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Preface

The 42nd International Cryptology Conference (CRYPTO 2022) was held at the
University of California, Santa Barbara, California, USA, during August 15–18, 2022.
The conference had a hybrid format, with some presentations made in person, and some
delivered virtually. CRYPTO 2022 was sponsored by the International Association for
Cryptologic Research (IACR). The conference was preceded by two days of workshops
on various topics.

The conference set new records for both submissions and publications: 455 papers
were submitted, and 100 were accepted. Two papers were merged into a single joint
paper. Three pairs of papers were soft-merged, meaning that they were written sepa-
rately, but only one paper in each pair was given a presentation slot at the conference.
This resulted in 96 presentations, a record by some margin for a non-virtual edition
of Crypto. It took a Program Committee of 72 cryptography experts working with
435 external reviewers almost three months to select the accepted papers. We Chairs
extend our heartfelt gratitude for the effort and professionalism displayed by the Program
Committee; it was our pleasure to be your Chairs.

We experimented with some new policies and mechanisms this year. The most
important had to do with the quality of reviewing, author feedback and interaction with
the authors.

Shortly after the standard doubly-blind reviewing stage, we assigned a unique
discussion leader (DL) to every paper. The DL’s job was to make sure the paper received
a thorough and fair treatment, and to moderate interactive communication between the
reviewers and authors (described below). The DL also prepared a “Reviewers’ consen-
sus summary”, which provided the authors with a concise summary of the discussion,
the decision, and overall trajectory of the paper throughout the process. Many authors
expressed gratitude for receiving the Reviewers’ consensus summary, in addition to the
usual reviews and scores. Overall, feedback on our DL experiment was quite positive,
and we recommend it to future chairs to adopt this process as well.

We also experimented with an “interactive rebuttal” process. Traditionally, the
rebuttal process has consisted of a single round: the authors were provided with the
initial reviews, and had one opportunity to respond prior to the final decision. While
better than no opportunity to rebut, our opinion is that the traditional process suffers
from several important flaws. First, the authors were left to respond in (say) 750 words
to multiple reviews that are, each, much longer. Too often, the authors are left to divine
what are the crucial points to address; getting this wrong can lead to reviewers feel-
ing that the rebuttal has missed (or dismissed) what mattered to them. In any case, the
authors had no idea if their rebuttal was correctly focused, let alone convincing, until
the decisions and final reviews were released. In many instances, the final reviews gave
no signal that the rebuttal had been thoughtfully considered. In our view, and personal
experience, the traditional rebuttal process led to frustration on both sides, with review-
ers and authors feeling that their time had been wasted. Moreover, it had unclear benefits
in terms of helping the PC to pick the best possible program.
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To address this, we created a review form that required reviewers to make
explicit what were their core concerns and criticisms; and we allowed for multiple,
DL-moderated, rounds of communication between the reviewers and the authors.

Our review form had exactly one field visible to the authors during the initial rebuttal
round. The field was called “Question/Clarifications for Authors”, and reviewers were
instructed to include only those things that had significant bearing upon the reviewer’s
accept/reject stance. We gave all reviewers detailed guidance on things that must be
included. For example, any claimed errors, crucial prior work that was not cited, or
other objective weaknesses that appeared in the detailed review comments. In addition,
the reviewers were instructed to clearly state less objective concerns that factored into
their initial score and disposition towards the paper. Thus, the authors should know
exactly what to focus upon in their response. While not perfect, the new rebuttal format
was a resounding success. Very strong/weak papers typically had very short rebuttals,
allowing the PC to focus their time and energy on papers in need of extensive discussion
or additional reviews.

In concert with the new review form and detailed review instructions, we also
implemented interactive discussions between the reviewers and authors. The traditional
rebuttal round became the first round of the interactive discussion.One roundwas enough
for a fraction of the papers (primarily papers that were very strong or very weak), but the
evaluation of most submissions benefited from numerous rounds: reviewers were able to
sharpen their questions, authors were able to address points directly and in greater detail.
The whole review process shifted more towards a collegial technical exchange. We did
not encounter any problems that we initially feared, e.g., authors spamming the PC with
comment. We believe that having the DLs moderate these interactions was important
for keeping emotions and egos in check, and for encouraging reviewers to share any
significant new concerns with the authors.

A few minor hiccups notwithstanding, the focused review forms and the “interactive
rebuttal” mechanism received a lot of positive feedback, and we strongly encourage
future chairs to adopt this tradition.

We also mention several smaller details which worked well. First, our review form
included a “Brief Score Justification” field that remained reviewer-visible (only) for the
entire process. This was a space for reviewers to speak freely, but concisely, about how
they came to their scores. As Chairs, we found this extremely useful for getting a quick
view of each paper’s reviews. Second, we had an early rejection round roughly in the
middle of our reviewing process. This allowed us to reject roughly half of submissions,
i.e., those that clearly had no chance of being accepted to the final program. The process
generally worked, and we tried to err on the side of caution, keeping papers alive if
the PC was unsure of their seemingly negative views. For example, we allowed PC
members to tag papers that they wanted to keep alive, even to the point of overturning
a preliminary decision to early reject. However, we did feel slightly rushed in finalizing
the early reject decisions, as we made them after less than two weeks after the initial
reviewing round, and less than a week after the initial rebuttal round. Part of this rush
was due to late reviews. Thus, we recommend that future chairs give themselves a bit
more slack in the schedule, and perhaps add a second (less) early rejection round. Third,
we experimented with allowing PC members to have a variable number of submissions,
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rather than the usual hard limits (e.g., at most one or two). Concretely, at most 4 papers
could be submitted; the first paper was “free”, but every subsequent paper submitted by
the PC member resulted in this PC member getting roughly three more papers to review,
and one additional DL appointment. We adopted this policy to make it easier for experts
to accept our invitation to join the PC. (As always, the chairs were not allowed to submit
papers.) Despite some unexpected difficulties and complaints about this system, most
having to do with the logistic difficulty of assigning DLs to PC members with late initial
reviews, many PC members told us that they appreciated the flexibility to submit more
papers, especially when students were involved. We found no evidence that our system
resulted in more accepted papers that were co-authored by the PCmembers, or any other
biases and irregularities. Hence, we found it to be positive, overall.

The Program Committee recognized three papers and their authors for particularly
outstanding work

– “Batch Arguments for NP and More from Standard Bilinear Group Assumptions,” by
Brent Waters and David Wu

– “Breaking Rainbow Takes a Weekend on a Laptop”, by Ward Beullens
– “Some Easy Instances of Ideal-SVP and Implications to the Partial Vandermonde
Knapsack Problem”, by Katharina Boudgoust, Erell Gachon, and Alice Pellet-Mary

We were very pleased to have Yehuda Lindell as the Invited Speaker at CRYPTO
2022, who spoke about “The MPC journey from theoretical foundations to commercial
success: a story of science and business”.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2022. Additionally, we are
grateful to the following people for helping to make CRYPTO 2022 a success: Allison
Bishop (General Chair, CRYPTO 2022), Kevin McCurley and Kay McKelly (IACR IT
experts), Carmit Hazay (Workshops Chair), and Whitney Morris and her staff at UCSB
conference services.

We would also like to thank the generous sponsors, all of the authors of the
submissions, the rump session chair, the regular session chairs, and the speakers.

August 2022 Yevgeniy Dodis
Thomas Shrimpton
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Abstract. Blind signature schemes are one of the best-studied tools for
privacy-preserving authentication. Unfortunately, known constructions
of provably secure blind signatures either rely on non-standard hardness
assumptions, or require parameters that grow linearly with the number
of concurrently issued signatures, or involve prohibitively inefficient gen-
eral techniques such as general secure two-party computation.

Recently, Katz, Loss and Rosenberg (ASIACRYPT’21) gave a tech-
nique that, for the security parameter n, transforms blind signature
schemes secure for O(log n) concurrent executions of the blind signing
protocol into ones that are secure for any poly(n) concurrent executions.

This transform has two drawbacks that we eliminate in this paper:
1) the communication complexity of the resulting blind signing protocol
grows linearly with the number of signing interactions; 2) the resulting
schemes inherit a very loose security bound from the underlying scheme
and, as a result, require impractical parameter sizes.

In this work, we give an improved transform for obtaining a secure
blind signing protocol tolerating any poly(n) concurrent executions from
one that is secure for O(log n) concurrent executions. While preserving
the advantages of the original transform, the communication complex-
ity of our new transform only grows logarithmically with the number
of interactions. Under the CDH and RSA assumptions, we improve on
this generic transform in terms of concrete efficiency and give (1) a
BLS-based blind signature scheme over a standard-sized group where
signatures are of size roughly 3 KB and communication per signature
is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind
signature scheme with signatures and communication of roughly 9 KB
and 8 KB, respectively.

Keywords: Blind Signatures · Standard Assumptions · Random
Oracle Model · Cut-and-Choose

c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13509, pp. 3–31, 2022.
https://doi.org/10.1007/978-3-031-15982-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15982-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-15982-4_1


4 R. Chairattana-Apirom et al.

1 Introduction

In 1982, David Chaum introduced blind signature schemes in the context of elec-
tronic cash [9]. A blind signature scheme is a cryptographic primitive in which
a signer can interactively sign a message held by a user. Informally, a blind
signature scheme must satisfy two security requirements [23,30]. Blindness: the
signer should not be able to see what message is being signed. Unforgeability:
The user should only be able to obtain valid signatures by interacting with the
signer. Classical applications of blind signature schemes include e-cash [9,28],
anonymous credentials [6,7] and e-voting [19]. Recently, blind signatures have
also been used to add privacy features to blockchain-based systems [22]. Despite
this variety of promising applications, the current state-of-the art is unsatisfac-
tory. This is because even in the random oracle model, schemes with reason-
able efficiency are either based on non-standard assumptions [2,4,11] or have
parameters that grow linearly in the number of concurrent signing interactions
[3,20,25,30]. The main goal of this work is to construct blind signature schemes
from well-established assumptions with concurrent security and practically effi-
cient parameter sizes.

State-of-the-Art. Juels, Luby and Ostrovsky showed that blind signature
schemes can be built generically from any secure signature scheme using secure
two-party computation [23]. Their construction was only shown secure when sig-
natures were issued sequentially. However, typically one aims for the stronger
notion of concurrent security. Fischlin [10] achieved this by giving universally
composable blind signatures from commitment schemes and UC zero-knowledge
proofs; but it is not clear how to instantiate these generic constructions effi-
ciently. While it is tempting to instantiate these schemes with efficient signature
schemes in the random oracle model, the security implications of such an instan-
tiation are unclear. This is because such an instantiation would imply the use
of the random oracle as a circuit, which constitutes a non-standard use of the
random oracle model. We refer to the recent work of [1] which discusses these
issues in more detail.

In the standard model, a variety of blind signature schemes have been pro-
posed. These schemes are either inefficient as they rely on complexity leveraging
[14] or rely on strong q-type or non-interactive assumptions [11,15,16,27].

Unfortunately, even in the randomoracle model, the situation does not improve
much. While there are simple constructions [2,4,20,21,30], they either require sim-
ilar non-standard assumptions as their standard model counterparts [2,4] or sup-
port only a very small number of signatures per public key [3,20,21,30].

As a first step to overcome these limitations, Katz, Loss, and Rosenberg
(KLR) [25] showed how to use a cut-and-choose technique to boost the security
of these blind signature schemes in the random oracle model. Their approach
is based on an early work by Pointcheval [29]. The resulting schemes support
polynomially many concurrent signature interactions and are based on stan-
dard assumptions. However, the communication between the signer and the user
still grows linearly with the number of signature interactions, which renders the
scheme impractical.
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We note that relying on the algebraic or generic group model [12,32] yields
better composition and efficiency, as recent works [13,24,33] show. However,
these models are best avoided as they are non-standard.

Our Goal. In this work, we advance the state of the art by giving the first blind
signature schemes in the random oracle model that do not suffer from any of the
above drawbacks. Our main research question can be summarized as follows:

Are there practical and concurrently secure blind signatures from well-established
hardness assumptions which support polynomially many signatures?

1.1 Starting Point: The Basic Boosting Transform

We answer this question in the affirmative. We propose several new techniques
which reduce the size and communication complexity of blind signatures in the
random-oracle model.

Before we explain our techniques, we briefly recall the KLR transform [25],
which will serve as our starting point. The KLR transform can be applied to a
blind signature scheme BS in which the user sends a single message and which
supports a logarithmic number of signing sessions. The transformed scheme
CCBS supports polynomially many signing sessions and achieves the same notion
of blindness as BS. We briefly recall the main ideas of CCBS before explaining
our improved version:

– In the N th signing interaction, the Signer and the User initiate N sessions of
the underlying scheme BS. In the ith session, a commitment μi of the actual
message is signed.

– The User commits to its randomness ρi for the ith session using a commitment
comi = H(ρi), where H is a hash function (modeled as a random oracle). It
sends comi together with its (only) message in the ith session of BS.

– The Signer picks a session J ∈ [N ] uniformly at random and has the User
open the randomness to all commitments comi, i ∈ [N ] \ {J}.

– If the User cannot open one of these commitments, the Signer aborts. Oth-
erwise, the Signer and User complete the J th session as in BS.

The proof of one-more unforgeability for CCBS is by reduction to the one-
more unforgeability of BS. The reduction’s goal is to turn a one-more forgery
against CCBS into a one-more forgery against BS. To do so, the reduction must
answer all signing queries of the User without knowing the secret key sk of the
Signer in BS. It is further restricted by the fact that it may invoke the Signing
oracle in the underlying security game for BS only logarithmically many times.

To bypass these restrictions, the reduction heavily relies on its capability
of observing the inputs to the random oracle and programming it accordingly.
Suppose that the User behaves honestly in Session J , i.e., it uses the randomness
in comJ to compute its message in the J th session of BS. Then the reduction
can extract the random coins from the commitments and use random oracle
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programming to complete this session without knowing sk. If, on the other hand,
the User cheats, then the reduction can not use this technique and must ask the
Signing oracle in BS for help.

KLR’s key observation is that the probability of such a (successful) cheat is
at most 1/N in the N th signing session. Thus, the expected number of successful
cheats in p interactions is at most

∑
N≤p+1 1/N < ln(p + 1). Using the Chernoff

bound, one can show that with overwhelming probability, the number of suc-
cessful cheats is reasonably close to this expectation. Hence, the signing oracle
in the underlying OMUF game of BS needs to be invoked only a logarithmic
number of times.
Limitations. Although CCBS exponentially increases the security of the under-
lying blind signature scheme BS, this comes at a steep price in terms of efficiency:
the communication in the resulting scheme grows linearly with the number N of
issued signatures. This arguably renders CCBS impractical. In addition, the num-
ber of times that the reduction from one-more unforgeability of BS requires invok-
ing the underlying signing oracle behaves as ln(1/ε). Here, ε is the advantage of the
adversary in breaking one-more unforgeability of CCBS. For small sizes of ε (say,
2−128), this leads to impractical parameter sizes for BS. As an example, if CCBS
is applied to the Schnorr blind signature scheme, our calculations show that the
resulting scheme will require groups with a 12000 bit representation.

1.2 Our Contribution: Improved Boosting Transforms

As our first contribution, we present a new generic transform to boost the secu-
rity of blind signature schemes fitting the linear function family framework of
Hauck, Kiltz and Loss (HKL) [20]. This is based on three insights, as follows.
(1) In the N th signing session, the User can derive the random coins for the ith

instance via ρi := PRF(k, i), where PRF denotes a puncturable pseudorandom
function [31]1. The User can now commit to all its randomness as in CCBS. To
open the commitments comi, i ∈ [N ] \ {J}, the User provides the punctured
key kJ . From this key, the Signer can deterministically recompute all the com-
mitments, save for comJ . (2) We use a randomness homomorphic commitment
scheme to construct the μi as rerandomizations of one initial commitment μ0

that is sent to the signer. The rerandomization is also determined by PRF, which
implies that kJ also reveals μi for i �= J without revealing μJ . (3) To compress
the N messages from the Signer to the User, we use the homomorphic proper-
ties of HKL blind signatures and derive N first messages of the underlying blind
signature from log N randomly chosen ones. These insights allow us to lower the
communication complexity of the resulting blind signature scheme from linear
to logarithmic in the number N of signing sessions2.

Our results have better blindness guarantees than schemes from the KLR
transform. A KLR-transformed blind signature scheme has the same blindness

1 We instantiate PRF efficiently using random oracles [18].
2 In a different context, namely secure multi-party computation, the combination of

puncturable pseudorandom functions and cut-and-choose has been used before.
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as its underlying scheme; for many of the schemes underlying it, only so-called
honest signer blindness was known [20], where the Signer’s public key is gener-
ated honestly. A much more desirable notion is malicious signer blindness, in
which the Signer is free to pick his public key adversarially. We show how to
achieve this notion using a three step approach. First, we show that the schemes
in [20] satisfy a slightly stronger (artificial) notion of blindness without any mod-
ification. In this intermediate notion (called semi-honest signer blindness), the
Signer provides the random coins to generate the public key to the experiment.
Next, we show that our improved boosting transform preserves any notion of
blindness, including the new one. We then show that by having the signer prove
knowledge of the random coins we can transform any scheme that satisfies the
intermediate notion into a scheme that satisfies malicious signer blindness.

Practical Schemes from CDH and RSA. Even though our generic trans-
form is an exponential improvement over the state-of-the-art, it still results in
schemes that require mega bytes of communication when the number of sig-
natures becomes large (say 230). On top of this, our generic transform would
require large (to the point of being currently impractical) group sizes. To over-
come these limitations, we give concrete, 128-bit secure, practical blind signa-
ture schemes that satisfy concurrent one-more unforgeability under the CDH
and RSA assumptions. We summarize the parameter sizes in Table 1.

Table 1. Concrete efficiency of our schemes supporting a given number of signatures
and 128 bit security. Here, communication complexity is given as a · log(N) + b, where
N is the number of issued signatures so far. Column Max shows the communication
complexity for the maximum N . All sizes are in KiloBytes.

Scheme Nr. of Signatures |pk| |σ| a b Max

BSRSA (Sect. 5) 220 18.37 7.91 0.02 7.11 7.51

BSRSA (Sect. 5) 230 18.74 8.66 0.02 7.48 8.08

PIKACDH (Sect. 4) 220 3.68 3.16 3.05 26.50 87.50

PIKACDH (Sect. 4) 230 3.90 3.16 3.05 26.73 118.20

Our scheme from CDH is statistically malicious signer blind and builds on
Boldyreva’s blind version of the BLS signature scheme [4] (which is secure under
a one-more version of CDH). We observe that by running our boosting trans-
form for several independent keys in parallel, we can ensure that with overwhelm-
ing probability, there will be at least one key for which the User is never able to
cheat the Signer. We can leverage this into a reduction that embeds the challenge
key pk randomly into one of these keys. Then, with high probability, no cheat
ever occurs for pk and the reduction can carry out the simulation without hav-
ing to ever invoke the signing oracle from the underlying one-more unforgeability
experiment. This makes it possible to run the scheme with a standard sized group
and assuming no more than hardness of the CDH problem. To reduce the size
of our resulting signatures, we can use the aggregatability of the BLS scheme.
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Overall, our scheme from CDH supports 230 signatures at a size of 3 KB and
120 KB communication per signature.

Our scheme from RSA does not use parallel repetitions to reduce parameter
sizes. Instead, we use the trapdoor provided by the RSA system to improve com-
munication complexity of the generic transform. In this way, the Signer can send
a single seed from which the User can deterministically derive several values. The
Signer, who needs to know the preimages of these values, can then simply use its
trapdoor to learn these preimages and proceed with the remainder of the signing
protocol. Overall, our scheme from RSA is statistically semi-honest signer blind
and supports 230 signatures at a more balanced size of 9 KB per signature and
8 KB communication per signature. To upgrade it to malicious signer blindness
we can either rely on generic proof systems, or on more efficient ones based
on quadratic residuosity [17] or discrete logarithms [8].3 We emphasize, how-
ever, that using proofs from general complexity assumptions may be sufficiently
efficient in our context, as the proofs only have to be generated and verified
once upon registering the Signer’s public key. Therefore, they do not affect the
complexity of the signing protocol or the size of our signatures.

2 Preliminaries

The security parameter is n ∈ N. All algorithms get 1n implicitly as input. For
a finite set S, we write x←$ S if x is sampled uniformly at random from S.
For a distribution D, we write x ← D if x is sampled according to D. For a
(probabilistic) algorithm A, we write y ← A(x), if y is output from A on input
x with uniformly sampled random coins. We write y = A(x; ρ) to make the
random coins ρ explicit, and y ∈ A(x) means that y is a possible output of
A(x). An algorithm is said to be PPT if its running time can be bounded by a
polynomial in its input size. We say that a function f : N → R+ is negligible in
its input n, if f ∈ n−ω(1). For a security game G, we write G ⇒ b to indicate
that G outputs b. We denote the first K natural numbers by [K] := {1, . . . , K},
Euler’s totient function by ϕ and the group of units in ZN by Z

∗
N .

Next, we introduce the cryptographic primitives that we need. We make use
of the well-known computational assumptions CDHand RSA. For the definition
of puncturable pseudorandom functions, we follow [31].

Definition 1 (Puncturable Pseudorandom Function). A puncturable
pseudorandom function (PPRF) is defined to be a triple of PPT algorithms
PRF = (Gen,Puncture,Eval) with the following syntax:

– Gen(1n, 1d(n)) takes as input the security parameter 1n, an input length 1d(n)

and outputs a key k.
– Puncture(k,X) takes as input a key k and a polynomial size set ∅ �= X ⊆ D =

{0, 1}d(n) and outputs a punctured key kX .

3 If we rely on these proof systems, our scheme can be proven secure assuming that
both the RSA assumption and either of these assumptions hold.



Pika ! 9

– Eval(k, x) is deterministic, takes a key k and an element x ∈ D as input and
outputs an element r ∈ R = {0, 1}r(n).

Further, the following security and completeness properties should hold:

– Completeness of Puncturing. For any d(n) = poly(n),X ⊆ {0, 1}d(n),
any k ∈ Gen(1n, 1d(n)), any kX ∈ Puncture(k,X) and any x′ /∈ X we have
Eval(k, x′) = Eval(kX , x′).

– Pseudorandomness. For any d(n) = poly(n) and any PPT algorithm A
the following is negligible:

|Pr

⎡

⎣A(St, kX , (rx)x∈X) = 1

∣
∣
∣
∣
∣
∣

(X,St) ← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx := Eval(k, x) for x ∈ X

⎤

⎦

−Pr

⎡

⎣A(St, kX , (rx)x∈X) = 1

∣
∣
∣
∣
∣
∣

(X,St) ← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx ←$ {0, 1}r(n) for x ∈ X

⎤

⎦ |.

We define a special type of perfectly hiding commitment scheme in which the
randomness can be rerandomized publicly. Such commitment schemes can be
easily constructed from standard assumptions. For that, we refer to the full
version.

Definition 2 (Randomness Homomorphic Commitment Scheme). A
randomness homomorphic commitment scheme is a tuple of PPT algorithms
CMT = (Gen,Com,Translate) with the following syntax:

– Gen(1n) takes as input the security parameter 1n and outputs a commitment
key ck. We assume that ck implicitly defines a message space Mck and a
randomness space Rck. Further, we assume that Rck is a group with respect
to an efficiently computable group operation +.

– Com(ck, x; r) takes as input a key ck, an element x ∈ Mck, a randomness
r ∈ Rck and outputs a commitment μ ∈ {0, 1}∗.

– Translate(ck, μ, r) is deterministic, takes a key ck, a commitment μ ∈ {0, 1}∗,
and a randomness r ∈ Rck as input and outputs a commitment μ′.

Further, the following security and completeness properties should hold:

– Completeness of Translation. For any ck ∈ Gen(1n), and x ∈ Mck and
any r, r′ ∈ Rck, we have

Translate(ck,Com(ck, x; r), r′) = Com(ck, x; r + r′).

– Perfectly Hiding. For any key ck and any x0, x1 ∈ Mck, the following
distributions are identical:

{(ck, x0, x1, μ) | r ←$ Rck, μ := Com(ck, x0; r)} and
{(ck, x0, x1, μ) | r ←$ Rck, μ := Com(ck, x1; r)} .
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– Computationally Binding. For any PPT algorithm A, the following is
negligible:

Pr
[

Com(ck, x0; r0) = Com(ck, x1; r1) ∧ x0 �= x1

∣
∣
∣
∣
ck ← Gen(1n),
(x0, r0, x1, r1) ← A(ck)

]

.

Next, we define the primitive of interest, namely blind signature scheme.

Definition 3 (Blind Signature Scheme). A blind signature scheme BS =
(Gen,S,U,Ver) is a quadruple of PPT algorithms, where

– Gen(1n) takes as input the security parameter 1n and outputs a pair of keys
(pk, sk). We assume that the public key pk defines a message space M = Mpk

implicitly.
– S and U are interactive algorithms, where S takes as input a secret key sk

and U takes as input a key pk and a message m ∈ M. After the execution, U
returns a signature σ and we write (⊥, σ) ← 〈S(sk), U(pk,m)〉.

– Ver(pk,m, σ) is deterministic and takes as input public key pk, message m ∈
M, and a signature σ, and returns b ∈ {0, 1}.

We say that BS is complete if for all (pk, sk) ∈ Gen(1n) and all m ∈ Mpk it holds
that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ) ← 〈S(sk), U(pk,m)]〉 = 1.

Definition 4 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme and � : N → N. For an adversary A, we consider the
following game �-OMUFA

BS(n):

1. Sample keys (pk, sk) ← Gen(1n).
2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk)) ← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most
� = �(n) of the interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1
interactions with O and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is �-one-more unforgeable (�-OMUF), if for every PPT algorithm
A the following advantage is negligible:

Pr
[
� − OMUFA

BS(n) ⇒ 1
]
.

Further, we say that BS is one-more unforgeable (OMUF), if it is �-OMUFfor all
polynomial �.

We note that from a practical perspective, it is sufficient to focus on �-OMUFfor
some large but a priori bounded � (e.g. � = 230), while full OMUFis more of
theoretical interest.
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Definition 5 (Blindness). Consider a blind signature scheme BS = (Gen,S,U,
Ver). For an adversary A and bit b ∈ {0, 1}, consider the following game
BLINDA

b,BS(n):

1. Sample (pk, sk) ← Gen(1n) and run (m0,m1, St) ← A(pk, sk).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on
input σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies honest signer blindness, if for every PPT algorithm A the
following advantage is negligible:

∣
∣
∣Pr

[
BLINDA

0,BS(n) ⇒ 1
]

− Pr
[
BLINDA

1,BS(n) ⇒ 1
]∣
∣
∣ .

We also consider semi-honest and malicious signer blindness, where we modify the
game in the following way:

– For semi-honest signer blindness, (pk, sk) is not sampled by the game, but A
outputs random coins ρ in addition to m0,m1. Then, the game defines (pk, sk)
via (pk, sk) := Gen(1n; ρ).

– For malicious signer blindness, (pk, sk) is not sampled by the game, but A
outputs pk in addition to m0,m1.

Semi-honest signer blindness is a non-standard notion and lies inbetween hon-
est and malicious signer blindness. We claim that any semi-honest signer blind
scheme can be transformed into a malicious signer blind scheme while preserving
one-more unforgeability. The high-level idea is to append a non-interactive zero-
knowledge proof-of-knowledge to the public key. This proof shows that the signer
knows corresponding random coins that generate the key. The rest of the scheme
does not change, and thus the transformation is very efficient. For details, we
refer to the full version.

We will now introduce linear function families, following [20].

Definition 6 (Linear Function Family). A linear function family LF is a
given by a tuple of algorithms LF = (PGen,F, Ψ) with the following properties:

– PGen(1n) returns system parameters par which define abelian groups S,D,R
with |S|, |R| ≥ 2n and there exists scalar multiplication · : S × D → D with
s · (x + x′) = s · x + s · x′ for all s ∈ S and x, x′ ∈ D. The same applies for
R. Note that it is not necessarily true that (s + s′) · x = s · x + s′ · x.

– Fpar(x) is deterministic, takes as input an element x ∈ D, and returns an
element in y ∈ R. We require that:

• For all s ∈ S, x, y ∈ D, Fpar(s · x + y) = s · Fpar(x) + Fpar(y).
• Fpar has a pseudo torsion-free element in the kernel, i.e. there exists z∗ ∈

D such that Fpar(z∗) = 0 and for all distinct s, s′ ∈ S, s · z∗ �= s′ · z∗.
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• Fpar is smooth, i.e. if x ← D is sampled uniformly, Fpar(x) has uniform
distribution in R.

– Ψpar(y, s, s′) is deterministic, takes as inputs y ∈ R, and s, s′ ∈ S, and returns
a value x ∈ D. The function satisfies for all y in the range of Fpar and s, s′ ∈ S,

(s + s′) · y = s · y + s′ · y + Fpar(Ψpar(y, s, s′)).

Intuitively, the function Ψpar corrects for the fact that the group operation in
S may not distribute over R. When it is clear from the context, we will omit
the subscript par.

As in [25], we define preimage resistance for a linear function family. For the
related notion of collision resistence, we refer to the full version and [25].

Definition 7 (Preimage Resistance). A linear function family LF is preim-
age resistant if for any adversary A, the following advantage is negligible:

Pr [F(x) = F(x′) | x ← D, x′ ← A(par,F(x)) ] .

3 An Improved Boosting Transform

Hauck, Kiltz, and Loss [20] introduced a generic construction of a three-move
blind signature scheme BS[LF] from any linear function family LF and a hash
function H modeled as a random-oracle. The main result of [20] is that the
linear blind signature scheme BS[LF] is �-one-more unforgeable for � = O(log n).
Building on that, Katz, Loss, and Rosenberg [25] presented a boosting transform
CCBS[LF] that turns this logarithmic security into polynomial security. In this
section, we introduce an improved boosting transform CCCBS[LF] that eliminates
the drawback of linearly growing communication complexity.

3.1 Overview

We recall the main idea of the boosting transform [25] that turns a linear blind
signature scheme BS[LF] into a boosted blind signature scheme CCBS[LF].

In the scheme CCBS[LF], at the onset of the N th interaction, the signer sends
the current value of the counter N to the user. Then, user and signer proceed
as follows.

1. The user chooses N random strings urj , j ∈ [N ] and N random strings ϕj , j ∈
[N ]. It prepares N commitments μj = H(m, ϕj), where H is a random oracle
and m is the message to be signed. It also prepares commitments comj =
H(urj , μj). Then it sends the commitments comj to the signer.

2. The user and the signer run N independent sessions of the underlying linear
blind signature scheme BS[LF], where the user inputs μj , urj in the jth session.
Recall that the scheme BS[LF] contains three messages R, c, s.
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3. Before the signer sends the last message sj of the underlying scheme, it
chooses a cut-and-choose index J ∈ [N ] at random and asks the user to
open all commitments comj with j �= J .

4. Once the signer knows the values μj and randomness urj , it runs the user
algorithm U to check if the user behaved honestly so far, at least for the
sessions j �= J . If there is some session for which this check fails, the signer
aborts.

5. The signer sends only sJ to the user. That is, signer and user only complete
the J th session. The final signature consists of a signature on μJ from the
underlying scheme BS[LF] as well as the randomness ϕJ which binds m to μJ .

We highlight that the communication now grows linearly with the number of
issued signatures.

a) In the second message, the user sends N commitments comj .
b) In the third message, the signer sends N commitments Rj .
c) In the fourth message, the user sends N challenges cj .
d) In the sixth message, the user opens N − 1 of the commitments comj .

Our goal is to eliminate these linear dependencies on N and improve them by
an at most logarithmic dependency.

First, we eliminate the linear dependency a) by replacing the commitments
comj = H(urj , μj) by a single commitment comr, which commits to (salted)
hashes of all urj , μj at once. By sending all urj for j �= J and the hash of urJ ,
the user can still open this commitment without revealing urJ .

Next, we focus on d). Here, we let the user generate the randomness (urj , ϕj)
used for each session using the puncturable pseudorandom function PRF. We
replace the unstructured commitment with a randomness homomorphic com-
mitment scheme. This allows us to let the user derive the commitments μi as
rerandomizations Com(m, ϕ0 + ϕj) of one single commitment μ0 = Com(m, ϕ0)
with randomness ϕj . The user sends commitment μ0 together with comr. Now,
the user can open the commitment comr by sending only a punctured key kJ .
Intuitively, this preserves blindness, as the punctured key does not reveal any-
thing about the randomness urJ , ϕJ . Using similar tricks, we eliminate c).

To tackle b), we compute the N values Ri of the underlying linear scheme
BS[LF] as subset sums of a logarithmic number of such values. Then, only these
basis values have to be sent.

We end up with a scheme with logarithmic communication complexity, for
which the ideas that underlie the original boosting transform still apply.

3.2 Blind Signatures from Linear Function Families

We briefly recall the blind signature scheme BS[LF] from a linear function family
LF. For more details, we refer the reader to [20] or the full version. For key
generation of the blind signature scheme BS[LF], parameters par ← LF.PGen(1n)
are generated. Then, a secret key and public key are sampled via sk←$ D and
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pk := F(sk), assuming pk implicitly contains par. We present the signature issuing
protocol formally in Fig. 1. Signatures σ = (c′, s′) for a message m are verified
by checking if c′ = H(m,F(s′) − c′ · pk) holds.

S(sk) U(pk,m)

r $ , R := F(r) R α $ , β $ , R := R + F(α) + β pk

s := r + c sk c c := H(m, R ), c := c + β

s if F(s) R + c pk :

s := s + α + Ψ(pk, c, c )

return σ := (c , s )

Fig. 1. The signature issuing protocol of the linear blind signature scheme BS[LF] for
a linear function family LF and a random oracle H : {0, 1}∗ → S [20].

3.3 Construction

In this section, we define our Compact Cut-and-Choose blind signature scheme
for a linear function family LF, abbreviated as CCCBS[LF]. To this end, let
LF = (PGen,F, Ψ) be a linear function family, CMT be a randomness homomor-
phic commitment scheme, and PRF be a puncturable pseudorandom function.
For efficient instantiations of CMT and PRF, we refer to the full version. Fur-
ther, let H : {0, 1}∗ → S,Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S × Rck ×
{0, 1}nPRF ,Hc : {0, 1}∗ → {0, 1}n be random oracles, where nPRF = Θ(n) is a
security parameter used for the pseudorandom function.

Key Generation. Algorithm CCCBS[LF].Gen(1n) is as follows:

1. Sample ck ← CMT.Gen(1n) and par ← LF.PGen(1n).
2. Sample sk′ ←$ D, and let sk := sk′, pk = (par, ck, pk′ := F(sk′)).
3. Return the public key pk and the secret key sk.

Signature Issuing. The signer and user algorithms S,U are given in Figs. 3 and 2,
where the S keeps a state (N, ctr) which is initialized as N := 2 = 22−2, ctr := 0.
In each interaction, S atomically increments ctr and, if ctr = N, sets N :=
2N + 2, ctr := 0.

Verification. Algorithm CCCBS[LF].Ver(pk,m, σ = (c, s, ϕ)) returns the output
of BS[LF].Ver(pk′, com(ck,m;ϕ), (c, s)).
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Check(pk, N, μ0, comr, Ri i, comc, J, kJ , cJ , hJ)

1 : for j [N ] J :

2 : prerj := PRF.Eval(kJ , j), rj := Hx(prerj)

3 : parse rj = (αj , βj j , γj) ck 0, 1 nPRF

4 : R̃j :=
i Sj

Rj , μj := Translate(ck, μ0 j)

5 : cj := H(μj , R̃j + F(αj) + βj pk ) + βj

6 : if comr Hr(Hr(r1), . . . ,Hr(rJ 1), hJ ,Hr(rJ+1), . . . ,Hr(rN )) : return 0

7 : if comc Hc(c1, . . . , cN ) : return 0

8 : return 1

Fig. 2. The algorithm Check used in the issuing protocol of CCCBS[LF], where H :
{0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n, and Hx : {0, 1}∗ → D ×S ×Rck ×{0, 1}nPRF are
random oracles. The set Sj is defined as {i ∈ [l] : ith -bit of j is 1}

3.4 Security Analysis

Completeness of CCCBS[LF] follows by inspection. We show blindness and one-
more unforgeability.

Theorem 1. Let PRF be a puncturable pseudorandom function, LF be a linear
function family, and CMT be a randomness homomorphic commitment scheme.
Let Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D×S ×Rck ×{0, 1}nPRF be random ora-
cles. If BS[LF] satisfies honest, semi-honest, or malicious signer blindness, then
CCCBS[LF] satisfies honest, semi-honest, or malicious signer blindness, respec-
tively.

Concretely, for any adversary that uses NL and NR as the counters in its
executions with the user, runs in time t, has advantage ε in the blindness game
and makes at most QHx

, QHr queries to Hx,Hr respectively, there exists an adver-
sary against blindness of BS[LF] running in time t with advantage εBS[LF] such
that

ε ≤ NLNR

(
4(QHx

+ QHr)
2nPRF

+ 4εPRF + εBS[LF]

)

,

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} puncturing at one point.

We give a intuition of the proof and postpone details to the full version. The
strategy is to apply a sequence of changes to the user oracles, such that final
game is independent of bit b. In a first step, we guess the cut-and-choose index
J . Then, we compute the commitment μJ directly instead of deriving it from
the commitment μ0. Next, we use the security of PRF and generate rJ for session
J at random instead of using the key k. Now, we observe that the randomness
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S(sk = sk ); state N, ctr U(pk = (par, ck, pk ),m)

ctr := ctr + 1

if ctr = N :

N := 2N + 2, ctr := 0 0 $ ck, μ0 := Com(ck,m; 0)

l := log(N + 2) N k PRF.Gen(1nPRF , 1log(N))

for j [N ] :

prerj := PRF.Eval(k, j)

rj := Hx(prerj)

parse rj = (αj , βj j , γj)

μj := Translate(ck, μ0 j)

hj := Hr(rj)

for i [l] : comr, μ0 comr := Hr(h1, . . . , hN )

ri $ , Ri := F(ri) R1, . . . , Rl for j [N ] :

R̃j :=
i Sj

Ri

R̃j := R̃j + F(αj) + βj pk

cj := H(μj , R̃j), cj := cj + βj

comc comc := Hc(c1, . . . , cN )

J $ [N ] J kJ PRF.Puncture(k, J)

if Check = 0 : abort kJ , cJ , hJ

sJ :=
i SJ

ri + cJ sk sJ sJ := sJ + αJ + Ψ(pk, cJ , cJ)

return σ = (cJ , sJ 0 + J)

Fig. 3. The signature issuing protocol of the blind signature scheme CCCBS[LF], where
H : {0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S × Rck × {0, 1}nPRF are
random oracles. The algorithm Check is defined in Fig. 2. The set Sj is defined as
{i ∈ [l] : ith -bit of j is 1}. The states ctr and N are incremented atomically

ϕ0 is hidden in the final signature, and we can switch μ0 to a commitment of a
random message. Finally, we see that the only dependency on the message is in
session J and we can reduce from the blindness of BS[LF].

Theorem 2. Let PRF be a puncturable pseudorandom function, LF be a linear
function family, and CMT be a randomness homomorphic commitment scheme.
Let H : {0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. If BS[LF] sat-
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isfies �-one-more unforgeability for any � = O(log(n)), then CCCBS[LF] satisfies
�-one-more unforgeability for any � = poly(n).

Concretely, suppose there exists an adversary with advantage ε against the
�-one-more unforgeability of CCCBS[LF], that runs in time t, starts at most p
interactions with his signer oracle, and makes at most QH, QHr , QHc

queries to
H,Hr,Hc respectively. Then, there exists an adversary against the λ-one-more
unforegability BS[LF], where λ = 3�log p� + log(2/ε), that runs in time t, starts
at most p interactions with his signer oracle, makes at most QH queries to H,
and has advantage εBS[LF], such that

ε ≤ 2

(

εBS[LF] + p · εLF + εCMT +
Q2

Hr
+ Q2

Hc
+ pQHr + pQHc

2n
+

p2(p2 + QH)
|R|

)

,

where εLF is the advantage of an adversary with running time t against the
preimage resistance of LF and εCMT is the advantage of an adversary with running
time t against the binding property of CMT.

The proof is very similar to the proof for the original boosting transform [25]
and can be found in the full version.

Remark 1. As an asymptotic result, we are satisfied with our improved boosting
transform with logarithmic communication complexity. However, similar to the
original boosting transform, we rely on the very loose security bound of the
underlying linear blind signature scheme BS[LF]. For concrete efficiency, this
is prohibitive, as we require that BS[LF] supports a non-trivial number λ of
signatures. Also, the logarithmic term of the communication complexity depends
on computational assumptions. Thus, the loose bound will also have a negative
impact on communication complexity.

To highlight this, we computed the parameter sizes for the instantiations of
the boosting transform based on the discrete logarithm problem. Our calcula-
tions show that in order to support 230 signatures, the scheme requires a 12035
bit group. It is apparent that this group size is impractical, and no standard-
ized elliptic curve groups of this size exist. We remark that Katz et al. [25] also
provide a parameter estimate, but this holds only for a very specific choice of
signing queries, random oracle queries and advantage. A detailed explanation of
our calculations can be found in the full version.

In the following, we will see how to augment the ideas of this section to
construct schemes which eliminate aforementioned drawbacks and come with
practical concrete parameters.

4 A Concrete Scheme Based on CDH

Here, we construct a concrete blind signature scheme PIKACDH based on the
CDHassumption. While the construction in the previous section was generic, we
aim for a scheme with concrete efficiency in this section.
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4.1 Overview

As discussed in Remark 1, our improved boosting transform inherits the loose
security bound of the underlying linear blind signature scheme. To see how we
can circumvent this, let us first recall the reduction idea of the boosting trans-
form. The main challenge is that the underlying scheme BS[LF] allows for a
logarithmic number of signing interactions, while the reduction has to simulate
an arbitrary polynomial number of signing interactions for the adversary. This
is solved as follows. First, note that whenever the adversary honestly commits
to urj , μj , the reduction can extract these values from the commitments comr

by observing the random oracle queries. Then, an important property of linear
blind signature schemes comes into play: If one knows the randomness and the
message that is input into the user algorithm BS[LF].U and controls the ran-
dom oracle, one can simulate the signer algorithm without knowing the secret
key. Thus, the reduction only needs to access the signer oracle of BS[LF] if the
adversary cheats (i.e., it malforms the commitment for the J th session in the
first step and is not caught). Fortunately, the probability of such a (successful)
cheat is at most 1/N in the N th signing session. Thus, the expected number of
successful cheats in p interactions is at most logarithmic in p. Using the Cher-
noff bound, one can show that with overwhelming probability, the number of
successful cheats is reasonably close to this expectation.

We observe that by letting the cut-and-choose parameter grow slightly faster
than before and scaling appropriately, the expected number of successful cheats
can be bounded to be less than 1. Unfortunately, we can not just use the Chernoff
bound, if we want to argue that this also holds with overwhelming probability.
We can, however, use the Chernoff bound to show that exceeding a single cheat
happens with some constant probability less than 1. Then, we play our next
card, which is parallel repetition. Namely, we run K independent instances of
our scheme so far, where each instance is relative to a separate key pair. We
show that with high probability, in one randomly chosen instance, there is no
cheat at all. Using this observation, we can give a reduction from the key-only
security of the underlying blind signature scheme to finish our proof.

We do not apply this overall strategy to a linear blind signature scheme,
but instead to the BLS blind signature scheme [4]. We notice that the approach
also works for this scheme and observe additional benefits: First, the BLS scheme
allows to aggregate signatures. Hence, it is easy to merge the resulting signatures
from the K instances for a significant efficiency improvement. Second, the scheme
has two rounds and thus the logarithmic term in the communication complexity
is independent of computational assumptions (cf. Remark 1). We emphasize that
the original BLS blind signature scheme is secure under a one-more variant of
the CDHassumption. Fortunately, we only need key-only security here, which
is implied by CDH. Also, the concrete security loss of our scheme is as for the
standard BLS digital signature scheme [5], which means that it can be used over
the same groups as BLS.

Finally, we introduce further minor optimizations such as making the signer
commit to its cut-and-choose indices in its message. In this way, the reduction
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in the blindness proof can extract these indices rather than guessing them. This
leads to more efficient statistical security parameters4.

4.2 Construction

Let PGGen(1n) be a bilinear group generation algorithm that outputs a cyclic
group G of prime order p with generator g, and a pairing e : G × G → GT

into some target group GT . We assume that these system parameters are known
to all algorithms. Note that their correctness can be verified efficiently. Our
scheme makes use of a randomness homomorphic commitment scheme CMT
with randomness space Rck and a puncturable pseudorandom function PRF.
We can instantiate PRF using random oracles and CMT tightly based on the
DLOG assumption. We also need random oracles H : {0, 1}∗ → Zp,H

′ : {0, 1}∗ →
{0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck ×{0, 1}nPRF , where
nPRF is a security parameter used for PRF.

Our scheme makes use of a parameter K ∈ N, which defines how many
instances of the underlying boosting transform are executed in parallel, and a
function f : N → N, which determines how fast the cut-and-choose parameter N
grows. We give a detailed explanation and Python scripts computing all param-
eters in the full version of our paper.

Key Generation. To generate keys algorithm PIKACDH.Gen(1n) does the follow-
ing:

1. For each instance i ∈ [K], sample ski ←$Zp and set pki := gski .
2. Sample a commitment key ck ← CMT.Gen(1n).
3. Return public key pk := (pk1, . . . , pkK , ck) and secret key sk := (sk1, . . . , skK).

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figs. 4 and 5. Here, S keeps a state ctr, which is inititalized as ctr := 1 and
incremented in every interaction.

Verification. The resulting signature σ = (σ̄, ϕ1, . . . , ϕK) for a message m is
verified by algorithm PIKACDH.Ver(pk,m, σ) as follows:

1. For each instance i ∈ [K], compute the commitment μi := Com(ck,m;ϕi).
2. Return 1 if and only if

e (σ̄, g) =
K∏

i=1

e (H(pki, μi), pki) .

4 Note that without this optimization, the security loss would be exponential in K.
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Check(pk, N, μ0, comr, comc, seedJ, kJ, ci,Ji i, ηi i)

1 : J = (H (seedJ, 1), . . . ,H (seedJ, K)) [N ]K

2 : for i [K] :

3 : for j [N ] Ji :

4 : preri,j := PRF.Eval(kJ, (i, j)), ri,j := Hx(preri,j)

5 : parse ri,j = (αi,j i,j , γi,j) Zp ck 0, 1 n

6 : μi,j := Translate(ck, μ0 i,j)

7 : ci,j := H(pki, μi,j) gαi,j

8 : comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ji 1), ηi,Hr(ri,Ji+1), . . . ,Hr(ri,N ))

9 : if comr Hr(comr,1, . . . , comr,K) : return 0

10 : if comc Hc(c1,1, . . . , cK,N ) : return 0

11 : return 1

Fig. 4. The algorithm Check used in the issuing protocol of blind signature scheme
PIKACDH, where H : {0, 1}∗ → G,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ →
{0, 1}n,Hx : {0, 1}∗ → Zp × Rck × {0, 1}nPRF are random oracles.

4.3 Security Analysis

Completeness of the scheme follows by inspection. We show blindness and one-
more unforgeability. For one-more unforgeability, we show qmax-OMUF, where
qmax is a parameter that can be set freely (e.g. qmax = 230) and has influence
the function f . We note that making f grow quadratically, one could show full
OMUF using a similar proof.

Theorem 3. Let PRF be a puncturable pseudorandom function and CMT be a
randomness homomorphic commitment scheme. Let H′ : {0, 1}∗ → {0, 1}n and
Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp × Rck × {0, 1}nPRF be random oracles.
Then PIKACDH satisfies malicious signer blindness.

In particular, for any adversary who uses NL and NR as the counters in
its executions with the user and queries H′,Hr,Hx at most QH′ , QHr , QHx

times,
respectively, the malicious signer blindness advantage can be bounded by

4εPRF +
Q2

H′

2n−1
+

QH′

2n−2
+

KQHx

2nPRF−2
+

KQHr

2nPRF−2
,

where εPRF is the advantage of an adversary against the security of PRF with
input length max{log(NL), log(NR)} when puncturing at K points.

Due to space limitation, we postpone the proof to the full version.

Theorem 4. Let CMT be a randomness homomorphic commitment scheme and
PRF be a puncturable pseudorandom function. Let PGGen(1n) be a bilinear group
generation algorithm. Further, let H : {0, 1}∗ → Zp,H

′ : {0, 1}∗ → {0, 1}n and
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S(sk); state Urtc (pk,m)

ctr := ctr + 1, N := f(ctr) k PRF.Gen(1nPRF , 1log(KN))

seedJ, salt $ 0, 1 n
0 $ ck, μ0 := Com(ck,m; 0)

comJ := H (seedJ, salt) N, comJ for (i, j) [K] [N ] :

preri,j := PRF.Eval(k, (i, j))

ri,j := Hx(preri,j)

parse ri,j = (αi,j i,j , γi,j)

μi,j := Translate(ck, μ0 i,j)

ci,j := H(pki, μi,j) gαi,j

for i [K] :

comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,N ))

comr := Hr(comr,1, . . . , comr,K)

μ0, comr, comc comc := Hc(c1,1, . . . , cK,N )

seedJ, salt if comJ H (seedJ, salt) : abort

for i [K] : for i [K] : Ji := H (seedJ, i)

Ji := H (seedJ, i) J = (J1, . . . ,JK)

J = (J1, . . . ,JK) := (i,Ji) i [K]

kJ PRF.Puncture(k, )

if Check = 0 : abort kJ, ci,Ji , ηi i for i [K] : ηi := Hr(ri,Ji)

for i [K] : si,Ji := cskii,Ji

s̄ :=
K

i

si,Ji
s̄ σ s

K

i=1

pk
αi,Ji

i

if
K

i=1

e (H(pki, μi,Ji), pki)

e (σ̄, g) : abort

for i [K] : i := 0 + i,Ji

return σ := (¯ 1 K)

Fig. 5. The signature issuing protocol of the blind signature scheme PIKACDH, where
H : {0, 1}∗ → Zp,H

′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
Zp × Rck × {0, 1}nPRF are random oracles. The algorithm Check is defined in Fig. 4. The
state ctr of S is incremented atomically
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Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. Also, assume that there is a ϑ > 0
and f is such that

f(ctr) = �3ϑ ln(qmax + 1) · ctr� .

Then PIKACDH satisfies qmax-one-more unforgeability, under the CDHassumption
relative to PGGen.

Specifically, assume the existence of an adversary against the OMUF secu-
rity of PIKACDH that has advantage ε, runs in time t, makes at most
QHr , QHc

, QH′ , QH queries to oracles Hr,Hc,H
′,H, respectively, and starts at most

q ≤ qmax interactions with his signer oracle. Let δ > 0 such that (1 − δ)ϑ > 1.
Then there exists an adversary against the CDHproblem relative to PGGen with
advantage εCDH and running time t and an adversary against the binding prop-
erty of CMT with advantage εCMT and running time t such that

ε − e−δK ≤ εCMT +
K

p
+ 4qKεCDH + stat

where

stat =
Q2

Hr

2n
+

Q2
Hc

2n
+

qQHr

2n
+

qKQHr

2n
+

qQHc

2n
+

qQH′

2n−1
.

Proof. Set BS := PIKACDH. Let A be an adversary against the OMUFsecurity of
BS. We prove the statement via a sequence of games.

Game G0: We start with game G0 := qmax-OMUFA
BS, which is the one-more

unforgeability game. We briefly recall this game. A key pair (pk, sk) ← Gen(1n)
is sampled, A is run with concurrent access to an interactive oracle O simulating
the signer S(sk). Assume that A completes � interactions with O. Further, A
gets access to random oracles H,H′,Hr and Hc, which are provided by the game
in the standard lazy manner. When A finishes its execution, it outputs tuples
(m1, σ1), . . . , (mk, σk) and wins, if all mi are distinct, k > � and all signatures σi

verify with respect to pk and mi.

Game G1: In game G1, we add an additional abort. The game aborts if in the
end A’s output contains two pairs (m(0), σ(0)), (m(1), σ(1)) such that m(0) �= m(1)

but there exists i(0), i(1) ∈ [K] such that

Com(ck,m(0);ϕ(0)

i(0)
) = Com(ck,m(1);ϕ(1)

i(1)
).

As CMT is computationally binding, a straight-forward reduction with advantage
εCMT and running time t shows that

|Pr [G0 ⇒ 1] − Pr [G1 ⇒ 1]| ≤ εCMT.

Game G2: This game is as G1, but we rule out collisions for oracles Ht, t ∈ {r, c}.
To be more precise, we change the simulation of oracles Ht, t ∈ {r, c} in the
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following way. If A queries Ht(x) and this value is not yet defined, the game sam-
ples an image y ←$ {0, 1}n. However, if there exists an x′ �= x with Ht(x′) = y, the
game returns ⊥. Otherwise it behaves as before. Note that A can only distinguish
between G1 and G2 if such a collision happens, i.e. Ht returns ⊥. We can apply a
union bound over all Q2

Ht
pairs of random oracle queries and obtain

|Pr [G1 ⇒ 1] − Pr [G2 ⇒ 1]| ≤ Q2
Hr

2n
+

Q2
Hc

2n
.

Note that the change in G2 implies that at each point of the execution of the
game and for each image y ∈ {0, 1}n, there is at most one preimage H−1

t (y)
under Ht. By looking at the random oracle queries of A, the game can extract
preimages of given images y, and we know that for each y at most one preimage
can be extracted. We will make use of such an extraction in the following games.

Game G3: We change the way the signer oracle is executed. In particular, when
A sends μ0, comr, comc as its first message, the game tries to extract values ¯comr,i

such that comr = Hr( ¯comr,1, . . . , ¯comr,K) by searching through random oracle
queries. If the game can not extract such a preimage, we write ¯comr,i = ⊥ for
all i ∈ [K]. Then, the game aborts if it can not extract such a preimage , i.e.
¯comr,i = ⊥, but later algorithm Check outputs 1. Recall that algorithm Check

verifies that
comr = Hr(comr,1, . . . , comr,K).

Thus, for every fixed interaction, we can bound the probability of such an abort
by QHr/2n. Indeed, once comr is sent by A and thus fixed, and the game can
not extract, we know that there is no bitstring x such that Hr(x) = comr. Also,
if algorithm Check outputs 1, we know that A was able to find a preimage of
comr after this was fixed. This can happen with probability at most 1/2n for
each random oracle query. Using a union bound over all interactions we obtain

|Pr [G3 ⇒ 1] − Pr [G4 ⇒ 1]| ≤ qQHr

2n
.

Game G4: We introduce another abort in the signer oracle. In this game, after
the extraction of ( ¯comr,1, . . . , ¯comr,K) from comr we introduced before, the game
extracts (̄ri,1, . . . , r̄i,N ) from ¯comr,i for every i ∈ [K] for which ¯comr,i �= ⊥, such
that

¯comr,i = Hr(Hr (̄ri,1), . . . ,Hr (̄ri,N )).

Again, the game does this by looking at the random oracle queries of A and we
write r̄i,j = ⊥ if the game can not extract the value r̄i,j . If there is an instance
i ∈ [K] and a session j ∈ [N ] such that ¯comr,i �= ⊥ but r̄i,j = ⊥ and later in
that execution Ji �= j but algorithm Check outputs 1, the game aborts.

To analyze the probability of this abort, fix an interaction and an instance
i ∈ [K]. Assume that ¯comr,i �= ⊥ and there is a session j ∈ [N ] such that
r̄i,j = ⊥ and later in that interaction Ji �= j. Then, after ¯comr,i is fixed, we
consider two cases. In the first case, the game could not extract h1, . . . , hN such
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that ¯comr,i = Hr(h1, . . . , hN ). Clearly, once ¯comr,i, the probability that one of
the hash queries of A evaluates to ¯comr,i is at most 1/2n. Thus, the probability
that Check outputs 1, i.e. A is able to open ¯comr,i in this case, is at most QHr/2n.
Similarly, in the case where the game could extract h1, . . . , hN , but could not
extract r̄i,j such that Hr (̄ri,j) = hj , the probability that one of A’s hash queries
evaluates to hj is at most 1/2n. Thus, the probability that Check outputs 1, i.e.
A is able to open hj in this case, is at most QHr/2n. Note that here we needed
that j �= Ji, as the definition of Check does not require A to open hJi

.
Applying a union bound over the interactions and instances we get

|Pr [G3 ⇒ 1] − Pr [G4 ⇒ 1]| ≤ qKQHr

2n
.

Game G5: We introduce another abort: Whenever A sends μ0, comr, comc as
its first message, the game behaves as before, but additionally the game extracts
values c̄1,1, . . . , c̄K,N from comc such that

comc = Hc(c̄1,1, . . . , c̄K,N ).

If the game can not extract, but later algorithm Check outputs 1, the game
aborts. Note that algorithm Check internally checks if

comc = Hc(c1,1, . . . , cK,N ).

Thus, for each fixed interaction it is possible to argue as in the previous games
to bound the probability of such an abort and hence we obtain

|Pr [G4 ⇒ 1] − Pr [G5 ⇒ 1]| ≤ qQHc

2n
.

Game G6: In G6, the signer oracle sends a random comJ in the beginning of
each interaction. Later, before it has to send seedJ, salt, it samples salt←$ {0, 1}n

and aborts if H′(seedJ, salt) is already defined. If it is not yet defined, it defines
it as H′(seedJ, salt) := comJ. The adversary A can only distinguish between G5

and G6 if H′(seedJ, salt) is already defined. By a union bound over all QH′ hash
queries and q interactions we obtain

|Pr [G5 ⇒ 1] − Pr [G6 ⇒ 1]| ≤ qQH′

2n
.

Game G7: In G7, the game aborts if in some interaction there exists an i ∈ [K]
such that H′(seedJ, i) has already been queried before the signing oracle sends
seedJ to A. Clearly, A obtains no information about seedJ before the potential
abort, see G6. Further, seedJ is sampled uniformly at random. A union bound
over all QH′ queries and q interactions shows that

|Pr [G6 ⇒ 1] − Pr [G7 ⇒ 1]| ≤ qQH′

2n
.
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Now, fix an interaction in G7 and assume that Check returns 1 and the
game does not abort due to any of the reasons we introduced so far. Note that
this means that for all instances i ∈ [K] the value ¯comr,i could be extracted.
Furthermore, this means that if there exists i ∈ [K], j0 ∈ [N ] such that r̄i,j0 = ⊥
then later Ji = j0. Also, note that if Check does not abort, then we have ¯comr,i =
comr,i, r̄i,j = ri,j and c̄i,j = ci,j for all (i, j) ∈ [K]× [N ] for which these values are
defined. This is because we ruled out collisions for oracles Hr,Hc. Now, we define
an indicator random variable cheati,ctr for the event that in the ctrth interaction,
the signer oracle does not abort and there exists i ∈ [K], j ∈ [N ] such that
r̄i,j = ⊥ or r̄i,j = (α,ϕ, γ) such that

ci,j �= H(pki,Translate(ck, μ0, ϕ)) · gα.

We say that A successfully cheats in instance i ∈ [K] and interaction ctr if
cheati,ctr = 1. We also define the number of interactions in which A successfully
cheats in instance i as cheat∗i :=

∑q+1
ctr=2 cheati,ctr.

By the above discussion, we have that cheati,ctr = 1 implies that Ji = j0 and
thus

Pr [cheati,ctr = 1] ≤ 1
N

.

Therefore, we can bound the expectation of cheat∗i using

E[cheat∗i ] ≤ 1
3ϑ ln(qmax + 1)

q+1∑

ctr=2

1
ctr

≤ ln(q + 1)
3ϑ ln(qmax + 1)

≤ 1
3ϑ

.

Now, if we plug X := cheat∗i and s := 3E[cheat∗i ]+ δ = 1/ϑ+ δ into the Chernoff
bound (see the full version), we get that for all i ∈ [K]

Pr
[

cheat∗i ≥ 1
ϑ

+ δ

]

≤ e−δ.

We note that the entire calculation of this probability also holds if we fix the
random coins of the adversary.

Game G8: Game G8 is defined as G7, but additionally aborts if for all i ∈ [K]
we have cheat∗i ≥ δ +1/ϑ. In particular, if G8 does not abort, then there is some
instance i for which A does not successfully cheat at all, which follows from the
assumption (1 − δ)ϑ > 1.

We can now bound the distinguishing advantage of A between G7 and G8

as follows. We denote the random coins of A by ρA and the random coins of the
experiment (excluding ρA) by ρ. Let bad be the event that for all i ∈ [K] we
have cheat∗i ≥ δ + 1/ϑ. We note that the coins ρ that the experiment uses for
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the K instances are independent. Thus we have

Pr
ρ,ρA

[bad] =
∑

ρ̄A

Pr
ρA

[ρA = ρ̄A] · Pr
ρ,ρA

[bad | ρA = ρ̄A]

=
∑

ρ̄A

Pr
ρA

[ρA = ρ̄A] ·
∏

i∈[K]

Pr
ρ,ρA

[

cheat∗i ≥ 1
ϑ

+ δ | ρA = ρ̄A

]

≤
∑

ρ̄A

Pr
ρA

[ρA = ρ̄A] · e−δK = e−δK ,

which implies

|Pr [G7 ⇒ 1] − Pr [G8 ⇒ 1]| ≤ Pr
ρ,ρA

[bad] ≤ e−δK .

Game G9: In game G9, we sample a random instance i∗ ←$ [K] at the beginning
of the game. In the end, the game aborts if cheat∗i∗ ≥ δ + 1/ϑ. In particular, if
this game does not abort, then A does not successfully cheat in instance i∗ at
all. As A’s view is independent from i∗, we have

Pr [G9 ⇒ 1] = Pr
[

G8 ⇒ 1 ∧ cheat∗i∗ <
1
ϑ

+ δ

]

= Pr [G8 ⇒ 1] · Pr
[

cheat∗i∗ <
1
ϑ

+ δ | G8 ⇒ 1
]

≥ Pr [G8 ⇒ 1] · Pr
[

cheat∗i∗ <
1
ϑ

+ δ

∣
∣
∣
∣ ∃i ∈ [K] : cheat∗i <

1
ϑ

+ δ

]

≥ Pr [G8 ⇒ 1] · 1
K

,

where the first inequality follows from the fact that the event G8 ⇒ 1 implies
the event ∃i ∈ [K] : cheat∗i < δ + 1/ϑ.

We note that from now on, our proof follows the proof strategy of the BLS
signature scheme [5].

Game G10: In game G10, we introduce an initially empty set L and a new
abort. We highlight that we treat L as a set and therefore every bitstring is in L
only once. Recall that when A sends μ0, comr, comc to the signer oracle, the game
tries to extract values r̄i,j for (i, j) ∈ [K] × [N ]. Then the game samples seedJ
and computes J accordingly. In particular, due to the changes in the previous
games we know that the game extracts r̄i∗,Ji∗ = (α,ϕ, γ) unless the experiment
will abort anyways. Then, in game G10, the game will insert Translate(ck, μ0, ϕ)
into L.

Fix the first pair (m, σ) in A’s final output such that for σ = (σ̄, ϕ1, . . . , ϕK)
and μ∗ := Com(ck,m;ϕi∗) we have μ∗ /∈ L. Such a pair must exists if A is
successful, see game G1. Then game G10 aborts if H(pki∗ , μ∗) is not defined yet.
Note that A’s success probability in such a case can be at most 1/p and hence

|Pr [G9 ⇒ 1] − Pr [G10 ⇒ 1]| ≤ 1
p
.
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Game G11: In game G11, we change how the random oracle H is simulated and
add a new abort. For every query of the form H(pki∗ , μ) the game independently
samples a bit b[μ] ∈ {0, 1} such that the probability that b[μ] = 1 is 1/(q + 1).
Whenever the game adds a value μ to the set L, it aborts if b[μ] = 1. Then, after
A returns its final output, the game determines μ∗ as in G10, adds arbitrary
values to L such that all values in L ∪ {μ∗} are distinct and |L| = q and aborts
if b[μ∗] = 0 or there is a μ ∈ L such that b[μ] = 1. Otherwise it continues as
before. Note that unless the game aborts, A’s view does not change. As all bits
b[μ] are independent, we derive

Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1] · Pr [b[μ∗] = 1 ∧ ∀μ ∈ L : b[μ] = 0]

= Pr [G10 ⇒ 1] · 1
q + 1

(

1 − 1
q + 1

)q

= Pr [G10 ⇒ 1] · 1
q

(

1 − 1
q + 1

)q+1

≥ Pr [G10 ⇒ 1] · 1
4q

,

where the last inequality follows from (1 − 1/x)x ≥ 1/4 for all x ≥ 2.
Finally, we construct a reduction B that solves CDHwith running time t and

advantage εCDH such that

Pr [G11 ⇒ 1] ≤ εCDH.

Then, the statement follows by an easy calculation. Reduction B works as follows:

– B gets as input bilinear group parameters G, g, p, e and group elements X =
gx, Y = gy. The goal of B is to compute gxy. First, B samples i∗ ←$ [K]. Then,
it defines pki∗ := X (which implicitly defines ski∗ := x) and ski ←$Zp, pki :=
gski for i ∈ [K] \ {i∗}.

– B runs adversary A on input G, g, p, e, pk := (pk1, . . . , pkK , ck) with oracle
access to a signer oracle and random oracles H,Hr,Hc,H

′. To do so, it simu-
lates oracles Hr,Hc,H

′ exactly as in G11. The other oracles are provided as
follows:

• For a query of the form H(pki∗ , μ) for which the hash value is not yet
defined, it samples a bit b[μ] ∈ {0, 1} such that the probability that
b[μ] = 1 is 1/(q + 1). Then, it defines the hash value as Y b[μ] · gt[i∗,μ] for
a randomly sampled t[i∗, μ]←$Zp. For a query of the form H(pki, μ), i �=
i∗ for which the hash value is not yet defined it defines the hash value
as gt[i,μ] for a randomly sampled t[i, μ]←$Zp. For all other queries it
simulates H honestly.

• When A starts an interaction with the signer oracle, B sends N to B as
in the protocol. When B sends its first message μ0, comr, comc as its first
message, B behaves as G11. In particular, it tries to extract r̄i,j , c̄i,j for
(i, j) ∈ [K] × [N ]. It then sends seedJ to A.
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• When A sends its second message kJ, {ci,Ji
, ηi}i∈[K], B aborts under the

same conditions as G11 does. In particular, if B does not abort and the
signer oracle does not abort then r̄i∗,Ji∗ = (α,ϕ, γ) is defined and B for
μ := Translate(ck, μ0, ϕ), B sets si∗,Ji∗ := Xt[i∗,μ]+α. As defined in G11,
B also inserts μ into the set L. It computes si,Ji

for i �= i∗ as game G11

does, which is possible as B holds the corresponding ski. Then, B sends
s̄ :=

∏K
i=1 si,Ji

to A.
– When A returns its final output, B performs all verification steps in G11. In

particular, it searches for the first pair (m, σ) in A’s final output such that for
σ = (σ̄, ϕ1, . . . , ϕK) and μ∗ := Com(ck,m;ϕi∗) we have μ∗ /∈ L. As defined in
G11, B aborts if b[μ∗] = 0. Finally, B defines μi := Com(ck,m;ϕi) and returns

Z := σ̄ · X−t[i∗,μ∗] · g− ∑
i∈[K]\{i∗} t[i,μi]ski

to its challenger.

We first argue that B perfectly simulates G11 for A. To see that, note that as the
t[i, μ] are sampled uniformly at random, the random oracle is simulated perfectly.
To see that si∗,Ji∗ is distributed correctly, note that if the signing oracle and
G11 do not abort, then we have

cski∗i∗,Ji∗
= (H(pki∗ , μ) · gα)ski∗ =

(
Y b[μ] · gt[i∗,μ] · gα

)x

= Xt[i∗,μ]+α,

where the last equality follows from b[μ] = 0, as otherwise G11 would have
aborted.

It remains to show that if G11 outputs 1, then we have Z = gxy. This follows
directly from the verification equation and b[μ∗] = 1. To see this, note that

K∏

i=1

e (H(pki, μi), pki) = e
(
Y b[μ∗] · gt[i∗,μ∗],X

)
·

∏

i∈[K]\{i∗}
e
(
gt[i,μi], gski

)

= e (g, g)xy+t[i∗,μ∗]x · e (g, g)
∑

i∈[K]\{i∗} t[i,μi]ski .

Using the verification equation, this implies that

gxy = σ̄ · g−(t[i∗,μ∗]x+
∑

i∈[K]\{i∗} t[i,μi]ski)

Concluded. ��
We note that instead of giving games G10,G11 and the reduction from CDH

explicitly, one can also directly reduce from the security of the BLS signature
scheme to G9, leading to the very same bound in total. This tells us that one
can use (up to losing log(K) bits5 of security) the same curves as for BLS.

Corollary 1 (Informal). Under the same conditions as in Theorem 4, the
scheme PIKACDH satisfies qmax-one-more unforgeability, if the BLS signature
scheme [5] is unforgeable under chosen message attacks relative to PGGen, where
the concrete security loss is (up to statistically negligible terms) given by K.
5 In our concrete instantiation, log(K) ≈ 6.5.
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5 A Concrete Scheme Based on RSA

In addition to our concrete scheme from CDH, we also construct a concrete
scheme BSRSA based on the RSAassumption. We postpone the details to the full
version and only give a short overview here.

Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [26] linear
function. That is, we start with this function in our generic transformation from
Sect. 3. Informally, the function has domain D := Zλ ×Z

∗
N , scalar space S := Zλ

and range Z
∗
N , where N is an RSAmodulus and λ is a prime with gcd(N,λ) =

gcd(ϕ(N), λ) = 1. As we can not aggregate signatures efficiently, we can not
mimic the K-repetition technique from our CDH-based scheme. Thus, we still
rely on the loose bound of the underlying linear blind signature scheme. To solve
this issue and obtain practical parameter sizes, we note that the bound becomes
acceptable, once we increase the parameter λ. Our insight is that this can be
done independently from the modulus N .

Although this improves the bound and thus concrete parameters, we still
have a rather large communication complexity, due to the logarithmic number
of Ri ∈ Z

∗
N that are sent in our generic transformation. Here, our solution is to

send a short random seed (e.g. 128 bit) and derive the values Ri using a random
oracle. Now, the signer has to recover the preimages of the Ri to continue the
protocol. We show that the OGQ linear function admits a trapdoor that allows
to sample preimages, solving this problem as well.
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1. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-
based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565
(2021). https://eprint.iacr.org/2021/1565

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

3. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
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Abstract. We propose a new paradigm for justifying the security of
random oracle-based protocols, which we call the Augmented Random
Oracle Model (AROM). We show that the AROM captures a wide range
of important random oracle impossibility results. Thus a proof in the
AROM implies some resiliency to such impossibilities. We then consider
three ROM transforms which are subject to impossibilities: Fiat-Shamir
(FS), Fujisaki-Okamoto (FO), and Encrypt-with-Hash (EwH). We show
in each case how to obtain security in the AROM by strengthening the
building blocks or modifying the transform.

Along the way, we give a couple other results. We improve the assump-
tions needed for the FO and EwH impossibilities from indistinguishabil-
ity obfuscation to circularly secure LWE; we argue that our AROM still
captures this improved impossibility. We also demonstrate that there is
no “best possible” hash function, by giving a pair of security proper-
ties, both of which can be instantiated in the standard model separately,
which cannot be simultaneously satisfied by a single hash function.

1 Introduction

The random oracle model (ROM) [BR93] treats a cryptographic hash function as
a random function, and is a crucial tool for analyzing the security of cryptosys-
tems that otherwise lack a “standard model” security proof. This model captures
most practical cryptographic techniques and attacks involving hash functions.
Constructions with ROM proofs are often far more efficient than their standard-
model counterparts, and numerous applied cryptosystems utilize this model.

Unfortunately, there are numerous examples of ROM failures, schemes that
have been proven secure in the ROM but are insecure when the hash function
is instantiated. Starting with [CGH98], the most problematic such failures are
uninstantiability results, where the protocol is insecure under any instantiation
of the hash function. This makes it challenging to understand the meaning of
a ROM proof, and has lead to significant debate (see e.g. [Gol06,KM15]). Nev-
ertheless, due to their efficiency, schemes with only ROM proofs remain widely
deployed.

This practice is often justified by observing that ROM uninstantiabilities
are typically contrived, deviating from standard cryptographic design. However,
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there are also examples of natural uninstantiabilities, even those for design struc-
tures widely used in practice, though this has never lead to actual real-world
attacks. We will discuss several examples later in this work. In light of this
state-of-affairs, it is important to further understand the security of ROM pro-
tocols.

Techniques for uninstantiability results. Digging deeper, all known ROM unin-
stantiability results make essential use of non-black-box techniques. They use
that real hash functions have code which can be plugged into tools like proof
systems, fully homomorphic encryption, program obfuscation, etc. Random ora-
cles, by contrast, cannot be plugged into such tools as they have no code. The
ROM uninstantiabilities therefore embed a trigger that can only be accessed by
feeding the hash function code into such a tool; this trigger completely breaks
security.

More generally, even when considering non-black box tools, essentially all
cryptographic techniques use the component systems as black boxes. Even
though non-black box tools take programs as input, the programs themselves
only treat the component as a black box. The application of these tools does not
care about the actual code of components, other than the fact that it has code
in the first place. Of course, the implementation of the non-black-box tool will
operate on the actual code at the gate or instruction level, but the tool abstracts
all this away. The application of the tool only cares that the code exists.

1.1 Augmented Random Oracles

In this work, with the goal of eliminating uninstantiability results, we propose
a new paradigm for studying ROM constructions that we call the Augmented
Random Oracle Model (AROM). In addition to a random oracle O, we add a
second oracle M , which will model the various non-black-box tools that ROM
impossibilities may try to employ. Like O, M will be a function sampled from a
distribution1. However, to model tools that can be applied to the code of concrete
hash function (which is now an oracle), we will have M be oracle aided, meaning
it can make queries to O. Making queries is the only way M can learn information
from O. Looking ahead, we will often have M take as input programs that
themselves query O; M can then evaluate such programs by making queries to
O. In this way, we can treat O as having code—namely the instruction to make a
query—while still representing O as an oracle, thus capturing the aforementioned
non-black-box techniques within our idealized model.

Asharov and Segev [AS15] consider a similar model, but for an entirely dif-
ferent purpose. They propose a model for indistinguishability obfuscation (iO),
where M obfuscates programs that can make queries to O. Such M accepts
obfuscate queries, which take as input the description of an (oracle-aided) pro-
gram PO, and outputs a string P̃ , derived via a private random permutation.
1 Once M is sampled, it is fixed an immutable, keeping no state. Though M is stateless,

it can still implement potentially stateful cryptographic objects, by having any state
be an explicit input and output of M . Modeling M as stateless reflects the real world,
where the specification of a cryptographic primitive does not change over time.
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M also accepts evaluate queries, which take P̃ and an input x, and compute
PO(x). Note that M must make queries to O in order to implement evaluate
queries. The authors argue that this model captures many of the techniques for
using iO. [AS15] use this model to reason about the limits of iO.

As this oracle captures many techniques based on iO, setting M in this way
would capture many uninstantiability results based on iO, such as [BFM15] as
discussed below. However, we do not want to commit to a single tool. This
is for several reasons. The Asharov-Segev model, for example, makes specific
choices, such as the fact that M does not apply to programs that themselves
can make M queries, or that M operates on oracle-aided circuits as opposed
to Turing machines. There are also many other non-black-box tools such as
proof systems, garbled circuits, fully homomorphic encryption, etc. Asharov and
Segev specifically mention the case of NIZKs, as many iO applications involve
NIZKs but are not captured in their model. Worse, new non-black-box tools may
arise, necessitating new models. We therefore allow M to be any oracle, which
automatically captures any tool of this nature and any modeling that may arise.
In this sense, we can think of M adversarially. We will make one important
restriction, however: M can only make a polynomial number of queries to O,
corresponding to the tool being efficient.

On the other hand, we do not want to rely these black-box tools when design-
ing cryptosystems. First, they are computationally expensive. Moreover, since
M is essentially adversarial, we do not want to have to assume any particu-
lar structure of M ; M could always output 0. We will therefore insist that the
system we design, and hence also the security game, only makes queries to O
but not M . Thus we only consider constructions that make sense in the plain
random oracle model, but we hope that the new model will better capture their
security. A visualization of the plain and augmented models are given in Fig. 1.

Fig. 1. The plain ROM (L) vs the Augmented ROM (R).

So far, the AROM appears rather useless: by having the adversary simulate
M for itself, the AROM collapses to the standard ROM. We will now see an
important setting where the AROM is meaningful.

AROM for Transforms. In a ROM transform, a building block Π (or potentially
multiple building blocks) is transformed into a different cryptosystem Γ using
a random oracle. We note ROM transforms are widespread, and even schemes
that appear to be direct constructions can often be phrased as transforms from
appropriate abstractions. Examples include RSA (trapdoor permutations) or
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Diffie-Hellman (cryptographic groups). Moreover, uninstantiability results such
as [CGH98] are most often phrased as transforms from the appropriate build-
ing blocks (e.g. CS proofs [Mic94] and signatures in the case of [CGH98]). In
fact, phrasing a construction as a transform is generally the preferred way to
model constructions, as it allows for utilizing abstractions, resulting in a better
conceptual understanding of the results and more general security proofs.

Well-known uninstantiabilities for ROM transforms include Fiat-Shamir
(FS) [FS87] as proved by [GK03], and Encrypt-with-Hash (EwH) [BBO07] and
Fujisaki-Okamoto (FO) [FO99], as shown by [BFM15]. These ROM failures for
transforms are notable for being for natural and even widely deployed.

For transforms, the picture in Fig. 1 changes. Recall that a transform must
result in a secure Γ , regardless of the instantiation of the building block Π, as
long as Π satisfies the prescribed security property. Since the security of the
transform quantifies over all Π, we can think of Π itself as adversarial. ROM
transform uninstantiabilities work exactly by designing a contrived Π that makes
the transform fail. In the plain ROM, this gives Fig. 2 (L). In the AROM, the
transform still only queries O, but now Π may use M to employ non-black box
techniques. Therefore, Π makes queries to M , as in Fig. 2 (R).

Fig. 2. Plain ROM transforms (L) vs Augmented ROM transforms (R). Some authors
model the building block as having access to O while others do not; in Sect. 1.4 we
argue that the best modeling would give access to O, and so we adopt this convention
in the AROM

Now we see that the AROM is not trivially equivalent to the ROM. Con-
cretely, the security of the building block may rely on the fact that M is sam-
pled from a distribution. For example, the M above for implementing iO is only
secure because the obfuscator utilizes a private random permutation. In order to
maintain security, this permutation must be hidden from the adversary. There-
fore, there is no way for the adversary to simulate the M on its own. Indeed,
we will argue that the AROM captures all existing uninstantiability results for
ROM transforms, by having M model the appropriate non-black box techniques.
This does not mean that the AROM is not subject to uninstantiability results,
since it is equivalent to the ROM for direct constructions. More generally, one
can take any uninstantiability result, even for transforms, and instantiate the
building blocks with particular constructions from the literature, arriving at a
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direct ROM uninstantiability result, which would then also be an AROM unin-
stantiability.

However, suppose we have a transform that is fully abstracted, in the sense
that any cryptography being performed is abstracted underneath an appropriate
building block that is input to the transform2. Then we argue that all known
uninstantiability results for random oracles are captured by the AROM, in the
sense that, if fully abstracted, the transform would be correctly labeled as inse-
cure in the AROM. This is because, for any such result, there will be an M
which can securely provide all the necessary building blocks, but also the non-
black box techniques used, where we replace any time the code of the hash
function is used with the instruction to query O. This includes [CGH98] and
also the uninstantiability for FS [GK03], where M implements CS proofs on
programs that can query O. It also includes the uninstantiability of EwH and
FO [BFM15], where M implements an indistinguishability obfuscator. In fact,
for any known uninstantiability of the random oracle, when fully abstracted,
there is an appropriate M that models the building blocks, resulting in an inse-
cure protocol in the AROM. See Sect. 4.3, where we work through the case of
EwH.

Thus, for any fully abstracted protocol, security in the AROM demonstrates
immunity to known uninstantiability techniques, and offers the most compelling
evidence known for real-world security. Of course, this does not actually prove
security in the standard model or completely rule out uninstantiability results,
but it implies that brand new techniques would be needed to invalidate security.

1.2 Best Possible Hash Functions?

A quick detour before getting to our results. There have been numerous works
on circumventing ROM impossibilities, or at least making ROM proofs more
believable. Here, we discuss one, initiated by Canetti [Can97], which seeks to
identify and instantiate random oracle security properties using concrete, usu-
ally algebraic, hash functions. Examples include oracle hashing [Can97], non-
malleable point obfuscation [KY18,BMZ19], various forms of correlation resis-
tance [CCR16,GOR11], and Full Domain Hash [HSW14], to name a few.

A major downside of these results is efficiency. In essentially all cases, the
construction is far less efficient than standard hash functions such as SHA2,
sometimes being entirely impractical. In addition, the computational assump-
tions underlying these ROM-free constructions can be quite strong, and it is not
clear if the standard model result is actually “more secure.”

In light of these downsides, a standard-model instantiation of a ROM protocol
may be considered a proof of concept, showing that such an application is likely
to exist. This could be seen as additional justification for the security (or at

2 We do not attempt formalize full abstracted here, as it appears challenging. Do
information-theoretic objects, such as even a simple XOR, count? We instead leave
the notion as a general intuitive property, and we expect that whether or not a given
protocol is fully abstracted will usually be clear. All the transforms we consider in
this work are certainly fully abstracted.
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least, lack of impossibility) for the more efficient ROM protocol. Implicit in this
interpretation is the following assumption: if a security property holds for some
hash function, then it also holds for a sufficiently well-designed hash function,
perhaps SHA2. That is, SHA2 is a “best possible” hash function, in that any
security property which holds for some hash function will hold for SHA23. This
sounds plausible, even in light of the various ROM impossibility results, as no
poly-time attacks have been found on SHA2 that does not also apply to all hash
functions. We ask, is such an interpretation reasonable?

1.3 Our Results

– In Sect. 3 we formally define the AROM.
– We then use the EwH transform as a case study to demonstrate the power of

the AROM. In Sect. 4.3, we explain how the AROM captures the uninstan-
tiability of EwH, in the sense that the transform is insecure in the AROM,
like in the real world.

– In Sect. 4.4, we show the EwH uninstantiability result can be generalized to
work under a circular security assumption on LWE, as opposed to needing the
full power of indistinguishability obfuscation. Concretely, our impossibility
uses fully homomorphic encryption and obfuscation for compute-and-compare
programs [GKW17,WZ17]. The improvement also readily adapts to the FO
transform. This further demonstrates the need for a model which captures a
variety of non-black-box tools.

– In Sect. 4.6, we show that EwH is secure in the AROM, if the underly-
ing encryption scheme is strengthened to be lossy [BHY09]. Lossy encryp-
tion can still be constructed efficiently from most standard tools. We note
that the security we prove likely cannot be proven secure in the standard
model [Wic13], so some form of idealized model is inherent. Our proof offers
the strongest justification yet for security.

– In the Full Version [Zha22], we additionally study the FO and FS transforma-
tions, demonstrating that both are insecure in the AROM, again capturing
the known uninstantiabilities. For FS, we show that it is sound in the AROM
if the underlying proof has statistical soundness. Like EwH, FS even for such
proofs likely cannot be proven secure in the standard model [BDG+13], neces-
sitating some idealized model. Our proof offers the strongest justification yet
for security in this case. We note that zero knowledge of plain Fiat-Shamir
cannot be proved, since this would give NIZKs without a CRS. We explore
several ways of obtaining zero knowledge by introducing a CRS.
For FO, we observe that it is not secure in the AROM, even if the underlying
encryption scheme is lossy. We therefore propose (Sect. 5.1) a new encryp-
tion scheme, which can be seen as a variant of the CCA-secure scheme
of Dolev, Dwork, and Naor [DDN91], but with the zero knowledge proof
replaced by an EwH-style structure. We prove CCA security of our scheme

3 There will always be functionalities that SHA2 or other hash functions cannot
achieve. This assumption is only about security properties that apply to any hash
function.
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under the assumed lossiness of the underlying encryption scheme; CCA secu-
rity is not known to follow from lossy encryption in the standard model. Our
results for FO and FS are sketched in Sects. 5 and 6, with the details deferred
to the Full Version [Zha22].

– In Sect. 7, we provide a pair of natural security properties for hash functions,
namely auxiliary input one-wayness and something we call anti-lossiness.
These properties can be satisfied by standard-model constructions, and are
both trivially satisfied by random oracles. However, we show that these prop-
erties cannot both be satisfied simultaneously by any real hash function,
assuming virtual grey box (VGB) obfuscation [BCKP14]. This implies that
SHA2 (or any hash for that matter) cannot be a “best possible” hash. In the
AROM, only one of the two properties—namely anti-lossiness—hold for O,
consistent with the standard model. This gives further support to the utility
of our model, and also indicates that SHA2 (or any hash function plausibly
modeled as a random oracle) is likely not auxiliary input one-way.

1.4 A Classification of ROM Failures

Besides uninstantiability results, there are a number of other known ROM fail-
ures. Here, we broadly organize known ROM failures into five types, and discuss
what they mean and their relevance to the AROM.

Type 1 (∃∃ ). Here, there exists a specific protocol with a ROM proof and also
a specific hash function H, such that setting O = H makes the protocol insecure.

A well-known example is the length-extension attack when using Merkle-
Damg̊ard as MACs without appropriate padding. Another example is the circu-
larly secure encryption scheme Enc(k,m) = (r,O(k, r)⊕m), which was proven in
the ROM [BRS03], but is insecure when O is replaced with Davies-Meyer [HK07].

For Type 1 failures, the insecurity may point to an issue with the protocol,
the hash, or both. However, we observe that in most cases, the particular hash
function is not indifferentiable [MRH04] from a random oracle (see [CDMP05] for
Merkle-Damg̊ard, [KM07] for Davies-Meyer). Indifferentiability has become an
important consideration for hash functions, and so an indifferentiability failure
should be interpreted as a weakness of the hash function. In particular, using an
indifferentiable hash function seems to solve the problem.

More generally, any Type 1 failure will point to a hash function design struc-
ture that, if avoided, would block the attack. Such a design structure may then
be considered sub-optimal from a security standpoint.

Type 2 (∀∃). Here, for any possible hash function H, there exists a protocol
with a ROM proof such that setting O = H makes the protocol insecure.

Type 2 failures were already pointed out by [BR93]. For a typical example, consi-
der the Encrypt-with-Hash (EwH) transform Enc′(pk,m) = Enc(pk,m;O(pk,m))
which converts a randomized public key encryption scheme into a deterministic
one by setting the random coins to O(pk,m) [BBO07]. For any concrete hash
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function H, there is an Enc that renders the transform trivially insecure when
O = H: Enc(pk,m; r) checks if r = O(pk,m) and if so outputs m in the clear.

For Type 2 failures, we observe that the ROM security is an artifact of the
ROM modeling: concretely, when [BBO07] prove ROM security, they assume
that Enc cannot make queries to O. But certainly a real-world encryption scheme
may evaluate a given hash function. In fact, since there are a limited number
of standardized hash functions, it is even expected that different components of
a cryptosystem may use the same hash. So a better modeling would allow Enc
to query O, in which case EwH is trivially insecure in the ROM for the same
reasons as in the standard model. Therefore, Type 2 failures can be seen as
demonstrating an issue with the particular protocol design, but not the random
oracle itself if properly modeled. Instead, it shows that the scheme should never
have been considered to have a ROM proof in the first place.

We observe that our AROM always allows the building block to query O
(since M may implement a query-forwarding functionality), so failures of this
sort are captured by the AROM, in the sense that such protocols will not
have AROM proofs. We note that a tweaked EwH, namely Enc′(pk′,m) =
Enc(pk,m; O(s,m) ) for pk′ = (pk, s) and a uniformly random s would be
secure in the ROM, even if Enc can make random oracle queries. The reason,
essentially, is that the random s enforces domain separation, since Enc would
almost certainly never evaluate O on inputs of the form (s,m). Nevertheless, the
impossibility of [BFM15] still applies to the tweaked EwH.

Type 3 (∃∀). Here, there exists a protocol with a ROM proof that is insecure
under any possible instantiation of the hash function.

These are the uninstantiability results motivating our AROM. As observed
above, for fully abstracted transforms, no known Type 3 failures apply to the
AROM.

Type 4 (Simulation-based). Here, security is defined via a simulator, and in
the ROM the simulator is allowed to program the random oracle.

Examples include non-interactive zero knowledge without a CRS [Pas03] and
non-interactive non-committing encryption [Nie02], both of which exist in the
ROM under this modeling of simulators, but not in the real world. The intuition
for these failures is that, in the standard model, the simulator is usually required
to have extra power relative to the adversary—such as being able to program a
CRS or generate transcript messages out of order—in order to not be trivially
impossible. Since the adversary cannot program the random oracle, allowing the
simulator such programming ability is another form of extra power, allowing it
to circumvent standard-model impossibilities without having to resort to CRS’s
or out-of-order transcript generation. This allows for attainable simulation-based
definitions that are impossible in the standard model.

One problem with Type 4 failures is that the random oracle is baked into the
security definition since the definition must model the simulator’s ability to pro-
gram the random oracle. This makes the ROM definition actually distinct from
the standard model definition. Failures of this type are typically easily avoided
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by better modeling of the ROM: allow the simulator to make random oracle
queries, and even see the adversary’s queries, but do not allow the simulator to
actually program the random oracle. The resulting definition then closely mir-
rors the standard model, and the only options available to give the simulator the
needed extra power are generally the same strategies as in the standard model.
For these reasons, we advocate similar modeling of simulators in the AROM.

Type 5 (Proof impossibilities). Here, it is proved that, for some protocol
with a ROM proof, there cannot be any standard-model proof relative to any
hash function, at least with respect to certain classes of constructions, proof
strategies, and/or underlying computational assumptions.

A well-known example is Full-Domain Hash (FDH), where [DOP05] show that
there is no proof of security in the standard model that makes fully black box use
of the trapdoor permutation. A wide class of examples of this type are impossi-
bilities of security proofs relative to “falsifiable” assumptions. Examples include
Fiat-Shamir even when restricted to statistically sound proofs4 [BDG+13], suc-
cinct non-interactive arguments (SNARGs) [GW11], and correlated input secu-
rity [Wic13]. We note that correlated input security is in particular implied by
the notion of security we prove in the AROM for EwH.

With Type 5 examples, no actual insecurity is shown, just a barrier to proving
security. It could therefore be that the examples are in fact secure, but just
cannot be demonstrated secure by standard model arguments. An optimistic
interpretation is that such examples are actually demonstrating limits of the
usual paradigm for provable security, with the ROM offering a way to plausibly
justify the security of such protocols. However, in light of Type 3 failures, a
pessimistic interpretation could simply be that Type 5 examples are simply
insecure. The right answer probably lies somewhere between.

Nevertheless, protocol designs subject to Type 5 failures have been confi-
dently used in practice, such as Fiat-Shamir (not to mention FDH and SNARGs).
It is therefore important to try to justify their security despite such Type 5 fail-
ures. We can therefore view the AROM as offering additional support for the
security of such schemes. This is particularly relevant for our AROM proofs of
EwH and Fiat-Shamir for statistically sound proofs, as a standard-model security
justification is infeasible.

1.5 Discussion: Do We Really Need Another ROM Variant?

There have been many attempts to rectify the issues with the ROM, each with
their own advantages as disadvantages. Numerous works remove the random ora-
cle entirely from a cryptosystem, such as Boneh and Boyen [BB04] for IBE. But
such results typically lose significant efficiency, and sometimes require stronger
assumptions as well. The aforementioned program initiated by Canetti [Can97]
shows how to instantiate certain ROM properties, but likewise results in inef-
ficient hash functions and often requires strong assumptions. One might be

4 The Type 3 counterexample of [GK03] uses computationally sound protocols.
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tempted to use such results as proofs of concept and then just use SHA2 to
instead, but our results on incompatible security properties show that this is
unsound in general.

Both programs also suffer from the fact that they cannot bypass certain
limitations of the standard-model, such as the Type 5 ROM failures discussed
above. In order to justify the security of these examples, something is needed
beyond the standard model.

Another approach is to identify a broad class of standard-model security
notions, and posit that a hash function simultaneously satisfies the entire class.
One example are universal computational extractors (UCEs) [BHK13]. However,
it appears challenging to define a natural broad class of security notions that are
exempted from ROM failures. In particular, the UCE assumption of [BHK13] is
subject to the Type 3 failure from EwH.

This leaves other refinements to the ROM. The non-programmable ROM
(npROM) [Nie02,FLR+10] prevents the reduction from programming O in any
way, but can still allows it to see the adversary’s queries. The hope is that this
more closely captures standard-model hash functions “behaving like” random
functions, since standard-model functions cannot be programmed. A comple-
mentary model due to Ananth and Bhaskar [AB12] is the non-observable ROM
(noROM), where the adversary can adaptively program but cannot observe.
They also consider the intersection of the two models, the nonpROM.

These refinements are intuitively appealing. But there is little theoretical
justification for preferring them over the plain ROM. Type 3 failures also still
apply: the CPA security of EwH [BBO07] can be proven in the nonpROM, and
yet we know the transform is insecure in general5.

Our model, by contrast, is specifically shown to circumvent all known
Types 2, 3, and 4 failures for fully abstracted transforms, and the other fail-
ures can be handled by using a sufficiently well-designed hash function and
making optimistic-yet-plausible assumptions. We thus obtain some of the most
compelling justifications known for several cryptosystems.

2 Preliminaries

2.1 Cryptosystems and Games

A cryptosystem is a tuple of stateless deterministic algorithms Π. A specification
for a cryptosystem is a collection G of game/probability pairs (G, p), where G
take a security parameter 1λ as input and outputs a bit b, and p takes a security
parameter 1λ as input and outputs a real number in [0, 1]. Each G interacts
with a cryptosystem Π and adversary A. We also assume G indicates whether
adversaries are computationally bounded or unbounded. We will write b ← (A ↔
GΠ)(1λ) to denote the interaction. The advantage of A when interacting with

5 Bellare et al. [BBO07] do not claim either noROM or npROM. Yet the proof in the
CPA case can be verified to work in both models by inspection.
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GΠ is a function of λ defined as AdvA,GΠ (λ) := Pr[1 ← (A ↔ GΠ)(1λ)] − p(λ).
Games model both security properties and correctness properties.

Many cryptosystems will use random coins, which we model as an explicit
input. Games will be responsible for choosing the random coins. We will often
distinguish random coins from other inputs by separating them with a semicolon,
e.g. Π(x; r). We will write Π(x) to be the distribution Π(x; r) for uniform r. A
function is negligible if it is asymptotically smaller than any inverse polynomial.

Definition 2.1. A cryptosystem Π securely implements a specification G if, for
all (G, p) ∈ G and for all adversaries A, there exists a negligible function negl
such that AdvA,GΠ (λ) ≤ negl(λ).

Transforms. A transform is a method T of compiling a cryptosystem Π securely
implementing a specification G into another cryptosystem Γ securely implement-
ing a specification H. We write Γ = TΠ .

Definition 2.2. A transform T from G to H is secure if, for all Π which securely
implement G, TΠ securely implements H.

Single-stage games. Usually, A is a single adversary that can keep arbitrary state
throughout its interaction with G. We will call these single-stage games. Some
games place restrictions on the state A can keep. We call such games multi-stage.

2.2 Cryptographic Definitions

An � = �(λ)-source is a distribution is a family of efficiently sampleable distribu-
tions D(1λ) over tuples (x1, . . . , x�, aux).

Definition 2.3 (Unpredictability). A 1-source (x, aux) ← D(1λ) is compu-
tationally (resp. statistically) unpredictable if, for all polynomial time (resp.
unbounded) A, Pr[A(aux) = x : (x, aux) ← D(1λ)] is negligible.

An �-source (� > 1) is computationally (resp. statistically) unpredictable (1)
if each marginal distribution (xi, aux) for i ∈ [�] is computationally unpredictable,
and (2) except with negligible probability the xi are all distinct.

Definition 2.4 (Anti-lossiness). A keyed function H : {0, 1}λ ×{0, 1}m(λ) →
{0, 1}n(λ) is anti-lossy if, for all sequences (kλ)λ for kλ ∈ {0, 1}λ, the 1-source
(H(kλ, x), aux = {}) where x ← {0, 1}m(λ) is statistically unpredictable. In other
words, there are no keys which make H lose too much information.

Definition 2.5 (One-wayness with correlated inputs). A keyed function
H : {0, 1}λ × {0, 1}m(λ) → {0, 1}n(λ) is one-way against correlated inputs if, for
all computationally unpredictable �-sources D and all polynomial-time A,

Pr
[
∃i,H(k, x′) = yi :

k←{0,1}λ

(x1,...,x�,aux)←D
x′←A(k,y1=H(k,x1),...,y�=H(k,x�),aux)

]
< negl(λ) .

That is, given aux and all the yi = H(k, xi), it is intractable to invert any of the
yi. H is one-way against auxiliary input if the above holds only for 1-sources.
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Definition 2.6 (Pseudorandomness with correlated inputs). A keyed
function H : {0, 1}λ × {0, 1}m(λ) → {0, 1}n(λ) is pseudorandom against correla-
ted inputs if, for all computationally unpredictable �-sources and all polynomial-
time A,

∣∣∣∣∣∣Pr

⎡
⎣b′ = b :

b←{0,1},k←{0,1}λ

(x1,...,x�,aux)←D

yi,0←H(k,xi),yi,1←{0,1}n(λ)∀i

b′←A(k,y1,b,...,y�,b,aux)

⎤
⎦ − 1/2

∣∣∣∣∣∣ < negl(λ) .

In other words, the vector of yi = H(k, xi) is pseudorandom, even though the xi

are correlated and aux is given. H is pseudorandom against auxiliary input if
the above holds only for 1-sources.

Public key encryption (PKE). A PKE scheme is a triple Π = (Gen,Dec,Enc)
such that (pk, sk) ← Gen(1λ) = Gen(1λ; r), c ← Enc(pk,m) = Enc(pk,m; r) and
m′ ← Dec(sk, c). We require correctness, which insists that for every message m,
Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk) ← Gen(1λ)] ≥ 1 − negl(λ).

Definition 2.7 (CPA and CCA security). A PKE scheme Π is CCA secure
if all polynomial time A have negligible advantage in the following game:

– On input 1λ, the game samples (pk, sk) ← Gen(1λ) and sends pk to A.
– A makes CCA queries on ciphertexts c, and receives m ← Dec(sk, c).
– At some point, A produces two messages m∗

0,m
∗
1 ∈ {0, 1}∗ of equal length.

– The game samples a random bit b and replies with c∗ ← Enc(pk,m∗
b).

– A can continue making CCA queries, as long as c 
= c∗.
– A finally sends a guess b′ for b. The advantage of A is |Pr[b′ = b] − 1/2|.
Π is CPA secure if the above only holds against A that cannot make CCA queries.

Definition 2.8 (Lossy Encryption [BHY09] ). A PKE scheme Π is lossy if
there is an additional algorithm pk ← GenLossy(1λ) such that:

– pk ← GenLossy(1λ) is comp. indist. from pk where (pk, sk) ← Gen(1λ).
– Let Dm be the distribution (pk,Enc(pk,m)) where pk ← GenLossy(1λ). Then

for any messages m,m′ of the same length, Dm,Dm′ are statistically close.

Definition 2.9 (Fully Homomorphic Encryption). A PKE scheme Π is
fully homomorphic if there is an additional algorithm Eval(pk, c, f) that outputs
ciphertexts, such that for all m and all functions f represented as circuits, the
following hold:

length( Eval(pk,Enc(pk,m), f) ) = length( Enc(pk, f(m)) ), and

Pr
[
Dec(sk, c′) = f(m) :

(pk,sk)←Gen(1λ)
c←Enc(pk,m)

c′←Eval(pk,c,f)

]
≥ 1 − negl(λ) .
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Deterministic Encryption. A deterministic PKE scheme is plain PKE, except
that Enc is deterministic. Deterministic PKE can only be secure for unpredictable
messages, formalized by PRIV security [BBO07]:

Definition 2.10 (PRIV-CPA and PRIV-CCA). A det. PKE scheme Π is
strongly (resp. weakly6) PRIV CCA secure if for all computationally (resp. sta-
tistically) unpred. �-sources D, all polynomial time A have negligible advantage
in the following game:

– On input 1λ, the game samples (pk, sk) ← Gen(1λ) and sends pk to A.
– It samples (m∗

1,0, . . . , m
∗
�,0) ← D and random distinct m∗

1,1, . . . , m
∗
�,1.

– It samples a random bit b, and sends c∗
1, . . . , c

∗
� where c∗

i ← Enc(pk,m∗
i,b).

– A makes CCA queries on c /∈ {c∗
1, . . . , c

∗
�}; it receives m ← Dec(sk, c).

– A finally sends guess b′ for b. The advantage of A is |Pr[b′ = b] − 1/2|.
Π is strongly/weakly PRIV-CPA secure if A cannot make CCA queries.

Obfuscation. An obfuscator Obf(1λ, C) is an efficient randomized function which
maps circuits to circuits7. For correctness, we require that Obf(1λ, C)(x) = C(x)
for all λ, x. We will also consider obfuscators that only work on circuits of a
particular format. We now discuss two notions of security.

Definition 2.11 (VGB [BCKP14]). Obf is VGB secure if, for all polynomial-
time A, all polynomials s, and all inverse polynomials p, there exists a sim-
ulator S that is computationally unbounded but which can only make a poly-
nomial number of queries, such that for all circuits C of size at most s(λ),
|Pr[1 ← A(1λ,Obf(1λ, C))] − Pr[1 ← SC(1λ)]| < p(λ).

VGB obfuscation is not known under standard assumptions, but it appears
plausible that many existing iO constructions satisfy it. Regardless, ruling out
VGB obfuscation appears challenging. As we only use VGB for an impossibil-
ity, it is still meaningful even if none of the existing candidates are secure. A
weakening of VGB obfuscation is indistinguishability obfuscation (iO), which is
identical except that S can also be query unbounded. An equivalent formula-
tion of iO is that the obfuscations of equivalent programs are computationally
indistinguishable.

Definition 2.12 (CC security [GKW17,WZ17]). For a polynomial s, con-
sider the class of binary circuits of the form “Output 1 on input x if and only
if C(x) = y” where y ∈ {0, 1}λ and C has size s. Call this circuit CCC,y(x).
An obfuscator Obf is a compute-and-compare (CC) obfuscator if it is correct for
this class of circuits, and satisfies the following security definition: there exists
an efficient simulator S such that for all C and all efficient A,∣∣∣ Pr

[
1 ← A(C̃) : y←{0,1}λ

C̃←Obf(1λ,CCC,y)

]
− Pr[1 ← A(S(1λ, 1s))]

∣∣∣ < negl(λ) .

Thas is, if y is random, the obfuscated program can be simulated without know-
ing C or y at all. [GKW17,WZ17] construct CC-secure obfuscation from LWE.
6 The original PRIV notion corresponds to the weak version.
7 We can also consider obfuscators for uniform computational models, but we will not

need to for this work.
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3 The Augmented Random Oracle Model

3.1 The Plain ROM

In the plain ROM, there is a function O : {0, 1}∗ → {0, 1}�, where the output of
O on any input is chosen uniformly at random. All parties can make queries to
O. We call this distribution over oracles O8.

Complexity Metrics. A query x to O has cost |x|. The query complexity of an
algorithm is the total cost of all its queries. The computational complexity is the
sum of its query complexity and running time. Both the query and computational
complexities of an algorithm can be input-specific. Note the cost must increase
with input size to yield correct query complexity results for variable-length O.

Secure cryptosystems in the ROM. Specifications remain oracle-free, but now
the cryptosystem Π and adversary A can query O. We denote the interac-
tion b ← (AO ↔ GΠO

). A’s advantage is defined as in the standard model,
except that the probability is over the choice of O ← O. Oracle-free speci-
fications means simulators in simulation-based definitions cannot program O,
departing from [BR93]. This modeling, however, automatically captures Type 4
failures [Nie02,Pas03].

Definition 3.1. An oracle-aided cryptosystem ΠO securely implements a spec-
ification G in the ROM if, for all (G, p) ∈ G and for all oracle-aided adversaries
AO, there is a negligible negl such that AdvAO,GΠO (λ) ≤ negl(λ).

Transforms in the ROM. Transforms in the ROM use random oracles. Often in
the literature, the underlying building block is prevented from making oracle
queries; we will make no such restriction. This models the real world, where the
building blocks could have themselves been built using hash functions.

Definition 3.2. An oracle-aided transform T between from G to H is secure in
the ROM if, for all oracle-aided cryptosystems ΠO which securely implement G
in the ROM, ΓO = TO,ΠO

securely implements H in the ROM.

3.2 Augmented Random Oracles

In an augmented random oracle, first a function O ← O is sampled. Additionally,
there is a distribution M over oracle-aided functions from which M ← M is sam-
pled. O and M are sampled independently. Then, parties are provided with the
oracles O and MO; that is, M ’s own oracle is set to O. Once O,M are sampled,
they are deterministic and stateless. Looking ahead, M will provide one or more
abstract cryptosystems. M can still model stateful cryptosystems by having the

8 Note that the choice of � is arbitrary: one can obtain an O with �-bit outputs from
an O′ with 1-bit outputs by setting O(x)i = O(x||i). One can even obtain O with
infinite outputs in this way. Thus, all random oracles are equivalent.
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state be an additional input and output. M itself being stateless corresponds to
the typical real-world demand that abstract cryptosystem specifications do not
change over time. Note that the restriction to deterministic M is without loss of
generality, since any random coins can be provided as an additional input.

Query Complexity. We will treat M as outputting both the output, as well as an
arbitrary cost for the query, which may or may not depend on in the input-size
or complexity of answering the query. The query complexity of an algorithm
making queries to M,O will be the total cost of all direct queries, excluding
those M makes to O.

Complexity preserving. M is complexity preserving if the cost it outputs is at
least the query complexity of M when answering that query. In this case, the
query complexity of an algorithm is lower bounded by the total cost of all queries
made to O, including those made by M . There is no cost upper bound.

Simulatable. M is simulatable if, for any distinguisher D, there is an efficient but
stateful oracle-aided algorithm SO such that D cannot distinguish the oracles
(O,MO) and (O,SO) except with negligible probability. Note that many oracles
are simulatable via lazy sampling, such as random oracles and generic groups.

Secure cryptosystems in the AROM. Specifications themselves still remain oracle-
free. Cryptosystems Π are allowed to make queries to O and M , which we denote
by ΠO,MO

. We denote the interaction b ← (AO,MO ↔ GΠO,MO

). The advantage
of A is defined similarly to the standard model, except that the probability is
additionally over the choice of O ← O and M ← M.

Definition 3.3. An oracle-aided cryptosystem ΠO,MO

securely implements a
specification G in the M-AROM if, for all (G, p) ∈ G and for all oracle-aided
adversaries AO,MO

, there exists a negligible function negl such that the advantage
of AO,MO

when interacting with GΠO,MO

is at most negl.

Looking ahead, when actually designing cryptosystems, we generally do not
want Π to make queries to M . This is because M will model non-black-box
techniques, which are generally inefficient in practice. We denote such a protocol
by ΠO. In this case, we can quantify over all M , giving the unquantified AROM.
Here we do make restrictions on M : namely we require M to be complexity
preserving and simulatable.

Definition 3.4. An oracle-aided cryptosystem ΠO (making no queries to M)
securely implements G in the AROM (no quantification by M) if it securely
implements G in the M-ROM for all complexity preserving simulatable M.

Transforms in the ROM. Transforms in the (unquantified) AROM make use of
O, but not M , for the same reasons as for cryptosystems. But we always allow
the input cryptosystems to query M . This will model transform failures, which
design input systems employing non-black-box techniques.
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Definition 3.5. An oracle-aided transform TO,Π from G to H is secure in the
AROM if, for all complexity preserving simulatable M, and all oracle-aided
ΠO,MO

which securely implement G in the M-AROM, ΓO,MO

= TO,ΠO,MO

securely implements H in the M-AROM.

3.3 Some Basic Results

We show that for direct cryptosystems (not transforms), the AROM and ROM
are equivalent for single-stage games:

Theorem 3.6. If all games in G are single stage, then ΠO securely implements
a specification G in the AROM if and only if it securely implements G in the
plain ROM.

An immediate corollary of Theorem 3.6 is that most standard-model properties
one assumes of hash functions hold for O in the AROM; for example:

Corollary 3.7. In the AROM, O is one-way, collision resistant, a pseudoran-
dom generator, and anti-lossy.

Note, however, that Theorem 3.6 does not apply to one-wayness against auxiliary
input, since that security definition is not single-stage. As we demonstrate in
Sect. 7, anti-lossiness and auxiliary input one-wayness are incompatible in the
standard model, and this incompatibility extends to the AROM. As such, O is
not auxiliary input one-way in the AROM. We now prove Theorem 3.6.

Proof. Setting M to always outputs 0, we see that AROM security readily
implies ROM security. In the other direction, consider any oracle distribution
M and adversary A in the AROM. We replace M with SH , only negligibly
affecting the advantage of A. Now we merge S and A into a single adversary A′

for Π in the plain ROM. A′ is therefore still an adversary, provided the game
is single-stage since it must remember the state of S. The complexity of A′

is polynomially larger than the query complexity of A (since M is complexity
preserving). Therefore, the overall computational complexity of A′ is only poly-
nomially larger than that of A in the AROM. Its success probability is negligibly
close to that of A. �

Note that, unlike or cryptosystems, Theorem 3.6 does not hold for transforms
because there is no way to simulate Π’s queries to M .

4 A Case Study: Encrypt-with-Hash

Here, we use the Encrypt-with-Hash (EwH) transform [BBO07] as a case study.
We will see how the uninstantiability result of [BFM15] works, how it the unin-
stantiability is captured by the AROM, and how to circumvent it. Along the way,
we will also see how the assumptions necessary to obtain the uninstantiability
can be improved, and how this improvement too is captured by the AROM.
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4.1 The (Tweaked) EwH Transform

We first give the Encrypt-with-Hash transform.

Construction 4.1 (Tweaked Encrypt-with-Hash [BBO07]). Let ΠPKE =
(GenPKE,EncPKE,DecPKE) be a public key encryption scheme. Define ΠEWH =
(GenEWH

O,EncEWH
O,DecEWH

O), where

– GenEWH(1λ): Run (pkPKE, skPKE) ← GenPKE(1λ), sample s ← {0, 1}λ, and
output (pkEWH = (pkPKE, s), skEWH = (skPKE, pkEWH)).

– EncEWH(pkEWH,m) = EncPKE(pkPKE,m; O(s,m) )
– DecEWH(skEWH, c) = DecPKE(skPKE, c).

As discussed in Sect. 1.4, the original EwH transform did not have s, replac-
ing O(s,m) with O(pkPKE,m). However, such a construction gives rise to a much
simpler Type 3 failure. The problem is that the original transform is only secure
in the ROM if ΠPKE is not allowed to query O; if we model the random oracle
model as allowing ΠPKE to query O, then the transform is insecure. In order to
avoid that failure, we introduce the tweaked EwH transform given in Construc-
tion 4.1, which is secure in the ROM, even when ΠPKE can query O.

4.2 Uninstantiability of EwH

Now we explain the uninstantiability result of [BFM15], and how it can be readily
be captured in the AROM. Let Π′

PKE be any public key encryption scheme, G be
a pseudorandom generator, and Obf an obfuscator that is iO secure. [BFM15]
use Π′

PKE to build a new secure public key encryption scheme ΠPKE, such that
when ΠPKE is plugged into Construction 4.1, the resulting ΠEWH is insecure, thus
invalidating the transform in the standard model.

Construction 4.2 (EwH Uninstantiability). ΠPKE is constructed as follows:

– Gen = Gen′

– Enc(pkPKE,m; r = (r0, r1) ): Let y = G(r0) and run c′ ← Enc′(pkPKE,m; y).
Then run P̃ ← Obf(1λ, Pm,y; r1) where Pm,y(f) takes as input the code f for
some function, and checks if G(f(m)) = y; if so Pm,y outputs m, otherwise
it outputs ⊥. Finally output c = (c′, P̃ ).

– Dec(sk, c = (c′, P̃ )): run Dec′(sk, c′).

[BFM15] prove the following, paraphrased into our terminology:

Theorem 4.3. If Construction 4.1 is applied to ΠPKE from Construction 4.2,
then the resulting ΠEWH is not weakly CPA-PRIV in the standard model, even
against 1-sources, regardless of the hash function used to instantiate O.

We sketch the proof. When ΠPKE is plugged into Construction 4.1, the resulting
cryptosystem is completely broken when the random oracle O is replaced by any
concrete hash function H. An adversary, given pkEWH = (pkPKE, s) and (c′, P̃ ) ←
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EncEWH(pkEWH,m) = EncPKE(pkPKE,m; H(s,m) ), constructs the code of the
function f(m′) which outputs r0 computed from (r0, r1) ← H(s,m′). Then it
runs P̃ (f). Recall that P̃ is an obfuscation of Pm,G(r0), and Pm,G(r0)(f) evaluates
G(f(m)), which for our f is exactly G(f(m)) = y, P̃ (f) outputs m.

It remains to show that ΠPKE is a secure public key encryption scheme. We
briefly sketch the argument. By pseudorandomness of G, the first step is to
replace y with uniformly random bits. At this point, since the image of G is
sparse, y is outside the image except with negligible probability. In such a case,
the function Pm,y is actually equivalent to the function that outputs ⊥ on all
inputs. So by the security of the obfuscator (namely indistinguishability obfus-
cation, iO), P̃ can be replaced by an obfuscation of the program that outputs
⊥ everywhere. At this point, P̃ contains no information about m or y, so m is
hidden by the assumed security of Π′

PKE.

4.3 Translation to the AROM

We now explain how the above is readily captured by the AROM. Concretely,
we will prove the following:

Theorem 4.4. For general CPA secure ΠPKE, the (tweaked) EwH is not weakly
CPA-PRIV in the AROM, even when restricting to 1-sources.

Proof. M will be the combination of three different M ’s: MPKE which imple-
ments a public key encryption scheme (in order to obtain Π′

PKE), MG which
implements a pseudorandom generator (to obtain G), and MObf , which imple-
ments an obfuscation scheme (in order to obtain iO).

MPKE. Here, we model an ideal public key encryption scheme, following [ZZ20].
Let K,E be random injections. We assume the inverse of an injection outputs
⊥ if evaluated on a point not in the image. MPKE offers three kinds of queries:

– gen queries: takes as input a string sk, and returns pk = K(sk).
– enc queries: takes as input pk,m, r, and returns E(pk,m, r)
– dec queries: takes as input sk, c. Compute d = I−1(c). If d 
= ⊥, then parse

d = (pk,m, r). If pk = K(sk), then return m. Otherwise return ⊥.

Relative to MPKE, a public key encryption scheme Π′
PKE unconditionally exists:

Gen′ simply sets sk to be its random coins, and computes and outputs pk = K(sk)
by making a gen query. Then Enc′(pk,m; r) = E(pk,m, r) using an enc query,
and Dec′(sk, c) makes a dec query on sk, c to produce m. As explained by [ZZ20],
the resulting scheme is readily shown to be CPA secure (and much more) against
query-bounded adversaries.

MG. This is just an expanding random oracle. Namely, MG will just be an expand-
ing random oracle G, independent of K,E. Expanding random oracles are triv-
ially pseudorandom generators.
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MObf . This is the obfuscation model proposed by Asharov and Segev [AS15],
except extended to allow programs that also query MG. Let I be a random
injection. Then MObf will offer two kinds of queries:

– obfuscate queries: takes as input the description of a program P and random
coins r; it returns P̃ = I(P, r).

– eval queries: takes as input a string P̃ and input x. Compute d ← I−1(P̃ ).
If d 
= ⊥, then parse d as P, r and output P (x). Otherwise output ⊥.

Importantly, we will allow the inputs P to obfuscate to be oracle-aided
programs, making queries to G and more importantly to O. During the com-
putation of P (x) in an eval query, MObf will forward queries to G to MG and
queries to O to the random oracle O. We can then have Obf(P ; r) simply make
an obfuscate query on (P, r). It is straightforward that Obf is iO secure for such
oracle-aided programs, and even VGB secure. In fact, it is even virtual black box
(VBB) secure, which is known to be impossible in the standard model. However,
we only need that it is iO. In fact, we could replace MObf with any model that
implements obfuscation, so long as (1) the obfuscator was iO secure, and (2) the
input programs could query G and O.

The final M is just the combination (MPKE,MG,MObf). At this point, the
proof of Theorem 4.4 proceeds almost identically to Sect. 4.2, with Π′

PKE instan-
tiated by MPKE, G instantiated by MG, and Obf instantiated by MObf . The main
difference is that we need f to be oracle-aided, making queries to O. In turn,
this means Pm,y must also be oracle-aided, now making queries to both O and
G. Fortunately, MObf acts on such oracle-aided programs. We derive ΠPKE as in
Construction 4.2, and security of ΠPKE, relative to M , follows by an identical
argument relying on the security of Π′

PKE,G, and Obf.
The attack is also quite similar. An adversary, given pkEWH = (pkPKE, s)

and (c′, P̃ ) ← EncEWH(pkEWH,m) = EncPKE(pkPKE,m; O(s,m) ), constructs the
(oracle-aided) code of the function f(m′) with s hardcoded, which outputs r0
computed from (r0, r1) ← O(s,m′). This f makes queries to O.

Then it computes P̃ (f) by making an eval query on (P, f). MObf will respond
by computing Pm,y(f) where y = G(r0). Pm,y(f) evaluates G(f(m)), which for
our f is exactly y. Since G(f(m)) = y, the eval query outputs m in the clear.
This completes the proof of Theorem 4.4. �

4.4 An Improved Uninstantiability

Here, we improve the computational assumptions needed for the uninstantiabil-
ity of EwH. While a potentially interesting fact on its own, our improvement
also illustrates the need for flexibility in M in order for the AROM to capture a
wide variety of uninstantiability results.

Concretely, we show that it suffices to assume compute-and-compare obfus-
cation and fully homomorphic encryption, both of which can be instantiated
under circularly-secure LWE.
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Construction 4.5 (Impossibility). Let Π = (Gen,Enc,Dec) be any public key
encryption scheme, Πfhe = (Genfhe,Encfhe,Decfhe,Evalfhe) be any FHE scheme,
and Obf a compute-and-compare obfuscator. Let G be a PRG. Define ΠPKE =
(GenPKE,EncPKE,DecPKE) to be the following

– GenPKE(1λ) = Gen(1λ).
– EncPKE(pk,m): choose a random r and compute c ← Enc(pk,m; r). Sample

(pkfhe, skfhe) ← Genfhe(1λ) and compute d ← Encfhe(pkfhe,m). Let y0 = G(r)
and y1 be uniformly random. Let b the first bit of m. Finally let P̃ ←
Obf(1λ,CCG(Decfhe(skfhe, · )),yb

) 9. Output (c, pkfhe, d, P̃ ).
– DecPKE(sk, (c, pkfhe, d, P̃ ) ): Output Dec(sk, c).

The following theorems prove the uninstantiability result; due to lack of space
we defer the proofs to the Full Version [Zha22].

Theorem 4.6. If Construction 4.1 is applied to ΠPKE from Construction 4.5,
then the resulting ΠEWH is not weakly CPA-PRIV in the standard model, even
against 1-sources, regardless of the hash function used to instantiate O.

Theorem 4.7. If Π is sub-exponentially CPA secure, Πfhe,Obf are polynomially
secure, and G is pseudorandom against sub-exponentially hard computationally
unpredictable sources, then ΠPKE is CPA secure.

Note that the necessary G can be constructed from sub-exponentially hard LWE,
following ideas from Brakerski and Segev [BS11] and Zhandry [Zha16].

4.5 Other Possible Oracles

Our improved uninstantiability result shows that it is also important to consider
oracles other than MObf , to adequately capture all the non-black-box techniques
that may be used. It is not difficult to come up with oracles MFHE that imple-
ment fully homomorphic encryption, where the homomorphic operations may
include O gates. This allows the AROM to capture our improved uninstantiabil-
ity above. Another limitation of MObf pointed out by Asharov and Segev [AS15]
is that it fails to capture NIZKs, another common tool in constructions using
iO. In the AROM, we can easily create an oracle MNIZK that provides a NIZK
proof functionality for statements that involve queries to O. We can similarly
define oracles for any other non-black box tool applied to circuits that involve
O queries, and even oracles combining all of the above. Thus, as long as the
non-black-box techniques are simply using that the hash function has code that
can be run—but not using any particular features of that code—it seems that
all such techniques are captured by the AROM. Hence, AROM security provides
compelling resiliency to such techniques. This will be the focus of Sect. 4.6.

9 Recall CCG(Decfhe(skfhe, · )),yb
is the program x �→ G(Decfhe(skfhe, x)) == yb.
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Non-examples. There are oracles that are non-examples. Most prominently would
be Simon’s oracle [Sim98], which finds collisions in functions without violating
one-wayness. This oracle makes exponentially-many queries to the random ora-
cle, thereby learning its entire truth table, and also cannot be efficiently simu-
lated in any way. More generally, Simon’s oracle is an example of the common
“two oracle trick” in black box separations, where one oracle implements a cryp-
tosystem B, but another oracle is designed to break any instantiation of C.

4.6 Overcoming ROM Failures for EwH

We now explain how to achieve deterministic encryption in the AROM, despite
known uninstantiability results for EwH working in the AROM.

At first glance, proving security in the AROM appears non-trivial: how do you
reason about any possible oracle M , which may implement arbitrarily complex
functionalities? Imagine, for example, that M directly provides oracles imple-
menting a cryptosystem Π as in MPKE. But M knows the injections being used
to define the cryptosystem, meaning M itself can internally invert this injection,
learning the secret key for any public key. For a given transform T , one could
plausibly augment this M with a break functionality, that breaks Π whenever
it is used inside T , but leaves Π as secure when used “honestly.” Any security
proof would have to rule out such a M .

Now, the obvious solution is a reduction: showing that any adversary for
TΠ can be converted into an attacker for Π. Thus, if M provided a mechanism
to break TΠ , it would contradict that Π is secure. This is the approach we
follow. But in the AROM, devising a reduction is nevertheless non-trivial. If the
reduction could be performed exactly as it would in the standard model, there is
no need to work in the ROM or AROM in the first place. So for the transforms
we consider, the reduction will be making non-trivial use of the random oracle O.
But it also cannot just freely program the random oracle seen by the adversary
as in typical ROM proofs: the reduction must result in an adversary for Π,
which makes queries to M (since that is how Π was constructed) which in turn
makes queries to O. Thus if we try re-programming O, it will be inconsistent
with the “true” O. Since the adversary has indirect access to the true O, this
re-programming could plausibly be detected, causing the adversary to abort.
How do we structure the proof in such a way that this detection is not possible,
regardless of the structure of M?

Looking ahead, our solution will first use the security property of Π to move
to a hybrid; this step is a standard reduction and does not make any particular
use of the random oracle. Then in the hybrid, a statistical property will hold.
This statistical property allows us to establish some security against M itself,
which we then use to carefully program the random oracle, etc.

We now explore how to implement this vague idea in the case of EwH (Con-
struction 4.1) in order to make it secure. In particular, we consider strengthening
Π to being lossy (Definition 2.8). Observe that the uninstantiability of [BFM15]
detailed in Sect. 4.2 uses a non-lossy public key encryption scheme. Afer all, the
program P̃ is an obfuscation of Pm,y, which has the message m hard-coded.
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While m is presumably hidden computationally, m determines the program’s
behavior and therefore is information-theoretically determined by P̃ . Thus, even
if, say, the original encryption scheme Π′

PKE were lossy, the resulting scheme in
Construction 4.2 will never be lossy.

We show that this limitation of [BFM15] is inherent: that EwH is weakly
CPA-PRIV in the AROM if using a lossy encryption scheme10. Since the tech-
niques of [BFM15] are captured by the AROM, we thus show that the techniques
cannot extend to EwH when using lossy encryption. We note that weak CPA-
PRIV implies correlated-input secure one-way functions, which Wichs [Wic13]
shows cannot be proved secure using black-box reductions to any falsifiable
assumption. This means some idealized model is necessary for security of EwH.

Theorem 4.8. If ΠPKE is lossy, then ΠEWH is weakly CPA-PRIV in the AROM.

Proof. Consider a distribution M over oracles M , and some lossy encryption
scheme ΠPKE = (GenPKE

O,MO

,EncPKE
O,MO

,DecPKE
O,MO

,GenLossyPKE
O,MO

) in
the M-AROM. Let ΠEWH

O,MO

be the result of applying EwH to ΠPKE.
Consider an �-source DO,MO

, which we assume to be statistically unpre-
dictable in the M-AROM. Let AO,MO

be a CPA-PRIV adversary with advan-
tage ε. We now define hybrids:

Hybrid 0. Here, A plays the CPA-PRIV game against Γ and D, with b = 0. This
means A receives aux and encryptions of m∗

i,0, where (m∗
1,0, . . . , m

∗
�,0, aux) ←

DO,MO

(1λ). Let p0 be the probability A outputs 1.

Hybrid 1. Here, we switch pkPKE to be generated by pkPKE ← GenLossyPKE(1λ).
Let p1 be the probability A outputs 1. By the assumed lossiness of ΠPKE in the
M-AROM, we must have |p1 − p0| is negligible.

Hybrid 2. This is identical to Hybrid 1, except that the experiment immediately
aborts if GenLossy or D (when being run by the experiment) ever make a query
O(s,m∗

i,b) for some i ∈ [�], b ∈ {0, 1}, or if they make a query to M that triggers
such a query to O. Here, m∗

i,1 are sampled as uniformly random distinct messages.
Let p2 be the probability A outputs 1. Notice that GenLossy and D only receive
1λ as input, and so are independent of s. Since M is complexity preserving and
GenLossy,D are efficient, they can only trigger a polynomial number of queries
each, so the probability of such a query is negligible. Hence |p2−p1| is negligible.

Observe that in Hybrid 2, the very first queries to O(s,m∗
i,0) for any i ∈ [�]

are when running EncEWH(pkEWH,m∗
i,b) = EncPKE(pkPKE,m

∗
i,0; O(s,m∗

i,0) ). Note
that each of the m∗

i,0 are distinct, so all such first queries are distinct.

Hybrid 3. This is the same as Hybrid 2, except that the experiment aborts if there
are any queries to O(s,m∗

i,b) occurring after those by EncEWH(pkEWH,m∗
i,0). Let

p3 be the probability A outputs 1. We will prove |p3 − p2| is negligible shortly.

10 We do not know how to prove CCA-PRIV or strong security for this construction.
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In Hybrid 3, since O(s,m∗
i,0) is only ever answered once, namely inside

EncEWH(pkEWH,m∗
i,0), the random coins generated in each call to EncEWH are

random and independent of the rest of the experiment. Thus, Hybrid 3 is equiv-
alent to giving A the ciphertexts EncPKE(pkPKE,m

∗
i,0) for fresh random coins.

Hybrid 4. This is the same as Hybrid 3, except that we switch the ciphertexts
given to A to be EncEWH(pkEWH,m∗

i,1) for uniformly random m∗
i,1. Let p4 be the

probability A outputs 1. As in Hybrid 3, the experiment is equivalent to the
ciphertexts being EncPKE(pkPKE,m

∗
i,1) for fresh random coins. By the lossiness

of EncPKE, |p4 − p3| is negligible.
We now prove |p3 − p2| negligible. First, since m∗

i,1 are random distinct mes-
sages that are independent of the view of the experiment in Hybrid 2, the prob-
ability of querying on O(s,m∗

i,1) is negligible. Now we consider the first query
of the form O(s,m∗

i,0) triggered after EncEWH in Hybrid 2. Up until this point,
Hybrids 2, 3, and 4 is statistically close. But in Hybrid 4, prior to any O(s,m∗

i,0)
query, the experiment only uses m∗

i,1, and not the m∗
i,0. Hence, the m∗

i,0 remains
statistically independent of the view of the experiment up until this point. Mak-
ing a query on m∗

i,0 would thus violate the statistical unpredictability of D, and
hence can only occur with negligible probability.

Hybrids 5,6, and 7. These are the same as Hybrids 2,1, and 0, respectively, except
that the messages being encrypted are m∗

i,1. Let p5, p6, p7 be the probabilities of
outputting 1. By analogous arguments, we have that |p5 − p4|, |p6 − p5|, |p7 − p6|
are all negligible. Hence |p7−p0| is negligible. But notice that Hybrid 7 is exactly
the CPA-PRIV game with b = 1, and so |p7 − p0| = ε is the advantage of A.
This completes the proof. �

5 Fujisaki-Okamoto in the AROM

Here, we explore the insecurity of the Fujisaki-Okamoto (FO) transform [FO99]
in the AROM. Recall that FO starts with ΠPKE = (GenPKE,EncPKE,DecPKE)
and ΠSKE = (EncSKE,DecSKE), which are public key and secret key encryption
schemes. Ciphertexts are then

( c := EncPKE(pk, δ; O(0, δ, d) ) , d := EncSKE( O(1, δ) ,m) ) .

Note that, because EncPKE never “sees” d, the Type 2 impossibility of the un-
tweaked EwH does not seem to apply. For simplicity, we therefore stick with the
usual description of FO; we could also define a tweaked version with an s as in
Sect. 4.1, and everything we say below will still apply.

That FO is insecure for general PKE already follows from [BFM15] following
a similar proof as the EwH setting, and the insecurity readily carries over to the
AROM following a very similar outline as in Sect. 4.3. In fact, unlike EwH, FO
remains insecure in the AROM, even if ΠPKE is lossy:

Theorem 5.1. For general lossy ΠPKE and even perfectly secure ΠSKE, FO is
not secure in the AROM.
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Proof. We start with an oracle MO which contains families of private random
permutations P,Q, and answers the following queries:

– (Gen, 1λ, s): Output (pk = P (s, 0), sk = s).
– (GenLossy, 1λ, s): Output pk = P (s, 1).
– (Enc, pk,m, r): If P−1(pk) = (sk, 0) for some sk, output c = Q(pk,m, r).

Otherwise output c = Q(pk, 0, r).
– (Dec, sk, c): Compute (pk,m, r) = Q−1(c). If pk = P (sk, 0), output m. Other-

wise output ⊥.
– (Forward, x): Output O(x).

M clearly can be used to realize a lossy encryption scheme ΠPKE. We instantiate
EncSKE with the one-time pad. Let ΠFO = (GenFO

O,MO

,EncFO
O,MO

,DecFO
O,MO

)
be the result of applying the FO transformation to this lossy encryption scheme.
Under M as is, ΠFO actually will be CCA-secure. We now add two more types
of queries to M , which make use of another private random oracle R.

– (EncRand, pk): Compute (m, r) = R(pk) and output c ← EncFO
O,MO

(pk,m; r)
– (Break, pk,m): Compute (m′, r) = R(pk) and (sk, b) ← P−1(pk). If m = m′,

output sk.

We claim that the addition of these queries preserves the lossiness of ΠPKE.
Indeed, suppose an adversary is trying to distinguish pk being lossy from regular.
An EncRand query on pk does not help: it is just an encryption of a random
ciphertext under FO, which the adversary could simulate for itself. On the other
hand, suppose it makes a Break query on (pk,m) that causes it to output sk.
Consider the first such query. In this case, the adversary must have been able to
previously learn the plaintext encrypted in the EncRand query. Since the query
was just a random ciphertext, such an adversary can be turned into an adversary
against the CPA-security for ΠFO in the setting of only Gen, GenLossy, Enc, Dec
queries, which we already know is impossible.

However, these queries clearly allow for for CCA attacks on ΠFO: simply
make an EncRand query on the public key, and then make a CCA query on the
resulting ciphertext. Then feed the result into a Break query, revealing the secret
key. �

The above “attack” is quite general: it is not clear that it used any particular
structure of ΠFO. In the following subsection, we will nevertheless show how to
modify the construction to achieve CCA security. Very roughly, the way we get
around the issue above is by having a public key comprise of several public keys
for ΠPKE. What we will see is that this lets us simulate CCA queries by ourselves.
Then the ability to perform EncRand and Break queries will directly allow us to
break the security of the underlying encryption scheme. Note that our proof will
be much more general, applying to any oracle M .
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5.1 Our CCA-secure Construction

Construction 5.2 (CCA-Secure PKE in the AROM). Let ΠPKE =
(GenPKE,EncPKE,DecPKE) and ΠSKE = (EncSKE,DecSKE) be public key and secret
key encryption schemes, respectively. Let ΠSig = (GenSig,SignSig,VerSig) be a sig-
nature scheme. Define ΠCCA = (GenCCA

O,EncCCA
O,DecCCA

O), where

– GenCCA
O(1λ): Let � be the bit-length of vk generated by GenSig(1λ). For

i ∈ [�], b ∈ {0, 1}, run (pkPKE
(i,b), skPKE

(i,b)) ← GenPKE(1λ). Output pkCCA =
(pkPKE

(i,b))i,b and skCCA = ((skPKE(i,b))i,b, pkCCA).
– EncCCA

O(pkCCA,m): Sample (vk, skSig) ← GenSig(1λ). Sample δ ← {0, 1}λ.
Run d ← EncSKE(O(vk, δ) , m), ci ← EncPKE(pkPKE

(i,vki), δ; O(δ, i, d, vk) )
for i ∈ [�]. Finally compute σ ← SignSig(skSig, ((ci)i, d) ). Output c =
(vk, (ci)i, d, σ).

– DecCCA
O(skCCA, c): First run VerSig(vk, ((ci)i, d) , σ); if it rejects immedi-

ately abort and output ⊥. Otherwise run δ ← DecPKE(skPKE(1,vk1), c1). For
each i > 1, check that ci = EncPKE(pkPKE

(i,vki), δ; O(δ, i, d, vk) ); if any
of the checks fail immediately abort and output ⊥. Finally, output m ←
DecSKE(O(vk, δ) , d).

Correctness is immediate from the correctness of the underlying protocols. We
now state the security theorem:

Theorem 5.3. If ΠPKE is lossy, ΠSKE is one-time secure, and ΠSig is strongly
one-time secure, then ΠCCA is CCA secure in the AROM.

Due to lack of space, we defer the proof to the Full Version [Zha22]. The
idea is to change some of the public keys to be lossy, so that the challenge
query invokes only lossy keys but all CCA queries invoke at least one non-lossy
key. This allows us to decrypt all CCA queries, while being able to leverage an
argument similar to Theorem 4.8 for EwH to show that the challenge message
remains hidden.

6 Fiat-Shamir in the AROM

Fiat-Shamir (FS) [FS87] reduces interactive public coin protocols into a single
message. There are two variants: interactive into non-interactive arguments, and
identification protocols into signatures. We will focus on argument systems.

Let P (x,w) ↔ V (x) be a proof system for an NP language L, where x is an
instance and w a witness. The system is a sound proof if, for any x /∈ L and
any potentially unbounded cheating prover P ∗(x), P ∗(x) ↔ V (x) causes V to
accept with only negligible probability. The system is a sound argument if the
above holds for only computationally efficient P ∗. The system is public coin if
V ’s messages are uniform random strings.

Consider a 3-message public coin proof system, where the prover goes first.
Let (a, c, r) be the three messages. The Fiat-Shamir transform compiles such a
system into a non-interactive proof, by running P (x,w) but where the verifier’s
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message c is set to O(s, a), resulting in (a, c = O(s, a), r). Here, s is a common
reference string (CRS), and is needed to enforce domain separation to avoid
trivial Type 2 impossibilities if the underlying proof system can query O. The
verifier then just checks the validity of the transcript (a, c, r), and also that
c = O(s, a).

Heuristically, one may expect the resulting system to be sound, since the
soundness of P, V relied on the un-predictability of c, which seems to hold when
deriving c from a good hash function. In the ROM, one can prove this intuition,
as shown by [BR93]. Unfortunately, Goldwasser and Kalai [GK03] show that
this is not the case in the standard model for general arguments. Following
similar ideas to the EwH and FO cases, in the Full Version [Zha22], we show the
following:

Theorem 6.1. For general arguments, FS is not secure in the AROM.

On the other hand, we show that if the proof system is an actual proof (that
is, it has statistical soundness), then Fiat-Shamir is secure:

Theorem 6.2. FS is secure in the AROM for statistically sound proofs, assum-
ing |s| ≥ |a| + |r| + ω(log λ).

The security of FS for proofs has been explicit conjectured by [BLV03], but a
Type 5 impossibility was shown by [BDG+13], showing that FS cannot be proved
in the standard model relative to standard assumptions. Thus, an idealized model
seems inherent in any justification for security. The proof of Theorem 6.2 is
given in the Full Version. The idea is that we can turn any adversary for FS
in the AROM into a computationally unbounded adversary for the underlying
proof system. The proof system adversary will essentially brute force the entire
oracles O and M , and then use this knowledge to undetectably simulate a re-
programmed oracle to the FS adversary.

Remark 6.3. The FS transform is not zero knowledge in the AROM, as the
usual zero knowledge proof requires the simulator to be able to program the
random oracle, which we disallow due to concerns about Type 4 impossibilities.
One option is to use Lindell’s transformation [Lin15], which includes a dual-
mode commitment that provides a trapdoor for simulation. Another simpler
option is to change the way c is computed to ci = O(i, si, a), where ci is the
i-th bit of c, and the CRS is s = (si)i where each si is |a| + |r| + ω(log λ)
bits. Now zero knowledge follows from the honest-verifier zero knowledge of
(Prov,Ver): first simulate (a, c, r) for (Prov,Ver), and then choose random si

such that ci = O(i, si, a).

Remark 6.4. Our proof above is not amenable to the case of signatures, as we
would need a way to answer signing queries without knowing the witness. This is
usually accomplished via random oracle programming. Our techniques only allow
for programming using an inefficient reduction. But it seems when programming
the oracle to answer signing queries, we need the reduction to remain efficient,
since an inefficient reduction could have brute-forced the signatures by itself. We
therefore leave the signature case as an interesting open question.



Augmented Random Oracles 61

7 On Best Possible Hashing

In this section we identify two security properties that are trivially satisfied by
random oracles, and each have standard-model instantiations with different hash
functions. Yet no single hash function can satisfy both properties.

The two properties are anti-lossiness (Definition 2.4) and one-wayness against
auxiliary input (Definition 2.5).

Anti-lossiness. Recall that anti-lossiness asks that there is no hashing key that
makes the function so lossy so as to have predictable outputs when the input
is random. Anti-lossiness is a natural property of hash functions, and is likely
satisfied by efficient hash functions such as SHA2, where we turn SHA2 into a
keyed hash function by simply concatenating the key with the input. After all, the
existence of keys/prefixes that allow the output of SHA2 to be predicted would
be considered a major weakness of the hash function. It is also easy to construct
anti-lossy hash functions information-theoretically, and using public key tools we
can even construct collision resistant anti-lossy functions. For example, for key
k = (g, h), the map (x, y) → gxhy is collision resistant (assuming discrete log)
and anti-lossy. If we treat a random oracle as a keyed function by concatenating
the key to the input, random oracles are also trivially anti-lossy.

One-wayness against auxiliary input. Recall that one-wayness against auxiliary
input requires that the function remains one-way even against all computation-
ally unpredictable 1-sources. Zhandry [Zha16] constructs such functions under
the assumed exponential hardness of DDH. A random oracle (treating it as keyed
by concatenating the key to the input) also trivially satisfies this notion in the
plain ROM: this is just a simple consequence of random oracles being universal
computational extractors [BHK13].

7.1 Incompatibility of the Definitions

Theorem 7.1. Assuming VGB obfuscation, there is no hash function H that is
both anti-lossy and auxiliary input one-way.

Proof. The proof is closely related to the insecurity auxiliary input DDH, as
shown by [BST16]. Our insight is to identify anti-lossiness as the specific property
off DDH that facilitates the proof [BST16]. Let H be any hash function. Our
distribution D(1λ) samples a uniformly random x. It then lets Px(k, y) be the
program with x hard-coded, which outputs x if and only if H(k, x) = y; otherwise
it outputs 0. D then outputs (x, aux = Obf(1λ, Px) ). �

Lemma 7.2. If H is anti-lossy, then D is computationally unpredictable.

Proof. Suppose towards contradiction that there is an adversary A for the unpre-
dictability of D. In other words, A learns x from Obf(1λ, Px), for a uniform choice
of x. By VGB security, there must therefore be an inefficient but query-bounded
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simulator S such that SPx(1λ) outputs x with non-negligible probability. Con-
sider any query (k, y) that S makes to Px. By statistical unpredictability, with
overwhelming probability H(k, x) 
= y, and so the query response is 0. By a
simple hybrid over all queries, with overwhelming probability the answers to all
queries are 0, in which case the view of S is independent of x. Hence S cannot
output x except with negligible probability, a contradiction. �

We now finish the proof of Theorem 7.1. If given k, y = H(k, x) and aux, we
can simply run the program aux on k, y; the result is Px(k, y), which outputs x
since y = H(k, x). Hence, H cannot be one-way against the source D. �

Note that, if H is not anti-lossy, then D may be computationally predictable.
This is exactly what happens with Zhandry’s ELFs. Thus, even though H is not
one-way against D, there is no contradiction since D is not a valid source.

We now explain that Theorem 7.1 easily translates to the AROM:

Theorem 7.3. There is no hash function in the AROM that is both anti-lossy
and auxiliary input one-way.

We sketch the proof due to lack of space. In the AROM, we simply use the
obfuscation oracle MObf from Sect. 4.3 to implement Obf (MObf is not only iO,
but trivially VGB and even VBB). The rest of the proof of Theorem 7.1 is readily
adapted to use MObf instead of Obf.

By Corollary 3.7, we know that O is anti-lossy in the AROM. Thus, we
conclude O is not auxiliary input one-way in the AROM. We note that this
does not contradict Theorem 3.6, as auxiliary input one-wayness is not single-
stage owing to D and A being isolated adversaries, and hence the AROM and
ROM are not equivalent for this security property. Thus, we see that the AROM
appears to reflect the security of standard hash functions such as SHA2.
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Abstract. Generic groups are an important tool for analyzing the feasi-
bility and in-feasibility of group-based cryptosystems. There are two dis-
tinct wide-spread versions of generic groups, Shoup’s and Maurer’s, the
main difference being whether or not group elements are given explicit
labels. The two models are often treated as equivalent. In this work,
however, we demonstrate that the models are in fact quite different, and
care is needed when stating generic group results:

– We show that numerous textbook constructions are not captured
by Maurer, but are captured by Shoup. In the other direction, any
construction captured by Maurer is captured by Shoup.

– For constructions that exist in both models, we show that security
is equivalent for “single stage” games, but Shoup security is strictly
stronger than Maurer security for some “multi-stage” games.

– The existing generic group un-instantiability results do not apply to
Maurer. We fill this gap with a new un-instantiability result.

– We explain how the known black box separations between generic
groups and identity-based encryption do not fully apply to Shoup,
and resolve this by providing such a separation.

– We give a new un-instantiability result for the algebraic group model.

1 Introduction

Generic groups [Nec94,Sho97,Mau05] are idealized cryptographic groups where
group operations are carried out by making queries to a group oracle, each query
incurring unit cost. For both adversaries and constructions, generic groups cap-
ture natural generic algorithms which do not make any use of the particular fea-
tures of the group in question, and instead only perform legal group operations.

There are plenty of valid criticisms of generic groups (e.g. [Fis00,KM06]),
and like random oracles, generic groups cannot exist in the real world [Den02].
Nevertheless, cryptographic groups are one of the core cryptographic building
blocks, and generic groups are critical to our understanding of the feasibility and
infeasibility of group-based cryptosystems. The best practical attacks on many
cryptosystems built from appropriate cryptographic groups are often generic.
What’s more, many of the most efficient schemes have only generic group proofs.
As just one example, adaptive security is usually straightforward with generic
groups. In contrast, standard model proofs of adaptive security often require
c© International Association for Cryptologic Research 2022
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more complex and less-efficient cryptosystems, such as the dual system method-
ology [Wat09]. Additionally, even cryptosystems with a standard-model security
proof rely on computational assumptions, and for groups, there are many. When
new such assumptions are made, they are often accompanied by a generic group
proof of hardness, which at least demonstrates the lack of obvious flaws.

Moreover, generic groups are critical for black box separations, show-
ing barriers to achieving various cryptographic objects from groups. Such
barriers are important for the design of cryptosystems, even if one objects
to using generic groups in security proofs. Examples of objects separated
from generic groups include identity-based encryption [PRV12,SGS21], order
revealing encryption [ZZ18], types of delay functions [RSS20], and accumula-
tors [SGS20]. An impossibility relative to generic groups helps guide protocol
design by showing what kinds of techniques will be required. While non-black box
techniques can sometimes overcome such impossibilities—famously, IBE from
the Diffie-Hellman assumption [DG17], for example—the use of such techniques
almost always makes the results impractical. Thus, generic group impossibilities
most likely rule out any practical protocol based on cryptographic groups.

Two Different Generic Groups. Since first proposed by Nechaev [Nec94], two
different flavors of generic groups have emerged. The first is Shoup’s [Sho97],
where the group is modeled as a random embedding of the additive group Zp

into bit strings, with the group operations carried out by making oracle queries.
Later, Maurer [Mau05] proposed a different model that uses pointers instead

of a random representation. The oracle initializes a table with various values
in Zp, representing exponents in the group. The adversary cannot access the
values directly, but just knows their line numbers in the table. The adversary
then outsources linear computations on the table to the oracle.

Shoup and Maurer are the main approaches used in the literature. Numer-
ous works (e.g. [BFF14,BCFG17,AY20,CL20,CH20]) actually treat the mod-
els as identical, simply referring to both as the generic group model. Some of
these works justify this lack of distinction by pointing to a result of Jager and
Schwenk [JS08], which provides some sort of equivalence between Shoup and
Maurer. But Maurer, Portmann, and Zhu [MPZ20] find that Maurer’s model
allows for stronger hardness proofs, seemingly contradicting [JS08]. Recent works
of Schul-Ganz and Segev [SGS20,SGS21] briefly argue that the equivalence only
applies to problems that are defined “independent of the representation” of
the group, and more generally the models are incomparable. The relationship
between the models is not further explored, and it is not clarified what “inde-
pendent of the representation” means. But the purpose of the generic group
models is precisely to capture algorithms that work in any group, regardless of
representation!

The above state of affairs makes it hard to interpret and compare the various
positive and negative results using generic groups.
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1.1 Overview of Results

In this work, we address the important questions above by giving a detailed
comparison between the models.

The Type-Safe Model. First, we point that many works, primarily those proving
black box separations, claiming to use Maurer’s model actually do not operate
in the model Maurer originally defined. Whereas Maurer’s original model has
algorithms outsourcing their group computations to a stateful table, many works
instead have the algorithms perform the operations locally, but constrain the
algorithms to performing only legal group operations through a simple type
system. We argue that this is technically a different model than Maurer’s original
model. However, we observe that Maurer’s model is actually poorly suited for
the setting of general cryptosystems1, and that the type-system based model
implicitly used in many works is in fact the more appropriate model. We therefore
formalize this model, which we call the Type-Safe (TS) generic group model.

Likewise, throughout this work, we will refer to Shoup’s model as the Random
Representation (RR) model, to give it a more descriptive name.

From TS/Maurer to RR/Shoup for Cryptosystems (Section 3). For now we ignore
security, and just discuss whether group-based cryptosystems exist in one model
or the other. We generalize one direction of the proof of Jager and Schwenk [JS08]
from algorithms to general cryptosystems, showing that:

Theorem 1.1 (Informal). Any cryptosystem in the TS/Maurer model also
exists in the RR/Shoup model.

Separations for Cryptosystems (Section 4). We then observe that the converse
does not hold. Concrete cryptosystems that do not work in the TS model
include the Blum-Micali PRG [BM82] and the Goldreich-Goldwasser-Micali
PRF [GGM84]. Worse, we show that several primitives are simply impossible:

Theorem 1.2 (Informal). Pseudorandom permutations, domain extension for
collision resistant hashing, and encryption with additive ciphertext size overhead
are each impossible in the TS/Maurer model.

The applications excluded by Theorem 1.2 follow from textbook techniques that
are taught in many introductory cryptography courses. These techniques work
in the standard, RR/Shoup, and even random oracle models, the last often being
treated as weaker than generic groups.

Remark 1.3. The recent works of [RSS20] and [DHH21] already, perhaps unin-
tentionally, provide separations. [RSS20] proves delay functions impossible in
the TS/Maurer model and [DHH21] proves signatures impossible. However, the

1 It appears it was never meant to be: Maurer discusses several classes of problems to
consider in his model, capturing discrete log, DDH, and more exotic variants. But
general cryptosystems are not covered by the classes of problems.
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RR/Shoup model implies random oracles [ZZ21], and both delay functions and
signatures can readily be constructed assuming random oracles. Signatures can
even be constructed from cryptographic groups in the standard model [Rom90].
We note that the purpose of these works was not to demonstrate limitations
of the TS/Maurer model relative to RR/Shoup: [RSS20] argues for the diffi-
culty of constructing group-based VDFs and time-lock puzzles, and [DHH21]
seeks to explain challenges in efficient group-based signatures. Nevertheless, a
separation was a perhaps unintended consequence of their results. Our results
show that the case of delay functions and signatures were not isolated incidents,
and the inability of cryptosystems to work in the TS/Maurer model is in fact
wide-spread.

Remark 1.4. The above results (including those of [RSS20] and [DHH21]) show
that the TS/Maurer model is actually incomparable to the random oracle model
(ROM): public key encryption exists in the TS/Maurer model but not in the
ROM [IR89], while the above results give examples that exist in the ROM but
not TS/Maurer. This is in contrast to the RR/Shoup model, which is known to
be strictly stronger than random oracles [ZZ21].

Security in RR/Shoup vs TS/Maurer (Section 5). We next turn to discussing
whether schemes are secure in the models. We give two theorems, which are
adaptations of the two directions of the proof of [JS08]:

Theorem 1.5 (Informal). Amongst cryptosystems in TS/Maurer (and hence
also RR/Shoup), security in RR/Shoup implies security in TS/Maurer.

Theorem 1.6 (Informal). Amongst cryptosystems in TS/Maurer, if the secu-
rity experiment is single-stage, then security in TS/Maurer implies security in
RR/Shoup.

Single-stage means there is a single adversary party; such games capture most
of the basic security properties, from one-way functions to public key encryption
and more. This is in contrast to multi-stage games, which communicate with mul-
tiple adversaries that have restricted communication. Multi-stage games include
deterministic public key encryption (the message distribution is an additional
adversary) and leakage resilience (the leakage function is an adversary).

We complement the above theorems by showing that, in the multi-stage
setting, TS/Maurer security does not imply RR/Shoup security. Concretely:

Theorem 1.7 (Informal). There exists a deterministic PKE in TS/Maurer
(and therefore also in RR/Shoup), which is secure in TS/Maurer, but is insecure
in RR/Shoup and insecure in any standard-model instantiation.

Thus TS/Maurer and RR/Shoup are equivalent for single-stage games (pro-
vided the game works in TS/Maurer), but TS/Maurer is strictly less sound than
RR/Shoup in the multi-stage setting.
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On the Un-instantiability of Generic Groups (Section 6). Next, we consider the
well-known criticism of generic groups that there are (contrived) schemes secure
in the generic group model that cannot be securely instantiated under any group.
This was proved by Dent [Den02] by adapting similar results for random oracles
due to Canetti, Goldreich, and Halevi [CGH98]. There are now numerous ways
to achieve the same result [Nie02,GK03,BBP04,BFM15]. These results typically
work by having a branch in the honest algorithms that is completely insecure,
say by outputting the secret key in the clear. These branches cannot be triggered
in the ideal model, but can be triggered under any instantiation of the group.

However, we observe that the vast majority of these results only apply
in RR/Shoup: basically the trigger is detected using the bit representation of
group elements. In fact, we show that the paradigm of correlation intractabil-
ity underlying many of these results cannot be used in TS/Maurer. Existing
un-instantiability results that apply in TS/Maurer [BCPR14] correspond to a
multi-stage game (extractable OWFs), and require indistinguishability obfusca-
tion, a strong tool not known to be implied by any assumption on groups. Our
deterministic PKE scheme is unconditional, though still multi-stage. The prior
work therefore leaves open the tantalizing possibility of a standard model group
which securely instantiates any single-stage TS/Maurer game. We refute this:

Theorem 1.8. There exists a plain public key encryption (PKE) scheme and
one-time message authentication code (MAC)2 in the TS/Maurer model (and
therefore also RR/Shoup) which are unconditionally secure in both models, but
insecure under any instantiation of the group.

Our schemes readily adapt to give private-key encryption and MACs in the
random oracle model that are insecure under any instantiation, replicating the
result of [CGH98]. Our constructions, however, use different ideas, far simpler
tools, and are entirely self-contained. Our PKE scheme may also be qualitatively
less contrived: as pointed out by [KM06], the prior approach of inserting a branch
that causes insecure behavior goes against reasonable cryptographic practice.
Our scheme, by contrast, is just ElGamal applied bit-by-bit, together with a
single bit of leakage. Our leakage function itself is contrived, but leakage is
usually modeled adversarially. An adversary could very well choose a contrived
leakage.

The Impossibility of IBE from Generic Groups (Section 7). The literature contains
two impossibilities for identity-based encryption (IBE) from generic groups: Schul-
Ganz and Segev [SGS21] prove a separation in the TS/Maurer model, whereas
the original separation due to Papakonstantinou, Rackoff, and Vahlis [PRV12]
claims to prove a separation RR/Shoup. However, we observe that the defini-
tion of generic groups used in the latter work actually is somewhere between the
TS/Maurer and RR/Shoup models. In particular, they make a TS/Maurer-style
restriction where algorithms get explicit group elements as input, and are only
allowed to make queries on those elements or elements derived from them. This

2 Plain PKE and MAC security are single-stage games.
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restriction is used at a critical step in their proof, where they show how to elimi-
nate the explicit group elements from a user’s secret key.

Restricting algorithms to operating only on explicitly provided group ele-
ments makes sense for individual algorithms trying to solve non-interactive prob-
lems such as discrete log. But for cryptosystems comprising multiple communi-
cating parts, group elements can easily be transmitted implicitly. One could
simply flip all the bits of a group element, and then recover the element by flip-
ping them back. Alternatively, one can secret share a group element into different
shares.

We note the close relationship between IBE and signatures, with IBE imme-
diately giving signatures by re-interpreting user secret keys as signatures. What’s
more, a crucial part of [PRV12] can be seen as running the verification algorithm
of the derived signature scheme. Given the close relationship, and the fact that
signatures are possible in RR/Shoup, but impossible after making TS/Maurer
restrictions, it is important to understand whether [PRV12] can be overcome in
the full RR/Shoup model. We fill in this gap, showing that this is not possible:

Theorem 1.9. IBE does not exist in the RR/Shoup model.

The Soundness of the Algebraic Group Model (Section 8). Fuchsbauer, Kiltz, and
Loss [FKL18] propose the Algebraic Group Model (AGM) as a model that lies
between the standard model and generic groups. Here, adversaries can see the
actual standard-model group elements, but must be able to “explain” any group
element it outputs as a linear combination of its input elements.

We first point out some definitional ambiguities in the literature needed
to avoid trivially invalidating the model. We argue that the model envisioned
by [FKL18] allows exactly the security games which exist in the TS/Maurer
model. This means the model inherits the limitations of the TS/Maurer model.
The AGM is therefore actually incomparable to the RR/Shoup model, and it can-
not reason about many textbook techniques3. We also resolve an open question
raised by [FKL18], showing an un-instantiability result for the AGM:

Theorem 1.10. There exists a one-time message authentication code that is
secure in the AGM but insecure in any standard-model instantiation of the group.

We also take a closer look at the comparison between the AGM and the
TS/Mauer model. We do not give any formal results, but argue that the claimed
advantages of the AGM are not always supported by existing evidence.

1.2 Takeaways

Our work shows that extreme care must be taken when proving security or
separations for generic groups. Our equivalence for single-stage security justifies
the common practice of treating the models as equivalent for positive results in

3 Note that many works in the AGM starting from [FKL18] sometimes additionally
add a random oracle, and these techniques can be used on the random oracle.
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many settings, though the distinction is critical in the multi-stage setting. On
the other hand, our separations for constructions show that impossibilities in
the RR/Shoup vs TS/Maurer models must be interpreted very differently.

We also believe that our work points to significant limitations of black
box impossibilities in the TS/Maurer model, as the model excludes numerous
textbook (and black-box!) cryptographic techniques, ones that even work for
the seemingly weaker random oracle model. On the other hand, these tech-
niques seem to be all captured by RR/Shoup. This shows that impossibilities
in RR/Shoup very closely reflect the available black box techniques for groups,
whereas TS/Maurer does not. Nevertheless, TS/Maurer impossibilities may still
be useful for guiding cryptosystem design, by showing that non-algebraic (but
potentially still generic) techniques making use of the group labels would be
necessary.

Our work fills in some important gaps in the literature, showing (1) that IBE
is impossible in the fully general RR/Shoup model, and (2) that TS/Maurer is
impossible to instantiate in general in the standard model. For (2), we give a
new, relatively simple, approach to achieving un-instantiability results. We hope
that our result sheds additional light on the plausibility of generic groups.

Finally, we shed some additional light on the algebraic group model, by
showing that it is incomparable to the RR/Shoup model and is nevertheless
un-instantiable, despite being closer to the standard model.

1.3 Organization

Due to limited space and having several different results, we omit a separate
detailed technical overview of our results, instead having a brief overview at the
beginning of each of our technical sections. Section 2 defines our basic notation.
Section 3 defines the TS/Maurer and RR/Shoup models, plus shows when the
two can be treated equivalently. Section 4 demonstrates applications which exist
in RR/Shoup but not TS/Maurer. Section 5 shows the inequivalence of security
for multi-stage games. Section 6 gives our new un-instantiability result for TS/-
Maurer. Section 7 gives our new impossibility for IBE in the RR/Shoup model.
Finally, Sect. 8 discusses the algebraic group model.

2 Preliminaries and Notation

We will use a non-uniform circuit model of computation, though all of our models
and results can be translated into the Turing machine setting.

Throughout, let λ > 0 be a security parameter. An algorithm is therefore
a list of circuits C = {Cλ}λ∈Z, with domains Dλ and range Eλ. The circuits
comprising an algorithm can either be deterministic or probabilistic. In the later
case, there are random coin gates, which generate a random bit.

For interactive algorithms, each circuit Cλ is replaced by a sequence of circuits
C

(1)
λ , C

(2)
λ , . . . . The domain of C

(i)
λ is denoted S(i)

λ × I(i−1)
λ and the range is

S(i+1)
λ × O(i)

λ . Here, S(i)
λ is the space of states that C

(i)
λ passes to C

(i+1)
λ , O(i)

λ is
the space of outgoing messages that the algorithm sends in the ith step, and I(i)

λ
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is the space of incoming messages. For convenience, we will generally suppress
the security parameter.

We next consider complete sets of interacting algorithms. Each algorithm in
the set is an interactive algorithm, sharing the same security parameter. There
is a one-to-one correspondence between outgoing and incoming messages. There-
fore, a complete set of interacting algorithms taken together yields a single non-
interactive algorithm, which maps the initial inputs of each algorithm to the set
of algorithms to the set of outputs. We can also consider a subset of a complete
set of interacting algorithms, which we call an incomplete set. In this case, some
of the messages are internal, sent amongst algorithms in the set, while other mes-
sages are external, and sent to and received from outside the set. An incomplete
set of interacting corresponds to a single interactive algorithm, whose incoming
and outgoing messages are the external messages.

2.1 Games and Cryptosystems

A game is given by a probabilistic interactive algorithm Ch, called a challenger,
and a function t : Z

+ → [0, 1]. The challenger is given as input a security
parameter λ ∈ Z

+, and interacts with k non-communicating parties A1, . . . ,Ak.
In other words, (Ch,A1, . . . ,Ak) forms a complete set of interacting algorithms,
and A1, . . . ,Ak forms an incomplete set where all messages are external. Collec-
tively, A = (A1, . . . ,Ak) is called the adversary. After the interaction, Ch outputs
a bit b; this interaction is denoted b ← (A � Ch)(λ). If b = 1 we say the adver-
sary wins, and if b = 0 we say the adversary looses. In the case k = 1, we call
(Ch, t) a single-stage game. If k > 1, we call (Ch, t) a multi-stage game.

Let A be a class of adversaries. A game (Ch, t) is hard for A if, for all A ∈ A,
there exists a negligible ε such that Pr[1 ← (A � Ch)(λ)] ≤ t(λ) + ε(λ). Typical
examples of adversary classes are (1) all algorithms, (2) all polynomial-time (in
λ) algorithms, or (3) all query algorithms making a polynomial number (in λ)
of queries to some oracle. (1) is often referred to as statistical or information-
theoretic security, whereas (2) is typically called computational security. For (3),
if the algorithms are not restricted, we will call the adversary query bounded.

Cryptosystems. Abstractly, a cryptosystem is just a set of algorithms. Typically
these algorithms will be non-interactive, though their incoming and outgoing
messages may contain multiple components that would be sent to different users.

The security of a cryptosystem is usually defined by a game. In the case
where the security experiment makes black-box use of the cryptosystem, the
game itself is an incomplete set of interacting algorithms: one of these interact-
ing algorithms is a coordinator, and the remaining algorithms are all instances of
the cryptosystem components. The various instances of the cryptosystem com-
ponents receive and send messages from the coordinator, who also sends and
receives external messages to the one or more adversaries. The game together
with the adversaries then forms a complete set of interacting algorithms.

For example, consider the case of one-way functions: the coordinator chooses
a random x, and sends x to one instance of the function F to get y. Then the
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coordinator sends y externally to the adversary, and receives x′ in response. It
then sends x′ to a second instance of F to get y′, and then checks y = y′.

2.2 Groups

We will write groups multiplicatively, writing g×h or simply gh to denote group
multiplication. We will always assume cyclic groups of prime order p. Given a
group element g ∈ G, a matrix of group elements G ∈ G

n×m and matrices
A ∈ Z

m×r
p ,B ∈ Z

s×n
p , let gA ∈ G

m×r, GA ∈ G
n×r and BG ∈ G

s×m be the
matrices defined as:

(gA)i,j = gAi,j
(
GA

)
i,j

=
m∏

k=1

GAk,j

i,k

(
BG

)
i,j

=
n∏

k=1

GBi,k

k,j .

Observe that for any appropriately-sized matrices A,B, gA·B = (gA)B = B(gA).

3 Different Generic Group Models

Here, we recall Shoup’s [Sho97] (which we will also call the random representation
model) and Maurer’s [Mau05] generic group models, as well as propose a Type
Safe model, formalizing a model implicit in prior work.

3.1 Random Representation (RR)/Shoup Model [Sho97]

Let p ∈ Z be a positive integer, and let S ⊆ {0, 1}∗ be a set of strings of
cardinality at least p. We will assume an upper bound is known on the length
of strings in S. A random injection L : Zp → S is chosen, which we will call the
labeling function. We will think of L(x) as corresponding to gx, where g is a fixed
generator of the group. All parties—including the adversary, the cryptosystem,
and the challenger—are able to make the following queries:

– Labeling queries. The party submits x ∈ Zp, and receives L(x).
– Group operations. The party submits (�1, �2, a1, a2) ∈ S2 × Z

2
p. If there

exists x1, x2 ∈ Zp such that L(x1) = �1 and L(x2) = �2, then the party
receives L(a1x1 + a2x2). Otherwise, the party receives ⊥.

All queries incur unit cost. We denote the oracles together as GRR. For an
algorithm A that makes queries to GRR, we write AGRR . A game (Ch, t) in the
RR model allows all parties (the challenger and one or more adversaries) to make
queries to the generic group. We say that (Ch, t) is hard in the RR model if it is
hard for the class of adversaries whose cost is polynomial in log p.

We will think of L(x) as corresponding to gx, for some fixed generator g of
the group. Therefore, if �1, �2 correspond to gx1 , gx2 , the group operation query
computes ga1x1+a2x2 = (gx1)a1 × (gx2)a2 .
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3.2 Maurer’s Model [Mau05]

Again let p ∈ Z be a positive integer. An empty table T is initialized. Then all
parties are able to make the following queries:

– Labeling queries. The party submits (x, i) ∈ Zp ×Z. Row i of T is then set to
x, potentially overwriting any contents at row i. No response is given.

– Group operations. The party submits (i1, i2, i3, a1, a2) ∈ Z
2 × Z

2
p. If there are

entries x1, x2 in rows i1, i2, respectively, of T , then row i3 is set to a1x1+a2x2,
potentially overwriting any contents at row i3. If the contents of i1 or i2 are
empty, then nothing is written. No response is given.

– Equality queries. The party submits (i1, i2) ∈ Z
2. If there are entries x1, x2

in rows i1, i2, respectively, of T , then the party receives 1 if x1 = x2, and 0
otherwise. If the contents of i1 or i2 are empty, then the party receives ⊥.

All non-equality queries incur unit cost, and we define hardness analogously to
the RR model. We denote the oracles together as GMa. For an algorithm A that
makes queries to GMa, we write AGMa . As in the RR model, we will imagine
there is a fixed generator g, and a row containing x will correspond to the group
element gx. The group operation queries therefore take the group elements in
two positions, and write the desired combination of them to the third position.

Remark 3.1. Our convention of zero-cost equality queries follows Maurer, and
better reflects reality: it is easy to show a lower bound of Ω(p) cost for dis-
crete logarithms when counting equality queries. Yet baby-step-giant-step only
takes Θ(

√
p) cost in the standard and RR/Shoup models, using a data struc-

ture that cannot be simulated with just equality queries. With free equality
queries, the cost in Maurer’s model is the correct Θ(

√
p). [MPZ20] takes a differ-

ent approach, refining Maurer’s model to allow more sophisticated queries that
can implement the required data structure with Θ(

√
p) queries. Regardless, the

number of possible equality queries is at most quadratic in the number of wires,
so this convention only makes a polynomial difference, which does not effect our
results.

Challenges of Maurer’s Model. Maurer’s model makes sense for reasoning about
computational problems, such as discrete logarithms or Diffie-Hellman. Here, the
table is initialized to contain the problem instance in the first several rows, with
the rest of the table as scratch space for performing computations.

However, the model is potentially problematic when reasoning about cryp-
tosystems, where different components of the cryptosystem (or even the same
component run multiple times) are using the group. Since the oracle is stateful,
this can cause bad behavior of the algorithms. For example, the security exper-
iment for one-wayness runs the function twice, once to generate the adversary’s
input, and once to check its output. If running the function causes the table
values to change, then the outputs of the function is not deterministic. Worse,
the adversary may influence the outputs by writing values to the table, which
could make inversion easier. Of course this is not an issue in the real world, but
it demonstrates an issue when trying to apply Maurer’s model to cryptosystems.
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3.3 The Type Safe (TS) Model

Here we offer a model that tries to capture the intuitive properties of Maurer’s
model, while also having a stateless oracle to avoid the issues above. This model
is, in fact, implicit in many works claiming to use Maurer’s model [RSS20,SGS20,
SGS21,DHH21], but has not to our knowledge been formally written down.

Let p ∈ Z be a positive integer. An algorithm A will be given as a circuit.
Unlike a standard binary circuit, the circuit for A will have the following features:

– There will be two kinds of wires, bit wires and element wires. Bit wires take
values in {0, 1}, whereas element wires take values in Zp ∪ {⊥}.

– There will be “bit gates” that map bits to bits. These gates cannot take
element wires as input. Any universal gate set is allowed for the bit gates.

– Additionally, there will be a few special “element gates”, whose inputs and/or
outputs include element wires:

• Labeling Gate. This takes as input 
log2(p)� bit wires, and interprets
them as x ∈ Zp. Its output is an element wire, containing x. This element
wire will be thought of as corresponding to the value gx. If the input wires
do not correspond to an x ∈ Zp, the output wire will contain ⊥.

• Group Operation Gate. This takes as input 2×
log2(p)� bit wires and
2 element wires. The bit wires are interpreted as a1, a2 ∈ Zp. Let x1, x2 be
the contents of the element wires. The output wire is an element wire, set
to a1x1 +a2x2. If any of the bit or element input wires do not correspond
to elements of Zp, then the output wire is set to ⊥.

• Equality Gate. This takes as input two element wires, and outputs a
bit wire. If the input wires both contain the same x ∈ Zp, the output wire
is set to 1. In all other cases (including ⊥ inputs) the output is 0.

We somewhat abuse notation, and for an algorithm A in the type safe model, we
write AGTS . Our cost metric for circuits in the TS model will count only labeling
and group operation gates, with bit and equality gates being free. Free bit gates
corresponds to the other generic group models, where queries are bounded but
computation outside of queries is free. Free equality gates are used for the same
reason as equality queries in Maurer’s model.

A game (Ch, t) in the TS model allows all parties (the challenger and one or
more adversaries) to use labeling and group operation gates, and send both bit
and element wires to each other. We define hardness as in the previous models.

In the TS model, we will think of element wires as containing log2 p bits.
Therefore, if an algorithm has k1 element wires as input and k2 bit wires, its
overall input size will be k1 log2 p + k2.

3.4 Examples

We now discuss several examples of cryptosystems based on groups, to illustrate
the differences between the TS and RR models.
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One-Way Functions. Discrete logs give a simple one-way function f(x) = gx.
This function easily maps to the RR model as f(x) = L(x), which is evaluated by
a single labeling query. The function also maps to the Type Safe model, but with
some caveats. Namely, f(x) is simply a labeling gate, which outputs an element
wire. Thus, in the TS model, f(x) does not map bits to bits, but rather maps
bits to elements. This makes sense, but it means that the outputs of f cannot be
operated on at the bit level, and in particular cannot be fed back into f .

Pseudorandom Generators. Consider the Blum-Micali [BM82] PRG: on input x,
let x0 = x. Then define xi = gxi−1 for i = 1, . . . , n, where n is the number of
desired outputs. Then for each i, output a hardcore bit bi extracted from xi.

Blum-Micali easily translates to the RR model: just let xi = L(xi−1). The
only caveat is that the set of labels must be log p bits so the domain and range
of x �→ gx are essentially identical. On the other hand, Blum-Micali does not
work in the Type Safe model: x1 is an element wire, and so it cannot be fed into
another labeling gate in order to derive x2.

Other standard PRGs work in the TS model. Consider G(x, y) = (gx, gy, gxy),
which is secure under the decisional Diffie-Hellman assumption. To evaluate,
compute xy over Zp using standard circuit gates, and then apply labeling gates
to x, y, and xy. It is straightforward to generalize G to obtain arbitrary stretch.

