of
generality, we assume A always queries RO on h2(vk,M∗, R∗) before A returns
and always queries RO on h1(vk, lr) prior to the query PSignO(i, lr) for some
i and lr . (This adds up to qs additional RO queries, and we let q = qh + qs +1).
Denote lr∗ as the leader query such that h1(vk, lr∗) is the first query prior to
the query h2(vk,M∗, R∗) satisfying SVf[h](vk, lr∗, sig∗) = true. If such lr∗ does
not exists, lr∗ is set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t − |CS|).
It is clear that if A wins the game Gts-suf-2

FROST2, then E1 must occur, which implies
Pr[E1] ≥ Advts-suf-2

FROST2[G](A). Therefore, the theorem will follow from the following
lemma. (We isolate this statement as its own lemma also because it will be helpful
in the proof of Theorem5 below). ��
Lemma 4. There exists an OMDL adversary B making at most 2qs + t queries
to Chal such that

Pr[E1] ≤
√

q · (Advomdl
G (B) + 3q2/p).

Moreover, B runs in time roughly twice that of A, plus the time to perform at
most (4ns + 2) · q + 2qs + 2ns2 exponentiations and group operations.

The proof of Lemma 4 is in [7]. It uses a variant of the general Forking Lemma
of [3], also given in 4, that allows us to get better bounds in our analysis.

4.3 TS-SUF-3 Security of FROST1

In this section, we show that FROST1 is TS-SUF-3-secure in the ROM under
the OMDL assumption. Formally, we show the following theorem.

Theorem 5. For any TS-SUF-3 adversary A making at most qs queries to
PPO and at most qh queries to RO, there exists an OMDL adversary B making
at most 2qs + t queries to Chal such that

Advts-suf-3
FROST1[G](A) ≤ 4ns · q ·

√
Advomdl

G (B) + 6q/p ,

where q = qs + qh + 1. Moreover, B runs in time roughly equal two times that
of A, plus the time to perform at most 6ns · q + 4qs + 2ns2 exponentiations and
group operations.
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The proof here follows a similar pattern than that of Theorem3, but will be
more complex. In particular, the lesser tight bound is due to the fact that we need
to consider an additional bad event, whichwe upper bound via a different reduction
from OMDL. As we explain in detail below, this reduction will make use of a looser
Forking Lemma, which is a variant of the “Local Forking Lemma” [1], which only
resamples a single random oracle output when rewinding. The extra looseness is
due to needing to ensure an extra condition when rewinding.

Proof (of Theorem 5). Let A be the adversary described in the theorem. Denote
the output message-signature pair of A as (M∗, sig∗ = (R∗, z∗)). Without loss of
generality, we assume A always queries RO on h2(vk,M∗, R∗) before A returns
and always queries RO on h1(vk, lr , i) prior to the query PSignO(i, lr) for some
i and lr . (This adds up to qs additional RO queries, and we let q = qh + qs +1).
Denote lr∗ as the leader query such that h1(vk, lr∗, i) is the first RO query prior
to the h2(vk,M∗, R∗) query for some i satisfying SVf[h](vk, lr∗, sig∗) = true. If
such lr∗ does not exist, lr∗ is set to ⊥. Denote the event E1 as

Vf[h](vk,M∗, sig∗) ∧ (lr∗ = ⊥ ∨ S2(lr∗) < t − |CS|).
Denote the event E2 as

Vf[h](vk,M∗, sig∗) ∧ lr∗ 
= ⊥ ∧ S2(lr∗) 
= S3(lr∗).

If A wins the game Gts-suf-3
FROST2 and lr∗ 
= ⊥, we know either S2(lr∗) < t − |CS| or

S2(lr∗) 
= S3(lr∗). Therefore, if A wins the game Gts-suf-3
FROST2, then either E1 or E2

occurs, which implies

Advts-suf-3
FROST1[G](A) ≤ Pr[E1] + Pr[E2] ≤ 2max{Pr[E1],Pr[E2]}.

Thus, we conclude the theorem with the following two lemmas.

Lemma 6. There exists an OMDL adversary B making at most 2qs + t queries
to Chal such that

Pr[E1] ≤
√

q · (Advomdl
G (B) + 3q2(ns + 1)2/p) ,

Moreover, B runs in time roughly equal two times that of A, plus the time to
perform at most 6ns · q + 4qs + 2ns2 exponentiations and group operations.

Lemma 7. There exists an OMDL adversary B making at most 2qs queries to
Chal such that

Pr[E2] ≤ ns · q

√
2(Advomdl

G (B) + 1/p).

Moreover, B runs in time roughly equal two times that of A, plus the time to
perform at most 6ns · q + 4qs + 2ns2 exponentiations and group operations.

The proof of Lemma 6 is almost the same as Lemma 4, so we omit the full
proof. The only difference is that C takes as input h1, . . . , h(ns+1)q in order to
simulate all RO queries. For a RO query h1(vk, lr , i), C first enumerates all
i′ ∈ [ns] and assigns h(ctrh−1)(ns+1)+i′ to h1(vk, lr , i′). Then, C computes the
nonce R for lr and assigns hctrh(ns+1) to h2(vk, lr .msg, R) if it is not assigned
any value yet. Similarly, for a new RO query h1(vk,M,R), its value is set to
hctrh(ns+1). The rest follows by similar analysis.
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Adversary AInit,PPO,PSignO,RO:

1 CS ← {3, 4} ; (vk, aux, {sk3, sk4}) ←$ Init(CS)
2 (R1, S1) ←$ PPO(1) ; (R2, S2) ←$ PPO(2) ; γ ← λ

{1,3,4}
1 /λ

{1,2,3}
1

3 lr .msg ← M ; lr .SS ← {1, 2, 3}
4 lr .PP(1) ← (R1, S1) ; lr .PP(2) ← (R2, S2)
5 lr .PP(3) ← (Rγ−1

1 R−1
2 , Sγ−1

1 S−1
2 )

6 z1 ← PSignO(1, lr)
7 d ← RO(1, vk, lr) ; R ← Rγ

1Sγ·d
1 ; c ← RO(2, vk, R, M)

8 z ← γ · z1 + c(λ
{1,3,4}
3 · sk3 + λ

{1,3,4}
4 · sk4)

9 Return (M, (R, z))

Fig. 8. Adversary A that wins the game Gts-uf-3
FROST2, where M is a fixed message.

Adversary AInit,PPO,PSignO,RO:

1 CS ← {5, 10} ; (vk, aux, {sk5, sk10}) ←$ Init(CS)
2 (R1, S1) ←$ PPO(11) ; s2, r2, s3, r3 ←$ Zp

3 lr .msg ← M ; lr .SS ← {11, 15, 20}
4 lr .PP(11) ← (R1, S1) ; lr .PP(15) ← (gr2 , gs2) ; lr .PP(20) ← (gr3 , gs3)
5 z1 ← PSignO(11, lr)
6 For i ∈ {11, 15, 20} do di ← RO(1, vk, lr , i)
7 R ← R1S

d11
1 gr2+r3+s2·d15+s3·d20 ; c ← RO(2, vk, R, M)

8 z ← z1 + r2 + r3 + s2 · d15 + s3 · d20 + c(λ
{5,10,11}
5 · sk5 + λ

{5,10,11}
10 · sk10)

9 Return (M, (R, z))

Fig. 9. Adversary A that wins the game Gts-uf-4
FROST1, where M is a fixed message.

To prove Lemma 7, we need a variant of the Local Forking Lemma of [1],
which is given in [7] along with the proof of Lemma7 itself.

4.4 Attacks for FROST1 and FROST2

FROST2 is not TS-UF-3 secure. Consider the setting where ns = 4 and
t = 3 and the adversary A for the game Gts-uf-3

FROST2 described in Fig. 8. We
now show that Advts-uf-3

FROST2(A) = 1. From the execution of PSignO, we know

gz1 = R1S
d
1vk

λ
{1,2,3}
1 ·c

1 . Therefore,

gz = Rγ
1Sd·γ

1 vk
γ·λ{1,2,3}

1 ·c
1 vk

λ
{1,3,4}
3 ·c

3 vk
λ

{1,3,4}
4 ·c

4

= Rgc·∑i∈{1,3,4} λ
{1,3,4}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {1} and
S3(lr) = {1, 2}, which implies the condition tf3(lr) does not hold. Therefore, A
wins the game Gts-uf-3

FROST2 with probability 1.
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FROST1 is not TS-UF-4 secure. Consider the setting where ns = 20 and
t = 3 and the adversary A for the game Gts-uf-4

FROST1 described in Fig. 9. We
now show that Advts-uf-4

FROST1(A) = 1. From the execution of PSignO, we know

gz1 = R1S
d11
1 vk

λ
{11,15,20}
11 ·c

11 . The key observation here is that λ
{11,15,20}
11 =

15·20
(15−11)(20−11) = 25

3 = 5·10
(5−11)(10−11) = λ

{5,10,11}
11 . Therefore,

gz = R1S
d11
1 gr2+r3+s2·d15+s3·d20vk

λ
{11,15,20}
11 ·c

11 vk
λ

{5,10,11}
5 ·c

5 vk
λ

{5,10,11}
10 ·c

10

= Rgc·∑i∈{5,10,11} λ
{5,10,11}
i ·ski = R · vkc ,

which implies (M, (R, z)) is valid for vk. Also, it is clear that S2(lr) = {11}
and S4(lr) = {11, 15, 20}, which implies the condition tf4(lr) does not hold.
Therefore, A wins the game Gts-uf-4

FROST1 with probability 1.
The reason why the attack is possible for FROST1 is because the honest

server 11 replies to the leader request lr with tokens lr .PP(15) and lr .PP(20)
not generated by the honest servers 15 and 20 but by the adversary instead.
Therefore, the attack is prevented by the general transformation from TS-SUF-
3 security to TS-SUF-4 security described in Fig. 4 since after the transformation,
an honest server replies to a leader request only when all the tokens within the
request are authenticated by the corresponding servers, and thus the adversary
cannot generate tokens on behalf of honest servers anymore.

5 FROST2 with Distributed Key Generation

In this section, we prove the security of FROST2 together with distributed key
generation (DKG). In particular, we prove the security of FROST2 with the
variant of the Pedersen DKG protocol [24] with proofs of possession originally
proposed in combination with FROST1 [30]. We call this protocol PedPoP and
provide a description in Fig. 10.

Throughout this section, we denote public keys by X, instead of vk, and
corresponding secret keys by x, instead of sk. We also denote the joint public
key by X̃ and aggregated nonce by R̃. Hash function hi(·) is computed as hi(·)
for i = 0, 1, 2.

Efficient distributed key generation. The Pedersen DKG can be viewed
as ns parallel instantiations of Feldman verifiable secret sharing (VSS) [19], which
itself is derived from Shamir secret sharing [36] but additionally requires each par-
ticipant to provide a vector commitment �C to ensure their received share is con-
sistent with all other participants’ shares. In addition, PedPoP requires each par-
ticipant to provide a Schnorr proof of knowledge of the secret corresponding to
the first term of their commitment. This is to ensure that unforgeability (but not
liveness) holds even if more than half of the participants are dishonest.

Schnorr Knowledge of Exponent Assumption. We introduce the
Schnorr knowledge of exponent assumption (Schnorr-KoE), which we show is
true under the discrete logarithm (DL) assumption in the algebraic group model
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PedPoP.KeyGen(t, ns)

1. Each party Pi chooses a random polynomial fi(Z) over Zp of degree t−1

fi(Z) = ai,0 + ai,1Z + · · · + ai,t−1Z
t−1

and computes Ai,k = gai,k for k =∈ [0..t − 1]. Denote xi = ai,0 and
Xi,0 = Ai,0. Each Pi computes a proof of possession of Xi,0 as a Schnorr
signature on Xi,0 as follows. They sample r̄i ←$ Zp and set R̄i ← gr̄i .
They compute c̄i ← h0(Xi,0,Xi,0, R̄i) and set z̄i ← r̄i + c̄i ·xi. They then
derive a commitment �Ci = (Ai,0, ..., Ai,t−1) and broadcast ((R̄i, z̄i), �Ci).

2. After receiving commitments from all other parties, each participant ver-
ifies the Schnorr signatures by computing c̄j ← h0(Aj,0, Aj,0, R̄j) and
checking that

gz̄j = R̄jAj,0
c̄j for j ∈ [1..ns]

If any checks fail, they disqualify the corresponding participant.
3. Each Pi computes secret shares x̄i,j = fi(idj) for j ∈ [1..ns], where idj is

the participant identifier, and sends x̄i,j secretly to party Pj .
4. Each party Pj verifies the shares they received from the other parties by

checking that

gx̄i,j =
t−1∏

k=0

A
idk

j

i,k

If the check fails for an index i, Pj broadcasts a complaint against Pi.
5. For each of the complaining parties Pj against Pi, Pi broadcasts the share

x̄i,j . If any of the revealed shares fails to satisfy the equation, or should Pi

not broadcast anything for a complaining player, then Pi is disqualified.
The share of a disqualified party Pi is set to 0.

6. The secret share for each Pj is x̄j =
∑ns

i=1 x̄i,j .
7. If Xi,0 = Xj,0 for any i 
= j, then abort. Else, the output is the joint

public key X̃ =
∏ns

i=1 Xi,0.

Fig. 10. PedPoP: The Pedersen distributed key generation protocol with proofs of
possession.

(AGM) without any tightness loss. The purpose of the Schnorr-KoE assumption
is to ensure that the Pedersen DKG can be run in the honest minority setting,
where we assume the existence of at least a single honest party and up to t − 1
corrupt parties. The Schnorr-KoE assumption can be avoided if we assume an
honest majority in the DKG. However, we prefer to allow more corruptions with
the tradeoff of a stronger assumption.
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Game Gsch-koe
G,Ext (A)

Init:

1 ω ←$ {0, 1}rlA // Coins given to A
2 Return ω

FSignO:

3 x, r̄ ←$ Zp

4 X ← gx ; R̄ ← gr̄

5 c̄ ← h̃0(X, X, R̄)
6 z̄ ← r̄ + c̄ · x
7 QFSignO ← QFSignO ∪ {(X, R̄, z̄)}
8 Return (X, R̄, z̄)

Chal(X, R̄, z̄):

9 c̄ ← h̃0(X, X, R̄)
10 If (X, R̄, z̄) ∈ QFSignO or gz̄ �= R̄X c̄

11 Return ⊥
12 α ←$ Ext(G, ω, QFSignO,Qh̃0

)
13 If gα �= X then win ← true
14 Return α

RO(θ): // Random oracle

15 If h̃(θ) = ⊥ then h̃(θ) ←$ Zp

16 Return h̃(θ)

Fin({0, 1}∗): // A outputs a bit string

17 Return win

Fig. 11. Game used to define the Schnorr knowledge of exponent (Schnorr-KoE)
assumption, where G is a cyclic group of order p with generator g. By rlA we denote
the randomness length of A. h̃ is initialized to be an empty table.

The Schnorr-KoE assumption allows us to prove the security of multi-party
signatures in the setting where each participant is required to provide a proof
of possession of their secret key during a key generation and registration phase.
By formatting our desired security property directly as an assumption, we avoid
the complexity of rewinding adversaries, which is required when proving secu-
rity of Schnorr signatures in the ROM only, and which may result in a loss of
tightness exponential in the number of parties that the adversary controls [38].
The Schnorr-KoE assumption implies that if an adversary can forge a Schnorr
signature for some public key, then it must know the corresponding secret key.
It is a non-falsifiable assumption.

Our proof for Schnorr-KoE extends a result by Fuchsbauer et al. [20], which
showed that the security of Schnorr signatures can be tightly reduced to the DL
assumption in the AGM. We improve on their result by considering extraction
rather than forgeability and by allowing extraction even when the adversary
chooses their own public key. While new to the setting of multi-party signatures,
Schnorr-KoE is reminiscent of prior knowledge of exponent assumptions [4,15]
employed to prove the security of Succinct NIZK arguments (SNARKs).

For the definition, consider the game in Fig. 11 associated to group G, adver-
sary A, and an algorithm Ext, called an extractor. The adversary A is run with
coins ω. A has access to a signing oracle FSignO that outputs a Schnorr sig-
nature under a randomly sampled key X on the message X. (The name, Full
Sign Oracle, reflects that the oracle samples a fresh public key with each invoca-
tion). It can call its challenge oracle Chal with a triple (X, R̄, z̄). If this is not
a triple returned by the full signing oracle, yet verifies as a Schnorr signature
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under public key X, the extractor is asked to find the discrete logarithm α of
X, and the adversary wins (the game sets win to true) if the extractor fails. The
inputs to the extractor are the coins of the adversary, the description of the
group G, the set QFSignO and a list Qh̃0

. The latter, for every query (X,X, R̄)
that A made to random oracle h̃0, stores the response of the oracle. (The length
of the list is thus the number of h̃0 queries made by A). Note that multiple
queries to Chal are allowed, so that this captures the ability to perform multi-
ple extractions.

Asymptotically, we would say that the Schnorr-KoE assumption holds with
respect to G if for all PPT adversaries A, there exists a PPT extractor Ext such
that Advsch-koe

G,Ext (A), which would now be a function of the security parameter,
is negligible.

The proof of the following can be found in [14]. For convenience, the state-
ment is asymptotic. Note that the random oracle model is implicit through h̃0
being a random oracle in the game of Fig. 11.

Theorem 8 (DL ⇒ Schnorr-KoE). The Schnorr-KoE assumption with respect
to the group G is implied by the DL assumption with respect to G in the AGM.

TS-UF-0 Security. In terms of our framework, our proof of FROST2+PedPoP
considers a single honest player and so aligns with the notion of TS-UF-0 secu-
rity defined in Fig. 2. Since we now consider distributed key generation instead
of trusted key generation, the initialization oracle Init is replaced with a sin-
gle execution of PedPoP.KeyGen as defined in Fig. 10. The proofs of possession
required by PedPoP.KeyGen ensure that the simulator in our security reduction
is able to extract sufficient information (via the Schnorr-KoE assumption) to
simulate signing as in the TS-UF-0 definition, in which all secret key material
is generated by the simulator directly. The signing oracles PPO and PSignO
remain identical to Fig. 2. We have not currently investigated whether TS-UF-2
security holds.

5.1 Security of FROST2 + PedPoP

We now prove the security of FROST2 with distributed key generation protocol
PedPoP under the Schnorr-KoE assumption and OMDL assumption in the ROM.

Theorem 9 (FROST2+PedPoP). FROST2 with distributed key generation pro-
tocol PedPoP is TS-UF-0 secure under the Schnorr-KoE assumption and the
OMDL assumption in the ROM.

We make use of an intermediary assumption, the binonce Schnorr compu-
tational (Bischnorr) assumption, which we define and prove secure under the
OMDL assumption in the ROM (Fig. 12).

Equipped with this assumption, our proof proceeds as follows. Let A be
a PPT adversary attempting to break the TS-UF-0 security of FROST2. We
construct a PPT adversary B1 playing game Gsch-koe

G,Ext (B1) and thence, from the
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Game Gbi-sch
G :

Init:

1 ẋ ←$ Zp

2 Ẋ ← gẋ

3 Return Ẋ

BinonceO():

4 r, s ←$ Zp

5 (R, S) ← (gr, gs)
6 QBin ← QBin ∪{(R, S, r, s)}
7 Return (R, S)

BisignO(k, M, {(γi, Ri, Si)}i∈SS ):

8 If (Rk, Sk, rk, sk) �∈ QBin or (Rk, Sk) ∈ QUsed

9 Return false
10 QUsed ← QUsed ∪ {(Rk, Sk)}
11 d ← ĥ1(Ẋ, M, {(γi, Ri, Si)}i∈SS )
12 R̃ ← ∏

i∈SS RiS
d
i

13 c ← ĥ2(Ẋ, M, R̃)
14 zk ← rk + d · sk + c · γk · ẋ
15 QBis ← QBis ∪ {(M, R̃)}
16 Return zk

RO(θ): // Random oracle

17 If ĥ(θ) = ⊥ then ĥ(θ) ←$ Zp

18 Return ĥ(θ)

Fin(M∗, R∗, z∗):

19 If gz∗
= R∗Ẋ ĥ2(Ẋ,M∗,R∗) and (M∗, R∗) /∈ QBis

20 Return true
21 Else return false

Fig. 12. Game used to define the binonce Schnorr computational (Bischnorr) assump-
tion, where G is a cyclic group of order p with generator g. ĥ is initialized to be an
empty table.

Schnorr-KoE assumption, obtain an extractor Ext for it. We construct a PPT
adversary B2 playing game Gbi-sch

G (B2) such that whenever A outputs a valid
forgery, either B1 breaks the Schnorr-KoE assumption or B2 breaks the Bischnorr
assumption. Formally, for security parameter κ, we have

Advts-uf-0
FROST2(A) ≤ Advsch-koe

G,Ext (B1) + Advbi-sch
G (B2) + negl(κ)

Binonce Schnorr Assumption. The Bischnorr assumption equips an adver-
sary with two oracles, BinonceO and BisignO, and two hash functions, ĥ1 and
ĥ2, and asks it to forge a new Schnorr signature with respect to a challenge
public key Ẋ. The BinonceO oracle takes no input and responds with two ran-
dom nonces (R,S). The BisignO oracle takes as input an index k, a message
M , and a set of nonces and scalars {(γi, Ri, Si)}i∈SS . It checks that (Rk, Sk)
is a BinonceO response and that it has not been queried on (Rk, Sk) before.
It returns an error if not. It then computes an aggregated randomized nonce
R̃ =

∏
i∈SS RiS

d
i , where d = ĥ1(Ẋ,M, {(γi, Ri, Si)}i∈SS ). BisignO then returns

z such that (R̃, z) is a valid Schnorr signature with respect to ĥ2. The adversary
wins if it can output a verifying (M∗, R∗, z∗) that was not output by BisignO.

The oracle BisignO can only be queried once for each pair of nonces (R,S)
output by BinonceO. The index k denotes which (γk, Rk, Sk) out of the list
{(γi, Ri, Si)}i∈SS is being queried; the remaining scalars and nonces appear only
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to inform BinonceO what to include as input to ĥ1. The scalar γk allows the
response zk to be given as zk = rk +d ·sk +c ·γk · ẋ, as opposed to rk +d ·sk +c · ẋ.
This is useful for threshold signatures, where γk corresponds to the Lagrange
coefficient. Note that {γi}i∈SS (in addition to the nonces) must be included as
input to ĥ1 or else there is an attack.

Asymptotically, we would say that the Bischnorr assumption holds with
respect to G if for all PPT adversaries A, we have that Advbi-sch

G (A), which
would now be a function of the security parameter, is negligible.

The proof of the following can be found in [14]. For convenience, the state-
ment is asymptotic.

Lemma 10 (OMDL ⇒ Bischnorr). Let ĥ1, ĥ2 be random oracles. The Bischnorr
assumption is implied by the OMDL assumption with respect to the group G and
ĥ1, ĥ2.

Equipped with this assumption, we are now ready to prove Theorem9.

Proof (of Theorem 9). Let A be a PPT adversary attempting to break the
TS-UF-0 security of FROST2. We construct a PPT adversary B1 playing game
Gsch-koe

G,Ext (B1) and thence, from the Schnorr-KoE assumption, obtain an extractor
Ext for it. We construct a PPT adversary B2 playing game Gbi-sch

G (B2) such that
whenever A outputs a valid forgery, either B1 breaks the Schnorr-KoE assump-
tion or B2 breaks the Bischnorr assumption. Formally, for security parameter κ,
we have

Advts-uf-0
FROST2(A) ≤ Advsch-koe

G,Ext (B1) + Advbi-sch
G (B2) + negl(κ)

The Reduction B1: We first define the reduction B1 against Schnorr-KoE. Let
CS = {idj} be the set of corrupt parties, and let HS = {idk} be the set of
honest parties. Assume that |CS | = t − 1 and |HS | = ns − (t − 1). We will
show that when PedPoP outputs public key share X̃k = gx̄k for each honest
party idk ∈ HS , B1 returns (αk, βk) such that X̃k = Ẋαkgβk . B1 is responsible
for simulating honest parties in PedPoP (Fig. 10) and queries to h0, h1, and h2.
B1 receives as input a group G and random coins ω. It can query the random
oracle RO from Schnorr-KoE. It can also query FSignO to receive signatures
under h̃0 and Chal on inputs (X, R̄, z̄) to challenge the extractor Ext to output
a discrete logarithm α for X.

Initialization. B1 may program h0, h1, and h2, but not h̃0 (because it is part
of B1’s challenge). Let Qh0 be the set of h0 queries and their responses. B1

first queries FSignO and receives (Ẋ, R̄, z̄). B1 computes αk for each honest
party idk ∈ HS as follows. First, B1 computes the t Lagrange polynomials
{L′

k(Z), {L′
j(Z)}idj∈CS} relating to the set idk∪CS . Then, B1 sets αk ← L′

k(0)−1.
(It will become clear why αk is computed this way).

Hash Queries. B1 handles A’s hash queries throughout the DKG protocol as
follows.
h0: When A queries h0 on (X,X, R̄), B1 checks whether (X,X, R̄, c̄) ∈ Qh0 and,
if so, returns c̄. Else, B1 queries c̄ ← h̃0(X,X, R̄), appends (X,X, R̄, c̄) to Qh0 ,
and returns c̄.
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h1: When A queries h1 on (X, lr) = (X,M, {(idi, Ri, Si)}i∈SS ), B1 queries d̂ ←
h̃1(X,M, {(idi, Ri, Si)}i∈SS ) and returns d̂.

h2: When A queries h2 on (X,M,R), B1 queries ĉ ← h̃2(X,M,R) and returns ĉ.

Simulating the DKG. B1 runs A on input coins ω and simulates PedPoP as
follows. B1 embeds Ẋ as the public key of the honest party that the adversary
queries first. Let this first honest party be idτ . B1 simulates the public view
of idτ but follows the PedPoP protocol for all other honest parties {idk}k �=τ as
prescribed. Note that A can choose the order in which it interacts with honest
parties, so B1 must be able to simulate any of them.
Honest Party idτ . B1 is required to output

(R̄τ , z̄τ ), �Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1)

that are indistinguishable from valid outputs as well as t−1 shares fτ (idj) = x̄τ,j ,
one to be sent to each corrupt party idj ∈ CS . Here, (R̄τ , z̄τ ) is a Schnorr signa-
ture proving knowledge of the discrete logarithm of Xτ,0, and �Cτ is a commitment
to the coefficients that represent fτ . B1 simulates honest party idτ as follows.

1. B1 sets the public key Xτ,0 ← Ẋ.
2. B1 simulates a verifiable Shamir secret sharing of the discrete logarithm of Ẋ

by performing the following steps.
(a) B1 samples t − 1 random values x̄τ,j ←$ Zp for idj ∈ CS .
(b) Let fτ be the polynomial whose constant term is the challenge fτ (0) = ẋ

and for which fτ (idj) = x̄τ,j for all idj ∈ CS . B1 computes the t Lagrange
polynomials {L′

0(Z), {L′
j(Z)}idj∈CS} relating to the set 0 ∪ CS .

(c) For 1 ≤ i ≤ t − 1, B1 computes

Aτ,i = ẊL′
0,i

∏

idj∈CS

gx̄τ,j ·L′
j,i (1)

where L′
j,i is the ith coefficient of L′

j(Z) = L′
j,0+L′

j,1Z + · · ·+L′
j,t−1Z

t−1.
(d) B1 outputs (R̄τ , z̄τ ), �Cτ = (Aτ,0 = Xτ,0, Aτ,1, ..., Aτ,t−1) for the broadcast

round, and then sends shares x̄τ,j for each idj ∈ CS .
3. B1 simulates private shares fτ (idk) = x̄τ,k for honest parties idk ∈ HS

by computing α′
k, β′

k such that gx̄τ,k = Ẋα′
kgβ′

k . First, B1 computes the t
Lagrange polynomials {L′

k(Z), {L′
j(Z)}idj∈CS} relating to the set idk ∪ CS .