Pseudorandom Functions. Once we have a pseudorandom generator like G(x, y)
above, we may hope to build a pseudorandom function following Goldreich,
Goldwasser, and Micali [GGM84]. This construction takes any length-doubling
PRG G : {0, 1}n → {0, 1}2n, and constructs a PRF as follows. Define G0 to be
the first n bits of the output of G, and G1 to be the second n bits. For a key
k ∈ {0, 1}n and input x ∈ {0, 1}m, define F (k, x) = Gxm

(Gxm−1(. . . Gx1(k) . . . )).
For a PRG G in the RR model, the PRF of [GGM84] readily also translates

to the RR model. However, the same is not true for the Type Safe model. For
example, our G from above takes bits as input but outputs element wires, and
so the outputs cannot be fed back into G as in [GGM84].

Nevertheless, there are PRGs in the TS model, namely Naor-
Reingold [NR97]. The secret key consists of α0, . . . , αm, and F (k, x) =
gα0

∏m
i=1 α

xi
i . To evaluate in the TS model, simply compute α0

∏m
i=1 αxi

i and then
apply a labeling gate.

Preprocessing Attacks. Several works [CK18,BL22] have studied pre-processing
attacks on groups, where an expensive pre-processing stage stores information
about the labeling function of the group. These attacks make sense in the RR
model, but do not appear to have any meaning in the TS model.

The above examples already begin to show that the Type Safe model does
not capture all common cryptographic techniques one may apply to groups. In
Sect. 4, we strengthen these observations to show some concepts that are simply
impossible in the TS model, despite there being standard-model constructions
from groups. On the other hand, the Random Representation model seems to
capture known black-box techniques, and does not suffer from these limitations.
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Next, we prove certain positive relationships between the TS and RR model.
These results are analogous to the theorem of [JS08], which is often cited as
proving the equivalence between Shoup’s and Maurer’s generic group models.
Our results below formalize what this equivalence means, and where it falls
short.

3.5 Compiling TS to RR

Here we show that any algorithm which exists in the TS model also exists in
the RR model. By applying this to cryptosystems and games, we see that any
technique which is captured by the TS model is also captured by the RR model.
By applying this to adversaries, we see that security in the RR model implies
security in the TS model, amongst games the TS model (and hence in both
models). These results are an adaptation of one direction of the proof of [JS08].

In more detail, we show that there is a canonical translation of any algorithm
(or set of interacting algorithms) into the RR model.

Definition 3.2. Let AGTS be an algorithm in the TS model. We then define the
canonical translation of AGTS into the RR model, which we will denote as AGRR ,
which is identical to AGTS except that:

– All element wires are replaced by collections of bit wires, which together are
interpreted as labels.

– Labeling and group operation gates are replaced with the corresponding labeling
and group operation queries.

– Equality gates are replaced by string comparison sub-routines.

For a set of interactive algorithms AGTS = (AGTS
1 , ...AGTS

k ) in the TS model, we
define the canonical translation as AGRR = (AGRR

1 , . . . , AGRR

k ).

Theorem 3.3. Let AGTS be a complete set of interactive algorithms in the TS
model, whose final output is a set of bit wires. Let AGRR be its canonical trans-
lation. Then the output distributions of AGTS and AGRR are identical.

Proof. To see that the distributions of outputs are identical between AGTS and
AGRR , we observe that, in the TS model, it is equivalent to consider the element
wires as containing L(x) instead of x. Each algorithm in AGRR then simply
replaces each element wire with bit wires, but still containing L(x), and evaluates
the equality gates for itself using string comparison. �

Now let Π be a protocol and (Ch, t) an associated security game in the TS
model. Let Π ′, (Ch′, t) be the canonical translation into the RR model.

Theorem 3.4. If (Ch′, t) is hard in the RR model, then (Ch, t)is hard the TS
model. This holds whether or not Ch,Ch′ are single-stage games.
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Proof. Toward contradiction, let A = (A1, . . . ,Ak) be an adversary playing the
game Ch in the TS model, and winning with probability q, which is non-negligibly
greater than t. Let A′ be the canonical translation of A. Then (A′,Ch′) is the
canonical translation of (A,Ch), which are complete sets of interacting algo-
rithms. By Theorem 3.3, the output distribution is identical, which contradicts
the hardness of (Ch′, t). �

3.6 From TS Security to RR Security for Single-Stage Games

Now, we visit the other direction of the equivalence claimed in [JS08], showing
that TS security implies RR security sometimes, namely in single-stage games.

Theorem 3.5. If Ch is a single-stage game and Π is (Ch, t)-secure in the TS
model, then Π′ is (Ch′, t)-secure in the RR model, where (Ch′, t) is the canonical
translation of (Ch, t).

The proof is given in the Full Version [Zha22]. The intuition is that an adversary
A′ for Π′ is compiled into an adversary A for Π, where A lazily simulates the RR
labeling function with a table T , using its TS gates to ensure consistency.

Note that Theorem 3.5 only applies to single-stage games. If we try applying
the proof to a multi-stage adversary, our new adversary has to maintain the
table T , which must be shared across all the adversaries to maintain consistency.
Thus, we actually obtain a single-stage adversary, violating the requirements of
the game. Section 5 demonstrates that this limitation is inherent, giving a multi-
stage cryptosystem that is secure in the TS model but not in the RR model.

4 Further Impossibilities in the Type Safe Model

Here, we give impossibility results in the Type-Safe (TS) generic group
model, which nevertheless have standard-model constructions from crypto-
graphic groups and moreover translate to and have security in the Random Rep-
resentation/Shoup model. These impossibilities are for textbook cryptographic
applications, showing a significant weakness for the TS model.

We first state the following lemma, which is implicit in numerous works, and
is the main justification for the Algebraic Group Model [FKL18] being implied
by the generic group model. The lemma is proved in the Full Version [Zha22].

Lemma 4.1. Consider any deterministic algorithm A(h, x) in the TS model
whose input contains a vector h of n group elements and which outputs a single
group element. Then there is another deterministic algorithm E(h, x) whose run-
time and query complexity is linearly related to A, such that E(x) outputs a vector
v ∈ Z

n+1
p satisfying A(h, x) = (g,h)v.

Note that, while Lemma 4.1 discusses deterministic algorithms, it can readily
be applied to randomized algorithms by supplying the same random coins to A
and E, making them deterministic functions of the random coins.
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As is typical in the generic group literature, we will also observe that any
equality gate can be thought of as a linear test on (g,h): let v1,v2 be the vectors
guaranteed by Lemma 4.1 for the two gate inputs. Then the equality gate tests
whether (g,h)v1−v2 = 1. We call the linear test trivial if v1 = v2, and non-trivial
if v1 �= v2. Note that trivial tests will always output 1 (denoting equal), whereas
the result of non-trivial tests will depend on the elements in h.

4.1 Collision Resistant Domain Extension

Here, we will prove that any hash function H in the TS model must have some-
what large hashing keys. This is in contrast to the standard model, where domain
extension allows for constant-sized keys. Intuitively, domain extension typically
operates on outputs of H (say, by feeding them back in as inputs), which may
be group elements protected by the type system.

Theorem 4.2. Let H be a collision resistant hash function in the TS model
with key length k, input length n, and output length m. Let p be the group order.
Then n ≤ 1 + m × (k + log p).

Proof. Suppose H has key space Gk1 ×{0, 1}k2 , domain G
n1 ×{0, 1}n2 , and range

G
m1 ×{0, 1}m2 . We assume for simplicity that p is a power of 2; the general case

follows from the same arguments, but more care is needed to track parameter
sizes. Then k = k2 +k1 log p, n = n2 +n1 log p, and m = m2 +m1 log p. Then our
goal is to show that n ≤ 2+m× (k +log p). We will prove a stronger statement,
namely that: n ≤ 1 + m(k1 + 1) log p.

We first make two simplifying assumption, which we argue are wlog.

Simplifying Assumption 4.3. n1 = 0, meaning n = n2.

In other words, the input consists entirely of bits and no group elements.

Lemma 4.4. For any H, there exists a new collision resistant hash function H ′

with the same domain, range, and key size as H, but which satisfies Simplifying
Assumption 4.3.

Proof. H ′ is defined as H(k, (α1, . . . , αn1 , x) ) = H ′(k, (gα1 , . . . , gαn1 , x)); H ′

uses the same key sampling algorithm Gen as H. Clearly, any collision for H ′

can be converted into a collision for H, so if H is collision resistant, then so is
H ′. Moreover, this change from H to H ′ preserves n = n2 + n1 log p. �
Let K2 ∈ {0, 1}k2 be the bits of the key, and K1 ∈ G

k1 be the group elements.
For a key (K1,K2), we say that an input x is “good” if all the non-trivial linear
equations over K1 queried during evaluating H(x) evaluate to non-zero. We will
pick an inverse polynomial δ (in fact, a constant), to be specified later.

Simplifying Assumption 4.5. Except with negligible probability over the
choice of key (K1,K2) ← Gen(), a 1 − δ fraction of x in the domain are good.
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Lemma 4.6. For any H satisfying Simplifying Assumption 4.3, there exists H ′

satisfying Simplifying Assumptions 4.3 and 4.5, with n′ = n,m′ = m, k′
1 ≤ k1.

Lemma 4.6 is proved in the Full Version [Zha22]. The idea is that“bad” inputs
yield a linear equation over the exponents of the key. By solving the linear system,
one can solve for one element of the hashing key in terms of others, compiling
H into a new hash function with fewer bad inputs. One can iterate this process
until the fraction of bad inputs becomes sufficiently small. This process expands
the bit part of the hashing key (k2), but this is fine since it is independent of
the stronger bound n ≤ 1 + m(k1 + 1) log p that we will prove.

With our simplifying assumptions, we can now finish the proof, which is given
in detail in the Full Version [Zha22]. The idea is that for good x, we can write the
output (O1, O2) ∈ G

m1 × {0, 1}m2 as O1 = A(K2,x)(g,K1) O2 = F (K2, x) for
A : {0, 1}k2 ×{0, 1}n → Z

m1×(k1+1)
p and F : {0, 1}k2 ×{0, 1}n → {0, 1}m2 . Recall

that a left superscript means left multiplication in the exponent. A collision
amongst good x for the map x �→ (A(K2, x), F (K2, x)) therefore yields a collision
for the hash function. This means that (A(K2, x), F (K2, x)) must be injective
for good x, since otherwise a collision can be computed inefficiently without
making any queries. Since a 1 − δ fraction of x are good, this allows us to lower
bound the output length of (A(K2, x), F (K2, x)), thereby giving our bound. �

4.2 Pseudorandom Permutations

Theorem 4.7. Let F, F−1 be an efficient keyed permutation pair in the TS
model. Then it is not a secure PRP.

Theorem 4.7 will be the immediate consequence of the following three lemmas:

Lemma 4.8. Let F be an efficient keyed function in the TS model, such that
the output contains at least one bit. Then F is not a secure PRF.

Lemma 4.9. Let F be an efficient keyed function in the TS model, such that
the input contains at least one group element. Then F is not a secure PRF.

Lemma 4.10. Let F, F−1 be an efficient keyed permutation pair in the TS
model. Then the number of group elements in the domain and range must be
equal.

Lemmas 4.9, 4.8, and 4.10 are proved in the Full Version [Zha22]; here we sketch
the high-level idea. For Lemma 4.8, the idea is to first ignore all the group
element outputs and just focus on the bit output. As with Simplifying Assump-
tion 4.3, we can replace all key element wires with bit wires. Then we argue
that the resulting function can be computed without element gates at all, and
hence insecure against computationally unbounded (but element gate-bounded)
adversaries.

For Lemma 4.9, the idea is that any function with group element inputs must
be linear in those inputs. But linear functions cannot be pseudorandom.



82 M. Zhandry

Finally, for Lemma 4.10, suppose the number of group elements were not
equal. By potentially exchanging the roles of F, F−1, we assume F has fewer
group element outputs than it’s inputs. Now consider running F on a ran-
dom input. Since F is a permutation, the output must information-theoretically
encode the input. But since there are now fewer group elements, this means
some information about the exponents of the input must now be present in
the bit wires of the output. We show how to embed a discrete log challenge
into the input, and then extract this information from the bit wires using F−1

and Lemma 4.1, resulting in computing the discrete log. But discrete logs are
intractable in the TS model.

4.3 Efficient CPA-Secure Encryption for Message Strings

We now prove that any CPA-secure encryption scheme in the TS model, whose
domain is bits (as opposed to group elements), must have the number of group
elements in the ciphertext be approximately at least the bit-length of the mes-
sage. As group elements are log p bits, ciphertexts are a log p factor larger than
messages.

Definition 4.11. A CPA-secure encryption scheme consists of a pair of effi-
cient probabilistic algorithms Enc : K × M → C,Dec : K × C → M satisfying:

– Correctness: ∀K ∈ K,M ∈ M, Pr[Dec(K,Enc(K,M)) = M ] ≥ 1 − negl.
– Chosen Plaintext Security: Consider an adversary A playing the following

game with a challenger. The challenger first chooses a random K ← K, and
chooses a random bit b ∈ {0, 1}. Then A makes queries on message pairs
(M0,M1), and receives Enc(k,Mb). The adversary outputs a guess b′ for b.
We require that, for any efficient A, Pr[b′ = b] ≤ 1/2 + negl.

Theorem 4.12. Let Enc,Dec be a CPA-secure encryption scheme which com-
piles in the TS model. Suppose the message space is bit-strings {0, 1}n. If the
ciphertext space is G

m1 × {0, 1}m2 , then m1 ≥ Ω(n/ log λ).

Proof. Let Enc,Dec be a CPA-secure encryption scheme in the TS model. Note
that we can consider the bit portion of the ciphertexts alone as an encryption
scheme; there is no correctness, but we can still consider security which is implied
by the security of the full (Enc,Dec). Now suppose the bit portion was not
statistically independent of the message conditioned on the secret key K. Then
by the standard impossibility of statistically secure CPA-secure encryption in
the standard model, there is an inefficient query-less attacker that would break
CPA-security, thus violating the security of (Enc,Dec). Therefore we know that
the bit portion must be statistically independent of the message.

Now consider decrypting a ciphertext c ∈ G
m1 . Dec will make a polynomial

number T of equation queries over (1, c). The message outputted will be some
function of the results and the bit portion of the ciphertext. We can assume
without loss of generality that Dec never makes a query that is linearly dependent
on previous queries which returned 0. Indeed, Dec can correctly predict the
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output of the query will be 0. Therefore, there will be at most m1 queries that
will result in zero, since the dimension of the zero queries is m1.

This means there is � 1 bit of information about the message in the bit-
portion of the ciphertext, and only log2

(
T

m1

) ≤ m1 log2 T bits of information in
the queries, and therefore the message length n is at most this quantity. Hence,
m1 ≥ n/ log2 T . Since T is polynomial in the security parameter, this gives the
desired lower-bound on the ciphertext size. �

5 On the Insecurity of the Type-Safe Model
for Multi-stage Games

Here, we show that security in the TS model does not imply security in the RR
model. We first define deterministic public key encryption, following [BBO07].

Definition 5.1. A deterministic encryption scheme is a triple of efficient algo-
rithms (Gen,Enc,Dec) where Enc,Dec are deterministic such that:

– Correctness: For all m, Pr[Dec(sk, c) = m : (sk,pk)←Gen()
c←Enc(pk,m) ] ≥ 1 − negl.

– �-Security: For any two distributions D0,D1 with min-entropy at least �,
and for any efficient probabilistic adversary A, |Pr[A(pk,Enc(pk,D0)) = 1] −
Pr[A(pk,Enc(pk,D1)) = 1]| ≤ negl, where (pk, sk) ← Gen().

Here, the min-entropy of a distribution D is H∞(D) = min log2 Pr[x ← D]−1.
Since Enc is deterministic, for security to be possible at all, we require � =
ω(log λ). For security to be non-trivial, we usually ask that � � |m|.

Note that �-security is not single-stage, since the definition quantifies over
D0,D1 and A, and A cannot see the random coins of D0,D1.

Construction 5.2. Let (Gen,Enc,Dec) be the following deterministic encryp-
tion scheme for messages in Zp:

– GenGTS(): run a1, . . . , an ← Zp, and output sk = (a1, . . . , an), pk = (h1 =
ga1 , . . . , hn = gan).

– EncGTS(pk,m): run c0 ← gm and ci = hm
i gmi for i = 1, . . . , n.

– DecGTS(sk, c): for i = 1, . . . , n, compute ui = cai
0 . If ci = ui, set mi = 0;

otherwise set mi = 1.

It is straightforward that Construction 5.2 is correct: ui = gmai = hm
i . Therefore

ci = ui if and only if mi = 0.

Theorem 5.3. Construction 5.2 is an �-secure deterministic encryption scheme
in the TS model for � = log2 p − 2, but is insecure in the RR model or in any
standard-model instantiation of the group.

The proof is given in the Full Version [Zha22]. For insecurity in the RR and stan-
dard models, the idea is to have D0,D1 be random messages conditioned on, say,
the first bit of gm being 0 and 1, respectively. These have high min-entropy, but
also allow the adversary to trivially distinguish the two cases by looking at the
first bit of c0. For security in the TS model, we first note that this bit fixing strat-
egy does not apply since the distribution cannot have direct access to the bits of
gm. We give a simple proof that no distinguishing strategy is possible.
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6 TS Un-instantiability

Here, we give an example of a protocol in the TS model that is secure under a
single-stage game (and hence also in the RR model, by Theorem 3.5) and yet is
insecure under any standard-model instantiation of the group.

6.1 Overview

We first explain limitations of the existing works on the un-instantiability of
idealized models, as well as sketch our solution. The first such un-instantiability
result was for random oracles (RO), a predecessor of generic groups, where one
models an hash function as a truly random function. Canetti, Goldreich, and
Halevi [CGH98] give contrived schemes that are secure in the random oracle
model, but which are insecure under any instantiation of the oracle by a con-
crete hash function. Their impossibility works by identifying a security property
of a hash function H called correlation intractability, which requires that for any
“sparse” relation over input/output pairs, it is computationally infeasible to find
an input x such that (x,H(x)) satisfies the relation. Correlation intractability
is trivially satisfied by random oracles, but [CGH98] show that it is impossible
(in certain parameter regimes) for standard-model hash functions. They then
build contrived cryptosystems where an input/output pair satisfying the rela-
tion causes some clearly insecure behavior: e.g. the secret key holder completely
reveals their key, or the encrypter encrypts uses the identity function. In the
random oracle model, this will never happen and the system will remain secure.
But in the standard model, the attacker simply uses the impossibility for cor-
relation intractability to find such an input. triggering a complete break of the
system.

This idea was translated to generic groups by Dent [Den02], who uses similar
ideas but where the hash function is replaced by the group labeling function.
Another way to obtain a separation is through the recent work of Zhandry and
Zhang [ZZ21], who show that the labeling function of a generic group, when
properly truncated, gives a random oracle, which in turn is impossible.

However, both of these results crucially rely on the labeling function; that
is, they only work in the RR/Shoup model. There are at least a couple rea-
sons why the un-instantiability result appears to not generalize to the TS
model. First, [CGH98,Den02] use a random oracle to instantiate Micali’s CS
proofs [Mic94], which in turn requires a domain-extending Merkle tree; we
already showed (Sect. 4) that domain extension is impossible in the TS model.

More fundamentally, we show in the Full Version [Zha22] that correlation
intractability cannot separate the TS and standard model, regardless of the
construction. Concretely, we give a simple hash function which is correlation
intractable (in the standard model) with respect to every evasive relation that
exists in the TS model. We note that, the cryptosystems derived from correlation
intractability [CGH98] must execute the relation, and therefore the relation must
exist in the TS model if we want to use it for an un-instantiability result.

Other un-instantiability results [Nie02,GK03,BBP04,BFM15] have similar
issues to the above. Meanwhile, [BCPR14] give an un-instantiability result
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that works in the TS model, but it is a multi-stage game and requires strong
computational assumptions, namely indistinguishability obfuscation.

We fill in this gap, showing that the single-stage TS model is unconditionally
un-instantiable, albeit via very different, and arguably simpler, techniques. We
start with ElGamal, but where message bits are encrypted bit by bit. This is
easily proved secure in the standard model. We then modify the scheme to
append a single bit, which is a contrived leakage function of the message and
randomness.

In either the TS or RR model, we show this leakage offers minimal advantage
to breaking the cryptosystem. However, in the standard model, we show that
by encrypting the description of (that is, the code) of the group, the ciphertext,
leakage included, easily reveals one bit about the message. This breaks security.

The main challenges are two-fold. First we must make sure the encryption
scheme can actually be decrypted in the TS model, which we showed is not trivial
in Sect. 4. A more difficult problem is to maintain security in the generic group
models. This is challenging because our leakage function interprets the message
as arbitrary code and runs it on some inputs. Without care, this arbitrary code
could already break security without having anything to do with the generic
group. For example, the code could just be a constant function, in which case
the leakage reveals which constant. We give our solution in Sect. 6.2. In Sect. 8
we give another un-instantiability result for one-time MACs in the context of
the Algebraic Group Model (AGM), which also applies to the TS model.

6.2 Our Un-instantiable Construction

Construction 6.1. Let (GenGTS ,EncGTS ,DecGTS) be the following:

– GenGTS(1λ): sample α ← Zp \ {0}, and let pk = (g, h = gα, λ) and sk = α.
– EncGTS(pk,m): Let n be the bit-length of m. For each i ∈ [n], sample ri ← Zp

and let ci = gri , di = hri+mi , where mi ∈ {0, 1} is the ith bit of m. Let
e ← L(m, {ri}i where L is defined below. Output output c = ({ci, di}i∈[n], e).

– DecGTS(sk, c): for each i ∈ [n], compute d′
i = cα

i . If d′
i = di, set mi = 0;

otherwise set mi = 1. Output m = m1m2 · · · mn.

L(m, {ri}i) works as follows: interpret the last n−λ bits of m as the description
of a function H : Zp → {0, 1} in some canonical way. Then:

– Test if H is “balanced” by sampling k = 32λ random sj ← Zp, j = 1, . . . , k,
computing bi ← H(si), and checking that

∑k
j=1 si ∈ (3k/8, 5k/8).

– If H is not balanced, sample a random bit e ← {0, 1}. Otherwise, let e =
H(r1) ⊕ H(r2) ⊕ · ⊕ H(rλ). Output e.

Theorem 6.2. Construction 6.1 is a secure public key encryption scheme in
the TS generic group model (and hence also in the RR model, by Theorem 3.5).
However, Construction 6.1 is insecure in the standard model.
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Proof. We first show that the construction is correct and secure. Correctness
is a straightforward adaptation of the correctness of ElGamal: di = hri+mi =
gαri+αmi = cα

i hmi . Therefore di = cα
i if and only if mi = 0.

For security, we first show the following in the Full Version [Zha22]:

Lemma 6.3. For any message m, the bit e is statistically close to a uniform
random bit. Concretely, |Pr[e = 0] − 1/2| ≤ 2−λ.

The proof idea is e is the XOR of many independent samples from the not-too-
biased outputs of H. Lemma 6.3 above shows that an adversary cannot break
Construction 6.1 just by looking at the bit e. We now expand this to consider
general adversaries which also get ci, di:

Lemma 6.4. Construction 6.1 is secure in the TS generic group model.

Lemma 6.4 is proved in the Full Version [Zha22]. There we give a simple proof
that a TS model adversary essentially must break either the ci, di, or the bit e,
but gains no advantage by considering both together. ci, di is just plain ElGamal,
which hides the message; Lemma 6.3 shows that e hides the message as well.

Finally, we show that no matter how the group is instantiated, Construc-
tion 6.1 is insecure in the standard model

Lemma 6.5. For any standard-model group, Construction 6.1 is insecure.

Proof. Consider instantiating Construction 6.1 with an arbitrary standard model
group scheme. Then consider the following adversary A.

– On input pk = (g, h), let � be the bit-length of group elements.
– Choose a random t ∈ {0, 1}�, and construct the circuit H(s) = 〈t, hs〉, where

〈·, ·〉 denotes the inner product mod 2 of the bit string inputs.
– Send to the challenger the challenge messages (m0 = (0λ,H),m1 = (1λ,H)).

Receive the ciphertext c = ({ci, di}i, e).
– Output e ⊕ 〈t, d1 ⊕ · · · ⊕ dλ〉.
We now analyze A. First, since inner products are good extractors, H is balanced
with overwhelming probability. Thus e = H(r1) ⊕ H(r2) ⊕ · ⊕ H(rλ).

Suppose c is an encryption of m0. Then 〈t, di〉 = 〈t, hri〉 = H(ri). Hence,
with overwhelming probability, the output of A is exactly 0. Next suppose c is
an encryption of m1. Then 〈t, di〉 = 〈t, hri+1〉. Hence, if we define W = (hr1 ⊕
hr1+1)⊕·⊕ (hrλ ⊕hrλ+1), the output is equal to 〈t,W 〉. The following is proved
in the Full Version [Zha22]:

Lemma 6.6. Pr[W = 0] ≤ 1/2.

Notice that t is independent from the ri, and hence W . Hence, if W �= 0,
〈t,W 〉 is a uniform random bit. Therefore the output of A on m1 is 1 with
probability at least 1/4, giving it a non-negligible advantage. �
Putting together Lemmas 6.4 and 6.5 proves Theorem 6.2. �
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7 Impossibility of IBE from Generic Groups

Papakonstantinou, Rackoff, and Vahlis [PRV12] give an impossibility of identity-
based encryption (IBE) from generic groups. The authors cite Shoup’s model,
and like Shoup they define the generic group model as a random mapping from
Zp into bit strings. However, we argue that their definitions and proofs actually
lie somewhere between Shoup’s and the Maurer/TS model. For example, consider
their definition of a generic algorithm ([PRV12], page 6):

A generic algorithm A is a probabilistic algorithm (or with
randomness in its input) that takes inputs and produces out-
puts of the form (w, g1, . . . , gk) ∈ ({0, 1}∗ × G

k) for an arbi-
trary k ∈ N. A is given oracle access to O restricted to sums
that have non-zero coefficients only for the elements g1, . . . , γk.

Above, O is their notation for the oracle implementing the generic group.
Requiring an algorithm to be explicitly given group elements as input, and then
only allowing queries on linear combinations of those explicit group elements,
is a TS-style restriction that is not present in the RR/Shoup model. Since all
algorithms must declare the type of inputs they work on, this also means that
the components of any cryptosystem (public keys, secret keys, ciphertexts, etc.)
must explicitly delineate between group elements and bits, just as in the TS
model.

This restriction on algorithms plays an important role in the impossibility
proof. The proof of [PRV12] proceeds in two steps, where in the first step they
compile a generic group IBE scheme into one where user secret keys do not
contain any group elements. The second step is to show that such a restricted
IBE cannot exist in the generic group model. Unfortunately, the distinction
between user keys containing group elements or not is only well-defined if the
group elements of secret keys are explicitly labeled, as in the TS model. In the
RR model, one could imagine trivially hiding group elements by, say, XORing
them with an arbitrary string, or secret sharing into different pieces.

Digging deeper, the impossibility proof does the following many times: com-
pute an encryption of a random message, and then promptly decrypt it, collecting
all the queries made during the process. We observe that this process is exactly
how verification works when compiling IBE to a signature scheme in the usual
way. However, signatures were shown impossible in the TS model by [DHH21],
who also runs the verification procedure many times to collect queries. But
we know that signatures are possible in the RR model, so the impossibility
of [DHH21] only applies in the TS model. Given these similarities between the
impossibility proofs, together with the fact that [PRV12] imposes TS-like restric-
tions, it is unclear whether the IBE impossibility should extend to the full RR
model.
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A Full Impossibility. Here, we prove a full impossibility of IBE in the RR generic
group model, resolving this gap. We first define IBE; we use a key encapsulation
variant for simplicity, which is equivalent to the standard notion.

Definition 7.1. An identity-based encryption (IBE) scheme consists of a tuple
of efficient probabilistic algorithms (Gen,Extract,Enc,Dec) satisfying:

– Correctness: For all identities id,

Pr
[
Dec(skid, c) = k :

(msk,mpk)←Gen()
skid←Extract(msk,id)
(c,k)←Enc(mpk,id)

]
≥ 1 − negl.

– Random Identity Security: Consider an adversary A playing the follow-
ing game. The challenger first chooses a random (msk,mpk) ← Gen(), and
chooses a random bit b ∈ {0, 1}. The challenger samples q + 1 random iden-
tities id1, . . . , idq, id

∗. For i = 1, . . . , q, is compute skidi
← Extract(msk, idi). It

also computes (c∗, k∗
0) ← Enc(mpk, id∗) and samples a uniform k∗

1 . It sends
{idi, skidi

}i∈[q], c
∗, k∗

b to A, which outputs a guess b′ for b. We require that, for
all efficient A and polynomial q, Pr[b′ = b] ≤ 1 + negl.

Theorem 7.2. There is no random identity-secure IBE scheme in the RR
model.

Proof. Our proof, while different than [PRV12], will follow the same basic out-
line, though it will replace “secret keys contain no group elements” with a related
restriction that is well-defined in the RR model. It will also clarify what about
IBE makes it impossible in the RR model, where signatures are possible.

Concretely, we will define a type of signature scheme, where generic group
queries during verification are independent of the signature (but dependent on
the message and public key). Such a signature scheme is rather easily shown to
be impossible, in any idealized model. This replaces the second part of the proof
of [PRV12]. By using a simpler object (signatures instead of IBE) we are able
to significantly simplify this part of the proof of [PRV12]. It also offers a clear
explanation for the gap between general signatures and IBE in the generic group
model, since general signatures will not have the special structure.

The bulk of the proof of Theorem 7.2 is showing that any IBE in the RR
model can be compiled into such a restricted signature scheme. The idea is to
view the IBE as a signature scheme, which is already well-known. However, the
resulting signature scheme has a special structure: a first phase that is indepen-
dent of the signature, and then a second phase that depends on the signature.
Importantly, the second phase is decrypting a ciphertext produced in the first
phase. We use the correctness of the IBE to argue we can compile out the queries
made in the second phase; this compiling-out step crucially uses the linear struc-
ture of groups.

We now give the proof. We first define a restricted signature scheme:

Definition 7.3. An restricted signature scheme (R-Sig) relative to an oracle O
consists of a tuple of oracle algorithms (GenO,SignO,VerO) such that:

– δ-Correctness: Pr
[
VerO(PK, σ) = 1 :

M←$
(SK,PK)←GenO()

σ←SignO(SK,M)

]
≥ δ.
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– Restricted Structure: VerO(PK,M, σ) = Ver1( Ver0O(PK,M) , σ), where
Ver1 is independent of O, but Ver0 is independent of σ.

– 0-random message security: For any query-bounded adversary A,

Pr[VerO(PK,M, σ) = 1 :
(SK,PK)←GenO()

M←$
σ←AO(PK,M)

] is negligible.

Lemma 7.4. For any oracle O and any constant δ > 0, R-Sigs do not exist.

Proof. Consider choosing an oracle O, a random M , and (SK,PK) ← GenO(),
and then fixing them. We will say that σ is “good” if Pr[VerO(PK,M, σ) = 1] ≥
δ/2, where the probability is taken over the random coins of Ver. By correctness,
with probability at least δ/2 over O,M,SK,PK, there will exist at least one good
σ, namely the output of SignO(SK,M).

Suppose Ver0 was deterministic. Then we could compute v ← Ver0O(PK,M),
and consider the oracle-free probabilistic circuit C(σ) = Ver1(v, σ). Then an
input σ is good if and only if C(σ) accepts with probability at least δ/2. Since C
is oracle-free, we can brute-force search for such a σ, finding it with probability
at least δ/2. The forgery will then be (M,σ), which is accepted by the challenger
with probability δ/2, giving an overall advantage δ2/4.

For a potentially randomized Ver1, we have to work slightly harder. For a
good σ, we have that Prv←Ver0O(PK,M)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≥ δ/4. Mean-
while, we will call a σ “bad” if Prv←Ver0O(PK,M)[Pr[Ver1(v, σ) = 1] ≥ δ/4] ≤ δ/8.

For a parameter t chosen momentarily, we let v1, . . . , vt ← Ver0O(PK,M),
and construct circuits Ci(σ) = Ver1(vi, σ). We then brute-force search for a
σ such that Pri←[t][Pr[Ci(σ) = 1] ≥ δ/4] ≥ 3δ/8. By Hoeffding’s inequality,
any good σ will be a solution with probability 1 − 2Ω(δ2t). Meanwhile, any bad
σ will be a solution with probability 2−Ω(δ2t). By setting t such that t/δ2 is
sufficiently longer than the bit-length of signatures, we can union bound over
all bad σ, showing that there will be no bad solutions except with negligible
probability. We will therefore find a not-bad solution with probability at least
δ/2 − negl ≥ δ/3. In this case, with probability at least δ/8 over the choice of v
by the verifier, Pr[Ver1(v, σ) = 1] ≥ δ/4. Hence, the overall success probability
is at least (δ/3) × (δ/8) × (δ/4) ≥ δ3/100. �
Lemma 7.5. If there is an IBE scheme in the RR generic group model, then
for any constant δ there exists a restricted signature scheme in the same model.

Proof. Let (GenGRR ,ExtractGRR ,EncGRR ,VerGRR) be a supposed IBE scheme in
the RR model. Now consider the following standard way of constructing a sig-
nature scheme from an IBE scheme:

– Key generation is simply GenGRR , with PK = mpk and SK = msk.
– SignGRR(SK,M) = ExtractGRR(SK,M), where M is interpreted as an identity.
– VerGRR(PK,M, σ): Run (c, k) ← EncGRR(PK,M), where again M is inter-

preted as an identity, and output 1 if and only if DecGRR(σ, c) = k.
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Notice that (Gen,Sign,Ver) almost already is restricted: VerGRR(PK,M, σ) =
Ver1GRR( Ver0GRR(PK,M) , σ) where Ver0GRR(PK,M) outputs v = (c, k) ←
Enc(PK, id) while Ver1GRR(v, σ) checks that DecGRR(σ, c) = k.

The problem, of course, is that Ver1 likely makes queries to GRR, so does not
have the required structure. We will therefore need to show how to compile out
GRR from Ver1, which we do in the Full Version [Zha22]. The idea is to provide
Ver1 some extra hints (through both v and PK) to help it answer the queries.
First, any query made during Ver0 is provided in v. Second, during setup, we
choose many random messages, which we sign and verify, collecting all queries
made during the verification process (both Ver0 and Ver1). We provide these
queries in PK. Then Ver1 answers its queries by seeing if the query is in the span
of the various queries it has available through v and PK. If so, it knows how to
correctly answer the query. If not, it answers with a random label.

By standard arguments, we show that the only way Ver1 can answer incor-
rectly is if a query corresponds to a “new” equation over labels seen during Gen.
By increasing the number of sign/verify trials during setup, we expand the span
of queries provided in PK. Since there are only a polynomial number of queries
during Gen, we can set the number of trials large enough to ensure any arbitrarily
small inverse polynomial correctness error. �
Combining Lemmas 7.4 and 7.5, we therefore prove Theorem 7.2. �

8 On the Algebraic Group Model

Here, we discuss the Algebraic Group Model (AGM) of Fuchsbauer, Kiltz, and
Loss [FKL18]. The AGM is proposed as a model lying between the standard
and generic group models, striking a compromise between the wide applica-
bility of generic groups and the security conferred by a standard-model proof.
For these reasons, the AGM has become a popular model for proving security
(e.g. [GRWZ20,BFL20,KLX20,BDFG20,GT21]).

In the AGM, adversaries can see the actual standard model group representa-
tion without any type-system constraints. They can therefore perform arbitrary
standard-model computations on these elements. However, any time the adver-
sary outputs a group element h, it must “explain” that element, by outputting
a vector a such that h =

∏
i gai

i , where gi are the input group elements. Because
the adversary has unfettered access to the group representation, security cannot
hold unconditionally; instead, security is proven by a reduction transforming an
algebraic adversary into an algorithm for a hard problem, typically discrete log.

8.1 Allowed Games in the AGM

One wrinkle discussed in [FKL18] is that, without further constraints, the model
is trivially invalid. Suppose the experiment provides the adversary a group ele-
ment h, but implicitly encoded as a string s by, say, by flipping every bit in
the representation of h. Then the adversary can turn around and output h (by
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flipping all the bits back), but it would have no way of producing a represen-
tation of h without solving the discrete log of h. [FKL18] suggest the following
resolution:

We therefore demand that non-group-element inputs must not
depend on group elements.

This demand, however, is never formalized. Fortunately, we can see that the
Type Safe mode readily captures the desired intuition. After all, the TS model
distinguishes between group and non-group elements, and the type safety guar-
antee means that once a group element is obtained, nothing can be done with
it except for generating new group elements and equality gates. Since equal-
ity gates do not depend on the group element itself but just the exponent, no
information about the group element can be extracted into bit wires.

We therefore propose that the AGM is restricted to TS model games. In the
Full Version [Zha22], we offer a formal definition of the AGM.

8.2 AGM Un-instantiability

We now give an construction of a one-time MAC that is secure in the AGM, but
insecure in the standard model, resolving an open question from [FKL18]. This
result also gives an un-instantiability result for the TS model, which is simpler
but somewhat more contrived. We note that our PKE scheme from Sect. 6 does
not demonstrate anything about the AGM, since the adversary is not asked to
produce any group elements. As such, for the PKE scheme, the AGM is actually
equivalent to the standard model and hence the scheme is insecure in the AGM.

Definition 8.1. A one-time message authentication code (MAC) is a triple of
PPT algorithms (Gen,MAC,Ver) where:

– Correctness: ∀m, Pr[Ver(k,m, σ) = 1 : k←Gen()
σ←MAC(k,m)] ≥ 1 − negl

– Security: For any adversary A, there exists a negligible negl such that A wins
the following game with probability at most negl: First A produces a message
m; in response it receives σ ← MAC(k,m) for a random key k; finally it
outputs m∗ �= m and σ∗. It wins if Ver(k,m∗, σ∗) = 1.

Note we require MACs for unbounded-length messages. Such one-time MACs can
readily be built unconditionally. We now give our counter-example:

Construction 8.2. Let (Gen′,MAC′,Ver′) be an unconditional one-time MAC.
We construct a new MAC (Gen,MAC,Ver) using a group G. We assume elements
in G have bit-length log2 p; we can easily extend to general G. We will assume
G comes with two generators g, h, with the discrete log between them unknown4.
4 g, h could be created by Gen, but we would need to get g, h to the adversary before

the first query. We could consider a 1-time signature, where g, h would be included
in the public key. Alternatively, we could consider a 2-time MAC, which includes
g, h as part of each MAC, giving the adversary g, h in time for the second query.
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– Gen(): run k′ ← Gen′() and sample γ, δ ← Zp. Output k = (k′, γ, δ).
– MAC(k,m): first run σ′ ← MAC′(k′,m). Then interpret m as a function H

whose output length is log2 p bits. Compute u = H(γ, δ). Output σ = (σ′, u, g).
– Ver(k,m, σ): First run Ver(k′,m, σ′). If it accepts, also accept. Otherwise,

write σ = (σ′, u, w). Check if w = gγhδ. If so, accept. Otherwise, reject.

Theorem 8.3. Construction 8.2 is a secure one-time MAC in the AGM under
the discrete log assumption, but insecure under any instantiation of the group.

Proof. We start with standard-model insecurity. We query on the m which will
be interpreted as the function H(γ, δ) = gγhδ. In the resulting signature, u
therefore gives gγhδ. It can then sign any message with the signature (∗, ∗, u).

For AGM security, consider an adversary A breaking security in the AGM.
Let m∗ be the message it forges, and σ∗ = (σ′, u∗, w∗) be the forgery. By the one-
time security of (Gen′,MAC′,Ver′), we know that the only way for this signature
to pass verification is for w∗ = gγhδ. Since A is algebraic, and only previously
received two group elements g, h (u was provided as bits), it must therefore
explain w∗ by producing α, β such that w∗ = gαhβ . There are two cases:

– (α, β) �= (γ, δ). Then we can use the adversary to solve the discrete log of h
relative to g, contradicting the assumed hardness of discrete logarithms.

– (α, β) = (γ, δ). But γ, δ are random strings of total length 2 log2 p, and the
adversary only gets at most log2 p bits of information about them, namely
the output of H. And yet the adversary is somehow able to recover all 2 log2 p
bits. This violates the incompressibility of random strings.

�

8.3 Is the AGM Superior to Generic Groups?

Since the AGM requires TS games, it is in some ways inferior to the RR model.
From now on, we will therefore compare to the TS model. We now argue, how-
ever, that even though the AGM is “between” the standard and TS models,
this does not necessarily demonstrate the AGM to be advantageous to generic
groups. We consider two possible perspectives in which to compare the models.

Attack-Oriented Perspective. From an “attack-oriented” perspective, the AGM
captures a wider class of attacks than generic groups. In this sense, the model
offers a clear advantage when applied to the multiplicative groups over finite
fields. The best attacks on such groups are index calculus attacks, which are
captured by the AGM but not generic groups.

However, we note that some groups are not susceptible to index calculus
attacks. Concretely, elliptic curves without efficient pairings are not, and this
is exactly the reason why these curves are often conjectured to have optimal
128-bit security with groups of size 2256. In fact, essentially the only known
attacks on elliptic curves are either generic, rely on a pairing, or the contrived
counter-examples to generic groups such as [Den02]. For these groups, there are
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no known algebraic-but-non-generic adversaries, so it is not obvious that the
AGM captures a wider class of adversaries. Thus while not worse than the TS
generic group model, it seems that the AGM does not offer significant advantages
for pairing-free elliptic curves for this perspective either.

Security Prediction Perspective. Another perspective is that a model is about
making predictions about security. For any game (p,Ch) and group G, the stan-
dard, algebraic, and TS models will each make a decision about whether the
game is hard. The standard model is the ground truth, but it may be infeasible
to actually know if a game is secure or not in this model. The algebraic and TS
models can be seen as predictions about this ground truth that are easier to rea-
son about by giving more power to the prover, but they will have false-positives.

We now argue that existing work does not demonstrate any benefits of the
AGM from this perspective. Concretely, looking at the AGM literature, we can
break the known games into two cases:

– Those in which the AGM is trivially equivalent to the standard model. These
are cases like public key encryption where the game does not ask for any
group elements from the adversary and so the AGM imposes no restrictions
over the standard model.

– Those in which the security holds in the AGM if and only if it also holds
in the TS model. These include Construction 8.2 and all the positive results
about the AGM, as well as trivially easy games in the TS model.

Thus, amongst known games, the AGM offers little predictive power for which
games should be secure: in the first case we just stick with the standard model,
and in the second case we can just stick with the TS model. So despite having
fewer false positives, once we condition on the game, the known examples do not
demonstrate any predictive advantages of the AGM over the existing models.

Note that this does not mean the AGM does not offer any predictive advan-
tages, just that the current evidence does not support advantages from this
perspective. We leave demonstrating such an advantage, or proving that one
cannot exist, as an interesting question for future work.
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Abstract. Succinct non-interactive arguments (SNARGs) have become
a fundamental primitive in the cryptographic community. The focus of
this work is constructions of SNARGs in the Random Oracle Model
(ROM). Such SNARGs enjoy post-quantum security and can be deployed
using lightweight cryptography to heuristically instantiate the random
oracle. A ROM-SNARG is (t, ε)-sound if no t-query malicious prover
can convince the verifier to accept a false statement with probability
larger than ε. Recently, Chiesa-Yogev (CRYPTO ’21) presented a ROM-
SNARG of length Θ(log(t/ε) · log t) (ignoring log n factors, for n being
the instance size). This improvement, however, is still far from the (folk-
lore) lower bound of Ω(log(t/ε)).

Assuming the randomized exponential-time hypothesis, we prove a
tight lower bound of Ω(log(t/ε)·log t) for the length of (t, ε)-sound ROM-
SNARGs. Our lower bound holds for constructions with non-adaptive
verifiers and strong soundness notion called salted soundness, restrictions
that hold for all known constructions (ignoring contrived counterex-
amples). We prove our lower bound by transforming any short ROM-
SNARG (of the considered family) into a same length ROM-SNARG in
which the verifier asks only a few oracles queries, and then apply the
recent lower bound of Chiesa-Yogev (TCC ’20) for such SNARGs.

Keywords: Random oracle · SNARGs · high-entropy sets · lower
bound

1 Introduction

Constructions in the random oracle model (ROM) have shaped our understand-
ing of the cryptographic world. Being a simple information-theoretic model, the
ROM was found to be a very useful framework for understating what can be
done (sometimes only heuristically), and what is unlikely to be achieved using
(merely) symmetric-key cryptography. A notable example for the above is key-
agreement protocols. Merkle [Mer82] has constructed a key-agreement protocol
in the ROM with a quadratic gap between the query complexity of the players
and the eavesdropper. Barak and Mahmoody-Ghidary [BM17], building on the
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seminal work of Impagliazzo and Rudich [IR89], proved that the quadratic gap
achieved by [Mer82] is optimal, and Haitner, Mazor, Oshman, Reingold, and
Yehudayoff [HMORY19], showed that for a large family of constructions, the
communication complexity of [Mer82] is optimal.

Another primitive whose constructions in the ROM have high impact is Suc-
cinct Non-interactive Argument systems (SNARGs): non-interactive computa-
tionally sound proofs (arguments) for NP of succinct proof length (sublinear
in the instance length). The first construction of SNARGs was given by Micali
[Mic00] in the ROM. This feasibility result turned out to be very influential
both theoretically and practically. In theory, it was shown how to instanti-
ate SNARGs in the standard model for many languages of interest by instan-
tiating the Fiat and Shamir [FS86] paradigm with a specific family of hash
functions [CCHLRR18]. In practice, the succinctness of the proof is impera-
tive in applications such as cryptocurrency and blockchain, where proofs are
broadcast in a peer-to-peer network and (redundantly) stored at every net-
work node, c.f., [BCGGMTV14,Zc14]. As such, improving the concrete efficiency
of SNARGs is the focus of long line of work c.f., [Gro16,ZGKPP17,AHIV17,
BBHR19,WTSTW18,BBBPWM18,BCRSVW19,CHMMVW20,BFS20,
COS20,Sta18,LSTW21,CY21b,CY21a,GNS21].

ROM-SNARGs, like the one of [Mic00], have several attractive features. First,
to date, they are the most efficient approach for post-quantum security with
public verification (i.e., the verifier has no secrets). Moreover, from a practical
perspective, one can heuristically instantiate the random oracle with a suitable
cryptographic hash function. The result is a SNARG that uses lightweight cryp-
tography (no need for public-key primitives), is easy to deploy (users only need
to agree on a hash function), and has no trusted setup. The best ROM-SNARG
appeared in the recent work of Chiesa and Yogev [CY21a], who constructed a
(t, ε)-sound ROM-SNARG of proof length of O(log(t/ε) · log t · log n), where n is
the instance length. A ROM-SNARG is (t, ε)-sound if no t-queries (malicious)
prover can convince the verifier to accept a false statement with probability
larger than ε.1

Interestingly, and in contrast to other important primitives such as
key-agreement protocols [IR89,HMORY19] and digital signatures [GGKT05,
BMG07], we are lacking crucial lower bounds on the length of SNARGs in
the ROM. Apart from the weak (folklore) lower bound of Ω(log(t/ε)) (which
appears in the full version of the paper), the only exception is the recent bound
of Chiesa and Yogev [CY20], who proved that the verifier query complexity of
SNARGs cannot be too small. However, their bound does not rule out short
ROM-SNARGs with verifier query complexity Ω(log 1/ε), which is common for
SNARG constructions.

This state-of-affairs naturally leads to the question of finding the shortest
ROM-SNARG. Is it O(log(t/ε) · log t · log n), as the best-known construction
achieve, or is it as short as O(log(t/ε) · log n), as achieved in other security

1 We focus on the bare ROM— no computational assumptions are made beyond
bounding the query complexity to the oracle.
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models (see Sect. 1.2.2). In this work, we advance our understanding about the
existence of short ROM-SNARGs (with arbitrary verifier query complexity).

1.1 Our Results

Assuming the (randomized) exponential time hypothesis (rETH), see details
below, we prove that for a large family of constructions, the current state-of-the
art ROM-SNARG is (essentially) optimal. Specifically, we show that, for this fam-
ily of constructions, a proof of 3SAT over n variables is of length Ω̃(log(t/ε)·log t)
(hiding log n factors). Matching (up to log n factors) the construction of the
[CY21a]. The family of constructions we consider includes all constructions that
have: (i) non-adaptive verifier and (ii) salted soundness. This includes all types of
constructions we are aware of [Mic00,BCS16,CY21b,CY21a]). See details below.

– Exponential time hypothesis. The (randomized) Exponential Time
Hypothesis (rETH) is a stronger version P �= NP that states that solving
3SAT on n variables takes (randomized) time 2Ω(n). Note that some complex-
ity assumption is inevitable for proving lower bounds on a SNARGs length.2

– Non-adaptive verifier. The oracle queries are asked by a non-adaptive
(deterministic3) verifier. That is, the queries are a function of the proof and
are independent of the answers to other queries.4

– Salted soundness. This is a natural strengthening of the standard soundness
of SNARG, which was introduced in Chiesa and Yogev [CY20]. A (t, ε)-salted-
soundness ROM-SNARG allows a cheating prover to request the random
oracle to re-sample the answer for a chosen query (similar to changing a
“salt” for this query). Each re-sampling costs a unit from the total t query
budget allowed. The cheating prover can also return to previously sampled
query answers at no cost.5

While one can easily construct contrived ROM-SNARGs for which salted
soundness does not hold, we are not aware of any ROM-SNARG that exploits
the fact that the prover cannot resample some of the oracle answers in a
meaningful way. All constructions we are aware of satisfy salted soundness.6

2 This follows since P = NP yields trivial SNARGs for all NP.
3 If the verifier is “public-coin” then it can be made deterministic by extracting ran-

domness from the random oracle. However, this makes the verifier adaptive and thus
cannot be used for our lower bound.

4 We mention that SNARGs resulting from applying the Fiat and Shamir [FS86]
paradigm on interactive proofs do not require an adaptive verifier, as the queries
added by the compilation are determined by the proof (i.e., transcript) sent by the
non-adaptive prover.

5 Our notion of salted soundness is a strengthening of the salted-soundness notion
considered in Chiesa and Yogev [CY20]. There, the cheating prover has to decide on
a salt for a specific query before moving to the next one. See details in Sect. 3.5.1.

6 See the analysis given in [CY21b] and in [CY21a], which explicitly allowed the adver-
sary to choose a salt for each query in the construction (e.g., see remark 3.2 in
[CY21b]).
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With these notions, we are ready to state our main result.(The precise state-
ments of the following results are given in the main body of the paper, see Paper
Organization for references.)

Theorem 1 (Conditional lower bound on ROM-SNARG length. Infor-
mal). Let ARG = (P,V) be an s-length ROM-SNARG for n-variable 3SAT, with
(t, ε)-salted-soundness, perfect completeness, and (deterministic) non-adaptive
verifier. Let qP and qV be the query complexity of P and V, respectively, and let
λ denote the random oracle input and output length.

Assuming rETH, if qV · λ ∈ o(n), and log2(t/ε) · log−1 qP ∈ o(n) then s ≥
c · log t · log t

ε · log−1 qP, for some universal constant c > 0.

We argue that the assumptions on the parameters regime in our theorem
are reasonable and consider the most interesting settings (see Theorem 13 for
the precise list of requirements). The goal of a SNARG is to have the proof
length and the verifier complexity be much smaller than the instance size n.
Usually, proportional to poly(λ, log n). Thus, our assumption that qV · λ, and
log t · log t

ε/ log qP are of order o(n) is rather mild. The third requirement of
qV ≤ t1/10 is almost trivial. It says that the query complexity of the verifier
is much smaller than the query bound t of the adversary, which is very much
expected from any reasonable SNARG.

The proof of Theorem 1 immediately follows by combing the following lemma
with the recent lower bound of Chiesa and Yogev [CY20] on the length ROM-
SNARG with low query-complexity verifiers.

Lemma 1 (Short ROM-SNARG → low query ROM-SNARG. Infor-
mal). Let ARG = (P,V) be a ROM-SNARG for a language L with a determinis-
tic non-adaptive verifier and (t, ε)-salted-soundness, perfect completeness, proof
length s, and verifier query complexity qV. Then there exists a verifier V′ of query
complexity s/ log t, running time 2qV·log t times that of V, such that (P,V′) is a
ROM-SNARG for L with (t, ε)-soundness and completeness ω(ε).

That is, the larger the salted-soundness of ARG, the smaller the number of
queries made by V′, and the better the completeness. While the completeness
and verifier running time of the resulting scheme are rather poor, and we do
not encourage to use it as an actual proof system, it is still non-trivial for the
parameters in consideration: V′ running time is 2o(n), for n being the instance
length, and the completeness is larger than the soundness error. By [CY20], the
existence of such ROM-SNARG for 3SAT contradicts rETH.

Using similar means, we can compile ARG into (P′,V′), with (almost) perfect
completeness, but with inefficient prover and slightly longer proof (see details in
Sect. 2). Since this transformation does not yield better lower bounds, and the
resulting scheme is impractical, we present the simpler transformation above.

Lower bound on the length of ROM subvector commitments. A subvector com-
mitment (SVC) [LM19] allows to succinctly commit to a sequence of values, and
later open the commitment for a subset of positions (an adversary cannot open
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any location into two different values). Ideally, the commitment string and the
opening size of the SVC are independent (or at least not strongly related) of the
length of the committed vector and the number of positions to open. This gener-
alization of vector commitments [CF13] has a variety of applications, including
SNARGs, verifiable databases with efficient updates, updatable zero-knowledge
databases, universal dynamic accumulators, and more. Since SVCs in the (bare)
ROM are the main building blocks in all ROM-SNARGs constructions, finding
shorter ROM-SVCs is the obvious approach towards construction shorter ROM-
SNARGs. For this very reason, Theorem 1 yields a lower bound on ROM-SVCs
for an analog family of constructions: non-adapter receiver and salted-binding
(i.e., the sender can resample the oracle outputs).

Theorem 2 (Conditional lower bound on the length of ROM subvec-
tor commitments. Informal). Let CM be a (t, ε)-salted-sound, non-adaptive
(deterministic) verification ROM-SVC for vectors of length n. Let qS and qR be
the query complexity of the sender and receiver, respectively. Let α denote the
commitment length, and β(�) denote the opening length for subsets of size �.

Assuming rETH, if qR · λ ∈ o(n), and log2(t/ε) · log−1 qS ∈ o(n), then α +
β(log t

ε ) ∈ Ω(log t · log t
ε/ log n).

That is, unless the commitment itself is large, the opening of subsets of size
log t

ε must be large: about log t/ log n bits per element. SVCs are relatively a
strong primitive as they imply SNARGs for NP via the Micali construction (the
other direction is not known to hold). However, we only know how to derive lower
bounds for them by a reduction to SNARGs. An interesting open question is to
directly get lower bounds for SVC, presumably for a larger class of constructions.
Moreover, we can hope to get a lower bound for SVCs (in the ROM) without
assuming rETH (or any complexity assumption). Indeed, even P = NP is not
known to yield trivial SVCs in the ROM (which is not the case for SNARGs).

1.1.1 Hitting High-Entropy Distributions

The crux of Lemma 1 proof is analyzing the completeness of the resulting low
verifier query scheme. We manage to translate this challenge into the following
task of hitting high-entropy distributions.

Let X = (X1, . . . , Xm) be a random variable uniformly distributed over
({0, 1}λ)m, let W be an event, and consider the random variable X|W , i.e., X
conditioned on W . It is instructive to think of this question as “How does X
appear to an adversary who received log(1/Pr [W ]) bits of information about X?”
A long sequence of works have studied the question of how “close” X|W is to the
uniformly distributed (unconditioned) X. In particular, these works considered
the question of indistinguishability : showing that parts of X|W are close to being
uniform. Some works, see [EIRS01,Raz98,SV10] to name a few, proved that the
distribution of (X|W )i is close in statistical distance to the uniform one, apart
from a size log(1/Pr [W ]) set of bad i’s. Other works extended the above to
bounded-query adversaries [Unr07,DGK17,CDGS18,GSV18,GLLZ20].

Unlike the above works, the focus of our result is forgeability : can we hit/sample
from the conditional distribution X|W using a simple distribution? We show that
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after putting aside some bad indices, one can hit the support of X|W , conditioned
on its value in these bad indices, using a large enough product distribution. Like
some of the above works, we state our result for high-entropy distributions, and
not only for the uniform distribution conditioned on a high probability event.7

Theorem 3 (Hitting high-entropy distributions using product sets, in-
formal). Let X = (X1, . . . , Xm) be a random variable over the product set
({0, 1}λ)m with H(X) ≥ λm − �, and let �log m� ≤ γ ≤ λ. Then with probability
at least 1/2 over x ← X, there exists an O(�/γ)-size set B ⊆ [m] (of bad indices)
such that

PrS←({0,1}λ)m−|B|
[
S ∩ Supp

(
X[m]\B | XB = xB

)
�= ∅

]
∈ Ω(1/λm).

Letting H be the Shannon entropy function, and vI , for a vector v, denote
the ordered vector (vi)i∈I . That is, with high probability over x ← X, and after
a few “bad” locations (indexed by B) are exposed, one can hit (i.e., forge a
sample from) the conditional distribution X[m]\B | XB = xB by sampling a tiny,
in relative terms, product set.

Note that Theorem 3 does not state that X[m]\B | XB = xB is close to the
uniform distribution. Actually, it might be very far from that, e.g., for X =
(U1, . . . , Um) |

⊕
Ui = 0λ where the Ui’s are uniform and independent random

variables over {0, 1}λ, there is no choice of B, apart from the trivial one of
B = [m], that makes X[m]\B | XB = xB being close to uniform. (And this example
demonstrates why the “pre-sampling” approach and alike, c.f., [Unr07], do not
seem to be relevant for proving bounds of the type stated in the theorem.)It
is also worth mentioning that one cannot prove Theorem 3 using the simple
observation that after fixing some bad indices, the projection of X ′ def= (X |
XB = xB) on all other coordinates has large support. While the latter guarantees
that, with high probability, each random subset Si ← {0, 1}γ intersects the
support of X ′

i, appending these samples together does not necessarily form an
element in X ′. Rather, we prove the theorem by showing that the number of
points in S ∩ Supp(X ′

[m]\B) is well-concentrated around its mean.
In our application of Theorem 3, the event W is the proof sent by P being

a fixed �-bit value π, and the size of the bad set B translates to the query
complexity of the new verier V′. The theorem yields, see Sect. 2, that if V′ makes
all queries is B, and samples the potential answers for the other queries by itself,
then it will accept (i.e., hitting the support of the accepting distribution) with
good probability.

1.2 Related Work

1.2.1 SNARGs in the Random Oracle Model

There are several approaches to construct ROM-SNARGs. Micali [Mic00] (build-
ing on [Kil92,FS86]) showed a transformation that compiles a probabilistically
7 This is a generalization since for uniformly distributed X it holds that H(X | W ) ≥

λm − log 1/Pr[W ].
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checkable proof (PCP) and a commitment scheme into ROM-SNARG. Using
the best know PCPs, the proof length of Micali’s construction, to get (t, ε)-
soundness, is O((log(t/ε))2 · log n), where n is the instance size. Even when
using the best-conjectured parameters for PCPs, known as the Sliding Scale
Conjecture [BGLR93], the proof length remains the same up to the log n factors
(see [CY21b] for a tight analysis of the Micali construction). Ben-Sasson, Chiesa,
and Spooner [BCS16] (hereon BCS) transformed a public-coin interactive oracle
proofs (IOPs) into ROM-SNARG. The benefit of their is approach is that we
are much better at constructing IOPs, with good parameters, than PCPs. Still,
even when using the best known (or conjectured) IOP, the proof length of the
BCS construction remains O((log(t/ε))2 · log n).

Recently, Chiesa and Yogev [CY21a] have constructed a ROM-SNARG of
proof length of O(log(t/ε) · log t · log n), and hence slightly overcome the above
“quadratic” barrier. Yet, the proof length of their construction is still far from
the only (folklore) lower bound of Ω(log(t/ε)). Thus, the question of how to close
this gap remains a major open question in this area.

1.2.2 SNARGs in Other Models

The security of SNARGs is unlikely to be proven in a non-idealized model
(using falsifiable assumptions) Gentry and Wichs [GW11], but if one is will-
ing to rely on “more structured” non-falsifiable assumptions (in addition or
instead of the random oracle), much shorter SNARGs become feasible. Treating
t as the running time of the adversary, constructions that use group-based and
pairing-based assumptions achieve the optimal length (or close to optimal) of
O(log(t/ε)) (c.f., [Gro10,GGPR13,BCIOP13,BCCGP16,BBBPWM18,BFS20,
PGHR13,MBKM19,CHMMVW20,Set19]). These constructions are insecure
against quantum adversaries. Lattice based constructions, which are plausibly
post-quantum, either achieve private-verifiability [BISW17,BISW18,GMNO18,
ISW21,Nit19], or are public-verifiable, but with large proof length in practice
(moreover, they typically use a random oracle as an additional assumption)
[BBCPGL18,BLNS20,BCS21,CMSZ21]. (All of the above works assume a com-
mon random or reference string.)

To date, relying on the ROM is the best way to construct SNARGs that
overcome all of the drawbacks mentioned above (alas, at the price of larger
proofs).

Paper Organization

In Sect. 2, we give a high-level overview of the techniques for proving Lemma
1 (from short ROM-SNARGs to short ROM-SNARGs with low verifier query
complexity). A formal definition of our notion of salted soundness, along with
notations, definitions, and general statements used throughout the paper are
given in Sect. 3. Theorem 3 (hitting high-entropy events using product sets) is
proved in Sect. 4. Theorem 1 (lower bound on the length of ROM-SNARGs) and
its accompanied Lemma 1 are proved in Sect. 5, and Theorem 2 (lower bound
on the length of ROM subvector commitments) is proved in the full version of
the paper.
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2 Techniques

In this section, we give a high-level overview of our proof for Lemma 1, explaining
how to transform a short salted-soundness, perfect completeness, deterministic
non-adaptive verifier ROM-SNARG into a low verifier query ROM-SNARG for
the same language.

Fix a deterministic non-adaptive ROM-SNARG ARG = (P,V) for a language
L with (t, ε)-slated-soundness and perfect completeness. Let s denote the proof
length ARG, and let qP and qV denote the query complexity of P and V, respec-
tively.

2.1 Warmup

As a warmup, assume that the honestly generated proof π, sent by P, only
contains information about outputs of k (“important”) queries, whose identity
is independent of the oracle. (The proof might contain additional information
depending only on the instance x and the witness w.) For this simple scenario,
the construction of a k-query V′ is rather straightforward:

Algorithm 4 (Low-query verifier V′. Warmup).
Oracle: ζ : {0, 1}λ → {0, 1}λ.
Input: Instance x and a proof π.
Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall
that V is non-adaptive.)

2. Sample a random k-size subset J ⊆ [qV].
3. For i = 1, . . . , qV:

If i ∈ J , set yi = ζ(wi).
Otherwise, sample yi ← {0, 1}λ.

4. Accept if V accepts on the emulation with (y1, . . . , yqV) as the answers to its
oracle queries

Namely, V′ guesses the identity of the important queries, and then uses the
oracle ζ to answer them. It samples the answers to the other queries uniformly
at random. The query complexity of V′ is small if the number of important
queries is small. Let us quickly argue about the completeness and soundness of
ARG′ = (P,V′).

– Completeness. If the set J happens to contain all important queries, then the
given proof π, the instance x, and the witness w, the oracle answers provided
to the emulated V have exactly the same distribution as in its non-emulated
execution. Since we assume ARG has perfect completeness, the completeness
of ARG′ is at least 1/

∣
∣(qV

k

)∣∣—the probability that J contains all important
queries.
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– Soundness: Here we rely on the salted soundness of the original SNARG
scheme. Assume there exists a (t − qV)-query cheating prover P̃′ that makes
V′ accept x /∈ L with probability ε. Consider the following t-query cheating
prover P̃ for violating the salted-soundness of ARG.8

1. Run P̃′ζ to generate a proof π.
Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV).

2. For i = 1, . . . , qV:
Query ζ on wi with a fresh salt. Set Si = {yi} for yi be the query answer.
If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

3. If there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that would make V accept
(x, π) with (y1, . . . , yqV) as the answers to its oracle queries, program
ζ(wi) = yi for each i ∈ [qV] (this programming is allowed by the salted
soundness security game).

4. Output π.
By definition, if P̃ outputs a proof π then V accepts π on the programmed
oracle. In addition, the probability that P̃ outputs the proof π generated in
Step 1, is at least as large as the probability that V′ accepts π on the non-
programmed oracle: P̃ considers for each query the original output of the
oracle, as seen by V′ on queries in J , and a uniform output, as sampled by
V′ on inputs not in J .

2.2 Actual Scenario

Things get way more challenging when the proof π depends on the queries made
by P, even in a slightly more complicated way. For instance, suppose π contains
the XOR of some k queries, and V verifies that the XOR of these queries is
consistent with π. Since k might be arbitrarily large, i.e., much larger than π,
there is no low-query verifier that makes all these queries. So the challenge is to
design a verifier that does not make all queries that effect the value of π, but
still has non-trivial soundness and completeness.

The key observation is that for the general case, where π depends arbitrar-
ily on all oracle answers, we can modify the verifier so that the completeness
and soundness are not that different from the näıve example considered in the
warmup. Very informally, with high probability over the value of π and apart
from k = s/γ “important” queries, the verification verdict does not depend
“too much” on the answer to all other “non-important” queries. That is, there
are many possible answers for the non-important queries that lead to accep-
tance (compared with all possible answers in the warmup case). See Sect. 2.3 for

8 Recall that the salted-soundness game allows a cheating prover to resample (many
times) the output of the random oracle on a query. Each resampling costs the cheat-
ing prover a single query call from its query budget. The prover can role-back the
oracle on certain queries, to set their answers to a previously answered values. See
Sect. 3.5.1 for exact definition.
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details. It follows that the answers for the non-important queries can be emulated
by the verifier (without querying the oracle). Equipped with this understanding,
the low query V′ is defined as follows:

Algorithm 5 (Low-query verifier V′).
Oracle: ζ : {0, 1}λ → {0, 1}λ.
Paramters: γ < λ.
Input: Instance x and a proof π.
Operation:

1. Emulate V(x, π) till it produces a list of oracle queries (w1, . . . , wqV). (Recall
that V is non-adaptive.)

2. Sample k′ ∈ [k] at random and sample, a random k′ = �s/γ�-size subset
J ⊆ [qV].

3. For i = 1, . . . , qV:
If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that make V accepts on
the emulation, with (y1, . . . , yqV) as the answers to its oracle queries

That is, similar to the warmup scenario, V′ only uses the oracle to answer
the k = �s/γ� queries in the guessed set J . For each other query, V′ samples
2γ candidates answers. It accepts if there is a choice from the candidate answers
that jointly with the oracle answers to the queries in J , leads to acceptance.
The running-time of V′ is (roughly) 2qV·γ , and the following claim states the
completeness and soundness of ARG′ = (P,V′):

Claim (Informal). ARG′ has
(
λ · qP ·k ·

(
qV
s/γ

))−1-completeness and (t−qV ·2γ , ε)-
soundness.

We argue completeness in Sect. 2.3, using the observation we made above
regarding the small number of important queries, and argue soundness in
Sect. 2.4, by extending the approach we took for proving soundness in the
warmup case.

2.3 Completeness

Let Π and Y = (Y1, . . . , YqP) denote the proof and the random oracle answers
to honest prover P queries on instance x and witness w, respectively. Since the
Yi’s are independent uniform values in {0, 1}λ, it holds that

H(Y ) = qP · λ (1)

where H(Y ) is the Shannon entropy of Y . A standard entropy argument yields
that with probability at least 1/2 over π ← Π:

H(Y | Π = π) ≥ qP · λ − 2|π| (2)
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In the following, fix π ∈ Supp(Π) for which Equation (2) holds. Applying The-
orem 3 with respect to Y |Π=π and � = 2|π|, yields that with probability 1/2
over the value of (y1, . . . , yqP) ← Y |Π=π, there exists a set B ⊆ [qP] of size �/γ
(omitting constant factors) such that

Pr
[
(S1 × · · · × SqP−|B|) ∩ Supp(Y ′

[qP]\B) �= ∅
]

∈ Ω(1/λ · qP) (3)

where each of the Si’s is an independent 2γ-size subset of {0, 1}λ, Y ′ def=
Y |YB=yB,Π=π, and Y ′

I is the ordered vector (Y ′
i )i∈I .

Assume for simplicity that V and P make exactly the same queries. By
Equation (3), if the random set J (sampled by V′) is exactly B = B(π),
then with probability Ω(1/λ · qP) over the choice of the sets Si’s sampled by
V′, exit answers {yj ∈ Sj}j /∈J that when combined with the oracle answers
{yj ∈ Sj}j∈J , it holds that y = (y1, . . . , yqP) ∈ Supp(Y |Π=π). Since such a vec-
tor y is possible to occur as random oracle answers in an honest execution of P
that results in π, the perfect completeness of ARG yields that V accepts on (the
answers in) y with probability one. We conclude that V′ accepts with probability
Ω(1/λ · qP) times Pr [J = B] ≥ 1/k · 1/

(
qV
s/γ

)
.

Remark 1 (Improved completeness). We note that one could slightly modify the
transformation to improve the completeness significantly (at the cost of proof
length and prover running time). However, as this does not improve our lower
bound, we only sketch the idea here. Instead of having the verifier guess the set J ,
let the prover find J , and send its description to the verifier. The completeness
error now would come only from the error in Equation (2) (i.e., an error of
(λ · qP)−1), and not from the probability of choosing the right set J . The proof
would be slightly larger (as it needs to contain the description of J ), and the
running-time of the honest prover would increase, as it needs to find the right
set J (query complexity will stay the same). Even more so, using a prefix salt
for all queries (included in the proof), one can make the completeness error
exponentially small.

2.4 Soundness

Assume there exists a (t−qV ·2γ)-query cheating prover P̃′ that makes V′ accepts
x /∈ L with probability ε, and consider the following t-query cheating prover P̃
for violating the salted-soundness of ARG.

Algorithm 6 (P̃).
Oracle: ζ : {0, 1}λ → {0, 1}λ.
Input: Instance x.

1. Run P̃′ζ(x) to generate a proof π.
2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).
3. For i = 1, . . . , qV:
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(a) Query ζ on wi for 2γ times. Let Si be the set of answers.
(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to Si.

4. If there exists (y1, . . . , yqV) ∈ S1 × . . . × SqV that make V accept (x, π) with
(y1, . . . , yqV) as the answers to its oracle queries, program ζ(wi) = yi for each
i ∈ [qV].

5. Output π.

The cheating probability of P̃ it as least as high as that of P̃′. This is shown
via a coupling argument, and the precise details are given in Sect. 5.2.2.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. Let poly stand for the set of all polyno-
mials. Throughout the paper, log is the base 2 logarithm. For n ∈ N, let
[n] = {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry. Similarly, for
a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I , let v−I

def= v[n]\I . For a set
S and k ∈ N, let Pk(S) denote all k-size subsets of S. The support of a random
variable X, denoted Supp(X), is defined as {x : Pr[X = x] > 0}. For an event
E, we write X|E to denote the random variable X conditioned on E.

The language 3SAT over n variables is the set of all satisfiable formulas in
conjunctive normal form where each clause is limited to at most three literals.
The class BPTIME[T ] refers to all languages that can be decided by a proba-
bilistic TM that runs in time T (n), on inputs of length n.

Some basic inequalities. We use the following well-known facts:

Fact 7. log(1−x) ≤ −x for x ∈ [0, 1], and log(1−x) ≥ −2x, for any x ∈ [0, 1/2].

Theorem 8 (Paley-Zygmund inequality). For any finite non-negative ran-
dom variable X it holds that Pr[X > 0] ≥ E[X]2/E[X2] .

3.2 Entropy Measures

We refer to several measures of entropy. The relation and motivation of these
measures are best understood by considering a notion that we will refer to as the
sample-entropy: for a random variable X and x ∈ Supp(X), the sample-entropy
of x with respect to X is the quantity

HX(x) def= log 1
Pr[X=x] ,

letting HX(x) = ∞ for x /∈ Supp(X), and 2−∞ = 0.
The sample-entropy measures the amount of “randomness” or “surprise” in

the specific sample x, assuming that x has been generated according to X. Using
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this notion, we can define the Shannon entropy H(X) and min-entropy H∞(X)
as follows:

H(X) def= Ex←X [HX(x)] , H∞(X) def= min
x∈Supp(X)

HX(x).

We will also discuss the max-entropy H0(X)def= log |Supp(X)|. The term “max-
entropy” and its relation to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with each inequality being
an equality if and only if X is flat (uniform on its support). Thus, saying that
H∞(X) ≥ k is a strong way of saying that X has “high entropy” and H0(X) ≤ k
a strong way of saying that X has “low entropy”.

Conditional entropies. We will also be interested in conditional versions
of entropy. For jointly distributed random variables (X,Y ) and (x, y) ∈
Supp(X,Y ), we define the conditional sample-entropy to be HX|Y (x|y) =
log 1

PrX|Y [x|y] = log 1
Pr[X=x|Y =y] . Then the standard conditional Shannon entropy

can be written as

H(X | Y ) = E(x,y)←(X,Y )

[
HX|Y (x | y)

]
= Ey←Y [H(X|Y =y)] = H(X, Y ) − H(Y ).

The following fact gives a bound on the amount of entropy that is reduced
when conditioning on an event for uniformly distributed random variables.

Fact 9. Let X be a random variable uniform over a set S and let W be an event.
Then H(X | W ) ≥ log(|S|) − log 1/Pr [W ].

3.3 Randomized Exponential Time Hypothesis

Definition 1 (rETH; [DHMTW14]). The randomized Exponential Time
Hypothesis (rETH) states that there exist ε > 0 and c > 1 such that 3SAT
on n variables and with c · n clauses cannot be solved by probabilistic algorithms
that run in time 2ε·n.

3.4 Random Oracles

We denote by U(λ) the uniform distribution over all functions ζ : {0, 1}∗ →
{0, 1}λ. Given an oracle algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the
set of oracle queries that Aζ makes. We say that A is t-query if |queries(A, ζ)| ≤ t
for every ζ ∈ U(λ). We say that A is non-adaptive if its queries do not depend
on the responses of the random oracle to previous queries. Finally, we consider
the length of oracle queries, i.e., the number of bits used to specify the query:
we say that A has queries of length λ if for every ζ ∈ U(λ) and x ∈ queries(A, ζ)
it holds that |x| ≤ λ.
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3.5 Non-interactive Arguments in the ROM

We consider non-interactive arguments in the ROM, where security holds against
query-bounded, yet possibly computationally-unbounded, adversaries. Recall
that a non-interactive argument typically consists of a prover algorithm and
a verifier algorithm that prove and validate statements for a binary relation,
which represents the valid instance-witness pairs.

A pair of polynomial-time oracle algorithms ARG = (P,V) is a ROM-SNARG
with α-completeness and (t, ε)-soundness, for a relation R, if the following holds.

– Completeness. For every λ ∈ N and (x,w) ∈ R:

Pr
ζ←U(λ)

π←Pζ(x,w)

[
Vζ(x, π) = 1

]
≥ α(|x| , λ) .

– Soundness.9 For every λ ∈ N, t-query P̃ and x /∈ L(R):

Pr
ζ←U(λ)

π←˜Pζ

[
Vζ(x, π) = 1

]
≥ ε(|x| , λ, t) .

Complexity measures. We consider several complexity measures beyond sound-
ness error. All of these complexity measures are, implicitly, functions of x and
the security parameter λ.

– argument length: s := |π|.
– times: the prover P runs in time pt; the verifier V runs in time vt.
– queries: the prover P is a qP-query algorithm the verifier V is a qV-query

algorithm.

3.5.1 Salted Soundness

Chiesa and Yogev [CY20] introduced a stronger notion of soundness for ROM-
SNARG that they named salted soundness. This notion requires soundness to
hold also against a malicious prover that has limited ability to program the oracle:
it can obtain a set of random, independent strings as candidates for random
oracle answers to a specific query. After obtaining such sets to the queries of his
choice, the malicious prover can pick an answer of his desire from each set to be
the random oracle answer.10 This notion is formalized via the following salted
soundness game defined as follows:

Game 10 (SaltedSoundessV,λ,t(A,x)).
Parameters: Algorithm V and λ, t ∈ N.

9 This notion, where x is set before the oracle, is sometimes refereed to as non-adaptive
soundness. Clearly, lower bounds on this weaker notion , as we do in this work, apply
also for its adaptive variant (where the cheating prover is allowed to choose x as a
function of the oracle).

10 Our notion slightly strengthens the notion of Chiesa and Yogev [CY20], in which
the prover cannot roll back the oracle answer to a previously seen answer.
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Input: x ∈ {0, 1}∗

Player: A.
Operation:

1. Initialize keyed-map S of lists (each entry is initialized with the empty list).
2. Repeat the following t times:

(a) A sends a query x ∈ {0, 1}∗.
(b) Send y ← {0, 1}λ to A, and add it to the list S[x].

3. A outputs a proof string π and query-answer list σ = [(x1, y1), . . . , (xn, yn)].
4. Abort if yi /∈ S[xi] for some i ∈ [n].
5. Output Vζσ (x, π).

Definition 2 (Salted soundness). We say that ROM-SNARG (P,V) has
(t, ε)-salted-soundness for a language L, if for any λ, x /∈ L and P̃ it holds
that Pr

[
SaltedSoundessV,λ,t(P̃,x) = 1

]
≤ ε(|x| , λ, t).

Remark 2 (Known constructions satisfy salted soundness). Known construc-
tions of ROM-SNARGs are usually proven to have standard soundness (as
opposed to salted soundness). However, we observe that the constructions of
[Mic00,BCS16,CY21b,CY21a] actually achieve this stronger notion of security.
In particular, the tight analysis given in [CY21b] and in [CY21a] explicitly
allowed the adversary to choose a salt for each query in the construction (e.g.,
see remark 3.2 in [CY21b]).

Amplification. It turns out that salted soundness can be easily amplified (at the
expense of the query complexity). The proof of Lemma 2 is proved in the full
version of the paper.

Lemma 2. Let ARG be an ROM-SNARG for a language L with (t, ε)-salted-
soundness for ε ≤ 1/4. Then ARG has (t/k, 2ε/k)-salted-soundness for any k ∈
N.

4 Hitting High-Entropy Distribution Using Product Sets

In this section we formally state and prove Theorem 3. Recall that for a set S
and k ∈ N, we let Pk(S) denote all k-size subsets of S. Thus, a uniform sample
from (P2γ ({0, 1}λ))m−|B| is a random product in ({0, 1}λ)m−|B| of width 2γ .

Theorem 11 (Hitting high-entropy distributions using product sets,
restatement of Theorem 3). Let γ ≤ λ ∈ N, and let X = (X1, . . . , Xm) be a
random variable over ({0, 1}λ)m. If H(X) ≥ λm− � and γ ≥ 4 �log m�+4, then
with probability at least 1/2 over x ← X, then there exists a set B ⊆ [m] of size
at most 8�/γ + 4 such that

PrS←(P2γ ({0,1}λ))m−|B|
[
S ∩ Supp(X[m]\B |XB=xB) �= ∅

]
≥ 1/32λm.
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Remark 3 (Tightness of Theorem 11). The size of B in Theorem 11 is tight up
to a constant: Let m,λ, γ ∈ N be as in Theorem 11, let X = (X1, . . . , Xm) be
uniform over ({0, 1}λ)m and let W be the event that X1 = . . . = Xt = 0λ, for
some t ∈ [m]. Clearly, H(X|W ) = (m − t)λ. It is also clear that for every x and
every set B ⊆ [m] of size t′ < t, it holds that

Pr
S←(P2γ ({0,1}λ))m−t′

[
S ∩ Supp(X[m]\B |XB=xB) �= ∅

]
≤ 2γ−λ,

which is negligible for sufficiently small γ, e.g., γ = λ/2. This matches, up to a
constant, Theorem 11, which states that with high probability over x ← X |W ,
there exists a set B of size at most 16t+4 for which that the above event occurs
with probability at least 1/32λm.

Proving Theorem 11. We start with describing the high-level approach of the
proof. We need to prove that with high probability over x ← X, there exists a
small (i.e., with size at most 8�/γ + 4) subset B ⊆ [m] such that

PrS←(P2γ ({0,1}λ))m̂

[
S ∩ Supp(X̂) �= ∅

]
≥ 1/32λm,

for X̂ = X[m]\B |XB=xB and m̂ = m−|B|. We assume, without loss of generality,
that the elements of each Si are chosen in a uniform order, and denote the jth
element of Si, according to this order, by Si[j]. For y = (y1, . . . , ym̂) ∈ [2γ ]m̂, let
Sy ∈ {0, 1}λ×m̂ be the random variable defined by (Sy)i = Si[yi]. Let Zy be the
indicator for the event Sy ∈ Supp(X̂), and let Z

def=
∑

y∈[2γ ]m̂ Zy. That is, Zy is

event that the yth element of S is in Supp(X̂). Given this notation, we need to
prove that Pr [Z > 0] ≥ 1/32λm. We start by proving that the expected value
of Z is large. By linearity of expectation,

E [Z] =
∑

y∈[2γ ]m̂

E [Zy] = 2γm̂ · |Supp(X̂)|/2m̂λ = 2(γ−λ)m̂ · |Supp(X̂)| (4)

To guarantee that E [Z] is at least one, we chose B to be a maximal subset of
[m] with

HXB(xB) ≤ (λ − γ) · |B| (5)

for HY (y) be the sample entropy of y according to Y (see Sect. 3.2). It is rather
straightforward to show that with respect to this choice of B, the expected value
of Z is indeed at least one. Furthermore, since, by assumption, X has high
entropy, the expected size of B, as a function of x, is small, and therefore, with
high probability over x the size of B is also small. (See proof in Lemma 3).

The above would suffice for lower-bounding Pr [Z > 0], if the random vari-
ables {Zy} would have been independent. This, however, is clearly not the case
since most Zy are not even pairwise independent: for a pair y, y′ ∈ [2γ ]m̂ with
yI = y′

I for some I ⊆ [m̂], the event Zy = 1, implying (Sy′
)I ∈ Supp(X̂I),

is likely to increase the probability of Zy′
= 1. Yet, we manage to show that
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the expected value of Z2 is small enough, implying that Z is well concentrated
around its mean, and therefore Pr [Z > 0] is large. To do that, we notice that
for the maximal set B defined above, it holds that

HXI |XB=xB
(xI) > (λ − γ) · |I| (6)

for every I ⊆ [m] \ B. This condition implies that for every y, y′ with yI = y′
I ,

the probability of Zy ∧ Zy′
is sufficiently small (quantified by the size of I),

implying that E
[
Z2

]
is small.

Moving to the formal proof, Theorem 11 is an immediate corollary of the
following two lemmata: Lemma 3 states that with high probability over x, there
exists a small set B for which Equation (6) holds, and Lemma 4 completes the job
by proving the conclusion of the theorem for the random variable X[m]\B |XB=xB .

Lemma 3 (High-entropy events have an almost full-entropy large pro-
jection). Let γ ≤ λ ∈ N, and let X = (X1, . . . , Xm) be a random variable over
({0, 1}λ)m. If H(X) ≥ λ · m − � and γ ≥ 2 · �log m� + 2, then with probability at
least 1/2 over x ← X, exists a set B ⊆ [m] of size at most 4�/γ + 4 such that
for every I ⊆ [m] \ B:

HXI |XB=xB
(xI) ≥ (λ − γ) |I| .

Lemma 4 (Hitting almost full-entropy events using product sets). Let
γ ≤ λ ∈ N, let X = (X1, . . . , Xm) be a random variable over ({0, 1}λ)m. Assume
γ ≥ 2 · �log m� + 3, and that for every x ∈ Supp(X) and I ⊆ [m], it holds that
HXI (xI) ≥ (λ − γ/2) · |I|. Then

PrS←(P2γ ({0,1}λ))m [S ∩ Supp(X) �= ∅] ≥ 1/32λm.

We prove Lemmas 3 and 4 in Sects. 4.1 and 4.2, receptively, but first use
them for proving Theorem 11.

Proof of Theorem 11: Let t
def= 8�/γ + 4, and let

T def
= {x ∈ Supp(X) : ∃B ⊆ [m], |B| ≤ t : ∀I ⊆ [m] \ B, HXI |XB=xB

(xI) ≥ (λ − γ/2) · |I|} .

Since, by assumption, γ/2 ≥ 2 �log m� + 2, Lemma 3 yields that

Pr [X ∈ T ] ≥ 1/2 . (7)

Fix x ∈ T , let B be the set guaranteed by the definition of T (choose an arbitrary
one, if there is more than one), and let X ′def= X[m]\B|XB=xB , and let m′def= m−|B|.
By Lemma 4

Pr
S←(P2γ ({0,1}λ))m′ [S ∩ Supp(X ′) �= ∅] ≥ 1/32λm′ ≥ 1/32λm . (8)

Combining Equations (7) and (8), concludes the proof. ��
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4.1 High-Entropy Distributions Have an (Almost) Uniform Large
Projection, Proving Lemma 3

Proof of Lemma 3. Let m,λ, γ and X be as in Lemma 3. For x ∈ Supp(X), let
Bx be the (lex. first) maximal11 subset of [m] with

HXBx (xBx) ≤ (λ − γ) |Bx| (9)

Since Equation (9) holds for the empty set, Bx is always defined. We prove
Lemma 3 using the following two claims, proven below.

Claim. For every x ∈ Supp(X) and I ⊆ [m] \ Bx, it holds that
HXI |XBx=xBx (xI) ≥ (λ − γ) · |I|.

Claim. If H(X) ≥ λ · m − �, then for every random variable I ⊆ [m] it holds
that H(XI | I) ≥ (λ − �log m�) · E [|I|] − � − �log m�.

By Sect. 4.1, for every x ∈ Supp(X) and I ⊆ [m] \ Bx, it holds that

HXI |XBx=xBx (xI) ≥ (λ − γ) |I| (10)

Hence, to conclude the proof, it is left to argue that with high probability over
x ← X, the size of Bx is small. For I ⊆ [m], let fI(x) = xI if Bx = I, and
fI(x) = ⊥ otherwise, and let pI = Pr [fI(X) = ⊥]. Compute

H(XBX | BX) = EB←BX

[
H(XB | BX = B)

]
(11)

= EB←BX

[
H(fB(X) | BX = B)

]
≤

∑

I
EB←BX

[
H(fI(X) | BX = B)

]

=
∑

I
H(fI(X) | BX) ≤

∑

I
H(fI(X))

=
∑

I

( ∑

x : Bx=I
Pr [X = x] · HXI (xI)

)
+pI · log(1/pI)

≤
∑

I
Pr

[
BX = I

]
· (λ − γ) · |I| + pI · log(1/pI) (12)

= (λ − γ)E
[∣∣BX

∣
∣] +

∑

I
pI · log(1/pI)

≤ (λ − γ)E
[∣∣BX

∣
∣] + 1 +

∑

I,pI≥1/2

−pI · log(pI)

≤ (λ − γ)E
[∣∣BX

∣
∣] + 1 +

∑

I,pI≥1/2

pI · 2(1 − pI) (13)

= (λ − γ)E
[∣∣BX

∣
∣] + 1 + 2 ·

∑

I,pI≥1/2

pI · Pr
[
BX = I

]

≤ (λ − γ)E
[∣∣BX

∣
∣] + 3.

11 Maximal means relative to inclusion—there is no I strictly containing Bx with
HXI (xI) ≤ (λ − γ) · |I|.
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Inequality 12 holds by the definition of Bx, and Inequality 13 holds since
log(1 − x) ≥ −2x for x ∈ [0, 1/2].

On the other hand since, by assumption, H(X) ≥ λ · m − �, Sect. 4.1 yields
that

H(XBX | BX) ≥ (λ − �log m�) · E
[∣∣BX

∣
∣] − � − �log m� (14)

Combining Equations (11) and (14), we conclude that E
[∣∣BX

∣
∣] ≤

	+	log m
+3
γ−	log m
 ≤ 2�/γ + 2, where the 2nd inequality follows from the fact that

γ ≥ 2 · �log m� + 3. The proof follows by Markov inequality. ��
Proving Section 4.1.

Proof of Section 4.1. Let B = Bx. Since for every disjoint sets A, C ⊆ [m] and
x ∈ Supp(X)

Pr[XA = xA] · Pr[XC = xC | XA = xA] = Pr[XA∪C = xA∪C ],

for every I ⊆ [m] \ B

HXB(xB) + HXI |XB=xB
(xI) = HXI∪B(xI∪B).

Assume towards a contradiction that HXI |XB=xB(xI) < (λ − γ) |I|. Since, by
definition, HXB(xB) ≤ (λ − γ) |B|, it follows that

HXI∪B(xI∪B) < (λ − γ) · (|B| + |I|) = (λ − γ) · |B ∪ I| ,

in contradiction to the maximality of B. ��

Proving Section 4.1.

Proof. Since, by assumption, H(X) ≥ λm − �, and since

H(I) = H(I, |I|) ≤ �logm	 + H(I | |I|) ≤ �logm	 + E [|I|] · �logm	 = �logm	 (E [|I|] + 1),

we conclude that

H(X | I) ≥ λm − � − (Ex←X [|I|] + 1) �log m� (15)

Therefore,

H(X | I) = H(XI ,X[m]\I | I) ≤ H(XI | I) + H(X[m]\I | I) (16)

Finally, since H(X[m]\I | I) ≤ H0(X[m]\I) | I) ≤ λ·(m−Ex←X [|I|]), we conclude
that

H(XI | I) ≥λ · m − � − �log m� (E [|I|] + 1) − λ · (m − E [|I|])
=(λ − �log m�) · E [|I|] − � − �log m� .

��
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4.2 Hitting Almost Full-Entropy Distributions Using Product Set,
Proving Lemma 4

We start by proving the following variant of Lemma 4, stated for flat distribu-
tions, i.e., X is uniform over a set. In Sect. 4.2.1, we use this variant for proving
Lemma 4.

Lemma 5 (Hitting flat distributions). Let m, γ ≤ λ ∈ N be such that
γ ≥ 2 · �log m� + 2, let δ > 0, and let T ⊆ {0, 1}λ·m be a non empty set. If for
all I ⊆ [m] and a ∈ {0, 1}λ·|I|, it holds that

|{x ∈ T : xI = a}| ≤ |T | · 2(γ/2−λ)|I|/δ , (17)

then

PrS←(P2γ ({0,1}λ))m [S ∩ T �= ∅] ≥ δ/2 .

Proof. Let S = (S1, . . . , Sm) be as in the lemma statement, i.e., uniformly
distributed over

(
P2γ ({0, 1}λ)

)m. We assume, without loss of generality, that
the elements of each Si are chosen in a uniform order and denote the jth ele-
ment of Si, according to this order, by Si[j]. For y = (y1, . . . , ym) ∈ [2γ ]m, let
Sy ∈ {0, 1}λ×m be the random variable defined by (Sy)i

def= Si[yi]. Let Zy be the
indicator for the event Sy ∈ T , and let Z

def=
∑

y∈[2γ ]m Zy. By the Paley-Zygmund
inequality, Theorem 8, it holds that

PrS←(P2γ ({0,1}λ))m [S ∩ T �= ∅] = Pr[Z > 0] ≥ E[Z]2/E[Z2] . (18)

Thus, we prove Lemma 5 by properly bounding E[Z] and E[Z2]. Let ρ
def= |T |

2mλ .
Since we associate a random order with the elements of each Si, for every y ∈
[2γ ]m it holds that E [Zy] = ρ. Hence,

E [Z] =
∑

y∈[2γ ]m

E [Zy] = 2γmρ . (19)

For upper bounding E[Z2], we use the following claim (proved in Sect. 4.2). In
the following for y, y′ ∈ [2γ ]m, let Ky,y′

def= {i ∈ [m] : yi = y′
i}.

Claim 12. For every y, y′ ∈ [2γ ]m it holds that Pr[Zy ∧Zy′
] ≤ 2γ·|Ky,y′ |/2 ·ρ2/δ.

For K ⊆ [m], let AK
def= {(y, y′) ∈ [2γ ]m : Ky,y′ = K}. Using Claim 12, we

deuce that
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E
[
Z2

]
=

∑

y,y′∈[2γ ]m

Pr[Zy ∧ Zy′
] (20)

=
∑

K⊆[m]

∑

y,y′∈AK

Pr[Zy ∧ Zy′
]

≤
∑

K⊆[m]

∑

y,y′∈AK

2γ|K|/2 · ρ2/δ

≤ ρ2

δ
·

m∑

k=0

∑

K⊆[m],|K|=k

2γk · (22γ)m−k · 2γk/2

=
ρ2

δ
· 22γm ·

m∑

k=0

(
m

k

)
· 2−γk/2

≤ ρ2

δ
· 22γm ·

m∑

k=0

2−k·(γ/2−log m) ≤ 2·ρ
2

δ
· 22γm.

The first inequality holds by Claim 12, and the last one by holds since, by
assumption, γ ≥ 2 · �log m� + 2. Combining Equations (18) to (20), prove the
lemma by deducing that

Pr[Z > 0] ≥ E[Z]2

E[Z2]
≥ (2γm · ρ)2

2·ρ2

δ · 22γm
= δ/2.

��
Proving Claim 12.

Proof. Let K = Ky,y′ , and for a ∈ {0, 1}λ|K| let Ta = {x ∈ T : xK = a}. Compute

Pr
[
Zy ∧ Zy′]

=
∑

a∈{0,1}λ·|K|

Pr [Sy
K = a] · Pr

[
Zy ∧ Zy′ | Sy

K = a
]

=
∑

a∈{0,1}λ·|K|

Pr [Sy
K = a] ·

(
|Ta| · (|Ta| − 1)

22λ(m−|K|)

)

≤
∑

a∈{0,1}λ·|K|

2−λ|K| ·
(

|T |
2λ(m−|K|)

)2

·
(

|Ta|
|T |

)2

≤
∑

a∈{0,1}λ|K|

2−λ|K| ·
(

|T |
2λ(m−|K|)

)2

· |Ta|
|T | · 2(γ/2−λ)·|K|/δ

=
1
δ

·
(

|T |
2λm

)2

· 2γ|K|/2 ·
∑

a∈{0,1}λ|K|

|Ta|
|T | =

1
δ

· ρ2 · 2γ|K|/2.

The second inequality holds by the assumption of the lemma (Equation (17)). ��
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4.2.1 Proving Lemma 4

Proof of Lemma 4. Define

T def= {x ∈ Supp(X) : ∀I ⊆ [m],HXI (xI) ≥ (λ − γ/2) · |I|}

We partition the set T into 2λm subsets, such that the elements of each part
have roughly the same probability under X. Specifically, for i ∈ [2λm] let

T i def= {x ∈ T : HX(x) ∈ [i − 1, i)},

and let T 0 def= {x ∈ T : HX(x) ≥ 2λm}. By definition,

Pr[X ∈ T 0] =
∑

x∈T 0

Pr[X = x] ≤ 2λ·m · 2−2·λ·m = 2−λ·m,

and therefore 2−λ·m+
∑

i∈[2·λ·m] Pr[X ∈ T i] ≥ 1. Hence, by averaging argument,
exists i ∈ [2λm] such that

Pr[X ∈ T i] ≥ 1 − 2−λ·m

2λm
≥ 1

4λm
(21)

The second inequality hold since, by assumption, λ ≥ γ ≥ 2. In the rest of the
proof we use Lemma 5 to prove that PrS←P2γ ({0,1}λ)

[
S ∩ T i �= ∅

]
. Let Xi =

X |X∈T i , and for I ⊆ [m] and a ∈ Supp(Xi
I), let T i

I,a
def= {x ∈ T i : xI = a}. Since

Xi is almost flat, for every a ∈ Supp(Xi
I) and x ∈ T i

I,a:

Pr[Xi
I = a] =

∑

x′∈T i
I,a

Pr[Xi = x′] ≥
∣
∣T i

I,a

∣
∣ · Pr[Xi = x]/2.

Similarly,

1 =
∑

a∈Supp(Xi
I)

Pr[Xi
I = a] =

∑

a∈Supp(Xi
I)

∑

x′∈T i
I,a

Pr[Xi = x′]

≤
∑

a∈Supp(Xi
I)

∣
∣T i

I,a

∣
∣ · 2 · Pr[Xi = x] = 2 ·

∣
∣T i

∣
∣ · Pr[Xi = x].

Combing the above two inequalities, we get that

Pr[Xi
I = a] ≥

1/2 ·
∣
∣T i

I,a

∣
∣ · Pr[Xi = x]

2 · |T i| · Pr[Xi = x]
=

∣
∣T i

I,a

∣
∣

4 · |T i| (22)

By assumption, for every x ∈ T and I ⊆ [m]:

Pr[XI = xI ] ≤ 2(γ/2−λ)|I| (23)

Therefore, for every a ∈ Supp(Xi
I):

∣
∣T i

I,a

∣
∣

|T i| ≤ 4 · Pr[Xi
I = a] ≤ 4 · Pr[XI = a]

Pr[X ∈ T i]
≤ 16λm · 2(γ/2−λ)|I| (24)
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The first inequality holds by Equation (22), and the third by Equation (23).
Applying Lemma 5 for the set T i with parameter δ = 1/16λm, yields that

PrS←P2γ ({0,1}λ)

[
S ∩ T i �= ∅

]
≥ 1

32λm
,

and we deduce that PrS←P2γ ({0,1}λ) [S ∩ Supp(X) �= ∅] ≥ 1
32λm . ��

5 Lower Bound on the Length of ROM-SNARGs

In this section, we present our lower bound on the proof length of ROM-SNARGs,
formally stated below (see Definition 1 for the formal definition of rETH, and
Sect. 3.5 for that of salted-soundness ROM-SNARGs).

Theorem 13 (Conditional lower bound on ROMSNARGs length). Let
ARG = (P,V) be an s-length ROM-SNARG for n-variable 3SAT, with (t, ε)-
salted-soundness, perfect completeness, and deterministic non-adaptive verifier.
Let qP and qV be the query complexity of P and V, respectively, let v denotes
V’s running time, and let λ denote the random oracle input and output length.
Assuming rETH, if

1. ε ≤ 1/4;
2. qV · λ ∈ o(n), qV + λ ≤ t1/10;
3. log2(t/ε) · log−1 qP ∈ o(n); and
4. v ∈ 2o(n),

then s ≥ 2−15 · log t · log t
ε/ log qP.

Theorem 13 is proved using the following two lemmata. Lemma 6 states
that the verifier query complexity of a short ROM-SNARG can be significantly
reduced, and Lemma 7, taken from [CY20], states that the existence of a low
verifier query complexity ROM-SNARGs contradicts rETH.

Lemma 6 (Short ROMSNARGs → Low Query ROMSNARGs). Let
ARG = (P,V) be as in Theorem 13, then for any γ ∈ N, there exists a veri-
fier V′ such that ARG′ def= (P,V′) is a ROM-SNARG for L with the following
properties:

1. completeness
(
λ · qP · qV20·	s/γ
)−1

;
2. (t − qV · 2γ , ε)-soundness;
3. verifier query complexity 20 · �s/γ�; and
4. verifier running time O(2qV·log t · v).

Furthermore, the transformation from V to V′ is efficient (in the description
length of V).

In words, Lemma 6 states that there exists a generic transformation from
short ROM-SNARGs into the same length ROM-SNARGs with low verifier query
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complexity (but worse completeness and soundness). Lemma 6 is proven in
Sect. 5.2.

While not explicit in their work, the following lemma follows by similar argu-
ments to the main proof in [CY20]. A formal proof is given in the full version of
the paper.

Lemma 7 (Follows from [CY20]). Let ARG = (P,V) be a (t, ε)-sound ROM-
SNARG for n-variable 3SAT with random oracle (input and output) length λ,
argument length s, and let qV and qP denote P’s and V’s query complexity, respec-
tively. Assume

1. s + λ · qV ∈ o(n);
2. qV ≤ 1/4 · log(1/ε) · log−1 qP;
3. completeness ≥ ε2/3;
4. log2(1/ε) · log−1 qP ≤ o(n); and
5. V’s running time 2o(n),

then 3SAT ∈ BPTIME[2o(n)].

Note that Lemma 7 does not require V to be deterministic or non adaptive.

5.1 Proof of Theorem 13

Proof of Theorem 13. Suppose we are given a SNARG ARG for 3SAT that sat-
isfies the conditions of the theorem, and assume without loss of generality that
qP ≤ t1/10. (Otherwise, for qP > t1/10, the lower bound we need to prove can be
written as s ≥ 2−15 · log t

ε , which follows by the folklore lower bound12). Assume
towards contradiction that s ≤ 2−15 · log t · log t

ε/ log qP. Theorem 13 is proved
via the following steps:

1. Apply Lemma 2 with parameter k = t0.5 which yields a scheme ARG that has
(t′, ε′)-salted-soundness, where t′ = t1/2, and ε′ = 2ε/t1/2.

2. Apply Lemma 6 with γ = 1/10 · log t, to get a ROM-SNARG ARG′ for 3SAT
with the following parameters:
(a) completeness

(
λ · qP · qV20·	s/γ
)−1

;
(b) (t′ − qV · 2γ , ε′)-soundness.
(c) verifier query complexity qV

′ = 20 · �s/γ�; and
(d) verifier running time v′ = O(2qV·log t · v).

3. Apply Lemma 7 on ARG′ to contradict rETH. For this, we need to verify that
all five conditions of the lemma apply. Indeed,
(i) s+ λ · qV′ ∈ o(n): First, observe that s ≤ 2−15 · log t · log t

ε/ log qP ∈ o(n).
Then, since λ · qV ∈ o(n), we get that λ · qV′ = O(λ · s/γ) = O(log t ·
s/ log t) = o(n). Together, we have that s + λ · qV′ ≤ o(n) + o(n) = o(n):

12 The proof of the folklore lower bound appears in the full version of the paper.
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(ii) qV
′ ≤ 1/4 ·log(1/ε′) ·log−1 qP: the query complexity of the verifier of ARG′

is

qV
′ ≤ 20 · �s/γ� ≤ 20 ·

⌈
2−15 · log t · log t

ε/ log qP
1/10 · log t

⌉
≤ 1/8 · log

t

ε
· log−1 qP

≤ 1/4 · log
t1/2

2ε
· log−1 qP = 1/4 · log

1
ε′ · log−1 qP .

(iii) completeness ≥ ε′2/3: Observe that 20 �s/γ� ≤ 2−10 · log(t/ε) · log−1 qP.
Thus, the completeness of our scheme satisfies:

(
λ · qP · qV20·	s/γ


)−1

≥
(
t1/10 · t1/10 · qV2−10·log(t/ε)·log−1 qP

)−1

≥ 2−2/10 log t−2−10·log(t/ε) ≥ 2−2/10 log t−2−9·log(t1/2/2ε)

≥ 2−3/10·log(t1/2/2ε) = 23/10·log(ε′) ≥ ε′2/3 .

(iv) log2(1/ε′) · log−1 qP ≤ o(n): By the definition of ε′ and the conditions of
the theorem we get that log2(1/ε′) · log−1 qP = O(log2(t/ε) · log−1 qP) =
o(n).

(v) V’s running time 2o(n): The verifier running time of the scheme is
O(2qV·log t · v). Since qV · log t = o(n) and v = 2o(n), its total running
time is 2o(n).

4. We conclude that 3SAT ∈ BPTIME[2o(n)], contradicting rETH.

��

5.2 Short ROM-SNARGs to Low Query ROM-SNARGs, Proving
Lemma 6

In this section, we prove Lemma 6 (see Sect. 2 for a high-level overview of the
proof). Let ARG = (P,V) be ROM-SNARG with (t, ε)-salted soundness, random
oracle of length λ, a non-adaptive deterministic verifier, prover query complexity
qP, and verifier query complexity qV. The low query verifier V′ is defined as
follows:

Algorithm 14 (Low-query verifier V′).
Oracle: ζ : {0, 1}λ → {0, 1}λ.
Parameter: γ ≤ λ. Let k = 20 �s/γ�.
Input: Instance x and proof π.
Operation:

1. Emulate V on (x, π) to get a list of queries w = (w1, . . . , wqV).
2. Sample k′ ∈ [k], uniformly st random and uniformly sample a k′-size subset

J ⊆ [qV].
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3. For each i ∈ [qV]:
If i ∈ J , set Si = {ζ(wi)}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

4. Accept if there exists (y1, . . . , yqV) ∈ S1 × . . .×SqV that make V accepts given
(y1, . . . , yqV) as answers to its oracle queries.

It is easy to observe that V′ has the desired query complexity and running
time. Thus, it is left to prove that ARG′ = (P,V′) has the desired complete-
ness and soundness. The completeness of ARG′ is analyzed in Sect. 5.2.1 and its
soundness in Sect. 5.2.2. We put things together in Sect. 5.2.3.

5.2.1 Completeness

We prove the following lower bound on the completeness of ARG′.

Claim. ARG′ has completeness ≥
(
λ · qP · qV20·	s/γ
)−1

.

In the following, we assume for simplicity that the V’s queries are (always)
a subset of the P’s queries. (The proof without this assumption follows very
similar lines, though with more complicated notation. Also, one could always
modify the honest prover to perform all the verifier’s queries, this comes with a
negligible cost that has no effect on our results.)

Proof. We associate the following random variable with the probability space
defined by the choice of ζ over the (honest) execution of (Pζ(w),V′ζ)(x): denote
P’s queries by X = (X1, . . . , XqP), define Z = (Z1, . . . , ZqP) by Zi = ζ(Xi), and
let Π denote the proof sent by P. We assume for ease of notation that the queries
that V would have made on the proof Π are just X1, . . . , XqV .

The length of Π is s, thus a standard argument yields that H(Π) ≤ H0(Π) ≤
s. Since each Zi is a bit string of length λ (recall that λ is the output length of
ζ), it holds that H(Z | Π) ≥ H(Z) − H(Π) ≥ λ · qP − s.

Since (by definition) H(Z | Π) = Eπ←Π [H(Z | Π = π)], with probability
at least 1/2 over π ← Π, it holds that H(Z | Π = π) ≥ λ · qP − 2 · s. Fix any
such proof π, and let Y = (Y1, . . . , YqP) = Z |Π=π. For � = 2 · s, it holds that
H(Y ) ≥ λ · qP − �. Applying Theorem 11 on Y yields that with probability 1/2
over y ← Y there exists a subset B ⊆ [qP] with |B| ≤ �8�/γ� + 4 such that:

PrS←(P2γ ({0,1}λ))qP−|B| [S ∩ Supp(Y |YB=yB) �= ∅] ≥ 1
32 · λ · qP

. (25)

An immediate corollary of Equation (25) is that with probability at least 1/2
over the choice of y ← Y , the following process outputs 1 with probability 1

32·λ·qP :

1. For each i ∈ [qV]:
If i ∈ B, set Si = {yi}.
Otherwise, let Si be a 2γ-size random subset of {0, 1}λ.

2. Output 1 if (S1 × . . . × SqV) ∩ Supp((Y |YB=yB)[qV]) �= ∅.
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The perfect completeness of the argument scheme ARG yields that for any
π ∈ Supp(Π), it holds that V(x, π) accepts on any value of z ∈ Supp((Y =
Z|Π=π)[qV]) given as oracle answers. Thus, it accepts any value of z ∈
Supp((Y |YB=yB)[qV]) for any y ∈ Supp(Y ).

We deduce that V′ accepts with this probability, assuming that J = B ∩
[qV]. Noting that |B| ≤ �8�/γ� + 4 = �16s/γ� + 4 ≤ 20 �s/γ� = k, the latter
happens with probability at least k−1 ·

(
qV
k

)−1. We conclude that V′ accepts with
probability at least

1
2

· 1
2

· 1
32 · λ · qP

· 1
k

· 1
(
qV
k

) ≥ 1
128 · λ · qP

· 1
k

· (k/e)k

qVk

≥ 1
e · 128 · λ · qP

(k/e)k−1

qVk
≥ 1

e · 128 · λ · qP
(20/e)19

qVk
≥ 1

λ · qP · qVk
.

��

5.2.2 Soundness

We prove the following upper bound on the soundness error of ARG′.

Claim. ARG′ has (t − qV · 2γ , ε)-soundness.

Proof. Let P̃′ be a t′ := t − qV · 2γ-query cheating prover such that Pr
[
〈P̃′,

V′(x)〉 = 1] > ε, for some x /∈ L. We show how to use P̃ to construct the follow-
ing t-query cheating prover P̃ such that Pr

[
SaltedSoundessV,λ,t′(P̃,x) = 1

]
> ε ,

violating the assumed salted-soundness of (P, V).

We assume without loss of generality that P̃′ is deterministic. Indeed, since
P̃ is computationally unbounded (it is only bounded by its query complexity to
the random oracle), it has sufficient time to enumerate all random strings and
choose the best one.

Algorithm 15. (P̃).
Oracle: ζ : {0, 1}λ → {0, 1}λ. Input: Instance x.

1. Run P̃′ζ(x) to generate a proof π.
2. Emulate V on (x, π) to determine its list of oracle queries (w1, . . . , wqV).
3. For i = 1, . . . , qV:

(a) Iterate in the salted soundness loop with query wi for 2γ times. Let S̃i be
the set of obtained answers.

(b) If wi was asked by P̃′ in Step 1, add the retrieved answer to S̃i.
4. If there exists (y1, . . . , yqV) ∈ S̃1 × . . . × S̃qV that make V accept (x, π)

with (y1, . . . , yqV) as the answers to its oracle queries, output (π, σ =
[(w1, y1), . . . , (wqV , yqV)]).

Recall that for i ∈ J , the verifier V′ sets Si to be the output of a single call
to the oracle, and for i /∈ J , it sets Si to 2γ random strings in {0, 1}λ. Hence, for
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every choice of ζ, there exists a coupling between the sets Si sampled by V′ to
the sets S̃i sampled by P̃ with S̃i ⊇ Si for every i. It follows that the probability
that P̃ makes V accept x is at least as high as the probability that P̃′ makes P′

accept x, which by assumption is at least ε. This concludes the proof since by
construction, P̃′ makes t′ queries. ��

5.2.3 Putting It Together

Proof of Lemma 6. Immediately follows by Sects. 5.2.1 and 5.2.2. ��
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Abstract. Sponge hashing is a novel alternative to the popular Merkle-
Damg̊ard hashing design. The sponge construction has become increas-
ingly popular in various applications, perhaps most notably, it underlies
the SHA-3 hashing standard. Sponge hashing is parametrized by two
numbers, r and c (bitrate and capacity, respectively), and by a fixed-size
permutation on r + c bits. In this work, we study the collision resis-
tance of sponge hashing instantiated with a random permutation by
adversaries with arbitrary S-bit auxiliary advice input about the ran-
dom permutation that make T online queries. Recent work by Coretti
et al. (CRYPTO ’18) showed that such adversaries can find collisions
(with respect to a random c-bit initialization vector) with advantage
Θ(ST 2/2c + T 2/2r).

Although the above attack formally breaks collision resistance in some
range of parameters, its practical relevance is limited since the resulting
collision is very long (on the order of T blocks). Focusing on the task
of finding short collisions, we study the complexity of finding a B-block
collision for a given parameter B ≥ 1. We give several new attacks and
limitations. Most notably, we give a new attack that results in a single-
block collision and has advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

In certain range of parameters (e.g., ST 2 > 2c), our attack outper-
forms the previously-known best attack. To the best of our knowledge,
this is the first natural application for which sponge hashing is provably
less secure than the corresponding instance of Merkle-Damg̊ard hashing.
Our attack relies on a novel connection between single-block collision
finding in sponge hashing and the well-studied function inversion prob-
lem. We also give a general attack that works for any B ≥ 2 and has
advantage Ω(STB/2c + T 2/2min{r,c}), adapting an idea of Akshima et
al. (CRYPTO ’20).
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We complement the above attacks with bounds on the best possible
attacks. Specifically, we prove that there is a qualitative jump in the
advantage of best possible attacks for finding unbounded-length colli-
sions and those for finding very short collisions. Most notably, we prove
(via a highly non-trivial compression argument) that the above attack is
optimal for B = 2 in some range of parameters.

1 Introduction

Due to a series of successful attacks on widely used hash functions such as MD5,
SHA-0, and SHA-1, in 2006 the National Institute of Standards and Technology
(NIST) organized a competition to create a new hash standard. At that time,
the existing hash functions were all based on the well-known Merkle-Damg̊ard
hash function construction [14,24–26]. The goal of the competition was to find
an alternative, dissimilar cryptographic hashing design. It took almost a decade
until the winner, a family of cryptographic functions called Keccak, become
a hashing standard called SHA-3. The Keccak family is based on the sponge
construction [7,8] which was a novel alternative to the popular Merkle-Damg̊ard
design. By now, the sponge paradigm is used for building collision resistant
hash functions, message authentication codes (MACs), pseudorandom functions
(PRFs) [9], key derivation functions [19], and more.

A sponge function Sp : {0, 1}∗ → {0, 1}r is defined via three parameters: (1)
two natural numbers r (for bitrate) and c (for capacity) so that n = c + r,
(2) an initial state σ(0) = (σ(0)

r , σ
(0)
c ) ∈ {0, 1}r × {0, 1}c, and (3) a function

Π : {0, 1}n → {0, 1}n which is usually thought of as a (public) pseudorandom
permutation. The hashing operation (a.k.a. absorbing) is defined by iterating
the state by computing a round function. Specifically, given a sequence of r-bit
blocks (m1,m2, . . . , m�), Sp(m1,m2, . . . , m�) is defined as:1
1. For i = 1, . . . , �, do:

(a) Compute the round function
Π((σ(i−1)

r ⊕ mi) ‖ σ
(i−1)
c ) and

let σ(i) denote the output.
(b) Parse σ(i) as

(σ(i)
r , σ

(i)
c ) ∈ {0, 1}r × {0, 1}c.

2. Output the first r bits of σ(�),
namely, σ

(�)
r .

Π Π

m1 m2

Π

mℓ

r

c

σ(0)
r

σ(0)
c σ(1)

c

σ(1)
r

σ(ℓ)
c

σ(ℓ)
r

Output

Typically, σ
(0)
r is initialized to 0 and σ

(0)
c is a random initialization vector

(IV). If one wants to be explicit, we write Spr,c,Π,IV for the sponge function.
There are several common instances of r and c used in practice, for example in
SHA-3-256 c = 512 and r = 1088, and in SHA-3-512 c = 1024 and r = 576.
These instance are particularly useful since they were designed to be used as
drop-in replacements for the corresponding SHA-2 instances, and as such they
were intended to have identical (or better) security properties.

1 For simplicity, we do not consider padding of the input.



Time-Space Tradeoffs for Sponge Hashing 133

Sponge in the Random Permutation Model. The concrete permutations
Π that are used in real-life do not have solid theoretical foundations from the
perspective of provable security. Therefore, when coming to analyze the security
of the sponge construction, we model the permutation Π as a completely random
one. That is, the permutation is randomly chosen, and all parties are given
(black-box) access to it and its inverse.2 This is called the random permutation
model (RPM). Such bounds are used as an approximation to the best possible
security level that can be achieved by the corresponding construction in the real-
life implementation. This heuristic has been extensively and successfully used
in the past several decades, with exceptions (i.e., examples where the real-life
implementation and the ideal world construction are separated) being somewhat
contrived and artificial. For “natural” applications it is widely believed that
the concrete security proven in the RPM is the right bound even in the real-
world, assuming the “best possible” instantiation for the idealized permutation
is chosen.

As mentioned, the sponge construction was introduced by Bertoni et al. [8]
and its security was analyzed in a follow-up work [7] assuming that the underly-
ing hash function is an invertible random permutation. The latter work showed
a strong property called indifferentiability from a random oracle, which directly
implies many other properties such as collision resistance, pseudorandomness,
and more.

For instance, the following is known about Sponge’s collision resistance
(which is perhaps the most widely used property). For fixed c, r, the collision
resistance game is defined as follows: a challenger sends a uniformly random IV
to the adversary. The adversary “wins” if it is able to come up with distinct
m,m′ ∈ {0, 1}∗ for which Spr,c,Π,IV(m) = Spr,c,Π,IV(m′). There is a well-known
attack due to the original works of Bertoni et al. [7,8]: the adversary is given an
IV and it merely queries the permutation oracle on inputs of the form (m‖IV),
where the m’s are chosen uniformly at random. If a collision was observed (i.e.,
the adversary finds distinct m1,m2 such that the first r bits of Π(m1‖IV),
Π(m2‖IV) are the same), then the adversary wins. By the well-known birthday
bound, the success probability of this event is Ω(T 2/2r). Alternatively, if two
messages m1,m2 such that the query returned a state with the same last c bits
(i.e., Π(m1‖IV) = a1‖b and Π(m2‖IV) = a2‖b, then m1 ‖ a1 and m2 ‖ a2 form a
collision. The success probability of this event is Ω(T 2/2c). Overall, the attacker
wins with probability Ω(T 2/2min{c,r}). This is known to be the best possible
attack due to the indifferentiability result of [7].

Non-uniformity/Preprocessing Attacks. The above discussion assumes
that the adversary is uniform in the sense that it starts off with no knowl-
edge about Π, as if it did not exist before it was invoked. However, this does
not capture real-life attack scenarios where an attacker can invest a significant

2 In typical permutation designs, including the permutations underlying the Keccak
family, if you have the entire state, you can apply the inverse permutation to go
backward to the previous state. This is why we also give free access to the inverse
of the permutation as part of the model.
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amount of preprocessing on the public permutation Π to speed up the actual
attack whenever the IV is chosen. This is why most works (at least in theoreti-
cal cryptography) model attackers as non-uniform machines, where the attacker
could obtain arbitrary but bounded-length advice, before attacking the system.
The advice generation phase is called the offline phase and the “attack” given
the advice and the challenge is called the online phase. The output size of the
offline phase (i.e., the size of the advice) is denoted S and the number of queries
allowed in the online phase is denoted T ; computation is free of charge in both
phases. This model, being an extension of the RPM where the online adversary
may know a bounded-length hint about the permutation, is called the auxiliary-
input RPM, or AI-RPM in short. This model was first explicitly put forward by
Coretti, Dodis, and Guo [10], naturally extending the influential auxiliary-input
random oracle model (AI-ROM) from the seminal work of Unruh [31] (which in
turn is an explicit version of the model studied by Hellman [23], Yao [33], and
Fiat-Naor [17]). Bounds on the power of “auxiliary-input” adversaries are also
referred to as “time-space” trade-offs.

Although the sponge paradigm is becoming widespread, very little is known
about its formal security guarantees against such attackers that may have a
short preprocessed hint about the permutation computed in an offline phase.
In fact, there is an attack that utilizes this extra power to achieve advantage
Ω(ST 2/2c+T 2/2r) (notice the extra multiplicative S term).3 The attack is based
on a combination of a birthday-style attack, as above, together with a variant
of an attack by Hellman [23] which is nowadays referred to as rainbow tables
(due to Oechslin [29]). While this attack uses known techniques, we were not
able to find an explicit description of it in the literature and so for completeness,
we give the attack and its analysis in Sect. 4.1.4,5 Only very recently, in the
beautiful work of Coretti et al. [10] (henceforth CDG) it was shown that this
attack is optimal; that is, no S-space T -query attackers can find a collision with
probability better than Ω(ST 2/2c + T 2/2r).

It turns out that the above attack results in a very long collision. Specifically,
for parameters S and T as above, the above attack results in a collision of length
≈ T . While this formally breaks collision resistance, it is hard to imagine a
natural application where such a collision would be helpful in an attack. Say
we have a system that uses a sponge-based hash with an output of size 256
bits. Running the above attack with S = T = 260 would result in a collision of
several petabytes long, which is likely to be practically useless for any natural
attack scenario. Therefore, we ask whether there exist attacks that find shorter
collisions and what is their success probability. Specifically, we introduce an

3 Throughout the introduction, for easy of notation, we supress poly-logarithmic (i.e.,
poly(c, r) terms inside the big “O/Ω” notation. The formal theorems state the precise
bounds.

4 More precisely, we give a generalization of this attack which finds collisions of length
B ≥ 2, and this particular attack follows by setting B = T .

5 A related bound is stated in CDG [10, Table 1] but after communication with an
author, they confirmed that the attack was never worked out.
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additional parameter B (for blocks) and require an attacker, on a random IV, to
come up with two ≤ B-block messages that collide. The main question studied
in this work is:

What is the complexity of a preprocessing attacker in finding a B block
collision in a Sponge hash function, assuming the underlying permutation is

modeled as random?

1.1 Detour: The Case of Merkle-Damg̊ard

Except being a fundamental problem with theoretical and practical importance,
another motivation to study the above question comes from the recent work of
Akshima et al. [3] (henceforth ACDW), who studied a similar question in the
context of Merkle-Damg̊ard hashing (henceforth MD). Recall that sponge hash-
ing was designed to be used as a drop-in replacement for Merkle-Damg̊ard-based
hash functions, and as such, it is essential to compare their security guarantees
in this natural model that allows attackers to perform preprocessing.

Recall that a Merkle-Damg̊ard hash is defined relative to a compression func-
tion h : [N ] × [M ] → [N ]. Hashing is performed by breaking the input message
into blocks from [M ], and processing them one at a time with the compression
function, each time combining a block of the input with the output of the pre-
vious round, where the 0th round value is the IV.6 To obtain provable-security
guarantees, the analysis models the underlying compression function h as a com-
pletely random one. Preprocessing attackers are captured by considering the
AI-ROM [10,11,17,23,31,33] which models attackers as two-stage algorithms
(A1,A2). The first algorithm A1 is unbounded except that it generates an S-bit
“advice”. The second algorithm A2 gets the advice and makes T queries to the
oracle.

Coretti et al. [11] fully characterize the collision resistance of salted-MD
hashing: there exists an attack with advantage Ω(ST 2/N +T 2/N) (loosely based
on the idea of rainbow tables [23,29]), and this is the best possible attack, as
shown using the “bit-fixing” technique [31]. As in the case of sponge hashing, this
attack results in a very long collision, on the order of T blocks. Motivated by this
observation, ACDW [3] ask whether it is strictly harder to find shorter collisions.
They have two main results. The first is an extension of the above simple attack
to result in B-block collisions with advantage Ω(STB/N + T 2/N). The second
result is an upper bound on the advantage for B = 2 of O(ST/N + T 2/N),
showing that the above attack is tight. For B = 1, the problem is equivalent
to finding collisions in a compressing random function, and the advantage is
precisely Θ(S/N + T 2/N) [16].

ACDW [3] could not prove or disprove that their Ω(STB/N +T 2/N) attack
is optimal for any other value of B (except B = 2 and B ∈ Ω(T )). They conjec-
tured that it is optimal and formulated it as the STB conjecture. In very recent
works, Akshima, Guo, and Liu [4] and Ghoshal and Komargodski [21] proved

6 All of the results directly extend to the padded version, but we ignore it for simplicity.
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new bounds for this problem (almost resolving the conjecture). Can we prove
similar bounds for sponge hashing? Should we believe an analogous conjecture?

1.2 Our Results

We initiate the study of time-space tradeoffs for bounded length collisions in
sponge hashing. First, the known best attack that gives a single-block collision
has advantage

Ω

(
S

2c
+

T 2

2r

)
. (1)

In this attack, the preprocessing is used to “remember” a collision for S different
IVs. If the challenge IV is in the set of remembered IVs, then the attack suc-
ceeds (this happens with probability S/2c); otherwise, we run a birthday-style
attack which succeeds with probability Ω(T 2/2r). For MD hashing, the analo-
gous bound for B = 1 is known to be tight. Second, there is an attack (loosely
based on rainbow tables) that has advantage Ω(ST 2/2c + T 2/2r) and results
with a Ω(T )-blocks collision [10].

At this point, if one were to speculate that sponge’s security guarantees
are at least as good as MD’s, one would guess that the above attacks should
be tight, at least for B ∈ {1, 2}. With some luck and labor, we may even be
able to prove it. This is where the situation gets interesting. We show that the
above speculation is false for B = 1 and in some natural settings of parameters,
sponge is strictly less secure than MD for this task. On the other hand,
for B = 2 we can only prove tightness for a certain range of parameters.

In what follows, we elaborate on our results. We design two new attacks, one
designed for any B ≥ 2 and the other specifically for B = 1. We complement
our attacks with “lower bounds”, which are actually upper bounds on the best
possible advantage. Specifically, we prove that there is a qualitative jump in the
advantage of best possible attacks for finding unbounded-length collisions and
those for finding very short collisions (i.e., B ≤ 2).

Attacks
We give two new attacks, one for any B ≥ 2 and the other is specialized for
B = 1. The generic attack is the first to result with an arbitrary block length
collision while the one specialized to B = 1 beats the previously known best
attack, at least in some range of parameters. By the latter, to the best of our
knowledge, we show the first natural application for which sponge hashing is less
secure than MD.

A New Attack for B ≥ 2. The above-mentioned attack on sponge hashing
that has advantage Ω(ST 2/2c +T 2/2r) can be modified to result with a B-block
collision for B ≥ 2 and with advantage

Ω

(
STB

2c
+

T 2

2min{c,r}

)
. (2)
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The attack follows a similar observation of ACDW [3] regarding MD hashing.
Given the upper bound of CDG [10] mentioned earlier, this attack is optimal
for B ∈ Ω(T ). For MD hashing, the analogous bound is known to be tight for
B = 2 and B ∈ Ω(T ).

A New Attack for B = 1. We design a new attack for sponge hashing that
results with a a single-block collision. Specifically, we show that if ST 2 > 2c,
then there is an attack with advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

To see why this attack is superior to the previously known one (Eq. 1), we
give a setting of parameters where it achieves a significantly higher advantage.
Consider r = c, S = 24c/5, and T = 22c/5. Indeed, ST 2 > 2c and therefore we
can apply the attack. The previously known best attack (Eq. 1) has advantage

Ω

(
S + T 2

2c

)
= Ω

(
1

2c/5

)
.

This attack is the analog of the provably best attack for MD. On the other hand,
our new attack has strictly better advantage

Ω

((
S2T

22c

)2/3

+
T 2

2c

)
= Ω

((
28c/522c/5

22c

)2/3

+
1

2c/5

)
= Ω (1) .

Thus, at least in this range of parameters, we beat the state-of-the-art attack
and show that sponge is less secure than MD. In the example above, we chose a
setting of parameters where the gap between the attacks is the largest (our attack
succeeds with constant probability, while the previously known one succeeds with
exponentially small probability). However, there are many more concrete settings
where our attack is superior, although the gap could be less dramatic. We note
that our bounds in this section and the technical overview are simplified for ease
of parsing and refer the reader to the technical sections for the exact bounds.

Conceptual novelty: Our attack for B = 1 use the famous time-space
tradeoffs for function inversion of Hellman [23] and its extension by Fiat-
Naor [17]. We leverage the possibility of inverse queries to the underlying per-
mutation Π in the random-permutation model. This is in contrast to Merkle-
Damg̊ard construction which is analyzed in the random-oracle model that does
not permit inverse queries. At a very high level, we use time-space tradeoffs for
function inversion to “invert” the function Π−1 on a restricted domain. We view
this conceptual connection between time-space tradeoffs for collision resistance
of sponge hashing and function inversion as novel and hope that it will lead to
better designs and additional attacks in the future.
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Lower Bounds

We complement the picture by showing “lower bounds”, namely impossibility
results for better attacks. (In other words, these are upper bounds on the best
possible advantage of any attacker.) We prove two such lower bounds, one for
the case where B = 1 and the other is for B = 2, corresponding to our attacks.

On Optimal Attacks for B = 2. We show that any attack for B = 2 must
have advantage

O

(
ST

2c
+

S2T 4

22c
+

T 2

2min{c,r}

)
.

We note that this bound is tight with the best known attacks for a large range
of parameters, but there still may be a gap otherwise. Specifically, if ST 3 ≤ 2c,
then the above bound simplifies to O(ST/2c + T 2/2min{c,r}) which matches the
attack from Eq. (2). Thus, any improvement on the generic attack from Eq. (2)
must take advantage of the regime where ST 3 > 2c.

The proof of this result provably cannot be obtained via the bit-fixing method.
Rather, we obtain the result via a compression argument. In such arguments, an
imaginary adversary that is successful too often is used to compress a uniformly
random string, a task which is (information-theoretically) impossible. The com-
pression technique has been instrumental in proving lower bounds in computer
science (see the survey of Morin et al. [28]). It has become useful in the context of
cryptographic constructions and primitives, starting with the work of Gennaro
and Trevisan [20]. Unfortunately, one common “feature” of such proofs is that
they tend to be extremely technical and involved. Our proof is no different; in
fact, it is even much more complicated than the analogous result for B = 2 of
ACDW [3] since we work in the RPM and need to handle inverse queries.

On Optimal Attacks for B = 1. We show that any attack for B = 1 must
have an advantage

O

(
ST

2c
+

T 2

2r

)
.

The proof of this result is relatively straightforward by using an optimized version
of the remarkable bit-fixing (or presampling) method [10,11,31]. The main point
of distinction of our proof from most previous ones is that we need to apply
this technique in the RPM context, so our argument needs to handle inverse
queries. (This result might have been known before, but we could not find such
a statement, so we give it for completeness.)

We summarize our main results as well as the known best bounds in Fig. 1.

1.3 Future Directions

Our work is the first to address the question of characterizing the complexity of
a preprocessing attacker in finding a B-block collision in a Sponge hash function.
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Best Attack Advantage Upper Bound

B = 1 min

(
S2T 2

22c
,

(
S2T

22c

)2/3
)

+
S

2c
+

T 2

2r
[Thm 2]

ST

2c
+

T 2

2r
[Thm 4]

B = 2
ST

2c
+

T 2

2min{c,r} [Thm 1]
ST

2c
+

S2T 4

22c
+

T 2

2min(c,r)
[Thm 5]

B ≥ 3
STB

2c
+

T 2

2min{c,r} [Thm 1]
ST 2

2c
+

T 2

2r
[10]

Fig. 1. A summary of the attacks and advantage upper bounds for finding B-block
collisions for the Sponge hash function. All bounds are given ignoring poly(c, r) terms.
We note that the attack for B = T is implicitly claimed in [10] based on [11].

Our results raise many natural open problems on both the attacks side and lower
bounds side. Regarding attacks, we have shown, somewhat surprisingly, that
there is a non-trivial attack for B = 1 that takes advantage of inverse queries
in a novel way. We hope that these ideas can be pushed forward to obtain even
better attacks for B = 1 or beyond. Specifically, is it possible to beat the ST/2c

attack for B = 2 in some range of parameters? In ruling out possible attacks,
it would be interesting to come up with a tight upper bound on the advantage
for B = 1 or B = 2. Our work suggests that ruling out attacks that use inverse
queries may indeed be a complicated task. In fact, for B = 3 we are not aware
of any upper bound on the advantage that is better than O(ST 2/2c + T 2/2r).

1.4 Related Work

Time-space tradeoffs are fundamental to the existence of efficient algorithms. For
example, look-up tables (used to avoid “online” recalculations) have been imple-
mented since the very earliest operating systems. In cryptography (or cryptanal-
ysis), they were first used by Hellman [23] in the context of inverting random
functions. Hellman’s algorithm was subsequently rigorously analyzed by Fiat
and Naor [17] where it was also extended to handle arbitrary (not necessarily
random) functions. Limitations of such algorithms were studied by Yao [33],
and by De, Trevisan, and Tulsiani [15] (building on works by Gennaro and
Trevisan [20] and Wee [32]). More limitations were proven by Barkan, Biham,
and Shamir [5] but for a restricted class of algorithms. Very recently, Corrigan-
Gibbs and Kogan [13] showed complexity-theoretic limitations for improving the
lower bound of Yao. While these techniques have mostly cryptographic origins,
interesting relations were discovered to other classical problems in other fields
(e.g., [1,22]). Time-space tradeoffs have been studied for other problems beyond
the ones we mentioned (various cryptographic properties of random oracles, func-
tion and permutation inversion, and security of common hashing paradigms). For
instance, specific modes for block ciphers (e.g., [18] studied the Even-Mansour
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cipher), and various assumptions related to cyclic groups, such as discrete loga-
rithms and Diffie-Hellman problems [6,10,12,27].

On the Salt. In the theoretical cryptography literature collision resistance is
defined with respect to a family of hash functions indexed by a key. This is
important to achieve the standard notion of non-uniform security. Indeed, no
single hash function can be collision-resistant as a non-uniform attacker can just
hardwire a collision. In practice, however, a single hash function is considered
by fixing an IV. Thus, the relevance of our model could be questioned. However,
often in applications, the hash function used is salted by prepending a random
salt value to the input, for example in password hashing [30]. Salting essen-
tially brings us back to the random-IV/keyed setting, where our results become
relevant.

2 Technical Overview

In this section, we provide a high-level overview of our techniques. We first
describe the generic attack for finding B-block collisions for B ≥ 2. This attack
is a variant of an analogous attack for MD, given by ACDW [3]. We also recall
the known best attack for B = 1. Then, we describe our new attack for finding
1-block collisions. In particular, our attack outperforms the optimal analogous
attacks for MD for specific regimes of parameter settings. Lastly, we overview
the techniques used to prove limitations on the best possible attacks for finding
short collisions.

Sponge Notation. A sponge function is a keyed hash function that takes as
input an a c-bit initialization vector IV along with an arbitrary size input and
outputs an r-bit string: Sp : {0, 1}c × {0, 1}∗ → {0, 1}r. The second input is
parsed as a sequence of r-bit blocks, denoted (m1,m2, . . .). On such an input
Sp(IV, (m1,m2, . . .)) is defined as follows. The function Sp is defined relative
to a permutation Π : {0, 1}r+c → {0, 1}r+c. An input to or an output of this
permutation, denoted σ ∈ {0, 1}r+c, contains an r-bit block, denoted σ[1], and a
c-bit block, denoted σ[2]. We sometimes use (σ[1], σ[2]) to mean σ[1]‖σ[2] = σ.

On input m1,m2, . . . , m� to Sp, it works as follows:

1. Initialize σ(0) = (σ(0)[1], σ(0)[2]) = (0, IV).
2. For i = 1, . . . , �, compute σ(i) = Π((σ(i−1)[1] ⊕ mi) ‖ σ(i−1)[2]).
3. Output σ(�)[1].

2.1 Attacks

Generic Attack for Finding Length B Collisions. In the preprocessing
phase the adversary randomly samples t ≈ S different IVs IV1, . . . , IVt and for
i = 1, . . . , t it does as follows.

1. Compute σi,j for j ∈ [B/2 − 1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV).
The sequence σi,0, . . . , σi,B/2−1 forms a “zero-walk” on IVi.
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2. Find mi,m
′
i such that Π(mi, σi,B/2−1[2])[1] = Π(m′

i, σi,B/2−1[2])[1].

The preprocessing phase outputs (σi,B/2−1[2],mi,m
′
i)i=1,...,t. In Fig. 2, we depict

the preprocessing phase of the attack. In the online phase, the adversary gets

σ1,1[2]1

2

t

σ1,2[2] σ1,l[2]

σ2,l[2]

f

σ2,1[2] σ2,2[2]

σt,l[2]σt,2[2]σ1,l[2]

c1

c2

ct

f( ⋅ ) := Π(0,⋅)[2]

f f

f f f

f f f

Π( , ⋅ )[1]m1

Π( , ⋅ )[1]m′1

Π( , ⋅ )[1]m2

Π( , ⋅ )[1]m′2

Π( , ⋅ )[1]mt

Π( , ⋅ )[1]m′t

Fig. 2. An illustration of the preprocessing phase of the generic attack. In red, we
depict the components that are part of the output of the preprocessing phase. In blue
we see the collisions that will be outputted in the online phase if some chain is hit.
Notice that we denote f(·) := Π(0, ·)[2] (Color figure online)

a challenge IV as input. For i = 1, . . . , T/B, it computes IVi = Π(i, IV)[2] (for
simplicity, we assume that i is in its bit representation). For each of the IVi’s, it
does a zero-walk of length B − 2. Formally, it sets σi,0 ← Π(i, IVi) and then for
j = 1, . . . , B − 1 it does the following.

1. If there is a tuple of the form (σi,j−1[2],m,m′) in the preprocessing output,
then return

(σi,0[1] ‖ . . . σi,j−1[1] ‖m), (σi,0[1] ‖ . . . σi,j−1[1] ‖m′).

2. Set σi,j ← Π(0, σi,j−1[2]).

Correctness is easy to verify. We next discuss the success probability of the
adversary. Suppose that the online phase of the adversary computes a σi,j during
the first half of any of the T/B zero-walks such σi,j [2] matches the last c bits of
one of the σi′,j′s defined in the preprocessing phase. Then, it is guaranteed to
stumble on σi′,B/2−1[2] during its zero walk. Hence, in this case, it would output
a collision.

Since the adversary encounters roughly Ω(SB) distinct σi,j [2]’s in expecta-
tion during the preprocessing phase, this suffices to prove that with probability
roughly Ω(STB/2c) the online phase will win. The term Ω(T 2/2c + T 2/2r)
appears due to birthday-style collisions. We refer the reader to Sect. 4.1 for
details.
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Attack for B = 1. As described in the introduction, the best attack known so
far for B = 1 has an advantage of O(S/2c+T 2/2r). The analogous attack for MD
is provably optimal, as mentioned. However, in contrast to the setting in MD
where the ideal object is a random function, here the ideal object is a random
permutation, which gives us the additional ability to make inverse queries. This
is precisely the leverage that we utilize to get our improved attack. We remark
that we are not aware of any prior work that takes advantage of making inverse
queries in related contexts.

For B = 1, recall that the goal is, given a random IV, to find m,m′ such
that Π(m, IV)[1] = Π(m′, IV)[1]. Our first step is a bit counter-intuitive since we
actually aim to solve a harder task. Specifically, rather than finding an arbitrary
collision, we set out to find a collision on 0, that is, find m and m′ such that
Π(m, IV)[1] = Π(m′, IV)[1] = 0. This step helps us since a natural way to use
inverse queries arises, as we argue next.

Main observation: Finding a collision on 0 can be obtained by finding
distinct y and y′ such that Π−1(0, y)[2] = Π−1(0, y′)[2] = IV.

In other words, it suffices to find two pre-images of IV with respect to the function
fΠ : {0, 1}c → {0, 1}c where fΠ(x) outputs the last c bits of Π−1(0, x). In Fig. 3,
we show the partite representations of Π(·) and Π−1(0, ·). Note that while Π(·)
is a perfect matching, the function fΠ(·) = Π−1(0, ·) has several elements in its
co-domain with multiple pre-images.

{0,1}c+r {0,1}c+r {0,1}c {0,1}c

Π( ⋅ ) Π−1(0,⋅)[2]

Fig. 3. Partite representation of Π(·) and Π−1(0, ·). Notice that Π is a permutation and
thus forms a perfect matching while Π−1(0, ·) is not a permutation and in expectation
a random image will have several pre-images

At this point, we made some progress: we reduced the problem of collision
finding to a function inversion problem (for the function fΠ : {0, 1}c → {0, 1}c).
Indeed, preprocessing attacks for function inversion have been well studied since
the 80’s. Hellman [23] described an algorithm that gets S bits of preprocessing
on the random function f : {0, 1}a → {0, 1}b as input and inverts it at a point
in its image making T queries to the function. It was later formally analyzed by
Fiat and Naor [17] and shown to have advantage ε(a, b) at inverting y = f(x)
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for a random x ←$ {0, 1}a, where

ε(a, b) = Ω

(
min

{
1,

ST

2min(a,b)
,

(
S2T

22min(a,b)

)1/3
})

(3)

We are almost done; three technical challenges remain. First, the result of
Hellman applies only to random functions. On the other hand, our function is
a restriction of a random permutation (which is not a random function). Fiat
and Naor [17] showed a clever method to extend Hellman’s algorithm to support
any function (rather than only random ones), but this improvement is more
complicated and comes with a cost in efficiency, which we would like to avoid. To
this end, we re-do and adapt the analysis of Hellman to our setting by using the
fact that restrictions of permutations are “close enough” to random functions.
Our analysis achieves the same parameters as the original one of Hellman, up to
constants.

The second problem is that we want to find a pre-image of IV ←$ {0, 1}c

under fΠ , but IV may not even have any pre-images under fΠ , let alone two
which are required for our attack. Fortunately, as fΠ is at least “close” to a
random function, we can show via a balls-into-bins analysis that a constant
fraction of the co-domain will have at least two distinct pre-images. Still, could
it be the case that Hellman’s attack somehow fails on this fraction of the co-
domain? Via a closer analysis of Hellman’s attack, we show that for any function
f : {0, 1}a → {0, 1}b and fixed element y ∈ {0, 1}b, the attack succeeds at finding
a pre-image x′ ∈ f−1(y) with probability ε(a, b) where

ε(a, b) = Ω

(
1
b

min

(
1,

ST · |f−1(y)|
2a

,

(
S2T · |f−1(y)|2

22a

)1/3
))

(4)

The last problem we face is that we need to find two distinct pre-images for
IV. However, applying an inversion algorithm in a black box fashion does not
guarantee that distinct inverses will be found. Thus, we also prove that Hellman’s
inversion algorithm finds a uniform pre-image among all possible pre-images for
a given element in the co-domain.

After resolving the above technical challenges, we show that if we run Hell-
man’s attack twice independently for the function fΠ on the image IV, if IV has at
least two pre-images (which it does with constant probability), then we will find
two distinct pre-images with at least 1/2 probability times the probability that
both attacks succeed. Thus, our overall success probability is roughly Ω(ε(c, c)2)
where ε is defined in (4). We refer the reader to Sect. 4.2 for the details.

2.2 Impossibility Results for Best Attacks

When giving new attacks for finding short collisions, the natural question is how
far we can go. In other words, what are the best possible attacks? For B = 1, 2
in the case of MD, optimal attacks are known. Our goal here is to prove an
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upper bound on the advantage for the best-possible adversary that has S bits of
preprocessing as input and can make T queries to Π,Π−1 in finding collisions
of length 1 and 2 for the sponge construction.

Impossibility Result for B = 1. We use the pre-sampling technique proposed
by [31] and later optimized and adapted to the AI-RPM by [10] to get an advan-
tage upper bound of roughly O(ST/2c + T 2/2r). However, we note that this
bound does not match the best B = 1 attacks, so it is open which side can be
improved. Ideally, one could use a compression-based technique as done in [16]
to get a tight bound for the B = 1 case for MD, but it is not clear how to adapt
this argument to handle inverse queries in the AI-RPM model, as we shall see
below.

Impossibility Result for B = 2. The presampling technique of [10,31] provably
cannot give an advantage upper bound better than O(ST 2/2c+T 2/2r) for B = 2.
Since we can prove this advantage upper bound even for unbounded length
collisions, it is natural to ask whether we can prove that 2-block collisions are, in
fact, harder to find than collisions of arbitrary length. Aside from presampling
techniques, the main technique used to rule out attacks is via a compression
argument [20,32], which we turn to for our impossibility result. As a warm up,
we first give an overview for the B = 1 compression argument for MD from [16]
to highlight the key challenges in our setting.

Overview of B = 1 Compression Argument for MD. In a compression argument,
the main idea is to use an adversary A that succeeds at some task involving
a random object O, to compress O beyond what is information theoretically
possible. This clearly establishes a contradiction, which gives an upper bound in
the success probability of A.

Let h : [N ] × [M ] → [N ] be a hash function that is modeled as a random
oracle, and A = (A1,A2) be an (S, T ) adversary that tries to find a 1-block
collision in h. A1 gets h as input and can output S bits of advice σ. A2 gets σ
along with a random salt a ∈ [N ], can make T queries to h, and tries to output
m,m′ ∈ [M ] such that h(a,m) = h(a,m′) and m 
= m′. We show that if A
succeeds at this task for many salts a, then we can describe h with fewer bits
than possible.

To encode h, we first compute σ ← A1(h). We let G ⊆ [N ] be the set of
elements for which A2 succeeds on inputs (σ, a) for all a ∈ G. We run A2 on
(σ, a) for all a ∈ G in lexicographic order. The hope is that whenever A2 succeeds
in finding a collision, we can use the corresponding queries for the collision it
makes to compress the function h.

For example, if A2(σ, a) outputs a collision (m,m′), then we can assume that
A2 must have queried h(a,m) and h(a,m′) at some point (we assume without
loss of generality that (a,m) was queried before (a,m′)). So whenever it queries
h(a,m′), rather than encoding the output of h, we write down information to
indicate that it’s the same output as the query for h(a,m). It is easy to see by a
counting argument that at least half of the a ∈ G cannot be queried by A2 more
than 2T times. For all such a, we can refer back to the previous query h(a,m)
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using log 2T bits, and we use another log 2T bits to identify the query h(a,m′).
Thus, we save log N − 2 log 2T bits per each of these a values in G, which gives
a non-trivial compression of h if T 2 < N .

The Problem with Inverse Queries. As we stated before, the first major roadblock
we encounter when adapting this framework to the AI-RPM is the existence of
inverse queries. Let’s try to adapt the argument above to the setting of Sponge
with 1-block collision. Now the preprocessing adversary A1 is given a random
permutation Π and outputs some state σ with |σ| ≤ S. The online adversary
A2 receives σ and a random IV, and tries to find m,m′ such that Π(m, IV)[1] =
Π(m′, IV)[1].

Now suppose that A2 outputs a collision (m,m′) with respect to the sponge
construction. We can no longer even assume that A2 queries both Π(m, IV) and
Π(m′, IV)! For example, it may have first queried Π(m, IV) = (y, u1) and then
queried Π−1(y, u2) = (m′, IV). At first glance, this doesn’t seem like a problem,
we can again note that part of the output of query (y, u2) is the same as the
input to the query for (m, IV). So maybe we can use the same trick as before and
instead of storing the whole answer of Π−1(y, u′), store information indicating
that the last c bits of the answer is the same as the input of the query Π(m, IV).
This intuition is misleading. We can no longer do a counting argument to show
that this information is short. It is not clear how to identify the query Π−1(y, u′)
with few bits to be able to point back to the Π(m, IV) query. For example, the
adversary may just query Π−1(y, ∗) many times and hope to hit IV twice. We
hope that this example sheds light on why, at a minimum, inverse queries sig-
nificantly complicate the situation and deserve extra attention.

Compression for B = 2 via Multi-instance Games. The above compression app-
roach is not known to generalize to the case of B ≥ 2 collisions for MD. To
overcome this limitation, Akshima et al. [3] propose a beautiful framework that
gives non-trivial bounds B ≥ 2 for the case of MD. Their framework reduces
the problem to a related “multi-instance” game. In a multi-instance game, the
adversary has an arbitrary size string σ of S-bits hard-coded, and its goal is to
find a 2-block collision for a set of u ≈ S uniformly random a’s. The adversary
A2 can make T queries to h when running on each of the u IVs. The key distinc-
tions in this multi-instance game is that (1) the advice sigma that A2 receives
is independent of h, and (2) we only need to analyze A2’s success probability
for a random set of u IVs. The core of the proof is a compression argument to
upper bound the advantage of this adversary. This framework unfortunately is
not strong enough to deal with B = 1, as at best it gives the same bound as bit-
fixing. However, we adapt this framework to the setting of random permutations
to give a non-trivial bound for B = 2.

In our case, we need to build a compression argument to compress Π and a
set of u random IVs, IV1, . . . , IVu, (for u ≈ S) using an adversary A2 which has
some fixed hard-coded advice. A2 runs on the IVs one by one and succeeds in
finding 2-block collisions for all of them. The encoding avoids storing some of
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the values of Π explicitly, and instead stores information about the queries of
A2 to Π and Π−1 which help during the decoding procedure to recover these
particular values of Π.

For B = 2 collisions, there are possibly 4 “crucial” queries that the adversary
might make that correspond to a 2-block collision (two for each message). We
possibly need to consider all combinations of ways that the queries could have
been made in either the forward or the reverse direction. For the case of this
overview, we zoom in on a single case where inverse queries complicate the
situation, and explain how we overcome this.

Suppose on an input IVj (where A2 had previously been run on inputs
IV1, . . . , IVj−1), A2 arrives at a collision by making the crucial queries q1, q2, q3, q4
(not necessarily in that order) such that

1. q1 was a query to Π on (m1, IVj) and returned (x1, IV
′
1)

2. q2 was a query to Π on (m2, IVj) and returned (x2, IV
′
2)

3. q3 was a query to Π on (m3 ⊕ x1, IV
′
1) and returned (y, IV′

3)
4. q4 was a query to Π on (m4 ⊕ x2, IV

′
2) and returned (y, IV′

4)

Clearly, (m1,m3) and (m2,m4) hash to the same output and hence are a collision.
Now suppose queries q1 and q2 were first made during A2(IVj),7 while queries
q3 and q4 were each made previously while running A2 on an earlier IVi value.
Now, the strategy to compress on the lines of [3] is not to include the last
c bits of the answers of q1, q2 and the last r bits of the answer of q4 in the
encoding. Instead, we can store the index of the queries q3, q4 among all queries
(these indices will be in [uT ] since there are u IVs and T queries for each of
them) and store the indices of the queries q1, q2 among the queries made while
running A2 on IVj (these indices will be in [T ]). This leads to a saving of roughly
2c+r−2 log T −2 log uT bits. For reasonable parameters of S, T, c, r, this implies
a compression of at least c − log uT bits, so if uT ≈ ST < 2c, this gives non-
trivial compression. This implies an upper bound of ST/2c on the advantage for
this case.

However, with inverse queries allowed, things get more complicated. Suppose
instead that queries q3 and q4 were made in the reverse direction, so A2 queries
Π−1(y, IV′

3) and Π−1(y, IV′
4) prior to running A2(IVj). In this case, we can still

save the c bits from the answers of q1, q2. But there is no clear way to save in
storing the answer to query q4 since its answer (m4 ⊕ x2, IV

′
2) has seemingly no

relation to either the answer or input of q3. So, in this case, we are only able to
save 2c − 2 log T − 2 log uT bits, which leads to non-trivial compression only if
u2T 4 ≈ S2T 4 < 2c. This implies an upper bound of S2T 4/22c on the attacker’s
advantage for this case. Note that this is actually better than the ST/2c bound
we got when considering only forward queries whenever ST 3 < 2c. However, it
is important to note that we still need to consider all possible ways in which the

7 Note that this assumption is easy to remove as otherwise we can achieve compression
by not including IVj in the encoding and recovering it from A2’s queries during
decoding.
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attacker may find a collision. We need to show even in the worst case, we can
compress Π in order to get an upper bound on the advantage.

The above highlights just one of the several subtleties that inverse queries
introduce in the proof. The ability of the adversary to make queries in two
directions makes the encoding and decoding procedures significantly more com-
plicated and lengthy. See Sect. 5 for full details.

3 Preliminaries

We let [N ] = {1, 2, . . . , N} for N ∈ N and for k ∈ N such that k ≤ N , let
(
S
k

)
denote the set of k-sized subsets of S. We use |X| to denote the size of a set X
and use X+ to denote one or more elements of X. The set of all permutations
on D is denoted by Perm(D). We let ∗ denote a wildcard element. For example
(∗, z) ∈ L is true if there is an ordered pair in L where z is the second element
(the type of the wildcard element shall be clear from the context). For a random
variable X we use E[X] to denote its expected value.

We use x ←$ D to denote sampling x according to the distribution D. If D is
a set, we overload notation and let x ←$ D denote uniformly sampling from the
elements of D. For a bit-string s we use |s| to denote the number of bits in s.

All logarithms in this paper are for base 2 unless otherwise specified.

Sponge-Based Hashing. For c, r ∈ N, let Π : {0, 1}c+r → {0, 1}c+r be a per-
mutation. We define sponge-based hashing SpΠ : {0, 1}c × ({0, 1}r)+ → {0, 1}r

as follows. For s ∈ {0, 1}r+c we use s[1] to denote its first r bits and s[2] to
denote its last c bits.

SpΠ(IV, m = (m1, . . . , mB))

s0 ← 0r ‖ IV
For i = 1, . . . , B

si[1] ‖ si[2] ← Π ((mi ⊕ si−1[1]) ‖ si−1[2])
Return sB [1]

The elements of {0, 1}r shall be referred to as blocks and IV refers to the ini-
tialization vector (also referred to as salt in the literature). This is the same
abstraction of sponge-based hashing as the one used in [10].

Auxiliary-Input Random Permutation Model (AI-RPM). We use the
Auxiliary-Input Random Permutation Model (AI-RPM) introduced by Coretti,
Dodis and Guo [10] to study non-uniform adversaries in the Random Permu-
tation Model (this was a natural extension of the AI-ROM model proposed by
Unruh in [31]). This model is parameterized by two non-negative integers S and
T and an adversary A is divided into two stages (A1,A2). Adversary A1, referred
to as the preprocessing phase of A has unbounded access to the random per-
mutation Π and it outputs an S-bit auxiliary input σ. Adversary A2, referred
to as the online phase, gets σ as input and can make a total of T queries to
Π,Π−1, and attempts to accomplish some goal involving Π. Formally, we say
that A = (A1,A2) is an (S, T )-AI adversary if A1 outputs S bits and A2 issues T
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Game Gai-cr
c,r,B(A = (A1,A2))

1. Π $ Perm({0, 1}c+r)
2. IV $ {0, 1}c

3. Return AI-CRΠ,IV(A)

Subroutine AI-CRΠ,IV(A = (A1,A2))

1. σ $ A1(Π)
2. (α, α ) $ AΠ,Π−1

2 (σ, IV)
3. Return true if:

(a) α = α ,
(b) |α|, |α | are at most B blocks long and
(c) SpΠ(IV, α) = SpΠ(IV, α )

4. Else, return false

Fig. 4. The bounded-length collision resistance game of salted sponge based hash in
the AI-RPM, denoted Gai-cr

c,r,B .

queries to its oracles. We next formalize the collision resistance of sponge-based
hash functions in AI-RPM.

Short Collision Resistance of Sponge-Based Hashing in AI-RPM. We
formalize the hardness of bounded-length collision resistance of sponge-based
hash functions in the AI-RPM. The game is parameterized by c, r. The game
first samples a permutation Π uniformly at random from Perm({0, 1}c+r) and
IV uniformly at random from {0, 1}c. Then, A1 is given unbounded access to
Π, and it outputs σ. At this time, A2 gets σ and IV as input and has oracle
access to Π,Π−1. It needs to find α 
= α′ such that (1) SpΠ(IV, α) = SpΠ(IV, α′)
and (2) α, α′ consist of ≤ B blocks from {0, 1}r. This game, denoted Gai-cr

c,r,B , is
explicitly written in Fig. 4. In Fig. 4, we write the adversary’s execution in its
own subroutine only for syntactical purposes (as we shall use it later).

Definition 1 (AI-CR Advantage). For parameters c, r, B ∈ N, the advantage
of an adversary A against the bounded-length collision resistance of sponge in
the AI-RPM is

Advai-crSp,c,r,B(A) = Pr
[
Gai-cr

c,r,B(A) = true
]

For parameters S, T ∈ N, we overload notation and denote

Advai-crSp,c,r,B(S, T ) = max
A

{
Advai-crSp,c,r,B(A)

}
,

where the maximum is over all (S, T )-AI adversaries.

The Compression Lemma. Our proof of the impossibility result for B = 2
uses the well-known technique of finding an “impossible compression”. The main
idea, formalized in the following proposition, is that it is impossible to compress
a random element in set X to a string shorter than log |X | bits long, even relative
to a random string.



Time-Space Tradeoffs for Sponge Hashing 149

Proposition 1 (E.g., [15]) Let Encode be a randomized map from X to Y and
let Decode be a randomized map from Y to X such that

Pr
x ←$ X

[Decode(Encode(x)) = x] ≥ ε.

Then, log |Y| ≥ log |X | − log(1/ε).

4 Attacks

In this section, we first provide the generic attack for finding B-block collisions
inspired by the analogous attack for MD in [3]. We then provide our new AI-
RPM attack for finding 1-block collision (Sect. 4.2). Additionally, in Sect. 4.3, we
prove the key lemma for our attack. The key lemma is a preprocessing attack
for inverting a function f which is a restricted random permutation. The attack
is closely related to that of Hellman [23], but we provide rigorous analysis for
our specific application for completeness.

4.1 Generic Attack for B-Block Collisions

We give a (S, T ) adversary A that has advantage O(STB/2c + T 2/2c + T 2/2r)
against Gai-cr

c,r,B . The main idea for this attack is similar to the zero-walk attack
for finding B-block collisions in the Merkle-Damg̊ard construction introduced
in [3] which was in turn inspired by an attack in [11].

High Level Idea. In the preprocessing phase the adversary randomly samples
t ≈ S different IVs IV1, . . . , IVt and for each of them computes σi,j for j ∈ [B/2−
1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV). The sequence σi,0, . . . , σi,B/2−1

forms a “zero-walk” on IVi. It then finds mi,m
′
i such that Π(mi, σi,B/2−1[2])[1] =

Π(m′
i, σi,B/2−1[2])[1] for i = 1, . . . , t. It outputs

(σi,B/2−1[2],mi,m
′
i)i=1,...,t .

In the online phase, the adversary gets a challenge IV as input. For i =
1, . . . , T/B, it computes IVi = Π(i, IV)[2]. For each of the IVi’s, it does a zero-
walk of length B − 2. If on any of the walks it hits an IV that the preprocessing
phase output then it outputs a collision. The reason this attack achieves an
advantage of Ω(STB/2c) is because in the preprocessing phase the adversary
roughly hits Ω(SB) distinct IVs and in the online phase if it hits any of these
IV’s in the first half of its T/B (i.e., in roughly T/2 of the queries) walks it finds
a collision.

We formally state our result below.

Theorem 1. Let S, T,B, c, r ∈ N such that SB ≤ 2c−1, T ≤ min{(2c−1, 2r−1)},
T ≥ 2B. There exists an (S, T ) adversary A = (A1,A2) such that

Advai-crSp,c,r,B(A) ≥
⌊

S

c + 2r

⌋⌊
B

2
− 1

⌋
T

2c+3
+

(T − B)(T − B − 1)
2c+1

+
3(T − B)(T − B − 1)

2r+3
− S

e(2r−1)
.
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We defer the proof of this theorem to the full version.

4.2 Preprocessing Attack for B = 1

We give a new AI-RPM attack for finding 1-block collisions in the Sponge con-
struction. The key ingredient in our attack is an (S, T ) adversary for a function
f finds two distinct pre-images of a random element of the co-domain under f .
We construct this adversary in Lemma 1 based on the adversary from Lemma 2
that finds a single pre-image of a random element of the co-domain under f .

Theorem 2. Let c, r ∈ N. For any S, T ∈ N such that S ≥ 24c, 2c ≥ 24S, and
2c ≥ (S/(T −2)) ·243, there exists an (S, T ) attacker A = (A1,A2) that on input
{0, 1}c outputs a valid 1-block collision with probability ε, where

ε ≥
(

1
20 · 2882 · c2

)
· min

(
1,

S2(T − 2)2

22c+2
,

(
S2(T − 2)

22c+1

)2/3
)

.

Proof. Let Π : {0, 1}c+r → {0, 1}c+r be a random permutation. Define the func-
tion fΠ : {0, 1}c → {0, 1}c as fΠ(x) = Π−1(0r ‖x)[2]. Note that fΠ is equivalent
to the function that outputs the first c bits of the permutation Π ′(x ‖ 0r), where
Π ′(x ‖ y) for x ∈ {0, 1}c, y ∈ {0, 1}r computes Π−1(y ‖x) and shifts the first r
bits of the output to the end of its output. Thus, we can invoke Lemma 1 for
the function fΠ , which implies an (S, T − 2) attacker B = (B1,B2) for finding
two distinct pre-images of a random y ←$ {0, 1}c. The attacker A = (A1,A2) is
defined as follows.

– A1(Π):
1. Output σ ← B1(fΠ).

– A2(IV, σ):
1. Compute (x1, x2) ← B1(IV, σ).
2. If fΠ(x1) = fΠ(x2) = IV and x1 
= x2, compute m1 ‖ IV = Π−1(0r ‖x1)

and m2 ‖ IV = Π−1(0r ‖x2) and output (m1,m2).
3. Otherwise, output ⊥.

For correctness, we note that if A2 outputs a non-⊥ value, then A2 suc-
ceeds in finding a 1-block collision. Recall that SpΠ(IV,m1) = Π(m1 ‖ IV)[1] and
SpΠ(IV,m2) = Π(m2 ‖ IV)[1]. By construction, fΠ(x1) = fΠ(x2) = IV implies
m1 ‖ IV = Π−1(0r ‖x1) and m2 ‖ IV = Π−1(0r ‖x2) for some m1,m2 ∈ {0, 1}r.
But this in turn implies that Π(m1 ‖ IV)[1] = Π(m2 ‖ IV)[1] = 0r. Since Π is a
permutation and x1 
= x2, it must be the case that m1 
= m2, so (m1,m2) is a
valid 1-block collision, as required.

Whenever B succeeds, A succeeds, so the success probability follows imme-
diately from Lemma 1. �

Lemma 1. Let n ≥ 1, a ≤ n − 3 and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}a such that f(x) consists of the first a bits output by
Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24a, 2a ≥ 24S, and 2a ≥ (S/T ) ·
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243, there exists an (S, T ) attacker A = (A1,A2) that on input y ←$ {0, 1}a out-
puts x1, x2 such that f(x1) = f(x2) = y and x1 
= x2 with probability ε, where

ε ≥
(

1
20 · 2882 · a2

)
· min

(
1,

S2T 2

22a+2
,

(
S2 T

22a+1

)2/3
)

.

Proof. Let B = (B1,B2) be an (S/2, T/2) adversary from Lemma 2. In the
offline phase, A1 on input the function f runs B1(f) twice and gets σ1, σ2. A1

outputs σ = (σ1, σ2). In the online phase, A2 on input σ and y = f(x) for
x ←$ {0, 1}a, computes x1 = B2(y, σ1) and x2 = B2(y, σ2). If f(x1) = f(x2) = y
and x1 
= x2, A2 outputs (x1, x2) and otherwise outputs ⊥. It directly follows
that A uses space |σ| = |σ1|+ |σ2| ≤ S and makes at most 2 · (T/2) = T queries.
So it remains to analyze the advantage of A.

We define the following events that are relevant to the analysis. Let Success1,
Success2 be the events that B1(f, σ1) and B1(f, σ2) output a valid pre-image,
respectively. Let Inverse be the event that |f−1(y)| ≥ 2 for the challenge
y ←$ {0, 1}a. Let Distinct be the event that the outputs x1 and x2 are distinct.
Thus, the probability of success is given by

ε = Pr[Success1 ∧ Success2 ∧ Inverse ∧ Distinct].

Note that Success1 and Success2 are identical and independently distributed
given a fixed value for y. Thus, we can rewrite the success probability as

ε = Pr[Inverse] · Pr[Success1 | Inverse] · Pr[Success2 | Inverse]
· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse].

= Pr[Inverse] · Pr[Success1 | Inverse]2
· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse]

We analyze each of these terms separately.
In Claim 3, we show that Pr[Inverse] ≥ 1/10 as long as a ≤ n−3. Pr[Success1 |

Inverse] is given in Lemma 2 using S′ = S/2 and T ′ = T/2. As |f−1(y)| ≥ 2 by
assumption, it holds that

Pr[Success1 | Inverse] ≥
(

1
288 · a

)
· min

(
1,

ST

2a+1
,

(
S2 T

22a+1

)1/3
)

.

For the event Distinct, note that in the worst case |f−1(y)| = 2. In this case, it
is equally as likely that x1 = x2 compared to x1 
= x2 since there are only two
equally likely values for x1, x2. Thus,

Pr[Distinct | Success1 ∧ Success2 ∧ Inverse] = 1/2.

Combining the above, we conclude that the attackers probability of success
is at least

ε ≥ 1
2

· 1
10

·
(

1
2882 · a2

)
· min

(
1,

S2T 2

22a+2
,

(
S2 T

22a+1

)2/3
)

,

as required. �
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Claim 3. Let n ≥ 1, a ≤ n − 3 and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}a such that f(x) consists of the first a bits output by
Π(x ‖ 0n−a). Then, Pr[y ←$ {0, 1}a : |f−1(y)| ≥ 2] ≥ 1/10.

We provide the proof of this claim in the full version due to lack of space.

4.3 Time-Space Tradeoffs for Inverting a Restricted Permutation

In this section, we prove a time-space tradeoff for inverting a restricted
permutation. Let n ∈ N, a, b < n, and let Π ← Perm (n) be a ran-
domly chosen permutation. Consider the function f : {0, 1}a → {0, 1}b defined
such that f(x) outputs the first b bits of Π(x ‖ 0n−a). We show that
there exists an (S, T ) adversary A that inverts f with advantage roughly
Ω(min(1, ST/2min(a,b), (S2T/22min(a,b))1/3)). Additionally, we show that on
input y = f(x) for a random x ←$ {0, 1}a, A outputs a uniformly random pre-
image x′ ∈ f−1(y) if it succeeds.

We note that our attack closely follows the approach of Hellman [23] and its
extension from Fiat and Naor [17]. We provide the full details of the attack and
analysis for completeness. We emphasize that our analysis differs from Hellman’s
analysis since our function f is not quite a random function. Still, we do not
need the full generality of the result of Fiat and Naor that works for arbitrary
functions. We also note that we show how to instantiate and analyze the “g”
functions (see the proof for full details) used in Hellman’s attack using only
pairwise independence, whereas Fiat and Naor’s result for arbitrary functions
required k-wise independence for k ≈ T .

Lemma 2. Let n ≥ 1, a, b ≤ n and Π be a random permutation over {0, 1}n.
Let f : {0, 1}a → {0, 1}b such that f(x) consists of the first b bits output by
Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24max(a, b), 2min(a,b) ≥ 24S, and
2min(a,b) ≥ (S/T ) ·243, there exists an (S, T ) attacker A = (A1,A2) that succeeds
in inverting f on input y = f(x) for x ←$ {0, 1}a with probability ε, where

ε ≥
(

1
288 · b

)
· min

(
1,

ST

2min(a,b)
,

(
S2 T

22min(a,b)

)1/3
)

.

Additionally, the following hold:

– If the attacker A = (A1,A2) succeeds at inverting y = f(x), it outputs a
uniform pre-image x′ ∈ f−1(y) over the randomness of A1 and A2.

– For any fixed x ∈ {0, 1}a and y = f(x), the attack succeeds with probability
at least

ε ≥
(

1
288 · b

)
· min

(
1,

ST · |f−1(y)|
2a

,

(
S2 T |f−1(y)|2

22a

)1/3
)

.

Due to a lack of space, we defer the proof of this lemma to the full version.
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5 Impossibility Results

We next give impossibility results for attacks for 1-block and 2-block collisions
for sponge hashing. This consists of upper bounding the best possible advantage
of any (S, T ) adversary.

5.1 Advantage Upper Bound for B=1

We prove an upper bound for the advantage of an adversary in finding a 1-block
collision for the sponge construction. Formally, we prove the following theorem.

Theorem 4. For all S, T, c, r ∈ N

Advai-crSp,c,r,1(S, T ) ≤ 2(S + c)T + 1
2c

+
T 2

2r
.

To prove this theorem, we use the result of [10] which relates the advantage
upper bound of an adversary in the AI-RPM to that in BF-RPM (bit-fixing
RPM). Due to lack of space we defer the preliminaries for BF-RPM, the proof
of Theorem 4 and the argument why the bit-fixing technique cannot be used to
prove an advantage upper bound for B = 2 better than O(ST 2/2c) to the full
version.

5.2 Advantage Upper Bound for B = 2

In this section we prove an upper-bound the advantage of an adversary in finding
a 2-block collision for the sponge construction in the AI-RPM, according to
the game Gai-cr

c,r,B described in Fig. 4. First, without loss of generality, in what
follows we assume that the adversary is deterministic. This is because we can
transform any probabilistic attacker into a deterministic one by hard-wiring the
best randomness (see Adleman [2]).

We reduce the task of bounding the advantage of an attacker in finding a 2-
block collision in the sponge construction, to a “multi-instance” game where the
adversary does not have a preprocessing phase but rather only has non-uniform
auxiliary input, chosen before the random permutation Π. The latter game is
easier to analyze. This is in line with the work of Akshima et al. [3].

We define the following “multi-instance” game Gmi-cr
c,r,B,u(σ,A2), where the pre-

processing part of the adversary A1 is degenerate and outputs the fixed string
σ. More precisely, the game has the following steps:

1. Π ←$ Perm({0, 1}c+r)
2. U ←$

({0,1}c

u

)
3. Define A1 to be the algorithm that always outputs the string σ.
4. Return true if AI-CRΠ,IV(A = (A1,A2)) = true for every IV ∈ U . Otherwise,

return false.
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For a string σ and an adversary A2, define

Advmi-cr
Sp,c,r,B,u(σ,A2) = Pr

[
Gmi-cr

c,r,B,u(σ,A2)
]
.

Lemma 3 (Reducing the problem to the multi-instance game). Fix
c, r, B, S, T, u ∈ N. Then,

Advai-crSp,c,r,B(S, T ) ≤ 6 ·
(

max
σ,A2

{
Advmi-cr

Sp,c,r,B,u(σ,A2)
}) 1

u

+ 2S−u,

where the maximum is taken over all σ ∈ {0, 1}S and T -query algorithms A2.

We refer the reader to [21] for a proof.
We next prove an upper bound on the advantage of any auxiliary-input adver-

sary in finding a 2-block collision for the sponge construction. The main theorem
is stated next.

Theorem 5. For any c, r, S, T ∈ N and fixing Ŝ := S + c, it holds that

Advai-crSp,c,r,2(S, T ) ≤
(

27e · max

{
T 2

2c−1
,

T 2

2r−1
,

ŜT

2c−3
,
Ŝ2T 4

22c−2

})
+

1
2c

.

Theorem 5 follows as a direct corollary of Lemma 3 together with the follow-
ing lemma, setting u = S + c and observing that (1) the lemma holds trivially
when T 2

2r−1 > 1 and (2) uT 3

2c+r−2 ≤ uT
2c−1 whenever T 2

2r−1 ≤ 1.

Lemma 4 (Hardness of the multi-instance game). Fix c, r, T , u ∈ N

and σ ∈ {0, 1}S. Then, for any A2 that makes at most T queries to its oracle,
it holds that

Advmi-cr
Sp,c,r,2,u(σ,A2) ≤

(
27 · e · max

{
T 2

2c−1
,

T 2

2r−1
,

uT

2c−3
,

uT 3

2c+r−2
,
u2T 4

22c−2

})u

.