Then, implicitly,

fτ (0) = ẋ = x̄τ,k · L′
k(0) +

∑

idj∈CS

x̄τ,j · L′
j(0)

Solving for x̄τ,k, B1 sets α′
k = L′

k(0)−1 and β′
k = −α′

k

∑
idj∈CS x̄τ,j · L′

j(0).

All Other Honest Parties. For all other honest parties idk ∈ HS , k 
= τ , B1 fol-
lows the protocol. B1 samples fk(Z) = ak,0 + ak,1Z + ... + ak,t−1Z

t−1 ←$ Zp[Z]
and sets Ak,i ← gak,i for all i ∈ [0..t−1]. B1 provides a proof of possession (R̄k, z̄k)
of the public key Xk,0 = Ak,0 and computes the private shares x̄k,i = fk(idi).
Adversarial Contributions. When A returns a contribution

(R̄j , z̄j), �Cj = (Aj,0 = Xj,0, Aj,1, ..., Aj,t−1)
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if (Xj,0, R̄j , z̄j) verifies (i.e., gz̄j = R̄jX
h̃0(Xj,0,Xj,0,R̄j)
j,0 ) and Xj,0 
= Ẋ, then B1

queries Chal(Xj,0, R̄j , z̄j) from the Schnorr-KoE game.
Complaints. If A broadcasts a complaint, B1 reveals the relevant x̄k,j . If A
does not send verifying x̄j,k to party idk ∈ HS , then B1 broadcasts a complaint.
If x̄j,k fails to satisfy the equation, or should A not broadcast a share at all, then
idj is disqualified.
DKG Termination. When PedPoP terminates, the output is the joint public
key X̃ =

∏ns
i=0 Xi,0. B1 simulates private shares x̄k for honest parties idk ∈ HS

by computing αk, βk such that X̃k = gx̄k = Ẋαkgβk . Implicitly, x̄k = x̄τ,k +∑ns
i=1,i �=τ x̄i,k and x̄τ,k = ẋ · α′

k + β′
k from Step 3 above, so αk = α′

k and βk =
β′

k +
∑ns

i=1,i �=τ x̄i,k. B1 returns {ak}idk∈HS ,k �=τ , {(αk, βk)}idk∈HS .

We now argue that: (1) A cannot distinguish between a real run of the DKG
protocol and its interaction with B1; and (2) Ext(G, ω,QFSignO,Qh̃0

) outputs aj,0

such that Xj,0 = gaj,0 whenever B1 queries Chal(Xj,0, R̄j , z̄j).
(1) See that B1’s simulation of PedPoP is perfect, as performing validation of

each player’s share (Step 4 in Fig. 10) holds, and by Eq. 1, interpolation in the
exponent correctly evaluates to the challenge Ẋ.

(2) See that h0(Xj,0,Xj,0, R̄j) = h̃0(Xj,0,Xj,0, R̄j) unless (Xj,0, R̄j) =
(Ẋ, R̄τ ). The latter happens only if Xj,0 = Xτ,0, but in this case PedPoP will
not terminate. We thus have that (Xj,0, R̄j , z̄j) is a verifying signature under h̃0
and either Ext succeeds, or B1 breaks the Schnorr-KoE assumption. Therefore,
the probability of the event occurring where Ext fails to outputs aj,0 is bounded
by Advsch-koe

G,Ext (B1).
The Reduction B2: We next define the reduction B2 against Bischnorr. We will
show that when PedPoP outputs the joint public key X̃, B2 returns y such that
X̃ = Ẋgy. Together with the (αk, βk) returned by B1 such that X̃k = Ẋαkgβk ,
this representation allows B2 to simulate FROST2 signing under each X̃k. B2 is
responsible for simulating honest parties during signing and queries to h0, h1,
and h2. B2 receives as input a group G and a challenge public key Ẋ. It can
query RO, BinonceO, BisignO from the Bischnorr game.
Initialization. B2 may program h0, h1, and h2, but not ĥ1 or ĥ2 (because they
are part of B2’s challenge). Let QPPO be the set of PPO queries and responses
in the pre-processing round, and let QPSignO be the set of PSignO queries and
responses in the signing round.
DKG Extraction. B2 first simulates a Schnorr proof of possession of Ẋ
as follows. B2 samples c̄τ , z̄τ ←$ Zp, computes R̄τ ← gz̄τ Ẋ−c̄τ , and appends
(Ẋ, Ẋ, R̄τ , c̄τ ) to Qh0 . Then, B2 runs

{ak,0}idk∈HS ,k �=τ , {(αk, βk)}idk∈HS ← B1(G;ω)

on coins ω. B2 handles B1’s queries as follows. When B1 queries h̃0 on (X,X, R̄),
B2 checks whether (X,X, R̄, c̄) ∈ Qh̃0

and, if so, returns c̄. Else, B2 queries
c̄ ← ĥ0(X,X, R̄), appends (X,X, R̄, c̄) to Qh̃0

, and returns c̄. When B1 queries
h̃1, h̃2, B2 handles them the same way it handles A’s h1, h2 queries, described
below. The first time B1 queries its FSignO oracle, B2 returns (Ẋ, R̄τ , z̄τ ). When
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B1 queries Chal(Xj,0, R̄j , z̄j), B2 runs aj,0 ← Ext(G, ω,QFSignO,Qh̃0
) to obtain

aj,0 such that Xj,0 = gaj,0 and aborts otherwise. Then y =
∑ns

i=1,i �=τ ai,0 such
that X̃ = Ẋgy.
A’s Hash Queries. B2 handles A’s hash queries throughout the signing proto-
col as follows.
h0: When A queries h0 on (X,X, R̄), B2 checks whether (X,X, R̄, c̄) ∈ Qh0 and,
if so, returns c̄. Else, B2 queries c̄ ← ĥ0(X,X, R̄), appends (X,X, R̄, c̄) to Qh0 ,
and returns c̄. Note that B1 and B2 share the state of Qh0 .
h1: When A queries h1 on (X, lr) = (X,M, {(idi, Ri, Si)}i∈SS ), B2 checks
whether (X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) ∈ Qh1 and, if so, returns d̂. Else, B2

checks whether there exists some k′ ∈ SS such that (idk′ , Rk′ , Sk′) ∈ QPPO.
If not, B2 samples a random message M̂ and a random value d̂, appends
(X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) to Qh1 , and returns d̂.

If there does exist some k′ ∈ SS such that (idk′ , Rk′ , Sk′) ∈ QPPO, B2 computes
the Lagrange coefficients {λi}i∈SS , where λi = Li(0) and {Li(Z)}i∈SS are the
Lagrange polynomials relating to the set {idi}i∈SS . B2 sets γk = λk ·αk for all idk ∈
HS and γj = λj for all idj ∈ CS in the set SS . B2 then samples a random message
M̂ (to prevent trivial collisions), queries d̂ ← ĥ1(Ẋ, M̂ , {(γi, Ri, Si)}i∈SS ), and
appends (X,M, {(idi, Ri, Si)}i∈SS , M̂ , d̂) to Qh1 . B2 computes R̂ =

∏
i∈SS RiS

d̂
i

and checks if there exists a record (X,M, R̂, M̂ , ĉ) ∈ Qh2 . If so, B2 aborts. Else,
B2 queries ĉ ← ĥ2(Ẋ, M̂ , R̂) and appends (X̃,M, R̂, M̂ , ĉ) to Qh2 . Finally, B2

returns d̂.

h2: When A queries h2 on (X,M,R), B2 checks whether (X,M,R, M̂, ĉ) ∈ Qh2

and, if so, returns ĉ. Else, B2 samples a random message M̂ , queries ĉ ←
ĥ2(Ẋ, M̂ ,R), appends (X,M,R, M̂, ĉ) to Qh2 , and returns ĉ.
Simulating FROST2 Signing. After B1 completes the simulation of PedPoP,
B2 then simulates honest parties in the FROST2 signing protocol.
Pre-processing Round. When A queries PPO on idk ∈ HS , B2 queries
BinonceO to get (Rk, Sk), appends (idk, Rk, Sk) to QPPO, and returns (Rk, Sk).
Signing Round. When A queries PSignO on (k′, lr) = (k′,M, {(idi, Ri,
Si)}i∈SS ), B2 first checks whether (idk′ , Rk′ , Sk′) ∈ QPPO and, if not, returns
⊥. Then, B checks whether (Rk′ , Sk′) ∈ QPSignO and, if so, returns ⊥.

If all checks pass, B2 internally queries ĥ1 on (X̃,M, {(idi, Ri, Si)}i∈SS ) to
get d̂′ and looks up M̂ ′ such that (X̃,M, {(idi, Ri, Si)}i∈SS ), M̂ ′, d̂′) ∈ Qh1 . B2

computes R̂′ =
∏

i∈SS RiS
d̂′
i and internally queries ĥ2 on (X̃,M, R̂′) to get ĉ′.

Next, B2 computes the Lagrange coefficients {λi}i∈SS , where λi = Li(0) and
{Li(Z)}i∈SS are the Lagrange polynomials relating to the set {idi}i∈SS . B2 sets
γk = λk ·αk for all idk ∈ HS and γj = λj for all idj ∈ CS in the set SS . Then, B2

queries BisignO on (k′, M̂ ′, {(γi, Ri, Si)}i∈SS ) to get zk′ . Finally, B2 computes

z̃k′ = zk′ + ĉ′ · λk′ · βk′ (2)

For A’s query to PSignO, B2 returns z̃k′ .
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Output. When A returns (X̃,M∗, sig∗) such that sig∗ = (R̃∗, z∗) and
Vf(X̃,M∗, sig∗) = 1, B2 computes its output as follows. B2 looks up M̂∗ such
that (X̃,M∗, R̃∗, M̂∗, ĉ∗) ∈ Qh2 and outputs (M̂∗, R̃∗, z∗ − ĉ∗ · y).

To complete the proof, we must argue that: (1) B2 only aborts with negligible
probability; (2) A cannot distinguish between a real run of the protocol and its
interaction with B2; and (3) whenever A succeeds, B2 succeeds.

(1) B2 aborts if Ext fails to return aj,0 such that Xj,0 = gaj,0 for some j. This
happens with maximum probability Advsch-koe

G,Ext (B1).
B2 aborts if A queries h2 on (X̃,M,

∏
i∈SS RiS

d̂
i ) before having first queried

h1 on (X̃,M, {(idi, Ri, Si)}i∈SS ). This requires A to have guessed d̂ ahead of
time, which occurs with negligible probability qH/p.

(2) As long as B2 does not abort, B2 is able to simulate the appropriate
responses to A’s oracle queries so that A cannot distinguish between a real run
of the protocol and its interaction with B2.

Indeed, B1’s simulation of PedPoP is perfect.
When A queries h2 on (X,M,R), B2 queries ĉ ← ĥ2(Ẋ, M̂ ,R) on a random

message M̂ . The random message prevents trivial collisions; for example, if A
were to query h2 on (X,M,R) and (X ′,M,R), where X ′ 
= X, A would receive
the same value c ← ĥ2(Ẋ,M,R) for both and would know it was operating inside
a reduction. Random messages ensure that the outputs are random, so A’s view
is correct. B2 also ensures that A receives h1 values that are consistent with h2
queries.

After the signing rounds have been completed, A may verify the signature
share z̃k′ on M as follows. A checks if

gz̃k′ = Rk′S
h1(X̃,M,{(idi,Ri,Si)}i∈SS )
k′ X̃

λk′h2(X̃,M,
∏

i∈SS RiS
h1(X̃,M,{(idi,Ri,Si)}i∈SS )
i )

k′ (3)

When B2 queried BisignO on (k′, M̂ ′, {(γi, Ri, Si)}i∈SS ) in the Signing Round,
the signature share zk′ was computed such that

gzk′ = Rk′S
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS )
k′ Ẋγk′ ĥ2(Ẋ,M̂ ′,

∏
i∈SS RiS

ĥ1(Ẋ,M̂′,{(γi,Ri,Si)}i∈SS )
i )

B computed the signature share z̃k′ (Eq. 2) as

z̃k′ = zk′ + ĉ′ · λk′ · βk′ = rk′ + d · sk′ + ĉ′ · γk′ · ẋ + ĉ′ · λk′ · βk′

= rk′ + d · sk′ + ĉ′ · λk′(αk′ · ẋ + βk′)

where ĉ′ = ĥ2(Ẋ, M̂ ′,
∏

i∈SS RiS
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS )
i ). Thus, z̃k′ satisfies

gz̃k′ = Rk′S
ĥ1(Ẋ,M̂ ′,{(γi,Ri,Si)}i∈SS )
k′ X̃

λk′ ĥ2(Ẋ,M̂ ′,
∏

i∈SS RiS
ĥ1(Ẋ,M̂′,{(γi,Ri,Si)}i∈SS )
i )

k′

(4)
B2 has programmed the hash values in Eqs. 3 and 4 to be equal and therefore
simulates z̃k′ correctly.

(3) A’s forgery satisfies Vf(X̃,M∗, sig∗) = 1, which implies:

gz∗
= R̃∗(X̃)h2(X̃,M∗,R̃∗) = R̃∗(Ẋgy)h2(X̃,M∗,R̃∗)

gz∗−h2(X̃,M∗,R̃∗)·y = R̃∗Ẋh2(X̃,M∗,R̃∗)
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At some point, A queried h2 on (X̃,M∗, R̃∗) and received one of two values:
(1) ĉ∗ ← ĥ2(Ẋ, M̂∗,

∏
i∈SS∗ R∗

i (S
∗
i )d̂∗

) related to a query A made to h1 on
(M∗, {(id∗

i , R
∗
i , S

∗
i )}i∈SS∗), where it received d̂∗ ← ĥ1(Ẋ, M̂∗, (γ∗

i , R∗
i , S

∗
i )i∈SS∗),

or (2) ĉ∗ ← ĥ2(Ẋ, M̂∗, R̃∗) without having queried h1 first. In either case, B2 has
a record (X̃,M∗, R̃∗, M̂∗, ĉ∗) ∈ Qh2 such that ĉ∗ ← ĥ2(Ẋ, M̂∗, R̃∗). (Note that
B2 can check which case occurred by looking for M̂∗ in its Qh1 records). Thus,
A’s forgery satisfies

gz∗−ĥ2(Ẋ,M̂∗,R̃∗)·y = R̃∗Ẋ ĥ2(Ẋ,M̂∗,R̃∗)

and B2’s output (M̂∗, R̃∗, z∗ − ĉ∗ · y) under Ẋ is correct.
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Abstract. Existing threshold signature schemes come in two flavors: (i)
fully private, where the signature reveals nothing about the set of signers
that generated the signature, and (ii) accountable, where the signature
completely identifies the set of signers. In this paper we propose a new
type of threshold signature, called TAPS, that is a hybrid of privacy and
accountability. A TAPS signature is fully private from the public’s point
of view. However, an entity that has a secret tracing key can trace a
signature to the threshold of signers that generated it. A TAPS makes
it possible for an organization to keep its inner workings private, while
ensuring that signers are accountable for their actions. We construct a
number of TAPS schemes. First, we present a generic construction that
builds a TAPS from any accountable threshold signature. This generic
construction is not efficient, and we next focus on efficient schemes based
on standard assumptions. We build two efficient TAPS schemes (in the
random oracle model) based on the Schnorr signature scheme. We con-
clude with a number of open problems relating to efficient TAPS.