The rest of this section is devoted to the proof of Lemma 4.
We are interested in bounding the advantage of the best strategy, i.e., a pair

(σ,A2) where σ ∈ {0, 1}S is a fixed string and A2 is a T -query algorithm, of
finding collisions of length 2 in a sponge with respect to the game Gmi-cr

c,r,2,u(σ,A2).
Recall that in this game A2 needs to find proper collisions for u randomly chosen
IVs, denoted U . The main idea in the proof is to use any such adversary (σ,A2)
in order to represent the permutation Π as well as the set of random IVs U with
as few bits as possible. If the adversary is “too good to be true” we will get an
impossible representation, contradicting Proposition 1.

Setup. Denote

ζ∗ := log

((
25 · 4e ·max

{
T 2

2c−1
,

T 2

2r−1
,

uT

2c−3
,

uT 3

2c+r−2
,

u2T 4

22c−2

})u

·
(2c

u

)
· (2c+r)!

)
.
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Assume the existence of an adversary A = (σ,A2), where σ ∈ {0, 1}S is a
string and A2 is a T -query adversary, that contradict the inequality stated in
the lemma. That is, there is ζ > ζ∗ such that

Advmi-cr
Sp,c,r,2,u(A) := ζ > ζ∗. (5)

Define G to be the set of permutations-sets of IV pairs for which the attacker
succeeds in winning the game for every IV in the set relative to the permutation,
That is,

G =

{
(U,Π)

∣∣∣∣∣
U ∈ ({0,1}c

u

)
,

Π ∈ Perm({0, 1}c+r),
∀IV ∈ U : AI-CRΠ,IV(A) = true

}
.

Recall that ζ is defined to be the advantage of A in the game Gmi-cr
c,r,2,u(A) in which

Π and U are chosen uniformly, and then A needs to find a collision with respect
to every one of the u IVs in U . Therefore,

|G| = ζ ·
(

2c

u

)
· (2c+r)!.

In what follows we define an encoding and a decoding procedure such
that the encoding procedure gets as input U,Π such that U ∈ ({0,1}c

u

)
and Π ∈ Perm({0, 1}c+r), and it outputs an L bit string, where L =
log

(
ζ∗ · (

2c

u

) · (2c+r)!
)
. The decoding procedure takes as input the string L and

outputs U∗,Π∗. It will hold that U∗ = U and Π∗ = Π with probability ζ.8

Using Proposition 1, this would give us that

log ζ ≤ L − log
((

2c

u

)
· (2c+r)!

)
=⇒ ζ ≤ ζ∗

which is a contradiction to the assumption (see (5)).
Using A, we shall define procedures Encode,Decode such that for every

(U,Π) ∈ G, Decode(Encode(U,Π)) = (U,Π) and the size of the output of
Encode(U,Π) is at most L bits where

L = log

((
25 · 4e ·max

{
T 2

2c−1
,

T 2

2r−1
,

uT

2c−3
,

uT 3

2c+r−2
,

u2T 4

22c−2

})u

·
(2c

u

)
· (2c+r)!

)
.

Using Proposition 1, this would give us that

ε ≤
(

27 · e · max
{

T 2

2c−1
,

T 2

2r−1
,

uT

2c−3
,

uT 3

2c+r−2
,
u2T 4

22c−2

})u

.

This immediately gives the bound claimed in the statement of the lemma. The
rest of the proof of the lemma would define Encode,Decode, show an upper bound
8 Essentially, we will show that for all (U, Π) ∈ |G|, if the encoding procedure produces

output L, then the decoding procedure on input L outputs U∗, Π∗ such that U∗ = U
and Π∗ = Π.
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on the size of the output of Encode and that Decode(Encode(U,Π)) = (U,Π) for
all (U,Π) ∈ G.

Notation and Definitions. Fix (U,Π) ∈ G. Let U = {IV1, . . . , IVu} where
the IVi’s are ordered lexicographically. Let Qrs(IV) ∈ ({0, 1}r+c)T be the list of
queries that A2 makes to Π or Π−1 when executed with input (σ, IV). Namely,
for IV ∈ {0, 1}c,

Qrs(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
Note that Qrs(IV) is indeed a set as we can assume (without loss of generality)
that A2 never repeats queries in a single execution (since A2 can just remember
all of its past queries).

Let Ans(IV) ∈ ({0, 1}r+c)T be the list of answers to the queries of that A2 to
Π or Π−1 when executed with input (σ, IV). Namely, for IV ∈ {0, 1}c,

Ans(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
We say that IV′ ∈ SIVs(IV) if there is some s[2] ∈ {0, 1}r such that s[2] ‖ IV′ is
an entry in Qrs(IV) or Ans(IV). Namely, for IV, IV′ ∈ {0, 1}c,

IV′ ∈ SIVs(IV) ⇐⇒ ∃s[2] ∈ {0, 1}r s.t. s[2] ‖ IV′ ∈ Qrs(IV) ∪ Ans(IV).

We define the set of fresh IVs in U . An IV IVi for i ∈ [u] is called fresh if it was
never an IV in either input or output of any query performed by A2 while being
executed on IVj for j ≤ i − 1 which are fresh. The first IV IV1 is always fresh.
An IV IVi for i ≥ 2 is fresh if for any fresh IVj for j ≤ i − 1, IVi /∈ SIVs(IVj).
Namely, denoting the set of fresh IVs by Ufresh, we have the following inductive
(on i ∈ [u]) definition:

IVi ∈ Ufresh ⇐⇒ ∀j ≤ i − 1, IVj ∈ Ufresh : IVi 
∈ SIVs(IVj).

Looking ahead, we define Ufresh like this because we run A2 on the IVs in Ufresh

in lexicographical order, and this definition ensures that each IV that A2 is
executed on was not queried by it previously. Denote

F := |Ufresh| and Ufresh = {IV′
1, . . . , IV

′
F } (ordered lexicographically).

Denote

∀i ∈ [F ] : Qi := Qrs(IV′
i) and Qfresh := Q1 ‖Q2 ‖ . . . ‖QF ,

where ‖ is the concatenation operator. Let Qfresh[r] be the rth query in the list
Qfresh. Note that r ∈ [F · T ]. For every IV ∈ U \ Ufresh, let tIV be the minimum
value such that Qfresh[tIV] is a query either with input or output of the form
(∗, IV). Let bIV = 0 if input of Qfresh[tIV] was of the form (∗, IV) and 1 otherwise.
Define the set of prediction queries as

P := {2tIV − bIV | IV ∈ U \ Ufresh}.
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The encoding algorithm will output Ufresh,P, which suffices to recover the set U
by running A2.

Structure of Collisions. Since adversary A2 succeeds on all of the IVs in U ,
it holds that for every j ∈ [F ], the output of the adversary is (αj , α

′
j) such

that αj 
= α′
j , SpΠ(IV′

j , αj) = SpΠ(IV′
j , α

′
j) and both αj 
= α′

j . We can assume
without loss of generality that the last blocks of αj and α′

j are distinct (because
otherwise we can trim αj , α

′
j to obtain a shorter collision).

Definition 2 (Crucial queries). The queries to Π,Π−1 in Qj include a subset
of queries that we call the crucial queries. The subset consists of earliest appear-
ing queries in Qj that are required to compute SpΠ(IV′

j , αj) and SpΠ(IV′
j , α

′
j). It

follows that for 2-block collisions, this subset consists of at most four queries.

We say that a query made by running while running on (σ, IV′
j) is new if

either of the following hold.

– the query is Π(m, IV) with answer (m′, IV′) and neither Π(m, IV) or
Π−1(m′, IV′) had been queried by A2 while running on IV′

1, . . . , IV
′
j−1.

– the query is Π−1(m, IV) with answer (m′, IV′) and neither Π−1(m, IV) or
Π(m′, IV′) had been queried by A2 while running on IV′

1, . . . , IV
′
j−1.

If a query is not new we classify it into one of 2 types: repeatedUsed, and
repeatedUnused. A repeatedUsed query is one such that it was a crucial
query for IV′

i where i < j. A repeatedUnused query is one such that it is not
a new or a repeatedUsed query.

Our goal is to compress (U,Π) and we are going to achieve this by using
our collision finding adversary A2. The encoding procedure shall output the set
Ufresh, the set P, the list Π̃ with some entries removed and some additional lists
and sets. We will be describing the details of these lists and sets below and which
entries we remove from Π̃. Our main goal is to show that when we remove entries
of Π̃ and instead using additional lists and set, we are actually compressing. Our
ways to compress will depend on the crucial queries in each Qj for j ∈ [F ].

We classify the IV′
jth for each j ∈ [F ] into the first of the following cases

it satisfies, e.g., if the crucial queries for IV′
j satisfies both cases 1 and 2, we

categorize it into 1.

1. One of the crucial queries for IV′
j is a query such that the last c bits of the

answer is IV′
j

2. All of the crucial queries to are new.
3. At least one of the crucial queries is repeatedUsed.
4. There is exactly one repeatedUnused crucial query.
5. There are exactly two repeatedUnused crucial queries.

Claim 6 We claim that each IV′
j will be categorized into one of the above cases.

Proof To begin with, observe that given how we define fresh IV′
j , there will have

to be a new crucial query such that either it is a query to Π with input of the
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form (∗, IV′
j) or it is a query to Π−1 with answer of the form (∗, IV′

j), because
we have assumed without loss of generality that A2 makes all the queries while
running on IV′

j required to find the collision. If there is a new crucial query
to Π−1 with answer of the form (∗, IV′

j) then case 1 is satisfied. Also observe
that there are at most two crucial queries that are not new since we are looking
at 2-block collisions because any query whose input or output is of the form
(∗, IV′

j) is new for all IV′
j as they are fresh. So it follows if IV′

j is not categorized
into 1, it will either have all new crucial queries (case 2) or have at least one
repeatedUsed query (case 3) or have one (case 4) or two repeatedUnused
(case 5) queries. This proves the claim. �

Due to a lack of space, we defer all the details of how we handle each of the
cases, and achieve the required amount of compression to the full version.
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Abstract. We study the power of preprocessing adversaries in find-
ing bounded-length collisions in the widely used Merkle-Damg̊ard (MD)
hashing in the random oracle model. Specifically, we consider adversaries
with arbitrary S-bit advice about the random oracle and can make at
most T queries to it. Our goal is to characterize the advantage of such
adversaries in finding a B-block collision in an MD hash function con-
structed using the random oracle with range size N as the compression
function (given a random salt).

The answer to this question is completely understood for very large
values of B (essentially Ω(T )) as well as for B “ 1, 2. For B ≈ T , Coretti
et al. (EUROCRYPT ’18) gave matching upper and lower bounds of
Θ̃(ST 2/N). Akshima et al. (CRYPTO ’20) observed that the attack of
Coretti et al. could be adapted to work for any value of B > 1, giving an
attack with advantage Ω̃(STB/N ` T 2/N). Unfortunately, they could
only prove that this attack is optimal for B “ 2. Their proof involves a
compression argument with exhaustive case analysis and, as they claim,
a naive attempt to generalize their bound to larger values of B (even
for B “ 3) would lead to an explosion in the number of cases needed to
be analyzed, making it unmanageable. With the lack of a more general
upper bound, they formulated the STB conjecture, stating that the best-
possible advantage is Õ(STB/N ` T 2/N) for any B > 1.

In this work, we confirm the STB conjecture in many new parameter
settings. For instance, in one result, we show that the conjecture holds
for all constant values of B. Further, using combinatorial properties of
graphs, we are able to confirm the conjecture even for super constant
values of B, as long as some restriction is made on S. For instance, we
confirm the conjecture for all B � T 1/4 as long as S � T 1/8. Technically,
we develop structural characterizations for bounded-length collisions in
MD hashing that allow us to give a compression argument in which the
number of cases needed to be handled does not explode.

1 Introduction

Starting from the seminal work of Hellman [21], there have been significant
efforts to understand the power of preprocessing attacks in various applications
c© International Association for Cryptologic Research 2022
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and constructions (e.g., [1,3,5,6,8,9,11,13,15,16,28,30,31]). Preprocessing
attacks, i.e., ones that utilize a bounded amount of auxiliary information, cap-
ture the standard modeling of attackers as non-uniform, allowing them to obtain
some arbitrary (but bounded length) “advice” before attacking the system. In
this work, we continue the recent line of works studying the power of prepro-
cessing adversaries in the context of finding collisions in the widely used Merkle-
Damg̊ard (MD) design.

Collision Resistance of Salted MD. The Merkle-Damg̊ard hash function
construction [12,24–26] is a popular design for building an arbitrary-size-input
compression function from a fixed-size-input compression function. This design
is not only extremely fundamental in cryptographic theory, but it also underlies
popular hash functions used in practice, most notably MD5, SHA-1, and SHA-2.

The MD construction is defined relative to a compressing function h : [N ] ×
[M ] → [N ]1, modeled as a random oracle, as follows. First, for a P [N ] and
α P [M ], let MDh(a, α) “ h(a, α). Then, define recursively

MDh(a, (α1, . . . , αB)) “ h(MDh(a, (α1, . . . , αB−1)), αB)

for a P [N ] and α1, . . . , αB P [M ]. The a is referred to as salt (sometimes also
called IV) and each of the following B elements are referred to as blocks.

Due to the ubiquitous influence of this hashing paradigm, both in theory
and practice, characterizing the complexity of finding collisions in MDh (on a
random salt) is a fundamental problem. The well-known birthday attack gives a
T -query attacker with Θ(T 2/N) advantage. However, this attack is very generic:
it neither takes advantage of the structure of MDh nor does it utilize the fact
that the attacker may have access to some limited amount of “advice” about
h due to a long preprocessing phase. But, there is a good reason that security
against non-uniform attackers has become the standard notion of security in
the cryptographic literature: it captures the natural idea that an adversary may
have been designed to attack specific instances, guaranteeing security against an
expensive preprocessing stage, or even unknown future attacks. On the whole,
it is widely believed by the theoretical community that non-uniformity is the
right cryptographic modeling of attackers, despite being overly conservative and
including potentially unrealistic attackers. Therefore, understanding the com-
plexity of finding collisions in MD, allowing preprocessing, is a fundamental
problem.

The Auxiliary-Input Random Oracle Model. The concrete hash functions
h used in real-life do not have solid theoretical foundations from the perspective
of provable security. Therefore, when analyzing the security of the MD con-
struction, the function h is typically modeled as a completely random one, i.e.,
a random oracle. We follow the standard approach and model preprocessing
adversaries using the influential extension of the random oracle model termed
auxiliary-input random oracle model (AI-ROM). This model was (implicitly)
used, for example, in the classical works of Yao [31] and Fiat and Naor [16],

1 We use the notation [N ] to denote the set {1, 2, . . . , N} for a natural number N .
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and formally defined in the influential work of Unruh [30] which was recently
revisited by Dodis, Guo, and Katz [15] and Coretti et al. [9].

The AI-ROM models preprocessing adversaries as two-stage algorithms (A1,
A2) parametrized by S (for “space”) and T (for “time”). The first part A1 has
unbounded access to the random oracle h, and its goal is to compute an S-bit
“advice” σ for A2. The second part A2 gets the advice σ, can make at most T
queries to the random oracle, and attempts to accomplish some task involving
h. In our case, A2 gets a random salt a as a challenge and its goal is to come up
with a collision in MDh(a, ·). Both A1 and A2 are unbounded in running time.

Known Results. Collision resistance of salted MD hash functions in the AI-
ROM was first studied by Coretti, Dodis, Guo, and Steinberger [9]. Among
other results, they showed an attack, loosely based on the idea of rainbow
tables [21,28], with advantage Ω̃(ST 2/N).23 They further showed that this
attack is optimal. Namely, no attack can have an advantage better than
Õ(ST 2/N). (Notice that this attack beats the naive birthday attack mentioned
above for typical values of S.) In a more recent work of Akshima, Cash, Drucker,
and Wee [3] observed that the attack of Coretti et al. [9] results in very long
collisions, of the order of T blocks, which may limit their practical usefulness.
While formally, a length T collision does violate collision resistance, it is hard
to imagine a natural application where it is useful. Indeed, for reasonable values
of T , say T “ 260, it is unlikely that such a collision, which is several petabytes
long, could damage any widely-used application.

Akshima et al. [3] therefore raise the very natural question of what is the
complexity of finding short collisions.

What is the complexity, as a function of S and T (the allowed space and
query bounds, respectively),

of finding a B -block collision in salted MD?

Although this question is very natural and clean, as mentioned, a complete
answer is known only in the extreme cases, either when B “ 2 or when B “
Ω̃(T ). Indeed, when B is very close to T , the result above of Coretti et al. [9]
implies that the advantage is Θ̃(ST 2/N). The case of B “ 2 was resolved by
Akshima et al. [3] who showed that the advantage is Θ̃(ST/N ` T 2/N). Even
for B “ 3, a complete answer is not known: The analysis of Akshima et al. [3]
consists of an elaborate case analysis tailored to the B “ 2 case, and they claim
that even for B “ 3 the proof of their lower bound “. . . would be too long and
complex to write down”.4

The STB Conjecture. In terms of upper bounds, Akshima et al. [3] showed
that a variant of Coretti et al.’s (rainbow tables inspired) attack could be gen-
eralized to get a B-block collision with advantage Ω̃(STB/N). This attack gen-
eralized the attack of Coretti et al. [9] which gives an O(T )-block collision with
probability Ω̃(ST 2/N). With the lack of better bounds on the best possible
2 Throughout the paper, the˜notation suppresses poly-logarithmic terms in N .
3 By “advantage” we mean the probability of finding a collision.
4 For B “ 1 a tight bound of Θ(S/N ` T 2/N) is known [15].
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attack for a wide range of B’s (anywhere between B “ 3 and B ! T ), Akshima
et al. [3] put forward the “STB conjecture” which posits that the optimal attack
for finding length B collisions has advantage Θ̃(STB/N`T 2/N) (i.e., the better
between their attack and the generic birthday attack).

We believe that our current understanding of the exact security that MD-
style constructions could ideally achieve is insufficient. Therefore, given how
widespread MD-based hash functions are, progress towards resolving the conjec-
ture is highly important.

1.1 Our Results

Our main result confirms the STB conjecture in many new parameter settings.
Specifically, we prove two new upper bounds on the advantage of the best attack
for finding short collisions in salted MD hash functions in the AI-ROM. The
first bound confirms the STB conjecture for all constant values of B. The second
result confirms the STB conjecture even for super constant values of B but only
for moderately large values of S compared to T .

STB Conjecture is True for all Constant B. We show that for any B P
O(1), the advantage of any S-space T -query attacker in finding a length B
collision is bounded by Õ(ST/N ` T 2/N), matching the known attack up to
poly-logarithmic factors.

Theorem 1.1 (Informal; See Theorem 5.1). For every constant B, the STB
conjecture is true.

This theorem is obtained as a special case of a more general bound on the
advantage of any S-space T -query attacker in finding a length B collision of the
form

Õ

(
STB2(log2 S)B−2

N
` T 2

N

)
.

Note that this bound is meaningful when B is a constant (or slightly bigger) but
becomes vacuous when say, B “ log N .

STB Conjecture is True for all SB ! T . We show that as long as S,B ! T ,
the conjecture is true again. Specifically, we show that whenever S4B2 P Õ(T ),
the maximal advantage of any S-space T -query attacker in finding a length B
collision is obtained by the birthday attack, up to poly-logarithmic factors. For
example, when SB � T 1/4, the maximal advantage is O(T 2/N), and therefore
the STB conjecture holds.

Theorem 1.2 (Informal; See Theorem 6.1). For every S4B2 P Õ(T ), the
STB conjecture is true. For instance, the conjecture holds if either

– B P poly log N and S P Õ(T 1/4), or
– B P Õ(T 1/4) and S P Õ(T 1/8).
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This theorem is obtained as a special case of a more general bound on the
advantage of any S-space T -query attacker in finding a length B collision of the
form

Õ

(
S4 TB2

N
` T 2

N

)
.

A Concrete Comparison Between the Results. The two bounds are gen-
erally incomparable. While the bound from Theorem 1.1 is asymptotically tight
whenever B is constant (independent of S, T ), it becomes vacuous for say
B “ log N . On the other hand, the bound from Theorem 1.2 is meaningful for
all B P o(N1/2), as long as S4 · B2 ! N . For instance, assume that S “ N1/16

and B P Θ(N ε) (for 0 < ε < 1/8). In this setting, the bound from Theorem
1.1 is trivial. On the other hand, the bound from Theorem 1.2 gives that any
successful attack must satisfy T P Ω̃(N1/2) which is strictly better than what
the generic Õ(ST 2/N) bound gives (it only gives T P Ω̃(N15/32)).

Technical Highlight. The main technical component in both of our bounds is a
compression argument that uses a “too-good-to-be-true” attacker to non-trivially
compress a uniformly random sequence of bits, thereby getting a contradiction.
The setup is somewhat similar to the one of Akshima et al. [3] (although slightly
more modular), but our compression argument deviates from theirs significantly.
Their argument inherently relied on the fact that there are at most two blocks
in the collision, therefore greatly simplifying the possible structures to consider.
In contrast, we consider arbitrary length collisions, and thus we have to deal
with all possible structures of collisions. Our proof identifies and analyzes a
general structure for MD collisions and unveils a natural combinatorial problem
that influences the resulting upper bound on the advantage of preprocessing
adversaries. Specifically, it turns out that the “dominant extra” terms in both
of our bounds ((log2 S)B−2 in the first bound and S3 in the second) emerge due
to the need to encode a reverse path in a general (fan-out 1, but possibly large
fan-in) directed graph, where the graph is the one induced by the queries that
the adversary makes to the random oracle. Any improvement on this encoding
would immediately imply a better upper bound, a fact that we hope will lead to
better bounds in the future.

1.2 Discussion

As mentioned, the MD paradigm underlies numerous hash function constructions
that are central building blocks in many applications. There are several popular
variants of the MD paradigm implemented in practice. In this work, we follow
previous works and focus on the cleanest variant for concreteness. One prominent
variant withstands length extension attacks by padding the input message with
its length. (In fact, this is the version suggested by Merkle and Damg̊ard.) We
remark that our results directly apply to this padded variant. Specifically, the
“STB” attack finds a collision with the same number of blocks, so it readily
extends to this padded variant. Our bounds on the best possible attacks also
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extend to this setting since the argument did not use any specific property on
the collision blocks. It is interesting to study other practically used variants and
understand if similar results can be obtained. To this end, we hope that the
techniques we develop in this work will be helpful.

From a theoretical perspective, no single function can be collision-resistant
(in the plain model), as a non-uniform attacker can trivially hardwire a collision.
This is why collision resistance is considered with respect to a family of hash
functions indexed by a key called salt. The salt is chosen after the attacker is
fixed (and so is the non-uniform advice about the family of functions). Still, in
practice, a single hash function is typically defined by fixing an IV, making it
insecure against non-uniform attackers. This contrasts with how we define the
collision resistance game, where the IV is chosen randomly after the prepro-
cessing phase. Thus, it may seem that the expensive preprocessing needed for
attacks in our model does not represent real-life scenarios. However, often the
hash function used in a particular application (relying on collision-resistance)
is salted by prepending a random salt value to the input. One such well-known
application is password hashing [29]. Such salting essentially corresponds to the
random-IV setting considered here, and, therefore, the attack becomes relevant
again.

The primary motivation for our work is to make progress towards the STB
conjecture, which we view as a fundamental problem. To this end, we focused
on asymptotic bounds as a function of S, T , and B. We hope that the concrete
bounds could be improved in future works, affecting design choices of real-life
hash functions.

Follow Up Work. A recent work of Akshima, Guo, and Liu [4] proved a new
bound on the maximal possible advantage in finding B-block collisions. Their
bound is overall incomparable to ours: it is better than our Theorem 1.2 but
worse than Theorem 1.1. Also, Freitag et al. [17] studied related problems in the
context of sponge hashing, an alternative to the Merkle-Damg̊ard paradigm that
underlies (for instance) the SHA-3 standard.

2 Our Techniques

In this section, we provide a high-level overview of our techniques. Both of our
results follow a similar high-level rationale, and thus throughout this overview,
we mainly focus on the techniques for proving the STB conjecture whenever
B P O(1) (Theorem 1.1). Towards the end, we describe the additional ideas
needed to obtain the result for SB ! T (Theorem 1.2).

Before explaining the ideas, let us describe the challenge more precisely. We
are given a compressing function h : [N ] × [M ] → [N ], modeled as a random
oracle, and we want to upper bound the probability of a non-uniform attacker
in finding a collision in an MDh instance with a random salt. We model non-
uniform attackers by thinking of them as two-stage adversaries A “ (A1,A2).
The offline part A1 is unbounded in running time, and its only restriction is
that it can output only S bits. This output is the non-uniform advice given to
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the online part A2 which is then allowed to make up to T queries after which it
must output a B-block collision for MDh and terminate. We assume unbounded
running time for both parts A1 and A2 and only restrict the output-size for
A1 and the number of queries for A2. We refer to such a two-stage adversary
(A1,A2) as a (S, T )-adversary. In the context of length-B collisions in MDh, the
game is as follows:

– A1 has unbounded access to h and it outputs σ P {0, 1}S .
– A2 gets σ as input along with a random salt a P [N ].
– A2 outputs α, α′.
– A wins if α �“ α′, α, α′ consist of � B blocks, and MDh(a, α) “ MDh(a, α′).

There are essentially two main generic approaches known in the literature
for proving bounds of this sort. The first is the so-called pre-sampling technique,
originally due to Unruh [30], and the second is a compression argument. The
first technique reduces the problem from considering general hash functions and
adversaries (A1,A2) as above to a simpler model (and associated attacker) called
the bit-fixing model. The advantage of the latter model is that it is typically
easier to analyze and results in clean proofs. The second technique is based on a
simple information-theoretic idea that random bits cannot be compressed.5 Thus,
an attacker that succeeds in finding collisions is used to compress some random
information that is used in the game, and thereby contradiction is reached.
This technique, while being extremely influential in many fields and problems in
computer science (e.g., “Algorithmic Lovász Local Lemma” [27], lower bounds
on cryptographic constructions [13,18,20], analyzing hardness of problems in the
non-uniform setting [10,15] and time-space tradeoffs for quantum algorithms [7]),
often results in technical and complex proofs.

It would have been convenient if any non-trivial bound on our problem could
be obtained using the bit-fixing technique. Unfortunately, Akshima et al. [3]
observed that finding short collisions is relatively easy in the bit-fixing model.
Hence, the only remaining potentially helpful technique is based on compression.
Indeed, Akshima et al. [3], as their primary technical contribution, managed to
carry out such an argument for the particular case of B “ 2, and already then
their proof is highly non-trivial and consists of a tedious case analysis. We distill
some of the main ideas underlying their general framework approach6 next—this
will be useful for us, as well.

The Framework. We reduce the task of handling arbitrary (S, T )-adversaries
to the problem of handling (S, T )-adversaries, where the preprocessing part A1 is
degenerate and outputs a fixed string σ, independent of h. Specifically, we define
a game, parameterized by u P N>0, where A2 has an arbitrary size S string σ
hard-coded, and its goal is to find a collision relative to a given salt. A2 wins
the game if it succeeds in finding a collision when executed with every one of u
uniformly random salts (there is no A1 in this game). The reduction shows that
5 Specifically, it is impossible to save w bits of information about a random string,

except with probability 2−w.
6 We note that [7] introduced an equivalent framework in independent work.
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if A2 has advantage ε in the modified game, then the best advantage of an (S, T )-
adversary in the original game is (roughly) O(ε1/u) for u ≈ S. This reduction,
formalized in Lemma 4.1, is adapted from Akshima et al. [3] and it uses the
beautiful “constructive Chernoff bound” of Impagliazzo and Kabanets [22].7

The advantage of considering the new game is that there is no A1, so it is
easier to handle. But, to obtain a meaningful result for the original (S, T ) game,
say an upper bound of ε, we need to prove a somewhat stronger upper bound for
the new game, that is, roughly εu. This means, in other words, that we need to
show how to compress about log(1/ε) bits per each one of the u salts. (Actually,
keep in mind that it suffices to achieve this on average!) For our target ε, we
therefore have the following goal.

Main challenge: For every one of the u salts, we need to “save/compress” (on
average) roughly the following number of bits:

log
(

min
{

N

uT (log u)2(B−2)B2
,

N

T 2

})
.

By impossibility of non-trivial compression, this would imply that A2 must suc-
ceed with probability at most

ε � O

((
uT (log u)2(B−2)B2

N
` T 2

N

)u
)

,

which would give our result when plugged into the framework.

The Compression Argument. The random string that we shall compress
consists of the set of salts denoted U , as well as the function h. We give encoding
and decoding algorithms that use A2 first to encode the pair (U, h) and then use
the result to fully decode them whenever A2 wins the game. If A2 wins with good
enough probability, the output of the encoding procedure will be non-trivially
short with good probability, which is a contradiction.

Remark 1 Akshima et al. [3] used the same approach for B “ 2, but their proof
does not seem to scale for larger values of B. Specifically, their proof involves
an exhaustive case analysis. It seems like a naive attempt to generalize their
bound to larger values of B would proliferate the number of cases needed to
be analyzed, making it unmanageable. One of our key conceptual insights is a
structural characterization of collisions in MDh that prevents this explosion in
the number of cases needed to be handled. While our analysis applies to any B,
the number of total cases we consider is roughly the same as Akshima et al.

A First Attempt and a Glimpse at the Challenge. Let us make a strong
(and typically false) assumption: the adversary A2 never repeats any query to h

7 The use of this reduction is the main (and perhaps only) point of similarity between
our proof and [3]’s.
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tip

bottom bodytail

top body

Fig. 1. A mouse structure. For ease of visual representation we do not draw the nodes
and edges of the graph, instead represent it as a continuous structure.

across all the u runs.8 Since we can assume (w.l.o.g) that if A2 outputs (α, α′)
when run on salt a, it has queried h at all values needed to compute MDh(a, α)
and MDh(a, α′), we are guaranteed that for each of the salts u P U there are
at least two distinct queries which have the same answer, i.e., a collision. The
indices of these queries reside in [T ] as this is the query complexity of A2 when
executed on the particular salt a. Thus, we could avoid encoding the answer
of the second query and instead encode these two indices in T and remove the
answer of the second query from evaluations of h. This saves us log(N/T 2) bits
for every salt, giving us even more savings than what we are aiming for. Such
compression, in turn, would imply that the birthday attack is optimal, no matter
what B is (which makes sense given our assumption but is clearly false for general
attackers).

A naive way to get rid of the assumption (that queries never repeat across
different u runs) would be to encode the index of the other query among all
uT queries made (instead of T ). But, this would eventually result in another
multiplicative S term in our bound. Namely, we would only be able to save
log(N/(ST 2)) bits per salt which is too little for us (as it leads to a trivial upper
bound). This motivates us to look more closely at how MD collisions are formed,
what kind of queries could be involved, and how we could leverage the fact that
collisions are short to get more efficient encoding.

The Mouse Structure and Query Types. We consider the graph implicitly
formed through the queries made by A2 when running on salts a1, . . . , au P U .
The nodes of the graph are the possible salts and there is a directed edge from
salt a to a′ with label α if h(a, α) “ a′ and this query was made by A2.

Suppose that A2, when run on salt ai, outputs (α, α′). Since A2 wins on every
salt in U , its output on salt ai, denoted α, α′ must satisfy: (1) MDh(ai, α) “
MDh(ai, α

′), (2) α �“ α′, and (3) α, α′ are at most B blocks long. Without
loss of generality we can assume that the adversary A2 outputs a “minimal”
collision, i.e., one that does not contain a prefix which is a collision by itself.

8 While we can assume without loss of generality that A2 does not repeat queries
within a single execution (since it is not memory-bounded), it is not very reasonable
to assume that it will never repeat queries across different executions on different
salts.
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For instance, say the collision is x1, x2, x3, x4, x5, x6 and y1, y2, y3, y4, y5, y6 (wrt
salt a) and it happens that x1, x2, x3, x4 and y1, y2, y3, y4 already collide (wrt
same salt a), we can simply ignore x5, x6, y5, y6. Considering the core sub-graph
of the query graph that is induced by queries made by A2 that are required to
evaluate MDh(a, α) and MDh(a, α′), we obtain a structure that we call a mouse
structure. Important parts of the mouse structure are the tail, top and bottom
body, and the tip, as depicted in Fig. 1. Our entire approach is based on studying
these mouse structures to come up with encoding strategies.

Given the concept of a mouse structure and our discussion from above about
the adversary, possibly repeating queries motivates us to classify each query into
one of three types. The first is called new and refers to queries made for the first
time. The rest of the queries are called repeated, and they are further classified
into two types, depending on whether they previously appeared in some mouse
structure or not. Specifically, a repeated query is called repeatedMouse if the
same query was already made by A2 when executed on a previous salt, and
otherwise, a repeated query is called repeatedNonMouse.

Intuitively, we want to save bits when the answer of a new query was the
input salt of a repeated query. A repeatedMouse query facilitates such savings
since we can encode the answer to the query by storing its index along with
the index of the previous query and the corresponding index within the mouse
structure—a total of ≈ log(uTB) bits instead of log N—which eventually turns
into an STB/N term in the upper bound, as conjectured. The problem is with
encoding repeatedNonMouse queries—there seems to be no trivial way to
write the index of the previously-made query with less than log(uT 2) bits, which
is too much (since it will eventually turn into a ST 2/N term in the upper bound).

Some “Easy” Mouse Structures. We observe that some cases of mouse struc-
tures readily give us a way to have efficient encoding and save sufficiently many
bits. We offer three examples to convey intuition on how our analysis is done.
Throughout, let us assume that every mouse structure contains at least one new
query—otherwise, we will ignore this mouse structure altogether.9

As a first example, if two new queries form the tip of the mouse structure
of salt aj , we can simply encode the index of these queries within the queries
made while handling this salt—this uses 2 log T bits instead of log N bits which
is sufficient. As another example, if a self-loop forms the body of the mouse
structure and the self loop query is new or repeatedNonMouse, we can simply
encode the index of the self loop query in the list of queries used to handle this
salt and avoid encoding the answer of the query—this uses log(uT ) bits instead
of log N which is again sufficient. As the last example, suppose the answer to
a new query is a salt that appeared in some earlier mouse structure. In this
case, we can avoid encoding the answer of the new query and instead encode

9 In the technical section, we refer to salts aj in U that were not the input salt of a
query when running A2 on ai for i < j as fresh. It follows that mouse structures for
fresh salts will always have a new query. For salts that are not fresh, it is relatively
straightforward to achieve some compression by avoiding storing these salts in the
encoding of U . For now, the reader can imagine that all salts are fresh for simplicity.
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a

a

Fig. 2. An example of a “hard” mouse structure. The new queries are drawn in red,
repeatedMouse queries are drawn in blue and the repeatedNonMouse queries are
drawn in green. (Color figure online)

the index of the query and which of the salts in the previous mouse structures
is the answer—this uses log(2uB) bits (because there are at most 2B salts in
mouse structures and at most u mouse structures) instead of log N which is also
sufficient.

Some “Hard” Mouse Structures. The aforementioned easy cases give rise
to a relatively easy encoding that results in an optimal STB/N term. Next,
we focus on the more complex cases, which cause our bound to have the extra
≈ B · (log S)B factor.

Assume that there is a mouse structure where there are two salts a′ and a′′

such that a′ is the input salt to a repeatedMouse query, a′′ is the answer to a
new query, and the path from a′′ to a′ in the mouse structure consists of only
repeatedNonMouse queries (as shown in Fig. 2). By definition, the distance
between a′ and a′′ is at most B.10 Potential savings could be achieved by not
encoding a′′, the answer of the new query, as it can essentially be extracted
from already-observed queries. We can easily encode the appropriate index of
the query in the mouse structure and the salt a′ using roughly log(uB) bits, but
how can we encode the information about the path back from a′ to a′′?

The non-triviality is that for each node on this path, there might be many
possible ways to reach it among all the different queries that have been already
made, i.e., if each node on this path has fan-in m, namely an m-multi-collision,
then the natural encoding of the path back would cost at most log(mB) bits,
specifying which back edge to take for every node. Here, m could be very large,
e.g., as large as S or even larger, making the whole result meaningless for most
reasonable parameters settings. (We also need to encode the length of the path,
which would lead to the additional multiplicative B factor, but we ignore it in
the discussion here.)

We get around this problem of m potentially being very large by observing
that one of the following two cases holds:

– Many small multi-collisions: either the fan-in of every node along the path
(i.e., the number of previously-made queries whose result is a node on this
path) is smaller than log u, or

– One large multi-collision: there is (at least one) node on the path where the
fan-in is at least log u.

10 By being slightly more careful, we can show that the distance is B −2 but we ignore
this fact for the overview.
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In the earlier case, we encode the path back as mentioned above, where we
write the index of each back edge. This costs us B ·log log u bits, which eventually
translates to an extra (log S)B term,11 as we have in our main theorem. The
question is, what do we do when the second case occurs.

The idea is to leverage the fact that there is a large multi-collision and obtain
our savings from a completely different place. Specifically, we remember the index
of all the queries involved in the multi-collision and the common answer. A cal-
culation reveals that if the collision consists of ≈ log u edges, we can already save
enough. One subtlety is that the same multi-collision might repeat throughout
many different mouse structures, and we need to make sure not to double count
the savings from a single multi-collision more than what we get. The reason why
we do not double count is that a single large-enough (i.e., with log u edges) multi-
collision saves us enough bits for about log u different structures, and at the same
time, such a multi-collision can appear in at most log u mouse structures.12

Let us finally remark that while the above description conveys the main idea
underlying our compression strategy, it is somewhat simplified and glossed over
many technicalities and the complete specification of all possible cases that our
full proof covers. We refer to Sect. 5 for full details.

Proving the STB Conjecture for S · B ! T . The proof of our second upper
bound follows the same overall structure. The only difference is, naturally, in the
way we encode reverse paths in mouse structures that have nodes corresponding
to repeatedNonMouse queries between the output a′′ of a new query and a
node a′ corresponding to a repeatedMouse query.

In the earlier proof, when we needed to locate the salt a′′ from salt a′, we
encoded the number of edges in between and all the edges on the path. Here, we
prove a purely graph-theoretic lemma saying that if for salt a′ there are more
than ≈ u2 salts a′′ such that there are d > 0 edges on the shortest path back
from a′ to a′′ in the query graph, then there must be t � 1 multi-collisions in the
graph, such that the total number of edges involved in the t multi-collisions is
at least ≈ u2. While the proof of this lemma is a simple inductive argument, it
turns out to be extremely helpful for us. Specifically, if there are t � 1 different
multi-collisions such that a total of at least ≈ u2 different queries are involved in
the t multi-collisions, we can save enough by only encoding these multi-collisions
and nothing else. To prove this fact, we consider the minimum savings we can get
from encoding these t multi-collisions. We show using some elementary calculus
that if there are ≈ u2 queries involved in t different multi-collisions, the minimum
saving is more than the total amount of savings we need.

Equipped with this fact, we split our analysis into the two following scenarios.

11 Remember that the actual term is (log S)B−2 and that is why the proof of Akshima
et al. [3], in which it was assumed that B “ 2, did not have an extra term that
depends on S.

12 We mention that multi-collisions in hash functions have been studied on their own
right (e.g., [14,23]), but our context is totally different.
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Game Gai-cr
N,M,B A A1,A2

1. h $ Fcs N M N
2. a $ N
3. Return AI-CRh,a A

Subroutine AI-CRh,a A A1,A2

1. σ $ A1 h
2. α, α $ Ah

2 σ, a
3. Return true if:

(a) α α ,
(b) α, α consist of B blocks from M ,
(c) MDh a, α MDh a, α

4. Else, return false

Fig. 3. The bounded-length collision resistance game of salted MD hash in the AI-
ROM, denoted Gai-cr

N,M,B .

1. The first is where for each case where we need to encode the location of a′′

from a′ at a distance d, there are at most ≈ u2 salts – here we simply encode
the index of the “right” a′′ using ≈ log u2 bits.

2. The other scenario is when for at least one case, there are more than ≈ u2

salts. Here we can save enough by encoding the t multi-collisions involving at
least ≈ log u2 that the graph-theoretic lemma guarantees us. We get enough
savings by only encoding these t multi-collisions.

The u2 term from the first scenario above turns into an additional factor of
the form S2 in the final bound. Due to additional technicalities that we glossed
over during this overview, we suffer another multiplicative factor S in our bound,
which amounts to having an S4 term. Full details appear in Sect. 6.

3 Preliminaries

For a positive integer N P N>0, let [N ] “ {1, 2, . . . , N} and for k P N such that
k � N , let

(
[N ]
k

)
denote the set of k-sized subsets of [N ]. For a set X, let |X|

be its size and X` denote one or more elements of X. We denote Fcs(D,R) the
set of all functions mapping elements in D to the elements of R. We let x ←$ D
denote sampling x according to the distribution D. We let ∗ denote a wildcard
element. For example (∗, z) P L is true if there is an ordered pair in L where z
is the second element (the type of the wildcard element shall be clear from the
context). If D is a set, we overload notation and let x ←$ D denote uniformly
sampling from the elements of D. For a bit-string s we use |s| to denote the
number of bits in s.

When referring to directed graphs in this paper, we mean directed multi-
graphs, i.e., these directed graphs might have parallel edges. All logarithms in
this paper are for base 2 unless otherwise stated.

Auxiliary-Input Random Oracle Model (AI-ROM). We use the
Auxiliary-Input Random Oracle Model (AI-ROM) introduced by Unruh [30]
to study non-uniform adversaries in the Random Oracle Model. This model is
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parameterized by two non-negative integers S and T and an adversary A is
divided into two stages (A1,A2). Adversary A1, referred to as the preprocessing
phase of A, has unbounded access to the random oracle h and outputs an S-bit
auxiliary input σ. Adversary A2, referred to as the online phase, gets σ as input
and can make T queries to h, attempting to accomplish some goal involving
the function h. Formally, we say that A “ (A1,A2) is an (S, T )-AI adversary if
A1 outputs S bits and A2 issues T queries to its oracle. We next formalize the
salted-collision resistance of MD hash functions in AI-ROM.

Salted Short Collision Resistance of MD in AI-ROM. We formalize the
hardness of bounded-length collision resistance of salted MD hash functions in
the AI-ROM. The game is parametrized by N,M , and B. The game first samples
a function h uniformly at random from Fcs([N ]×[M ], [N ]) and a salt a uniformly
at random from [N ]. Then, A1 is given unbounded access to h, and it outputs
σ. At this time, A2 is given the auxiliary input σ, a salt a, as well as oracle
access to h, and it needs to find α �“ α′ such that (1) |α|, |α′| � B · M , and (2)
MDh(a, α) “ MDh(a, α′). This game, denoted Gai-cr

N,M,B , is explicitly written in
Fig. 3. In Fig. 3, we write the adversary’s execution in its own subroutine only
for syntactical purposes (as we shall use it later in our proof).

Definition 1 (AI-CR Advantage). For parameters N,M,B P N, the advan-
tage of an adversary A against the bounded-length collision resistance of salted
MD in the AI-ROM is

Advai-crMD,N,M,B(A) “ Pr
[
Gai-cr

N,M,B(A) “ true
]

For parameters S, T P N, we overload notation and denote

Advai-crMD,N,M,B(S, T ) “ max
A

{
Advai-crMD,N,M,B(A)

}
,

where the maximum is over all (S, T )-AI adversaries.

The Compression Lemma. Our proof uses the well-known technique of find-
ing an “impossible compression”. The main idea, formalized in the following
proposition, is that it is impossible to compress a random element in set X to a
string shorter than log |X | bits long, even relative to a random string.

Proposition 1 (E.g., [13]). Let Encode be a randomized map from X to Y and
let Decode be a randomized map from Y to X such that

Pr
x ←$ X

[Decode(Encode(x)) “ x] � ε.

Then, log |Y| � log |X | − log(1/ε).

4 The Framework: Reducing the Problem
to a Multi-instance Collision Finder

Our task here is to upper-bound the advantage of an adversary in finding a
short collision in a salted MD, according to the game Gai-cr

N,M,B described in Fig. 3.
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First, without loss of generality, in what follows, we assume that the adversary
is deterministic. This follows since we can transform any probabilistic attacker
into a deterministic one by hard-wiring the best randomness (see Adleman [2]).

We reduce the task of bounding the advantage of an attacker in finding a short
collision in a salted MD, according to the game Gai-cr

N,M,B , to a “multi-instance”
game where the adversary does not have a preprocessing phase but instead
only has a non-uniform auxiliary input, chosen before the random oracle h. The
latter game is easier to analyze. Although the statement and reduction below
were implicit in the work of Akshima et al. [3], we make it formal and hopefully
useful for future works.

We define the following “multi-instance” game Gmi-cr
N,M,B,u(σ,A2), where the

preprocessing part of the adversary A1 is degenerate and outputs the fixed string
σ. More precisely, the game has the following steps:

1. h ←$ Fcs([N ] × [M ], [N ])
2. U ←$

(
[N ]
u

)
3. Define A1 to be the algorithm that always outputs the string σ.
4. Return true if AI-CRh,a(A “ (A1,A2)) “ true for every a P U . Otherwise,

return false.

For a string σ and an adversary A2, define

Advmi-cr
MD,N,M,B,u(σ,A2) “ Pr

[
Gmi-cr

N,M,B,u(σ,A2)
]
.

Lemma 4.1. Fix N,M,B, S, T, u P N>0. Then,

Advai-crMD,N,M,B(S, T ) � 6 ·
(

max
σ,A2

{
Advmi-cr

MD,N,M,B,u(σ,A2)
}) 1

u

` 2S−u,

where the maximum is taken over all σ P {0, 1}S and T -query algorithms A2.

The proof of this lemma is similar to a proof that appears in [3]. For complete-
ness, we provide the full details in the full version [19].

5 Proving the STB Conjecture for B P O(1)

This section proves an upper bound on the advantage of any auxiliary-input
adversary in the bounded-length collision resistance game of salted MD hash in
the AI-ROM. The main theorem is stated next.

Theorem 5.1. Let C “ 216 · 6 · e2. For any N,M,B, S, T P N>0 and fixing
Ŝ :“ S ` log N , it holds that

Advai-crMD,N,M,B(S, T ) � C · max

⎧⎪⎨
⎪⎩

⎛
⎜⎝ ŜTB2

(
3e log Ŝ

log log Ŝ

)2(B−2)

N

⎞
⎟⎠ ,

(
T 2

N

)⎫⎪⎬
⎪⎭` 1

N
.
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Theorem 5.1 follows as a direct corollary of Lemma 4.1 together with the
following lemma and setting u “ S ` log N .

Lemma 5.1 (Hardness for a multi-instance collision finder). Fix N ,
M , B, S, T , u P N>0 and σ P {0, 1}S. Then, for any A2 that makes at most T
queries to its oracle, it holds that

Advmi-cr
MD,N,M,B,u(σ,A2) �(

216e2 · max
{(

uTB2(3e log u/ log log u)2(B−2)

N

)
,

(
T 2

N

)})u

.

The rest of this section is devoted to the proof of Lemma 5.1. Unlike the proof
of Lemma 4.1, the proof of this lemma is novel and differs completely from that
of Akshima et al. [3]. The key conceptual insight is a structural characterization
of collisions in MDh that prevents the explosion in the number of cases that [3]
faced during the case analysis.

We are interested in bounding the advantage of the best strategy, i.e., a
pair (σ,A2) where σ P {0, 1}S is a fixed string and A2 is a T -query algorithm,
of finding bounded-length collisions in a salted MD with respect to the game
Gmi-cr

N,M,B,u(σ,A2). Recall that in this game, A2 needs to find proper collisions for
u randomly chosen salts, denoted U . The main idea in the proof is to use any
such adversary (σ,A2) to represent the function h as well as the set of random
salts U with as few bits as possible. If the adversary is “too good to be true,”
we will get an impossible representation, contradicting Proposition 1.

Non-trivial Range. If either

T 2

N
> 1 or

uTB2(3e log u/ log log u)2(B−2)

N
> 1,

then Lemma 5.1 is trivially true. Hence, from now on we assume that both of
the above left hand side terms are upper bounded by 1.

Setup. Denote

ζ∗ :“
(

216e2 · max
{(

uTB2(3e log u/ log log u)2(B−2)

N

)
,

(
T 2

N

)})u

.

Assume the existence of an adversary A “ (σ,A2), where σ P {0, 1}S is a string
and A2 is a T -query adversary, that contradict the inequality stated in the
lemma. That is, there is ζ > ζ∗ such that

Advmi-cr
MD,N,M,B,u(A) :“ ζ > ζ∗. (1)

Define G to be the set of functions-sets of salts pairs for which the attacker
succeeds in winning the game for every salt in the set relative to the function,
That is,

G “
{

(U, h)

∣∣∣∣∣
U P ([N ]

u

)
,

h P Fcs([N ] × [M ], [N ]),
∀a P U : AI-CRh,a(A) “ true

}
.



On Time-Space Tradeoffs for Bounded-Length Collisions in MD Hashing 177

Recall that ζ is defined to be the advantage of A in the game Gmi-cr
N,M,B,u(A) in

which h and U are chosen uniformly, and then A needs to find a collision with
respect to every one of the u salts in U . Therefore,

|G| “ ζ ·
(

N

u

)
· NMN .

In what follows we define an encoding and a decoding procedure such that the
encoding procedure gets as input U, h such that U P (

[N ]
u

)
and h P Fcs([N ] ×

[M ], [N ]), and it outputs an L bit string, where L “ log
(
ζ∗ · (N

u

) · NMN
)
. The

decoding procedure takes as input the string L and outputs U∗, h∗. It will hold
that U∗ “ U and h∗ “ h with probability ζ.13 Using Proposition 1, this would
give us that

log ζ � L − log
((

N

u

)
· NMN

)
“⇒ ζ � ζ∗

which is a contradiction to the assumption (see (1)).

Notation and Definitions. Fix (U, h) P G. Let U “ {a1, . . . , au} where the
ai’s are ordered lexicographically. Let Qrs(a) P ([N ]× [M ])T be the list of queries
that A2 makes to h when executed with input (σ, a). Namely, for a P [N ],

Qrs(a) “ {(a′, α′) P [N ] × [M ] | A2(σ, a) queries h on (a′, α′)} .

Note that Qrs(a) is indeed a set as we can assume (without loss of generality)
that A2 never repeats queries in a single execution (since A2 can just store all
of its past queries).

We say that a′ P Slts(a) if there is some α′ P [M ] such that (a′, α′) is an entry
in Qrs(a). Namely, for a, a′ P [N ],

a′ P Slts(a) ⇐⇒ ∃α′ P [M ] s.t. (a′, α′) P Qrs(a).

We define the set of fresh salts in U . A salt ai for i P [u] is called fresh if it was
never used as the salt in any query performed by A2 while being executed on
salts aj for j � i−1 which are fresh. The first salt a1 is always fresh. A salt ai for
i � 2 is fresh if for any fresh aj for j � i− 1, ai /P Slts(aj). Namely, denoting the
set of fresh salts by Ufresh, we have the following inductive (on i P [u]) definition:

ai P Ufresh ⇐⇒ ∀j � i − 1, aj P Ufresh : ai �P Slts(aj).

Looking ahead, we define Ufresh like this because we run A2 on the salts in Ufresh

in lexicographical order, and this definition ensures that each salt that A2 is
executed on was not queried by it previously. Denote

F :“ |Ufresh| and Ufresh “ {a′
1, . . . , a

′
F } (ordered lexicographically).

13 Essentially, we will show that for all (U, h) P |G|, if the encoding procedure produces
output L, then the decoding procedure on input L outputs U∗, h∗ such that U∗ “ U
and h∗ “ h.
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Denote

∀i P [F ] : Qi :“ Qrs(a′
i) and Qfresh :“ Q1 ‖ . . . ‖QF ,

where ‖ is the concatenation operator. Let Qfresh[r] be the rth query in the list
Qfresh. Note that r P [F ·T ]. For every a P U \Ufresh, let ta be the minimum value
such that Qfresh[ta] is a query with salt a. Define the set of prediction queries as

P :“ {ta | a P U \ Ufresh}.

The encoding algorithm will output Ufresh,P, which suffices to recover the set U
by running A2.

We let h̃ be the list of h(a, α) values when executed on distinct queries in
Qfresh, in the same order as they appear in Qfresh, followed by the evaluation of
h on the following values in lexicographical order of the inputs.

{(a, α) : a P [N ], α P [M ]} \ Qfresh .

Therefore, h̃ is initialized to contain the evaluation of h at all points in its domain.
Looking ahead, in the encoding procedure, we will remove elements from h̃ as
needed to compress h.

Function and Query Graphs. A notion that will be useful is that of a “func-
tion graph”.

Definition 2 (Function graph). For a function h : [N ]× [M ] → [N ], consider
the following directed graph: it has N nodes labelled with elements of [N ] and
each node has exactly M outgoing edges, each labelled with elements of [M ].
There is an edge from node ai to aj labelled α if and only if h(ai, α) “ aj.

We define the notion of query graph for an adversary as follows.

Definition 3 (Query graph). Execution of an adversary A2 on salts
a′
1, . . . , a

′
F defines a query graph as follows. Initially the graph is empty. When-

ever A2 queries (a, α) to h, we add a node with label a if not already present and
add an edge (a, h(a, α)) with label α if not already present.

Fact 5.2. The query graph is always a sub-graph of the function graph of h.

Structure of Collisions: The Mouse Structure. Since adversary A2 suc-
ceeds on all of the salts in U , it holds that for every j P [F ], the output of the
adversary is (αj , α

′
j) such that αj �“ α′

j , MDh(aj , αj) “ MDh(aj , α
′
j) and both

αj , α
′
j are at most B blocks long. We can assume without loss of generality that

the colliding messages αj and α′
j are “minimal” (because otherwise, we can trim

αj , α
′
j to obtain a shorter collision). The evaluations of h in order to compute

MDh(a′
j , αj) and MDh(a′

j , α
′
j) induce a structure that we call a mouse struc-

ture as shown in Fig. 4. More explicitly, suppose the output of the A2 is (αj “
(αj,1, . . . , αj,B1), α

′
j “ (α′

j,1, . . . , α
′
j,B2

)) for B1, B2 � B such that αj,i “ α′
j,i
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for all 1 � i � k where k � 0. Define (x1, . . . , xk, y1, . . . , yk′ , z1, . . . , zk′′) where
k′ “ B1 − k, k′′ “ B2 − k as follows.

x1 “ h(a′
j , αj,1) , xi “ h(xi−1, αj,i) for 1 < i � k

y1 “
{

h(a′
j , αj,1) if k “ 0

h(xk, αj,k`1) otherwise
, yi “ h(yi−1, αj,i`k) for 1 < i � B1 − k

z1 “
{

h(a′
j , α

′
j,1) if k “ 0

h(xk, α′
j,k`1) otherwise

, zi “ h(zi−1, α
′
j,i`k) for 1 < i � B2 − k

Then (x1, . . . , xk, y1, . . . , yk′ , z1, . . . , zk′′) form a mouse structure as specified in

tip

z1, . . . , zk
bottom body

x1, . . . , xk

tail

y1, . . . , yk

top body

Fig. 4. A mouse structure. For ease of visual representation we do not draw the nodes
and edges of the graph, instead represent it as a continuous structure.

Fig. 4. Without loss of generality, we can assume that the mouse structure is
present in the query graph of A2 before it outputs the answer for salt a′

j . We
refer to this structure as the mouse structure for salt a′

j .
We define MouseQrsj to be the set of queries in the mouse structure. Similarly,

we define MouseSltsj as the set of salts that comprise the mouse structure. By
definition, 1 � |MouseQrsj |, |MouseSltsj | � 2B.

Classifying Queries. We classify every one of the queries in Qfresh into one of 3
types by scanning through them in order. Recall that Qfresh consists of F blocks,
each consisting of T queries. Each block contains a mouse structure as in Fig. 4.
The first type of query is called new. A new query did not appear in any previous
block. Non-new queries are called repeated and they are classified further into
one of 2 types: repeatedMouse, and repeatedNonMouse. A query (a, α)
would be a repeatedMouse query if it was made as part of a mouse structure
during some earlier salt in Ufresh. Lastly, a repeatedNonMouse query is one
that was made before but is not part of any mouse structure. That is,

1. new: A query with index r P [F ·T ] is new if there does not exist r′ < r such
that Qfresh[r′] “ Qfresh[r].

2. A non-new queries is called repeated. We classify the latter into two subcat-
egories:
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(a) repeatedMouse: A query in Qj with index s P [T ] such that h(Qj [s]) “
a is repeatedMouse if it is not new and Qj [s] P MouseQrsi for some
i < j.

(b) repeatedNonMouse: A query in Qj with index s P [T ] such that
h(Qj [s]) “ a is repeatedNonMouse if it is not new, Qj [s] �P MouseQrsi
for all i < j.

Note that this classification covers all queries made during execution. The fol-
lowing is a simple observation.

Claim 5.3. Every mouse structure has at least one new query.

Proof. For every j P [F ], the queries in Qj with salt a′
j are necessarily new

because we defined Ufresh to contain a′
j ’s that were not queried earlier by A2

when run on a′
i for i < j, and also assumed that A2 does not repeat queries

during a single execution. �

5.1 The Compression Argument

As mentioned, our goal is to compress (U, h), and we will achieve this by using
our collision finding adversary A2. The encoding procedure shall output the set
Ufresh, the set P, the list h̃ with some entries removed and additional lists and
sets. We will be describing the details of these lists and sets below and which
entries we remove from h̃. Our main goal is to show that we are compressing
when we remove entries of h̃ and instead use additional lists and set. Our ways to
compress will depend on the induced mouse structure in each Qj for j P [F ]. To
this end, we first classify the mouse structures into six broad cases. We classify
the jth mouse structure for each j P [F ] into the first of the following six cases
it satisfies, e.g., if a mouse structure satisfies both cases 2 and 3, we categorize
it into 2.

1. There is a new query (a, α) such that h(a, α) “ a.
2. There are two distinct new queries (a1, α1), (a2, α2) such that h(a1, α1) “

h(a2, α2).
3. There is a new query (a, α) such that h(a, α) “ a′ and a′ P MouseSltsi for

some i < j.
4. There is a repeatedNonMouse query (a, α) such that h(a, α) “ a.
5. There is at least one salt a such that a P MouseSltsi for some i < j and there

is a path of at most B − 2 edges in the mouse structure from a back to a′

where a′ is an answer to a new query.
6. There are no repeatedMouse queries in the mouse structure.

Note that these cases cover all mouse structures.

Claim 5.4. Every mouse structure can be categorized into one of the cases 1
to 6.
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Proof. We will show that if a mouse structure does not satisfy case 6, it has
to satisfy case 5, which suffices to prove our claim. Since the mouse structure is
not in 6, it has a repeatedMouse query. Let the input salt of this query be
a. Moreover, since the first query of the mouse structure has to be new, let the
answer salt of this query be a′. Since the longest path in the mouse structure is
of length B, it follows that there are at most B −2 edges in the mouse structure
between a and a′. Hence, case 5 is satisfied. �

Compression Budget. Recall that we need to prove that the size of the output
of the encoding procedure is

L “ log

((
216e2 · max

{(
uTB2m

2(B−2)
0

N

)
,

(
T 2

N

)})u

·
(

N

u

)
· NMN

)

bits, where m0 “ 3e log u/ log log u. In other words, we need to show that the
encoding procedure saves at least

u · log

(
min

{
N

4T 2
,

N

4uTB2m
2(B−2)
0

})
− 2u log e − 14u (2)

bits overall.

Required Savings in h̃. As mentioned earlier, the output of the encoding
algorithm will consist of Ufresh,P, h̃, and some additional sets and lists. The lists
Ufresh and P will suffice to recover the set U . The list h̃ and the additional sets
and lists are used to recover h.

Denoting |Ufresh| “ F and |U | “ u, we can describe P using
(

FT
u−F

)
bits.

Therefore, U , which is trivially described using log
(
N
u

)
bits, can be encoded

using log
((

FT
u−F

)(
N
F

))
bits. Therefore, the saving in bits in the description of U

is at least

log
(

N

u

)
− log

((
FT

u − F

)(
N

F

))
� log

⎛
⎜⎝

(
N
u

)u

(
eFT
u−F

)u−F (
eN
F

)F

⎞
⎟⎠

“ (u − F ) log
(

N

FT

)
− log

(
eu
( u

F

)F
(

u

u − F

)u−F
)

� (u − F ) log
(

N

uT

)
− u log 4e . (3)

where the first inequality uses the basic bounds for binomial coefficients (n/r)r �(
n
r

)
� (en/r)r, and the last inequality follows since ∀x � 0: x � 2x, and u � F .
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By subtracting (3) (how much we save in U) from (2) (how much we need to
save in total), it suffices to show that we save at least

u · log

(
min

{
N

4T 2
,

N

4uTB2m
2(B−2)
0

})
− 2u log e

− 14u − (u − F ) log
(

N

uT

)
` u log 4e

bits while encoding h. Since log(N/uT ) � log
(
min

{
N/4T 2, N/4uTB2

m
2(B−2)
0

})
, this is at most the following number of bits.

F · log

(
min

{
N

4T 2
,

N

4uTB2m
2(B−2)
0

})
− u log e − 12u (4)

To show that the compression indeed achieves the savings from (4), we will
show that for every salt in Ufresh, we can save at least the following number of
bits, except for a few cases.

log
(
min

{
N/4T 2, N/4uTB2m

2(B−2)
0

})
.

In the rare cases where we cannot save as much, we will incur a small penalty.
We will show that the cumulative penalty we incur is at most 7u ` u log e bits.
Additionally, we will label each of the salts in F with a few bits that describe its
“type” (according to the cases described above – case 5 will have 3 subcategories,
and case 6 will have 10 subcategories), and for this 5 bits will suffice. This will
cost, in total, another 5u bits, and therefore the total size of the encoding will
indeed be bounded by the term from (4).

We now describe the details of how we handle each case. Assuming that the
mouse structure for salt a′

j satisfies a particular case, we describe the encoding
procedure, calculate the amount of compression we get, and then explain how
decoding would work. In Sect. 5.2 we handle Cases 1 to 4, in Sect. 5.3, we handle
case 5, and lastly in the full version [19], we handle case 6. Here we describe the
details such that they are locally verifiable. We do provide the full pseudocode
of encoding and decoding in the full version [19].

5.2 Handling Cases 1 to 4

In each of the four cases below, we will be saving more bits than we need, i.e.,
more bits than log

(
min

{
N/4T 2, N/4uTB2m

2(B−2)
0

})
.

Case 1. The jth mouse structure contains a new query (a, α) such that h(a, α) “
a, as depicted in Fig. 5a. The encoding procedure stores the index of the query
(a, α) in Qj in a list L1 and removes the entry h(a, α) from h̃.

In decoding, if the current (jth) salt is categorized as case 1, then it removes
the front index in the list L1, and denote the index by i. It answers the ith h
query, denoted (a, α), with a and sets h(a, α) “ a.
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 5. Cases 1 to 4. The new queries are drawn in red, the repeatedMouse queries
are drawn in blue, and the repeatedNonMouse queries are drawn in green. The black
dashed lines indicate zero or more queries of any type. (Color figure online)

Since the index of the query (a, α) in Qj is in [T ], and we remove one element
of h̃, we save log(N/T ) which is more than what we need to save.

Case 2. The jth mouse structure contains two distinct new queries (a1, α1),
(a2, α2) such that h(a1, α1) “ h(a2, α2), and (a1, α1) is queried before (a2, α2).
This is depicted in Fig. 5b. The encoding procedure stores the pair indices of the
queries (a1, α1), (a2, α2) in Qj in a list L2 and removes the entry h(a2, α2) from
h̃.

In decoding, if the current (jth) salt is categorized as case 2, then it removes
the front element (i1, i2) in the list L2. Suppose that the i1th h query while
running on salt a′

j is on (a1, α1). The decoding procedure gets the answer to this
query from h̃. It answers the i2th h query on (a2, α2) with h(a1, α1) and sets
h(a2, α2) “ h(a1, α1).

Since the pair of indices of the queries (a1, α1), (a2, α2) in Qj are in [T ], and
we remove one element of h̃, we save log(N/T 2) bits which is more than what
we need to save.

Case 3. The jth mouse structure contains a new query (a, α) such that h(a, α) “
a′ and a′ P MouseSltsi for some i < j. This is depicted in Fig. 5c. The encoding
procedure stores the tuple consisting of i, the index of the query (a, α) in Qj ,
and the lexicographical order of a′ in MouseSltsi in a list L3 and removes the
entry h(a, α) from h̃.

In decoding, if the current (jth) salt is categorized as case 3, it removes the
front element (i1, i2, i3) in the list L3. Suppose the i2th h query while running
on salt a′

j is on (a, α). It answers the query with a′ such that a′ is the salt in
MouseSltsi1 whose lexicographical order is i3. It sets h(a, α) “ a′.

Since i P [F ], F � u, the index of (a, α) in Qj is in [T ], the lexicographical
index of a′ in MouseSltsi is in [2B], and we remove one element of h̃, we save
log(N/(2uTB)) bits which is more than what we need to save.

Case 4. The jth mouse structure contains a repeatedNonMouse query (a, α)
such that h(a, α) “ a. This is depicted in Fig. 5d. The encoding procedure stores
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the smallest index of the query (a, α) in Qfresh in a set S and removes the entry
h(a, α) from h̃. Note that we never add an index corresponding to the same
query multiple times to S. Indeed, if an index associated with (a, α) already
appears in S, the next query on (a, α) will be a repeatedMouse query and not
a repeatedNonMouse one, meaning that it cannot be added to S again.

In decoding, if the current (jth) salt is categorized as case 4, it checks for
every h query on (a, α) whether S contains the index of the query in Qfresh. If so
it answers with a and sets h(a, α) “ a.

Since the smallest index of the query (a, α) in Qfresh is in [FT ], and we remove
one element of h̃, we save at least log(N/(uT )) which is more than necessary.

5.3 Handling Case 5

In this section, we describe our compression strategy in case the jth mouse
structure for salt a′

j is categorized as case 5. That is, there is at least one salt d
such that d P MouseSltsi for some i < j and there are at most B −2 edges in the
mouse structure between d and s where s is an answer to a new query. If there
are several possible candidate pairs, we choose one where the number of edges
is the smallest between the source and the destination salt.

Intuition. We refer to the salt s in the answer to the new query as the source
salt, and the salt that appears in some earlier mouse structure as the destina-
tion. We are guaranteed that the path in the mouse structure from the source
salt to the destination salt consists of at most B − 2 edges that are repeated-
NonMouse queries. (There is at least one intermediate edge between the source
and the destination because otherwise, the answer of a new query will be the
input of a repeatedMouse query, in which case this scenario would have been
classified into case 3. Additionally, all the intermediate edges must be repeat-
edNonMouse since we consider the shortest possible path from such source to
such destination.)

Let the new query, whose answer is s, be (a, α). Suppose the path from
the s to the d in the mouse structure consists of repeatedNonMouse queries
(a1, α1), . . . , (ap, αp) where a1 “ s, p � B − 2. The main idea is to avoid encod-
ing s “ h(a, α) and recover it by encoding the lexicographical order of d in
MouseSltsi and encoding the path required to backtrack from d to s in the query
graph at the time (a, α) is queried, i.e., encoding which of the past queries were
(ap, αp), . . . , (a1, α1) (in this order). The problem is that, in general, the path
back from d to s might be too expensive to encode. This depends on the number
of “other” edges incident on the nodes on the real path back from t to s. If
all nodes on the path have very few edges incident on them, say less than m0

of them, we encode each back edge using log m0 bits per node, which requires
with at most log(B(m0)B−2) bits for the whole path back (the term B comes
from encoding the length of the path). But, if some node has many adjacent
edges, namely a multi-collision with more than m0 edges, we will need to take
advantage of this fact to obtain our savings (and not encode the path back from
d to s).
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Definition 4 (Large multi-collision). We say that queries q1, · · · , qm form
an m-way multi-collision if all the qi’s are distinct and all the h(qi) are equal. We
say that the multi-collision is large if m � m0, where m0 :“ 3e log u/ log log u.

If any of the queries in (ap, αp), . . . , (a1, α1) are involved in a large multi-collision
of repeatedNonMouse queries in the query graph so far, we say we have
“encountered a large multi-collision”. In what follows, we explain how to obtain
the required compression if a large multi-collision was not encountered.

Encoding When No Large Multi-collision. Suppose that the new query
whose answer is the source salt s is (a, α), the destination salt is d and d P
MouseSltsi for some i < j. The path back from d to s contains only nodes that
have at most m0 adjacent edges in the corresponding query graph since we have
not encountered a large multi-collision. The encoding procedures constructs a
tuple consisting of the index i, the index of query (a, α) in Qj , the lexicographical
index of d in MouseSltsi, and the path back from d to s in the query graph when
(a, α) is queried. It stores the tuple in a list L5. Finally, it removes the entry
h(a, α) from h̃.

In decoding, if the current (jth) salt is categorized as case 5 without a large
multi-collision, it detects the query (a, α) from its index in Qj , then finds the
salt d using the index i and the lexicographical order of d in MouseSltsi, and
finally finds s using the path back from d to s. It answers the query with s.

Since i P [F ], the index of (a, α) in Qj is in [T ], the lexicographical index
of a′ in MouseSltsi is in [2B], the path back from d to s can be encoded
in log(B(m0)B−2) bits, and we remove one element of h̃, we save at least
log(N/(2uTB2(m0)B−2)) bits which is more than necessary.

Encoding with Large Multi-collision. Suppose that the new query whose
answer is the source salt s is (a, α), the destination salt is d and d P MouseSltsi
for some i < j. Suppose further that the path back from d to s contains at least
one node that has m � m0 adjacent edges in the corresponding query graph (i.e.,
an m-multi-collision) such that these m edges are repeatedNonMouse queries
when running A2 on aj . First, observe that the multi-collision does not involve a
self-loop. Indeed, if any node in the mouse structure has a repeatedNonMouse
query whose answer is itself, the mouse structure would be classified into case 4,
and therefore we will never reach this case.

At this point, we argue that we can record the multi-collision by encoding
the indices of all queries associated with the multi-collision and the center, and
remove their answers from h̃. To this end, we store log N ` log

(
FT
m

)
bits and

remove m log N bits. We have that the saving is at least

m log N − log N − log
(

FT

m

)
� log

(
Nm−1 ·

( m

eFT

)m)

� log

((
N

uT

)m−2

· N

T 2
· mm

emu2

)
� log

((
N

uT

)m−2

· N

T 2

)
(5)
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bits, where the first inequality follows by using the binomial inequality
(
FT
m

)
�

(eFT/m)m, the second inequality follows since F � u, and the last inequality
follows since for m � m0 “ 3e log u/ log log u it holds that mm � emu2. Thus,

Claim 5.5. The number of bits saved is at least

(m − 1) · log

(
min

{
N

T 2
,

N

uTB2m
2(B−2)
0

})
.

Proof. The claim follows since the minimum between the two terms is always
upper bound by N/(uT ) and upper bounded by N/T 2. �

Thus, every m-multi-collision we record allows us to save the number of bits
corresponding to m − 1 mouse structures. It is left to argue that we do not
over-count, namely, that we do not count the removal of the same element from
h̃ twice. Indeed, the same multi-collision may be encountered in several mouse
structures. To this end, observe that if a salt in a mouse structure is the center
of a large multi-collision which we had recorded earlier, we will be in one of the
following two cases:

1. There is a query in this mouse structure whose answer is the center of the
multi-collision, and this query was in an earlier mouse structure.

2. There is a query in this mouse structure whose answer is the center of the
multi-collision, and this query was not in any earlier mouse structure. (Note
that by the structure of collisions, i.e., a mouse structure, there could be
either one such query or two.)

Case 1 need not be handled. The reason is that if the condition in it holds,
then the multi-collision is, in fact, outside of the (shortest) path from the source
to the destination. Therefore the scenario will either be classified as a mouse
structure without a large multi-collision or a different large multi-collision will
be encountered for this mouse structure.

In case 2, first note that when we encounter a multi-collision, we add the
relevant queries to the multi-collision if they were not already recorded and only
then remove the corresponding entry from h̃. Therefore, we never remove any-
thing twice. The last point we need to argue is that the we get enough savings.
Above we showed that we have sufficient saving for m − 1 mouse structures.
Recall that we defined that we encounter a large multi-collision if at least m0

repeatedNonMouse queries are involved in a multi-collision on some path
we care about. It follows from this that a multi-collision of size m will be rele-
vant in at most m − m0 mouse structures- beyond that, it will no longer be a
multi-collision because there will be less than m0 repeatedNonMouse queries
among the queries of the multi-collision. Since m0 � 1, savings for m − 1 mouse
structures is sufficient for us.

Overall, as claimed earlier, case 5 has 3 different further categorizations– no
multi-collisions and the two cases for multi-collisions.

The general ideas required for handling case 6 are similar to what we have
already presented, but there are some subtleties. See full details in the full ver-
sion [19].
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6 Proving the STB Conjecture for SB ! T

This section proves another upper bound on the advantage of any auxiliary-input
adversary in the bounded-length collision resistance game of salted MD hash in
the AI-ROM. The main theorem is stated next.

Theorem 6.1. Let C “ 29 · 6 · e4. For any N,M,B, S, T P N>0 and fixing
Ŝ :“ S ` log N , it holds that

Advai-crMD,N,M,B(S, T ) � C · max

{(
T 2

N

)
,

(
Ŝ4TB2

N

)}
` 1

N
.

The proof of this theorem mostly mirrors that of Theorem 5.1, except in the
way that few of the cases are handled in the compression argument. Technically,
we derive the following Lemma 6.1 (an analogue of Lemma 5.1), and combine it
with Lemma 4.1 to get the claimed bound in Theorem 6.1.

Lemma 6.1. Fix N,M,B, S, T, u P N>0, σ P {0, 1}S. Then, for any A2 that
makes at most T queries to its oracle, it holds that

Advmi-cr
MD,N,M,B,u(σ,A2) �

(
29e4 max

{(
u4TB2

N

)
,

(
T 2

N

)})u

.

The proof of this lemma is in the same spirit as the proof of Lemma 5.1 with
several key differences. The main difference is how we encode the path back from
a given destination node to the associated source node. In Sect. 5, we do this in
a somewhat straightforward manner by encoding the length of the path and
then the index of every edge to take, where the index might be large if there is
a large multi-collision associated with that node. Large-enough multi-collisions
were handled separately, so we had a bound (m0 ≈ log u/ log log u) for the range
of the index of each back-edge. In this section, we encode the source node by just
writing its lexicographic index among all possible sources within a given distance
in the query graph. Of course, there might be too many possible sources at a
given distance, making it too expensive to encode. But, and this is our main
technical observation in this section, if there are too many possible sources, then
there must be many large multi-collision, and therefore we can save enough bits
by taking advantage of it.

We proceed by setting up the graph-theoretic definitions and lemmas. In the
lemma below, we show that if in the query graph there is a node v such that
there are at least p nodes which have a shortest path of length d to the node
v, then there must be at least p − 1 edges involved in a multi-collision in the
induced sub-graph.

Definition 5 (d-neighborhood of a vertex). Let G “ (V,E) be a directed
graph. We say that a node v1 P V is in the d-neighborhood of v2 P V if the
shortest directed path from v1 to v2 in G consists of (exactly) d edges.
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Definition 6 (multi-collision of edges in a graph). For an edge e “ (a, b),
we refer to b as the target of the edge. We say that edges e1, · · · , em form a
m-multi-collision if all of them share a common target. We refer to the common
target as the center of the multi-collision. We refer to m as the size of the multi-
collision.

Lemma 6.2. Let G “ (V,E) be a directed graph. Let d P N>0 and p P N>0 such
that p � 2. Suppose that there is a node v P V such that there are p distinct
nodes in its d-neighborhood. Then, there are t � 1 distinct nodes in G, such that
each of them have in-degree βi � 2 for i “ 1, . . . , t, and

∑t
i“1(βi − 1) � p − 1.

The proof of this lemma is via an inductive argument and appears in the full
version [19].

A direct corollary is that in the query graph, if for any salt s there are at least
p`1 salts in its d-neighborhood, then there must be p queries involved in multi-
collisions on the paths from the nodes in its d-neighborhood to s. We obtain
non-trivial compression for large enough p by encoding those multi-collisions.

Non-trivial Encoding for Multiple Multi-collisions. We consider t multi-
collisions of sizes β1, . . . , βt. We encode these t multi-collisions by encoding the
t centers of the multi-collision, and for each center, we encode the index of the
queries in Qfresh that form the multi-collision in a set. Recall that the indices of
the queries in Qfresh are in [FT ]. The total number bits we need to encode is

log

((
N

t

)(
FT

β1

)
· · ·

(
FT −∑t−1

i“1 βi

βt

))
� log

(
N t(uT )

∑t
i“1 βi

t!β1!β2! · · · βt!

)

“ log
(

N t(u4T )β−2tT 2tu8t−3β

t!β1!β2! · · · βt!

)
, (6)

where the inequality follows by using
(
n
r

)
� nr

r! and F � u, and the equality
follows by letting β “ ∑t

i“1 βi and rearranging.

Claim 6.2. If β � e3u2/2, then Eq. (6) � log
(
N t(u4T )β−2tT 2t

)
.

We defer the proof of this claim to the full version [19]. From this claim it follows
that when β � e3u2/2, by storing the multi-collisions as above, the amount of
bits saved is at least

log Nβ − log
(
N t(u4T )β−2tT 2t

) “ t log
(

N

T 2

)
` (β − 2t) log

(
N

u4T

)

� (β − t) log
(

min
{

N

T 2
,

N

u4T

})
� u log

(
min

{
N

T 2
,

N

u4T

})
,

where the second inequality follows since t � β/2, and β/2 � e3u2/4 � u2 � u.
For the bound that we want to get in this section, the amount of bits we need

to save per mouse structure is log
(
min

{
N
T 2 , N

u4TB2

})
(see explanation below),

and so we indeed save enough from encoding one such set of multi-collisions.
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The Compression Argument. We encode a source node from a destination
node by encoding the distance and which of the nodes at the given distance from
the destination node is the source node. If the number of candidate nodes at the
specified distance is larger than e3u2/2, by Lemma 6.2, we are guaranteed that
there exist t multi-collisions of size β1, β2, . . . , βt such that β �

∑t
i“1(βi − 1) �

e3u2/2. This implies, by Claim 6.2, that we can already save enough by only
encoding this set of multi-collisions. Using this argument we prove Lemma 6.1
which in turn implies Theorem 6.1, as explained above. We defer the proof of
Lemma 6.1 to the full version [19].
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Abstract. We revisit the problem of finding B-block-long collisions in
Merkle-Damg̊ard Hash Functions in the auxiliary-input random oracle
model, in which an attacker gets a piece of S-bit advice about the ran-
dom oracle and makes T oracle queries.

Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work
of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a
simple attack for 2 ≤ B ≤ T (with respect to a random salt). The

attack achieves advantage ˜Ω(STB/2n + T 2/2n) where n is the output
length of the random oracle. They conjectured that this attack is opti-
mal. However, this so-called STB conjecture was only proved for B ≈ T
and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22)
confirmed STB conjecture for all constant values of B, and provided an
˜O(S4TB2/2n + T 2/2n) bound for all choices of B.

In this work, we prove an ˜O((STB/2n) · max{1, ST 2/2n} + T 2/2n)
bound for every 2 < B < T . Our bound confirms the STB conjecture for
ST 2 ≤ 2n, and is optimal up to a factor of S for ST 2 > 2n (note as T 2 is
always at most 2n, otherwise finding a collision is trivial by the birthday
attack). Our result subsumes all previous upper bounds for all ranges of

parameters except for B = ˜O(1) and ST 2 > 2n.
We obtain our results by adopting and refining the technique of

Chung, Guo, Liu, and Qian (FOCS 2020). Our approach yields more
modular proofs and sheds light on how to bypass the limitations of prior
techniques. Along the way, we obtain a considerably simpler and illumi-
nating proof for B = 2, recovering the main result of Akshima, Cash,
Drucker and Wee.

1 Introduction

Merkle-Damg̊ard paradigm [Mer89,Dam89] is a domain extension technique for
extending a compression function H : [N ] × [M ] → [N ] (where N := 2n and
M > N) with fixed input length into a full-fledged hash function to handle
arbitrary long inputs. Specifically, a B-block message m = (m1, · · · ,mB) with
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mi ∈ [M ] is hashed into MDH(a,m) as follows: MD1
H(a,m1) = H(a,m1) and

MD�
H(a, (m1, · · · ,m�)) = H(MD�−1

H (a, (m1, · · · ,m�−1)),m�), for � > 1,

where a ∈ [N ] is some random given salt. We say m �= m′ is a pair of B-
block collision with respect to a salt a if they both have at most B blocks and
MDH(a,m) = MDH(a,m′).

Merkle-Damg̊ard paradigm is widely used in practice for hash functions,
including MD5 and SHA family. The primary requirement of a hash function is
collision resistance. In this work, we are interested in the collision resistance prop-
erty of Merkle-Damg̊ard hash functions against preprocessing attackers, which
can have an arbitrary (but bounded) precomputed advice about H to help. The
power of preprocessing attacks was first demonstrated by Hellman [Hel80] for
inverting functions. Recently, several works [DGK17,CDG18,ACDW20,GK22]
set out to understand the power of such attacks for finding collisions. All of them
studied this question in the auxiliary-input random oracle model (AI-ROM) pro-
posed by Unruh [Unr07], for dealing with non-uniform and preprocessing attack-
ers. In this ideal model, H is treated as a random function, and an adversary
A consists of a pair of algorithms (A1,A2). (Computationally unbounded) A1

precomputes S bits of advice about H in an offline stage, then A2 takes this
advice and makes T oracle queries to H during the attack.

Dodis, Guo, and Katz [DGK17] studied the collision resistance of a salted ran-
dom function (which also corresponds to the B = 1 case for Merkle-Damg̊ard).
They proved an ˜O(S/N+T 2/N) security upper bound (with respect to a random
salt) where the notation ˜O(·) hides lower-order factors that are polynomial in
log N . This bound shows the optimality of the naive attack, which precomputes
collisions for S distinct salts as the advice (the T 2/N term is tight due to the
birthday attack).

Since most practical hash functions are based on the Merkle-Damg̊ard
paradigm, Coretti, Dodis, Guo and Steinberger [CDGS18] studied finding colli-
sions for salted Merkle-Damg̊ard hash functions (corresponds to the unbounded
B case). Interestingly, unlike the B = 1 case, they showed an attack achieving
advantage ˜Ω(ST 2/N), improving the birthday attack by a factor of S. They also
proved that this attack is optimal.

Akshima, Cash, Drucker and Wee [ACDW20] observed that the collision pro-
duced by the attack of [CDGS18] is very long, which is not appealing for practical
relevance. They, therefore, studied the question of finding short collisions, and
put forth the following intriguing conjecture.

STB conjecture [ACDW20]: The best attack with time T and space S
for finding collisions of length B in salted MD hash functions built from
hash functions with n-bit outputs achieves success probability Θ((STB +
T 2)/2n).

[ACDW20] showed that, a straightforward modification of the attack of [CDGS18]
finds B-block collisions with advantage Ω((STB + T 2)/N). Unfortunately, they
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also showed that the lower bound techniques of [CDGS18] can not rule out
attacks with success probability Ω(ST 2/N), even for B = 2. They presented new
approaches to prove the STB conjecture for B = 2 in AI-ROM. Combining with
known results for B = 1 and B = T , this demonstrates qualitative jumps in the
optimal attacks for finding length 1, length 2, and unbounded-length collisions.
Very recently, Ghoshal and Komargodski [GK22] confirmed STB conjecture for
all constant B. However, for other choices of B, there is still a significant gap
between the best-known attack [ACDW20] and known security upper bound
˜O(S4TB2/N + T 2/N) by [GK22] or ˜O(ST 2/N) by [CDGS18]. That motivates
us to study the following question in this paper:

Can we further bridge the gap between the security upper and lower bounds,
and prove STB conjecture for more choices of parameters?

Since prior techniques are limited or laborious even for B = 2, we start by asking:

Can we prove STB conjecture for B = 2 in a simpler way?

Looking ahead, we answer both questions affirmatively.

1.1 Our Results

Our main contribution is the following theorem.

Theorem 1 (Informal). For any 2 < B < T , the advantage of the best adver-
sary with S-bit advice and T queries for finding B-block collisions in Merkle-
Damg̊ard hash functions in the auxiliary-input random oracle model, is

˜O
(

(STB/N) · max{1, ST 2/N} + T 2/N
)

.

Our bound confirms the STB conjecture for any 2 < B < T for the range
of S, T such that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (other-
wise, finding a collision is trivial by the birthday attack), Our bound is at most
˜O(S2TB/N + T 2/N), which is optimal up to a factor of S.

Comparing to the ˜O(STB2(log2 S)B−2/N + T 2/N) bound by [GK22], our
bound works for any 2 < B < T , while their bound becomes vacuous when
B > log N . However, for B ≤ log N , unlike our bound, their bound could be
tight even when ST 2 > N . In particular, their bound confirms STB conjecture
for B = O(1).

Our bound strictly improves the ˜O(S4TB2/N + T 2/N) bound by [GK22],
and the ˜O(S2T/N) bound by [CDGS18] for any 2 < B < T and non-trivial
choices of S, T (specifically, when STB attack succeeds with at most a constant
probability, i.e., STB = O(N)). The two bounds by [GK22] only beat [CDGS18]
for B � √

T .
As an additional contribution, we give a considerably simpler proof for prov-

ing the tight bound for B = 2, recovering the main result of [ACDW20].
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Theorem 2 (Informal). The advantage of the best adversary with S-bit advice
and T queries for finding 2-block collisions in Merkle-Damg̊ard hash functions
in the auxiliary-input random oracle model, is ˜O

(

ST/N + T 2/N
)

.

A comparison of our results with the prior works is summarized in Table 1.
Overall, our results subsume all previous upper bounds except for the range of
S, T,B such that B ≤ log N and ST 2 > N .

Table 1. Asymptotic security bounds on the security of finding B-block-long collisions
in Merkle-Dam̊gard Hash Functions constructed from a random function H : [N ] ×
[M ] �→ [N ] against (S, T )-algorithms. For simplicity, logarithmic terms and constant
factors are omitted.

Best attacks Security bounds Ref. Proof techniques

B = 1 S
N

+ T2

N
S
N

+ T2

N
[DGK17] Compression

B = 2 ST
N

+ T2

N
ST
N

+ T2

N
[ACDW20] Multi-instance problems

B = 2 ST
N

+ T2

N
ST
N

+ T2

N
Theorem 2 Multi-instance games

2 < B < T STB
N

+ T2

N
STB2(log2 S)B−2

N
+ T2

N
[GK22] Multi-instance problems

2 < B < T STB
N

+ T2

N
S4TB2

N
+ T2

N
[GK22] Multi-instance problems

2 < B < T STB
N

+ T2

N
STB

N
·max{1, ST2

N
}+ T2

N
Theorem 1 Multi-instance games

Unbounded ST2

N
ST2

N
[CDGS18] Presampling

1.2 Our Techniques

In this section, we describe our techniques, how to use them to prove our main
results, and what makes our techniques different from prior approaches used
in [CDGS18,ACDW20,GK22].

Existing Reduction to Sequential Multi-instance Games. Our initial inspiration is
the recent framework of Chung, Guo, Liu, Qian [CGLQ20] for establishing tight
time-space tradeoffs in the quantum random oracle model. Generally speaking,
they reduce proving the security of a problem with S-bit advice to proving the
security of multiple random instances of the problem, presented one at a time,
without advice. Specifically, they observe that1, if any adversary (with no advice)
can solve S instances of the problem “sequentially” with success probability at

1 The framework of Chung, Guo, Liu, Qian [CGLQ20] reduces to analyzing sequential
multi-instance security for S+log N +1 instances instead of S-instances. We slightly
improve their parameters and obtain a considerably cleaner version in Theorem 3.
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most δS , then any adversary with S-bit advice can solve one instance of the
problem with success probability at most 2δ.

This idea of reducing the security of a problem with advice to the security of
a multi-instance problem without advice was first introduced by Impagliazzo and
Kabanets in [IK10]. The idea was also used by later works [ACDW20,GK22].
The difference between [IK10] and the later works, including this work, is that we
reduce to a “sequential” multi-instance game as opposed to a “parallel” multi-
instance problem. More concretely, in the parallel multi-instance problem, the
adversary is presented with all the randomly chosen instances of the challenge
problems to solve once at the start. Whereas in the multi-instance game, the
adversary gets a new randomly chosen instance of challenge problem one at a
time and only after solving all the previous challenges.

Chung et al. [CGLQ20] recently demonstrated a separation between “sequen-
tial” multi-instance games and “parallel” multi-instance problems in the context
of function inversion in the quantum setting2. Guo, Li, Liu and Zhang [GLLZ21]
pointed out a connection between “sequential” multi-instance game and the pre-
sampling technique (first introduced by Unruh [Unr07], and further optimized by
Coretti et al. [CDGS18])—the main technique used by Coretti et al. [CDGS18]
for proving the O(ST 2/N) bound. Roughly speaking, all results relying on pre-
sampling technique can be reproved using “sequential” multi-instance games.
That suggested that “sequential” multi-instance games have the potential to
prove stronger results. Therefore we are motivated to adapt and take full advan-
tage of “sequential” multi-instance games in the context of collision finding.

To better illustrate the connection between “sequential” multi-instance
games and the presampling technique, we show how to recover the O(ST 2/N)
bound by Coretti et al. [CDGS18]. Recall that presampling technique by Coretti
et al. [CDGS18] generically reduces security proofs of unpredictability appli-
cations (including collision finding) in the AI-ROM to a much simpler P -bit-
fixing random-oracle model (BF-ROM), where the attacker can arbitrarily fix
the values of the random oracle on some P := O(ST ) coordinates, but then the
remaining coordinates are chosen at random. Coretti et al. [CDGS18] showed
that the security of finding collisions in Merkle-Dam̊agard Hash Functions in
the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage
of any adversary (with no advice) winning a new game, conditioning on win-
ning all previous (up to at most S) ones, by O(ST 2/N). The adversary wins all
games with advantage O(ST 2/N)S , which implies the desired security against
S-bit advice. The key point is that the adversary (with no advice) made at most
ST queries in previous games. Therefore, conditioning on any possible events of
earlier games, from the view of the adversary, the random oracle is essentially a

2 In particular, they showed that “sequentially” inverting S random images (with T
quantum queries per round to a given random function f : [N ] → [N ]) admits secu-
rity O(ST/N + T 2/N)S , and the corresponding “parallel” multi-instance problems
admits an attack with advantage Ω(ST 2/N)S .
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(convex combination of) bit-fixing random oracles (BF-ROM) [CDGS18], where
at most ST -positions are known, and the rest remains independent and ran-
dom. Hence, it suffices to prove the security of a single game in BF-ROM by
O(ST 2/N), which has been shown by Coretti et al. [CDGS18] as a necessary
step to use the presampling technique.

Barriers of the Above Idea. Akshima et al. [ACDW20] pointed out a barrier to
using the vanilla presampling technique towards proving B = 2. In particular,
one can only hope to achieve Ω(ST 2/N) in the BF-ROM even for B = 2. Recall
that, to prove the sequential multi-instance security, it is sufficient to bound
the advantage of any adversary that finds a 2-block collision for a fresh salt a,
conditioned on it finds 2-block collisions for all the previous random challenge
salts a1, · · · , aS .

We will call these ST queries made during the first S rounds as offline queries.
Among the T queries made for a, we will call the queries that were not made
during the first S rounds as online queries. Throughout the discussion, we will
focus on the case that the new salt a has never been queried before in offline
queries, because the other case happens with probability at most ST/N (so
won’t affect our conclusion). As a result, all queries starting with the challenge
salt a have to be online queries.

It is clear that the adversary learns about the function not only using the
online queries but also from the offline queries. The information this algorithm
can take advantage of from the offline queries varies by a lot. The followings are
two extreme cases:

1. The offline queries consist of exactly one single query for each of ST distinct
salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second
case, as long as an adversary can find a pre-image (starting with the challenge
salt a) of any of these ST/2 salts, it finds a 2-block collision (Fig. 1). Since there
are T online queries, the algorithm achieves advantage at least ST 2/(2N) in the
second case.

The vanilla presampling approach works for worst-case offline queries. Given
the above example, the best security bound one can hope to achieve in the
BF-ROM for B = 2 is Ω(ST 2/N).

Our Main Technical Novelty. Our main insight is that, unlike the presampling
technique in which offline queries can be arbitrary, the worst offline queries are
not typical and can be tolerated by refining the technique. In the above example,
the chance that offline queries form ST/2 pairs of collisions is quite unlikely. We
define the following “high knowledge gaining” event E1:

3 We do not prove it rigorously here. Instead, we focus on the more interesting case –
offline queries do provide advantages.
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a

...

Fig. 1. Nodes indicate salts in [N ]. An arrow connected two salts means there is a
query on the starting salt and a message in [M ] such that the output is the other salt.
An online query hits an existing collision. Solid lines denote offline queries. The dotted
line denotes the online query that forms a 2-block collision.

E1: By making ST queries, there are more than S distinct salts with 1-block
collision.

The name “high knowledge gaining” suggests that whenever this event happens,
the online algorithm can behave significantly better than average (following the
attack in Fig. 1). If this event E1 does not happen, the probability that an
online algorithm finds a query hitting an existing offline collision is bounded by
O((S/N)·T ); it is much better compared to the worst case – which is O(ST 2/N).
Remember that we have not shown how to prove that E1 happens with a tiny
probability. We will not do that in this section since this is not our main technical
novelty.

We then show two more “high knowledge gaining” events, which are all the
events we consider. Conditioned on none of them happens, no online algorithms
can find 2-block collisions with advantage better than O(ST/N + T 2/N). The
second event E2 is defined as:

E2: By making ST queries, there are more than S2 pairs of queries forming
collisions.

In Fig. 2a, we denote a multi-collision by a claw. E2 says that many pair-wise
collisions are found among all the offline queries. E1 only cares about collisions
starting with the same salt, whereas E2 counts every pair of collisions (even
starting with distinct salts). If there are many pairs of collisions, as long as an
online adversary can hit two queries that form a collision, it finds a 2-block
collision. The probability that an online algorithm having two queries hitting
one particular existing collision is at most O(T 2/N2); if E2 does not happen, by
union bound, the advantage of this type of attack is bounded by O(S2 ·(T 2/N2)),
again smaller than O(ST/N).

The final event E3 is very similar to E1:

E3: By making ST queries, there are more than S distinct salts with
self-loops.
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a

...

(a) E2

a

...

(b) E3

Fig. 2. Other two “high knowledge gaining” events and their corresponding attacks.

If an online algorithm hits an offline self-loop, it forms a 2-block collision. Fol-
lowing the same reasoning as E1, if E3 does not happen, the probability that
an online algorithm finds a query hitting an existing self-loop is bounded by
O((S/N) · T ).

By identifying the “high knowledge gaining” events and managing to show
that they are all unlikely (which is intuitive but non-trivial to prove), we obtain
a considerably simpler proof for the B = 2 result from [ACDW20] using our
approach in Sect. 3 for illustration. More precisely, with all these “high knowledge
gaining” events, we show that4: (1) these events happen with probability at most
O(N−S), even conditioned on the adversary winning all the previous rounds; (2)
when none of them happens, an online algorithm making T queries can find a
2-block collision with advantage O(ST/N + T 2/N): such a 2-block collision will
consist of either hybrid queries (both online and offline queries) or solely online
queries; but for both cases, the probability is small.

It is an upside of our technique that it modularises and separates the bad
events, making the overall proof more straightforward and intuitive. Following
the same structure, we then extend our proof to larger B by identifying a few
events, and obtaining our main result.

Applying Our New Techniques to Larger B. As for B = 2, we present results for
the sequential multi-instance model and use the reduction to prove results in the
auxiliary input model. We simplify the sequential multi-instance model into the
offline phase and online phase as in the B = 2 result and again use our insight
that worst offline queries are unlikely and better bounds than O(ST 2/N) can
be achieved using a more refined analysis. However, unlike for B = 2 analysis,
our larger B analysis is not as straightforward and requires some creative case
analysis in terms of collision types.

We call offline queries that share an image under H with other offline
query/queries as marked queries. We define the following “high knowledge gain-
ing” event:

4 This is not a formal argument but captures the intuition behind our technique. For
the formal proofs, please refer to Sect. 3.
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a

· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Fig. 3. Dotted lines denote online queries. Solid lines denote offline queries. Dash-
dotted lines can be either offline or online queries. Red lines denote ‘colliding’ queries.
(Color figure online)

a

· · ·

· · ·

≤ B-length

Fig. 4. The B-length collision uses some marked query. The solid red line denotes the
first marked query along the B-length collisions. The dotted blue line denote the closest
online query to the red line along the B-length collisions. (Color figure online)

E: By making ST queries, there are more than κ marked queries where κ =
S · max{1, ST 2/N}.

We can show that this event happens with probability at most O(N−S),
even conditioned on the adversary finding B-length collisions in all the previous
rounds. When event E does not happen, there are two possibilities: 1) The B-
length collisions found ‘use’ at least one of these (at most) κ marked queries 2)
The B-length collisions found ‘use’ none of those κ marked queries. For case (1),
we will show that some online query should hit one of (at most) κ · B offline
queries en route to one of κ queries within B steps to succeed, and this happens
with probability at most O(κTB/N). For case (2), note that it implies at least
one of the two ‘colliding’ queries among the B-length collisions is a ‘new’ online
query. Then, using this fact along with the structural knowledge of the type of
B-length collision, we can show that probability of finding any of these types of
B-length collisions is bounded by O(STB/N + T 2/N).

Here, we focus on one type of B-length collisions to reiterate our strategy
with more details. Refer to Sect. 4 for the complete proof. Consider the type of
B-length collision depicted in Fig. 3a on input salt a.

First, as we have discussed at the beginning of the section, note that the
probability that the input salt a has been queried in the offline queries is at
most ST/N (as a is randomly and independently sampled). So, it suffices to
focus on the case that a has not being queried during offline queries depicted
in Fig. 3b. For this case, there should exist some queries (including the queries
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a

· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Fig. 5. The B-length collision uses no marked queries. The solid red line (if any)
denotes the colliding query made in the offline phase. The dotted blue lines denote the
two closest online queries to the colliding queries along the B-length collisions (they
can also be colliding queries themselves). (Color figure online)

on a) along with the outputted B-length collisions that are online queries (i.e.,
made for the first time during the online phase).

In addition, we can also condition on event E not happening as we can show
that the probability of event E is at most O(N−S), even conditioned on the
adversary winning all the previous rounds. Now observe that the queries in any
found this type of B-length collisions would satisfy one of the two following
possibilities:

1. The B-length collision uses some marked query.
2. None of the offline queries used by B-length collision is a marked query.

We first analyze B-length collisions with queries satisfying (1) above. Refer to
Fig. 4 for a pictorial depiction of such collisions. Conditioned on event E not
happening, there will be at most κ marked queries. Consider the first such query
along the B-length collisions. There is a unique ‘chain’ consisting of at most
B offline queries connecting some online query to this marked query. Thus, the
probability of finding B-length collisions satisfying (1) conditioned on event E
is at most the probability of some online query whose output is one of (the salts
of) these κB offline queries, which is at most O(κTB/N).

Note that when queries in the B-length collision satisfy (2) above, it implies
at least one of the ‘colliding queries’ (two queries denoted by red arrows in
Fig. 3b) is made for the first time in the online phase.

The probability of both the colliding queries happening for the first time in
the online phase (see Fig. 5b) is bounded by O(T 2/N).

In the case exactly one of the colliding queries happens in the offline phase,
there are at most ST possibilities for this offline colliding query. There is a
unique ‘chain’ of at most B offline queries from some online query to this query
and the output of another online query should be the output of this query (see
Fig. 5a). Thus, the probability of finding such B-length collisions is bounded by
O(STB · T/N · T/N) = O(STB/N + T 2/N).

For other types of B-length collisions, we can analyze each type in a similar
way. Instead of analyzing each type of B-length collisions, we further abstract out
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5 conditions such that any type of B-length collisions must satisfy one of them.
By considering one more “high knowledge gaining” event, and upper bounding
the probability for every condition, we show that the probability of finding B-
length collisions is bounded by O(κTB/N + T 2/N). Please see Sect. 4 for the
details. It is worth noting that the S2T 2/N term in κ cannot be further improved,
because it is expected to have Ω(S2T 2/N) marked queries among ST random
oracle queries. Thus, it seems unlikely to obtain a better bound by just improving
event E and its analysis.

A Detailed Comparison with Prior Techniques. The similarity between [ACDW20,
GK22] and us is that we all adopt the idea of reducing the problem of interest to
a multi-instance variant, in which an adversary has to solve multiple copies of the
given problem.

Both [ACDW20] and [GK22] directly analyze the probability of solving all
instances using the compression paradigm, which typically requires a non-trivial
case analysis of the more complicated multi-instance problem. These case analy-
ses may be quite laborious and detached from the single-instance problem (thus
may not give many insights for the single-instance problem).

Our approach differs significantly from [ACDW20] and [GK22] in two places.
First, we focus on analyzing a simple variant of the single-instance problem (cor-
responding to a single round of the sequential multi-instance game conditioning
on winning previous games), which is sufficient to establish desired results in
multi-instance security. This variant is more similar to the original problem, and
may be easier to analyze than the multi-instance problems. The first step (reduc-
ing to a variant of the single-instance problem) is somewhat used and captured
in the presampling technique (via a different route [CDGS18]). We do think this
step is more modular than [ACDW20] and [GK22], but don’t consider this as
our main technical novelty.

The second place, also our main technical novelty, is that we further intro-
duce “knowledge gaining events” for analyzing the variant of the single-instance
problem. These events can be isolated and analyzed on their own, and precisely
highlight the correlation in finding collisions given “typical” presampled random
oracles. Before this work, all the presampling techniques for time-space trade-
offs considered worst-case presampled random oracles. The worst-case presam-
pling may make the existing analyses sub-optimal. Our approach analyzes the
“average-case” presampling random oracles and shows that those “worst-case”
ones can never happen except with a tiny probability. To our best knowledge,
this is the first work that takes advantage of “average-case” presampling and
achieves tight bounds.

Overall, we consider our proofs more modular, because we utilize sequen-
tial games to focus on variants of the single-instance game (rather than directly
compressing multi-instance games used by [ACDW20] and [GK22]). We further
introduce “knowledge gaining events” to take advantage of “average-case” pre-
sampling (rather than working with worst-case ones used by [CDGS18]).
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1.3 Discussions and Open Problems

A Better Attack or Security Bound for ST 2 > N? Our main result suggests
that the attack by [ACDW20] is optimal when ST 2 ≤ N , and is potentially sub-
optimal when ST 2 > N . This attack shares many similarities with the Hellman’s
attack for inverting random functions. Interestingly, Hellman’s attack is also
known to be optimal when ST 2 ≤ N , and is potentially sub-optimal when
ST 2 > N . A better attack for ST 2 > N will be exciting and may give insights
for improving Hellman’s attack. We think that our framework has the potential
to prove a better security bound or even the STB-conjecture, by identifying the
right set of “high knowledge gaining” events.

Tight Quantum Time-Space Tradeoffs for Finding Collisions in MD? Motivated
by analyzing post-quantum non-uniform security, several recent works [CGLQ20,
GLLZ21] studied the same question in the quantum setting, in which the adver-
sary is given S-(qu)bit of advice and T quantum oracle queries. However, unlike
the classical setting, no matching bounds are known, even for B = 2 and B = T .
The Ω(ST 3/N) security bound by [GLLZ21], suggests that the optimal attack
may speed up the trivial quantum collision finding by a factor of S. However,
the best-known attack achieves O(ST 2/N + T 3/N) for every 2 ≤ B ≤ T . Is
there a security jump for finding 2-block collisions and unbounded collisions in
the quantum setting? Can we leverage our new proof for B = 2 to prove a tight
security bound in the quantum setting?

Other Related Works. We mention that time-space lower bounds of attacks
(or non-uniform security) against other fundamental cryptographic primitives,
such as one-way functions, pseudorandom random generators, discrete log, have
been investigated in various idealized models [DTT10,CHM20,CGK18,CGK19,
GGKL21,DGK17,CDG18,CDGS18].
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2 Preliminaries

Notation. For non-negative integers N, k, we write [N ] for {1, 2, · · · , N} and
(

[N ]
k

)

for the collection of all size-k subsets of [N ]. For a finite set X, we write
X+ for the set of tuples of 1 or more elements of X. Random variables will be
written in bold, and we write x ←$ X to indicate that x is a uniform random
variable in X.

Chernoff Bound. Suppose X1, · · · ,Xt are independent binary random variables.
Let X denote their sum and μ = E[X]. For any δ ≥ 0,

Pr[X ≥ (1 + δ)μ] ≤ exp
(

− δ2μ

2 + δ

)

.

Random Oracle [BR93]. In random oracle model, we model a hash function as a
random function H that is sampled uniformly at random from all functions at
the beginning. H is publicly accessible to every entity.

A useful property about random oracle model is that, instead of sampling H
uniformly at random, one can assume H is initialized as a function that always
outputs ⊥; which indicates the response has not been sampled. Whenever an
input x is queried and H(x) has not been sampled (i.e. H(x) = ⊥), the random
oracle samples y uniformly from the range and H(x) := y.

Definition 1 (Lazy Sampling and Databases). We refer to the table of sam-
pled queries (for those H(x) �= ⊥) on H and their responses as the database or
the partially sampled random oracle.

The set of offline queries is the set of distinct queries made in the offline
stage. The set of online queries is the set of distinct queries made in the online
stage and had not been made in the offline stage.

While dealing with algorithms with both offline and online stages, the table
of only the offline queries on H and their responses is referred to as the offline
database.

Note that the outputs of the offline and online queries are independent and
uniformly distributed.

2.1 Merkle-Dam̊agard Hash Functions (MD)

A hash function usually is required to function over inputs with different lengths.
Many practical hash functions are based on the Merkle-Dam̊agard construction
(MD). It takes a hash function with fixed length input to a new hash function
with arbitrary input lengths.

We treat the underlying hash function as a random oracle H : [N ] × [M ] →
[N ]. We call a message m is a B-block message if m can be written as m =
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(m1, · · · ,mB) where each mi ∈ [M ]. The function MDH(a,m) evaluates on a
salt a ∈ [N ] and a message m as the follows:

MDH(a,m) = MD�
H(a, (m1, · · · , m�)) =

{

H(MD�−1
H (a, (m1, · · · , m�−1)), m�) � > 1

H(a, m1) � = 1

It applies the fixed-length hash function H on the salt a and the first block m1

to get a new salt a2; it then applies H again on a2 and m2 until finally it outputs
a single string in [N ].

2.2 Collision-Resistance Against Auxiliary Input (AI)

We start by defining the security game of collision-resistance against auxiliary
input adversaries. The adversary is unbounded in the preprocessing stage and
leave nothing but a piece of bounded-length advice for the online stage.

Definition 2 ((S, T)-AI algorithm). A pair of algorithms A = (A1,A2) is
an (S, T ) − AIadversary for MD if

– AH
1 is unbounded (making unbounded number of oracle queries to H) and

outputs S bits of advice σ;
– AH

2 takes σ and a salt a ∈ [N ], issues T queries to H and outputs m1,m2.

We are ready to define the security game of collision-resistance against an
(S, T )-AI adversary.

Definition 3 (Auxiliary-Input Collision-Resistance). We define the fol-
lowing game B-AICR for a fixed random oracle H and a salt a ∈ [N ] in Fig. 6,
where B is a function of N (the range size of the random oracle). The game
outputs 1 (indicating that the adversary wins) if and only if A outputs a pair of
MD collision with at most B(N) blocks.

Game B-AICRH,a(A)
σ H

1

m1,m2

A
AH

2 (σ, a)
If m1 or m2 consists of more than B(N) blocks

Then Return 0
If m1 �= m2 and MDH(a,m1) = MDH(a,m2)

Then Return 1
Else Return 0

Fig. 6. B-AICRH,a(A)

For an (S, T )-AI adversary A = (A1,A2), we define the advantage of A
as its winning probability in the B-AICRH,a with uniformly random H ← {f :
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Game 2-AICRH,a(A)
σ H

1

m1,m2

A
AH

2 (σ, a)
If m1 or m2 consists of more than 2 blocks

Then Return 0
If m1 �= m2 and MDH(a,m1) = MDH(a,m2)

Then Return 1
Else Return 0

Fig. 7. 2-AICRH,a(A)

[N ] × [M ] → [N ]} and random a ← [N ]. We define the (S, T,B)-auxiliary-
input collision-resistance of Merkle-Damg̊ard, denoted by AdvAI-CR

B-MD (S, T ), as the
maximum of advantage taken over all (S, T )-AI adversaries A.

For convenience, we similarly define AdvAI-CR
2-MD (S, T ) as the maximum of

advantage of winning the game 2-AICR (see Fig. 7) taken over all (S, T )-AI
adversaries A.

Multi-Instance Collision-Resistance (MI). We then define the sequential multi-
instance collision-resistance of Merkle-Damg̊ard. As shown by [CGLQ20], the
AI-security is closely related to the (sequential) MI-security. Note that in the MI
security, an adversary does not take any advice but tries to solve independent
instances sequentially.

Definition 4 (Multi-Instance Collision-Resistance). Fixing functions B
and S, and a random oracle H, we define the following game B-MICRS in Fig. 8.
In this game, A will receive S freshly independent and uniform salts and it needs
to find a MD collision with respect to each salt ai of at most B blocks, in a
sequential order. In other words, A will never see the next challenge salt until it
solves the current one.

Game B-MICRS
H,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai [N ]
m1,m2 AH(ai)
If m1 or m2 consists of more than B blocks,
or MDH(ai,m1) �= MDH(ai,m2)

Return 0
Return 1

Fig. 8. Games B-MICRS
H,a(A).
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In this security game, A is a stateful algorithm that maintains its internal
state between each stage. We usually consider an (S, T )-MI adversary A which
makes at most T queries in each of these S stages. We similarly define 2-MICR
by setting B = 2 in B-MICR.

For an (S, T )-MI adversary A, we define the advantage of A as its winning
probability in the B-MICRS

H,a with uniformly random H and a ← [N ].
We define the (S, T,B)-multi-instance collision-resistance of Merkle-

Damg̊ard, denoted by AdvMI-CR
B-MD (S, T ), as the maximum of advantage taken over

all (S, T )-MI adversaries A.

For convenience, we similarly define AdvMI-CR
2-MD (S, T ) as the maximum of

advantage of winning the game 2-MICRS
H,a (for random H, a) taken over all

(S, T )-MI adversaries A.

The following theorem will be useful for proving the AI collision-resistance
of Merkle-Damg̊ard. It says a lower bound for the MI collision-resistance implies
a lower bound for the AI security. Therefore, in the rest of the paper, we will
focus on the MI collision-resistance of Merkle-Damg̊ard with different lengths B.
The theorem is based on the idea of Theorem 4.1 in [CGLQ20], which implies
that if AdvMI-CR

B-MD (S + log N + 1, T ) ≤ δS+log N+1, then AdvAI-CR
B-MD (S, T ) ≤ 4δ. We

slightly improve their parameter, and obtain a considerably cleaner statement.

Theorem 3. For any S, T,B and 0 ≤ δ ≤ 1, if AdvMI-CR
B-MD (S, T ) ≤ δS, then

AdvAI-CR
B-MD (S, T ) ≤ 2δ.

Proof of Theorem 3. We prove by contradiction. Assume there is an (S, T )-AI
adversary A = (A1,A2) such that

Pr
H,a

[B-AICRH,a(A) = 1] > 2δ,

Consider the following (S, T )-MI adversary B:

1. B samples a uniformly random σ of S bits.
2. For each stage i ∈ [S]:

– B receives ai from the challenger.
– B runs AH

2 (σ, ai) to obtain and output m1,m2.

We will show that PrH,a1,...,aS

[

B-MICRS
H(B) = 1

]

> δS . For every fixed choice
of H, we define

δH := Pr
a

[B-AICRH,a(A) = 1] .

Observe that EH [δH ] = PrH,a [B-AICRH,a(A) = 1] > 2δ. For every fixed choice
of H, conditioning on that B guesses the output of AH

1 correctly, then B perfectly
simulates A. Therefore,

Pr
a1,...,aS

[B-MICRH(B) = 1] ≥ Pr
a1,...,aS

[B-MICRH(B) = 1| σ = AH
1 ] · Pr[σ = AH

1 ] = δ
S
H/2

S
.



208 Akshima et al.

By averaging over the randomness of H,

Pr
H,a1,...,aS

[B-MICRH,a(B) = 1] ≥ EH [δS
H ]/2S ≥ E[δH ]S/2S > δS ,

where the second inequality is by Jensen’s inequality, and the last inequality is
by EH [δH ] > 2δ. ��

3 Auxiliary Input Collision Resistance for B = 2
Merkle-Damg̊ard

In this section we prove the following theorem, which recovers Theorem 7 in
[ACDW20].

Theorem 4. For any S, T and N ≥ 64,

AdvAI-CR
2-MD (S, T ) ≤ (200 log2 N) · ST + T 2

N
.

By Theorem 3, it suffices to prove the following lemma.

Lemma 1. For any S, T and N ≥ 64, AdvMI-CR
2-MD (S, T ) ≤ 100(ST+T 2) log2 N

N .

The purpose of this section is to show the simplicity of our new framework.
The proof will also serve as a stepping stone for a better understanding of our
proof for larger B cases.

Proof of Lemma 1. Let H be a random oracle in the game 2-MICRS and A be
an arbitrary (S, T )-MI adversary. We show that its advantage of succeeding in
2-MICRS is at most (100(ST +T 2) log2 N/N)S . In this proof, we will also assume
the random oracle H is lazily sampled by the challenger, which is equivalent to
being sampled at the very beginning.

Let Xi be the indicator variable that A wins the i-th stage on a uniformly
random salt ai. The advantage of A can be then written as Pr[X1 ∧ · · · ∧ XS ].
We additionally define the indicator variable X<i = X1 ∧ · · · ∧ Xi−1, meaning
whether A wins the first (i − 1) stages of the sequential game. Then

Pr[X1 ∧ . . . ∧ XS ] =
S

∏

i=1

Pr[Xi|X<i]. (1)

We will bound Pr[X<i+1] < (δS)i for each i ∈ {1, · · · , S} by induction, where
δS = 100 · (ST+T 2) log2 N

N .
If Pr[X<i] is already bounded by (δS)i, then it trivially holds for Pr[X<i+1].

Otherwise, we assume Pr[X<i] ≥ (δS)i.

We want to bound Pr[Xi|X<i] ≤ δS for any arbitrary i ∈ [S]. In the following
proof, we will carefully deal with the conditioning on X<i, since A learns about
the function H not only using the T queries in the i-th stage, but also from
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these (i − 1)T queries in the early stages. We will call all the queries made in
the previous (i − 1) stages as “offline” queries and those made in the i-th stage
as “online” queries. We also recall the definition for “databases” in Definition 1.

As mention in the introduction, one bad example is that the previous (i−1)T
queries consist of (i − 1)T/2 distinct salts, each has a pair of 1-block collision.
An online adversary can use T queries to hit any of these salts and form a 2-
block collision with probability roughly iT 2/N . Below, we will show that this
event (and other events that give non-trivial advantage to the online adversary)
happens with very small probability.

Defining Knowledge-Gaining Events. To bound the knowledge that A learns in
the previous stages, we define the following events: all events are defined for the
lazily sampled random oracle right after the first (i − 1) stages. We are going to
show that these events are the “only events” that A can learn take advantage of
the previous queries but they happen with very small probability.

– Let Ei
1 be the event that 1-block collisions can be found for at least 10i log N

distinct salts within (i − 1)T queries.
Formally, in the database, there exist 10i log N salts: for each such salt a,
there exists m �= m′ ∈ [N ] satisfying H(a,m) = H(a,m′). See Fig. 9a.

...

(a) Ei
1

...

(b) Ei
2

...

(c) Ei
3

Fig. 9. All events Ei
1,E

i
2,E

3
i . Nodes indicate salts in [N ]. An arrow connected two salts

means there is a query on the starting salt and a message in [M ], and the output is
the other salt.

– Let Ei
2 be the event that at least 10i2 log3 N pairs of block collisions can be

found within (i − 1)T queries.
Formally, in the database, there exist 10i2 log3 N pairs of inputs (a,m) �=
(a′,m′) satisfying H(a,m) = H(a′,m′). We emphasize that we do not ask a
pair of collision to start with distinct salts. See Fig. 9b.

– Let Ei
3 be the event that self loops can be found for at least 10i log N distinct

salts within (i − 1)T queries.
Formally, in the database, there exist 10i log N distinct salts: for each such
salt a, there exists some m ∈ [N ] satisfying H(a,m) = a. See Fig. 9c.
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Then

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] + Pr[Ei

1 ∨ Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
.

Here we use the fact that Pr[A|B] ≤ Pr[A]/Pr[B] for Pr[B] > 0.
Next, we will show that assuming none of Ei

1,E
i
2,E

i
3 happens, an adversary

can not take too much advantage of the information from the previous stages.
We show that its advantage Pr[Xi|X<i ∧Ei

1 ∧Ei
2 ∧Ei

3] is bounded by 98 · (ST +
T 2) log2 N/N . Secondly, any of these event happens with very small probability.
We can safely “assume” these events never happen. In total, the conditional
probability is at most 100 · (ST + T 2) log2 N/N = δS .

Claim 1. For any i ∈ [S] and T 2 ≤ N/2, Pr[Ei
1] ≤ N−10i.

Claim 2. For any i ∈ [S], iT + T 2 < N/2 and N ≥ 64, Pr[Ei
2] ≤ 4N−2i.

Claim 3. For any i ∈ [S], N ≥ 4 and T ≤ N/2, Pr[Ei
3] ≤ N−4i.

The proofs for these lemma are in the full version of the paper. Readers may
skip the proofs for all these claims. The proofs are not necessary for understand-
ing the rest of the proof.

Recall that we assume Pr[X<i] ≥ (δS)i, otherwise Pr[X1 ∧ . . . ∧ Xi] ≤ (δS)i

holds trivially for the first i stages. Therefore,

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
(2)

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

1
N

, (3)

where the last inequality comes from the fact that 1/Pr[X<i] ≤ N i but (Pr[Ei
1]+

Pr[Ei
2] + Pr[Ei

3]) ≤ 6N−2i.

Bounding the Last Term. Finally, we are going to bound Pr[Xi|X<i ∧Ei
1 ∧Ei

2 ∧
Ei

3]. In order to do that, we define another event G as the event that the input
salt ai has been queried among the queries in the previous (i−1) iterations; i.e.,
for some m ∈ [N ], (ai,m) is in the lazily sampled hash function. Then it holds
that:

Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]

≤Pr
[

G
∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]

+ Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

≤ (i − 1)T
N

+ Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

.
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Now all that remains to bound is Pr
[

Xi

∣

∣

∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧ G

]

, which
requires collision type-wise analysis. By enumeration, there are total 6 types of
2-block collisions (Fig. 10).

A dashed line origins from ai. It indicates that the query should be made
online, conditioned on G. Other queries can be either made online or offline in
the previous iterations. The label ♣, ♦, ♥ and ♠ will be used later for a better
presentation of our proof. By enumerating each solid edge being an online query
or a offline query, we show that it is sufficient to consider the cases in Claim 4.

ai

( )

(a) Type 1

ai
( )

( )

(b) Type 2

ai

( )

( )

(c) Type 3

ai
( ) ( )

( )

(d) Type 4

ai
( )

( ) ( )

(e) Type 5

ai
( )

( )

( )

( )

(f) Type 6

Fig. 10. All types of 2-block collisions.

Claim 4. For any i ∈ [S], to find a 2-block collision on ai conditioned on G,
the queries should satisfy at least one of the following conditions:

1. There exists an online query (i.e., a query among the T queries in the i-
th iteration after receiving the challenge input ai), denoted (a,m) such that
H(a,m) = a.
In other words, a self loop is found among the online queries. This covers the
case when (♣) edge in type 1 collisions and the (♦) edge in type 2 collisions
are online queries. See Fig. 11a.

2. There exists two online queries, denoted (a,m) and (a′,m′), such that
(a,m) �= (a′,m′) and H(a,m) = H(a′,m′).
A collision is found among the online queries. This covers the case when
the (♣) and (♦) edges in Type 3 collisions, the (♦) and (♥) edges in Type 4
collisions, the (♣) and (♥) edges in Type 5 collisions, the (♥) and (♠) edges
in Type 6 collisions are online queries. See Fig. 11b.

3. There exists an online query, denoted by (a,m), and one offline query, denoted
by (a′,m′), such that a �= a′, H(a,m) = a′ and H(a′,m′) = a′.
This denotes an online query hits an existing self loop. This covers the case
when the (♣) edge in type 2 collisions is an online query. See Fig. 11c.
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4. There exists an online query, denoted by (a,m), and two offline queries,
denoted by (a′,m′) and (a′,m′′), such that a �= a′, H(a,m) = a′ and
H(a′,m′) = H(a′,m′′).
This denotes an online query hits an existing collision (starting with the same
salt a′). This covers the case when (♣) edge in type 4 collisions is an online
query. See Fig. 11d.

5. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline
query, denoted by (a′,m′′) such that a �= a′, H(a,m) = a′ and H(a′,m′) =
H(a′,m′′).
This covers the case when the (♣) and (♦) edges in type 4 collisions are online
queries. See Fig. 11e.

6. There exists two online queries, denoted by (a,m) and (a′,m′), and an
offline query, denoted by (a′′,m′′) such that H(a,m) = a′ and H(a′,m′) =
H(a′′,m′′).
This denotes two online queries hit two ends of an existing queries. This
covers the case when the (♣) and (♦) edges in type 5 collisions, the (♣) and
(♠) edges in type 6 collisions are online queries. See Fig. 11f.

7. There exists two online queries, denoted by (a,m) and (a,m′), and two offline
queries, denoted by (b, y), (b′, y′) such that b �= b′, H(a,m) = b,H(a,m′) = b′

and H(b, y) = H(b′, y′).
This covers the case when the (♣) and (♦) edges in type 6 collisions are online
queries. See Fig. 11g.

a

m

(a) Case 1

a

a′

m

m′

a = a′

m

m′

(b) Case 2

m

m′

a a′

(c) Case 3

m

m′

m′′

a a′

(d) Case 4

m

m′

m′′

a a′

(e) Case 5

m′

m m′′

a

a′′

a′

m′

m m′′

a = a′

a′′

(f) Case 6

m y′

m′ ya

b

b′

(g) Case 7

Fig. 11. All possible types of collisions. A dotted line denotes an online query. A solid
line denotes a offline query.

Proof for Claim 4. We only prove for type 6 collisions. Other five cases are easier
and similar.
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When both (♥) and (♠) are offline queries, it is Case 7. If only one of the
two edges is offline, it is Case 6. If they are all online queries, we can reduce it
to Case 2. ��

Finally, we show that for each case in Claim 4, the advantage is bounded by
(98(ST + T 2) log2 N)/N .

Case 1. By making T new queries, each query (a,m) has 1/N chance to
satisfy H(a,m) = a. Therefore, the probability is bounded by T/N .
Case 2. The probability of finding a collision among these T new queries is
smaller than T 2/N , by birthday bound.
Case 3. Recall Ei

3: there are at most 10i log N salts that has a self loop in the
offline queries. By making T new queries, each query (a,m) has (10i log N)/N
chance to hit any of these salts. Therefore, the probability is bounded by
(10iT log N)/N .
Case 4. Recall Ei

1: there are at most 10i log N salts that has a collision start-
ing from it in the offline queries. By making T new queries, each query (a,m)
has (10i log N)/N chance to hit any of these salts. Therefore, the probability
is bounded by (10iT log N)/N .
Case 5. and Case 6. The proofs are identical. Fixing any offline query
(a′′,m′′), by making T queries, the chance of hitting both ends is T 2/N2.
This is because we can enumerate which are the first queries that hit the
starting salt a′′ and the end H(a′′,m′′). Each case happens w.p. at most
1/N2.
Since there are total (i − 1)T offline queries, by union bound, the advantage
is at most (i − 1)T · T 3/N2 ≤ iT

N · T 2

N for both cases.
Case 7. Recall Ei

2: there are at most 10i2 log3 N pair-wise collisions. For every
such collision that start with different salts, the probability of hitting both
salts within T queries is T 2/N2. This is due to the same counting argument
in the analysis of Case 5 and Case 6.
By union bound, the advantage is at most (10i2T 2 log3 N)/N2.

We have shown all the cases in Claim 4. Therefore,

Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] ≤ 98(iT + T 2) log2 N

N
.

Combining with Eq. (1) and Eq. (2), we conclude Lemma 1: Pr[X1 ∧ . . .∧XS ] ≤
(δS)S . ��

4 Auxiliary Input Collision Resistance for B
Merkle-Damg̊ard

In this section we prove the following theorem.

Theorem 5. For any functions S, T,B, and N ≥ 64

AdvAI-CR
B-MD (S, T ) ≤ (34 log2 N) · STB

N
· max

{

1,
ST 2

N

}

+ 2 · T 2

N
.
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Lemma 2. For any functions S, T,B, and N ≥ 64,

AdvMI-CR
B-MD (S, T ) ≤

(

17κTB log2 N + T 2

N

)S

where κ = S · max{1, ST 2/N}.
As for the case of B = 2, we prove an upper bound on the advantage of

B-block collision finding adversary in the MI-CR model, which implies an upper
bound in the AI-CR model via Theorem 3.

Proof of Lemma 2. We prove this lemma in similar fashion as Lemma 1. Let H
be a random oracle (which is lazily sampled) in the game B-MICRS and A be
any (S, T )-MI adversary.

We analogously define Xi to be the indicator variable that A finds at most
B-length collisions on uniformly random salt ai given as input in the i-th stage
of the game. We also define X<i = X1 ∧ · · · ∧ Xi−1. So, the advantage of A is

Pr[X1 ∧ . . . ∧ XS ] =
S

∏

i=1

Pr[Xi|X<i].

As in the proof for B = 2 case, we will inductively bound Pr[X<i+1] for each
i ∈ [S]. Here we will bound Pr[X<i+1] to ((17κiTB log2 N + T 2)/N)i where
κi = i · max{1, iT 2/N}. Recall that we will analogously assume Pr[X<i] ≥
((17κiTB log2 N +T 2)/N)i. Otherwise Pr[X<i+1] ≤ ((17κiTB log2 N +T 2)/N)i

holds trivially.
In order to prove the lemma, it suffices to upper bound Pr[Xi|X<i] by

17κiTB log2 N/N +T 2/N for any arbitrary i ∈ [S]. That is because Pr[X<i+1] =
Pr[Xi|X<i] · Pr[X<i] where Pr[X<i] ≤ ((17κiTB log2 N + T 2)/N)i−1 by the
inductive hypothesis. In the proof, we will handle the conditioning on X<i in a
similar fashion to our proof for B = 2 case.
First we state some useful definitions.

Definition 5. A list of elements (a1,m1), . . . , (a�,m�) in [N ] × [M ] are said to
form a chain for H when for every j ∈ [� − 1], H(aj ,mj) = aj+1.

A chain (a1,m1), . . . , (a�,m�) for H is called a cycle when H(a�,m�) = a1.
The length of a cycle is the number of elements in it, � here.

Definition 6. Two distinct chains (a1,m1), . . . , (a�,m�) and (a′
1,m

′
1), . . . ,

(a′
�′ ,m′

�′) are called colliding chains for H if H(a�,m�) = H(a′
�′ ,m′

�′).

Definition 7. For any a ∈ [N ], a set of elements (a1,m1), . . . , (a�,m�) in [N ]×
[M ] are said to form a claw at a under H if � > 1, a1, . . . , a� are distinct and
H(a1,m1) = . . . = H(a�,m�) = a. We refer to a1, . . . , a� as the pre-images of a.

Next, we define events to illustrate the bound on ‘useful’ information gained
by A from the prior iterations in the B-MICR game. Each of these events are
defined over responses from the random oracle in the first (i − 1) iterations.
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– Let Y be the set of salts with more than one pre-image on it in the offline
database. Then we define Ei

2 to be the event that
∑

a∈Y (# pre-images on

a) ≥ 16κi log2 N after (i − 1)T queries where κi = max
{

i, i2T 2

N

}

.
– Let Ei

3 be the event that there exists at least i log N ‘special’ cycles of length
in [B − 1] among the (i − 1)T offline queries. A cycle (a1,m1), . . . , (a�,m�) is
called ‘special’ if the number of pre-images on ai is exactly 1 for every i ∈ [�].

Next, we can write

Pr[Xi|X<i] = Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] + Pr[Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
Pr[Ei

2]
Pr[X<i]

+
Pr[Ei

3]
Pr[X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
1
N

where the last inequality holds via Claim 5, Claim 6 (which are stated next) and
our assumption that Pr[X<i] ≥ ((17κiTB log2 N + T 2)/N)i.

Claim 5. For any i ∈ [S], iT + T 2 < N/2, 2i log N + 1 ≤ N/2 and N ≥ 64,
Pr[Ei

2] ≤ 5
N2i .

Claim 6. For any i ∈ [S], Pr[Ei
3] ≤ (

T
N

)i log N
.

As before, we will prove Claim 5 and 6 in the full version of the paper. Readers
may safely skip the proofs and assume these “knowledge-gaining events” happen
with exponentially small probability.

Next, we want to study Pr[Xi|X<i ∧Ei
2 ∧Ei

3]. We define G to be the event that
input salt ai has been queried among the previous (i−1) iterations or that input
salt ai is the output of some query among the previous (i − 1) iterations. So, we
can rewrite Pr[Xi|X<i ∧ Ei

2 ∧ Ei
3] as follows:

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] + Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] +
2(i − 1)T

N
.

Note that ai is chosen uniformly and independently and as queries in the previous
iterations could be made on at most (i − 1)T distinct salts and can output at
most (i−1)T distinct salts in the previous (i−1) iterations, it is easy to bound

Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

≤ 2(i − 1)T
N

.

Finally, we analyze Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G].
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Claim 7. For any i ∈ [S],

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] ≤ 16κiTB log2 N + T 2

N
.

Proof of Claim 7 requires different analysis for different types of colliding chains
which we show in Subsect. 4.1. Before we move onto that subsection, we first
show how we obtain the lemma by putting together all the claims.

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧ G] + Pr
[

G
∣

∣

∣X<i ∧ Ei
2 ∧ Ei

3

]

+ Pr[Ei
2 ∨ Ei

3|X<i]

≤ 16κiTB log2 N + T 2

N
+

2(i − 1)T

N
+

1

N

≤ 17κiTB log2 N

N
+

T 2

N

where the last inequality holds from that κi = max{i, i2T 2/N} and N ≥ 4.

4.1 Proof of Claim 7

To this end, we state the following claim.

Claim 8. For any i ∈ [S], to find a B-length collision on ai, the queries in the
database should satisfy at least one of the following conditions given there exists
no query in the offline database that takes ai as input or outputs ai:

1. There exists an online query (i.e., a query among at most T queries that were
made for the first time in the i-th iteration after receiving the challenge input
ai), denoted (a,m) such that H(a,m) = ai.

2. There exists two distinct online queries, denoted (a,m) and (a′,m′) such that
H(a,m) = H(a′,m′).
This includes both of the following possibilities: the online queries are such
(1) a = a′ (and thus m and m′ will be distinct); (2) a �= a′.

3. There exists an online query, denoted (a,m), a chain (recall Definition 5) of
offline queries5, denoted (b1,m1), . . . , (b�,m�) for some 0 < � < B, and an
offline query (b,m′) �= (b�,m�) such that H(a,m) = b1, H(b,m′) = H(b�,m�)
and the number of pre-images for every salt in {b2, . . . , b�} in the offline
database is exactly 1.

5 The set of Offline queries is the set of distinct queries made in the previous (i−1)
iterations. So there are at most (i − 1)T of these queries and their outputs are
independent and uniformly distributed. The set of Online queries is the set of
distinct queries made in the i-th iteration after receiving the challenge input ai that
had not been made in any of the previous (i − 1) iterations. Note that the outputs
of online queries are also independent and uniformly distributed.
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(a) (b)

· · ·

(c)

· · ·
· · ·

· · ·
(d)

· · ·

· · ·
(e)

Fig. 12. All types of colliding chains

4. There exists two online queries, denoted (a,m) and (a′,m′), and a chain
of offline queries, denoted (b1,m1), . . . , (b�,m�) for some � < B, such that
H(a,m) = b1, H(a′,m′) = H(b�,m�) and the number of pre-images on every
salt in {b2, . . . , b�} in the offline database is exactly 1.

5. There exists an online query, denoted (a,m), and a cycle in the offline
database, denoted (b1,m1), . . . , (b�,m�) for some � < B, such that H(a,m) =
b1 and the number of pre-images on every salt in {b1, b2, . . . , b�} in the offline
database is exactly 1.

Proof for Claim 8. Figure 12 enumerates all the possible types of colliding chains.
Depending on where the queries in the chains are first made for each of the types,
we show that the list of conditions in the claim is complete. (Refer to Fig. 13 for
a visual representation of the conditions in the claim.)

We know that all the queries with output ai or of the form (ai, ·) in the
colliding chains are online queries. This implies if the colliding chains are of the
types in Fig. 12a or 12b, the queries in the database will satisfy condition 1.

For the remaining types of colliding chains (ref Fig. 12c, 12d, 12e), one of the
following 3 cases can happen:

1. Both the ‘colliding’ queries are online. In this case, the queries in the
database will satisfy condition 2.

2. Both the ‘colliding’ queries are offline. In this case, the queries in the
database will satisfy condition 3. Note that b� can be thought of as the earliest
query among the chains that has more than one pre-image in the offline
database.

3. One of the ‘colliding’ queries is offline and online each. For the col-
liding chains of types in Fig. 12d and 12e), the queries in the database will
satisfy condition 4. For the colliding chains of type in Fig. 12c, there are two
possibilities as shown in Fig. 14. For the possibility in Fig. 14a, the queries
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a

m

ai

(a)

a

a′

m

m′

a = a′

m

m′

(b)

a b1 b2 b�

b

m1 · · · m�m

m′

(c)

a b1 b2 b�

a′

m1 · · · m�m

m′

(d)

m1

b1

b2

m2

m� b�

m
a

(e)

Fig. 13. Pictorial depiction of Conditions 1–5. A dotted line denotes an online query.
A solid line denotes an offline query.

· · ·
a

(a)

· · ·
a

(b)

Fig. 14. A dotted line denotes an online query. A solid line denotes an offline query.

in the database satisfy condition 4. On the other hand, for the possibility in
Fig. 14b, the queries in the database satisfy condition 5.

��
Claim 9. For j ∈ [5], let εj be the advantage in achieving condition j from
Claim 8 when Ei

2, Ei
3 and G hold. Then for any i ∈ [S], the results summarized

in Table 2 on the upper bounds of εj hold.

Table 2. Summary of upper bounds on εj for j ∈ [5] where κi := max{i, i2T 2/N}.

Condition j 1 2 3 4 5

εj
T
N

T2

N
16κiTB log2 N

N
iT
N

· T2

N

iTB log N
N
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We prove the bounds stated in Claim 9 next.

Condition 1. Recall that online queries are ‘new’ queries, as in they are made
for the first time among the T queries in the i-th iteration after receiving ai.
Thus, the output of online queries is independent of output from offline queries
and has 1/N chance to be ai under H via lazy sampling. By taking a union
bound over at most T online queries, we can bound the probability to T/N .

Condition 2. By birthday bound, it holds that the probability of finding ‘col-
liding’ queries among T online queries is at most T 2/N .

Condition 3. Given Ei
2 implies that there can be at most 16κi log2 N queries in

the offline database that are part of some claw. As per the definition of condition
4, there will be a unique chain of length < B in the offline database ending in
each of these at most 16κi log2 N queries, such that an online query hits the
start of this chain. The probability of hitting one of these at most B ·16κi log2 N
salts within T queries is at most 16κiTB log2 N/N .

Condition 4. As per the definition of condition 5, there can be at most iT such
chains of length < B in the offline database, such that an online query hits the
start of this chain and another online hits the end of this chain. The probability
of hitting both the salts within at most T queries is bounded by T 2/N2. By
union bound the advantage is at most iT 3/N2.

Condition 5. Given Ei
3 implies there are at most i log N ‘special’ cycles in the

offline database, each with at most B queries in it. So, there are at most iB log N
queries in these cycles and the probability of hitting one of the starting salts of
these queries within T online queries is bounded by iB log N · T/N .

From Claim 9 it holds that the advantage of achieving any of the conditions
in Claim 8 given Ei

2, Ei
3 and G is bounded by (16κiTB log2 N + T 2)/N . Note

that for i ≤ S, when ST 2 < N implies iT 2 < N . Hence κi = i if κS = S.
��
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Abstract. Memory-hard functions (MHFs) are a useful cryptographic
primitive which can be used to design egalitarian proof of work puzzles
and to protect low entropy secrets like passwords against brute-force
attackers. Intuitively, a memory-hard function is a function whose evalu-
ation costs are dominated by memory costs even if the attacker uses spe-
cialized hardware (FPGAs/ASICs), and several cost metrics have been
proposed to quantify this intuition. For example, space-time cost looks
at the product of running time and the maximum space usage over the
entire execution of an algorithm. Alwen and Serbinenko (STOC 2015)
observed that the space-time cost of evaluating a function multiple times
may not scale linearly in the number of instances being evaluated and
introduced the stricter requirement that a memory-hard function has
high cumulative memory complexity (CMC) to ensure that an attacker’s
amortized space-time costs remain large even if the attacker evaluates
the function on multiple different inputs in parallel. Alwen et al. (EURO-
CRYPT 2018) observed that the notion of CMC still gives the attacker
undesirable flexibility in selecting space-time tradeoffs e.g., while the
MHF Scrypt has maximal CMC Ω(N2), an attacker could evaluate the
function with constant O(1) memory in time O(N2). Alwen et al. intro-
duced an even stricter notion of Sustained Space complexity and designed
an MHF which has s = Ω(N/ log N) sustained complexity t = Ω(N)
i.e., any algorithm evaluating the function in the parallel random oracle
model must have at least t = Ω(N) steps where the memory usage is
at least Ω(N/ log N). In this work, we use dynamic pebbling games and
dynamic graphs to explore tradeoffs between sustained space complexity
and cumulative memory complexity for data-dependent memory-hard
functions such as Argon2id and Scrypt. We design our own dynamic
graph (dMHF) with the property that any dynamic pebbling strategy
either (1) has Ω(N) rounds with Ω(N) space, or (2) has CMC Ω(N3−ε)—
substantially larger than N2. For Argon2id we show that any dynamic
pebbling strategy either(1) has Ω(N) rounds with Ω(N1−ε) space, or
(2) has CMC ω(N2). We also present a dynamic version of DRSample
(Alwen et al. 2017) for which any dynamic pebbling strategy either (1)
has Ω(N) rounds with Ω(N/ log N) space, or (2) has CMC Ω(N3/ log N).

Keywords: Data-Dependent Memory Hard Function · Dynamic Peb-
bling Game · Sustained Space Complexity · Cumulative Memory Com-
plexity
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1 Introduction

Memory-hard functions (MHFs) are an important cryptographic primitive which
have been used to design egalitarian proof of work puzzles [16] and to protect
low entropy secrets against brute-force attacks e.g., password hashing. Intu-
itively, a function is “memory-hard” if for any algorithm the costs associated with
evaluating this function are dominated by memory costs—even if the attacker
uses specialized hardware such as Field Programmable Gate Arrays (FPGAs)
or Application Specific Integrated Circuits (ASICs). Several complexity mea-
sures have been proposed to capture this intuition including space-time complex-
ity, cumulative memory complexity (CMC) [7], and sustained space complexity
(SSC) [5].

Intuitively, space-time cost considers the product of running time and the
maximum space usage across the entire execution trace. For example, suppose we
are given an execution trace σ1, . . . , σt where σi denotes the state of our program
at time i. The space-time costs associated with this execution trace would be
t · maxi≤t |σi|. Alwen and Serbinenko [7] observed that space-time complexity is
not well suited in situations where an attacker wants to evaluate the function on
multiple different inputs in parallel. In particular, the amortized space-time costs
associated with multiple parallel computations can be significantly lower than
the space-time costs associated with a single execution. Alwen and Blocki [2] later
gave pebbling attacks on practical MHF candidates such as Catena and Argon2i
demonstrating that this concern is not merely a theoretical issue. Alwen and
Serbinenko [7] proposed the notion of cumulative memory complexity (CMC) to
address this concern by modeling amortized space-time complexity. Intuitively,
the cumulative memory cost of our execution trace σ1, . . . , σt would be given by∑t

i=1 |σi|. Observe that the cumulative memory cost is a lower bound for the
space-time costs since

∑t
i=1 |σi| ≤ t × maxi≤t |σi|. Thus, requiring that a MHF

has high CMC is a strictly stronger requirement than space-time complexity.
If we adopt high CMC as our goal then we want to find a function f which

satisfies the requirements that (1) the function can be evaluated in O(N) steps
on a sequential machine, and (2) any parallel algorithm evaluating the function
has CMC at least Ω(N2). We note that because the function can be evaluated
in O(N) sequential steps the CMC cannot be larger than O(N2). In fact, the
Scrypt MHF [18] has been shown to satisfy both properties in the parallel
random oracle model [6]. However, while Scrypt has maximal CMC the MHF
also allows the attacker undesirable flexibility when selecting space-time trade-
offs. For example, an attacker could evaluate Scrypt using constant space O(1)
in time O(N2) or the attacker could evaluate the function using space O(

√
N)

and time O(N
√

N).
Motivated by this observation, Alwen et al. [5] introduced the stricter require-

ment of sustained space complexity (SSC). Returning to our example execution
trace σ1, . . . , σt we would say that this execution trace has s-Sustained Space
complexity t′ if |{i : |σi| ≥ s}| ≥ t′ i.e., there are at least t′ steps where the
memory usage exceeds s. We remark that st′ ≤ ∑

i |σi| is a lower bound on the
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cumulative memory costs so the requirement that a MHF have high SSC is even
stricter than requiring high CMC.

Broadly speaking there are two types of MHFs: data-independent memory-
hard functions (iMHFs) and data-dependent memory-hard functions (dMHFs)1.
In an iMHF, the memory access pattern induced by evaluating the function
is not allowed to depend on the (potentially sensitive) input. By contrast, a
dMHF places no restrictions on the memory access pattern. While iMHFs pro-
vide natural resistance to side-channel attacks, this comes at the cost of memory
hardness. For example, Scrypt is a dMHF with CMC at least Ω(N2) while any
iMHF has CMC at most O(N2 log log N/ log N) [2]. In the context of password
hashing hybrid “id” modes have been proposed to balance side-channel resistance
with memory hardness. For example, the MHF Argon2id runs Argon2i (data-
independent mode) for N/2 steps before switching to Argon2d (data-dependent
mode). Optimistically, if there are no side-channel attacks we achieve stronger
memory hardness. In the worst case, if there is a side-channel attack, the secu-
rity of the hybrid mode (e.g., Argon2id) is downgraded to that of the data-
independent mode (e.g., Argon2i).

Alwen et al. [5] gave a construction of an iMHF with s = Ω(N/ log N)-
sustained space complexity Ω(N) i.e., any algorithm evaluating this function in
the parallel random oracle model requires at least t′ = Ω(N) steps in which the
space usage is at least s = Ω(N/ log N). We remark that this result is (essen-
tially) optimal due to a pebbling result of Hopcroft [15] showing that any directed
acyclic graph with N nodes and constant indegree can be pebbled using space at
most s = O(N/ log N). Thus, if s = ω(N/ log N) we cannot guarantee that there
are any steps in which the space usage is at least s and this observation can be
extended to dMHFs as well. However, the general O(N/ log N)-space pebbling
strategy of Hopcroft [15] also requires exponential time so the cumulative cost
of this pebbling strategy would be exponentially large. While the construction
of Alwen et al. [5] was primarily theoretical, Blocki et al. [12] gave a practical
iMHF construction with the following trade-off guarantee: any evaluation algo-
rithm either (1) has CMC Ω(N2) or (2) has Ω(N) rounds in which the space
usage is at least Ω(N/ log N) space.

The construction of Blocki et al. [12] achieves (essentially) optimal trade-offs
between CMC and SSC. While it is possible that the attacker’s s = Ω(N/ log N)
sustained space-complexity is lower than Ω(N) any such attack would incur a
higher penalty on CMC costs. Similarly, general pebbling attacks of Alwen and
Blocki [2] against any iMHF simultaneously achieve CMC O(N2 log log N/ log N)
and there are also o(N) rounds where the space usage exceeds O(N log log N/
log N). However, trade-offs between CMC and SSC have not been explored for
dMHFs where the general pebbling attacks of Alwen and Blocki [2] no longer apply.
Thus, for a dMHF we might hope to achieve even stronger trade-offs e.g., it may

1 Ameri et al. [9] also introduced the notion of a computationally data-independent
memory-hard function where the memory access pattern is allowed to depend on
the input, but should be computationally bounded adversary should not be able to
detect or exploit this dependence.
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be possible to find a dMHF with the property that any evaluation algorithm either
(1) has Ω(N) rounds in which the space usage is at least Ω(N), or (2) has CMC
at least ω(N2).

In this paper, our focus will be on understanding and quantifying SSC
and CMC trade-offs for data-dependent memory-hard Functions using dynamic
graphs and dynamic pebbling games.

1.1 Our Results

Any attempt to solely analyze the SSC of a (dynamic or otherwise) pebbling
graph will lead to weaker lower bounds. In fact, any DAG G with N nodes and
constant indegree can be pebbled using at most s = O

(
N

log N

)
pebbles during

any pebbling round [5,15]. We observe that the pebbling strategy of Hopcroft [15]
easily extends to dynamic graphs. In particular, we can use Hopcroft’s strategy
[15] to place a pebble on node i using at most i/ log i pebbles. We can then remove
pebbles from all nodes except i and repeat this method to pebble node i+1 etc.
Thus, if G is a distribution over DAGs G with constant indegree we can’t hope to
prove that pebbling G requires ω

(
N

log N

)
pebbles for some number of steps, since

its ω
(

N
log N

)
-SSC is zero. However, while Hopcroft’s general pebbling strategy

uses minimal space O(N/ log N) the pebbling also runs in exponential time.
Thus, we can still hope to establish stronger CMC/SSC trade-offs for dMHFs.

Ideally, we want to construct a dynamic pebbling graph in which any strategy
must sustain Ω(N) nodes for Ω(N) steps, or incurs CC Ω(N3). This is the best
possible trade-off one could hope to achieve for dynamic graphs with constant
indegree. To see this we observe that Lengauer and Tarjan [17] gave a general
sequential pebbling strategy for any (static) DAG G with maximum indegree
δ = O(1) and any space parameter S = Ω(N/ log N). In particular, pebbling
strategy at most S pebbles and takes time at most using time t ≤ S · 22

cδN/S

where δ denotes the indegree of the DAG G and c > 0 is some fixed constant. The
strategy can be extended to dynamic graphs i.e., once we have place a pebble on
node i we can apply the strategy of Lengauer and Tarjan [17] to place a pebble
on node i+1 using time at most ti+1 ≤ S · 22cδ(i+1)/S ≤ S22

cδN/S

. In this way we
obtain a dynamic pebbling strategy which uses space at most S and the total
pebbling time is at most

∑
i ti ≤ S ·N ·22cδN/S

—the CC is at most S2 ·N ·22cδN/S

.
Assume that G is a distribution over DAGs with constant indegree (δ = O(1)).
Now for any constant ε > 0 if we plugin S = εN then we obtain a dynamic
pebbling strategy which uses space at most εN and the CC is at most O(N3).
Similarly, if we set S = cδN/ log log N then we obtain a pebbling which uses
space at most O(N/ log log N) and the CC is at most O

(
N3 log N

(log log N)2

)
. See more

details in the full version of the paper.
We analyze CMC/SSC tradeoffs for four dMHFs. The first dMHF that we

analyze is based on a constant indegree dynamic graph that we construct. While
the construction is primarily of theoretical interest it achieves (essentially) op-
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timal CMC/SSC tradeoffs—either there are Ω(N) steps with Ω(N) pebbles or
the cumulative memory complexity is Ω(N3−ε). The second dMHF that we ana-
lyze is based on a family of depth-robust graphs [14] with indegree O(log N).
We introduce dynamic edges and prove that (whp) either there are Ω(N) steps
with Ω(N) pebbles or the cumulative memory complexity is Ω(N3). While the
first two dMHFs are primarily of theoretical interest we also analyze CMC/SSC
tradeoffs for two practical dMHF candidates including Argon2id [10] (winner of
the password hashing competition) and DRSample [3]. Our results are summa-
rized in Table 1 below.

Table 1. Lower Bounds: SSC vs CC Tradeoffs

Dynamic Graph Space Sustained for Ω(N) steps CC

Scrypt [6] O(1) O(N2)

Dynamic EGS (Sec 4) Ω(N) Ω(N3)

Dynamic DRSample (Sec 5) Ω
(

N
log N

)
Ω

(
N3

log N

)

Argon2id (Sec 6) e ≤ N Ω̃(N4e−2)

Argon2id (Example) Ω(N1−ε) Ω̃(N2+2ε)

Our Construction (Sec 3) Ω(N) Ω(N3−ε)

Before we elaborate on each of these results, we first describe dynamic peb-
bling graphs and pebbling strategies in more detail.

1.2 Dynamic Graphs and Dynamic Pebbling Games

Review: Black Pebbling Games and iMHFs. Before introducing dynamic
graphs and dynamic pebbling games we first review the parallel black pebbling
game for regular (static) graphs. The (parallel) black pebbling game is a powerful
abstraction that has been used to analyze the cumulative memory complexity
(or sustained space complexity) of iMHFs in the random oracle model. In the
parallel black pebbling game we are given a directed acyclic graph (DAG) G
which initially contains no pebbles P0 = {} and the goal of the pebbling game is
to eventually pebble the sink node(s) of G. A legal black pebbling is a sequence
P0, . . . , Pt ⊆ V of pebbling configurations such that (0) P0 = {} (1) V ⊆ ⋃

i Pi,
and (2) for all i < t and for each v ∈ Pi+1\Pi we have parents(v) .= {u : (u, v) ∈
E} ⊆ Pi. Intuitively, each node in G corresponds to an intermediate data label,
and placing a pebbling on the graph corresponds to computing the corresponding
data label and placing it in memory. We initially start with no data labels
in memory (rule 0) and are not finished until we have computed all of the
output labels (rule 1). We also cannot compute a new data label unless all of the
dependent data labels are already available in memory (rule 2). In the sequential
black pebbling game, we also require that we place at most one new pebble on
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the graph in each round (i.e., |Pi+1 \ Pi| ≤ 1), while no such constraint applies
in the parallel black pebbling game.

An iMHF fG,H(x) can be viewed as a mode of operation over a DAG G and
a hash function H (typically modeled as a random oracle). The source label
L1 = H(x) is typically obtained by hashing the input x and the label of a node
v > 1 is obtained by hashing the labels of v’s parents in G e.g., if parents(v) =
{v −1, r(v)} then we might set Lv = H(Lv−1, Lr(v)). The output of the function
fG,H is simply the label LN of the final sink node N—if there are multiple sink
nodes the output can be obtained by concatenating all of these labels together.
Alwen and Serbinenko [7] proved that in the parallel random oracle model the
cumulative memory complexity of the function fG,H is completely captured by
the pebbling complexity of the graph G, and Alwen et al. [5] later observed that
essentially the same pebbling reduction extends to the notion of sustained space
complexity. Here, the cumulative pebbling cost of a pebbling P = (P1, . . . , Pt)
is
∑t

i=1 |Pi| and the s-sustained space cost is |{i : |Pi| ≥ s}| i.e., the number of
pebbling rounds with at least s pebbles on the graph. The cumulative pebbling
complexity (resp. s-sustained space complexity) of a graph G is the minimum
cumulative pebbling cost (resp. s-sustained space cost) taken over all legal black
pebblings of G.

dMHFs andDynamicGraphs. For an iMHF fG,H the data-dependency graph
G is completely independent of the input x. By contrast, for a dMHF we might
get a different data-dependency graph for each different input x. For example, in
Scrypt there are 2N internal labels and the label for node N + i is computed using
the rule LN+i = H

(
LN+i−1 ⊕ L1+(LN+i−1 mod N)

)
. Thus, the data-dependence

graph will contain a directed edge from node r(N + i) = 1+(LN+i−1 mod N) to
node N+i where the value r(N+i) depends on the label LN+i−1 and, by extension,
the input x. We call this edge (r(N + i), N + i) a dynamic edge since it is not fixed
a priori and the value r(N + i) will remain hidden until label LN+i−1 is computed
i.e., until we place a pebble on node N + i − 1.

In this paper we will use the notion of a dynamic pebbling game to model
the complexity of a dMHF. We begin by defining a dynamic pebbling graph
following the notation of [9].

Definition 1 (Dynamic Pebbling Graph [9]). A dynamic pebbling graph
G is a distribution over DAGs G = (V,E) with nodes V = [N ] and edges E ⊆
{(i, j) : 1 ≤ i < j ≤ N}. We say that an edge (i, j) is static if for all DAGs
G = (V,E) in the support of G we have (i, j) ∈ E and we let Estatic ⊆ {(i, j) :
1 ≤ i < j ≤ N} denote the set of all static edges. Similarly, we use Edynamic =
E \ Estatic to refer to the set of dynamic edges which are not fixed a priori and
for each node j ∈ V we use Ej

dynamic = {(i, j) : (i, j) ∈ Edynamic} to denote
the set of incoming dynamic edges. In the dynamic pebbling game each dynamic
edge (i, j) ∈ Ej

dynamic is not revealed until node j − 1 is pebbled.
All of the dynamic pebbling graphs G considered in this paper have the addi-

tional property that for each DAG G = (V,E) in the support of G and each node
j ∈ V we have

∣
∣
∣E

j
dynamic

∣
∣
∣ ≤ 1 i.e., j has at most one incoming dynamic edge.
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Whenever
∣
∣
∣E

j
dynamic

∣
∣
∣ = 1 it will be convenient to use r(j) to denote the randomly

chosen parent of node j i.e., Ej
dynamic = {(r(j), j)}.

Strategies for pebbling such graphs can simply be thought of as algorithms,
which place pebbles according to some set of instructions, possibly reacting to
the dynamic edges as they are discovered. More formally, strategies are functions
that output legal pebbling steps when given a partial graph.

Definition 2 (Dynamic Pebbling Strategy). A dynamic pebbling strategy
S is a function that takes as input

1. an integer i ≤ N ,
2. an initial pebbling configuration P i

0 ⊆ [i] with i ∈ P i
0, and

3. a partial graph G≤i+1,

where the partial graph G≤i is the subgraph of G induced by the nodes 1, . . . , i.
The output of S(i, P i

0, G≤i+1) is a legal sequence of pebbling moves P i
1, . . . , P

i
r

that will be used in the next phase to place a pebble on node i+1, so that i+1 ∈
P i

ri
⊆ [i + 1]. Given G ∼ G, we let S(G) denote the sequence of pebbling moves〈

P 0
1 , . . . , P 0

r0, P
1
1 , . . . , PN−1

r1
, . . . , PN−1

rN−1

〉
. Here, P i

1, . . . , P
i
ri

= S (
i, P i

0, G≤i+1

)
,

P i
0 = P i−1

ri−1
, and P 0

0 = ∅. We call S(G) a pebbling (for G.)

We note that even after a the pebbling strategy S is fixed the final pebbling
S(G) is not determined until the graph G ∼ G has been chosen i.e., all of the
dynamic edges have been revealed. In particular, this means that the cumulative
(resp. sustained-space) cost associated with S can also vary depending on which
dynamic edges are sampled. However, once S and G are fixed we can define the
cumulative pebbling cost of P = S(G) = 〈P1, . . . , PT 〉 as

∑T
i=1 |Pi|. Similarly, the

s-sustained space cost is |{i : |Pi| ≥ s}|. Our dynamic pebbling dMHF lower-
bounds will take the following form for any dynamic pebbling strategy S with
high probability (over the sampling of G ∼ G) when P = (P1, . . . , PT ) = S(G)
we either have (1)

∑T
i=1 |Pi| ≥ LB1(N), or (2) |{i : |Pi| ≥ s}| ≥ LB2(N).

Where the value s and the exact functions LB1 and LB2 will depend on the
particular dMHF we are analyzing.

Open Research Challenge: Dynamic Pebbling Reductions. For iMHFs
it is known that, in the parallel random oracle model, the cumulative memory
complexity of the function fG,H is fully characterized by the cumulative peb-
bling cost of the corresponding data-dependency graph G similar for sustained
space complexity [5]. By contrast, there is no formal reduction proving that the
cumulative memory complexity (resp. sustained space complexity) of a dMHF
is captured by the dynamic pebbling game. In this sense a dynamic pebbling
lower bound would not absolutely rule out the possibility of a more efficient
attack—unless one can establish a dynamic pebbling reduction. Establishing a
formal reduction between dynamic pebbling costs and the cumulative memory
complexity of the associated dMHF is a major open research challenge. In the
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meantime, we can still interpret a dynamic pebbling lower bound as ruling out
“natural” attacks and providing compelling evidence that the associated dMHF
is secure.

1.3 Trade-Offs for dMHFs

Now we elaborate on the results shown in Table 1.

Our Construction. We construct a dMHF (dynamic graph) with constant
indegree and prove that for any pebbling strategy S that, except with negligible
probability over the sampled graph G ∼ G, the pebbling P = (P1, . . . , PT ) =
S(G) satisfies either (1) |{i ∈ [T ] : |Pi| ≥ c1N}| ≥ c2N , or (2)

∑T
i=1 |Pi| ≥

c3N
3−ε. Here, ε > 0 can be arbitrary and the constants c1, c2, c3 > 0 depend

only on ε. We remark that the naive sequential pebbling strategy (i.e., set
Pi = {1, . . . , i} for each i = 1, . . . , N) has s = N/2-sustained space complexity
N/2 and cumulative memory cost O(N2). Our results tell us that any pebbling
strategy with lower sustained space complexity must pay a massive penalty in
terms of a higher CMC cost.

Dynamic EGS. The second graph we examine is based on a family of depth-
robust graphs constructed by Erdős et al., which we call EGS [14]. While the
indegree O(log N) of these graphs is a bit larger than we might desire, the
cumulative pebbling cost of the graph G is Ω(N2) [4]. However, the sustained
space-complexity of EGS has not been studied previously. We add dynamic edges
to EGS to obtain a dynamic graph and show that, for suitable choices of the
constants c1, c2, c3 > 0, (whp) the pebbling (P1, . . . , PT ) = S(G) produced by
any dynamic pebbling strategy satisfies either (1) |{i : |Pi| ≥ c1N}| ≥ c2N or
(2)

∑T
i=1 |Pi| ≥ c3N

3. In particular, either there are Ω(N) rounds where the
space usage is Ω(N) or the cumulative pebbling cost is massive Ω(N3).

Dynamic DRSample. We next consider DRSample, a randomized algorithm
that, except with negligible probability, outputs a DAG G with cumulative peb-
bling cost Ω

(
N2

log N

)
and maximum indegree 2 [3]. Alwen et al. [3] implemented

the corresponding iMHF and demonstrated that it is practical i.e., the execution
time for a graph on N nodes is equivalent to Argon2i. While the intended use case
for DRSample was to generate a static DAG G for an iMHF fG,H we can eas-
ily modify the definition to include dynamic (data-dependent) edges. We prove
that the dynamic version G of DRSample achieves the following CMC/SMC
trade-offs: for any dynamic pebbling strategy S with high probability (over
the selection of G ∼ G) the pebbling (P1, . . . , PT ) = S(g) either satisfies (1)
|{i : |Pi| ≥ c1N/ log N}| ≥ c2N , or (2)

∑T
i=1 |Pi| ≥ c3N

3/ log N . In particular,
either there are Ω(N) rounds with Ω(N/ log N) pebbles on the graph or we pay
a massive penalty in our cumulative pebbling costs.
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Argon2id. Argon2 is a collection MHFs that won the Password Hashing Com-
petition in 2015 [1]. There are three modes of Argon2: Argon2i, Argon2d,
and Argon2id. The Argon2 designers initially recommended Argon2i (data-
independent mode) for password hashing to protect against side-channel attacks.
This recommendation was later changed to Argon2id (hybrid mode) after Alwen
and Blocki [2,8] found pebbling attacks on Argon2i which reduced the cumula-
tive memory complexity—the pebbling attacks do no extend to data-dependent
modes such as Argon2id. While Argon2i has weaker theoretical guarantees than
DRSample [3,13], Argon2 is available in cryptographic libraries such as libsodium
and has seen wider use in practice. In particular, the cumulative complexity of
Argon2i is at most O(N1.768) and at least Ω̃(N1.75). We are able to establish
stronger tradeoffs for Argon2id. In particular, for any parameter e and any peb-
bling strategy S we can show that (except with negligible probability over the
selection of the graph G ∼ G) the pebbling (P1, . . . , Pt) = S(G) satisfies either
(1) |{i : |Pi| ≥ e}| ≥ c1N , or (2)

∑T
i=1 |Pi| ≥ c2N

4e−2 log−c3 N for suitable
constants c1, c2, c3 > 0. As a concrete example if we set e = N1−ε there are
Ω(N) rounds with at least e pebbles or the cumulative memory cost is at least
Ω̃(N2+2ε) = ω(N2). We remark that one can separately prove an absolute lower
bound of Ω(N2) for the cumulative pebbling complexity of Argon2id.

1.4 Technical Overview

We develop two techniques for proving CMC/SSC trade-offs for dynamic graphs.
The first general technique is to define an indicator random variable unluckyi for
each dynamic edge (r(i), i). Intuitively, we define unluckyi = 1 to be the event
that either (1) the dynamic pebbling strategy already had a lot of pebbles (say
s = Ω(N)) on the graph when the edge (r(i), i) was revealed, or (2) the particular
choice edge (r(i), i) will require us to re-pebble a lot of previously pebbled nodes.
Our general strategy is to argue that the following:

1. For any sequence of bits b1, . . . , bi−1 ∈ {0, 1} we have Pr[unluckyi | ∀j <
i, unluckyj = bj ] ≥ p. While the events unluckyi do not need to be indepen-
dent, the conditional probability that unluckyi is always ≥ p for any prior
outcomes unlucky1, . . . , unluckyi−1.

2. For some suitable constant c ∈ (0, 1) and any i ∈ [cN,N ] with unluckyi = 1
either we had s = Ω(N) pebbles on the graph when r(i) was revealed or the
cumulative pebbling cost to place a pebble on node i will be high (say M)

3. We apply generalized concentration bounds to argue that (whp) we have
∑N

i=cN unluckyi ≥ p(1 − c)N/2.
4. Assuming there are at least p(1− c)N/2 unlucky rounds i > cN we either (1)

have s = Ω(N) pebbles on the graph for p(1 − c)N/4 pebbling rounds, or (2)
we pay CMC cost at least M at least p(1 − c)N/4 separate times for a total
cost of p(1 − c)NM/4.

To prove our SSC/CMC trade-offs for Argon2id we generalize and a technique
introduced in [6] to analyze Scrypt. In particular, [6] observed that if we start
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with e pebbles on a line graph and are challenged to re-pebble a random node
r(i) on the line graph then it will take us at least N

4e steps in expectation to
place a pebble on a random node r(i). Suppose that r(i) is revealed at time
t1 and a pebble is placed on node r(i) at time t2 ≥ t1. The challenge r(i) is
called “easy” if for some t ≤ t2 there were fewer than |Pt2−t| < N

8t pebbles on
the graph at time t2 − t—in this case even if r(i) had been revealed at time
t2 − t we would have expected that it takes at least N

4 N
8t

= 2t rounds to place a

pebble on node r(i). Thus, there is a good chance (at least 1
2 ) that the challenge

r(i) is “hard” meaning that |Pt2−t| ≥ N
8t for every t ≤ t2. Alwen et al. [6] then

apply concentration bounds to argue that there are a lot of “hard” rounds which
allowed them to prove that (whp) the cumulative pebbling cost for Scrypt is at
least Ω(N2).

We can generalize the argument of Alwen et al. [6] by exploiting the fact
that Argon2i provides stronger (fractional) depth-robustness guarantees than
the line graph [13]. In particular, if we start with with e pebbles on Argon2i
and are challenged to place a pebble on a random node r(i) we can argue that
it will take us at least Ω̃

(
(N/e)3

)
steps to re-pebble node r(i) in expectation.

With this observation in mind we can redefine “hard” challenges to require that
|Pt2−t| = Ω̃((N/t)3) for every t ≤ t2—where t2 is the time when we actually
placed a pebble on node r(i). Fixing e = N1−ε we can argue that either (1)
there are Ω(N) rounds with at least e pebbles on the graph, or (2) there are
a lot of “hard” rounds where we started with at most e pebbles on the graph.
In the second case we can argue that the cumulative pebbling cost is at least
Ω̃(N2+2ε).

Our Construction. We construct a family of dynamic graphs G
N
D with O(N)

nodes and indegree 2 which has essentially optimal CMC/SSC tradeoffs. We rely
on several building blocks to construct our dynamic graphs. The first building
block is the notion of a maximally ST-robust graph which was recently intro-
duced by Blocki and Cinkoske [11]. Intuitively, a maximally ST-robust graph is
a DAG G with has N inputs (sources) and N outputs (sinks) with the following
property: for any k ≤ N we can delete any subset S of k nodes from the graph
and there will remain subsets A of |A| ≥ N − k inputs and B of |B| ≥ N − k
outputs such that for every pair u ∈ A, v ∈ B the graph G − S still contains
a directed path from u to v. Blocki and Cinkoske [11] gave a construction of a
maximally ST-robust graph with linear size O(N) and constant indegree. The
second building block is a family of depth-robust graphs which we overlay on
top of the source nodes of our maximally ST-robust graph. Finally, we add our
data-dependent layer such that each dynamic edge (r(i), i) uses a uniformly ran-
dom output node r(i) from our maximally ST-robust graph. Intuitively, when
r(i) is revealed we will get “unlucky” if either we have more than k pebbles on
the graph or r(i) ∈ B, which happens with probability at least 1 − k/N . Then
whenever we get unlucky, we either have many pebbles on the graph or we will
need to repebble the entire set A of N − k inputs before node r(i) can be peb-
bled. By overlaying a depth-robust graph over the input nodes we can ensure
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that either (1) k = Ω(N), or (2) we get unlucky with constant probability and
repebbling A requires cumulative cost Ω(N2−ε). If we get unlucky a linear num-
ber of times with respect to N (which happens with overwhelming probability)
then we either sustained Ω(N) pebbles for Ω(N) steps or incurred CC Ω(N3−ε)

Dynamic EGS. To prove our CMC/SSC trade-off for EGS we primarily rely on
the known observation that these graphs G = (V = [N ], E) satisfy a key property
called δ-local expansion. If G is a δ-local expander, then for any S ⊆ [N ], the
graph G − S contains a directed path of length N − O(|S|). Intuitively, if we
started with pebbles on S and we were challenged to place a pebble on one
of the last cN nodes on this directed path then we would need to repebble
(1 − c)N − O(|S|) nodes beforehand. For a suitable constant 0 < c < 1 if |S| =
o(N) we can argue that the cumulative memory cost associated with repebbling
r(i) would be at least Ω(N2) in this case. Observing that the probability of
getting an unlucky challenge is at least cN/N = c it follows that there are
at least Ω(N) unlucky challenges. Thus, we either have Ω(N) challenge rounds
where our initial space usage was Ω(N) or we have Ω(N) challenge rounds where
we pay CMC cost Ω(N2)—in the later case our total CMC cost is Ω(N3).

Dynamic DRSample. Our argument follows a similar pattern as our dynamic
pebbling analysis of EGS. One key difference is that the DRSample graph G is
less depth-robust than EGS due to the fact that DRSample has constant inde-
gree. Instead we rely on the notion of a “metagraph” where groups of O(log N)
nodes in DRSample are “merged” into a single metanode. Alwen et al. [3] showed
that the metagraph G′ for DRSample had N ′ = O(N/ log N) nodes and satis-
fied the key-property that for every subset S′ ⊆ [N ′] of metanodes that the
graph G′ − S′ still had a path of length (1 − η)N ′ − O(|S′|) for some suitably
small constant η > 0. A path in the metagraph extrapolates back to a path
of length O(N) in the original graph. At this point our argument is similar to
EGS with the difference that repebbling the graph will be expensive when we
begin the challenge with more than N ′ = O(N/ log N) pebbles on the graph.
Thus, we can argue that either (1) we have Ω(N) challenge rounds where we
start with Ω(N/ log N) pebbles on the graph or (2) there are at least Ω(N)
challenge rounds where we start with fewer than O(N/ log N) pebbles on the
graph and we pay CMC costs Ω(N2/ log N) to repebble nodes while responding
to the challenge complete the challenge. In the latter case the total CMC cost
over all challenge rounds is Ω(N3/ log N).

2 Preliminaries

We let [N ] = {1, 2, . . . , N} and [i : j] = {i, i + 1, . . . , j − 1, j}. For any list
A = 〈a1, . . . , an〉, we let Ai denote the ith entry of A. For a DAG G = (V,E) and
any set S, we let G−S denote the graph G′ = (V ′, E′) such that V ′ = V \S and
E′ = {(u, v) | (u, v) ∈ E, u, v ∈ V ′}. We use indeg(G, v) = |{u : (u, v) ∈ E}| to
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denote the indegree of a node v ∈ V and indeg(G) = maxv∈V |{u : (u, v) ∈ E}|
to denote the maximum indegree of the DAG. For a dynamic pebbling graph G

we use indeg(G) = maxG∈sup(G) indeg(G) to denote the maximum indegree of
any DAG in the support of G. Whenever we implicitly refer to some x ∈ R as an
integer, we always mean x�. For example, [x] = {1, 2, . . . , x�}. For some set S, we
use the notation y ∈R S to indicate that y is sampled from S uniformly at random.

2.1 Dynamic Pebbling Notation

We formalize some convenient pebbling notation. Fix some dynamic pebbling
strategy S, G = ([N ], E), and let P = S(G) = 〈P1, . . . , PT 〉 be the peb-
bling that is produced when G = (V,E) ∼ G is sampled. For each v ∈ V let
parentsG(i) = {j | (j, i) ∈ E} denote the parents of node v. When the graph G is
clear from context we will omit G from the subscript and simply write parents(i).
For i ∈ [N ] in which there exists a dynamic edge (r(i), i), let P (i) denote the
pebbling configuration during the round s(i) when r(i) was first discovered. That
is, P (i) = Ps(i), where

s(i) =

{
1 if i = 1, and
min{j ∈ [T ] | i − 1 ∈ Pj} otherwise.

Similarly, we let t(i) = mink≥s(i)∈[T ]{k | r(i) ∈ Pk} denotes the first round
in which r(i) is pebbled after r(i) is revealed in round s(i).

2.2 Generalized Hoeffding Inequality

The pebbling P = S(G) and its associated costs will depend on the particu-
lar graph G ∼ G. Thus, when analyzing the cumulative memory complexity
and/or sustained space complexity of a dynamic graph we are inherently mak-
ing a probabilistic claim. In particular, we would like to argue that a particular
lower bound on the pebbling cost of S(G) holds with high probability—over the
selection of G ∼ G. We use the Generalized Hoeffding’s Inequality to lowerbound
these values [6].

Lemma 1 (Generalized Hoeffding’s Inequality [6]). If V1, . . . , VQ are
binary random variables such that for any i (0 ≤ i ≤ Q) and any values
v1, v2, . . . , vi,

Pr[Vi+1 = 1 | V1 = v1, . . . , Vi = vi] ≥ ρ, (1)

then for any ε > 0, with probability at least 1 − e−2ε2Q,
∑Q

i=1 Vi ≥ Q(p − ε).

2.3 Useful Graphs and Their Pebbling Complexity

Naturally, we define notions of measuring the time-space requirements for peb-
bling dynamic graphs. Cumulative complexity refers to the total number of
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pebbles used at each step to pebble a graph, while sustained space complex-
ity describes how many steps a certain amount of pebbles were on the graph.

Definition 3 (Pebbling Complexity). Let G be a dynamic pebbling graph, G
be a graph in the sample space of G, P be the set of legal pebblings of G, and S
be the set of pebbling strategies for G. We define the cumulative complexity of a

– pebbling P = 〈P1, . . . , PT 〉 ∈ P as cc(P ) =
∑T

i=1|Pi|,
– a sequence of pebbling moves 〈Pi, . . . , Pj〉 as cc(P, i, j) =

∑j
k=i|Pk|

– graph G as cc(G) = minP∈P{cc(P )}, and
– dynamic pebbling graph G as cc(G)minS∈S{EG∼G[cc(S(G))]}.

Likewise, we define the s-sustained space complexity of a

– pebbling P as ss(P, s) = |{i | |Pi| ≥ s, i ∈ [T ]}|,
– graph G as ss(G, s) = minP∈P{ss(P, s)}, and
– dynamic pebbling graph G as minS∈S{EG∼G[ss(S(G), s)]}.

For notational purposes, we also define the opposite of s-sustained space
complexity called (p, 	)-low memory.

Definition 4 (Low Memory Pebbling). Let S be a pebbling strategy for a
graph distribution G and G be any graph in the sample space of G. We say that
P = S(G) is a (p, 	)-low memory pebbling for G if

1. there exists A ⊆ [T ] such that |A| ≤ 	N , and
2. for all i ∈ A \ [T ] we have |Pi| ≤ pN .

The cumulative complexity of a graph is tightly correlated with the notion
of depth robustness, the property of a graph having long paths even when many
nodes are removed from the graph.

Definition 5 (Depth Robustness). A DAG G = (V,E) is (e, d)-depth robust
if for any S ⊆ V of size at most e, there exists a path of length d in G − S.

Throughout this paper we make use of the following remark on node-deletion.

Remark 1 (of [4]). Let G be an (e, d)-depth robust graph. Then for any S ⊆
V (G) of size k ≤ e, the graph G − S is (e − k, d)-depth robust.

We rely heavily on a lowerbound for the cumulative complexity of graphs
according to their depth-robustness.

Theorem 1 (of [4]). Let G be an (e, d)-depth-robust DAG, then cc(G) > ed.
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3 A Theoretical MHF with Ideal Trade-Off

In this section we use an (e = Ω(N), d)-depth robust graph D with constant
indegree and a maximally ST-robust graph to construct a dynamic graph G

N
D

with the property that for any pebbling strategy S with high probability either
there are at least Ω(N) rounds with at least Ω(N) pebbles on the graph) or
cc(S(G)) ≥ Ω(N2d). Furthermore, if D has constant indegree than any graph
G in the support of GN

D also has constant indegree.

Theorem 2. Let D be an (e = 2pN, d)-depth robust graph. There exist constants
0 < c, c1, p, 	 < 1, such that for any strategy S, except with probability at most
exp(−2(1 − p − c1)2N), either ss(S(G), pN) > 	N or cc(S(G)) ≥ cN2d, where
the probability is taken over the choice of G ∼ G

N
D .

For every constant ε > 0 and every N ≥ 1 Schnitger [19] gave a construction
of a DAG GratesN,ε which is (Ω(N), Ω(N1−ε))-depth robust and has constant
indegree. Specifically, for all ε > 0, there exist constants γ, c > 0, depending only
on ε such that the graph GratesN,ε on N nodes is (γN, cN1−ε)-depth robust and
has constant indegree.

In our construction G
N
D if we instantiate D = GratesN,ε using GratesN,ε (or

any other (Ω(N), Ω(N1−ε))-depth robust graph) we obtain the Corollary 1 which
says that (whp) either our cc cost is at least Ω(N3−ε) or we will have Ω(N)
rounds with Ω(N) pebbles.

Corollary 1 (of Theorem 2). For any ε > 0, there exist constants 0 <
c, c′, c′′, p, 	 < 1 such that for any strategy S, except with probability at most
exp(−2(1 − p − c′)2N), either ss(S(P ), pN) > 	N or cc(P ) ≥ c′′N3−ε, where
the probability is taken over the choice of G ∼ G

N
GratesN,ε

.

We remark it is better to instantiate G
N
D with D = GratesN,ε instead of

another depth-robust graph like DRSample [3] is (Ω(N/ log N), Ω(N))-depth
robust. This is an interesting observation because if we considered these DAGs
as a standalone iMHF then we would prefer to use DRSample. In particular,
DRSample has cc = Ω(N2/ log N) in comparison to cc = Ω(N2−ε) for grates.
The reason why DRSample is not suitable is that we do not have any guarantees
that the graph is (e, d)-depth robust when e = Ω(N). The graph GratesN,ε is
ideal for instantiating D in our construction, as it is (Ω(N), Ω(N1−ε)-depth
robust.

3.1 The Construction

The dynamic graph G
N
D consists of three components. A maximally ST robust

graph with input and output sets of size N , a highly depth-robust graph over-
layed on the input set as seen in Fig. 1, and a line graph with each node having
a dynamic edge from a node sampled uniformly at random from the output set
of our ST robust graph. A visualization of the complete construction of GN

D is
shown in Fig. 2. We elaborate on each component in further detail below.
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ST-robust graphs play an integral role in our construction [11]. ST-robust
graphs are DAGs that have a high connectivity between the sources and sinks
even when many nodes are removed. We use ST-robust graphs of the strongest
variety—ones that have the maximum possible paths from the inputs to the
outputs given arbitrary node deletion.

Definition 6 (ST-Robustness [11]). Let G = (V,E) be a DAG with n inputs
denoted by set I and n outputs denoted by set O. Then G is (k1, k2)-ST robust
if for all D ⊂ V (G) with |D| ≤ k1 there exists a subgraph H of G − D with
|I ∩ V (H)| ≥ k2 and |O ∩ V (H)| ≥ k2 such that for all s ∈ I ∩ V (H) and
t ∈ O ∩ V (H), there exists a path from s to t in H. The graph G is maximally
ST-robust if G is (k, n − k)-ST robust for all 0 ≤ k ≤ n.

In particular, Blocki et al. [11] prove the existence of a family of maximally
ST-robust graphs with size linear with respect to the size of the input and output
sets.

Theorem 3 (of [4]). For all N > 0, there exist maximally ST-Robust graphs
on N inputs and N outputs on O(N) nodes and constant indegree.

Intuitively, suppose that when the challenge r(Li) is revealed we had pebbles
on nodes S. By ST-robustness there exists a subset of |A| ≥ N −|S| input nodes
and |B| ≥ N − |S| output nodes such that every a ∈ A and b ∈ B there is
a directed path from a to b which avoids the set S entirely. In particular, this
means that if the challenge r(Li) ∈ B is in the set B (which happens with
probability at least |B|/N ≥ 1 − |S|/N) then we will need to repebble every
node in the set A before we can pebble node r(Li).

Lastly, we define a function overlay, shown in Fig. 1, which we use to com-
bine graphs as part of our construction. Intuitively, we overlay a depth-robust
graph on top of the inputs of our ST-robust graph to ensure that, unless |S| is
sufficiently large, it will be expensive to repebble the entire set A above.

Definition 7 (Overlay). Let G = (V = [n], E) and G′ = (V ′ = [m], E′) for
m > 2n with sources [n] and sinks [m − n + 1 : m]. Then overlay(G,G′) =
(V ′, E ∪ E′).

Definition 8 (The Dynamic Graph G
N
D). Let D be an (eN , dN )-depth robust

graph on N nodes and ST be a maximally ST-robust graph with N inputs STin

and N outputs STout. Next let G = overlay(D,ST) on M nodes. Let L = 〈M +
1, . . . ,M +N〉 and G′ = (V,E) such that V = V (G)∪L and E = E(G)∪{(M +
i − 1,M + i) | i ∈ [1 : N ]}. Finally, let GN

D be the distribution over the set of all
G′ with additional edges {(r(Li), Li) | i ∈ [N ]}, where r(Li) maps Li to some
j ∈ STout chosen uniformly at random.

For each Pi, let STPi
denote a subgraph of G − L − Pi with paths from at

least N − |Pi| inputs STin
Pi

to at least N − |Pi| outputs STout
Pi

. Intuitively, if a
strategy keeps a small number of pebbles on the graph for a large number of
steps, then, upon the discovery of a dynamic edge, a large amount of inputs will
likely have to be repebbled, which is expensive due to its depth robustness.
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ST G

1 2 · · · i · · · N

D

o1 o2 · · · oi · · · oN

• • •

1 2 · · · i · · · N

• • •

•• •
• • •

o1 o2 · · · oi · · · oN

1 2 · · · i · · · N

STout

• • •

•• •
• • •

• • •

STout

STinSTin

Fig. 1. Above is the visualization of the mapping overlay applied to D and ST to get
the graph G. The result is an ST-robust graph with a highly depth robust input set.
The red edges from STin to STout represent the high connectivity between the sets due
to the maximal ST-robustness. (Color figure online)

3.2 Lowerbounding Costly Edges

The first step in describing the trade-off between sustained space and cumulative
complexity of GN

D is describing how often a low-memory pebbling encounters a
costly edge, one that requires a large amount of repebbling. Even if a pebbling
keeps only a small number of pebbles on the graph, it’s possible that it gets
“lucky” and avoids costly edges. In this section we show that a pebbling can’t
get lucky many times, except with negligible probability.

Fix some parameters 0 < 	 < 1 − p < 1. Let unlucky1, . . . , unluckyN be
random variables such that unluckyi = 1 if |P (Li)| > pN or r(Li) ∈ STout

P (Li)

i.e., we have at most pN pebbles on the graph when the challenge edge r(Li) is
revealed or we will need to repebble the entire set STin

P (Li) since r(Li) ∈ STout
P (Li).

Let unlucky =
∑

i∈[N ] unluckyi. Getting “lucky” during a round in which some
r(Li) is discovered refers to the event that there are a small amount of pebbles
on the graph, yet r(Li) �∈ STout

P (Li) and isn’t guaranteed to be costly. Intuitively,
the challenge r(Li) is guaranteed to be costly if it happens to be in STout

P (Li).
The exact penalty for being unlucky will be described later. Here, we find that
the probability of getting lucky is simply upperbounded by p, since there are at
most pN nodes of STout that are not in STin

P (Li).

Lemma 2. Let S be any strategy and let P = 〈P1, . . . , PT 〉 = S(G), where
G ∼ G

N
D . Then for any fixed b1, . . . , bi−1 ∈ {0, 1}we have

q := Pr

⎡

⎣unluckyi

∣
∣
∣
∣
∣
∣

∧

j∈[i−1]

unluckyj = bj

⎤

⎦ ≥ 1 − p,
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L1 L2 · · · Li · · · LN

O1 O2 · · · Oi · · · ON

1 2 · · · i · · · N

r(i)

G
N
D

STout

STin

Fig. 2. Above is the final construction of GN
D , which combines overlay(D,ST) with a

line graph on nodes L. For each Li there is a dynamic edge from r(Li) ∈R STout.

where the probability is taken over the selection of G ∼ G
N
D .

Proof. If |P (Li)| > pN , then by definition unluckyi = 1. If |P (Li)| ≤ pN . Then
regardless of any prior pebbling steps, we have that there are at most pN nodes
in STout \ STout

P (Li) by construction. Since r(Li) is chosen uniformly at random,
it follows by Theorem 1 that r(Li) �∈ STout

P (Li) with probability at most
∣
∣
∣STout \ STout

P (Li)

∣
∣
∣

N
≤ p,

so q ≥ 1 − p.

Ultimately, our goal is to show that, with overwhelming probability, any
low-memory pebbling gets unlucky so often that it incurs an unreasonable time
cost, because each time the pebbling gets unlucky it incurs a high cost while
repebbling r(Li). So, we must show that it’s very unlikely that such pebblings
get unlucky only a relatively few amount of times. From Lemmas 1 and 2, Lemma
3 immediately follows, and so the proof is left to the full version of this paper.

Lemma 3. Let S be any pebbling strategy, and let P = S(G) for G ∼ G
N
D . Then

for all ε > 0 Pr
[∑

i∈[N ] unluckyi < N(1 − p − ε)
]

≤ exp(−2ε2N)

3.3 The Trade-Off Between Sustained Space and Cumulative
Complexity

We now argue that whenever unluckyi = 1 and we have at most |P (Li)| ≤ pN
pebbles on the graph when the challenge r(Li) is revealed that the cumula-
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tive pebbling cost incurred between rounds s(Li) (when the challenge r(Li)
is revealed) and t(Li) (when we place a pebble on node r(Li)) is at least
cc(P, s(Li), t(Li)) ≥ pNd. We conclude with the proof of our main result from
this section.

If few pebbles are on the graph at step s(Li), then the pebbling can get lucky
in the sense that r(Li) isn’t expensive to pebble; otherwise, the configuration
necessitates some costly pebbling moves from step s(Li) to step t(Li). More
concretely, if unluckyi = 1 and |P (Li)| ≤ pN then r(Li) is in STout

P (i) and pebbling
r(Li) requires pebbling at least N(1 − p) nodes of STin

P (i), which is (e − pN, d)-
depth robust by Remark 1.

Lemma 4. For any pebbling strategy S and P = S(G) for G ∼ G
N
D . If unluckyi =

1, |P (Li)| ≤ pN , and D is (2pN, d)-depth robust, then cc(P, s(Li), t(Li)) ≥ pNd.
We call such (r(Li), Li) costly edges.

Proof. If unluckyi = 1, and |P (Li)| ≤ pN then r(Li) ∈ STout
P (Li). Since STP (Li)

is maximally ST-robust, there are paths from at least N(1 − p) inputs to r(Li).
That is, STin

P (Li) must be pebbled by round t(Li). Since STin is (2pN, d)-depth
robust, STin

P (Li) is (pN, d)-depth robust by Remark 1. It follows that

cc(P, s(Li), t(Li)) ≥ cc
(
STin

P (Li)

)
≥ pNd.

Now we have the tools to prove Theorem 2, which is a straight-forward con-
sequence of Lemmas 3 and 4.

Proof (of Theorem 2). If P is not (p, 	)-low memory, then ss(P, pN) > 	N .
Suppose P is (p, 	)-low memory. By Lemma 3, except with probability at most
e−2(1−p−c1)

2N (for 	 < c1 < 1 − p), there are at least c1N pebbling moves in
which either |P (Li)| > pN or r(Li) ∈ STout

P (Li), so for c2 = c1−	, there are nodes
i1, . . . ic2N in which unluckyij

= 1 and |P (Lij
)| ≤ pN . It follows by Lemma 4

that cc(P ) ≥ ∑
j∈[c2N ] cc

(
P, s(Lij

), t(Lij
)
) ≥ c2pN2d.

4 Dynamic EGS

The next graph family we hybridize is a construction by Erdős et al., which we
will call EGS. EGS achieves the maximum possible cumulative complexity of
Ω(N2) [14]. While EGS achieves the highest possible cumulative complexity, it
is the least practical of the graphs we’re considering, as it has indegree Ω(log N)
[14]. In this section we construct a simple, dynamic version of this graph and show
that it achieves the maximal sustained space and cumulative memory trade-off.
The precise details of this construction are unnecessary, as we rely only on the
fact that the graph satisfies the properties of local expansion.

Definition 9 (Local Expansion [5]). Let Ir and I∗
r be defined such that

Ir(x) = {x − r − 1, . . . , x} and I∗
r (x) = {x + 1, . . . , x + r}. We say that a

DAG G = (V = [N ], E) is a δ-local expander if for all i ∈ V , r ≤ i,N − i,
and A ⊆ I∗

r (x) and B ⊆ Ir(x) each of size at least δr, there exists an edge from
A to B.
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Local expansion naturally gives guarantees on connectivity and depth-robustness
after arbitrary node deletion and is a key property of EGS.

Theorem 4 (of [5,14]). For any 0 < δ < 1, there exists a family of graphs
{EGSδ

N}∞
N=1 such that EGSδ

N is a δ-local expander on N nodes. For some con-
stants c, η, η′ > 0, depending only on δ, each EGSδ

N has indegree c log N and is
(ηN, η′N)-depth robust. Furthermore, for each i ∈ [N ], EGSδ

N ([i]) is (ηi, η′i)-
depth robust.

In constructing a hybrid extension of EGS, we want to add dynamic edges that
require the adversary to repebble many nodes. For each node, we simply select an
incoming edge from a prior node chosen uniformly at random. We’ll show that if
an adversary doesn’t keep sufficiently many pebbles on the graph, then it will have
to repebble maximally depth-robust subgraphs of EGS many times.
Definition 10 (Dynamic EGS). The dynamic pebbling graph DEGSδ

N is the
graph EGSδ

N with additional dynamic edges {(r(i), i) | i ∈ [3 : N ]} with r(i) ∈R

[i − 2].
We’ll show that with overwhelming probability, any dynamic pebbling strat-

egy either maintains pN nodes on the graph for more than 	N steps, or has
cumulative complexity Ω(N3).

Theorem 5. There exist constants 0 < c, c′, c1, ρ, p, 	 < 1 such that for any

strategy S, except with probability at most exp(−2
(
ρ − c

1−c1

)2

(1 − c1)N), we

either have ss(S(G), pN) > 	N or cc(S(G)) ≥ c′N3 where the probability is
taken over the selection of G ∼ DEGSδ

N .

The last tool we’ll use to prove Theorem 5 are good nodes. If a pebbling
strategy has pebbles S on a graph, then it’s useful to know whether a given
node is surrounded by only relatively few pebbles, since that way the node is
more likely to be a part of a long path.

Definition 11 (Good Nodes [3]). Let γ > 0, G = ([N ], E) be a DAG, and
S ⊆ V . The node i ∈ [N ] is γ-good with respect to S if (1) for all r ∈ [i]
|Ir(i) ∩ S| ≤ γr and (2) for all r ∈ [m − i + 1] |I∗

r (i) ∩ S| ≤ γr.

We first show that if a strategy keeps some sufficiently small amount of pebbles
on the graph, then there will be large paths in the remaining graph. The good
nodes form such paths.

Lemma 5 (Lemma 5 of [5]). Let G = ([N ], E) be a δ-local expander and
x < y ∈ [N ]. For any S ⊆ [N ] and γ such that δ < min{γ/2, 1/4}, the graph
G − S contains a directed path through all nodes in G which are γ-good with
respect to S.

Prior work gave a lowerbound on the number good nodes in arbitrary DAGs
with respect to an arbitrarily-sized subset of nodes. This immediately allows us
to lowerbound the probability that r(i) is a good node.

Lemma 6 (Lemma 6 of [5]). For any DAG G = ([N ], E), γ > 0, and S ⊆ [N ],
there are at least N − 1+γ

1−γ |S| nodes in G which are γ-good with respect to S.
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4.1 Lowerbounds on Getting Unlucky

We define events that are costly for strategies that employ low-memory pebblings
and show that they happen with reasonably large probability. First, we must
characterize events that may lead to high cumulative cost if an adversary has
relatively few pebbles on the graph upon discovering r(i). We know by Lemma
5, there’s a good chance that r(i) is a γ-good node. If that’s the case, then
there’s a long path that includes r(i). Eventually, we show that if r(i) is good
and sufficiently large, then the subgraph of good nodes prior to r(i) is highly
depth robust and must be repebbled.

To quantify what it means for i and r(i) to be “large” enough that pebbling
the subgraph of good nodes is sufficiently costly, we require the assignment of
several constants with various constraints in agreement with Lemma 7.

Lemma 7. Fix any 0 < η < 1 according to Theorem 4. There exists an assign-
ment of p, 	, c1, c2, and c3 such that for all 0 < γ < 1,

1. 1 − η < c3 < c2 = c1

(
1 − p 1+γ

1−γ

)
, 2. 0 < 	 < c2(c2 − c3)(1 − c1), and

3. 0 < c2 < c1 < 1 − 	.

Proof. To satisfy 1 − η < c2 < 1, we first pick 0 < p < η(1−γ)
1+γ . Since c2 =

c1(1 − p 1−γ
1+γ ), it follows that c2 < c1. Fix 	 such that 0 < 	 < c2(c2 − c3)(1 − c1).

Then (3) is satisfied by the fact that 0 < c1, c2, c3 < 1. Finally, fix any c3 such
that 1 − η < c3 < c2.

Let 0 < δ < 1, assign 0 < γ < 1 satisfying Lemma 5, and fix p, 	, c1, c2, and
c3 according to Lemma 7. Let S be any pebbling strategy for G ∼ DEGSδ

N and
P = S(P ). Next we define an indicator random variable for the whether or not
r(i) is good. Let goodi be the random variable such that goodi = 1 if r(i) is γ-
good with respect to P (i) and goodi = 0 otherwise. The function ranki determines
how far r(i) is along the path of good nodes. The higher the value of ranki(r(i)),
the more expensive it will be to pebble r(i). More formally, ranki(v) = j if v is
topologically the jth γ-good node respect to P (i), and ranki(v) = 0 otherwise.

Finally we say that an adversary is unlucky at a step s(i) if r(i) is good and
sufficiently far along the path of good nodes. For i ≥ c1N + 2, let unluckyi

be the random variable such that unluckyi = 0 if P (i) ≤ pN and either
goodi = 0 or ranki(v) < c3N and unluckyi = 0 otherwise. Let unlucky =∑

i∈[c1N+2,N ] unluckyi.
Intuitively, an adversary that has few pebbles on the graph at step s(i) is

unlucky if r(i) is a γ-good node with respect to P (i) and of large depth. We
show that any strategy gets unlucky at step s(i) with some constant probability.

Lemma 8. There exists a constant ρ > 0 such that for each for each i ∈ [c1N +
2 : N ] and bc1N+2, . . . , bi−1 ∈ {0, 1}.

Pr

⎡

⎣unluckyi

∣
∣
∣
∣
∣
∣

∧

j∈[c1N+2:i−1]

unluckyj = bj

⎤

⎦ ≥ ρ.
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Proof. If |P (i)| > pN then unluckyi = 1, so assume |P (i)| ≤ pN . Then G([i−2])
is a δ-local expander on at least c1N nodes, and there are at least c2N = c1N −
c1pN 1+γ

1−γ γ-good nodes with respect to P (i) in G([i − 2]) by Theorem 6. So, the
probability that goodi = 1 is at least c2N

i−2 ≥ c2N
N = c2

For c3 assigned according to Lemma 7, we have

Pr[ranki(r(i)) ≥ c3N | goodi] ≥ c2 − c3,

then by conditional probability Pr[ranki(r(i)) ≥ c3N ] ≥ c2(c2 − c3). Then for
ρ = c2(c2 − c3), Pr

[
unluckyi

∣
∣
∣
∧

j∈[c1N+2:i−1] unluckyj = bj

]
≥ ρ.

Just as before, combining Lemmas 1 and 8 immediately implies Lemma 9.

Lemma 9. For some constant c > 0,

Pr[unlucky < cN ] ≤ exp

(

−2
(

ρ − c

1 − c1

)2

(1 − c1)N

)

.

4.2 The Cost of Getting Unlucky

Next we examine the cost associated with unluckyi. Theorem 4 implies that being
unlucky results in high cumulative cost from step s(i) to step t(i).

Lemma 10. If unluckyi = 1 and |P (i)| < pN then cc(P, s(i), t(i)) ≥ c5N
2 for

some constant c5 > 0.

Proof. If unluckyi = 1 and |P (i)| < pN , then all of the γ-good nodes of G([r(i)])
with respect to P (i) must be repebbled before or on step t(i). It follows by
Theorem 4 that this subgraph is (ηc3N, η′c3N)-depth robust for some constants
η, η′ > 0. Since by Lemma 7 c3 > 1 − η, we can apply Theorem 1 to get

cc(i, s(i), t(i)) ≥ (c3 + η − 1)η′c3N2

≥ (c3 + η − 1)η′c3N2

= c5N
2,

for c5 = (c3 + η − 1)η′c3

As with Theorem 2, Theorem 5 directly follows from Lemma 10. This is because
Lemma 9 implies that, except with negligible probability, there are Ω(N) steps
in which unluckyi = 1 and |P (i)| ≤ pN . Then Lemma 10 implies that such a
strategy incurs CC Ω(N2) for each of these incidences, resulting in a total CC
of Ω(N3).
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5 Dynamic DRSample

DRSample is a randomized algorithm that, except with negligible probability,
outputs an

(
Ω
(

N
log N

)
, Ω(N)

)
-depth robust graph on N nodes [3]. While losing

a log N factor in depth robustness, output graphs of DRSample contrast EGS
by having indegree 2 and being practical for common applications of MHFs.
To prove this section’s main result, Theorem 6, we use a stronger version of
depth-robustness, where we are guaranteed sufficiently long paths even after the
deletion of blocks of consecutive nodes.

Definition 12 (Block-Depth Robust [3]). Let N ∈ N and G = (V = [n], E)
be a DAG. For a node v, let N(v, b) = {v − b + 1, . . . , v}, and for S ⊆ V , let
N(S, b) =

⋃
v∈S N(v, b). The graph G is (e, d, b)-block-depth robust if for every

set S ⊆ V of size at most e, there exists a path of length d in G − N(S, b).

We also use a more general form of local expansion, which implies high con-
nectivity between the nodes after node deletion.

Definition 13 (Local Expansion Node [3]). For a graph G = (V = [N ], E),
c > 0 and r∗ ∈ Z

+, we say that a node v ∈ V is a (c, r∗)-local expander if for
all r ≥ r∗ we have

– for all A ⊂ I∗
v (r) and B ⊆ I∗

v+r(r) of size |A|, |B| ≥ cr there exists an edge
from A to B, and

– for all subsets A ⊆ Iv(r) and B ⊆ I∗
v−r(r) of size |A|, |B| ≥ cr, there exists

an edge from A to B.

In our analysis of Dynamic DRSample, we will often examine its metagraph.
The metagraph of a DAG G = ([N ], E) with parameter m simply maps each
block [mi + 1 : m(i + 1)] to a node. Two nodes of the metagraph u and v are
connected if in the original graph there’s an edge from the “last part” of the u
block to the “first part” of the v block.

Definition 14 (Metagraph [3]). For a graph G = ([N ], E) and m > 0, we
define the metagraph Gm = (Vm, Em) as follows. Let N ′ = N/m� and Vm =
[N ′]. Let

– Mi = [(i − 1)m + 1 : im],
– MF

i =
[
(i − 1)m + 1 : (i − 1)m +

⌊
m 1−1/10

2

⌋]
, and

– ML
i =

[
(i − 1)m + 1 +

⌈
m 1+1/10

2

⌉
: im

]
.

Then Em = {(i, j) | ML
i × MF

j ∩ E �= ∅}.
There is a natural correspondence between the depth-robustness and block-depth
robustness of graphs and metagraphs.

Remark 2 (Claim 1 of [3]). Let G be a DAG. If Gm is (e, d)-depth robust, then
G is (e/2,md/10,m)-block depth robust.
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DRSample has a number of tunable parameters. We exclusively refer to
DRSample with the recommended parameters from [3].

Definition 15 (DRSample [3]). The randomized algorithm DRSample on
input N outputs a graph DR = (V,E) on N nodes with the following proper-
ties. Fix any 0 < p, ε < 1 and let

– a = 160
– m = a log N ,
– N ′ = N/m�
– γ = 0.1,

– σ = 0.125
– x = 0.00861,
– α = 0.2916,
– r∗ = 8,

– c10 = 1 − 2p
σ − x − ε,

– η = 0.038945, and

– η′ = 0.3.

Except with negligible probability μ(N), for any subset of metanodes S of size
at most pN ′, DRm −S contains at least c10N

′ (α, r∗)-local expanders that are γ-
good with respect to S. Each of the these nodes are connected, and the metagraph
DRm is (ηN ′, η′N ′)-depth robust.

Next we hybridize DRSample by adding dynamic edges for each node. Here,
we make the block parameter m inherent in the construction, as each node has
a random edge to the “end” of a random metanode. For the ease of notation, we
let FromMeta be the function mapping metanodes to nodes in the original graph,
meaning FromMeta(i) = (i − 1)m + 1. Likewise, for v ∈ V , we let ToMeta(v) =
(v − 1)/m� + 1.

Definition 16 (Dynamic DRSample). Dynamic DRSample is the dynamic
pebbling graph DDRm

N , constructed as follows. Let DR = (V,E) ← DRSample(N).
Then DDRm

N is DR with additional dynamic edges {(r(i), i) | i ∈ [FromMeta(3) :
N ]}, where r(i) is chosen from {km | 1 ≤ k ≤ ToMeta(i) − 2} uniformly at
random. That is, for each node i ≥ 2m + 1 of DDRm

N , there’s a dynamic edge to
i from the end of a random metanode.

The main result of this section is that any pebbling strategy, except with
negligible probability, either sustains p N

a log N pebbles for 	N steps, or has cumu-

lative complexity Ω
(

N3

log N

)
.

Theorem 6. There exists constants 0 < p, 	, a, c13, c14 < 1 and negligible func-
tion μ, such that for m = a log N , any strategy S, except with probability at most
μ(N), we have either ss

(
S(G), pN

a log N

)
> 	N or cc(S(G)) ≥ c14N3

log N , where the
probability is taken over the selection of G ∼ DDRm

N .

Before we begin proving Theorem 6, we need to setup some useful variables
and notation. Let G ∼ DDRm

N , S be any strategy, and P = S(G), and assign a, m,
N ′, γ, α, r∗, c10, η, and η′ according to Definition 15. Let rm(i) = ToMeta(r(i))
and Pm(i) = ToMeta(P (i)). When i and P are known, we say that v is a good
expander when v is γ-good with respect to Pm(i) in Gm and is a (δ, r∗)-local
expander in Gm. We’ll heavily use fact from Definition 15 that all good expanders
are connected.
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We’ll want to show that for some chosen 0 < c11 < 1 and i ≥ c11N + 2,
if |Pm(i)| ≤ pN ′ then the subgraph induced by the good expanders less than
i − 1 is still

(
Ω
(

N
log N , N

)
, Ω(N)

)
-depth robust. While there are c10N

′ good
expanders in Gm −Pm(i), there could be as many as (1−c11)N ′ good expanders
that have never been pebbled (and thus are not candidates for rm(i)). So, we
need to show that c10 can take values greater than 1 − η + (1 − c11), yet still be
less than 1. Recall from Definition 15 that c10 is an implicit function of p, so we
can only achieve this by assigning p and c11 the appropriate values. Namely, we
need

η − (1 − c10) − (1 − c11) > 0. (2)

It suffices for c11 = 0.97, p = 2 × 10−5, and c10 = 0.99106.
Until the proof of Theorem 6, we assume that G is (ηN ′, η′N ′)-depth robust,

and for any set S of size at most pN ′, G − S contains at least c10N
′ good

expanders.

5.1 Lowerbounds on Getting Unlucky

We want to determine the number of times an adversary could be “unlucky.” For
a step to be unlucky, we need it to be sufficiently large, so that it may be costly
to rectify. Specifically, we want the metanode corresponding to this step to be at
least c11N

′ +2. Moreover, if |P (i)| ≤ pN ′, we say the adversary is unlucky if r(i)
is a good expander and large. As before, let ranki(v) = j when v is topologically
the jth good expander in G.

These trials consist of the nodes starting from FromMeta(c11N ′ + 2) to N .
There are K ≥ N − FromMeta(c11N ′ + 2) ≥ N(1 − c11) + m − 2 such nodes.
We’ll assume that N > 200 and fix κ = 1 − c11 − 1

100 so that 0 < κN ≤
K. For i ∈ [(1 − κ)N : N ], we define the random variable unluckyi such that

unluckyi =

⎧
⎪⎨

⎪⎩

0 if |P (i)| ≤ p, but either rm(i) isn’t a good expander
or ranki(rm(i)) < c12N

′, and
1 otherwise,

for some constant c12 such that

1 − η < c12 < c10 − (1 − c11). (3)

See that c12 can take such values since c10 and c11 satisfy Equation 2. Then when
we take out all nodes but the c12N

′ good expanders that must be repebbled, G
will still be adequately depth-robust since the c12N

′ good expanders account for
almost all nodes of G. Finally, let unlucky =

∑
i∈[(1−κ)N :N ] unluckyi. We show

that such steps are unlucky with constant probability.

Lemma 11. For any i ∈ [(1 − κ)N : N ] and b1, . . . , bi−1 ∈ {0, 1},

Pr

⎡

⎣unluckyi

∣
∣
∣
∣
∣
∣

∧

j∈[i−1]

unluckyj = bj

⎤

⎦ ≥ ρ,

for some constant ρ > 0.
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Proof. If |Pm(i)| > pN ′ then unluckyi = 1, so assume otherwise. There are at
least (c10 − (1 − c11))N ′ good expanders in Gm([i − 2]), so the probability that
rm(i) is a good expander out of at most N ′ total nodes is at least c10 − (1− c11).

If rm(i) is a good expander, then ranki(rm(i)) ≥ c12N
′ with probability at

least 1 − c12, so by conditional probability, rm(i) is a good expander and the
c12N

′th or higher good expander with probability at least ρ = (c10−(1−c11))(1−
c12). Finally, ρ > 0 since c10 > 1 − η + (1 − c11) by Equation 2.

5.2 The Cost of Being Unlucky

Intuitively, we want to show that a costly node requires high cumulative cost to
repebble since all of the good expanders are connected.

Lemma 12. If unluckyi = 1 and |P (i)| < pN ′, then cc(P, s(i), t(i)) ≥ c15N2

log N for
some c15 > 0.

Proof. First we have |Pm(i)| ≤ |P (i)| ≤ pN ′. Let im = ToMeta(i) − 2. If
the above assumptions hold, then im ≥ c11N

′ and rm(i) is a good expander
with ranki(rm(i)) ≥ c12N

′. Then there are nodes v1, . . . , vc12N ′ which are good
expanders and connected in Gm[i − 2] − Pm(i). Since c12 and c11 satisfy Equa-
tion 3, c12 > 1 − η + (1 − c11) it follows that the subgraph Gm({v1, . . . , vc12N ′})
is ((η + c12 − 1)N ′, η′N ′)-depth robust. To pebble r(i), all of the nodes
that comprise each metanode vj must be pebbled. By Remarks 1 and 2,

G
(⋃

j∈[c12N ′] I
∗
m(FromMeta(vj))

)
is

(
(η + c12 − 1)N ′

2
, c11η

′N/10,m

)

-block depth robust.

Since this subgraph has no pebbles on it on step s(i) and must be repebbled by
step t(i), we have cc(P, s(i), t(i)) ≥ c15N2

log(N) for c15 = η+c12−1
20 c11η

′.

The proof of Theorem 6 closely follows the proof of Theorem 2, and a formal
proof is deferred tothe full version of this paperThe main difference has to do
with arguments on the metagraph Gm, which is covered by the proof of Lemma
16. More closely, if ss

(
S(G), pN

a log N

)
≤ 	N then with overwhelming probability

there are c13N nodes in which unluckyj = 1 for 	 < c13 < κρ. Then there
are nodes i1, . . . , i(c13−�)N in which unluckyij

= 1 and |P (ij)| ≤ pN ′. Then by

Lemma 16, it follows that cc (S(G)) = Ω
(

N3

log N

)
.

6 Argon2id

Argon2id is a hybrid MHF that’s currently deployed in several cryptographic
libraries, so it is necessary to understand its sustained space guarantees [10].
The first half of the evaluation is data-independent, while the second half is
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data-dependent. In the pebbling model, this corresponds to the first half of the
nodes having fixed edges that are known at the start of Argon2id’s evaluation,
while the random edges in the second half are dynamic. Intuitively, the data-
dependent phase induces high cumulative cost, while the data-independent phase
has weaker, yet still significant, cumulative cost to fall back on in the presence
of a side-channel attack.

Definition 17 (Argon2id [10]). The dynamic pebbling graph Argon2idN con-
sists of the vertex set V = [2N ] and edge set

E = {(i, i + 1) | i ∈ [2N − 1]} ∪ {(r(i), i) | i ∈ [2N ]},

where r(i) is a random value distributed as follows:

Pr[r(i) = j] = Pr
x∈R[M ]

[

i

(

1 − x2

M2

)

∈ (j − 1, j]
]

for some M � N . The edges (r(i), i) are only dynamic when i > N . When
i ≤ N , (r(i), i) is static and known prior to pebbling.

In particular, we show the following results.

Theorem 7. There exists some constants δ, γ < 0 < f, u, 	, δ′, γ′ < 1 such that
for any pebbling strategy S, with high probability, either ss(S(G), δ′ logδ Ne) >
	N or cc(S(G)) ≥ γ′N4e−2 logγ N , where the probability is taken over the choice
of G ∼ Argon2idN .

Corollary 2. Let S be any strategy and G ∼ Argon2idN . Then there exists
constants δ, γ < 0 < f, u, 	, δ′, γ′ < 1 such that for all ε > 0 and with high
probability, either ss(S(G), δ′N1−ε logδ N) > 	N or cc(S(G)) = γ′N2+2ε logγ N .

The techniques used to prove Theorem 7 are completely different than the
other three trade-off proofs in this paper. We start by arguing if an strategy has
e pebbles on the graph on step s(i), then with some reasonably large probability
the depth of r(i) is d = Ω̃(N3/e3). For this argument, we use a new graph
property called fractional-depth robustness, which says that if a limited amount
of nodes are deleted from the graph, then there are some fraction of nodes still
with large depth. From then on, the proof of Theorem 7 uses techniques from the
proof that the dynamic pebbling graph ScryptN has CC Ω(N2) [6]. Specifically,
if r(i) has depth d in G − P (i), then the minimum required steps to pebble r(i)
is d. For this to happen, e must have been sufficiently large (otherwise d would
necessarily be larger). The argument is repeated for all steps between s(i−1)+1
and s(i) to lowerbound its CC.

6.1 The Trade-Off and Cumulative Complexity

We prove the CC penalty for low-memory pebblings using a graph property
called fractional depth-robustness.
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Definition 18 (Fractional Depth-Robustness [13]). For a vertex v in a
graph G, let depth(v,G) denote the longest path to v in G. A DAG G = (V =
[N ], E) (e, d, f)-fractionally depth robust if for all S ⊆ V with |S| ≤ e, we have
|{v |, v ∈ V, depth(v,G) ≥ d}| ≥ fN.

Next we’ll use the following facts about the graph underlying Argon2id.

Lemma 13 (of [13]). Let G ∼ Argon2idN . There exists 0 < α′, f < 1 and α ≤ 0
such that, with probability 1 − o

(
1
N

)
, G([N ]) is

(
e, α′N3 logα N

e3 , f
)
-fractionally

depth robust.

Let S be a pebbling strategy, G ∼ Argon2idN , and P = S(G). For the ease
of notation, ei = |Pi| and di denote the minimum required steps from s(i) to
pebble r(i). For now we’ll assume from Lemma 13 that G is

(
e, α′N3 logα N

e3 , f
)
-

fractionally depth-robust for some 0 < α′, f < 1 and α ≤ 0. Immediately, this
says that if |P (i)| ≤ e then there are fN nodes of depth at least α′N3 logα N

e3

in G − P (i). By Definition 17 r(i) is not chosen uniformly at random, as the
distribution slightly shifts probability mass to nodes closer to i. However, this
shift isn’t significant enough for our arguments. This is formalized by Lemma
14. This claim is inherent by the work of [13], but we include a proof in the full
version of this paper.

Lemma 14 (of [13]). Let G ∼ Argon2idN , i > N , and j ≤ N . Then
Pr[r(i) = j] ≥ 1

8N .

Immediately from Lemma 14, we have

Pr

[

di ≥ α′N3 logα N

e3s(i)

]

≥ f/8. (4)

This is the probability that the adversary, upon discovering r(i) at step s(i),
must take at least α′N3 logα N

e3
s(i)

steps to pebble r(i). From any j ≤ s(i), the

minimum required steps to pebble r(i) is at least s(i) − j + di. Then even
if the adversary knew r(i) on step s(i) − j, it would have to take at least
di+j ≥ α′N3 logα N

e3
s(i)−j

steps with probability at least f/8. Intuitively, this is because

each r(i) is independent of the strategy employed by S, meaning we can take
r(i) to be chosen before the pebbling begins. Then even if f(i) was discovered
on step s(i) − j, Equation 4 applies. Let s(i) − hi be a step that maximizes this
bound on di. Then for all k ≤ s(i), di ≥ α′N3 logα N

e3
s(i)−hi

− hi ≥ α′N3 logα N
e3

s(i)−k

− k, so

es(i)−k ≥ α′1/3N logα/3 N
(di+k)1/3 by the construction of hi. For i ∈ [N + 1 : 2N ], we

define the random variables hardi = 1 if di ≥ α′N3 logα N
e3

s(i)−hi

− hi, and hardi = 0

otherwise. If hardi = 1, then for all k ≤ s(i), es(i)−k ≥ α′1/3N logα/3 N
(di+k)1/3 by
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the construction of hi. This allows us to lowerbound the cumulative cost asso-
ciated with steps s(i − 1) + 1 to s(i). Next we define the random variables

unluckye
i =

{
1 if either es(i) > e or both es(i) ≤ e and hardi = 1, and
0 otherwise.

Lemma 15. For any b1, . . . , bi−1 ∈ {0, 1}, Pr
[
unluckye

i

∣∣∣∧j∈[i−1] unlucky
e
j = bj

]
≥

f/8.

Proof. If ei > e, then unluckye
i = 1, so assume otherwise. By the fractional-depth

robustness of Argon2id, even if r(i) was discovered on round s(i) − hi, r(i) has
depth at least α′N3 logα N

e3
s(i)−hi

−(s(i)−hi)
with probability at least f/8 by Equation 4.

Next we show that there is high cost associated with being unlucky. This argu-
ment closely follows Claim 8 of [6].

Lemma 16. If unluckye
i = unluckye

j = 1 and |P (i)|, |P (j)| ≤ pe for some j < i,
then cc(s(j) + 1, s(i)) ≥ β′N3e−2 logβ N for some 0 < β′ < 1 and β ≤ 0.

Proof. We have

cc(s(j) + 1, s(i)) ≥ cc(s(i) − dj + 1, s(i))

=
dj−1∑

k=0

ei−k

=
dj−1∑

k=0

α′1/3
N logα/3 N

(di + k)1/3
hardi = 1

≥ α′1/3
N logα/3 N

∫ di+dji−1

di

1
x1/3

dx

= 3α′1/3
N logα/3 N/2((di + dj)2/3 − di

2/3)

≥ β′N3e−2 logβ N (5)

for some 0 < β′ < 1 and β ≥ 0. Step 5 follows from a simple argument, which is
detailed in the full version of this paper.

Just as with Theorems 5 and 6, Theorem 7 directly follows from Lemma
16, so the proof has been deferred to the full version of this paper. Corollary 2
directly follows.

7 Open Problems

We conclude with several open question for future work. The most pressing
question is whether or not there exists a dynamic pebbling reduction for dMHFs
in an idealized model of computation—similar to the pebbling reduction for
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iMHFs in parallel random oracle model [7]. Such a pebbling reduction would
greatly simplify the design and analysis of future dMHFs. Another interesting
direction would be to try to find direct proofs of CMC/SSC trade-offs for one or
more of the dMHFs considered in this paper. For example, while [6] used dynamic
pebbling to build intuition about the cumulative memory complexity of Scrypt
the final security proof was direct and did not rely on pebbling arguments.
Another natural question is the development of dynamic pebbling attacks. For
example, fixing s = o(N/ log N) we could ask what is the minimum cc pebbling
strategy which is guaranteed to have s-sustained space complexity o(N).
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Abstract. We study communication complexity in computational set-
tings where bad inputs may exist, but they should be hard to find for
any computationally bounded adversary.

We define a model where there is a source of public randomness but
the inputs are chosen by a computationally bounded adversarial par-
ticipant after seeing the public randomness. We show that breaking the
known communication lower bounds of the private coins model in this
setting is closely connected to known cryptographic assumptions. We
consider the simultaneous messages model and the interactive commu-
nication model and show that for any non trivial predicate (with no
redundant rows, such as equality):
1. Breaking the Ω(

√
n) bound in the simultaneous message case or the

Ω(log n) bound in the interactive communication case, implies the
existence of distributional collision-resistant hash functions (dCRH).
This is shown using techniques from Babai and Kimmel [BK97]. Note
that with a CRH the lower bounds can be broken.

2. There are no protocols of constant communication in this preset
randomness settings (unlike the plain public randomness model).

The other model we study is that of a stateful “free talk”, where par-
ticipants can communicate freely before the inputs are chosen and may
maintain a state, and the communication complexity is measured only
afterwards. We show that efficient protocols for equality in this model
imply secret key-agreement protocols in a constructive manner. On the
other hand, secret key-agreement protocols imply optimal (in terms of
error) protocols for equality.

1 Introduction

What does a lower bound mean if it is not feasible to find the bad inputs? In
other words, can we bypass it, if we assume that the choice of inputs is done by
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a process that is computationally limited? In this work we study this issue in
the setting of communication complexity.

The study of communication complexity deals with proving bounds on the
amount of communication that is required to perform certain tasks when the
input is separated: two parties, Alice and Bob, have as inputs x ∈ X and y ∈ Y
respectively; how many bits do they have to send each other (as a function of
|X| and |Y |) for computing the value of a function f(x, y)? An answer for such a
question depends, of course, on the exact model details: Do Alice and Bob have
any limitation in the communication? Do they communicate directly or through
a third party? What predicates f are they trying to compute? See Kushilevitz
and Nisan [KN96] and Rao and Yehudayoff [RY20] for extensive background on
communication complexity.

There are several models of communication that differ mainly on two proper-
ties: whether the strategy of the participants can be probabilistic and the exact
communication settings (network layout). The participants of those models do
not have a bound on their running time, however, they are required to be correct1

for every input in the space.
When the participants are allowed to be probabilistic there is an important

distinction: whether they share common random bits (public coins) or not (pri-
vate coins). It is important to note that the random bits (in both options) and
the problem’s inputs (x and y) are independent. This can be seen as uniform
random bits that are chosen after the (worst-case) input was chosen.

By definition, the private coins model is no stronger than the public coins
model and indeed some tasks can be done in the latter but cannot be done in
the former with the same communication complexity (see below). On the other
hand, the private coins model may be considered more realistic, where there is
no assumption of independent public random string.

However, both the public and private coins models are known to be ‘better’
than the deterministic model in the sense that they have more efficient protocols
in terms of the communication complexity: for instance, as proved by Yao, the
deterministic communication complexity of many predicates is Ω(n) (Alice and
Bob can do nothing better than just sending their full inputs), while in the prob-
abilistic world there is quite a lot to be done. Equality is a prominent example,
with complexity of Θ(log n) for the private coins model and Θ(1) for the public
coins model.

We examine another relaxation that can help us: limiting all parties, including
the one who selects the inputs (the adversary), to a computationally bounded
world. We will not require that Alice and Bob be correct for every input in
the space, but only on inputs that are chosen by a computationally bounded
adversary. Note that the new definition is by nature relevant only to probabilistic
algorithms.

Considering a polynomially bounded adversary raises the question of whether
there are benefits from different computational hardness assumptions: can we re-

1 For the probabilistic version they are required to succeed with constant high prob-
ability.
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duce the communication complexity of protocols by assuming that certain tasks
cannot be performed efficiently? That is, given that Alice and Bob in our new
definition do not have to be correct for every input in the input space, a compu-
tational hardness assumption can be used for proving that no efficient adversary
can find bad inputs with non-negligible probability.

Back to the relationship between the public and private coins models: we
propose a new model that is, in general, more powerful than the private coins
but still realistic. Also, in contrast to the above mentioned models, our model
is computational – the participants’ running time is bounded by some poly(λ)
where λ is the security parameter. In our model, there is a public random string
but there is an additional adversarial participant that chooses the inputs depend-
ing on the public random string, it can be seen as a public random string that
is ‘fixed’ in advance and therefore we called it preset public coins model. See
Definition 2.7 for formal specification.

The two communication patterns we consider are:

Simultaneous Messages Model (SM). Alice and Bob are given x and y
respectively and should compute a function f(x, y) but without communicat-
ing with each other. Instead, each one sends a message to a third party (a
referee) who calculates f(x, y) given the messages from Alice and Bob.

Interactive Communication Model. Alice and Bob get their inputs x and y
respectively and can communicate with each other without any limitations
on the number of rounds.

In both settings, the communication complexity measure is the total length of
the messages sent by Alice and Bob.

Stateful Preprocessing Communication. The second type of model we consider is
where the communication complexity matters only at some critical period and
the question is whether we can get very succinct protocols. The two parties can
talk freely beforehand. At some point the action starts, they receive their inputs
and need to decide with little communication the result.

In the SM model we consider a variation that differs by two properties:

Free talk. A protocol with free talk is one where Alice and Bob communicate also
before getting their inputs. The messages during the free talk phase (before
the inputs are chosen) do not count in the communication complexity of the
protocol. Alice and Bob maintain (secret) states afterwards. However the
adversary sees the whole communication and can use it when choosing the
inputs.

Rushing adversary. The inputs are chosen by a computationally bounded
adversary depending on the public discussion it witnesses in the preprocessing
phase. A rushing adversary can choose Bob’s input at the ‘last moment’: The
adversary first chooses the input of Alice depending on the public random
string and after Alice sends her message to the referee the adversary chooses
the input of Bob depending on both the preprocessing transcript and on and
Alice’s message.
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Note: while allowing “rushing” gives the adversary more power, it is not an
unreasonable model, e.g. in a sketching environment, when the adversary
sees how one party ‘sketched’ its input and may then select the inputs to the
other one. We do not know whether we need this power in order to get the
result that very succinct protocols imply secret key agreement.

1.1 Cryptographic Primitives

We discuss a computationally bounded world. We assume that all parties have
limited resources (especially at runtime). A way to express those limits is by
cryptographic primitives (see the next examples).

Necessity of Primitives. One of the aims of research in foundations of cryptog-
raphy is to find out which cryptographic primitives are essential and sufficient
for which tasks. Similarly, it is valuable to know whether certain primitives on
their own cannot help us achieve a certain goal.

In this paper we prove several implications of the form that the existence of
communication protocols with certain properties entails the existence of certain
primitives. In other words, in order to design succinct protocols in those models
we must be using somewhere in the protocol primitives of a certain kind.

1.2 Cryptographic Hash Functions

A hash function is one that maps values from a large domain to a smaller
range. One of the most basic cryptographic objects is a hash function with
some hardness property. For instance, a family of hash functions H, is collision
resistant if for a random h ∈R H it is hard to find two inputs x �= y that collide
(h(x) = h(y)).

For such a function, for any two inputs that were chosen by a computation-
ally bounded adversary, we know that w.h.p., h(x) = h(y) =⇒ x = y. This
means that the function preserves some relation between its inputs: The equal-
ity predicate is (w.h.p.) preserved also after the values were compressed by h.
Moreover, since the function is collision resistant, that property holds for any
(x, y) chosen by a computationally bounded adversary knowing h.

This notion can be generalized in several directions:

1. More relaxed hardness requirements can be defined. The weaker the definition
the more hope we have to construct it from minimal assumptions.

2. We can extend the definitions to include random algorithms: functions that
get also random bits and output correct values w.h.p.2.

3. We can extend the definitions to hash functions that preserve more properties
and not just the equality predicate.

We discuss the last two points in the section below.

2 The probability is over the choices of the random bits.
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1.3 Adversarially Robust Property-Preserving Hash Functions

Consider a predicate P : U × U → {0, 1} for a universe U = {0, 1}n. Let
x, y ∈ U and we want to compute P (x, y), but we cannot have both x, y on
the same machine (say, for some storage reasons). A natural approach for this
issue is using sketching: By using sketches we get shorter strings and it is easier
to get both (sketched) values on the same machine. Of course, computing P
on sketched values may be impossible in terms of information, so we relax the
correctness requirement: the process may fail (compute a wrong value) with at
most a negligible probability3.

Hash functions as above, that allow us to compute a predicate given the
hashed values, are called property-preserving hash functions (hereafter PPH).
We examine PPH in an adversarial environment, that is, the predicate should
be computed correctly w.h.p. also for values chosen by an adversary. Such hash
functions are called adversarially robust PPH. The more access to the hash
function given to the adversary the more robust the PPH is.

The study of adversarially robust property-preserving hash functions was
initiated by Boyle et al. [BLV18]. It can be seen as a special case of the model
introduced by Mironov et al. [MNS11] who initiated the study of the adversarial
sketch model (here the participants also get the input online). That notion is
similar to the SM model except for the differences:

1. The allowed error probability in communication complexity is a (small) con-
stant instead of negligible in PPHs.

2. The parties in the SM model are allowed to be randomized.
3. The PPHs model is computational.

Our model bridges some of the gaps and we will show the connection between
the models. Note that the preset public coins SM model is a generalization of
the PPHs model in the sense that the participants are allowed to be randomized.
In this regards it is closer to the model of Mironov et al. [MNS11].

1.4 Secret Key Agreement

A secret key agreement (SKA) is a protocol where two parties with no prior
common information agree on a secret key. The key has to be secret in the
sense that no probabilistic polynomial time adversary given the full transcript
of the communication between Alice and Bob can compute it with non-negligible
probability (more accurately, distinguish it from a random string). That notion
is defined formally in Definition 2.19.

We will show that certain low communication protocols imply the existence
of SKA by showing a construction of SKA from those protocols.

3 The probabilities are over the sampling of a hash function among the functions
family.
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1.5 Our Results

We consider preset public coins communication complexity models and prove
that the lower bounds proved for the private coins model cannot be broken in
our computational model without assuming the existence of distributional CRHs
(dCRH is a hash function where uniformly random collisions cannot be found by
a bounded adversary w.h.p., see Definition 2.16) It is known that dCRHs exist
only if one-way functions exist and there is an oracle separation between them
(i.e. there are no black-box constructions of dCRHs from one-way functions).

A non-trivial predicate is one with no redundant rows and columns (see
Definition 2.1)

Theorem (informal, see Theorems 3.2 and 3.14). In the preset public coins Simul-
taneous Message model: for any non-trivial predicate, protocols with communi-
cation complexity o(

√
n) imply the existence of dCRHs (in the sense that a

dCRH can be constructed from the protocol).
In the interactive model: The same is true for c(n) = o(log n).

Gap from Upper Bound. We note that such succinct protocols are achievable
using a CRH. Closing the gap between CRH and dCRH is left as an open problem
(see conclusions).

Consider the free talk model, where two parties communicate and may have
a secret state as a result, before the inputs are chosen based on an eavesdropper
adversary who has access to the communication but not to the secret states. If
secret key agreement protocols exist, then we can get the power of the public
coins model: we can construct a protocol for the equality predicate with error
probability bounded by 2−c where c is the communication complexity.

In the other direction, nearly optimal protocols imply a secret key agreement:

Theorem (informal, see Theorem 5.2). In the stateful free talk model, the exis-
tence of a protocol of complexity c(n) for equality with failure probability
bounded by ε ≤ 2−0.7c against a rushing adversary implies the existence of
a secret key agreement protocol.

Again here there are gaps between the possibility and impossibility results. For
the implication we do need a low error protocol (with respect to the commu-
nication complexity) and also we do not know whether a rushing adversary is
essential.

The various implications we showed are summarized in Table 1.
On the other hand, regardless of assumptions, constant communication pro-

tocols cannot exist in our model. This is in contrast to the public coins model,
where there are protocols of O(1) communication even in the SM model (e.g. for
the equality predicate).

Theorem (informal, see Theorem 4.1). In the interactive communication model,
protocols for any non trivial predicate, of communication complexity O(log log n)
bits are not secure against an adversary with running time poly(n).
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Table 1. Summary of Implications and Results

Information-Theoretic
Lower Bound

Comput. Bounded World:
Breaking The Bound

Possible Using Implies

Stateless
SM Ω(

√
n) CRH dCRH

Interactive Ω(log n) CRH dCRH

Stateful
(Rushing Adv)

SM Ω(n) SKA
For Equality:

SKA*

* Holds only for near optimal protocols.

1.6 Related Work

Communication Complexity

The study of communication complexity was initiated by Yao [Yao79] who intro-
duced the SM private coins model and asked what is the complexity of the equal-
ity predicate in this model. The problem was solved by Newman and Szegedy
[NS96] who provided the Ω(

√
n) tight lower bound. It was also solved, using

different and simpler techniques, by Babai and Kimmel [BK97]4 using a combi-
natorial proof, and by Bottesch et al. [BGK15] using information theory5.

Babai and Kimmels’s result is more general and they actually proved the
lower bound not only to the equality predicate but to any non-redundant pred-
icate (see Definition 2.1). Moreover, their technique proved to be useful in more
models: Ben-Sasson and Maor [BM15] applied this technique also for the inter-
active model and proved that for any non redundant function, any private coins
protocol requires communication complexity of at least Ω(log n) (see proof for
the equality predicate in Kushilevitz and Nisan [KN96]).

Although the above mentioned results are in the information-theoretic world
(can be seen as an unbounded adversary), Naor and Rothblum [NR09] introduced
and studied a computational model in order to study online memory checking
algorithms: The consecutive messages model where the public coins are chosen
after the adversary chooses x (the input for Alice). They adapted this technique
and showed that breaking the mentioned information-theoretic Ω(

√
n) lower

bound in their computational model is possible if and only if one-way functions
exist. At first glance one can think that their model is very close to our preset
public coins SM model. However, important details differ: For instance, the fact
that x (Alice’s input) does not depend on the public random string.

Public Coins vs. Private Coins. In certain ways our model lies between the
public and private coins ones. Therefore, it is worth pointing out the possible

4 See in [BK97] also the similar proof of Bourgain and Wigderson.
5 Bottesch et al. actually discuss quantum variants of the SM model and give the

simpler proof for our classical case as a warm-up.
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gap between them. For the interactive communication settings, Newman [New91]
proved that the gap can be at most O(log n) additively. It is tight, since the
equality predicate can be computed by protocols of O(1) communication in the
public coins model but requires Θ(log n) bits in the private coins model.

In the SM model, as mentioned, the gap may be much larger: the equality
predicate can be computed using O(1) bits in the public coins model, but in the
private coins model Ω(

√
n) bits are required.

Settings Where Worst-Case Inputs are Hard to Find

One area where computationally bounded choices of inputs was considered is
error correcting codes. Here assuming the channel is computationally bounded
may help and better rates than those achievable by codes for worst-case errors are
possible. Such works were done by Lipton [Lip94] and Micali et al. [MPSW10].
These constructions required a trusted setup with a key that should not leak.
Grossman et al. [GHY20] suggested “good” uniquely decodable codes for the
computationally bounded channel with transparent setup. Grossman et al. relied
on strong cryptographic assumptions to construct a code better than codes for
worst-case errors.

Harsha et al. [HIKNV04] studied tradeoffs between communication complex-
ity and time complexity and described Boolean functions with a strong commu-
nication vs. runtime tradeoff.

1.7 Technical Overview

Babai and Kimmel’s Characterizing Multiset. We will use the technique of Babai
and Kimmel for proving connections between the communication complexity
and cryptographic primitives in both models (SM and interactive). They proved
that in the SM model, Alice’s behavior can be characterized by a relatively
small multiset of messages. Ben-Sasson and Maor expanded it for the interactive
model and proved that Alice’s behavior can be characterized by a multiset of
deterministic strategies.

We use those observations and show that the adversary can use the charac-
terizing multisets to find bad inputs for Alice and Bob. That is, we construct
a function that for any x (Alice’s input) generates a characterizing multiset of
the behavior of Alice for this x. We claim that an adversary who can break the
security of this function, can find bad inputs for the protocol. On the other direc-
tion, if such a protocol exists it implies the existence of a certain cryptographic
primitive.

In more details: We show a construction of a function that for an Alice’s input
(x ∈ X) outputs a multiset that characterizes Alice’s behaviour. We claim that
a collision in such function induces bad inputs for the protocol as it implies two
inputs that make Alice behaves similar. That is, the correctness of the protocol
implies the security of the function. However, the construction is probabilistic
and the function does not output a characterizing multiset for every inputs but
only for at most every input. Hence, it may not be collision resistant but only
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one-way function. Moreover, we show it also a distributional collision resistant
since it outputs a characterizing for at most every input.

2 Models and Preliminaries

2.1 Model Definition

Let f be a predicate that Alice and bob would like to compute. For a predicate
f to be interesting we may assume that the f has no redundancy:

Definition 2.1 (Non-Redundant Predicate). Predicate f : X × Y → {0, 1}
is non-redundant if there are no two identical rows or two identical columns in
the truth matrix. In other words, ∀x1 �= x2 : ∃y s.t. f(x1, y) �= f(x2, y) and for
∀y1 �= y2 as well.

Also, we discuss only predicates where their non-redundancy can be ‘proven’
or found efficiently:

Definition 2.2 (Efficiently Separable Predicate). Let f : X × Y → {0, 1}
be a non-redundant predicate, then f is efficiently separable if there exists PPTM
M that finds the element promised by Definition 2.1. That is ∀x1 �= x2 ∈ X:

Pr
y←M(x1,x2)

[f(x1, y) �= f(x2, y)] = 1 − negl(n)

and similarly for ∀y1 �= y2 ∈ Y as well.

Note 2.3. It is not clear that a Non-Redundant Predicate that is not Efficiently
Separable implies the existence of one-way functions. In fact, it seems that hard
problems in NP (“Pessiland”) already implies the existence of such predicates,
and hence as far as we know it is not a sufficient assumption for mounting
meaningful cryptography.

The only specific predicate we discuss is the equality predicate, EQ(x, y) =
11{x=y}. For the equality predicate it is easy to see that both Definitions 2.1
and 2.2 hold.

Now, we define the communication layouts:

Definition 2.4 (Interactive Communication Model). Alice and Bob are
given x and y respectively and should compute some function f . They may send
each other messages without any limit (but the total number of bits sent is the
complexity).

Definition 2.5 (Simultaneous Messages (SM) Model). In the simultane-
ous messages model, Alice and Bob are given x and y respectively and should
compute some function f without communicating with each other. Instead, each
one sends a message to a third party (a referee) who calculates f(x, y) given the
messages from Alice and Bob.

Following Babai and Kimmel we assume without loss of generality that the
referee is deterministic.
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Fact 2.6. In the SM model there exist protocols for the equality predicate of
complexity O(

√
n). The protocols found independently by Ambainis, Babai and

Kimmel, Naor and Newman; see [BK97] for references.

Fact 2.6 is an example of the possible gap between probabilistic and deterministic
protocols in the SM model because the equality predicate is non-redundant and
because of the following well known fact:

Fact. In the SM model, the deterministic communication complexity of any non-
redundant predicate is Ω(n).

Now, we are ready to define our model formally, in the above described
communication layouts. Recall that our model is computational. That is, the
participants’ running time is bounded by some poly(λ) for some security param-
eter λ = poly(n), it’s important especially for the adversarial participant. That
is, any PPTM run time is bounded by poly(λ).

Definition 2.7 (Preset Public Coins). A protocol for a function f in the
preset public coins is defined by the following game: Let Alice and Bob be PPTMs
with running time poly(λ).

1. A public uniform random string rpub is sampled6.
2. The adversary sees rpub and chooses (x, y) ∈ X × Y .
3. Alice and Bob get (x, rpub) and (y, rpub) respectively.
4. Alice and Bob send message(s) (optionally using private coins) in order to

compute some target function.
5. Optionally: More steps that depend on the communication settings. For

instance, in the SM model the referee steps in here.

We say that a protocol is ε-secure in this model if for every PPTM adversary
Adv with running time poly(λ) the probability that the computation of Alice
and Bob will be correct is at least 1 − ε:

Pr
rpub

(x,y)←Adv(rpub)
Alice and Bob private coins

[Protocol Fails] ≤ ε

Amplification. The usual requirements in communication complexity is for ε =
1/3 and then to argue for amplification by repetition. Here we have to be a bit
more careful, since the correctness requirement is computational. However, we
know that for games of a certain structure we get parallel amplification: Bellare
et al. [BIN97] showed that parallel repetition of computationally sound protocols
doesn’t always lower the error as one may expect. However, they proved that
for three-round protocols the error does go down exponentially fast7 as in the
information-theoretic case.

A protocol in our model can be evaluated in the following 3 rounds:
6 Can be generalized to a sample from any known efficient distribution.
7 See Canetti et al. [CHS05] for better parameters.
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1. The prover chooses the public random string.
2. The adversary chooses the inputs of Alice and Bob.
3. The prover chooses Alice’s and Bob’s private random string.

Note 2.8. Alice’s and Bob’s algorithms are public and since they don’t have
any secret state or secret input they can be simulated (also by the adversarial
participant). It is a core fact when we are using the technique of Babai and
Kimmel in computational settings in the proofs of Theorems 3.2 and 3.14 and
Theorem 4.1.

2.2 Free Talk Model

We consider a variation to the SM model where Alice and Bob are allowed to
communicate freely in a preprocessing phase, before the inputs are chosen:

Free talk. Free talk is a ‘free’ communication that Alice and Bob can have before
the inputs are chosen by the adversary. Alice and Bob can generate states
(possibly secret) in the free talk phase. Those states can be used afterward
to reduce the communication complexity.

However, the adversary is also stronger, in two ways:

Free Talk Eavesdropping. The transcript of the free talk phase is known to
the adversary and it may choose the inputs depending also on it.

Rushing. Rushing adversary decides Bob’s input at the ‘last moment’: Rushing
adversary chooses the input of Bob after Alice produces its message. That is,
first Alice’s input is chosen and Alice sends its message, and afterwards, Bob’s
input is chosen depending on Alice’s message and Bob sends its message.

Definition 2.9 (SM Preset Public Coins With Stateful Free Talk and
Rushing Adversary). A protocol for a function f in the SM Preset Public
Coins With stateful free talk and rushing adversary is defined by the following
game: Let Alice and Bob be PPTMs with running time poly(λ).

1. Alice and Bob toss coins and communicate in order to generate their (possibly
secret) states τA and τB respectively.

2. The adversary sees their full communication (but not their internal states τA

and τB) and sets Alice’s input x ∈ X.
3. Alice (that has τA as her internal state) gets x and sends a message mA to

the referee.
4. The adversary sees mA and chooses Bob’s input y ∈ Y , optionally depending

on mA and the free talk’s transcript.
5. Bob (that has τB as his internal state) gets y and sends a message mB to the

referee.
6. The referee, as a function of mA and mB, computes the target predicate.
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To simplify the description we assume, without loss of generality, that Alice and
Bob are probabilistic only in the first step. (This is wlog since they can toss
coins in the first step and save them in their private states for later use.)

In the stateful model we consider a scenario with a ‘patient’ adversary: there
are multiple sessions between Alice and Bob and the (rushing) adversary can
choose one session to attack among them, after seeing the message Alice choose.

Definition 2.10 (Stateful Free Talk ε-Secure Protocol). We say that a
protocol is ε-secure in the stateful model if for every PPTM adversary Adv with
running time poly(λ) who involved in poly(λ) sessions and chooses among them
one session as the defining one (after seeing Alice’s message) the probability that
the computation of Alice and Bob will be correct for the chosen session is at least
1 − ε.

2.3 Notation

Messages Space. Denote by MA and MB Alice’s and Bob’s messages spaces. In
the interactive model we consider Alice’s and Bob’s deterministic strategies,
every strategy is represented by a rooted binary tree of depth c (the total
communication): The protocol begins in the root, each vertex is owned by one
party who chooses one of the children and informs the other party by sending
a bit. Finally, the leaves represent the protocol’s result. We denote the set of
deterministic strategies of Alice and Bob by SA and SB respectively.

Private random string. Denote by rA ∈ RA the private random string of
Alice.

Public random string. Denote by rpub ∈ Rpub the public random string in
the protocol (it is given also to the adversary).

Secret State. When Alice and Bob have secret states we denote them by τA

and τB respectively.
Participant. In the SM model, for a public random string rpub denote the

strategy of Alice by Arpub : X×RA → MA and Bob by Brpub : X×RB → MB.
When the public random string rpub is clear from the context we may omit
the subscript. (When Alice and Bob have a secret state we denote Alice and
Bob as a function that gets a secret state τ instead of private random string).

Referee. In the SM model denote the referee by a function ρrpub : MA ×MB →
{0, 1} for a public random string rpub or ρ when rpub is clear from the context.

Communication Complexity. Denote the length of the total communication
by c = c(n, λ).

Protocol. We denote the protocol by π, and π(x, y) denotes running the protocol
on inputs x and y.

2.4 Probability

To measure distance between two distributions we use the total variation dis-
tance:
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Definition 2.11 (Statistical Distance). Let D1 and D2 be two distributions
and D(E) be the probability of event E under the distribution D.

Δ(D1,D2) = max
Event E

|D1(E) − D2(E)|

We use in our proofs the following concentration lemma:

Lemma 2.12. Let X1,X2, . . . , Xt be mutually independent random variables
where E[Xi] = 0 and |Xi| ≤ 1. Let S = 1

t

∑t
i=1 Xi then

Pr[S > δ] < e−δ2t/2

which is a rephrasing of the following Chernoff bound:

Theorem 2.13 (Chernoff Bound [AS08, Theorem A.1.16]). Let X1, . . . ,
Xt be mutually independent random variables where E[Xi] = 0 and |Xi| ≤ 1 and
let S =

∑t
i=1 Xi. Then

Pr[S > a] < e−a2/2t

2.5 Collision Resistant Hash Functions

A collision resistant hash function (CRH) is a function that any efficient algo-
rithm has at most a negligible probability of a collision:

Definition 2.14 (CRH). Let a functions family H be a family of functions
that (1) compress (2) are computable in polynomial time. H is a family of CRHs
if for every polynomial p(·) for every PPTM Adv and large enough λ,

Pr
h∈H

(x,y)←Adv(h)

[x �= y ∧ h(x) = h(y)] <
1

p(λ)

Note that, the output of the function cannot be too small with respect to the
security parameter. Otherwise, collisions can be found easily by trying sufficient
inputs.

Simon [Sim98] showed that a CRH cannot be built from black-box one-way
functions. Since one-way functions are existential equivalent to a lot of basic
cryptographic primitives, we know that also they cannot be black-box used to
construct CRHs. For an example, see Wee [Wee07] who ruled out constructions
for statistically hiding commitments with low round complexity that are based
only on black-box one-way functions.

Distributional Collision Resistant Hash Functions Distributional colli-
sion resistant hash functions (dCRH) are functions where it is hard for any
adversary to generate collisions that are close to random collisions. We first
have to define an ideal collision finder:
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Definition 2.15 (Ideal Collision Finder COL). The random function COL
gets a description of a hash function h and outputs (x, x′) s.t. x is uniformly
random and x′ is uniformly random from h−1(x). Note that:

1. The marginal distribution of x and x′ is the same: x and x′ are uniformly
random (but not independent).

2. It is possible that x = x′.

That notion of distributional collision resistance hash functions is due to
Dubrov and Ishai [DI06]. However, Bitansky et al. [BHKY19] deviated from this
definition and used a stronger definition8. Since our results hold also for the
stronger definition we will use it:

Definition 2.16 (dCRH). Let a functions family H be a family of functions
that (1) compress (2) are computable in polynomial time. H is a family of dis-
tributional CRHs if there exists some polynomial p(·) s.t. for every PPTM Adv,
and large enough λ,

Δ(COL(h),Adv(h)) ≥ 1
p(λ)

where h ← H.

This definition is a generalization of distributional one-way functions9 and hence
implies it. Furthermore, Bitansky et al. showed that dCRHs can be used for
applications that one-way functions aren’t known to achieve (and are black-box
separated) [BHKY19].

Although the notion of dCRH is much weaker than CRH, as noted by Dubrov
and Ishai [DI06], the black-box separation result of Simon [Sim98] applied also for
dCRH: Its collision finder is the same as COL in our definition (Definition 2.15).
Simon proved that relative to COL one-way functions exist (although (d)CRHs
do not).

2.6 Adversarially Robust Property-Preserving Hash Functions

Here we define the notion of adversarially robust property-preserving hash func-
tions. We follow Boyle et al.’s notion of direct-access robust property-preserving
hash functions:

Definition 2.17 (Direct-Access Robust PPHs). Let a functions family H
be a family of functions that (1) compress (2) are computable in polynomial time
and let Eval be a deterministic polynomial time algorithm. H (with Eval) is a

8 By switching the order of quantifiers, they require one polynomial for any adversary
and not that for any adversary there exists a polynomial. See the comparison in
[BHKY19].

9 Functions where it is hard to sample uniformly from h−1(h(x)) for random x. Such
functions are known to exist if and only if one-way functions exist [IL89]. (in contrast
to dCRH).
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family of Direct-Access Robust PPHs for a predicate P : X × X → {0, 1, ∗}10 if
for every polynomial p(·) for every PPTM Adv and large enough λ,

Pr
h∈H

(x,y)←Adv(h)

[P (x, y) �= ∗ ∧ P (x, y) �= Eval(h, h(x), h(y)) �= P (x, y)] <
1

p(λ)

2.7 Secret Key Agreement and Its Amplification

In a secret key agreement protocol two participants who do not have a common
secret, but each one has its own source of randomness, both output a value (the
secret). The participants’ output has to satisfy two properties: it should be the
same value for the two participants (agreement), and it has to be unknown to
any efficient observer (secrecy). We follow the definition of Holenstein [Hol05]:

Definition 2.18 ( (α, β)-Secret Bit Agreement (SBA)). An efficient two
party protocol without input (aside from the security parameter λ), with one bit
output for each participant b and b′ respectively where b, b′ ∈ {0, 1} is an (α, β)-
secret bit agreement if

Pr[b = b′] ≥ 1 + α

2
and for every PPTM Adv with running time bounded by poly(λ)

Pr[Adv(τ) = b | b = b′] ≤ 1 − β

2
where τ is the complete transcript of the protocol.

The previous definition is a weaker notion of the usually desirable stronger
notion:

Definition 2.19 (Secret Key Agreement). (α, β)-secret bit agreement is a
secret key agreement protocol if α = 1 − negl(λ) and β = 1 − negl(λ).

Holenstein [Hol06] proved when an (α, β)-secret bit agreement can be amplified
efficiently to a secret key agreement:

Theorem 2.20 ([Hol06, Corollary 7.5]). Let efficiently computable functions
α(λ), β(λ), be given such that

1 − α

1 + α
< β

Let ϕ = max(2, 8

log( β(1+α)
1−α )

) and γ = 1
log(1+((1−α)/(1+α))ϕ) , and assume that

ϕ·24γ

α ∈ poly(λ). If there exists an (α, β)-secret bit agreement protocol for all but
finitely many k, then there exists a computationally secure key agreement.

Note that a secret key agreement is unlikely to be based (only) on one-way
permutations and collision resistant hash functions in a black-box manner: It is
known that any secret key agreement protocol in the random oracle model11 can
be broken using an O(n2) queries attack [IR89,BM09] and this is tight.
10 ∗ is a don’t care symbol, see [BLV18] for a comparison of “total vs. partial predicates”.
11 CRHs exist in this model.
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3 Collision Resistance and the Preset Public Coins Model

3.1 CRHs Imply Succinct Protocols

We start by noting that the lower bounds shown in Sect. 3.2 (about the necessity
of dCRHs) are almost tight, since using a CRH one can break those bounds
(Ω(

√
n) in the SM model (Theorem 3.2) and Ω(log n) in the interactive model

(Theorem 3.14)). See the full version for details.

Theorem 3.1. If CRHs exist, then given a family of CRHs {h : {0, 1}n →
{0, 1}λ},

In the preset public coins SM model: There exist protocols of communica-
tion complexity O(

√
λ) for the Equality predicate.

In the preset public coins interactive model: There exist protocols of com-
munication complexity O(log λ) for the Equality predicate.

3.2 Succinct Protocols Imply dCRHs

Theorem 3.2. Let c(n) ≤ o(
√

n). Given a protocol for an efficiently separable
predicate (Definition 2.2) of complexity c(n) in the preset public coins SM model,
then distributional CRH functions exist and it is possible to construct them from
the protocol.

Proof. Our intuition is that after fixing the public random string rpub, the model
is similar to the private coins SM model where the adversary is faced with
a problem defined by the random string. We therefore appeal to Babai and
Kimmel’s definitions and techniques. Furthermore, in Lemma3.5 we will also
repeat the proof of [BK97, Lemma 2.3] with a different constant and make it
constructive.

For each multiset of Alice’s messages and one message from Bob we consider
the probability of acceptance by the referee:

Definition 3.3 (Referee’s Expected Value for a Multiset). For any rpub,
for a multiset T of members from MA and mB ∈ MB, let

Q(T,mB) = E
i∈[t]

[ρrpub
(T [i],mB)] =

1
t

∑

i∈[t]

ρrpub
(T [i],mB)

where t = |T |.
Now, we show that for every input of Alice x ∈ X, there exists a multiset char-
acterizing the behavior of Alice on x. In other words, instead of running Alice,
we can approximate the protocol’s result (referee’s output) by a uniform sample
from the multiset. Furthermore, we prove that such a multiset can be found
(w.h.p.) by some (relatively few) independent samples from the distribution
defined by Alice (given x and rpub).
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Definition 3.4 (Characterizing Multiset). For any rpub, a multiset T of
elements from MA characterizes Alice for x ∈ X if ∀mB ∈ MB,

∣
∣
∣
∣Q(T,mB) − Pr

rA

[ρrpub
(Arpub

(x, rA),mB) = 1]
∣
∣
∣
∣ ≤ 0.1

where Q(Tx,mB) is the referee’s expected value for the multiset Tx and Bob’s
possible message mB ∈ MB (Definition 3.3).

Lemma 3.5 (Sample a Characterizing Multiset). For any rpub, for x ∈
X, let r′ = (r1A, ..., rt

A) be t independent uniform samples from RA where t =
2 · 200 · ln(2 |MB |). Then, for the multiset Tx = {Arpub

(x, ri
A) : i ∈ [t]} it holds

that ∀mB ∈ MB,

Pr
r′

[∣
∣
∣
∣Q(Tx,mB) − Pr

rA

[ρrpub
(Arpub

(x, rA),mB) = 1]
∣
∣
∣
∣ ≤ 0.1

]

≥ 1 − 1
2 |MB |

(i.e., Tx characterizes Alice for x)

Proof. Let Tx be as defined. ∀i ∈ [t],mB ∈ MB ,

E[ρrpub(Tx[i],mB)] = Pr
rA

[ρrpub(Arpub(x, rA),mB) = 1]

=⇒ E
[

ρrpub(Tx[i],mB) − Pr
rA

[ρrpub(Arpub(x, rA),mB) = 1]
]

= 0

where the probability is over the random choice Tx[i] ← Arpub(x).
Now, for i ∈ [i], define random variables

η(i) = ρrpub(Tx[i],mB) − Pr
rA

[ρrpub(Arpub(x, rA),mB) = 1].

Since the members of Tx are independent random variables, we have that all
{η(i) : i ∈ [t]} are independent random variables with expectation 0. Hence, we
can use a Chernoff bound to bound the probability that, for a fixed mB ∈ MB ,

∣
∣
∣
∣
∣
∣

∑

i∈[t]

η(Tx[i])

∣
∣
∣
∣
∣
∣
> 0.1 · t.

In other words, the probability that
∣
∣
∣
∣Q(Tx,mB) − Pr

rA

[ρrpub(Arpub(x, rA),mB) = 1]
∣
∣
∣
∣ > 0.1

is bounded by

Pr
r′ [|

∑

i∈[t]

ρrpub (Tx[i], mB) − E[
∑

i∈[t]

ρrpub (Tx[i], mB)]| > 0.1] < 2e− (0.1)2·t
2 (Lemma2.12)

= 2e− t
200

= 2e−2 ln(2|MB |)

=
1

2 |MB |2 .
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By the union bound (over all mB ∈ MB),

Pr
r′

[

∃mB s.t.
∣
∣
∣
∣Q(T,mB) − Pr

rA

[ρrpub(Arpub(x, rA),mB) = 1]
∣
∣
∣
∣ > 0.1

]

<
|MB |

2 |MB |2

=
1

2 |MB |
�

We define a hash function by following the process of Lemma3.5 (running Alice
t times independently):

Construction 3.6. Characterizing Multiset Function
Definition: The function is defined by the public random string rpub and t Alice’s

random tapes r1A, ..., rtA ∈ RA.
Output: For x ∈ X, the value of the function is the multiset as in Lemma 3.5:

h(x) = The multiset {Arpub(x, riA) : i ∈ [t]}

where the multiset is encoded as a sequence Arpub(x, r1A), . . . , Arpub(x, rtA), note
that every Alice’s message can be encoded using log |MA| = c bits.

Observation 3.7. For all x ∈ X, the function from Construction 3.6 outputs
a multiset that characterizes x w.p. 1 − 1

2|MB | where the probability is over the
uniform random choice of r1A, ..., rt

A ∈ RA.

Observation 3.8. The function from Construction 3.6 is compressing: The
domain of the function is of size 2n, but the range is of size at most

(2c)t = 2400c·(c+1)·ln 2 = 2Θ(c2) = 2o(n)

Next, we prove that any x and x′ which share a characterizing multiset,
induce bad inputs for the protocol (since Alice’s behavior on x and x′ is similar).

Proposition 3.9. Let x, x′ ∈ X and y ∈ Y that separates them (Definition 2.1),
if there is a multiset T that is characterizing for both x and x′ then, the sum of
the failure probability of π(x, y) and π(x′, y) is at least 0.8. In other words, at
least one of them fails.

Proof. Since T is a characterizing multiset (Definition 3.4) of both x and x′, then
∀mB ∈ MB

∣
∣
∣
∣Q(T,mB) − Pr

rA

[ρrpub(Arpub(x, rA),mB) = 1]
∣
∣
∣
∣ ≤ 0.1
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and the same for x′. This means

Pr
rA

[ρrpub(Arpub(x, rA),mB) = 1] ∈ [Q(T,mB) ± 0.1]

and
Pr
rA

[ρrpub(Arpub(x
′, rA),mB) = 1] ∈ [Q(T,mB) ± 0.1] .

Putting it together we get that:
∣
∣
∣
∣Pr

rA

[ρrpub(Arpub(x, rA),mB) = 1] − Pr
rA

[ρrpub(Arpub(x
′, rA),mB) = 1]

∣
∣
∣
∣ ≤ 0.2.

(1)

Assume without loss of generality that f(x, y) = 0 and f(x′, y) = 1

Pr[π fails on (x, y)] = Pr
rA,rB

[ρrpub (Arpub (x, rA), Brpub (y, rB)) = 1]

= E
rA,rB

[ρrpub (Arpub (x, rA), Brpub (y, rB))]

= E
rB

[
E
rA

[ρrpub (Arpub (x, rA), Brpub (y, rB))]

]

≥ E
rB

[
E
rA

[ρrpub (Arpub (x
′, rA), Brpub (y, rB))] − 0.2

]
(Equation (1))

= E
rB

[
E
rA

[ρrpub (Arpub (x
′, rA), Brpub (y, rB))]

]
− 0.2

= Pr
rA,rB

[ρrpub (Arpub (x
′, rA), Brpub (y, rB)) = 1] − 0.2

= Pr[π succeeds on (x′, y)] − 0.2

= 1 − Pr[π fails on (x′, y)] − 0.2

= 0.8 − Pr[π fails on (x′, y)]

Hence, the sum of the failure probability of the protocol on (x, y) and the failure
probability of the protocol on (x′, y) is

Pr[π(x, y) fails] + Pr[π(x′, y) fails] ≥ 0.8

�

However, now we deal with the fact that there exist x’s s.t. the multiset h(x)
does not characterize x (Observation 3.7).

Lemma 3.10. Let π be an SM protocol of complexity c(n) = o(
√

n) and h(x) be
as in Construction 3.6. If we have an efficient adversary Advcollision that breaks
the security of h as a distributional CRH for some p ∈ poly(λ):

Δ (Advcollision(h), COL(h)) ≤ 1
p(λ)
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Then, we can construct an adversary Advπ with running time of the same order
as Advcollision s.t.

Pr[π fails on inputs from Advπ] ≥ 0.4
(

1 − 1
p(λ)

)

− negl(λ)

Proof. Advπ’s algorithm is:

Algorithm 3.11. Near Ideal Collision Finder for h to Bad Inputs for Protocol
π
1. Construct h(x) using the public random string of π and as in Construction 3.6.
2. x, x′ ← Advcollision(h).
3. Find y ∈ Y which separates x and x′ (promised to be efficient by Definition 2.2).
4. Pass to Alice and Bob (x, y) w.p. 1/2 or (x′, y) w.p. 1/2.

First, we consider COL’s distribution: A pair (x, x′) that was sampled from
COL (the ideal collisions finder, Definition 2.15) will not be usable for Algo-
rithm3.11 if any of the following conditions hold:

1. x = x′.
2. h(x) = h(x′) is not characterizing x or x′.

We call a pair (x, x′) a colliding pair if neither of the above two conditions hold.
In the following claims we bound the probability for those bad events.

Proposition 3.12. The probability of sampling a pair (x, x) from COL (i.e.,
x = x′) is negligible. That is,

Pr
(x,x′)←COL

[x = x′] = negl(n)

Proof. First, consider the number of pairs (x, x′) s.t. x �= x′ but h(x) = h(x′).
By the pigeonhole principle there exists a set of x’s of size at least 2n−c2 with the

same image. Hence, there are at least
(
2n−c2

2

)
= Θ((2n−c2)2) many pairs (x, x′)

s.t. x �= x′ but h(x) = h(x′). On the other hand, the number of pairs (x, x) is
2n. Hence,

Pr
(x,x′)←COL

[x = x′] = O

(
2n

2n + (2n−o(n))2

)

= negl(λ) (c2 = o(n))

�

Proposition 3.13. For a random h, the probability of sampling from COL a
pair (x, x′) s.t. the multiset h(x) does not characterize x or x′ is negligible.
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Proof. Let (x, x′) ← COL, recall that the distribution of each element from
COL (x and x′) is uniform (Definition 2.15). For each element in the pair, the
probability that the multiset h(x) does not characterize it is at most 2−c (Obser-
vation 3.7) and by the union bound the claim follows. �

By Propositions 3.12 and 3.13, a sample from COL is colliding w.p. 1 − negl(λ).
However, the distribution of Advcollision is not exactly the same as COL, but

1
p(λ)

≥ Δ(COL,Advcollision)

≥
∣
∣
∣
∣ Pr
(x,x′)←Advcollision

[(x, x′) not colliding] − Pr
(x,x′)←COL

[(x, x′) not colliding]
∣
∣
∣
∣

and we can conclude that the probability that Algorithm 3.11 does not get a
colliding pair (x, x′) in step 2 is bounded by,

Pr
(x,x′)←Advcollision

[(x, x′) isn’t colliding] ≤ 1
p(λ)

+ negl(λ)

To conclude: In cases that a colliding pair (x, x′) was found by the adversary.
The adversary chooses at random a pair from (x, y) and (x′, y) (where y separates
x and x′, and can be found efficiently by Definition 2.2). By Proposition 3.9,

Pr[π(x, y) fails] + Pr[π(x′, y) fails] ≥ 0.8

and hence the failure probability over the random choice of the pair is at least

Pr
(z,y)←Advπ

π

[π(z, y) fails] ≥ 0.4

Now, put it together with the probability of finding a colliding pair (for h) and
we get the probability that the protocol π fails on inputs from the adversary:

Pr[Advπ finds a colliding (x, x′)] · Pr
(z,y)←Advπ

π

[π(z, y) fails]

≥
(

1 − 1
p(λ)

− negl(λ)
)

· 4
10

�
We get that given an adversary for the distributional CRH we can find bad

inputs for the protocol as required for the proof. �

Interactive Protocols

For general (interactive) protocols we can also prove a similar implication as in
Theorem 3.2 for a logarithmic bound by the technique adaptation of Ben-Sasson
and Maor [BM15]:
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Theorem 3.14. Let c(n) < δε log n, where δε < 1/2 is a constant that depends
only on ε. For an efficiently separable predicate (satisfying Definition 2.2), given
a protocol of complexity c(n) in the preset public coins interactive model, a dis-
tributional CRH can be constructed.

Ben-Sasson and Maor studied protocols in the general communication settings
and instead of using a characterizing multiset of messages they used a char-
acterizing multiset of deterministic strategies. They have a variation of [BK97,
Lemma 2.3] that says that there exists a strategies multiset of size 2O(c) that
characterizes the behavior of Alice for x ∈ X.

For a detailed proof see the full version.

A Corollary for PPHs

Corollary 3.15. Without assuming the existence of distributional CRHs one
cannot get better than

√· compression for a direct-access robust equality PPH,
even when extending the definitions for randomized hash functions.

Proof. Observe that any PPH can be used to solve the same problem in the preset
public coins SM model. Hence, this corollary is simply rephrasing Theorem3.2
in the terms of adversarially robust property-preserving hash functions. �

Note that the other direction is true as well: Every protocol in the preset
public coins SM model for f(x, y) of c(n) bits ‘induces’ a PPH for f of c(n) · nε

bits for some ε > 0. That is, we start with any preset public coins SM protocol
and repeat it nε times to make the error probability negligible. This protocol
defines a family of PPHs and its random coins are fixed when sampling a function
from the family.

4 No Ultra Short Interactive Communication

The power of the preset public coins model power lies between the public and
the private coins models. As noted, the public random coins model is strictly
more powerful than the private one: there are protocols of O(1) bits only in this
model. We show (unconditionally) that in our model there are no functions with
o(log log n) communication complexity:

Theorem 4.1. Let c(n) : N �→ N be s.t. 23c(n) = O(log n) and let f : X ×Y →
{0, 1} be an efficiently separable predicate (satisfying Definition 2.2, i.e., non
redundant s.t. can be proven efficiently). In the preset public coins interactive
communication model, if the adversary has a running time of poly(λ) (where λ
is the security parameter) then, there are no protocols of complexity O(c(n)).

Proof. Assume there is such a protocol in the preset public coins interactive
model for some non-redundant function f of complexity c(n).

In the proof of Theorem3.14 we adapted Construction 3.6 for interactive
protocols. The constructed hash function has the following properties:
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– Random collisions in the function induce (w.h.p.) bad inputs in the protocol
(Lemma 3.10).

– The range of the function is of size

|SA|t = |SA|22·200 ln(2|SB |)

Those properties are the key points of the adversary described by Algorithm4.2
that searches for random collisions in a brute force manner.

Algorithm 4.2. Finding Bad Inputs in Ulta-Succinct Protocols
1. Construct a characterizing function h(·) (Construction 3.6).

2. Repeat at most 3 · 223c

= poly(λ) times:
(a) Choose a pair x �= x′ ∈ X uniformly at random.
(b) If h(x) = h(x′):

i. Find y ∈ Y that separates x and x′ (can be done efficiently, as promised
by Definition 2.2).

ii. Output (x, y) w.p. 1/2 or (x′, y) w.p. 1/2
iii. Halt

Let h be a characterizing function of the protocol (Construction 3.6). The proof
relies on the following two claims: �

Proposition 4.3. There must be a collision in h.

Proof. The range of the characterizing function h(x) is of size (number of possible
characterizing sets):

|SA|22·200 ln(2|SB |)
= 22

c·2·200 ln(22c
+1) < 22

3c

Hence, since 23c = O(log n) = o(n) there must be a collision in the function. �

Proposition 4.4. The adversary described in Algorithm 4.2 finds a collision
w.h.p.

Proof. Since the range is small (same order as the running time of the adversary
22

3c

= poly(λ)), the adversary can find random collisions easily. The probability
for a random pair to collide is at least 1

223c and hence, after 3 · 22
3c

trials, the
probability that a collision was not found is at most:

Pr
x,x′

[h(x) �= h(x′)]3·223c

≤
⎛

⎝
(

1 − 1
223c

)22
3c

⎞

⎠

3

→ e−3

=⇒ Pr
x,x′

[h(x) �= h(x′)]3·223c

< 0.05

�
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We get that w.h.p. the adversary finds a collision in the function h. However,
not every collision implies bad inputs for the protocol: the construction of the
characterizing function implies that there exist also bad collisions: x and x′ s.t.
h(x) = h(x′) but h(x) doesn’t characterizes x or x′ (recall Observation 3.7).
However, in almost all collisions it is not the case and h(x) characterizes x and
x′ (recall Proposition 3.13). Now, since the collision that Algorithm 4.2 finds is
completely random we can conclude,

Pr[the adversary finds a colliding pair] ≥ 1 − 0.05 − 1
|SB |

and by Proposition 3.9

Pr[the protocol will fail] ≥ 1
2

· 8
10

(

1 − 0.05 − 1
|SB |

)

>
1
3
.

�

5 Secret Key Agreement from Efficient SM Protocols

5.1 Optimal Protocols from SKA

Our first observation is that it is possible to obtain an optimal protocol (in terms
of the error as a function of the communication) for the equality predicate once
given a secret key agreement protocol, following relatively simple principles. The
error is 2−c (where c is the communication complexity after the free talk) plus a
negligible factor reflecting the probability of breaking the secret-key exchange.
For details see the full version.

Theorem 5.1. In the stateful preset public coins SM with free talk model: Given
a secret key agreement protocol there is, for any c(n), a protocol for the equality
predicate of complexity c(n), where any adversary can cause an incorrect answer
with probability at most 2−c + negl(n), satisfying Definition 2.10.

5.2 SKA from Near Optimal Protocols

Theorem 5.2. An SM protocol with stateful free talk for the equality predicate
of complexity c(n) = O(log log n) for c(n) larger from some constant, that is
ε-secure (Definition 2.10) with ε ≤ 2−0.7c(n), implies the existence of secret key-
agreement protocols.

Proof. Assume we have such a protocol π for the equality predicate EQ :
{0, 1}n ×{0, 1}n → {0, 1}. We will use π for constructing a secret key-agreement
protocol. The idea is to construct a weak secret bit agreement (Definition 2.18)
that can be amplified into a full secret key agreement (α and β according to
Theorem 2.20). The construction is based on the following: (α, β)-SBA protocol:
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Algorithm 5.3. Weak Bit Agreement
1. Alice and Bob communicate and toss coins according to the free talk of protocol

π to generate their secret states τA and τB respectively.
2. Alice selects at random a bit b ∈ {0, 1} and uniformly random inputs x0, x1 ∈

{0, 1}n.
3. Alice evaluates mA = A(xb, τA) (that is, a message of the protocol π for EQ(·, ·)).
4. Alice sends to Bob (mA, x1).
5. Bob evaluates mB = B(x1, τB).
6. Alice outputs b and Bob outputs b′ = ρ(mA, mB).

Lemma 5.4. Algorithm 5.3 is a
(
α = 1 − 2−c/2−3, β = 2−c/2+1

)
-SBA protocol.

Proof. Let c = c(n). We have to show its agreement and secrecy properties:

Agreement. By the properties of protocol π, specifically that the error ε ≤
2−0.7c(n):

Pr[b = b′] ≥ 1 −
(

1
2

)0.7c

≥ 1 −
(

1
2

)0.5c−2

=
1 + (1 − 2−c/2−3)

2
=

1 + α

2
.

Secrecy. We should show that for every PPTM adversary Advsba

Pr[Advsba(mA, x1) = b | b = b′] ≤ 2 − β

2
=

2 − 2−c/2+1

2
=

2c/2 − 1
2c/2

.

Assume towards contradiction that Pr[Advsba(mA, x1) = b | b = b′] > 2c/2−1
2c/2 .

We show that given Advsba, we can construct Adveq that finds bad inputs for
the protocol π (with probability higher than ε):

Lemma 5.5. Given an adversary Advsba with success probability (guessing b

when it is equal to b′) at least 2c/2−1
2c/2 , we can construct an adversary Adveq with

running time O(6 · 2c+1) s.t.

Pr[π fails on inputs from Adveq] > 2−0.7c ≥ ε.

Proof. The strategy of the adversary Adveq to find bad inputs is:

Algorithm 5.6. Adveq – Find Bad Inputs Using Advsba

1. Repeat at most 6 · 2c+1 times:
(a) Select uniformly at random x ∈ {0, 1}n and set it as Alice’s input.
(b) Let Alice’s message (output) be mA ∈ MA.
(c) Select uniformly at random x′ ∈ {0, 1}n.
(d) If Advsba(x, mA) = 1 and Advsba(x

′, mA) = 1:
i. Pass the message mA to the referee and set Bob’s input to be either y = x

w.p. 1/2 or y = x′ w.p. 1/2.
ii. Halt.

(e) Otherwise, continue to the next session.
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Recall that the private states of Alice and Bob are τA and τB (unknown to
the adversary). The success of the adversary Adveq relies on choosing a colliding
x′ (i.e., x′ s.t. A(x, τB) = A(x′, τB)).

For x ∈ {0, 1}n denote by p0x and p1x the probability of a random x′ ∈ {0, 1}n

to be bad in the following sense:

1. Let p0x be the probability that for a random x′: x and x′ collide yet are not
identified by Advsba as such. I.e.,

p0x = Pr
x′,Adv

[A(x) = A(x′) ∧ Advsba(x′, A(x, τA)) = 0].

2. Let p1x be the probability that for a random x′: x and x′ do not collide yet
are identified by Advsba as such. I.e.,

p1x = Pr
x′,Adv

[A(x) �= A(x′) ∧ Advsba(x′, A(x, τA)) = 1].

Let px = max(p0x, p1x). For a random free talk session and over the random
choice of x ∈ {0, 1}n, we know that Ex[px] =

∑
px

pxPr[px] ≤ 2−c/2+1.
We will analyze the probability of success of each session and then argue

that at least one session succeeds in outputting a value w.h.p. We need to show
the probability of outputting a pair of strings that agree on the message Alice
sends (“Correct”) is not much smaller than outputting a pair that does not
agree (“Wrong”). To compare the probability of outputting a wrong value to
the probability of outputting the correct value, note that the probability of
outputting a wrong value is at most

∑
all px

Pr[px] · px ≤ 2−c/2. On the other
hand we will argue that the probability of outputting a correct value (with
identification) is roughly (at least) 2−c. The ratio between them is roughly 2−0.5c

and we get an attack of the equality protocol that is better than its purported
security.

For the rest of the proof see the full version. �
Lemma 5.5 implies the secrecy of Algorithm 5.3 (otherwise, we get a contra-

diction for the security of protocol π).
This means that Algorithm 5.3 is an (1 − 2−c/2−3, 2−c/2+1)-SBA and the

proof of Lemma 5.4. �

Finally, we have to show that Theorem2.20 can be used to amplify the secret
bit agreement:

Proposition 5.7. For the functions α(c) = 1−2−c/2−3 and β(c) = 2−c/2+1 the
conditions in Lemma 2.20 hold.

For proof see the full version.
We conclude, by Proposition 5.7 that the SBA of Algorithm 5.3 (Lemma 5.4)

can be amplified efficiently into a full-fledged secret key agreement protocol. �
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6 Conclusions

Role of Private Randomness. In this paper we introduced a computational model
for communication complexity. However, it can also be seen as a generalization
of (deterministic) property preserving hash functions to probabilistic algorithms.
We studied some relations between the power of private randomness and crypto-
graphic primitives such as collision resistance. The main open problem left from
this point is whether CRHs are equivalent to preset public coins SM protocols
of complexity o(

√
n) and whether we can break that bound using a primitive

weaker than CRHs. Another direction could be to show how to use o(
√

n) equal-
ity protocols in order to get low communication string commitment.

Boyle et al.’s Lower Bounds. Boyle et al. [BLV18] proved two general lower bounds
for property preserving hash functions using communication complexity12:

1. A lower bound for reconstructing predicates: Boyle et al. proved that for
predicates that can be used for reconstructing the original string there cannot
exist (compressing) property preserving hash functions. This lower bound is
also true for our preset public coins SM model. However, we didn’t necessarily
consider reconstructing predicates (for instance, the equality predicate is not
a reconstructing predicate).

2. General lower bound from one-way communication: Boyle et al. proved that
any property preserving hash function cannot compress better than the one-
way communication complexity13. This lower bound is also true in our model,
but it is too loose in our context since in our model the inputs and the public
random string may be dependent (e.g., the equality predicate complexity is
O(1) in the one-way communication complexity model).

Multi CRHs (MCRH). For k ≥ 3, A familty of hash function is k-multi-collision
resistant if finding a collision of size k is hard: no PPTM can succeed in finding
x1, . . . , xk s.t. h(x1) = . . . = h(xk) with non-negligible probability (for k = 2
it is the regular notion of collision resistance); see [KNY18,KY18,RV22] for
the relationship between MCRHs, dCRHS and CRHs. One question is whether
MCRHs can be constructed from succinct protocols in a black-box manner.

Secret Key Agreement. We showed a tight relationship between secret key agree-
ment protocols and succinct protocols for the equality predicate in the SM pre-
set public coins stateful free talk model. On the one hand, SKA can be used for
constructing an equality protocol in this model, and on the other hand, equality
protocols with good error in this model can be used for constructing SKA pro-
tocols. The open questions are (i) whether the existence of protocols with much
worse error probability (e.g., constant error probability for c which O(log log λ))

12 See also Hardt and Woodruff [HW13] who proved robustness limitations for linear
functions.

13 See Fleischhacker and Simkin [FS21] and Fleischhacker et al. [FLS22] for more such
lower bounds.
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also imply SKA and (ii) whether the fact that we allowed the adversary Adveq

to be rushing was essential.

Acknowledgments. We thank Shahar Dobzinski, Ilan Komargodski, Guy Rothlbum
and Eylon Yogev for useful discussions and suggestions and the Crypto 2022 referees
for the helpful comments and questions.
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Abstract. We give a new algorithm for finding an isogeny from a given
supersingular elliptic curve E/Fp2 to a subfield elliptic curve E′/Fp,
which is the bottleneck step of the Delfs–Galbraith algorithm for the
general supersingular isogeny problem. Our core ingredient is a novel
method of rapidly determining whether a polynomial f ∈ L[X] has any
roots in a subfield K ⊂ L, while avoiding expensive root-finding algo-
rithms. In the special case when f = Φ�,p(X, j) ∈ Fp2 [X], i.e., when f
is the �-th modular polynomial evaluated at a supersingular j-invariant,
this provides a means of efficiently determining whether there is an �-
isogeny connecting the corresponding elliptic curve to a subfield curve.
Together with the traditional Delfs–Galbraith walk, inspecting many �-
isogenous neighbours in this way allows us to search through a larger
proportion of the supersingular set per unit of time. Though the asymp-
totic Õ(p1/2) complexity of our improved algorithm remains unchanged
from that of the original Delfs–Galbraith algorithm, our theoretical anal-
ysis and practical implementation both show a significant reduction in
the runtime of the subfield search. This sheds new light on the concrete
hardness of the general supersingular isogeny problem (i.e. the founda-
tional problem underlying isogeny-based cryptography), and has immedi-
ate implications on the bit-security of schemes like B-SIDH and SQISign
for which Delfs–Galbraith is the best known classical attack.

Keywords: Isogeny-based cryptography · supersingular isogeny
problem · Delfs–Galbraith algorithm

1 Introduction

In its most general form, the supersingular isogeny problem asks to find an
isogeny

φ : E1 → E2

M. Corte-Real Santos—Supported by EPSRC grant EP/S022503/1.
J. Shi—Part of this work was done while Jia was an intern at Microsoft Research.

c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13509, pp. 285–314, 2022.
https://doi.org/10.1007/978-3-031-15982-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15982-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-15982-4_10


286 M. Corte-Real Santos et al.

between two given supersingular curves, E1/F̄p and E2/F̄p. We emphasize that
this is the general problem, where we do not assume knowledge of the degree of
the isogeny, or any torsion point information. The best known classical attack
against the supersingular isogeny problem is the Delfs–Galbraith algorithm [13],
which, for two curves E1 and E2 defined over Fp2 , has two steps. The first
step computes random walks in the �-isogeny graph (for some choice of �) to
find isogenies φ1 : E1 → E′

1 and φ2 : E2 → E′
2, such that E′

1/Fp and E′
2/Fp are

subfield curves. There are around �p/12� supersingular curves up to isomorphism
and O(p1/2) of them are subfield curves, therefore this step runs in Õ(p1/2) bit
operations. The second step searches for a subfield isogeny φ′ : E′

1 → E′
2 that

connects φ1 and φ2, and it requires Õ(p1/4) bit operations [13]. It follows that the
entire algorithm runs in Õ(p1/2) operations on average, with the cost dominated
by the first step, i.e., the search for paths to subfield curves.

Solver. To our knowledge, a precise complexity analysis of the Delfs–Galbraith
algorithm has not been conducted. We fill this gap by presenting an optimised
implementation of the Delfs–Galbraith algorithm, called Solver, and conducting
experiments over many thousands of instances of the subfield search problem to
determine its concrete complexity. Though Solver finds the full path, we focus on
the optimisation and complexity of the bottleneck step: finding subfield curves.
These optimisations include:

– Choice of �. In their high-level description of the algorithm, Delfs and Gal-
braith do not specify which �-isogeny graph to walk in. Framing the problem
of taking a step in the �-isogeny graph as computing the roots of a polynomial
of degree �, in Solver we chose the simplest and most efficient choice: � = 2.

– Fast square root finding in Fp2 . We use the techniques presented in [25, §5.3]
to construct an optimised algorithm for finding square roots in Fp2 , which only
requires two Fp exponentiations and a few Fp multiplications and additions.

– Random walks in the 2-isogeny graph. We implement a depth-first search
to find subfield nodes in the 2-isogeny graph and give a precise complexity
analysis on the number of Fp operations required.

SuperSolver. The main contribution of this paper is a new state-of-the-art algo-
rithm for solving the general supersingular isogeny problem, called SuperSolver.
This is a variant of the Delfs–Galbraith algorithm that exploits a combination of
our new subfield root detection algorithm and the use of modular polynomials.
We show that we can efficiently determine whether a polynomial f ∈ L[X] has
a root in a subfield K ⊂ L, without finding any roots explicitly. Though this
algorithm works for general fields and polynomials (and may be of use in other
contexts), we apply it to the case where f = Φ�,p(X, j) ∈ Fp2 [X], i.e., where f is
the �-th modular polynomial evaluated at a supersingular j-invariant. This pro-
vides a means of quickly determining whether there is an �-isogeny connecting
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the corresponding elliptic curve to a subfield curve: we develop this Neighbour-
InFp subroutine in Sect. 4, and use it as the core of our SuperSolver algorithm in
Sect. 5.

In Sect. 7, we conduct extensive experiments using both our Solver and Super-
Solver libraries, all of which show that SuperSolver performs much faster than
Solver. In Table 1, we give a taste of the types of improvements we see in search-
ing for subfield nodes over supersingular sets of various sizes, taking a number
of primes from the isogeny-based literature. These primes were specifically cho-
sen because the Delfs–Galbraith algorithm for the general supersingular isogeny
problem is the best known classical attack against the cryptosystems they target.

Our Solver and SuperSolver algorithms are written in Sage [30] and Python
and can be found at

https://github.com/microsoft/SuperSolver.

Table 1. The number of nodes inspected per 108 field multiplications for primes tar-
geting schemes where Delfs–Galbraith is the best known classical attack. The Solver
column corresponds to optimised Delfs–Galbraith walks in X (F̄p, 2) – see Sect. 3. The
SuperSolver columns correspond to enabling our fast subfield root detection algorithm
with the three fastest sets of �’s (left to right) – see Sect. 5. Numbers in round brackets
are the approximate number of Fp multiplications per node inspected at each step, as
computed during the precomputation phase that predicts which sets of �’s will perform
fastest.

prime p Solver SuperSolver

B-SIDH-p247 [11] 246,461 (406)
{3,5,7,11,13} {3,5,7,11,13,9} {3,5,7,11}

1,726,427 (58.0) 1,723,345 (58.1) 1,711,713 (58.5)

TwinSmooth-p250 [12] 233,511 (430)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,9}

1,699,825 (59.1) 1,697,769 (59.1) 1,680,379 (59.8)

SQISign-p256 [15] 246,459 (407)
{3,7,5,11,13} {3,7,5,11,13,9} {3,7,5,11}

1,726,427 (58.0) 1,723,345 (58.1) 1,711,713 (58.5)

TwinSmooth-p384 [12] 163,331 (610)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,13,9,17}

1,529,025 (65.2) 1,494,725 (66.6) 1,487,919 (67.0)

TwinSmooth-p512 [12] 127,511 (786)
{3,5,7,11,13,9,8} {3,5,7,11,13,9} {3,5,7,11,13,9,8,17}
1,397,761 (71.7) 1,391,645 (72.0) 1,355,575 (73.9)

Cryptographic Implications. This paper has implications on the classical
bit-security of any supersingular isogeny-based scheme for which the Delfs–
Galbraith algorithm is the best known attack; this includes the key exchange
scheme B-SIDH [11], the signature scheme in [16, §4], and the signature scheme
SQISign [15]. For any proposed instantiation of such schemes, our SuperSolver
suite allows the analysis in Sect. 7 to be conducted on input of any prime p,
and determines a precise estimate on the number of operations required (on
average) to solve the corresponding supersingular isogeny problem. This is espe-
cially accurate when the cardinality of the class group is known, which has

https://github.com/microsoft/SuperSolver
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recently been shown to be feasible for primes up to 512 bits [5]. On the other
hand, we point out that the improvements in this paper have no direct impact on
the classical security of SIDH [14] and SIKE [19]. Though the Delfs–Galbraith
algorithm can be used to attack any supersingular isogeny-based cryptosystem,
there are much faster claw-finding algorithms (see [1,14]) for solving the special
instances of isogeny problems that arise in those schemes.

Roadmap. We give the preliminaries in Sect. 2. In Sect. 3, we present our opti-
mised instantiation of the traditional Delfs–Galbraith algorithm, called Solver.
In Sect. 4, we construct an efficient algorithm to detect whether a polynomial
has a root in a subfield. We use this algorithm to build SuperSolver in Sect. 5. In
Sect. 6, we present a worked example to highlight the differences between both
algorithms, and in Sect. 7 we present a number of implementation results that
illustrate the concrete improvements offered by SuperSolver.

2 Preliminaries

In this section we briefly set notation and give the requisite background for this
paper. Readers familiar with the paragraph headings below are welcome to skip
to the final two paragraphs.

Modular Polynomials. We will use Φ�(X,Y ) ∈ Z[X,Y ] to denote the classical
modular polynomial (see [29]) that parameterises pairs of elliptic curves with
cyclic �-isogeny in terms of their j-invariants: Φ�(j1, j2) = 0 if and only if j1 and
j2 are the j-invariants of �-isogenous elliptic curves. Readers unfamiliar with
modular polynomials are encouraged to look at Sutherland’s database1, which
contains Φ�(X,Y ) for all � ≤ 300 and for all primes � ≤ 1000. The polynomial
Φ� is symmetric in X and Y , i.e., Φ�(X,Y ) = Φ�(Y,X), and if � =

∏n
i=1 �ei

i is
�’s prime decomposition, the degree of Φ�(X,Y ) in both X and Y is

N� := deg (Φ�(X,Y )) =
n∏

i=1

(�i + 1)�ei−1
i . (1)

The difficulty in computing Φ�(X,Y ) is in the size, rather than the number, of its
coefficients. As discussed in [29], storing Φ�(X,Y ) requires O(�3 log �) bits, which
corresponds to several gigabytes for � ≈ 1000 and many terabytes for � ≈ 104.
Fortunately, for our purposes, the modular polynomials already contained in
Sutherland’s database are more than sufficient. Moreover, we will be using them
in the context of cryptanalysing instances of the supersingular isogeny problem
over a fixed finite field Fp2 , meaning we can reduce all of the large coefficients

1 See [28], a database computed using techniques from various joint works of his [6,29].
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modulo p as a precomputation. Indeed, even before the target j-invariants are
known, Φ�(X,Y ) ∈ Z[X,Y ] will be preprocessed into

Φ�,p(X,Y ) ∈ Fp[X,Y ],

where we note the additional subscript, defined by reducing all coefficients of
Φ�(X,Y ) modulo p. By the symmetry of Φ�(X,Y ), this means we must store
around N2

� /2 coefficients in Fp, requiring only O(�2 log p) bits.

Supersingular Isogeny Graphs. Following [13, §1], let p > 3 be a prime and
let Sp2 denote the set of all supersingular j-invariants in Fp2 . The number of such
j-invariants is #Sp2 = �p/12� + b, where b ∈ {0, 1, 2} is determined by the value
of p mod 12 [27, Theorem V.4.1(c)]. For any positive integer � with p � �, we use
X (F̄p, �) to denote the supersingular isogeny graph whose nodes correspond to
the j-invariants in Sp2 and whose edges are �-isogenies defined over F̄p. When �
is prime, these graphs are fully connected [23], and (with the possible exception
of a few nodes) are (� + 1)-regular expander graphs that satisfy the Ramanujan
property [24]. Crucial to both the Delfs–Galbraith algorithm and this paper is
the subset Sp of supersingular j-invariants defined over Fp. The size of this set is
#Sp = Õ(p1/2) [13, Equation 1], and since #Sp2 = O(p), the expected number
of randomly chosen elements in Sp2 we would have to take before finding one in
Sp is in Õ(p1/2).

The Delfs–Galbraith Algorithm. The Delfs–Galbraith paper largely focus-
ses on the problem of finding an isogeny φ′ : E′

1 → E′
2 between two supersingular

curves, E′
1/Fp and E′

2/Fp, whose j-invariants are in Sp. One of their main results
is an algorithm [13, Algorithm 1] that computes such a φ′ in Õ(p1/4) bit opera-
tions. At the end of their paper [13, Section 4], they show how this can be used as
a subroutine to give an algorithm for the general supersingular isogeny problem,
which asks to find an isogeny

φ : E1 → E2

between two supersingular curves, E1/Fp2 and E2/Fp2 , whose j-invariants are in
Sp2 . The idea is to perform simple non-backtracking random walks in X (F̄p, �)
until hitting an elliptic curve with a j-invariant defined over Fp. Finding a walk
from E1/Fp2 to E′

1/Fp yields an isogeny ψ1 : E1 → E′
1, and finding a walk from

E2/Fp2 to E′
2/Fp yields an isogeny ψ2 : E2 → E′

2. A full isogeny φ : E1 → E2

is then found as the composition φ = (ψ̂2 ◦ φ′ ◦ ψ1), where ψ̂2 : E′
2 → E2 is the

dual of ψ2, and φ′ : E′
1 → E′

2 is the subfield isogeny above that can be computed
in Õ(p1/4) bit operations. The bottleneck in the Delfs–Galbraith algorithm is
finding the paths from the curves with j ∈ Sp2 \ Sp to the curves with j ∈ Sp.
From the above discussion, the number of j-invariants in Sp2 we expect to search
over before finding one in Sp is Õ(p1/2). Following [13, Section 4], the steps
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taken in X (F̄p, �) are non-backtracking, meaning that one stores the current j-
invariant, jc, and the previous j-invariant jp. To take the next step, one then
chooses one of the N� − 1 roots (see Eq. 1) of

Φ�(X, jc)/(X − jp)

at random. Since � and N� are fixed and small, it follows that the asymptotic
complexity of the search for subfield j-invariants is Õ(p1/2). Before presenting
our improved search for subfield j-invariants, in Sect. 3 we present an optimised
version of this algorithm, and subsequently replace the Õ above with a precise,
concrete complexity.

Factoring Polynomials in Finite Fields. Let f(X) ∈ Fq[X] be a monic
polynomial of degree � with q = pk for a prime p, and for the purposes of this
paper, assume that p is very large (i.e., cryptographically sized) and � is relatively
small (i.e., � < 100). The literature contains a number of methods for finding the
irreducible factors of f in Fq[x], and we briefly mention the most applicable and
well-known algorithms for our scenario. Berlekamp’s algorithm [4] factors f using
an expected number of O(�3+�2 log � log q) operations in Fq [26, Theorem 20.12].
This appears to be superior to the Cantor-Zassenhaus algorithm [8], which uses
an expected number of O(�3 log q) operations in Fq [26, Theorem 20.9], however
one can take advantage of certain time-memory trade-offs to implement Cantor-
Zassenhaus so that it requires O(�3 + �2 log q) operations in Fq [26, Exercise
20.13]. Note that both of these big-O complexities hide a number of subtleties,
that Fq-inversions are included as Fq operations, and moreover that both of these
algorithms are probabilistic. Their deterministic variants have worse complexi-
ties [26, §20.6].

Polynomial GCD. Euclid’s integer GCD algorithm is easily adapted to com-
pute polynomial GCD’s [26, §17.3]. Computing the GCD of two polynomials
g, h ∈ Fq[x] requires O(deg(g) · deg(h)) operations in Fq. Again, here each Fq

inversion is counted as an Fq operation. In order to make our algorithms run
as fast as possible, one of the necessary subroutines we derive in Sect. 4 is an
inversion-free polynomial GCD algorithm, for which we state a tight upper bound
on the concrete complexity.

Measuring Complexity. Throughout this paper we will avoid stating asymp-
totic (i.e., big-O-style) complexities in favour of stating concrete ones. One of
our goals in Sect. 3 is to replace the Õ(p1/2) complexity of the original Delfs–
Galbraith algorithm with a closed formula that can be used to give precise
estimates on the classical security of the relevant cryptographic instantiations.
We will use the metric of Fp multiplications as convention, noting that it is rel-
atively straightforward to convert this into a more fine-grained metric (e.g. bit
operations, machine operations, cycle counts, gate counts, circuit depth, etc.)
depending on the context and on the implementation of the Fp arithmetic. For
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simplicity, we will count Fp squarings as multiplications and ignore additions.
We justify this by noting that, roughly speaking, the ratio of multiplications to
additions in all of the algorithms in this work are similar, and the complexity of
Fp additions have a minimal impact on any of the aforementioned metrics.

Subfield Search Complexity Determines Concrete Bit Security. Both
the Solver implementation detailed in Sect. 3 and the SuperSolver implementa-
tion detailed in Sect. 5 solve all instances of the general supersingular isogeny
problem. On input of any prime p and any two supersingular j-invariants in
Sp2 , both implementations will always terminate with an isogeny that solves
the corresponding problem. We emphasise that henceforth our sole focus is on
the Õ(p1/2) subfield search phase of the Delfs–Galbraith algorithm. Finding a
path between subfield nodes requires Õ(p1/4) operations, which is negligible in
both the asymptotic sense and in the sense of obtaining cryptographic secu-
rity estimates. To see this, suppose the asymptotic Õ(p1/2) complexity of the
first phase is replaced by a concrete complexity of cp · p1/2, and the asymptotic
Õ(p1/4) complexity of the second phase is replaced by a concrete complexity of
dp · p1/4, where cp and dp are polynomials in log p. The total complexity of the
Delfs–Galbraith algorithm is then

cp · p1/2 + dp · p1/4.

For primes of cryptographic size, small changes in cp have an immediate influence
on the total runtime of the algorithm, while much larger changes in dp will not
play a part in the bit security of the problem. For p > 2200, a factor 2 change in
cp changes the bit security of the problem by 1, while dp would have to change
by a factor of at least 250 to have the same impact on the bit security.

3 Solver: Optimised Delfs–Galbraith Subfield Searching
in X (F̄p, 2)

Recall from the previous section that the non-backtracking walks in X (F̄p, �)
store the current j-invariant, jc, and the previous j-invariant jp, and then take
a step in X (F̄p, �) by choosing one of the N� − 1 roots of Φ�(X, jc)/(X − jp).
In determining the asymptotic Õ(p1/2) complexity of these walks, Delfs and
Galbraith did not need to analyse the cost of a single step. However, to set
the stage for our improved search in Sect. 5, we must optimise this process and
determine its concrete cost. The first parameter that must be specified is �, i.e.,
the isogeny graph to walk around in. Considering both Equation (1) and the
complexity of the factorisation algorithms in Sect. 2, we chose � = 2 to obtain
most efficient and simplest choice where we are able to take advantage of fast
explicit methods for computing square roots in Fp2 .

Scott’s Fast Square Roots in Fp2 . Optimal computation of square roots in
extension fields of large characteristic requires careful attention to detail. A 2013
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paper by Adj and Rodŕıguez-Henŕıquez [2] cost the process of computing square
roots in Fp2 at two Fp residuosity tests, two Fp square roots, and one Fp inver-
sion, for a total of five exponentiations in Fp. In [25, §5.3], Scott shows that these
operations can be combined in a clever way to significantly reduce this cost. The
inputs into the Tonelli-Shanks Fp square root algorithm [22, Algorithm 3.34] can
be tweaked in such a way that the two residuosity tests are absorbed into the
two square roots. Moreover, he shows that most of the inversion cost can also
be absorbed by application of Hamburg’s combined ‘square-root-and-inversion’
trick [17]. This reduces the bulk of cost of an Fp2 square root from five Fp expo-
nentiations to just two. In addition, there are a handful of Fp multiplications and
additions that either update the Tonelli-Shanks outputs depending on the resid-
uosity outcomes or collect and combine the results according to the “complex”
formula in [25, §5.3]. We use this to construct a general square root algorithm in
our implementation that is highly optimised with respect to the number of Fp

operations it incurs2.

Taking a Step in X (F̄p, 2). After stepping from jp ∈ Fp2 to jc ∈ Fp2 , a non-
backtracking walk in X (F̄p, 2) will step to one of two new nodes: j0 and j1. These
are computed by solving the quadratic equation that arises from the modular
polynomial Φ�(X,Y ) with � = 2:

Φ2(X, Y ) = −X2Y 2 + X3 + Y 3 + 1488 · (X2Y + Y 2X) − 162000 · (X2 + Y 2)

+ 40773375 · XY + 8748000000 · (X + Y ) − 157464000000000.

The three neighbours of jc in X (F̄p, 2) are jp, j0, and j1, meaning that Φ2(X, jc)
factorises as

Φ2(X, jc) = (X − jp)(X − j0)(X − j1).

This yields a quadratic equation, whose solutions are j0, j1, defined by X2 +
αX + β = 0, where

α = −j2c + 1488 · jc + jp − 162000,

β = j2p − j2c jp + 1488 · (j2c + jcjp) + 40773375 · jc − 162000 · jp + 8748000000.

Computing these coefficients costs a small, constant number of Fp operations,
so the process of computing both j0 and j1 from jp and jc boils down to solving
the quadratic equation, which essentially requires one Fp2 square root. Since this
square root incurs two Fp exponentiations and a few additional Fp operations, it
follows that the cost of computing each new j ∈ Sp2 during the walks in X (F̄p, 2)
is (on average) approximately one Fp exponentiation.

2 Note that the fixed exponentiations that take place in the calls to Tonelli-Shanks
could be further optimised for a specific p by tailoring a larger window or a dif-
ferent addition chain, but the impact (for our purposes and comparisons) of this
improvement would be minor.
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The Depth First Search in X (F̄p, 2). Repeating the process described above
allows us to perform the search for subfield nodes using a depth first search in
a binary tree with d levels as follows. We write jm,n for the n-th node at level
m, where 0 ≤ m ≤ d and 0 ≤ n ≤ 2m − 1. The first three levels are depicted
in Fig. 1. We initialise the root node j0,0 as the target j ∈ Sp2 , and set j1,0 and

j0,0

j1,0

j2,0 j2,1

j1,1

j2,2 j2,3

Fig. 1. Levels 0, 1, and 2 of the binary tree in the depth first search of X (F̄p, 2).

j1,1 as two of its three neighbours3 in X (F̄p, 2). The depth first search starts by
setting jc = j1,0 and jp = j0,0. We then solve the quadratic equation above to
obtain j2,0 and j2,1, and repeat this procedure with jc = ji+1,0 and jp = ji,0 for
1 ≤ i ≤ d − 1 until the leftmost leaf jd,0 is computed and the path stack is fully
initialised as

path = [j0,0, j1,0, . . . , jd−1,0, jd,0].

To avoid any waste, we also maintain a stack of the other solution to the
quadratic equations that were computed along the way, which we call sibling
nodes

siblings = [j1,1, . . . , jd−1,1, jd,1].

The algorithm then proceeds back up the levels by popping path until its last
element is the root of a subtree that has not been checked in its entirety. At
this point siblings is popped and pushed into path. When the last element
of path is the root of a subtree that has not been exhausted, we initialise the
process of solving quadratic equations, pushing one of the two solutions into
path and the other into siblings until path contains d + 1 elements. Each
time the quadratic equation solver is called, the two roots (i.e., j-invariants)
are immediately checked; if either of them lie in Fp, it is added to path and
the process is terminated. Otherwise, the process is repeated recursively until
path = [j0,0], in which case the 2d+1 − 1 nodes in the tree have been exhausted
without finding a solution. To guarantee that a solution is found, one could
increase d and start again, but our code proceeds by simply storing the first
(leftmost) leaf and its parent in separate memory so that the process can restart

3 Initially we do not have a jp, so all three neighbours can be computed using generic
root finding; our code does this during the setup phase.
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here and avoid recomputing any prior j’s. As Delfs and Galbraith point out,
setting the depth d = 1

2 log2 p should be enough. Since the number of nodes
in the tree is 2d, increasing d by ε makes the failure probability diminish by
1/2ε. Setting ε = 10 was sufficient in all of our experiments. Finally, as pointed
out by Delfs and Galbraith in [13, §4], this process parallelises perfectly. For P
processors, one can simply compute a binary tree of depth 
log2 P � during setup
and distribute P of the leaf nodes as individual starting points.

The Concrete Complexity of Delfs–Galbraith. Table 2 reports on exper-
iments conducted using Solver, the optimised instantiation of the traditional
Delfs–Galbraith walk. For each bitlength between 21 and 40, we solved 10,000
instances of the subfield search. In each case we chose 100 random primes and,
for each prime, 100 pseudo-random j-invariants in Sp2 . The numbers in each
column report the averages (as base-2 logarithms) of these search complexities.
In all cases the number of Fp multiplications is found to be

#(Fp muls.) = c · √p · log2 p,

with 0.75 ≤ c ≤ 1.05. In Sect. 7, we shed more light on the concrete complexity
of both Solver and SuperSolver.

Table 2. The concrete cost of the subfield search phase of the Delfs–Galbraith over
small fields of various bitlengths. Further explanation in text.

bitlengths of primes p 21 22 23 24 25 26 27 28 29 30

av. number of nodes visited 8.8 9.4 10.0 10.3 10.9 11.4 11.9 12.3 13.1 13.5

av. number of Fp multiplications 14.5 15.0 15.7 16.0 16.7 17.2 17.8 18.2 19.0 19.5

bitlengths of primes p 31 32 33 34 35 36 37 38 39 40

av. number of nodes visited 13.5 14.2 14.7 15.3 15.8 16.3 17.1 17.3 17.6 18.1

av. number of Fp multiplications 19.5 20.5 20.8 21.3 21.9 22.4 23.2 23.6 24.1 24.6

Remark 1 (Vélu’s formulas). There is no traditional elliptic curve arithmetic
found in either Solver or SuperSolver. All of the steps taken within X (F̄p, 2)
and the rapid inspections conducted in X (F̄p, �) use the modular polynomials.
We point out there may be specific instances of p where one could perform
walks faster than repeatedly solving the Φ2,p(X, j) quadratic by, say, employ-
ing Vélu’s formulas [31] with the optimal strategies of De Feo–Jao–Plût [14].
For example, with a prime p = 2e3f − 1, the price of computing a 2e-isogeny
(i.e., walking through e nodes in X (F̄p, 2)) in this way may be cheaper than
the price of computing e square roots in Fp2 (note that the latter reveals 2
nodes each time). However, we argue that these scenarios are likely to only
exist for special instances of the supersingular isogeny problem that are geared
towards cryptosystems like SIDH [14] and SIKE [19]. As discussed in Sect. 1, here
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there are claw-finding algorithms that are much faster than the Delfs–Galbraith
algorithm (though the number of Fp operations required to compute an �e-
isogeny still grows with p, and therefore our fast subfield root detection would
also be useful in that context). In the case of both general primes and the types of
primes in Table 1, it is highly unlikely that using Vélu’s formulas [31] will be com-
petitive with the binary tree depth-first search in X (F̄p, 2); computing general
(
∏

�ei
i )-isogenies from kernel elements is much more expensive than �e-isogenies

when � ∈ {2, 3}, and one travels through fewer nodes in Sp2 per (
∏

�ei
i )-isogeny

when the �i grow larger.

Remark 2 (Radical isogenies). Another alternative to solving the quadratic
equation that arises from Φ2(X, jc)/(X − jp) is to instead take steps in X (F̄p, 2)
using formulas for radical isogenies [10]. For example, given a supersingu-
lar Montgomery curve parameterised as EA : y2 = x3 + Ax2 + x or as
Eα = x(x−α)(x−1/α), one can compute non-backtracking chains of 2-isogenies
as either A → A′ → A′′ . . . , or as α → α′ → α′′ . . . , rather than computing the
chain of j-invariants j → j′ → j′′ . . . , as we do. Computing the next value
in all of these chains requires one square root (which dominates the cost for
primes of cryptographic size) and a small handful of additional field operations,
the number of which depends on the choice of chain. In the case of computing
the chains A → A′ → A′′ . . . or α → α′ → α′′ . . . , the number of additional
operations are fewer (see [7,9]) than those which we incur using the modular
polynomial, however we have not opted to exploit this minor speedup for the
following reasons. Indeed, it is not true in general that j(EA) ∈ Fp implies A ∈ Fp

or that j(Eα) ∈ Fp implies α ∈ Fp. Since j(EA) = 256(A2 − 3)3/(A2 − 4), in
general there are six values of A corresponding to a given j. Similarly, since
j(Eα) = 256(α4 − α2 + 1)3/(α4(α2 − 1)2), in general there are twelve values
of α corresponding to a given j. For large primes it is typically the case that
most (or all) of the A’s and α’s corresponding to a given j ∈ Sp are not defined
over Fp. Thus, if radical isogenies were used to compute chains of α’s or A’s in
the context of Delfs–Galbraith, we would need to compute a value that deter-
mines whether the corresponding j lies in Fp. We note that this can be achieved
without inverting the denominators in the expressions for j(Eα) or j(EA), i.e.,
(a+b·β)/(c+d·β) is in Fp if and only if ad = bc for a, b, c, d ∈ Fp and Fp2 = Fp(β).
Thus, the original Delfs–Galbraith walk in X (F̄p, 2) is likely to save a small, fixed
number of multiplications per 2-isogeny by computing chains of A’s or α’s instead
of j’s. However, when invoking our fast subfield root detection in the sections
that follow, it is critical (for Algorithm 2) that the j-invariants of each node
are computed explicitly, so that the higher �-degree modular polynomials can be
used to probe for �-isogenous subfield neighbours. This subsequent computation
of the j-invariant seems to require an additional field exponentiation (we could
not see a way to merge the square roots and inversions into one exponentiation
in these instances), which would kill the potential advantage of radical isogenies
in the optimised SuperSolver algorithm.

Remark 3 (Alternative modular functions). There are several well-known mod-
ular functions other than the j-function – see [29]. A natural question in the
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context of this paper is whether any such functions can be used to make the
search for subfield nodes in supersingular isogeny graphs more efficient. For
example, the modular polynomials for Weber’s f -function [28] are the same
degree as those of the j-function, but have much smaller coefficients, many of
which are zero. If these more compact modular polynomials could be used in the
same way as those for the j-function, the practical gains would be significant.
However, their applicability in the context of SuperSolver appears to be ham-
pered by reasons similar to those discussed in Remark 2. Weber’s f is related to
j via j = (f24 − 16)3/f24, meaning there can be as many as 72 f ’s correspond-
ing to a single j-invariant, and it is not true in general that given j ∈ Fp, the
corresponding f ∈ Fp. Although this makes the Weber polynomials unreliable
replacements in the context of the SuperSolver algorithm, our search for alterna-
tive modular functions that would be compatible with SuperSolver was far from
exhaustive, and it is likely that the j-function is not optimal across all of them.
We leave any further investigations in this direction as future work.

4 Fast Subfield Root Detection

In this section we derive a method for determining whether a polynomial f(X) =
anXn + ... + a1X + a0 ∈ Fqd [X] with d ≥ 2 has a root lying in the subfield Fq,
where q is a power of prime p. Though this can be achieved by factoring the
polynomial, the methods described in Sect. 2 become too costly for our purposes;
the number of Fq operations required depends on the size of q, which hampers
their relative efficiency as q grows large. Our aim in this section is to detail a
much faster algorithm that detects whether a root lies in a subfield and show
that the number of Fq operations required by our algorithm only depends on the
degree of f and the degree of the extension d.

As the algorithms in this section may be of independent interest, we leave
them as general as possible before specialising back to the application at hand
in Sect. 5. The results up to Proposition 1 are presented for general finite field
extensions of the form Fqd/Fq, but we will later specialise to the quadratic exten-
sions of prime fields, i.e., where q = p and d = 2. The inversion-free GCD in
Algorithm 1 is derived for an arbitrary polynomial ring K[x], but we will only
need to use it in Fp[x].

In this section, for a polynomial in Fqd [X], we will reduce the the problem
of detecting a root in Fq to computing the greatest common divisor of d related
polynomials g1, ..., gd. In the case where d > 2, we will need to compute the
GCD of more than two polynomials. This can be done by recursively computing
the GCD of two polynomials and using the following identity:

gcd(g1, g2, ..., gd) = gcd(g1, gcd(g2, ..., gd)). (2)

We aim to minimise the number of Fq multiplications needed to compute the
GCD and so we construct these polyomials so that they are defined over Fq. To
achieve this, we will will need two results. The first is a theorem by Lidl and
Niederreiter [21, Theorem 2.24].
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Theorem 1. Let F be a finite extension of a finite field K, both considered
as vector spaces over K. Then the linear transformations from F into K are
exactly the mappings Lβ(α), for β ∈ F , where Lβ(α) = TrF/K(βα) for all
α ∈ F . Furthermore, we have Lβ �= Lγ whenever β, γ are distinct elements of
F .

The second result we will need is the following lemma.

Lemma 1. For n ∈ N, let f1, ..., fn ∈ Fqd [X] be polynomials and A ∈ GLn(Fqd).
Defining (g1, ..., gn) := A · (f1, ..., fn), we have

gcd(f1, ..., fn) = gcd(g1, ..., gn).

Proof. If a polynomial h ∈ Fqd [X] divides f1, ..., fn, then h divides any linear
combination of the f1, ..., fn. Therefore, h divides g1, ..., gn. Since A is invertible,
by swapping the roles of gi and fi we see that the converse holds. ��

We are now ready to present the main result of this section.

Proposition 1. For some d ≥ 2, let π be the q-power Frobenius endomorphism
in Gal(Fqd/Fq) and consider a polynomial f(X) = anXn + ... + a1X + a0 ∈
Fqd [X]. Let β be a primitive element of the extension Fqd/Fq, in the sense that
the field extension is generated by a single element β, i.e., Fq(β) = Fqd . For
i = 1, .., d, define the following polynomials over Fqd :

gi :=
d−1∑

j=0

πj(βi−1f).

Then gi(X) ∈ Fq[X], and gcd(g1, ..., gd) divides f . In particular, if gcd(g1, ..., gd)
is of degree 1, then f has a root in Fq. Furthermore, if gcd(g1, ..., gd) = 1, then
f(X) does not have any roots in Fq.

Proof. Using the notation in Theorem 1, we have

gi(X) = [(β
i−1

an + π(β
i−1

an) + ... + π
d−1

(β
i−1

an))X
n
+ ... + (β

i−1
a0 + ... + π

d−1
(β

i−1
a0))]

=

n∑

m=0

Lβi−1 (am)X
m

.

By Theorem 1, for all i = 1, ..., d and m = 0, . . . n, we have Lβi−1(am) ∈ Fq,
implying that gi(X) ∈ Fq[X]. Setting (d × d) matrix A to be

A =

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
β π(β) . . . πd−1(β)
...

...
. . .

...
βd−1 π(βd−1) . . . πd−1(βd−1)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
β βq . . . βqd−1

...
...

. . .
...

βd−1 (βd−1)q . . . (βd−1)qd−1

⎤

⎥
⎥
⎥
⎦

,
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we have (g1, ..., gd) := A · (f, π(f)..., πd−1(f)). As for Vandermonde matrices [18,
§6.2], we find det(A) =

∏
0≤i<j≤d−1(β

qj − βqi

), which is non-zero for β a prim-
itive element of the extension Fqd/Fq and so A ∈ GLd(Fqd). By Lemma 1, we
have

gcd(f, π(f), ..., πd−1(f)) = gcd(g1, ..., gd),

therefore gcd(g1, ..., gd) | f . If gcd(g1, ..., gd) is of degree 1, then (X − r) | f for
some r ∈ Fq, and so f has a root in Fq.

We further note that gcd(f, π(f), ..., πd−1(f)), and therefore gcd(g1, ..., gd),
is precisely the largest divisor of f that is defined over Fq. As a result, if
gcd(g1, ..., gd) = 1, then f(X) does not have any roots in Fq. ��

Applying Proposition 1 to Detect Subfield Nodes. The proof of Proposi-
tion 1 tells us that gcd(g1, ..., gd) is precisely the largest divisor of f ∈ Fqd [X]
that is defined over Fq[X]. In our target application of searching for subfield
nodes in large supersingular isogeny graphs, i.e., when d = 2 and q = p, we will
most commonly encounter gcd(g1, g2) = 1, which immediately rules out subfield
neighbours in the �-isogeny graph. Non-trivial GCD’s will, with overwhelmingly
high probability, be of degree 1 and reveal a single subfield node; this is why
our implementation of Algorithm 1 below terminates and returns true when the
degree of the GCD is 1.

For large supersingular isogeny graphs, the only way for the degree of
gcd(g1, g2) to be larger than 1 is when a given j-invariant is �-isogenous to
multiple subfield nodes, or when a given j-invariant is �-isogenous to conjugate
j-invariants in Fp2 .4

In our scenario where d = 2, we see that π(β)+β = 0, meaning that πk(β) =
(−1)kβ. As a result, to detect a subfield root, we compute gcd(g1, βg2) where
g1 = f + π(f) and g2 = f − π(f). In this case we do not need to calculate any
more powers of β and we only need to do one GCD computation.

Inversion-Free Polynomial GCD. To complete the detection of roots in a
subfield, we must compute the GCD of polynomials in polynomial ring K[X],
where K is a field. In Algorithm 1, we modify Euclid’s polynomial-adapted
algorithm [26, §17.3] to compute the GCD of two polynomials g, h ∈ K[X] while
avoiding inversions in K. We use LC(f) to denote the leading coefficient of the
polynomial f . Note that, for the purposes of incorporating it into our target
application of subfield searching in the next section, the algorithm outputs the
boolean true when the GCD has degree 1 in K[X].

4 A real-world attack should check any non-trivial GCD, since either of these scenarios
are a win for the cryptanalyst; the latter case reveals information about the secret
endomorphism ring of the target isomorphism class (see [20, §5.3]), and the former
case gives multiple solutions to the subfield search problem.
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Algorithm 1. InvFreeGCD(): Inversion-free GCD
Input: Polynomials g, h ∈ K[X], such that deg g ≥ deg h

1: Initialise r, s ← LC(h) · g, LC(g) · h
2: while deg r ≥ 1 and r �= s do
3: r ← r − Xdeg r−deg s · s
4: r, s ← LC(s) · r, LC(r) · s
5: if deg r ≤ deg s then
6: r, s ← s, r
7: return ¬(deg r = 1 and r �= s)

Proposition 2. Given input g, h ∈ K[X] such that deg g ≥ deg h, Algorithm 1
terminates using at most

1
2
(deg g + deg h + 2)(deg g + deg h + 3) − 6

multiplications in K.

Proof. Line 1 incurs at most deg g + deg h + 2 multiplications in K. Setting
r0 := r, s0 := s, we define this to be loop 0. For i ≥ 1, we denote by ri, si (where
deg si ≥ deg ri) the polynomials in loop i of Lines 2-6. Using this notation, we
move to Line 7 when deg ri ≤ 1 or ri = si. Now, in loop i ≥ 1 we replace ri by
ri − Xdeg ri−deg sisi, meaning deg ri−1 − deg ri ≥ 1, and compute ri · LC(si) and
si ·LC(ri). This requires deg ri+deg si+2 multiplications in K. In the worst case,
we have deg ri−1 −deg ri = 1 for i ≥ 1, where the number of multiplications will
decrease by exactly 1 after each loop. In the final loop we have deg ri,deg si = 1,
so we compute 4 multiplications in K. In summary, in the worst case we begin
with deg g+deg h+2 multiplications, decreasing by 1 until we get to 4. Therefore,
the total number of multiplications is at most

∑deg g+deg h+2
n=4 n, which is the

bound above. ��
In summary, Proposition 1 shows that detecting subfield roots of f ∈ Fqd [X]
amounts to computing the GCD of d related polynomials in Fq[X]. We showed
that computing this GCD is simpler when d = 2. Proposition 2 gives an upper
bound on the number of Fq multiplications required to compute such a GCD
in Fq[X]. In the next section we use these tools to build a faster algorithm for
finding subfield nodes in supersingular isogeny graphs.

5 SuperSolver: Optimised Subfield Searching With Fast
Subfield Root Detection in X (F̄p, �)

SuperSolver is an algorithm which, given two j-invariants in Sp2 corresponding to
two supersingular curves E1/Fp2 and E2/Fp2 , will, on average, solve the super-
singular isogeny problem with lower concrete complexity than the traditional
Delfs–Galbraith Solver algorithm described in Sect. 3. As in the Delfs–Galbraith
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algorithm, SuperSolver takes non-backtracking walks in X (F̄p, 2) until they hit
a j-invariant in Fp. However, at each step of the random walk, SuperSolver also
inspects X (F̄p, �), for carefully chosen � > 2, to efficiently detect whether j
has any �-isogenous neighbours in Fp. Traditionally, inspecting X (F̄p, �) for a
subfield neighbour requires fully factoring a degree-N� polynomial and deter-
mining whether any of the roots lie in Fp. Performing this for each � would
require O(�3+2�2 log p) operations in Fp2 using the modified Cantor-Zassenhaus
algorithm (see Sect. 2), which is prohibitively costly. Following the results from
Sect. 4, however, SuperSolver conducts the inspection of X (F̄p, �) with O(�2) mul-
tiplications in Fp. We make this count precise later in this section. Crucially, the
number of Fp operations is no longer dependent on the size of p, and this means
that as p grows large, the set of �’s that are optimal to use also grows, and the
more profitable (relatively speaking) SuperSolver becomes. We reiterate that,
although both Solver and SuperSolver return the full isogeny between E1/Fp2

and E2/Fp2 , our discussion focusses on the bottleneck problem of finding an
isogeny from E1/Fp2 (resp. E2/Fp2) to E′

1/Fp (resp. E2/Fp). If, at some node
j, we detect an �-isogenous neighbour in Fp, SuperSolver will then factorise the
degree-N� polynomial Φ�,p(X, j) to determine the subfield j-invariant. We view
this as a post-computation step, since we are only interested in the concrete
complexity of the average step taken in the walk (which we assume does not find
a subfield node). Note that the paths between E1/Fp2 and E2/Fp2 returned by
both Solver and SuperSolver both look the same: in general, both start and finish
with a chain of 2-isogenies that is connected in the middle by a chain of different
prime-degree isogenies. The main difference, as the results in Sect. 7 illustrate,
is that 2-isogeny chains at each end are much shorter. Recall that in the original
Delfs–Galbraith algorithm, each step consists of finding the roots of a quadratic
equation in Fp2 [X], which reveals two neighbouring nodes in X (F̄p, 2). In Super-
Solver, after forming a list of carefully chosen � > 2, each step will also include
the rapid inspection of X (F̄p, �) for every � in this list. Though the inspection
of the neighbours in X (F̄p, �) increases the total number of Fp multiplications
at each step, more nodes are checked. We first describe the process of taking a
step in SuperSolver, and then move to describing how to choose the list of � > 2
in order to minimise the number of Fp multiplications per node inspected.

Remark 4 (Odd � only). With the exception of the leaf nodes in the last level of
the binary tree, it is redundant to perform rapid node inspections in X (F̄p, 2�)
if rapid inspections in X (F̄p, �) are also part of the routine, since the latter
inspections will detect (or exclude) subfield nodes at the next level of the walk
down the tree. We therefore find it optimal to only include odd �i in the lists
constructed at the end of this section. Note that there is no redundancy in
including odd composite �i’s in our lists, even if they have proper divisors that
are also in the list.

Rapid Inspection of the �-Isogenous Neighbours. Here we describe Algo-
rithm 2: NeighbourInFp. On input of �, j ∈ Fp2 and p, it outputs true if j is
�-isogenous to a j′ ∈ Fp, and false otherwise. Recall from Equation (1) that
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the degree of Φ�,p in X and Y is N�. The first subroutine of NeighbourInFp is
EvalModPolyj(�, j, p): it evaluates Φ�,p(X,Y ) at Y = j by computing j2, ..., jN� ,
and then multiplying these by the corresponding coefficients of Φ�,p, returning
the coefficients aN�

, ..., a0 of X in Φ�,p(X, j). Note that, since we typically have
a list of multiple �, i.e., �1 < · · · < �t, the powers of j (up to N�t

) are computed
once-and-for-all at every j, and recycled among the �i < �t. We follow Sect. 4 to
detect whether Φ�,p(X, j) ∈ Fp2 [X] has a root in Fp. Letting β ∈ Fp2 be such
that Fp2 = Fp(β), we first compute the related polynomials

g1 := (1/2) · [Φ�,p(X, j) + π(Φ�,p(X, j))] and
g2 := (−β/2) · [Φ�,p(X, j) − π(Φ�,p(X, j))],

where π ∈ Gal(Fp2/Fp) is the Frobenius endomorphism. By Proposition 1, we
have g1, g2 ∈ Fp[X] and

deg (gcd(g1, g2)) = 1 =⇒ Φ�,p(X, j) has a root in Fp.

We then complete the inspection of X (F̄p, �) by using Algorithm 1 to calculate
gcd(g1, g2). If gcd(g1, g2) �= 1, then (for large enough p) it is overwhelmingly
likely that deg (gcd(g1, g2)) = 1, which is why our implementation uses the
degree of the GCD as the criterion for terminating the subfield search. Another
possibility is to terminate whenever gcd(g1, g2) is non-constant, and then to
inspect the higher degree GCD according to the two possible scenarios discussed
in Sect. 4.

Note that if we have a polynomial f(X) = anXn+an−1X
n−1+...+a1X+a0 ∈

Fp2 [X] then

1

2
[f + π(f)] = Re(an)Xn + Re(an−1)X

n−1 + ... + Re(a1)X + Re(a0) ∈ Fp[X],

−β

2
[f − π(f)] = Im(an)Xn + Im(an−1)X

n−1 + ... + Im(a1)X + Im(a0) ∈ Fp[X],

where, for a+ bβ ∈ Fp2 , Re(a+ bβ) = a and Im(a+ bβ) = b, in analogy with the
notation used for complex numbers. As a result, we can obtain g and h directly
from f = Φ�,p by computing

g1 = XN� + ... + Re(a0), and g2 = Im(aN�−1)XN�−1 + ... + Im(a0).

This avoids having to compute any Fp2 multiplications to calculate the related
polynomials g1, g2.

Cost of Inspecting the �-isogeny Graph. Evaluating Φ�,p(X,Y ) at Y = j
with EvalModPolyj requires at most 9N�(N�−1) multiplications in Fp, noting that
one Fp2 multiplication is equivalent to 3 Fp multiplications. By Proposition 2, we
compute InvFreeGCD(g1, g2) with at most (2N�+1)(N�+1)−6 Fp multiplications.
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Algorithm 2 . NeighbourInFp(): Detect whether j ∈ Fp2 is �-isogenous to a
j′ ∈ Fp

Input: �, j, p

1: aN� , ..., a0 ← EvalModPolyj(�, j, p)
2: g1 ← XN� + ... + Re(a0)
3: g2 ← Im(aN�−1)X

N�−1 + ... + Im(a0)
4: return InvFreeGCD(g1, g2)

Therefore, for a fixed �, the cost of inspecting X (F̄p, �) is

cost� =
1

N�
[#Fp multiplications needed to inspect �-isogenous neighbours]

≤ 1
N�

[11N2
� − 6N� − 5],

which depends only on �. This means that, for each �, cost� can be computed
once for all primes. In Table 3 we present the � with the lowest cost, ordering
them by increasing cost� from left to right.

Table 3. The cost of inspecting �-isogenous neighbours, cost�, for � ordered by increas-
ing cost from left to right.

� 3 5 7 11 13 9 17 19 23 29

N� 4 6 8 12 14 12 18 21 24 30

Fp muls per node 16.3 24.5 32.6 48.8 56.8 58.5 72.8 80.9 96.9 120.9

� 31 25 15 37 41 43 27 21 47 53

N� 32 30 24 38 42 44 36 32 48 54

Fp muls per node 128.9 139.5 145.3 152.9 168.9 176.9 186.3 187.5 192.4 216.9

The important takeaway from Table 3 is that the number of Fp multiplica-
tions incurred by our algorithm does not grow with p. This count is fixed and
depends only on �. Looking back at the root solving algorithms in Sect. 2, we
see a stark difference in expected performance. Those algorithms have many
constants hidden by the big-O, have a leading �3 term (compared to our �2

term), and, importantly, the number of field operations they incur grows as the
field grows due to their implicit dependency on log p. Moreover, as mentioned in
Sect. 2, the complexities cited are for probabilistic root finding algorithms. Their
deterministic variants have even worse complexities [26, §20.6].

Choosing the �i to Minimise the Cost of a Step. We consider the cost of
each step in SuperSolver, which we denote by the ratio

cost =
total # of Fp multiplications

total # of nodes revealed
. (3)
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The aim of this section is to describe how to construct a list of �i that minimises
the cost. Recall from in Table 3 that the �’s that give the cheapest cost per node
inspected are (from left to right)

[3, 5, 7, 11, 13, 9, 17, 19 . . . ]. (4)

We will use Lb to denote each list of �i and costLb
to denote the corresponding

cost, where the bit representation of b specifies the set of �’s from Equation (4);
the least significant bit of b determines if 3 is included, the second least significant
bit of b determines if 5 is included, and so on. For example, L0 = {}, L2 = {5},
and and L11 = {3, 5, 7}. Each step will always include revealing 2 neighbours in
X (F̄p, 2), therefore for a node j we have for each step:

total # of Fp muls. ≥ #Fp muls. needed to find roots of Φ2,p(X, j);
total # of nodes revealed ≥ 2.

Here, equality holds only when we take the list to be L0, which corresponds to the
original Delfs–Galbraith algorithm. Minimising the cost in Equation (3) is a non-
trivial task. We first restrict the Lb to only contain � such that cost� < costL0 ,
otherwise it would be more advantageous to take another step by moving to a
neighbouring node in X (F̄p, 2). We emphasise that costL0 grows with p, whereas
cost� stays fixed. This signifies that the condition on � becomes less restrictive
as p increases. Suppose that, imposing this condition we get Lb ⊆ [�1, ..., �n]. We
then exhaust all b < 2n, corresponding to subsets of [�1, ..., �n], to determine the
Lb that minimise Equation (3). It is important to note that, as this optimisation
depends only on the prime p, Lb can be determined in the precomputation.

6 A Worked Example

We now use a worked example to illustrate how the Solver and SuperSolver pro-
grams solve the supersingular isogeny problem, and to highlight the differences
between them. Our SuperSolver suite is written in Sage/Python and a boolean
variable supersolver specifies whether Solver or SuperSolver is used. For a prime
p, and two supersingular j-invariants j1 and j2 defined over Fp2 = Fp(β), Solver
runs by entering

Solver(p, j10, j11, j20, j21, false)

and SuperSolver runs by calling

Solver(p, j10, j11, j20, j21, true),

where j10 = Re(j1), j11 = Im(j1) and similary for j20, j21.
We picked

p = 220 − 3,

the smallest of the primes from Table 4 (of Sect. 7), and generated two pseudo-
random5 j-invariants in Sp2 \ Sp:

j1 = 129007β + 818380 and j2 = 97589β + 660383.
5 We do this by taking long walks in X (F̄p, 3) away from a known subfield curve.
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Preprocessing. The preprocessing phase of both programs starts by construct-
ing the extension field Fp2 = Fp(β), where β2 is the first non-square in the
sequence −1,−2,2,−3,3,. . . . It then computes a list of constants for the Tonelli-
Shanks subroutine, most notably the exponent (p − 2e − 1)/2e+1, where e is the
maximum integer such that 2e | (p−1). This exponent is Scott’s ‘progenitor’ [25,
p. 3], which essentially determines the complexity of Fp square roots, and there-
fore of Fp2 square roots. As a result, it determines the cost of taking a step
in X (F̄p, 2) – see Sect. 3. The preprocessing phase then computes a set of inte-
gers � ≥ 3 (according to the optimisations in Sect. 5 and the relevant heuristics
in [13]), fetches the associated files (originally from Sutherland’s database [28])
containing Φ�(X,Y ) ∈ Z[X,Y ] and reduces all of the coefficients to store a set
of new, more compact files containing elements of Fp that define each of the
Φ�,p(X,Y ) ∈ Fp[X,Y ]. Note that this is done for both Solver and SuperSolver,
since both of these programs use the original Delfs–Galbraith subfield path algo-
rithm [13, Algorithm 1] after the searches for subfield nodes is complete. It is
important to note, especially in the cryptanalytic context, that all of these pre-
processing steps only depend on p and can therefore be done without knowledge
of j1 and j2.

Solver. The optimised walk in X (F̄p, 2) proceeds exactly as described in Sect. 3,
i.e., using the depth first search through the binary trees rooted at j1 and j2,
until both searches find the subfield nodes j′

1 ∈ Fp and j′
2 ∈ Fp. In the case

of our example, paths were found to j′
1 = 760776 and j′

2 = 35387, depicted in
Fig. 2 and Fig. 3. They correspond to φ1 : E1 → E′

1 and φ2 : E2 → E′
2, where

j(E1) = j1, j(E′
1) = j′

1, j(E2) = j2, and j(E′
2) = j′

2.
Solver then computes a connecting path between the subfield nodes follow-

ing Delfs–Galbraith [13, Algorithm 1]. This is depicted in Fig. 4. Solver simply
reverses the steps in φ2 to obtain its dual, φ̂2, and outputs the full path as
φ : E1 → E2 as φ = φ̂2 ◦ φ′ ◦ φ1.

SuperSolver. With p = 220 − 3, the preprocessing phase determined that Super-
Solver is optimal with L3 = {3, 5} (see also Table 4 in the next section). Before
departing the starting node j1 = 129007β + 818380, SuperSolver performs the
rapid inspection of its 3- and 5-isogenous neighbours as described in Sect. 5. It
then takes steps in X (F̄p, 2) as in Sect. 3, but at each new node it performs
the rapid inspection of the 3- and 5-isogenous neighbours. In our example, both
walks found a subfield node after 2 steps in X (F̄p, 2). The walk from j1 found a
3-isogenous neighbour and the walk from j2 found a 5-isogenous neighbour. The
final step that finds φ′ is implemented in SuperSolver exactly as it was for Solver.
The three isogenies φ1, φ2, and φ′, comprising the full isogeny φ = φ̂2 ◦ φ′ ◦ φ1,
are depicted in Fig. 5.

To illustrate the core idea in this paper, we focus on the isogeny φ1 depicted
at the top of Fig. 5 and walk through the steps of the NeighbourInFp algorithm.
Evaluating the third modular polynomial at the intermediate j-invariants (Step 1
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φ1 : j1 219247β + 863507 489342β + 132142

174188β + 794346 291380β + 146098 148602β + 24450

263095β + 184707 37438β + 90559 1027930β + 498080

612554β + 208821 994015β + 681197 206051β + 982009

649416β + 751358 203489β + 43055 393773β + 1028490

318158β + 140927 175225β + 937858 971263β + 725197

348684β + 935077 341898β + 405481 274229β + 367729

j1 = 760776

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 2. A walk through X (F̄p, 2) for p = 220 − 3 during Solver. The walk starts at
j1 = 129007β + 818380 ∈ Sp2 and finds the subfield node j′

1 = 760776 ∈ Sp after 21
steps.

φ2 : j2 867493β + 220256 252807β + 1011175

657423β + 286117 440840β + 706619 953362β + 11601

734841β + 660440 919529β + 442520 219960β + 646080

638727β + 940073 219719β + 594710 619876β + 961666

407014β + 868179 535787β + 1046047 138865β + 8726

1016378β + 696447 289439β + 170877 665078β + 700037

895198β + 793471 562302β + 547814 68076β + 946405

j2 = 35387

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

2

2 2

2 2

2

Fig. 3. A walk through X (F̄p, 2) for p = 220 − 3 during Solver. The walk starts at
j2 = 97589β +660383 ∈ Sp2 and finds the subfield node j′

2 = 35387 ∈ Sp after 21 steps.
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φ : j1 815910 848568 157399 451011 820763

j2 286978 76159

31 17 31 29 31

31

17 37

Fig. 4. A path connecting two subfield j-invariants by taking steps in X (F̄p, �) with
� ∈ {17, 29, 31, 37}. The walk starts at j′

1 = 760776 ∈ Sp and connects to j′
2 = 35387 ∈

Sp after 8 steps.

φ1 : j1 219247β + 863507 489342β + 132142 j1 = 35387

φ2 : j2 867493β + 220256 252807β + 1011175 j2 = 292917

φ : j1 658300 343840 560315

j2 439276

2 2 3

2 2 5

17 29 31

17

37

Fig. 5. The three paths found comprising an isogeny from E1 to E2 as found by Super-
Solver.

of Algorithm 2) yields

Φ3,p(X, 219247β + 863507) = X4 + (212814β + 479338)X3 + (408250β + 920025)X2

+ (811739β + 93038)X + 942336β + 847782;

Φ3,p(X, 489342β + 132142) = X4 + (872004β + 13960)X3 + (1031755β + 822066)X2

+ (969683β + 747785)X + 813010β + 255391.

Though the theory tells us that these two polynomials split over Fp2 [X], to the
naked eye there is no way to distinguish which (if any) of these polynomials has
a root in Fp. In both cases, setting g1 = 1/2 · (Φ3,p + π(Φ3,p)) (Step 2 of Algo-
rithm 2) and g2 = −β/2 · (Φ3,p − π(Φ3,p)) (Step 3 of Algorithm 2) respectively
yields

g1 = X4 + 479338X3 + 920025X2 + 93038X + 847782;

g2 = 425628X3 + 816500X2 + 574905X + 836099,
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and

g1 = X4 + 13960X3 + 822066X2 + 747785X + 255391;

g2 = 695435X3 + 1014937X2 + 890793X + 577447.

In the first case, Step 4 of Algorithm 2 outputs gcd(g1, g2) = 1, meaning that
Φ3,p(X, 219247β + 863507) has no subfield roots. In the second case, we see
gcd(g1, g2) = X+1013186, meaning that −1013186 = 35387 is a subfield root. In
our example, we note that the total number of steps between j1 and j2 returned
by SuperSolver is 10, which is much shorter than the 50 steps taken by Solver.
Since the middle subfield path finding algorithm is the same in both routines,
there is no guarantee that the total path will always be smaller for SuperSolver.
It is worth pointing out, however, that the two outer paths from elements in
Sp2 \ Sp to Sp (i.e., φ1 and φ2) returned by SuperSolver will never be longer
than those returned by Solver. Indeed, Solver can be viewed as a special case of
SuperSolver where the list of �’s is chosen to be L0. Finally, we note that both
Solver and SuperSolver always conclude by checking the correctness of the full
path from j1 to j2.

7 Implementation Results

In this section we present some experimental results highlighting the efficacy
of SuperSolver. The experiments focus solely on the search for subfield nodes
(i.e., the bottleneck step of Delfs–Galbraith) and come in two flavours: many
j-invariants over small primes, and one j-invariant over a large, cryptographic
prime.

Small Primes and Many Walks. Tables 4 and 5 report experiments that
were run on the largest primes of the 30 bitlengths from 20 to 49. We started
at 5000 pseudo-random6 supersingular j-invariants in Sp2 \ Sp for the primes of
bitlengths 20–24, at 1000 j’s for the primes of bitlengths 25–29, at 500 j’s for the
primes of bitlengths 30–34, at 100 j’s for the primes of bitlengths 35–39, at 50
j’s for the primes of bitlengths 40–44, and at 10 j’s for the primes of bitlengths
45–49. For every j, we ran both Solver and SuperSolver (with the five sets of �’s
that were predicted to perform best during preprocessing) until all walks hit a
subfield j-invariant. Throughout, we will denote these fast sets of �’s by Lb, as in
Sect. 5. In all cases we counted the exact number of Fp multiplications, squarings
and additions required to find the subfield node. Following our metric in Sect. 2,
Table 5 reports the average number of Fp multiplications by counting squarings
as multiplications, and highlights in red which of the five predicted sets of �’s
performed best on average.

Table 4 reports the average number of nodes visited in each of the walks, along
with

⌈
#Sp2/#Sp

⌉
, the expected number of random elements in Sp2 that would

6 Just as in Sect. 6, we used long walks in X (F̄p, 3) away from a known starting curve
to achieve uniformity in Sp2 .
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need to be sampled to find a subfield element in Sp. Here, the primes are small
enough that Sp can be computed precisely (see Sect. 2). For each prime, Table 4
highlights in red the column that matches up with the least multiplications
reported in Table 5. Note that, for SuperSolver, the number of nodes visited is
the number of nodes that are actually walked onto in X (F̄p, 2), not the number
of nodes inspected using our fast subfield detection algorithm. Thus, in general,
the lowest average number of nodes visited does not correspond to the lowest
average number of multiplications. Indeed, the walks with fewer �’s spend less
compute time inspecting �-isogenous neighbours and therefore move onto new
nodes faster, but do not cover as much of the supersingular set during the fast
inspection.

The key trend to highlight is that, relatively speaking, SuperSolver gains more
advantage over Solver as the primes get larger. This is not as evident for the small
primes in Tables 4 and 5 as it is for the larger primes below.

Table 4. The average number of nodes visited in the search for subfield j-invariants
in Solver and SuperSolver. Further explanation in text.

prime p ⌈ #S
p2

#Sp

⌉ muls fastest Lj ’s Average number of nodes visited
p mod per Solver SuperSolver

8 step [L(i) . . . , L(v)] DG L(i) L(ii) L(iii) L(iv) L(v)

220 − 3 5 530 54 [L3, L7, L11, L1, L15] 812 127 257 76 107 193
221 − 9 7 156 53 [L3, L7, L1, L5, L11] 459 86 218 53 87 111
222 − 3 5 584 60 [L3, L7, L15, L11, L5] 885 170 108 288 146 145
223 − 15 1 583 71 [L7, L3, L15, L11, L5] 838 172 106 169 121 430
224 − 3 5 1277 64 [L3, L7, L15, L11, L5] 1897 318 209 311 618 273
225 − 39 1 1231 71 [L7, L3, L15, L11, L5] 1873 360 223 359 933 259
226 − 5 3 732 62 [L3, L7, L15, L11, L5] 1362 352 194 691 271 233
227 − 39 1 2348 73 [L7, L3, L15, L11, L5] 3455 917 438 579 497 1766
228 − 57 7 2965 64 [L3, L7, L15, L11, L5] 9748 1788 1022 3065 1314 1306
229 − 3 5 2953 74 [L7, L3, L15, L11, L13] 4384 1053 526 712 603 2161

230 − 35 5 3965 75 [L7, L3, L15, L11, L13] 5555 1443 749 961 849 2825
231 − 1 7 9009 75 [L7, L3, L15, L11, L13] 27103 4501 2602 3755 3136 8794
232 − 5 3 5142 75 [L7, L3, L15, L11, L13] 10149 2520 1445 2108 1702 5335
233 − 9 7 6638 77 [L7, L3, L15, L11, L13] 20387 3832 2342 3756 2676 10562
234 − 41 7 10526 78 [L7, L3, L15, L11, L13] 32640 6443 3790 6094 4531 16320
235 − 31 1 117571 99 [L15, L7, L11, L3, L13] 150101 14893 27873 23076 20921 9850
236 − 5 3 29040 83 [L7, L15, L3, L11, L13] 63384 15929 9127 11974 10807 5249
237 − 25 7 70328 84 [L7, L15, L3, L11, L13] 218775 26241 16098 29226 24153 10405
238 − 45 3 100268 86 [L7, L15, L3, L11, L13] 217145 43595 21343 27187 26982 14897
239 − 7 1 174817 96 [L7, L15, L11, L3, L13] 230235 28802 48488 36770 38318 19677

240 − 87 1 266662 95 [L7, L3, L5, L6, L23] 394908 49855 80764 66646 56901 28016
241 − 21 3 205227 92 [L7, L3, L5, L6, L23] 448883 52656 105639 69940 62212 27395
242 − 11 5 557046 99 [L7, L3, L5, L6, L23] 720206 93920 189498 147651 102116 64309
243 − 57 7 198777 95 [L7, L3, L5, L6, L23] 705224 69021 153095 95778 81922 44112
244 − 17 7 307870 98 [L7, L3, L5, L6, L23] 808057 131220 285136 145263 142750 72964
245 − 55 1 3120225 108 [L7, L3, L5, L6, L23] 2298828 301730 410169 579449 404520 226542
246 − 21 3 2759728 102 [L7, L3, L5, L6, L23] 9075335 516826 788898 957832 730020 382101
247 − 115 5 4234340 108 [L7, L3, L5, L6, L23] 5182631 650377 866413 650377 801837 781907
248 − 59 5 2706129 111 [L7, L3, L5, L6, L23] 6739857 546014 899553 756358 651990 491312
249 − 81 7 1239417 107 [L7, L3, L5, L6, L23] 3582205 288124 660449 326050 319641 252270

Remark 5 (X (Fp, 2) clusters in X (F̄p, 2)). An interesting trend to highlight in
Table 4 is that the average number of nodes visited in the optimised Delfs–
Galbraith walk through X (F̄p, 2) is significantly more than the expected number
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of elements one would need to select randomly from Sp2 in order to find an
element of Sp. The reason for this is that components of X (Fp, 2) cluster together
in X (F̄p, 2). Thus, with respect to finding subfield nodes, walks in X (F̄p, 2) are
significantly different from selecting nodes at random from Sp2 . The types of
clusterings in X (F̄p, 2) depend on the value of p mod 8 [13, Theorem 2.7], which
is why this value is given alongside p in each row. Write N for the ratio between
the number of nodes we visited on average (i.e., the bold column) and the number
of elements we would expect to draw at random from Sp2 before finding one in
Sp (i.e., #Sp2/#Sp). Table 4 shows that (i) when p ≡ 1 mod 4, we typically see
1 ≤ N ≤ 2; (ii) when p ≡ 3 mod 8, we typically see 2 ≤ N ≤ 3; and (iii) when
p ≡ 7 mod 8, we often see N > 3. For more experimental data illustrating this
phenomenon, see [3, §4.3]. In practice, we do not see the N > 1 as enough of a
reason to incur the significant overhead of walking in X (F̄p, �) for � > 2 instead.
In any case, the method of fast subfield root detection proposed in this paper
will work regardless of the �-isogenies that are used to take steps in a given walk.
In fact, if walking in X (F̄p, �) for � > 2 results in better concrete performance
than for � = 2, the greater cost of taking a step in X (F̄p, �) is likely to increase
the size of the set of “fast �’s” and the relative efficacy of invoking subfield root
detection.