1 Introduction

A threshold signature scheme [30] enables a group of n parties to sign a message
only if t or more of the parties participate in the signing process. There are two
types of threshold signature schemes:

– A private threshold signature (PTS) scheme: A signature σ on a message m
reveals nothing about the threshold t, and reveals nothing about the quorum
of t parties that generated the signature. The same holds even if the adversary
sees a sequence of signatures on messages of its choice. Examples of PTS
schemes include [15,26,34,38,45,56,57] and many others.

– An accountable threshold signature (ATS) scheme: A signature σ on a mes-
sage m reveals the identity of all t parties who participated in generating the
signature (and hence also reveals t). Moreover, it is not feasible for a quorum
of t parties to frame another quorum. An ATS scheme is closely related to the
notion of an accountable subgroup multisignature (ASM) [5,9,17,44,50,53].
However, we prefer the term ATS to contrast the two flavors of threshold sig-
natures: ATS vs. PTS. An ATS has also been described as Traceable Secret
Sharing (TSS) [42].
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We will define these concepts more precisely in the next section.
A private threshold signature (PTS) scheme is used when there is a need to

hide the inner-workings of an organization. For example, an organization that
runs a web server may choose to split the server’s secret TLS key among n
machines so that at least t are needed to generate a signature and complete a
TLS handshake. By using a PTS, the organization can hide the threshold t from
the public, to avoid leaking the number of machines that an attacker needs to
compromise in order to forge a signature. Similarly, a signature should reveal
nothing about the set of t machines that participated in generating the signature
so that nothing is revealed about which machines are currently online.

In contrast, an accountable threshold signature (ATS) scheme is often used
in financial applications where there is a need for accountability. For example,
if three of five bank executives are needed to authorize a banking transfer, then
one wants full accountability in case a fraudulent transfer is approved. When
using an ATS scheme, the signature on a fraudulent transaction will identify the
three bank executives who authorized it.

The trivial t-out-of-n ATS scheme is one where every signing party locally
generates a public-private key pair. The complete public key is defined as the
concatenation of all n local public keys. When t parties need to sign a message m,
they each sign the message using their local secret key, and the final signature is
the concatenation of all t signatures. The verifier accepts such an ATS signature
if it contains t valid signatures. This trivial ATS is used widely in practice,
for example in Bitcoin multisig transactions [1]. While the scheme has many
benefits, its downside is that signature size and verification time are at least
linear in tλ, where λ is the security parameter. Several ATS constructions achieve
much smaller signature size and verification time [9,17,50,53].

In summary, existing threshold signatures offer either complete privacy or
complete accountability for the signing quorum, but cannot do both.

A New Type of Threshold Signature. In this work we introduce a new type
of threshold signature scheme, called TAPS, that provides full accountability
while maintaining privacy for the signing quorum.

A Threshold, Accountable, and Private Signature scheme, or simply
a TAPS, works as follows: (i) a key generation procedure generates the public
key pk and the n private keys sk1, . . . , skn for the signers, (ii) a signing protocol
among some t signers is used to generate a signature σ on a message m, and
(iii) a signature verification algorithm takes as input pk , m, and σ and outputs
accept or reject. Signatures generated by the signing protocol reveal nothing to
the public about t or the quorum that generated the signature. In addition, the
key generation procedure outputs a tracing key sk t. Anyone in possession of
sk t can reliably trace a signature to the quorum that generated it. For security
we require that a set of signers should be unable to frame some other set of
signers by fooling the tracing procedure. We define the precise syntax for a
TAPS scheme, and the security requirements, in Sect. 3.
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If the tracing key sk t is made public to all, then a TAPS is no different than
an ATS scheme. Similarly, if sk t is destroyed, then a TAPS is no different than
a PTS scheme. However, if sk t is known to a trusted tracing party (or secret
shared among several parties), then the tracing party can provide accountability
in case of a fraudulent transaction, while keeping all other information about
the inner-workings of the organization private.

Applications. Consider an organization that holds digital assets that are man-
aged on a public ledger (e.g., a blockchain). A digital signature must be recorded
on the ledger in order to transfer an asset. The organization can protect the
assets by requiring t-out-of-n trustees to sign a transfer request. It can use an
ATS scheme, but then the threshold t and the set of signers will be public for
the world to see. Or it can use a PTS scheme to secret share a single signing key
among the n trustees, but then there is no accountability for the trustees.

A TAPS provides a better solution: the organization can hold on to the
tracing key sk t so that the threshold and the set of signers remain private, but
the trustees are accountable in case of a fraudulent transfer. The value of n and
t are typically relatively small, say less than twenty.

The same applies in the web server setting. The web server’s TLS secret
signing key could be shared among t-out-of-n machines so that t machines are
needed to complete a TLS handshake. The tracing key would be kept in offline
storage. If at some point it is discovered that the web server’s secret key has been
compromised, and is being used by a rogue web server, then the tracing key could
be applied to the rogue server’s signatures to identify the set of machines that
were compromised by the attacker.

Constructing TAPS. We provide a number of constructions for TAPS schemes.
In Sect. 4 we present a generic construction that shows how to construct a TAPS
from any ATS scheme. The construction is quite inefficient since it makes use
of general zero knowledge. While there are several important details that are
needed to obtain a secure construction, the high level approach for generating a
TAPS signature is as follows: (i) the signing parties generate an ATS signature
σ on a message m, (ii) they encrypt σ using a public key encryption scheme to
obtain a ciphertext ct , and (iii) the final TAPS signature is σ′ = (ct , π), where π
is a non-interactive zero knowledge proof that the decryption of ct is a valid ATS
signature on m. To verify a signature, one verifies that π is valid. The tracing
key sk t is the decryption key that lets one decrypt ct . Then, using sk t one can
decrypt ct , and run the ATS tracing algorithm on the resulting ATS signature σ.
The description here is only meant as an outline, and is not secure as is. The
complete construction is provided in Sect. 4.

Next, we turn to constructing a practical TAPS scheme. In Sect. 5 we build
two efficient TAPS schemes from Schnorr signatures [55]. To do so, we modify
the generic construction so that the statement that needs to be proved in zero
knowledge is as simple as possible. We then use either a Sigma protocol [27] or
Bulletproofs [20,22] to prove the statement. The resulting public key and signa-
ture sizes are summarized in Table 1. For small n, both schemes have reasonable
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performance. As n grows, signatures produced by the Bulletproofs scheme are
about 40 times shorter.

Table 1. An n-party TAPS based on the Schnorr signature scheme in a group G of
order q. The construction uses either a Sigma protocol or Bulletproofs. The Bulletproofs
TAPS signature is shorter by a factor of about e, but tracing time is higher. Taking
e := 40 is a reasonable choice.

Public Key Size Signature Size Verify Time
(group ops)

Trace Time
(group ops)G Zq G Zq

Sigma 2n+ 4 0 n+ 4 2n+ 5 O(n) O(n)

Bulletproofs n+ n
e
+O(1) 0 n

e
+O(logn) 4 O(n) O(n · 2e/2)

We note that due to the traceability and privacy requirements, a TAPS sig-
nature must encode the signing quorum while hiding the threshold t, and there-
fore must be at least n bits long. In Sect. 6 we discuss relaxing the full tracing
requirement with a weaker tracing property we call quorum confirmation. Here
the tracing algorithm takes as input sk t and a suspect quorum set C ⊆ [n], and
confirms if C is indeed the quorum set that generated a given signature. If this
weaker confirmation property is sufficient, then our Bulletproofs approach can
lead to a logarithmic size TAPS signature. Note that when n is small, confir-
mation can lead to full tracing by testing all possible quorum sets until one is
confirmed.

A Different Perspective. A TAPS system can be described as a group sig-
nature scheme where t signers are needed to sign on behalf of the group. Recall
that in a group signature scheme [25] a group manager provisions every member
in the group with a secret signing key. Any group member can sign on behalf
of the group without revealing the identity of the signer. In addition, there is a
tracing key that lets an entity that holds that key trace a given group signature
to the single member that issued that signature. A TAPS can be viewed as a
generalization of this mechanism. In a TAPS scheme, at least t members of the
group are needed to generate a group signature. The signature reveals nothing
to the public about the identity of the signers or t. However, the tracing key
enables one to trace the signature back to some t members that participated in
generating the signature.

In the literature, the term threshold group signature refers to a scheme where
the role of the group manager is distributed among a set of authorities with a
threshold access structure [14,24]. A TAPS is quite different. Here the threshold
refers to the number of parties needed to generate a signature on behalf of the
group. See also our discussion of related work below.
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1.1 Additional Related Work

Ring Signatures. Ring signatures [11,52,54] allow a signer to sign a message
on behalf of an ad-hoc ring of signers. The signature reveals nothing about which
ring member generated the signature. As such, anyone can gather a set of public
keys, and produce a ring signature over some message without interacting with
the owners of those keys. Our notion of TAPS signatures requires a threshold
of t signers to generate a signature, where t is hidden from the public. In the
basic group or ring setting the threshold t is not secret, it is always set to t = 1.

While accountable (traceable) ring signatures with a tracing authority have
been defined in the literature [19,35,36,59], these schemes are limited to a single
signer, as opposed to a threshold of signers within the ring. Dodis et al. [31]
defined a multi-party ring signature that builds upon one-way cryptographic
accumulators and supports an identity escrow extension. However, the scheme
does not enforce a threshold number of signers to anyone other than the desig-
nated tracing authority (by recovering the identities of the signers). In contrast,
TAPS requires that anyone be able to verify that a threshold number of signers
participated in generating a signature.

Threshold ring signatures, called thring signatures, were studied in a number
of works [21,43,47,51,58]. Here the ring signature represents some t-out-of-n set
of signers. However, these schemes provide no tracing, and therefore do not fulfill
the notions of accountability required by TAPS. Similarly, linkable threshold ring
signatures [4,32] only require that any two ring signatures produced by the same
signers can be linked, but not traced.

A ring signature by Bootle et al. [19] combines Camenisch’s group signature
scheme [23] with a one-out-of-many proof of knowledge. This construction uses
similar techniques as our Schnorr TAPS construction, but supports only a single
signer, rather than a threshold, so provides quite a different functionality.

Group Signatures. First introduced by Chaum and van Heyst [25], group
signatures [12,16,18,29,37,46,48] enable a group member to sign a message such
that the verifier can determine that a member generated the signature, but
not which member. If needed, a tracing authority can trace a signature to its
signer. A group manager is trusted to manage the group’s membership. The
security notions for a group signatures were defined by Bellare et al. [8], but
focus on a single signer who is signing on behalf of the group. Traditionally
threshold group signatures refers to the ability to distribute the roles of the group
manager [14,24], as opposed to requiring a threshold number of participants to
issue a signature.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter in unary. We use
x ← y to denote the assignment of the value of y to x. We write x ←$ Sto denote
sampling an element from the set S independently and uniformly at random. For
a randomized algorithm A we write y ←$ A(x) to denote the random variable
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that is the output of A(x). We use [n] for the set {1, . . . , n}. Throughout the
paper G is a cyclic group of prime order q, and Zq is the ring Z/qZ. We let g be
a generator of G. We denote vectors in bold font: u ∈ Z

m
q is a vector of length

m whose elements are each in Zq. We write ga =
∏n

i=1 gi
ai ∈ G, for a vector

g = (g1, . . . , gn) ∈ G
n and a = (a1, . . . , an) ∈ Z

n
q .

Our construction make use of a few standard primitives. We define these
briefly here.

Definition 1. A public key encryption scheme PKE for a message space
M = {Mλ}λ∈N is a triple of PPT algorithms (KeyGen,Encrypt,Decrypt)
invoked as

(pk , sk) ←$ KeyGen(1λ), ct ←$ Encrypt(pk ,m), m ← Decrypt(sk , ct).

The only security requirement is that PKE be semantically secure, namely,
for every PPT adversary A the following function is negligible

Advindcpa
A,PKE(λ) :=

∣
∣
∣Pr

[
Aenc(0,·,·)(pk) = 1

]
− Pr

[
Aenc(1,·,·)(pk) = 1

]∣∣
∣,

where (pk , sk) ←$ KeyGen(1λ), and for b ∈ {0, 1} and m0,m1 ∈ Mλ, the oracle
enc(b,m0,m1) returns ct ←$ Encrypt(pk ,mb).

When Mλ ⊆ {0, 1}≤�λ , for some �λ, our definition of semantic security
requires that the encryption scheme be length hiding : an adversary cannot dis-
tinguish the encryption of m0 ∈ Mλ from m1 ∈ Mλ even if m0 and m1 are
different lengths. This can be achieved by having the encryption algorithm pad
the plaintext to a fixed maximum length using an injective pad (e.g., 100 . . . 00),
and having the decryption algorithm remove the pad.

Definition 2. Let R := {Rλ}λ∈N. A commitment scheme COM is a pair of
PPT algorithms (Commit,Verify) invoked with r ∈ Rλ as

com ← Commit(x, r) and Verify(x, r, com) ∈ {0, 1}.

The scheme is secure if it is unconditionally hiding and computationally bind-
ing. In particular, for all x, x′ the distributions {COM(x, r)} and {COM(x′, r′)}
have negligible statistical distance ε(λ) when r, r′ ←$ Rλ. In addition, for every
PPT adversary A the following function is negligible

Advbind
A,COM(λ) := Pr

⎡

⎢
⎣

x �= x′, r, r′ ∈ Rλ,

Verify(x, r, com) = 1
Verify(x′, r′, com) = 1

: (com, x, r, x′, r′) ←$ A(λ)

⎤

⎥
⎦ .

Definition 3. A signature scheme SIG is a triple of PPT algorithms
(KeyGen,Sign,Verify) invoked as

(pk , sk) ←$ KeyGen(1λ), σ ←$ Sign(sk ,m), Verify(pk ,m, σ) ∈ {0, 1}.
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The scheme is strongly unforgeable if the following function is negligible

Adveufcma
A,SIG(λ) := Pr

[
Verify(pk ,m, σ) = 1

(m,σ) �∈
{
(mi, σi)

}q

i=1

:
(pk , sk) ←$ KeyGen(1λ)

(m,σ) ←$ Asign(·)(pk)

]

where sign(mi) returns σi ←$ Sign(sk ,mi) for i = 1, . . . , q.

Definition 4. A proof system for a relation R :=
{
Rλ ⊆ Xλ × Wλ

}
λ∈N

is a
pair of interactive machines (P,V), where for x ∈ Xλ and w ∈ Wλ, the prover
is invoked as P(x,w) and the verifier is invoked as V(x). We let

〈
P(x,w);V(x)

〉

be a random variable that is the verifier’s output at the end of the interaction.
We let trans

(
P(x,w);V(x)

)
denote a random variable that is the transcript of

the interaction.

– The proof system (P,V) has perfect completeness if for all (x,w) ∈ Rλ

we have Pr
[〈

P(x,w);V(x)
〉

= 1
]

= 1.
– The proof system (P,V) is honest verifier zero knowledge, or HVZK, if

there is a PPT Sim such that for all (x,w) ∈ Rλ the two distributions
{
Sim(x)

}
and

{
trans

(
P(x,w);V(x)

)}

are computational indistinguishable. In particular, let Advhvzk
A,(P,V)(λ) be the

distinguishing advantage for an adversary A. Then this function is negligible
for all PPT adversaries A.

– The proof system (P,V) is an argument of knowledge if it is perfectly
complete, and for every PPT P = (P1,P2) there is an expected polynomial
time extractor Ext so that the functions

ε1(λ) := Pr
[〈

P2(state);V(x)
〉

= 1 : (x, state) ←$ P1(1λ)
]

ε2(λ) := Pr
[
(x,w) ∈ Rλ : (x, state) ←$ P1(1λ), w ←$ ExtP2(state)(x)

]

satisfy
ε2(λ) ≥

(
ε1(λ) − κ(λ)

)
/q(λ), (1)

for some negligible function κ called the knowledge error, and a polynomial
function q called the extraction tightness. Here state is state data output
by P1, and ExtP2(state) denotes that Ext has oracle access to P2(state) which
is modeled as an “interactive function” [7]. We refer to P1 as an instance
generator.

– We say that a proof system (P,V) is non-interactive if the only interaction
is a single message π from the prover P to the verifier V.

– We say that the proof system (P,V) is a non-interactive HVZK argument
of knowledge in the random oracle model if (PH ,VH) is a proof system
that is non-interactive, HVZK, and an argument of knowledge, where H is a
random oracle.
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A public coin proof system can be made non-interactive using the Fiat-Shamir
transform [33]. For some proof systems, this transformation retains the argument
of knowledge and HVZK properties in the random oracle model [3]. Implementing
the Fiat-Shamir transform in practice is error-prone and it is recommended to
use an established implementation to do it (e.g., [28]).

3 Threshold, Accountable, and Private Signatures

In this section, we formalize the notion of threshold, accountable, and private
signatures (TAPS). We use n for the total number of allowed signers, and t for
the threshold number of required users. We let M denote the message space.
The Combiner. When t parties wish to generate a signature on some message
m, they send their signature shares to a Combiner who uses the t shares to gen-
erate a complete signature. Notice that the Combiner will learn the threshold t,
which is secret information in our settings. Since the Combiner must be trusted
with this private information, we also allow the Combiner to hold a secret key
denoted sk c. Secrecy of the Combiner’s key is only needed for privacy of the
signing quorum. It is not needed for security: if skc becomes public, an adver-
sary cannot use it to defeat the unforgeability or accountability properties of
the scheme. As we will see, we model this by giving sk c to the adversary in the
unforgeability and accountability security games, but we keep this key hidden
in the privacy game.
The Tracer. A tracing entity is trusted to hold a secret tracing key sk t that
allows one to trace a valid signature to the quorum of signers who generated it.
Without knowledge of sk t, recovering the quorum should be difficult.

With these parties in mind, let us define the syntax for a TAPS.

Definition 5. A private and accountable threshold signature scheme, or
TAPS, is a tuple of five polynomial time algorithms

S = (KeyGen,Sign,Combine,Verify,Trace)

where:

– KeyGen(1λ, n, t) →
(
pk , (sk1, . . . , skn), sk c, sk t

)
: a probabilistic algorithm

that takes as input a security parameter λ, the number of parties n and thresh-
old t. It outputs a public key pk, signer keys {sk1, . . . , skn}, a combiner secret
key skc, and a tracing secret key sk t.

– Sign(sk i,m,C) → δi: a probabilistic algorithm performed by one signer who
uses its secret key sk i to generate a signature “share” δi on a message m in
M. In some constructions it is convenient to allow the signer to know the
identity of the members of the signing quorum C ⊆ [n]. We provide it as an
optional input to Sign.

– Combine(sk c,m,C, {δi}i∈C) → σ: a probabilistic algorithm that takes as input
the Combiner’s secret key, a message m, a description of the signing quorum
C ⊆ [n], where |C| = t, and t valid signature shares by members of C. If the
input is valid, the algorithm outputs a TAPS signature σ.
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– Verify(pk ,m, σ) → 0/1: a deterministic algorithm that verifies the signature
σ on a message m with respect to the public key pk.

– Trace(sk t,m, σ) → C/fail: a deterministic algorithm that takes as input the
tracer’s secret key sk t, along with a message and a signature. The algorithm
outputs a set C ⊆ [n], where |C| ≥ t, or a special message fail. If the algorithm
outputs a set C, then the set is intended to be a set of signers whose keys must
have been used to generate σ. We refer to the entity performing Trace as the
Tracer.

– For correctness we require that for all allowable 1 ≤ t ≤ n, for all t-size sets
C ⊆ [n], all m ∈ M, and for

(
pk , (sk1, . . . , skn), sk c, sk t

)
←$ KeyGen(1λ, n, t)

the following two conditions hold:

Pr
[
Verify

(
pk ,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= 1

]
= 1

Pr
[
Trace

(
sk t,m,Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

)
= C

]
= 1. (2)

Remark 1 (signing algorithm vs. signing protocol). In this paper we treat Sign()
as an algorithm that is run locally by each of the signing parties. However, in
some schemes, Sign is an interactive protocol between each signing party and
the Combiner. Either way, the end result is that the Combiner obtains a list of
signature shares {δi}i∈C , one share from each signer. The distinction between a
local non-interactive signing algorithm vs. an interactive signing protocol is not
relevant to the constructions in this paper.

Remark 2 (distributed key generation). Our syntax assumes a centralized setup
algorithm KeyGen to generate the signing key shares. However, all our schemes
can be adapted to use a decentralized key generation protocol among the signers,
the Combiner, and the Tracer. At the end of the protocol every signer knows its
secret key, the Combiner knows sk c, the Tracer knows sk t, and pk is public. No
other information is known to any party.

Remark 3 (Why use a Tracer?). The Combiner knows which parties contributed
signature shares to create a particular signature. A badly designed tracing sys-
tem could operate as follows: whenever the Combiner constructs a signature, it
records the quorum that was used to generate that signature in its database.
Later, when a signature needs to be traced, the Combiner could look up the
signature in its database and reveal the quorum that generated that signature.
If the signature scheme is strongly unforgeable, then one could hope that the
only valid signatures in existence are ones generated by an honest Combiner, so
that every valid signature can be easily traced with the help of the Combiner.
The problem, of course, is that a malicious quorum of signers could collude with
the Combiner to generate a valid signature that cannot be traced because the
data is not recorded in the database. Or a malicious quorum might delete the
relevant entry from the Combiner’s database and prevent tracing.

Instead, we require that every valid signature can be traced to the quorum
that generated it using the secret tracing key sk t. The tracing key sk t can be
kept in a “safety deposit box” and only accessed when tracing is required. The
Combiner in a TAPS is stateless.
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Unforgeability and accountability attack game:

(n, t, C, state) ←$ A0(1λ); where t ∈ [n] and C ⊆ [n] // A0 outputs n, t and C (no size bound on C)

(pk, {sk1, . . . , skn}, skc, pkt) ←$ KeyGen(1λ, n, t) // generate keys using n and t

(m′, σ′) ←$ AO(·,·)
1 (pk, {ski}i∈C , skc, skt, state) // A1 receives secret keys for all of C,

// as well as the tracing and combiner’s secret keys

where O(Cj, mj) returns the sig. shares {Sign(ski, mj, Cj)}i∈Cj
// A1 can request signature shares for mj

winning condition:
let (C1, m1), (C2, m2), . . . be A1’s queries to O
let C′ ← ⋃

Cj , union over all queries to O(Cj, m′), // collect all signers that signed m′

if no such queries, set C′ ← ∅ // if no O-queries for m′, then C′ = ∅
let Ct ← Trace(skt, m′, σ′) // trace the forgery (m′, σ′)

output 1 if Verify(pk, m′, σ′) = 1 and either // A wins if someone outside of (C ∪ C′) is blamed,

Ct �⊆ (C ∪ C′) or Ct = fail // or if tracing fails

Fig. 1. Game defining the advantage of an adversary A = (A0, A1) to produce a
valid forgery against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with
respect to a security parameter λ.

In the next two subsections we define security, privacy, and accountability for
a TAPS. The scheme has to satisfy the standard notion of existential unforge-
ability under a chosen messages attack (EUF-CMA) [41]. In addition, the scheme
has to be private and accountable. It is convenient to define unforgeability and
accountability in a single game. We define privacy as an additional requirement.

3.1 Unforgeability and Accountability

Like any signature scheme, a TAPS must satisfy the standard notion of unforge-
ability against a chosen message attack (EUF-CMA). Further, a TAPS scheme
should be accountable. Informally, this means that a tracer that has the tracing
key sk t should output the correct quorum set C ⊆ [n] of signers for a given
message-signature pair.

We refer to these simultaneous notions of unforgeability and accountability
as Existential Unforgeability under a Chosen Message Attack with Traceability.
Informally, this notion captures the following unforgeability and accountability
properties, subject to restrictions of the chosen message attack:

– Unforgeability: an adversary that controls fewer than t participants cannot
construct a valid message-signature pair; and

– Accountability: an adversary that controls t or more corrupt participants
cannot construct a valid message-signature pair that traces to at least one
honest participant.

We formalize this in the attack game in Fig. 1. Let Advforg
A,S(λ) be the probability

that adversary A wins the game of Fig. 1 against the TAPS scheme S.
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Definition 6 (accountable TAPS). A TAPS scheme S is unforgeable and
accountable if for all probabilistic polynomial time adversaries A = (A0,A1),
the function Advforg

A,S(λ) is a negligible function of λ.

Our game in Fig. 1 captures both unforgeability (EUF-CMA) for a thresh-
old signature scheme as well as accountability. During the game the adversary
obtains the secret keys of parties in C and obtains signature shares for m′ from
parties in C ′. The adversary should be unable to produce a valid signature σ′

that causes the tracing algorithm to fail, or causes the tracing algorithm to blame
a signing party outside of C ∪ C ′. This captures the accountability property. To
see why this implies unforgeability, suppose the adversary A obtains fewer than
threshold t signature shares for m′, meaning that |C ∪ C ′| < t. Yet, the adver-
sary is able to produce a valid signature σ′ that causes the tracing algorithm
to blame some quorum Ct. By definition of Trace we know that |Ct| ≥ t and
therefore Ct cannot be contained in C ∪ C ′. Therefore the adversary succeeds
in blaming an honest party, and consequently A wins the game. Hence, if the
adversary cannot win the game, the scheme must be unforgeable.

Remark 4. Definition 6 captures unforgeability, but not strong unforgeability,
where the adversary should be unable to generate a new signature on a pre-
viously signed message. If needed, one can enhance the definition to require
strong unforgeability. Moreover, any unforgeable scheme can be made strongly
unforgeable by adapting to the setting of threshold signatures a general transfor-
mation from an unforgeable signature scheme to a strongly unforgeable signature
scheme [10].

3.2 Privacy

Next, we define privacy for a TAPS. Privacy for a threshold signature scheme is
often defined by requiring that a threshold signature on a message m be indis-
tinguishable from a signature on m generated by some standard (non-threshold)
signature scheme [39]. This property ensures that a threshold signature reveals
nothing about the threshold and the quorum that produced the signature.

A TAPS may not be derived from a non-threshold signature scheme, so this
definitional approach does not work well in our setting. Instead, we define privacy
as an intrinsic property of the TAPS. Our definition of privacy applies equally
well to a private threshold signature (PTS) scheme.

We impose two privacy requirements:

– Privacy against the public: A party who only has pk and sees a sequence
of message-signature pairs, learns nothing about the threshold t or the set of
signers that contributed to the creation of those signatures.