Table 5. The average number of Fp multiplications used to search for subfield j-
invariants in Solver and SuperSolver. Further explanation in text.

prime muls fastest Lj ’s Average number of Fp multiplications
per Solver SuperSolver

p step [L(i) . . . , L(v)] DG L(i) L(ii) L(iii) L(iv) L(v)

220 − 3 54 [L3, L7, L11, L1, L15] 44848 20601 22585 22235 23459 24951
221 − 9 53 [L3, L7, L1, L5, L11] 24187 13648 18578 15453 18770 14064
222 − 3 60 [L3, L7, L15, L11, L5] 52385 28062 31962 26410 32555 38348
223 − 15 71 [L7, L3, L15, L11, L5] 59691 30508 32883 39703 33370 44556
224 − 3 64 [L3, L7, L15, L11, L5] 112878 53900 62725 70482 59206 73117
225 − 39 71 [L7, L3, L15, L11, L5] 128703 63021 68210 83333 94434 70878
226 − 5 62 [L3, L7, L15, L11, L5] 85437 59484 58286 65813 61261 62216
227 − 39 73 [L7, L3, L15, L11, L5] 251304 164036 135672 136633 137780 185819
228 − 57 64 [L3, L7, L15, L11, L5] 631157 305345 308003 298049 299314 351102
229 − 3 74 [L7, L3, L15, L11, L13] 326888 199985 171489 173335 177986 235902

230 − 35 75 [L7, L3, L15, L11, L13] 412457 260188 232753 228089 236360 301541
231 − 1 75 [L7, L3, L15, L11, L13] 1998840 809040 807306 889210 871068 934319
232 − 5 75 [L7, L3, L15, L11, L13] 758637 455571 449889 501335 474549 572203
233 − 9 77 [L7, L3, L15, L11, L13] 1564701 700390 733705 900515 751310 1153911
234 − 41 78 [L7, L3, L15, L11, L13] 2537688 1184024 1191084 1467113 1276654 1799292
235 − 31 99 [L15, L7, L11, L3, L13] 15272705 5037679 5790782 6109529 6396752 6213090
236 − 5 83 [L7, L15, L3, L11, L13] 5244914 3006618 2913909 2942626 3099020 3211580
237 − 25 84 [L7, L15, L3, L11, L13] 18322417 4979176 5155517 7211517 6950196 6375918
238 − 45 86 [L7, L15, L3, L11, L13] 18402937 8315681 6856578 6735588 7791309 9143526
239 − 7 96 [L7, L15, L11, L3, L13] 22505327 9627241 9879376 9587856 11562406 12332858

240 − 87 95 [L7, L3, L5, L6, L23] 38602102 16664021 16455546 17377853 17169885 17559520
241 − 21 92 [L7, L3, L5, L6, L23] 41185437 17284297 20890068 17817383 18399209 17006068
242 − 11 99 [L7, L3, L5, L6, L23] 70760036 31439715 38704883 38573868 30864574 40337712
243 − 57 95 [L7, L3, L5, L6, L23] 66820000 22863425 30733754 24686759 24474388 27514948
244 − 17 98 [L7, L3, L5, L6, L23] 79795521 43991657 58381667 38022655 43217829 45803624
245 − 55 108 [L7, L3, L5, L6, L23] 247697962 103871110 87674099 156886333 126109617 144250917
246 − 21 102 [L7, L3, L5, L6, L23] 923415913 174816651 163893709 198006728 205399202 220786555
247 − 115 108 [L7, L3, L5, L6, L23] 550653552 222915969 183895536 175113230 248769348 272706341
248 − 59 111 [L7, L3, L5, L6, L23] 729589278 188237971 192728454 205161765 251091015 310387211
249 − 81 107 [L7, L3, L5, L6, L23] 385982057 99186957 141171527 88278361 99648273 160633132
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Large Primes and Optimal Node Coverage. Table 6 illustrates the increa-
sed efficacy of SuperSolver over Solver as the supersingular isogeny graphs get
larger. Recall that we reported some of the results from this table up front in
Sect. 1, namely from the experiments using primes from the isogeny literature.
We chose the largest prime below 2k for k ∈ {50, 100, . . . 800}, and started from
a pseudorandom j-invariant in Sp2 \ Sp as usual. Since these instances are too
large to actually run the full subfield search until it terminates, in each case we
ran both Solver and SuperSolver (for the three sets of �’s that were predicted to
perform best during preprocessing) until the number of Fp multiplications used
exceeded 108, and then immediately stopped. The numbers reported in bold
in Table 6 are the total number of nodes covered (i.e., both walked onto and
inspected) during these walks. For the smallest prime p = 250 − 27, SuperSolver
covers between 3 and 4 times the number of nodes that Solver does; for the largest
prime p = 2800 − 105, SuperSolver covers between 18 and 19 times the number
of nodes. Though primes beyond this size are unlikely to be of cryptographic
interest, it is worth pointing out that this trend continues: the larger p grows,
the more profitable it becomes to keep adding �’s in the fast subfield inspection
algorithm.

Table 6. The number of nodes inspected per 108 field multiplications for the largest
primes of various bitlengths. The Solver column corresponds to optimised Delfs–
Galbraith walks in X (F̄p, 2) – see Sect. 3. The SuperSolver columns correspond to
enabling our fast subfield root detection algorithm with the three fastest sets of �’s
(left to right) – see Sect. 5. Numbers in round brackets are the approximate number of
Fp multiplications per node inspected, as computed during the precomputation phase
that determines which sets of �’s will perform fastest.

prime p Solver SuperSolver

250 − 27 882,999 (113)
{3,5,7} {3,5} {3,7}

2,859,201 (35.0) 2,736,613 (36.5) 2,533,945 (39.4)

2100 − 15 443,951 (223)
{3,5,7} {3,5,7,11} {3,5,7,11,9}

2,165,681 (46.0) 2,121,313 (47.8) 2,006,215 (49.7)

2150 − 3 317,209 (315)
{3,5,7,11} {3,5,7,11,13} {3,5,7,11,9}

1,895,169 (52.8) 1,852,237 (54.0) 1,847,371 (54.1)

2200 − 75 241,989 (415)
{3,5,7,11,13} {3,5,7,11,13,9} {3,5,7,11,9}

1,716,767 (58.3) 1,715,449 (58.4) 1,700,791 (58.9)

2250 − 207 191,115 (526)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,9}

1,607,145 (62.3) 1,586,495 (63.2) 1,561,645 (64.2)

2300 − 153 164,275 (609)
{3,5,7,11,13,9} {3,5,7,11,13} {3,5,7,11,13,9,17}

1,531,993 (65.3) 1,498,175 (66.8) 1,489,991 (67.1)

2350 − 113 141,097 (708)
{3,5,7,11,13,9} {3,5,7,11,13,9,17} {3,5,7,11,13}

1,452,529 (68.8) 1,432,345 (69.8) 1,406,543 (71.1)

2400 − 593 123,649 (809)
{3,5,7,11,13,9} {3,5,7,11,13,9,17} {3,5,7,11,13,9,17,19 }

1,380,849 (72.4) 1,378,991 (72.5) 1,346,081 (74.3)

2450 − 501 110,407 (907)
{3,5,7,11,13,9,17} {3,5,7,11,13,9} {3,5,7,11,13,9,17,19}

1,332,176 (75.2) 1,321,701 (75.9) 1,316,198 (76.4)

2500 − 863 97,510 (1032)
{3,5,7,11,13,9,17} {3,5,7,11,13,9,17,19} {3,5,7,11,13,9}

1,280,243 (78.6) 1,274,001 (79.0) 1,251,602 (80.4)

2550 − 5 90,321 (1111)
{[3,5,7,11,13,9,17 } {[3,5,7,11,13,9,17,19 } {3,5,7,11,13,9,19}

1,243,309 (80.6) 1,240,916 (80.7) 1,216,189 (82.6)

2600 − 95 81,544 (1232)
{3,5,7,11,13,9,17,19} {3,5,7,11,13,9,17} {3,5,7,11,13,9,19}

1,203,358 (83,3) 1,198,900 (84.0) 1,170,561 (85.8)

2650 − 611 76,569 (1311)
{3,5,7,11,13,9,17,19} {3,5,7,11,13,9,17} {3,5,7,11,13,9,17,19,23}

1,184,513 (85.0) 1,161,998 (86.1) 1,144,708 (87.4)

2700 − 1113 71,037 (1409)
{3,5,7,11,13,9,17,19} {3,5,7,11,13,9,17} {3,5,7,11,13,9,17,19,23}

1,148,963 (82.5) 1,127,317 (82.6) 1,123,125 (82.9)

2750 − 161 66,239 (1510)
{3,5,4,7,11,13,9,8,17,19,6} {3,5,4,7,11,13,9,8,17,19} {3,5,4,7,11,13,9,8,17,6}
1,121,045 (84.4) 1,101,767 (84.4) 1,093,351 (85.1)

2800 − 105 62,191 (1609)
{3,5,4,7,11,13,9,8,17,19,6} {3,5,4,7,11,13,9,8,17,19} {3,5,4,7,11,13,9,8,17,6}
1,096,056 (86.1) 1,082,072 (86.3) 1,062,658 (87.2)
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Storing and Accessing the Reduced Modular Polynomials. The unre-
duced modular polynomials Φ�(X,Y ) ∈ Z[X,Y ] require a significant amount of
storage, but recall that the preprocessing phase immediately reduces all of the
coefficients into Fp to produce Φ�,p(X,Y ) ∈ Fp[X,Y ]. This can be done once-
and-for-all for a specific prime, and this makes the storage and access of the
Φ�,p(X,Y ) a non-issue. Storing Φ�,p(X,Y ) requires at most (N2

� /2)·log2(p) bits.
For example, the largest Φ�,p(X,Y ) for the 250-bit prime above is Φ13,p(X,Y ),
which requires the storage of at most N2

13/2 = 142/2 = 98 elements of Fp, around
3KB. The largest Φ�,p(X,Y ) for the 800-bit prime above requires the storage of
at most N2

19/2 = 202/2 = 200 elements of Fp, around 20KB. Any of these would
comfortably fit into the L1 cache on a modern CPU.

Concrete Security of the Supersingular Isogeny Problem. Our Super-
Solver suite makes it straightforward to obtain precise estimates on the concrete
classical security offered by the general supersingular isogeny problem in Sp2 ,
for any prime p. Combining a small experiment (like those reported in Table 6)
with the expected number of nodes one must cover before reaching a subfield
node allows us to obtain accurate counts on the expected number of Fp multi-
plications, squarings and additions that must be carried out during a full crypt-
analytic attack. It is then a matter of costing these Fp operations with respect
to the appropriate metric, whether that be bit operations, cycle counts, gate
counts, or circuit depth.

Take, for example, the 256-bit prime
p = 73743043621499797449074820543863456997944695372324032511999999999999999999999

underlying SQISign [15] to illustrate how our software can be used to obtain pre-
cise security estimates. The precomputation phase of SuperSolver (which takes
a few seconds on input of p) reveals that taking an optimised step in X (F̄p, 2)
costs 407 multiplications in Fp. Based on this cost, the precomputation further
determines that the fastest set of �’s to proceed with are

� ∈ {3, 5, 7, 11, 13}.

On average, the combination of this set of �’s and Algorithm 2 reduces the cost of
the subfield search from 407 multiplications in Fp per node to 58.0 multiplications
in Fp per node (see Table 1). Thus, on average, solving the supersingular isogeny
problem costs

58.0 ×
(

#Sp2

#Sp

)

Fp multiplications.

Since p ≡ 7 mod 12, we have #Sp2 = �p/12� + 1 [27, Theorem V.4.1(c)], and
since p ≡ 7 mod 8, #Sp is exactly the class number of the imaginary quadratic
field Q(

√−p) [13, Equation 1]. We suppose this class number is N , i.e., #Sp = N .
Writing N = 2k, where k is correct to 3 decimal places, we would obtain that
the average cost of breaking this instance of SQISign is 2257.622−k multiplications
in Fp.7

7 For large, cryptographic sized primes p, computing class numbers is very compu-
tationally expensive. Indeed, a recent class group computation for a 512-bit prime
terminated in ≈ 52 core years.
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In Table 7 we give average counts for the cost of breaking the supersingular
isogeny problem using SuperSolver for a number of primes underlying either B-
SIDH or SQISign.

Table 7. The average number of Fp multiplications required to solve the supersingular
isogeny problem using SuperSolver. When p ≡ 1 mod 4, we assume that N = 2k is the
class number of Q(

√−4p), where k correct to 3 decimal places. Otherwise, it is the
class number of Q(

√−p). As N varies for each prime, we will index N and k by the
row in the table, i.e., Ni = 2ki will be the class number of the i-th prime in the table.
The number of Fp multiplications per node using SuperSolver is taken from Table 1.

prime p p mod 8
Average number of

Fp mults. per node
#Sp2 #Sp Average cost of SuperSolver

B-SIDH-p247 [11] 7 58.0 2242.559 2k1 2248.417−k1

TwinSmooth-p250 [12] 1 59.1 2246.220 2k2−1 2251.105−k2

SQISign-p256 [15] 7 58.0 2251.764 2k3 2257.622−k3

TwinSmooth-p384 [12] 1 65.2 2379.735 2k4−1 2384.762−k4

TwinSmooth-p512 [12] 5 71.7 2507.896 2k5−1 2513.060−k5
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Abstract. We propose a new AEAD mode of operation for an effi-
cient countermeasure against side-channel attacks. Our mode achieves the
smallest memory with high-order masking, by minimizing the states that
are duplicated in masking. An s-bit key-dependent state is necessary for
achieving s-bit security, and the conventional schemes always protect the
entire s bits with masking. We reduce the protected state size by intro-
ducing an unprotected state in the key-dependent state: we protect only a
half and give another half to a side-channel adversary. Ensuring indepen-
dence between the unprotected and protected states is the key technical
challenge since mixing these states reveals the protected state to the adver-
sary. We propose a new mode HOMA that achieves s-bit security using a
tweakable block cipher with the s/2-bit block size. We also propose a new
primitive for instantiating HOMAwith s = 128 by extending the SKINNY
tweakable block cipher to a 64-bit plaintext block, a 128-bit key, and a
(256+3)-bit tweak. We make hardware performance evaluation by imple-
menting HOMA with high-order masking for d ≤ 5. For any d > 0, HOMA
outperforms the current state-of-the-art PFB Plus by reducing the circuit
area larger than that of the entire S-box.

Keywords: Authenticated Encryption · High-Order Masking ·
Side-Channel Attack · Mode of Operation · Lightweight Cryptography

1 Introduction

There is a growing demand for extending information systems to the physical
world by using network-enabled embedded devices, and lightweight cryptogra-
phy (LWC) is the key technology enabling secure network communication in such
resource-constrained devices. Designing lightweight symmetric-key cryptogra-

phy is arguably the central topic in LWC research because extremely resource-
constrained devices cannot afford the cost of implementing public-key cryptog-
raphy. The National Institute of Standards and Technology (NIST) is currently
conducting the LWC competition to determine the next standard of authenti-
cated encryption with associated data (AEAD) schemes [33].
c© International Association for Cryptologic Research 2022
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Such embedded devices that need LWC can be used in a hostile environ-
ment wherein a local attacker mounts power and/or electromagnetic side-channel
attacks (SCAs) [24]. Thus, LWC designers face an even more challenging task of
realizing an SCA-resistant implementation with limited resources. In fact, coun-
termeasures against SCAs are explicitly mentioned as design requirements in
NIST’s competition, and ISAP [13], which was designed with a focus on robust-
ness against SCA, has recently been chosen as a finalist in the competition [34].

Masking, which splits the target value into a number of shares, is arguably
the most common countermeasure against SCA [20,32]. The security of masking
is based on the d̃-probing model, which considers an attacker who can probe d̃
wires [20]. A masking scheme with the protection order d resists attacks with up
to d probes. A common strategy is to design a gadget, typically a secure Boolean
AND operation, that securely maps the input shares into the corresponding
output shares and to construct a target symmetric-key algorithm using them
while ensuring the compositional security.

Large performance overhead is the major drawback of masking. In particular,
the number of shares significantly impacts computational complexity. The early
schemes used (td + 1) shares with t > 1 for achieving the protection order d and
thus called (td + 1)-masking [20]. Later, the researchers invented a new scheme
that achieves the same protection order by using (d+1) shares only [39]. In this
paper, we focus on the (d + 1)-masking schemes because they have a significant
performance advantage over the (td + 1)-masking schemes.

Such a masking scheme is also effective against statistical SCA with several
assumptions regarding the noise level and leakage function; the number of side-
channel traces to mount an attack, which is the key difficulty indicator, increases
exponentially with the protection order d [37]. A sufficient protection order heav-
ily depends on the target, and the recent experimental evaluations suggests that
d ≈ 5 is practical. For example, Cassiers et al. verified their masking scheme up
to d = 3 using 9 million traces which is close to the practical limit [9,10].

1.1 Low-Memory AEAD for Masking

As we reduce the circuit area for combinatorial logic gates by exploiting the
area-latency trade-off with sophisticated serial architectures [26,27], memory
(register) becomes more and more dominant. The overhead of masking is also
critical because it duplicates the target state for shared representation. Since
reducing the memory size within a block cipher is difficult, researchers have been
tackling the problem at the higher layer, and have proposed several masking-
friendly AEAD modes achieving small memory sizes after masking [21,26,29].

We summarize the memory costs for achieving s-bit security in the state-
of-the-art AEAD schemes in Table 1. All conventional schemes, including the
conventional block cipher (BC) based and permutation (P) based schemes [12,
25], use the total memory size of 3s bits without SCA protection (see the column
with d = 0). That is because we need (i) 2s-bit information carried between
blocks to achieve s-bit security against internal-state collisions, and (ii) an s-bit
key indispensable for the security against exhaustive search.
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Table 1. Memory size for masking implementations with s-bit security. The security
of the existing schemes are evaluated in the conventional AE-security [30] or its related
notions. HOMA is evaluated in a new security notion, which ensures the same security
properties as the conventional one while leaking unprotected values to adversaries.

Scheme Public Key-Dependent Key† (d + 1) Masking Ref.

Protected† Unprotected d = 0‡ d = 1 d = 2 d = d̂

P-based — 2s — s 3s 6s 9s 3s(d̂ + 1) [12]

BC-based — 2s — s 3s 6s 9s 3s(d̂ + 1) [25]

TBC-based§ s s — s 3s 5s 7s 2s(d̂ + 1) + s [21,26,29]

HOMA 1.5s 0.5s 0.5s s 3.5s 5s 6.5s 1.5s(d̂ + 1) + 2s Ours

†The key and the key-dependent protected state are encoded into (d +1) shares in (d +1)-masking.
‡d = 0 corresponds to an implementation without any SCA countermeasure.
§This category includes PFB, Romulus, and PFB Plus.

In contrast, the schemes have different memory sizes after masking. As sum-
marized in Table 1, the memory is categorized into three types:

– Public: a state that can be computed only with input values to the encryption
or decryption algorithm (without a key),

– Key-dependent: a state that requires knowledge of the key,
– Key: a secret key.

The public state needs no SCA protection, and the scheme with a larger public
state has a smaller memory size after masking (see the column with d > 0). In
particular, the recent beyond-the-birthday-bound schemes using Tweakable BC
(TBC), namely PFB [29], Romulus [21], and PFB Plus [26], use a public tweak
for reducing the size of the key-dependent state within the internal state. These
schemes achieve 2s(d + 1) + s bits of memory with (d + 1)-masking, which is
better than the conventional BC-based or P-based schemes with 3s(d + 1) bits.

In this paper, we pursue this direction and study a new mode of operation
that minimizes the state size after (d+1)-masking. The key technical challenge is
to reduce the key-dependent state beyond the conventional schemes. The existing
masking-friendly AEADs (PFB, Romulus, and PFB Plus) use masking to both
the key-dependent state and the key. The s-bit memory for the secret key has
no room for improvement. Besides, protecting the remaining key-dependent s-
bit state has also been believed to be necessary for achieving s-bit security. We
refer to this as “the s-bit secret barrier” hereafter. The existing masking-friendly
AEADs are optimal under this belief.

1.2 Summary of Contributions

This paper makes three main contributions: (i) a new mode HOMA, (ii) an
instantiation for HOMA, including a new TBC as an underlying primitive, and
(iii) concrete implementations and performance benchmarking of HOMA.

(i) New Mode (Sect. 3) and Its Proof (Sect. 4). First, we propose a new
TBC-based AEAD mode-of-operation HOMA that achieves the smallest memory
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of all existing schemes for (d + 1) masking (see Fig. 1-(center) and -(right) for
its core procedure). For further reducing memory, we consider dropping SCA
protection from a part of the s-bit key-dependent states. Hence, we decompose
the key-dependent state into “unprotected” and “protected” states.

– Unprotected: a key-dependent state without SCA protection in a raw form
– Protected: a key-dependent state with SCA protection in a shared form

The protected state is protected with high-order masking using (d+1) shares, and
has the protection order d. The unprotected state is represented without shares
and an SCA adversary potentially has unlimited access. To capture this worst-
case scenario, we define a security notion that all the unprotected values are
revealed whereas the protected values are secret. With the leakage of the unpro-
tected state, the secret state becomes smaller than s bits, which allows a birthday
attack with s/2-bit complexity, as we discuss in Sect. 3. HOMA addresses this
attack by introducing random IV without increasing memory size.

A TBC’s internal state, directly updated with a key, must be protected.
Hence, we design a mode such that a TBC’s internal state is the only state that
requires SCA protection. Moreover, the TBC’s block size should be as small as
possible. PFB Plus’s idea of using a small block size is beneficial to our mode.
PFB Plus divides the s-bit key-dependent state and updates a half by a TBC
and another half by XORing the TBC output, as shown in Fig. 1-(left). However,
simply unprotecting the latter s/2 bits in PFB Plus ends up with a trivial attack.
We consider v3 = v1 ⊕v2 in Fig. 1-(left). Unprotecting the latter half of the state
means that both v3 and v1 are revealed. This immediately reveals supposedly
protected v2 because v2 = v1 ⊕ v3. Then, a collision on the whole state can be
generated only by a collision on v3 because the difference in v2 can be canceled
by injecting the difference from Ai+1. Hence, security decreases to s/2 bits.

Addressing the issue, HOMA uses the structure in Fig. 1-(center) and -(right).
Considering that each TBC call produces an s/2-bit random value, HOMA calls
a TBC twice to sufficiently mix the s-bit internal state (and additionally calls a
TBC to encrypt a plaintext block in the encryption), which enables us to prove
the s-bit security of HOMA. In Fig. 1-(center) and -(right), the red lines are pro-
tected and represented with (d+1) shares and the TBC and fix0 implementations
are protected with (d + 1)-masking, and the black lines remain unprotected.

With the above security notion, we prove that by fixing the TBC size to n
bits, HOMA achieves 2n-bit security. As a result, HOMA ensures s-bit security
only with a protected state of size s/2 bits (smaller than s bits) and an s-
bit key. As a drawback, HOMA needs three (resp. two) TBC calls for each data
block for encryption (resp. AD processing). This yields some overhead in latency,
but its impact on memory size is negligible. Another drawback is that HOMA
requires a random IV of s bits, which is crucial to ensure the s-bit security when
the unprotected state is s/2 bits, in addition to a nonce that is an additional
overhead of traffic data. Note that we can comfortably assume the availability
of a random generator because it is necessary for masking1.
1 Some masking implementations use non-cryptographic PRNGs, e.g., a simple LFSR,

insufficient for the random IV. A hardware TRNG for seeding should be used instead.



Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 319

Twi,1

Ai Ai

Twi,2
Twi

Ai

Twi+1

Ai+1
fix0

s/2

s/2

s/2

s/2

v1 v3
v2

Mi

Ci

Tw'i,2
Ci Ci

Tw'i,3
fix0

s/2

s/2

Tw'i,1
Ci-1

PFB_Plus: Processing AD HOMA: Processing AD HOMA: Encryption

Fig. 1. PFB Plus’s structure (left) and HOMA’s structure (center and right). Aj is an
AD block and Mi/Ci is a plaintext/ciphertext block. The red (resp. black) lines are
protected (resp. unprotected). Twj is a tweak. fix0 is a function fixing a LSB to 0. Each
dotted circle of PFB Plus represents a component of processing one data block. (Color
figure online)

As summarized in Table 1, HOMA uses a 1.5s-bit public state, a 0.5s-bit
protected state, a 0.5s-bit unprotected state, and an s-bit key. Hence, without
masking implementation, the state size is 3.5s bits, which is worse than those of
existing modes. However, with (d + 1) masking, HOMA achieves 1.5(d + 1) + 2s,
which is the smallest for d > 0 and asymptotically reduces memory by 25%.

(ii) Instantiation of HOMA with a New TBC (Sect. 5). HOMA for s = 128
requires a TBC that supports a 64-bit block, a 128-bit key, and a (256 + 3)-bit
tweak, where the 3 bits are for domain separation of the mode. No existing TBC
efficiently supports those configurations. Moreover, tweak- and key-schedules
must be designed so that the tweak (public) is not mixed with the key (key-
dependent) to avoid (d + 1) masking of the tweak state. We found that the
tweak- and key-schedules of SKINNY [3] satisfy this requirement, thus we design
a new TBC “SKINNYee” by basing its structure on SKINNY. The tweaky (a
combination of a tweak and a key) size of SKINNY is 64, 128, or 192 bits, and
SKINNYe [26] extended it to 256 bits, while our TBC needs (128+256+3) = 387
bits of key and tweak. This is challenging because the tweakey size extension done
by SKINNY and SKINNYe cannot exceed 256 bits due to the limited design space.
We resolve it by processing a key and a tweak as independent objects. Moreover,
we absorb the 3-bit tweak by initializing a linear feedback shift register (LFSR)
to a tweak-dependent value, which is more efficient than existing methods to
extend the tweak size by a few bits [11,27]. Besides, we modify the LFSR clocking
method of SKINNY so that the implementation is optimized for small memory.

(iii) Implementation (Sect. 6). We propose a hardware architecture for
HOMA instantiated with SKINNYee and make a concrete performance compari-
son with the conventional state-of-the-art PFB Plus. For the high-order masking,
we use Cassiers et al.’s HPC2 [9,10] for its glitch resistance, composability, and
availability of an open-source implementation [8]. This is also the first HPC2
implementation of the SKINNY-based primitives and its S-box. We make an
ASIC performance evaluation for the protection order d ∈ {0, · · · , 5} using a
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45-nm CMOS standard cell library (see Table 3). As a result, HOMA always
outperformed PFB Plus with SCA protection, i.e., for any d > 0. Although the
cost of the S-box circuit grows quadratically with d, in contrast to the memory
size that grows only linearly, the results confirm that the memory elements still
dominate the hardware cost with those practical protection orders. In particu-
lar, for any protection order d > 0, HOMA saved the circuit area larger than
that of the entire S-box. This significant area reduction is impossible with the
conventional approaches focusing on S-box, i.e., reducing S-box’s multiplicative
complexity [1,16,17] and improving each AND gadget [9,10].

1.3 Related Work

Optimization for (td + 1) Masking. PFB Plus is optimized for (td+1) mask-
ing with t > 1, for Nikova et al.’s threshold implementation (TI) [32] in particu-
lar. (td + 1)-masking use the different number of shares between the linear and
non-linear states: those states require (d+1) and (td+1) shares, respectively. To
exploit this property, PFB Plus increases the ratio of a linearly updated state,
within the s-bit secret barrier, and achieves a smaller memory after (td + 1)-
masking. Unfortunately, PFB Plus’s benefit disappears with a (d + 1)-masking,
which uses the same number of shares for non-linearly and linearly updated
states. TI’s extension to d ≥ 2 turned out to be non-trivial [7,38], and researchers
are studying (d + 1)-masking as a viable option for high-order masking [39].
HOMA takes another approach of breaking the s-bit secret barrier and achieves
a smaller memory with (d+1) masking as shown in Table 1. Moreover, even with
the 3-share TI, HOMA achieves the same memory size as PFB Plus.

Leakage-Resilient (LR) Cryptography. LR cryptography studies sym-
metric-key schemes, including AEAD, with provable security against SCA [2,
5,6,13–15,36]. The early LR schemes relied on the bounded leakage model that
limits the amount of leakage for each measurement [15]. However, limiting the
number of measurements turned out to be impractical with a stateless primi-
tive [4]. Addressing the issue, some recent LR schemes, including TEDT [6] and
Spook [5], use a leak-free primitive supposedly realized with masking [14]. These
modes can be faster than HOMA because they efficiently use unprotected prim-
itives. Meanwhile, TEDT/Spook is not optimized for memory usage; protecting
its s-bit TBC with masking requires the similar memory size as the other TBC-
based schemes in Table 1. The additional components, including an independent
unprotected TBC/Permutation implementation, can further increase the mem-
ory size.

Other LR schemes, including ISAP [13], pursue exclusive use of leaky prim-
itives by limiting the target to non-adaptive attackers. ISAP can go beyond
Table 1 because it does not rely on masking, and the memory size is indepen-
dent of the protection order d. Meanwhile, the security of these schemes relies
entirely on the restricted input space to the leaky primitives, which has several
limitations compared with masking. In particular, they provide no guarantee
against template attacks [14] and single-trace attacks [23].

Masking-Friendly Primitives. Those primitives use the S-box with a small
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multiplicative complexity to be easy to mask [1,16,17]. HOMA has a high affinity
for masking-friendly primitives. Most of designs as stand-alone primtives are
for block ciphers, while there are several TBCs designed along with a mode.
Clyde-128 [5], Scream, and iScream [18] are such examples. Here we design a
SKINNY variant for making the performance comparison clearer.

2 Preliminaries

Notation. Let ε denote the empty string. For a positive integer i, let {0, 1}i

denote the set of all i-bit strings. Let {0, 1}∗ denote the set of all bit strings.
For integers i ≤ j, let [i, j] := {s | i ≤ s ≤ j} be the set of integers from i to j.

For a positive integer i, let [i] := [1, i] and (i] := [0, i]. For a finite set T , T
$← T

denotes an element is chosen uniformly at random from T and is assigned to T .
The concatenation of two bit strings X and Y is written as X‖Y or XY when no
confusion is possible. For integers 0 ≤ i ≤ j and X ∈ {0, 1}j , let msbi(X) resp.
lsbi(X) be the most resp. least significant i bits of X, and |X| be the number of
bits of X, i.e., |X| = j. For an integer n > 0 and a bit string X, we denote the
parsing into fixed-length n-bit strings as (X1,X2, . . . , X�)

n←− X, where if X 	= ε
then X = X1‖X2‖ · · · ‖X�, |Xi| = n for i ∈ [� − 1], and 0 < |X�| ≤ n; if X = ε
then � = 1 and X1 = ε.

TBC. Let n be a block size. A TBC is a set of n-bit permutations indexed
by a key and a public input called tweak, that is, fixing a key and a tweak,
it becomes an n-bit permutation. Let K be the set of keys, T W be the set
of tweaks, and n be the input/output-block size. An encryption is denoted by
˜E : K × T W × {0, 1}n → {0, 1}n, ˜E having a key K ∈ K is denoted by ˜EK . For
an input (K,Y,X) ∈ K × T W × {0, 1}n, the output is denoted by ˜EK(Y,X).

In this paper, a TBC is assumed to be a secure tweakable-pseudo-random
permutation (TPRP), i.e., indistinguishable from a tweakable random permu-
tation (TRP). A tweakable permutation (TP) ˜P : T W × {0, 1}n → {0, 1}n

is a set of n-bit permutations indexed by a tweak in T W. A TP ˜P having a
tweak TW ∈ T W is denoted by ˜PTW . Let ˜Perm(T W, {0, 1}n) be the set of all

TPs: T W × {0, 1}n → {0, 1}n. A TRP is defined as ˜P
$← ˜Perm(T W, {0, 1}n). In

the TPRP-security game, an adversary A has access to either ˜EK or ˜P , where
K

$←K and ˜P
$← ˜Perm(T W, {0, 1}n), and after the interaction, A returns a deci-

sion bit ∈ {0, 1}. The output of A with access to O is denoted by AO ∈ {0, 1}.
Then, the TPRP-security advantage function of A is defined as Advtprp

˜EK
(A) :=

Pr[A ˜EK = 1] − Pr[A ˜P = 1], where the probabilities are taken over K, ˜P , and
A. The maximum advantage over all adversaries, running in time at most t and
making at most q queries, is denoted by Advtprp

˜EK
(q, t) := maxA

(

Advtprp
˜EK

(A)
)

.

AEAD. An AEAD scheme based on a TBC ˜EK , denoted by Π[ ˜EK ], is a pair
of encryption and decryption algorithms (Π.Enc[ ˜EK ],Π.Dec[ ˜EK ]). K, IV, M,
C, A, and T are the sets of keys, initialization vectors, plaintexts, ciphertexts,
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associated data (AD), and tags of Π[ ˜EK ], respectively. For our scheme, the set of
keys of Π[ ˜EK ] is equal to that of the underlying TBC. The encryption algorithm
takes an initial vector IV ∈ IV, an AD A ∈ A, and a plaintext M ∈ M,
and returns, deterministically, a pair of a ciphertext C ∈ C and a tag T ∈ T .
The decryption algorithm takes a tuple (IV,A,C, T ) ∈ IV × A × C × T and
returns, deterministically, either the distinguished invalid symbol reject 	∈ M
or a plaintext M ∈ M. We require that for any (IV,A,M), (IV ′, A′,M ′) ∈
IV × A × M, |Π.Enc[ ˜EK ](IV,A,M)| = |Π.Enc[ ˜EK ](IV,A,M ′)| is satisfied if
|M | = |M ′|. We also require that Π.Dec(IV,A,Π.Enc[ ˜EK ](IV,A,M)) = M for
IV ∈ IV, A ∈ A, and M ∈ M.

In this paper, IV consists of a set of nonces denoted by N and a set of random
IVs denoted by R thus IV = N × R. For nonces of Π.Enc[ ˜EK ], repeating the
same nonce is forbidden within the same key.2 For an input tuple (N,R,A,M) ∈
N ×R×A×M of Π.Enc[ ˜EK ], a random IV R is chosen independently of other
elements (N,A,M) and uniformly at random from R. Then, (N,R,A,M) is
passed to Π.Enc[ ˜EK ].

AE Security. We explain the AE-security notion [30], on which our security
goal is based.3

The AE-security is the indistinguishability between the real and ideal worlds.
The real-world oracles are (Π.Enc[ ˜EK ],Π.Dec[ ˜EK ]) wherein the key K is defined

as K
$←K. The ideal-world oracles are ($,⊥) wherein $ is a random-bits ora-

cle that returns a random bit string of length |Π.EncK [ ˜E](N,R,A,M)| for an
encryption query (N,A,M), and ⊥ is a reject oracle that returns reject for any
decryption query. Note that for each encryption query (N,A,M), the random

IV is defined as R
$← R. The AE-advantage function of an adversary A that

returns a decision bit after interacting with Π[ ˜EK ] in the real world or with
($,⊥) in the ideal world is defined as Advae

Π[ ˜EK ]
(A) = Pr[AΠ.Enc[ ˜EK ],Π.Dec[ ˜EK ] =

1] − Pr[A$,⊥ = 1], where the probabilities are taken over K, $, A, and random
IVs. A is nonce-respecting, that is, all nonces in queries to Π.Enc[ ˜EK ]/$ are
distinct. In this game, making a trivial query (N,R,A,C, T̂ ) to Π.Dec[ ˜EK ]/⊥ is
forbidden, which is defined by some previous query to Π.Enc[ ˜EK ]/$.

3 Design of AEAD Mode for High-Order Masking

3.1 Intuition and Design of HOMA

High-Level Structure. To design an s-bit secure mode, the size of the key-
dependent state must be at least s bits, whereas to design a masking-friendly
mode, the size of the protected state must be less than s bits to be smaller
than the existing designs. The minimum size of the protected state is the block
size of the underlying TBC, since a state in a TBC includes information of the

2 For Π.Dec[ ˜EK ], nonces and random IVs can be repeated.
3 The AE-security notion does not take into account SCA.
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Fig. 2. The high-level structure of HOMA.

key. Thus, the security of a masking-friendly mode must be beyond the block
size. HOMA is designed so that, with a TBC of n-bit block, the security level is
2n bits, the key-dependent state size is 2n bits, and the unprotected state size
is n bits. In other words, for the target security level s, HOMA has the s-bit
key-dependent state with s/2-bit protected and s/2-bit unprotected ones.

Figure 2 shows the high-level structure of HOMA. It starts from the 2n-bit
initial state IS and updates the state by iterating a data processing function
(DPF). In this iteration, we first process AD blocks A1, . . . , Aa and then pro-
cess plaintext blocks M1, . . . ,Mm while generating ciphertext blocks C1, . . . , Cm.
Each DPF takes as input a public state, including a nonce and a counter, but
we omit them from the figure for simplicity. In the process of the last plaintext
block Mm, we define a tag T as well as the last ciphertext block Cm.

We then specify DPFs. DPFs for processing AD, plaintext blocks before the
last block, and the last plaintext block (with tag generation) are similar but
slightly different. We denote them by DPFA, DPFM, and DPFT, respectively. To
design DPFs, we need to carefully define protected and unprotected states. This
is because once a protected value vp is mixed with an unprotected value vup and
the resulting value v is unprotected, the protected value can be leaked (e.g., if
v = vp ⊕ vup, then one can obtain vp (= v ⊕ vup)). With this important point in
mind, we designed DPFA, DPFM, and DPFT, which are depicted in Fig. 3.

DPFA. Each DPFA must randomize the entire 2n-bit state to avoid a state col-
lision so that the protected state must not be mixed with the unprotected one.
We thus call a TBC twice to provide 2n-bit randomness as Fig. 3(top,left). For
each TBC call, the tweak is a concatenation of a domain separation di, a nonce
N , a counter, the AD block Ai, and the current unprotected state value. fix0 is
a function that fixes the LSB to 0.4

DPFM. To process each plaintext block, we first call a TBC to generate an n-bit
key stream, then the same procedure as DPFA is performed to update the whole
state. DPFM is shown in Fig. 3(top,right).

DPFT. The DPF encrypts the last plaintext block and generates a tag simultane-
ously. As shown in Fig. 3(bottom), we first call a TBC to generate an n-bit key
stream to encrypt the plaintext block, then a TBC is iteratively applied twice to
4 The function is introduced for the security proof that ensures that the TBC output

provides a randomness to the unprotected state. It ensures that the output is chosen
uniformly at random from at least 2n−1 elements. Note that fix0 can be removed by
reserving a bit in a tweak space that takes the LSB of the TBC input.
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generate the 2n-bit tag. For the encryption, a tag is a conventional output, thus
no protection is required, while for the decryption, the tag must be protected,
since no information should be output for an invalid tag.

Random IV. For the encryption, we use a random IV of 2n − 1 bits as the
initial state IS. This is because, without a random IV, the AEAD in Fig. 2 is
vulnerable against a state-collision attack. The details are as follows.

Assume that IS is not random. Then an adversary can fix IS to some con-
stant in both the encryption and decryption procedures. The SCA adversary
first interacts with the decryption oracle to cause a collision of DPF, which is
shown in Fig. 4. In decryption queries, the adversary can make IS values the
same even in the nonce-respect setting. In this attack, distinct ADs, an identical
ciphertext, and any tag are used to cause a collision of the state after processing
AD (after the second AD block in Fig. 4). The key point here is that the SCA
adversary can access to the unprotected state, which enables to detect the oc-
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Algorithm 1. HOMA

Encryption HOMA.Enc[ ˜EK ](N, R, A, M)

1: (H1, H2, C0) ← HOMA.Hash[ ˜EK ](N, R, A)

2: (C, T ) ← HOMA.Main[ ˜EK ](N, H1, H2, C0, M); return (R, C, T )

Decryption HOMA.Dec[ ˜EK ](N, R, A, C, T̂ )

1: (H1, H2, C0) ← HOMA.Hash[ ˜EK ](N, R, A)

2: (M, T ) ← HOMA.Main[ ˜EK ](N, H1, H2, C0, C)
3: if T̂ = T then return M ; else return reject

Processing AD HOMA.Hash[ ˜EK ](N, R, A)

1: St ← msbn−1(R)‖0; Sb ← lsbn(R); (A1, . . . , Aa)
n←− A

2: for i = 1, . . . , a − 1 do (St, Sb) ← SUF[ ˜EK ](0, N, 2(i − 1), Ai, St, Sb)
3: if |A| mod n = 0 then x = 1; else x = 2

4: (St, Sb) ← SUF[ ˜EK ](x, N, 2(a − 1), ozp(Aa), St, Sb); return (St, Sb, ozp(Aa))

Main HOMA.Main[ ˜EK ](N, H1, H2, C0, D) � If D is a plaintext M (resp. ciphertext
C), then D′ is the ciphertext C (resp. plaintext M).

1: D′ ← ε; St ← H1; Sb ← H2; (D1, . . . , Dm)
n←− D

2: for i = 1, . . . , m − 1 do
3: St ← ˜EK((3, N, 3(i − 1), Ci−1, Sb), St); D′

i ← St ⊕ Di

4: (St, Sb) ← SUF[ ˜EK ](3, N, 3(i − 1) + 1, Ci, St, Sb)
5: end for
6: St ← ˜EK((3, N, 3(m − 1), Cm−1, Sb), St); D′

m ← msb|Dm|(St) ⊕ Dm

7: if |D| mod n = 0 then y = 4; else y = 5

8: T1 ← ˜EK((y, N, 3(m − 1) + 1, ozp(Cm), Sb), St)

9: T2 ← ˜EK((y, N, 3(m − 1) + 2, ozp(Cm), Sb), T1); return (D′
1‖ · · · ‖D′

m, T1‖T2)

State Update SUF[ ˜EK ](d, N, u, D, St, Sb)

1: St ← fix0(St); St ← ˜EK((d, N, u, D, Sb), St) � The TBC output is unprotected

2: Sb ← St ⊕ Sb; St ← ˜EK((d, N, u + 1, D, Sb), St); return (St, Sb)

currence of the collision of the entire state without knowing the protected state
by observing if collisions on the unprotected state occur in all subsequent blocks.
After finding a collision, an adversary makes an encryption query with the same
(A1, A2), and the modified plaintext (M∗

1 ,M∗
2 ,M∗

3 ) under the same IS to obtain
the tag T ∗. Since T ∗ is also valid for (A′

1, A
′
2) and (M∗

1 ,M∗
2 ,M∗

3 ), the integrity
is broken by O(2n) queries (from the birthday analysis).

By introducing a random IV, the adversary cannot perform the attack unless
a random IV of 2n bits is predicted by spending O(22n) complexity.

3.2 Specification of HOMA

The specification of HOMA is given in Algorithm 1. Let ν and c be nonce and
counter sizes. Thus, N := {0, 1}ν . Let R := {0, 1}2n−1, A := {0, 1}∗, M :=
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{0, 1}∗, C := M, and T := {0, 1}2n. Let ozp : {0, 1}≤n → {0, 1}n be the one-
zero padding function: for X ∈ {0, 1}≤n, ozp(X) = X if |X| = n; ozp(X) =
X‖10n−1−|X| if |X| < n. The set of tweaks is defined as T W := (5] × N ×
{0, 1}c×{0, 1}n×{0, 1}2n. HOMA.Enc (resp. HOMA.Dec) is the encryption (resp.
decryption) of HOMA. HOMA.Enc takes a nonce N ∈ N , a random IV R ∈ R,
an AD A ∈ A, and a plaintext M ∈ M, and returns the ciphertext C ∈ {0, 1}|M |

and the tag T ∈ T , where it is required that R is chosen uniformly at random
from R and N is a non-repeated value within the same key. HOMA.Dec takes
a nonce N ∈ N , an IV R ∈ R, an AD A ∈ A, a ciphertext C ∈ C and a tag
T̂ ∈ T , and returns the plaintext M ∈ {0, 1}|C| if the tag is valid and reject if
the tag is invalid. HOMA.Hash is a function that processes a nonce N ∈ N , an
IV R ∈ R, and an AD A ∈ A. HOMA.Main is a function that processes a nonce
N ∈ N , a plaintext/ciphertext and generates a tag. SUF[ ˜EK ] is a function that
updates the 2n-bit state,5 where d is a domain separation value, u is a counter
value, D is a data block, St is the protected state, and Sb is the unprotected
state. In HOMA, domain separation values are 0 when processing AD blocks
except for the last AD block, x ∈ {1, 2} when processing the last AD block,6 3
when processing the plaintext/ciphertext blocks except for the last block, and
y ∈ {4, 5} when processing the last plaintext/ciphertext block and generating
a tag.7 The counter value at the i-th TBC call in HOMA.Hash/HOMA.Main is
i − 1. In Algorithm 1, counter values are denoted by integers for simplicity, but
the values are handled as the c-bit strings.

3.3 Protected and Unprotected Values of HOMA

We define unprotected TBC outputs in each DPF: DPFA: the first TBC output;
DPFM: the second TBC output; DPFT: none. These outputs are the colored
TBC one in SUF of Algorithm 1. Other TBC outputs are protected. In HOMA,
all tweaks and a state updated with an unprotected TBC output are unprotected
except for TBC computations. In Fig. 3, the colored lines are protected and other
lines are unprotected.8

4 Security Claim and Proof of HOMA

4.1 AE Security for Masking

We define AEL-security, the security for masking, by extending the conventional
AE-security [30] so that SCA adversaries for AEAD schemes with masking imple-
mentations can be considered. AEL-security is defined so that for a query to the
5 The function SUF is the same for DPFA. In DPFM, a TBC is performed to

encrypt/decrypt a plaintext/ciphertext block, then SUF is performed.
6 If the length of the last block equals n, then x = 1, and otherwise x = 2.
7 If the length of the last block equals n, then y = 4, and otherwise y = 5.
8 For the encryption, T0 and T1 can be unprotected but plaintext blocks must be

protected. The latter is necessary to ensure the privacy of plaintexts in real-world
implementations but not in the security proof as an adversary chooses a plaintext.
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target AEAD scheme Π[ ˜EK ], the adversary can obtain the unprotected values
as well as the conventional output. Unlike the existing extension of the conven-
tional AE-security in [2], our extension covers a larger class of leakage functions.
Below, we define real-world and ideal-world oracles with leakage functions to
access unprotected values.

First, the real-world oracles are defined. Let EncUPV[ ˜EK ](N,R,A,M)
resp. DecUPV[ ˜EK ](N,R,A,C, T̂ ) be a leakage function for the encryption
resp. the decryption, which returns unprotected values in the process of
Π.Enc[ ˜EK ](N,R,A,M) resp. Π.Dec[ ˜EK ](N,R,A,C, T̂ ).

– Enc. oracle EncLR[ ˜EK ]: For a query (N,A,M) ∈ N × A × M,

R
$← R, and returns the outputs of Π.Enc[ ˜EK ](N,R,A,M) and of

EncUPV[ ˜EK ](N,R,A,M).
– Dec. oracle DecLR[ ˜EK ]: For a query (N,R,A,C, T̂ ) ∈ N × R ×

A × C × T , returns the outputs of Π.Dec[ ˜EK ] (N,R,A,C, T̂ ) and of
DecUPV[ ˜EK ](N,R,A,C, T̂ ).

Next, the ideal-world oracles are defined. The leakage of unprotected val-
ues is supported by introducing a simulator S = (SencL,SdecL) that simulates
(EncUPV[ ˜EK ],DecUPV[ ˜EK ]).

– Enc. oracle EncLI: For a query (N,A,M) ∈ N ×A×M, EncLI returns the out-
puts of $(N,A,M) and of SencL(N,R,A,C, T ) where (R,C, T ) = $(N,A,M).

– Dec. oracle DecLI: For a query (N,R,A,C, T̂ ) ∈ N × R × A × C × T , returns
the outputs of ⊥ and of SdecL(N,R,A,C, T̂ ).

The simulator’s task is to simulate unprotected values of the real world by using
only public values.9 If such simulator exists, i.e., the real and ideal worlds are
indistinguishable, then one can ensure that the unprotected values provide noth-
ing to differentiate the AEAD scheme from an ideal AEAD ($,⊥). Note that the
simulator must be a polynomial-time algorithm, since the simulator represents
a procedure of some polynomial-time adversary in the ideal world.

The AEL-security advantage function of an adversary A, that returns a deci-
sion bit, after making all queries, is defined as

Advael
Π[ ˜EK ],S(A) = Pr[AEncLR[ ˜EK ],DecLR[ ˜EK ] = 1] − Pr[AEncLI,DecLI = 1],

where the probabilities are taken over K,R, $,S,A. Hereafter, we refer a query
to EncLR[ ˜EK ]/EncLI (resp. DecLR[ ˜EK ]/DecLI) an encryption (resp. decryption)
query. This game forbids A making a trivial query: some encryption query-
responses are forwarded to the decryption oracle.

A scheme Π[ ˜EK ] is AEL-secure if there exists a simulator such that the
advantage function is bounded by a negligible probability. The goal of HOMA is
to obtain a bound of 2n-bit security (negligible up to O(22n) query complexity).
9 To ensure the privacy, a plaintext M must be kept private to an adversary. Thus,

the plaintext must not be included in a tuple of simulator’s inputs.
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Comparisons with Existing Notions. Barwell et al. [2] extended the con-
ventional AE-security notion, where two oracles �(Π.Enc[ ˜EK ]), �(Π.Dec[ ˜EK ]) are
introduced in addition to the standard oracles Π.Enc[ ˜EK ], Π.Dec[ ˜EK ], $, and
⊥. �(Π.Enc[ ˜EK ]) (resp. �(Π.Dec[ ˜EK ])) returns leak values of Π.Enc[ ˜EK ] (resp.
Π.Dec[ ˜EK ]) as well as the output of Π.Enc[ ˜EK ] (resp. Π.Dec[ ˜EK ]). The real-
world oracles are (Π.Enc[ ˜EK ],Π.Dec[ ˜EK ], �(Π.Enc[ ˜EK ]), �(Π.Dec[ ˜EK ])) and the
ideal-world ones are ($,⊥, �(Π.Enc[ ˜EK ]), �(Π.Dec[ ˜EK ])). Hence, this notion does
not permit adversaries to obtain leak values of the first or second oracle. AEL-
security is defined so that there is no such restriction.

Berti et al. [6] defined two notions for privacy and integrity. The notion
for integrity, called CIML2, is the integrity part of the AE-security one with
encryption and decryption leakages. The notion for privacy, called muCIML2, is
different from the privacy part of the AE-security one. The adversary’s goal of
muCIML2 is to guess a bit b of a challenge ciphertext Cb while having access to
leakage functions as well as the encryption and decryption oracles, where two
plaintext M1 and M2 are chosen by an adversary, b is a random bit, and Cb

is the encrypted value of Mb. Since $ and ⊥ leak no information of plaintexts,
any scheme indistinguisbale from ($,⊥) is secure in the sense of the goal of
muCIML2. Hence, the AEL-security notion covers the security goals of CIML2
and of muCIML2. Berti et al. designed an AEAD mode secure regarding CIML2
and muCIML2 in the multi-user setting and the misuse setting. On the other
hand, our security proof of HOMA don’t consider these settings. Note that the
AEL-security notion can be extended to the one covering these settings by adding
multiple users and permitting adversaries to make misuse queries.

4.2 AEL-Security of HOMA

The following theorem shows that HOMA[ ˜EK ] is AEL-secure up to O(22n)
decryption query complexity.

Theorem 1. (Security of HOMA) There exists a simulator S such that for any
adversary A running in time t, Advael

HOMA[ ˜EK ],S(A) ≤ Advtprp
˜E

(σ, t + O(σ)) +
19σD
22n , and S runs in time t + O(σ) and requires an O(σ)-bit memory, where σD
(resp. σ) is the number of TBC calls in all HOMA.Dec (resp. HOMA) procedures.

Intuition of the Security of HOMA. Assume that the TBC is a TRP. Then,
there are the following differences between the real and ideal worlds.

1. Enc.: (real) ciphertexts and tags are defined by a TRP; (ideal) those are
defined by $.

2. Dec.: (real) a plaintext might be returned; (ideal) all responses are reject.
3. Unprotected values: (real) the values are defined by HOMA; (ideal) the values

are defined by a simulator.
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For the difference (1), in the real world, since each tweak includes a nonce
and a counter, each output of ˜P in the encrypt is random. Thus, the difference
yields no attack.

For the difference (2), we consider two-types of decryption query in the real
world: In a decryption query, (2)-1: the nonce is not in the previous encryption
queries; (2)-2: the nonce is in some previous encryption query. In the type (2)-1,
the tag is chosen independently from all tags in encryption queries, and thus
the probability of forging the tag is O(1/22n). In the case (2)-2, forging the
tag implies that an internal state collision occurs between the encryption and
decryption queries (the nonces are the same).10 As mentioned in Sect. 3, a colli-
sion in previous decryption queries with the same nonce cannot be used without
detecting the random IV in the encryption query. The probability of detecting
the random IV is O(1/22n). Then, to obtain the internal state collision, some
2n-bit internal state, which is freshly defined in the decryption query, must col-
lide with some internal state in the encryption query. The collision probability is
at most O(�/22n) for the data length �. Summing the bound O(�/22n) for each
decryption query, the probability of forging a tag in some decryption query, i.e.
the distinguishing probability from the difference is at most O(σD/22n).

For the difference (3), we define a simulator so that unprotected values include
no information differentiating the real and ideal worlds. The detail is given in
Sect. 4.

Hence, we obtain the AEL-Security bound O(σD/22n).

4.3 Proof of Theorem 1

First, the TBC ˜EK is replaced with a TRP ˜P . Then, for any adversary A, there
exists an adversary A′ such that Advael

HOMA[ ˜EK ],S(A) ≤ Advtprp
˜E

(σ, t + O(σ)) +

Advael
HOMA[ ˜P ],S(A′). Hereafter, we bound Advael

HOMA[ ˜P ],S(A′), the AEL-security

advantage of HOMA using ˜P .

Simulator S. Our simulator is defined below. Both of SencL and SdecL run
the decryption procedure HOMA.Dec and return unprotected values defined
in this procedure. The underlying TBC is instantiated with a TRP ˜P ′ ∈
˜Perm(T W, {0, 1}n), which the simulators realize by lazy sampling.11

10 A TRP offers independent permutations if the tweaks are distinct. In HOMA, a nonce
is a tweak element, thus HOMA procedures with distinct nonces are independently
performed (even if the R values are the same). Thus, encryption queries whose nonces
are different from the nonce of the decryption query do not affect the internal state
collision probability.

11 A TRP ˜P keeps a table L that is initially empty. For an input (X, Y ) ∈ {0, 1}n×T W
to ˜P , the output Z is defined as follows: if L(X, Y ) = ε then Z

$←{0, 1}n\L(∗, Y )
and L(X, Y ) ← Z, where L(∗, Y ) is the set of all outputs whose tweaks are Y , and
otherwise Z ← L(X, Y ).
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– SencL(N,R,A,C, T ): runs HOMA.Dec[ ˜P ′](N,R,A,C, T ); returns the unpro-
tected values defined in HOMA.Dec[ ˜P ′](N,R,A,C, T ).

– SdecL(N,R,A,C, T̂ ): runs HOMA.Dec[ ˜P ′](N,R,A,C, T̂ ); returns the unpro-
tected values defined in HOMA.Dec[ ˜P ′](N,R,A,C, T̂ ).

S runs in time t + O(σ) and requires an O(σ)-bit memory. Note again that
the TRP ˜P ′ is realized by the simulators as well as the decryption procedure
HOMA.Dec[ ˜P ′], which is given in Algorithm 1 where ˜EK is replaced with ˜P ′.

Notations. Let qE (resp. qD) be the number of encryption (resp. decryption)
queries, and q := qE + qD. Let σD,A (resp. σD,C) be the total number of TRP
calls in HOMA.Hash (resp. HOMA.Main) by decryption queries, thus σD = σD,A+
σD,C . For convenience, we express the α-th encryption (resp. β-th decryption)
query as the α-th (resp. (β+qE)-th) query. For α, β ∈ [q] such that the β-th query
is made after the α-th query, the relation is denoted by α � β. Let � := a + m
denote the total length of data blocks by a query. For the j-th TRP call at
the i-th DPF call in HOMA, the input block, the output block, and the tweak
in HOMA.Hash (resp. HOMA.Main) are denoted by Xi,j , Zi,j , and Yi,j , (resp.,
Xi,j−1, Zi,j−1, and Yi,j−1). See also Fig. 3. Let XYi,j := Xi,j‖Yi,j . Note that in
the ideal world, these values are defined by S. For α ∈ [q], a value V defined at
the α-th query is denoted by V (α). The lengths a,m and � of the α-th query are
denoted by aα,mα and �α. For α ∈ [q], let C(α)

i := (XY
(α)
aα,1, C

(α)
1 , . . . , C

(α)
i ) be an

array of an input to the second last TRP call in HOMA.Hash and the ciphertext
blocks up to the i-th block defined at the α-th query, C(α)

0 := (XY
(α)
aα,1).

Transcript. In the following proof, for each encryption query, if |C| mod n 	= 0,
i.e., |Cm| < n, then a (n−|Cm|)-bit string CL is appended to the ciphertext C and
the modified ciphertext C̃ = C‖CL is returned instead of C. In the real world,
CL := lsbn−|Cm|(Z�,0) (thus, Z�,0 = (Mm‖0n−|Cm|)⊕ (Cm‖CL)), and in the ideal

world CL
$←{0, 1}n−|Cm|. For i ∈ [m − 1], let C̃i := Ci and C̃m := Cm‖CL, thus

C̃ = C̃1‖ · · · ‖C̃m. Let M̃i := Mi and M̃m := Mm‖0n−|Mm|.
The following proof, in addition to the standard outputs, permits A′ to obtain

the following protected values after making all queries but before returning a
decision bit.

– Z2 := {Z
(α)
i,2 | α ∈ [q], i ∈ [�α − 1]}.

– Z0,1 := {Z
(β)
aβ+i,0 | β ∈ [qE +1, q], i ∈ [mβ −1] s.t. ∀α ∈ [qE ] s.t. α�β : N (α) 	=

N (β)}.
– Z0,2 := {Z

(β)
aβ+i,0 | β ∈ [qE +1, q], i ∈ [mβ −1] s.t. ∃α ∈ [qE ] s.t. α�β ∧N (α) =

N (β) ∧ C(α)
i−1 	= C(β)

i−1}.
– Zt := {T

(β)
1 , T

(β)
2 | β ∈ [qE + 1, q]}.

Note that the TBC outputs Z
(α)
aα+i,0, Z

(α)
�α,1, Z

(α)
�α,2 for α ∈ [qE ], i ∈ [mα] (defined

by encryption queries) remain secret (in the ideal world). Then, a transcript τ
that A′ obtains in the game consists of
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–
(

(N (α), A(α),M (α)), (R(α), C̃(α), T (α))
)

for α ∈ [qE ],
–

(

(N (β), R(β), A(β), C(β), T̂ (β)), RV (β)
)

for β ∈ [qE + 1, q], where RV (β) is an
output of the β-th query: plaintext M (β) or reject,

– Z
(α)
i,1 for α ∈ [q] and i ∈ [�α − 1],

– Z2,Z0,1,Z0,2, and Zt.

Bound of the Advantage. Let τ be a transcript that A′ obtains by queries
in the game. Let TR be a transcript in the real world obtained by sampling
˜P and R. Let TI be a transcript in the ideal world obtained by sampling $,
˜P ′, and R. We call a transcript τ valid if Pr[TI = τ ] > 0. Let T be all valid
transcripts such that ∀τ ∈ T : Pr[TR = τ ] ≤ Pr[TI = τ ]. Then, we have
Advael

HOMA[ ˜P ],S(A′) = SD(TR,TI) =
∑

τ∈T (Pr[TI = τ ]−Pr[TR = τ ]). We bound
the statistical distance SD(TR,TI) using the following collision event: collm:

– collm: ∃α ∈ [qE ], β ∈ [qE + 1, q], i ∈ [mα] s.t.
XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1 ∧ XY

(α)
aα+i,1 = XY

(β)
aβ+i,1.

Let collrm (resp. collim) be the real (resp. ideal) world event. Using the event, we
have SD(TR,TI) ≤ Pr[collrm] + Pr[collim] + SD(T∗

R,T∗
I), where T∗

R (resp. T∗
I) is

the transcript TR (resp. TI) conditioned on ¬collrm (resp. ¬collim). The bounds of
Pr[collrm], Pr[collim], and SD(T∗

R,T∗
I) are given in the following analyses, ensuring

Advael
HOMA[ ˜P ],S(A′) ≤ 8σD,C

22n + 11σD
22n ≤ 19σD

22n .

Bounds of Pr[collrm ], Pr[collim ]. The following analysis holds for both worlds.
Fix α ∈ [qE ], β ∈ [qD + 1, q], and i ∈ [mα] such that XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1

and N (α) = N (β). For γ ∈ {α, β}, X
(γ)
aγ+i,1 = fix0(Z(γ)

aγ+i,0) is satisfied, and

Z
(α)
aα+i,0 and Z

(β)
aβ+i,0 are sampled separately and uniformly at random from at

least 2n − 1 elements. We thus have Pr[X(α)
aα+i,1 = X

(β)
aβ+i,1] ≤ 2/2n. Z

(α)
aα+i−1,1

and Z
(β)
aβ+i−1,1, which are used to define Y

(α)
aα+i,1 and Y

(β)
aβ+i,1, respectively, are

sampled separately and uniformly at random from at least 2n−1 elements due
to fix0. We thus have Pr[Y (α)

aα+i,1 = Y
(β)
aβ+i,1] ≤ 2/2n. Summing the bound 4/22n

for each β, i, we have Pr[collrm] ≤ 4σD,C/22n and Pr[collim] ≤ 4σD,C/22n.

Bound of SD(T∗
R,T∗

I ). We bound SD(T∗
R,T∗

I) by using the coefficent H tech-
nique [35]. Here, T is partitioned into two transcripts: good transcripts Tgood

and bad transcripts Tbad.

Lemma 1. (Coefficent H technique [35]) If ∀τ ∈ Tgood : Pr[T∗
R=τ ]

Pr[T∗
I=τ ] ≥ 1 − μ

s.t. 0 ≤ μ ≤ 1, then SD(T∗
R,T∗

I) ≤ Pr[T∗
I ∈ Tbad] + μ.

In the following proof, good and bad transcripts are defined. Then Pr[T∗
I ∈ Tbad]

is upper-bounded, and Pr[T∗
R=τ ]

Pr[T∗
I=τ ] is lower-bounded. Finally, an upper-bound of

SD(T∗
R,T∗

I) is obtained, putting the bounds into the above lemma.



332 Y. Naito et al.

Good and Bad Transcripts. We define bad events below.

– forge: ∃α ∈ [qD + 1, q] s.t. T (α) = T̂ (α).
– colliv: ∃α ∈ [qE ], β ∈ [qE + 1, q] s.t. β � α ∧ (N (α), R(α)) = (N (β), R(β)).
– collh: ∃α ∈ [qE ], β ∈ [qE + 1, q] s.t.

(R(α), A(α)) 	= (R(β), A(β)) ∧ XY
(α)
aα,1 = XY

(β)
aβ ,1.

– collc: ∃α ∈ [qE ], β ∈ [qE + 1, q], i ∈ [mα] s.t.
C(α)

i−1 	= C(β)
i−1 ∧ (fix0(M̃ (α)

i ⊕ C̃
(α)
i ), Y (α)

aα+i,1) = (X(β)
aβ+i,1, Y

(β)
aβ+i,1).

Note that if i > mβ , then X
(β)
aβ+i,1 := ε and Y

(β)
aβ+i,1 := ε.

We define bad transcripts Tbad that satisfy one of the bad events. Good
transcripts are defined as Tgood := T \Tbad.

Lower-Bound of Pr[T∗
R = τ ]/ Pr[T∗

I = τ ]. We give an overview of this
evaluation. The detail is given in the full version of this paper [28].

There are the following differences between the real and ideal worlds.

1. Dec.: (real) a plaintext might be returned; (ideal) all responses are reject.
2. Enc.: (real) ciphertexts and tags are defined by a TRP; (ideal) those are

defined by $.
3. Protected and unprotected values: (real) the values are defined by HOMA;

(ideal) the values are defined by the simulator.

We thus show that as long as no bad event occurs, the differences yield no
distinguishing attack.

For the difference (1), by ¬forge, the difference yields no attack.
For the difference (2), in the real world, since each tweak includes a nonce

and a counter, each output of ˜P , which is used to encrypt a plaintext, is random.
Thus, the difference yields no attack.

For the difference (3), in the real world, protected values and unprotected
values are defined by a TRP as well as ciphertext blocks, whereas in the
ideal world, these values are defined by a TRP but independently of cipher-
text blocks that are defined by $. The detail of the difference is shown below,
where α ∈ [qE ], β ∈ [qE + 1, q] and i ∈ [mα] such that N (α) = N (β) and
(R(α), A(α), C

(α)
1 , . . . , C

(α)
i−1) 	= (R(β), A(β), C

(β)
1 , . . . , C

(β)
i−1).

– Real: If (fix0(M̃ (α)
i ⊕ C̃

(α)
i ), Y (α)

i,1 ) = (X(β)
i,1 , Y

(β)
i,1 ) then Z

(α)
i,1 = Z

(β)
i,1 , since

X
(α)
i,1 = fix0(Z(α)

i,0 ) ∧ Z
(α)
i,0 = M̃

(α)
i ⊕ C̃

(α)
i .

– Ideal: It occurs that (fix0(M̃ (α)
i ⊕ C̃

(α)
i ), Y (α)

i,1 ) = (X(β)
i,1 , Y

(β)
i,1 ) ∧ Z

(α)
i,1 	= Z

(β)
i,1 ,

since X
(α)
i,1 = fix0(Z(α)

i,0 ) but C̃
(α)
i is defined independently of Z

(α)
i,0 .

In both worlds, by ¬collh ∧ ¬colliv, C(α)
i−1 	= C(β)

i−1 is satisfied. Then, in the real
world, by ¬collm, (fix0(M̃ (α)

i ⊕ C̃
(α)
i ), Y (α)

i,1 ) 	= (X(β)
i,1 , Y

(β)
i,1 ) is satisfied, thus the

real-word event does not occur. By ¬collc, the ideal-world event does not occurs.
Hence, no attack using the difference (3) exists.

Hence, the real and ideal worlds are indistinguishable, that is, ∀τ ∈ Tgood :
Pr[T∗

R = τ ]/Pr[T∗
I = τ ] ≥ 1.



Secret Can Be Public: Low-Memory AEAD Mode for High-Order Masking 333

Upper-Bound of Pr[TI ∈ Tbad]. Pr[TI ∈ Tbad] is bounded by Pr[forge] +
Pr[colliv] + Pr[collh] + Pr[collc] ≤ qD

22n + 2qD
22n + 2σD,A

22n + 8σD,C

22n ≤ 11σD
22n , where for

each event ev of the four events, Pr[ev] is the probability that ev occurs as long as
other events have not occurred. The bounds are given in the following analyses.

Pr[forge]. For each α ∈ [qE + 1, q], each of T
(α)
1 and T

(α)
2 is chosen uniformly at

random from {0, 1}n, thus Pr[forge] ≤ qD/22n.

Pr[colliv]. For each α ∈ [qE ], β ∈ [qE + 1, q] such that β � α and N (α) = N (α),
R(α) is chosen uniformly at random from {0, 1}2n−1, thus Pr[colliv] ≤ 2qD/22n.

Pr[collh]. We first fix α ∈ [qE ], β ∈ [qD + 1, q] such that N (α) = N (β) ∧
(R(α), A(α)) 	= (R(β), A(β)), and consider an event collh[α, β]: collh occurs due
to the α-th and β-th queries. By (R(α), A(α)) 	= (R(β), A(β)), collh[α, β] implies
that an internal-state collision occurs in HOMA.Hash[ ˜P ]: ∃i ∈ [aβ ] s.t. XY

(α)
i−1,1 	=

XY
(β)
i−1,1 ∧ XY

(α)
i,1 = XY

(β)
i,1 . If XY

(α)
i−1,1 	= XY

(β)
i−1,1, then the outputs Z

(α)
i−1,1 and

Z
(β)
i−1,1 are sampled separately, and the next outputs Z

(α)
i−1,2 and Z

(β)
i−1,2 are sam-

pled separately. We thus have Pr[XY
(α)
i,1 = XY

(β)
i,1 ] ≤ (2/2n) · (1/2n) = 2/22n.

Using the bound 2/22n, we have Pr[collh] ≤
∑qD

β=1 2aβ/22n ≤ 2σD,A/22n.

Pr[collc]. Fix α ∈ [qE ], β ∈ [qD + 1, q], i ∈ [mα] s.t. N (α) = N (β) ∧ C(α)
i−1 	= C(β)

i−1.

For the condition Y
(α)
aα+i,1 = Y

(β)
aβ+i,1, by ¬collm, XY

(α)
aα+i−1,1 	= XY

(β)
aβ+i−1,1 is

satisfied, thus the outputs Z
(α)
aα+i−1,1 and Z

(β)
aβ+i−1,1 are separately sampled from

at least 2n−1 elements due to fix0. Thus, we have Pr[Y (α)
aα+i,1 = Y

(β)
aβ+i,1] ≤ 2/2n.

For the condition fix0(M̃ (α)
i ⊕C̃

(α)
i ) = X

(β)
aβ+i,1, since C̃

(α)
i is chosen from {0, 1}n,

Z
(β)
aβ+i,0 is chosen from at least 2n − 1 elements, and X

(β)
aβ+i,1 = fix0(Z(β)

aβ+i,0) is

satisfied, we have Pr[fix0(M̃ (α)
i ⊕ C̃

(α)
i ) = X

(β)
aβ+i,1] ≤ 2/(2n − 1) ≤ 4/2n.

Summing the bound (2/2n) · (4/2n) for each β, i, we have Pr[collc] ≤
8σD,C/22n.

5 A TBC Optimized for HOMA

HOMA requires a TBC that accepts a 0.5s-bit plaintext, an s-bit key, and a 2s+3-
bit tweak, where s = 128 for 128-bit security. We design a new TBC, SKINNYee,
which is optimized to be used in HOMA by basing the scheme on SKINNY64 [3].
We conjecture that SKINNYee is a TPRP and satisfies the requirement of HOMA.

5.1 SKINNY64 and SKINNYe with TK4

SKINNY64 is a TBC that supports a block size of 64 bits. SKINNY64 adopts
the tweakey framework [22], which enables the designers to avoid making a
distinction between a tweak and a key, and those two are treated as a single
object “tweakey.” The design is called TKn when the tweakey size is n times
as big as the block size. SKINNY64 supports the tweakey size of 64 bits (TK1),
128 bits (TK2), and 192 bits (TK3). Later, Naito et al. [26] proposed SKINNYe
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(version 2) to extend the tweakey size of SKINNY64 to 256 bits (TK4). Here we
describe the specifications of SKINNYe, which is a base of our work.

SKINNYe operates on the data structure (state) of 16 sequences of 4-bit data
(nibble) d0, . . . , d15 that are formatted into a 4 × 4 two-dimensional array; The
first row is d0 . . . , d3, the second row is d4 . . . , d7, and so on. A 64-bit plaintext
is divided into 16 nibbles, and those form a data state. A 256-bit tweakey forms
4 tweakey states. Then, the following round transformation is iterated 44 times.

SubCells(SC). A 4-bit S-box is applied to each nibble.

AddConstants(AC). A 7-bit constant specified for each round is XORed to par-
ticular 7 bits of the state.

AddRoundTweakey(ART). A 32-bit value called sub-tweakey is generated from
the 256-bit tweakey state, and those are XORed to the top two rows of the data
state. Then 3 tweakey states are updated as explained later.

ShiftRows(SR). The position of each nibble in row i, i ∈ {0, 1, 2, 3} is cyclically
shifted to right by i positions.

MixColumns(MC). Let (x, y, z, w) be 4 nibbles in a column. The value is updated
to (x ⊕ z ⊕ w, x, y ⊕ z, x ⊕ z). This transformation is applied to each column.

Regarding AC, a 6-bit affine LFSR denoted by (rc5, rc4, rc3, rc2, rc1, rc0) is
used to generate round constants. In each round, this LFSR is updated by
(rc5‖rc4‖ · · · ‖rc0) → (rc4‖rc3‖rc2‖rc1‖rc0‖rc5 ⊕ rc4 ⊕ 1). Then, 3 nibble values
rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4, and 0x2 are XORed to the first, the second, and
the third rows of the left-most column of the state, respectively.

Regarding ART, first, the 32-bit sub-tweakey value is computed by extract-
ing the top 2 rows from each of 4 tweakey states and XORing them. Sec-
ond, nibble positions are permuted by the permutation PT : (0, . . . , 15) →
(9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7). All tweakey states are updated with
the same PT . Third, all nibbles in the second, the third, and the fourth tweakey
states are updated by applying the following LFSR2, LFSR3, and LFSR4,
respectively.

LFSR2 : (x3‖x2‖x1‖x0) → (x2‖x1‖x0‖x3 ⊕ x2),
LFSR3 : (x3‖x2‖x1‖x0) → (x0 ⊕ x3‖x3‖x2‖x1),
LFSR4 : (x3‖x2‖x1‖x0) → (x1‖x0‖x3 ⊕ x2‖x2 ⊕ x1).

5.2 Elastic-Tweak Framework for Small Tweaks

Elastic-tweak is a design to convert BCs or TBCs to accept a few (more) bits
of tweak [11]. The input tweak is first expanded to a relatively large size for
security reasons and then XORed to the data state in every few rounds. The
framework was later improved to be more lightweight by realizing the expanded
tweak state with LFSR [27], but it still preserves the principle of expanding the
tweak, which is disadvantageous for small implementations.
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5.3 Design Approach of SKINNYee

We first give an overview of our approach to design our TBC. Recall that HOMA
requires a 64-bit block TBC that supports a 128-bit key and a 259-bit tweak. By
adopting the same approach as SKINNYe, such TBCs are realized if the tweakey
size of SKINNY64 can be extended to 448 bits (TK7). However, we found that
this approach is not reasonable for two reasons.

– The idea behind the tweakey of SKINNY is to not make any distinction
between a key and a tweak. For example, a 192-bit tweakey can be an x-
bit key and a (192−x)-bit tweak for some x, 1 ≤ x ≤ 192. This functionality
is not necessary for HOMA because the key size and the tweak size are fixed.

– We actually investigated the possibility of designing TK7 by searching for
LFSR5, LFSR6, and LFSR7 for the extra tweakey states. Because the
search space is limited, all 4-bit LFSRs can be tested exhaustively. Our exper-
iments showed that no LFSR exists to ensure security for TK7. TK7 can still
be achieved by replacing LFSRs with more complex computations, but this
requires to compromise implementation efficiency.

Our aim is not a general-purpose TBC. From the above considerations, we deter-
mined to treat a key and a tweak as independent objects instead of a tweakey.

Among 259 bits of the tweak, 3 bits are for the domain separation. The
elastic-tweak gives us a hint that those can be processed efficiently by introducing
different computations from the other tweak value. However, we found that the
elastic-tweak is not suitable for HOMA because an additional computation to
process a small tweak increases the memory size. Instead, we enlarge the size of
an LFSR to compute the round constant by a few bits and initialize the LFSR
to be different values depending on the 3-bit tweak.

Lastly, we design SKINNYee by reusing as many components of SKINNY as
possible for two reasons. First, the benchmark becomes fair when we later com-
pare the benchmark of our scheme with other SKINNY-based schemes. Second,
SKINNY has received a lot of third-party security analysis, and the fact that
SKINNY still stands against any cryptanalytic attempts enhances the reliability
of the design. To take over those cryptanalytic attempts, the amount of modifi-
cation from SKINNY should be minimized. In the end, we decided not to modify
SC, SR, and MC from the original. So, modifications from SKINNY are made on
AC, ART, and a new operation to process a 128-bit key.

5.4 Specifications of SKINNYee

SKINNYee accepts a 128-bit key, a 256-bit tweak, and a 3-bit tweak for the
domain separation. The design is based on SKINNYe (TK4). The round trans-
formation of SKINNYee is given in Fig. 5. Modifications we made are listed below.

– The 256-bit tweak is assigned to the 256-bit tweakey of SKINNYe.
– A new operation AddRoundKey is added between SB and SR. The 128-bit key

is divided into four 32-bit data K0,K1,K2,K3. In round i, a 32-bit subkey is
Ki mod 4. The subkey is XORed to the bottom two rows of the data state.
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Fig. 5. Round Transformation of SKINNYee.

– AC is drastically modified. We define a 10-bit LFSR rc9, . . . , rc0, which clocks
(rc9‖ · · · ‖rc0) to (rc8‖rc7‖rc6‖rc5‖rc4‖rc3‖rc2‖rc1‖rc0‖rc9⊕rc3⊕rc2⊕rc0).
At the beginning, rc9‖rc8‖rc7 is initialized to the 3-bit tweak for the domain
separation, and the other 7 bits are initialized to rc8 = . . . = rc1 = 0 and
rc0 = 1. In each round, for i = 0, 1, . . . , 15, we first XOR the 4-bit value
(rc3‖rc2‖rc1‖rc0) to the i-th nibble of the data state and then clock the
LFSR.

– The number of rounds increases to 56.

5.5 Design Rationale

Rationale for the AddRoundKey is as follows. First, the tweak value is not mixed
with the secret value derived by the key, which enables us not need to pro-
tect tweak states, otherwise the mixed state needs to be duplicated into several
shares. Second, if both the subtweak and the subkey are XORed in the top
two rows, some unknown interaction between the tweak and the key may occur.
Specifically, when all nibbles in the first tweak state (never updated with LFSR)
and all nibbles of the key have the same value, the XOR of the subtweak and
the subkey can be a constant value. To avoid such cases, we decided to XOR
subkeys to the bottom two rows. Note that the TPRP security required by the
mode is a security notion for a single key, thus we exclude the use case that the
adversary injects some difference in the key. Hence, we do not have to worry
about related-key attacks. Moreover, the tweak value is computed by the HOMA
mode, and the adversary cannot control it to be suitable for the attack. For the
key schedule, we chose to use 4 parts of 32 bits of the 128-bit key in turn. This
avoids using extra memory for the key schedule, thus it is very suitable for our
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goal. Also note that the key schedule forms a cycle in every 4 rounds, and the
key state is back to the original after the whole encryption process (56 rounds).
This saves us the cost to implement the key schedule inverse.

We drastically modified AC. The first modification is the small-tweak depen-
dent initialization of the LFSR. A single-bit difference in the initial value of the
LFSR significantly changes the generated constant sequences, which is sufficient
to separate the TBC invocations for different small-tweak values. Besides, we
XOR the 4-bit constant to all nibbles by repeating exactly the same procedure
16 times in each round. This modification increases the total computational cost,
thus may speed-down the round-based implementation, which was the original
goal of SKINNY. Meanwhile, our goal is a small memory, thus iterating the same
procedure 16 times is more suitable. The size of the LFSR was determined from
the number of clocks for the whole encryption procedure. Our constant genera-
tion requires 16 clocks per round, thus it requires 16×56 = 896 clocks. We chose
the LFSR size to be 10 bits to avoid having the same LFSR state. The feedback
function of the 10-bit LFSR was chosen so that the cycle period is 1,023.

The number of rounds increased from that of SKINNY64 with TK3 (40
rounds) and SKINNYe with TK4 (44 rounds). This is because, in SKINNYee,
each key nibble is XORed to the data state only in every 4 rounds, while in the
previous designs, each key nibble is XORed in every 2 rounds. This does not
immediately imply that the number of rounds of SKINNYee must be doubled.
Many cryptanalyses, e.g. differential cryptanalysis, are divided into a ‘distin-
guisher’ and a ‘key-recovery part.’ The distinguisher is usually irrelevant to the
key schedule, and the less-frequent use of each key nibble only affects the key-
recovery part. We expect that the number of key-recovery rounds should be
doubled in the worst-case scenario for SKINNY64 and SKINNYe. The maximum
number of key-recovery rounds in literature was 11 [40],12 thus we increased the
number of rounds of SKINNYee by 12 from SKINNYe.

5.6 Security Analysis Against Various Cryptanalyses

The security goal of SKINNYee is the TPRP security, which is a notion for a
single-key. Hence, we focus on the evaluation in the single-key setting. When an
adversary can inject any difference in the plaintext and the tweak, the number of
active S-boxes for SKINNYee (in the single-key) is the same as one for SKINNYe in
the related-tweakey (TK4) setting. The minimum number of active S-boxes can
be evaluated by using mixed integer linear programming (MILP). The results
are shown in Table 2, which show that 29 rounds ensure at least 64 S-boxes [26],
and the maximum differential characteristic probability is upper-bounded by
2−2×64 = 2−128. Hence 56 rounds of SKINNYee is sufficiently secure.

Another popular approach is linear cryptanalysis. It has some advantage with
respect to working in the known-plaintext setting, which allows an attacker to
ignore the effects of random IV implemented in HOMA. The evaluation with

12 The longest attack in literature with respect to the number of distinguisher rounds
plus key-recovery rounds reaches 22 + 8 = 30 rounds with TK3 [19].
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Table 2. Tight bounds of the number of active Sboxes of SKINNYee.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Diff 0 0 0 0 0 0 0 0 1 2 3 6 9 12 16
Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diff 19 21 24 30 35 39 41 43 46 50 54 58 62 66 72
Lin 70 76 80 85 90 96 102 107 110 115 121 127 130 135 141

MILP ensures at least 64 linearly active S-boxes only after 15 rounds [26]. Hence
we conclude that HOMA is secure against linear cryptanalysis.

There are several cryptanalytic approaches that focus on features defined
over 4 plaintext-ciphertext pairs. Boomerang-type attacks and differential-linear
attacks are such examples. Roughly speaking, boomerang-type attacks combine
2 independent relatively short differential characteristics instead of a single long
differentials characteristic, meanwhile the probability of each active S-box is
squared. Table 2 shows that two 15-round characteristic with 16 active S-boxes
may be able to be combined to construct 30-round distinguisher with probabil-
ity (2(−2)×16)2 × (2(−2)×16)2 = 2−128. Dependency between two characteristics
may increase or decrease the number of rounds a bit, but we conclude that 56
rounds of SKINNYee is sufficiently secure. In differential-linear attacks two dif-
ferential characteristics and one linear characteristic is combined. For example,
two 15-round differential characteristic with 16 active S-boxes may be able to
be combined with a 8-round linear characteristic with 32 S-boxes. Again, depen-
dency between two characteristics may increase or decrease the number of rounds
a bit, but we conclude that 56 rounds of SKINNYee is sufficiently secure.

Meet-in-the-middle attacks divide the computation structure to two indepen-
dently computed sub-parts. The designers of SKINNY [3] evaluated the maxi-
mum number of attacked rounds based on the number of rounds required for
the full diffusion, which showed that the meet-in-the-middle attack would not
reach 23 rounds. The use of large tweak in SKINNYee may extend the number of
rounds for the full diffusion by 3, which may increase the number of rounds of
independently computed parts and two techniques (partial-matching and initial
structure) by 3. Hence, the number of attacked rounds is at most 23+5×3 = 38
even with an optimistic evaluation for the attacker.

Some attacks, such as invariant subspace and non-linear invariant, work
regardless of the number of rounds (often with a weak key restriction), but
no such attacks have been reported for SKINNY or its variants.
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6 Implementation

6.1 Targets and Design Policy

We evaluate the hardware performance of HOMA instantiated with SKINNYee.
Hereafter, we refer to the SKINNYee’s 256-bit tweak as TK1||TK2||TK3||TK4

wherein each TKi is a 64-bit chunk scheduled independently. We use them for
the following purposes:

– TK1: Upper 64 bits of the nonce,
– TK2: Upper 36 bits: a lower part of the nonce, lower 28 bits: a counter,
– TK3: Unprotected data,
– TK4: Either an associated data block Ai or a ciphertext block Ci (see Fig. 1).

For a fair comparison, we also implement the current state-of-the-art
PFB Plus instantiated with SKINNYe [26] (see Table 1) with the same design
policy. The circuit components needed for SKINNYe and SKINNYee are mostly
common, which help us to evaluate the difference from the modes of operation.
We respect PFB Plus’s original tweak configuration: TK1||TK2 stores the secret
key, while TK3||TK4 stores the nonce and counter concatenated.13

We follow the design policy of the conventional PFB Plus implementation [26],
which works as a coprocessor that provides a set of commands for block-wise
processing. We can realize all AEAD operations by combining those commands.
The implementation keeps the key, nonce, and a counter during their lifetime to
avoid the hidden cost of an external storage.

6.2 Masked S-box Implementation

We choose Cassiers et al.’s HPC2 [9,10] as a target masking scheme for its glitch
resistance, composability, and the availability of an open-source implementa-
tion [8]. In particular, composability ensures the security of a circuit composed
of the gadgets, which greatly simplifies the security analysis of the entire imple-
mentation [9]. Although HPC2 is a great option, we stress that HOMA’s low-
memory advantage (see Table 1) is independent of a particular masking scheme.
An efficient masking scheme in the future will make the HOMA’s advantage even
higher because an efficient masking makes memory elements even more dominant
in hardware cost.

Figure 6-(left) shows our 3-stage pipelined implementation of the SKINNY
4-bit S-box using the HPC2 AND gadgets. The gadget has built-in registers,
and its two input ports have different latency. We arrange the gadgets in the
pipeline in a way that minimizes the number of pipeline stages on the basis of
Cassiers et al.’s S-box representation optimized for HPC2 [10]. The circuit uses
four HPC2 AND gadgets, and each pipeline stage calculates (a part of) the S-
box independently. Each AND gadget uses (7d2 + 11d + 4)/2 bits of internal

13 For both implementations, we use 28 bits as a counter and the remaining bits as a
nonce, by following the conventional PFB Plus implementation [26].
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Fig. 6. (Left) three-stage pipelined implementation of the SKINNY 4-bit S-box. The
shaded boxes are the HPC2 AND gadgets. We follow the original expression for the
symbol names [10]. (Right) hardware architecture of HOMA.

registers. We also need 10d bits of the pipeline registers, as shown in the bottom
of Fig. 6-(left), for carrying the inputs to later stages. As a result, the S-box
circuit uses (14d2 + 18d + 8) bits of registers in total. Each HPC2 AND gadget
uses d(d+1)/2 bits of a random number, and the S-box circuit consumes 2d(d+1)
random bits/cycle at maximum. The total number of random bits for running a
TBC is 2d(d + 1) × 16 × Nround wherein Nround is the round number.

6.3 Hardware Design

Architecture. Figure 6-(right) shows the proposed nibble-serial hardware
architecture, which uses the 2-dimensional arrays of registers as a basic build-
ing block, by following the conventional PFB Plus and SKINNY implementa-
tions [3,26].

The state array is a 64-bit register arranged in a 4×4 matrix, which efficiently
realizes the nibble-wise data scan, as well as the MixColumns and ShiftRows
operations. We use a scan flip-flop, a special register with a built-in 2-way
selector, for efficiently implementing the array. Each round function takes 24
cycles, and the entire SKINNYee operation finishes in 1344 (=24 × 56) cycles.14

The TK1–TK4 arrays are the similar 4 × 4 matrices that efficiently realize the
nibble-wise data scan and the tweakey schedule [26]. We implement the newly-
introduced 128-bit key K0||K1||K2||K3 using a simple (4 × 32)-bit shift register
shown as KeySR in Fig. 6-(right).

HOMA needs to update TK3 and TK4 using the TBC output namely YTBC ,
such as TK3 ← TK3 ⊕ YTBC and TK4 ← Mi ⊕ YTBC , in addition to SKINNYee
encryption. Our architecture implements those operations in a nibble-oriented
manner. The TK2 array also integrates a 28-bit adder for updating the counter
in place, meanwhile the state array integrates the fix0 operation.

14 19 cycles for S-box calculation with pipeline latency, 4 cycles for MixColumns, and 1
cycle for ShiftRows.
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Table 3. Hardware performances in gate equivalent (GE) for d ∈ {0, · · · , 5}.

Component HOMA PFB Plus

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 0 d = 1 d = 2 d = 3 d = 4 d = 5

Total 4,981 6,283 8,226 10,392 12,782 15,487 4,569 6,884 9,667 12,675 15,941 19,724

S-box 161 501 1,087 1,897 2,931 4,189 161 501 1,087 1,897 2,931 4,189
State array 542 1,046 1,573 2,097 2,621 3,240 540 1,049 1,571 2,094 2,619 3,238
TK1 array 636 549 549 549 549 549 637 1,231 1,845 2,459 3,083 3,818
TK2 array 844 749 744 748 744 748 674 1,296 1,938 2,578 3,239 3,989
TK3 array 675 585 586 585 585 586 746 656 657 656 656 656
TK4 array 675 577 576 577 577 576 865 782 782 780 780 781

KeySR 735 1,468 2,201 2,935 3,668 4,402 — — — — — —
Shift reg. — — — — — — 377 754 1,131 1,508 1,885 2,262

Implementation of Shares. The state array and KeySR are simply dupli-
cated for masking, which ensures the component-wise independence. The com-
ponents in the unprotected region (see Fig. 6-(right)) have no SCA protection.
The Unshare module interfaces the protected and unprotected regions by con-
verting the data in shared representation into its bare form. Besides the S-box
circuit, this Unshare module is the only place wherein shares can interact. To
avoid an exploitable leakage by unsharing the unwanted intermediate data, the
Unshare module has a dedicated input register, which strictly controls the incom-
ing data from flowing into the XOR gates that make actual unsharing.

PFB Plus Implementation. Our PFB Plus design follows the conventional
one [26] and is adjusted for the pipelined S-box circuit in Fig. 6. As a result, the
state array and the S-box circuit are mostly the same between our HOMA and
PFB Plus implementations. Meanwhile, there are important differences in the
tweakey arrays. In particular, the TK1 and TK2 arrays for PFB Plus store the
secret key, which stays in the protected region and is duplicated for masking.
PFB Plus needs an additional state outside the TBC, and we implemented it
using a simple shift register similar to KeySR.

6.4 Performance Evaluation and Comparison

We describe the HOMA and PFB Plus implementations at the register-transfer
level except for the direct instantiation of the scan flip-flops [26]. We evaluate the
performances by synthesizing the circuits using Synopsys Design Compiler with
the NanGate 45-nm standard cell library [31]. To make component-wise compari-
son, we preserve the hierarchy of the components shown in Fig. 6-(right). Tables 3
show the post-synthesis performances of HOMA and PFB Plus. We examine the
protection orders d ∈ {0, · · · , 5} by considering the experimental security evalu-
ation in the original paper [9,10].

The results are consistent with the memory advantage in Table 1, and HOMA
outperforms PFB Plus in all the cases with SCA protection, i.e., d > 0. In those
cases, HOMA’s area reduction is larger than that of the entire S-box. For example,
at d = 5, HOMA saves 4,237 GE wherein the S-box circuit uses 4,189 GE. In
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other words, HOMA achieves the area reduction that is impossible with the
conventional approaches focusing on S-box, i.e., reducing S-box’s multiplicative
complexity [1,16,17] and improving each AND gadget [9,10].

The results confirm that the memory elements still dominate the overall cir-
cuit area with the practical protection orders, and HOMA saves a considerable
amount of hardware resources. As discussed in Sect. 6.2, the cost of the AND gad-
gets and the entire S-box circuit grows quadratically with the protection order
d, which will eventually overwhelm the memory elements that grow only lin-
early. Although we can confirm the S-box circuit’s quadratic growth in Tables 3,
the memory elements still dominate the total cost with d ∈ {0, · · · , 5}. Besides,
the simple key schedule of SKINNYee greatly contributes to the small area: the
shift-register based KeySR achieves lower per-bit cost than that of the TK1 and
TK2 arrays that PFB Plus uses for storing the key.

HOMA essentially trades the area with latency; HOMA (resp. PFB Plus) calls
the TBC twice (resp. once) for each 64-bit message block. Also, the number of
clock cycles for each TBC is extended by roughly 56/44 because SKINNYee has
56 rounds compared with 44 rounds of SKINNYe. However, we believe the area
has priority in embedded-system applications, and that would be why serialized
architectures having only a single S-box circuit is popular in previous literature.

7 Conclusions

We proposed an AEAD scheme that has the smaller memory usage with (d + 1)
high-order masking. Achieving this goal, we proposed the strategy that a key-
dependent state is separated into public and secret states. We then proposed the
new mode HOMA that the half of the state is public, and the new TBC needed
for its instantiation. We proved that for (d + 1) high-order masking, our scheme
outperforms the previous state-of-the-art with respect to circuit area.

Designing an AEAD scheme with a smaller memory usage with (d+1) high-
order masking is an interesting future research. One promising approach is to
extend the ratio of unprotected state in our design strategy. While SKINNYee
was designed based on SKINNY for the purpose of clarifying performance com-
parisons, designing a new TBC with a new structure for the extended mode that
requires a higher number of TK states is another interesting challenge.
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Abstract. In a so-called partial key exposure attack one obtains some
information about the secret key, e.g. via some side-channel leakage. This
information might be a certain fraction of the secret key bits (erasure
model) or some erroneous version of the secret key (error model). The
goal is to recover the secret key from the leaked information.

There is a common belief that, as opposed to e.g. the RSA cryptosys-
tem, most post-quantum cryptosystems are usually resistant against par-
tial key exposure attacks. We strongly question this belief by constructing
partial key exposure attacks on code-based, multivariate, and lattice-
based schemes (BIKE, Rainbow and NTRU). Our attacks exploit the
redundancy that modern PQ cryptosystems inherently use for efficiency
reasons. The application and development of techniques from informa-
tion set decoding plays a crucial role for achieving our results.

On the theoretical side, we show non-trivial information leakage
bounds that allow for a polynomial time key recovery attack. As an
example, for all schemes the knowledge of a constant fraction of the
secret key bits suffices to reconstruct the full key in polynomial time.

Even if we no longer insist on polynomial time attacks, most of our
attacks extend well and remain feasible up to large erasure and error
rates. In the case of BIKE for example we obtain attack complexities
around 60 bits when half of the secret key bits are erased, or a quarter
of the secret key bits are faulty.

Our results show that even highly error-prone key leakage of modern
PQ cryptosystems may lead to full secret key recoveries.

Keywords: Erasure/Error Model, Asymptotics, Cold Boot Key
Recovery

1 Introduction

Ideally, cryptographic schemes should enjoy robustness against key leakage in the
following informal sense. If a scheme uses n-bit keys and k < n bits of information
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are leaked, then the scheme should offer the security of (n−k)-bit keys. The LWE
problem is known to provide this leakage robustness property [15]. Therefore, it
is widely believed that modern post-quantum schemes provide a good level of
resistance against computing the secret key from partial information, i.e., against
so-called partial key exposure attacks.

Notice that leakage robustness of a cryptographic problem does not imply
any resistance against side-channel attacks, see e.g. [12]. It just tells us that
the leakage of a certain amount of information does not completely destroy the
problem’s hardness. Moreover, a cryptographic scheme that relies on a leakage
robust problem might not automatically inherit its leakage robustness, since the
scheme may introduce weaknesses, e.g. via additional secret key redundancy.

As a main result, our work shows that a certain amount of side-channel infor-
mation (wherever it may come from) suffices to fully recover the secret key in
polynomial time - or from a more practical perspective in reasonable time, say
260 operations - for the post-quantum cryptosystems BIKE, Rainbow, NTRU.
We chose these schemes as representative candidates for code-, multivariate-
and lattice-based cryptography. NTRU, respectively BIKE, is a NIST 3rd round
finalist, respectively alternate, encryption scheme, and Rainbow is a finalist sig-
nature scheme.

Partial Key Exposure Attacks on RSA in the Erasure and Error Model. It is
well-known that RSA does not enjoy leakage robustness. For instance, by a
famous result of Coppersmith [9] an RSA modulus N = pq can be factored in
polynomial time given only half of the bits of p. Similar results have been shown
for fully recovering the secret key d [7], the RSA plaintext m [9], and also RSA
CRT-exponents [6] from partial knowledge in polynomial time.

All of these attacks are in what we call the erasure model, i.e., we obtain a
certain fraction of the bits, and have to recover the remaining bits. Moreover, the
above mentioned attacks usually require that the known as well as the unknown
bits are in consecutive positions. An erasure model with known bits in random
positions was first addressed by Heninger and Shacham [18].

The erasure model is from a theoretical perspective convenient, because
it usually provides a good starting point for reasoning about algorithms that
recover complete secret keys from incomplete information. In practice however,
side-channel analysis often gives us full keys with some faults that stem from
the side-channel’s noisiness. This is what we call the error model, which might
be further refined by its error type.

In the error model Henecka, May, Meurer [17] showed that an RSA secret
key in which bits are randomly flipped with a certain error rate r � 1

2 can be
recovered in polynomial time. This was further refined by Paterson, Polychro-
niadou, Sibborn [23] introducing asymmetric bit-flip rates, where bits may flip
from 1 to ground state 0 with large error rate p1, whereas the inverse direction
has only small probability p0. Such an asymmetric error accurately models e.g.
the side-channel obtained by Cold Boot Attacks from Halderman et al. [16].
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Previous Work on PQC Partial Key Exposure Attacks. For post-quantum
cryptography, in 2017 a first partial key exposure on NTRU was proposed
by Paterson and Villanueva-Polanco [24], followed by two more attacks from
Villanueva-Polanco on BLISS [27] and LUOV [28]. The PhD thesis of Villanueva-
Polanco [25] contains a more systematic study of partial key exposure attacks
also for Rainbow and McEliece.

However, the results achieved by Paterson and Villanueva-Polanco seem to
support the strong belief in leakage robustness of post-quantum cryptosystems.
For example considering NTRU, even in the asymmetric error setting their
attacks experimentally cannot reach with good success probability rather small
error probabilities p1 = 0.1 and p0 = 0.001. Similar for Rainbow, the attack in
[25] only reaches error probabilities of p1 = 0.001 and p0 = 0.001 even for toy
Rainbow parameters.

These results stand in quite sharp contrast to our attacks, that handle rela-
tively large erasure/error rates, sometimes even in polynomial time. We see two
main reasons for our substantial improvement over previous work.

First, we heavily use the key redundancy provided by many modern post-
quantum systems to recover secret keys much more efficiently. Key redundancy
has already been exploited by Albrecht, Deo, Paterson [1] by using the NTT
representation of Kyber keys. However, [1] still only tolerates comparatively
small error probabilities around 1%.

Second, we use and further develop more advanced techniques from infor-
mation set decoding and lattices, thereby building on the work of Horlemann,
Puchinger, Renner, Schamberger, Wachter-Zeh [19] for decoding with hints and
the work of Dachman-Soled, Ducas, Gong, Rossi [10] for lattices with hints.
Especially, our new decoding techniques might be of independent interest.

Our Results with Polynomial Time Key Recovery. To the best of our knowledge,
our work is the first that achieves polynomial time partial key exposure attacks
on post-quantum cryptosystems for non-trivial erasure/error rates. Our results
are summarized in Table 1.

Table 1. Summary of (asymptotic) bounds on erasure/error probability for
polynomial-time key recovery.

Polynomial Attacks key format erasure error

BIKE
standard 0.500 log n√

n

compact 0.092 1
log2 n

Rainbow
first layer n

n+1
log n

n

full key 1√
n

log n
n

NTRU
(un)packed n− 2

3
√
log n
n

“consecutive” 0.250
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Let us briefly discuss our results, what we mean by the different key formats,
and how we exploit key redundancies.

BIKE. For BIKE keys we achieve erasure rates of p = 1
2 (standard) and p =

0.092 (compact). Let (s, e) ∈ F
n/2
2 × F

n/2
2 be a BIKE secret key in standard

format, i.e., (s, e) is given as a bit-vector. Then half of the secret key bits suffice
to recover the full secret key in polynomial time.

This might be surprising at first glance, but a BIKE secret key fulfills an
LWE/LPN-relation As = e. From this alone one can see that s suffices to effi-
ciently recover e. Our attack now simply shows that any n/2 bits suffice. Thus, in
comparison to LWE/LPN, BIKE secret keys are redundant, since they store the
secret s and the error e. Both parts are required in BIKE for proper decryption
(as opposed to LWE-type schemes).

If (s, e) is stored compactly, i.e., only the few non-zero positions of both
vectors are encoded, then one can only recover the key efficiently given all but
a 0.092-fraction of its bits.

In the error setting, our BIKE results tolerate roughly an 1√
n
-error in the

standard case, i.e. roughly
√

n error positions. However, notice that somewhat
surprisingly the compact case allows for a huge number of n/ log2 n error posi-
tions.

We would like to point out that all of our BIKE results also hold identically
for HQC [22] secret keys.

Rainbow. For Rainbow keys, our partial key exposure attacks are even stronger.
This stems from our main observation that a single row of Rainbow’s secret key
matrix suffices to fully recover the first half of the key (labeled as “first layer” in
Table 1). Here, in the erasure setting, we can tolerate rates that converge to 1.
In other words, a linear fraction of the secret key matrix is already enough to
recover this part of the key.

In order to recover the full key in polynomial time, slightly more informa-
tion is needed, which leads to only

√
n manageable errors. However, a Rainbow

secret key, inherently contains a (quadratic) redundancy factor, which is heavily
exploited by our attacks.

For error recovery our results are significantly worse. Here, we can only tol-
erate log n error positions per key.

NTRU. Eventually, for the NTRU cryptosystem we achieve for errors/erasures
in random positions only small tolerable rates. The NTRU encryption scheme can
be considered as a Ring-LWE instance. As explained for BIKE, the consequence
is that NTRU secret keys provide less redundancy than BIKE secret keys, since
NTRU does not store the LWE error. Thus, it is not surprising that we obtain
weaker bounds for NTRU.

Yet, if we look into the setting of erasures in consecutive positions of an
NTRU secret key, then we can recover the full secret key from only a 3/4-
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fraction of all positions. This consecutive partial key exposure attack heavily
exploits NTRU’s ring structure. We are not aware of any cryptanalytic results
in the literature that exploit the ring structure with such a significant gain.

Concrete Parameters: The Erasure Case. While from a theoretical perspective
it is desirable to understand for which erasure/error rates we can achieve poly-
nomial time attacks, it might be even more interesting to see how our attacks
perform on concrete parameter sets. Table 2 shows the results of our attacks on
Category-1 parameter sets (equivalent to AES-128 security), when we allow for
attack bit complexities of 45, 60 and 80 bit.1

Table 2. Tolerable erasure rates for different key formats that allow for a key recovery
with bit complexity less than 45, 60 and 80 on the Category-1 parameter sets.

Erasures key format
bit complexity bound

45 60 80

BIKE
standard 0.570 0.650 0.730

compact 0.410 0.425 0.445

Rainbow full key 0.710 0.810 0.890

NTRU
unpacked 0.219 0.300 0.422

packed 0.065 0.092 0.138

Recall from Table 1 that polynomial time attacks on BIKE are feasible for
erasure rates of 0.5 (standard key format), respectively roughly 0.1 (compact key
format). We observe from Table 1 that the allowed errors in the standard format
are significantly larger, namely in the interval [0.57, 0.73], whereas in compact
format we even improve to rates beyond 0.4. Hence, BIKE’s redundancy leads
to efficient key recoveries in practice given roughly half of the secret key bits.

Rainbow with its large key redundancy tolerates even larger rates than BIKE
for Category-1 parameters.2 Here, erasure rates in the interval [0.71, 0.89] still
allow for key recovery as shown in Table 2.

Asymptotically, NTRU has least key redundancy and therefore tolerates only
small erasure rates. This is reflected by the results of Table 2, where we can
recover erasure rates in the interval [0.22, 0.42]. However, compared to previous
results from Paterson and Villanueva-Polanco [24], our results still improve by
orders of magnitude. The reason for this improvement comes from using more
involved lattice techniques than the simple key enumeration from [24]. Even

1 The code to rerun our experiments and bitcomplexity calculations is available at
https://github.com/Crypto-TII/partial-key-exposure-attacks.

2 For Rainbow Category-3 and -5 parameters tolerable rates are lower, as we discuss
in Sect. 4.

https://github.com/Crypto-TII/partial-key-exposure-attacks
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for the least redundant packed key format, we still obtain erasure rates in the
interval [0.06, 0.14].

Table 3. Tolerable error rates for key recovery of Category-1 parameter sets with bit
complexities bounded by 45, 60 and 80. In the asymmetric setting we fix p0 = 0.001.

Errors

key format

bit complexity

45 60 80

asym. sym. asym. sym. asym. sym.

BIKE standard 0.050 0.050 0.150 0.120 0.300 0.200

compact 0.175 0.030 0.240 0.060 0.275 0.080

Rainbow full key 0.240 0.120 0.375 0.190 0.540 0.270

NTRU unpacked 0.033 0.002 0.099 0.009 0.273 0.019

packed 0.009 0.003 0.020 0.008 0.040 0.015

Concrete Parameters: The Error Case. Analogous to Table 2, we denote in
Table 3 the error rates that we can recover for Category-1 parameter sets when
using bit-complexities of 45, 60, and 80 bits.

Noteworthy, we achieve high error rates in the asymmetric error setting.
For Rainbow, this again stems from the larger key redundancy. However, for
BIKE and NTRU we exploit the partial key information to significantly lower
the dimension of the underlying problems. This in turn speeds up our decod-
ing/lattice reduction algorithms. Most impressive is maybe the error correction
of unpacked NTRU keys with error rate p1 = 0.27 within a complexity of 80 bit.
Observe that our attack is not yet very effective for 45 bits (with error p1 = 0.03),
since it requires a large polynomial overhead.

Conclusion. As opposed to the common belief, current post-quantum schemes
allow for effective partial key exposure attacks, both in the erasure and the
error setting. We demonstrate this for representative post-quantum candidates
from codes, multivariate and lattices. As a rule of thumb, the higher the key
redundancy, the more effective are our attacks. But even the least redundant
NTRU scheme still allows for quite impressive erasure/error rates.

Organization of the Paper. We elaborate on our erasure/error model in Sect. 2,
where we also recap the basics of information set decoding attacks. All our
BIKE results, asymptotically and for concrete parameters, are given in Sect. 3.
Our Rainbow results can be found in Sect. 4, and we conclude with the NTRU
results in Sect. 5.
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2 Preliminaries

We denote vectors and matrices as bold lower case and bold capital letters. For
a matrix M ∈ F

k×n
q and a set I ⊆ {1, . . . , n} we let MI be the matrix obtained

by projecting M onto the columns defined by I. We use the same notation for
vectors. We refer by O to the all-zero matrix. All logarithms are base 2 if not
stated otherwise. We use standard Landau notation for complexity statements
and call a probability p high if p = 1 − o(1).

2.1 Key Exposure Models

Throughout this work we consider two different key exposure models - the error
and the erasure model. In the error model one obtains knowledge of a faulty
version of the full secret key, whereas in the erasure setting only certain parts of
the secret key are known but guaranteed to be correct.

In our theoretical treatment we work with errors and erasures on the field
level, while for practical considerations we work with errors and erasures on the
bit level. This distinction allows us to keep the theoretical consideration (mostly)
independent of the chosen key-representation. In our practical analysis we then
analyze the performance of our attacks using specific key formats. Let us more
formally define both models, starting with the field level.

Errors and Erasures in Fields. For all schemes that we consider the private
keys are either vectors (or matrices) over Fq or polynomials with coefficients over
Fq, which are represented via their coefficient vector. Field erasures then corre-
spond to a set of indices for which the corresponding coordinates or coefficients
are unknown, while the rest is known.

Definition 1 (Erasures). Let n ∈ N, f = (f1, . . . , fn) ∈ F
n
q and I ⊆ {1, . . . , n}

denote the erasure positions. For ui denoting the i-th unit vector we let

f̃ :=
∑

i/∈I

fiui +
∑

i∈I

yiui,

with yi ∈ Fq. In the erasure model I and f̃ are known, while the yi are unknown.
Each coordinate of f gets erased with probability p := Pr[i ∈ I], which we denote
as Fq-erasure probability. We call f̃ a partially erased version of f .

In a concrete attack scenario of Definition 1 f would be the secret key, and
the goal is to recover f from the partially erased version f̃ . We call such an attack
a (key recovery) attack in the erasure model.

Let us analogously define the error model.

Definition 2 (Errors). Let n ∈ N and f = (f1, . . . , fn) ∈ F
n
q . Further let

e = (e1, . . . , en) ∈ F
n
q be an error vector. In the error model one is given

f̃ := (f̃1, . . . , f̃n) = f + e = (f1 + e1, . . . , fn + en),
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while the fi and ei are unknown. Every coordinate of the error is different from
zero with probability p := Pr[ei �= 0], which we refer to as Fq- error probability.
If ei �= 0, then ei is uniformly distributed in Fq \ {0}, i.e., Pr[ei = 0] = (1 − p)
and Pr[ei = k] = p

q−1 for all k ∈ Fq \ {0}. We call f̃ an erroneous version of f .

Again, in a partial key exposure scenario f would be the secret key and f̃ the
known erroneous version of it. The goal is to recover f from f̃ . We call such an
attack a (key recovery) attack in the error model.

Errors and Erasures of Bits. For our practical analysis we switch from field
to bit errors, i.e., every bit in the binary representation of the secret key is flipped
(error model) or erased (erasure model) with a certain probability. One obtains
a definition for the erasure and error model considering bit-errors/-erasure by
letting f of Definition 1 and 2 be the binary representation of the secret key and
correspondingly setting q = 2. In these cases we might use the term bit-error and
bit-erasure rather than F2-error and F2-erasure. Once it is known how the secret
key is represented on the bit-level, one can relate the field- and bit-error/-erasure.

Speaking of the error model, in a practical scenario, which is often motivated
via cold-boot attacks, we usually find asymmetric error probabilities, i.e., the
probability p0 of a zero flipping to one is different from the probability p1 of a
one becoming a zero. Let the binary representation of the secret key be f ∈ F

n
2

and the error be e ∈ F
n
2 . An attack in the error model then asks to recover f

from f̃ := f + e. Therefore

p0 := Pr [ei = 1 | fi = 0] and p1 := Pr [ei = 1 | fi = 1] .

Usually one of the probabilities is rather small, since bits are more likely to
flip to the ground state of the respective memory region to which all bits decay
over time. Following the initial work of Halderman et al. [16] we assume in our
analysis that all bits decay to the same ground state for simplification. Moreover
we consider the ground state to be zero and adopt the choice of p0 = 10−3,
experimentally observed in [16].

2.2 Decoding

Some of our attacks make use of information set decoding (ISD) algorithms to
decode linear codes. A linear code C is a k dimensional subspace of Fn

q . We call n
the code length and k the code dimension. Such a code can be represented via the
kernel of a matrix H ∈ F

(n−k)×n of rank n − k, i.e., C := {c ∈ F
n
q | Hc� = 0}.

Hence, recovering a codeword c ∈ C from a given faulty string y = c + f is
equivalent to recover f from the syndrome s := Hy = H(c + f) = Hf .

Definition 3 (Syndrome Decoding Problem). Let n, k ∈ N. Given the par-
ity check matrix H ∈ F

(n−k)×n
q of a linear code over Fq, a syndrome s ∈ F

n−k
q

and an error-weight δ ∈ N, the syndrome decoding problem asks to find a vector
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f ∈ F
n
q of weight wt(f) = δ satisfying Hf = s. We call (H, s, δ) an instance of

the syndrome decoding problem and f the solution.

The class of ISD algorithms, initiated by Prange in 1962 [26], allows to solve the
syndrome decoding problem.

Prange’s Information Set Decoding (ISD). For a permutation matrix
P ∈ F

n×n
2 , P−1f forms a solution to the permuted syndrome decoding instance

(HP, s, δ). We let the permuted error be P−1f =: (f1, f2) ∈ F
n−k
q × F

k
q and the

permuted parity check matrix HP := (H1 | H2) with H1 ∈ F
(n−k)×(n−k)
q . From

Hf = s it follows that

(H1)−1(HP)(P−1f) = (In−k | H′
2)(f1, f2) = f1 + H′

2f2 = (H1)−1s =: s′,

where H′
2 = (H1)−1H2. Let us further assume that the permutation distributes

the weight on (f1, f2) such that wt(f2) = γ and, hence, wt(f1) = δ − γ. Then
finding a solution corresponds to finding an f2 of weight γ for which the corre-
sponding f1 = s′ − H′

2f2 has weight δ − γ. In the following we call any selection
of n−k columns (defined by the permutation) that leads to an f1 of weight δ−γ
an information set. Further for γ = 0 an information set contains the whole
error. Prange’s algorithm now chooses a random permutation matrix, computes
H′

2 and s′ and then enumerates all possible f2 of weight γ until it finds an f1 of
weight δ − γ. This process is repeated with fresh initial permutations until suc-
cess. The expected complexity of Prange’s algorithm (up to polynomial factors)
is

TPrange =

(
n
δ

)
(
n−k
δ−γ

)(
k
γ

)
︸ ︷︷ ︸
Permutations

(
k

γ

)
(q − 1)γ

︸ ︷︷ ︸
Enumeration

=
(q − 1)γ ·

(
n
δ

)
(
n−k
δ−γ

) . (1)

Obviously, γ = 0 minimizes the running time. However, for large δ, namely
for δ > n − k, choosing γ equal to zero is not possible.

To derive our asymptotic bounds we show the following theorem, specifying
a small error regime for which Prange’s algorithm has polynomial complexity.

Theorem 1. Let H be the parity-check matrix of a code with length n and co-
dimension n − k = c · n, for constant c. Then a syndrome decoding instance
(H, s, δ) with δ = O(log n) can be solved in polynomial time.

Proof. The complexity of Prange’s algorithm to solve such an instance is (up to
polynomial factors) given by Eq. 1 as

(
n
δ

)
(
n−k

δ

) =

(
n
δ

)
(
cn
δ

) =
δ−1∏

i=0

n − i

cn − i
=

δ−1∏

i=0

1

c − (c−1)i
n−i

=
(

1
c − o(1)

)δ

= nO(1). �
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3 BIKE

For BIKE the private key is the solution to a syndrome decoding instance
(H, s, δ) over F2, of code length n and dimension k, defined via the public key
H. Hence, the secret key is a vector f ∈ F

n
2 . The scheme uses a code rate of

R = 1
2 , i.e., n = 2k and δ := wt(f) = Θ(

√
n) = Θ(

√
k).

We consider two different key formats in our analysis. The standard key
format stores the secret key as bitstring of length n, while the compact key
format stores only the δ one entries of f .3 In a nutshell our attacks on both
formats follow a similar strategy: Initially, we generate likely candidates for the
one positions in the secret key based on the given key material. Then to obtain
polynomial attacks we upper-bound the total number of candidates dependent
on the error/erasure probability. In our practical attacks we consider constant
error/erasure probabilities, which lead to a large set of candidates. Our attacks
then speed up Prange’s ISD procedure by prioritizing the set of candidates.

3.1 Standard Format Keys

We say the secret key is stored in standard format or using standard represen-
tation when it stores the secret value f ∈ F

n
2 as a sequence of n bits.

The Erasure Model. First let us investigate the erasure model. Since the
parity-check matrix H ∈ F

n/2×n
2 defines n/2 linear equations in f , we can directly

recover f whenever the number of unknowns is at most n/2.

Theorem 2 (Polynomial Erasure Attack on Standard Format). Let f̃ be
a given partially erased BIKE secret key in the standard format with F2-erasure
probability p ≤ 1

2 . Then, the secret key f ∈ F
n
2 can be recovered in polynomial

time with success probability at least 1
2 .

Proof. Let X by a random variable for the number of erased coordinates of f .
Since X is binomially distributed with parameters n and p ≤ 1

2 , we have

Pr[X ≤ n/2] =
n/2∑

i=0

(
n

i

)
pi(1 − p)n−i ≥ 2−n

n/2∑

i=0

(
n

i

)
≥ 1

2
.

Thus, with probability at least 1
2 we have at most n/2 unknowns. In this case,

matrix H with rank n/2 provides n/2 linearly independent equations in at most
X ≤ n/2 unknowns. Therefore, we recover f via Gaussian elimination in time
O(n3). �

3 Both formats can be found in the NIST submission [4] or the implementation accom-
panying it.
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The Error Model. Next let us consider the error model for the standard
key format. According to Sect. 2.1 this corresponds to a given syndrome decod-
ing instance (H, s, δ) together with a faulty solution vector f̃ = f + e, where
Pr [ei = 1] = p. Note that we can again easily transform such an instance into a
different syndrome decoding instance with weight δ′ = wt(e). Therefore we just
let the new syndrome be s′ := s + Hf̃ , since

s′ := s + Hf̃ = Hf + H(f + e) = He.

This gives a first improvement, whenever δ′ < δ. However, intuitively as long as
p �= 1

2 (which corresponds to a uniform error) the problem should become easier.
To obtain a speedup whenever p < 1

2 , we exploit that the distribution of
the weight on the candidate f̃ in this case carries information about the weight
distribution of f . Observe that the expected weight of f̃ is

δf̃ := E[wt(f̃)] = (1 − p)δ + p(n − δ),

where the first addend counts the ones of f contributing to δf̃ , while the second
counts the contribution from e. Let γ1 be the random variable counting the
weight of f restricted to the coordinates where f̃i = 1, then it follows that
E[γ1] = δ(1 − p). Analogously, the rest of the weight, namely γ0 := δ − γ1, must
then distribute over the coordinates where f̃i = 0.

In the following we adapt the choice of columns selected by Prange’s algo-
rithm for finding an information set based on the given key material. Put simple,
if a higher fraction of the error-weight is located on the coordinates of f̃ with
f̃i = 1 than on those with f̃i = 0, overall more coordinates are taken from
the one-associated coordinates and vice versa. More precisely, we introduce a
parameter ρ1 ≤ δf̃ determining how many of the n−k columns, belonging to the
information set, are chosen from the block defined by the one-coordinates of f̃ .
Consequently, the remaining ρ0 := n − k − ρ1 are taken from the block defined
by the zeros of f̃ . The probability that n − k columns selected this way form an
information set that contains the whole error becomes

q :=

(
δf̃−γ1
ρ1−γ1

)
(

δf̃
ρ1

) ·
(
n−δf̃−γ0

ρ0−γ0

)
(
n−δf̃

ρ0

) =

(
ρ1
γ1

)(
ρ0
γ0

)
(

δf̃
γ1

)(
n−δf̃

γ0

) . (2)

Let us assume that the binomially distributed random variable γ1 stays below
its expectation, which happens with constant probability. Then, we can bound
the expected amount of sets to be selected until we find such an information set
as

E
[
q−1 | γ1 ≤ E[γ1]

]
≤

(
ρ1

(1−p)δ

)(
n−k−ρ1

pδ

)

( δf̃
(1−p)δ

)(n−δf̃
pδ

) . (3)

The following theorem states up to which error probability the expected
attack complexity, i.e., Eq. 3, stays in the polynomial time regime, using Theo-
rem 1.
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Theorem 3 (Polynomial Error Attack on Standard Format). Let f̃ be a
given erroneous BIKE secret key in the standard format with F2-error probability
p = O

(
log n√

n

)
. Then the secret key f ∈ F

n
2 can be recovered in polynomial time

with constant probability.

Proof. Given in the full version [14].

Note that the above attack can easily be adapted to asymmetric error proba-
bilities. In this case the expected weight of f̃ changes to δf̃ = δ(1−p1)+p0(n−δ).
Again the first addend counts the number of ones contributed from f , which lets
the fraction of ones in f̃ also present in f become γ1 := δ(1− p1). Now the adap-
tation of the ISD algorithm works as before, where Eq. 2 yields the probability
of success in each iteration.

3.2 Compact Format Keys

If the secret key is stored via δ integers encoding its one positions, we say the
key is stored in compact format or representation. Since BIKE’s secret key is
balanced, i.e., it has weight δ

2 on each half of the coordinates, every integer
encoding a position requires log k bits. We find that the compact compared to
standard format allows for improved asymptotic bounds in the error model, while
giving a slight disadvantage in the erasure model.

To allow for a direct comparison between the error- and erasure-probabilities
for both key formats we stay with bit-errors and -erasures, i.e., we treat the
secret key in compact format as a sequence of δ log k bits, where any bit might
be erroneous or get erased, rather than as δ integers.

The Erasure Model. Our strategy for key recovery in the erasure model
is again to generate candidates for the one coordinates of the key, based on
the given information, and include those candidates in the information set. As
long as the amount of candidates stays smaller than the co-dimension, which is
n− k = k in the case of BIKE, we can recover the secret key in polynomial time
via Gaussian elimination. We get a slightly worse bound than for the standard
format because ε bit-erasures in any integer lead to 2ε candidates, i.e., we have
an exponential amplification in the amount of candidates.

Theorem 4 (Polynomial Erasure Attack on Compact Format). Let f̃
be a given partially erased BIKE secret key in the compact format with F2-
erasure probability p ≤ 0.092. Then the secret key f ∈ F

δ log k
2 can be recovered in

polynomial time with constant success probability.

Proof. Given in the full version [14].

Overall this corresponds to a constant factor disadvantage to the standard
key format.
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The Error Model. Interestingly, if we turn our focus to the error-model, the
compact key representation allows for an asymptotic increase in the error prob-
ability while staying in the polynomial time regime. This is because the compact
representation allows to derive more candidates than the standard format and,
hence, exploit the full size of the information set.4 Therefore, we again generate
candidates for each index of the secret key based on the given erroneous indices.

Theorem 5 (Polynomial Error Attack on Compact Format). Let f̃ be
a given erroneous BIKE secret key with F2-error probability p = O

(
1

log2+κ k

)

for a small constant κ > 0. Then the secret key f ∈ F
δ log k
2 can be recovered in

polynomial time with high success probability.

Proof. Given in the full version [14].

Summarizing, the compact key representation of BIKE allows for a polynomial
time key recovery in the error setting up to an error rate of p = 1

log2+κ k
for a

small κ > 0 in comparison to the less compact variant which only allows for an
error-rate of log k√

k
.

3.3 Practical Attacks on BIKE

The Erasure Model. Our practical approach for key recovery in the standard
format extends the idea from Sect. 3.1 in the following way. Let I be the set of
erased coordinates and Ī := {1, . . . , n}\I, i.e., all coordinates of fI are unknown,
while those of fĪ are known. Now from Hf = s it follows that

HIfI = s + HĪfĪ ,

where only fI is unknown. Recovering fI now corresponds to solving a syndrome
decoding instance with code length n′ := |I|, unchanged co-dimension n − k
and error weight δ′ := |{i ∈ I | fi = 1}|, which is the number of missing one
coordinates of the secret key. Note that for n′ ≤ n − k we can solve for fI via
Gaussian Elimination again.

For the compact format we also slightly extend our previous approach from
Sect. 3.2. Recall, that the secret key is represented as a vector of integers. We
first check if there are erasure-free indices. Any of those decreases the searched
error weight and the code length by one. Next, we generate a set of candidates for
the remaining one positions of the secret key, i.e., whenever we find ε erasures
in an index it contributes with 2ε candidates. Any coordinate not identified
as one in the first step and not appearing among the candidates must be zero,
which shortens the code further. Finally this gives a syndrome decoding instance
with code length ñ, which is the amount of distinct candidates, unchanged co-
dimension n − k and error weight δ̃ := δ − β, where β denotes the number of
erasure-free indices identified in the first step.
4 Recall, that for the standard format the most likely candidates are given by the one

coordinates of the erroneous secret key, which are only δf̃ = o(n).
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For our simulation we generate a BIKE secret key in the respective format
and simulate the bit-erasures. Next we derive the parameters of the reduced
syndrome decoding instances and use the Syndrome Decoding Estimator tool by
Esser and Bellini [13] to obtain the bit complexity of Stern’s algorithm to solve
the resulting instance.

In Fig. 1 we illustrate the averaged complexity (solid marks) of several exper-
iments (transparent marks) as a function of the bit-erasure rate. Coherent to our
theoretical analysis we find that attacks on the standard format are more effi-
cient in the erasure model than attacks on the compact format. However, we also
observe that for practical parameters in the compact format the point where the
reduced code length ñ exceeds the co-dimension (which marks the transition to
the non-polynomial regime) is p ≈ 0.38, rather than the theoretically proven
p = 0.092. The difference stems from the fact that in our theoretical analysis we
neglected the possibility of collisions between candidates from different blocks.
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Fig. 1. Bit complexity of partial key exposure attack in the erasure model on the
compact and standard key representations based on experiments.

The Error Model. In our practical consideration we consider asymmetric error
probabilities, again let those be p0 and p1 as defined in Sect. 2.1.

For the compact format, contrary to what the proof of Theorem 5 suggests,
we do not take the error-weight as criterion to derive a list of candidate positions,
rather we use a maximum-likelihood approach. Therefore let Ĩ with |Ĩ| = δ be the
given set of erroneous (integer) indices. Then for every i ∈ Ĩ we compute a set Si

containing those x ∈ {1, . . . , n} for which the probability px := Pr
[
x ∈ I | i ∈ Ĩ

]

is maximized, where I is the set of coordinates representing the true secret key.
More precisely, we define a threshold τ and only include those x with px > τ . We
then compute the union of the Si as S =

⋃
i Si. Intuitively, S contains the most

likely candidates for true secret key indices. Now, we are in a similar setting
to the attack on the standard format, where the set S corresponds to a set of
coordinates containing more weight than {1, . . . , n}\S.
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Fig. 2. Bit complexity of partial key exposure attacks on the compact and standard
key representations based on experiments for p0 = 10−3.

We performed experiments for fixed p0 and increasing p1 to estimate the
complexity of our attacks on both key formats. We first generate BIKE secret
keys in the respective formats and then simulate the error to obtain an erroneous
key. For the standard case we now calculate the complexity of an attack on the
generated instance by using Eq. 2. For the compact case we proceed similarly,
by first choosing a value for the threshold τ calculating the set S and finally
calculating the complexity of the resulting attack via Eq. 2. Then we minimize
over the choice of τ .

Figure 2 illustrates the obtained bit complexities for the Category-1 and -5
parameter sets of BIKE. Each data point is averaged (solid marks) over ten
experiments (transparent marks). Coherent to our analysis attacks on the com-
pact key format perform exceptionally well for “small” error rates p1 ≤ 0.225.
The attack on the compact format also scales well when increasing the parame-
ters of the scheme, as shown in Fig. 2, where the break-even point is shifted to
p1 ≈ 0.3.

We also applied the experiment for symmetric error probabilities. In this case
the amount of candidates in the compact format increases drastically, which leads
to an overall inferior attack on the compact format, as also reflected in Table 3.

4 Rainbow

We consider two layers Rainbow with parameters (q, v, o1, o2). Let n := v +
o1 + o2, x := (x1, . . . , xn) be a vector of unknowns, and Fq[x] be the ring of
polynomials with coefficients in Fq.

A Rainbow central map is a quadratic map F = (f1, . . . , fo1+o2) ∈
(Fq[x])o1+o2 , where the polynomials in (f1, . . . , fo1) (resp. (fo1+1, . . . , fo1+o2))
are of the form

∑v
i=1

∑v+o1
j=1 ai,jxixj (resp.

∑v+o1
i=1

∑n
j=1 ai,jxixj). The sequence

(f1, . . . , fo1) (resp. (fo1+1, . . . , fo1+o2)) is called the first layer (resp. second
layer) of F .

Public and Secret Keys: The public key is a sequence of quadratic polynomi-
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als over Fq[x] given by (p1, . . . , po1+o2) = S ◦ F ◦ T , where S : Fo1+o2
q → F

o1+o2
q ,

T : Fn
q → F

n
q are linear maps. The secret key is given by S−1, T −1, and F .

In order to reduce the size of the private key, Ding et al. [11] proposed to use
S and T such that for all y ∈ F

o1+o2
q and all x ∈ F

n
q we have

S−1(y) =
[
Io1 S′

O Io2

]

︸ ︷︷ ︸
:=S−1

y and T −1(x) =

⎡

⎣
Iv T(1) T(4)

O Io1 T(3)

O O Io2

⎤

⎦

︸ ︷︷ ︸
:=T−1

x, (4)

where S,T(3) ∈ F
o1×o2
q , T(4) ∈ F

v×o2
q , and T(1) ∈ F

v×o1
q . So far none of the

known attacks on Rainbow can benefit from secret matrices S and T chosen as
in Eq. 4.

Remark 1. Suppose that the secret maps S and T are homogeneous, and they are
represented by the matrices S and T, respectively. Then, the polynomials of the
public key and the central map F are related by the equation

∑o1+o2
j=1 si,jpj(x) =

fi (Tx) , for i = 1, . . . , o1 + o2, where S−1 := [si,j ].

We conclude the overview on Rainbow by stating the three suggested parameter
sets, which are Rainbow-I (q = 16, v = 36, o1 = 32, o2 = 32), Rainbow-III
(q = 256, v = 68, o1 = 32, o2 = 48) and Rainbow-V (q = 256, v = 96, o1 =
36, o2 = 64).

4.1 Attack Strategy

Our partial key exposure attacks exploit the structure of the maps S−1 and T −1

given in Eq. (4) and work in two steps. The first step consists in recovering the
outer layer, corresponding to S′,T(3) and T(4) and the second step recovers the
inner rainbow layer, i.e., the matrix T(1).

For the first step, we derive in Proposition 1 linear relations between some
coefficients of polynomials in F and coordinates of the matrix S′. We then use the
erroneous/ partially erased private key to find one complete row of S′ by either
solving an instance of the syndrome decoding problem (in the error model) or
enumerating the minimum amount of information so that we obtain one row by
solving a linear system (in the erasure model). We finally observe that this single
row of S′ is already sufficient to recover the full outer layer in polynomial time.
In a second step, we recover a few columns of T(1) from the faulty/erased key
material by enumeration. Eventually, we observe that these columns together
with the outer layer suffice to recover the full matrix T(1).

Let us introduce the vinegar part of a homogeneous quadratic polynomial.

Definition 4 (Vinegar Part). Let p be a homogeneous quadratic polynomial
in Fq[x1, . . . , xn]. The vinegar part of p is the homogeneous quadratic polyno-
mial pv ∈ Fq[x1, . . . , xv] such that p(x1, . . . , xn) − pv(x1, . . . , xv) contains no
monomials of the form xixj where 1 ≤ i, j ≤ v.
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We observe the following relation between the vinegar parts of the public
polynomials and the polynomials in the hidden central map, which forms the
basis of our attacks.

Proposition 1. Let fi be the i-th polynomial in the first layer of a Rainbow
central map, that is, i ≤ o1. Let (p1, . . . , po1+o2) be a Rainbow public key, where
the corresponding secret maps S and T are homogeneous, and their matrix rep-
resentations are as shown in Eq. (4). Then, we have

pvi (x1, . . . , xv) +
o1+o2∑

j=o1+1

si,j · pvj (x1, . . . , xv) = fv
i (x1, . . . , xv),

where (si,1, . . . , si,o1+o2) is the i-th row of S−1.

Proof. Given in the full version [14].

As a second key ingredient for our attacks, we show the following theorem,
which allows us to recover the full Rainbow secret key in polynomial time from
a single known row of S′ and a constant number of columns from T(1).

Theorem 6 (Rainbow Full Key Recovery). Let (q, v, o1, o2) be a Rainbow
parameter set, and S′ and T as defined in Eq. 4. Then, (1) knowledge of any
single row of S′ is sufficient to recover the secret matrices S′,T(3), and T(4)

in polynomial time in the input parameters. (2) The additional knowledge of
any set of �v/o1 columns of T(1) allows to recover the full matrix T(1) in time
polynomial in the input parameters q, v, o1, o2.

Proof. Given in the full version [14].

4.2 Fq -Errors and -Erasures

All over this section we treat o2 as the major security parameter by assuming
that o1 = co1o2, v = cvo2, q = cqo2, where co1 , cv and cq are considered constant.
This allows us to state our results only as a function of o2.

The Erasure Model. In the erasure model we use Proposition 1 together with
the given partially erased information to derive linear equations in the unkown
coordinates of a single row of S′. We then proceed similar for T(1) by deriving
quadratic equations in the unknown coordinates of its columns.

Theorem 7 (Polynomial Erasure Attack). Given a partially erased Rain-
bow secret key with Fq-erasure probability p = O

(
1√
o2

)
. Then the secret key can

be recovered in polynomial time with constant success probability.
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Proof. Let si denote the i-th row of S′ from Eq. 4 and fv
i be the vinegar part of

polynomial fi in the first layer. Denote by Isi
the indices of erased coordinates

of si and by Ifv
i

the indices of unknown coefficients in fv
i . Note that there exists

one i with |Isi
| ≤ po2 and |Ifv

i
| ≤ p v(v−1)

2 with constant probability. Now, by
Proposition 1, every coefficient of fv

i is equal to a linear combination of the
entries of the si. Hence, every known coefficient of fv

i leads to a linear equation
in the |Isi

| ≤ p·o2 unknown variables of si. Thus, we expect to find the remaining
unknown entries of si whenever

p · o2 ≤ (1 − p)
v(v − 1)

2
⇔ p ≤ 1

1 + 2
cvv

=
1

1 + o(1)
.

From the found row of S′, we recover the full matrix S′ (Theorem 6) and can
compute the polynomials (f1(Tx), . . . , fo1(Tx)), where the fi’s are the secret
polynomials of the first layer.

We now recover the secret matrix T(1). Let t ∈ F
v
q be any column of T(1).

Then with constant probability there are less than p · v = O(
√

o2) erasures in
t. Since t satisfies the quadratic equations f1(Tt) = · · · = fo1(Tt) = 0, where
o1 = O(o2), we can solve for the O(

√
o2) erased coordinates in polynomial time.

We repeat this process �v/o2 = O(1) many times and then use the obtained
columns to recover T(1) using Theorem 6. �

Note that the proof of Theorem 7 shows that we can recover S′,T(3) and T(4),
corresponding to the first layer of Rainbow, even up to an erasure probability of

1
1+o(1) in polynomial time. In order to also recover T(1) the probability bound

then drops to p = O
(

1√
o2

)
. Note that the remaining inner layer of Rainbow

forms a small instance of the unbalanced oil and vinegar (UOV) scheme [20].
This indicates that UOV is strictly less vulnerable against this kind of partial
key exposure attack than Rainbow.

The Error Model. For our attack in the error model, we first show a reduction
from the recovery of the secret matrices S′,T(3), and T(4) to the syndrome
decoding problem. Then we study the complexity of solving the corresponding
syndrome decoding instance. We give the reduction in the following lemma.

Lemma 1 (Reduction to Syndrome Decoding). Recovering the Rainbow
secret matrices S′,T(3), and T(4) from a given erroneous candidate with Fq-
error probability p can polynomially be reduced to solving an instance of the
syndrome decoding problem (H,b, δp), where H ∈ F

r×(r+o2)
q and δp := p(r + o2)

and 1 ≤ r ≤ v(v−1)
2 .

Proof. Given in the full version [14].

Next in Theorem 8, we describe a polynomial-time partial key exposure
attack in the error model, that uses the previous reduction.
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Theorem 8. Given an erroneous Rainbow secret key with Fq-error probability

p = O
(

log o2
o2

)
. Then the secret key can be recovered in polynomial time with

constant probability.

Proof. Lemma 1 states that recovering any row of S′ from the given erroneous
secret matrices S′,T(3), and T(4) is equivalent to solving an instance of the
syndrome decoding problem (H,b, δp), where H ∈ F

r×(r+o2)
q , b ∈ F

r
q and δp =

p(r+o2). In the following we set r = o2, which is a valid choice since according to
Lemma 1 r ≤ v(v−1)

2 = O(o22). For this choice we find δp ≤ log(o2) with constant
probability.

Note that the resulting syndrome decoding instance possesses a unique solu-
tion with high probability, since the expected amount of random solutions is

(
r+o2

δp

)
(q − 1)δp

qo2
=

(
2o2

log o2

)
(q − 1)log o2

qo2
<

(2o2)log o2

qo2−log o2
= o(1).

However, the searched row of S′ is a solution by construction. Now, by Theorem
1 we can find this unique solution in polynomial time.

Let us turn our focus to T(1). Any column of T(1) is error-free with proba-
bility

q := (1 − p)v =
(

1 − cp log o2
o2

)cvo2
o2→∞−→ e−cvcp log o2 = o

−cvcp log e
2 ,

where p = cp log o2
o2

. Note that the number of error-free columns is distributed
binomially with parameter o1 = co1o2 and probability q. It follows that the
expected number of error-free columns is v · q = o

1−cvcp log e
2 , where we can

ensure v ·q ≥ �v/o1 by an appropriate choice of constant cp. Now with constant
probability we have at least v · q ≥ �v/o1 error-free columns. Finally, we iterate
over any combination of �v/o1 = O(1) columns until the recovery via Theorem
6 yields the correct T(1).

�

4.3 Practical Attacks on Rainbow

In our Rainbow bit complexity estimations we assume a field multiplication to
cost log2 q bit operations.

The Erasure Model. Our attack again splits in the two parts of recovering
both layers of rainbow separately, starting with the first. Let again si denote
the i-th row of S′, and let fi denote the i-th polynomial in the first layer of the
Rainbow central map. Recall, that our strategy to recover any row si used in
Theorem 7 requires to know o2−k coordinates of the Fq-vector representation of
fv

i , where k is the number of known coordinates of the Fq-vector representation
of si.
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Our (S, F )-Strategy to Recover a Row of S′. For a fixed integer k, which is later
optimized, let nbi

for i = 0, . . . , o1 be the minimum amount of bits we have to
enumerate of (si, f

v
i ) to obtain k coordinates from si and o2−k coefficients from

fv
i . For each guess, we need to solve a linear system in the o2 − k unknowns

over Fq. Finally, we need to check if the derived solution leads to the correct
Rainbow private key, which requires (v+o1+o2)3 field multiplications (for details
we refer to the full version [14]). Therefore, the amount of field multiplications
to recover one row of the secret matrix S′ is 2nb ·

(
o32 + (v + o1 + o2)3

)
, where

nb = mini{nbi
}.

Recovering T(1) via Partial Enumeration. Note that after recovering the first
layer Rainbow polynomials, we can recover T(1) without any extra information
in time

O
(
(v + o1)4 · qv−o1

)
,

using the Kipnis-Shamir attack [20]. In the case of the Rainbow-I parameter
set this is already less than the complexity for the recovery of S′. However, in
the case of the Rainbow-V parameter set the Kipnis-Shamir attack becomes
inefficient. Here, we make use of the given partial information to recover �v/o1
columns of T(1).

Recall that, once S′ is recovered, we can compute the first layer Rainbow
polynomials, i.e., the polynomials gi := (fi ◦ T ) for i = 1, . . . , o1. Further, for
any column t of T(1) we have gi(t) = 0. Our attack now proceeds as follows:
For an integer k ≤ o1, which has to be optimized, we enumerate the minimum
amount of bits, namely nb, so that we obtain all but k coordinates of one column
t of T(1). Then, we solve the system gi(t) = 0 for i = 1, . . . , o1. Overall this yields
a time complexity of qnb · S, where S corresponds to the time complexity for
solving a quadratic system with k unknowns and o1 equations over Fq. In our
estimations, we use the MQ-Estimator of Bellini et al. [5] to estimate S.

The resulting bit complexities of our key recovery attacks are shown in Fig. 3.
For each p, we computed for ten randomly generated erased private keys the com-
plexity of the key recovery (transparent marks), and the corresponding averaged
complexity (solid marks). The attack on Category-1 parameters is dominated
by our (S, F ) strategy to recover the first layer, while the attack on Rainbow-V
is dominated by the recovery of T(1). We compare against naive enumeration
strategies, which enumerate the least amount of erased bits to obtain one row
of S′ (Rainbow-I) or �v/o1 columns of T(1) (Rainbow-V).

Note that our strategies outperforms naive enumeration for both parameter
sets and all values of p.

The Error Model. We again start with the recovery of S′ to obtain the first
layer Rainbow polynomials, after which we recover T(1).

Recovery of S′. Our attack in the error model uses the reduction to the syndrome
decoding problem given in Lemma 1. Here we assume that every field element
is represented as a sequence of log q bits, relating the bit-error probability p and



366 A. Esser et al.

0 0.2 0.4 0.6 0.8 1

50

100

150

bit-erasure probability p

bi
t
co
m
pl
ex
it
y

Enumeration
Our S, F -strategy

(a) Category-1

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

bit-erasure probability p

bi
t
co
m
pl
ex
it
y

Enumeration
Partial enumeration

(b) Category-5

Fig. 3. Bit complexities of our partial key exposure attack in the erasure model on
Rainbow.

the field error probability pq via pq = 1−(1−p)log q. More precisely, from a given
faulty Rainbow secret key with bit-error rate p we derive a syndrome decoding
instance (H, s, δ) where H ∈ F

r×(r+o2)
q , s ∈ F

r
q, and δ :=

(
1− (1−p)log q

)
(r+o2)

with 1 ≤ r ≤ v(v−1)
2 for the respective value of v of the corresponding parameter

set.
To solve the resulting syndrome decoding instance we then use an ISD algo-

rithm. For deriving the concrete bit complexity we adapted the Syndrome Decod-
ing Estimator by Esser and Bellini [13] to the Fq case. In this adaptation we
assume log2 q bit operations per field multiplication. We finally minimize over
the choice of r. In contrast to our theoretical analysis the choice of r might
result in an instance with multiple solutions. As only a single of these solutions
leads to the Rainbow secret key we need to reapply the ISD algorithm for each
solution and finally check if it leads to the correct Rainbow private key. This
check requires (o1 + o2 + v)3 field multiplications. Now if there exist E solutions
and the cost for finding all of them is TISD, then the total cost of our partial key
exposure attack becomes T = TISD + (o1 + o2 + v)3 · E.

Recovering T(1) by Partial Enumeration. Again, for the Rainbow-I parameter
set we use the efficient Kipnis-Shamir modeling to recover T(1) without using
any extra information.

In the case of Rainbow-V, we use a similar strategy as in the erasure setting.
Therefore, let t be a given erroneous column of T(1) with ω erroneous Fq coordi-
nates. We treat a random choice of k ≤ o1 of the coordinates of t as unknowns,
and assume that among these k coordinates are δ faulty entries. Then, among
the remaining v−k coordinates we enumerate all possible choices for ω−δ errors.
For each choice of k unknowns and every guess for the remaining ω − δ errors,
we then solve the system gi(t) = 0 for i = 1, . . . , o1, where gi are the already
recovered first layer Rainbow polynomials. The time complexity then amounts
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to (
v
ω

)
(
k
δ

)(
v−k
ω−δ

)
(

(v − k) log q

c

)
· S,

where c is the maximum number of occurred bit errors over any choice of ω − δ
of the ω faulty Fq coordinates of t. Further, S is the complexity to solve the
quadratic system over Fq. We repeat this strategy for each column for increasing
values of c, to exploit the variance of the error.

In Fig. 4 we plot the computed bit complexity of our attacks for Rainbow-I
and Rainbow-V parameters. Note that in the case of Rainbow-V the complexity
of computing T(1) dominates, while for Rainbow-I the recovery of S′ is more
costly. For comparison we also give the complexity of a naive enumeration of
the error on the initial row of S′ (Rainbow-I) and the complexity of a naive
enumeration of the error on �v/o1 columns of T(1) (Rainbow-V). For Rainbow-
V we sampled for each p twenty randomly generated erroneous private keys
and computed the complexity of the key recovery (transparent marks), and the
corresponding averaged complexity (solid marks). In the case of Rainbow-I we
used the expected error weight to compute the bit complexity.
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Fig. 4. Bit complexity of our key recovery attacks on Rainbow in the error model.

5 NTRU

Let n be an integer, q > 3 a prime number, and let the ternary field F3 be
represented by the elements {−1, 0, 1}. We define the ring Rq := Fq[x]/〈xn − 1〉.
During this section, we identify polynomials v =

∑n−1
i=0 vix

i ∈ Rq with their
coefficient vector v = (vn−1, vn−2, . . . , v0)T.

In NTRU, the secret key is given by a polynomial f ∈ Rq∩R3 that is invertible
in Rq and in R3. A public h ∈ Rq associated with f is given by h = f−1 ·g mod q,
where g ∈ Rq ∩R3. For efficiency reasons the current NTRU NIST submission [8]
stores both f and f−1

3 as the private key. Therefore, we refer to (f, f−1) as the
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NTRU private key, where we drop for convenience the subscript 3 of f−1
3 . Note

that an NTRU private key fulfills the two equations

f · h = g mod q and f · f−1 = 1 mod 3.

5.1 Fq -Errors and -Erasures

The results of this section heavily exploit the key redundancy from the second
equation f · f−1 = 1 mod 3. We first show how to recover in polynomial time
O(

√
n) erasures in random positions, and second that in the case of consecutive

positions we can even recover n/4 erasures.
For the error setting, an application of Theorem 1 shows how to correct

O(
√

log n) errors.

The Erasure Model. Let us start with a polynomial-time attack in the erasure
model that exploits the second key equation, i.e., f · f−1 = 1 mod 3.

Theorem 9. Given a partially erased NTRU secret key (f̃ , f̃−1) with Fq-erasure
probability p = 1√

2n
. Then the secret key (f, f−1) ∈ Rq × R3 can be recovered in

polynomial time with high success probability.

Proof. Let If , If−1 ⊂ {1, . . . , n} denote the unknown indices in f , f−1, i.e.,

f =
∑

i/∈If

fix
i +

∑

i∈If

yix
i and f−1 =

∑

i/∈If−1

f−1
i xi +

∑

i∈If−1

zix
i.

Let us use the secret key equation f · f−1 = 1 mod 3. This gives us n identities,
where the k-th identity is

∑

i+j=k mod n

fi · f−1
j = δk0, where δk0 =

{
1 k = 0
0 else

.

Let Xk be an indicator variable that takes value 1 iff the k-th identity is linear
in the variables y, z. Notice that for any (i, j) with i + j = k mod n we obtain
a quadratic term yizj with probability p2 = 1

2n . A union bound shows that we
obtain for any (i, j) a quadratic term with probability at most np2 = 1

2 . Thus,
E[Xk] ≥ 1

2 . Let X = X0 + . . . + Xn−1 denote the number of linear equations.
Then by linearity of expectation E[X] ≥ n

2 .
Any secret key coefficient is unknown with probability p. Thus, we have an

expected number of 2np =
√

2n unknowns. An application of Markov’s equality
shows that the number of linear equations exceeds the number of unknowns with
high probability. Therefore, we can solve the resulting system of linear equations
in time polynomial in n, thereby recovering all secret key coefficients. �
Remark 2. Note that the expected number of linear equations E[X] ≥ n(1−np2)
drops to 0 when p = 1√

n
. This shows that our partial key exposure attack from

Theorem 9 does not extend to larger error rates, even when we do not restrict
to polynomial time.
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Consecutive Erasure Attack. In the following, instead of having coefficients
of f and f−1 erased in random positions, we assume that the erasures appear in
consecutive positions. Surprisingly, in this case the erasure rate for a polynomial-
time attack increases significantly. While Theorem 9 allows on expectation 2np =√

2n erasures, the following theorem can handle n/4 erasures.

Theorem 10. Let (f̃ , f̃−1) be a partially erased NTRU secret key having n/4
Fq-erasures in (cyclically) consecutive positions of both f̃ and f̃−1. Then the
secret key (f, f−1) ∈ Rq × R3 can be recovered in polynomial time.

Proof. We assume without loss of generality that the erasures are in position
0, . . . , n

4 −1, i.e., we obtain the coefficients of f and f−1 in positions n
4 , . . . , n−1.

By cyclicity, the following argument extends to all other (cyclically) consecutive
positions. We have

f =
n/4−1∑

i=0

yix
i +

n−1∑

i=n/4

fix
i and f−1 =

n/4−1∑

j=0

zjx
j +

n−1∑

j=n/4

f−1
j xj .

The key identity f · f−1 = 1 mod 3 gives n equations, where the k-th equation
is

∑

i+j=k mod n

fif
−1
j = δk0 with δk0 =

{
1 k = 0
0 else

.

Notice that we obtain quadratic terms yizj only if 0 ≤ i + j ≤ 2(n
4 − 1). Thus,

all equations with 2(n
4 − 1) < k < n are linear. These are n − (n

2 − 2) > n/2
linear equations. Thus, the number of linear equations exceeds the amount n

2
of unknowns yi, zj . Solving for the unknowns recovers the secret key in time
polynomial in n. �

Theorem 10 shows that we can recover 1/4 of the secret key bits, whenever
the unknowns are in consecutive positions. The following remark shows that we
can recover even up to a 1/3-fraction if certain (unrealistic) conditions are met.

Remark 3. Assume that 3|n, and we obtain erasures yi, zj in positions i, j ∈
{0, 3, 6, . . . , n−3}. Then for all k = i+ j we have 3|k. Thus, we obtain quadratic
terms only in the k-th equation with k = 0 mod 3. This in turn gives us n− n

3 =
2
3n linear equations and also 2

3n unknowns.

The Error Model. Next we give a polynomial-time attack in the error model,
again exploiting the second key equation f · f−1 = 1 mod 3.

Theorem 11. Let (f̃ , f̃−1) be an erroneous NTRU secret key with Fq-error

probability p = O
(√

log n
n

)
. Then the secret key (f, f−1) can be recovered in

polynomial time with high success probability.

Proof. Given in the full version [14].
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5.2 Practical Attacks on NTRU

In Sect. 5.1, we exploited the key equation f · f−1 = 1 mod 3 to recover the
secret key in polynomial time. However, Remark 2 already indicates limitations
for scaling our strategy to larger error rates. Hence, in our practical attacks
we devise a new strategy based on the key equation h · f = g instead. First
we derive an LWE instance from the given partially erased or erroneous key
material, whose complexity is then estimated using the LWE estimator [3] in
combination with the asymptotic lattice reduction exponent of 0.3496 obtained
in [2]. Second, we give a combinatorial attack that achieves the best complexities
for a compact key representation.

Key Formats. The NTRU documentation specifies two key formats, a packed
and an unpacked format. The unpacked format stores each coefficient of a ternary
polynomial via two bits. Therefore the values 0, 1 and −1 are represented in
binary as 00, 01 and 10. This key format is used whenever the secret key is
accessed, e.g., during decryption. The packed format is used to store the secret
key in the meantime, by packing five ternary coefficients, with total informa-
tion 5 log 3 ≈ 7.92 bits, into 8 bits. Let us detail how we translate bit to field
errors/erasures for the different key formats.

Unpacked Format. For the unpacked format we observe that a single bit-erasure
of the form ?1 and 1?, where “?” denotes an erased bit can directly be recovered
to 01 and 10 coefficients. For every coefficient the probability of a single bit-
erasure is 2p(1 − p), while the probability for two bit-erasures is p2. Since the
secret key is drawn randomly from all ternary polynomials, the probability that
we can directly recover a single-bit affected coefficient is 1/3.5 Thus, we can
reduce the total amount of expected erasure-affected F3-coefficients from (2p −
p2)n to

(2p − p2)n − 2p(1 − p)n
3

=
np

3
(4 − p),

or put differently obtain a field-erasure probability of p
3 (4 − p).

For the translation of bit-errors to field-errors we proceed similar, treating
a coefficient as erroneous as long as any bit in its binary representation is error-
prone. Hence, a bit-error probability of p results in a field error probability of
1 − (1 − p)2 = 2p − p2.

Packed Format. For the packed format an erased or erroneous bit in its binary
representation might affect multiple coefficients of the polynomial in unpacked
form. We determine the field-error and -erasure rates caused by a certain bit-
error/-erasure by an exhaustive enumeration of all possibilities. We start with
the erasure translation. We enumerate all possible 35 values for an 8-bit block
in packed representation and all possible positions for i bit-erasures for i =
5 The secret key coefficient can take the values 01, 10 and 00 while only the two (out

of 6) possible single-bit erasures ?1 and 1? can be recovered directly.



Partial Key Exposure Attacks on BIKE, Rainbow and NTRU 371

1, . . . , 8, to derive the proportion of i bit-erasures leading to j field-erasures.
Essentially, for every combination of value and i erasure positions, we enumerate
all possibilities for these i bits and transform for each guess to unpacked form.
This results in five ternary coefficients. Now, those coefficients which are equal
among all guesses are known, while those differing among at least two guesses
are treated as erased. For a table with the derived proportions we refer to the
full version of this work [14].

For the bit- to field- error translation we proceed similar by enumerating
all possible value-error pairs and counting the errors caused in the unpacked
representation. We give a table with the obtained frequencies in the full version
of this work [14].

Practical Attack in the Erasure Model. For our attack in the erasure model
we derive a dimension-reduced small-secret LWE instance from the partially
erased key material. Let f̃ be a partially erased version of f , where If denotes
the set of erased coefficients. The key equation gives h · f = g or equivalently
Hf = g, where H is the multiplication matrix of h and f ,g are the coefficient
vectors of f and g. By denoting the columns of H as hi, we obtain

Hf = g ⇔
n∑

i=1

hifi = g ⇔
∑

i∈If

hifi − g = −
∑

i/∈If

hifi.

By letting Ĥ denote the matrix containing the columns H indexed by If , and
analogously f̂ denote the vector containing the coordinates of f indexed by If ,
we obtain Ĥf̂ − g = −

∑
i/∈If

hifi. Note that since the right hand side of the
equation is known and g is small by definition this yields an LWE instance with
secret f̂ of dimension |If |, which is the number of erased Fq coefficients.

To determine the bit complexity of the outlined attack for various erasure
probabilities p, we proceed as follows. First, we relate the bit-erasure probability
p to a field-erasure probability. For the unpacked format, as outlined in Sect. 5.2,
we simply use the field-erasure probability p

3 (4 − p). For the packed format we
computed by exhaustive enumeration how to translate a certain number of bit-
erasures in an 8-bit block to a certain number of field-erasures. For a table with
the computed frequencies see the full version of this work [14].

We now first calculate the expected number Ni of blocks out of the total
n/5 affected by i bit-erasures, i = 1, . . . , 8. Then we compute the number of
expected field-erasures as

∑
i NiEi, where Ei is the expected number of field

erasures observed in a block with i bit erasures.
From there we use the LWE estimator to determine the bit complexity for

solving the derived LWE instances. Our results for both formats are depicted in
Fig. 5. The vertical dashed line represents the erasure probability up to which
our polynomial time attacks from Sect. 5.1 can be applied.

Practical Attack in the Error Model. Our practical attack in the error
model is quite similar to the attack in erasure model. Let us first outline the
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Fig. 5. Bit complexity of our partial key exposure attack in the erasure model on
NTRU.

attack for a symmetric error, which does not exploit any dimension reduction.
In the error setting, we obtain a noisy version f̃ = f + e of f . Similar to before
we have

Hf̃ = He + Hf = He + g, (5)

which defines an LWE instance of dimension n and secret e, where e has expected
pq · n entries different from zero, where pq is the field-error probability.

To derive the bit complexity of recovering the secret key for a given bit-error
probability p we again first relate p to the field-error probability pq. Then we
use the LWE estimator to estimate the hardness of the above LWE instance.

For the unpacked format we have pq = 2p−p2 (compare to Sect. 5.2). For the
packed format we again compute the number Ni of expected 8-bit blocks affected
by i = 1, . . . , 8 errors. Then we derive the number of field-errors as

∑
i NiEi,

where Ei is the expected number of field-errors caused by i bit-errors.
In Fig. 6 we plot the derived bit-complexity as a function of the error-

probability p. Since already a few errors in packed representation often lead
to multiple errors in the unpacked form, we see a steep incline for our attack
in packed form. Therefore we give a second, combinatorial approach based on a
meet-in-the-middle technique.

Combinatorial Approach. Imagine we guess the first 
 < n coordinates of g
in Eq. 5. This gives an equation of the form H�(f̃ − e) = g�, where H� is the
matrix formed by the first 
 rows of H and analogously g� contains the first 

coordinates of g.

From here we perform a meet-in-the-middle attack on e. Therefore let e =
(e1, e2) ∈ F

n/2
3 × F

n/2
3 , f̃ = (f̃1, f̃2) ∈ F

n/2
3 × F

n/2
3 and H� = (H1 | H2), which

gives
H1(f̃1 − e1) = g� − H2(f̃2 − e2).

Now we enumerate all possible values for e1 (resp. e2) and store the correspond-
ing value of the right-hand side (resp. left-hand side) of the above equation in a
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Fig. 6. Bit complexity of key recovery on NTRU in the symmetric error model.

list L1 (resp. L2). Then we search between those lists for equal elements, where
by construction one matching pair reveals e = (e1, e2).

Note that the expected amount of matching pairs is L := |L1|·|L2|
q� and that

the matching can be performed in time O
(
max{|L|, |L1|, |L2|}

)
. The list con-

struction requires per element (after the first) roughly 2
 field multiplications,
if a gray-code style enumeration for e1 and e2 is chosen. Moreover to check if
an element of x ∈ L reveals the searched error we need to compute H�x, which
costs 
n field multiplications. Thus by accounting for a single field multiplication
log2 q bit operations, and observing that |L1| = |L2|, we find a bit complexity of

O
(
max{
n · |L|, 
 · |L1|} · 3� log2 q

)
.

In the packed form, we enumerate the error first6, subtract it from the respec-
tive part of the key material and then convert it to unpacked form. Thus, more
precisely, the lists contain H1 · unpack(f̃1 − e1) and g� − H2 · unpack(f̃2 − e2)
respectively. This is possible since every 8-bit block of the packed form can be
converted to unpacked form independently.

In the packed form the bit length of f̃ is roughly 8n
5 , hence the expected

Hamming weight of the binary representation of e is 8np
5 . Thus, in expectation

we have |L1| = |L2| = O
((

4n/5
4np/5

))
.

This combinatorial attack yields an improved key recovery attack on the
packed format (see Fig. 6), because it benefits from the small bit length of f̃ in
packed representation.

In [21] May gives further advanced combinatorial attacks extending the here
presented meet-in-the-middle by a search-tree approach and the representation
technique. We leave it as an open research task to determine the gain of those
advancements in our settings.

An improved practical attack when facing asymmetric error probabilities is
given in the full version of this work [14].

6 The factor 3� can be slightly improved by guessing zero coordinates of g instead of
enumerating the first � coordinates.
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Abstract. The Support-Minors (SM) method has opened new routes
to attack multivariate schemes with rank properties that were previ-
ously impossible to exploit, as shown by the recent attacks of [9,40]
on the Round 3 NIST candidates GeMSS and Rainbow respectively.
In this paper, we study this SM approach more in depth and we pro-
pose a greatly improved attack on GeMSS based on this Support-
Minors method. Even though GeMSS was already affected by [40],
our attack affects it even more and makes it completely unfeasible to
repair the scheme by simply increasing the size of its parameters or
even applying the recent projection technique from [36] whose purpose
was to make GeMSS immune to [40]. For instance, our attack on the
GeMSS128 parameter set has estimated time complexity 272, and repair-
ing the scheme by applying [36] would result in a signature with slower
signing time by an impractical factor of 214. Another contribution is to
suggest optimizations that can reduce memory access costs for an XL
strategy on a large SM system using the Block-Wiedemann algorithm
as subroutine when these costs are a concern. In a memory cost model
based on [7], we show that the rectangular MinRank attack from [9] may
indeed reduce the security for all Round 3 Rainbow parameter sets below
their targeted security strengths, contradicting the lower bound claimed
by [41] using the same memory cost model.

Keywords: Support-Minors · GeMSS · Rainbow · multivariate
cryptography

1 Introduction

The MinRank problem 1 introduced in [12] has shown to be essential in estab-
lishing the security of several post-quantum cryptosystems, in particular mul-
tivariate schemes (MPKCs). Many MPKCs are indeed either directly based on
the hardness of MinRank [20] or strongly related to it, such as [23,37,39].
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Problem 1. (MinRank problem) Given d ∈ N, N matrices M1, . . . ,MN ∈
F

nr×nc
q , find field elements x1, x2, . . . , xN ∈ Fq, not all zero, such that

rank

(
N∑

i=1

xiM i

)
≤ d.

The currently most high profile application of MinRank is the cryptanalysis
of Rainbow [22], which was selected as a finalist to the NIST post-quantum
standardization process. Rainbow is a multilayer variant of the well-known UOV
signature scheme, and a key-recovery attack on the scheme can be performed by
solving one of several particular MinRank instances [9,10,28]. This problem also
shows up in the analysis of other types of MPKCs, namely those relying on the
so-called big-field construction by using a field extension Fqn over Fq. This is the
case of the historical proposals C* [33] and HFE [37], but also more recently of
the HFEv- schemes [38] GeMSS [13] and Gui [21]. In this context, a difference
with the original formulation from Problem 1 is that the coefficients xi’s or the
entries of the M i’s may belong to the extension field Fqn .

Support-Minors is a method proposed by Bardet et al. [5] to reduce the Min-
Rank problem to the problem of solving a system of bilinear equations. This
algebraic modeling is in particular the crux of the recent attacks on MPKCs and
rank-based cryptosystems [4,5,9,40]. When the corresponding MinRank instance
has a unique solution, which was the case in rank-based cryptography or Rain-
bow [5,9], this system can be solved using a variant of the XL algorithm [19].
In particular, this approach benefits from the extreme sparsity of the resulting
linear system as one can use the Block-Wiedemann algorithm [17]. However, the
situation is quite different for big-field schemes, since there are naturally n solu-
tions coming from the big-field structure. In particular, using the XL algorithm
proposed in [5] neither directly yields a solution nor reduces the problem to a
simpler one. Of course, it is still possible to use a general purpose Gröbner basis
algorithm, but this approach can be inefficient and one faces the challenging
task of establishing the solving degree to precisely estimate its complexity. In
particular, the authors of [40] conjectured from experiments that the first degree
fall dff of their Support-Minors attack on GeMSS was equal to 3. Then, based
on the common heuristic that the solving degree is close to dff , they derive
the complexity given in Column “support minors modeling” from [40, Table 1].
However, one may wonder if such a small value for dff is not only due to the
small scale of their experiments. Moreover, the assumption that dff coincides
with the solving degree remains a conjecture. It is known this is not true in
general, see for example [6], and if this solving degree were higher than 3 in the
case of GeMSS, the complexity of the attack in [40] would dramatically change.

Also, even when there is justification for the time complexity of an attack,
there remains the question of how to measure the complexity of memory inten-
sive cryptanalytic attacks, an issue which has been a major point of discussion
throughout the NIST PQC competition. In an effort to obtain more efficient
parameters while still claiming high security, a number of submitters [1,7,15,32]
have introduced cost models which treat memory intensive attacks as being more
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expensive than indicated by time complexity estimates using the more common
Random Access Machine model. The question of the effect of memory access
on the cost of MinRank attacks in particular, has been brought to the fore
recently. In response to the rectangular MinRank attack [9], the Rainbow team
put forward a statement [41] arguing that even though this attack reduces the
security of Rainbow relative to prior cryptanalysis, it does not bring any of the
third round Rainbow parameters below their targeted security levels if mem-
ory costs are properly accounted for. This argument in particular states that,
although the rectangular MinRank attack can use the Wiedemann algorithm
and therefore does not require as much memory as attacks requiring Gröbner
basis algorithms like F4 [26] and F5 [27], its complexity is dominated by a large
number of random access queries to a memory, which is nonetheless fairly large.

Table 1. Time complexity of our attack (Improved SM, log2(#gates)) in comparison
to [40].

Scheme Minors [40] SM (conjectural) [40] Improved SM

GeMSS128 139 118 72

BlueGeMSS128 119 99 65

RedGeMSS128 86 72 49

GeMSS192 154 120 75

BlueGeMSS192 132 101 67

RedGeMSS192 95 75 51

GeMSS256 166 121 75

BlueGeMSS256 141 103 68

RedGeMSS256 101 76 52

Contributions. As a first contribution, we provide solid ground to understand
the Gröbner basis computation on the Support-Minors system for HFEv- and
we significantly speed up the attack in [40] which used minors modeling [25]. We
provide a necessary and sufficient condition for solving the SM system at degree
2, under mild assumptions. In the case of GeMSS, we show that it can always be
solved at degree 2. This material allows us to give a precise complexity formula
for the Support-Minors attack on GeMSS, which is also considerably smaller
than the conjectured one in [40], which relied on the aforementioned degree
fall assumption (see Column “SM (conjectural) [40]” in Table 1). In particular,
with our attack we can also clearly break the proposed parameters for pHFEv-,
which were an attempt by [36] to repair GeMSS in the aftermath of the attacks
from [40]. Also, it makes it completely unfeasible to repair GeMSS by simply
increasing the size of its parameters or even applying the projection technique
without becoming impractical. These improvements come from some techni-
cal observations which are described more thoroughly throughout the paper.
We show that by direct linearization on the Support-Minors equations, one
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can already obtain linear equations. Then, one can derive a quadratic system in
only n − 1 variables by substitution of these linear polynomials in the original
system, and our attack proceeds by solving this second system. For the sake of
completeness, we also provide an estimate for the memory complexity. All in
all, since the time complexity of our attack on GeMSS is much reduced, the
memory access cost also remains limited and it is not an obstacle to perform the
attack. In particular, we have been able to perform experiments in the Magma
Computer Algebra System [11] for the main step of our attack—linearization
on the SM equations—on parameters which are not too far from those of the
smallest GeMSS instances. Apart from GeMSS which is the focus of this work
in light of the current situation, the efficiency of our approach also suggests that
it might be feasible to use rank attacks in order to solve the 24 year old HFE
Challenge 2 [37]. Until now, note that previous unsuccessful attempts [18,34] are
direct attacks and not MinRank attacks. More generally, we demonstrate that
the Support-Minors method may be used to tackle any MinRank instance with
multiple solutions belonging to an extension field as long as one can benefit from
this extension field structure and from a quite specific parameter range.

As a second major contribution, we propose and analyze a strategy to obviate
much of the memory access cost in implementing the Wiedemann algorithm as
a subroutine for XL. We exemplify the strategy on the rectangular MinRank
attack on Rainbow [9] and we determine the cost on average of memory accesses
in this case. While the memory access cost of the Wiedemann algorithm when
applied to a Macaulay matrix of size V and row weight w over Fq was estimated
by [41] to require remotely accessing 3wV 2 log2 V bits within a memory of size
V , we conjecture that by organizing memory locally, this figure can be reduced
to the equivalent of 3V 2 log2 q bits worth of remote access to memory, saving
a factor of w log2 V/ log2 q. Our strategy precisely aims at coming close to this
figure, still under the assumption that the cost of memory access scales with
either the square root or the cube root of the size of memory. Our concrete
analysis shows that, even assuming the same cost for remote memory access
as [41], the rectangular MinRank attack does indeed reduce the security of all
round 3 Rainbow parameter sets below their targeted security strengths. To
evaluate this memory access cost, we provide a theoretical analysis of both the
memory savings and the extra costs which are associated to our strategy. We
also examined various costs which were suggested to be possibly significant by
[41] such as parallelization costs, and the cost of generating Macaulay matrix
coefficients “on the fly”, finding that incorporating these costs in our cost model
does not affect our conclusion at least in the case of Rainbow. Finally, we want
to insist on the fact that our methodology is limited to theoretical arguments.
Of course real benchmarks would be greatly appreciated to support our claims,
but it is probable that software implementations would not be a good indicator
for these memory costs. Indeed, the estimates from [7,41] aim to give relative
costs in an ASIC implementation which may be used by an adversary with
significant resources. In particular, we believe that providing such an involved
implementation is far beyond the scope of this paper.
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Along with this paper, we also provide a SageMath notebook [2], where the
reader may verify our results for the GeMSS attack.

2 Preliminaries

2.1 Notation

Row vectors and matrices will be written in bold. We denote by vi the i-th
component of a vector v, and the entries of a matrix M of size nr × nc will
be denoted by M i,j , where i (resp. j) is an integer in {1..nr} (resp. {1..nc}).
The support Supp(v) := {i | vi �= 0} of a vector v is the set of indices of its
non-zero coordinates. For I ⊂ {1..nr} and J ⊂ {1..nc}, we use the notation
M I,J for the submatrix of M formed by its rows (resp. columns) with indexes
in I (resp. J), and we adopt the shorthand notation M∗,J = M{1..nr},J and
M I,∗ = M I,{1..nc}. We also denote by |M | (resp. |M |∗,J) the determinant of
M (resp. M∗,J). Finally, we use #I to denote the number of elements of a set
I.

A field with q elements is denoted by Fq. The big field schemes take their
name from a field extension Fqn of degree n over Fq, and in the following we
consider φ an isomorphism Fqn → F

n
q between vector spaces. For j ∈ Z≥0 and

v = (v1, . . . , vk) ∈ F
k
qn , we define

v[j] := (vqj

1 , . . . , vqj

k ).

This corresponds to applying the Frobenius automorphism x �→ xq j times on
each coordinate of v. Note that this field automorphism is the identity on Fq.
We will adopt the same notation for matrices, namely the matrix M [j] is the
matrix obtained from M by raising all its entries to the power qj .

Polynomial Systems and Coding Theory. We use x = (x1, . . . , xN ) to
denote a vector of variables, and Fq[x] denotes the ring of polynomials in the
variables x and coefficients in Fq. When q is an odd prime power, and g a
quadratic form in Fq[x], we denote by G the symmetric matrix defined by g(x) =
xGxT and g′(x,y) = g(x + y) − g(x) − g(y) + g(0) the polar form associated
to g. The evaluation of a polynomial system P = (p1, . . . , pm) at s ∈ F

n
q is

the vector P(s) := (p1(s), . . . , pm(s)), and we denote by Ph = (ph
1 , . . . , ph

m) the
homogeneous sequence such that ph

i is the homogeneous part of highest degree
in pi for 1 ≤ i ≤ m. We also consider the Macaulay matrix M(P) ∈ F

m×nM
q

whose columns are indexed by the monomials in P and such that the entries in
the i-th row correspond to the coefficients of pi for 1 ≤ i ≤ m. If this matrix is
full rank, then the rowspace is an m-dimensional Fq-subspace of FnM

q which can
be viewed as a linear code M of parameters [nM,m]q. A generating matrix is
precisely given by M(P), and the dual is the [nM, nM − m]q-linear code M⊥

defined by
M⊥ :=

{
h ∈ F

nM
q | ∀c ∈ M, chT = 0

}
,
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which coincides with the right kernel of this matrix. Finally, the puncturing
and shortening operations are classical ways to construct new linear codes from
existing ones, and we use them in Sect. 5.1.

Definition 1. (Punctured code). Let C ⊂ F
n
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The puncturing PI(C) ⊂ F
n−#I
q of C at I is the [n−#I,K ′ ≤

K]q-code defined by:
PI(C) :=

{
c{1..n}\I | c ∈ C

}
.

Definition 2. (Shortened code). Let C ⊂ F
n
q be a code of parameters [n,K]q

and let I ⊂ {1..n}. The shortening SI(C) ⊂ F
n−#I
q of C at I is the [n−#I,K ′ ≥

K − #I]q-code defined by:

SI(C) :=
{
c{1..n}\I | c ∈ C, cI = 0I

}
.

The shortening operation is in some sense dual to puncturing, namely one
has SI(C⊥) = PI(C)⊥ and SI(C)⊥ = PI(C⊥).

2.2 Relevant Material for the Attack on GeMSS

GeMSS [13] is a specific instance of HFEv-which was selected as an alternative
candidate in the third round of the NIST PQC standardization process.

HFEv-. The HFEv- signature scheme is a variant of HFE [37] that includes
both the Minus and the Vinegar modifiers. In this description we consider that
q is an odd prime power. The secret polynomial f : Fqn × F

v
q → Fqn is of the

form
f(X,yv) =

∑
i,j∈N

qi+qj≤D

αi,jX
qi+qj

+
∑
i∈N

qi≤D

βi(yv)Xqi

+ γ(yv),

where yv = (y1, . . . , yv) are the vinegar variables, αi,j ∈ Fqn , the βi’s are linear
maps F

v
q → Fqn and γ is a quadratic map F

v
q → Fqn . The special shape of such

an f gives rise to a quadratic central map over the base field F = φ ◦ f ◦ ψ :
F

n+v
q → F

n
q , where

ψ : Fn
q × F

v
q −→ Fqn × F

v
q

(x, y) �−→ (φ−1(x), y).

The public key is then given by a quadratic map P = T ◦ F ◦ S, where S :
F

n+v
q → F

n+v
q and T : Fn

q → F
n−a
q are secret affine maps of maximal rank. For

simplification, we assume in the rest of the paper that S (resp. T ) is a linear
map described by a matrix S ∈ F

(n+v)×(n+v)
q (resp. T ∈ F

n×(n−a)
q ), so that the

components of P = (p1, . . . , pn−a) are homogeneous polynomials in N = n + v
variables x = (x1, . . . , xn+v). When q is an odd prime power, we recall that P i

is the symmetric matrix associated to pi by pi(x) = xP ix
T for 1 ≤ i ≤ n − a.
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MinRank Attack on HFEv- from [40]. Tao et al. recently proposed in [40]
the most efficient key recovery attack on HFEv- so far. To describe this attack,
we assume that q is an odd prime power, but the results can be extended to
the even characteristic. Let (θ1, . . . , θn) be a basis of the vector space Fqn over
Fq, let H ∈ F

n×n
qn be the associated Moore matrix defined by H := [θqj

i+1]
n−1
i,j=0

and let H̃ :=
(
H 0
0 Iv

)
. The main step of the attack is by solving the following

MinRank problem to recover the first n rows of the invertible matrix U defined
by

U := H̃
−1

S−1 ∈ F
(n+v)×(n+v)
qn , (1)

Problem 2. (Underlying MinRank problem) Let d :=
⌈
logq (D)

⌉
and let

u ∈ F
n+v
qn be the first row of U . Let P 1, . . . ,P n−a ∈ F

(n+v)×(n+v)
q denote the

symmetric matrices associated with the HFEv- public key and let (e1, . . . ,en+v)
be the canonical basis for F

n+v
q . For 1 ≤ i ≤ n + v, we define the matrix M i ∈

F
(n−a)×(n+v)
q by

M i := eiP ∗ :=

⎛
⎜⎝

eiP 1

...
eiP n−a

⎞
⎟⎠ .

Then, the vector u := (u1, . . . , un+v) is a solution to the MinRank instance
described by the M i’s with target rank d.

We refer to [40, Theorem 2] for extra details. Also, note that the first n rows
of U are the Frobenius iterates of u, more precisely we have

U =

⎛
⎜⎜⎜⎝

u
...

u[n−1]

R

⎞
⎟⎟⎟⎠ ,

where the block R ∈ F
v×(n+v)
q is full rank, see [40, Alg. 1, 4.]. Then, it is shown

in [40, 4.3] how one can efficiently derive an equivalent key and finish the attack.
Finally, to keep the same notation as in [40, Thm. 2], we set

Z :=
n+v∑
i=1

uiM i ∈ Fq[u](n−a)×(n+v). (2)

Fact 1. (On the number of solutions) Let u ∈ F
n+v
qn be a solution to the

MinRank problem 2. Then, for any λ ∈ F
∗
qn , the vector λu := (λu1, . . . , λun+v)

is another solution. Moreover, for any 0 ≤ j ≤ n − 1, the same goes for the
vector u[j] := (uqj

1 , . . . , uqj

n+v) with corresponding rank d matrix Z [j].

This fact is inherent to the big-field structure used in HFEv- and was already
observed in the previous rank attacks on big-field MPKC [8,29,31,42].
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Projection Modifier. The projection modification was introduced in [14] in
order to repair the previously broken SFLASH signature scheme [24] and devise
the new PFLASH signature scheme. In reaction to the attack on GeMSS from
[40], the authors of [36] also applied this modifier to HFEv-, leading to pHFEv-.
The proposed parameters for the scheme are secure against this former attack,
and the point of projecting is that it appears to be more efficient than simply
increasing the degree D of f to obtain the same security. The projection modifier
consists in replacing the map S : Fn+v

q → F
n+v
q by S = L ◦ S′ : Fn+v−p

q → F
n+v
q ,

where S′ : Fn+v−p
q → F

n+v−p
q is full rank and L : Fn+v−p

q → F
n+v
q is full rank

represented by a matrix
(
Λ 0
0 Iv

)
∈ F

(n+v−p)×(n+v)
q . The authors of [36] have

studied the effect of projection on the rank of the HFEv- central map. When
p > 0, the rank of Z from Eq. (2) is bounded by d′ := d + p instead of d (cf.
[36, Prop. 2]), and this bound is believed to be tight from practical experiments.
Moreover, the number of solutions to the corresponding MinRank problem is
expected to be unchanged compared to plain HFEv-. In Table 2, we give the
current GeMSS parameter sets as well as those of pHFEv- . In [36], a secure
pHFEv- parameter set is constructed from a given GeMSS parameter set by
choosing the least value of p such that the minors attack from [40] is just above
the security level.

Table 2. GeMSS and pHFEv- parameter sets.

Scheme q n v D a p from [36]

GeMSS128 2 174 12 513 12 0
BlueGeMSS128 2 175 14 129 13 1
RedGeMSS128 2 177 15 17 15 4

GeMSS192 2 265 20 513 22 5
BlueGeMSS192 2 265 23 129 22 7
RedGeMSS192 2 266 25 17 23 10

GeMSS256 2 354 33 513 30 10
BlueGeMSS256 2 358 32 129 34 11
RedGeMSS256 2 358 35 17 34 14

2.3 Relevant Material on Rainbow for Section 8.3

Rainbow is a third round finalist of the NIST PQC standardization process for
digital signatures. In this paper, we are mainly interested in the recent rectan-
gular MinRank attack from [9, §7] on this scheme.

Rainbow. For clarity, we adopt the simplified description from [9]. The version
of Rainbow submitted to the NIST PQC project is a 2-layered variant of the



384 J. Baena et al.

well-know UOV signature scheme: the trapdoor consists of 3 Fq-subspaces O2 ⊂
O1 ⊂ F

n
q and W ⊂ F

m
q of dimension o2, m and o2 respectively, and the public

system P contains m quadratic equations in n variables such that P(z) ∈ W
for all z ∈ O1 and P ′(x,y) ∈ W for all x ∈ F

n
q and y ∈ O2, where P ′ is the

system of polar forms associated to P. To perform a key-recovery on Rainbow,
it had already been noted that the hardest part is to recover the space O2: once
O2 is found, it is then easy to recover both W and O1. Thus, the rectangular
MinRank attack from [9] targets secret vectors y ∈ O2.

Rectangular MinRank attack. The rectangular MinRank attack by [9] is
currently the best key-recovery attack on Rainbow so far. For y ∈ F

n
q , let

Ly :=

⎛
⎜⎝

P ′(e1,y)
...

P ′(en,y)

⎞
⎟⎠ ,

where (e1, . . . ,en) is the canonical basis of Fn
q . The attack heavily exploits the

fact that P ′(x,y) ∈ W for any x ∈ F
n
q and y ∈ O2. Indeed, when y ∈ O2, the

rows of Ly lie in W, so that the rank of this matrix is at most dimW := o2. Also
Ly =

∑n
i=1 yiLei by linearity, and therefore a solution to the MinRank instance

described by the Lei
’s with target rank o2 is very likely to reveal a vector y in

O2. Finally, as noted in [9], it is possible to fix o2 − 1 entries in y at random in
order to obtain a 1-dimensional solution space. The resulting MinRank instance
is then solved by relying on the recent Support-Minors modeling [5], see Sect. 3.
Moreover, [9] suggests to also use the fact that P(y) = 0, which allows to consider
a system with more equations while keeping the same variables as in the Support-
Minors system. The concrete improvement of this trick compared to the plain
MinRank attack remains modest, see [9, Table 6].

3 Support-Minors Modeling (SM)

Support-Minors is an efficient method to model and solve the MinRank problem
[5]. It has been used to cryptanalyze MPKC and rank-based cryptosystems [4,
5,9]. The idea is to factor the secret matrix M ∈ K

nr×nc of rank ≤ d as

M :=
N∑

i=1

uiM i := DC, (3)

where D ∈ K
nr×d and the support matrix C ∈ K

d×nc are unknown matrices.
For 1 ≤ j ≤ nr, one then considers the matrix

Cj :=
(
rj

C

)
,

where rj := M{j},∗ is the j-th row of M whose components are linear forms in
the so-called linear variables ui’s. The rank of Cj is at most d, and equations
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are obtained by setting all (d+1)× (d+1) minors of this matrix to zero, namely
Qj,J := |Cj |∗,J for J ⊂ {1..nc}, #J = d + 1. The Support-Minors system then
contains a total of nr

(
nc

d+1

)
polynomials by considering 1 ≤ j ≤ nr. Moreover,

by using Laplace expansion along the first row of Cj , one notices that these
equations are bilinear in the ui variables and in the so-called minor variables
cT := |C|∗,T , where T ⊂ {1..nc}, #T = d. The following fact will be used several
times in the paper.

Fact 2. (Structure of the SM system) Each SM equation contains at most
N(d + 1) bilinear monomials. More precisely, given J ⊂ {1..nc}, #J = d + 1
and 1 ≤ j ≤ nr, the monomials of Qj,J belong to a set of N(d + 1) elements
which only depends on J .

Proof. Let J := {j1 < · · · < jd+1} and 1 ≤ j ≤ nr. By Laplace expansion along
the first row of (Cj)∗,J , one has that the monomials in Qj,J are in the set

AJ :=
{
uicJ\ju : 1 ≤ u ≤ d + 1, 1 ≤ i ≤ N

}
.

This set contains N(d + 1) elements which are independent from j. �

Solving the SM System. When the corresponding MinRank problem has
a unique solution, [5] proposes a dedicated XL approach by multiplying the
SM equations by monomials in the linear variables. This is typically the case
for Rainbow [9] or rank-based cryptography [4,5]. The attack constructs the
Macaulay matrix M(Qb), where Qb is the system of all degree b+1 polynomials
of the form μuf , where μu is a monomial of degree b−1 in the linear variables and
f is a SM equation. Note that direct linearization corresponds to b = 1 with Q1 =
Q. The value of b is chosen such that the rank of M(Qb) is equal to the number
of columns minus one. In this case, the linear system M(Qb)xT = 0 has a non-
trivial solution, and this solution easily yields a solution to the initial MinRank
problem. The situation is quite different when there are N ′ > 1 solutions to
this original MinRank instance, e.g. HFE, see Fact 1, but the approach can be
adapted. There still exists a value of b for which the kernel of M(Qb) is non-
trivial and can be computed, but the dimension N ′′ of this kernel is expected
to be > 1. In particular, the second step to solve the initial MinRank problem
from arbitrary kernel vectors is no longer straightforward. By finding a basis of
that kernel one can at least reduce the initial MinRank problem to a new one
with N ′′ matrices with the same dimensions and the same target rank d, but
this secondary MinRank instance has no reason to be much easier to solve.

The linear system M(Qb)xT = 0 is usually sparse, especially when b > 1, and
in this case it is often advantageous to use the Wiedemann algorithm. Another
idea to reduce the cost of linear algebra is to start from a Macaulay matrix of
smaller size by selecting only n′ ≤ nc columns in M (for example the first n′

ones), which yields a SM system with nr

(
n′

d+1

)
equations and N

(
n′

d

)
monomials

uicT , where this time T ⊂ {1..n′}.
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4 Improved Attack on GeMSS Using Support-Minors

In this section, we describe our approach to solve the MinRank instance 2 arising
from HFEv- using Support-Minors. As noted in Fact 1, this problem is expected
to have several solutions which are triggered by the big-field structure, hence
we cannot directly apply the XL techniques from [5]. Two remarks are in order
before we describe the attack. From the definition of Z in Equation (2) and the
fact that the M i’s are over the small field, it is important to notice that the
coefficients of the SM system are in Fq, whereas the solutions may belong to
the extension field Fqn . Also, as discussed in [5], we will consider a subset of the
SM equations coming from a submatrix of ZT ∈ Fq[u](n+v)×(n−a) obtained by
selecting a subset J of n′ ∈ [d + 1, n − a] columns.

4.1 Fixing Variables in the Support-Minors System

Up to relabelling of the linear variables, one can fix un+v = 1 as in [40]. In this
case, one expects to obtain n solutions which correspond to the first n rows of
U , namely u,u[1], . . . ,u[n−1]. Also, since we can choose an arbitrary submatrix
ZT

∗,J of ZT with #J = n′, we can make sure that this submatrix is full rank on
its first d columns. Therefore, we will fix the minor variable c{1...d} to 1.

Modeling 1. (Support-Minors modeling on ZT) Let Z be as defined in
Equation (2). We consider the SM equations obtained by choosing n′ ≤ n − a
columns in ZT, with coefficients in Fq and solutions in Fqn . Moreover, we fix
un+v = 1 and c{1...d} = 1.

The system from Modeling 1 contains (n+v)
(

n′

d+1

)
affine bilinear equations in

(n+v)
(
n′

d

)
monomials, and (n+v −1)(

(
n′

d

)
−1) of them are bilinear monomials.

Also, one can choose a number of columns n′ ≤ n − a that yields a sub-system
with more equations than monomials. Indeed, this will be the case when (n +
v)

(
n′

d+1

)
≥ (n + v)

(
n′

d

)
, and this condition is equivalent to n′ ≥ 2d + 1. Finally,

in GeMSS the value of n − a is much higher than 2d + 1, which allows to choose
n′ ∈ [2d + 1, n − a].

4.2 Solving via Gröbner Bases when n′ ≥ 2d + 1

In the case when n′ ≥ 2d + 1, there are more equations than monomials in the
SM system, but once again it is not possible to solve by direct linearization
because the resulting linear system has a large kernel. More precisely, since we
expect the system to have n solutions and since these solutions correspond to
n linearly independent vectors {v,v[1], . . . ,v[n−1]} such that the first n + v − 1
components of v are u1, . . . , un+v−1, its dimension should be at least n. For
large enough n, in every single instance we have tested, the linearization process
triggers no spurious solutions, thus the dimension of the solution space is equal
to n. Therefore, we adopt the following Assumption 1 in the rest of the analysis.
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Assumption 1. Let n′ ≥ 2d + 1. Then, the number of linearly independent
equations in Modeling 1 is equal to

N1 := (n + v)
(
n′

d

)
− n.

Our attack works in two steps. First, by forming linear combinations between
the equations from Modeling 1, we are able to produce a system L of degree 1
polynomials (Step 1). Then, using L to substitute some of the variables, we get
a quadratic system in nu = n − 1 of the linear variables. Finally (Step 2) we
solve this second system.

Step 1: Linear Polynomials Produced at b = 1. Here we explain how the
system L is obtained at Step 1. We start by proving

Fact 3. Under Assumption 1, by linear algebra on the affine SM equations, one
can generate NL linearly independent degree 1 polynomials, where

NL ≥
(
n′

d

)
+ v − 1. (4)

Proof. By Assumption 1, the system given in Modeling 1 contains N1 := (n +
v)

(
n′

d

)
− n linearly independent equations. Moreover, one has

N1 ≥ (n + v − 1)
((

n′

d

)
− 1

)
,

so that the number of linearly independent affine bilinear equations is greater
than the number of bilinear monomials. In particular, there are non-trivial linear
combinations between the bilinear parts of the equations that are zero. This
means that by performing linear algebra operations on the equations in Modeling
1, one can generate at least(

(n + v)
(
n′

d

)
− n

)
︸ ︷︷ ︸

N1

− (n + v − 1)
((

n′

d

)
− 1

)
︸ ︷︷ ︸

#bilinear monomials

=
(
n′

d

)
+ v − 1

linearly independent affine degree 1 polynomials in the ui’s and in the cT vari-
ables. �

The linear equations from Fact 3 are often referred to in the literature as
degree falls from degree 2 to degree 1, and we denote by M(L) the Macaulay
matrix of this linear system L. By considering an ordering on the columns such
that cT > un+v−1 > · · · > u1 > un+v = 1, we choose to eliminate first and
foremost all the ncT :=

(
n′

d

)
− 1 minor variables.

Lemma 1. Under Assumption 1, the reduced row echelon form of M(L) is of
the form

L =
(
IncT

∗
0 K

)
∈ F

NL×(ncT
+n+v)

q , (5)

where K ∈ F
(NL−ncT

)×(n+v)
q is row reduced. Moreover, we have that NL =(

n′

d

)
+ v − 1.
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Proof. Let L denote the echelon form of M(L), namely

L :=
(
N ∗
0 K

)
,where N ∈ F

ncT
×ncT

q and K ∈ F
(NL−ncT

)×(n+v)
q .

Assume that this matrix is not systematic on its first ncT rows. On that
hypothesis, there is a set of v0 ≥ NL − ncT + 1 ≥ v + 1 linearly independent
vectors in the row space of L which have zero in their leftmost ncT entries. This
yields v0 linearly independent vectors h1, . . . ,hv0 ∈ F

n+v
q such that for all i,

uhT
i = 0, where u ∈ F

n+v
qn denotes the first row of the matrix U defined in

Equation (1). Then, by applying the Frobenius isomorphism and using the fact
that it is the identity on Fq, it follows that u[j]hT

i = 0 for all i and 0 ≤ j ≤ n−1.
Therefore, the matrix

U{1..n},∗ =

⎛
⎜⎝

u
...

u[n−1]

⎞
⎟⎠ ∈ F

n×(n+v)
qn ,

is not full-rank, which is a contradiction since U is invertible. This gives N =
IncT

.
For the second part of the proof, the number of rows NL − ncT in K is at

least v by Fact 3. Since u is a solution to the MinRank problem, there exists a
vector v ∈ F

ncT
qn corresponding to the minor variables such that

M(L) · (v, un+v−1, . . . , u1, un+v)T = 0.

Since the matrix M(L) has its entries in Fq we obtain n linearly independent
vectors in the right kernel, namely

∀ 0 ≤ j ≤ n − 1, M(L) · (v[j], u
[j]
n+v−1, . . . , u

[j]
1 , u

[j]
n+v)T = 0.

This shows that the rank of K is at most (n+v −n) = v, so that NL −ncT = v.
�

By Lemma 1, it is possible to express all the minor variables as well as v linear
variables in terms of the remaining n−1 linear variables. Moreover, by reordering
the linear variables if necessary, we may further assume that the remaining ones
are u1, . . . , un−1. In this case, the matrix corresponding to the homogeneous
degree 1 parts (by dropping the last column of L) is of the form

L(h) :=
(
IncT

0 Y

0 Iv W

)
∈ F

NL×(ncT
+n+v−1)

q , (6)

where Y ∈ F
ncT

×nu

q , W ∈ F
v×nu
q and nu := n − 1.
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Step 2: Solving the Resulting Quadratic System. By using the linear
equations from L to substitute variables in Modeling 1, we obtain the following

Modeling 2. (Quadratic system). We consider the quadratic system in nu =
n − 1 linear variables u1, . . . , un−1 obtained by plugging the linear polynomials
of L into the equations from Modeling 1.

We now focus on the task of solving this quadratic system using Gröbner bases,
and in Proposition 1 we prove at which degree the computation terminates as
long as ncT ≥ nu. The proof relies on Assumption 1 and the following Assump-
tion 2 on the echelon form L from Equation (6).

Assumption 2. The matrix Y ∈ F
ncT

×nu

q in Equation (6) is full rank.

Note that this assumption should hold with high probability if Y behaves as a
random matrix. Also, we have performed different simulations to experimentally
verify Assumptions 1 and 2. According to the results obtained for different sets
of parameters (q, n, v,D, a), it seems that if n′ is chosen such that n′ ≥ 2d + 1
and ncT ≥ nu, then the 2 assumptions are satisfied almost 100% of the times.
The reader might find helpful to experimentally explore these assumptions using
the SageMath notebook [2].

Proposition 1. Under Assumptions 1 and 2, if ncT ≥ nu, a Gröbner basis
of the system from Modeling 2 can be obtained by Gaussian elimination on the
initial equations, i.e. it is found at degree 2.

Proof. By Assumption 1 and the first part of Lemma 1, the number of degree
2 affine equations which remain after the linear algebra step in Modeling 1 is
equal to N1 −NL = (n+ v − 1)

((
n′

d

)
− 1

)
. As we cannot construct extra degree

falls between them, this implies that the linear span of these equations contains
an equation with leading monomial uicT for any T, #T = d, T �= {1..d} and
any 1 ≤ i ≤ nu + v. Let

L(h) :=
(
IncT

0 Y

0 Iv W

)
∈ F

NL×(ncT
+n+v−1)

q ,

where Y ∈ F
ncT

×nu

q , W ∈ F
v×nu
q and nu := n−1 as defined in Equation (6). We

also denote by c the row vector of length ncT whose components are the minor
variables and (u1, . . . , un+v−1) := (u+,u−), where u+ is of length nu (remaining
linear variables) and u− is of length v (removed linear variables). Then, there is
a vector of constants α ∈ F

ncT
q such that

cT = −Y uT
+ − αT. (7)

Since Y is full rank by Assumption 2, the linear system given by Equation (7)
can be inverted when ncT ≥ nu, and therefore all the

(
nu+1

2

)
quadratic leading

monomials will be found in the span of Modeling 2. �
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When ncT < nu, we conjecture that the Gröbner basis algorithm terminates
in degree 3. Finally, note that the content of the current Sect. 4 also applies to
pHFEv- with rank equal to d′ = d + p, since what really matters in the analysis
is the number of solutions to the MinRank problem. We simply have to replace
the condition n′ ≥ 2d + 1 by n′ ≥ 2d′ + 1.

5 Complexity of the Attack

This section analyses the cost of our attack on GeMSS. In Sects. 5.1 and 5.2, we
estimate the time complexity. This complexity comes down to two major steps,
first generating Modeling 2 from Modeling 1 (Step 1) and then solving Modeling
2 via Gröbner bases (Step 2). Then, in Sect. 5.3, we evaluate the correspond-
ing memory complexity. First, note that choosing n′ = 2d + 1 already ensures
ncT ≥ nu for all the GeMSS and pHFEv- parameters, see Table 2. In particular,
Proposition 1 implies that the system in Modeling 2 will be solved at degree
2. In the following, we then adopt n′ = 2d + 1 and we will also consider that
v = o(n).

5.1 Time Complexity of Step 1

This first step can be performed by echelonizing the equations from Modeling 1
using Strassen’s algorithm. The complexity in this case is

O
(

(n + v)
(

2d + 1
d

)(
(n + v)

(
2d + 1

d

))ω−1
)

= O
(
nω

cT nω
u

)
(8)

Fq-operations, where nu = n − 1, ncT =
(
2d+1

d

)
− 1 and ω ≈ 2.81 is the linear

algebra constant.
An alternative path is to use Coppersmith’s Block-Wiedemann algorithm

(BW). Let M be the rowspace of the Macaulay matrix M(Q) of the SM system.
By Assumption 1, it can be seen as a linear code of length (n + v)

(
2d+1

d

)
and

dimension N1 = (n + v)
(
2d+1

d

)
− n, so that we expect the right kernel of M(Q)

to be of dimension n. In particular, by running BW roughly n times, we hope to
obtain a basis for this kernel which corresponds to the dual code C := M⊥. Let
I be the subset of positions of M corresponding to the bilinear monomials. We
then puncture C at I to obtain PI(C). Since the dual of the punctured code is the
shortening of the dual, we have that PI(C)⊥ = SI(M), and the dimension of this
code corresponds to the number of independent linear equations NL given by
Fact 3. By Lemma 1, we have that NL =

(
2d+1

d

)
+v−1. Also, the cost of obtaining

the shortened code SI(M) from PI(C) is negligible compared to the BW step to
obtain PI(C). Finally, by Fact 2, there are at most (d + 1)(n + v) monomials in
one SM equation, so that the overall complexity using the Wiedemann algorithm
n times to find a basis of C is

O
(

n × (n + v)(d + 1)
(

(n + v)
(

2d + 1
d

))2
)

= O
(
dn2

cT n4
u

)
. (9)
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5.2 Time Complexity of Step 2

As the choice n′ = 2d + 1 ensures nu ≤ ncT for all the parameters of GeMSS
and pHFEv-, the system given by Modeling 2 can be solved at degree 2 by
Proposition 1. Thus, the cost of this second step is simply the cost of row reducing
the Macaulay matrix of this quadratic system. The number of columns is the
number of initial monomials which is equal to 1 + nu +

(
nu+1

2

)
and there are

more equations than monomials, so that the complexity of the second step is

O
(

ncT (n + v − 1) ×
(

1 + nu +
(

nu + 1
2

))ω−1
)

= O
(
ncT n2ω−1

u

)
(10)

Fq-operations. Note that Step 1 is expected to be more costly since nu ≤ ncT .

5.3 Memory Cost

In this section, we estimate the space complexity of the attack on GeMSS, which
is dominated by the space complexity of Step 1 as the system from Modeling 2 is
much smaller. We choose q = 2 to be in accordance with the GeMSS parameters,
so that one element in Fq occupies one bit in memory. We start by describing
two approaches to store the Macaulay matrix M(Q) associated with the system
Q from Modeling 1 when used within the Block-Wiedemann algorithm.

Standard Approach. This approach uses the sparsity of the matrix M(Q)
in a naive way. Recall from Fact 2 that every SM equation contains at most
(n+ v)(d+1) nonzero monomials. Thus, one way to store a single row of M(Q)
is by storing the indexes corresponding to nonzero positions. Hence we must
store at most (n+ v)(d+1) column indexes per row. Since the Macaulay matrix
has (n + v)

(
2d+1

d

)
columns and assuming that several rows can be dropped to

get a square matrix, the space complexity is given by

(
2d+1

d

)
(d + 1)(n + v)2 log2

((
2d+1

d

)
(n + v)

)
= O

(
dn2

uncT log2(ncT )
)
. (11)

Optimized Approach. Here we adapt to the SM equations the strategy used
by Niederhagen for a generic Macaulay matrix [35, 4.5.3]. By Fact 2, recall that
for a given subset J ⊂ {1..nc}, #J = d + 1, all SM equations of the form Qi,J

for 1 ≤ i ≤ nr have the same set of potential nonzero monomials. Hence, the
set of columns in M(Q) potentially allocating nonzero entries are the same for
each row which correspond to one of these equations.

To store the system Q we use four arrays, namely V1, V2, V3, and V4. The
array V1 is implemented as a 2-dimensional array of size nr × (Nnc) in which
we store the coordinates of the MinRank input matrices M i’s. The array V2,
instead, stores the monomials of all SM equations. More precisely, for each subset
J ⊂ {1..nc}, #J = d + 1, we store in V2 the coordinates corresponding to
potential nonzero monomials in SM equations associated to J . Finally, it remains
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to store the information about how to read from V1 the coefficients of a given
Qi,J equation. This information is given a list of N(d+1) coordinates in V1 that
belong to the same row. The set of column indexes is stored in V3, while the row
index is stored in V4. A more detailed description of this storage can be found in
the long version, see [3, Appendix A.3], and overall we obtain a space complexity
of (

2d+1
d

)
(n + v)(d + 1) log2

((
2d+1

d

)
(n + v)

)
= O (dnuncT log2(ncT )) , (12)

which saves a factor of order n + v compared to the Standard approach. This
Optimized approach also has better memory access than the Standard approach.
Indeed, both approaches require to retrieve the same amount of information, but
in the Standard approach the size of the memory is larger. For instance, if one
uses the 2-dimensional model of [7,41] stating that retrieving b consecutive bits
from a memory of M bits costs

2−5(b + log N)
√

M,

where N is the length of the array we are reading from. In the Standard approach,
one can check that both (b + log N) and

√
M factors are larger in each vector-

vector multiplication of the Block-Wiedemann algorithm.

Table 3. Memory (log2(#bytes)) needed to store the Macaulay matrix M (Q) from
Step 1 to be used in BW or Strassen’s algorithm.

Scheme
BW

Standard
BW

Optimized
Strassen

GeMSS128 38.665 34.553 48.935
BlueGeMSS128 34.332 30.258 41.263
RedGeMSS128 27.645 23.729 29.873

GeMSS192 39.930 35.213 50.166
BlueGeMSS192 35.586 30.917 42.478
RedGeMSS192 28.897 24.410 31.073

GeMSS256 40.836 35.686 51.049
BlueGeMSS256 36.488 31.389 43.353
RedGeMSS256 29.800 24.905 31.940

Table 3 shows the space complexity of the first step of our attack. Keep in
mind that the memory demand for the BW algorithm will not be much more than
the one to fully store the Macaulay matrix. It can even be significantly lower,
if rows are generated on-demand, but this would increase the time complexity.
In contrast, the space complexity of Strassen’s algorithm is dominated by the
memory demand to store a square dense matrix of size

(
2d+1

d

)
(n+v), see Column

“Strassen”. As we can see in Table 3, the Optimized storage requires only a few
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GigaBytes of shared memory to execute Step 1 with BW on any of the proposed
parameters for GeMSS, whereas for the Standard approach requires up to a few
TeraBytes. To perform this step with Strassen’s algorithm, one would need up
to more than two Petabytes. To sum up, the amount of memory required by
BW is small enough to be allocated even in a shared memory device, especially
if one uses the Optimized storage.

6 Application to GeMSS and pHFEv- Parameter Sets

In this section, we use the results developed in Sect. 5 to determine the effect
of our attack on the security of the GeMSS and pHFEv- signature schemes.
In Table 4, we give the time complexity of our attack on the current GeMSS
parameters. We use Equation (8) or Equation (9) for Step 1 (Strassen or BW)
and Equation (10) for Step 2. We use ω = 2.81 and a conservative constant of
7 for the concrete complexity of Strassen’s algorithm [43], while a constant of 3
for the concrete complexity of BW [30, Theorem 7]. One can check that for the
specific parameters proposed by the GeMSS team, the value n′ = 2d + 1 is high
enough to ensure to solve at degree 2 in Step 2, i.e. nu ≤ ncT . Similarly, the
behavior of our attack on pHFEv- is given in Table 5. We adopt the parameters
from [36, Table 2] using ω = 2.81. In this paper, the value of p was chosen
such that the minors attack from [40] is just above the security level. On these
parameters, one notices that our attack always succeeds in solving at degree 2
with n′ = 2d′ + 1 = 2(d + p) + 1. As before, for those parameters the values of
d′ are indeed high enough to guarantee nu ≤ ncT .

Table 4. Complexity of our attack (log2(#gates)) versus known attacks from [40] for
the GeMSS parameters.

Scheme Minors [40] SM [40]
SM Step 1 SM Step 2

n′

(Strassen/BW) (Strassen)

GeMSS128 139 118 76/72 54 21
BlueGeMSS128 119 99 65/65 51 17
RedGeMSS128 86 72 49/53 45 11

GeMSS192 154 120 78/75 57 21
BlueGeMSS192 132 101 67/67 53 17
RedGeMSS192 95 75 51/55 48 11

GeMSS256 166 121 79/77 59 21
BlueGeMSS256 141 103 68/69 55 17
RedGeMSS256 101 76 52/57 50 11

The nature of our approach, although in theory similar to the one used in [40],
allows us to reduce significantly the complexity of the Support-Minors attack
performed by Tao et al. against GeMSS. This is important since this improve-
ment makes it completely infeasible to repair GeMSS by simply increasing
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the size of its parameters without turning it into an impractical scheme. The
dominant cost of our attack is the initial linear algebra step (dense or sparse)
on the Support-Minors equations, whereas in [40] an attacker needs to multi-
ply these equations by linear and/or minor variables to solve the system. This
explains why we obtain a much smaller cost than the one presented in column
“SM [40]”. Another noticeable difference between our work and the one in [40]
is that their complexity estimate is conjectural, whereas ours is proven under
mild assumptions in comparison.

The results from Table 5 also suggest that the projection modifier on HFEv-
will not be sufficient to repair the scheme as we have significantly broken the
parameters given in [36]. To meet the new security levels, the value of p should be
increased by a consequential amount, making the scheme inefficient. For example,
to achieve security level 128 with the former GeMSS128 parameters, one should
take p = 14, increasing the signing time by a factor q14, which is considerable.

Table 5. Complexity of our attack (log2(#gates)) versus known attacks from [40]
for pHFEv-. The pHFEv- parameter set for level x consists of (q, n, v,D, a, p), where
(q, n, v,D, a) is taken from GeMSSx and p ≥ 0 is the smallest value such that the cost
of the minors attack [40] is just above x.

Scheme p Minors [36,40]
SM Step 1 SM Step 2

n′
(Strassen/BW) (Strassen)

GeMSS128 0 139 76/72 54 21
BlueGeMSS128 1 128 71/69 53 19
RedGeMSS128 4 128 71/69 53 19

GeMSS192 5 201 105/95 67 31
BlueGeMSS192 7 201 105/95 67 31
RedGeMSS192 10 205 105/95 67 31

GeMSS256 10 256 134/117 79 41
BlueGeMSS256 11 256 129/113 77 39
RedGeMSS256 14 263 129/113 77 39

7 Experiments for Step 1

We have performed experiments in Magma-2.23-8 in order to explore the feasi-
bility of the attack on GeMSS. We focus on Step 1, because its cost dominates
the total cost as discussed in Sect. 5. We measure the running time of this step
for larger parameters so that a trend can be observed. For these experiments,
we selected a = v ≈ n/10, a small prime q > 2 and d =

⌈
logq (D)

⌉
≥ 3. We

chose the number of columns n′ to be the smallest integer such that ncT ≥ nu,
i.e.

(
n′

d

)
≥ n, so the system from Step 2 is solved at degree 2.



Improving Support-Minors Rank Attacks 395

Figure 1 summarizes the results of these experiments. In the graph, the theo-
retical value is the logarithm in base two of the time complexity given in Equation
(8) with nu = n − 1, ncT =

(
n′

d

)
− 1, ω = 2.81 and a hidden constant from the

Strassen’s algorithm taken equal to 7. The experimental complexity is measured
in terms of clock cycles of the CPU given by the Magma command ClockCycles().
The matrix reduction was done via the Magma command GroebnerBasis(Q, 2),
which is equivalent to Reduce(Q) in this context1, yet more efficient.

Our goal here is to discuss how feasible an attack on GeMSS is. For example,
the level I parameter set RedGeMSS128 is (q, n, v,D, a) = (2, 177, 15, 17, 15), so
that d = 5. According to our estimates its complexity is upper bounded by 249,
as shown in Table 4. For this value of d, we have been able to run experiments up
to n = 160, which is quite close to the goal of 177. Figure 1 also shows that the
estimated complexity is a good upper bound for the computation’s complexity.
Note that the jump in the d = 4 curves corresponds to a change in the value of
n′. Indeed, one can solve the system from Step 2 at degree 2 with n′ = 2d+1 = 9
as long as n ≤ 126, and otherwise one has to consider n′ > 2d + 1, for instance
n′ = 2d + 2 for the rest of the data points in these curves.

60 80 100 120 140 160 180
30

35

40

45

50

55

60

n

lo
g 2
( c
os
t)

Experimental d = 4
Experimental d = 5
Experimental d = 6

Theory d = 4 (Strassen ω = 2.81)
Theory d = 5 (Strassen ω = 2.81)
Theory d = 6 (Strassen ω = 2.81)

Fig. 1. Experimental vs Theoretical value of the complexity of Step 1.

8 Memory Management Strategy for the Support-Minors
Equations Within Block Wiedemann

This section is dedicated to the study of the memory complexity associated to
the XL strategy on a very large Support-Minors system Qb with possibly b > 1

1 The two procedures are equivalent because the system is bilinear, hence quadratic,
and Gröbner bases are automatically reduced in Magma.
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such as in attacks on rank metric code-based cryptosystems [5] or in the recent
rectangular MinRank attack on Rainbow [9]. The core operation here is the use
of Block-Wiedemann, whose cost is dominated by the combined cost of a large
number of matrix-vector multiplications, where the matrix is a fixed, full-rank,
square submatrix M(Qb)′ of the initial Macaulay matrix M(Qb). Note that this
matrix-vector product occurs approximately 3V times, where V is the dimension
of the vector v being multiplied. While the cost of these multiplications is often
expressed in terms of the number of field operations involved, it is likely that for
cryptographically-interesting instances, this cost is dominated instead by queries
to a large memory. In [41], the cost of a random access memory query is estimated
by the formula

C2 log2 V
√

V log2 q, (13)

where C2 > 0 is a constant, and it is asserted that such a random access must
occur every time a field multiplication is performed in the Wiedemann algorithm.
Here, [41] follows [7] in estimating the cost of moving a bit in a memory of size
V log2 q—the size of v—as C2

√
V log2 q. The constant C2 = 2−5 is used in [7],

[41] and, where we provide concrete numbers, in our paper.
In Sect. 8.1, we propose a strategy to obviate much of the memory access cost

per multiplication of Formula (13). In this methodology, the cost of the matrix-
vector products that dominate the cost of the Wiedemann algorithm approaches
one long distance memory access to a field element per active row of M(Qb)′

per matrix-vector multiplication, and moreover memory accesses are blocked so
that the cost of transmitting memory addresses is negligible. First, note that
as we have not seen any obvious way to avoid storing v while the value of the
matrix-vector product is being written to memory, we assume without harm a
memory of size 2V log2 q instead of V log2 q. With this choice and assuming the
same cost formula for generic RAM access as [41], this implies that the cost of
the Wiedemann algorithm should be quite close to

3V 2 log2 q · C2

√
2V log2 q. (14)

If we instead assume a 3-dimensional memory model, we closely approximate
a similar formula for the cost with (2V log2 q)1/3 substituted for

√
2V log2 q and

a different constant. In Sect. 8.2, we analyze the memory costs associated to our
strategy with this 2-dimensional memory model in mind with the understanding
that it is a trivial matter to adjust them to the 3-dimensional model. Finally, we
apply our formulae in Sect. 8.3 to the rectangular MinRank attack [9] to show
that at least in this case our results are indeed close to Formula (14).

8.1 Hashing Strategy on the Main Memory

Each coordinate of a matrix-vector product performed within the Wiedemann
algorithm is obtained from a vector-vector product of the form

rvT =
∑

i∈Supp(r)

rivi,
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where r is a row of the Macaulay matrix with support Supp(r) of size w, whose
elements can be cheaply computed on the fly. The cost estimates in [41] effectively
assign a cost of w random access queries in a memory of size V to perform
this vector-vector product. This would be accurate if the corresponding sum is
computed by a central processor which first computes the nonzero elements ri,
then fetches vi for i ∈ Supp(r) from memory, and finally multiplies each ri by
the corresponding vi and sums the products.

The strategy we propose, however, will partition the main memory in which
the vi’s are stored, so that for each row r, the vi’s with i ∈ Supp(r) will be
clustered into a small number of groups such that the vi’s in each group are
all in the same memory partition. This allows a distributed approach where a
processor assigned to each memory partition Π computes the nonzero ri’s for
vi ∈ Π and then computes the partial sum

∑
vi∈Π rivi. This partial sum is

then transmitted by each such processing cluster to that cluster among them
located in the section of memory where the total sum is to be written. Thus,
most of the arithmetic is performed locally, within each partition, with “remote”
communication only between the small number of relevant processing clusters.

To establish this partition, we observe that each pair of memory addresses—
a read address for a coordinate of the vector v and a write address for the
same coordinate of the product M(Qb)′vT— corresponds to a fixed bi-degree
(b, 1) monomial. Also, any row r is associated to an equation of Qb of the form
μQi,J , where J is a collection of d + 1 columns of the matrix M . The thing
each monomial in such an equation has in common is that the minor variable
present corresponds to a subset of J of size d; that is, it belongs to the set
{cJ\{j}, j ∈ J}. We may thus define an h-bit hash H for each monomial, where
bit i ∈ {1, . . . , h} of H(μcJ\{j}) is 1 exactly when i ∈ J \ {j}. Since there is
significant overlap in which columns are present in a minor corresponding to a
minor variable within each equation, we expect each row r to involve relatively
few possible hash values, thereby minimizing “remote” communication.

We may assume, as in [16,41], that the cost of distributing the MinRank
instance and a seed for a PRNG to generate the same square submatrix of the
Macaulay matrix to the 2h processing clusters arising from our hashing strategy
is insignificant in comparison to the cost of running the Wiedemann algorithm.
Thus, the hashing strategy has the potential to produce a significant savings in
memory access cost by making the vast majority of the multiplications in the
Wiedemann algorithm local.

8.2 Memory Savings from Our Approach

In this section, we analyze the memory savings of our approach compared to a
naive XL implementation which does not take advantage of structure within the
SM system, see Fact 2. First, note that rows of the full Macaulay matrix M(Qb)
can be grouped in blocks of size nr of the form {μQi,J , 1 ≤ i ≤ nr}, where
J ⊂ {1..nc}, #J = d + 1 and where μ is a fixed monomial of degree b − 1 in
the linear variables. While not all of these nr rows of M(Qb) are present in the
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square submatrix M(Qb)′ input into the Wiedemann algorithm, on average

n′
r =

rank(M(Qb))
#blocks

≈ #cols(M(Qb))
#blocks

=

(
N+b−1

b

)(
nc

d

)
(
N+b−2

b−1

)(
nc

d+1

)
such equations are included from each block. Fact 2 states that these equations
have potential nonzero coefficients for N(d+1) monomials all involving the same
set of minor variables, and thus memory access patterns arising from vector-
vector products involving these rows will be the same.

In our approach, each of these equations is considered by a given processing
cluster in function of the presence or absence of the first h columns of M in the
calculation of that equation. Note that the total number of choices of d + 1 of
the nc ≥ h columns can be written

(
nc

d + 1

)
︸ ︷︷ ︸

#All patterns

=
h∑

i=d+h+1−nc

(
h

i

)(
nc − h

d + 1 − i

)
,

where we have partitioned the choices by the hash value, and where binomial
coefficients with a negative second argument, if they occur, are interpreted as
zero. Therefore, for each hash value of Hamming weight i, there are

(
nc−h
d+1−i

)
choices of d+1 among the nc columns of M including exactly that hash specified
choice of i of these first h columns.

Memory Access Cost of One Field Element Within a Partition. The
portion of memory required by the processing cluster corresponding to a hash H
of Hamming weight i is of size 2Vi := 2

(
nc−h
d+1−i

)(
N+b−1

b

)
. This quantity includes

all Vi memory locations associated with bidegree (b, 1) monomials μukcT , where
ukcT is a bilinear monomial from the initial SM system and such that Hj = 1
if and only if j ∈ {1..h} ∩ T , as well as an equal amount of memory for writ-
ing output values. The total cost of reading every value of v within such a
partition, that is, exactly half of the partition’s values, is the product of the
number of such values, the square root of memory size in bits and the commu-
nication cost for transmitting a field element and an address. This product is
(2 log2 q)1/2(log2 q + log2(2Vi log2 q))V 3/2

i . Thus, summing this quantity across
all

(
h
i

)
hashes H of Hamming weight i for all values of i and dividing by the

total size, V =
(
N+b−1

b

)(
nc

d

)
, of read memory, we find that the average memory

access cost of a field element within some memory partition is given by

ψ1 =
C2(2 log2 q)1/2

V

h∑
i=d+h+1−nc

(
h

i

)
(log2 q + log2(2Vi log2 q))V 3/2

i . (15)

Additional Costs Due to the Hashing Strategy. Still, our hash-based man-
agement scheme creates overhead that must be taken into account in the final
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cost. For any given row of the Macaulay matrix, there is a (d+1)/nc probability
that the i-th column of M is used. Therefore, we expect the average vector-
vector product to require h(d+1)/nc processing clusters to locally add products
and then transmit to the designated accumulator. We further note that all of the
processing clusters can transmit all of their partial sums of size log2 q for every
equation to the designated accumulator in a canonical order, removing the need
for the transmission of an address of size log2(2V ) between the processing cluster
and the accumulator for every equation. Therefore, dividing by N(d + 1), which
is the number of monomials in any equation, we compute the average overhead
incurred by using the hash strategy per multiplication to be

ψ2 = C2
h log2 q

ncN

√
2V log2 q. (16)

Total Cost Per Fq -Multiplication. Putting these pieces together, we com-
pute the memory access cost per multiplication for solving a generic SM system
with the Wiedemann algorithm as follows. Since each equation belongs to a set
of, on average, n′

r equations having the exact same N(d + 1) monomials, and
noting that even for very large SM systems the quantity N(d+1) log2 q is small,
each processing cluster may retrieve these values only once and store them in
its local cache while computing each of the n′

r partial sums. Thus, each field ele-
ment is accessed ρ := 1/n′

r times on average per multiplication by a processing
cluster. Multiplying this average number of accesses by the average access cost
ψ1 within that partition and adding the above computed overhead ψ2, we obtain

Total Memory Cost Per Multiplication = ρψ1 + ψ2. (17)

Recall that the validity of Eqs. (15) and (16) depends on the acceptance of a
two-dimensional nearest-neighbor topology being optimal for large scale memory.
If we prefer a three-dimensional nearest-neighbor topology of a similar nature,
the above formulae still work when each exponent of 1/2 is replaced by 1/3, 3/2
is replaced by 4/3 and C2 is replaced by a new constant C3.

Neglected Costs. There are many costs to consider that arise from the hashing
strategy that are either slight or negligible, hence they are not included in Equa-
tion (17). We provide a detailed analysis of some of these costs in [3, Appendix
B].

8.3 Application to the Rainbow Rectangular MinRank Attack [9]

In this section, we estimate the memory access cost of our hashing scheme applied
to the rectangular MinRank attack [9]. In comparison to our GeMSS attack,
the sizes of the SM systems encountered there can be significant. In particular,
[41] pointed out that it may be vital to consider memory access costs in this
context. Recall from Sect. 2.3 that the “MinRank + P = 0” version of this attack
considers the hybrid system H combining the SM equations Q with the m public
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equations P(y) = 0 which are quadratic in the linear variables present in Q. In
this case, the Macaulay matrix M(Hb) in bi-degree (b, 1) is obtained by taking
the rows of M(Qb) together with these bi-degree (2, 0) public equations pi for
1 ≤ i ≤ m multiplied by all degree (b − 2, 1) monomials ν. The effect of adding
P = 0 to SM is that for a fixed number of columns nc of M , the resulting hybrid
system may be solved at a smaller degree b than the initial Support-Minors one.
In general, the system H can be solved in degree (b, 1) with any subset of the
SM and P = 0 equations of rank V =

(
N+b−1

b

)(
nc

d

)
− 1. As derived in [9], under

standard genericity assumptions such a subset exists at degree (b, 1) when the
coefficient of tb in (1 − t2)NG′(t) is non-positive, where G′(t) is the generating
function for the quotient of the polynomial ring by Q. In particular, since both
b and nc are parameters of the SM equations, it is possible to construct an
augmented SM system s.t. rank (M(Qb)) < V while rank (M(Hb)) = V . Note
that the rank RSM,b of M(Qb) is given by [5, Heuristic 2] when this quantity is
smaller than V , and therefore M(Hb) will be of full rank if there exist at least
V −RSM,b linearly independent equations in bi-degree (b, 1) derived from P = 0.
In practice, as is found in [9, Table 6], optimization of this attack often occurs
at a lower value of nc and a higher value of b than when considering the SM
system alone.

Adapting the Approach to the P = 0 Equations. To take these augmented
P = 0 equations into account in our hashing methodology, a first remark is that
they trivially come in groups of size m of the form {νpi, 1 ≤ i ≤ m} with
the same monomial content, a set of

(
N+1
2

)
monomials all involving the unique

minor variable which divides ν, where we set N := n − o2 + 1 and d := o2 to
stick to the notation from Sect. 3. This structure implies that any vector-vector
product rvT where r corresponds to a P = 0 equation can be computed by
a single processing cluster under the strategy we outlined in Sect. 8.1. Having
at most one processing cluster required to compute the vector-vector product
and having at most one long distance transmission of the sum to the designated
processor that writes the value in memory, the P = 0 equations are much more
efficient than the SM equations, even if they contain many more monomials per
equation, as

(
N+1
2

)
> N(d + 1) for most parameters.

Another important remark is that any basis of the rowspace of M(Hb) can
be made to contain as many of the P = 0 equations as are linearly independent.
First, note that the first fall degree of the polynomial system P—which was
extensively tested in direct attacks on UOV/Rainbow—is significantly higher
than the solving degree of the SM system using the (b, 1) XL strategy. Also,
the assumptions which were proposed and empirically verified on pages 22–23
of [9] for the hybrid system are actually stronger than assuming that merely the
P = 0 quadratic system is generic. Thus, there seems to be no harm in assuming
that with high probability, the number RP,b of linearly independent P = 0
equations can be calculated as RP,b =

(
nc

d

)
[tb]H(t), where H(t) = 1−(1−t2)m

(1−t)N
and

where [tb]H(t) represents the coefficient of tb in the power series expansion of H.
Finally, recall that we have to add as many SM equations as possible to these
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P = 0 equations in order to reach the final rank V . Since SM equations occur
in the span of the augmented P = 0 polynomials, the rank of the Macaulay will
not always increase by 1 each time we add a random SM equation. Under the
standard heuristic that these equations behave as random vectors in a space of
the appropriate dimension, any random subset of RP,b of these P = 0 equations
should be linearly independent with probability around 1 − q−1, and a similar
argument under the same heuristic can be used again to verify that this system
can be extended to a full rank system with randomly chosen SM equations with
a similarly high probability. For clarity, we do not add the factor corresponding
to this probability in our estimations as we can treat it as a constant.

Overall Costs. Naturally, using fewer of the SM equations requires a recalcula-
tion of the average number n′

r of equations included in the system from among
each block of equations with the exact same monomial content. With the above
strategy, we have

n′
r =

V − RP,b

#blocks
,

and the value of ρ := 1/n′
r is adjusted accordingly. Thus we may compute the

total cost of the hybrid attack against Rainbow. Let σSM denote the ratio (V −
RP,b)/V of SM equations to total equations in the hybrid system corresponding
to M(Hb)′ and let σP = RP,b/V represent the ratio of P = 0 equations. Then,
the total cost under the same assumptions on memory cost of [41] and using the
method described in Sect. 8.1 is given by

3(ρψ1 + ψ2)V 2σSMN(d + 1)

+ 3
(

ψ1

m
+ C2 log2 q(2V log2 q)1/2

)
V 2σP

(
N + 1

2

)
,

where we recall that N = n − o2 + 1 and where ψ1 is defined in Equation (15).
Since RP,b is significantly smaller than V − RP,b and the P = 0 equations are
much more memory efficient than the SM equations, we find that the contribu-
tion of the P = 0 equations in complexity ends up being a negligible fraction of
the total cost for all the parameters we consider. Finally, we present the total
estimated cost of applying XL using the hash method to the rectangular Min-
Rank attack on Rainbow in the 2-dimensional case in Table 6, and we compare
it to the conjectured formula given by (14).

9 Conclusion

The Support-Minors modeling of the MinRank problem [5] has changed our
perspective of the applicability of rank methods in cryptanalysis. This new tech-
nique has changed the complexity of many MinRank instances by a significant
amount in the exponent. In addition, this advance has opened up new avenues
for cryptanalysis by making newly discovered attacks that exploit rank viable,
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Table 6. Optimal hash size (h) and total attack cost including idle costs for the
MinRank (SM) and “MinRank + P = 0” (SM+P) attacks in the 2D nearest-neighbor
topology model for Rainbow variants compared with the conjectured bound (2D Conj.)
of Formula (14) and the required security level using the constant C2 = 2−5.

Scheme
(q, n,m, d)

2D
SM

2D
SM+P

2D
Conj.

Security
Level

Rainbow-I
(16, 100, 64, 32)

cost
(hash)

2146.9

(h = 12)
2139.5

(h = 14)
2135.8 2143

Rainbow-III
(256, 148, 80, 48)

cost
(hash)

2205.9

(h = 16)
2201.2

(h = 16)
2197.4 2207

Rainbow-V
(256, 196, 100, 64)

cost
(hash)

2272.4

(h = 18)
2260.9

(h = 19)
2256.9 2272

e.g. [9,40]. This new MinRank algorithm has inspired recent efforts to repair
broken schemes, see [36], and work to estimate the real-world complexity of
implementing Support-Minors via XL, see [41]. In particular, [36] claims to offer
protection from the Support-Minors method by way of a modification of GeMSS
called pHFEv- while [41] offers a first approximation of a memory cost analysis
for solving Support-Minors.

In this work, we provide a technique for solving a Support-Minors MinRank
instance with solutions in an extension field, verifying that both GeMSS and
pHFEv- remain insecure for all practical parameters. Indeed, it turns out that
the advantage of using Support-Minors in this scenario is significant and the
complexity of the attack is much smaller than that of [40]. The attack is efficient
enough so that with more effort it may finally be feasible to practically solve
HFE Challenge 2 [18].

Also, with our hashing strategy, we give theoretical arguments of the same
level as in [41] to show that much of the memory access cost described there may
be obviated when solving large Support-Minors systems using XL. Moreover,
while this hash strategy depends intimately on the structure of the Support-
Minors system, it does not seem to depend strongly on the solving degree in the
XL algorithm. This fact suggests that it may even be possible to fully parallelize
XL generically. This task remains an important direction for future work.
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26. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
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showed how to achieve approximately (game-theoretically) fair leader
election in the presence of majority coalitions, with round complexity as
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In this paper, we revisit the round complexity of game-theoretically
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tocols that achieve (1 − o(1))-approximate fairness in the presence of
(1 − o(1))n-sized coalitions. Our protocols achieve the same round-
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1 Introduction

Suppose that Murphy, Murky, and Moody co-authored a paper that proved
a ground-breaking theorem and the paper got accepted at the prestigious
CRYPTO’22 conference. Murphy, Murky, and Moody want to run a coin toss
protocol over the Internet to elect a winner who will present the paper at the con-
ference. Since everyone wants to go to the beautiful beaches of Santa Barbara, all
of them want to be the winner. They each are worried that the other coauthors
might deviate from the honest protocol to gain an unfair advantage. There is
both good and bad news. The bad news is that due to a famous lower bound by
Cleve [Cle86], there is no strongly fair coin toss protocol when half of the parties
may be corrupt and misbehaving—roughly speaking, strong fairness requires
that the coalition cannot bias the outcome of the coin toss whatsoever. The
good news is that a more recent line of work [CCWS21,GGS,CGL+18,WAS22]
has shown that a relaxed fairness notion called game-theoretic fairness is indeed
possible for the leader election problem, even when an arbitrary number of par-
ties may be corrupt. To see why, first observe that the original Blum’s coin toss
protocol [Blu83] actually gives a game-theoretically fair leader election scheme
for n = 2 parties. Imagine that each party first commits to a random coin, they
then open their coin, and the XOR of the two bits is used to elect a random
winner. If one party fails to commit or correctly open, it is eliminated and the
remaining party is declared the winner. Blum’s coin toss satisfies game-theoretic
fairness in the following sense. As long as the commitment scheme is not broken,
a corrupt layer cannot bias the coin to its own favor no matter how it deviates
from the protocol. Note that Blum’s protocol is not strongly fair since a corrupt
party can indeed bias the coin, but only to the other player’s advantage.

For the more general case of the n parties, we can use a folklore tournament-
tree protocol to accomplish the same purpose. Suppose that n is a power of 2
for simplicity. We first divide the n parties into n/2 pairs, and each pair elects
a winner using Blum’s coin toss. The winner survives to the next round, where
we again divide the surviving n/2 parties into n/4 pairs. The protocol continues
after a final winner is elected after log2 n rounds. At any point in the protocol,
if a party fails to commit or correctly open its commitment, it is eliminated and
its opponent survives to the next round.

The recent work of Chung et al. [CCWS21] argued that this simple tour-
nament tree protocol satisfies a strong notion of game-theoretic fairness as ex-
plained below. Suppose that the winner obtains a utility of 1 and everyone
else obtains a utility of 0. As long as the commitment scheme is not broken,
the tournament tree protocol guarantees that 1) no coalition of any size can
increase its own expected utility no matter what (polynomially-bounded) strategy
it adopts; and 2) no coalition of any size can harm any individual honest player’s
expected utility, no matter what (polynomially-bounded) strategy it adopts.
Recent work in this space [CCWS21,GGS,CGL+18,WAS22] calls the former
notion cooperative-strategy-proofness (or CSP-fairness for short), and calls the
latter notion maximin fairness. Philosophically, CSP-fairness guarantees that
any rational, profit-seeking individual or coalition has no incentive to deviate
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from the honest protocol; and maximin fairness ensures that any paranoid indi-
vidual who wants to maximally protect itself in the worst-case scenario has
no incentive to deviate either. In summary, the honest protocol is an equi-
librium and also the best response for every player and coalition. Therefore,
prior works [CGL+18,CCWS21,WAS22,GGS] have argued that game-theoretic
notions of fairness are compelling and worth investigating because 1) they are
arguably more natural (albeit strictly weaker) than the classical strong fairness
notion in practical applications; and 2) the game-theoretic relaxation allows us
to circumvent classical impossibility results pertaining to strong fairness in the
presence of majority coalitions [Cle86].

Having established the general feasibility of game-theoretically fair leader
election in the presence of majority-sized coalitions, Chung et al. [CCWS21]
asked the following natural question: what is the round complexity of game-
theoretically fair leader election in the presence of majority coalitions? Specif-
ically, can we asymptotically outperform the logarithmic round complexity
of the folklore tournament tree protocol? They then gave a partial answer
to this question, showing that for any desired round complexity parameter
Θ(log log n) ≤ R ≤ log n, there is an O(R)-round n-party leader election protocol
that achieves

(
1 − 1

2Θ(R)

)
-fairness against coalitions of size up to

(
1 − 1

2Θ(R)

)
n.

In particular, their result statement adopts an approximate notion of game-
theoretic fairness. Roughly speaking, a protocol is (1 − ε)-fair if it satisfies the
aforementioned game theoretic fairness (including CSP-fairness and maximin
fairness) up to an ε slack. More specifically, we want that the coalition’s expected
utility cannot exceed 1/(1−ε) times its normal utility had everyone behaved hon-
estly, and we require that any honest individual’s expected utility cannot drop
below (1 − ε) times its normal utility had everyone behaved honestly. Chung et
al.’s result [CCWS21] enables a smooth and mathematically quantifiable trade-
off between the efficiency of the protocol and its resilience to strategic behavior.
However, their result requires the protocol to have at least Θ(log log n) rounds
to give any meaningful fairness guarantee. Indeed, a more careful examination
suggests that their framework has a sharp cutoff at Θ(log log n) rounds, i.e., the
approach fundamentally fails when we want round complexity to be less than
log log n. Therefore, an obvious gap in our understanding is the following:

In the presence of majority-sized coalitions, can we achieve any meaningful
fairness guarantee for small-round protocols whose round complexity is less
than log log n?

1.1 Our Results and Contributions

In this paper, we revisit the round complexity of game-theoretically fair leader
election. We make the following contributions. First, we show positive results in
the style of Chung et al. [CCWS21], but now for a broader range of parameters
as explained in the following Theorem 1.1. In particular, our result shows that
under standard cryptographic assumptions, there is a O(log∗ n)-round leader
election protocol that achieves (1−o(1))-game-theoretic-fairness, in the presence
of (1 − o(1)) · n-sized coalitions.
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Second, we give conceptually simpler constructions than those of Chung et
al. [CCWS21], which also result in simpler analyses. More specifically, Chung et
al.’s construction relies on combinatorial objects called extractors, which we get
rid of in our construction. We believe that our conceptually simpler constructions
can lend to better understanding and make it easier for future work to extend
our framework. Interestingly, our constructions are inspired and have structural
resemblance to Feige’s famous lightest bin leader election protocol [Fei99]. We
stress, however, that Feige’s protocol itself does not satisfy game-theoretic fair-
ness, but rather, achieves only a much weaker notion of resilience, i.e., an honest
party is elected leader with constant probability. At a very high level, our app-
roach augments Feige’s protocol lightest-bin protocol with a “commit and open”
and a “virtual identity” mechanism, and we prove that the resulting protocol
satisfies the desired game-theoretic properties.

Third, we also present results for the more generalized problem of fair com-
mittee election, where the goal is to elect a committee of size c. The leader
election problem can be viewed as a special case of committee election where
c = 1. Our main results are summarized in the following theorems.

Theorem 1.1 (Game-theoretically fair leader election). Assume the existence
of enhanced trapdoor permutations, and collision-resistant hash functions. Fix n
and let log∗ n ≤ R ≤ C log n be the round complexity we want to achieve for
some constant C. Then there exists an O(R)-round leader election that achieves
(1− 1

2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size
at most (1 − L

Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

For readers who are familiar with the line of work on approximate strong
fairness [Cle86,MNS09,AO16,BOO10,HT14], an interesting observation is that
for game-theoretic fairness, the efficiency-fairness tradeoff is exponentially better
than that of strong fairness. Specifically, it is known that any R-round protocol
cannot achieve Ω(1/R) strong fairness1 against an n/2-sized coalition, whereas
we show that R-round protocols can achieve (1 − 1/2Θ(R))-fairness.

Theorem 1.2 (Game-theoretically fair committee election). Assume the exis-
tence of enhanced trapdoor permutations and collision-resistant hash functions.
Fix n and c. Let L∗ be the smallest integer such that log(L

∗) n ≤ c. Then for any
L∗ ≤ R ≤ C0 log n for some constant C0, we have that

– If c ≥ 2R, there exists an O(R)-round committee election that achieves (1 −
1

cΘ(1) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size
at most (1 − L∗

Θ(R) )n.
– If c < 2R, there exists an O(R)-round committee election that achieves (1 −

1
2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size
at most (1 − L

Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

1 The approximate strong fairness line of work defines what we call (1− ε)-fairness as
ε-fairness (but for the notion of strong fairness instead). Following the notations of
Chung et al. [CCWS21], we flipped this notation to make it more intuitive: with our
notation, 1-fair is more fair than 0-fair which agrees with our intuition.
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Below are some interesting examples with respect to different committee size
c and the round complexity R.

– For committee size c = 1, i.e., leader election, and round complexity R =
O(log∗ n), our protocol achieves Θ(1)-game-theoretic fairness against a coali-
tion of size Θ(n) assuming log ∗n is a constant;

– For committee size c = 1, i.e., leader election, and round complexity R =
log log log n, out protocol achieves (1− 1

poly log log n )-fairness against a coalition
of size n − n

Θ(log log log n) .
– For committee size c = poly log log n and for constant round complexity

R = Θ(1), our protocol achieves (1 − 1
poly log log n )-fairness against Θ(n)-sized

coalition.

In this paper, we consider the standard notions of approximate CSP-fairness
and maximin-fairness. The standard notion of approximate CSP-fairness is also
sometimes referred to as approximate coalition-resistant Nash equilibrium in
some earlier works such as Fruitchain [PS17]. It is also known [CCWS21] that the
standard notion of approximate CSP-fairness (or maximin-fairness) is equivalent
in some sense to approximate notions of fairness formulated by the more classical
Rational Protocol Design (RPD) paradigm [GKM+13,GTZ15,GKTZ15].

Although the standard notion of approximate fairness seems the most nat-
ural one, Chung et al. [CCWS21] pointed out that when defining approximate
fairness, one can in fact adopt a strengthened notion which they call sequential
fairness. Their game-theoretically fair leader election result is in fact stated for
the sequential notion. In this sense, our result is incomparable to theirs: they
consider a stronger solution concept but their approach inherently cannot give
any meaningful result for protocols of o(log log n) rounds. By contrast, we con-
sider the more standard non-sequential notion and we are able to generalize the
smooth tradeoff between efficiency and fairness shown by Chung et al. [CCWS21]
to a broader range of parameters.

1.2 Additional Related Work

Game Theory Meets Cryptography. Some recent efforts have instigated the
intersection of the game theory [Nas51,Aum74] and multi-party computa-
tion [GMW19,Yao82]. See [Kat08,DR+07] for a survey. There have been two
classes of questions that have attracted a lot of interests.

Some work [HT04,KN08,ADGH06,OPRV09,AL11,ACH11] explore how to
define game-theoretic notions of security, as opposed to cryptography security
notions for distributed computing tasks such as secure function evaluation. Exist-
ing works in this line considered a different notion of utility than our work.
Their utility functions are often defined assuming that players prefer to com-
pute the function correctly, or prefer to learn others’ secret data and prefers
that other players do not gain knowledge about their own secrets. Garay et al.
propose a paradigm called Rational Protocol Design [GKM+13] and develop
this paradigm in subsequent works [GTZ15,GKTZ15]. As mentioned in Sect. 1,
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the standard notion of approximate CSP-fairness (or maximin fairness) is in
some sense equivalent to the approximate notion of fairness formulated in RPD
paradigm.

Another line of work explores how cryptography can help traditional game
theory. Many works in game theory assumed the existence of a trusted mediator,
which can be realized under cryptography [DHR00,IML05,GK12,BGKO11].

Recently, there has been renewed interest in the connection between game
theory and cryptography. Besides the work of Chung et al. [CCWS21] that
inspires our work, and [GGS] that generalized the lower bound of the round
complexity of game-theoretically fair leader election, the recent work [CGL+18,
WAS22] have also suggested game-theoretically fair multi-party binary-coin toss.
Binary-coin toss considers tossing a binary coin among n players, while in leader
election, we consider tossing an n-way coin among n players. These two formu-
lations are different and they exhibit starkly different theoretical landscape.

Leader Election in Other Models. Leader election has been studied extensively.
A line of work [BK14,ADMM14] considered how to achieve “financially-fair”
n-party lottery over cryptocurrencies. Their game-theoretic notion of fairness is
similar to ours, yet they rely on collateral and penalty mechanisms to achieve
fairness. As a comparison, our fairness can be achieved without relying on addi-
tional assumptions such as collateral and penalty. Moreover, [ADGH06] studied
an incomparable game-theoretic notion for leader election. In their notions, all
users prefer to have a leader, and users may have different preferences of who
the leader is.

Besides, leader election was considered in the full information model [RZ01,
RSZ02,Fei99,Dod06]. Their notion of security concentrates on electing an honest
leader with some small constant probability, assuming honest majority [Fei99].
This notion is much weaker than the game-theoretic notion considered in our
work, which are more suitable in some decentralized applications, where honest
majority assumption is not applicable. Moreover, in the full-information model,
leader election is impossible against a majority coalition even under this weak
notion of security. Interestingly, our committee election protocol actually builds
on Feige’s lightest bin protocol [Fei99].

Approximate Strong Fairness. As mentioned in Sect. 1, the de facto notion of
fairness considered in the multi-party computation literature is strong fairness or
unbiasability. The celebrated result of Cleve [Cle86] showed that it is not possible
to achieve Ω( 1

R )-unbiasable coin toss against a coalition consisting of half or
more players. Moran et al. [MNS09] showed how to obtain an R-round protocol
that achieves Ω( 1

R )-unbiasability in the two-party setting, that matches Cleve’s
lower bound. Recent work [AO16,BOO10,HT14] have been making encouraging
progress on building fair multi-party coin toss. However, they rely on constant
number of players to ensure polynomial round complexity. We cannot directly
rely on multi-party unbiasable coin toss to build game-theoretically fair leader
election because our trade-off curve between round complexity and the fairness
slack ε is exponentially better than that of the unbiasability.
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2 Technical Roadmap

2.1 Electing Poly-logarithmically Sized Committees: Achieving
CSP-Fairness

We start by observing that a single iteration of Feige’s lightest-bin proto-
col [Fei99] can elect a committee of size c ≥ poly log n while satisfying CSP-
fairness against relatively large coalitions. Feige’s ingenious protocol works as
follows (we describe a single iteration of the protocol): each player i ∈ [n] chooses
a random bin bi among a total of B = n/c bins, and broadcasts its choice bi. At
this moment, we identify the lightest bin, and everyone who has placed itself in
the lightest bin is elected as a committee member. A simple analysis shows that
this protocol satisfies CSP-fairness against relatively large coalitions. Specifi-
cally, the lightest bin cannot exceed a capacity of c = n/B. Moreover, applying
the standard Chernoff bound and the union bound, we know that with proba-
bility at least 1 − n · exp(−Ω(ε4 · c)), a good event that every bin has at least
(1 − ε2) · (1 − β) · c honest players must happen, where β · n is the maximum
coalition size for β ∈ (0, 1). Now we show that if the coalition has size larger
than ε · n, then Feige’s lightest bin is (1 − Θ(ε))-CSP-fair. Given that the good
event happens, the expected fraction of corrupted players in the committee is at
most 1 − (1 − ε2) · (1 − β) ≤ β

1−2ε . For large n, it is easy to see that the good
event happens with 1 − negl(n) probability and the expected fraction of coali-
tion in the committee is at most β

1−Θ(ε) . For small n, however, the calculation
is more involved, as we will describe below. The overall expected fraction of the
coalition in the committee is at most β

1−2ε + δ, where δ = n · exp(−Ω(ε4 · c))
is the probability that the good event does not happen. To guarantee that the
expected fraction of the coalition in the committee is at most β

1−Θ(ε) , we need
the failure probability δ ≤ β · Θ(ε). The expected fraction of the coalition in the
committee is thus β

1−2ε + δ ≤ β( 1
1−2ε + Θ(ε)) ≤ β

1−Θ(ε) . For example, if we pick
ε = 1

log n and c = (log n)10, then the probability that the good event does not
happen is at most n exp{−Ω((log n)6)} ≤ ε2 ≤ β · ε for any n ≥ 3. Henceforth
the protocol satisfies (1 − Θ(ε)) -CSP-fairness as long as the coalition contains
at least εn players.

Unfortunately, the protocol does not satisfy CSP-fairness for small coalitions.
For example, a single individual i ∈ [n] (i.e., a coalition of size 1) can examine
all others’ bin choices and then decide to place itself in the lightest bin. In this
case, if the lightest bin (not counting player i) is at least 2 lighter than the
second lightest bin, player i is elected into the committee. This happens with a
probability at least 6

5 · c
n for large n, which is significantly higher than the normal

probability c/n that player i ought to be elected in an all-honest execution.

Commit-and-Reveal Lightest Bin. We introduce commit-and-reveal version of
Feige’s lightest bin protocol which achieves CSP-fairness not just against large
coalitions, but also against small coalitions as well. The idea is quite simple—
below we describe the scheme assuming ideal commitments, although in our
formal technical sections we will instantiate the commitments using standard
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non-malleable commitments. Everyone first commits to a random bin number
among B = n/c bins. They then open their commitments. Those who land in
the lightest bin are declared the committee, and like before, anyone who fails
to commit or correctly open is kicked out. Using the same argument as before,
we can show that the commit-and-reveal lightest bin protocol also achieves (1 −
Θ(ε))-CSP-fairness against coalitions of size at least εn.

We now argue why it also satisfies CSP-fairness against small coalitions of size
βn < εn. Intuitively, the coalition’s best strategy is to pick a bin with the fewest
number of honest players (henceforth called the honest-lightest bin), and place
as many coalition members in it as possible while still maintaining that it is the
lightest. However, the coalition does not know which one is the honest-lightest
bin when committing to its own bin choices. In fact, even when conditioned on
the coalition’s view during the commitment phase, each bin is the honest-lightest
bin with equal probability. No matter how the coalition spreads its members
across the bins, the expected number of coalition members in a randomly chosen
bin is at most β · n/B = β · c. Further, with 1 − n · exp(−Ω(ε4 · c)) probability,
the good event that honest-lightest bin should have at least (1 − ε2)(1 − β)c
honest players happens. Therefore, the coalition’s expected representation on
the committee cannot exceed β

(1−ε2)(1−β) ≤ β
1−2ε given that the good event

happens. Overall, the expected fraction of the coalition in the committee is at
most β

1−2ε + δ, where δ = n · exp(−Ω(ε4 · c)) is the probability that the good
event does not happen. Still, as long as δ ≤ βε, by the same analysis as before,
the expected fraction of the coalition in the committee is at most β

1−Θ(ε) .

2.2 Electing Poly-logarithmically Sized Committees: Achieving
Maximin Fairness

Although simple and cute, the commit-and-reveal lightest bin protocol does not
satisfy maximin fairness. For example, a Θ(n)-sized coalition can target a victim
player i ∈ [n] and prevent it from being elected with high probability using the
following strategy. During the commitment phase, spread the coalition members
evenly across all bins. During opening, first observe which bin (denoted b∗)
player i lands in. Then, all coalition members fail to open except those whose
choice was b∗.

To achieve maximin fairness, we are inspired by a virtual identity technique
originally proposed by Chung et al. [CCWS21], but unfortunately, directly apply-
ing this idea to the lightest bin does not work. At a high level, a strawman idea
is as follows:

1. Every player i ∈ [n] selects a random virtual identity vi from a sufficiently
large space, and commits to the pair (i, vi).

2. Every player i ∈ [n] selects a random bin bi among B = n/c bins, and commits
to the pair (vi, bi) where vi is its secret virtual identity.

3. Everyone i ∈ [n] opens their commitment of (vi, bi). The virtual identities
contained in the lightest bin will be elected committee.
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4. Everyone opens their real-virtual identity mapping (i, vi). This will allow
everyone to compute the real identities of those elected to the committee.

Now, as long as the coalition does not know an honest player i’s virtual ID,
it does not know who to target during the commit-and-reveal lightest bin steps
(Steps 2 and 3). Therefore, as long as the good event that each bin contains at
least (1 − ε)(1 − β)c honest players happens, an honest player i will be elected
into the committee with probability at least (1−ε)(1−β)c

(1−β)n = (1−ε)c
n . By law of

total probability, the probability that an honest player i gets elected into the
committee with probability at least (1−ε)(1−δ)c

n , where 1 − δ is the probability
that the good event happens. Henceforth, as long as δ ≤ ε, an honest player i

gets elected into the committee with probability at least (1−Θ(ε))c
n .

Unfortunately, this idea does not work if the coalition can eavesdrop on the
network channel and observe who sent which (bin, virtual ID) pair in the commit-
and-reveal lightest bin protocol. This would allow the coalition to immediately
learn the correspondance between virtual and real identities.

To salvage this idea, our high-level idea is simple but realizing it turns out
to be somewhat subtle as we explain later. First, if we are willing to assume
the existence of an idealized anonymous communication network where play-
ers can post messages anonymously, then we can overcome the aforementioned
problem by running Steps 2 and 3 over an anonymous communication network.
Therefore, it suffices to find a suitable anonymous communication protocol to
realize anonymous communication. Although anonymous communication has
been extensively studied in the literature [Cha81,Cha88,Abe99,CGF10,DMS04,
SGR99,ZZZR05], in our setting, it is tricky to adopt existing schemes directly.
The main technicality is that in the presence of a majority coalition, we cannot
guarantee the liveness of the anonymous communication protocol.

To overcome this problem, one näıve idea is to rely on an anonymous commu-
nication protocol with identifiable abort, and if the protocol fails, we kick out an
offending player and retry. Unfortunately, the vanilla notion of identifiable abort
does not work for us because we cannot afford to kick out offending players one
by one since we are aiming for small round complexity. Our idea is to devise an
anonymous communication protocol not just with identifiable abort, but with
plentiful identifiable aborts. In other words, if the protocol fails, we want to kick
out sufficiently many players, such that we can eventually succeed without too
many retries.

Therefore, we adapt an anonymous communication protocol inspired by DC-
nets [Cha88] to achieve such a plentiful identifiable abort notion. Assuming an
upper bound of βn on the coalition size, our protocol kicks out at least (1−β)n
players in the event of failure. Thus the round complexity is at most 1

1−β . For
example, if β = 99%, we can still succeed in O(1) rounds.

We give a formal description of our poly-logarithmically-sized committee
election protocol and prove its security in Sect. 4. We present a formal description
of our anonymous communication protocol in Sect. 6.2.
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2.3 Leader Election

Although the lightest bin protocol via anonymous broadcast (denoted as LBin-V
below) achieves CSP-fairness and maximin-fairness simultaneously, it cannot be
directly used to select a leader, i.e., c = 1. Indeed, the fairness of LBin-V depends
on the occurrence of the good event that each bin has at least (1 − ε2)(1 − β)c
number of honest players, where β ·n is the maximum coalition size for β ∈ (0, 1).
If we are to choose a leader directly using LBin-V, then the probability that this
good event happens is 0, which makes our protocol unfair.

To construct a leader election protocol, we compose the committee election
LBin-V for multiple iterations. In each iteration: we choose a log-sized committee.
In the first iteration we choose a poly log-sized committee C1, and then in the
second iteration we choose a poly log log sized committee C2 from C1, and so on.
As analyzed earlier, each iteration of LBin-V is (1−Θ(ε))-game-theoretically fair
given that the failure probability δ that the good event does not happen in this
iteration is small compare to β · ε.

However, as the committee size becomes smaller in each iteration, the prob-
ability that the good event does not happen becomes larger. In the last few
rounds, when the committee becomes constant size, the probability that the
good event does not happen becomes a constant. Therefore, we need to cut off
at some point and instead run the “almost perfect” tournament tree protocol. As
shown in Chung et al. [CCWS21], the tournament tree protocol among c players
chooses a leader in O(log c) rounds and is (1 − negl)-game-theoretically fair. If
we want to achieve a round complexity of R, then we can stop running LBin-V
when the committee size becomes smaller than 2Θ(R) and run the tournament
tree protocol among the committee to elect a leader.

Now suppose that we run L iterations of committee election LBin-V and get
a committee of size 2Θ(R). Then we need to guarantee that the round complexity
of these L iterations of LBin-V is at most O(R). By the analysis above, if we
kick out (1−β)n players in each anonymous communication protocol, the round
complexity of each LBin-V is at most 1

1−β . This requires that the fraction of
coalition β ≤ 1 − L

Θ(R) .
Now since the probability that the good event does not happen increases in

each iteration, the probability that there is an iteration in which the good event
does not happen is dominated by L · δL, where δL = exp{−ε4 · 2−Θ(R)} is the
probability that good event does not happen in the last iteration. As long as this
probability is smaller than β · ε, the protocol is (1 − Θ(ε))-fair. Picking ε = 1

2R

suffices. Therefore, if we run LBin-V multiple iterations to elect a committee C
of size is 2Θ(R), and then run the tournament tree protocol among C to elect a
leader, our leader election protocol achieves (1 − 1

2Θ(R) )-game-theoretic fairness.
In Sect. 5, we give a generalized protocol that combines multiple iterations of

LBin-V and the tournament tree protocol to elect an arbitrary-sized committee,
including the special case of committee size 1, i.e., leader election.
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3 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. The nota-
tion log(�) n means taking logarithm � times over n. For example, log(3) n ≡
log log log n. Moreover, we use log∗ n to denote the smallest integer � such that
log(�) n ≤ 1. For an event E, we denote E as the event that E does not happen.
For a vector X of length M , we use X[j] for j ∈ [M ] to denote the j-th element
of X. By t-out-of-n SS, we refer to a Shamir secret sharing protocol in which
any t + 1 players can reconstruct the secret, while any t players know nothing
about the secret [Sha79]. We use the acronym p.p.t. for non-uniform probabilis-
tic polynomial time. We use {Xλ}λ ≡c {Yλ}λ to denote that two distribution
ensembles {Xλ}λ and {Yλ}λ are computationally indistinguishable, i.e., for all
non-uniform p.p.t. A, there exists a negligible function negl(·), such that for any

λ ∈ N, |Pr[x $←Xn,A(x) = 1] − Pr[y $←Yn,A(y) = 1]| < negl(λ).

3.1 Probability Tools

Lemma 3.1 (Chernoff bound, Corollary A.1.14 [AS16]). Let X1, . . . , Xn be
independent Bernoulli random variables. Let μ = E [

∑n
i=1 Xi]. Then, for any

ε ∈ (0, 1), it holds that

Pr

[
n∑

i=1

Xi ≤ (1 − ε)μ

]

≤ e−ε2μ/2.

3.2 Fairness Notions for Committee Election

Since a leader is a special case of a 1-sized committee, we will define correctness
and fairness with respect to committee election protocol.

In a (c, n)-committee election protocol, n players interact through pairwise
private channels and a public broadcast channel. We assume that each player has
identity 1, 2, . . . , n, respectively. We assume that all communication channels are
authenticated, i.e., messages carry the sender’s identity. Moreover, the network
is synchronous, and the protocol proceeds in rounds.

The protocol execution is parametrized with the security parameter λ. We
assume that the coalition (adversary) A performs a rushing attack. In every
round r, it waits for all honest players (those not in A) to send messages in round
r and decide what messages the players in the coalition send in round r. At the
end of the committee election, the protocol outputs a set of at most c players
called the committee. The output is defined as a deterministic, polynomial-time
function over all public messages posted to the broadcast channel. Since we assume
that all players wish to be selected into the committee, the utility function we
consider is as follows: each player elected into the committee gains a utility of
1, while everyone else gains a utility of 0. If all players behave honestly, the
committee is chosen uniformly at random.
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Correctness. We say that a (c, n)-committee election protocol is correct, if in
an all honest execution, every subset C ⊂ [n] of size c has an equal probabil-
ity of being elected as the committee, where the probability is taken over the
randomness of (an honest execution) the protocol.

For the fairness notion, we recall the definitions proposed by Chung et
al. [CCWS21]. The first notion of fairness (CSP-fairness) protects against a mali-
cious coalition from increasing its utility. The second notion (maximin-fairness)
protects against a malicious coalition from decreasing the utility of any honest
party. Each of these notions is natural and useful on its own, and in some sense,
they complement each other. A protocol that satisfies both simultaneously is
called game-theoretically fair.

Approximate CSP-Fairness. The CSP-fairness requires that no coalition can
increase its own expected utility by more than a (1− ε) multiplicative factor, no
matter how it deviates from the honest protocol.

Definition 3.2 ((1 − ε)-CSP-fair committee election). A (c, n)-committee elec-
tion is (1 − ε)-CSP-fair against a non-uniform probabilistic polynomial time
(p.p.t.) coalition A of size βn, iff no matter what strategy A adopts,

E[β̃] ≤ β

1 − ε
,

where β̃ is the fraction of players in the coalition among the committee, where
the expectation is taken over the randomness of the protocol.

In our proof, we will also make use of another fairness notion:

Definition 3.3 ((1 − ε, δ)-CSP-fair committee election). A (c, n)-committee
election is (1 − ε, δ)-CSP-fair against a non-uniform probabilistic polynomial
time (p.p.t.) coalition A of size βn, if there exists an event GOOD, where
Pr[GOOD] ≥ 1 − δ, such that no matter what strategy A adopts,

E[β̃ | GOOD] ≤ β

1 − ε
,

where β̃ is the fraction of the coalition’s representation in the committee, and
the expectation is taken over the randomness of the protocol.

Analogously, we define (1 − ε)-maximin-fair and (1 − ε, δ)-maximin-fair com-
mittee election, which requires that the probability that an honest individual
gets into the committee is large enough given that the good event happens.

Approximate Maximin-Fairness. Maximin-fairness requires that no coalition can
harm any honest individual by more than a (1−ε) multiplicative factor, no matter
how it deviates from the honest protocol.
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Definition 3.4 ((1 − ε)-maximin-fair committee election). A (c, n)-committee
election is (1 − ε)-maximin-fair against a non-uniform probabilistic polynomial
time (p.p.t.) coalition A of size βn, iff for any honest individual i, the probability
that i gets into the committee is

Pr[i is in the committee] ≥ (1 − ε)c
n

,

no matter what strategy A adopts. The probability is taken over the randomness
of the protocol.

Definition 3.5 ((1−ε, δ)-maximin-fairness). A (c, n)-committee election is (1−
ε, δ)-maximin-fair against a non-uniform probabilistic polynomial time (p.p.t.)
coalition A of size βn, if there exists an event GOOD, where Pr[GOOD] ≥ 1 − δ,
such that no matter what strategy A adopts,

Pr[i is in the committee | GOOD] ≥ (1 − ε)c
n

,

for any honest individual i. The probability is taken over the randomness of the
protocol.

Although committee election is a constant-sum game, these two notions of fair-
ness are non-equivalent. See Sect. 4 for more explanation.

Finally, we define game-theoretical fairness. This notion of fairness requires
CSP and maximin-fairness simultaneously.

Definition 3.6 ((1− ε)-game-theoretical fairness). A (c, n)-committee election
is (1− ε) game-theoretically fair committee election against a non-uniform prob-
abilistic polynomial time (p.p.t.) coalition A, iff it is (1−ε)-CSP-fair and (1−ε)-
maximin-fair against A.

Definition 3.7 ((1 − ε, δ)-game-theoretical fairness). A (c, n)-committee elec-
tion is (1 − ε) game-theoretically fair committee election against a non-uniform
probabilistic polynomial time (p.p.t.) coalition A, iff it is (1 − ε, δ)-CSP-fair and
(1 − ε, δ)-maximin-fair against A.

By definition, a (1 − ε)-game-theoretically fair committee election is also
(1 − ε, 0)-game-theoretically fair. Next we give the translation from (1 − ε, δ)-
CSP/maximin-fair to (1 − ε)-CSP/maixin-fair.

Lemma 3.8. Let n be the number of parties and fix a parameter c. Let CElect
be an R-round (1 − ε, δ)-CSP-fair (c, n)-committee election protocol against a
coalition of size βn. Then the above leader election protocol is (1 − ε1)-CSP-fair
against a coalition of size βn, with a round complexity R + O(log c), where

ε1 =
βε + δ(1 − ε)
β + δ(1 − ε)

+ negl(λ).
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Lemma 3.9. Let n be the number of parties and fix a parameter c. Let CElect be
an R-round (1 − ε, δ)-maximin-fair (c, n)-committee election protocol against a
coalition of size βn. Then the above leader election protocol is (1− ε2)-maximin-
fair, with a round complexity R + O(log c), where

ε2 = ε + δ + negl(λ).

The proofs of these two lemmas are available in the full version.

Hybrid vs. Real Worlds. For ease of presentation and modularity purposes, we
shall sometimes consider protocols in a hybrid setting where we assume some
“generic” functionality is given for free. This is called a “hybrid world”. That
is, we say that a protocol is in the F-hybrid world if players interacting in
this protocol have access to an ideal functionality F . A protocol in the (plain)
real world is a protocol without any ideal functionalities or setup assumptions.
Specifically for us, we say that a (c, n)-committee election protocol achieves
(1 − ε)-game-theoretic fairness against a coalition A in the F-hybrid world, if
the protocol achieves (1 − ε)-game-theoretic fairness against this coalition A,
assuming the ideal functionality F .

3.3 Publicly Verifiable Concurrent Non-Malleable Commitment

A publicly verifiable commitment scheme (C,R,V) consists of a pair of inter-
acting Turing machines, the committer C, the receiver R, and a deterministic,
polynomial-time public verifier V. We assume that the protocol has two phases,
a commitment phase and an opening phase. The public verifier, upon receiving
a transcript Γ of the commitment protocol, outputs either a bit b ∈ {0, 1} to
accept or ⊥ to reject. We use 〈C∗(z),R∗(z′)〉 to denote an execution between C∗

on input z, 1λ, and R∗ on input z′, 1λ, where λ is the security parameter.

Correctness. Correctness guarantees that an honest committer always completes
the protocol and correctly opens its input bit; and will not be stuck by a mali-
cious, non-aborting receiver. Formally, for b ∈ {0, 1}, for any λ ∈ N, if C is honest
and receives input bit b, then 〈C(z),R∗(z′)〉 will complete with the accepting bit
b with probability 1, for any non-aborting R∗. If the messages sent by R∗ are
outside the valid range, it is treated as aborting.

Perfect Binding. Perfect binding guarantees that the commitment phase will
determine only one bit that can be successfully opened. Formally, let (Γc, Γo) ∈
{0, 1}�(λ) be the transcripts of the commitment phase and the opening phase,
respectively, where �(λ) is a fixed polynomial function denoting the maximum
length of the transcripts. Then for any λ ∈ N, any transcripts Γc, Γo, Γ

′
o, if

V(1λ, Γc, Γo) = b and V(1λ, Γc, Γ
′
o) = b′, where b, b′ ∈ {0, 1}, it must be that

b = b′.
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Computationally Hiding. Computationally hiding guarantees that at the end of
the commitment phase, the receiver learns only a negligible amount of informa-
tion about the input that the committer commits to. Formally, let pλ(v) denote
the probability that R∗ outputs 1 at the end of the commitment phase in an
execution 〈C∗(1λ, v),R∗(1λ)〉, then for any non-uniform p.p.t. R∗, there exists a
negligible function negl(·) such that for every λ ∈ N and every v1, v2 ∈ {0, 1}λ,
it holds that |pλ(v1) − pλ(v2)| ≤ negl(λ).

Concurrent Non-malleability. We follow the definition of Lin et al. [LPV08].
Consider a man-in-the-middle adversary A that participate on the left m interac-
tions with an honest committer who runs commitment phase committing to val-
ues v1, . . . , vm with identity id1, . . . , idm, and on the right m interactions with an
honest receiver trying to commit to values v′

1, . . . , v
′
m with identity id′

1, . . . , id
′
m. If

any of the right commitments are invalid its value is set to ⊥. For every i ∈ [m], if
id′

j = idi for some j ∈ [m], then v′
j is set to be ⊥. Let mitmA(1λ, v1, v2, . . . , vm, z)

denote the view of A and the values v′
1, . . . , v

′
m.

Definition 3.10. A commitment scheme is concurrent non-malleable if for
every polynomial p(·), for every non-uniform p.p.t. adversary A that partici-
pates in at most m = p(λ) concurrent executions, there exists a polynomial time
simulator S such that

{mitmA(1λ, v1, v2, . . . , vm, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N ≡c

{S(1λ, z)}v1,...,vm∈{0,1},z∈{0,1}∗,λ∈N.

Theorem 3.11 ([LPV08]). Assume that one-way permutations exist. Then
there exists a constant-round, publicly verifiable commitment scheme that is per-
fectly correct, perfectly binding, and concurrent non-malleable.

In this paper, we will only consider bounded concurrency. Without loss of
generality, the number of concurrent calls to public verifiable concurrent non-
malleable commitment in our protocol is upper bounded by n2, where n is the
number of players.

4 Game-Theoretically Fair Committee Election

In this section, we present our game-theoretically fair committee election that
extends Feige’s lightest bin protocol. Later, in Sect. 5, we will use it as a build-
ing block to get our committee election protocol that achieves game-theoretic
fairness for arbitrary committee size.

4.1 Electing Poly-logarithmically Sized Committees: Achieving
CSP-Fairness

In this section, we give a CSP-fair committee election protocol. This is the first
step towards our game-theoretically fair committee election (that needs to be
CSP-fair and maximin fair, simultaneously).
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Our CSP-fair protocol is a commit-and-reveal variant of Feige’s well-known
lightest bin protocol [Fei99]. Specifically, we require all parties to (cryptograph-
ically) commit to their bin choices and only afterward to reveal their choices.
The parties whose choices correspond to the lightest bin are the committee. The
commitments that we use are interactive. To commit to a string, a player invokes
n instances of NMC, one for each of the n receivers. To open the commitments,
the committer posts the openings for all n instances in the broadcast channel,
and the opening is correct iff all of the n instances are correctly opened to the
same string. Without loss of generality, we assume that the committer only needs
to send one message in the opening phase. Moreover, we assume that messages
are posted to the broadcast channel, and it can be checked publicly if a commit-
ment is correctly opened. This is why we also require public verifiability of the
commitment scheme. We say that a player fails to commit if the player fails to
commit in an instance, where the receiver is non-aborting.

LBin-C: Commit-and-Reveal Lightest Bin

Parameters: Let c be an upper bound of the size of the required committee
and n is the number of players. Fix B = �n

c  as the number of bins. For
simplicity, we assume c divides n.

Building Blocks: A publicly verifiable concurrent non-malleable commit-
ment as in Sect. 3.3, NMC.

Protocol:

1. Round 1: Every player i randomly chooses a bin bi ∈ [B], invokes n NMC
instances and run the commit phase with n receivers to commit to bi.
The messages are sent in a broadcast channel. Exclude those players who
fail to commit.

2. Round 2: Every player i runs the opening phase with n receivers to open
its bin choice bi. Exclude those players who fail to open all n instances
correctly.

3. Let b̂ be the lightest bin after exclusion (break ties with lexicographically
the smallest bin). The players who choose bin b̂ constitute the committee.

Theorem 4.1. Assume that NMC is publicly verifiable concurrent non-
malleable commitment as in Sect. 3.3. For n, c ∈ N, ε ∈ (0, 1/2), and β ∈ (0, 1),
the protocol LBin-C is a constant round (1 − 2ε, δ)-CSP-fair (c, n)-committee
election protocol against a coalition K of size βn, where

δ =
n

c
exp

{
−ε4

2
(1 − β)c

}
. (1)

Proof. Fix n, c, ε, and β as in the statement. Define GOOD to be the event that
each bin has at least (1 − ε2)(1 − β)c honest players. Let β̃ denote the fraction
of players in K among the committee. Then, we have the following lemma.
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Lemma 4.2. E

[
β̃ | GOOD

]
≤ β

1−2ε .

For now assume that Lemma 4.2 holds and we explain why Theorem 4.1
follows from it. The proof of Lemma 4.2 appears right afterwards. By Chernoff
bound (Lemma 3.1) and the union bound,

Pr [GOOD] ≥ 1 − n

c
exp

{
−ε4

2
(1 − β)c

}
. (2)

Combing Lemma 4.2 and (2), LBin-C is a (1 − 2ε, δ)-CSP-fair committee
election protocol by Definition 3.5. ��
Proof sketch of Lemma 4.2. We split into two cases. First, assume that β ≥ ε.
In this case, the claim follows directly from the assumption that GOOD holds:
The fraction of players in K among the committee must satisfy β̃ ≤ 1 − (1 −
ε2)(1 − β) = β

(
1 + ε2

β − ε2
)

≤ β
1−2ε as required.

Now, we focus on the case where β < ε. By the perfect binding property, at
the end of commit phase, player i’s bin choice are fixed. Let {bi}n

i=1 denote the bin
choices of n players at the end of the commit phase. To compute E[β̃ | GOOD], we
define a random variable γ, which depends only on {bi}n

i=1, that upper bounds
β̃ in an execution of LBin-C. Let b̃ ∈ [B] be the index of the bin that contains
least number of honest players; and b∗ ∈ [B] be index of the lightest bin at the
end of the commit phase. Note that by the way the protocol works, b̃ and b∗

depends only on {bi}n
i=1. Below, for l ∈ [B], we use hl to denote the number of

honest players in bin l, and fl to denote the number of players in K in bin l.
Given the bin choices {bi}n

i=1 at the end of the commit phase, the fraction of
players in K among the committee is at most γ := f

˜b

hb∗+fb∗ . This is because by
the perfect binding property and public verifiability of the commitment scheme,
the only way the coalition can deviate is essentially to refuse to open some of
their bin choices in the opening phase and get excluded at the end of Round
2, in order to change the lightest bin. To maximize the fraction of the coalition
in the committee, the best strategy for the coalition is to choose bin l = b̃,
which contains the least number of honest players. Since the number of honest
players in bin l is hl, the fraction of players in K in bin l = b̃, after excluding
the misbehaved players, is at most 1 − h

˜b

fb∗+hb∗ ≤ f
˜b

hb∗+fb∗ .

Therefore, to upper bound E[β̃ | GOOD], it suffices to bound E[γ | GOOD].
Since when GOOD happens, the number of honest players in every bin is at least
(1 − ε2)(1 − β)c, we have that

E[γ | GOOD] ≤ 1
(1 − ε2)(1 − β)n

B∑

l=1

E

[
fl | b̃ = l,GOOD

]
.

By the non-malleability of the commitment scheme, E[γ | GOOD] in the protocol
should be negligibly close to the conditional expectation of γ in an idealized
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world where the bin choices of the players in K are independent from the honest
players’ bin choices, i.e., b̃ is independent from f�. Therefore,

E[γ | GOOD] =
1

(1 − ε2)(1 − β)n

B∑

l=1

E [fl] + negl(λ) ≤ β

(1 − ε2)(1 − ε)
+ negl(λ),

where the last inequality comes from the assumption that β < ε. Putting
together, the expectation E

[
β̃ | GOOD

]
in the committee election LBin-C is at

most β
(1−ε2)(1−ε) + negl(λ) ≤ β

1−2ε .

4.2 Electing Poly-logarithmically Sized Committees: Achieving
Maximin-Fairness

In Sect. 4.1 we gave a commit-and-reveal variant of Feige’s lightest bin protocol
for committee election and showed that it is CSP-fair. The protocol is, however,
not maximin-fair. While the adversary cannot gain too much utility by devi-
ating from the protocol, it can still harm the utility of an honest individual.
Specifically, consider the following adversarial strategy. The coalition generates
commitments so that the coalition’s representations in each bin are equal. Then,
when it wants to target at a specific player i to not participate in the committee,
it waits to see which bin l was chosen by that honest party and then it refuses
to reveal commitments from some other bin l′ which will then be lighter than
the bin l chosen by honest player i. This attack prevents an honest individual i
from being elected into the committee.

By the properties of the commitment scheme and how our protocol works,
this is the only useful attack for the adversary. Thus, we modify our protocol to
withstand this attack by masking the identity of parties. Namely, we hide which
bin choice belongs to which party. We achieve this by requiring players to choose
a random virtual ID and use it throughout the execution. Players will only reveal
their virtual IDs at the end of the protocol, after the lightest bin has been fixed.
A-priori, it seems hard to implement such a system because once a party sends
its message, everybody knows who sent it (recall that we are in the broadcast
model). We overcome this by implementing an “anonymous” broadcast channel
on top of our existing broadcast channel.

Thus, we first describe our anonymous broadcast functionality F t,O
anon. Then,

we show that in a F t,O
anon-hybrid model, we can build a committee election protocol

that ensures CSP-fairness and maximin-fairness simultaneously.

Anonymous Broadcast Functionality. Let O be the set of all players involv-
ing in the protocol. Our anonymous broadcast functionality F t,O

anon works as
follows.

F t,O
anon: Anonymous broadcast with t-identifiable abort
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Parameters: O is the set of players involving in the protocol and t is a
bound on the number of misbehaved players to exclude.

Functionality:

1. Input: Every player i sends a single message mi or ⊥ to F t,O
anon.

2. Output: F t,O
anon computes a multiset Out = {mi : i ∈ O and mi �= ⊥}.

If the number of corrupted players is smaller than t, send (ok,Out) to
everyone in O. Otherwise, send Out to the adversary A.

– If receives ok from A, F t,O
anon sends (ok,Out) to every honest player

in O.
– Otherwise, it receives a set D of corrupted IDs of size at least t from

the adversary A, and then send (fail,D) to every honest player in O.

We say that an adversary A is admissible if 1) it sends only one message for
each corrupt player, and 2) it either sends ok, or a set of corrupted players
of size at least t in Step 2.

The functionality exhibits several appealing properties that are important
for us. Specifically, in the ideal functionality F t,O

anon, it holds that:

1. Each player can only send one message.
2. The coalition has to choose their messages independently from honest players’

messages.
3. The coalition cannot tell which honest player sends which message.
4. The output is either (ok,Out), or (fail,D) with a set D of size at least t.

Formal Description of the Protocol. Here we present the formal description
of our lightest bin via anonymous broadcast protocol in the F t,O

anon-hybrid model.

LBin-V(c, n, β): Lightest Bin via Anonymous Broadcast

Parameters: Let c be an upper bound of the required committee and n is
the number of players. Fix B = �n

c  as the number of bins. For simplicity,
we assume c divides n. Let O be initialized as [n] that denotes the set of
active players. β · n is the maximum size of the coalition for β ∈ (0, 1).

Building Blocks: A publicly verifiable concurrent non-malleable commit-
ment as in Sect. 3.3, NMC.

Protocol:

1. Every player i randomly chooses a string vi ← {0, 1}λ as its virtual ID,
invokes n instances of NMC, and runs the commit phase with n receivers
to commit to (i, vi). Exclude those players who fail to commit.

2. Each player randomly chooses a bin bi ← [B] with fresh randomness,
and sets mi = (bi, vi). Broadcast mi using F t,O

anon with t = �(1 − β)n�.
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– If the output is (fail,D), exclude the players in D from O (namely, set
O = O \ D). Then, the remaining players (i.e., those in the updated
O) re-run step 2.

– If the output is (ok,Out), go to the next step.
3. Let b∗ be the lightest bin. Every player opens its virtual ID (i, vi). Let

Ub∗ be the set of virtual IDs that are unique and choose the lightest bin
b∗. Those who open the (i, vi) successfully with vi ∈ Ub∗ are chosen to
be the committee.

Note that in LBin-V, players do not need to commit to their bin choices and then
open, since the functionality F t,O

anon guarantees that the malicious coalition has
to choose their messages, i.e., bin choices, independently from honest players’
messages. In the following theorem we show that the protocol LBin-V described
above is both maximin-fair and CSP-fair in the F t,O

anon-hybrid model.

Theorem 4.3. Assume that NMC is a publicly verifiable concurrent non-
malleable commitment as in Sect. 3.3. For any n, c ∈ N and ε ∈ (0, 1/2), β ∈
(0, 1), the committee election protocol LBin-V(c, n, β) is a (1− ε, δ)-maximin-fair
and a (1 − 2ε, δ)-CSP-fair (c, n)-committee election2 in the F t,O

anon-hybrid model,
against a coalition K of size βn, where

δ =
2n

(1 − β)c
exp

{
−ε4

2
(1 − β)c

}
+ negl(λ).

Moreover, the round complexity of LBin-V is at most 2
1−β + 2.

Proof. Fix n, c, ε, and β as in the statement. Let Unique be the event that honest
players choose unique virtual IDs, and their virtual IDs do not collide with any
players in the coalition. Let GOOD be the event that in every execution of F t,O

anon

in Step 2, each bin has at least (1 − ε2)(1 − β)c honest players.
We use the following lemma to prove maximin-fairness and CSP-fairness.

The proof to the lemma appears afterward.

Lemma 4.4. Pr [Unique,GOOD] ≥ 1 − δ.

Maximin-fairness. Let Hi denote the event that an honest player i is chosen into
the committee. The claimed maximin-fairness follows from the following lemma.
The proof of the lemma appears below.

Lemma 4.5. Pr [Hi | Unique,GOOD] ≥ (1 − ε)c/n.

Combining Lemmas 4.4 and 4.5, we have that LBin-V is a (1− ε, δ)-maximin-
fair committee election protocol against a coalition of size βn by Definition 3.7.

CSP-fairness. Let β̃ denote the fraction of the coalition in the committee. Now,
the claimed CSP-fairness follows from the following lemma. The proof of the
lemma appears below.
2 Theorem 4.3 implies that the protocol LBin-V is a (1− 2ε, δ)-game-theoretic fairness

by Definition 3.7.
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Lemma 4.6. E

[
β̃ | GOOD,Unique

]
≤ β

1−2ε .

Combining Lemmas 4.4 and 4.6, we have that LBin-V is a (1−2ε, δ)-CSP-fair
committee election protocol against a coalition of size βn by Definition 3.5. ��
Proof sketch of Lemma 4.4. By the non-malleability property of the com-
mitment scheme, Pr[Unique] in an real execution of the protocol should be neg-
ligibly close to this probability in an idealized world where the virtual IDs of
players in K are chosen independently from honest players’ virtual IDs. There-
fore, Pr[Unique] = 1− negl(λ). By Chernoff’s bound (Lemma 3.1) and the union
bound over B bins, in a single execution of F t,O

anon, each bin contains at least
(1 − ε2)(1 − β)c honest players with probability p = 1 − n

c exp
{

− ε4

2 (1 − β)c
}

.

Each time F t,O
anon is invoked, it either outputs ok or wipes out a set of players

in the coalition of size at least t. Since t = �(1 − β)n�, we will run at most
βn

�(1−β)n� < 2
1−β rounds of F t,O

anon. Hence, Pr[GOOD,Unique] ≥ p
2

1−β (1 − negl(λ)).
Lemma 4.4 thus follows.

Proof sketch of Lemma 4.5. In LBin-V, the players choose their bins in Step 2
with their virtual IDs and broadcast the bin choices using F t,O

anon. By the property
of the functionality, in each execution of F t,O

anon, the coalition has to choose their
bins independently from honest players’ bin choices. If the coalition chooses to
fail a call to F t,O

anon, honest players will choose bins with fresh randomness in
the next call to F t,O

anon. Therefore, the coalition’s strategy Sl of whether to fail
the l-th call to F t,O

anon in Step 2 depends only on the output of the first l calls
Out1, . . . ,Outl to F t,O

anon, and the view viewcomm
K of the coalition K in Step 1. Still,

we use H to denote the set of honest players, where |H| = n − βn.
Let L denote the total number of F t,O

anon calls. Now consider the l-th call to
F t,O

anon. Let Hi,j denote the event that honest player i chooses bin j in that F t,O
anon

call. Since honest players choose their bins independently in different calls to
F t,O

anon, it follows that

Pr [Hi,j | Out1, . . . ,OutL, viewcomm
K , S1, . . . , SL] = Pr [Hi,j | Outl, viewcomm

K ] .

By the non-malleability and the anonymity of F t,O
anon, the map between the

honest virtual ID and the honest players’ identity remains hidden from the coali-
tion K. For j ∈ [B], we use Vj to denote the set Vj = {vi : (vi, j) ∈ Outl}, i.e.,
the set of virtual IDs choosing bin j. Then we have

Pr[Hi,j | Outl = {(vi, bi)}i∈[n], view
comm
K = v] ≥ hj

|H| − negl(λ),

where hj is the number of honest players in bin j. Given the assumption that
GOOD happens, hj ≥ (1 − ε2)(1 − β)c for every j ∈ [B]. Let viewK denote the
view of the adversary at the end of Step 2, which includes viewcomm

K , all the
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outputs Out1, . . . ,OutL, as well as A’s strategy S1, . . . , SL. Then, the lightest
bin b∗ is deterministic given viewK . For any i ∈ H we have

Pr[Hi | GOOD] =
∑

j∈[B]

Pr [Hi,j , b
∗ = j | GOOD] ≥ (1 − ε2)c

n
− negl(λ).

Therefore, at the end of Step 2, the probability that an honest player i’s virtual
ID is in the lightest bin b∗ is at least (1 − ε2)c/n − negl(λ). This implies that
the honest player i will be elected into the committee with a probability at least
(1 − ε2)c/n − negl(λ) ≥ (1 − ε)c/n, given that GOOD and Unique happens.

Proof sketch of Lemma 4.6. The proof to this Lemma is similar to the proof
of Lemma 4.2, except that honest players’ bin choices are now hidden from the
coalition by the anonymous broadcast functionality F t,O

anon.

5 Fairness Amplification Though Iteration

This section gives our final game-theoretically fair committee election and leader
election protocols to select arbitrary committee size with good fairness param-
eters. The committee election protocol LBin-V introduced in Sect. 4.2 does not
achieve fairness with good parameter for arbitrary committee size. For example,
if we want to choose a log log n-sized committee from n players using LBin-V,
the probability that the GOOD event does not happen is upper bounded by

n
log log n exp{− ε4

2 log log n}, which is even larger than 1. This makes LBin-V not
fair enough for electing a small sized-committee.

Therefore, to build a fair committee election protocol that works for arbitrary
committee size, we compose LBin-V for multiple iterations, and combine it with
the tournament tree protocol if necessary.

We first give the formal description of the tournament tree protocol and its
“almost perfect” fairness. Then we give our final committee election protocol
that achieves game-theoretic fairness for arbitrary committee size.

5.1 Preliminary: Fairness of Tournament Tree Protocol

This section gives a formal description of the tournament tree protocol.

Tournament tree protocol Tourn(O)

Let n be the size of O.

– If n = 1, return the single player in O.
– Otherwise, let n1 = �n

2 � and n2 = �n
2 . Let O1 be the first n1 players in

O and O2 be the remaining players.
– In parallel, run Tourn(O1) and Tourn(O2), and denote the output as O1

and O2, respectively.
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– The final winner is determined by the duel protocol between O1 and O2

such that Oi wins with probability ni/n. This is described below.

Duel Protocol between O1 and O2

Let k1
k1+k2

and k2
k1+k2

be the probability that player O1 and O2 wins, respec-
tively.

– Let k = k1 + k2, and � = �log k. Each player Oi commits to an �-bit
random string that represents some si ∈ Zk−1 for i = 1, 2.

– Each player Oi opens its commitment and reveals si. If s1 +s2 mod k ∈
{0, . . . , k1 − 1}, player O1 wins. Otherwise, O2 wins.

– If a player aborts or fails to open the commitment correctly, it is treated
as forfeiting and the other player wins.

Lemma 5.1 (Theorem 3.5 of Chung et al. [CCWS21]). Let n be the number
of players and λ be the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment
scheme as defined in Sect. 3.3, satisfies (1 − negl(λ))-CSP-fairness and (1 −
negl(λ))-maximin-fairness against coalition of arbitrarily sizes. Moreover, the
round complexity is O(log n).

5.2 Our Final Game-Theoretically Fair Committee Election

In this section, we give our fair committee election protocol that works for arbi-
trary committee size. Our final protocol runs multiple iterations of LBin-V and
combines it with the tournament tree protocol if necessary. The F t,O

anon ideal func-
tionality in LBin-V can be instantiated in real-world cryptography, with only a
constant round blowup. The instantiation will be given in Sect. 6.

Let c be the upper bound of the committee size we want to achieve. The final
committee election is given below.

Committee election protocol CElect(n, c)

Parameter: Let c be the upper bound of the committee size and R be the
round complexity we want to achieve. The initial committee is C0 = [n],
c0 = n. The fraction of the coalition is β0 = β. If c ≥ 2R, let L ≤ R be the
smallest integer such that log(L) n ≤ c0.1 and ε = 1

c0.1 ; otherwise, set L ≤ R

be the smallest integer such that log(L) n ≤ 2R and ε = 1
2R .

Protocol

1. For � = 1, . . . , L − 1:
– Let c� = (log(�) n)10, O = C�−1, β� = β�−1(1 − ε2) + ε2.
– Run LBin-V(c�, C�−1, β�−1). That is, we choose a committee C� of size

c� = (log(�) n)10 from C�−1.
– � = � + 1.
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2. If c ≥ 2R, set cL = c; otherwise, set cL = 211R. Run the committee
election protocol LBin-V(cL, CL−1, βL−1) to elect a committee CL of size
at most cL.

3. If cL ≥ c, run c number of parallel instances of Tournsid(CL) for sid ∈ [c].
Let the final committee be the set of elected leaders in these c instances
of tournament tree protocol.

Note that in the protocol, β� is just a parameter that passes to LBin-V,
together with c and O. It is not the real fraction of the coalition in committee
C�. Instead, it is the upper bound of the real fraction of the coalition in C� if
good event happens in each round up to �. The parameter β� is only used to set
the parameter t of F t,O

anon in the �-th LBin-V call.

Theorem 5.2. Assume the existence of enhanced trapdoor permutations and
collision-resistant hash functions. Fix n and c. Let L∗ be the smallest integer
such that log(L

∗) n ≤ c. Then for any L∗ ≤ R ≤ C0 log n for some constant C0,
we have that

– If c ≥ 2R, there exists an O(R)-round committee election that achieves (1 −
1

cΘ(1) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size
at most (1 − L∗

Θ(R) )n.
– If c < 2R, there exists an O(R)-round committee election that achieves (1 −

1
2Θ(R) )-game-theoretic fairness against a non-uniform p.p.t. coalition of size
at most (1 − L

Θ(R) )n, where L is the smallest integer such that log(L) n ≤ 2R.

Our final leader election protocol can be gained directly by picking c = 1 in
Theorem 5.2.

Theorem 5.3. Assume the existence of enhanced trapdoor permutations, and
collision-resistant hash functions. Fix n and let log∗ n ≤ R ≤ C log n be the
round complexity we want to achieve for some constant C. Then there exists
an O(R)-round leader election that achieves (1 − 1

2Θ(R) )-game-theoretic fairness
against a non-uniform p.p.t. coalition of size at most (1 − L

Θ(R) )n, where L is

the smallest integer such that log(L) n ≤ 2R.

The full proof of Theorem 5.2 and Theorem 5.3 are available in the full version.

6 Instantiation of the Ideal Functionalities

In this section, we show how to instantiate the ideal functionalities F t,O
anon used

in committee election LBin-V. Recall that the ideal functionality F t,O
anon receives

one message from each player and either sends the set of all messages it receives
to everyone or a set of corrupt players of size at least t to everyone. We will first
give our protocol in a IdealZK∗-hybrid model in which players have access to an
ideal zero-knowledge proof functionality. Then we use the elegant techniques of
Pass [Pas04] to instantiate the protocol with real-world cryptography. Next. we
will first describe the IdealZK∗ functionality in Sect. 6.1, and then we will give
our protocol in the IdealZK∗-hybrid world in Sect. 6.2.
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6.1 Ideal Zero-Knowledge Functionality IdealZK∗

Basically, IdealZK∗ either sends success to everyone indicating that the proof is
correct, or the identity of the prover/verifier who leads to the failure of the proof.
Formally,

Ideal Zero-knowledge Functionality IdealZK∗[x,L, i, j]
The functionality involves n parties 1, . . . , n, and is parametrized with

a statement x, the language L, the prover’s identity i and the verifier’s
identity j.

1. If both the prover i and the verifier j are corrupted, receive a bit b from
the prover i. If b = 1, send (success, i, j) to everyone.

2. Receive ok or ⊥ from the verifier j.
3. If received ⊥ from the verifier, send (fail, j) to everyone.
4. Receive w or ⊥ from the prover.
5. If R(x,w) = 1, send (success, i, j) to everyone. Otherwise send (fail, i) to

everyone.

In an n-party IdealZK∗-hybrid protocol, the players can invoke the ideal zero-
knowledge functionality IdealZK∗[x,L, i, j] between any prover i ∈ [n] and any
verifier j ∈ [n], and for arbitrary NP language L. Without loss of generality, in
every round, there can be at most n2 concurrent invocations of IdealZK∗. Given
an n-party IdealZK∗-hybrid protocol, we can instantiate IdealZK∗ with actual
cryptography using the elegant techniques suggested by Pass [Pas04].

Theorem 6.1. (Constant-round, bounded concurrent secure computa-
tion [Pas04]). Assume the existence of enhanced trapdoor permutations and
collision-resistant hash functions. Then, given an n-party IdealZK∗-hybrid pro-
tocol Π∗, in which the number of concurrent calls of IdealZK∗ is upper bounded
by a priori known bound m = poly(λ), there exists a real-world protocol Π such
that the following hold:

– Simulatability: For every real-world non-uniform p.p.t. adversary A con-
trolling an arbitrary subset of up to n − 1 players in Π, there exists a non-
uniform p.p.t. adversary A∗ in the protocol Π∗, such that for any input
(x1, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

ExecΠ,A(1λ, x1, . . . , xn, z) ≡c ExecΠ∗,A∗
(1λ, x1, . . . , xn, z).

In the above, the notation ExecΠ,A (or ExecΠ∗,A∗
) outputs each honest play-

ers’ outputs as well as the corrupt players’ (arbitrary) outputs.
– Round efficiency: The round complexity of Π is at most a constant factor

worse than that of Π∗.

This real-world protocol is fulfilled by replacing the IdealZK∗ instance with
the bounded concurrent zero-knowledge proofs. All the zero-knowledge proof
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messages are posted to the broadcast channel. The full proof of Theorem 6.1 is
available in the full version.

Now it suffices to show how to replace F t,O
anon with a protocol Anont,O in the

IdealZK∗-hybrid world. In the protocol, we will omit the language L when it is
clear from the context.

6.2 Implementing Anonymous Broadcast Functionality

In this section, we describe how to implement F t,O
anon in the IdealZK∗-hybrid

model. The protocol makes use of a perfect binding, statistically hiding commit-
ment scheme comm. Also, every player keeps track of two sets, Ds and Dr, the
set of players who fail to share and the set of players who fail to reconstruct,
respectively, to guarantee the identifiable abort property. Still, we use K to rep-
resent the set of corrupted players, H to represent the set of honest players. The
number of parallel sessions is set to be λ. The protocol Anont,O is given below.

Anont,O: instantiating F t,O
anon in the IdealZK∗ -hybrid world

Parameters: Let M = 2n be the number of slots. Let Ds, Dr and Out be
initially empty sets. Without loss of generality we assume that O = [n].

Building blocks: A perfectly binding, computationally hiding commitment
scheme comm.

Input: Each player has an input mi ∈ F for a finite field F with size
larger than 2λ. The sum of tuples is computed entry-wise, i.e., (a1, b1, c1)+
(a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2).

Preparation Phase. Run the following for λ independent, parallel sessions:

1. Player i uniformly randomly choose a nonce midi ∈ F. It then uniformly
randomly chooses a slot li ← [M ] and computes a vector Si ∈ (F3)M

such that Si[l] = (0, 0, 0) if l �= li, and Si[l] = (mi,midi, 1) if l = li.
2. Player i then splits Si into (n−t)-out-of-n Shamir secret shares. Let Xi,j

be the j-th share of Si. Let X̂i,j = comm(Xi,j , ri,j) where ri,j are fresh
randomness. Broadcast the commitments {X̂i,j}j∈[n].

3. If a player i fails to broadcast the commitments, add i to the set Ds.

Validation Phase. For sid ∈ [λ], let ∗sid denote the variable ∗ in session
sid . Player i invoke IdealZK∗[stmti, i, j] for each j ∈ [n], with the state-
ment stmti = {X̂sid

i,j }j∈[n],sid∈[λ], and send the witness w = (mi,midi,

{Ssid
i }sid∈[λ], {Xsid

i,j , rsidi,j }j∈[n],sid∈[λ]) to prove that

– For each sid ∈ [λ], for each j ∈ [n], (Xsid
i,j , rsidi,j ) is the correct opening of

X̂sid
i,j ;
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– For each sid ∈ [λ], {Xsid
i,j }j∈[n] forms a valid (n − t)-out-of-n secret

sharing of Ssid
i ;

– For each sid ∈ [λ], the vector Ssid
i contains only one non-zero slot

(mi,midi, 1).

For each i ∈ [n], if there exists a j that IdealZK∗[stmti, i, j] outputs (fail, i),
i.e., the prover fails to prove the statement to receiver j, add i to the set
Dsid

s for all sid ∈ [λ].

Sharing Phase. Continue the following for λ independent, parallel sessions:

1. For j ∈ [n], player i sends (Xi,j , ri,j) to player j.
2. Player i does the following: for every j ∈ [n]\Ds, if it receives a message

(Xj,i, rj,i) that is a correct opening with respect to X̂j,i, record (Xj,i, rj,i)
and broadcast (ok, i, j). Otherwise, broadcast (complain, i, j) to complain
about j.

3. Player i does the following: for all j such that there is a complain
(complain, j, i) in Step 2, player i broadcasts the corresponding open-
ing (i, j,Xi,j , ri,j).

4. Unless player i broadcasts all correct openings for those players who has
sent (complain, j, i) to complain about i, add i to the set Ds.

5. Player i does the following: for j ∈ [n]\Ds, if player i sent (complain, i, j)
in Step 2, and j broadcast a correct opening (Xj,i, rj,i) in Step 3. Then
record the correct opening (Xj,i, rj,i).

Reconstruction Phase. Run the following for λ independent, parallel ses-
sions:

1. Player i computes Yi =
∑

j∈[n]\Ds
Xj,i and broadcast Yi. If a player j

fails to broadcast, add j to the set Dr.
2. Player i does the following for each j ∈ [n]: invoke IdealZK∗[stmt′i, i, j]

with the statement stmt′i = (Ds,Yi, {X̂j,i}j∈[n]\Ds
). It sends the witness

w′ = ({Xj,i, rj,i}j∈[n]\Ds
) to the ideal functionality IdealZK∗ to prove

that
– For any j ∈ [n] \ Ds, (Xj,i, rj,i) is a correct opening of X̂j,i;
– Yi =

∑
j∈[n]\Ds

Xj,i.
3. If there exists a j such that IdealZK∗[stmt′i, i, j] outputs (fail, i), i.e., the

prover fails to prove the statement to receiver j, add i to the set Dr.
4. If |Dr| ≥ t, everyone stores (fail,Dr ∪Ds) for the reconstruction phase of

this session.
5. Otherwise, every player uses all broadcast shares {Yi}i∈[n]\Dr

to recon-
struct the sum S =

∑
i/∈Ds

Yi. Store (ok,S) for the reconstruction phase
of this session.
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Output Phase. For each sid ∈ [λ], we use (fail,Dsid) or (ok,Ssid) to denote
the value each player stores in the reconstruction phase of session sid . Each
player i does the following:

1. If there is a sid ∈ [λ] such that player i stores (fail,Dsid) for that ses-
sion, outputs (fail,∪sid∈[λ]Dsid), where Dsid = ∅ for those successfully
reconstructed sessions.

2. Otherwise, each player does the following: We say that (m,mid) appears
in session sid if there exists a slot l ∈ [M ] such that Ssid [l] = (m,mid, 1).
For each pair (m,mid) that appears in a majority number of sessions,
add a copy of m to Out.

3. Output (ok,Out).

Theorem 6.2. If the commitment scheme comm is perfectly binding and com-
putationally hiding, then Anont,O securely realizes F t,O

anon in the IdealZK∗-hybrid
model as long as |O| − t ≥ |K|. Moreover, Anont,O runs in constant number of
rounds.

The full proof of the above theorem is available in the full version.
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Abstract. Byzantine Broadcast is crucial for many cryptographic pro-
tocols such as secret sharing, multiparty computation and blockchain
consensus. In this paper we apply gossiping (propagating a message by
sending to a few random parties who in turn do the same, until the mes-
sage is delivered) and propose new communication-efficient protocols,
under dishonest majority, for Single-Sender Broadcast (BC) and Parallel
Broadcast (PBC), improving the state-of-the-art in several ways.

As our warm-up result, we present a randomized protocol for BC
which achieves O(n2κ2) communication complexity from plain public
key setup assumptions. This is the first protocol with subcubic commu-
nication in this setting, but operates only against static adversaries.

Using ideas from our BC protocol, we move to our central contribu-
tion and present two protocols for PBC that are secure against adaptive
adversaries. To the best of our knowledge we are the first to study PBC
specifically : All previous approaches for Parallel Broadcast naively run n
instances of single-sender Broadcast, increasing the communication com-
plexity by an undesirable factor of n. Our insight of avoiding black-box
invocations of BC is particularly crucial for achieving our asymptotic
improvements. In particular:
1. Our first PBC protocol achieves Õ(n3κ2) communication complexity

and relies only on plain public key setup assumptions.
2. Our second PBC protocol uses trusted setup and achieves nearly

optimal communication complexity Õ(n2κ4).
Both PBC protocols yield an almost linear improvement over the best
known solutions involving n parallel invocations of the respective BC
protocols such as those of Dolev and Strong (SIAM Journal on Comput-
ing, 1983) and Chan et al. (Public Key Cryptography, 2020). Central to
our PBC protocols is a new problem that we define and solve, which we
name “Converge”. In Converge, parties must run an adaptively-secure
and efficient protocol such that by the end of the protocol, all honest
parties that remain possess a superset of the union of the initial honest
parties’ inputs.
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1 Introduction

Since its formalization by Lamport et al. [19], the broadcast problem has been
studied in many works and lies at the core of many cryptographic protocols
such as secret sharing, multiparty computation, and blockchain consensus pro-
tocols (e.g., [23]). In its single-sender version, BC involves a designated sender
s that distributes a value v such that (1) all parties output the same value v′

(consistency); (2) all parties output v in case s is honest (validity). Parallel BC
(PBC) (also known as interactive consistency [26]) is a generalization of the
single-sender setting where all parties act as designated senders, and in the end
each party outputs values, satisfying the above conditions, from every sender.
PBC comprises a central component of protocols like verifiable secret sharing
and multiparty computation (e.g., [2,20]), where whenever broadcast is used
in these protocols, it is always a parallel broadcast. Any improvement in PBC
therefore yields an improvement in these protocols as well.

A crucial distinction among broadcast protocols is which implementation
model they use: In the bulletin PKI model, no trusted setup is required, all
parties register their public keys to a public bulletin board before the start of
the protocol and no assumption is made on how parties generate their keys.
In the stronger trusted PKI model, trusted setup is required: A trusted party
generates all keys honestly and distributes them to the parties prior to protocol
execution. An important efficiency metric for broadcast protocols, which is the
focus of this paper, is their communication complexity, i.e., how many bits are
exchanged during the protocol. Often, it depends on the implementation model
and directly affects the efficiency of the underlying protocols using BC or PBC.
Contributions. In this work, we revisit the communication complexity of both
BC and PBC (See Table 1.) We focus on the dishonest majority setting with both
a static and an adaptive adversary. Our first (warm-up) result provides the first
statically-secure BC protocol with subcubic communication in the bulletin PKI
model. We then continue with our central contributions comprising two new PBC
protocols. Our main observation is that no results exist on the communication
complexity of PBC specifically. In particular, all protocols for PBC, to the best of
our knowledge, are implemented via simultaneous calls to n BC instances, leading
to increased communication complexity. Leveraging this insight, we use ideas of
our first warmup BC protocol to build the first adaptively-secure PBC protocol
with cubic communication complexity in the bulletin PKI model (Again, one
defining feature of our PBC protocol is that it is non-black-box, in that it does
not use n simultaneous calls to BC.) Our final PBC result shows how to improve
the PBC complexity to quadratic, by switching to the trusted PKI model. To
the best of our knowledge, all three results comprise significant improvements
(i.e., by a linear factor) in the communication complexity of the state-of-the-art.
Message Propagation. We achieve our improvements by optimizing one of the
fundamental aspects of BC protocols: their message propagation. When an hon-
est party sends out a message at some round, propagation ensures that all honest
parties receive this message soon. In most protocols, this is implemented via an



Gossiping for Communication-Efficient Broadcast 441

expensive SEND-ALL instruction delivering the message in a single round [8,10].
Such instructions might not always be needed. For example, it might not be
crucial to deliver the message strictly in the next round. Our proposed protocols
minimize the use of SEND-ALL instructions via gossiping, eventually yielding
much better communication. In particular, in message propagation via gossip-
ing, a party first sends the message M only to a small random set of parties,
who in turn do the same, until M is delivered. Somewhat surprisingly, the effect
of this technique on the complexity of broadcast has not been explored before.
Our current protocols are for the binary case only and might become inefficient
when messages become longer.

Table 1. Comparison of BulletinBC, BulletinPBC and TrustedPBC, in terms
of communication complexity in bits (CC) and round complexity (RC), to existing work.
Number of parties is n. Also ε < 1.

protocol model CC RC adversary dishonest type

Abraham et al. [1] trusted PKI Õ(n · κ) O(1) adaptive < n/2 BC
Momose and Ren [25] bulletin PKI Õ(n2 · κ) O(n) adaptive < n/2 BC

Chan et al. [8] trusted PKI O(n2 · κ2) O(κ) adaptive < (1− ε) · n BC
Dolev and Strong [10] bulletin PKI O(n3 · κ) O(n) adaptive < n BC

BulletinBC §3 bulletin PKI O(n2 · κ2) O(n) static < (1− ε)n BC
BulletinPBC §5 bulletin PKI Õ(n3 · κ2) O(n logn) adaptive < (1− ε)n PBC
TrustedPBC §6 trusted PKI Õ(n2 · κ4) O(κ logn) adaptive < (1− ε)n PBC

1.1 Communication-Efficient BC in the Bulletin PKI Model

In our first contribution (Sect. 3) we use gossiping to achieve communication-
efficient BC protocols in the bulletin PKI model. When using bulletin PKI, it is
known that BC can be solved for arbitrary t < n malicious parties with O(n3 ·κ)
bits of communication using the seminal result of Dolev and Strong [10] (Here κ
is the security parameter and represents the size of a digital signature.) However,
to the best of our knowledge no protocol with better communication complexity
exists. We resolve this question by introducing BulletinBC (see Fig. 2), the
first BC protocol that achieves communication complexity of Õ(n2 · κ2) bits in
the bulletin PKI model. Our protocol is randomized and works for t < (1− ε) ·n
corrupted parties where ε ∈ (0, 1) is a constant. On the downside, we assume a
static model of corruption where the adversary must decide which t parties to
corrupt before the execution—but the corrupted parties are byzantine.
Technical Highlights. Our protocol follows a similar framework with the
Dolev-Strong protocol [10]. Recall that in Dolev-Strong, for all rounds r < n,
whenever an honest party p has observed r signatures on a bit b for the first
time, p adds her signature and sends a message x of r + 1 signatures to all par-
ties, using a SEND-ALL(x) instruction. Our proposed protocol just replaces the
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SEND-ALL(x) instruction with a SEND-RANDOM(m,x) instruction and runs for
an additional O(log n) rounds. Our SEND-RANDOM(m,x) instruction is imple-
mented by sending message x to party i (for all i ∈ [n]) with probability m/n for
some fixed m = Θ(κ). It is important to note, however, that our protocol does
not merely implement SEND-ALL(x) via a sequence of SEND-RANDOM(m,x)
instructions as this would still lead to cubic communication complexity—again, it
just replaces the instructions directly. We remark that while the resulting changes
in the protocol are minimal and only cause the protocol to run for roughly an
additional log n many steps, the security proof is affected substantially. In partic-
ular, our gossiping technique does not protect against adaptive adversaries who
can simply wait and corrupt all recipients of particular SEND-RANDOM(m,x)
commands during the protocol. Still, this is not fundamental: We show next that
gossiping, when used in PBC can (quite surprisingly) overcome this issue.

1.2 Communication-Efficient PBC for Bulletin and Trusted PKI

Recall that in PBC all n parties simultaneously act as a sender and wish to con-
sistently distribute their message. As we mentioned before, all PBC protocols in
the literature are derived trivially by calling BC multiple times in a black-box
fashion, which leads to a multiplicative n-factor in the communication complex-
ity. For example, deriving PBC for t < (1 − ε) · n via n parallel executions of
the Dolev-Strong protocol [10], would yield Õ(n4) communication complexity.
Instead, we do not use a BC protocol as a black-box but we instantiate protocols
specifically for PBC. This leads to our next contributions (Sects. 5, 6).
The M-Converge Problem. Central to our PBC protocols is the M-Converge
problem (Sect. 4) that we define for the first time and could be of independent
interest. In the M-Converge problem, there is a fixed message set M and all
initial honest parties p ∈ H begin with a set of messages Mp ⊆ M and a
constraint set of messages Cp ⊆ M. In the end, all remaining honest parties q
(we consider an adaptive adversary) should output a set Sq that is a superset of⋃

p Mp − ⋃
p Cp. (We consider superset since the adversary can inject messages

as well.) Clearly, there is a simple protocol that solves the M-Converge problem
in the presence of an adaptive adversary and in a single round: Have all honest
parties send their sets Mp and Cp to all other n parties—however this protocol
leads to O(n2|M|) communication since both Mp and Cp are subsets of M.
Instead, in our M-ConvergeRandom protocol (see Fig. 6), every honest party
runs in a few more rounds (around O(log n)) and in every round sends every
message in her local set to a randomly-chosen subset of parties and not to all
of them. This reduces the communication to Õ(n|M| + n2), which, for the case
of |M| = Ω(n) (as in our applications), leads to a much improved worst-case
communication complexity! The main idea of our protocol is as follows.

1. In round 1, honest party p, for every message x ∈ Mp − Cp, picks i ∈ [n] as
a recipient with probability m/n (Again, m is Θ(κ).) Then p constructs lists
Lj (for j = 1, . . . , n) containing messages x ∈ Mp − Cp that were assigned
to recipient j. Each list Lj is first padded to at most 2m�|M|/n� elements
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(which is enough to ensure no overflows by Chernoff) and then encrypted to
ensure an adaptive adversary does not gain any advantage. Then Lj is sent
out to party j for j = 1, . . . , n.

2. In rounds i = 2, . . . , �log ε ·n�, every honest party p adds to her constraint set
Cp all messages sent in the previous round i−1, collects all lists Lp from round
i − 1 into a new set Mp and performs the same task as in round 1 (random
assigning of elements in Mp − Cp, compilation into lists and sending).

We prove that with overwhelming probability, the above gossiping protocol deliv-
ers every element contained in the sets of the initially-honest parties (except the
ones in the initial constraint sets) to all remaining honest parties, see Lemma 9.
The communication complexity is indeed Õ(n|M| + n2) since in every round all
n parties send to all n parties a message of size 2m�|M|/n� ≤ 2|M| · m/n + 2.

We emphasize that constraint sets used in M-ConvergeRandom are cru-
cial in reducing the communication complexity of our M-ConvergeRandom

protocol, in particular when M-ConvergeRandom has to be called a large
number of times by another protocol. This is because any message m that is sent
by party p in round 1 of M-ConvergeRandom enters p’s constraint set and is
therefore never sent again by p. A protocol can thus avoid resending messages
during future calls of M-ConvergeRandom, by initializing future constraint
sets to contain already sent messages. We finally note that one of our proto-
cols presented in this paper (TrustedPBC) invokes M-ConvergeRandom a
small number of times, so for simplicity we do not use constraint sets.

While the above protocol achieves the desired communication complexity
bounds, the crucial question is whether it achieves adaptive security (It does.)
Recall that the danger with picking a few random parties to send the message
in an adaptive setting (as in our statically secure broadcast protocol) was that
the adversary can corrupt the specific set of recipients for the sent message. This
cuts off the propagation and leaves the sender as the only honest party who has
the message! Our protocol avoids that because it never reveals which are the
true recipients of the message by padding each list Lj to the same size and then
encrypting it (Secure state erasures are required as well for adaptive security.)
More intuitively, this can be understood as having the (different) messages that
are sent by a sender in a particular round of this process pose as “cover traffic" for
one another. This cover traffic hides to whom a particular message is being sent
(since all the recipients of a single sender obtain the same amount of encrypted
information), and hence makes it impossible to trace the path of that message.
Technical Highlights for BulletinPBC (Sect. 5). This protocol follows a
similar framework as the Dolev-Strong protocol [10]. Recall that in Dolev-Strong,
for all rounds r < n, whenever an honest party p has observed r signatures on a
bit b for the first time, p adds bit b to the a local set (which we call Extracted),
adds her signature and sends a message x of r +1 signatures to all parties, using
a SEND-ALL(x) instruction. As r goes to n, this instruction incurs O(n3 · κ)
communication complexity, since all parties potentially send O(n) sized lists of
signatures to all. Combining n of these protocols naively would yield a PBC
protocol with prohibitive communication complexity of O(n4 · κ).
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To overcome this issue, we observe that the main communication overhead
in this naive protocol comes from steps where all parties send lists of O(n)
signatures for the same designated sender. For example, it could be possible
that all parties hold the same list of r signatures in some round r that made
them accept a message s for some slot i in that round. Clearly, it is extremely
wasteful for all honest parties to send all of these signatures to all parties via
SEND-ALL(x) (after appending their own respective signatures), since there is a
large amount of redundancy among these lists.

Our proposed protocol deals with this situation by viewing it as an instance
of the M-Converge problem, where input sets consist of the signatures in the
parties’ lists and the constraint sets ensure that signatures which were already
sent will not be repeated. Hence, we use our M-ConvergeRandom protocol to
propagate lists in that case much more efficiently, namely with O(n2 · κ2) com-
plexity (rather than naively within O(n3 · κ)). However, in the above discussion
we focused on only a single slot i. Yet, there is an issue when applying this strat-
egy to a single instance of Dolev-Strong BC: since there are O(n) rounds where
parties might call M-ConvergeRandom, the total communication complexity
is O(n3 · κ2), even worse than the original DS protocol! It is here that we once
again leverage the inherent parallel structure of PBC. Namely, in our protocol,
we use M-ConvergeRandom to propagate messages for all slots simultane-
ously, regardless of what slot they belong to. Moreover, we run one instance
of M-ConvergeRandom per step of the protocol, for a total of O(n) many
instances. While it is possible that for some of these instances, the complexity
increases to O(n3 · κ2), thanks to the constraint sets we bound the number of
such instances by O(1). This results in a total of O(n3 · κ2) complexity, or an
amortized O(n2 · κ2) complexity per slot.
Technical Highlights for TrustedPBC (Sect. 6). Our starting point for
this protocol is the recent protocol by Chan et al. [8] that solves BC in the trusted
PKI model with O(n2 · κ2) communication complexity. We call this protocol
ChBC from now on. ChBC is essentially a Dolev-Strong protocol run among a
random committee of κ parties—for the rest of honest parties to agree with the
committee, a distribution phase takes place. More concretely, ChBC at round
r < κ instructs parties to perform the following.

1. (Voting) Whenever an honest committee party p has observed r signatures
on a bit b for the first time, p adds her signature and sends a message of r +1
signatures to all parties, using a SEND-ALL instruction. This step is executed
only by the committee and the message’s size is at most κ signatures of κ
bits each; hence the induced communication complexity is O(n · κ3);

2. (Distribution) When an honest party p observes r signatures on a bit b for
the first time, p just forwards the r signatures to all parties, using a SEND-
ALL instruction. Note that this step is executed by all parties and therefore
induces O(n2 · κ2) communication complexity (It is n2 · κ2 since every party
sends once to all n parties a list of at most κ signatures of κ bits each.)

We then observe that if we naively use the ChBC protocol for the parallel case,
the communication complexity of the distribution phase grows to O(n3 ·κ2), since
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the SEND-ALL instruction would have to be used at most 2 · n times (instead
of twice), for each bit b and for each sender slot p. To overcome this issue we
once again observe that we can abstract each step (there are κ many) of the
protocol as an instance of the M-Converge problem to improve communication
complexity. This leads to the final version of our TrustedPBC protocol, with
amortized linear complexity O(n · κ4) per sender slot.

1.3 Related Work

The problem of BC was originally introduced in the celebrated work of Lam-
port, Shostak, and Pease [19]. Their work also gave the first (setup-free) protocol
for t < n/3 and showed optimality of their parameters. However, their solution
required an exponential amount of communication and was soon improved upon
by protocols requiring only polynomial amounts of communication [11,14]. More
recently, a line of work initiated by King et al. [5,17,18] gave setup-free proto-
cols for the case of t < n/3 that require Õ(n3/2) communication and Momose
and Ren [25] provide a protocol in the bulletin PKI model with Õ(n2 · κ) com-
munication complexity but in the honest majority setting. For the setting of
t < n corruptions, Dolev and Strong [10] gave the first protocol with polynomial
efficiency. Their protocol uses a bulletin board PKI, requires O(n3 · κ) bits of
communication, and solves BC for any t < n. Much more recently, the work of
Chan et al. [8] gives a protocol that requires Õ(n2 · κ) bits of communication
and requires trusted setup. What can be seen as a statically secure version of
Chan et al.’s protocol was suggested by Buterin [6] and gives a protocol with
O(n · κ) communication complexity and also requires trusted setup (to elect a
random committee at the onset of the protocol). In the range of t < n/3 and
t < n/2, the works of Micali [23], Micali and Vaikuntnathan [24], and Abraham
et al. [1] present solution with subquadratic communication complexity using
trusted setup. Somewhat surprisingly, in the setting with setup (for t < n), any
efficiency improvement to the early work of Dolev and Strong has been aimed
exclusively at improving the round complexity rather than the communication
complexity. This has been the subject of several works [8,12,13,27]. Finally, the
problem of interactive consistency or parallel broadcast was originally introduced
by Pease et al. [26]. Another line of works studies the round complexity of BC,
e.g., [8,13,27]. See Table 1 for overview of communication-efficient protocols.

Gossip protocols (also known as flooding protocols) are a simple, efficient
type of information propagation and are used as a background layer in many
infrastructures (e.g., blockchain protocols). Loosely speaking, they are based on
the principle of exponential graph expansion: a party sends its message to a small
random sample of its neighbours who in turn do the same. It is well-known [9]
and easy to see that within O(log(n)) rounds, all n parties learn the message.
Some works [16] consider more refined versions of data dissemination, where
parties keep sending until they hear from a certain number of their neighbours.
These protocols work well in the presence of random, benign (i.e., crash) faults,
but fail completely in the presence of malicious (byzantine) faults. This was
addressed in a line of works such as [4,21]. However, as recently noticed by [22],



446 G. Tsimos et al.

none of these protocols work in the presence of a fully adaptive adversary that
can corrupt parties based on the propagation of a specific message. It is easy to
see why: an adaptive adversary can simply corrupt all the (randomly elected)
neighbours an honest party sent to and inhibit further propagation of a message
in this manner. Such attacks are sometimes referred to as “eclipsing attacks” in
the cryptocurrency space. Hence, in [22] they considered flooding protocols in
the presence of an adaptive adversary who dynamically chooses who to corrupt,
but whose corruptions take a while to become active. This gives the nodes time
to propagate the messages as necessary. An example of gossip used in a byzantine
consensus protocol is [15]: this work shows how to obtain, using gossip, a reliable
broadcast protocol with quasi-linear (in n) communication for an asynchronous
network. Being asynchronous, their protocol heavily relies on the fact that fewer
than n/3 parties are corrupted.

2 Preliminaries and Notation

We denote as X ← Π the random variable X output by probability experiment
Π. Our protocols are run among a set of n parties out of which t = (1−ε) ·n can
be malicious, for constant ε < 1. We use κ to indicate the security parameter.
Bulletin PKI vs. Trusted PKI. We briefly recall the difference between Bul-
letin PKI and Trusted PKI here. For the first part of our work, we assume that
parties share a public key infrastructure (Bulletin PKI). That is, each party i
has a secret key ski and a public key pki, where pki is known to all parties.
The secret key ski and the public key pki are not assumed to be computed in
a trusted manner. Instead, we assume only that each party i generates its keys
(ski, pki) locally and then makes pki known by using a public bulletin board.
For the final result of this work, we use the Trusted PKI setting, where a trusted
party computes and distributes secret/public key pairs to the protocol partic-
ipants, enabling the use use of more powerful cryptographic primitives in our
constructions, such as verifiable random functions.
Signatures. Party i computes a signature σ on a message m via σ ←
sig(ski,m). Later σ can be verified via ver(pki, σ,m). As is standard for
this line of work, we assume signatures are idealized in the sense that it
is impossible, without ski, to create a signature σ on a message m such
that ver(pki, σ,m) = 1. We also assume perfect correctness, i.e., for any m,
ver(pki, sig(ski,m),m) = 1. We write sigi(m) to indicate sig(ski,m) and
veri(σ,m) to indicate ver(pki, σ,m).
Communication Model. We consider the standard synchronous model of com-
munication. In this model, parties are assumed to share a global clock that pro-
gresses at the same rate for all parties. Furthermore, they are connected via
pairwise, authenticated channels. Any message that is sent by an honest party
at time T is guaranteed to arrive at every honest party at time T + Δ, where
Δ is the maximum network delay. In particular, this means that messages of
honest parties can not be dropped from the network and are always delivered.
It is assumed that all parties know the parameter Δ. As such we consider pro-
tocols that execute in a round based fashion, where every round in the protocol
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is of length Δ and parties start executing the r-th round of a protocol at time
(r − 1) · Δ. Let M be a set of messages and P be a set of parties. When a
party i calls Send(M,P) at round r, then the set of messages M is delivered to
parties in P by round r+1. When a party i calls Receive() in round r, then all
messages that were sent to i in round r − 1 via Send commands are stored in
i’s local storage. Finally, we assume secure erasures, namely a party p can safely
erase her state so that the adversary cannot access it whenever the adversary
corrupts p (after the state has been erased), e.g. [3,17].
t-Secure Broadcast and t-Secure Parallel Broadcast. We now provide the
definitions of t-Secure Broadcast and t-Secure Parallel Broadcast which are the
focus of the paper’s main body.

Definition 1 (t-Secure Broadcast). A protocol Π executed by n parties,where
a designated party s ∈ [n] (the sender) holds an input v and all parties terminate
upon output, is a t-secure broadcast protocol if the following properties hold with
probability 1 − negl(κ) whenever at most t parties are corrupted:

t-validity: if the sender is honest, all honest parties output v.
t-consistency: all honest parties output the same value v′.

Definition 2 (t-Secure Parallel Broadcast). A protocol Π executed by n
parties, where each party i holds an input vi and terminates upon outputting an
n-value vector Vi, is a t-secure parallel broadcast protocol if the following prop-
erties hold with probability 1 − negl(κ) whenever at most t parties are corrupted:

t-validity: If party s is honest, then all honest parties i have Vi(s) = vs.
t-consistency: all honest parties output the same vector V′.

We define a “slot” s to denote in PBC the equivalent of the execution of a
single sender BC, if party ps was the designated sender. Thus, the output bit of
a party pi for a slot s is Vi(s). A slot s is honest, if ps is honest.
Adversary Model. In general for all our protocols we consider a polynomial-
time adversary that can corrupt up to t parties in a malicious fashion. The
adversary can make them deviate from the protocol description arbitrarily. Our
adversary is also rushing, being able to observe the honest parties’ messages
in any synchronous round r of a protocol, and delay them until the end of
that round. In this way, it can choose its own messages for that round before
delivering any of the honest messages. For Sect. 3, we consider a static adversary,
who chooses all the parties to corrupt before the execution of the protocol. For
Sects. 4 to 6, we consider an adaptive adversary, able to corrupt up to t parties,
each at any point during the execution of the protocol, learning its internal
state which consists of any longterm secret keys and ephemeral values that have
not been deleted at that point. However, we do not consider strongly adaptive
adversaries that could, after corrupting a party, observe what message that party
attempted to send during that round and then replace its message with another
one (or simply delete it). Moreover, we assume atomic sends [3]: an honest party
p can send to multiple parties simultaneously, without the adversary being able
to corrupt p in between sending to two parties.
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MPC Model. One part of our parallel broadcast protocol is modeled using
the ideal functionality Fprop (See Fig. 4.) To show that a specific implementation
realizes Fprop, we are using the definition of synchronous MPC in the standalone
model by Canetti [7] which we briefly recall here. Let f be a (possibly random-
ized) function that takes n inputs. In the real world execution of a protocol Π
for computing f , party Pi initially holds 1κ and an input xi. The adversary holds
1κ and an auxiliary input z. The goal of running Π is for all honest parties Pi to
learn output yi, where [y1, . . . , yn] ← f(x1, . . . , xn). During the execution, the
adversary A can corrupt any party adaptively, upon which it learns the inter-
nal state of this party. At the end of the execution, each honest party outputs
its local output (as instructed by Π) and the adversary A outputs its entire
view. We write RealΠ,A(1κ,x, z) to denote the distribution over the vector of
outputs of honest parties and the set of corrupted parties in the above (real-
world) experiment. We define security of Π relative to an ideal world where a
trusted party securely computes f and outputs the result to all parties. Parties
hold inputs as above; the adversary in the ideal world is denoted as S. The
ideal-world execution now works as follows.

Initial corruptions. S adaptively corrupts parties and learns their inputs.
Evaluation by trusted party. The inputs x of honest parties are sent to the
trusted party. The ideal-world adversary S can specify the inputs on behalf of
any of the parties it has corrupted. The trusted party evaluates the function
f and returns the computed outputs yi to the respective party i.
Additional corruptions. At any point in time (after output has been pro-
vided by the trusted party), S may adaptively corrupt additional parties i.1
Output. The honest parties output their view.
Post-execution corruptions. S may corrupt additional parties and output
(any function of) its view.

Idealf,S(1κ,x, z) denotes the distribution over the vector of outputs of honest
parties and the set of corrupted parties in the above (ideal-world) experiment.

Definition 3 (Secure Computation). Π t-securely computes f if for all PPT
adversaries A corrupting at most t parties, there exists a PPT simulator S such
that {RealΠ,A(1κ,x, z)}κ∈N,x,z∈{0,1}∗ ≈ {Idealf,S(1κ,x, z)}κ∈N,x,z∈{0,1}∗ .

3 Single-Sender Broadcast

We are now ready to describe our proposed communication-efficient BC protocol
in detail. As we mentioned in the introduction, our protocol replaces Dolev-
Strong’s SEND-ALL instruction with a SEND-RANDOM instruction. We model
SEND-RANDOM with a randomized procedure that we call AddRandomEdges

(see Fig. 1) that simulates the propagation of messages from honest nodes to the
rest of the network in our protocol, between two consecutive rounds. Aanalyzing
it seperately, allows us to argue about the consistency and validity of our protocol
BulletinBC in a structured manner.
1 Since we assume erasure, the adversary learns nothing new from such corruptions.
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1: procedure G ← AddRandomEdges(V, S2, S3, S, m)
Input. Set of n nodes V ; disjoint subsets of V : S2, S3;
S ⊆ V − (S2 ∪ S3); Integer m ≤ n.
Output. A graph G.

2: Let G be an empty graph with node set V ;
3: for every node v ∈ S do
4: for every node u ∈ V do
5: Add an edge (v, u) to G with probability m

n
;

6: return G;

Fig. 1. The AddRandomEdges procedure.

3.1 The Procedure AddRandomEdges

AddRandomEdges works over a graph G whose n vertices V are partitioned
into three disjoint sets and which is initially empty, i.e., has no edges. Given
an arbitrary partition of V into three disjoint sets S1, S2, S3, and a set S ⊆ S1,
AddRandomEdges adds the edge (v, u) to the graph G with probability m/n
for every pair of nodes v ∈ S and u ∈ V . Note that S1 is fully defined by S2, S3

and V as S1 = V −(S2∪S3), therefore S1 is not an input to AddRandomEdges.
The procedure outputs the resulting graph G (i.e., with all the added edges).
Looking ahead, S represents the set of parties that send a message q at a specific
round r and S2 represents the set of parties that have not received q in a previous
round. An edge from v ∈ S to u ∈ V represents that party v sends q to party
u in round r. We want to compute how many parties in S2 receive q (for the
first time) during round r, so we study the degree of nodes in S2. We define the
following indicator random variables.

Definition 4. Let G ← AddRandomEdges(V, S2, S3, S,m). For all u ∈ S2 let
Zu ∈ {0, 1} such that Zu = 1 if and only if u has nonzero degree in G.

In Lemma 1 we show that the number of nodes in S2 that acquire an edge in
G is at least twice the number of nodes in S. Intuitively, this allows us to show
that messages propagate very quickly in our broadcast protocol.

Lemma 1. Let (S1, S2, S3) be a partition of n nodes into disjoint sets with τ =
|S1| ≤ ε ·n/3, |S2| = ε ·n−|S1|, |S3| = n−ε ·n, where ε ∈ (0, 1) is a constant. Let
also S ⊆ S1 with |S| ≥ 2 · τ/3 and let {Zu}u∈S2 be the random variables defined
by AddRandomEdges(V, S2, S3, S,m) per Definition 4. Then for m ≥ 15/ε,

Pr

[
∑

u∈S2

Zu ≥ 2 · τ

]

≥ 1 − p, where p = max
{

ε · n · e−ε·m/9,
(e

2

)−ε·m/4
}

.

3.2 The Protocol BULLETINBC

We now describe our protocol BulletinBC. For simplicity, we describe our
protocol for the case where values agreed upon are from the binary domain.
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Intuition: From SEND-ALL to Gossiping. As we mentioned in the intro-
duction, our protocol is inspired by the protocol of Dolev and Strong [10] that
achieves O(n3 · κ) communication complexity in the bulletin board PKI model.
We give a detailed description of the Dolev-Strong protocol here. Each party
i ∈ [n] maintains a set Extractedi that is initialized as empty. The protocol pro-
ceeds in t+1 rounds as follows (Again, t < n is the number of corrupted parties.)
In the first round, the designated sender s signs her input bit and sends the sig-
nature to all n − 1 parties. In rounds 2 ≤ r ≤ t, for each bit b ∈ {0, 1}, if an
honest party i has seen at least r signatures on b (including a signature from the
designated sender) and b is not in her extracted set, then party i adds b to her
local extracted set, signs b and sends the r + 1 signatures to all n − 1 parties. In
the final round t + 1, i accepts a bit b iff b is the only bit in Extractedi.

What makes the above protocol work is the fact that when party i sends the
r + 1 signatures, all honest parties see these signatures in the next round, since
these signatures are sent to all other n − 1 parties. In the final round, it is not
necessary to send again, since holding t + 1 signatures on b means that at least
one honest party has sent r + 1 signatures upon receiving r signatures on b in
round r < t + 1. Hence, all parties must have received these r + 1 signatures
in round r + 1 and added b to their extracted sets in that round. In terms of
communication complexity, note that all honest parties send an O(t · κ)-sized
message to n − 1 parties (κ is due to the size of the signature), which results in
O(n2 · t · κ) communication. Given that t = O(n), this is O(n3 · κ).

Our protocol does away with the SEND-ALL instructions, and introduces a
form of gossiping: it does not require an honest party to send the r+1 signatures
to all n − 1 parties. Instead, an honest party sends the r + 1 signatures to
each other party with probability m

n . The hope is that after a certain number
of rounds, enough honest parties see these messages. As expected, the total
number of rounds must now increase. Fortunately, our protocol requires just
an additional R = O(log n) rounds, yielding a communication complexity of
O(n2 · m · κ) = O(n2 · κ2) and a round complexity of O(n).
Formal Description and Proof of BulletinBC. Figure 2 contains the
pseudocode of our protocol from the view of an honest party p (i.e., this is the
algorithm that runs at each distributed (honest) node p). It takes as input an
initial bit b in the case of the designated sender (no input else) and returns the
final bit b′. Note three major differences from the Dolev-Strong protocol [10]: (1)
we increase the number of rounds from t to t+R (Line 5); (2) instead of sending
to all parties we send to each party randomly with probability m/n (Line 12); (3)
for all rounds r ≥ t+1 we do not require r+1 signatures to add to the extracted
set but just t + 1—that is why we use the expression min{r, t + 1} in Line 9. We
now continue with the proof of consistency and validity of BulletinBC. We
first define, using notation consistent with AddRandomEdges, the following
sets of parties (w.r.t. a bit b and a round r):

1. S(b, r): honest parties i that added b to their Extractedi set at round r;
2. S1(b, r): honest parties i that added b to their Extractedi set by round r;
3. S2(b, r): honest parties i that have not added b to their Extractedi set by r.
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1: procedure b ← BulletinBCp()
Input. A bit b if p = s, no input otherwise.
Output. Decision bit b .

2: Extractedp = Localp = ∅;
3: if p is the designated sender s then
4: Send(sigs(b), [n]);
5: for round r = 1 to t + R do
6: Localp ← Localp ∪ Receive();
7: for bit x ∈ {0, 1} do
8: S ← DistinctSigs(x, Localp, s);
9: if |S| ≥ min{r, t + 1} ∧ x /∈ Extractedp then
10: Extractedp = Extractedp ∪ x;
11: for party i = 1 to n do
12: Send(sigp(x) ∪ S, i) with probability m

n
;

13: return b ∈ Extractedp if |Extractedp| = 1, otherwise return canonical bit 0;

Fig. 2. Our BulletinBCp protocol for party p. DistinctSigs(x, Localp, s) returns the
set of valid signatures from distinct signers on x contained in Localp if this set includes
a signature from s, otherwise it returns ∅. Note that only the designated sender receives
an input bit in the protocol.

Define S3 be the set of malicious parties (|S3| = n − εn). We show (roughly)
that the number of parties that receive a message at round r′ that was sent at
round r < r′ increases exponentially with r′ − r with overwhelming probability.

Lemma 2 (Gossiping bounds). For a specific bit b, let r be the first round of
BulletinBC where an honest party i adds b to Extractedi. Let R = �log3(ε ·n)�.
Let p be the probability defined in Lemma 1. Then:

1. For all rounds ρ such that r ≤ ρ ≤ r + R and |S1(b, ρ − 1)| ≤ ε · n/3, we have
that with probability at least (1 − p)ρ−r:

|S(b, ρ)| ≥ (2/3) · |S1(b, ρ)| and |S1(b, ρ)| ≥ 3ρ−r.

2. Let r∗ > r be a round such that |S1(b, r∗−1)| > ε·n/3. Then, |S1(b, r∗)| = ε·n
with probability at least (1 − p∗) · (1 − p)r∗−r−1, where p∗ = ε · n · e−2ε·m/9.

Lemma 3 (t-consistency: BulletinBC). Let R = �log3(εn)�, m = Θ(κ).
BulletinBC satisfies t-consistency (Definition 7), with probability 1 − negl(κ).

Proof. Suppose an honest party i adds bit b to Extractedi at some round r.
We prove that by the end of the protocol all honest parties j add b to their
Extractedj sets with probability 1 − negl(κ)—this means that all honest parties
have identical Extracted sets by the end of the protocol, which is equivalent to
consistency. We distinguish the two cases:
Case r < t + 1: We distinguish two cases. If S1(b, r) > ε · n/3, then by Item (2)
of Lemma 2, all ε · n honest parties add bit b in their extracted set by the next
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round with probability at least 1−ε ·n ·e−2ε·m/9 = 1−negl(κ), since n = poly(κ).
Now, if S1(b, r) ≤ ε · n/3, let r be the round r + R − 1. If S1(b, r) > ε · n/3, the
previous case applies. Otherwise, Item (1) of Lemma 2 applies, meaning that at
round r + 1 = r + R we have S1(b, r + R) ≥ 3R = 3�log3(ε·n)� ≥ 3log3(ε·n) = ε · n,
with probability at least (1−p)R ≥ 1−R ·p, by Bernoulli’s inequality2 and since
−p ≥ −1, R ≥ 1. Note that for m = Θ(κ), R · p is negl(k), since n = poly(κ).
Case r ≥ t + 1: Suppose an honest party i adds bit b to Extractedi at some round
r ≥ t + 1. Then, i has received valid signatures on b from t + 1 distinct parties.
Thus, an honest party j added bit b to Extractedj at some round r′′ < t + 1. So,
case r′′ < t + 1 applies to honest party j. Thus all honest parties add b to their
Extracted sets by the end of the protocol, with probability 1 − negl(κ). �

Lemma 4 (t-validity: BulletinBC). Let R = �log3(ε · n)�, m = Θ(κ).
BulletinBC satisfies t-validity, per Definition 7, with probability 1 − negl(κ).

Proof. Follows from the proof of consistency in Lemma 3. After R = �log3(ε ·
n)� rounds, all honest parties have received the bit of the honest sender, with
probability 1 − negl(κ). �

Theorem 1 (Communication complexity: BulletinBC). Let m = Θ(κ)
and R = �log3(εn)�. The total number of bits exchanged by all parties in Bul-

letinBC is O(n2 · κ2), with probability 1 − negl(κ).

Proof. Every honest party sends at most one time for each bit to a number of
O(m) = O(κ) parties with overwhelming probability in κ, a message of at most
t signatures. Since there are O(n) honest parties, t = O(n) and the size of each
signature is κ, the total number of bits exchanged is O(n2 · m · κ) = O(n2 · κ2). �

4 The M-Converge Problem

In this section we introduce the M-Converge problem, an efficient solution of
which is used as a black box in our parallel broadcast protocols. Informally, in
the M-Converge problem, honest parties begin with individual subsets (of a
fixed set M) as inputs and in the end of the protocol all honest parties must
have a superset of the union of all the initial honest-owned subsets. We want to
design M-Converge protocols in the presence of an adversary that can corrupt
at most t parties, adaptively. We now define the M-Converge problem formally.

Definition 5. (t-secure M-Converge problem). Let M ⊆ {0, 1}∗ be an
efficiently recognizable set (This is a set for which membership can be efficiently
decided.) A protocol Π executed by n parties where every honest party p initially
holds input set Mp ⊆ M and constraint set Cp ⊆ M is a t-secure M-Converge
protocol if all remaining honest parties upon termination, with probability 1 −
negl(κ), output a set Sp s.t.

Sp ⊇
⋃

p∈H
Mp −

⋃

p∈H
Cp ,

2 For every x, r ∈ �, x ≥ −1, r ≥ 1 it holds that (1 + x)r ≥ 1 + rx.
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whenever at most t parties are corrupted and where H is the set of honest parties
in the beginning of the protocol.

We note that the trivial solution of outputting M does not work: We cannot
necessarily enumerate the elements of M since we only assume that membership
can be efficiently decided. An example of such a setting is where M consists of
signatures of n parties on a bit b, computed with the parties’ secret keys. In
such a setting, PPT parties can easily verify membership in M but cannot
enumerate M, even if M is polynomial-sized (Note that the latter could be
true depending on the signature scheme.) As we already noted in the introduc-
tion, there is a very simple t-secure M-Converge protocol: All honest parties
just send their local sets Mp to all other parties, in one round. Unfortunately,
the communication complexity of this protocol is Ω(n2 · minp∈H{|Mp − Cp|}),
which would be prohibitively expensive. In this section we propose a protocol,
M-ConvergeRandom (see Fig. 6) that uses gossiping to reduce communica-
tion to Õ(n · |M|+n2). First, we introduce some tools necessary for the analysis
and clear exposition of our protocol, the functionality Fprop and the procedure
AddRandomEdgesAdaptive, required for analyzing Fprop.

4.1 The Procedure ADDRANDOMEDGESADAPTIVE

Here we face an adaptive adversary and introduce the respective standalone ran-
domized procedure which we call AddRandomEdgesAdaptive (Fig. 3). Ana-
lyzing this process helps with proving the security of M-ConvergeRandom.

In AddRandomEdgesAdaptive, a set of honest senders S ⊆ H (H is the
set of initial honest nodes) are sending a message x to the rest of the parties, by
picking each party independently to be a recipient of the message with proba-
bility m/n. The set of malicious nodes are not fixed a priori and the adversary
A decides who to corrupt after the edges have been placed. We define a specific
set of honest parties S2 ⊆ H as the target set which does not contain any of the
senders in S (The meaning of target set will depend on our application.) Our
goal is to prove that after the adversary has finished with the adaptive corrup-
tions, still a good amount (in particular 2 · |H −S2|) among the remaining honest
nodes of S2 is receiving message x with overwhelming probability. Clearly if we
do not confine the view of the adversary, we cannot prove anything meaningful
since the adversary can go ahead and corrupt exactly the nodes that received
x. For this reason, in AddRandomEdgesAdaptive we strategically allow the
adversary to access just the list RevealedEdges (see Line 8) before making the
next corruption—these are the edges that correspond to nodes that have already
been corrupted (Note that this restriction of the adversary is enforced by the
implementation of our protocol later.) We formalize this intuition in Lemma 5.

Definition 6. Let (G,H ′) ← AddRandomEdgesAdaptiveA(V, S,H,m). Let
S2 ⊆ H. Then for all u ∈ S2 define random variables Zu ∈ {0, 1} such that
Zu = 1 if and only if u has nonzero degree in G and u ∈ H ′.
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procedure (G, H ) ← AddRandomEdgesAdaptiveA(V, S, H, m)
Input. Set of n nodes V ; sets S and H with S ⊆ H ⊆ V ; Integer m ≤ n.
Output. A graph G a set of nodes H ⊆ H.

Let G be an empty graph with node set V ;
for every node v ∈ S do

for every node u ∈ V do
Add a directed edge (v, u) to G with probability m/n;

Initialize RevealedEdges to be all edges incident to nodes in v ∈ V − H;
while |H| ≥ · n do

vi ← A(V, H, RevealedEdges) such that vi ∈ H;
if vi = null then

Add {(u, vi) : u ∈ in neighbor (vi)} to RevealedEdges;
H = H − vi;

else break;
Set H = H;
return (G, H );

Fig. 3. The experiment with an adaptive adversary, AddRandomEdgesAdaptive.

Lemma 5. Let ε ∈ (0, 1), S2 ⊆ H with |H − S2| ≤ ε · n/3 and S ⊆ H − S2 with
|S| ≥ 2|H − S2|/3. Let (G,H ′) ← AddRandomEdgesAdaptiveA(V, S,H,m).
Then for m ≥ 19/ε,

Pr
[∑

u∈S2
Zu ≥ 2|H − S2|

]
≥ 1 − p,

where p = max{n · e−4ε·m/45, ( e
2 )−ε·m/2}.

Proof. For any set H∗, define EH∗ to be the event that AddRandomEdge-

sAdaptiveA(V, S,H,m) outputs (·,H∗). Also, supp(E) = {H ′ : Pr[EH′ ] > 0}.
Fix H∗ ∈ supp(E) such that

Pr

[
∑

u∈S2

Zu ≥ 2|H − S2|
∣
∣
∣ EH′

]

≥ Pr

[
∑

u∈S2

Zu ≥ 2|H − S2|
∣
∣
∣ EH∗

]

,

for all H ′ ∈ supp(E). Therefore

Pr

[ ∑
u∈S2

Zu ≥ 2|H − S2|
]
=

∑
H′∈supp(E)

Pr

[ ∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣ EH′

]
Pr[EH′ ]

≥
∑

H′∈supp(E)

Pr

[ ∑
u∈S2

Zu ≥ 2|H − S2|
∣∣∣EH∗

]
Pr[EH′ ] ≥ Pr

[ ∑
u∈S2∩H∗

Zu ≥ 2|H − S2|
∣∣∣ EH∗

]
,

since S2 ∩ H∗ ⊆ S2. The remaining proof lower-bounds the probability
Pr[

∑
u∈S2∩H∗ Zu ≥ 2|H − S2| | EH∗ ]. This is done in three steps.

Step 1 : Computing the probabilities Pr [Zu = 1 | EH∗ ] for all u ∈ S2 ∩ H∗.
For u ∈ S2 ∩ H∗ let Yu be a random variable such that Yu = 1 iff u has nonzero
degree in G. By definition of Zu (Zu = (Yu = 1) ∩ (u ∈ H ′), for u ∈ S2) we have
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that, for all u ∈ S2 ∩ H∗: Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ].
Suppose now H∗ = H − {v1, . . . , v�}, where v1, . . . , v� are nodes chosen by

the adversary in Line 8 of the experiment. Because the adversary, in his picking
v1, . . . , v�, never accesses information related to nodes in H∗ (his access is con-
fined to information in V − H∗ through the RevealedEdges list), it follows that
EH∗ (the event of the adversary picking v1, . . . , v�) and Yu (for every u ∈ S2∩H∗)
are independent events. Therefore for all u ∈ S2 ∩ H∗ it is

Pr[Zu = 1 | EH∗ ] = Pr[Yu = 1 | EH∗ ] = Pr[Yu = 1] = 1 − (1 − m/n)|S| .

Step 2 : Showing {Zu}u∈S2∩H∗ , conditioned onEH∗ , are independent. By using
the above findings and by the independence of Yu we have that for all bu ∈ {0, 1}

Pr

[(
⋂

u∈S2∩H∗
Zu = bu

)
∣
∣ EH∗

]

= Pr

[(
⋂

u∈S2∩H∗
Yu = bu

)
∣
∣ EH∗

]

= Pr

[
⋂

u∈S2∩H∗
Yu = bu

]

=
∏

u∈S2∩H∗
Pr[Yu = bu] =

∏

u∈S2∩H∗
Pr[Zu = bu | EH∗ ]

and therefore {Zu}u∈S2∩H∗ are independent conditioned on EH∗ .
Step 3 : Applying aChernoff bound. We consider two cases, one for |S| > 4ε ·
n/45 and one for |S| ≤ 4ε ·n/45. For |S| > 4ε ·n/45, we have that for u ∈ S2∩H∗

Pr[Zu = 0 | EH∗ ] = (1 − m/n)|S| < (1 − m/n)4ε·n/45 ≤ e−4ε·m/45 ,

where the last step is derived from the inequality (1 − x) ≤ e−x,∀x ∈ R and
the fact that (1 − m/n) > 0 and 4ε · n/45 > 0. Note that we have |H∗ − S2| ≤
|H−S2| ≤ εn/3 and |H∗| ≥ εn. So, by using the set equality A = (A−B)∪(A∩B),
for A = H∗ and B = S2, we get that |S2 ∩H∗| ≥ 2εn/3. Also, |H −S2| ≤ ε ·n/3,
so it is |S2 ∩ H∗| ≥ 2|H − S2|. Therefore

Pr

[
∑

u∈S2∩H∗
Zu ≥ 2 · |H − S2| | EH∗

]

≥ Pr

[
∑

u∈S2∩H∗
Zu = |S2 ∩ H∗| | EH∗

]

= Pr

[
⋂

u∈S2∩H∗
Zu = 1 | EH∗

]

= 1 − Pr

[
⋃

u∈S2∩H∗
Zu = 0 | EH∗

]

≥ 1 −
∑

u∈S2∩H∗
Pr [Zu = 0 | EH∗ ] > 1 − |S2 ∩ H∗| · e−4ε·m/45

> 1 − n · e−4ε·m/45, since |S2 ∩ H∗| < n .

For the case |S| ≤ 4ε · n/45, since Zu (u ∈ S2 ∩ H∗) are independent random
variables conditioned on EH∗ we can use the lower tail Chernoff bound for Z =∑

u∈S2∩H∗ Zu, i.e.,

Pr[Z < (1 − δ)μ | EH∗ ] <

(
e−δ

(1 − δ)1−δ

)μ

.
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Now μ = E [Z | EH∗ ] =
∑

u∈S2∩H∗ Pr[Zu = 1 | EH∗ ] ≥ 2ε·n·(1−(1−m/n)|S|)/3,
since |S2 ∩ H∗| ≥ 2ε · n/3. Also, since |S| ≥ 1 we have

μ ≥ 2ε · n · (1 − (1 − m/n)|S|)/3 ≥ 2ε · n · (1 − (1 − m/n)) /3 = 2ε · m/3 .

For δ = 1/2 this yields Pr[Z < μ/2 | EH∗ ] <
(

e−0.5

(0.5)0.5

)2ε·m/3

=
(

e
2

)−ε·m/3.
Recall however that we must bound the probability Pr[Z < 2|H − S2| |

EH∗ ]. Therefore it is enough to also show that μ ≥ 4 · |H − S2|. Recall that
|S| ≥ 2|H − S2|/3 and since |S| ≤ 4εn/45, then |H − S2| ≤ 2εn/15. From
μ ≥ 2ε · n · (1 − (1 − m/n)|S|) /3 and by 1 + x ≤ ex and m ≤ n we have that

μ ≥ 2
3
ε · n · (1 − e− m

n |S|) ≥ 5 · |H − S2| ·
(
1 − e

−2m·ε|S|
15|H−S2|

)
,

since (n ≥ 15|H − S2|/2ε and for α > 0, f(n) = n
(
1 − e− α

n

) ↗ in n)

≥ 5 · |H − S2| ·
(
1 − e

−4m·ε
45

)
, (since |S|/|H − S2| ≥ 2/3)

> 4 · |H − S2|, (sincem ≥ 19/ε >
45 ln 5

4ε
) . �

4.2 The Ideal Functionality Fprop

To facilitate the exposition of our M-ConvergeRandom protocol, we use an
ideal functionality Fprop—see Fig. 4. In summary, Fprop enables a party i to
send a set of messages M to, on average, m out of n randomly selected par-
ties without leaking which those parties are to the adversary. (We stress that
each message in M is sent to different parties.) In our protocol Fprop is called, via
(SendRandom,M), by all honest parties i in the beginning of every round β and
returns a set Oi, in the end of round β, which contains messages sent from other
parties to i in the beginning of round β. The adversary in Fprop gets a special
interface to the functionality via the instruction (SendDirect,x, J) by which it
can send messages in x to parties specified in the vector J directly rather than
randomly. We also assume that the adversary learns the input set of an honest
party to Fprop. Finally the adversary gets access to all the sets Oi for the parties
i that have been corrupted. We note here that Fprop does not maintain state
across calls and therefore all Oi = ∅, in the beginning of every round.
Implementing the Ideal Functionality Fprop with Propagate(). In Fig. 5
we define the process that instantiates Fprop and give it the fitting name
Propagate(). As usual, we describe the protocol Propagate() from the view
of a party p. Consistent with the interface of Fprop, Propagate() takes as input
a set of messages Mp (that are to be sent out to other parties) and returns a
set of messages Op that were sent to p. In the first step of Propagate(), every
party creates a fresh pair of secret and public keys.

Next, note that Propagate() does not send a message x ∈ Mp directly to
party j (with probability m/n) since this would reveal the recipient of x to the
adversary. Instead, before sending, it locally computes a list Lj , for every party
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Functionality: Fprop

Let n be the number of parties and m = 10 +κ. For every party i ∈ [n], Fprop

keeps a set Oi which is initialized to ∅. Let Mi be party i’s input messages’ set.
On input (SendRandom, Mi) by honest party i:
– For all x ∈ Mi and for all j ∈ [n] add (i, x) to Oj with probability

m/n;
– return Mi to adversary A;
– return Oi to party i.