– Privacy against signers: The set of all signers working together, who also
have pk (but not sk c or sk t), and see a sequence of message-signature pairs,
cannot determine which signers contributed to the creation of those signa-
tures. Note that t is not hidden in this case since the set of all signers knows
the threshold.
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The game defining privacy against the public:

b ←$ {0, 1}
(n, t0, t1, state) ←$ A0(1λ) where t0, t1 ∈ [n] // A0 outputs n and two thresholds t0, t1

(pk, {sk1, . . . , skn}, skc, skt) ←$ KeyGen(1λ, n, tb) // generate keys using n and tb

b′ ← AO1(·,·,·), O2(·,·)
1 (pk, state)

output (b = b′)

where O1(C0, C1, m) returns σ ←$ Combine(skc, m, Cb, {Sign(ski, m, Cb)}i∈Cb
) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = t0 and |C1| = t1,

and where O2(m, σ) returns Trace(skt, m, σ). // trace (m, σ)

Restriction: if σ is obtained from a query O1(·, ·, m), then O2 is never queried at (m, σ).

Fig. 2. The game used to define privacy against the public for an adversary A =
(A0, A1) against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with
respect to a security parameter λ.

These properties are captured by the games in Fig. 2 and Fig. 3 respectively.
Let W be the event that the game in Fig. 2 outputs 1. Similarly, let W ′ be the

event that the game in Fig. 3 outputs 1. We define the two advantage functions
for an adversary A against the scheme S, as a function of the security parameter
λ:

Advpriv1
A,S (λ) =

∣
∣2Pr[W ] − 1

∣
∣ and Advpriv2

A,S (λ) =
∣
∣2Pr[W ′] − 1

∣
∣.

Definition 7 (Privacy for a TAPS scheme). A TAPS scheme is private if
for all probabilistic polynomial time public adversaries A = (A0,A1), the func-
tions Advpriv1

A,S (λ) and Advpriv2
A,S (λ) are negligible functions of λ.

To give some intuition, privacy against the public for a TAPS is defined using
the game in Fig. 2. The adversary chooses two thresholds t0 and t1 in [n] and
is given a public key pk for one of these thresholds. The adversary then issues
a sequence of signature queries to a signing oracle O1, where each signature
query includes a message m and two quorums C0 and C1. The adversary gets
back a signature generated using either the left or the right quorum. We also
give the adversary access to a restricted tracing oracle O2 that will trace a valid
message-signature pair. The adversary should be unable to determine whether
the sequence of signatures it saw were with respect to the left or the right
sequence of quorums.

Our definition of privacy ensures that the threshold t is hidden, but we do
not try to hide the number of signers n because there is no need to: one can
covertly inflate n to some upper bound by generating superfluous signing keys.

Privacy against signers is defined using the game in Fig. 3. This game is the
same as in Fig. 2, however here the adversary chooses the threshold t, and is
given all the signing keys. Again, the adversary should be unable to determine
if a signing oracle O1 that takes two quorums C0 and C1, responds using the
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The game defining privacy against signers:

b ←$ {0, 1}
(n, t, state) ←$ A0(1λ) where t ∈ [n] // A0 outputs n and t

(pk, {sk1, . . . , skn}, skc, skt) ←$ KeyGen(1λ, n, t) // generate keys using n and t

b′ ← AO1(·,·,·), O2(·,·)
1 (pk, {sk1, . . . , skn}, state) // A1 issues signature and trace queries

output (b = b′)

where O1(C0, C1, m) returns σ ←$ Combine(skc, m, Cb, {Sign(ski, m, Cb)}i∈Cb
) // sign using Cb

for C0, C1 ⊆ [n] with |C0| = |C1| = t,

and where O2(m, σ) returns Trace(skt, m, σ). // trace (m, σ)

Restriction: if σ is obtained from a query O1(·, ·, m), then O2 is never queried at (m, σ).

Fig. 3. The game used to define privacy against signers for an adversary A = (A0, A1)
against a TAPS scheme S = (KeyGen,Sign,Combine,Verify,Trace) with respect to a
security parameter λ. Here, A1 is granted knowledge of all signing keys sk1, . . . , skn.

left or the right quorum. As before, the adversary has access to a restricted
tracing oracle O2. As in private threshold signatures (PTS), we do not aim to
prevent signers from recognizing a signature that was generated with their help,
as discussed in Sect. 6.

Remark 5 (Randomized signing). The privacy games in Figs. 2 and 3 require
that signature generation be a randomized process: calling

Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C)

with the same arguments m and C twice must result in different signatures,
with high probability. Otherwise, the adversary could trivially win these games:
it would query O1 twice, once as O1(C0, C1,m) and again as O1(C0, C

′
1,m),

for suitable quorums C0, C1, C
′
1 where C1 �= C ′

1. It would then check if the
resulting signatures are the same. If so, it learns that b = 0, and if not it learns
that b = 1. For this reason, if a scheme satisfies Definition 7, then the output
of Combine(sk c,m,C, {Sign(sk i,m,C)}i∈C) must be sampled from some high
entropy distribution.

3.3 Accountable Threshold Schemes (ATS)

For completeness, we note that the standard notions of private threshold signa-
tures (PTS) and accountable threshold signatures (ATS) are special cases of a
TAPS. We review these concepts in the next two definitions.

To obtain an ATS we impose two syntactic requirements on a TAPS scheme:

– In an ATS, the tracing key is publicly known, meaning that anyone can trace
a valid message-signature pair to the quorum that participated in generating
it. We capture this by requiring that the TAPS tracing key sk t is equal to
the public key pk .
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– In an ATS, the Combiner is not a trusted party and cannot hold secrets. We
capture this by requiring that the Combiner’s secret key sk c is also equal to
the public key pk .

For clarity, whenever we make use of an ATS, we will drop sk t and sk c as explicit
inputs and outputs to the relevant TAPS algorithms.

Definition 8. An accountable threshold signature scheme, or an ATS,
is a special case of a TAPS, where the tracing key sk t and the Combiner key
sk c are both equal to the public key pk. The scheme is said to be secure if it is
accountable and unforgeable as in Definition 6.

Notice that there is no privacy requirement in Definition 8.

Remark 6. As mentioned in the introduction, an ATS scheme is closely related
to the concept of an accountable multi-signature scheme (ASM) [9]. One can
construct an ATS from an ASM by including a threshold t in the ASM public
key. The ASM verification algorithm is modified to ensure that at least t signers
represented in pk signed the message.

Next, we define a private threshold signature scheme, or a PTS. In the liter-
ature, a private threshold signature scheme is simply called a threshold signature
scheme. However, ATS and PTS are equally important concepts, and we there-
fore add an explicit adjective to clarify which threshold signature concept we are
using.

Definition 9. A private threshold signature scheme, or a PTS, is a spe-
cial case of a TAPS, where the Trace algorithm always returns fail, and the
correctness requirement for a TAPS in Definition 5 is modified to remove the
requirement on Trace in Eq. (2). The scheme is said to be secure if it is private
as in Definition 7, and unforgeable as in Definition 6 with one modification: the
adversary wins if the forgery is valid and |C ∪ C ′| < t.

The modification of Definition 6 reduces the accountability and unforgeabil-
ity game in Definition 6 to a pure unforgeability game under a chosen mes-
sage attack, ignoring accountability. Interestingly, this game captures a security
notion related to dual-parameter threshold security [56]. If one puts a further
bound requiring |C| < t′ < t in Fig. 1, for some parameter t′, then one obtains
the usual definition of dual-parameter threshold security from [56].

4 A Generic Construction via an Encrypted ATS

We next turn to constructing a TAPS scheme. In this section we present a generic
construction from a secure ATS scheme. The generic TAPS construction makes
use of five building blocks:

– a secure accountable threshold signature (ATS) scheme as in Definition 8,
namely AT S = (KeyGen,Sign,Combine,Verify,Trace);
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– a semantically secure public-key encryption scheme as in Definition 1, namely
PKE = (KeyGen,Encrypt,Decrypt), whose message space is the space of
signatures output by the ATS signing algorithm;

– a binding and hiding commitment scheme COM = (Commit,Verify), where
algorithm Commit(m, r) outputs a commitment to a message m using a ran-
dom nonce r ←$ R;

– a strongly unforgeable signature scheme SIG = (KeyGen,Sign,Verify);
– a non-interactive zero knowledge argument of knowledge (P, V ), possibly con-

structed in the random oracle model using the Fiat-Shamir transform.

Recall that our definition of semantic security in Sect. 2 ensures that the encryp-
tion scheme PKE is length-hiding: the encryption of messages m0 and m1 of
different lengths are indistinguishable.

The Generic TAPS Scheme. The generic TAPS scheme S is shown in Fig. 4.
In our construction, a TAPS signature on a message m is a triple σ = (ct , π, tg),
where (i) ct is a public key encryption of an ATS signature σm on m, encrypted
using the tracing public key pk t, (ii) π is a zero-knowledge proof that the decryp-
tion of ct is a valid ATS signature on m, and (iii) tg is the Combiner’s signature
on (m, ct , π). The reason for the Combiner’s signature is explained in Remark 7.

Recall that an ATS public key can reveal the threshold t in the clear, which
would violate the TAPS privacy requirements. As such, the TAPS public key
cannot include the ATS public key in the clear. Instead, the TAPS public key
only contains a hiding commitment to the ATS public key.

Correctness. The scheme is correct if the underlying ATS scheme, commitment
scheme, encryption scheme, signature scheme, and proof system are correct.

Efficiency. When using a succinct commitment scheme, the public key is quite
short; its length depends only on the security parameter. When using a zk-
SNARK [13] for the proof system, the signature overhead over the underlying
ATS signature is quite short; its length depends only on the security parameter.
Moreover, signature verification time is dominated by the SNARK proof verifi-
cation, which is at most logarithmic in the total number of signing parties n.

However, the Combiner’s work in this scheme is substantial because it needs
to generate a zk-SNARK proof for a fairly complex statement. In addition, zk-
SNARK proof systems rely on strong complexity assumptions for security [40].
To address these issues, we construct in the next section more efficient TAPS
schemes whose security relies on DDH in the random oracle model, a much
simpler assumption.

Security, Privacy, and Accountability. We next turn to proving that the generic
scheme is secure, private, and accountable.

Theorem 1. The generic TAPS scheme S in Fig. 4 is unforgeable, accountable,
and private, assuming that the underlying accountable threshold scheme AT S is
secure, the encryption scheme PKE is semantically secure, the non-interactive
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- S.KeyGen(1λ, n, t):

1:
(
pk ′, (sk1, . . . , skn)

)
←$ AT S.KeyGen(1λ, n, t)

2: rpk ←$ Rλ and compk ← COM.Commit(pk ′, rpk )

3: (pk t, sk
′
t) ←$ PKE .KeyGen(1λ)

4: (pkcs, skcs) ←$ SIG.KeyGen(1λ) // Combiner’s signing key

5: sk t ← (pk ′, sk ′
t, pkcs) // the secret tracing key

6: skc ← (pk ′, pk t, skcs, t, compk , rpk ) // Combiner’s secret key

7: pk ← (compk , pk t, pkcs)

8: output
(
pk , (sk1, . . . , skn), skc, sk t)

)

- S.Sign(sk i, m, C) → δi: output δi ←$ AT S.Sign(sk i, m, C).

Here C ⊆ [n] is a set of size t of participating signers. Recall that in some
schemes AT S.Sign is an algorithm run by the signing parties, while in other
schemes AT S.Sign is an interactive protocol between the Combiner and the
signing parties. Either way, the end result in that the Combiner obtains sig-
nature shares {δi}i∈C .

- S.Combine(skc, m, C, {δi}i∈C) → σ: with skc = (pk ′, pk t, skcs, t, compk , rpk ),
the Combiner does

1: σm ←$ AT S.Combine(pk ′, m, C, {δi}i∈C)

2: ct ← PKE .Encrypt(pk t, σm; r), where r is a fresh nonce

3: use the prover P to generate a proof π for the relation:

R
(
(compk , pk t,m, ct) ; (σm, r, rpk , pk

′)
)

= true iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ct = PKE .Encrypt(pk t, σm; r),

AT S.Verify(pk ′, m, σm) = 1,

COM.Verify(pk ′, rpk , compk ) = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)

4: tg ←$ SIG.Sign
(
skcs, (m, ct , π)

)
// sign with Combiner’s signing key

5: output the TAPS signature σ ← (ct , π, tg)

- S.Verify
(
pk = (compk , pk t, pkcs), m, σ = (ct , π, tg)

)
→ {0, 1}: accept if

• π is a valid proof for the relation R in (3) with respect to the statement
(compk , pk t, m, ct), and

• SIG.Verify
(
pkcs, (m, ct , π), tg

)
= 1.

- S.Trace
(
sk t = (pk ′, sk ′

t, pkcs), m, σ = (ct , π, tg)
)

→ C:

1: if SIG.Verify
(
pkcs, (m, ct , π), tg

)
�= 1, output fail and stop

2: set σm ← PKE .Decrypt(sk ′
t, ct), if fail then output fail and stop

3: otherwise, output AT S.Trace(pk ′, m, σm)

Fig. 4. The generic TAPS scheme S



Threshold Signatures with Private Accountability 567

proof system (P, V ) is an argument of knowledge and HVZK, the commitment
scheme COM is hiding and binding, and the signature scheme SIG is strongly
unforgeable.

We provide concrete security bounds in the lemmas below. First, let us explain
the need for the Combiner’s signature in Step 4 of S.Combine.

Remark 7. Observe that the privacy games in Figs. 2 and 3 give the adversary
a tracing oracle for any message-signature pair of its choice. In the context of
our construction this enables the adversary to mount a chosen ciphertext attack
on the encryption scheme PKE . Yet, Theorem 1 only requires that PKE be
semantically secure, not chosen ciphertext secure. The need for a weak secu-
rity requirement on PKE will become important in the next section where we
construct more efficient TAPS schemes. To secure against the chosen ciphertext
attack, we rely on the Combiner’s signature included in every TAPS signature.
It ensures that the adversary cannot call the tracing oracle with anything other
than a TAPS signature output by the Combiner.

We now prove Theorem 1. The proof is captured in the following three lemmas.

Lemma 1. The generic TAPS scheme S is unforgeable and accountable, as in
Definition 6, assuming the accountable threshold scheme AT S is secure, the non-
interactive proof system (P, V ) is an argument of knowledge, and the commitment
scheme is binding. Concretely, for every adversary A that attacks S there exists
adversaries B1,B2, that run in about the same time as A, such that

Advforg
A,S(λ) ≤

(
Advforg

B1,AT S(λ) + Advbind
B2,COM(λ)

)
· q(λ) + κ(λ) (4)

where κ and q are the knowledge error and tightness of the proof system from
Definition 4.