On input (SendDirect,x, J) by adversary A (for a corrupted party i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 4. Functionality Fprop.

j ∈ [n], and adds x to Lj with probability m/n. All lists Lj are padded to the size
of the maximum sized list for the current call of Propagate by the party (say
party p), which we call Λp and are encrypted using the fresh public keys (Recall
that M is the fixed set of the M-Converge problem.) Then the plaintext lists
are erased from memory and only after erasure the encrypted lists are sent out.
In the end, the fresh secret key is also erased from memory. Intuitively, security
is guaranteed because (i) the communication pattern of each sender does not
reveal anything (irrespectively of who the recipient of x is, the adversary just
sees equally-sized encrypted lists sent to all parties from each sender); and (ii)
even if the adversary adaptively corrupts a party, no information about who
that party sent to is revealed (because of erasure of plaintext lists and secret
key)—the only information that is revealed is from whom that party received,
which is harmless. We show that the lists Lj constructed by Propagatep() is of
the same order as the message list Mp of party p with overwhelming probability.

Lemma 6. If Mp is the input set of party p, the number of elements added to list
Lj at Line 7 of Propagate() is ≤ |Mp| ·2m/n ≤ Λp with probability 1−negl(κ).

Lemma 7. Let s be the length in bits of a message in M. The communication
complexity of Propagate() for party p with input Mp, is O(max {n, |Mp|}·m·s).
Security of Propagate(). The lemma below proves that Propagate()
securely instantiates Fprop. The key property that we leverage is that each sender
sends the same amount of information to every other party, regardless of their
inputs. This trivializes the simulation of honest parties’ communication in the
protocol, since it is independent of the actual values they input to Propagate().

Lemma 8. Assuming a CPA-secure PKE scheme (KeyGen,Enc,Dec) and secure
erasure, Propagate() t-securely computes Fprop according to Definition 3.
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1: procedure Propagatep(SendRandom, Mp)
Input. A set of of messages Mp.
Output. A set of messages Op.

2: Set (skp, pkp) ← KeyGen(1κ); at time 0
3: Send(pkp, [n]);
4: Receive(); at time Δ
5: for all x ∈ Mp do
6: for j = 1 to n do
7: Add x to list Lj with probability m/n;
8: Let Λp = 2m |Mp|

n
;

9: for j = 1 to n do
10: Pad list Lj to maximum size Λp;
11: ctj ← Enc(pkj , Lj);
12: Erase Lj from memory;
13: for j = 1 to n do
14: Send(ctj , j);
15: C ← Receive(); at time 2Δ
16: for all ct ∈ C do
17: Decrypt ct using skp and output a list L;
18: Add L to Op;
19: Erase skp from memory;
20: return Op;

Fig. 5. Propagate(), a secure instantiation of Fprop. We note that the secret and public
keys that are generated in Line 2 are one-time and are never used again.

4.3 Our M-CONVERGERANDOM Protocol

We now analyze the M-ConvergeRandom protocol, depicted in Fig. 6, solving
the M-Converge problem with improved communication. Our protocol proceeds
in �log(ε · n)� rounds. In each round, every honest party p uses Fprop to send
messages in their local set that are not in their constraint set, to a few randomly
selected parties (Line 3). To decide what to send in the next round, p takes the
union of the received messages (Line 4), and from the resulting set of messages,
keeps only the ones that belong in set M (Line 6) and are not in p’s constraint
set. For example, messages m /∈ M, sent by the adversary can be safely discarded
and so can any message m ∈ Cp.

The proof of Lemma 9 requires defining and proving some properties of
the standalone probabilistic experiment AddRandomEdgesAdaptive (Fig. 3),
which encapsulates how M-ConvergeRandom works.

Lemma 9 (Propagation in presence of an adaptive adversary). Fix an
initially-honest party p and a message m∗ ∈ Mp − ⋃

h∈H Ch. Then, with prob-
ability 1 − negl(κ), all remaining honest parties after M-ConvergeRandom

terminates have received m∗.
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1: procedure Sp ← M-ConvergeRandomp(Mp, Cp)
Input. Sets Mp ⊆ M, Cp ⊆ M
Output. A set Sp.

2: for round β = 1 to log( · n) do
3: ReceiveFprop ← Fprop(SendRandom, Mp − Cp);
4: Localp ← Localp ∪ ReceiveFprop ;
5: Cp = Cp ∪ Mp;
6: Mp = Localp ∩ M;
7: return Mp;

Fig. 6. Our M-ConvergeRandomp protocol.

Proof. Let hβ ≥ ε ·n be the set of parties that remain honest after the adversary
has performed corruptions for round β of M-ConvergeRandom. Thus, for all
β ≥ 0, hβ+1 ⊆ hβ . Also, let Rβ denote the set of parties that i. remain honest
after the adversary has performed corruptions for round β; and ii. receive m∗

for the first time during round β. Let

ωβ =

(
β⋃

i=1

Ri

)

∩ hβ = (Rβ ∩ hβ) ∪ (

(
β−1⋃

i=1

Ri

)

∩ hβ)

= Rβ ∪ (

(
β−1⋃

i=1

Ri

)

∩ hβ−1 ∩ hβ) = Rβ ∪ (ωβ−1 ∩ hβ)

We shall use the above notation for sets interchangeably with the notation for
their cardinality, which will be clear depending on the context of the operations.
We first prove that with probability 1 − negl(κ), for all rounds β ≤ �log(ε · n)�:
1. If ωβ−1 ≤ ε · n/3, then Rβ ≥ (2/3) · ωβ and ωβ ≥ 2β

2. If ωβ−1 > ε · n/3, then ωβ = hβ ≥ ε · n

(1.) In M-ConvergeRandom, a message m∗ at round β is propagated in a
randomized fashion using Fprop. So, the adversary does not see which party
receives the message unless this party is already corrupted—this is exactly what
is modeled by AddRandomEdgesAdaptive with the use of RevealedEdges.
Thus, since hβ ≥ ε · n, we can compute the number of “new” honest receivers
Rβ of message m in the end of round β by (almost) directly applying Lemma 5,
with S2 being hβ − ωβ−1 (the set of honest parties that have never received m∗

by that round of the protocol) and Rβ−1 being S, i.e. the set of honest senders
of m∗ for round β. Also R0 = ω0 ≥ 1, since there is at least one honest sender
for m∗ (namely p) for round 1. We use induction. For β = 1, if R0 ≤ εn/3, by
applying Lemma 5:

Pr[R1 ≥ 2ω0] = Pr[R1 ≥ 2R0] ≥ 1 − p = 1 − negl(κ) ,

where p = max{n · e−4ε·m/45, ( e
2 )−ε·m/2} and since m = Θ(κ) and κ = poly(n).

Then, we have that ω1 = R1 + ω0 ≥ 3ω0 ≥ 2, with probability 1 − negl(κ). Also,
ω1

R1
=

R1 + ω0 ∩ h0

R1
=

R1 + ω0

R1
≤ R1 + R1/2

R1
= 3/2,
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thus R1 ≥ (2/3)ω1 with probability 1 − negl(κ). Therefore, the base case holds.
Let us assume the claim holds for round β −1 ≤ �log(ε ·n)�−1. Then, if ωβ−1 ≤
εn/3, we prove that Rβ ≥ (2/3) · ωβ and ωβ ≥ 2β . By M-ConvergeRandom,
all honest receivers in round β − 1 become senders in round β. So, for applying
Lemma 5, we match the sets as follows: hβ−1 − ωβ−1 := S2, hβ−1 := H,hβ :=
H ′, Rβ−1 := S. Notice that the u ∈ S2 s.t. Z

(β)
u = 1 are exactly the u ∈ Rβ and

thus
∑

u∈S2
Z

(β)
u = Rβ . Also, notice that

H − S2 = hβ−1 − (hβ−1 − ωβ−1) = hβ−1 ∩ ωβ−1 = ωβ−1,

meaning: |H − S2| = ωβ−1 ≤ εn/3 and S = Rβ−1 ≥ 2ωβ−1/3 ≥ 2|H − S2|/3.

Finally, we have m = Θ(κ) ≥ 19/ε = Θ(1). Therefore, we can use Lemma 5 for
round β: Thus, Pr[Rβ ≥ 2|H − S2|] = Pr[Rβ ≥ 2ωβ−1] ≥ 1 − p = 1 − negl(κ).
Therefore, ωβ ≥ Rβ ≥ 2ωβ−1 ≥ 2 ·2β−1 = 2β , with probability 1−negl(κ). Also,

ωβ

Rβ
=

Rβ + ωβ−1 ∩ hβ

Rβ
≤ Rβ + ωβ−1

Rβ
≤ Rβ + Rβ/2

Rβ
= 3/2,

thus Rβ ≥ (2/3)ωβ , with probability 1 − negl(κ), which completes the proof.
(2.) For every party pi : i = 1, . . . , n we define Bernoulli R.V.s Z

(β)
i = 1 if and

only if party pi received m∗ at round β. If β = 1 and ω0 > εn/3, then from the
first round there are ≥ εn/3 honest senders for m∗. We bound the probability

Pr[
n⋃

i=1

{Z
(1)
i = 0}] ≤

n∑

i=1

Pr
[
Z

(1)
i = 0

]
= n ·

(
1 − m

n

)R0≤ n ·
(
1 − m

n

)εn/3

= n ·
[(

1 − m

n

)n/m
]εm/3

≤ n · e−εm/3 = negl(κ).

Now, if β > 1, then there was some round β∗ ≤ β s.t. β∗ def= arg mini≥0{ωi >
εn/3}. If β∗ = 0, we already showed that all parties receive m∗ in the first
round. Thus, for all subsequent rounds i, ωi = hi. Else, if β∗ > 0, by definition
ωβ∗−1 ≤ εn/3. So, we can apply (1.), meaning that Rβ∗ ≥ 2ωβ∗/3 ≥ 2εn/9.
Accordingly, for round β∗, we can again bound the probability

Pr[
n⋃

i=1

{Z
(β∗)
i = 0}] ≤ n ·

[(
1 − m

n

)n/m
]2εm/9

≤ n · e−2εm/9 = negl(κ),

So, for all subsequent rounds i ≥ β∗, ωi = hi.
The results from (1.),(2.) combined mean that, if the protocol runs for more than
�log εn/3� rounds without reaching case (2.), it is definite that, after applying (1.)
for round β = �log(εn/3)�, case (2.) will hold for the next round. Therefore, with
probability 1−negl(κ), all remaining honest parties after M-ConvergeRandom

terminates have received the message m∗. �
Theorem 2. Protocol M-ConvergeRandom from Fig. 6 is an adaptively t-
secure M-Converge protocol for all t < (1 − ε) · n and fixed ε ∈ (0, 1). The
number of bits sent by one party is

O(n log n · m · s +
�log εn�∑

i=1

|M (i)
p − C(i)

p | · m · s) ,
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where s is the length in bits of a message in M and M
(i)
p − C(i)

p denotes the set
given as input to the i-th call of Propagate.

Proof. Security follows by applying Lemma 9 for all initially-honest parties and
for all of their initial messages. Every message m∗ is delivered to all honest parties
that remain after the termination of the protocol, as required by Definition 5.
The communication complexity (CC) is dominated by the calls to Fprop. Each
call to Fprop is securely instantiated by executing Propagate with the same
input set (Lemma 8). By Lemma 7, the i-th such call to Propagate invokes
a total of O(max

{
n, |M i

p − Ci
p|

} · m · s) = O(n · m · s + |M (i)
p − C(i)

p | · m · s)
communication, where M i

p − Ci
p is the corresponding set of messages input to

Propagate at that call. Thus, the number of bits sent by one party is
�log εn�∑

i=1

O(n·m·s+|M (i)
p − C(i)

p |·m·s) = O(n log n·m·s+
�log εn�∑

i=1

|M (i)
p − C(i)

p |·m·s)

with probability 1 − negl(κ). �

4.4 An Extension: The M-DistinctConverge Protocol

Recall that the M-Converge problem was defined with respect to a message
set M. For achieving PBC with low communication complexity in the trusted
PKI setting (see Sect. 6), we need a slightly different version of the M-Converge
problem, namely the M-DistinctConverge problem, defined with respect to a
parameter k. Now, some elements of the set M, while different, are considered
the “same” because their k-bit prefixes are the same. Looking ahead, our set
M is the set of all possible valid r-batches (a valid r-batch is a set of at least
r signatures) on bit-slot pairs (b, s), denoted (b, s, r). In this set, two valid r-
batches with different set of signatures but on the same (b, s) are considered the
same. Our prior analysis applies as is to M-DistinctConverge.

Definition 7 (distinctk function). For any set M , distinctk(M) is a sub-
set of M that contains all messages in M with distinct k-bit prefixes.

E.g., for M = {01001, 01111, 11000, 10000} we have that distinct2(M) =
{01001, 11000, 10000}. Note that distinctk is an one-to-many function. For
example, distinct2(M) is also {01111, 11000, 10000}. We are now ready to
present the M-DistinctConverge problem.

Definition 8 (t-secure M-DistinctConverge protocol). Let M ⊆ {0, 1}∗

be an efficiently recognizable set. A protocol Π executed by n parties, where every
honest party p initially holds input set Mp ⊆ M and constraint set Cp ⊆ M,
is a t-secure M-DistinctConverge protocol if all remaining honest parties upon
termination, with probability 1 − negl(κ), output a set

Sp ⊇ distinctk

⎛

⎝
⋃

p∈H
Mp −

⋃

p∈H
Cp

⎞

⎠ ,
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1: procedure Sp ← M-DistinctCVp(Mp, Cp, k)
Input. Sets Mp ⊆ M, Cp ⊆ M and parameter k.
Output. A set Sp.

2: for round β = 1 to log( · n) do
3: ReceiveFprop ← Fprop(SendRandom, distinctk(Mp − Cp));
4: Localp ← Localp ∪ ReceiveFprop ;
5: Cp = Cp ∪ Mp;
6: Mp = Localp ∩ M;
7: return Mp;

Fig. 7. Our M-DistinctCVp protocol.

when at most t parties are corrupted and where H is the set of honest parties in
the beginning of the protocol.

Figure 7 shows M-DistinctCV, a modification of M-ConvergeRandom.

Theorem 3. Let k > 0. Protocol M-DistinctCV from Fig. 7 is an adaptively
t-secure M-DistinctConverge protocol for all t < (1 − ε) · n and fixed ε ∈ (0, 1).
The total number of bits sent by all parties is

Õ(n · max{n, |distinctk(M)|} · m · s) .

5 Parallel Broadcast in the Bulletin PKI Model

We present a protocol to achieve PBC in the Bulletin PKI model. This lack of
trusted setup induces additional difficulty to the problem. Still, the proposed pro-
tocol uses communication cubic in n. We describe the high-level idea of the proto-
col. Each party internally maintains state for every signature. Each triplet (b, s, j)
(for b ∈ {0, 1}, s, j ∈ [n]) defines a specific signature, so there could be 2 · n2

signatures overall, each of size κ (where κ denotes the security parameter). The
propagation of a specific signature σj := sigj(b, s) is independent of whether b
was added to Extracteds

i at that given round. Instead, whenever a party i observes
a new signature, i.e. sigj(b, s) for some (b, s, j) that i never observed before, they
proceed to propagate the signature exactly twice. If the signature was observed
during the subround of some M-ConvergeRandom, then they continue prop-
agating it only during the next subround (due to how M-ConvergeRandom

updates Cp). They also initiate the next round’s M-ConvergeRandom with
the signature being on their input set but not on their constraint set. Notice
that M-ConvergeRandom is defined with respect to the set M. Here, we fix
M to consist of all of the parties’ valid signatures for messages [b, s], where b is
a bit and s a slot in [n]. Next, we prove the security of our protocol.

Lemma 10 (t-consistency: BulletinPBC). BulletinPBC satisfies con-
sistency (Definition 2) in the (Fprop)-hybrid world, with probability 1 − negl(κ).
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1: procedure {b1, . . . , bn} ← BulletinPBCp(bp)
Input. Local bit bp.
Output. Decision bits b1, . . . , bn.

Fix set M = {sigv([b, s]) such that b ∈ {0, 1}, s, v ∈ [n]}

2: Extractedi
p = ∅, for i = 1, . . . , n; global variable

3: Localp = ∅; global variable
4: Send(sigp([bp, p]), [n]);
5: for round r = 1 to t + 1 do : bound on dishonest parties
6: AddMySignaturep(r);
7: ForwardSignaturesp(r);
8: for slot i = 1, . . . , n do
9: return bi ∈ Extractedi

p if |Extractedi
p| = 1, else return canonical bit 0;

1: procedure AddMySignaturep(r)

2: Localp ← Localp ∪ Receive();
3: for all [b, s] such that b Extracteds

p do
4: if Localp contains ≥ r valid signatures on [b, s] (including sigs([b, s])) then
5: Add b to Extracteds

p;
6: Add sigp([b, s]) to Localp;

1: procedure ForwardSignaturesp(r)

2: if r ≤ t then
3: Let Cp contain all signatures that p has propagated exactly twice via

ConvergeRandom;
4: Localp ← M-ConvergeRandom(Localp, Cp);

Fig. 8. The protocols for PBC in the Bulletin-PKI. The main PBC protocol Bullet-

inPBC invokes the procedures AddMySignature and ForwardSignatures. The
later calls a M-Converge protocol, i.e. M-ConvergeRandom, in order for each hon-
est party to convey its internal view to all other parties.

Proof. Suppose for some slot s, an honest party p adds bit b to Extracteds
p at

some round r. We prove that by the end of the protocol, all honest parties j add
b to their Extracteds

j sets with probability at least 1 − negl(κ). We distinguish
the following cases according to the round when p adds bit b to Extracteds

p (We
sometimes omit “with probability 1−negl(κ)” when it is clear from the context.)

If r ≤ t, then p has at least r distinct, valid signatures for (b, s) and also p
creates its own signature. So, p observed each of these ≥ r + 1 signatures for
the first time at some round r − k where k ∈ {0, . . . , r − 1}. For every signature
σ with k ≥ 1, p called a M-ConvergeRandom with σ in its initial input set
Mp and not in its constraint set Cp. (Suppose not. Then σ is observed during
some M-ConvergeRandom by p, sent once with Propagate and never sent
again by p, a contradiction, since only signatures sent twice go in Cp.) For the
signatures with k = 0, p initiates a M-ConvergeRandom during round r.
From Theorem 2, by round r+1 every honest party j has ≥ r+1 valid signatures
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for (b, s) and adds b to their Extracteds
j set during AddMySignaturej(r + 1).

Else, if r > t then, p observes t + 1 valid signatures for (b, s). At least one of
the signatures comes from an honest party h. So, h has added b to Extracteds

h

by some round r′ ≤ t. Thus, for honest party h the case r′ ≤ t can be applied,
and so all honest parties j add b to their Extracteds

j sets by round r′ + 1. �
Lemma 11 (t-validity: BulletinPBC). BulletinPBC satisfies validity
(Definition 2), in the (Fprop)-hybrid world with probability 1 − negl(κ).

Proof. Follows directly from the proof of consistency (Lemma 10) and the ideal-
ized signature scheme. Every honest sender s with input bit bs, executes Line 4
and thus sends to all parties their signature for (bs, s) at the start of the pro-
tocol. So, all honest parties h add bs to their Extracteds

h sets. By the idealized
signature scheme, no other bit b′ could bare a valid signature from honest sender
s, thus no other bit b′ could be in an h’s Extracteds

h set. �
Theorem 4 (Communication Complexity of BulletinPBC). The total
number of bits exchanged by all parties in BulletinPBC is Õ(n3 · κ2).

Proof. The communication complexity (CC) of BulletinPBC is dominated
by the CC of M-ConvergeRandom. By Theorem 2 each such call invokes
O(n log n ·ms+

∑�log εn�
i=1 |M (i)

p − C
(i)
p | ·ms) communication for each party, where

M
(i)
p − C

(i)
p is the corresponding set of messages input to Propagate. The

sets input to Propagate by the protocol are sets containing signatures of size
κ each. During each super-round j of the protocol, M-ConvergeRandom is
called once, with input set M

(j)
p −C

(j)
p . Due to M-ConvergeRandom, when a

message is input by party p to Propagate at some subround, it is subsequently
added to Cp and thus won’t be input to Propagate again during that super-
round. Let for a fixed party p, I

(j,i)
p denote the input set Mp − Cp for its call

of M-ConvergeRandom at subround i of round j. In BulletinPBC, parties
only propagate signatures they have propagated less than twice. Thus, each
message can be propagated by the same party at most twice meaning that, for
each party p, during all sub-rounds of all super-rounds of the protocol, it holds
that

∑(t+1)
j=1

∑�log εn�
i=1 |I(j,i)p | ≤ 2|M| = O(n2).

We can count the overall CC of each party during the protocol, so we have

CC(p) =
(t+1)∑

j=1

O(n log n · mκ +
�log εn�∑

i=1

|I(j,i)p | · mκ) = O(
(t+1)∑

j=1

�log εn�∑

i=1

|I(j,i)p | · m · κ)

+O(n2 log n · m · κ) = Õ(n2 · κ2),

where, we used the fact that
∑(t+1)

j=1

∑�log εn�
i=1 |I(j,i)p | = O(n2). Thus, the CC of

M-ConvergeRandom for all parties is Õ(n3 · κ2). �

6 Parallel Broadcast in the Trusted PKI Model

In this section we use trusted setup to reduce the communication complexity of
PBC from cubic to quadratic. Our new protocol TrustedPBC uses protocol
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Functionality: Fmine

Fmine is parameterized by parties 1, . . . , n and “mining” probability pmine. Let
s ∈ [n] and b ∈ {0, 1}. Let call be vector of n entries initialized with −1.

On input (Mine, b, s) from party i:
– If calli = −1 output b = 1 with probability pmine or b = 0 with

probability 1 − pmine and set calli = b;
– Else output calli.

On input (Verify, b, s, j) from party i output 1 if callj = 1 and 0 otherwise.

Fig. 9. Functionality Fmine.

M-DistinctCV from Sect. 4.4. To facilitate the exposition and our proof,
TrustedPBC in Fig. 10 is given in a hybrid world where two functionalities
exist. The first one is Fprop which was presented and instantiated in Sect. 4.2.

The second functionality is Fmine (Fig. 9), which was also presented in Chan et
al. [8] and was shown to be instantiable from standard assumptions (with setup)
by [1]. We assume that when a party calls Fmine then it returns instantaneously.
A party p in our protocol queries Fmine on input (Mine, b, s) in some round i,
where s ∈ [n] refers to one of the slots and b ∈ {0, 1}. If it receives response 1, it
considers itself a member of a randomly selected subset of all the parties, which
we refer to as the “(b, s)-committee”. More concretely, when Fmine receives such a
query, it flips a random coin to decide whether the party p is in that committee.
Fmine keeps the information and returns the same answer to all future identical
queries by any party. Next, we provide some definitions and necessary results.

Definition 9 ((b, s)-committee). For each pair of bit b and slot s, the (b, s)-
committee is a subset of parties such that for each party c in the (b, s)-committee,
whenever the Fmine is queried on input (Verify, b, s, c), Fmine outputs 1.

Lemma 12 (Honest Committees). Let R = 2κ/ε and let the probability of
success for Fmine be pmine = min {1, κ/(ε · n)}. Then, with probability 1−negl(κ),
for each bit b ∈ {0, 1} and slot s ∈ [n], the (b, s)-committee contains (i) at least
one honest party and (ii) at most R dishonest parties.

Definition 10 (Valid r-batch). A valid r-batch on pair (b, s) is the element
b||s||SIGr,

where SIGr is a set of at least r signatures on [b, s] consisting of one signature
from party s and at least r − 1 signatures from parties in the (b, s)-committee.

Definition 11. We define Mr to be a set that contains all possible valid r-
batches for all b ∈ {0, 1} and for all s ∈ [n].

Lemma 13. It is |distinctk∗(Mr)| = 2 · n, where k∗ is the number of bits
needed to represent b||s and where distinctk∗ is defined in Definition 7.



466 G. Tsimos et al.

1: procedure {b1, . . . , bn} ← TrustedPBCp(bp)
Input. Local bit bp.
Output. Decision bits b1, . . . , bn.

2: Extractedi
p = ∅, for i = 1, . . . , n; global variable

3: Votedi
p = ∅, for i = 1, . . . , n; global variable

4: Localp = ∅; global variable
5: Send(sigp([bp, p]), [n]);
6: for round r = 1 to R + 1 do is also a global variable
7: Distributep(r);
8: Votep(r);
9: for slot i = 1, . . . , n do
10: return bi ∈ Extractedi

p if |Extractedi
p| = 1 else return canonical bit 0;

1: procedure Distributep(r)

2: Localp ← Localp ∪ Receive();
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Extractedsi

p ;
4: for all vi ∈ V do Add bi to Extractedsi

p ;

5: if r ≤ R then Localp ← Mr-DistinctCVp(V, ∅, k∗);

1: procedure Votep(r)

2: if r ≤ R then
3: Let V = {vi} be valid r-batches (in Localp) on {[bi, si]} s.t. bi /∈ Votedsi

p ;
4: for all vi ∈ V s.t. Fmine(Mine, bi, si) = 1 do
5: Add bi to Votedsi

p ;
6: Add bi in Extractedsi

p if bi /∈ Extractedsi
p ;

7: Extend vi to a valid (r+1)-batch vi by adding p’s signature on [bi, si];
8: Send(vi, [n]);

Fig. 10. TrustedPBC calls two procedures, i.e. Distribute and Vote. During each
execution, Distribute calls the Mr-DistinctCV protocol, for each honest party to
convey its internal view to all other parties. Mr follows Definition 11.

Proof. Follows from the fact that Mr contains exactly 2 ·n elements with unique
b||s prefixes, since b ∈ {0, 1} and s ∈ [n]. �

Our protocol (see Fig. 10) is inspired by the single-sender protocol of Chan et
al. [8] (ChBC protocol), of which we gave a detailed overview in the introduction.
In particular, our protocol works in R + 1 rounds as follows (Round R + 1 is
only used for updating the local sets and no sending takes place.) Every party p
maintains n Extractedp

s and Voteds
p sets, s ∈ [n], that are initialized as ∅. Roughly

speaking, a bit b ∈ Extractedp
s if p has observed a valid r-batch on [b, s]; a bit

b ∈ Votedp
s if it has already been revealed that p is part of the (b, s)-committee

(i.e., p has “voted”). In round 0, party i (for all i ∈ [n]) signs her input bit
bi, adds it to her Extractedi

i set and sends bi to all n − 1 parties along with
its signature on bi, sigi([bi, i]). Afterwards, the distribution and voting phases
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follow, for every round r = 1, . . . , R. These are non-trivial modifications (for
many slots and using parallel gossiping) of the distribution and voting phases of
ChBC. Our new distribution/voting phases, for round r ≤ R, work as follows.

1. (Distribution) An honest party p first collects the set V of valid r-batches
v1, . . . , vw on messages [b1, s1], . . . , [bw, sw] that are not in the respective p’s
Extracted sets. Instead of every node using a SEND-ALL to send each vi (as
ChBC would do), all nodes run Mr-DistinctCV from Fig. 7 (Mr defined per
Definition 11 ), with their initial constraint sets Cp empty. Mr-DistinctCV

assures that all parties eventually see the other parties’ inputs but since there
is overlap between input messages, it uses less communication.

2. (Voting) An honest party p checks which valid r-batches in their local set
correspond to pairs (b, s) : b /∈ Voteds

p. For each such pair, they check whether
they are members of the respective committee via Fmine. If they are, they add
their own signature to extend the valid r-batch to a valid (r + 1)-batch.

Lemma 14 (t-consistency). Let R = 2κ/ε. TrustedPBC satisfies t-
consistency, per Definition 2, in the (Fmine,Fprop)-hybrid world with probability
1 − negl(κ).

Lemma 15 (t-validity). Let R = 2κ/ε. TrustedPBC satisfies t-validity, per
Definition 2, in the (Fmine,Fprop)-hybrid world with probability 1 − negl(κ).

Theorem 5 (Communication). Let R = 2κ/ε. The total number of bits
exchanged by all parties in TrustedPBC is Õ(n2 · κ4) with probability 1 −
negl(κ).
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Abstract. Property-preserving hashing (PPH) consists of a family of
compressing hash functions h such that, for any two inputs x, y, we can
correctly identify whether some property P (x, y) holds given only the
digests h(x), h(y). In a basic PPH, correctness should hold with over-
whelming probability over the choice of h when x, y are worst-case values
chosen a-priori and independently of h. In an adversarially robust PPH
(RPPH), correctness must hold even when x, y are chosen adversarially
and adaptively depending on h. Here, we study (R)PPH for the property
that the Hamming distance between x and y is at most t.
The notion of (R)PPH was introduced by Boyle, LaVigne and Vaikun-
tanathan (ITCS ’19), and further studied by Fleischhacker, Simkin
(Eurocrypt ’21) and Fleischhacker, Larsen, Simkin (Eurocrypt ’22). In
this work, we obtain improved constructions that are conceptually sim-
pler, have nearly optimal parameters, and rely on more general assump-
tions than prior works. Our results are:

– We construct information-theoretic non-robust PPH for Hamming
distance via syndrome list-decoding of linear error-correcting codes.
We provide a lower bound showing that this construction is essen-
tially optimal.

– We make the above construction robust with little additional over-
head, by relying on homomorphic collision-resistant hash functions,
which can be constructed from either the discrete-logarithm or the
short-integer-solution assumptions. The resulting RPPH achieves
improved compression compared to prior constructions, and is nearly
optimal.

– We also show an alternate construction of RPPH for Hamming dis-
tance under the minimal assumption that standard collision-resistant
hash functions exist. The compression is slightly worse than our
optimized construction using homomorphic collision-resistance, but
essentially matches the prior state of the art constructions from spe-
cific algebraic assumptions.

– Lastly, we study a new notion of randomized robust PPH (R2P2H)
for Hamming distance, which relaxes RPPH by allowing the hashing
algorithm itself to be randomized. We give an information-theoretic
construction with optimal parameters.
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1 Introduction

This work studies the problem of how to compress a large input into a small
digest that nevertheless preserves some class of properties of the input. This
high level goal is of central importance and lies behind many prominent topics in
computer science, such as sketching algorithms, locality sensitive hash functions,
streaming algorithms, and compressed sensing.

We focus on an important variant of this problem, called (robust) property-
preserving hashing (R)PPH, which was recently introduced by Boyle, LaVigne
and Vaikuntanthan [BLV19] and further studied by Fleischhacker, Simkin [FS21]
and Fleischhacker, Larsen, Simkin [FLS22]. An (R)PPH for a property P (a
binary predicate) consists of a compressing family of deterministic hash func-
tion h such that, for any x, y, we can determine whether the property P (x, y)
holds given only the digests h(x), h(y). In more detail, there is an Eval pro-
cedure that operates on the digests and whose goal is to ensure correctness:
Eval(h(x), h(y)) = P (x, y).1 The basic notion of PPH requires that correctness
holds with overwhelming probability over the choice of h, when the inputs x, y
are worst-case values chosen ahead of time and independently of the choice of
h. A robust PPH (RPPH), on the other hand, requires that correctness holds
with overwhelming probability over the choice of h, even when the inputs x, y
are chosen by an adversary adaptively depending on the hash function h. The
difference between non-robust and robust PPH is exemplified by the difference
between universal hashing and collision-resistant hashing. Concretely, if we con-
sider the equality property “P (x, y) = 1 iff x = y”, then universal hashing gives
an information-theoretic (non-robust) PPH for equality, while collision-resistant
hashing gives an RPPH for equality.

The interesting problem is to construct (R)PPH for more complex properties
beyond equality. Most naturally, we’d like to do so for properties P (x, y) that
hold if x, y are “similar” in some metric. For example, Apple recently suggested
a method for privately detecting users who store known Child Sexual Abuse
Material (CSAM) [App,NYT,Scha]. A key component of their system was a
hash function called NeuralHash, which was essentially intended to be an RPPH
for the property that two images are similar. However, it became clear that
NeuralHash is not robust, and it is possible to adversarially find images that are
completely different, yet their hashes identify them as being similar [Schb,Cru].
This leads to privacy violations in the overall system, which is one of the reasons
that Apple ended up abandoning the CSAM detection system for the time being.
The above highlights the need for a better understanding of RPPH, what it can
achieve, and what are its limitations.

(R)PPH for Hamming Distance. In this work, following prior works [BLV19,
FS21,FLS22], we study (R)PPH for Hamming distance over the binary alpha-
bet. In particular, for some distance bound t, we consider the property P (x, y),

1 Technically, the Eval procedure also takes as input the description of the hash func-
tion h, but for simplicity we omit this throughout the introduction.



Nearly Optimal Property Preserving Hashing 475

which holds iff the Hamming distance between x, y is ||x − y||0 ≤ t. There are
several reasons for focusing on Hamming distance. Firstly, Hamming distance
is arguably the most basic metric to study and understanding it is likely to
be a prerequisite for understanding more complex metrics. Secondly, a common
approach to defining “similarity” between complex objects is to first translate
these objects into binary “feature vectors” that represent a list of potential fea-
tures and indicates whether or not the object has them, and then looking at the
Hamming distance between the feature vectors. In this case, a good (R)PPH
for Hamming distance gives a good (R)PPH for testing similarity of more com-
plex objects. Lastly, by focusing on Hamming distance, we can make use of an
extensive set of tools from coding theory to help us along.

The main measure of efficiency that we seek to optimize is the output length
m of the (R)PPH, as a parameter that depends on the input length n, the
distance parameter t and the security parameter λ. In particular, we would like
the RPPH to be as compressing as possible by minimizing m for any choice of
n, t, λ.

Prior Work. The work of Boyle, LaVigne and Vaikuntanthan [BLV19] initiated
the general study of (R)PPH. They provided definitions for both the non-robust
and robust variants of PPH.2 Although [BLV19] does not directly offer any con-
structions of RPPH for the exact Hamming distance property studied here, their
main positive results consider a relaxation called RPPH for gap-Hamming dis-
tance, where the goal is only to distinguish between the case where the Hamming
distance between x and y is ≤ t versus > (1 + δ)t, for some distance t and gap
parameter δ > 0. In other words, this relaxation only requires Eval(h(x), h(y))
to output 1 in the former case and 0 in the latter case, but any output is per-
missible in the gap between them. The work of [BLV19] gave two constructions
of RPPH for gap-Hamming distance with any constant gap δ > 0. The first
construction is based on only the existence of collisions-resistant hash functions
(CRHFs). Assuming CRHFs with output length � = �(λ), they showed that for
any constant compression factor η > 0, there exists some constant ρ > 0 such
that for any distance t ≤ ρ · n/(� · log �), there is an RPPH for gap Hamming
distance with output length m ≤ η · n.3 Their second construction is based on
a new but plausible computational assumption that they introduce and call the

2 They also considered two additional intermediate variants of PPH, where the adver-
sary does not get the full description of the hash function but gets some partial
oracle access before choosing x, y. Our notion of robust PPH is the strongest notion
they considered and is also referred to as a “direct access robust” PPH in their work.

3 Asymptotically, the existence of CRHFs with output length �(λ) = λ is equivalent to
those with output length �(λ) = λε for ε > 0. Moreover, it may be plausible to even
conjecture the existence of CRHFs with (e.g.,) output length �(λ) = log λ log log λ.
However, these choices will have vastly different exact security. All the construc-
tions/reductions referred to in this work preserve exact security. Therefore, we find
it more informative to phrase all results in terms of the exact output length �(λ) of
the underlying primitive and the construction with inherit the exact security of that
primitive with the given output length.



476 J. Holmgren et al.

Sparse Short Vector (SSV) assumption. Under that assumption, they got some-
what better parameters, showing that for any constant η > 0, there exists some
constant ρ > 0 such that for any t ≤ ρ · n/ log n there is an RPPH for gap
Hamming distance with output size m ≤ η · n.

The work of Fleischhacker, Simkin [FS21] gave the first construction of RPPH
for exact Hamming distance. They did so under a new assumption in bilinear
groups, which they called the q-Strong Bilinear Discrete Logarithm (q-SBDL)
Assumption. They showed that, assuming q-SBDL holds in a group whose ele-
ments can be represented using � = �(λ) bits, for any distance t there is an RPPH
for exact Hamming distance with output length m = O(t�). In particular, the
RPPH is non-trivially compressing for t = O(n/�).

The work of Fleischhacker, Larsen, Simkin [FLS22], gave a similar result
as above but under the Short-Integer Solution (SIS) assumption, which is a
well-studied assumption (it is implied by learning-with-errors (LWE)) and can
be based on the hardness of worst-case lattice problems [Ajt96]. In particular,
under the SIS assumption, they showed that for any distance t there is an RPPH
for exact Hamming distance with output size m = O(t� · log n), where � = �(λ)
is the output length of Ajtai’s hash function based on SIS. In particular, the
output size is non-trivially compressing for t = O(n/(� · log n)).

To summarize, the best prior RPPH constructions for exact Hamming dis-
tance at the very least required output size m ≥ t�(λ), where � is some poly-
nomial. They also required specific algebraic assumptions, namely SIS or the
q-SBDL assumption in bilinear maps. For gap Hamming distance, we knew how
to get slightly better output length m ≥ t log n + �(λ), but only under a new
non-standard variant of SIS, or we knew how to get m ≥ t�(λ) log n under just
collision-resistance.

1.1 Our Results

In this work, we give new constructions of (R)PPH for exact Hamming distance.
Our constructions are conceptually simpler, are based on more general assump-
tions, and achieve improved compression compared to prior work. Our results
are as follows.

Non-Robust PPH. Our first result is to construct a non-robust PPH for Ham-
ming distance via a simple connection to syndrome list-decoding of linear error-
correcting codes. In terms of parameters, the output size of our hash function
is m = η · n + λ, where 1 − η is the optimal rate of a linear list-decodable
error-correcting code that can correct t errors. Inefficiently, we can go up to
the Hamming bound with η = H(t/n), where H is the Shannon binary entropy
function. Efficiently we can go up to the slightly weaker Blokh-Zyablov bound.
In either case, this implies m = O(t log n) + λ. However, it also implies non-
trivial compression for larger distances up to t = O(n). In particular, for any
constant compression factor η > 0 there exists some ρ > 0 such that there is a
(non-robust) PPH with output length m = ηn + λ for all distances t ≤ ρ · n.
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We give a matching lower bound, showing that the output size has to satisfy
m > (H(t/n) − o(1)) · n.

RPPH from Homomorphic Collision-Resistance. Our next result extends the
above idea to add robustness and achieve RPPH for Hamming distance by
leveraging homomorphic collision-resistant hash functions, which we in turn
construct under either the standard discrete logarithm (DLOG) assumption or
the short-integer-solution (SIS) assumption. The construction adds a constant
factor overhead of at most (log2 3) compared to our non-robust PPH, giving
m = (log2 3)η·n+�, where 1−η is the optimal rate of a linear list-decodable error-
correcting code that can correct t errors, and � = �(λ) is the output length of the
homomorphic CRHF (e.g., the bit-length of a group element). In particular, our
output length is bounded by m = O(t · log n + �), while previous constructions
[FS21,FLS22] achieved m = O(t · �). Since we always assume n = poly(λ), we
can conclude that log n = O(log λ) is asymptotically smaller than � = poly(λ).
Moreover, for any constant compression factor η > 0 there exists some constant
ρ > 0 such that we get an RPPH for Hamming distances t ≤ ρ·n with output size
m ≤ η ·n. Previous constructions of RPPH for Hamming distance [FS21,FLS22]
only achieved non-trivial compression η < 1 for sub-linear distances t = O(n/�),
while we do so for up to linear distances t = O(n).

RPPH from Standard Collision-Resistance. We also construct the first RPPH for
Hamming distance based on the minimal assumption that (standard) collision-
resistant hash functions (CRHFs) exist. Previously, we only knew how to do this
for gap-Hamming distance [BLV19], while we show how to do for exact Hamming
distance. In fact, we show how to using syndrome decoding to generically upgrade
an RPPH for gap-Hamming distance into one for exact Hamming distance. The
achieved parameters are slightly worse than those of our optimized construction
based on homomorphic CRHFs above, but are comparable to those achieved by
prior constructions for exact Hamming distance [FS21,FLS22] based on specific
algebraic assumptions. In particular, assuming CRHFs with output length � =
�(λ), we get an RPPH for distance t with output length m = O(t · � · log(n/t)).

Randomized RPPH (R2P2H). We also consider a randomized notion of RPPH
(R2P2H), where the computations of the hash function h(x) can itself be a ran-
domized. The adversary can choose worst-case values x, y after seeing the descrip-
tion of h, but before knowing the internal randomness that will be employed in
the computation of h(x), h(y). The adversary wins if Eval(h(x), h(y)) �= P (x, y),
and we require that the can only happen with negligible probability over the
choice of the hash function h and the internal randomness used to compute
h(x), h(y). We emphasize that, aside for allowing the hash function to be random-
ized, the security guarantee provided by R2P2H is also qualitatively weaker than
that of deterministic RPPH. For deterministic RPPH, the security definition
implicitly allows the adversary to choose y after seeing h(x), since the adversary
can compute h(x) himself. This is not the case for R2P2H, where seeing h(x) can
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reveal something about the internal randomness employed in the computation
that would allow the adversary to find a bad y that breaks security. Surprisingly,
this relaxation to R2P2H allows us to get non-trivial information-theoretic con-
structions. It was previously known that one can achieve information-theoretic
R2P2H for the equality predicate, where the output length is m = O(

√
n) and

that this is optimal [NS96,BK97,MNS08,CN22]. We extend this to showing a
construction of information-theoretic R2P2H for Hamming distance t, where the
output length is O(

√
λn log n) + ηn), where 1 − η is the optimal rate of a lin-

ear list-decodable error-correcting code that can correct t errors; in particular
ηn ≤ O(t log n).

1.2 Our Techniques

On a technical level, our constructions are quite different than those of
[FS21,FLS22]. The common theme of all our results is the reliance on syndrome
decoding.

PPH from Syndrome Decoding. We start with a simple construction of a non-
robust PPH based on syndrome (list) decoding of linear error-correcting codes.
Assume there exists some linear error-correcting code over a field F, having
codeword length n, message length k, and the ability to (efficiently) correct up to
t errors. This is equivalent to the existence of a parity check matrix P ∈ F

(n−k)×n

such that for any error-vector e ∈ F
n with Hamming weight ‖e‖0 ≤ t we can

(efficiently) recover e from the syndrome P · e. More generally, a code that
allows (efficient) list-decoding of up to t errors implies that given a syndrome
P · e as above we can (efficiently) recover a polynomial-sized list L of potential
error vectors with the guarantee that e ∈ L. Without loss of generality, we can
assume that each ei ∈ L has Hamming-weight ‖ei‖0 ≤ t.

For our construction of PPH, assume we have a list-decodable code as above
over the binary field F2 and let P be the parity check matrix. We will also
make use of the universal hash function huniv(x) = A · x where A ← F

λ×n
2 is

a random matrix. This ensures that for any x1 �= x2 ∈ F
n
2 chosen a-priori, we

have PrA[Ax1 = Ax2] = 2−λ. We will rely on the fact that this universal hash
function is linearly homomorphic with huniv(x1) − huniv(x2) = x1 − x2.4

The description of the PPH h consists of the random matrix A of the universal
hash function. Given an input x, the PPH output y = h(x) is defined as y =
(P ·x,A ·x), consisting of the syndrome and the universal-hash of x. Given y1 =
h(x1), y2 = h(x2) with y1 = (v1, w1), y2 = (v2, w2) the procedure Eval(y1, y2)
does the following. It runs the syndrome list-decoding algorithm on v1 − v2 =
P · (x1 − x2) to recover a list of potential error-vectors L. If there exists some
ei ∈ L such that A · ei = w1 − w2 than the Eval algorithm accepts else it rejects.

To see that the above construction satisfies the definition of a PPH, we
consider two cases. First, suppose x1 and x2 are “close”: i.e., ‖x1 − x2‖0 ≤ t.
4 Since we’re working over F2, addition and subtraction are equivalent, but we use

subtraction to make it easier to compare to later constructions that work in larger
fields.
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Then, during the computation of Eval
(
h(x1), h(x2)

)
, the correctness of syndrome

list-decoding for the syndrome v1−v2 = P ·(x1−x2) ensures that x1−x2 appears
in the list L. Moreover A · (x1 − x2) = w1 − w2 and therefore the Eval algorithm
will accept with probability 1. Next, suppose that x1 and x2 are instead “far”:
i.e., ‖x1 − x2‖0 > t. Then, during the computation of Eval

(
h(x1), h(x2)

)
, no

matter what list L is generated, we know that x1 − x2 �∈ L since the list only
contains vectors with Hamming weight at most t. Furthermore, the list L is
independent of A and is polynomial in size. This ensures that the probability
over A that there exists some ei ∈ L such that A · ei = w1 − w2 = A · (x1 − x2)
is at most |L| · 2−λ = negl(λ).

The output size of the above PPH is m = (n − k) + λ bits, where k is deter-
mined by the optimal rate of the code that can list-decode up to t errors. It is
known that, inefficiently, such linear list-decodable codes exist with rates k/n
arbitrarily close to 1−H(t/n) where H is the binary entropy function [GHK10].
The well-known Hamming bound states that it is impossible to do better. This
gives an inefficient PPH with output length m ≈ H(t/n)·n+O(λ). For efficiently
list-decodable codes, it is a well known open problem to match the Hamming
bound. Instead, the best known constructions [GR09] achieve a slightly worse
bound called the Blokh-Zyablov bound [BZ82] (see Fact 3 for the exact expres-
sion). While this bound is somewhat difficult to interpret, we can always bound
the output length by at most m = O(t log n + λ). Moreover, for any constant
compression factor η > 0, there is some constant ρ > 0 such that we get a PPH
for all distances t ≤ ρ · n with output length m ≤ η · n + λ.

Remark: Weak Robustness and Heuristic RPPH. As a remark, we mention that
we can leverage the result of [BLV19], who showed that one can generically
upgrade a non-robust PPH into a weak form of “double-oracle access robust”
PPH, where security holds even if the adversary is given oracle access to the
hash function h and the evaluation procedure Eval but does not get the code
of h itself. This transformation only relies on one-way functions and only adds
a small O(λ) additive overhead. The idea is to encrypt the output of the non-
robust PPH using symmetric-key authenticated encryption whose key is stored
as part of the hash function (and which can even be made deterministic), and the
Eval procedure first decrypts the non-robust PPH digests and then does what
the non-robust Eval procedure would do.

Moreover, we can heuristically convert any such “double-oracle access robust”
PPH into a fully robust RPPH by obfuscating the code of the hash function h
and the Eval procedure, without increasing the output size of the hash at all.
Therefore, this gives heuristic evidence that we can robustly match the above
parameters of our non-robust PPH without any additional overhead. Our main
results show how to almost match the above parameters robustly under standard
assumptions.

Lower Bound. We also prove a lower bound on the output length m of any
(not necessarily robust or efficiently computable) PPH for Hamming distance,
showing that we require m > log

(
n
t

)
which implies m ≥ (H(t/n) − o(1)) · n and
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m ≥ t log(n/t). Our lower bound is simpler than the previous lower bound of
[FLS22] and, more importantly, for constant error-rate ρ = t/n, it gives a tight
bound on compression factor η = m/n, showing η = H(ρ) − o(1). Our upper
bound shows how to match the lower bound of η ≈ H(ρ) inefficiently. Efficiently,
our upper bound gives a slightly worse η matching the Blokh-Zyablov bound.
Closing this gap between our inefficient and efficient constructions boils down to
the fundamental coding theoretic problem of improving the rate of efficiently list-
decodable linear codes from the Blokh-Zyablov bound to the better Hamming
bound.

The idea behind the lower bound is as follows. For a random x, we show
that if we can correctly guess the PPH output y = h(x) as well as some value
x′ that’s exactly at distance t from x, then we can recover x. If we select y, x′

uniformly at random then our guess is good with probability 1
2m · (n

t)
2n , but this

can then be at most the probability of guessing x, which is 1
2n .

RPPH from Homomorphic Collision-Resistance. We take our construction of
PPH for Hamming distance and show how to make it robust. At a high level,
the idea is exactly the same as before, and we simply replace the homomorphic
universal hash function huniv with a homomorphic collision-resistant hash func-
tion hCR. We have such hash functions under the discrete-logarithm (DLOG)
assumption—namely, the Pedersen hash function hCR(x1, . . . , xn) =

∏
gxi

i ,
where gi are random group elements in some prime-order cyclic group. We
also have such hash functions under the short-integer-solution (SIS) problem—
namely, Ajtai’s hash function hCR(x) = A ·x, where A is a random compressing
matrix over Zq and ||x||∞ is small. In both cases, the output size can be bounded
by some polynomial � = �(λ).

There is only one catch: the above hash functions are homomorphic over Zq

for some q > 2 rather than over Z2. In particular, given w1 = hCR(x1), w2 =
hCR(x2) we can compute hCR(x1 − x2) where the subtraction is now over Zq.
Since our PPH construction applies the hash function to values x1, x2 ∈ {0, 1}n

we have x1 − x2 ∈ {−1, 0, 1}n is the same when computed mod q or over the
integers. Therefore, to make the overall PPH construction work, we will also need
to use a linear (list decodable) code over some field F of characteristic p > 2 so
that, given the syndrome P · (x1 − x2) computed over F, we can recover a list
containing x1 − x2 ∈ {−1, 0, 1}n computed over the integers. For simplicity, we
can just use codes over F3 instead of F2. With these changes, the construction
and proof of security are essentially the same as in the non-robust case, but
now we rely on collision-resistance instead of universality to achieve security
even when x1, x2 are chosen adaptive depending on the description of the hash
function h.

The parameters of the resulting RPPH are essentially the same as those of
the non-robust PPH, with the only difference that the hash output now contains
n−k elements of F3 rather than bits. This increases the bit-length of the output
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by a multiplicative factor of at most log2(3) ≈ 1.58.5 It is an interesting open
problem to get rid of this constant-factor increase by constructing CRHFs that
are homomorphic over Z

n
2 .6

RPPH from Standard Collision-Resistance. Next, we show how to construct
RPPH for Hamming distance using just standard collision-resistant hash func-
tions (CRHFs). The output size is larger than that of our optimized construction
using homomorphic collision-resistance, but essentially matches the prior state
of the art constructions [FS21,FLS22] from specific assumptions.

Our construction relies on two ingredients. The first is an RPPH for gap
Hamming distance, which was previously constructed from CRHFs by [BLV19].
Namely, assuming a CRHF with output length � = �(λ), they gave a construc-
tion of an RPPH for gap Hamming distance with any constant gap δ > 0 and
any constant-factor compression, for distances up to t = O(n/� log �). We gen-
eralize their analysis to showing that for smaller distances t we can get even
smaller compression, and in general, for any t, we can make the output as small
as O(t� log(n/t)). Our second ingredient is a linear error-correcting code over
F2 with a parity check matrix P ∈ F

(n−k)×n
2 that enables efficient (unique)

syndrome decoding from (1 + δ)t errors.
We use syndrome decoding to upgrade an RPPH for gap Hamming dis-

tance hgap with some constant gap δ > 0, into an RPPH for exact Ham-
ming distance hexact. We define hexact(x) = (P · x, hgap(x)). Given two hashes
hexact(x1) = (P · x1, hgap(x1)), hexact(x2) = (P · x2, hgap(x2)), we can define
the Evalexact procedure that tests whether ||x1 − x2||0 ≤ t as follows. First,
it runs Evalgap(hgap(x1), hgap(x2)) and if that outputs 0 then we know that
||x1 − x2||0 > t and hence output 0. Otherwise, if Evalgap outputs 1 then we
know that ||x1 − x2||0 ≤ (1 + δ)t. In this case we apply syndrome decoding on
P · (x1 − x2) to uniquely recover (x1 − x2) and if the Hamming weight is ≤ t we
outputs 1 else 0.

The end result is an RPPH for exact Hamming distance, where the output
length is the sum of n−k and the output length of the RPPH for gap Hamming
distance from CRHFs. Using Reed-Solomon codes, the former can be bounded
by O(t log n). Therefore the second term dominates, and we get the same param-
eters for exact Hamming distance as the previous construction for gap Hamming
distance by [BLV19].

5 On the other hand, it allows us to use codes over F3 which may have slightly improved
rate compared to ones over F2.

6 A heuristic construction would be to define the hash function hCR whose description
consists of an obfuscated program that has a hard-coded random matrix A ← Z

λ×n
2

and a key k for a pseudorandom permutation πk : {0, 1}λ → {0, 1}λ. On input
(“hash”, x) the program would output πk(Ax), which we would also define as the
output of the hash function hCR(x). On input (“homomorphism”, y1, y2) the pro-
gram would output πk(π−1

k (y1) − π−1
k (y2)), which would allow us to implement the

homomorphic operation on the hash outputs.
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R2P2H. Finally, we turn to the construction of randomized RPPH (R2P2H). We
go back to our initial construction of a (non-robust) PPH for Hamming distance,
where h(x) outputs a syndrome of x and a homomorphic universal hash of x.
We can think of the universal hash function as a (deterministic, non-rboust)
PPH for equality. By taking that construction and replacing the universal hash
function with a R2P2H for quality we get our R2P2H for Hamming distance.
We just need the R2P2H for equality to satisfy an appropriate homomorphic
property, and we show how to adapt known constructions to do so.

Open Question. While our work gives nearly optimal constructions of (R)PPH
for exact Hamming distance, it leaves open the question whether one can get
significantly better parameters for gap Hamming distance. Recall that, in the
non-robust case, we had a lower bound of m ≥ log

(
n
t

) ≥ t log(n/t) on the output
length of a (even non-robust) PPH for exact Hamming distance. As pointed out
in [BLV19], using the result of [KOR00], it turns out that one can do much better
for gap Hamming distance: for any constant gap δ > 0 there is a non-robust
PPH for gap Hamming distance with output length just O(λ) independent of
n, t. A very interesting open question is whether it is possible to match this with
robustness or not. Currently, we don’t even have heuristic constructions that
would beat the m ≥ t log(n/t) lower bound in the gap setting with robustness.
On the other hand, we also currently don’t have any techniques for proving any
lower bounds on the cost of robustness – all current lower bounds for RPPH also
hold for non-robust PPH.

1.3 Other Related Work

Locality sensitive hash functions [IM98] can be thought of as a strengthening
of PPH, where we want h(x1) = h(x2) to collide iff P (x1, x2) holds. In other
words, we can think of this as a special case of PPH where Eval just outputs 1
iff the digests are equal. While there is a simple construction of locality sensitive
hash functions for gap Hamming distance [IM98], there are strong lower bounds
showing that they cannot achieve a negligible correctness error, even in the non-
robust setting [MNP07,OWZ11]. In particular, they cannot be robust.

Secure sketches [DORS08] ensure that, given a hash (called a “sketch”) h(x1)
and some x2 within distance t of x1, we can recover x1. While the original
notion of secure sketches did not require the digest to be compressing, one of
the constructions of [DORS08] for Hamming distance is based on syndrome
decoding and is compressing. Secure sketches easily yield a relaxation of PPH
(resp. RPPH), where we can determine whether P (x1, x2) holds given one digest
h(x1) and the other input x2 in the clear. In particular, we simply append a
universal (resp. collision resistant) hash function of x1 to the output of the
sketch; then, given x2, we first use the sketch to attempt to recover a candidate
x′

1 for x1, then check that it matches the universal (resp. collision resistant) hash,
and finally check that it is within distance t of x2. This type of relaxed notion of
(R)PPH was also defined by [BLV19], and referred to as a “single-input property”
(R)PPH. Given the above, the main novelty of our work and previous works on
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RPPH for Hamming distance, is that we need to decide whether P (x1, x2) holds
given only the two digests h(x1), h(x2), without having either of the inputs in
the clear.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k]
then we let x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of
values x[i] for i ∈ s.

Predictability and Entropy. The predictability of a random variable X is
Pred(X) def= maxx Pr[X = x]. The min-entropy of a random variable X is
H∞(X) = − log(Pred(X)). Following Dodis et al. [DORS08], we define the con-
ditional predictability of X given Y as Pred(X|Y ) def= Ey←Y [Pred(X|Y = y)]
and the (average) conditional min-entropy of X given Y as: H∞(X|Y ) =
− log (Pred(X|Y )) . Note that Pred(X|Y ) is the success probability of the opti-
mal strategy for guessing X given Y .

Lemma 1 ([DORS08]). For any random variables X,Y,Z where Y is supported
over a set of size T we have H∞(X|Y,Z) ≤ H∞(X|Z) − log T .

Universal Hashing. We recall the definition of universal hash function and a
simple well-known construction via matrix multiplication.

Definition 1. A family of hash functions H = {h : {0, 1}n → {0, 1}m} is a
universal hash family if for all x1, x2 ∈ {0, 1}n such that x1 �= x2, we have:

Pr [h(x1) = h(x2) : h ← H] ≤ 2−m

We will rely on the following simple universal hash function family, which also
has the additional feature of being homomorphic over Z

n
2 with h(x1) + h(x2) =

h(x1 + x2).

Lemma 2. For any n,m, the hash function family H consisting of hash func-
tions hA(x) = A · x with A ∈ Z

m×n
2 , is a universal hash family.

Proof. Let x1, x2 ∈ {0, 1}n such that x1 �= x2 and let v = (x1 − x2) �= 0n.
Denote the bits of v = (v1, . . . , nn). Then there exists some i ∈ [n] such that
vi = 1. Denote the columns of A by A = [a1, . . . , an] with ai ∈ Z

m
2 . Then

PrA[Ax1 = Ax2] = PrA[Av = 0] = PrA

[
ai = −∑j �=i aj · vj

]
= 1

2m .
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2.1 Coding Theory

Definition 2. An [n, k]q code for n, k, q ∈ Z
+ is an injective linear function

C : Fk
q → F

n
q . We call k the message length and n the block length of C.

A codeword of C is any element of the image of C.

Definition 3 (Parity Checks/Syndromes). A parity check matrix7 for an F-
linear code C : Fk → F

n is a matrix P ∈ F
(n−k)×n such that c ∈ F

n is a codeword
of C if and only if P · c = 0.

When C and P are fixed, we call P · y the syndrome of y.

Definition 4 (Distance). The distance of a code C is the minimum Hamming
distance between two different codewords of C.

Definition 5 (List-Decoding). An [n, k]q code C : F
k
q → F

n
q is said to be

combinatorially list decodable against t errors if for any y ∈ Σn
k , there are at

most8 poly(n) codewords of C within Hamming distance t of any y ∈ F
n
q . If

there is a poly(n)-time algorithm that outputs all such codewords, then C is said
to be efficiently list decodable against t errors.

Syndrome decoding is another standard but less common way of character-
izing list decodability.

Definition 6 (Syndrome Decoding). Let C : Fk
q → F

n
q be an [n, k]q code with

parity check matrix P .
C is said to be combinatorially syndrome list decodable against t errors if for

every s ∈ F
n−k
q , there are at most poly(n) vectors e ∈ F

n
q with Hamming weight

at most t such that P · e = s.
C is said to be efficiently syndrome list decodable against t errors if there is

a poly(n)-time algorithm that on input s ∈ F
n−k
q enumerates all e ∈ F

n
q with

Hamming weight at most t for which P · e = s.

Fact 1. An [n, k]q code C with parity check matrix P is combinatorially list
decodable against t errors if and only if it is combinatorially syndrome list decod-
able against t errors. Moreover C is efficiently list decodable against t errors if
and only if it is efficiently syndrome list decodable against t errors.

Proof. For any [n, k]q code C : Fk
q → F

n
q with parity check matrix P ∈ F

(n−k)×n
q ,

any t ∈ Z
+, and any y ∈ F

n
q with syndrome s = P · y ∈ F

n−k
q , there is a bijective

correspondence between:

– e ∈ F
n
q such that P · e = s and ‖e‖0 ≤ t; and

– m ∈ F
k
q such that ‖y − C(m)‖0 ≤ t.

7 There are multiple possible parity check matrices for any code, but the specific choice
will be unimportant for us.

8 The asymptotic bound of poly(n) in fact assumes that we have a family of codes for
an infinite and dense set of n.
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Specifically, any such e can be mapped to m = C−1(y − e). This is well-defined
because P · (y − e) = P · y − P · e = s − s = 0, so y − e is in the image of C. In
the other direction, any such m can be mapped to e = y −C(m), which satisfies
P · e = P · y − P · C(m) = s − 0 = s. It is easy to check that these maps are
inverses of each other.

Known Results

Definition 7 (q-ary Entropy Function). The q-ary entropy function Hq is
defined as

Hq(ρ) def= ρ logq(q − 1) − ρ logq ρ − (1 − ρ) logq(1 − ρ).

We use H without a subscript to refer to the binary entropy function H2.

We first state the fact that inefficiently (combinatorially) list-decodable codes
exist matching the Hamming bound.

Fact 2 (Combinatorially List-Decodable Codes [GHK10]). For all q ∈
Z

+, all 0 < ρ < 1 − 1
q , all 0 < R < 1 − Hq(ρ), and for all sufficiently large n,

there exists an [n,Rn]q code that is combinatorially list decodable against ρ · n
errors. Moreover the list size is inversely proportional to 1 − Hq(ρ) − R.9

When it comes to efficiently list-decodable codes, we only have construction
matching the slightly weaker Blokh-Zyablov bound as stated below.

Fact 3 (Blokh-Zyablov bound [BZ82,GR09]). For any q ∈ Z
+, any ρ ∈

(0, 1
2 ), any

0 < R < 1 −
(

Hq(ρ) + ρ ·
∫ 1−Hq(ρ)

0

dx

H−1
q (1 − x)

)

︸ ︷︷ ︸
HBZ

q (ρ)

, (1)

and any sufficiently large n, there is an explicit
[
n, �Rn]

q
code that is efficiently

list decodable against ρn errors.
We define the quantity HBZ

q (ρ) as in Eq. (1). Note that limρ→0 HBZ
q (ρ) = 0.

In particular, for every η > 0 there exists some ρ > 0 such that η > HBZ
q (ρ).

Lastly, when the distance d is small (say d ≈ nε for constant ε > 0) then we
can get nearly optimal high-rate codes via Reed-Solomon. While Reed-Solomon
codes are usually expressed over a large field, if the field is an extension-field of
some small field Fq (e.g., q = 2) then we can always re-interpret the codes as just
being linear codes over Fq. Therefore Reed-Solomon yields essentially optimal
high-rate codes over F2 when the distance is small.

9 In fact, a random linear code is known to have the stated list decodability with high
probability.
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Fact 4 (Efficiently Decodable High-Rate Codes). For all n, all q, and
all d and for k = n − d logq n there exists an Fq-linear code C : Fk

q → F
n
q that is

efficiently uniquely decodable against �d
2� errors.

Proof. We start with a Reed-Solomon code C ′ : (F′)k′ → (F′)n′
, where n′ =

n/ logq n and k′ = k/ logq n and F
′ = Fqlogq n is an extension field of Fq satisfying

|F′| ≥ n ≥ n′. By standard properties of Reed-Solomon codes, C ′ is F
′-linear,

has distance d = n′ − k′ + 1, and is efficiently uniquely decodable against �d/2�
errors [Pet60].

Using the fact that F
′ ∼= F

logq n
q , we can view C ′ as a code C : Fk

q → F
n
q . The

code C inherits its distance and efficient unique decodability from C ′, because if
two strings differ in at most d symbols when interpreted as string over Fq, then
they also differ in at most d symbols when interpreted as string over F

′.
Finally, it is easy to see (e.g., see [RRR21, Proposition 6.6]) that C is Fq-

linear.

3 Definition of (R)PPH

We recall the definition of (R)PPH from [BLV19]. We first define a general
notion for arbitrary properties P and then discuss the specific Hamming distance
property considered in this work. For the general notion, we also potentially
consider partial predicates P (x1, x2) that can sometimes output ⊥, in which
case we do not care what output the (R)PPH gives.

Definition 8. Let n = n(λ),m = m(λ) be some polynomials in the secu-
rity parameter λ. A (n,m)-Property Preserving Hash (PPH) family H =
{h : {0, 1}n → {0, 1}m} for a two-input (partial) predicate P : {0, 1}n ×
{0, 1}n → {0, 1,⊥} is a family of efficiently computable functions with the fol-
lowing algorithms:

– Samp(1λ) → h is a PPT algorithm that samples a random h ∈ H.
– Eval(h, y1, y2) is a deterministic polynomial-time algorithm that on input h ∈

H and y1, y2 ∈ {0, 1}m, outputs a single bit.

Additionally, h ∈ H must satisfy the following correctness property:

– Correctness: ∀x1, x2 ∈ {0, 1}n

Pr
h←Samp(1λ)

[P (x1, x2) �= ⊥ ∧ Eval(h, h(x1), h(x2)) �= P (x1, x2)] = negl(λ)

Definition 9. A (n,m)-PPH is a robust PPH (RPPH) if it satisfies the follow-
ing additional robustness property.

– Robustness: For any PPT adversary A,

Pr
h←Samp(1λ)

(x1,x2)←A(h)
[P (x1, x2) �= ⊥ ∧ Eval(h, h(x1), h(x2)) �= P (x1, x2)] = negl(λ)
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The main focus of this work is (R)PPH for the (exact) Hamming distance
property, which is defined by the following (total) predicate.

Definition 10. For n ∈ N, 0 < t < n, the (two-input) Hammingn,t predicate
is a predicate defined as

Hammingn,t(x1, x2) =

{
1 if ‖x1 ⊕ x2‖0 ≤ t

0 if ‖x1 ⊕ x2‖0 > t

As a tool in one of our constructions, we will also consider a relaxation of
(R)PPH to gap-Hamming distance, which is defined by the following (partial)
predicate.

Definition 11. For n ∈ N, 0 < t < n, δ > 0, the (two-input)
GapHammingn,t,δ predicate is a partial predicate defined as

GapHammingn,t,δ(x1, x2) =

⎧
⎪⎨

⎪⎩

1 if ‖x1 ⊕ x2‖0 ≤ t

0 if ‖x1 ⊕ x2‖0 ≥ (1 + δ)t
⊥ otherwise.

4 Non-robust PPH

In this section, we present the construction of an information-theoretically secure
non-robust property preserving hash (PPH) for Hamming distance. The con-
struction relies on syndrome list-decoding and universal hashing.

(n, m)-PPH for Hammingn,t.

Let P ∈ F
(n−k)×n
2 be a parity check matrix of an [n, k]2-linear code

which is efficiently list decodable against t errors.

– Samp(1λ): Sample A ← F
λ×n
2 uniformly at random. Output the

function h defined below, whose description contains A.
– h(x) := (P · x, A · x).
– Eval(h, y1, y2) : Let y1 = (v1, w1) and y2 = (v2, w2). Use syn-

drome list-decoding for the syndrome v1 − v2 to recover a list
L = {e1, . . . , eL} of possible error vectors ei ∈ F

n
2 such that

Pei = v1 − v2 and ‖ei‖0 ≤ t. Then
• output 1, if there exists ei ∈ L such that A · ei = w1 − w2,
• otherwise output 0.

Fig. 1. Construction of (n, m)-PPH for Hammingn,t

Theorem 5. Let λ be a security parameter. For any polynomial n, t, k such
that there exists an [n, k]2-linear code which is efficiently list decodable against
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t errors, the construction above is a (n,m)-PPH for Hammingn,t with output
length m = (n − k) + λ. If the code is only combinatorially (inefficiently) list
decodable, then the resulting PPH is inefficient.

Proof. Let x1, x2 ∈ F
n
2 be arbitrary values chosen a priori. Let h ← Samp(1λ)

and let y1 = h(x1), y2 = h(x2) with y1 = (v1, w1) and y2 = (v2, w2). Let L be the
list recovered during the computation of Eval(h, y1, y2). We consider two cases:

– If ‖x1 − x2‖0 ≤ t, then e := x1 − x2 ∈ L by the correctness of syndrome
list-decoding for the syndrome v1 − v2 = P · (x1 − x2). Therefore A · e =
A · (x1 − x2) = A · x1 − A · x2 = w1 − w2 and hence Eval will output 1.

– If ‖x1 − x2‖0 > t, then for all ei ∈ L, we have ‖ei‖0 ≤ t and therefore
ei �= x1 −x2. Note that the list L is independent of A. Hence for each ei ∈ L,
we have PrA[A · ei = w1 −w2] = PrA[A · ei = A · (x1 −x2)] = 2−λ, by Lemma
2. By a union bound, the probability PrA[∃ei ∈ L : A · ei = w1 − w2] ≤
|L| · 2−λ = negl(λ). Therefore, with all but negligible probability, Eval will
output 0.

Plugging in Facts 3 and 4, we obtain the following corollaries for PPH.

Corollary 1. For all constant 0 < ρ < 1/2 and η > HBZ
2 (ρ) (see Fact 3), for all

polynomial n, there exists an efficient (n,m)-PPH for Hammingn,t with t = ρ·n,
having output length m = η ·n+λ. In particular, for every constant η > 0, there
exists some constant ρ > 0 such that the above holds.

Corollary 2. For all polynomial n and t, there exists an (n,m)-PPH for
Hammingn,t where m = 2t · log2 n + λ.

Lastly, plugging in Fact 2, we obtain the following bound for inefficient PPH.

Corollary 3. For all constant 0 < ρ < 1/2 and η > H2(ρ) there exists an
inefficient (n,m)-PPH for Hammingn,t with t = ρ · n, having output length
m = η · n + λ.

5 Lower Bounds on PPH Output

In this section we provide a lower bound on the output size of any (not neces-
sarily robust) PPH for the Hamming distance predicate. Previous lower bounds
on PPH [BLV19,FLS22] mainly come from communication complexity lower
bounds, and are usually presented as asymptotic bounds. In particular, in
[FLS22] the authors presented an output size bound of Ω(t log(min n/t, 1/δ))
for RPPHs for Hammingn,t with error probability δ. We obtain an exact lower
bound, without asymptotic. In particular, this lets us argue that we cannot beat
the Hamming bound.

As with all previous lower bounds on RPPH ([BLV19,FLS22]), our lower
bound works for non-robust PPH as well. It remains unclear how robustness is
factored into RPPH lower bounds.
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Theorem 6. For any (n,m)-PPH for Hammingn,t with correctness error δ <
1
2n , the output size m must satisfy m ≥ log

(
n
t

)
. In particular, this implies m ≥

t log n
t and m ≥ (H

(
t
n

)− o(1)) · n, where H is the binary entropy function.

Proof. Let (Samp,Eval) be an (n,m)-PPH for Hammingn,t. We first show that
there is some function Rec such that, for all x, y with ||x − y||0 = t, we have

Pr
h←Samp()

[Rec(h, h(x), y) = x] >
1
2
.

In particular, we define Rec(h, h(x), y) as follows:

– For each i ∈ [n], define the string y(i) to be the same as y except that we flip
the i’th bit. Then compute bi = Eval(h, h(x), h(y(i))). Let x̃i = bi ⊕ yi, where
yi denotes the i’th bit of y.

– Output x̃ = (x̃1, . . . , x̃n).

Observe that for each i ∈ [n], if xi = yi, we have
∥
∥x − y(i)

∥
∥

0
= t + 1 and if

xi �= x′
i, we have

∥
∥x ⊕ y(i)

∥
∥

0
= t − 1. Therefore, as long as for each i ∈ [n], we

get bi = 0 in the former case and bi = 1 in the latter case, we get x̃ = x. By
the correctness of the PPH, this occurs with overwhelming probability, since the
probability of Eval giving the wrong answer in any position i is < 1

2n , and by
the union bound, the probability of there being any error overall is then < 1

2 .
Now let us define a (randomized) function P (h, h(x)) whose goal is to predict

x given h, h(x):

– Sample a uniformly random y ← {0, 1}n and output Rec(h, h(x), y),

We have for all x ∈ {0, 1}n:

Pr
h←Samp()

[P (h, h(x)) = x]

≥ Pr
y←{0,1}n

[ ||x − y||0 = t ] Pr
h,y

[ Rec(h, h(x), y) = x | ||x − y||0 = t ]

>

(
n
t

)

2n
· 1
2
.

Now consider X to be a random variable uniformly distributed over {0, 1}n

and h to be a random variable distributed according to Samp(). Then

H∞(X | h, h(X)) ≤ − log(Pred(X | h, h(X))) ≤ − log(Pr
h,x

[P (h, h(x)) = x]) < n− log
(n

t

)
+1.

On the other hand

H∞(X | h, h(X)) ≥ H∞(X | h) − m ≥ H∞(X) − m ≥ n − m.

The first inequality follows from Lemma 1, the second inequality follows since
h,X are independent, and the third since X is uniformly random over {0, 1}n.

Combining the above two inequalities, we get m > log
(
n
t

) − 1, but since m

is an integer, this implies m ≥ log
(
n
t

)
.
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Optimality of Our Construction. Our lower bound in Theorem 6 shows that our
PPH construction from the previous section achieves essentially tight parame-
ters. We look at two concrete settings.

When t = ρ · n for some constant ρ > 0 then the lower bound shows
m ≥ (H(ρ)− o(1)) ·n. This essentially matches our upper bound from Corollary
3 which shows that inefficiently we can achieve m ≈ H(ρ) ·n+λ. Therefore, our
inefficient construction is tight, including constant factors! Efficiently, Corol-
lary 1 allows us to achieve a slightly worse compression m ≈ HBZ

2 (ρ) · n + λ,
where HBZ

2 (ρ) is a slightly larger constant than H(ρ). The small gap between
our efficient upper bounds and the lower bound is due to the fact that current
constructions of efficiently list-decodable linear codes are slightly sub-optimal
compared to combinatorially (inefficiently) list-decodable counterparts – future
advances in coding theory will hopefully allows us to close this gap.

For smaller distances t = nε for some constant ε > 0, then the lower bound
shows that m ≥ t log(n/t) = Ω(t log n). This essentially matches our upper
bound of m = O(t log n) from Corollary 2, up to constant factors.

6 RPPH from Homomorphic Collision Resistance

In this section, we present the construction of a robust property preserving hash
(RPPH) from homomorphic collision resistant hash functions. The construction
is analogous to that of non-robust PPH, with the main difference being that we
replace the homomorphic universal hash function huniv(x) = A · x with a cryp-
tographic homomorphic collision-resistant hash function. We begin by defining
this notion and showing how to construct it.

6.1 Homomorphic CRHFs

We rely on the following definition of a homomorphic collision-resistant hash
function.

Definition 12 (Homomorphic CRHF). Let n = n(λ), � = �(λ) be some poly-
nomials with � < n. A family of Homomorphic Collision Resistant Hash Func-
tions (Samp,H) consists of a sampling algorithm h ← Samp(1λ) that generates
a hash function h ∈ H with h : Z

n
q → {0, 1}� for some integer q specified by h.

We require require the following properties:

– Efficiency: For any h ← Samp(1λ) the function h(x) can be computed in
poly(λ) time.

– Collision-Resistance: For any ppt adversary A:

Pr

⎡

⎣
h(x1) = h(x2)
∧ (x1 �= x2)
∧ x1, x2 ∈ {−1, 0, 1}n

: h ← Samp(1λ),
(x1, x2) ← A(h)

⎤

⎦ ≤ negl(λ).

– Homomorphism: The description of h determines some operation ÷ com-
putable in poly(λ) time such that for all x1, x2 ∈ Z

n
q we have

h(x1) ÷ h(x2) = h(x1 − x2).
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Note that, while for homomorphism we consider the domain of the hash
function to be Z

n
q and the subtraction x1 − x2 is computed in Z

n
q , for collisions

we only need to consider inputs in a restricted sub-domain {−1, 0, 1}n ⊆ Z
n
q .

This will be important for our construction from the SIS assumption.

Construction from Discrete Log. We observer that the Pedersen hash function
[Ped92] (a deterministic version of Pedersen commitment) is a good homomor-
phic collision-resistant hash function under the discrete logarithm assumption.

Let G = (G, g, q) ← GroupGen(1λ) be a group generation algorithm that
generates the description of a cyclic group G = 〈g〉 of prime order |G| = q, with
a generator g, such that the group operation (written as multiplication) can
be computed in poly(λ) time and group elements can be efficiently represented
using � = �(λ) bits.

The discrete logarithm (DLOG) assumption relative to the above GroupGen
algorithm says the following.

Definition 13 (Discrete Log Assumption). For any ppt adversary A we
have:

Pr[A(G, gx) = x : G ← GroupGen(1λ), x ← Zq] ≤ negl(λ).

For any polynomial input length n = n(λ), the Pederson hash functions
(Samp,H) is defined as follows:

– h ← Samp(1λ) : Sample G = (G, g, q) ← GroupGen(1λ), and let g1, . . . , gn ←
G be random group elements. The description of the hash function h consists
of (G, g1, . . . , gn).

– y = h(x): Given an input x = (x1, . . . , xn) ∈ Z
n
q define h(x) =

∏
i∈[n] g

xi
i .

– The ÷ operation is defined as h(x) ÷ h(x′) = h(x)/h(x′) = h(x − x′).

Theorem 7 ([Ped92]). The above hash function family is a homomorphic
collision-resistant hash function under the discrete logarithm assumption.

Construction from SIS. We observe that Ajtai’s hash function [Ajt96] based
on the short-integer solution (SIS) problem is is a good homomorphic collision-
resistant hash function.

Definition 14. The short integer solution SISm,q,B assumption with some
parameters m = m(λ), q = q(λ) and B = B(λ) says that for all polynomial
n = n(λ) and all ppt A we have:

Pr[A · x = 0 ∧ x �= 0 ∧ x ∈ [−B,B]n : A ← Z
m×n
q , x ← A(A)] ≤ negl(λ).

For any polynomial input length n = n(λ), Ajtai’s hash functions (Samp,H) is
defined as follows:

– h ← Samp(1λ) : Sample A ← Z
m×n
q and let the description of the hash

function h : Zn
q → Z

m
q consist of the matrix A.

– y = h(x): Given an input x ∈ {0, 1}n define h(x) = A · x.
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– The ÷ operation is defined as h(x1) ÷ h(x2) = h(x1) − h(x2).

Theorem 8 ([Ajt96]). The above hash function family is a homomorphic
collision-resistant hash function under the SISm,q,B assumption with B = 2.

Proof. Assume otherwise, that there is some ppt A such that

Pr[A · x1 = A · x2 ∧ x1 �= x2 ∧ x1, x2 ∈ {−1, 0, 1}n : A ← Z
m×n
q , (x1, x2) ← A(A)] = μ(λ)

for some non-negligible μ. Whenever A·x1 = A·x2∧x1 �= x2∧x1, x2 ∈ {−1, 0, 1}n

occurs, we can define x∗ = (x1 − x2) ∈ [−2, 2]n such that x∗ �= 0 and Ax∗ = 0.
Therefore if we define a ppt A′ that runs (x1, x2) ← A(A) and outputs x∗ =
(x1 − x2) then

Pr[A · x∗ = 0 ∧ x∗ �= 0 ∧ x∗ ∈ [−2, 2]n : A ← Z
m×n
q , x∗ ← A′(A)] = μ(λ).

and therefore A′ breaks the SISm,q,B.

6.2 RPPH from Homomorphic CRHFs

We now give our construction of RPPH from homomorphic CRHFs. The con-
struction is essentially identical to the non-robust PPH construction in Fig. 1.
The main difference is that we now use a homomorphic CRHF in place of a
homomorphic universal hash function. Another difference arises from the fact
that the homomorphic CRHF is over Z

n
q for some arbitrary q rather than just

over Z2. Although we will still apply the CRHF on inputs x1, x2 ∈ {0, 1}n,
when we subtract over Z

n
q we get x1 − x2 ∈ {−1, 0, 1}n. If q �= 2 then −1 �= 1.

This means that we need to use a linear error-correcting code over some field
F of characteristic p > 2 so that when we apply syndrome decoding over F we
correctly recover the same value x1 − x2 ∈ {−1, 0, 1}n.

Theorem 9. Assume the existence of a homomorphic CRHF with output length
�(λ). For any polynomial t, k and odd prime power Q such that there exists an
[n, k]Q code that is efficiently list decodable against t errors, the construction
above is an (n,m)-RPPH for Hammingn,t with output length (n − k) · log2 Q +
�(λ).

Proof. Let h ← Samp(1λ), let x1, x2 ∈ {0, 1}n be arbitrary values chosen by
an adversary adaptively after seeing h. Let y1 = h(x1), y2 = h(x2) with y1 =
(v1, w1) and y2 = (v2, w2). Let L be the list recovered during the computation
of Eval(h, y1, y2). We consider two cases:

– If ‖x1 − x2‖0 ≤ t, then e := x1 − x2 ∈ L by the correctness of syndrome
list-decoding for the syndrome v1 − v2 = P · (x1 − x2). Therefore g(e) =
g(x1 − x2) = g(x1) ÷ g(x2) = w1 ÷ w2 and hence Eval will output 1. Note
that, since x1, x2 ∈ {0, 1}n, the difference x1 − x2 ∈ {−1, 0, 1}n is the same
when computed over the field F of characteristic p ≥ 3 as when just computed
over the integers.



Nearly Optimal Property Preserving Hashing 493

(n, m)-RPPH for Hammingn,t.

Let n = n(λ) and � = �(λ). Let P ∈ F
(n−k)×n be a parity check matrix

of an [n, k]Q code that is efficiently list decodable against t errors,
where Q is an odd prime power. Let (SampCR, HCR) be a family of
collision Resistant Homomorphic Hash Functions with input length
n and output length �. The RPPH family (Samp,Eval) is defined as
follows:

– Samp(1λ): Sample g ← SampCR(1λ) to generate a homomorphic
collision-resistant hash function g : Z

n
q → {0, 1}� for some q.

Output the function h defined below, whose description contains
g.

– h(x) := (P · x, g(x)).
– Eval(h, y1, y2) : Let y1 = (v1, w1) and y2 = (v2, w2). Use syndrome

list-decoding for the syndrome v1 − v2 ∈ F
n−k to recover a list

L = {e1, . . . , eL} of possible error vectors ei ∈ F
n such that Pei =

v1 − v2 and ‖ei‖0 ≤ t. Then
• output 1, if there exists ei ∈ L such that g(ei) = w1 ÷w2 and

ei ∈ {−1, 0, 1}n,
• otherwise output 0.

Fig. 2. Construction of (n, m)-RPPH for Hammingn,t

– If ‖x1 − x2‖0 > t, then for all ei ∈ L, we have ‖ei‖0 ≤ t and therefore
ei �= x1 − x2 (mod q). If there exists some i such that ei ∈ {−1, 0, 1}n and
g(ei) = g(x1 − x2) it means that we found a valid collision ei �= (x1 − x2)
in the hash function g. But, by collision resistance, the probability of this is
negligible. Therefore, with overwhelming probability, no such index i exists
and Eval will output 0.

Plugging in Facts 3 and 4, and using Q = 3, we obtain the following corollaries
for PPH.

Corollary 4. Assume the existence of a homomorphic CRHF with output length
� = �(λ). For all constants 0 < ρ < 1/2 and η > HBZ

3 (ρ) · (log2 3) (see Fact 3),
for all polynomial n, there exists an efficient (n,m)-PPH for Hammingn,t with
t = ρ · n, having output length m = η · n + �. In particular, for every constant
η > 0, there exists some constant ρ > 0 such that the above holds.

Corollary 5. Assume the existence of a homomorphic CRHF with output
length � = �(λ). For all polynomial n and t, there exists an (n,m)-RPPH for
Hammingn,t where m = O(t · log n + �).

In the case where t = ρ · n for a constant ρ > 0, the first corollary gives
constant compression factor η ≈ HBZ

3 (ρ) · (log2 3). We know from our lower
bound (Theorem 6) that we cannot do better than η > H(ρ). The small gap
between the constant in our upper bounds and lower bounds comes from: (1)
the fact that current constructions of efficiently list-decodable linear codes are
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slightly sub-optimal compared to combinatorially (inefficiently) list-decodable
counterparts, which reuslts in our upper bound having HBZ instead of H, (2)
the fact that our constructions of homomorphic hash functions work over Zq for
q > 2 rather than over Z2, which necessitates the log2 3 factor. It is plausible
that future advances in list-decodable codes and homomorphic hashing could
remove either/both of these gaps.

In the case of smaller distances t in the range � < t < nε for some constant
ε > 0, the lower bound (Theorem 6) shows that m ≥ t log(n/t) = Ω(t log n),
which essentially matches our upper bound of m = O(t log n), up to constant
factors.

7 RPPH from Standard Collision Resistance

In this section, we present our construction of RPPH for exact Hamming dis-
tance from standard collision-resistant hash functions. We do so by starting with
the construction of RPPH for gap Hamming distance due to Boyle, LaVigne,
and Vaikuntanathan in [BLV19], and then showing how to generically upgrade
an RPPH for gap Hamming to an RPPH for exact Hamming using syndrome
decoding.

7.1 RPPH for Gap-Hamming

We start with a RPPH construction for GapHammingn,t,δ described by Boyle,
LaVigne, and Vaikuntanathan in [BLV19]. We give a generalized (and somewhat
simplified) analysis of the construction that explicitly shows how the output
length m scales as a function of the input length n, the distance t and the
security parameter λ for general setting of parameters.

Theorem 10 (Generalizing [BLV19] Theorem 16). Let λ be a security
parameter and let δ > 0 be a constant. Assuming CRHFs with output size
� = poly(λ), for any n = poly(λ), any 0 < t < n, there exists a (n,m)-RPPH
for GapHammingn,t,δ with output length m = O((t log n

t + λ)�).

The main idea of the construction is to use a bipartite “expander graph” to
map the n locations of the input into k subsets for some k � n. Then, we apply
a standard CRHF on the bits of x in each of the k sets of locations and set the
k CRHF outputs as the output of the RPPH. The expander ensures that there
is some threshold μ such that:

– If x1, x2 differ in ≤ t locations then they will differ < μ · k of the k subsets
and therefore at most that many of the CRHF output will differ.

– If x1, x2 differ in > (1 + δ)t locations then they will differ > μ · k of the k
subsets and therefore at least that many of the CRHF output will differ.

This allows us to distinguish the two cases.
In [BLV19], they rely on standard expander graphs to achieve the above

properties. We observe that the expansion is somewhat stronger than what we
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need: it guarantees that for every small set S ⊆ [n], must have a large number
of neighbors, whereas we only need this to hold when |S| ≥ (1+ δ)t. As a result,
we obtain a more straightforward analysis for the same construction and a more
general range of parameters.

Definition 15. Let G = (L ∪ R,E) be a bipartite graph with E ⊆ L × R. For a
set S ⊆ L let N(S) ⊆ R denote the neighbors of S. We say that G is (n, k, t, δ)-
nice if it has |L| = n, |R| = k, and there exists some threshold μ > 0 such
that:

1. For every “small” S ⊆ L such that |S| ≤ t, we have |N(S)| < μk.
2. For every “large” S ⊆ L such that |S| ≥ (1 + δ)t we have have |N(S)| > μk.

We show that such nice graphs exist and can be sampled efficiently via a prob-
abilistic argument. Indeed, a random graph is nice with overwhelming probabil-
ity. We can rely on randomized constructions since we can include the description
of the graph G as part of the description of the RPPH.

Lemma 3. For any n, 0 < t < n, and any constant δ > 0, a (n, k, t, δ)-nice
bipartite graph is efficiently constructible (with all but e−Ω(λ) probability) with
k = O(t log(n/t) + λ).

Proof. We show that a random graph satisfies the requirement with all but
negligible probability. Define the following constants that depend on δ:

μ0 =
δ

2(1 + δ)2
, μ1 = (1 + δ/2)μ0, ρ =

δ

4 + δ
, μ = (1 + ρ)μ0 = (1 − ρ)μ1.

Sample a bipartite graph G = (L ∪ R,E) with |L| = n, |R| = k, where for any
(v, w) ∈ L × R, the edge (v, w) is included in E independently with probability
p = μ0

t . We show that this graph is (n, k, t, δ)-nice with overwhelming probability.
We do so by showing that each of the two properties holds separately.

First, we show property 1 holds. Fix any set S ⊆ L of size |S| = t. For any
w ∈ R, we can rely on the union bound to show:

Pr[w ∈ N(S)] = Pr

[
⋃

v∈S

(v, w) ∈ E

]

≤
∑

v∈S

Pr[(v, w) ∈ E] ≤ t · p ≤ μ0.

Define the indicator random variables Xw which are 1 iff w ∈ N(S). Then these
random variables are independent and E[

∑
w∈R Xw] = μ0 · k. By the Chernoff

bound, we therefore have:

Pr [ |N(S)| ≥ μ · k ] = Pr

[
∑

w∈R

Xw ≥ (1 + ρ)μ0k

]

≤ exp
(−ρ2μ0k/3

)
.

Finally, by the union bound over all such sets S, we can bound the probability
that property 1 does not hold by:

Pr [∃S ⊆ L, |S| = t : |N(S)| ≥ μ · k] ≤
(

n

t

)
· exp

(−ρ2μ0k/3
)
.
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By choosing a sufficiently large k = O(t log n
t + λ), we can bound the above by

2−Ω(λ).
Second, we show property 2 holds. Fix any set S ⊆ L of size |S| ≥ (1 + δ)t.

For any w ∈ R, we can rely on the inclusion-exclusion principle to show:

Pr[w ∈ N(S)] = Pr

[
⋃

v∈S

(v, w) ∈ E

]

≥
∑

v∈S

Pr[(v, w) ∈ E] −
∑

v1 �=v2∈S

Pr[(v1, w) ∈ E ∧ (v2, w) ∈ E]

≥ (1 + δ)tp − [(1 + δ)t]2p2

= (1 + δ)tp − (δ/2)tp
= (1 + δ/2)tp = μ1.

Define the indicator random variables Xw which are 1 iff w ∈ N(S). Then these
random variables are independent and E[

∑
w∈R Xw] = μ1 · k. By the Chernoff

bound, we therefore have:

Pr [ |N(S)| ≤ μ · k ] = Pr

[
∑

w∈R

Xw ≤ (1 − ρ)μ1k

]

≤ exp
(−ρ2μ0k/2

)
.

Finally, by the union bound over all such sets S, we can bound the probability
that property 2 does not hold by:

Pr [∃S ⊆ L, |S| = (1 + δ)t : |N(S)| ≥ μ · k] ≤
(

n

(1 + δ)t

)
exp

(−ρ2μ0k/2
)
.

By choosing a sufficiently large k = O(t log n
t + λ), we can bound the above by

e−Ω(λ).
Therefore, for each property, the probability that it fails to hold is negiligible,

and by the union bound, the probability that either property fails to hold is then
also negligible. This shows that the samples graph G is (n, k, t, δ)-nice with all
but e−Ω(λ) probability.

The proof of Theorem 10 is similar to the proof of Theorem 16 in [BLV19],
modulo parameter settings and the graph G defined above. We present the proof
for completeness.

Proof (Proof of theorem 10). We show that the construction in Fig. 3 yields an
RPPH construction. We split the proof of robustness into two cases:

– Suppose x1, x2 ∈ {0, 1}n satisfy ‖x1 ⊕ x2‖0 ≤ t. Let S ⊆ L be the set of
indices where x1, x2 differ, and T = N(S). We have |S| ≤ t. Since G is nice
with overwhelming probability, by the first property we have |T | < μk with
overwhelming probability.



Nearly Optimal Property Preserving Hashing 497

(n, m)-RPPH for GapHammingn,t,δ

Given parameters n, 0 < t < n, δ > 0 and a CRHF family
(SampCR, G):

– Samp(1λ): Set k = O(t log n
t

+ λ) appropriately and sample a
(n, k, t, δ)-nice bipartite graph G = (L ∪ R, E) per Lemma 3.
Sample a CRHF g ← SampCR(1λ) with output size � = �(λ).
Output h = (G, g).

– h(x): For every j ∈ [k], compute the (ordered) set of neighbors of
the j-th right vertex in G, denoted N(j). Let x̂(j) := x|N(j) be x

restricted to the set N(j). Output h(x) := g(x̂(1)), ..., g(x̂(k)).

– Eval(h = (G, g), y1, y2). Parse y1 = (ŷ
(1)
1 , . . . , ŷ

(k)
1 ) and y2 =

(ŷ
(1)
2 , . . . , ŷ

(k)
2 ). Compute

Δ =
k∑

j=1

1(ŷ
(j)
1 �= ŷ

(j)
2 )

Let μ be the threshold parameter for the (n, k, t, δ)-nice bipartite
graph G per definition 15. If Δ ≤ μk, output 1. Otherwise, output
0.

Fig. 3. Construction of (n, m)-RPPH family for GapHammingn,t,δ from CRHFs

Now for every j ∈ R such that j /∈ T , the subsampled values satisfy x̂
(j)
1 = x̂

(j)
2

and in turn ŷ
(j)
1 = ŷ

(j)
2 . Therefore

Δ =
k∑

j=1

1(ŷ(i)
1 �= ŷ

(i)
2 ) ≤ |T | < μk

so Eval will output 1 with overwhelming probability.
– Now suppose x1, x2 ∈ {0, 1}n satisfy ‖x1 ⊕ x2‖0 ≥ (1 + δ)t. Define S, T as

above, then |S| ≥ (1 + δ)t. Since G is nice, by the second property we have
|T | > μk, with overwhelming probability.
Now for every j ∈ T , x̂

(j)
1 �= x̂

(j)
2 . We show that ŷ

(j)
1 �= ŷ

(j)
2 with all but

negligible probability for (x1, x2) chosen by a PPT adversary. Suppose not,
then the x̂

(j)
1 , x̂

(j)
2 are a collision on the CHRF, which contradicts collision

resistance.
Therefore with all but negligible probability for each j ∈ T we have ŷ

(j)
1 �=

ŷ
(j)
2 . Using a union bound this holds for all j ∈ T still with all but negligible

probability, in which case Δ > μ · k and Eval will output 0.

7.2 From Gap-Hamming to Hamming

Now we are ready to use syndrome decoding to generically amplify any RPPH for
gap Hamming distance to a RPPH for exact Hamming distance. In this section,
we rely on unique decoding rather than list decoding.
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(n, m)-RPPH for Hammingt

Given n, 0 < t < n: Let δ > 0 be any constant. Fix a (n, mgap)-RPPH
(Sampgap,Evalgap) for GapHammingn,t,δ with output size mgap and a
parity-check matrix P ∈ F

(n−k)×n
2 of a (n, k)-linear code that allows

efficient (unique) decoding up to (1 + δ)t errors.

– Samp(1λ): Sample g ← Sampgap(1
λ). Output the hash function h

defied below, whose description consists of the description of g.
– h(x) := (Px, g(x)).
– Eval(h, y1, y2) : Parse y1 = (Px1, g(x1)) and y2 = (Px2, g(x2)).

Let s := Px1 ⊕ Px2 = P (x1 ⊕ x2). Apply syndrome decoding to
obtain e such that P · e = s and ‖e‖0 ≤ (1+ δ)t, or output 0 if no
such e exists. Set b = Evalgap(g, g(x1), g(x2)). Then

• output 1 if ‖e‖0 ≤ t and b = 1.
• output 0 otherwise.

Fig. 4. Construction of RPPH for Hammingn,t from RPPH for GapHammingn,t,δ

Theorem 11. Let λ be a security parameter and δ > 0 be any constant. Assume
there exist a (n,mgap)-RPPH for GapHammingn,t,δ with output size mgap and
an efficiently decodable (n, k)-linear code that corrects up to (1+δ)t errors. Then
the construction in Fig. 4 is a (n,m)-RPPH for Hammingn,t with output length
m = n − k + mgap.

Proof. We analyze robustness. Suppose a PPT adversary A outputs x1, x2 ∈
{0, 1}n:

– If x1, x2 satisfy ‖x1 − x2‖0 ≤ t, then syndrome decoding of s = P · (x1 − x2)
always recovers e = x1 − x2, since ‖e‖0 ≤ t. Now since g is a RPPH for
GapHammingn,t,δ, by its robustness we have Evalgap(g, g(x1), g(x2)) = 1
with probability 1 − negl(λ). Therefore Eval(h, h(x1), h(x2)) will output 1
with probability 1 − negl(λ).

– If x1, x2 satisfy ‖x1 − x2‖0 ≥ t+1, we further distinguish between two cases:
(1) If t + 1 ≤ ‖x1 − x2‖0 ≤ (1 + δ)t, syndrome decoding always recovers
e = (x1 − x2) and ‖e‖0 > t so Eval will output 0 with probability 1. (2) If
‖x1 ⊕ x2‖0 > (1 + δ)t, by the robustness of g, Evalgap(g, g(x1), g(x2)) = 0
with probability 1 − negl(λ), so Eval will output 0 with probability at least
1 − negl(λ).

Plugging in Theorem 10 along with Fact 4 to the above, and setting (e.g.,)
δ = 1, gives the following corollary.

Corollary 6. Assume there exists a CRHF with output length � = �(λ). For any
polynomial n and t, there exists an (n,m)-RPPH for Hammingn,t with output
length m = O(� · t · log(n/t) + � · λ).

The above essentially matches the parameters of prior works [FS21,FLS22] that
relied on specific algebraic asssumptions: the q-Strong Bilinear Discrete Loga-
rithm (q-SBDL) Assumption in the former case, and the Short-Integer Solution
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(SIS) in the latter case. It also essentially matches (a generalized form of) the
parameters achieved by the prior work of [BLV19] for gap Hamming distance,
but does so for exact Hamming distance.

7.3 The Necessity of Collision-Resistance

We also show that collision-resistant hash functions are necessary for RPPH for
Hamming distance, and therefore our construction above is based on a minimal
assumption. This result follow implicitly as a special case of a result of [BLV19]
(Corollary 30), but we include a simple stand-alone proof for completeness.

Theorem 12. Let n = n(λ) and t = t(λ) be polynomials with t < n/2. Any
(n,m)-RPPH for Hammingn,t is also necessarily a collision-resistant hash func-
tion.

Proof. First observe that for any x1, x2 ∈ {0, 1}n with x1 �= x2 we can efficiently
find y such that ||x1 −y||0 ≤ t and ||x2 −y||0 > t. In particular, if ||x1 −x2||0 > t
then y = x1 satisfies this, and otherwise define y by flipping some arbitrary t
positions of x1 in which x1, x2 agree.

Now assume we have an RPPH construction which is not collision-resistant,
meaning that there is some PPT A such that, given h ← Samp(1λ), the output
(x1, x2) ← A(h) is a valid collision with non-negligible probability, meaning:
x1 �= x2 and h(x1) = h(x1). Whenever A(h) finds a valid collision (x1, x2), we can
use it to find inputs on which the RPPH give the wrong answer. Namely, we can
find y as above with ||x1−y||0 ≤ t and ||x2−y||0 > t. Then Hammingn,t(x1, y) �=
Hammingn,t(x2, y), but Eval(h, h(x1), h(y)) = Eval(h, h(x2), h(y)), since h(x1) =
h(x2). Therefore it must hold that for one of the input pairs (xb, y) we have
Eval(h, h(xb), h(y)) �= Hammingn,t(xb, y), meaning that we get a valid attack
contradicting RPPH security.

8 Randomized Robust PPH (R2P2H)

In this section, we consider a randomized notion of RPPH, denoted R2P2H,
where the hash function h itself can be a randomized function. For robust-
ness, we assume that the adversary can choose the inputs x1, x2 adaptively
depending on the description of h, but before knowing the internal randomness
that will be used in the computations of h(x1), h(x2). The adversary wins if
Eval(h, h(x1), h(x2)) �= P (x1, x2). Formally, the definition is identical to that in
Sect. 3, with two modifications:

– We now allow the hash functions h : {0, 1}n → {0, 1}m to be randomized
functions.

– The definition of robustness (Definition 9) is modified accordingly so that the
probability is taken also over the internal randomness used in the computation
of h(x1), h(x2).
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R2P2H is a relaxation of RPPH. At first sight, it may seem that allowing ran-
domness does not alter the problem significantly, and that RPPH and R2P2H
are “morally equivalent”. This is not the case. On the positive side, for interest-
ing regimes, RPPH is known to require collision-resistant hash functions, while
R2P2H can be constructed information-theoretically. On the negative side, we
caution that R2P2H provides qualitatively weaker security than RPPH. For
deterministic RPPH, the security definition implicitly allows the adversary to
choose x2 after seeing h(x1), since the adversary can compute h(x1) himself. This
is not the case for R2P2H, where seeing h(x1) can reveal something about the
internal randomness used to compute it and could allow the adversary to find a
bad x2 that breaks security. Indeed, this will be the case for our construction.

The notion of R2P2H for the equality predicate was studied implicitly in
[NS96,BK97,MNS08] and the connection was recently made explicit in [CN22].

Lemma 4. Let T ⊆ [�] be an arbitrary set of size |T | ≥ δ · � for some constant
δ > 0. Let SA, SB ⊆ [n] be chosen as uniformly random and independent sets of
size |SA| = |SB | =

√
λ� where � > λ. Then Pr[|SA ∩ SB ∩ T | = ∅] ≤ 2−Ω(λ).

For lack of space, we defer the proof of the above lemma to the full version.

(n, m)-R2P2H for Hammingn,t.

Notation: For a string y ∈ {0, 1}� and a subset S ⊆ [�], let yS ∈
{0, 1}|S| denote the bits of y in the positions indexed by S.
Scheme: Set � = 2n. Let G ∈ F

�×n
2 be the generator matrix of an

[�, n]2-code which with distance δ� for some constant δ > 0. Let P ∈
F
(n−k)×n
2 be a parity check matrix of an [n, k]2-linear code which is

efficiently list decodable against t errors.

– h(x): Choose a set S ⊆ [�] of size |S| =
√

λ� uniformly at random.
Let C(x) = G · x. Output h(x) := (P · x, S, C(x)S)

– Eval(y1, y2) : Let y1 = (v1, S1, C(x1)S1) and y2 =
(v2, S2, C(x2)S2). Let S∗ = S1 ∩ S2. Use syndrome list-decoding
for the syndrome v1 −v2 to recover a list L = {e1, . . . , eL} of pos-
sible error vectors ei ∈ F

n
2 such that Pei = v1 − v2 and ‖ei‖0 ≤ t.

• output 1, if there exists some ei ∈ L such that C(ei)S∗ =
C(x1)S∗ − C(x2)S∗ .

• otherwise output 0.

Fig. 5. Construction of (n, m)-R2P2H for Hammingn,t

Theorem 13. Let λ be a security parameter. For any polynomial n, t, k such
that there exists an [n, k]2-linear code which is efficiently list decodable against t
errors, the construction above is a (n,m)-R2P2H for Hammingn,t with output
length m = O(

√
λn log n) + (n − k). In particular: (1) there exist (n,m)-RPPH
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for Hammingn,t with output length m = O(
√

λn log n) + 2t log n, and (2) for
any constant η > 0, there exists some constant ρ > 0 such that there exist
(n,m)-RPPH for Hammingn,t with t = ρn and m = O(

√
λn log n) + η · n.

Proof. Let x1, x2 ∈ F
n
2 be arbitrary values. Let y1 = h(x1) and y2 = h(x2)

with y1 = (v1, S1, C(x1)S1) and y2 = (v2, S2, C(x2)S2). Define T to be the set of
locations where C(e) �= C(x1 − x2) We consider two cases:

– If ‖x1 − x2‖0 ≤ t, then e = x1 − x2 ∈ L and C(e)S∗ = C(x1 − x2)S∗ =
C(x1)S∗ − C(x2)S∗ . Therefore Eval(y1, y2) will output 1 with probability 1.

– If ‖x1 − x2‖0 > t, for any ei ∈ L, we have ‖ei‖0 ≤ t and therefore ei �= x1−x2.
Define the set Ti = {j : C(x1 − x2)j �= C(ei)j} of locations on which
C(x1 −x2) and C(ei) disagree. Since the minimum distance of the code is δ�,
we have |Ti| > δ�. By Lemma 4, we have

Pr[∃i ∈ [L]S1 ∩ S2 ∩ Ti = ∅] ≤
∑

i∈[L]

Pr[S1 ∩ S2 ∩ Ti = ∅] ≤ L2−Ω(λ) = negl(λ).

As long as the above event does not occur, Eval(y1, y2) will output 0, since for
every i ∈ [L] we have S1 ∩ S2 ∩ Ti �= ∅ and therefore there exists some j ∈ S∗

such that C(x1)j −C(x2)j �= C(ei)j . Overall, this shows that Eval(y1, y2) = 0
with all but negligible probability.
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Abstract. Collision-resistant hash functions (CRH) are a fundamental
and ubiquitous cryptographic primitive. Several recent works have stud-
ied a relaxation of CRH called t-way multi-collision-resistant hash func-
tions (t-MCRH). These are families of functions for which it is compu-
tationally hard to find a t-way collision, even though such collisions are
abundant (and even (t−1)-way collisions may be easy to find). The case
of t = 2 corresponds to standard CRH, but it is natural to study t-MCRH
for larger values of t.

Multi-collision-resistance seems to be a qualitatively weaker property
than standard collision-resistance. Nevertheless, in this work we show a
non-blackbox transformation of any moderately shrinking t-MCRH, for
t ∈ {3, 4}, into an (infinitely often secure) CRH. This transformation
is non-constructive – we can prove the existence of a CRH but cannot
explicitly point out a construction.

Our result partially extends to larger values of t. In particular, we
show that for suitable values of t > t′, we can transform a t-MCRH
into a t′-MCRH, at the cost of reducing the shrinkage of the resulting
hash function family and settling for infinitely often security. This result
utilizes the list-decodability properties of Reed-Solomon codes.

1 Introduction

Collision-Resistant Hashing (CRH) is a fundamental primitive that is impor-
tant throughout cryptography. These are functions that shrink their input but
for which it is computationally infeasible to find two inputs (called “colliding”
inputs) that map to the same output, even though many such pairs exist.

Recently, natural relaxations of such hash functions, called Multi-Collision-
Resistant Hash Functions (t-MCRH for some integer t) have been stud-
ied [KNY17,BDRV18,BKP18,KNY18,KY18]. These are functions where it is
computationally infeasible to find a set of t distinct inputs that are all mapped
to the same output, even though many such collisions exist and moreover, it
might even be possible to find sets of (t − 1) colliding inputs efficiently. Clearly,
a CRH is a t-MCRH for any value of t ≥ 2. In this paper, we address the question
of whether the existence of a t-MCRH for some t > 2 implies the existence of a
CRH.
c© International Association for Cryptologic Research 2022
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The existing evidence in this regard is ambiguous. In some important applica-
tions like constant-round statistically hiding commitments, CRH may be replaced
by MCRH [BDRV18,KNY18]. Further, MCRH imply a different relaxation of
CRH called distributional CRH [KY18]. Similar to CRH, there is also a blackbox
separation between MCRH and one-way permutations [BDRV18,KNY18]. These
suggest that MCRH might be as powerful as CRH.

On the other hand, CRH have properties that MCRH are not known to pos-
sess. For instance, it is well-known that for CRH, shrinkage of even a single
bit suffices to construct a CRH of essentially any desired shrinkage (see [Gol04,
Section 6.2.3] for details). Such a transformation for t-MCRH that preserves the
number t of collisions resisted is not known. A non-trivial transformation that
somewhat increases the t is known, however, if starting with a t-MCRH that
already has substantial shrinkage [BKP18].

1.1 Our Results

Loosely speaking, we show that the existence of t-MCRH for t = 3 or 4 that
are sufficiently shrinking implies the existence of CRH. Our proof of this is non-
constructive and non-blackbox. It is non-constructive because, even when given
an explicit t-MCRH, we can only prove that a CRH exists but cannot explic-
itly point out a specific construction. It is non-blackbox because we make non-
blackbox use of a potential CRH adversary.

Before stating our results formally, we define these primitives. Throughout
this work, for a function h : {0, 1}n → {0, 1}∗, integer t ∈ N and set X ⊆ {0, 1}n,
we denote by t-collh(X) the event that (1) |X| = t and (2) h(x) = h(x′) for every
x, x′ ∈ X.

Definition 1. For functions t = t(n) and � = �(n), a (t, �)-multi-collision-
resistant hash function ((t, �)-MCRH) consists of a probabilistic polynomial-time
algorithm Gen that on input 1n outputs a circuit h : {0, 1}n → {0, 1}n−�(n)

such that the following holds. For every family of polynomial-size circuits A =
(An)n∈N, every polynomial p and all sufficiently large n ∈ N, it holds that:

Pr
h←Gen(1n)
X←An(h)

[
t-collh(X)

]
< 1/p(n). (1)

Observe that for a (t, �)-MCRH to be non-trivial, we need �(n) ≥ log t(n). The
standard definition of CRH is equivalent to (2, 1)-MCRH. As noted earlier, while
a (2, 1)-MCRH can be used to construct a (2, cn)-MCRH for any c < 1, this is
not known to be true for a (t, log t)-MCRH for t > 2. This potentially qualitative
difference between t-MCRH with different levels of shrinkage also shows up in the
theorems we are able to prove in this paper. Thus, it is important to be explicit
about the shrinkage � of an MCRH in our terminology. (Nevertheless, in some
informal discussions we may use the terminology t-MCRH without explicitly
stating the shrinkage.)

Variants of MCRH. We also consider certain variants of the definition of MCRH.
In an infinitely-often MCRH we require every adversary to fail on infinitely many
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n’s (rather than all sufficiently large n’s). More precisely, we say that Gen is
a (t, �)-ioMCRH if Eq. (1) only holds for infinitely many n’s (rather than all
sufficiently large n’s). Every MCRH is also an ioMCRH but the converse is not
necessarily true.

We say that a hash function family is non-uniform if the sampling algorithm
is non-uniform. That is, instead of an algorithm Gen that samples the hash func-
tions h when run as Gen(1n), there is a family of probabilistic circuits (Genn)n∈N

such that Genn has size poly(n) and outputs h. In this work, we follow the stan-
dard practice of modeling adversaries as non-uniform circuits. Jumping ahead,
as some of our constructions make use of a potential non-uniform adversary, the
hash functions we construct will also be non-uniform.

Remark 1. Hsiao and Reyzin [HR04] consider a variant of CRH in which the
adversary is given also the coins used by the generator to sample the hash func-
tion h. An analogous variant may be considered for MCRH (with or without the
infinitely-often and non-uniform qualifiers). We remark that all of our results
can be easily adapted to the [HR04] setting as well.

Main Results. With the above definitions in hand, we are ready to state our
main results. The first result, which is easiest to state, is the construction of an
(infinitely-often and non-uniform) CRH from a sufficiently shrinking 3-MCRH.
Similar to standard CRH, the shrinkage of non-uniform infinitely often secure
CRH can also be generically increased from a single bit to cn for any c < 1, so
we often do not specify it. The parameters stated in the theorems below result
in CRH with shrinkage Ω(log n).

Theorem 1. Suppose there exists a
(
3, n/2+ω(log n)

)
-MCRH. Then there exists

a non-uniform ioCRH.

The same conclusion also holds under the weaker assumption that the 3-MCRH
in the hypothesis above is non-uniform and/or only infinitely-often secure (this
is true for the remaining theorems as well). Given Theorem 1, it is natural to
wonder for what values of t we can construct ioCRH from t-MCRH. Curiously,
while we are able to show such an implication from a sufficiently shrinking 4-
MCRH, our techniques stop working when t ≥ 5.

Theorem 2. Suppose there exists a
(
4, 5

6n+ω(log n)
)
-MCRH. Then there exists

a non-uniform ioCRH.

We discuss the limitation of our techniques to t ≤ 4 in Sect. 4. Getting around
this and constructing ioCRH from t-MCRH for larger constants t (let alone all
constants or even super constant values of t) is an interesting open problem.
Despite this restriction, for large enough constants t, we are able to show that
t-MCRH generically implies t′-ioMCRH for many values of t′ < t.

Theorem 3. Consider any constants t, k, tf ≥ max
[
(2t

√
k − 1)2/3, 24

]
, and

function � = �(n). If there exists a (t, �)-MCRH then there exists a (tf , �f )-
ioMCRH, for �f (n) = min

[
(�(n) − n/k), (�(kn) − n(k − 1) − O(log n))

]
.
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Theorem 3 is only meaningful if t is larger than tf (and thus larger than 24).
These bounds are not optimized, and our construction works for some smaller
values of t and tf as well. Starting with any (t, �), the parameter k controls
a tradeoff between the best values of tf and �f we can obtain from the above
theorem. It may be verified that, for the �f (n) above to be positive for some
value of k, we need to start with an � such that �(n) > n/2. With appropriate
choices of the parameters, the theorem can be applied multiple times in sequence
to get a (t′f , �′

f )-ioMCRH from the (tf , �f )-ioMCRH for some t′f < tf , etc. For
t > 4, however, there is no sequence of parameters that can be used to get all
the way down to a (2, 1)-ioMCRH.

For an example of an instantiation, consider a 100-MCRH that has output of
length n/10 – that is, a (100, 9n/10)-MCRH. With k = 2, noting that (2 · 100 ·
1)2/3 ≈ 34, the above theorem gives us a (35, 4n/10)-ioMCRH (ignoring additive
O(log n) terms). Similarly, with k = 4 and k = 9, we can get a (50, 6n/10)-
ioMCRH and a (69, n/10)-ioMCRH, respectively. Values of k outside the range
[2, 9] lead to negative values for �f (n) and thus do not result in shrinking hash
functions.

1.2 Our Techniques

In this overview we focus on Theorem 1, that is, our approach for constructing
an (infinitely-often and non-uniform) CRH from a 3-MCRH. Suppose we have a
(3, �)-MCRH, for a shrinkage parameter � = �(n) to be determined below. At
a high-level, we will construct two families of functions such that if neither of
them is a CRH, then 3-way collisions can be found in the original hash function
family.

Our approach is inspired by a recent construction of Komargodski and Yogev
[KY18] of distributional CRH from MCRH. Distributional CRH (or DCRH), intro-
duced by Dubrov and Ishai [DI06], are a different relaxation of CRH in which
it should be hard to find random collisions (although it may be easy to find
some specific collisions). In contrast to [KY18] who construct (infinitely-often)
DCRH from MCRH, we show that MCRH imply worst-case collision-resistance.
We defer a thorough comparison of our techniques and results with those of
[KY18] to Sect. 1.3.

The Candidate CRHs. Fix some input length n. Let H = {h : {0, 1}n →
{0, 1}n−�

}
be a (3, �)-MCRH (for simplicity we assume that the hash func-

tions are sampled uniformly at random from this family). Since it may be pos-
sible to find 2-way collisions for functions in H, we will have to modify H.
Toward this end we introduce an additional non-cryptographic function family
G = {g : {0, 1}n → {0, 1}m}, with m = m(n) < �(n). The exact properties that
we need from G, as well as setting of the parameter m = m(n), will be specified
below.

Thus, our first family of hash functions is F =
{
fh,g : {0, 1}n → {0, 1}n−�+m

}
,

where h ∈ H, g ∈ G. The evaluation fh,g(x) is simply the concatenation fh,g(x) =
(h(x), g(x)). There are two possibilities: either F is a CRH or it is not. If the for-
mer is true then we are done and so we might as well assume the latter. Namely,
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assume that there exists an efficient (non-uniform) adversary A that, given fh,g ∈
F as input, outputs (x0, x1) such that x0 	= x1 but fh,g(x0) = fh,g(x1). For sim-
plicity, let us assume that A is perfect – that is, that A finds a valid collision for
any fh,g ∈ F .

We will use A – an adversary for F – to construct a second family of hash
functions. We denote the family by FA =

{
fh,A : G → {0, 1}n−�

}
. Each function

fh,A takes as its input the description of a function g from G, runs A(fh,g) to
get (x0, x1) – a collision for fh,g – and outputs h(x0). The fact that FA depends
on an adversary A is what makes our construction non-blackbox, non-uniform,
and non-constructive. In particular, as the description of the family FA involves
the description of a purported adversary A for F , unless this adversary were
explicitly given, we would be unable to point out an explicit construction of FA

(even given H).
What makes FA interesting for our purposes is that, intuitively, a pairwise

collision g0, g1 ∈ G for FA actually specifies four inputs (namely, (x00, x01) ←
A(fh,g0) and (x10, x11) ← A(fh,g1)) that all collide under h. We will attempt to
leverage this fact to argue that FA must be collision-resistant.

Thus, assume toward a contradiction that FA is not a CRH. That is, that
there exists an efficient adversary A′ that finds collisions for FA. We assume
again that A′ is also perfect in the same manner as A, and show how to use A′

to find a 3-way collision for H.

Finding 3-way Collisions. For any h ∈ H, given A and A′ as above, we can
find a collision for h as follows:

1. Run A′(fh,A) to get (g0, g1).
2. Run A(fh,g0) to get (x00, x01).
3. Run A(fh,g1) to get (x10, x11).
4. Identify three distinct elements among {x00, x01, x10, x11} and output them

if they exist.

We make the following observations about this procedure:

1. The fact that A finds valid collisions implies that x00 	= x01 and x10 	= x11.
2. The fact that g0 and g1 are a collision for fh,A implies that, whether given

fh,g0 or fh,g1 as input, A will find collisions that have the same output under
h – that is, h(x00) = h(x01) = h(x10) = h(x11).

3. The definition of fh,g0 and fh,g1 implies that g0(x00) = g0(x01) and g1(x10) =
g1(x11). Further, the fact that A′ finds valid collisions implies that g0 	= g1.

Property 2 above implies that the set X = {x00, x01, x10, x11} forms a col-
lision under h, while Property 1 implies that X contains at least 2 distinct
elements. Unfortunately though, nothing so far guarantees that this set contains
more than 2 elements. A particularly alarming, but so far possible, scenario is
that x00 = x10 and x01 = x11. Thus, it is not at all immediate that the set X
contains a 3-way collision. This is the point where we will need to use special
properties of the family of functions G. In particular, we will choose G in such
a way that Property 3 above will ensure that X does indeed contain a 3-way
collision for h.
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The Family G. Let F denote the finite field of size 2n/2. Functions in G cor-
respond to elements of F. Thus, for each α ∈ F, there is a function gα ∈ G,
which is computed as follows. Given input x ∈ {0, 1}n, divide x into two halves
xL, xR ∈ {0, 1}n/2 and interpret them as elements of F in the natural way. The
evaluation of gα(x) is simply the value of the line specified by (xL, xR) at the
point α – that is, gα(x) = xL + α · xR (computations performed over F).

If for some x0, x1 ∈ {0, 1}n and some gα ∈ G we have gα(x0) = gα(x1),
this implies that the lines specified by x0 and x1 intersect at (α, gα(x0)). Since
any two distinct lines can intersect at at most one point, G has the following
property: for any two distinct x0, x1 ∈ {0, 1}n, there is at most one function
g ∈ G such that g(x0) = g(x1).

Consider now the two pairwise collisions that we have: both {x00, x01} and
{x10, x11} are pairs of distinct inputs such that g0(x00) = g0(x01) and g1(x10) =
g1(x11). Suppose that these two sets are identical to one another: for example
that x00 = x10 and x01 = x11. Since g0 	= g1, this implies that there are two
distinct functions in G such that x00 and x01 collide on them, a contradiction of
the above property of G.

Thus, these two sets cannot be identical, implying that the set of collisions
X above contains at least 3 distinct elements. This gives us a 3-way collision for
h. We conclude that if H is a 3-MCRH, then either A or A′ cannot exist. That
is, either F is collision-resistant, or FA, constructed using the corresponding
adversary A, is collision-resistant.

Shrinkage. It remains to argue that both F and FA are in fact shrinking.
As noted earlier, a CRH with one bit of shrinkage is sufficient to construct a
CRH with essentially any desired shrinkage (and the same holds for non-uniform
ioCRH). So it would be sufficient for F and FA to shrink by even one bit.

By construction, functions in G map n-bit inputs to n/2-bit outputs. This
means that F maps n bits to (3

2n − �) bits and is shrinking as long as � > n/2.
As noted above, each member of G is described by an element of F, in other
words a string of length n/2. Thus, functions in FA map n/2 bits to (n− �) bits.
So again, if � > n/2, this is shrinking.

Coping with Imperfect Adversaries. Above, we assumed that the adver-
saries A and A′ work perfectly – given a hash function, they always find a
collision for it. This was done for simplicity of presentation here. In the actual
construction, there are several difficulties that arise from dealing with imperfect
adversaries. First, if A and A′ are standard CRH adversaries, this would only
imply that they find collisions for an infinite set of input lengths n, rather than
all large enough n. We can only make the above arguments for the set of n’s for
which both of them work, and this set could well be empty. This is the reason
that we can only argue that F or FA is an infinitely often CRH rather than a
standard CRH.

In addition, in the actual construction we only know that A succeeds with
non-negligible probability, rather than with probability 1 as assumed above.
This means that FA might only be defined for a relatively small (but non-
negligible) fraction of its domain. We resolve this second difficulty by showing
how, in general, to transform collision-resistant hash functions that only work
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on a small subset of their domain, to full-fledged CRH. This transformation,
which we find to be of independent interest, is based on the so-called “reverse
randomization” technique, introduced by Lautemann [Lau83] and used in several
works in cryptography since [Nao89,DNR04,DN07,BV17]. We defer the details
to Sect. 2. We remark that this transformation introduces a small overhead and
in particular leads to our hypothesis being that � is larger than n/2 + ω(log n)
rather than just n/2 as above.

Improving Collision Resistance in General t-MCRH. A simple generaliza-
tion of the above approach to getting a tf -MCRH from a t-MCRH for some tf < t
is to keep the construction as is and just change the arguments in the proof. Let
tf = �(t + 1)/2�, and let the families F , G, and FA be just as defined above. If F
were not a tf -MCRH and FA were not a CRH, then we can find a t-wise collision
for functions in H in the same manner we found 3-wise collisions above – given
h ∈ H, find a pairwise collision (g0, g1) for fh,A ∈ FA, and then for each gb, find
a tf -wise collision (xb1, . . . , xbtf

) for fh,gb
. By the same argument as above, the

sets {x0i} and {x1i} can have at most one element in common, and they all have
the same value of h(xbi). This gives a (2tf − 1)-wise collision for h, which is a
contradiction. Thus, either F is a tf -MCRH or FA is a CRH. The only guarantee
we have, however, is that the weaker of these statements holds, meaning that a
tf -MCRH exists.

The price of this transformation is that the shrinkage of the resulting hash
functions decreases by at least n/2 from that of H, as this is the size of the
output of functions in G. For one, this precludes the transformation from being
applied twice in order to get a t′f -MCRH for some t′f < tf . In order to obtain
better shrinkage and also to improve how much smaller tf can be than t, we
generalize our construction. For any k ≥ 2, denote by Fk the finite field of size
2n/k (assume that k divides n). Now, instead of G being the set of functions
representing evaluations of lines in F2, we set it to be the functions representing
evaluations of polynomials of degree (k−1) over Fk. That is, each function g ∈ G
corresponds to an element λ ∈ Fk, and given input x ∈ {0, 1}n, interprets it as
a list of elements x0, . . . , xk−1 ∈ Fk, and outputs

∑k−1
i=0 xiλ

i.
Notice that the shrinkage of F is now (�(n)−n/k), as opposed to the (�(n)−

n/2) earlier. The shrinkage of FA can be computed to be (�(kn) − n(k − 1)),
which can be made better than (�(n) − n/2) by an appropriate choice of k.
We claim now that, for certain values of tf , either F is a tf -MCRH, or the FA

constructed using the corresponding adversary A is a tf -MCRH. If they were
not, given an h ∈ H, we can proceed along the same lines as earlier to first get
a set of functions g1, . . . , gtf

∈ G that collide under FA. Then, we can use A on
each fh,gi

to get tf sets Xi =
{
xi1, . . . , xitf

}
, each of size tf , such that all the

xij ’s have the same value under h and all the elements of each Xi have the same
value under gi.

If we can also prove that there are at least t distinct xij ’s in the union of these
sets, we would have a t-wise collision for h and thus a contradiction. Notice that
each set Xi corresponds to a set of tf polynomials (given by xi1, . . . , xitf

) that
all have the same evaluation at the field element, say λi, corresponding to gi.
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Thus we end up with the following question: given tf sets Xi of tf polynomials
each and tf pairs (λi, yi) with the guarantee that for each x ∈ Xi we have
x(λi) = yi, what is the smallest possible number of distinct polynomials in the
union ∪tf

i=1Xi?
This is closely related to bounds on the list-decodability of Reed-Solomon

codes, which we use to show that as long as tf is at least roughly (2t
√

k − 1)2/3,
there have to be at least t distinct elements among the above sets. This gives us
a transformation from t-MCRH to tf -MCRH for such values of t, which is again
much better than the transformation to �(t + 1)/2�-MCRH that followed from
our original construction. We elaborate on this in Sect. 3.3. By paying attention
to details, we show that this transformation can be used to go from a 4-MCRH
to a 3-MCRH with a loss of n/3 in shrinkage, and then on to a CRH with an
additional loss of n/2. This approach, however, cannot be used to get a CRH
starting from a 5-MCRH. We discuss this barrier in Sect. 4.

1.3 Related Work

Multi-Collision-Resistance was first studied by Joux [Jou04], who showed that for
a certain class of hash functions called iterated hash functions, certain collision-
finding attacks can be augmented to find multi-collisions without much overhead.
Subsequent work has studied similar attacks on some other specific classes of
hash functions [NS07,YW07, . . . ]. The formal theoretical study of MCRH began
with the work of Komargodski et al. [KNY17], who defined MCRH and showed
connections to problems arising from Ramsey theory.

A more detailed study of MCRH was done later in three concurrent and
independent works [BKP18,KNY18,BDRV18]. Berman et al. [BDRV18] showed
that (n2,

√
n)-MCRH can be constructed from the hardness of a variant of the

Entropy Approximation problem [DGRV11]. Both Berman et al. and Komar-
godski et al. [BDRV18,KNY18] showed that constant-round statistically hiding
commitment schemes can be constructed from MCRH with various parameters,
which implies a blackbox separation between such MCRH and one-way permu-
tations [HHRS15]. This separation extends the well-known separation between
CRH and one-way permutations [Sim98]. The latter separation was also extended
in other directions by Bitansky and Degwekar [BD19].

Komargodski et al. also showed how to use MCRH to construct succinct
argument-systems. Additionally, they claimed to show a blackbox separation
between CRH and (3, n/2)-MCRH, but there is a gap in the proof [BD19,Per],
and for the time being such a separation is not known.

Bitansky et al. [BKP18] studied MCRH and also considered a keyless ver-
sion of MCRH. They used both variants to construct round-efficient succinct
zero-knowledge arguments. Notably, they use the keyless version of MCRH to
construct 3-message zero-knowledge arguments. Holmgren and Lombardi [HL18]
showed how to construct MCRH (and even CRH) from exponentially secure one-
way functions with certain direct product properties.

The paper closest to ours is that of Komargodski and Yogev [KY18] on dis-
tributional CRH (DCRH). DCRH, first defined by Dubrov and Ishai [DI06], is a



Collision-Resistance from Multi-Collision-Resistance 511

relaxation of CRH where the adversary’s task is to sample a random collision –
given a function h, to sample (x, x′) where x is a uniformly random input and
x′ is uniformly random conditioned on h(x) = h(x′). Whereas with some prim-
itives like one-way functions the distributional version implies the full-fledged
one [IL89], this is not known to be the case with CRH. See also Bitansky et
al. [BHKY19] for more recent work on DCRH.

Detailed Comparison with [KY18]. Komargodski and Yogev show that the
existence of a (t, Ω(n))-MCRH for any constant t implies the existence of an
infinitely often DCRH.1 Their construction is also non-explicit and non-blackbox,
and their approach is quite similar to ours. Our results are technically incompa-
rable – they obtain a weaker primitive (DCRH as opposed to our CRH), but they
can work with any t-MCRH, whereas we are limited to 4-MCRH. We describe
their approach at a high level here and discuss the salient differences.

Let H =
{
h : {0, 1}n → {0, 1}n/2

}
be a (3, n/2)-MCRH. They also construct

two families of hash functions such that at least one of them has to be a DCRH.
The first family is H itself. Suppose H is not a DCRH and there is an adversary
A that samples uniformly random collisions for h ∈ H. Note that A is necessarily
randomized. Without loss of generality (by padding), we can assume that the
number ρ of random bits that A uses is larger than n. The second family of hash
functions is then defined as HA =

{
fh,A : {0, 1}ρ → {0, 1}n/2

}
, where h ∈ H.

The function fh,A(r) is computed by first running A(h; r) to get a collision
(x0, x1), and then outputting h(x0).

If HA is also not a DCRH, then there is another adversary A′ that finds
random collisions for fh,A ∈ HA. This A′ can be used to find a pair of uniformly
random (r0, r1) such that A(h; r0) and A(h; r1) both find collisions that have the
same output under h. That is, if (x00, x01) ← A(h; r0) and (x10, x11) ← A(h; r1),
then h(x00) = h(x01) = h(x10) = h(x11). Further, as r0 and r1 are uniformly
random upto this condition, and A also samples uniformly random collisions,
this set of x’s is also random conditioned on colliding under h. Thus, with very
high probability, they will all be distinct, giving a 3-way collision for h.

Essentially, the work of our family of functions G is here performed by the
randomness of the distributional collision-finding adversary A. Such a distribu-
tional adversary is much more powerful than the normal collision-finding adver-
sary that we have access to. The distinctness of the collisions found comes for
free with a distributional adversary, whereas we have to use G to get it. It also
enables the constructed DCRH above to not lose any shrinkage compared to
the original 3-MCRH. This allows them to start from (t, Ω(n))-MCRH for any

1 Their paper states this theorem for (t, n/2)-MCRH, but their proof immediately
extends to any (t, Ω(n))-MCRH. They define MCRH security as holding only against
uniform adversaries and thus obtain a uniform i.o. DCRH secure against uniform
adversaries. Under our definition of MCRH with security against non-uniform adver-
saries, their approach would also result in a non-uniform construction secure against
non-uniform adversaries. They also construct DCRH from the average-case hardness
of problems in SZK, but this result is not relevant here.
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constant t and iteratively perform the above process to eventually get a DCRH,
while the best we can do is start from a (4, 5n/6)-MCRH.

1.4 Open Questions

We show using non-blackbox techniques that CRH exist assuming the existence
of sufficiently shrinking 3-MCRH (or 4-MCRH). This indicates that blackbox
separations are not necessarily the last word in classifying the power of crypto-
graphic primitives. Still, our proof is non-constructive. The question that follows
immediately from this observation is whether an explicit construction of CRH
from MCRH is possible.

Question 1. Can explicit CRH (or even ioCRH) be constructed from 3-MCRH?

The answer to this question is unclear to us. If it were positive, such a con-
struction, apart from being useful in obtaining explicit and usable CRH, would
likely require novel and interesting techniques.

The other direction in which our results can be improved is constructing
primitives that are secure in the standard cryptographic sense rather than only
infinitely often secure. Infinitely often security (or hardness) comes up regularly
in cryptography and complexity theory, and we are not aware of any techniques
to convert such security to standard security without additional assumptions.
Being able to construct such primitives is also likely to require new and inter-
esting techniques.

Question 2. Can a standard (as opposed to i.o.) CRH be constructed from a
3-MCRH?

The third obvious question arising from our work is to construct a CRH from
t-MCRH for t > 4, even assuming the best possible shrinkage. As discussed in
Sect. 4, our approach itself is not sufficient for this purpose and new techniques,
or at least non-trivial modifications to ours, will be needed here.

Question 3. Can CRH be constructed from (t, n−polylog(n))-MCRH for all con-
stant t?

Apart from these, there are several adjacent questions about the primitives
we deal with here. As noted above, Berman et al. [BDRV18] construct n2-MCRH
from assumptions about problems related to the complexity class SZK. Their
construction does not extend to t-MCRH for constant t, and it would be inter-
esting to see whether something like this is possible.

Question 4. Can t-MCRH for some constant t be constructed based on the
average-case hardness of the Entropy Approximation problem (or the variant
used by [BDRV18])?
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Perhaps the most intriguing question is whether the classic separation of
CRH from one-way permutations [Sim98] can be side-stepped using non-blackbox
techniques such as those in this paper. Even a non-constructive answer to this
question would be pivotal to our understanding of the relative power of these
key cryptographic primitives.

Question 5. Can non-blackbox techniques be used to construct CRH (or even
MCRH) from One-Way Permutations?

Unfortunately, while our techniques are non-blackbox, they still relativize –
they work in the presence of any oracle that the construction and adversaries
may have access to. The existing separation [Sim98] essentially demonstrates an
oracle relative to which one-way permutations exists but CRH’s do not. Thus,
our approach cannot be used as is to get around it.2

An interesting approach towards answering this question was formulated by
Holmgren and Lombardi [HL18], who showed that exponentially secure one-way
functions with strong enough direct product properties can be used to construct
CRH (or MCRH if starting from a weaker security property). They point out that
proving that one-way permutations have such properties would then answer the
above question.

1.5 Organization

In Sect. 2 we define partial domain MCRH (resp., CRH) and show how to trans-
form such hash functions to standard, full domain MCRH (resp., CRH). This
notion, and the transformation, are important for our main results – the trans-
formations from t-MCRH to tf -MCRH for suitable tf < t, which are presented
in Sect. 3. Finally, in Sect. 4 we show some inherent barriers to our approach.

2 Partial Domain MCRH

In this section we introduce and study partial-domain MCRH. Loosely speaking,
these are MCRH defined over only a (potentially small) part of their domain. The
main result shown in this section is a transformation from such partial-domain
MCRH to full-fledged MCRH – a transformation that will be used to establish our
main theorems in Sect. 3. We remark that an impatient reader can skip directly
to Sect. 3 after reviewing only the definition of partial-domain MCRH.

A partial domain MCRH H = (Hn)n∈N is defined similarly to an MCRH
except that for every h ← Gen(1n), some of the inputs in the domain of h
may be defined as “invalid”. On such invalid inputs the hash function outputs
h(x) = ⊥. A collision-finding adversary for such a partial domain MCRH needs to
find a tuple of valid colliding inputs. We require that the number of valid inputs
is a noticeable fraction of the domain. We proceed to the formal definition.

2 Thanks to Iftach Haitner for pointing this out to us.



514 R. D. Rothblum and P. N. Vasudevan

Definition 2. A partial-domain (t, �)-MCRH consists of a probabilistic
polynomial-time algorithm Gen that on input 1n outputs a circuit h : {0, 1}n →
({0, 1}n−� ∪ {⊥}) such that the following holds.

1. For every family of polynomial-size circuits A = (An)n∈N, every polynomial
p and all sufficiently large n ∈ N it holds that:

Pr
h←Gen(1n)
X←An(h)

[(
t-collh(X)

)
and

(∀i ∈ [t], h(xi) 	= ⊥)]
< 1/p(n). (2)

2. There exists a polynomial q such that with all but negligible probability over
h ← Gen(1n) it holds that

∣
∣{x ∈ {0, 1}n : h(x) 	= ⊥}∣∣ ≥ 1

q(n) · 2n.

To highlight the distinction from partial domain MCRH, we will sometimes refer
to a standard MCRH as a full domain MCRH. We also generalize the definition of
partial domain to the case of infinitely often MCRH and non-uniform MCRH in
the natural way. We emphasize that the extension of Definition 2 to the infinitely
often case requires Condition 1 to hold infinitely often, whereas Condition 2
remains unchanged – that is, it should hold for all sufficiently large n.

The following lemma shows how to transform a partial domain MCRH to a
full domain MCRH. The proof technique is based on Lautemann’s [Lau83] proof
that BPP is contained in the polynomial hierarchy (this technique has been used
in several works in cryptography since then [Nao89,DNR04,DN07,BV17]).

Lemma 1. If there exists a partial domain (t, �)-MCRH, then there exists a full
domain (t, �−O(log(n)))-MCRH. The same is true if both the initial and resulting
MCRH are non-uniform and/or merely ioMCRH.

Proof (Proof of Lemma 1). We prove the lemma with respect to standard MCRH.
The proof extends readily also to non-uniform and/or ioMCRH.

Let Gen be the sampling algorithm for a partial domain (t, �)-MCRH and
let q = q(n) be the polynomial guaranteed in the definition (i.e., for all but a
negligible fraction of hash functions at least 2n/q(n) of the inputs are valid). We
construct a new full domain hash function family using a sampling algorithm
Gen′ as follows.

On input 1n, the algorithm Gen′ first invokes Gen(1n) to obtain a hash func-
tion h : {0, 1}n → {0, 1}n−�. The algorithm further samples z1, . . . , zk ∈ {0, 1}n,
where k = 2n · q(n). The algorithm constructs a hash function h′ that on input
x, outputs h′(x) =

(
h(x ⊕ zi), i

) ∈ {0, 1}n−� × {0, . . . , k}, were i is the minimal
index such that h(x ⊕ zi) 	= ⊥ and in case no such i exists it outputs a default
value (0, 0). We will sometimes denote the hash function by h′ = (h, z1, . . . , zk)
and note that h′ : {0, 1}n → {0, 1}n−�+O(log n).

Denote the subset of hash functions in the support of Gen(1n) for which at
least 1/q(n) fraction of the inputs are valid by H. By definition of partial domain
MCRH we have that:

Claim 1. Prh←Gen(1n)[h 	∈ H] = negl(n).
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Next we argue that for h ∈ H, with overwhelming probability over the zi’s,
no input for the hash function h′ = (h, z1, . . . , zk) is mapped to the default value.

Claim 2. For every h ∈ H, with all but 2−n probability over z1, . . . , zk, no input
for the hash function h′ = (h, z1, . . . , zk) is mapped to the default value.

Proof. For every fixed x ∈ {0, 1}n and every i ∈ [k], the probability over zi that
h(x⊕zi) = ⊥ is at most 1−1/q(n). Therefore, the probability that h(x⊕zi) = ⊥
for all i ∈ [k] is at most (1 − 1/q(n))2n·q(n) ≤ 2−2n. The claim follows by taking
a union bound over all x ∈ {0, 1}n.

Consider h′ = (h, z1, . . . , zk) ∈ H such that no input is mapped to the default
value. In such a case, every t-way collision {x1, . . . , xt} for h′ must satisfy that
h(x1 ⊕ zi) = h(x2 ⊕ zi) = · · · = h(xt ⊕ zi) for some i ∈ [k]. Thus, we have a
t-way collision {x1 ⊕ zi, . . . , xt ⊕ zi} of size t also for h.

Applying Claims 1 and 2, we conclude that a collision finding algorithm
wrt Gen′, which succeeds with probability ε = ε(n), yields a collision finding
algorithm for Gen that succeeds with probability ε(n) − negl(n) − 2−n and the
lemma follows.

3 Improving Collision-Resistance in MCRH

In this section, we prove Theorems 1 to 3 (which were stated in Sect. 1.1). We
start by setting up a common framework for the proofs of all of the theorems.
The proofs of Theorems 1 to 3 will be completed in Sects. 3.1 to 3.3, respectively.

Setup. Consider a constant t and a (shrinkage) function � : N → N. Let tf and
k parameters that will be determined later such that k < tf < t. Define the
function �f (n) = min [�(n) − n/k, �(kn) − n(k − 1)]. Let Gen be (a sampler for)
a (t, �)-ioMCRH. We will use Gen to construct a (tf , �f )-ioMCRH.3 Below, when
it is clear from the context, we sometimes use � as a shorthand for �(n). For
simplicity, we will assume that k, whatever it is set to, divides n; our proof can
be easily extended to work when this is not the case.

Let F be the finite field of size 2n/k.4 We view an input x ∈ {0, 1}n for a hash
function h ← Gen(1n) as representing a degree (k−1) univariate polynomial over
F as follows: x is interpreted as a vector (x0, . . . , xk−1) ∈ F

k, and the polynomial
is defined as Px(ξ) =

∑k−1
i=0 xi ·ξi (where the arithmetic is over the field). For ease

of notation, for λ ∈ F, we use x(λ) to denote the evaluation of the polynomial
Px at the point λ.
3 Actually, it may be the case that the shrinkage of the hash function we construct

is larger than this �f . In such a case, we can simply pad the output of the hash
function with 0’s to ensure that the shrinkage is exactly �′ (without any effect on its
collision-resistance properties).

4 We assume the field elements can be represented using log2(|F|) bits (in the natural
way) and that field operations (i.e., arithmetic operations as well as sampling of
random field elements) can be performed in polylog(|F|) time. See, e.g., [Sho88] for
details.
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The First Hash Family. We construct a new hash function family defined by
the sampler Gen′ that, on input 1n, works as follows:

1. Invoke Gen(1n) to obtain a hash function h : {0, 1}n → {0, 1}n−�.
2. Sample a random λ ∈ F.
3. Output the hash function5 h′ : {0, 1}n → {0, 1}n−�+n/k defined as h′(x) =(

h(x), x(λ)
)
.

If Gen′ is a (tf , �′)-ioMCRH, where �′(n) = (�(n)−n/k), then we are done. Thus,
we may assume that it is not – namely, that there exists a polynomial-size circuit
family A′ = (A′

n)n∈N and a polynomial p′ such that for all sufficiently large n ∈ N

it holds that:

Pr
h′←Gen′(1n)
X←A′

n(h′)

[
tf -collh′(X)

] ≥ 1
p′(n)

. (3)

Using the definition of h′, Eq. (3) can be rewritten as:

Pr
h←Gen(1n)

λ←F

X←A′
n(h,λ)

[(
tf -collh(X)

)
and

(∀x1, x2 ∈ X, x1(λ) = x2(λ)
)] ≥ 1

p′(n)
. (4)

For every h in the support of Gen(1n), define:

δh = Pr
λ←F

X←A′
n(h,λ)

[(
tf -collh(X)

)
and

(∀x1, x2 ∈ X, x1(λ) = x2(λ)
)]

.

Thus, Eq. (4) implies that Eh←Gen(1n)[δh] ≥ 1
p′(n) . We shall aim to restrict our

attention to hash functions h for which δh is relatively large (i.e., close to the
expectation). The following lemma describes a sampling algorithm for such hash
functions.

Lemma 2. There exists a probabilistic polynomial time algorithm G̃en that on
input 1n outputs a hash function h : {0, 1}n → {0, 1}n−� in the support of
Gen(1n) such that the following holds for all sufficiently large n:

– Pr
h←˜Gen(1n)

[
δh > 1

4p′(n)

]
= 1 − 2−Ω(n).

– For every event E:

Pr
h←Gen(1n)

[
h ∈ E

] ≥ 1
3p′(n)

· Pr
h←˜Gen(1n)

[
h ∈ E

] − 2−Ω(n).

The first item in Lemma 2 states that with very high probability, a hash function
h sampled by G̃en has relatively large δh. The second item relates the distribu-
tions Gen and G̃en and in particular implies that events that happen with non-
negligible probability over the latter also happen with non-negligible probability
5 Note that for Gen′ to be non-trivial we must have �(n) > n/k.
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over the former. The proof of Lemma 2 is deferred to Sect. 3.4 but on first reading,
the reader may find it convenient to think of the simpler case in which all h have
δh ≥ 1

4p′(n) in which case we can simply take G̃en = Gen.

The Second Hash Family. We now use the adversary A′ to construct a new
partial domain non-uniform hash function family defined by a sampler Gen′′ =
(Gen′′

n)n∈N as follows. The sampler6 Gen′′
n/k works as follows:

1. Invoke G̃en(1n) to obtain a hash function h : {0, 1}n → {0, 1}n−�.
2. Output a hash function7 h′′ : {0, 1}n/k → ({0, 1}n−�)∪{⊥} that is computed

as follows:
– The input to h′′, which is a vector in {0, 1}n/k, is interpreted as a field

element λ ∈ F in the natural way (recall that |F| = 2n−k).
– To hash λ, first invoke8 A′

n(h, λ) and then consider two cases:
(a) Case 1: If A′

n(h, λ) outputs X ⊆ {0, 1}n such that tf -collh(X) and
∀x1, x2 ∈ X, x1(λ) = x2(λ). In such a case h′′(λ) outputs h(x) for an
arbitrary x ∈ X (the specific choice does not matter since all elements
in X collide under h).

(b) Case 2: If A′
n(h, λ) does not generate an output as above (which can

be easily tested in polynomial-time) h′′(λ) outputs ⊥.

Recall that we currently have two assumptions in place – Gen is a (t, �)-ioMCRH
and Gen′ is not a (tf , �′)-ioMCRH, with the above A′ being the corresponding
adversary. Under these assumptions we will prove the following lemma.

Lemma 3. Gen′′ is a partial-domain non-uniform (tf , �′′)-ioMCRH, where
�′′(n) = �(kn) − n(k − 1).

Lemma 3, for various values of t and tf , together with with transformation of
partial-domain MCRH into full-domain MCRH (Lemma 1), implies Theorems 1
to 3. To prove it, we will need to show that Gen′′ satisfies the two conditions from
Definition 2, and that it has shrinkage �′′. The latter follows by construction.
We will show in Proposition 1 that Gen′′ satisfies Condition 2 of Definition 2
irrespective of the choice of tf and k. The proof that Gen′′ satisfies Condition 1
is where the proofs of the three theorems diverge. For different values of tf and
k, the fact that it does is proven in Sects. 3.1 to 3.3, leading to Theorems 1 to 3.

Proposition 1. There exists a polynomial q such that, for all sufficiently large
n, with all but negligible probability over h′′ ← Gen′′

n, it holds that
∣
∣{x ∈ {0, 1}n :

h′′(x) 	= ⊥}∣∣ ≥ 1
q(n) · 2n.

6 For sake of consistency we define the hash function w.r.t. “security parameter” n/k,
since its domain is {0, 1}n/k.

7 As in Footnote 5, this is only interesting if �(n) > (n − n/k).
8 This is the point where we use the adversary in a non-blackbox manner. Since the

adversary is non-uniform, this also makes the construction non-uniform.
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Proof. By the first item in Lemma 2, with all but 2−Ω(n) probability over h ←
G̃en(1n) it holds that δh ≥ 1/(4p′(n)). If δh ≥ 1/(4p′(n)) then the corresponding
h′′ (that is output by Gen′′

n/k when it samples h from G̃en(1n)) does not output
⊥ on an inverse polynomial fraction of its domain. Thus, Gen′′ satisfies the
requirements of the proposition.

3.1 From 3-MCRH to CRH (t = 3, tf = 2)

In this subsection, we prove that Gen′′ satisfies Condition 1 of Definition 2 under
the parameter setting t = 3, tf = 2, and k = 2. This is stated in the follow-
ing proposition. This proves Lemma 3 under this setting, which, together with
Lemma 1, completes the proof of Theorem 1.

Proposition 2. Let t = 3 and k = 2. For every family of polynomial-size cir-
cuits A′′ = (A′′

n)n∈N, every polynomial p′′ and infinitely many n ∈ N it holds
that:

Pr
h′′←Gen′′

n

(λ1,λ2)←A′′
n(h′′)

[(
λ1 	= λ2

)
and

(
h′′(λ1) = h′′(λ2) 	= ⊥)]

< 1/p′′(n).

Proof. Fix a hash function h′′ ← Gen′′
n/k(1n/k) and consider a pair λ1, λ2 ∈ F

such that λ1 	= λ2 and h′′(λ1) = h′′(λ2) 	= ⊥. Let {x1,1, x1,2} = A′
n(h, λ1) and

{x2,1, x2,2} = A′
n(h, λ2). Recall that h′′ can be recast as a function h ← G̃en(1n).

Claim 3. The set {xi,j}i,j∈{1,2} contains a 3-way collision for h.

Proof. Since h′′(λ1) 	= ⊥ we have that x1,1 	= x1,2 but h(x1,1) = h(x1,2) and
x1,1(λ1) = x1,2(λ2). Similarly, since h′′(λ2) 	= ⊥, we have that x2,1 	= x2,2 but
h(x2,1) = h(x2,2) and x2,1(λ1) = x2,2(λ2). In addition, since h′′(λ1) = h′′(λ2)
we have that h(x1,1) = h(x2,1). Overall, this means that h(x1,1) = h(x1,2) =
h(x2,1) = h(x2,2) so all of the elements do indeed collide.

Thus we only need to show that the set {x1,1, x1,2, x2,1, x2,2} contains at least
3 distinct elements. Suppose that x1,1 = x2,1 and x1,2 = x2,2 (the other case is
handled similarly). In such a case we have that the line x1,1 and the line x1,2,
which are distinct lines, agree on the distinct points λ1 and λ2. But this is a
contradiction since two distinct lines (i.e., degree 1 polynomials) can agree on at
most one point.

Thus, the existence of an adversary A′′ contradicting the proposition’s
hypothesis immediately yields a method for finding a 3-way collision for a ran-
dom h ← G̃en(1n), with probability at least 1/p′′(n), for all sufficiently large n.
By the second item of Lemma 2, this method also works for h ← Gen(1n) with
probability at least 1

3p′(n)·p′′(n) − 2−Ω(n) (again, for all sufficiently large n) – a
contradiction.
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3.2 From 4-MCRH to 3-MCRH (t = 4, tf = 3)

Having handled the case of t = 3, we proceed to the special case of t = 4. We
show how to transform a sufficiently shrinking 4-MCRH into a 3-ioMCRH. If the
latter is sufficiently shrinking, we can then apply Theorem 1 to obtain an ioCRH.

Thus, we need to show that Gen′′ satisfies Condition 1 of Definition 2 under
the parameter setting t = 4, tf = 3, and k = 3. This is stated in the follow-
ing proposition. This proves Lemma 3 under this setting, which, together with
Lemma 1, completes the proof of Theorem 1.

Proposition 3. Let t = 4 and k = 3. For every family of polynomial-size cir-
cuits A′′ = (A′′

n)n∈N, every polynomial p′′ and infinitely many n ∈ N it holds
that:

Pr
h′′←Gen′′

n
(λ1,λ2,λ3)←A′′

n(h′′)

[

(

λ1, λ2, λ3 are distinct
)

and
(

h
′′
(λ1) = h

′′
(λ2) = h

′′
(λ3) �= ⊥)

]

< 1/p
′′
(n).

As the proof mirrors that of Proposition 2, we provide only a sketch.

Proof (Proof Sketch). Similarly to Proposition 2, each λi yields a 3-way collision
xi,1, xi,2, xi,3 and the set {xi,j}i,∈{1,2,3} all collide on h. What remains to be
shown is that this set contains 4 distinct elements.

Suppose not. Then, wlog, it must be the case that x1,1 = x2,1 = x3,1, x2,1 =
x2,2 = x2,3 and x1,3,= x2,3 = x3,3. Each one of x1,1, x1,2, x1,3 specifies a degree
k − 1 polynomial, that is, a quadratic polynomial. Thus, we have 3 distinct
quadratic polynomials that agree on the 3 points λ1, λ2, λ3 – a contradiction.

Overall, we get that a 3-way collision finder for Gen′′ yields a 4-way collision
finder for G̃en, and therefore, as in the proof of Proposition 2, also for Gen.

Overall, this yields a (3, �f − O(log n))-ioMCRH from a (4, �)-MCRH, where
�f = min[�(n) − n/3, �(3n) − 2n]. In particular, if �(n) > 5

6 · n + ω(log n), we
get that �f > 1

2n + ω(log n). At this point we can apply Theorem 1 to derive a
(non-uniform) ioMCRH, thereby establishing Theorem 2.

3.3 From General t-MCRH to tf -MCRH

In this subsection, we consider a generic constant t and show that Gen′′ satisfies
Condition 1 of Definition 2 under the certain settings of tf and k. This is captured
by the following lemma.

Lemma 4. Consider any t, k, and tf ≥ max
[
(2t

√
k − 1)2/3, 24

]
. For every fam-

ily of polynomial-size circuits A′′ = (A′′
n)n∈N, every polynomial p, and infinitely

many n ∈ N, it holds that:

Pr
h′′←Gen′′(1n)
X←A′′

n(h′′)

[(
tf -collh′′(X)

)
and

(∀i ∈ [t], h′′(xi) 	= ⊥)]
< 1/p(n). (5)
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Under the above setting of parameters, Lemma 3 follows from Lemma 4.
Combined with Lemma 1 (the partial to full domain transformation), this com-
pletes the proof of Theorem 3. The proof of Lemma 4 makes use of list-decoding
bounds for Reed-Solomon codes.

Proof. Assume toward a contradiction that there exists a polynomial-size circuit
family A′′ = (A′′

n)n∈N and a polynomial p′′ such that for all sufficiently large
n ∈ N it holds that:

Pr
h′′←Gen′′

n/k

Λ←A′′
n/k(h′′)

[
(tf -collh′′(Λ)) and (∀λ ∈ Λ : h′′(λ) 	= ⊥)

] ≥ 1/p′′(n).

Fix a large enough n such that both A′′
n/k and A′

n have such non-negligible

success probability. Fix also an h in the support of G̃en(1n) and the corresponding
h′′ (that is output by Gen′′

n/k when it samples h from G̃en(1n)) such that for the
Λ = {λ1, . . . , λtf

} output by A′′
n/k(h′′), the conditions in the above probability

statement hold. Denote Xi = A′
n(h, λi).

Claim 4. It holds that:

1. For every i ∈ [tf ], the set Xi contains tf distinct elements and for every
x1, x2 ∈ Xi it holds that x1(λi) = x2(λi).

2. For every i, j ∈ [tf ] and x1 ∈ Xi, x2 ∈ Xj it holds that h(x1) = h(x2).

Proof. The fact that the event tf -collh′′(Λ) holds implies that all of the λi’s are
distinct but h′′(λ1) = · · · = h′′(λtf

) 	= ⊥. By the definition of Gen′′, this means
that for every i ∈ [tf ], it holds that A′(h, λi) outputs a set Xi = {xi,1, . . . , xi,tf

}
such that tf -coll(h,λi)(Xi). This implies Item 1 in the claim as well as the fact
that h(xi,j) = h(xi,j′) for every i, j, j′ ∈ [tf ].

On the other hand, the fact that h′′(λ1) = · · · = h′′(λt) 	= ⊥ means that
h(x1,1) = · · · = h(xtf ,1). Overall, we conclude that all of the xi,j ’s collide under
h. This establishes Item 2.

Let X ⊆ {0, 1}n be the multi-set X = ∪i∈[tf ]Xi. We emphasize that X is a
multi-set, where the multiplicity of an element x ∈ X is equal to the number of
i ∈ [tf ] such that x ∈ Xi. The following proposition shows that X contains a
t-way collision for h.

Proposition 4. t-collh(X) holds.

Proof. By Item 2 in Claim 4, all elements in the set X indeed collide under h
and so we only need to show that the set contains at least t distinct elements.
Define a function f : Λ → F as f(λi) = xi(λi), where xi is an arbitrary element
in Xi (by Item 1 in Claim 4, the specific choice does not matter). Let d = k − 1.
Let Xclose ⊆ X denote the set of points x ∈ X such that x, viewed as a degree d
polynomial over F, agrees with f on at least

√
2tfd points in Λ. By construction,

all x ∈ X\Xclose have multiplicity at most
√

2tfd.
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Claim 5. The number of distinct elements in Xclose is at most
√

2tf/d.

This claim follows immediately from the following lemma of Sudan [Sud97],
which is a special case of an earlier lemma of Goldreich et al. [GRS00].9

Lemma 5 ([Sud97,GRS00]). Let F be a finite field and let {(xi, yi)}n
i=1 ∈ (F×

F)n be a sequence of N pairs. The number of degree d polynomials f such that
|{i : f(xi) = yi)}| ≥ √

2dN is at most
√

2N/d.

Thus, the multi-set X, which contains (tf )2 elements overall (counting mul-
tiplicities), has at most

√
2tf/d elements with multiplicity at least

√
2tfd. This

means that the number of distinct elements in X is at least:

(tf )2 − √
2tf/d · tf√

2tfd
≥ (tf )3/2

2
√

d
≥ t

where the first inequality holds for any tf ≥ 24 and d ≥ 1, and the second
inequality follows from the condition in the hypothesis that tf ≥ (2t

√
k − 1)2/3.

Thus, under the assumption that such an A′′ exists, we are able to find a
t-way collision for a random h ← G̃en(1n) with probability at least 1/p′′(n) for
all large enough n. By the second item of Lemma 2, this method also works
for h ← Gen(1n) with probability at least

(
1

3p′(n)·p′′(n) − 2−Ω(n)
)

for all large
enough n – a contradiction to our assumption that Gen is a (t, �)-ioMCRH. So
such an A′′ cannot exist, which proves Lemma 4.

3.4 Proof of Lemma 2

Consider the following basic process Gen0(1n) (this is not yet the eventual process
G̃en which we need to show in order to prove Lemma 2).

Gen0(1n) :

1. Sample h ← Gen(1n).
2. Sample λ1, . . . , λ� ← F, where � = Θ((p′(n))2 ·n·r(n)) where r is a polynomial

bounding the number of random coins that Gen(1n) uses. Use λ1, . . . , λ� to
compute an approximation δ̂h for δh by setting

δ̂h =
1

�
·
∣

∣

∣

{

i ∈ [�] :
(

tf -collh(X)
)

and
(∀x1, x2 ∈ X, x1(λi) = x2(λi)

)

, where X ← A
′
n(h, λi)

}∣

∣

∣.

3. If δ̂h > 1/(3p′(n)) output h otherwise output ⊥.

9 Sudan additionally established bounds on the algorithmic list-decoding properties of
Reed-Solomon codes, whereas for our purposes a combinatorial bound (such as that
established in [GRS00]) suffices.



522 R. D. Rothblum and P. N. Vasudevan

Denote by p⊥ = Pr[Gen0(1n) = ⊥]. Let μ denote the distribution obtained
by sampling from Gen0(1n) conditioned on not getting ⊥.

Proposition 5. p⊥ ≤ 1 − 1/(3p′(n)).

Proof. Since Eh←Gen(1n)[δh] ≥ 1/p′(n) (see Eq. (4)), by Markov’s inequality, with
probability 1/2p′(n) over h ← Gen(1n) it holds that δh ≥ 1/(2p′(n)).

Assume that such an h is sampled in Step 1 of Gen0(1n). By the Chernoff
bound, the probability that it passes the check in Step 2 is at least 0.99. In
case these two events occur the process outputs h 	= ⊥ and so we have that
p⊥ ≤ 1 − 1/(3p′(n)).

Proposition 6. For every event E it holds that:

Pr
h←Gen(1n)

[h ∈ E] ≥ (1 − p⊥) · Pr
h←μ

[h ∈ E].

Proof. By linearity, it suffices to prove the claim for the case that E = {h}
is a singleton. Furthermore, we can view the distribution μ as sampling from
Gen0(1n) repeatedly until a function h 	= ⊥ is obtained. With that in mind we
have that

Pr[μ = h] =

∞∑

i=0

Pr[μ outputs h in iteration i + 1 and ⊥ in all previous iterations]

=
∞∑

i=0

Pr[Gen0(1
n) = h] · (p⊥)i

≤ Pr[Gen(1n) = h] · 1

1 − p⊥
,

where the final inequality follows from the fact that Pr[Gen0(1n) = h] ≤
Pr[Gen(1n) = h] and a standard bound on the sum of a geometric series.

Consider the “rejection sampling with cutoff” sampler G̃en(1n) defined as follows:

1. Repeat Θ(p′(n) · n) times:
(a) Sample h ← Gen0(1n).
(b) If h 	= ⊥ output h and abort. Otherwise continue to the next iteration.

2. If this step has been reached, then output some default hash function in the
support of Gen(1n).

Note that G̃en can indeed be implemented in probabilistic polynomial-time.

Proposition 7. The statistical distance between μ and G̃en(1n) is at most
2−Ω(n).

Proof. The statistical distance between the two distributions is equal to the
probability that G̃en gets to Step 2. It follows from Proposition 5 that the latter
probability is bounded by (1 − 1/(3p′(n)))Ω(p′(n)·n) ≤ 2−Ω(n).
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Combining Propositions 5 to 7 we have that for every event E,

Pr
h←Gen(1n)

[h ∈ E] ≥ (1 − p⊥) · Pr
h←μ

[h ∈ E]

≥ 1
3p′(n)

· Pr
h←μ

[h ∈ E]

≥ 1
3p′(n)

· Pr
h←˜Gen(1n)

[h ∈ E] − 2−Ω(n). (6)

This establishes the second part of Lemma 2. The following proposition estab-
lishes also the first part.

Proposition 8. Pr
h←˜Gen(1n)

[
δh < 1

4p′(n)

]
= 2−Ω(n).

Proof. Fix h with δh < 1
4p′(n) . For Gen0(1n) to output h, the approximation must

deviate by at least an 1
12p′(n) factor which, by the Chernoff bound, happens with

probability at most 2−(2n+p′(n)+r(n)).
By taking a union bound over the O(p′(n) · n) iterations in G̃en(1n), the

probability that an h as above is sampled by the rejection sampling process is
at most O(p′(n)·n)

22n+p′(n)+r(n) ≤ 2−(n+r(n)). By another application of the union bound
we have that:

Pr
h←˜Gen(1n)

[
δh <

1

4p′(n)

]
=

∑

h : δh< 1
4p′(n)

Pr[G̃en(1n) = h] ≤ 2r(n) · 2−(n+r(n)) = 2−n.

Lemma 2 follows from Eq. (6) and Proposition 8.

4 Limitations of Our Approach

In this section, we discuss why our approach to constructing a CRH (more
precisely a non-uniform ioCRH) cannot work when starting from a t-MCRH
for t > 4. Our discussion will not be completely formal, but should con-
vince the reader of this claim. We will consider, in fact, a generalization of
the construction presented in previous sections that uses an unspecified (list-
decodable) code rather than the Reed-Solomon code. For simplicity, we go back
some of the assumptions made in the presentation in Sect. 1.2 – that we start
with a (t, �)-MCRH that simply samples uniformly random functions from a set
H =

{
h : {0, 1}n → {0, 1}n−�

}
, and that all collision-finding adversaries below

are perfect. Say we wish to construct from this a (tf , �f )-ioMCRH for some tf ≤ t.

Formalizing Our Approach. The generalized version of our construction may
be described as follows. Let C be a code with message length of n bits and
codewords of length N over an alphabet Σ. In particular, C is a subset of ΣN

of size 2n. (The constructions in Sect. 3 correspond to taking C to be the Reed-
Solomon code of various degrees over fields of characteristic 2.) We will also
write C(x) for an x ∈ {0, 1}n to denote the codeword that x is mapped to by
the code. Our construction defines the following families of functions:
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– G = {gλ : {0, 1}n → Σ}λ∈[N ]: for any x ∈ {0, 1}n and λ ∈ [N ], gλ(x) is the
λth symbol of C(x).

– F =
{
fh,g : {0, 1}n → {0, 1}n−� × Σ

}
h∈H,g∈G : fh,g(x) is simply the concate-

nation (h(x), g(x)). Suppose F is not a tf -ioMCRH, and the corresponding
adversary is A.

– FA =
{
fh,A : [N ] → {0, 1}n−�

}
h∈H: given input λ ∈ [N ], the function fh,A

first runs A(h, gλ) to get x1, . . . , xtf
∈ {0, 1}n, and outputs h(x1). (Here gλ

is the function corresponding to λ in G.)

We would like to show then that if F is not a tf -ioMCRH and FA constructed
using the adversary A is also not a tf -ioMCRH, then we can find t-wise collisions
for functions in H, which is a contradiction. In order to do this, we make use of
the collision-finding adversary A′ for FA. The process then proceeds as follows:

1. Given an h ∈ H, first run A′(fh,A) to get functions g1, . . . , gtf
∈ G that collide

under fh,A.
2. Then, for each gi, run A(fh,gi

) to get a set Xi =
{
xi1, . . . , xitf

}
whose ele-

ments collide under fh,gi
.

3. If there are t distinct elements in the union ∪tf

i=1Xi, output them.

Arguments outlined in Sect. 1.2 and Sect. 3 explain why all the xij ’s have the
same output under h, and only the following question remains: can we ensure
that there are indeed t distinct elements among the Xi’s while F and FA are
both shrinking? Note that the shrinkage of F is (� − log |Σ|), and that of FA is
(log N − (n − �)).

The question of the existence of t distinct xij ’s may be recast as follows.
We are given tf sets of codewords Ci =

{
ci1, . . . , citf

}
, where each of the tf

codewords in Ci are distinct. Each Ci corresponds to a statement that, for some
λi ∈ [N ] (where the λi’s are distinct), all the codewords in Ci agree on the λth

i

coordinate. In other words, there are tf tuples (λi, yi) ∈ [N ] × Σ such that for
all cij ∈ Ci, we have cij [λi] = yi. We would then like to claim that there is no
set of codewords T ⊆ C such that |T | < t, for each i we have Ci ⊆ T , and still
cij [λi] = yi for all i, j ∈ [tf ]. At the very least, this requires that no set of (t− 1)
codewords agree on tf coordinates.

Optimality of Current Choices. It turns out, however, that (an extension
of) the Singleton bound implies that in order for this to happen for tf < t, the
alphabet Σ has to be quite large, thus implying an upper bound on the shrinkage
of the resulting family F . Let us start with the simple case of t = 3 and tf = 2.
Here, the condition stated above becomes the following: any 2 codewords agree
on at most 1 coordinate. In other words, the distance of the code has to be at
least (N − 1).

Proposition 9. In any code C ⊆ ΣN where |C| = 2n and any 2 codewords
agree on at most 1 coordinate, it has to be that |Σ| ≥ 2n/2.

Proof. This is simply the Singleton bound. Consider truncating all the codewords
in C to the first two coordinates. As no two codewords agree on more than one
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coordinate, this set of truncated codewords still has no repetitions and so has
size at least 2n. This implies that |Σ|2 ≥ 2n, which implies that |Σ| ≥ 2n/2.

Proposition 9 implies that the shrinkage of F is (� − log |Σ|) ≤ (� − n/2).
In particular, this says that using a different code in place of the Reed-Solomon
code (of degree 1 in this case) in our transformation from (3, �)-MCRH to CRH
cannot improve the shrinkage � that we can start with.

We can similarly show that our choices in our transformation from 4-MCRH
to CRH were also close to optimal. To start with, note that we cannot use our
approach to go directly from 4-MCRH to CRH. This would require showing that
2 sets Ci of size 2 each have no intersection, which implies that for any codeword
c ∈ C, there exists at most one λ for which there is some c′ such that c[λ] = c′[λ].
A simple counting argument shows that this cannot happen unless |Σ| ≥ 2n, at
which point all shrinkage is lost.

So to get a CRH from a 4-MCRH, we have to construct a 3-MCRH first.
The following proposition implies that the loss in shrinkage in going from a 4-
MCRH to a 3-MCRH is at least n/3 irrespective of the choice of the code C.
So, in order to go from a (4, �)-MCRH to a CRH, � would have to be at least
(n/3 + n/2) = 5n/6, which is what we obtained.

Proposition 10. In any code C ⊆ ΣN where |C| = 2n and any 3 codewords all
agree on at most 2 coordinates, it has to be that |Σ| ≥ Ω(2n/3).

Proof. Again, truncate the codewords in C to the first 3 coordinates. This set
of truncated codewords has to have at least 2n/2 distinct elements. Otherwise,
this would mean that some 3 codewords in C agreed on the first 3 coordinates,
which is precluded by the hypothesis. Thus, Σ3 ≥ 2n/2, which implies that
Σ ≥ (2n/2)1/3.

Obstructions to Improvement. More generally, the above techniques can be
used to prove the following general bound.

Proposition 11. In any code C ⊆ ΣN where |C| = 2n and any p codewords all
agree on at most q coordinates, it has to be that |Σ| ≥ (2n/(p − 1))1/(q+1).

Proposition 11 implies, for instance, that going from a 5-MCRH to a 4-MCRH
(resp. 3-MCRH) using our approach would incur a loss of at least n/4 (resp. n/3)
in shrinkage. Further, we can show that going from a 5-MCRH to a 3-MCRH in
fact incurs a loss of at least n/2. In order to do this, we show that if the alphabet
Σ is of size somewhat less than 2n/2, then there actually does exist a T ⊆ C of
size 4 such that the sets C1, C2, C3 with their requisite properties are subsets of
T . This is implied immediately by the following proposition.

Proposition 12. For any code C ⊆ ΣN such that |C| = 2n and |Σ| ≤ 2n/2/2,
there exist codewords c, c1, c2, c3 ∈ C such that on each of the first three coordi-
nates, at least two of the ci’s agree with c.
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Proof. Consider just the first three coordinates of codewords in C. Let S1 be
the set of all codewords c such that there exists another codeword c′ such that
c[1] = c′[1] and c[2] = c′[2]. Let S2 and S3 denote similar sets of codewords that
instead look at the first and third, and second and third coordinates, respectively.
If we can prove that there exists a codeword c that is contained in all of the Si’s
then we would be done.

We do this by showing that each Si has to be large. Take S1, for instance. By
definition, S1 is the set of all codewords that have some “collision” in the first
two coordinates. Since the first two coordinates are supported on Σ2, the number
of codewords that do not have any collisions in these coordinates can be at most
|Σ|2. Thus, S1 (and similarly S2 and S3) is of size at least (2n−|Σ|2) ≥ (3/4)·2n.
So there has to exist at least one codeword in the intersection of all three Si’s.
Take this codeword to be c, and its colliding codeword in each Si to be the
respective ci. This proves the proposition.

To go from a 5-MCRH to a CRH, we would first have to go to a 4-MCRH or a
3-MCRH, and then to a CRH from there. As noted above, going from a 4-MCRH
(resp. 3-MCRH) to a CRH already incurs a loss of at least 5n/6 (resp. n/2) in
shrinkage. Following the above bounds on constructions of 4- or 3-MCRH from
5-MCRH, neither of these routes is viable, and our approach as is cannot be used
to construct a CRH from a 5-MCRH (and thus also from t-MCRH for t > 5).

Potential Workarounds. One possibility to getting a CRH from even a 5-
MCRH is to use the hash function h itself to split up codewords that may other-
wise appear together in the sets Ci. The codewords in any given ci correspond to
a set of inputs that collide under both h and g, but so far we have only used the
fact that they collide under g. Could their collision under h be used meaningfully
somehow to improve this approach? Of course, there might also be approaches
significantly different from ours that construct CRH from such MCRH.
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Abstract. From the minimal assumption of post-quantum semi-honest
oblivious transfers, we build the first ε-simulatable two-party computa-
tion (2PC) against quantum polynomial-time (QPT) adversaries that
is both constant-round and black-box (for both the construction and
security reduction). A recent work by Chia, Chung, Liu, and Yamakawa
(FOCS’21) shows that post-quantum 2PC with standard simulation-
based security is impossible in constant rounds, unless either NP ⊆
BQP or relying on non-black-box simulation. The ε-simulatability we
target is a relaxation of the standard simulation-based security that
allows for an arbitrarily small noticeable simulation error ε. More-
over, when quantum communication is allowed, we can further weaken
the assumption to post-quantum secure one-way functions (PQ-OWFs),
while maintaining the constant-round and black-box property.

Our techniques also yield the following set of constant-round and
black-box two-party protocols secure against QPT adversaries, only
assuming black-box access to PQ-OWFs:

– extractable commitments for which the extractor is also an ε-
simulator;

– ε-zero-knowledge commit-and-prove whose commit stage is
extractable with ε-simulation;

– ε-simulatable coin-flipping;
– ε-zero-knowledge arguments of knowledge for NP for which the

knowledge extractor is also an ε-simulator;
– ε-zero-knowledge arguments for QMA.