We provide the proof of Lemma 1 in the full version of the paper.

Lemma 2. The generic TAPS scheme S is private against the public assum-
ing the non-interactive proof system (P, V ) is HVZK, the public-key encryption
scheme PKE is semantically secure, the commitment scheme COM is hiding,
and the signature scheme SIG is strongly unforgeable. Concretely, for every
adversary A that attacks S there exist adversaries B1,B2,B3, that run in about
the same time as A, such that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) + Q · Advhvzk

B3,(P,V )(λ) + ε(λ)
)

(5)
where ε(λ) is the hiding statistical distance of the commitment scheme COM
and Q is the number of signature queries from A.

We provide the proof of Lemma 2 in the full version of the paper.
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Lemma 3. The generic TAPS scheme S is private against signers assuming the
non-interactive proof system (P, V ) is HVZK, the public-key encryption scheme
PKE is semantically secure, and the signature scheme SIG is strongly unforge-
able. Concretely, for every adversary A that attacks S there exist adversaries
B1,B2,B3, that run in about the same time as A, such that

Advpriv2
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Advindcpa
B2,PKE(λ) + Q · Advhvzk

B3,(P,V )(λ)
)
. (6)

The proof of Lemma 3 is almost identical to the proof of Lemma 2.

5 An Efficient TAPS from Schnorr Signatures

In this section we construct a secure TAPS in the random oracle model, based
on the Schnorr signature scheme. The construction is far more efficient than
applying the generic construction from the previous section to a Schnorr ATS.
We obtain this improvement by taking advantage of the algebraic properties of
the Schnorr signature scheme to vastly simplify the zero knowledge statement
that the Combiner needs to prove when making a signature.

The construction makes use of a group G of prime order q in which the
Decision Diffie-Hellman problem is hard. Let g, h be independent generators
of G. We also require a hash function H : PK × G × M → Zq that will be
modeled as a random oracle, where PK is a space of public keys.

5.1 A Review of the Schnorr ATS Schemes

Let us first review the (uncompressed) Schnorr signature scheme [55]:

– KeyGen(λ): sk ←$
Zq, pk ← gsk , output (sk , pk).

– Sign(sk ,m): r ←$
Zq, R ← gr, c ← H(pk , R,m) ∈ Zq, z ← r + sk · c ∈ Zq,

output σ ← (R, z).
– Verify(pk ,m, σ): compute c ← H(pk , R,m) ∈ Zq and accept if gz = pk c · R.

Our Schnorr TAPS builds upon an existing Schnorr accountable threshold sig-
nature (ATS), such as [49,50,53]1. Using our terminology, these ATS schemes
operate as follows:

– KeyGen(λ, n, t): Choose sk1, . . . , skn ←$
Zq and set pk i ← gski for i ∈ [n]. Set

pk ← (t, pk1, . . . , pkn) and sk ← (sk1, . . . , skn). Output (pk , sk).
In an ATS, the Combiner key sk c and the tracing key sk t are equal to pk .

– Sign(sk i,m,C): An interactive protocol between the Combiner and signer i.
At the end of the protocol the Combiner has δi = (Ri, zi) ∈ G × Zq, where

1 Technically, these are multisignature schemes, but as noted in Remark 6, they can
easily be made into an ATS.
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(Ri, zi) satisfies gzi = pk c
i · Ri for c ← H(pk , R,m) ∈ Zq. Here R ∈ G is

defined2 as R :=
∏

i∈C Ri. This R is obtained from the Combiner’s interaction
with all the signers participating in the current signature process.

– Combine(pk ,m,C, {δi}i∈C): Abort if |C| �= t. Parse δi as δi = (Ri, zi),
set z ←

∑
i∈C zi ∈ Zq and R ←

∏
i∈C Ri. Output σ ←

(
R, z, C

)
.

One can confirm that (R, z) is a valid Schnorr signature on m with respect
to the public key pkC ←

∏
i∈C pk i.

– Verify(pk ,m, σ): parse pk = (t, pk1, . . . , pkn) and σ = (R, z, C). Accept if
|C| = t and the Schnorr verification algorithm accepts the triple (pkC ,m, σ′)
where σ′ ← (R, z) and pkC ←

∏
i∈C pk i. Here the challenge c is computed as

c ← H(pk , R,m) ∈ Zq and the algorithm accepts if |C| = t and gz = pk c
C ·R.

– Trace(pk ,m, σ): parse σ = (R, z, C), run Verify(pk ,m, σ), the verification
algorithm from the previous bullet, and if valid, output C; else output fail.

The Schnorr ATS papers [49,50,53] describe different ways to instantiate the
Sign protocol. They prove security of the resulting Schnorr ATS scheme using
differing security models. Here we treat the Sign protocol as a black box, and
rely on the following assumption.

Assumption 1. The Schnorr ATS outlined above is a secure ATS scheme, as
in Definition 8.

5.2 An Efficient Schnorr TAPS

We next construct our Schnorr-based TAPS scheme. If we were to follow the
generic construction from Sect. 4, the combiner would encrypt the entire Schnorr
signature (R, z), and would need to produce a zero knowledge proof for a compli-
cated relation. In particular, it would need to prove that an encrypted Schnorr
signature is valid, which is difficult to prove in zero knowledge efficiently. How-
ever, observe that in the public’s view, R is a product of random elements in G,
and as such, is independent of the quorum set C. Therefore, R can be revealed
in the TAPS signature in the clear without compromising the privacy of C in
the public’s view. Even an adversary who has all the signing keys learns nothing
about C from R. We only need to encrypt the quantity z ∈ Zq. The challenge
then is to develop an efficient zero knowledge proof that the cleartext R and an
encrypted z are a valid Schnorr signature with respect to an encrypted quorum
set C.
The Scheme. Our Schnorr TAPS is built from any Schnorr ATS that operates
as described in Sect. 5.1 and satisfies Assumption 1. In addition, we use a single-
party (non-threshold) signature scheme SIG = (KeyGen,Sign,Verify).

2 In some Schnorr ATS schemes (e.g., [53]) this R is defined as R :=
∏

i∈C Rγi
i , for

public scalars {γi ∈ Zq}i∈C . We assume that all these scalars are set to 1, but our
constructions can easily accommodate any scalars.
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The complete TAPS scheme is presented in Fig. 5. The combine algorithm in
Step 4 generates a zero-knowledge proof for the relation RS in Fig. 6. We present
two efficient proof systems for this relation in Sects. 5.3 and 5.4.

In Step 4 of the tracing algorithm there is a need to find a set C ⊆ [n] of size t
that satisfies a certain property. If n is logarithmic in the security parameter,
then this set C can be found by exhaustive search over all t-size subsets of [n].
For larger n, we explain how to find C efficiently in Sects. 5.3 and 5.4.

Correctness. The scheme is correct assuming the Schnorr ATS scheme, the sig-
nature scheme SIG, and proof system for RS are correct.

Security. We next prove security, privacy, and accountability.

Theorem 2. The Schnorr TAPS scheme is unforgeable, accountable, and pri-
vate, assuming that the underlying Schnorr ATS is secure (Assumption 1), the
signature scheme SIG is strongly unforgeable, DDH holds in G, and the non-
interactive proof system (P, V ) for RS is an HVZK argument of knowledge.

The proof of Theorem 2 is presented in the following three lemmas, where we
also provide concrete security bounds.

Lemma 4. The Schnorr TAPS scheme is unforgeable and accountable, as in
Definition 6, assuming the underlying Schnorr ATS is secure, as in Definition 8,
and the non-interactive proof system (P, V ) for RS is an argument of knowledge.
Concretely, for every adversary A that attacks TAPS, there exists an adversary
B that runs in about the same time as A such that

Advforg
A,S(λ) ≤

(
Advforg

B,AT S(λ)
)

· q(λ) + κ(λ) (7)

where κ and q are the knowledge error and tightness of the proof system.

We provide the proof of Lemma 4 in the full version of the paper.

Lemma 5. The Schnorr TAPS scheme is private against the public, as in Def-
inition 7, assuming DDH holds in G, the non-interactive proof system (P, V ) for
RS is HVZK, and the signature scheme SIG is strongly unforgeable. Concretely,
for every adversary A that attacks S there exist adversaries B1,B2,B3 that run
in about the same time as A such that

Advpriv1
A,S (λ) ≤ 2

(
Adveufcma

B1,SIG(λ) + Q · Advhvzk
B2,(P,V )(λ) + (Q + 1) · Advddh

B3,G(λ)
)

(8)
where Q is the number of signature queries from A.

We provide the proof of Lemma 5 in the full version of the paper.

Lemma 6. The Schnorr scheme is private against signers, as in Definition 7,
assuming DDH holds in G, the non-interactive proof system (P, V ) for RS is
HVZK, and the signature scheme SIG is strongly unforgeable.

The proof of Lemma 6 is mostly the same as the proof of Lemma 5.
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- S.KeyGen(λ, n, t): using the independent generators g and h of G do:

1: Run the Schnorr ATS KeyGen procedure from Section 5.1. That is, choose
sk1, . . . , skn ←$

Zq and set pk i ← gski for i ∈ [n].
Set pk ′ ← (pk1, . . . , pkn)

2: Encrypt t with ElGamal: ψ ←$
Zq and (T0, T1) ← (gψ, gthψ)

3: Generate (skcs, pkcs) ←$ SIG.KeyGen(λ) and ske ←$
Zq

4: sk t ← (pk ′, ske, pkcs) and pk t ← gske ∈ G // the tracing secret key

5: skc ← (pk ′, pk t, skcs, t, ψ) // the combiner’s secret key

6: pk ← (pk ′, pk t, pkcs, T0, T1) // the verifier’s public key

7: Output
(
pk , (sk1, . . . , skn), skc, sk t)

)

- S.Sign(sk i, m, C): Run the Schnorr ATS Sign procedure from Section 5.1 so
that the Combiner obtains a signature share δi ←$ (Ri, zi) ∈ G × Zq.

- S.Combine(skc, m, C, {δi}i∈C): With δi = (Ri, zi), the coordinator does:

1: R ←
∏

i∈C Ri, z ←
∑

i∈C zi ∈ Zq, c ← H(pk , R, m) ∈ Zq

// we know that gz =
[∏

i∈C pk i

]c · R.

2: Encrypt z with ElGamal: ρ ←$
Zq, ct := (c0, c1) ← (gρ, gzpkρ

t ).

3: Set (b1, . . . , bn) ∈ {0, 1}n, such that bi = 1 iff i ∈ C

// then gz =
[ ∏n

i=1(pk i)
bi

]c

· R.

4: Generate a zero knowledge proof π for the relation RS listed in Figure 6.
We present two efficient non-interactive proof systems for this relation in
Sections 5.3 and 5.4.

5: tg ←$ SIG.Sign
(
skcs, (m, R, ct , π)

)
// sign with Combiner’s key

6: Output the TAPS signature σ ← (R, ct , π, tg).

- S.Verify(pk , m, σ): Let σ = (R, ct , π, tg) where ct = (c0, c1).

Parse pk = (pk ′, pk t, pkcs, T0, T1) and set c ← H(pk , R, m). Accept if:

• SIG.Verify
(
pkcs, (m, R, ct , π), tg

)
= 1, and

• π is a valid proof for the relation RS in Figure 6 with respect to the
statement (g, h, pk ′, pk t, T0, T1, R, c, ct = (c0, c1)).

- S.Trace(sk t, m, σ): Parse sk t =
(
pk ′ = (pk1, . . . , pkn), ske, pkcs

)
and do:

1: Parse σ as (R, ct , π, tg) and ct = (c0, c1). Set c ← H(pk , R, m).

2: If SIG.Verify
(
pkcs, (m, R, ct , π), tg

)
�= 1, output fail and stop.

3: ElGamal decrypt ct = (c0, c1) as g(z′) ← c1/c0
ske ∈ G.

4: Find a set C ⊆ [n], where |C| = t and g(z′) = R · (
∏

i∈C pk i)
c.

This equality implies that (R, z′) is a valid Schnorr signature on m with
respect to the public key pkC ←

∏
i∈C pk i.

5: If such a set C ⊆ [n] is found, output C. Otherwise, output fail.

Fig. 5. The Schnorr TAPS scheme
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RS =
{

(g, h, pk ′ = (pk1, . . . , pkn), pk t, T0, T1, R, c, ct = (c0, c1)) ; (z, ρ, ψ, b1, . . . , bn)
}

iff (1) gz =
[ n∏

i=1

(pk i)
bi

]c

· R,

(2) c0 = gρ and c1 = gz · pkρ
t ,

(3) T0 = gψ and T1 = g
∑n

i=1 bi · hψ,

(4) bi(1 − bi) = 0 for i = 1, . . . , n (i.e. bi ∈ {0, 1}).

Fig. 6. The relation RS used in the Combine algorithm of the Schnorr TAPS. Condi-
tion (1) verifies that (R, z) is a valid signature for m assuming c = H(pk , R, m); (2)
verifies that (c0, c1) is an ElGamal encryption of z using the tracing public key pk t; (3)
verifies that the quorum C contains t signers; and (4) verifies that each bi is in {0, 1}.
Here g and h are public random generators of G.

5.3 A Sigma Protocol Proof for RS

It remains to construct an efficient non-interactive zero knowledge argument of
knowledge for the relation RS from Fig. 6. In this section we construct a Sigma
protocol, and in the next section we construct a protocol using Bulletproofs. We
describe these as interactive protocols, but they can be made non-interactive
using the Fiat-Shamir transform [3,33].

Let g, h, h1, . . . , hn ∈ G be independent random generators of G. To prove
knowledge of a witness for the relation RS from Fig. 6 we use the following
approach:

Protocol S1:

1: The prover chooses γ ←$
Zq and commits to its bits (b1, . . . , bn) ∈ {0, 1}n as

(
v0 ← gγ , v1 ← gb1hγ

1 , . . . , vn ← gbnhγ
n

)
∈ G

n+1

It sends (v0, v1, . . . , vn) to the verifier. Observe that for i ∈ [n] the pair (v0, vi)
is an ElGamal encryption of bi with respect to the public key hi. The term
v0 will be used for efficient tracing.

2: The verifier samples a challenge α ←$
Zq and sends α to the prover.

3: The prover computes φi ← αiγ(1 − bi) ∈ Zq for i ∈ [n].
4: Finally, the prover uses a Sigma protocol to prove knowledge of a witness

(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn) for the relation RS1 in Fig. 7.

We present the concrete steps for the 3-round Sigma protocol for the relation
RS1 used in Step 4 in the full version, where we also show the TAPS signature
obtained from this protocol. After applying the Fiat-Shamir transform to Pro-
tocol S1, the resulting proof π for the relation RS from Fig. 6 contains n + 1
group elements and 2n + 5 elements in Zq.
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RS1 :=
{

(g, h, h1, . . . , hn, pk1, . . . , pkn, pk t, T0, T1, R, c, ct = (c0, c1), v0, v1, . . . , vn, α) ;

(z, ρ, ψ, γ, b1, . . . , bn, φ1, . . . , φn)
}

where

(1) gz = R ·
n∏

i=1

(pk i)
c·bi

(2) c0 = gρ and c1 = pkρ
t · gz

(3) T0 = gψ and T1 = g
∑n

i=1 bi · hψ

(4) v0 = gγ and vi = gbihγ
i for i ∈ [n] and

n∏

i=1

v
αi(1−bi)
i =

n∏

i=1

hφi
i

Fig. 7. The relation RS1. Equations (1), (2), and (3) are the same as in the relation
RS in Figure 6. Equation (4) proves that bi(1 − bi) = 0 for i ∈ [n]. As usual, both the
prover and verifier have c ← H(pk , R, m). The prover computes the witness element
φ1, . . . , φn ∈ Zq on its own as φi ← αiγ(1 − bi).

Theorem 3. Let G be a group of prime order q. If the Decision Diffie-Hellman
(DDH) assumption holds in G, and n/q is negligible, then Protocol S1 is an
HVZK argument of knowledge for the relation RS from Fig. 6.

We provide the proof for Theorem 3 in the full version.

Remark 8 (Efficient tracing). Recall that the tracing algorithm in Fig. 5
requires the tracer to find a set C ⊆ [n] of size t such that g(z

′) = (
∏

i∈C pk i)c ·R.
When using Protocol S1, the tracing algorithm can efficiently find this set C ⊆
[n] by decrypting the Combiner’s ElGamal commitment (v0, v1, . . . , vn) ∈ G

n+1

to the bits b1, . . . , bn ∈ {0, 1} that define C. To see how, let us extend algorithm
KeyGen in Fig. 5 by adding the following steps:

– choose τi ←$
Zq and set hi ← gτi for i ∈ [n]

– aug-sk t ← (sk t, τ1, . . . , τn) // augmented tracing key
– aug-sk c ← (sk c, h1, . . . , hn) // augmented Combiner’s key
– aug-pk ← (pk , h1, . . . , hn) // augmented public key

The Combiner and verifier use h1, . . . , hn in their augmented keys to produce
and verify the proof for the relation RS using Protocol S1. The proof con-
tains an ElGamal commitment (v0, v1, . . . , vn) to the bits b1, . . . , bn. The tracing
algorithm can obtain b1, . . . , bn ∈ {0, 1} by decrypting the ElGamal ciphertexts
(v0, vi) for i ∈ [n] using the secret keys τ1, . . . , τn ∈ Zq. Soundness of Protocol S1
ensures that the resulting bits define the correct quorum set C. Note that aug-pk
contains a total of 2n + 4 group elements.

5.4 A Bulletproofs Protocol Proof for RS

The Sigma protocol for the relation RS from Fig. 6 may be adequate for many
real-world settings where the number of allowed signers is small. However, if a
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large number of parties n is used, then the resulting proof size may be too large.
We can shrink the proof using an argument system that produces shorter proofs
(e.g., using a zk-SNARK). This approach raises two difficulties. First, computing
the proof will be slow because the exponentiations in Fig. 6 would need to be
implemented explicitly in the zk-SNARK relation. Second, we would lose the
efficient tracing algorithm from Remark 8.

We can avoid both issues using the Bulletproofs proof system [20,22] or its
treatment as a compressed Sigma protocol in [2]. First, the exponentiations in
Fig. 6 are handled efficiently. Second, we can retain efficient tracing with a much
shorter TAPS signature compared to the Sigma protocol in Sect. 5.3.

Let G be a group of prime order q, let a1, . . . , an be generators of G, and
a := (a1, . . . , an) ∈ G

n. For w ∈ Z
n
q we write aw :=

∏n
i=1 awi

i ∈ G.
Recall that bulletproofs is an HVZK proof system that can prove knowledge

of a satisfying witness w ∈ Z
n
q for the relation

RBP :=
{
(P, a ∈ G

n, u ∈ G) ; w ∈ Z
n
q

}
iff P (w) = 1 and aw = u,

where P is a rank one constraint system (R1CS), meaning that P is a triple of
matrices A,B,C ∈ Z

�×n
q and P (w) = 1 iff (Aw) ◦ (Bw) = Cw. The ◦ operator

denotes the Hadamard product (component-wise product) of two vectors in Z
n
q .

The program P is said to have � constraints over n variables. We represent the
program P in RBP using R1CS instead of an arithmetic circuit because R1CS is
more convenient in our settings: it more directly captures the relations we need
to prove.

The Bulletproofs proof is succinct, containing only 2�log2(n + �)� group ele-
ments and two elements in Zq. For a convincing prover P ∗, the Bulletproofs
extractor outputs some w ∈ Z

n
q such that either (i) w is a valid witness for

RBP, or (ii) w is a non-trivial relation among the generators3 a ∈ G
n, namely

aw = 1. If the discrete log problem in G is difficult, and a are random generators
of G, then an efficient prover cannot cause (ii) to happen. Then bulletproofs is
an argument of knowledge for RBP.

Shorter Proofs with Efficient Tracing. In the full version of the paper we
show that Bullerptoofs gives an efficient logarithmic size proof for the relation
RS from Fig. 6. However, in doing so we lose the ability to efficiently trace a
signature using the tracing key. Recall that the tracing algorithm in Fig. 5 needs
to find a set C ⊆ [n] of size t such that g(z

′) = (
∏

i∈C pk i)c ·R. This can be done,
in principal, by trying all sets C ⊆ [n] of size t, assuming

(
n
t

)
is polynomial in

the security parameter λ. However, we want a more efficient tracing algorithm.
We can restore efficient tracing for larger n and t in a way similar to Remark 8.

Let (b1, . . . , bn) ∈ {0, 1}n be the characteristic vector of the quorum of signers
C ⊆ [n]. In Sect. 5.3 we encrypted every bit bi on its own, and added the n + 1
group elements (v0, . . . , vn) to the signature. The tracing algorithm could then

3 This relation might include additional random generators of G.
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decrypt each of the n ElGamal ciphertexts (v0, vi), for i ∈ [n], and efficiently
recover the quorum set C.

Using Bulletproofs we can compress the commitment to the bits (b1, . . . , bn)
by committing to a batch of bits at a time using a single ElGamal ciphertext.
We will then need to extend the Bulletproofs relation to verify that every batch
commitment is well formed.

To see how, let us fix a batch size e, say e := 40. For simplicity suppose that e
divides n. We extend algorithm KeyGen in Fig. 5 by adding the following steps:

– for i ∈ [n/e]: choose τi ←$
Zq and set hi ← gτi ∈ G

– aug-sk t ← (sk t, τ1, . . . , τn/e) // augmented tracing key
– aug-skc ← (sk c, h1, . . . , hn/e) // augmented Combiner’s key
– aug-pk ← (pk , h1, . . . , hn/e) // augmented public key

Next, we augment the prover for the relation RS from Fig. 6 by adding a step 0
where the prover does:

– step (i): Divide the n bits into (n/e) buckets 0 ≤ B1, . . . , Bn/e < 2e as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1 ← b1 + 2b2 + 4b3 + . . . + 2ebe ∈ Zq,

B2 ← be+1 + 2be+2 + . . . + 2eb2e ∈ Zq,

...
Bn/e ← bn−e+1 + 2bn−e+2 + . . . + 2ebn ∈ Zq.

– step (ii): Choose a random γ ←$
Zq and compute

(
v0 ← gγ , v1 ← gB1hγ

1 , . . . , vn/e ← gBn/ehγ
n/e

)
∈ G

(n/e)+1.

Send (v0, v1, . . . , vn/e) to the verifier. Observe that for i ∈ [n/e] the pair
(v0, vi) is an ElGamal encryption of gBi with respect to the public key hi.

Finally, we augment the relation RS to verify that (v0, v1, . . . , vn/e) were con-
structed correctly, but this has only a small impact on the size of the proof. The
final TAPS signature is expanded by (n/e)+1 group elements (v0, v1, . . . , vn/e).

When the tracing algorithm is given a signature to trace, it can obtain
gB1 , . . . , gBn/e ∈ G by decrypting the ElGamal ciphertexts (v0, vi) for i ∈ [n/e]
using the secret keys τ1, . . . , τn/e ∈ Zq in the tracing key aug-sk t. Next, the
tracing algorithm computes the discrete log base g of these group elements to
obtain B1, . . . , Bn/e ∈ Zq. Since each Bi is in {0, 1, . . . , 2e − 1}, each discrete log
computation can be done with about 2e/2 group operations.

Taking e := 40 gives a reasonable amount of time for computing all of
B1, . . . , Bn/e ∈ Zq from gB1 , . . . , gBn/e . The tracing algorithm then computes
b1, . . . , bn ∈ {0, 1} from B1, . . . , Bn/e, and this reveals the required quorum set
C. Soundness of the argument system for the relation RS ensures that the result-
ing bits b1, . . . , bn define the correct quorum set C ⊆ [n].
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6 Extensions

Shorter Public Keys. While the size of the public key in our Schnorr construc-
tion grows linearly in n, there are several ways to shrink the public key. First,
the public key can be replaced by a short binding commitment to the linear-size
public key, and the full public key could be included in every signature. This
shrinks the public key at the cost of expanding the signature. Alternatively,
both the public key and signature can be kept short by making the public key
a witness in the zero-knowledge proof statement, as is done in the generic con-
struction (Fig. 4). However, doing so comes at the cost of increased complexity
of the statement that the Combiner needs to prove.

Shorter Signatures Using Tracing Confirmation. The need to trace a
TAPS signature to the signing quorum implies that a TAPS signature must
encode the signing set, and therefore must be at least log2

(
n
t

)
bits long. We can

design shorter TAPS signatures by relaxing this requirement: replace the trac-
ing algorithm by a quorum confirmation algorithm. The confirmation algorithm
takes the signing quorum set C as input, along with the secret tracing key sk t,
and a pair (m,σ). It outputs 1 if the set C is the set that generated σ. The
security definitions in Sect. 3 can be adapted to support quorum confirmation
instead of tracing. Since a signature no longer needs to encode the quorum set,
this lets us construct TAPS where signature size in independent of the number
of parties, for example by using a constant-size zk-SNARK for the relation RS

in Fig. 6. Our bulletproofs construction can be made to directly achieve a TAPS
with quorum confirmation and logarithmic size signatures.

Stronger Privacy Against Signers. Our privacy against signers game in
Fig. 3 ensures that the signer’s private keys cannot be used to link a TAPS
signature to the quorum that created it. However, it is possible that the quorum
of signers that helped create a TAPS signature σ, can later recognize σ, using
its knowledge of the random bits used during the signing process. The same is
true for many Schnorr private threshold signature (PTS) schemes: the quorum
that creates a signature can recognize that signature. If needed, our Schnorr
TAPS construction can be strengthened so that the Combiner can ensure that
a TAPS signature cannot be recognized by the quorum of signers that helped
create it. The Combiner need only blind the quantity R ∈ G in the signature by
a random group element, and adjust the relation in Fig. 6 accordingly. We leave
this variation for future work.

A Construction from the BLS Signature Scheme. In this paper we focused
on a TAPS from the Schnorr signature scheme. A TAPS can also be constructed
from the BLS signature scheme [17] as the underlying ATS. We leave this for future
work.

Beyond Threshold: Supporting Monotone Access Structures. While
threshold access structures are widely used in practice, our constructions
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generalize to support more general monotone access structures. For example,
one can require that a quorum of signers contain t1 parties from one set of sign-
ers and t2 from another set of signers. More generally, standard techniques [6] can
be used to generalize our construction to support any access structure derived
from a polynomial size monotone formula.

7 Conclusion and Future Work

In this work, we present TAPS, a new threshold signature primitive that ensures
both accountability and privacy. While notions of accountable threshold schemes
and private threshold schemes exist in the literature, our work takes a step
towards defining a primitive with both properties simultaneously.

We hope that future work can lead to TAPS schemes with shorter signatures
and public keys. Our generic construction has a short public key: the public key
is simply a commitment to an ATS public key, and so its size is independent
of the number of parties n. However, our Schnorr-based systems with efficient
tracing require a linear size public key. An important research direction is to
design an efficient TAPS that relies on standard assumptions where the size
of the public key is independent of n. One possible avenue for a more efficient
TAPS is for pk to be the root of a Merkle tree whose leaves are the n signers’
public keys. The zero-knowledge proof output by the Combiner will then be a
succinct non-interactive zero-knowledge argument of knowledge (a zk-SNARK)
demonstrating that t of the n signers participated in signing. A related direction
is to employ the approach of Dodis et al. [31], by defining the public key via
an accumulator scheme. The signature is then a proof that the t signers know
the corresponding secret keys to t public keys in the accumulator. However, it
remains an open problem to design such a scheme that fulfills our notion of
accountability.

Another direction for future work is to improve the efficiency of verification
in our Schnorr TAPS. In settings where n is small, such as financial transactions,
the linear-time cost of verification of the Schnorr construction is acceptable. For
large n the cost may be prohibitive. Future work could consider other construc-
tions that support full tracing, but with a faster verifier.
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