At the heart of the above results is a black-box extraction lemma show-
ing how to efficiently extract secrets from QPT adversaries while dis-
turbing their quantum states in a controllable manner, i.e., achieving
ε-simulatability of the after-extraction state of the adversary.
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1 Introduction

Extractability is an important concept in cryptography. A typical example is
extractable commitments, which enable an extractor to extract a committed
message from a malicious committer. Extractable commitments have played a
central role in several major cryptographic tasks, including (but not limited
to) secure two-party and multi-party computation (e.g., [19,36,38,61]), zero-
knowledge (ZK) protocols (e.g., [56,63]), concurrent zero-knowledge protocols
(e.g., [59,62]), non-malleable commitments (e.g., [37,52]) etc. Recently, two con-
current works by Grilo, Lin, Song, and Vaikuntanathan [40] and Bartusek,
Coladangelo, Khurana, and Ma [5] (based on earlier works [7,11,22,23]) demon-
strate new applications of extractable commitments in quantum cryptography.
They show that quantumly secure extractable commitments are sufficient for
constructing maliciously secure quantum oblivious transfers (OTs), which can
be compiled into general-purpose quantum MPC [26,49].1

As noted in [40], it is surprisingly non-trivial to construct quantumly secure
extractable commitments. The reason is that quantum extractability requires
an extractor to extract the committed message while simulating the commit-
ter’s post-execution state. However, known rewinding-based classical extraction
techniques are not directly applicable as it is unclear if they could provide any
simulation guarantee when used against quantum adversaries. To address this
issue, recent works [5,40] propose new polynomial-round quantum constructions
of quantumly secure extractable commitments from post-quantum one-way func-
tions (PQ-OWFs), which are functions efficiently computable in the classical
sense but one-way against quantum polynomial-time (QPT) adversaries. Relying
on assumptions stronger than PQ-OWFs, classical constructions of quantumly
secure extractable commitments (which we call post-quantum extractable com-
mitments) are known [4,9,10,43,58]. However, those constructions require (at
least) the existence of OTs.

Moreover, all existing post-quantum extractable commitments make non-
black-box use of their building-block primitives. This is not ideal as black-box con-
structions are often preferred over non-black-box ones. A black-box construction
only depends on the input/output behavior of its building-block cryptographic
primitive(s). In particular, such a construction is independent of the specific
implementation or code of the building-block primitive. Black-box constructions
enjoy certain advantages. For example, they remain valid even if the building-
block primitive/oracle is based on a physical object such as a noisy channel or
tamper-proof hardware [21,34,66]. Also, since the efficiency of black-box con-
structions does not depend on the implementation details of the primitive, their
efficiency can be theoretically independent of the code of lower-level primitives.
Indeed, it has been an important theme to obtain black-box constructions for

1 They actually rely on extractable and equivocal commitments. However, since equiv-
ocality can be added easily, extractable commitments are the essential building block.
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major cryptographic objects, e.g., [15,18,24,29,31–33,36,37,39,41,44,46,47,49–
52,54,55,61].

In the classical setting, it is well-known that constant-round extractable com-
mitments can be obtained assuming only black-box access to OWFs [25,61–63].2

Therefore, it is natural to ask the following analog question in the quantum set-
ting: Is it possible to construct constant-round post-quantum extractable com-
mitments assuming only black-box access to PQ-OWFs? We remark that this
question is open even if we do not require the scheme to be constant-round or
black-box.

The Black-Box Extraction Barrier. We observe that the recent lower bound
on black-box post-quantum ZK [17] suggests a negative answer to the above ques-
tion. Namely, if we have constant-round post-quantum extractable commitment
with black-box extraction, then we can construct constant-round post-quantum
ZK arguments for NP with black-box simulation based on standard techniques
(see [16, Appendix A] for details). However, [17] showed that such a ZK argument
cannot exist unless NP ⊆ BQP, which seems unlikely.3

ε-Simulation Security. On the other hand, another recent work [18] showed
that we can bypass the impossibility result by relaxing the requirement of ZK
to the so-called ε-ZK [8,27,28]. The standard ZK property requires a simulator
to simulate the verifier’s view in a way that no distinguisher can distinguish it
from the real one with non-negligible advantage. In contrast, the ε-ZK property
only requires the existence of a simulator such that for any noticeable ε(λ), the
simulated view can be distinguished from the real one with advantage at most ε.
As explained in [18], ε-ZK is still useful in several applications of ZK. The results
in [18] suggest the possibility of post-quantum extractable commitments if we
relax the simulation requirement on the extractor to a similar ε-close4 version.
We will refer to this weakened notion as extractability with ε-simulation.5 It
seems natural to hope that the techniques in [18] could be used in the context
of extractable commitments. Indeed, by plugging the ZK argument from [18]
into the OT-based construction [9,10,43,58], we can obtain a non-black-box
construction of constant-round post-quantum extractable commitments with ε-
simulation, assuming constant-round post-quantum OTs. However, if we focus on
black-box constructions from the minimal assumption of PQ-OWFs, it is unclear
if the techniques in [18] would help. Therefore, we ask the following question:

2 The term “black-box” here refers to both black-box constructions and black-box
extraction.

3 A concurrent work by Lombardi, Ma, and Spooner [57] showed that the impossibility
of [17] can be avoided if we consider a stronger computational model for simulators.
We provide more discussion in [16, Sect. 1.3].

4 Throughout this paper, “ε-close” means that the adversary’s distinguishing advan-
tage is at most ε.

5 In the main body, we call it strong extractability with ε-simulation since we also
define a weaker variant of that.
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Table 1. Comparison of Quantumly Secure Extractable Commitment.

Reference #Round Cla. Const. BB Const. BB Ext. Siml. Err. Assumption

[40] poly(λ) � negl OWF

[5] poly(λ) � � negl OWF

[10] O(1) � negl QFHE+QLWE

folklorea poly(λ) � � negl OT

folklore+[18] O(1) � � ε O(1)-round OT

Ours O(1) � � � ε OWF

The “Cla. Const.”, “BB Const.”, and “BB Ext.” columns indicate if the scheme relies on

classical constructions, black-box constructions, and extraction, respectively. In the “Siml.

Err.” column, negl and ε mean that the construction achieves the standard quantum

extractability and quantum extractability with ε-simulation, respectively. In “Assump-

tion” column, QFHE and QLWE means quantum fully homomorphic encryption and the

quantum hardness of learning with errors, respectively.
a As noted in [9], the construction is implicit in [10,43,58].

Question 1: Is it possible to have constant-round post-quantum extractable
commitments with ε-simulation, assuming only black-box access to PQ-
OWFs?

In the more general context of 2PC and MPC, the implication of [17] is that
to obtain constant-round constructions with post-quantum security, we have to

1. rely on non-black-box simulation, or
2. aim for a relaxed security notion (e.g., ε-close simulation security).

The first approach was taken in [2] (based on [10]), leading to a constant-round
post-quantum MPC protocol with non-black-box simulation. On the other hand,
the second approach has not been explored in the existing literature of post-
qauntum 2PC or MPC (except for the special case of ZK as in [18]). It is possible
to construct constant-round post-quantum 2PC with ε-close simulation by com-
bining constant-round post-quantum semi-honest OTs and the constant-round
post-quantum ε-ZK in [18]. However, the naive approach will lead to a non-black-
box construction. In contrast, in the classical setting, constant-round black-box
constructions of 2PC [61] and MPC [19,36] are known from the minimal assump-
tion of constant-round semi-honest OT. The above discussion suggests that one
has to relax the security requirement when considering the post-quantum coun-
terparts of these tasks. We will refer to 2PC and MPC with ε-close simulation
as ε-2PC and ε-MPC respectively. Then, an interesting question is:

Question 2: Do there exist constant-round black-box post-quantum ε-2PC
and ε-MPC, assuming only constant-round semi-honest OTs secure against
QPT adversaries?

1.1 Our Results

We answer Question 1 affirmatively and address Question 2 partially, showing
a positive answer only for the two-party case. We first construct constant-round
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black-box post-quantum extractable commitments with ε-simulation from PQ-
OWFs. See Table 1 for comparisons among quantumly secure extractable com-
mitments. Such commitments imply new constant-round and black-box protocols
for general-purpose 2PC secure against QPT adversaries. In particular, we get

– post-quantum ε-2PC from semi-honest OTs, and
– post-quantum ε-2PC from PQ-OWFs, assuming that quantum communica-

tion is possible. (Henceforth, we will use OWFs to denote PQ-OWFs.)

As an intermediate tool to achieve the above results, we construct a constant-
round post-quantum ε-ZK commit-and-prove, assuming only black-box access
to OWFs. Black-box zero-knowledge commit-and-prove [37,39,45,47,50,53] is a
well-studied primitive in classical cryptography; it enables a prover to commit to
some message and later to prove in zero-knowledge that the committed message
satisfies a given predicate in a black-box manner. In addition to being secure in
the post-quantum setting, our construction enjoys the extra property that the
commit stage is extractable (albeit with only ε-simulation of the adversary’s
post-extraction state). Such a constant-round ε-simulatable ExtCom-and-Prove
protocol implies the following set of two-party protocols:

– constant-round black-box post-quantum coin-flipping with ε-simulation,
– constant-round black-box post-quantum ε-ZK arguments of knowledge for

NP with ε-simulating knowledge extractor, and
– constant-round black-box ε-ZK arguments for QMA.

In the following, we provide more discussion about them.

Coin-Flipping. Coin-flipping is a two-party protocol to generate a uniformly
random string that cannot be biased by either of parties (w.r.t. the standard
simulation-based security). In the classical setting, constant-round black-box
constructions from OWFs are known [61]. On the other hand, known post-
quantum constructions are based on stronger assumptions (like QLWE) than
OWFs, and require either polynomial rounds [58] or non-black-box simulation
[2]. Our construction can be understood as the post-quantum counterpart of the
classical construction by Pass and Wee [61], albeit with ε-simulation.

Arguments ofKnowledgewith SimulatingExtractor.Arguments of knowl-
edge intuitively require an extractor to extract a witness from any efficient mali-
cious prover whenever it passes the verification. In the classical setting, constant-
round black-box constructions from OWFs are known [61]. In the post-quantum
setting, there are two existing notions of arguments of knowledge depending on
whether we require the extractor to simulate the prover’s post-execution state
or not. For the “without-simulation” version, Unruh [64] gave a polynomial-
round black-box construction from OWFs.6 For the “with-simulation” version, all
existing constructions require both polynomial rounds and assumptions stronger

6 Though Unruh originally assumes injective OWFs, [18] pointed out that any OWF
suffices.
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than OWFs (like QLWE) [3,43,58].7 Our construction improves both the round
complexity and the required assumption, at the cost of weakening ZK and
extractability to their ε-simulation variants. On the other hand, we note that the
construction in [3] achieves proofs of knowledge, while ours only achieves argu-
ments of knowledge. We also note that even without knowledge extractability, our
construction improves the construction in [18, Sect. 6], which is a non-black-box
construction of constant-round ε-ZK arguments for NP from OWFs.

ZK Arguments for QMA. QMA is a quantum analog of NP. Known con-
structions of ZK proofs or arguments for QMA rely on either polynomial-round
communication [12–14] or non-black-box simulation [10]. If we relax the ZK
requirement to ε-ZK, constant-round black-box ε-ZK proofs were already con-
structed in [18]; but that construction needs to assume collapsing hash functions,
which are stronger than OWFs. Our construction improves the assumption to the
existence of OWFs at the cost of weakening the soundness to the computational
one (i.e., an argument system).

Discussion. Due to space constraints, we provide additional discussion on min-
imality of assumptions, other potential applications, and a comparison with the
concurrent work by Lombardi, Ma, and Spooner [57] in the full version [16,
Sects. 1.2 and 1.3].

2 Technical Overview

2.1 Extractable Commitment with ε-Simulation

Our main technical tool for constructing ε-simulatable extractable commitments
is a generalization of the extract-and-simulate technique from [18].

Extract-and-Simulation Lemma in [18]. We briefly recall the extract-and-
simulate lemma shown in [18, Lemma 4.2].8 At a high level, that lemma can be
interpreted as follows.9 Let A be a quantum algorithm with an initial state ρ.
Suppose that A outputs some unique classical string s∗ or otherwise outputs a
failure symbol Fail. Then, there exists a simulation-extractor SE such that for any
noticeable function ε (on the security parameter), the following two experiments
are ε-close:

7 Though not claimed explicitly, it seems also possible to obtain constant-round con-
struction with non-black-box simulation from QLWE and QFHE based on [10].

8 In [18], the lemma was called “extraction lemma”. Here, we add “simulation” to
emphasize that the extractor not only extracts but also simulates the adversary’s
state.

9 There are two versions of their lemma: the statistically-binding case and the
strong collapse-binding case. The abstraction given here is a generalization of the
statistically-binding case.
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Expreal

Run A(ρ),
If A outputs Fail,

Output Fail
Else output A’s final state.

Expext

(sExt, ρExt) ← SEA(ρ)(1ε−1
)

Run A(ρExt),
If A outputs Fail ∨ sExt �= s∗,

Output Fail
Else output A’s final state.

Generalizing the Lemma. Note that their lemma will enable us to extract s∗

from A only if A reveals the value s∗ at the end. As shown in [18], this already
suffices for the constant-round ZK proof by Goldreich and Kahan [35], where the
verifier first commits to the challenge and opens it (i.e., “reveals it at the end”)
later. However, this does not seem to help obtain extractable commitments,
because the committed message is not revealed at the end the commit stage (i.e.,
before decommitment happens); but the definition of extractable commitments
does require extraction before decommitment happens.

To deal with this issue, we generalize the [18] lemma as follows. Let A be a
quantum algorithm that on an initial state ρ, outputs a classical symbol Succ
or Fail. Moreover, suppose that there are a unique classical string s∗ and a
“simulation-less extractor” ExtSim-less that outputs s∗ or otherwise Fail. Also,
suppose that

Pr[ExtA(ρ)
Sim-less = s∗] ≥ (Pr[A(ρ) = Succ])c − negl(λ) (1)

for some constant c. Our generalized lemma says that the ε-closeness between
Expreal and Expext holds in this setting as well.

One can think of A as a joint execution of a malicious committer and honest
receiver where it outputs Succ if and only if the receiver accepts. In this setting,
one can understand the above lemma as a lifting lemma from “simulation-less
extractor” to “ε-simulation extractor” in the setting where the extracted string
is unique. In the main body, we present the lemma in a more specific form
(Lemma 1), where it is integrated with Watrous’ rewinding lemma [65] and
Unruh’s rewinding lemma [64], because that is more convenient for our purpose.
We will overview the intuition behind the above generalized lemma toward the
end of this subsection.

Weakly Extractable Commitment. Next, we explain how to construct post-
quantum extractable commitments using our extract-and-simulate lemma. We
go through the following two steps:

1. Construct a commitment scheme wExtCom that satisfies a weak version of
post-quantum extractability with ε-simulation.

2. Upgrade wExtCom into a scheme ExtCom with full-fledged post-quantum
extractability with ε-simulation (which we call strong extractability with ε-
simulation to distinguish it from the weak one).

We first explain Step 1, the construction of wExtCom. Actually, our construc-
tion of wExtCom is exactly the same as the classical extractable commitments
from OWFs given in [61], which are in turn based on earlier works [25,62,63]. Let
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Com be a computationally-hiding and statistically-binding commitment scheme
(say, Naor’s commitment [60]). Then, the commitment scheme wExtCom works
as follows.

Commit Stage:
1. To commit to a message m, the committer C generates k = ω(log λ) pairs

of 2-out-of-2 additive secret shares {(v0
i , v1

i )}k
i=1, i.e., they are uniformly

chosen conditioned on that v0
i ⊕v1

i = m for each i ∈ [k]. Then, C commits
independently to each vb

i (b ∈ {0, 1}) in parallel by using Com. We denote
these commitments by {(com0

i , com
1
i )}k

i=1.
2. R randomly chooses c = (c1, ..., ck)←{0, 1}k and sends it to C.
3. C decommits {comci

i }k
i=1 to {vci

i }k
i=1, and R checks that the openings are

valid.
Decommit Stage:

1. C sends m and opens all the remaining commitments; R checks that all
openings are valid and v0

i ⊕ v1
i = m for all i ∈ [k].

Suppose that a malicious committer C∗ generates commitments
{(com0

i , com
1
i )}k

i=1 in Step 1, and let ρ be its internal state at this point. Then,
we consider A(ρ) that works as follows:

– Choose c = (c1, ..., ck) ← {0, 1}k at random.
– Send c to C∗ and simulate Step 3 of C∗ in the commit stage to get {vci

i }k
i=1

and the corresponding decommitment information.
– If all the openings are valid, output Succ; otherwise output Fail.

To use our extract-and-simulate lemma, we need to construct a simulation-
less extractor ExtSim-less satisfying Inequality (1). A natural idea is to use Unruh’s
rewinding lemma [64]. His lemma directly implies that if A returns Succwith prob-
ability δ, then we can obtain valid {vci

i }k
i=1 and {v

c′
i

i }k
i=1 for two uniformly ran-

dom challenges, c = (c1, . . . , ck) and c′ = (c′
1, . . . , c

′
k), with probability at least

δ3. In that case, unless c = c′ (which happens with negligible probability), we can
“extract” m = v0

i ⊕ v1
i from position i ∈ [k] that satisfies ci �= c′

i. However, such
an “extractor” does not satisfy the assumption for our generalized extract-and-
simulate lemma in general, because v0

i ⊕ v1
i may be different for each i ∈ [k].

Therefore, to satisfy this requirement, we have to introduce an additional
assumption that {(com0

i , com
1
i )}k

i=1 is consistent, i.e., if we denote the corre-
sponding committed messages as {(v0

i , v1
i )}k

i=1, then there exists a unique m
such that v0

i ⊕ v1
i = m for all i ∈ [k].10 With this assumption, we can apply our

generalized extract-and-simulate lemma. It enables us to extract the commit-
ted message and simultaneously ε-simulate C∗’s state, conditioned on that the
receiver accepts in the commit stage. The case where the receiver rejects can be
easily handled using Watrous’ rewinding lemma [65] as we will explain later. As
a result, we get an ε-simulating extractor that works well conditioned on that

10 The corresponding message is well-defined (except for negligible probability) since
we assume that Com is statistically binding.
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the commitments generated in Step 1 are consistent. We will refer to such a weak
notion of simulation-extractability as weak extractability with ε-simulation (see
Definition 7 for the formal definition).

Moreover, since Unruh’s rewinding lemma naturally gives a simulation-less
extractor in the parallel setting (where C∗ interacts with many copies of R
in parallel), we can prove the parallel version of the weak extractability with
ε-simulation similarly. More generally, we prove that wExtCom satisfies a fur-
ther generalized notion of extractability which we call the special parallel weak
extractability with ε-simulation (see Definition 10 for the formal definition).
Roughly speaking, it requires an ε-simulating extractor to work in n-parallel exe-
cution as long as the commitments in some subset of [n] are consistent and the
committed messages in those sessions determine a unique value. We remark that
this parallel extractability will play an important role in the weak-to-strong com-
piler which we discuss next.
Weak-to-Strong Compiler. The reason why we cannot directly prove that
wExtCom satisfies the strong extractability with ε-simulation is related to an
issue that is often referred to as over-extraction in the classical literature (e.g.,
[30,37,52]). Over-extraction means that an extractor may extract some non-⊥
message from an invalid commitment, instead of detecting the invalidness of the
commitment. In particular, there does not exist a unique “committed message”
when the commitment is ill-formed in wExtCom, and extraction of such a non-
unique message may collapse the committer’s state. To deal with this issue,
we have to add some mechanism which could help the receiver (and thus the
extractor) detect (in)validness of the commitment.

One possible approach is to revisit the techniques developed in the classi-
cal setting, performing necessary surgery to make the proof work against QPT
adversaries. However, as demonstrated by the above cited works, existing tech-
niques in the classical setting are already delicate. Even if it would work eventu-
ally, such a non-black-box treatment would further complicate the proof undesir-
ably. Therefore, we present an alternative approach that deviates from existing
ones in the classical setting. As we will show later, this new approach turns out
to be quantum-friendly.

Roughly speaking, our construction ExtCom works as follows:
Commit Stage:

1. The committer C generates shares {vi}n
i=1 of a verifiable secret sharing

(VSS) scheme of the message to be committed to, and then commits to
each vi using wExtCom separately in parallel.

2. C and the receiver R execute a “one-side simulatable” coin-flipping proto-
col based on wExtCom to generate a random subset T of [n] of a certain
size.11 Specifically, they do the following:
(a) R commits to a random string r1 by wExtCom.

11 We remark that it is a non-trivial task to construct constant-round two-party coin-
flipping from OWFs in the quantum setting, achieving the (even ε-)simulation-based
security against both parties. Indeed, that will be one application of the strongly
extractable commitment with ε-simulation, which we are now constructing. How-
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(b) C sends a random string r2 in the clear.
(c) R opens r1. Then, both parties derive the subset T from r1 ⊕ r2.

3. C opens the commitments corresponding to the subset T , and R checks
their validness and consistency.

Decommit Stage:

1. C opens all the commitments. R checks those openings are valid. If they are
valid, R runs the reconstruction algorithm of VSS to recover the committed
message.

Using a similar argument as that for the soundness of the MPC-in-the-head
paradigm [36,48], we can show that if a malicious committer passes the verifica-
tion in the commit stage, then:

1. Most of the commitments of wExtCom generated in Step 1 are valid as a
commitment; and

2. The committed shares in those valid commitments determines a unique mes-
sage that can be recovered by the reconstruction algorithm of VSS.

Then, we can apply the special parallel weak extractability with ε-simulation
of wExtCom to show the strong extractability with ε-simulation of ExtCom. We
remark that essentially the same proof can be used to show that the parallel
execution of ExtCom is still strongly extractable (with ε-simulation). We refer to
this as the parallel-strong extractability with ε-simulation. It will play a critical
role in our construction of ExtCom-and-Prove (see Sect. 2.2).
Dealing with Rejection in Commit Stage. So far, we have only focused on
the case where the receiver accepts in the commit stage. However, the definition
of (both weak and strong) extractability requires that the final state should be
simulated even in the case where the receiver rejects in the commit stage. In this
case, of course, the extractor does not need to extract anything, and thus the
simulation is straightforward. A non-trivial issue, however, is that the extractor
does not know if the receiver rejects in advance. This issue can be solved by a
technique introduced in [10]. The idea is to just guess if the receiver accepts,
and runs the corresponding extractor assuming that the guess is correct. This
gives an intermediate extractor that succeeds with probability almost 1/2 and its
output correctly simulates the desired distribution conditioned on that it does
not abort. Such an extractor can be compiled into a full-fledged extractor that
does not abort by Watrous’ rewinding lemma [65].
Proof Idea for the Generalized Extract-and-Simulate Lemma. Finally,
we briefly explain the idea for the proof of our generalized extract-and-simulate
lemma. The basic idea is similar to the original extract-and-simulate lemma
in [18]—Use Jordan’s lemma to decompose the adversary’s internal state into
“good” and “bad” subspaces, and amplify the extraction probability in the good
subspace while effectively ignoring the bad-subspace components. However, the

ever, this is not a circular reasoning. Here, we need simulation-based security only
against a malicious receiver. For such a one-side simulatable coin-flipping, the weakly
extractable commitment wExtCom (with ε-simulation) suffices.
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crucial difference is that in [18], they define those subspaces with respect to the
success probability of A whereas we define them with respect to the success
probability of ExtSim-less. That is, for a noticeable δ, we apply Jordan’s lemma to
define a subspaces S<δ and S≥δ such that

1. When ExtSim-less’s input is in S<δ (resp. S≥δ), it succeeds in extracting s∗ with
probability < δ (resp. ≥ δ).

2. Given a state in S≥δ, we can extract s∗ with overwhelming probability within
O(δ−1) steps.

3. The above procedure does not cause any interference between S<δ and S≥δ.

We define SE to be an algorithm that runs the procedure in Item 2 and
outputs s (which is supposed to be s∗ in the case of success) and the post-
execution state of A. First, we consider simpler cases where the initial state of
the experiments is a pure state |ψ〉 that is in either S≥δ or S<δ.

Case of |ψ〉 ∈ S≥δ: In this case, Item 2 implies that SE outputs s∗ with over-
whelming probability. In general, such an almost-deterministic quantum pro-
cedure can be done (almost) without affecting the state (e.g., see the Almost-
as-Good-as-New Lemma in [1, Lemma 2.2]). Therefore, Expreal and Expext are
negligibly indistinguishable in this case.

Case of |ψ〉 ∈ S<δ: For any state |ψ<δ〉 ∈ S<δ, Item 1 implies

Pr[ExtA(|ψ<δ〉)
Sim-less = s∗] ≤ δ.

On the other hand, our assumption (i.e., Inequality (1)) implies

Pr[ExtA(|ψ<δ〉)
Sim-less = s∗] ≥ (Pr[A(|ψ<δ〉) = Succ])c − negl(λ)

for some constant c. By combining them, we have

Pr[A(|ψ<δ〉) = Succ] ≤ (δ + negl(λ))1/c
.

We note that the second output of SE in Expext is in S<δ if the initial state is
in S<δ by Item 3. Therefore, if we run Expreal or Expext with an initial state in
S<δ, it outputs Fail with probability > 1− (δ + negl(λ))1/c. Recall that when
an experiment outputs Fail, no information about the internal state of A is
revealed. Thus, the distinguishing advantage between those experiments can
be bounded by O(δ1/c).

In general, the initial state is a superposition of S<δ component and S≥δ

component. Thanks to Item 3, we can reduce the general case to the above two
cases. When doing that, there occurs an additional loss of the 4-th power of δ due
to a technical reason. Still, we can bound the distinguishing advantage between
the two experiments by O(δ1/(4c)). This can be made to be an arbitrarily small
noticeable function because δ is an arbitrarily small noticeable function. This
suffices for establishing the ε-closeness of those experiments.
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2.2 Black-Box ε-Simulatable ExtCom-and-Prove

Black-box zero-knowledge commit-and-prove allows a committer to commit to
some message m (the Commit Stage), and later prove in zero-knowledge that
the committed m satisfies some predicate φ (the Prove Stage). What makes this
primitive non-trivial is the requirement of black-box use of cryptographic build-
ing blocks; otherwise, it can be fulfilled easily by giving a standard commitment
to m first, and then running any zero-knowledge system over the commitment
in a non-black-box manner.

Our construction follows the classical “MPC-in-the-head” paradigm [37,47]
with the following modifications. To make the commitment stage extractable, we
ask the committer to use the ε-simulatable parallel-strongly extractable commit-
ment. We remark that the parallel-strong extractability is essential for obtaining
a constant round construction since the committer has to parallelly commit to
many secret shares of its message in the construction. Another caveat is that
the protocol relies on coin-flipping to conduct a “cut-and-choose” type of argu-
ment. As explained in Sect. 2.1, we can implement a “one-sided simulatable” coin
flipping from (weakly) extractable commitments. Based on this observation, we
upgrade the classical security proof to the quantum setting.

Due to space constraints, we provide a more detailed overview of this con-
struction in [16, Sect. 2.2].

2.3 Black-Box ε-Simulatable 2PC

It is well-known that there exist black-box constant-round constructions of
general-purpose 2PC from semi-honest OTs and (simulation-secure) commit-
ments in the universally-composable (UC) model [19,42,49]. In the stand-alone
setting, it had been a folklore that a similar conversion works if we assume suit-
able parallel-simulation-secure commitments, but we are not aware of any work
that formally proved it until the recent work of [40]. [40] addressed this issue
by defining a functionality called F t

so-com, and showed that the above conversion
works in the F t

so-com-hybrid model in the stand-alone setting. F t
so-com is a two-

party ideal functionality that allows a committer to commit to an a-priori fixed
polynomial number t(λ) of messages in parallel, and later decommit to a subset
of these commitments named by the receiver (thus, “so” stands for “selectively
opening”).

Thus, for obtaining a black-box constant-round construction of general-
purpose ε-simulatable 2PC, all we need to do is to construct a constant-round
black-box commitment scheme that implements F t

so-com with ε-close simula-
tion. It is straightforward to construct such a commitment scheme based on our
ExtCom-and-Prove protocol, since it enables the committer to prove any predi-
cate on committed values, which of course supports revealing a subset of them.

Moreover, if we are allowed to use quantum communication, [40] showed
that we can construct black-box constant-round (maliciously-secure) OTs in the
F t

so-com-hybrid model. Thus, we can drop the additional assumption of semi-
honest OTs in this case.

We provide a more detailed technical overview in [16, Sect. 2.3].
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3 Preliminaries

We postpone basic notations, definitions, and known lemmas to [16, Sect. 3].

3.1 Post-quantum Extractable Commitment

We give a definition of post-quantum (strongly) extractable commitments with
ε-simulation. We will omit the security parameter from the input to parties when
it is clear from the context.

Definition 1 (Post-quantum Commitment). A post-quantum commitment
scheme Π is a classical interactive protocol between interactive PPT machines
C and R. Let m ∈ {0, 1}�(λ) (where 	(·) is some polynomial) is a message that
C wants to commit to. The protocol consists of the following stages:

– Commit Stage: C(m) and R interact with each other to generate a tran-
script (which is also called a commitment) denoted by com,12 C’s state
STC , and R’s output bcom ∈ {0, 1} indicating acceptance (i.e., bcom = 1)
or rejection (i.e., bcom = 0). We denote this execution by (com,STC , bcom) ←
〈C(m), R〉(1λ). When C is honest, STC is classical, but when we consider a
malicious quantum committer C∗(ρ), we allow it to generate any quantum
state STC∗ . Similarly, a malicious quantum receiver R∗(ρ) can output any
quantum state, which we denote by OUTR∗ instead of bcom.

– Decommit Stage: C generates a decommitment decom from STC . We
denote this procedure by decom ← C(STC).13 Then it sends a message m
and decommitment decom to R, and R outputs a bit bdec ∈ {0, 1} indicating
acceptance (i.e., bdec = 1) or rejection (i.e., bdec = 0). We assume that R’s ver-
ification procedure is deterministic and denote it by Verify(com,m, decom).14

W.l.o.g., we assume that R always rejects (i.e., Verify(com, ·, ·) = 0) whenever
bcom = 0. (Note that w.l.o.g., com can include bcom because we can always
modify the protocol to ask R to send bcom as the last round message.)

The scheme satisfies the following correctness requirement:

1. Correctness. For any m ∈ {0, 1}�(λ), it holds that

Pr[bcom = bdec = 1 :
(com,STC , bcom) ← 〈C(m), R〉(1λ)
decom ← C(STC)
bdec ← Verify(com,m, decom)

] = 1.

12 That is, we regard the whole transcript as a commitment.
13 We could define STC to be decom itself w.l.o.g. However, we define them separately

because this is more convenient when we define ExtCom-and-Prove, which is an
extension of post-quantum extractable commitments.

14 Note that Verify is well-defined since our syntax does not allow R to keep a state
from the commit stage.
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Definition 2 (Computationally Hiding). A post-quantum commitment Π is
computationally hiding if for any m0,m1 ∈ {0, 1}�(λ) and any non-uniform QPT
receiver R∗(ρ), the following holds:

{OUTR∗ : (com,STC ,OUTR∗) ← 〈C(m0), R∗(ρ)〉(1λ)}λ

c≈{OUTR∗ : (com,STC ,OUTR∗)〈C(m1), R∗(ρ)〉(1λ)}λ.

Definition 3 (Statistically Binding). A post-quantum commitment Π is sta-
tistically binding if for any unbounded-time comitter C∗, the following holds:

Pr

⎡
⎣

∃ {mb, decomb}b∈{0,1}, m0 �= m1

∧ Verify(com, mb, decomb) = 1
for b ∈ {0, 1}

: (com,STC∗ , bcom) ← 〈C∗, R〉(1λ)

⎤
⎦ = negl(λ).

Definition 4 (Committed Values). For a post-quantum commitment Π, we
define the value function as follows:

valΠ(com) :=

{
m if ∃ unique m s.t. ∃ decom,Verify(com,m, decom) = 1
⊥ otherwise

.

We say that com is valid if valΠ(com) �= ⊥ and invalid if valΠ(com) = ⊥.

Then we give the definition of the strong extractability with ε-simulation.
The definition is similar to that of post-quantum extractable commitments in
[9,10] except that we allow an (arbitrarily small) noticeable approximation error
similarly to post-quantum ε-zero-knowledge [18]. We note that we call it the
strong extractability since we also define a weaker version of extractability in
Definition 7 in Sect. 5.1.

Definition 5 (Strong Extractability with ε-Simulation). A commitment
scheme Π is strongly extractable with ε-simulation if there exists a QPT algo-
rithm SE (called the ε-simulation strong-extractor) such that for any noticeable
ε(λ) and any non-uniform QPT C∗(ρ),

{SEC∗(ρ)(1λ, 1ε−1
)
}

λ

c≈ε
{
(valΠ(com),STC∗ ) : (com,STC∗ , bcom) ← 〈C∗(ρ), R〉(1λ)

}
λ
.

We also define the parallel version.

Definition 6 (Parallel-Strong Extractability with ε-Simulation). A
commitment scheme Π is parallelly strongly extractable with ε-simulation if
for any integer n = poly(λ), there exists a QPT algorithm SEpar (called the ε-
simulation parallel-strong-extractor) such that for any noticeable ε(λ) and any
non-uniform QPT C∗(ρ),

{SEC∗(ρ)
par (1λ, 1ε−1

)
}

λ

c≈ε

{
(Λ{bcom,j}n

j=1
({val(comj)}n

j=1),STC∗ ) :
({comj}n

j=1, STC∗ , {bcom,j}n
j=1)

← 〈C∗(ρ), Rn〉(1λ)

}

λ
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where ({comj}n
j=1,STC∗ , {bcom,j}n

j=1) ← 〈C∗(ρ), Rn〉(1λ) means that C∗(ρ)
interacts with n copies of the honest receiver R in parallel and the execution
results in transcripts {comj}n

j=1, the final state STC∗ , and outputs {bcom,j}n
j=1

of each copy of R and

Λ{bcom,j}n
j=1

({val(comj)}n
j=1) :=

{
{valΠ(comj)}n

j=1 if ∀ j ∈ [n] bcom,j = 1
⊥ otherwise

.

Remark 1. We remark that the above definition only requires the extractor to
extract the committed values when R accepts in all the parallel sessions. In
particular, when R accepts in some sessions but not in others, the extractor
does not need to extract the committed values at all. An alternative stronger
(and probably more natural) definition would require the extractor to extract
valΠ(comj) for all j ∈ [n] such that R accepts in the j-th session. But we define
it in the above way since it suffices for our purpose and we do not know if our
construction satisfies the stronger one.

4 Extract-and-Simulate Lemma

We prove a lemma that can be seen as an ε-simulation variant of Unruh’s rewind-
ing lemma ([64, Lemma 7]) in typical applications. This lemma is the technical
core of all the results in this paper.

4.1 Statement of Extract-and-Simulate Lemma

Our lemma is stated as follows.

Lemma 1 (Extract-and-Simulate Lemma). Let C be a finite set. Let
{Πi}i∈C be orthogonal projectors on a Hilbert space H such that the measurement
{Πi, I − Πi} can be efficiently implemented. Let |ψinit〉 ∈ H be a unit vector.

Suppose that there are a subset S ∈ C2 and a QPT algorithm A = (A0,A1)
that satisfies the following:

1. S consists of an overwhelming fraction of C2, i.e., |S|
|C|2 = 1 − negl(λ).

2. For all i ∈ C, there exists a classical string si such that

Pr[A0

(
i,

Πi|ψinit〉
‖Πi|ψinit〉‖

)
= si] = 1.

3. There exists a classical string s∗ such that for any (i, j) ∈ S,

Pr[A1 (i, j, si, sj) = s∗] = 1.

Let Exp(λ, {Πi}i∈C , |ψinit〉) be an experiment that works as follows:

– Choose i ← C.
– Apply the measurement {Πi, I − Πi} on |ψinit〉.
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• If the state is projected onto Πi, the experiment outputs i, the classical
string s∗, and the resulting state Πi|ψinit〉

‖Πi|ψinit〉‖ .15

• If the state is projected onto I −Πi, the experiment outputs i, ⊥, and the
resulting state (I−Πi)|ψinit〉

|(I−Πi)|ψinit〉| .

Then, there is a QPT algorithm SE such that for any noticeable ε,

{SE(1λ, 1ε−1
, {Πi}i∈C ,A, |ψinit〉)}λ

s≈ε{Exp(λ, {Πi}i∈C , |ψinit〉)}λ.

Due to space constraints,wepostpone theproof to the full version [16, Sect. 4.2].
But note that the key ideas of this proof are already described in Sect. 2.1.

5 Black-Box ε-Simulation-Extractable Commitments
in Constant Rounds

In this section, we present our construction of post-quantum commitment that
satisfies the (parallel) strong extractability with ε-simulation. Namely, we prove
the following lemma.

Lemma 2. Assume the existence of post-quantum secure OWFs. Then, there
exists a constant-round construction of post-quantum commitment that satis-
fies computational hiding (Definition 2), statistical binding (Definition 3), and
(parallel) strongly extractable commitment with ε-simulation. Moreover, this con-
struction makes only black-box use of the assumed OWF.

Toward proving that, we first construct a scheme that satisfies a weaker
notion of ε-simulatable extractability in Sect. 5.1. In Sect. 5.2, we present a
compiler that converts the weak scheme in Sect. 5.1 into one that satisfies the
(parallel) strong extractability with ε-simulation.

5.1 Weakly Extractable Commitment

We construct a commitment scheme that satisfies weak notions of extractability
defined in Definitions 7 and 10 based on OWFs. The description of the scheme
is given in Protocol 1, where Com is a statistically-binding and computationally-
hiding commitment scheme (e.g., Naor’s commnitment). We remark that the
scheme is identical to the classical extractable commitment in [61], which in
turn is based on earlier works [25,62,63].

Protocol 1: Extractable Commitment Scheme wExtCom

The extractable commitment scheme, based on any commitment scheme Com,
works in the following way.
Input:

15 We stress that we do not assume that the experiment is efficient. Especially, it may
be computationally hard to find s∗ from Πi|ψinit〉

‖Πi|ψinit〉‖ .
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– both the committer C and the receiver R get security parameter 1λ as the
common input.

– C gets a string m ∈ {0, 1}�(λ) as his private input, where 	(·) is a polynomial
Commitmment Phase:
1. The committer C commits using Com to k = λ pairs of strings {(v0

i , v1
i )}k

i=1

where (v0
i , v1

i ) = (ηi,m⊕ηi) and ηi are random strings in {0, 1}� for 1 ≤ i ≤
k.16 We denote those commitments by com = {,0i , ,1i }k

i=1.
2. Upon receiving a challenge c = (c1, . . . , ck) from the receiver R, S opens the

commitments to v := (vc1
1 , . . . , vck

k ) with the corresponding decommitment
decom := (decomc1

1 , . . . , decomck

k ).
3. R checks that the openings are valid.
Decommitment Phase:
– C sends σ and opens the commitments to all k pairs of strings. R checks

that all the openings are valid, and also that m = v0
1⊕v1

1 = · · · = v0
k⊕v1

k.

Proof of Security. The correctness and the statistically-binding property of
wExtCom follows straightforwardly from that of Com. The computationally-
hiding property of wExtCom can be reduced to that of Com by standard argu-
ments.

Lemma 3 (Computational Hiding). wExtCom is computationally hiding.

The proof is similar to the classical counterpart in [61]. We postpone it to the
full version [16, Sect. 5.1].

We prove that wExtCom satisfies a weak version of the extractability which
we call the weak extractability with ε-simulation. Intuitively, it requires the
simulation-extractor to perform extraction and ε-simulation properly, as long
as the commitment is valid. A formal definition is given below.

Definition 7 (Weak Extractability with ε-Simulation). A commitment
scheme Π is weakly extractable with ε-simulation if there exists a QPT algorithm
SEweak (called the ε-simulation weak-extractor) such that for any noticeable ε(λ)
and any non-uniform QPT C∗(ρ),

{
Γcom(mExt, S̃TC∗) : (com,mExt, S̃TC∗) ← SEC∗(ρ)(1λ, 1ε−1

)
}

λ
c≈ε

{
Γcom(valΠ(com),STC∗) : (com,STC∗ , bcom) ← 〈C∗(ρ), R〉(1λ)

}
λ

where Γcom(m,STC∗) :=

{
(m,STC∗) if valΠ(com) �= ⊥
⊥ otherwise

.

Lemma 4 (Weak Extractability with ε-Simulation). wExtCom is weakly
extractable with ε-simulation (as per Definition 7).

Before proving Lemma 4, we prepare several definitions.
16 Actually, the scheme will be secure as long as we use Com to commit k = ω(log λ)

pairs of strings.
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Definition 8 (Validness of com). For a sequence com = {com0
i , com

1
i }k

i=1

of commitments of the scheme Com, we say that com is valid if there exis
m ∈ {0, 1}� such tat valCom(comb

i ) �= ⊥ for all i ∈ [k] and b ∈ {0, 1} and
valCom(com0

i ) ⊕ valCom(com1
i ) = m for all i ∈ [k] where valCom(comb

i ) is the value
function as defined in Definition 4. We denote by valCom(com) to mean such m
if com is valid and otherwise ⊥.

Definition 9 (Accepting Opening of com). For a sequence com = {com0
i ,

com1
i }k

i=1 of commitments of the commitment scheme Com and c = (c1, ..., ck) ∈
{0, 1}k, we say that (v = (v1, ..., vk), decom = (decom1, ..., decomk)) is anaccepting
opening of com w.r.t. c if VerifyCom(comci

i , vi, decomi) = 1 for all i ∈ [k].

Then we prove Lemmma 4.

Proof of Lemma 4. For simplicity, we assume that Com satisfies perfect binding.
It is straightforward to extend the proof to the statistically binding case by
excluding the bad case where any commitment of Com is not bounded to a
unique message, which happens with a negligible probability.

Remark that the weak extractability with ε-simulation only requires the
extractor to correctly extract and simulate if the commitment generated in the
commit stage is valid in the sense of Definition 4. When the commitment is
valid, com generated in Step 1 is also valid in the sense of Definition 8 (because
otherwise a committer cannot pass the verification in the decommitment stage).
Therefore, it suffices to prove that the extractor works for any fixed valid com.

Let C∗(ρ) be a non-uniform QPT malicious committer. For c ∈ {0, 1}k, let
Uc be the unitary corresponding to the action of C∗ in Step 2. That is, for the
state ρ′ before Step 2, it applies Uc to get Ucρ

′U†
c and measures designated

registers V and D to get the message v and opening information decom in Step
2. Let Π test

c be the projection that maps onto states that contain an accepting
opening v and decom of com w.r.t. c (as defined in Definition 9) in V ⊗ D. For
c ∈ {0, 1}k, we define Πc := U†

cΠ test
c Uc.

We apply Lemma 1 for {Πc}c∈{0,1}k with the following correspondence.

– H is the internal space of C∗.
– The initial state is ρ′.17

– C = {0, 1}k.
– S = {((c1, ..., ck), (c′

1, ..., c
′
k)) : ∃i ∈ [k] s.t. ci �= c′

i}
– A0 applies Uc on its input, measures V to get v, applies U†

c , and outputs v.
– A1 is given as input (c, c′) ∈ S, vc = (vc1

1 , ..., vck

k ), and vc′ = (vc′
1

1 , ..., v
c′

k

k ).

A1 outputs vci
i ⊕ v

c′
i

i for the smallest i ∈ [k] such that ci �= c′
i. Note that such

i exists since we assume (c, c′) ∈ S.

If com is valid, we can see that the assumptions for Lemma 1 are satisfied as
follows:
17 Though we assume that the initial state |ψinit〉 is a pure state in Lemma 1, the

lemma holds for any mixed state since a mixed state can be seen as a probability
distribution over pure states.
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1. By the definition of S, it is easy to see that |S|
|C|2 = 1 − 2−k = 1 − negl(λ).

2. For any c, if A0 takes a state in the span of Πc as input, it outputs sc :=
(valCom(comc1

1 ), ..., valCom(comck

k )) with probability 1 by the definition of Πc

and the perfect binding property of Com.
3. For any (c, c′) ∈ S, if A1 takes as input the sc and sc′ defined as follows:{

sc = (valCom(comc1
1 ), . . . , valCom(comck

k ))

sc′ = (valCom(comc′
1

1 ), . . . , valCom(comc′
k

k ))
;

then, it outputs s∗ := valCom(com) as defined in Definition 8 since we assume
that com is valid.

Let S̃E be the ε-simulation extractor of Lemma 1 in the above setting. Then
Lemma 1 gives us the following:

{S̃E(1λ, 1ε−1
, {Πc}c∈{0,1}k ,A, ρ′)}λ

s≈ε{Exp(λ, {Πc}c∈{0,1}k , ρ′)}λ

where Exp(λ, {Πc}c∈{0,1}k , ρ′) is as defined in Lemma 1. That is,
Exp(λ, {Πc}c∈{0,1}k , ρ′) works as follows:

– Choose c ← {0, 1}k.
– Apply the measurement {Πc, I − Πc} on ρ′.

• If the state is projected onto Πc, the experiment outputs c, the classical
string valCom(com), and the resulting state.

• If the state is projected onto I − Πc, the experiment outputs c, ⊥, and
the resulting state.

One can see that the state in the third output of Exp(λ, ρ′) is similar to the
final state of C∗ in the real execution except that C∗ applies the unitary Uc

instead of the measurement {Πc, I − Πc} and measures V and D. By noting
that Π test

c Uc = UcΠc and that measuring V and D is the same as first applying
the measurement {Π test

c , I − Π test
c } and then measuring V and D, if we apply

Uc on the third output of Exp(λ, {Πc}c∈{0,1}k , ρ′) and then measure V and D,
the state is exactly the same as the final state of C∗.

Therefore, the following extractor SEweak works for the weak ε-simulation
extractability:

SEC∗(ρ)
weak (1λ, 1ε−1

) :

1. Run the commit stage of wExtCom between C∗(ρ) and the honest receiver R
until C∗ sends com in Step 1. Let ρ′ be the internal state of C∗ at this point.

2. Run (c,mExt, ρExt) ← S̃E(1λ, 1ε−1
, {Πc}c∈{0,1}k ,A, ρ′) where A = (A0,A1) is

as defined above. Remark that the definition of Πc depends on com, and it
uses com generated in the previous step.

3. Apply Uc on ρExt to generate UcρExtU
†
c and measures registers V and D to

get v and decom. Let ρfinal be the state after the measurement.
4. Output (mExt, ρfinal). ��
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On the Parallel Execution of wExtCom. We can prove that wExtCom satis-
fies a parallel version of the weak extractability with ε-simulation in a similar
way. In the following, we prove that wExtCom satisfies even a generalized ver-
sion of that, which we call special parallel weak extractability with ε-simulation.
Looking ahead, this will be used in the proof of the (parallel) ε-simulation strong
extractability of Protocol 2 in Sect. 5.2.

Intuitively, it requires the following: Suppose that a malicious committer C∗

interacts with n copies of the honest receiver R in parallel, and let comj be the
commitment generated in the j-th execution. Suppose that comj is valid for all
j ∈ V for some subset V ⊆ [n]. Let F : {0, 1}� ∪ {⊥} → {0, 1}∗ be a function
that is determined by {val(comj)}j∈V , i.e., F (m1, ...,mn) takes a unique value
m∗ as long as mj = val(comj) for all j ∈ V . Then, the extractor can extract
m∗ while simulating the post-execution state of C∗. A formal definition is given
below.

Definition 10 (Special Parallel Weak Extractability with ε-Simula-
tion). We say that a commitment scheme Π satisfies the special parallel weak
extractability with ε-simulation if the following is satisfied. For any integer n =
poly(λ) and an efficiently computable function F : {{0, 1}� ∪ {⊥}}n → {0, 1}∗,
there exists SEF that satisfies the following: For commitments {comj}n

j=1, we
say that {comj}n

j=1 is F -good if it satisfies the following:

1. there exists V ⊆ [n] such that comj is valid (i.e., valΠ(comj) �= ⊥) for all
j ∈ V ; and

2. there exists a unique m∗ such that F (m′
1, ...,m

′
n) = m∗ for all (m′

1, ...,m
′
n)

such that m′
j = valΠ(comj) for all j ∈ V .

Then it holds that{
ΓF,{comj}n

j=1
(mExt,STC∗) : ({comj}n

j=1,mExt,STC∗) ← SEC∗(ρ)
F (1λ, 1ε−1

)
}

λ

c≈ε

{
ΓF,{comj}n

j=1
(F (valΠ(com1), ..., valΠ(comn)),STC∗)

: ({comj}n
j=1,STC∗ , {bcom,j}n

j=1) ← 〈C∗(ρ), Rn〉(1λ)

}
λ

,

where ({comj}n
j=1,STC∗ , {bcom,j}n

j=1) ← 〈C∗(ρ), Rn〉(1λ) means that C∗(ρ)
interacts with n copies of the honest receiver R in parallel and the execution
results in transcripts {comj}n

j=1, the final state STC∗ , and outputs {bcom,j}n
j=1

of each copy of R and

ΓF,{comj}n
j=1

(m,STC∗) :=

{
(m,STC∗) if {comj}n

j=1 is F -good
⊥ otherwise

.

Lemma 5 (Special Parallel Weak Extractability with ε-Simulation).
wExtCom satisfies the special parallel weak extractability with ε-simulation (as
per Definition 10).

The proof of Lemma 5 is similar to that of Lemma 4. Due to space constraints,
we postpone it to the full version [16, Sect. 5.1].
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5.2 Strongly Extractable Commitment

In this section, we present the strongly extractable commitment with ε-simulation.
The scheme is shown in Protocol 2. It relies on the following building blocks:

1. the ε-simulatable weakly extractable commitment wExtCom given in Proto-
col 1. We remark that the security of Protocol 2 relies on the particular
wExtCom presented in Protocol 1 because we also need the special parallel
weak extractability with ε-simulation (Definition 10); we do not know if Pro-
tocol 2 can be based on any wExtCom satisfying the weak extractability with
ε-simulation as in Definition 7.

2. a(n+1, t)-perfectlyverifiablesecretsharingschemeVSS = (VSSShare,VSSRecon).
We require that t is a constant fraction of n such that t ≤ n/3. There are known
constructions (without any computational assumptions) satisfying these prop-
erties [6,20].

Protocol 2: ε(-Simulatable Strongly Extractable Commitment ExtCom

Let n(λ) be a polynomial on λ. Let t be a constant fraction of n such that
t ≤ n/3.
Input: both the (committer) C and the receiver R get security parameter 1λ

as the common input; C gets a string m ∈ {0, 1}�(λ) as his private input, where
	(·) is a polynomial.
Commit Stage:

1. C emulates n + 1 (virtual) players {Pi}i∈[n+1] to execute the VSSShare pro-
tocol “in his head”, where the input to Pn+1 (i.e., the Dealer) is m. Let
{vi}i∈[n+1] be the views of the n + 1 players describing the execution.

2. C and R involve in n executions of wExtCom in parallel, where in the i-th
instance (i ∈ [n]), C commits to vi.

3. R picks a random string r1 and commits to it using wExtCom.
4. C picks a random string r2 and sends it to R.
5. R sends to C the value r1 together with the corresponding decommitment

information w.r.t. the wExtCom in Step 3. Now, both parties learn a coin-
tossing result r = r1⊕r2, which specifies a size-t random subset T ⊆ [n].

6. C sends to R in one round the following messages: {vi}i∈T together with the
corresponding decommitment information w.r.t. the wExtCom in Step 2.

7. R checks the following conditions:
(a) All the decommitments in Step 6 are valid; and
(b) for any i, j ∈ T , views (vi, vj) are consistent w.r.t. the VSSShare execution

as described in Step 1.
If all the checks pass, R accepts; otherwise, R rejects.

Decommit Stage:

1. C sends {vi}i∈[n] together with all the corresponding information w.r.t. the
wExtCom in Step 1 of the Commit Stage.

2. R constructs {v′
i}i∈[n] as follows: in Step 1 of the Decommit Stage, if the

i-th decommitment is valid, R sets v′
i := vi; otherwise, R sets v′

i := ⊥.
3. R outputs m′ := VSSRecon(v′

1, . . . , v
′
n).
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Security. Correctness and statistical binding property of ExtCom fol-
lows straightforwardly from that of wExtCom. We show that ExtCom is
computationally-hiding and (parallel) strong extractable with ε-simulation.

Lemma 6 (Computational Hiding). ExtCom is computationally hiding.

Computational hinding property can be shown based on the weak extractabil-
ity of wExtCom used in Step 3, computational hiding property of wExtCom used
in Step 2, and the secrecy property of VSS by a standard hybrid argument. The
proof is postponed to the full version [16, Sect. 5.2].

In the following, we prove the (parallel-)strong extractability with ε-
simulation. Though we finally prove the parallel version, we first give a proof for
the stand-alone version since that is simpler and the proof is readily extended
to that of the parallel version.

Lemma 7 (Strong Extractability with ε-Simulation). ExtCom is strongly
extractable with ε-simulation (as per Definition 5).

Proof. Suppose that a non-uniform QPT committer C∗ interacts with the honest
receiver R in the commit stage of ExtCom. We consider two cases where R accepts
or rejects, respectively. By using Watrous’ rewinding lemma [65] in a similar
way to the proof of Lemma 1, it suffices to construct a simulator that correctly
extracts and simulates for each case separately. Moreover, when R rejects, the
commitment is invalid and thus the extractor does not need to extract anything.
Thus, there is a trivial perfect simulation extractor for this case: it can simply
run the interaction between C∗(ρ) and R by playing the role of R and outputs
the final state of C∗. What is left is to construct an extractor that correctly
extracts and simulates assuming that R accepts in the committing stage. That
is, it suffices to prove the following claim.

Claim 1 (Extraction and Simulation for Accepting Case). There exists a QPT
algorithm SEAcc such that for any noticeable ε(λ) and any non-uniform QPT
C∗(ρ), it holds that

{
Γbcom(mExt,STC∗) : (mExt,STC∗ , bcom) ← SEC∗(ρ)

Acc (1λ, 1ε−1
)
}

λ
c≈ε

{
Γbcom(valExtCom(com),STC∗) : (com,STC∗ , bcom) ← 〈C∗(ρ), R〉(1λ)

}
λ
,

where Γbcom(m,STC∗) :=

{
(m,STC∗) if bcom = 1
⊥ otherwise

.

Remark 2. One may think that the above claim is similar to the weak
extractability with ε-simulation (Definition 7). However, the crucial difference
is that the extractor SEAcc should declare if the simulation has succeeded by
outputting bcom in the clear. On the other hand, in Definition 7, SEweak is only
required to indirectly declare that depending on if com is valid, which may not
be known by SEweak.
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Proof of Claim 1. Let wExtCom.comi be the i-th commitment of wExtCom in Step
2 in the commit stage. In the execution of (com,STC∗ , bcom) ← 〈C∗(ρ), R〉(1λ),
let Good be the event that {wExtCom.comi}n

i=1 is VSSRecon-good in the sense of
Definition 10, i.e.,

– there exists V ⊆ [n] such that wExtCom.comi is valid (i.e., valwExtCom
(wExtCom.comi) �= ⊥) for all i ∈ V , and

– there exists m∗ such that VSSRecon(v′
1, . . . , v

′
n) = m∗ for all (v′

1, . . . , v
′
n) such

that
∀i ∈ V, v′

i = valwExtCom(wExtCom.comi).

Let Bad be the complementary event of Good. We prove the following claim.

Claim 2. It holds that

Pr[Bad ∧ bcom = 1 : (com,STC∗ , bcom) ← 〈C∗(ρ), R〉(1λ)] = neglnegl(λ). (2)

Claim 2 can be proven based on a similar argument to those used in previous
black-box commit-and-prove literature [37,39,47,54]. We postpone the proof to
[16, Section 5.2].

Given Claim 2, it is straightforward to finish the proof of Lemma 1 by using
Lemma 5. Claim 2 means that the Good occurs whenever bcom = 1 except
for negligible probability. Since SEAcc is only required to correctly extract and
simulate when bcom = 1, it suffices to give an extractor that correctly extracts
and simulates when {wExtCom.comi}n

i=1 satisfies the condition for Good. Since
wExtCom satisfies the special parallel weak extractability with ε-simulation as
shown in Lemma 5, SEVSSRecon

given in Definition 10 (where we set F := VSSRecon)
directly gives SEAcc. Specifically, SEAcc as described below suffices for Lemma 1.

SEC∗(ρ)
Acc (1λ, 1ε−1

):

1. Run ({wExtCom.comi}n
i=1,mExt,STC∗

2
) ← SEC∗

2 (ρ)
VSSRecon

(1λ, 1ε−1
) where C∗

2 deno-
tes the action of C∗ until Step 2 in the commit stage where it outputs
{wExtCom.comi}n

i=1.
2. Simulate the interaction between C∗ and R from Step 3 where the state of

C∗ is initialized to be STC∗
2
. Let bcom be R’s decision (i.e., bcom = 1 if and

only if R accepts) and STC∗ be the post-execution state of S
3. Output (mExt,STC∗ , bcom).

This finishes the proof of Lemma 1. ��
This eventually concludes the proof of Claim 7. ��
The above proof can be extended to prove the parallel-strong extractability

(i.e. Lemma 8). We postpone it to the full version [16, Sect. 5.2].

Lemma 8 (Parallel-Strong Extractability with ε-Simulation). ExtCom
is parallel-strongly extractable with ε-simulation.
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6 Black-Box ε-Simulatable ExtCom-and-Prove
in Constant Rounds

Roughly speaking, ε-simulatable ExtCom-and-Prove is a strongly extractable
commitment scheme with ε-simulation with the additional functionality that the
committer can later prove any statement of the committed message. Besides the
security requirements as strongly extractable commitments with ε-simulation, we
additionally require soundness, which states that the committer cannot prove a
false statement on the committed message, and ε-zero-knowledge property, which
is defined similarly to in [18]. See [16, Definition 17] for the formal definition.

We show the following lemma.
Lemma 9. Assume the existence of post-quantum secure OWFs. Then, there
exists a constant-round ε-simulatable ExtCom-and-Prove scheme. Moreover, this
construction makes only black-box use of the assumed OWF.

Construction. The construction is shown in Protocol 3. It makes black-box use
of the following building blocks:

1. The ε-simulatable, parallel-strong extractable commitment ExtCom con-
structed in Sect. 5.2, which in turn makes black-box use of any post-quantum
secure OWFs.

2. A statistically-binding, computationally-hiding (against QPT adversaries)
commitment Com. This is also known assuming only black-box access to post-
quantum secure OWFs.

3. A (n + 1, t)-perfectly secure verifiable secret sharing scheme VSS =
(VSSShare,VSSRecon) (see [16, Section 3.3]);

4. A (n, t)-perfectly secure MPC protocol Πmpc (see [16, Sect. 3.4]).

For the VSS and MPC protocols, we require that t is a constant fraction of n
such that t ≤ n/3. There are information-theoretical constructions satisfying
these properties [6,20].

Protocol 3: ε-Simulatable ExtCom-and-Prove

Parameter Setting: Let n(λ) be a polynomial on λ. Let t be a constant
fraction of n such that t ≤ n/3.
Input: Both P and the receiver V get 1λ as the common input; P gets a string
m ∈ {0, 1}�(λ) as his private input, where 	(·) is a polynomial.
Commit Stage:
1. P emulates n + 1 (virtual) players {Pi}i∈[n+1] to execute the VSSShare pro-

tocol “in his head”, where the input to Pn+1 (i.e., the Dealer) is m. Let
{vi}i∈[n+1] be the views of the n + 1 players describing the execution.

2. P and V involve in n executions of ExtCom in parallel, where in the i-th
instance (i ∈ [n]), P commits to vi.

Decommit Stage:
1. P sends {vi}i∈[n] together with the corresponding decommitment informa-

tion w.r.t. the ExtCom in Step 2 of the Commit Stage.
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2. V checks that all the decommitments in Step 1 of the Decommit Stage are
valid. If so, V outputs VSSRecon(v1, . . . , vn) and then halts; otherwise, V
outputs ⊥ and then halts.

Prove Stage: both parties learn a polynomial-time computable predicate φ.
1. P emulates “in his head” n (virtual) players {Pi}i∈[n], where Pi’s input

is vi (from Step 1 of the Commit Stage). These n parties execute
Πmpc for the following functionality: the functionality reconstructs m′ :=
VSSRecon(v1, . . . , vn) and sends the value φ(m′) to all the parties as their
output. For i ∈ [n], let v′

i be the view of party Pi during Πmpc.
2. P and V involve in n executions of Com in parallel, where in the i-th instance

(i ∈ [n]), P commits to v′
i.

3. V picks a random string r1 and commits to it using ExtCom.
4. P picks a random string r2 and sends it to V .
5. V sends to P the value r1 together with the corresponding decommitment

information w.r.t. the ExtCom in Step 3. Now, both parties learn a coin-
tossing result r = r1⊕r2, which specifies a size-t random subset T ⊆ [n].

6. P sends to V in one round the following messages:
(a) {vi}i∈T together with the corresponding decommitment information

w.r.t. the ExtCom in Step 2 of the Commit Stage; and
(b) {v′

i}i∈T together with the corresponding decommitment information
w.r.t. the Com in Step 2 of the Prove Stage.

7. V checks the following conditions:
(a) All the decommitments in Step 6a and 6b are valid; and
(b) for any i ∈ T , vi is the prefix of v′

i ; and
(c) for any i, j ∈ T , views (v′

i, v
′
j) are consistent w.r.t. the VSSShare execution

in Step 1 of the Commit Stage and the Πmpc execution as described in
Step 1 of the Prove Stage.

If all the checks pass, V accepts; otherwise, V rejects.

Security. It is straightforward to see that Protocol 3 is constant-round and
makes only black-box access to OWFs. Completeness follows from that of VSS,
ExtCom, Com, and Πmpc. In the following, we show ε-simulatable extractability
(in Lemma 10), soundness (in Lemma 11), and ε-zero-knowledge (in Lemma 12).
Due to space constraints, we postpone their proofs to [16, Sect. 6.5].

Lemma 10 (ε-Simulation Extractability). Assume ExtCom is parallel-
strongly extractable with ε-simulation. Then, Protocol 3 satisfies security as ε-
simulation extractable commitment.

Lemma 11 (Soundness). Assume ExtCom and Com are statistically bind-
ing, ExtCom is computationally-hiding, VSS is (n + 1, t)-perfectly verifiable-
committing and Πmpc is (n, t)-perfectly robust. Then, Protocol 3 satisfies the
soundness requirement (see [16, Definition 17 ]).

Lemma 12 (ε-Zero-Knowledge). Assume ExtCom and Com are computat-
ionally-hiding, ExtCom is weakly extractable with ε-simulation, VSS is (n + 1, t)-
secret (see [16,Definition1]),andΠmpc is (n, t)-semi-honestcomputationallyprivate
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(see [16, Definition 4]). Then, Prot. 3 satisfies the ε-zero-knowledge property defined
in [16, Definition 17].

Applications. Applications of our ε-simulatable ExtCom-and-Prove protocol
are postponed to the full version, where we will show to to obtain ε-simulatable
coin-flipping [16, Sect. 6.2], zero-knowledge argument of knowledge with an ε-
simulatable knowledge extractor [16, Sect. 6.3], and black-box ε-zero-knowledge
for QMA [16, Sect. 6.4].

7 Black-Box ε-Simulatable PQ-2PC in Constant Rounds

The ε-simulatable ExtCom-and-Prove protocol constructed in Sect. 6 yields the
following theorems. Due to space constraints, their proofs are postponed to the
full version [16, Sects. 7 and 8].

Theorem 3. Assuming the existence of a constant-round semi-honest bit-OT
secure against QPT adversaries, there exists a black-box, constant-round con-
struction of ε-simulatable 2PC protocol secure against QPT adversaries.

Theorem 4. Assuming the existence of OWFs secure against QPT adversaries,
there exists a black-box, constant-round construction of ε-simulatable 2PC pro-
tocol secure against QPT adversaries. This protocol makes use of quantum com-
munication.
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Abstract. As an enhancement of quantum collision-resistance, the col-
lapsing property of hash functions proposed by Unruh (EUROCRYPT
2016) emphasizes the hardness for distinguishing a superposition state
of a hash value from a collapsed one. The collapsing property triv-
ially implies the quantum collision-resistance. However, it remains to
be unknown whether there is a reduction from the collapsing hash func-
tions to the quantum collision-resistant hash functions. In this paper, we
further study the relations between these two properties and derive two
intriguing results as follows:

– Firstly, when the size of preimages of each hash value is bounded
by some polynomial, we demonstrate that the collapsing property
and the collision-resistance must hold simultaneously. This result
is proved via a semi-black-box manner by taking advantage of the
invertibility of a unitary quantum circuit.

– Next, we further consider the relations between these two properties
in the exponential-sized preimages case. By giving a construction of
polynomial bounded hash functions, which preserves the quantum
collision-resistance, we show the existence of collapsing hash func-
tions is implied by the quantum collision-resistant hash functions
when the size of preimages is not too large to the expected value.

Our results indicate that the gap between these two properties is sensi-
tive to the size of preimages. As a corollary, our results also reveal the
non-existence of polynomial bounded equivocal collision-resistant hash
functions.

Keywords: quantum collision-resistance · collapsing property ·
equivocal collision-resistance · hash function

1 Introduction

As a central property of hash functions, collision-resistance plays an important
role in the development of cryptography. It emphasizes the hardness of finding
two distinct inputs which share the same hash value. The collision-resistant
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hash functions can be used to construct many cryptographic objects, such as
the digital signature, the Merkle tree, and succinct (zero-knowledge) arguments
[6,25,29]. Indeed, the existence of collision-resistant hash function yields the
existence of the primitives in MiniCrypt such as the one-way function and the
pseudorandom generator. It can increase the efficiency of cryptographic schemes
than simply using the one-way function in many cases. And it has been proven
that the opposite direction is infeasible via the black-box reduction [36]. As a
variant of collision-resistance, some other properties such as preimage resistance
and second-preimage resistance have been extended and studied by Rogaway
and Shrimpton [34].

When the collision-resistance is considered in the quantum case, it should
also be infeasible to generate a collision for any quantum efficient adversary.
Namely for a quantum secure collision-resistant hash function Hn, there doesn’t
exist any quantum adversary A that finds a distinct pair x0 �= x1 such that
Hn(x0) = Hn(x1). However, it seems that the quantum collision-resistance is
still inadequate in the quantum setting. In order to devise a quantum commit-
ment that achieves a post-quantum secure binding property, Unruh proposed
the notion of collapsing hash function, which is stronger than the quantum
collision-resistant hash function [38]. Informally, a function Hn is collapsing,
if given a superposition

∑
ax,z|x,H(x), z〉, any quantum efficient adversary can

not detect wether the input register or the output register has been measured.
Notice that the collapsing property implies the quantum collision-resistance triv-
ially, since if there exists an adversary A that finds a distinct pair x0 �= x1

such that y = Hn(x0) = Hn(x1), it is easy to generate and check the state
(|x0, y〉 + |x1, y〉)/√2, which hence breaks the collapsing property of Hn. In the
other direction, Unruh gave evidence showing that there exists a construction
HO

n that is quantum collision-resistant but not collapsing relative to a quantum
oracle O [38]. Then, several quantum analogues of properties such as preimage
resistance and second-preimage resistance have been formalized and discussed in
[20,23]. Zhandry proved that the existence of quantum collision-resistant hash
functions which is not collapsing implies the existence of quantum lightning in
infinity-often sense [43]. Moreover, Amos et al. proposed another quantum secu-
rity definition of hash functions called the equivocal collision-resistant hash func-
tions and derived a construction relative to a classical oracle, which also yields
a classical oracle construction of non-collapsing quantum collision-resistant hash
functions [4].

However, these results don’t rule out the reduction from the collapsing hash
functions to the quantum collision-resistant hash functions. It remains to be
unknown whether we can construct the collapsing hash functions from the quan-
tum collision-resistant hash functions in a black-box (or non-black-box) manner.
That hence raise the motivation of this work:

Does the existence of quantum collision-resistant hash functions imply the
existence of collapsing hash functions?

This motivated us to further study the relations of these properties theo-
retically. If there is a universal construction of collapsing hash functions from
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quantum collision-resistant hash functions, if not, can we set up a quantum
black-box barrier between these two primitives?

1.1 Our Result

In this paper, we further investigate the relations between quantum collision-
resistance and collapsing property and get a surprising result. Although there is a
oracle-aided construction separates these two post-quantum security definitions,
these two primitives might be equivalent in many cases.

In order to exhibit our results, we firstly classify these hash functions by
the upper bound of the size of preimages. Informally, we call a collection of
functions {Hn : K × X → Y}n∈N is δ(n)-bounded if any hash value of Hn(k, ·)
has at most δ(n) preimages for any k ∈ K1. We denote it as regular bounded
and polynomial bounded for simplicity if δ(n) is O(|X/Y|) or poly(n) for some
positive polynomial poly(·) respectively. And {Hn}n∈N is almost δ(n)-bounded
if it is δ(n)-bounded with overwhelming probability over the randomness of the
evaluation key (the almost regular bounded and almost polynomial bounded are
defined accordingly). Hence our results can be discussed separately according to
the size of preimages.

Fig. 1. The arrow “A → B” means that the primitive A satisfies the property of B.
The dotted arrow A ��� B indicates that if the primitive A exists, then so does B.
The 1©, 2© are the main results proved in this paper, and other directions are implied
naturally by their definitions.

Our main results can be described as the Fig. 1, where 1© represents our first
result. That is, for any (almost) polynomial bounded hash functions, we can
prove that surprisingly, the collapsing property is equivalent to the property of
quantum collision-resistance.

Theorem 1 (informal). For any collection of (almost) polynomial bounded hash
functions {Hn}, it is collapsing iff it satisfies the quantum collision-resistance.

1 In the following part, we always assume the functions as {Hn : {0, 1}l(n) ×{0, 1}n →
{0, 1}m(n)}n∈N namely X = {0, 1}n, K = {0, 1}l(n) and Y = {0, 1}m(n). More-
over, we always assume {Hn} is compressing, namely m(n) < n for all n ∈ N, and
|X|/|Y| > C for general Hn : X → Y, where C > 1 is a constant.
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Then, as a corollary of that theorem, we can directly derive the non-existence
of any polynomial bounded equivocal collision-resistant hash functions.

Corollary 1 (informal). There doesn’t exist any (almost) polynomial bounded
quantum collision-resistant hash function that satisfies the equivocal property.

The corollary above indicates that if we want to construct the equivocal
collision-resistant hash functions, the input space of that function must be super-
polynomially larger than the output space.

Then, as the second part of our results (which is exhibited as 2© in Fig. 1)
we further explore the relations when the preimages are exponentially large.
Based on the equivalence in the polynomial bounded case and construction of
(almost) polynomial bounded hash functions from (almost) regular bounded
hash functions which preserves the quantum collision-resistance, we prove the
existence of (almost) polynomial bounded collapsing hash functions is implied by
the (almost) regular bounded quantum collision-resistant hash functions. That
hence implies the reduction from polynomial bounded collapsing hash functions
to the (almost) regular bounded quantum collision-resistant hash functions.

Theorem 2 (informal). The existence of (almost) polynomial bounded collaps-
ing hash functions is implied by the existence of (almost) regular bounded quan-
tum collision-resistant hash functions.

Our result demonstrates that the gap between these two properties is sensi-
tive to the size of preimages. Namely, fewer preimages and more regularity the
hash functions have, more “close” these properties are.

As an application of that part, we show that Ajtai’s construction of hash
functions based on the short integer solution (SIS) problem is (almost) regular
bounded [2,18].
Corollary 2 (informal). There exists a construction of collapsing hash func-
tions based on the short integer solution (SIS) assumption.

1.2 Technical Overview

In this part, we show our main technique involved in this paper. We start
by a detailed description of hash functions. A collection of hash functions
{Hn : {0, 1}l(n) × {0, 1}n → {0, 1}m(n)}n∈N usually consists of two probabilistic
polynomial-time algorithms Gen and Eval, where Gen(1n) outputs an evaluation
key k ∈ {0, 1}l(n) with the security parameter 1n as its input, and Eval(k, ·)
calculates the function Hn(k, ·). The properties such as collision-resistance and
collapsing property of {Hn} stress that any quantum polynomial-time adver-
sary A who gets the evaluation key k generated by Gen(1n) can not break the
security of Hn(k, ·) (e.g. can not find a collision of Hn(k, ·) for a collection of
collision-resistant hash functions {Hn}).

Recall that a collection of hash functions {Hn : {0, 1}l(n) × {0, 1}n →
{0, 1}m(n)}n∈N is δ(n)-bounded if it holds that

|{x | Hn(k, x) = y}| ≤ δ(n) (1)
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for any valid k ∈ {0, 1}l(n) and y ∈ {0, 1}m(n). In that case, we denote by regular
bounded and polynomial bounded if δ(n) = O(2n−m(n)) and δ(n) = poly(n) for
some positive polynomial poly(·) respectively. Similar definitions can be derived
when we consider it in the keyless setting (i.e. the form {Hn : ×{0, 1}n →
{0, 1}m(n)}n∈N). And it is almost δ(n)-bounded, if Hn(k, ·) is δ(n)-bounded with
overwhelming probability, where the randomness is taken over the k ← Gen(1n).

The Equivalence in Bounded Case. Since the key generation algorithm
Gen seems not involved in our first result, without loss of generality, we some-
times assume the hash functions are constructed in the keyless setting for conve-
nience. Namely, the key generation algorithm Gen(1n) generates the evaluation
key deterministically for each security parameter. Therefore we denote by the
collection of hash functions as {Hn : {0, 1}n → {0, 1}m}n∈N for simplicity. In
that case, the quantum collision-resistance stresses the quantum hardness for
finding a collision of Hn, and the collapsing property indicates that there is no
(computational) difference between measuring the input register or the output
register of Hn.

When the preimages of Hn are limited by some polynomial, we intent to
take advantage of the invertibility of a quantum circuit and show the equiva-
lence between these two properties. The strategy is that, assuming there exists a
quantum adversary A that breaks the collapsing property of a hash function Hn

efficiently, then we can construct another quantum polynomial-time adversary B
breaks the quantum collision-resistance of Hn as well. In order to make it clear,
we divide the adversary A of the collapsing experiment into two phases A1,A2,
which is formalized in Fig. 2.

|0 b

A2(1n, Hn)

|0 x

A1(1n, Hn)

Measures the
input/output
register.

|0 y

|0 z

Fig. 2. The description of A. Where the register of |0〉b stores the decision of A, and
|0〉x, |0〉y store the input/ output of Hn respectively. |0〉z stores the auxiliary bits of A.
The second step means it would randomly toss a coin b ← {0, 1}, when b = 0 it would
measure the output register, and when b = 1 it would measure the input register.

At the first phase of the collapsing experiment, A1 gets the security parameter
and the description of Hn as its input, then generates a challenge state ρ and
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sends it to the challenger, the challenger measures the input or the output register
of ρ according to the tossed coin b ← {0, 1}. In the second phase, A2 receives
the resulting state ρ(b) sent by the challenger and inherited by A1, and made his
decision b′. A wins the game iff it holds that b′ = b.

Note that, when the size of preimages is bounded by some polynomial, the
trace distance between ρ(0) and ρ(1) is smaller than 1 by a non-negligible amount,
which means these two states are not extremely far from each other, therefore we
can deduce that the states generated by A2 with inputs ρ(0) and ρ(1) are similar
to each other with non-negligible amount. That gives possibility to restore one
from another state by the power of the inverse of A2.

Inspired by this observation, assuming A = (A1,A2) is unitary and breaks
the collapsing property of Hn, if we measure the input register of the state ρ
generated by the first phases A1 in the computational basis and get a preimage
x of some hash value y, the resulting state ρ(1) should be non-negligibly “close”
to ρ(0) (i.e. the state after measuring the output register of ρ). That implies the
state A2ρ(1)A†

2 is not too “far” from A2ρ(0)A†
2. Therefore, if we apply A2 to

ρ(1) and measuring the decision register, the resulting state after measuring is
similar to the other case with a non-negligible amount. Therefore by applying the
inverse A†

2 to that state, we may “retrieve” the state ρ(0) with a non-negligible
advantage. Then another preimage of the hash value y could be derived with
non-negligible probability if measuring the input register again. This intuition
tells us that when the preimages are bounded by some polynomial, the quantum
collision-resistance and the collapsing property must hold simultaneously.

We now describe the procedure of B as Fig. 3. Namely, B firstly invokes
A1,A2 faithfully and measures the input register between these two phases and
the decision register after running A2. Here we denote by x the measurement of
the input register in that step. Then B runs the inverse of A2 and measures the
input register in the computational basis and gets x∗ in result. By the discussion
above, we claim it holds that x �= x∗ and Hn(x) = Hn(x∗) with non-negligible
probability. The formal proof of that result will be exhibited in Sect. 3.

|0 b

A2(1n, Hn) A†
2(1

n, Hn)

|0 x

A1(1n, Hn)
|0 y

|0 z

Fig. 3. The description of B.
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Note that the adversary A we considered can be of arbitrary form, it hence
could be probably not unitary (and not invertible). That indicates the reduction
above would be obstructed if it was treated in a fully black-box manner (in which
case both the underlying implementation of the primitive and the adversary A
are only treated as black-box). However, that problem can be circumvented if we
consider it in a semi-black-box manner (that is, the underlying implementation of
the primitive is still given as a black-box, while the description of the adversary A
is given) [32]. In that case, the inverse of A2 exists because any general quantum
circuit can be simulated by a unitary circuit equivalently (which is called the
purification of that circuit, the existence of such simulation may refer to [1]).
Therefore, we can assume the whole process of (A1,A2) is unitary, then the
inverse of A2 is its conjugate transpose A†

2. That implies the feasibility of the
quantum adversary B for breaking the quantum collision-resistance of Hn.

The Relation in Almost Regular Bounded Case. The second result aims
to study the relation between these two properties in a general case. We believe
there might be a quantum collision-resistant hash function that is not collaps-
ing due to the existing oracle-aided constructions [4,38]. However, that doesn’t
obstruct the reduction from collapsing hash functions to the quantum collision-
resistant hash functions.

Therefore we consider whether we can construct polynomial bounded hash
functions from unbounded hash functions. Unfortunately, a universal transfor-
mation is unknown due to the sophisticated structure of preimages unbounded
hash functions. However, we can prove an implication relation for some spe-
cific types of hash functions. Namely, when the collection of hash functions
{Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N is almost regular bounded (i.e. almost
O(2n−m)-bounded) and quantum collision-resistant, we can construct a collec-
tion of collapsing hash functions from it. The idea is simple, since the collaps-
ing property and the quantum collision-resistance are equivalent in polynomial
bounded case, it is sufficient to justify our result by constructing polynomial
bounded hash functions from O(2n−m)-bounded hash functions that preserves
the quantum collision-resistance.

To achieve that goal, we adopt the k-wise independent hash functions as our
main tool involved in this construction. Note that, for k-wise independent hash
functions {h : U → [M ]}, the probability that the distinct series x1, . . . , xk have
the same value of h is at most 1/|M |k. That inspires us, for any collection of hash
functions {Hn : {0, 1}l(n) ×{0, 1}n → {0, 1}m(n)}n∈N, we can rarefy and smooth
the preimages by concatenating the hash value Hn(k, x) and the output h(x) of
(poly(n) + 1)-wise independent hash functions together. Namely, we construct
a new collection of hash functions {H ′

n : {0, 1}l+|h| × {0, 1}n → {0, 1}n−1} such
that H ′

n(h‖k, x) := h(x)‖Hn(k, x). Then it holds that H ′
n(k′, x∗) = H ′

n(k′, x)
iff h(x∗) = h(x) ∧ Hn(k, x∗) = Hn(k, x). It is easy to show that the quan-
tum collision-resistance (and hence the collapsing property) can be preserved
by this construction. On the other hand, each hash value of H ′

n(h‖k, ·) has
more than poly(n) preimages with negligible probability due to the property of
the (poly(n) + 1)-wise independent hash functions, that indicates H ′

n(h‖k, ·) is
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poly(n)-bounded with overwhelming probability, which hence proves that {H ′
n}

is almost polynomial bounded quantum collision-resistant hash functions, and
the collapsing property can be derived according to our first result.

To show an application of that result, we give a construction of collapsing hash
functions from Ajtai’s construction {HA(x) = Ax, A ∈ Z

n×m
q } based on the short

integer solution (SIS) problem by showing {HA} is almost regular bounded for
X = {x ∈ Z

m
q : ‖x‖ ≤ β/2} and Y = Z

n
q . The idea is simple, notice that any

vector x ∈ Z
m
q in the input space X belongs to the sphere Bβ/2(0), we hence

give a cell P (Λ⊥
q (A),x) that contains each vector x ∈ X disjointedly and show

each cell is contained in a sphere Bβ′/2(0) which is slightly larger than Bβ/2(0).
Then we can get an upper bounded of the size of preimages which is the volume of
Bβ′/2(0) divided by the volume of the cell. Since the size of X is approximatively
equals to the volume of Bβ/2(0), and Bβ′/2(0) is slightly larger than Bβ/2(0), we
can deduce that Ajtai’s construction is almost regular bounded. Hence it’s feasible
to transform it into a collapsing one based on our construction.

1.3 Related Works

Comparation to Concurrent Work. The concurrent work by Zhandry also
discusses the relation between the two security definitions and gets the same
equivalence result independently as ours but from different perspectives [44].
He gives a generalized transformation from any quantum collision-resistant hash
function that satisfies a certain regularity condition called “semi-regularity” to
the collapsing hash functions. Using that transformation, he derives several con-
structions of collapsing hash functions from different assumptions such as the
learning parity with noise (LPN) problem, and some problems arising from iso-
genies on elliptic curves. These results greatly expand known results (since the
only standard-model construction of collapsing hash functions before that was
based on the learning with error (LWE) problem).

From a different perspective, our work mainly aims to figure out the implica-
tion relations between the collapsing hash functions and the quantum collision-
resistant hash functions in various cases, and we consider the existence of some
related primitives such as the equivocal collision-resistant hash functions. As
an application, we construct collapsing hash functions from Ajtai’s construction
based on the quantum hardness of the short integer solution (SIS) problem.

The Collapsing Hash Functions. The concept of collapsing hash functions is
proposed by Unruh to achieve the post-quantum binding property for commit-
ment scheme [38]. He showed the random function satisfies the collapsing prop-
erty, and gave an instance of a quantum collision-resistant hash function that is
not collapsing relative to a quantum oracle (which is constructed by Ambainis
et al. in [3]). Then he gave a concrete construction in his later work [37], which
also shows the collapsing is preserved under the Merkle-Damg̊ard construction.
Czajkowski et al. proved the Sponge construction also preserves the collapsing
property under some suitable assumptions [15] (which is originally in [39]). Fehr
proposed a formalism and a framework which could obtain simpler proofs for
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the collapsing property [17]. The relations of the security notions of crypto-
graphic hash functions against quantum attacks are further studied by Hamlin
and Song in [20]. Moreover, Zhandry showed the existence of non-collapsing
quantum collision-resistant hash functions implies the quantum lighting in an
infinite-often sense. Then Amos et al. proposed the notion of equivocal collision-
resistant hash functions, which is collision-resistant but not collapsing, and gave
a classical oracle construction, which also yields a classical oracle construction
separates the collapsing property and the quantum collision-resistance [4].

The Relations of Variant Hash Functions. The relations of security notions
of cryptographic hash functions are studied comprehensively in both classical and
quantum setting (such as [20,34]). As for the existence in the black-box manner,
Hsiao and Reyzin set up a fully black-box barrier from the public-coin collision-
resistant hash functions to the secret-coin collision-resistant hash functions by
the two-oracle technique [22]. Simon showed the impossibility of (relativized)
reduction from the collision-resistant hash functions to one-way permutation [36].
This impossibility is lifted into a quantum fully black-box setting by Hosoya-
mada and Yamakawa [21], which also rules out the quantum fully black-box
reduction from the quantum-computable (classical-computable) collapsing hash
functionsto the quantum-computable (classical-computable) one-way permuta-
tion. Asharov and Segev showed the non-existence of fully black-box construction
of collision-resistant hash functions from indistinguishability obfuscator, which
indicates that the collision-resistant hash function doesn’t belong to the world
Obfustopia [5]. As a weaker notion, the multi-collision resistant hash function
was studied in [7,9], which also showed a fully black-box barrier from one-way
permutation to that primitive. Inspired by Impagliazzo’s five worlds [24], Komar-
godski et al. defined four worlds of hashing-related primitives in classical setting
[26], which are Hashomania, Minihash, Unihash, Nocrypt respectively. Hashoma-
nia denotes the world that the collision-resistant hash function exists. Minihash
is the world that multiple collision resistant hash exists. Unihash denotes only
one-way functions exist, and Nocrypt is the world that has no one-way function.
They also showed a fully black-box barrier from the multiple collision resistant
hash functions to the collision-resistant hash functions. Then Komargodski et al.
studied the distributional collision resistant hash functions [27], which is firstly
introduced by [16], they showed the distributional collision-resistan hash func-
tions can be guaranteed by the existence of multi-collision resistance hash in a
non-black-box (and infinitely-often ) case, and also implied by the the average
case hardness of statistical zero-knowledge. Then Bitansky et al. showed that
primitive might be stronger than one-way functions by giving a construction of
constant-round statistically hiding commitment scheme [8], which seems impos-
sible from one-way function in the fully black-box case [19].

Although there have been a lot of studies about the security notions of hash
functions in the classical world. Many relations remain to be unknown in the
quantum setting. Therefore, in this paper, we further study the relations of
post-quantum security definitions of hash functions theoretically and take the
first step to show whether collapsing hash belongs to the quantum analogue of
Hashomania.
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2 Preliminary

2.1 Notations

We use N and R to denote the set of positive integers and real numbers respec-
tively, ‖ρ1, ρ1‖tr is the trace distance between two mixed states ρ1, ρ1, and Tr(ρ)
denotes ρ’s trace. The length of a string x is denoted as |x|, and when refered
to a set X, let |X| be its Cardinality. The mathematical expectation of a ran-
dom variable H is E[H]. A function f : N → R is called negligible, if for any
positive polynomial p(n), it holds 1/p(n) > f(n) for all sufficiently large n. It
is easy to see that for a non-negligible f(n), there is some positive polynomial
p(·) such that 1/p(n) < f(n) for infinite many n ∈ N. For a hash function
Hn : {0, 1}n → {0, 1}m, we let H−1

n (y) denote the set of preimage for any
y ∈ {0, 1}m, and when y /∈ Hn({0, 1}n), let H−1

n (y) = ∅.

2.2 Quantum Computation

In this part, we introduce some background information on quantum computa-
tion, we assume the familiarity with basic notions in [31]. A quantum state is a
vector with norm 1 in a Hilbert space, which we usually denote it by |φ〉. And
in this work, we usually consider that state in binary form, for example

|φ〉 :=
∑

x

ax|x〉

for x ∈ {0, 1}n and
∑ |ax|2 = 1. The family of pure states {|x〉}x∈{0,1}n is called

the computational basis of that space. The combination of two states |φ1〉, |φ2〉
is the tensor product |φ1〉 ⊗ |φ2〉 and we denote by |φ1, φ2〉 for simplicity.

A quantum algorithm A is made up by the composition of a series of basis
gates, which can be unitary (such as the Hadamard gates, Toffoli gates, and
the CNOT gates), and non-unitary (such as the ancillary gates and the erasure
gates). A collection of functions {Hn} is called quantum-computable if there
exists a family of polynomial-time uniform quantum circuits {Cn} to implement
it, and permits the superposition calculation, namely

∑

x,y

ax,y|x, y〉 Cn−→
∑

x,y

ax,y|x, y ⊕ Hn(x)〉

for any possible
∑

x,y ax,y|x, y〉 (or we can define it in the bounded-error case,
i.e. the distance between Cn|x, y〉 and the actual |x, y ⊕ Hn(x)〉 is at least 2/3).

For a general quantum circuit C, the output is denoted by the mixed state
ρ =

∑
i pi|φi〉〈φi| such that

∑
i pi = 1. If C is polynomial-time quantum circuit,

we can simulate it equivalently by some unitary circuits C′ efficiently [1]. We
denote by |φ〉 the output of C′, then we have

Tr
z

|φ〉〈φ| = ρ,
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where Trz is the partial trace respect to some auxiliary registers added in C′.
We hence say |φ〉 is the purification of ρ and C′ is the purified circuit of C.
And when we measure a state |φ〉 (in some basis such as {|x〉}x∈{0,1}n), the
probability that we get x in result is |〈x|φ〉|2 and when measuring a mixed state
ρ, the corresponding probability is 〈x|ρ|x〉.

For a quantum algorithm A, we denote by [A(x) → z] the process that it
takes the classical information x as its input and output the measurement z, and
the corresponding probability is denote as

Pr[A(x) → z].

When A is unitary, that probability can be denoted as ‖|z〉〈z| ⊗ I ◦ A|x, 0〉‖2,
where 0 stores the auxiliary qubits of A, and I is the identity on the rest registers.

2.3 The Quantum Security of Hash Functions

In this part, we will introduce several security definitions of hash functions {Hn :
K × X → Y}n∈N. We usually assume the hash functions follow the binary
form {Hn : {0, 1}l(n) × {0, 1}n → {0, 1}m(n)}n∈N, namely X = {0, 1}n, K =
{0, 1}l(n), and Y = {0, 1}m(n). The parameters l(n) and m(n) are bounded by
some polynomial of n. They are denoted as l and m in brief when there is no
confusion. We will always assume that {Hn} is compressing, namely it holds
that n > m for all sufficiently large n ∈ N, and {Hn} is keyless if l(n) = 0.

The following definition of quantum collision-resistant hash functions is
adapted from [21], which provides a classification due to the implementation
environment2.

Definition 1 (Quantum collision-resistant hash function [21]). A col-
lection of hash functions {Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N is quantum-
computable (or classical-computable) quantum collision-resistant hash functions
if there exists a pair of efficient quantum (classical) algorithms Gen and Eval
such that:

– Gen(1n) : The key generation algorithm takes the security parameter 1n as its
input, and output an evaluation key k ∈ {0, 1}l.

– Eval(k, x) The evaluation algorithm calculates the hash function Hn(k, ·) for
an evaluation key k ∈ {0, 1}l and returns the hash value y = Hn(k, x).

For any quantum efficient adversary A, we have

Pr
k←Gen(1n)

[A(1n, k) → (x0, x1),Hn(k, x0) = Hn(k, x0)] ≤ negl(n) (2)

for any n ∈ N. The probability above is taken over the choice of k ← Gen(1n)
and the randomness inside A. Where negl(·) is a negligible function.
2 We will always follow this classification in the following definitions. It’s not important

to the proof in our result, but we believe it can help us clarify the underlying relations
of each primitive with different perspectives.
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Next, we introduce the definition of collapsing hash functions, which is origi-
nally defined by Unruh [38], here we adapt it slightly to achieve the consistency
of this work.

Definition 2 (Collapsing Hash Functions [38]). A collection of hash func-
tions {Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N is quantum-computable (classical-
computable) collapsing hash functions, if there exists a pair of efficient quantum
(classical) algorithms Gen and Eval as Definition 1, and withstands the attack
of any quantum efficient adversary A in the following experiment Expcoll

A (n):

– The adversary A is divided into two phases A1, A2 in that experiment.
– In the first phase, A1 is given the security parameter 1n along with an eval-

uation key k ← Gen(1n) as its input and generates the following state:

|φ〉 :=
∑

x,y

αx,y,z|x, y, z〉 (3)

where x ∈ {0, 1}n and y ∈ {0, 1}m(n) denote the input/output of Hn(k, ·)
respectively and z is the auxiliary string. Then A1 sends the registers con-
taining the input/output of Hn(k, ·) to the challenger.

– The challenger randomly chooses a coin b ← {0, 1}. If b = 0, it would measure
the output register of the receiving state in the computational basis; If b = 1,
it would measure the input register.

– Then the challenger returns the resulting state to the adversary A2.
– After receiving the state from the challenger and inheriting the information

from A1. The second phase A2 outputs his decision b′ ∈ {0, 1} and wins iff
b′ = b.

We let Expcoll
A (n) = 1 whenever the adversary A wins and Expcoll

A (n) = 0 other-
wise. Then {Hn}n∈N satisfies the collapsing property if

∣
∣ Pr[Expcoll

A (n) = 1] − 1
2

∣
∣ ≤ negl(n) (4)

for any quantum efficient adversary A, and for all n ∈ N. Where negl(·) is a
negligible function.

Since the challenger can check the validity of |φ〉 by invoking Hn again in
the experiment, without loss of generality, we assume A1 always returns a valid
state, which means the output register stores the correct hash value of the cor-
responding input.

To construct quantum lightning, one-shot chameleon hashing, and signatures
schemes, Amos et al. further explored the quantum security of hash functions
and proposed a new notion which is called the equivocal collision-resistant hash
functions.

Definition 3 (Equivocal Collision-Resistant Hash Functions [4]). A col-
lection of hash functions {Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N is quantum-
computable (classical-computable) equivocal collision-resistant hash functions, if
there exists a pair of efficient quantum (classical) algorithms Gen and Eval as
in Definition 1, along with the following two efficient quantum algorithms G, E:
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– G(k) : The generation algorithm takes the evaluation key k as its input, and
outputs a hash value y of Hn(k, ·), a description of a predicate P : {0, 1}n →
{0, 1}, and a state ρy,P (which probably includes the information about the
evaluation key and the description of P).

– E(b, ρ) : The equivocal algorithm takes a bit b ∈ {0, 1} along with a state ρ as
its input, and outputs a preimage x.

The correctness stresses that if P, y and ρy,P is generated by G(k), then the
output x of E(b, ρy,P) satisfies Hn(k, x) = y and P(x) = b with overwhelming
probability for any b ∈ {0, 1}. And the security of {Hn} also requires quantum
collision-resistance against any quantum efficient adversary A.

Notice that here we only consider the quantum implementations of G, E in
above definition. Since if they are classical, we can apparently get a collision by
repeating E(b, ρ) with a copied ρ (if G is classical, the output of G should be
classical as well). Moreover, we can see that the quantum collision-resistance is
implied by the equivocal collision-resistance, and the equivocality also rules out
the collapsing property, which is shown by the following lemma.

Lemma 1. If {Hn} is a collection of quantum-computable (classical-
computable) equivocal collision-resistant hash functions, then it is not collapsing.

That result was claimed originally by Amos et al. in [4] (Sect. 2) without an
explicit proof. We will give a detailed proof for Lemma 1 via a non-black-box
manner in Appendix A for completeness.

Then we derive the following definitions of (almost) δ(n)-bounded (and reg-
ular bounded) to classify the hash functions by the size of preimages.

Definition 4 (δ(n)-bounded). A collection of hash functions {Hn : K × X →
Y} is δ(n)-bounded if

|{x | Hn(k, x) = y}| ≤ δ(n) (5)

for all n ∈ N, k ∈ supp(Gen(1n)), and y ∈ {0, 1}m. Where supp(Gen(1n)) ⊆ K
denotes the support of the distribution of key generation algorithm Gen(1n). In
addition, {Hn} is almost δ(n)-bounded if

Pr
k←Gen(1n)

[|{x | Hn(k, x) = y}| ≤ δ(n)] ≥ 1 − negl(n) (6)

for all n ∈ N, and y ∈ Y, where negl(·) denotes a negligible function.

Besides, {Hn : K × X → Y} is called regular bounded if δ(n) = O(|X|/|Y|),
which means the preimages could not be too large to the expected value. We
say a collection of hash functions {Hn} is polynomial bounded, if there exists
a positive polynomial poly(·) such that {Hn} is poly(n)-bounded. And the
notions of almost regular bounded and almost polynomial bounded are defined
accordingly.

In the following part, we will classify the hash functions by this notion and
start our result in a polynomial bounded setting.
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A function Hn is called regular, if all hash values have the same size of
preimages (except the empty set). Base on that notion, Ristenpart and Shrimp-
ton further proposed the definition of regularity [33], which is also highly relative
to the almost regular bounded property. Here we adapt that notion to fit our
content as follows.

Definition 5 (Regularity [33]). A collection of hash functions {Hn : K×X →
Y} is Δ(n)-regular if it holds that

∑

k

Pr[k = k′ : Gen(1n) → k′] · Δ(k, n) ≤ Δ(n),

where Δ(k, n) is given by

Δ(k, n) := max
y

∣
∣|{x | Hn(k, x) = y}| − |X|/|Y|∣∣

|X| .

In addition, we say {Hn : K×X → Y} is nearly regular if Δ(n) ≤ O( |X|
|Y|·nω(1) ).

Notice there are other definitions characterizing the regularity of hash func-
tions such as [28], they also defined the almost regularity, we hence denote our
notion by “nearly regular” instead of “almost regular” to avoid the potential
confusion. It’s easy to see that any regular hash function satisfies the nearly reg-
ular property, and by Markov’s inequality, nearly regular hash function is almost
regular bounded.

As a basic tool that will used in the second part of our result, we introduce
the notion from k-wise independent hash functions, which is generalized by the
universal hash functions.

Definition 6 (k-Wise Independent Hash Functions). A family of hash
functions {h : U → [M ]} is called k-wise independent if for any k distinct inputs
x1, . . . xk along with k outputs y1, . . . , yk (probably not distinct), it holds that

Pr
h

[∧k
i=1h(xi) = yi] ≤ 1

Mk
. (7)

That notion has plenty of applications in cryptography in both quantum and
classical setting such as [10,11,14,35,37,41]. It can be implemented efficiently
due to many concrete constructions such as [13,40].

3 The Equivalence in Polynomial Bounded Case

In this section, we will show the equivalence of the quantum collision-resistance
and the collapsing property, when the preimages of each hash value are upper
bounded by some polynomial of the input length. It is formalized as follows.

Theorem 3. A collection of quantum-computable (classical-computable) poly-
nomial bounded hash functions is collapsing if and only if it is quantum collision-
resistant.
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Proof. By the definition of collapsing hash functions, it’s trivial to obtain
the collision-resistance from collapsing property for any quantum-computable
(classical-computable) poly(n)-bounded hash functions {Hn : {0, 1}l×{0, 1}n →
{0, 1}m}n∈N, where poly(·) is a positive polynomial. Hence it’s sufficient to prove
it on the other direction.

Since the evaluation key is not involved in this proof, without loss of general-
ity, we consider this problem in the keyless setting (i.e. the collection of hash func-
tions is denote by {Hn : {0, 1}n → {0, 1}m}n∈N) for convenience, and the gener-
alized result can be derived accordingly. We justify that result by making a con-
tradiction. Assuming there exists a collection of quantum-computable (classical-
computable) poly(n)-bounded hash functions {Hn : {0, 1}n → {0, 1}m}n∈N

for some positive polynomial poly(·) which is quantum collision-resistant but
not collapsing, and A = (A1,A2) is the corresponding quantum adversary that
breaks the collapsing property of Hn. We now take advantage of A to construct
a quantum collision-finding algorithm B as follows:

– B firstly invokes A1(1n) and produces the state ρ1.
– B measures the input register of ρ1 in the computational basis, and gets a

measurement x ∈ {0, 1}n with the resulting state ρ2.
– Then B runs A2 on ρ2 and measures the decision qubit b′, and ρ3 is the

collapsed resulting state after measuring.
– B runs the inverse A†

2 to ρ3 and measures the input register in the computa-
tional basis, and gets the measurement x∗. Then outputs the pair (x, x∗) as
its result.

First of all, we will justify the feasibility of B. We consider that B is given
the internal information of A1,A2 (which is stronger than only given the oracle
access), in that case, we can assume both A1,A2 are unitary operations without
loss of generality. Since if not, we can certainly replace them by their purified
circuits. These processes are efficient as justified in [1]. Since A is an efficient
quantum adversary, hence B is also an efficient quantum algorithm. The remain-
ing part of this proof is to show that B breaks the collision-resistance of Hn with
non-negligible probability, namely, the existence of some positive polynomial
P′(n) such that

Pr[B(1n) → (x, x∗),Hn(x) = Hn(x∗)] ≥ 1
P′(n)

(8)

for infinitely many n ∈ N. Where P′(n) is some positive polynomial.
Before showing that, we give some notations which are useful in the proof.

Firstly, the procedure of A1 is expressed as follows:

A1|0〉 =
∑

x,y,z

αx,y,z|x, y, z〉. (9)

where x, y are stored in the input/ output registers respectively, and z is the
corresponding auxiliary string. Without loss of generality, we assume A1 always
produces valid state, namely it holds that y = Hn(x) in Eq. (9) (since if not, we
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can check the validity of that state by invoking Hn(·) and refuse the noisy part).
The second phase A2 runs on |0, x, y, z〉 as follows

A2|0, x, y, z〉 =
∑

b′,x′,y′,z′
βx,y,z

b′,x′,y′,z′ |b′, x′, y′, z′〉. (10)

where b′ stores the decision bit of A2.
By our assumption, since A wins in Expcoll

A (n) with non-negligible advantage
under our assumption, there exists a positive polynomial P(·) such that

∣
∣Pr[Expcoll

A (n) = 1] − 1
2

∣
∣ ≥ 1

P(n)
, (11)

for infinitely many n ∈ N.
Let ρ(0) denote the mixed state after measuring (tracing out) the output

register of ρ1 (i.e. b = 0), by the Eq. (9), it can be denoted as

ρ(0) :=
∑

y

(
x∈H−1

n (y)∑

x,z

|αx,y,z|2) · |φy〉〈φy|.

where |φy〉 :=
∑x∈H−1

n (y)
x,z αx,y,z|x, y, z〉/

√
(
∑

x,z |αx,y,z|2), and ρ(1) be the state
in the case b = 1, which is

ρ(1) :=
∑

y

x∈H−1
n (y)∑

x

(
∑

z

|αx,y,z|2)|ψx,y〉〈ψx,y|.

where |ψx,y〉 =
∑

z αx,y,z|x, y, z〉/√(
∑

z |αx,y,z|2). Recall that

A2|0, x, y, z〉 =
∑

b′,x′,y′,z′
βx,y,z

b′,x′,y′,z′ |b′, x′, y′, z′〉.

Let Eb,b′ be the event that the measurement of decision bit is b′ after invoking
the A2 on |0〉〈0| ⊗ ρ(b), then we can denote the probability that Eb,b′ occurs as

Pr[E0,b′ ] =
∑

y

∑

x′,y′,z′

∣
∣

x∈H−1
n (y)∑

x,z

βx,y,z
b′,x′,y′,z′αx,y,z

∣
∣2 (12)

for b = 0, and

Pr[E1,b′ ] =
∑

y

x∈H−1
n (y)∑

x

∑

x′,y′,z′

∣
∣
∑

z

βx,y,z
b′,x′,y′,z′αx,y,z

∣
∣2 (13)

for b = 1.
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Thus the success probability of A satisfies

4 · ∣
∣Pr[Expcoll

A (n) = 1] − 1

2

∣
∣

=
∑

b′

∣
∣Pr[E0,b′ ] − Pr[E1,b′ ]

∣
∣

=
∑

b′

∣
∣
∣

∑

y,x′,y′,z′

[∣
∣

x∈H−1
n (y)

∑

x,z

βx,y,z
b′,x′,y′,z′αx,y,z

∣
∣
2 −

∑

x∈H−1
n (y)

∣
∣
∑

z

βx,y,z
b′,x′,y′,z′αx,y,z

∣
∣
2
]∣
∣
∣

=
∑

b′

∣
∣
∣

x∈H−1
n (y)

∑

x,y,x′,y′,z′

x �=x∗
∑

x∗∈H−1
n (y)

Re
(( ∑

z

βx,y,z
b′,x′,y′,z′αx,y,z

) · ( ∑

z

βx∗,y,z
b′,x′,y′,z′αx∗,y,z

))
∣
∣
∣.

(14)

where Re(a) denotes the real part of a (Here the situations that x = x0∧x∗ = x1

and x = x1 ∧ x∗ = x0 are counted as two cases, that’s the reason there is no
coefficient 2 in the last equation of (14)).

Since we assume that A breaks the collapsing property of Hn with advantage
1/P(n), from Eq. (14), we can deduce that

∑

b′

∣
∣
∣

x∈H−1
n (y)∑

x,y,x′,y′,z′

x�=x∗
∑

x∗∈H−1
n (y)

Re
(( ∑

z

βx,y,z
b′,x′,y′,z′αx,y,z

)

· ( ∑

z

βx∗,y,z
b′,x′,y′,z′αx∗,y,z

))∣
∣
∣ ≥ 4

P(n)
(15)

for infinitely many n ∈ N.
We now estimate the probability that B successfully finds a collision. Since

we denote by ρ2 the state that B just measures the input register of the state
produced by A1(1n), we have

ρ2 = ρ(1) =
∑

y

x∈H−1
n (y)∑

x

(
∑

z

|αx,y,z|2)|ψx,y〉〈ψx,y|. (16)

Therefore A2(|0〉〈0| ⊗ ρ2)A†
2 is denoted as

∑

y

x∈H−1
n (y)∑

x

(
∑

z

|αx,y,z|2)A2|0, ψx,y〉〈0, ψx,y|A†
2

=
∑

y

x∈H−1
n (y)∑

x

(
∑

z,b′,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′ |b′, x′, y′, z′〉)

· (
∑

z,b′,x′,y′,z′
ᾱx,y,zβ̄

x,y,z
b′,x′,y′,z′〈b′, x′, y′, z′|).
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Then ρ3 can be denoted as

∑

y

x∈H−1
n (y)∑

x

∑

b′
(

∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′ |b′, x′, y′, z′〉)

· (
∑

z,x′,y′,z′
ᾱx,y,zβ̄

x,y,z
b′,x′,y′,z′〈b′, x′, y′, z′|).

The finial state before measuring is A†
2ρ3A2, which can be denoted as follows

∑

y

x∈H−1
n (y)∑

x

∑

b′
(

∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′A†

2|b′, x′, y′, z′〉)

· (
∑

z,x′,y′,z′
ᾱx,y,zβ̄

x,y,z
b′,x′,y′,z′〈b′, x′, y′, z′|A2).

To estimate the probability that the measurement of A†
2ρ3A2 equals |0, x∗, y, z∗〉.

Note that, for any |0, x∗, y, z∗〉, we have

〈0, x∗, y, z∗|(
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′A†

2|b′, x′, y′, z′〉)

· (
∑

z,x′,y′,z′
ᾱx,y,zβ̄

x,y,z
b′,x′,y′,z′〈b′, x′, y′, z′|A2)|0, x∗, y, z∗〉

= |(
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′〈0, x∗, y, z∗|A†

2|b′, x′, y′, z′〉)|2

= |(
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′(

∑

b′,x′,y′,z′
β̄x∗,y,z∗

b′,x′,y′,z′〈b′, x′, y′, z′|)|b′, x′, y′, z′〉)|2

= |
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′ β̄

x∗,y,z∗
b′,x′,y′,z′ |2

Therefore the probability that B finds a collision x, x∗ is at least

Pr[B(1n) → (x, x∗),Hn(x) = Hn(x∗)]

≥
x∈H−1

n (y)∑

x,y,b′

x∗ �=x∑

z∗,x∗∈H−1
n (y)

〈0, x∗, y, z∗|(
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′A†

2|b′, x′, y′, z′〉)

· (
∑

z,x′,y′,z′
ᾱx,y,zβ̄

x,y,z
b′,x′,y′,z′〈b′, x′, y′, z′|A2)|0, x∗, y, z∗〉

=
x∈H−1

n (y)∑

x,y,b′

x∗ �=x∑

z∗,x∗∈H−1
n (y)

|
∑

z,x′,y′,z′
αx,y,zβ

x,y,z
b′,x′,y′,z′ β̄

x∗,y,z∗
b′,x′,y′,z′ |2. (17)
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Since Hn is poly(n)-bounded, and
∑

x,y,z |αx,y,z|2 = 1, it holds that

x∈H−1
n (y)∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

σ(x, y) · |ᾱx∗,y,z∗ |2 ≤ poly(n), (18)

According to the inequality (18) and

|
k∑

i=1

aibi|2 ≤ (
k∑

i=1

|ai|2) · (
k∑

i=1

|bi|2),

we can hence further deduce that

x∈H−1
n (y)∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

|(
∑

z,x′,y′,z′
αx,y,zβx,y,z

b′,x′,y′,z′ β̄
x∗,y,z∗
b′,x′,y′,z′ |2

≥
( x∈H−1

n (y)∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

∣∣∣
∑

z,x′,y′,z′
β̄x∗,y,z∗

b′,x′,y′,z′αx,y,zβx,y,z
b′,x′,y′,z′

∣∣∣
2)

· ( x∈H−1
n (y)∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

|ᾱx∗,y,z∗ |2 )
/poly(n)

≥
∣∣∣

x∈H−1
n (y)∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

( ∑

z,x′,y′,z′
β̄x∗,y,z∗

b′,x′,y′,z′ ᾱx∗,y,z∗αx,y,zβx,y,z
b′,x′,y′,z′

)∣∣∣
2
/poly(n),

(19)

for both b′ = 0, 1.
Combining the inequalities (17), (19) with (15), we can derive the probability

that B finds a collision satisfies

Pr[B(1n) → (x, x∗), Hn(x) = Hn(x
∗)]

≥
∑

b′

∣∣∣
∑

x,y

x∗ �=x∑

z∗,x∗∈H−1
n (y)

( ∑

z,x′,y′,z′
β̄x∗,y,z∗

b′,x′,y′,z′ ᾱ0,x∗,y,z∗α0,x,y,zβx,y,z
b′,x′,y′,z′

)∣∣∣
2
/poly(n)

≥ 8

p(n)2 · poly(n)

for infinitely many n ∈ N, which implies immediately that {Hn} is not a collec-
tion of quantum-computable (classical-computable) collision-resistant hash func-
tions. That hence completes the proof of Theorem 3. �

Notice that Theorem 3 is proved in the semi-black-box manner [32], that is
because the inverse of the second phase of adversary A2 is usually inaccessible
via the fully black-box reduction (because A2 could be probably non-unitary in
general case).

Since the correctness of this proof is irrelevant to the evaluation key, that
method can also be adapted slightly to fit the equivalence of the general hash
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functions {Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N. Moreover, we can further gen-
eralize the Theorem 3 into the almost bounded case, which is the following
corollary.

Corollary 3. A collection of quantum-computable (classical-computable) almost
polynomial bounded hash functions is collapsing if and only if it is quantum
collision-resistant.

The proof is very similar to the proof of Theorem 3 (the only difference is that we
should ignore the unbounded part of k, whose ratio is at most negligible large),
which is omitted here.

Theorem 3 indicates that the quantum collision-resistance and the collapsing
property must be satisfied simultaneously for any polynomial bounded hash
functions, since classical-computable (quantum-computable) equivocal collision-
resistance hash functions can not satisfy the collapsing property due to Lemma 1,
as a corollary, we can also show the non-existence of equivocal collision-resistant
polynomial bounded hash functions as follows.

Corollary 4. There doesn’t exist almost polynomial bounded equivocal collision-
resistant hash functions.

The corollary above sheds light on how to circumvent a morass for con-
structing the equivocal collision-resistant hash functions. That is, the preimages
shouldn’t be too small for each hash value. Besides, our result also partially
answers the open problem raised by Amos et al. in [4], which shows that the
collapsing hash functions can be implied by the unequivocal hash function in
polynomial bounded case.

Besides, since any collection of polynomial bounded quantum collision-
resistant hash functions must satisfies the collapsing property simultaneously,
we can further deduce that, for any construction that preserves the collision-
resistance and the collapsing property such as the Sponge construction and the
Merkle-Damg̊ard construction [15,37,42], it’s sufficient to guarantee the collaps-
ing property if the underlying block functions are polynomial bounded and quan-
tum collision-resistant.

4 The Implication in Regular Bounded Case

In this section, we consider the case that the preimages are exponentially large.
Firstly, we give a construction to show how to transform the almost regular
bounded quantum collision-resistant hash functions to a collapsing one. Then,
as an application, we show Ajtai’s construction could meet the requirement of
that almost regular bounded property, which hence implies a construction of col-
lapsing hash functions based on the quantum hardness of short integer solution
(SIS) problem.
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4.1 A Construction of Collapsing Hash Functions

For a collection of (compressing) hash functions {Hn : {0, 1}l × {0, 1}n →
{0, 1}m}n∈N with efficient quantum (classical) algorithms Gen and Eval, we con-
sider the following way to rarefy and smooth the preimages by extending the
output size.

Firstly, we assume it holds that n + 1 > m(n) for all n, since if not, we have
many way to extent that gap when n+1 = m(n) such as using some iterations or
just omitting one random bit of the output string (and let the information of that
position be the additional key of the new hash). Then we construct the new hash
functions {H ′

n : {0, 1}l+|h| × {0, 1}n → {0, 1}n−1}n∈N, with the corresponding
algorithms Gen′, Eval which perform as follows:

– Gen′(1n) : The key generation algorithm takes the security parameter 1n

as its input, and generates a (poly(n) + 1)-wise independent hash function
h : {0, 1}n → {0, 1}n−m−1, where we denote by h it’s description and the
length is |h|. Then it invokes k ← Gen(1n) and returns k′ = h‖k as its
output.

– Eval′(k, x) : The evaluation algorithm takes the evaluation key k′ = h‖k
and x ∈ {0, 1}n as its input, it firstly calculates t := h(x), then invokes the
evaluation algorithm of Hn(k, ·) and gets y = Eval(k, x). It would return
y′ := t‖y as its output.

It is easy to show that {H ′
n : {0, 1}l+|h| × {0, 1}n → {0, 1}n−1} is quantum

collision-resistant if {Hn : {0, 1}l ×{0, 1}n → {0, 1}m}n∈N is. From the following
lemma by Unruh, we can further deduce the similar preservation of the collapsing
property for that construction.

Lemma 2 ([15]). If Gk ◦Hn(k, ·) is collapsing, and Gk is quantum polynomial-
time computable, then Hn(k, ·) is collapsing.

If {Hn : {0, 1}l×{0, 1}n → {0, 1}m}n∈N is collapsing, and Gk is the operation
that omits the first n−m−1 bits of its input, we have Gk ◦H ′

n(k′, ·) = Hn(k, ·).
That implies H ′

n is also collapsing due to the Lemma 2. Then by such construc-
tion, we further derive the implication from the almost polynomial bounded
collision-resistant hash functions to the almost regular bounded collapsing hash
functions which is formed as the following theorem.

Theorem 4. The existence of the quantum-computable (classical-computable)
almost polynomial bounded collapsing hash functions is implied by the existence of
the quantum-computable (classical-computable) almost regular bounded collision-
resistant hash functions.

Proof. To prove that theorem, according to the result in polynomial bounded
case (i.e. Theorem 3), it is sufficient to give a construction from the almost regular
bounded (i.e. almost O(2n−m)-bounded in that case) quantum collision-resistant
hash functions {Hn : {0, 1}l×{0, 1}n → {0, 1}m}n∈N to almost poly(n)-bounded
quantum collision-resistant hash functions for some positive polynomial poly(·).
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We hence prove that the construction of {H ′
n} at the beginning of the Sect. 4

could meet that satisfactory.
It is easy to derive that the quantum collision-resistance is preserved in the

construction above. More specifically, {H ′
n : {0, 1}l+n ×{0, 1}n → {0, 1}n−1}n∈N

is a collection of quantum-computable (classical-computable) collision-resistant
hash functions if {Hn : {0, 1}l × {0, 1}n → {0, 1}m}n∈N is quantum-computable
(classical-computable) collision-resistant. If not, there should exist an adver-
sary A finding a collision x, x∗ for H ′

n with non-negligible probability. Since
H ′

n(k′, x∗) = H ′
n(k′, x) if and only if h(x∗) = h(x) and Hn(k, x∗) = Hn(k, x)

hold simultaneously, therefore (x, x∗) is also a collision of Hn(k, ·). Since the
collection of functions {H ′

n} is constructed from {Hn} efficiently, that means
{Hn} is not quantum collision-resistant either, which is obviously contradictory
to our assumption.

Therefore to prove the theorem, it’s sufficient to estimate the number of
preimages of H ′

n(k′, ·). Since h : {0, 1}n → {0, 1}n−m−1 is a (poly(n) + 1)-wise
independent hash function, we hence have

Pr
h

[h(x1) = h(x2) = . . . = h(xpoly(n)+1)] ≤ (
1

2n−m−1
)poly(n)+1 (20)

for any distinct x1, . . . xpoly(n)+1, where the probability is taken over the gener-
ation of the function h.

Recall that H ′
n(k′, x∗) = H ′

n(k′, x) if and only if h(x∗) = h(x) and
Hn(k, x∗) = Hn(k, x). We denote by Bad the event that H ′

n(k′, ·) is not poly(n)-
bounded and Bady the event that y’s preimages of H ′

n(k′, ·) are not bounded by
poly(n) for some specific y ∈ {0, 1}n−1, and Goodk denote Hn(k, ·) is O(2n−m)-
bounded for k ∈ {0, 1}l. For any y ∈ {0, 1}n−1, we denote by y1 and y2 the first
n − m − 1 bits and the last m bits of y respectively. Then, it holds that

Pr
k,h

[Bad] = Pr
k,h

[ ∨

y

Bady
] ≤

∑

y

Pr
k,h

[
Bady

]

≤
∑

y

Pr
k,h

[∣∣{x | Hn(k, x) = y1 ∧ h(x) = y2}∣∣ > poly(n)
]

≤
∑

y

Pr
k,h

[∣∣{x | Hn(k, x) = y1 ∧ h(x) = y2}∣∣ > poly(n) | Goodk

]
+ Pr

k,h
[¬Goodk]

∗
≤

∑

y

(
1

2n−m−1
)poly(n)+1 · (C · 2n−m) · . . . · (C · 2n−m − poly(n))

(poly(n) + 1)!
+ negl(n)

≤ (2 · C)poly(n)+1 · 2n−1

(poly(n) + 1)!
+ negl(n) (21)

which is also negligible for n ∈ N, where (∗) follows from the definition of almost
O(2n−m)-bounded hash functions and the property of (poly(n) + 1)-wise inde-
pendent hash functions, C > 0 is a constant.

That implies, for any O(2n−m)-bounded Hn(k, ·), the probability that
the new hash H ′

n(h‖k, ·) is poly(n)-bounded with overwhelming probability
over the generation of h. Combining with the fact that {Hn}′ preserves the
quantum collision-resistance, and the efficiency of k-wise independent hash
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functions, we can deduce that {H ′
n} is a collection of quantum-computable

(classical-computable) almost poly(n)-bounded collision-resistant hash func-
tions if {Hn} is quantum-computable (classical-computable) almost O(2n−m)-
bounded (i.e. almost regular bounded) collision-resistant. That hence completes
the proof of Theorem 4. �

Since any collection of nearly regular hash functions is almost regular
bounded, therefore based on the Theorem 4, we obtain the implication from
any nearly regular quantum collision-resistant hash functions as well.

Corollary 5. The existence of the quantum-computable (classical-computable)
almost polynomial bounded collapsing hash functions is implied by the existence of
the quantum-computable (classical-computable) nearly regular collision-resistant
hash functions.

These results indicate the collapsing property is not inherently “stronger”
than the quantum collision-resistance in many cases, which gives evidence to
show that collapsing hash functions might not be a “higher leveled” quantum
cryptographic primitive than quantum collision-resistant hash functions.

Remark 1. Notice that the form of the input/output space doesn’t affect the
correctness of the proof of Theorem 4. Therefore, by the same method, we can
generalize result of Theorem 4 to any almost O(|X|/|Y|)-bounded hash functions
{Hn : K × X → Y}.

4.2 Application to Ajtai’s Construction

As an application, we will show how to transform Ajtai’s construction into a
collapsing one assuming the quantum hardness of short integer solution problem.

Firstly, we introduce the short integer solution problem SISn,m,q,β as follows:

Definition 7 (Short Integer Solution Problem). Let A ∈ Z
n×m
q be a

matrix which is chosen uniformly at random, the Short Integer Solution problem
SISn,m,q,β is to find a nonzero vector x ∈ Z

m
q such that Ax = 0 and ‖x‖ ≤ β.

Since we can trivially derive a solution of Ax = 0 when the parameters are
chosen inappropriately (for example β > q). Therefore to guarantee it to be as
hard as certain worst-case lattice problems [30], the hardness of SISn,m,q,β usually
requires that β ≥ √

n log q, m ≥ n log q and q ≥ β·ω(
√

n log n). Then we introduce
Ajtai’s construction of a family of hash functions {HA} as follows [2,18]:

– Gen(1n) : The key generation algorithm outputs a matrix A ∈ Z
n×m
q uni-

formly at random as the evaluation key.
– Eval(k, x) : The evaluation algorithm takes a matrix A ∈ Z

n×m
q and a vector

x ∈ Z
m
q as its input, and outputs y := HA(x) = Ax mod q.
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When the input space of {HA} belongs to the sphere Bβ/2(0) := {x | ‖x‖ ≤
β/2}, then it’s not hard to see the quantum collision-resistance of Ajtai’s con-
struction assuming the quantum hardness of Short Integer Solution problem
SISn,m,q,β . Therefore, to adopt our construction, it’s sufficient to prove that
{HA} is almost O(|Bβ/2(0)|/qn)-bounded.

Theorem 5. Assuming β ≥ m3, m ≥ n log q, and q ≥ β · ω(
√

n log n), then we
have

Pr
A
[max

y
|{x | ‖x‖ ≤ β

2
∧ Ax = y mod q}| ≤ O(

vol(Bβ/2(0))

qn
)] ≥ 1 − 1

2m
− 1

qm−n
,

where the probability is taken over the randomness of A ← Z
n×m
q , and

vol(Bβ/2(0) denotes the volume of sphere Bβ/2(0).

Proof. To prove that proposition, we will firstly estimate the size of preimages of
0 ∈ Z

n
q . Notice that det(Λ⊥

q (A)) = qn (or dim(Λ⊥
q (A)) = m−n) with probability

at least 1−1/qm−n over a random chosen A ∈ Z
n×m
q . In the case of det(Λ⊥

q (A)) =
qn, we consider the following cell

P (Λ⊥
q (A),x) := {

m∑

i=1

aivi + x : ai ∈ [−1/2, 1/2)}. (22)

where {vi ∈ Z
m
q , i ∈ {1, . . . , m − n}} forms a basis of Λ⊥

q (A) with maxi{‖vi‖} =
λm−n(Λ⊥

q (A)) (λm−n(Λ⊥
q (A)) is the (m − n)-th successive minimum). And

{vi ∈ Z
m
q , i ∈ {m − n + 1, . . . ,m}} forms a orthogonal basis with length 1

and orthogonal to the space spaned by {vi ∈ Z
m
q , i ∈ {1, . . . , m − n}}. Since

for any x′ �= x ∈ Z
m
q satisfying Ax = Ax′ = 0, the vector x − x′ is a linear

combination of {vi ∈ Z
m
q , i ∈ {1, . . . ,m − n}}, therefore each point x ∈ Λ⊥

q (A)
lies disjointedly in a cell P (Λ⊥

q (A),x).
On the other hand, for any vector v ∈ P (Λ⊥

q (A),x), it holds that

‖v − x‖ ≤ (m · λm−n(Λ⊥
q (A)) + n)/2

Therefore the cell P (Λ⊥
q (A),x) of a point x ∈ Z

m
q satisfying HA(x) =

Ax = 0 and x ∈ Bβ/2(0) should be contained in a larger sphere
B(β+m·λm−n(Λ⊥

q (A))+n)/2(0). We hence have

|Bβ(0) ∩ Λ⊥
q (A)| ≤

vol(B(β+m·λm−n(Λ⊥
q (A))+n)/2(0))

vol(P (Λ⊥
q (A),0))

=
vol(B(β+m·λm−n(Λ⊥

q (A))+n)/2(0))

qn
, (23)

in the case that det(Λ⊥
q (A)) = qn, where vol(·) denotes the volume.

We notice that the covering radius μ satisfying μ(Λ⊥
q (A)) > λm−n(Λ⊥

q (A))/2
and the fact that

Pr
A

[
1
δ

· √
m · qn/m ≤ 2μ(Λ⊥

q (A))] ≤ 1/2m, (24)
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for some constant δ > 0. Therefore λm−n(Λ⊥
q (A)) < 1

δ ·√m·qn/m with probability
at least 1−2−m. In that case, the inequality (23) is further estimated as follows.

vol(B(β+m·λm−n(Λ⊥
q (A))+n)/2(0))

qn

≤
vol(B(β+ 1

δ ·m3/2·qn/m+n)/2(0))

qn
≤ πm/2 · (β + 1

δ · m3/2 · qn/m + n)m

Γ(m/2 + 1) · 2m · qn

≤ πm/2 · (1 + (1δ · m3/2 · qn/m + n)/β)m · βm

Γ(m/2 + 1) · 2m · qn
≤ πm/2 · (1 + O( 1

m ))m · βm

Γ(m/2 + 1) · 2m · qn

≤ O(
πm/2 · (β/2)m

Γ(m/2 + 1) · qn
) = O(

vol(Bβ/2(0))
qn

).

We now turn to estimate the size of preimages for any y �= 0. Let’s assume
there exists a t ∈ Z

m
q such that HA(t) = At = y mod q. It is equivalent to count

the cardinality of set

{x : Ax = 0, ‖x + t‖ ≤ β/2}, (25)

which is proved similarly as above, to be upper bounded by O(vol(Bβ/2(0))/qn)
under the same conditions which are 1

δ · √
m · qn/m > 2μ(Λ⊥

q (A)) and
det(Λ⊥

q (A)) = qn.
Therefore the size of preimages of {HA} is bounded by O(vol(Bβ/2(0))/qn)

with probability at least 1−2−m−qn−m, which completes the proof of Theorem 5.
�

Since the cardinality of {x ∈ Z
m
q : ‖x‖ ≤ β/2} is approximately equal to

the volume of sphere Bβ(0), therefore the size of preimages for any y is upper
bounded by O(|{x ∈ Z

m
q : ‖x‖ ≤ β}|/qn) with overwhelming probability. That

shows {HA(x) = Ax} is a collection of almost regular bounded hash functions.
Notice that the construction in the proof of Theorem 4 can also be applied to
the cases that the input/output space are not in a binary form, which means we
can transform Ajtai’s construction into a collapsing one assuming the quantum
hardness of SISn,m,q,β .

Corollary 6. Let {HA : X → Y} denote Ajtai’s construction of hash functions
for X = {x ∈ Z

m
q : ‖x‖ ≤ β/2} and Y = Z

n
q . Then

H ′
n(h‖A,x) = (h(x), Ax) (26)

is classical-computable almost polynomial bounded collapsing hash functions
assuming the quantum hardness of SISn,m,q,β for β ≥ m3, m ≥ n log q, and
q ≥ β · ω(

√
n log n), where c > 1 is a constant. h : X → {0, 1}r is (poly(n) + 1)-

wise independent hash function satisfying log |X|/|Y| − C ≤ r < log |X|/|Y| for
any constant C > 0.
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5 Conclusion

In this paper, we prove that the collapsing property and the quantum collision-
resistance must hold simultaneously when the size of preimages of a hash func-
tion are upper bounded by some polynomial, and further deduce that these two
properties are in the “same level” under the meaning of implication in “almost
regular bounded” case. Our result indicates that the collapsing hash functions
belong to the quantum analogue of Hashomania [26] (i.e. the world that collision-
resistance hash exists) in many restrictive cases. However, the relation between
these two primitives remains open in more general cases. Actually, our result
doesn’t obstruct the way to construct the quantum collision-resistant hash func-
tions which are not collapsing (in the case that the size of preimages is not
bounded by some polynomial). Therefore, we believe it is important to find a
concrete construction for that (and even a construction of equivocal collision-
resistant hash functions). Besides, since we use the inverse of an quantum circuit
in our proof of Theorem 3, which means our results are proved in a semi-black-
box manner. We also think it is an intriguing problem that if the relation still
holds in fully black-box case, or otherwise, if we can set up a quantum black-
box barrier between these two primitives with some technique like the quantum
two-oracle method [12,21]?
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to us during the preparation of this final version. This work was supported by National
Natural Science Foundation of China (Grants No. 62172405).

A Proof of Lemma 1

We give a proof of Lemma 1 as follows.

Proof (of Lemma 1). Notice that if the state ρy,P output by E already contains
the superposition of the preimages of y. One can obviously distinguishes the dif-
ference between measureing the input or the output register of ρy,P by invoking
E which directly breaks the collapsing property. However, ρy,P may not contain
the preimages of y directly. Therefore the main task is to construct a suitable
state which contains the superposition of the preimages of y (namely, the chal-
lenging state output by the first phase of the adversary A that intends to break
the collapsing property).

Since the evaluation key is not involved in this proof, without loss of gener-
ality, we consider this problem in the keyless setting, which is {Hn : {0, 1}n →
{0, 1}m}n∈N.

To proof that lemma, we firstly replace the original G and E by their purifi-
cations (i.e. assume they are unitary), then we can denote the output state of G
as

|ψ〉 =
∑

P,y,z

aP,y,z|P, y, z〉 ⊗ |φy,P,z〉. (27)
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where |φy,P,z〉 is the corresponding output state state when the descrip-
tion is P, the hash value equals y, and the auxiliary internal information
of G is z. Then the actual output ρy,P equals to the collapsed state |ψ〉
after measuring the y, P, and tracing out the auxiliary register z which is∑

z |aP,y,z|2|φy,P,z〉〈φy,P,z|/(
∑

z |aP,y,z|2). Here for convenience, we denote it
equivalently by the following mixed state

ρ = Tr
P,y,z

|ψ〉〈ψ| =
∑

P,y,z

|aP,y,z|2|P, y, z〉〈P, y, z| ⊗ |φy,P,z〉〈φy,P,z|.

Then the final state after invoking the purified E on (b, ρy,P) can be denoted
as

ρ(b) := E|b, 0〉〈b, 0| ⊗ ρE†. (28)

Equivalently, we denote by E(0, ·) (or E(1, ·)) the unitary operator for the case
b = 0 (or b = 1). Since the correctness of the equivocal collision-resistant hash
functions indicates that E recovers an preimage x of y satisfying P(x) = b
with overwhelming probability, hence ρ(b) must contain the preimages of y with
overwhelming probability. Therefore we can rewrite the state ρ(b) as follows3

ρ(b) =
∑

P,y,z

|aP,y,z |2|P, y, z, b〉〈P, y, z, b| ⊗ (
∑

x,w

βP,y,z,b,x,w|x, w〉)(
∑

x,w

β̄P,y,z,b,x,w〈x, w|),

where x is the output that need to be measured after running E(b, ·), and it
holds that

∑

P,y,z

|aP,y,z|2 ·
P(x)=b,Hn(x)=y∑

w,x

|βP,y,z,b,x,w|2 ≥ 1 − negl(n) (29)

for some negligible function negl(·) due to the correctness of the equivocality.
Since it may not always hold that y = Hn(x), we hence add an additional register
to ρ(b) in order to store the hash value Hn(x), which we denote it by

ρ̃(b) =
∑

P,y,z

|aP,y,z|2|P, y, z, b〉〈P, y, z, b|

⊗ (
∑

x,w

βP,y,z,b,x,w|x,Hn(x), w〉)(
∑

x,w

β̄P,y,z,b,x,w〈x,Hn(x), w|).

Hence ρ̃(b) contains the input and output of Hn, that inspires us to adopt
that state as the challenging state in the collapsing experiment. More specifically,
when we give the registers x,Hn(x) of ρ̃(0) to the challenger of the collapsing
game, then if it has been measured in the output register, the state ρ(0) would
basically not change, which means we can retrieve some x satisfying Hn(x) =

3 To make it clear, we denote it as a mixed state where the measurement of P, y is
replaced by the tracing out operation, and without loss of generality, we assume the
register containing the bit b is not changed by E .
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y ∧ P(x) = 1 with overwhelming probability by invoking E(1, ·) ◦ E†(0, ·). On
the other hand, if it has been measured in the input register, then the state ρ(0)

would be probably collapsed and can not be reversible, if not, that implies we
can get a collision of y with non-negligible probability.

The following is the description of the adversary A that breaks the collapsing
property:

– A gets the description of the hash function Hn(k, ·), and then invokes the
purified G(1n) to get the state ρ.

– A runs the operator E(0, ·) to the state |0, 0〉〈0, 0| ⊗ ρ, and gets ρ̃(0) in result,
then sends the input and output registers of ρ̃(0) to the challenger.

– After receiving the state ρ̃
(0)
(b∗) from the challenger (b∗ = 0 means the state

after measuring (tracing out) the output register of ρ̃(0) , and b∗ = 1 denotes
the state after measuring the input register), A invokes the E(1, ·) ◦ E†(0, ·)
to that state and measures the result to get a measurement x and the cor-
responding y. It would output 0 if P(x) = 1 ∧ Hn(x) = y, and output 1 if
P(x) = 0 ∧ Hn(x) = y otherwise, it would returns a random bit b′ ← {0, 1}
uniformly.

We now estimate the advantage of A. In the case that the challenger measures
the output register, according to the correctness of the equivocality of Hn, we
can deduce from inequality (29) that the trace distance between ρ̃

(0)
(0) and ρ̃(0) is

at most

TD(ρ̃(0)(0), ρ̃
(0)) ≤ negl0(n)

for some negligible function negl0(·). That implies if we invoke the inverse
E†(0, ·) in that case, we could recover the state |0, 0〉〈0, 0|⊗ρ with overwhelming
probability. And hence we get the measurement x that satisfies P(x) = 1 and
Hn(k, x) = y with overwhelming probability after invoking E again. Namely, we
have

Pr[A outputs 0 | b∗ = 0] ≥ 1 − negl1(n). (30)

In the case that the challenger measures the input register (i.e. b∗ = 1), the
input register of ρ̃(0) would collapse to some x∗ ( which is the preimage of y
with overwhelming probability due to the correctness of equivocality). Then we
run the E(1, ·) ◦ E†(0, ·) and measure the result to get a measurement x and the
corresponding Hn(x). To estimate the probability that A wins in this case, we
consider the following these events separately:

– The measurement x satisfies P(x) = 1 ∧ Hn(x) = y, that implies we success-
fully find a collision x, x∗. Therefore the probability of that event occurs is
bounded by some negligible function negl2(·) (otherwise it would induce an
adversary breaks the quantum collision-resistance of Hn(·) with non-negligible
probability).

– The measurement x satisfies P(x) = 0 ∧ Hn(x) = y, then A would return 1
deterministically when that event occurs.
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– The measurement x is not a preimage of y, then the probability that A returns
1 with probability exactly 1/2

That implies

Pr[A outputs 1 | b∗ = 1]

= 1 − Pr[P(x) = 1 ∧ Hn(x) = y | b∗ = 1] − 1
2

Pr[Hn(x) �= y | b∗ = 1]

≥ 1
2

− negl2(n), (31)

for some negligible function negl2(·).
Combining the inequality (30) with (31), we have

∣
∣Pr[Expcoll

A (n) = 1] − 1
2

∣
∣

≥ ∣
∣1
2

· Pr[A outputs 1 | b∗ = 1] +
1
2

· Pr[A outputs 1 | b∗ = 1] − 1
2

∣
∣

≥ 1
4

− negl1(n) − negl2(n), (32)

which hence breaks the collapsing property of Hn(·). �

Note that the inverse of the operator E(·) is involved in our proof, which is
usually infeasible in the fully black-box sense (even the semi-black-box sense),
that is because the process of purification requires the internal information of
the equivocal hash functions. That implies we prove the Lemma 1 via a non-
black-box manner. However, we believe it is also interesting to figure out if this
result still holds in the black-box manner.
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Abstract. Collapsing is a post-quantum strengthening of collision resis-
tance, needed to lift many classical results to the quantum setting. Unfor-
tunately, the only existing standard-model proofs of collapsing hashes
require LWE. We construct the first collapsing hashes from the quantum
hardness of any one of the following problems:

– LPN in a variety of low noise or high-hardness regimes, essentially
matching what is known for collision resistance from LPN.

– Finding cycles on exponentially-large expander graphs, such as those
arising from isogenies on elliptic curves.

– The “optimal” hardness of finding collisions in any hash function.
– The polynomial hardness of finding collisions, assuming a certain

plausible regularity condition on the hash.
As an immediate corollary, we obtain the first statistically hiding post-
quantum commitments and post-quantum succinct arguments (of knowl-
edge) under the same assumptions. Our results are obtained by a general
theorem which shows how to construct a collapsing hash H ′ from a post-
quantum collision-resistant hash function H, regardless of whether or not
H itself is collapsing, assuming H satisfies a certain regularity condition
we call “semi-regularity”.

1 Introduction

Collision resistance is one of the most important cryptographic concepts, with
numerous applications throughout cryptography. A collision resistant hash func-
tion H : {0, 1}m → {0, 1}n is one where n < m, thus guaranteeing that collisions
exist in abundance, but where actually finding such collisions is computationally
intractable. Collision resistance provably follows from most number-theoretic
problems used in cryptography, and is one of the main design goals in construc-
tions built from symmetric key tools, such as SHA2 or SHA3.

What happens when quantum computers enter the picture? For any applica-
tion that required collision resistance classically, certainly a minimal condition
is that it remains intractable for quantum algorithms to find a collision. We will
call this notion a “post-quantum” collision resistant hash function (PQ-CRHF).
Post-quantum security rules out constructions based on discrete logarithms or fac-
toring due to Shor’s algorithm [Sho94]. Surprisingly, however, even PQ-CRHFs
are often insufficient for applications, as first demonstrated by Ambainis, Rosma-
nis, and Unruh [ARU14,Unr16b] with a counterexample. The issue usually stems
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13509, pp. 596–624, 2022.
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from rewinding, which is known to be problematic quantumly [VDG98,Wat06].
Examples include commitments and more generally interactive protocols.

To remedy the situation, Unruh [Unr16b] proposes a strengthening of colli-
sion resistance called collapsing. Very roughly, collapsing means that measuring
the hash of a quantum superposition of messages is quantum computationally
indistinguishable from measuring the message superposition itself, even though
both operations are information-theoretically very different. Since its introduc-
tion, collapsing hashes have become recognized as the preferred notion of post-
quantum security, being the appropriate post-quantum replacement for classi-
cal collision resistance whenever there is rewinding [CCY21,CMSZ21,LMS21],
and sometimes even when rewinding is not present [AMRS20]. Unsurpris-
ingly, collapsing is also a natural property beyond hash functions, being the
right notion of post-quantum commitments [Unr16b] (whereas PQ computa-
tional binding is useless), identification protocols underlying post-quantum sig-
natures [DFMS19,LZ19], and general argument systems [LMS21].

Given their importance to post-quantum security, it is crucial to under-
stand how to construct collapsing hash functions. Unfortunately, there are
essentially only two classes of constructions. The first are idealized model
proofs [Unr16b,Unr17], where one proves collapsing relative to, say, a random
oracle. The second are standard-model proofs [Unr16a,LZ19], where the only
existing paradigm leverages lossy functions or closely related concepts, whose
only known post-quantum instantiations require LWE (or equivalently, SIS by
Regev’s reduction [Reg05]).

On the other hand, the only hash functions which are provably PQ-
CRHFs but not collapsing are contrived and require either complex ora-
cles [Unr16b,AGKZ20] or un-tested conjectures [Zha19b]1. Zhandry [Zha19b]
even shows that such a separation between the notions could be used to build
public key quantum money and stronger objects, which have been notoriously
hard to build. In summary, neither of the following scenarios would contradict
any long-standing conjectures:

– Collapsing is ubiquitous, and every non-relativized PQ-CRHF is collapsing.
– Collapsing is rare, and the only standard-model collapsing hash functions are

those requiring LWE.

On Random Oracle-based Hashes. One may argue that we can simply conjecture
that some hash function is collapsing, and then trivially “build” collapsing hashes
from that function. In particular, random oracles are collapsing [Unr16b] and
symmetric key hash functions such as SHA2 or SHA3 are often modeled as
random oracles.

However, collapsing is an inherently quantum notion, which is potentially
much harder to reason about than typical classically-defined notions such as
collision resistance, pseudorandomness, etc. Indeed, the random oracle heuristic
is based on extensive cryptanalytic studies of the hash functions with respect
1 [Zha19b] gives a proof relative to a novel computational assumption, but it has been

cryptanalyzed [Rob21].
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to classically-defined tasks. This is true even for works considering quantum
attacks [HS21,AMG+16], where the cryptanalysis goal is still classically-defined,
such as finding collisions. Some works have proved the post-quantum indiffer-
entiability of these functions [Zha19a,CHS19,Cza21]; while these are important
for understanding security, they punt the cryptanalysis effort to the underlying
round function, which again have largely been studied for their classical security.

Aside from idealized model justifications, we are not aware of any crypt-
analysis effort on hash functions like SHA2 or SHA3 with regards to collapsing.
Therefore, it seems plausible that the random oracle heuristic could hold on
symmetric hash functions relative to classically-defined security properties, but
fails for collapsing. For this reason, the current evidence for SHA2 or SHA3 being
collapsing appears much weaker than evidence for their (post-quantum) collision
resistance.

Our Results. In this work, we build a collapsing hash function H ′ from any
PQ-CRHF H that satisfies a mild structural condition we call semi-regularity.
Semi-regularity essentially means that no output has too many more pre-images
than the “average” output. Note that H itself may be equivocal, and indeed
the counter-example of [ARU14] is semi-regular. Yet when plugged into our
construction, the resulting H ′ is collapsing. We then show the following:

– Hash functions based on expanders [TZ94,CLG09,FLLT21], or a variety of
LPN settings [BLVW19,YZW+19] satisfy our regularity condition. In these
cases, we thus achieve collapsing hashes under the same assumptions used to
achieve post-quantum collision resistance.

– We do not know how to prove semi-regularity for symmetric hash func-
tion such as SHA2 or SHA3, but it is a natural property and it is reason-
able to conjecture it holds for these functions. In particular, random oracles
are semi-regular. Under this conjecture together with post-quantum collision
resistance for SHA2 or SHA3, we obtain collapsing hashes. This is the first
standard-model collapsing hash function from classically defined assumptions
in Minicrypt; that is, they do not imply public key encryption.

– As an alternative approach, we show that H can be compiled into a col-
lapsing hash function if it is optimally collision resistant, even if it is not
semi-regular. Optimal collision resistance means that every polynomial-time
algorithm can only find collisions with probability poly/|Range|. Note that
the optimal generic classical and quantum [BHT97] collision-finding algo-
rithms make T queries and succeed with probability O(T 2)/|Range| and
O(T 3)/|Range|, respectively. Symmetric hashes such as SHA2 or SHA3 are
often designed with the goal of achieving optimal collision resistance, and so
we obtain collapsing hashes under the assumed optimal collision resistance of
either of these functions.

As immediate corollaries of our results, we obtain post-quantum statistically
hiding commitments [Unr16b] and succinct arguments [CMSZ21] under any of
the above assumptions. Our results show that semi-regularity is an important
design consideration for constructing post-quantum hash functions.
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1.1 Why PQ-CRHFs Are Not Enough

For completeness, we give a brief explanation of why rewinding is problematic
with PQ-CRHFs. Consider the following game. An adversary sends a hash y to
the challenger. The challenger then flips a random bit b. The adversary then
wins if it can produce a pre-image x of y such that the first bit of x is b. Clearly,
an adversary could always set y to be the hash of an arbitrary x, in which case
the first bit of x is b with probability 1/2. But can the adversary do better?

Classically, the answer is no, assuming the hash is collision resistant. Suppose
for a given y that the adversary could win with probability 1/2+ε. Then it must
win with probability at least ε conditioned on b = 0, and also with probability at
least ε conditioned on b = 1. By running the adversary on b = 0, rewinding until
just after the adversary sends y, and running again on b = 1, one obtains (with
probability at least ε2) pre-images x0 and x1 whose first bits are 0,1 respectively.
Since x0 �= x1 and they are both pre-images of y, we have thus found a collision.

Quantumly, however, the above breaks down. Measuring x0 on the first exe-
cution potentially destroys the quantum state of the adversary, meaning the
adversary is no longer guaranteed to produce x1. Ambainis et al.’s counter-
example gives a hash function (relative to an oracle) where the probability to
produce x1 indeed becomes negligible. This creates problems for computationally
binding commitments, where Ambainis et al.’s construction yields commitments
that are equivocal, despite being binding in the usual sense. Likewise, this equiv-
ocation is problematic for many proof systems that demonstrate soundness by
extracting two colliding transcripts from an adversary through rewinding.

Unruh’s notion of collapsing hashes resolves this problem. Basically, the
adversary’s first message y results in the output of the hash being measured.
Collapsing implies that this is indistinguishable from measuring the input. Mea-
suring the input corresponds exactly to extracting x0. While such extraction
could potentially alter the quantum state, it cannot alter it in any detectable
way. In particular this means the second run to recover x1 must still succeed. This
completes the reduction from collision resistance. Note that collision resistance
is implied by collapsing as explained by Unruh, and hence collapsing implies the
adversary can only win with probability 1/2 + negl, as desired.

1.2 Techniques

We call a function ≤�-to-1 if no image has more than � pre-images. We start
with the following observation (Sect. 3):

Theorem 1 (Informal). For poly �, any ≤�-to-1 PQ-CRHF is also collapsing.
To see why this might be true, consider some ≤�-to-1 function H. Let

|φ〉 =
∑

x

αx|x〉

be a superposition of inputs. Now consider measuring the output of H applied
to |φ〉 in superposition. If the measurement results in outcome y, then the state
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|φ〉 collapses to the partially-measured state

|φy〉 ∝
∑

x:H(x)=y

αx|x〉 .

Since H is ≤�-to-1, the support of |φy〉 contains at most � different x.
Non-collapsing means that there is some operation M which distinguishes

|φy〉 from the result of measuring |φy〉, the latter yielding a distribution over
singletons |x〉 such that H(x) = y. Suppose that M actually simply accepted
|φy〉 and rejected all orthogonal states. In this case, if we measure |φy〉—thus
obtaining one pre-image x—and then apply M , there is a non-negligible chance
we get back to |φy〉. This is because |φy〉 must have a significant overlap with
|x〉, as |φy〉 is the sum of only � of the |x〉 vectors. But then if we were to
measure again, we will get some x′ that is also a pre-image. Moreover, |φy〉 is
itself not a singleton, since otherwise measuring it would have no effect and the
distinguishing M would be impossible. Therefore there is a non-negligible chance
that x �= x′. We thus obtain a collision.

We show that the above actually holds, no matter what |φy〉 is, and no matter
what M does, thus proving Theorem 1.

Generalization. Unfortunately, Theorem 1 appears somewhat limited. One may
hope that symmetric hash functions such as SHA2 or SHA3, when restricted
to a domain that is only slightly larger than the range, might be ≤�-to-1 for a
polynomial �. After all, if we model them as random oracles, it is straightfor-
ward to show this. However, for other hash functions based on post-quantum
assumptions, such as LPN [BLVW19,YZW+19] or expanders [CLG09], we can-
not reasonably apply the random oracle heuristic due to significant structure.
There are two potential problems:

1. The image might be a sparse subset of the co-domain. In this case, even if
the hash function only compressed by a single bit, it may be exponentially-
many-to-1 and Theorem 1 will not apply. It is not hard to modify Unruh’s
counterexample [Unr16b] to give such a non-collapsing hash (relative to an
oracle). We will give an example of where this is relevant below.

2. Looking ahead, we will see that LPN- and expander-based hash functions
will eventually achieve some level of regularity, but this is only guaranteed
once the input size is somewhat larger than the output. In such a case, the
function is inherently exponentially-many-to-1.

We therefore propose a generalization of Theorem 1 which overcomes these two
specific issues above. First, observe that any ≤�-to-1 hash on its own is not very
useful, as it offers only minimal compression. However, by domain extension
techniques, we can compile it into a hash function with arbitrary compression.

Imagine using Merkle-Damg̊ard (MD) for domain extension, compiling a
“small” hash H into a “big” hash H ′. MD is already guaranteed to preserve
collapsing [Unr16b]. Imagine at each iteration, we only incorporate a single bit
of the input at a time. Since the input to each iteration of H is just an output
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of H concatenated with a single bit, the number of possible inputs to H is never
more than twice the number of possible outputs. In other words, H is 2-to-1
on average, over the set of possible inputs it will be evaluated on. If H were
“sufficiently random looking”, we would therefore expect that most outputs to
H would only have relatively few pre-images, so that H could be ≤�-to-1 for a
polynomial �.

We formalize this intuition: assuming H is “sufficiently regular”, we show
that we can make H “sufficiently random looking” by pre-pending it with a
(almost) �-wise independent permutation for a polynomially-large �. Here, “suf-
ficiently regular” essentially means that the most common output of H is only
polynomially-more likely than the average output. This is formalized by a notion
we call semi-regularity (Definition 4), which says roughly that the most common
output is only a polynomial factor more likely than the “average” output. The
result is the following:

Theorem 2. If H is a semi-regular PQ-CRHF, then it can be compiled into a
collapsing hash function H ′.

Applications. We show that several candidate post-quantum hash functions sat-
isfy the necessary semi-regularity conditions, thus allowing us to construct novel
collapsing hash functions:

– Section 5: Hash functions based on LPN [BLVW19,YZW+19] for a variety
of low noise or high-hardness settings, matching the LPN assumptions under
which plain post-quantum collision resistance exists.

– Section 6: Hash functions based on walks on exponentially-large expander
graphs, as proposed by Charles, Goren, and Lauter [CLG09], abstracting
earlier ideas of [TZ94]. A particular instantiation suggested by [CLG09] allows
for obtaining a collapsing hash function from the hardness of certain problems
on isogenies over elliptic curves. Another candidate was recently proposed by
Fuchs et al. [FLLT21] based on Markov Triples.

Remark 1. The output of an expander-based hash is the label of the final node
in the walk. In general, the set of labels may be sparse, in which case we would
run into Problem 1. An example of such an expander is that of Fuchs et al.,
where the range is Z

3
p, but the size of the graph is only O(p2). Likewise, the

Charles et al. expander from isogenies has labels in Z
2
p but the graph size is only

O(p). For this reason, in the case of expander hashes, we need the full power of
Theorem 2.

Remark 2. We emphasize that we do not prove the constructions of [BLVW19,
YZW+19,CLG09,FLLT21] are collapsing. Instead, we only prove semi-
regularity, which allows us to compile (through a Merkle-Damg̊ard-like construc-
tion) into a collapsing hash. We leave as an interesting open question whether
the base constructions could be proven collapsing.

Remark 3. Other instantiations of [CLG09] have been proposed, such as the
use of LPS graphs [CLG09], the original proposal of [TZ94], and Morgenstern
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graphs [PLQ12]. Some weaknesses have been shown in these graphs [PLQ08],
though there are still versions that remain secure. See [PLQ08] for discussion.
For any version that is post-quantum collision resistant, our result immediately
lifts it to a hash that is collapsing.

Symmetric Key Hash Functions. We do not know how to prove that symmetric
hash functions such as SHA2 or SHA3 are semi-regular, and leave this as an
interesting open question. However, we observe that random oracles are readily
shown to be semi-regular. Thus, either of two things happen:

– The hash function is not semi-regular, therefore violating the random ora-
cle heuristic for a classically defined statistical property. This case could be
considered as demonstrating a significant weakness of the hash function.

– The hash function is semi-regular, in which we can compile it into a collapsing
hash function based on the assumed (post-quantum) collision resistance of the
function, which is a widely studied security property.

Thus we establish semi-regularity as an important design principle in the design
of symmetric-key based hash functions.

We also provide additional evidence that SHA2 or SHA3 can be compiled
into a collapsing hash. Concretely, SHA2 and SHA3 are widely believed to have
optimal collision resistance, meaning that any polynomial-time algorithm only
has a polynomial advantage over the trivial algorithm of guessing two random
inputs and hoping they collide. The assumed optimal collision resistance is the
basis for the current parameter settings of these functions. If SHA2 or SHA3 did
not have optimal collision resistance, it would show that the parameter settings
are too aggressive, and this would be considered a serious weakness.

In Sect. 7, we show that any optimally (post-quantum) collision resistant hash
function that compresses by only a few bits is in fact collapsing, even if it is not
semi-regular. Thus under the highly likely optimal collision resistance of SHA2
or SHA3, we obtain a collapsing hash function.

1.3 Collapsing from Group Actions?

A group action is a relaxation of a standard cryptographic group, roughly allow-
ing exponentiation but not multiplication. The advantage of such a restricted
structure is that it prevents Shor’s algorithm [Sho94], and therefore main-
tains plausible post-quantum security. This was observed concurrently by Cou-
veignes [Cou06] and Rostovtsev and Stolbunov [RS06], both works also propos-
ing an instantiation of plausible post-quantum group actions using isogenies over
elliptic curves.

The restricted structure of group actions preserves plausible post-quantum
security, but it also restricts applications. In particular, the usual way of obtain-
ing collision resistance from discrete logarithms, namely

(x, y) �→ gxhy ,
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no longer can be computed without the ability to multiply elements. One could
consider another natural construction, namely:

(x, b) �→
{

gx if b = 0
hx if b = 1

,

where b is a single bit. This is a 2-to-1 function where finding collisions is
intractable by the hardness of discrete logarithms on the group action. For group
actions based on isogenies, the discrete logarithm problem is exactly the prob-
lem of computing isogenies. However, with currently known group actions from
isogenies, the bit-length of gx is roughly twice the bit-length of x, meaning the
images are sparse and the function is not compressing despite being 2-to-1. Such
functions are not useful for hashing. It remains a major open question whether
collision resistant compressing hashing can be based on the discrete log problem
for group actions of this form, and in particular if such collision resistance can
be based on the hardness of computing isogenies.

Call a group action compact if gx has the same bit length as x. For compact
group actions, the above hash function would be compressing, and collision resis-
tance would follow from the hardness of computing discrete logarithms. Then
applying Theorem 1, we immediately conclude that compact group actions also
yield collapsing hash functions.. We leave finding a plausible post-quantum com-
pact group action as an intriguing open question.

Remark 4. The isogeny-based hash of [CLG09] relies on a different problem,
namely finding a non-trivial cycle on the isogeny graph. The hardness of finding
cycles is a stronger assumption that the hardness of computing isogenies.

1.4 Collapsing from Arbitrary Collision Resistance?

While it seems most natural hash functions are semi-regular (at least in some
parameter settings), it is not hard to construct contrived hash functions that
are not semi-regular. Therefore, our restriction to semi-regular functions poten-
tially limits the applicability of our approach. An interesting conjecture is the
following:

Conjecture 1. From any PQ-CRHF, one can build a collapsing hash function.

Removing the semi-regularity restriction seems challenging. Consider a con-
struction of H ′ from H where the output of H ′ is just the concatenation of t
outputs of H on different inputs. More generally, perhaps the output of H ′ is
an injective function applied to t outputs of H. This structure would allow for
immediately translating an H ′ collision into an H collision. It seems difficult to
devise an H ′ that is not of this form while still proving the collision resistance
of H ′ (let alone collapsing) just on the collision resistance of H.

For an H ′ of this form, if H has n-bit outputs, H ′ has tn-bit outputs, and
therefore H ′ must have at least (tn + 1)-bit inputs in order to be compressing.
Suppose H was not semi-regular, and had some outputs that represented an
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f -fraction of the domain, where f is much larger than the fraction for “average”
outputs, which we will denote g. Then H ′ will have (information-theoretically)
outputs that represent an approximately f t-fraction of the domain, where the
average output would be approximately gt. Thus H ′ is not semi-regular, and in
fact has even worse regularity if t > 1.

Therefore, it seems challenging, if not impossible, to generically remove semi-
regularity from a collision resistant hash function. One may hope to prove H ′

is collapsing despite not being semi-regular. But there would be little hope of
using our techniques alone to prove collapsing, since the calls to H could be on
inputs mapping to the highly-likely outputs, in which case H is super-poly-to-1.

On the other hand, our situation can be seen as roughly analogous to the
case of constructing pseudorandom generators (PRGs) from one-way functions
(OWFs). Specifically, Goldreich, Krawczyk, and Luby [GKL88] initially show
that PRGs can be constructed from any regular one-way function. This was then
improved to PRGs from arbitrary one-way functions by H̊astad et al. [HILL99].
Likewise, our hope is that future ideas will allow for proving Conjecture 1.

1.5 Concurrent and Independent Work

In a current and independent work, Cao and Xue [CX22] also study collapsing
hash functions. Their core result is identical to Theorem 1, namely that collision
resistance when the number of pre-images is polynomially bounded implies col-
lapsing. Somewhat analogous to Theorem 2, they also identify a relaxation they
call almost-regularity, and show that almost-regular PQ-CRHFs can be used to
build collapsing hashes. Almost-regularity is a somewhat stronger requirement
than semi-regularity, resulting in fewer applications. [CX22] show that the SIS
hash function is almost-regular, thus giving a collapsing hash function from SIS,
arriving at the same feasibility result as [Unr16a] though through entirely differ-
ent means. Our work gives several applications not covered in [CX22], namely
collapsing hashes from LPN, expanders, and optimal collision resistance. The
former two applications rely on our more general Theorem 2.

2 Preliminaries

Quantum Computation. We give a very brief overview of quantum computation.
A pure state is a unit column vector, usually denoted in ket notation as |ψ〉,
in a complex Hilbert space H. The conjugate transpose of |ψ〉, a row vector,
is denoted in bra notation as 〈ψ|. We usually think of H as a product of n
2-dimensional spaces, which are called qubits. For each qubit, we will fix some
preferred basis {|0〉, |1〉}, which we call the computational basis. An n qubit
space is therefore associated with the set of n-bit strings, and we say that |ψ〉 is
a superposition over n-bit strings.

A mixed state is a probability distribution over pure states. If state |ψi〉
occurs with probability pi, the mixed state is characterized by a density matrix,
given by

∑
i pi|ψi〉〈ψi|. Mixed states are usually denoted as ρ.
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A quantum algorithm contains two types of operations: unitary transfor-
mations and projective measurements. A unitary is a linear operator U such
that UU† = I, where U† is the Hermitian transpose. The action of U on |ψ〉
is given by U |ψ〉. A projective measurement is specified by a set of projections
P = (P1, . . . , Pt) such that

∑
i Pi = I. When applying measurement P to state

|ψ〉, the result is to output i with probability pi and the quantum system “col-
lapses” to the state |ψi〉, where:

|ψi〉 :=
Pi|ψ〉√〈ψ|Pi|ψ〉 , pi := 〈ψ|Pi|ψ〉 .

When the measurement is applied to a mixed state ρ, the result is to output i
with probability pi and the system collapses to ρi, where

ρi :=
1
pi

PiρPi , pi := Tr(Piρ) .

For a qubit, measurement in the computational basis is the measurement
(|0〉〈0|, |1〉〈1|). For a projective measurement P acting on pure state |ψ〉 or mixed
state ρ, we will write (i, ρ′) ← P(|ψ〉) or (i, ρ′) ← P(ρ) to denote the output i of
applying the measurement P to ρ, together with the resulting state ρ′. Sometimes
we will ignore the actual result of measurement i, focusing just on the resulting
state, in which case we write ρ′ ← P(|ψ〉) or ρ′ ← P(ρ). Other times, we will
ignore the resulting state and just focus on the measurement outcome, in which
case we write i ← P(|ψ〉) or i ← P(ρ).

Consider a joint system H = H0⊗H1, and applying two measurements P0,P1

to the sub-systems H0,H1. We write the resulting measurement as P0 ⊗ P1.
Efficient quantum algorithms are given by a polynomial number of unitaries

from some constant-sized universal set and a polynomial number of computa-
tional basis measurements. We say such algorithms are quantum polynomial time
(QPT).

Throughout this work, we will make use of the following fact:

Fact 1. Any efficient quantum computation over a space H can be turned into
an efficient computation that is also a projective measurement P over a space
H ⊗ H′ for some H′.

Hash Functions. A hash function will be specified by a family of distributions
H = (Hλ)λ over classically efficiently computable functions h : Xλ → Yλ between
some domain Xλ and co-domain Yλ. We require non-trivial compression, namely
that |Xλ| ≥ 2 × |Yλ|. We will consider two security properties. The first is plain
collision resistance but again quantum attackers:

Definition 1 (PQ-CRHF). H is a post-quantum collision resistant hash
function if, for every QPT algorithm A, there exists a negligible function negl
such that

Pr
[

x0 �=x1, and
h(x0)=h(x1)

: h←Hλ

(x0,x1)←A(h)

]
< negl(λ) .
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The second definition is collapsing, due to Unruh [Unr16b]. Consider a superpo-
sition |ψ〉 over Xλ. Consider two measurements:

– MX = (|x〉〈x|)x∈Xλ
, which is just the computational basis measurement of

|ψ〉.
– Mh

Y = (
∑

x:h(x)=y |x〉〈x|)y∈Yλ
. This is the measurement corresponding to the

following process:
• First map |ψ〉 =

∑
x αx|x〉 to |ψ1〉 =

∑
x αx|x〉|h(x)〉, a superposition over

Xλ × Yλ.
• Measure the Yλ registers to obtain y. The |ψ1〉 collapses to a state pro-

portional to
∑

x:h(x)=y αx|x〉|y〉.
• Discard the Yλ registers.

The collapsing definition essentially says that, for any superposition of inputs
the adversary can produce, if either MX or Mh

Y is applied to the state, it is
computationally infeasible to tell which. This holds even if the adversary main-
tained an arbitrary internal state that could be entangled with the superposition
of inputs.

Definition 2 (Collapsing Hash [Unr16b]). H is a collapsing hash function
if, for every QPT algorithm A = (A0,A1), there exists a negligible function negl
such that

|Pr[1 ← A1 ◦ (I ⊗ MX ) ◦ A0(h)] − Pr[1 ← A1 ◦ (I ⊗ Mh
Y) ◦ A0(h)]| < negl(λ) ,

where both probabilities are over the choice of h ← Hλ. We call the quantity
on the left above the advantage of A. Note that A0 outputs both a (quantum)
internal state and a superposition over Xλ. The internal state is passed unaffected
to A1, as is the result of applying MX or Mh

Y to the superposition over Xλ.

Definition 3 (t-wise independence). A family Π of injections from X to Y
(|Y| ≥ |X |) is a t-wise δ-dependent injection if, for any distinct x1, . . . , xt ∈ X ,
the distribution (π(x1), . . . , π(xt)) for π ← Π is δ-close to t uniformly random
distinct elements of Y.

Distributions and Rényi Entropy. For a distribution D over a finite set I, and
α > 1, define the Rényi Entropy as

Hα(D) := − 1
α − 1

log

(
∑

i∈I

Pr[i ← D]α
)

H∞(D) := − log max
i∈I

Pr[i ← D]

The choice of base in the logarithm is irrelevant for our purposes, as long as the
same base is used for all α. For our purposes, it will be convenient to map Rényi
entropy to the norm of the probability vector. Write

‖D‖α :=

(
∑

i∈I

Pr[i ← D]α
)1/α

= 2−(1− 1
α )Hα(D)
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‖D‖∞ := max
i∈I

Pr[i ← D] = 2−H∞(D)

For β > α ≥ 1, we have the following inequalities, where the left and right
inequalities are identical just phrased in terms of entropies vs vector norms:

Hα(D) ≥ Hβ(D) (‖D‖α)
α

α−1 ≤ (‖D‖β)
β

β−1 (1)
(

1 − 1
α

)
Hα(D) ≤

(
1 − 1

β

)
Hβ(D) ‖D‖α ≥ ‖D‖β (2)

Hα(D) ≤ log |I| ‖D‖α ≥ |I|−1 (3)

Let Δα(D) := Hα(D) − H∞(D) to be the Entropy Gap of D. When α is not
specified, we will mean α = 2.

For a finite set X , we abuse notation and use X to denote the uniform
distribution over X . For a function h : X → Y and a distribution D on X , we let
h(D) be the distribution obtained by sampling x ← D and then outputting h(x).
We also define Hα(h) := Hα(h(X )), ‖h‖α := ‖h(X )‖α, and Δα(h) := Δα(h(X )).

3 From Non-collapsing to Equivocation

Here, we prove that a failure to be collapsing leads to equivocation. We consider
the following setup:

– A secret set S of size �, which is a subset of some set U .
– Another set V.
– A state ρ that is a superposition over pairs (v, s) ∈ V × S.
– A binary-outcome projective measurement P = (P, I − P).

Our goal is to, starting in the state ρ, obtain two distinct values i, j ∈ S. The
only operations we can perform are the measurement P and the measurement
in the computational basis for U . Without any further promises, this goal is
impossible. By applying U to ρ, one obtains a single element of S. If P, say,
commutes with U , then no sequence of operations will ever change the state,
and we will never obtain a second element.

Therefore, we are given the promise that P is sufficiently non-commuting
with U . Concretely, we are promised that:

|Pr[1 ← P(ρ)] − Pr[1 ← (P ◦ (I ⊗ U))(ρ)]| ≥ ε

for some non-negligible quantity ε. In other words, P distinguishes between ρ
and the result of measuring ρ in the computational basis for U .

The Algorithm. Since we are now only allowed to use U and P, there is nothing
that can be done except alternate them. Concretely, we apply U , P, and then U
again. We will show that, with non-negligible probability, the two applications
of U output distinct elements of S.
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Lemma 1. For �, S, ρ,P,U ,V as defined above,

Pr
[

i,j∈S
i�=j :

(i,ρ′)←(I⊗U)(ρ)
ρ′′←P(ρ′)

j←(I⊗U)(ρ′′)

]
≥ 2

� − 1

∣∣∣ Pr[1←P(ρ)]
−Pr[1←(P◦(I⊗U))(ρ)]

∣∣∣
2

.

Before proving Lemma 1, we observe that it is tight. Let q be the quantity on
the left, and r the quantity inside | · | on the right. Consider the case where V is
empty, ρ is the pure state |ψ〉 := �−1/2

∑
i∈S |i〉, and P is the projection onto |ψ〉.

In this case, Applying P to |ψ〉 outputs 0 with certainty. Meanwhile, measuring
|ψ〉 gives a random |i〉, and applying P to any |i〉 will give 0 with probability
1/�. Therefore, r = 1 − 1/�, and the right-hand side becomes 2(� − 1)/�2.

On the other hand, for computing q, there are two cases: (1) if applying P to
|i〉 outputs 0, or (2) it outputs 1. If it outputs 0 (which occurs with probability
1/�), then the state is back to |ψ〉, and measuring again will give an j �= i with
probability 1 − 1/�. If it outputs 0 (which occurs with probability 1 − 1/�), then
the state becomes |i〉 − �−1/2|ψ〉. In this case, a simple calculation shows that
measurement will give j �= i with probability 1/�. Taken together, the overall
probability q of obtaining a j �= i is exactly 2(� − 1)/�2, exactly matching the
right-hand side.

We now give the proof of Lemma 1.

Proof. We focus on the case of pure states, the mixed state setting then following
from convexity. Therefore we assume ρ = |ψ〉〈ψ| for some pure state |ψ〉 =∑

v,i αv,i|v, i〉.
We first analyze q. The probability of obtaining i in the first measurement is

pi = Tr [(I ⊗ |i〉〈i|)ρ], in which case ρ′ becomes ρi := 1
pi

(I ⊗ |i〉〈i|)ρ(I ⊗ |i〉〈i|).
Now we apply P, and disregard the output of the measurement. The resulting

mixed state is ρ′
i := PρiP + (I − P)ρi(I − P). Now we apply (I ⊗ U) again.

The probability of obtaining j is Tr [(I ⊗ |j〉〈j|)ρ′
i]. Summing over all i ∈ S and

j ∈ S \ {i}, we have that the probability of obtaining distinct i, j ∈ S is q where

q = Tr

⎡

⎣
∑

i,j∈S,i�=j

(I ⊗ |j〉〈j|)P(I ⊗ |i〉〈i|)ρ(I ⊗ |i〉〈i|)P
+(I ⊗ |j〉〈j|)(I − P)(I ⊗ |i〉〈i|)ρ(I ⊗ |i〉〈i|)(I − P)

⎤

⎦

= 2Tr

⎡

⎣
∑

i,j∈S,i�=j

(I ⊗ |j〉〈j|)P(I ⊗ |i〉〈i|)ρ(I ⊗ |i〉〈i|)P
⎤

⎦

= 2Tr

⎡

⎢⎢⎣
∑

i,j∈S,i�=j
v,v′∈V

αv,iα
†
v′,i(I ⊗ |j〉〈j|)P(|v〉〈v′| ⊗ |i〉〈i|)P

⎤

⎥⎥⎦

= 2

⎡

⎢⎢⎣
∑

i,j∈S,i�=j
v,v′∈V

αv,iα
†
v′,i(〈v′|〈i|)P(I ⊗ |j〉〈j|)P(|v〉|i〉)

⎤

⎥⎥⎦
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= 2

⎡

⎢⎢⎣
∑

i,j∈S,i�=j
v,v′,v′′∈V

αv,iα
†
v′,i〈v′, i|P|v′′, j〉 〈v′′, j|P|v, i〉

⎤

⎥⎥⎦ .

Then if we define w as the vector indexed by tuples (i, j, v′′), i �= j such that
w(i,j,v′′) :=

∑
v αv,i〈v′′, j|P|v, i〉, we have that q = 2|w|2.

Next we analyze the right hand side, r, of Lemma 1. We have

r = Tr [Pρ] − Tr

[
P

∑

i∈S

(I ⊗ |i〉〈i|)ρ(I ⊗ |i〉〈i|)
]

=

⎡

⎢⎢⎣
∑

i,j∈S
v,v′∈V

αv,iα
†
v′,j〈v′|〈i|P|v〉|j〉 −

∑

i∈S
v,v′∈V

αv,iα
†
v′,i〈v′|〈i|P|v〉|i〉

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣
∑

i,j∈S,i�=j
v,v′∈V

αv,iα
†
v′,j〈v′|〈i|P|v〉|j〉

⎤

⎥⎥⎦ .

Then if we define x as the vector x(i,j,v′′) := αv′′,j , we have that r = x ·w.
Note that

|x|2 =
∑

i,j∈S,i�=j
v′′∈V

|αv′′,j |2 =
∑

j∈S,v′′∈V
(� − 1)|αv′′,j |2 = � − 1 .

Therefore, by the Cauchy-Schwartz inequality, we have that |w|2|x|2 ≥ |w · x|2.
The lemma follows. ��

3.1 Application: Hashing with Small Compression

We now use Lemma 1 to show that any hash function which is ≤�-to-1 for a
polynomial � is collapsing.

Theorem 1. Let H be a post-quantum collision-resistant hash function with
domain X , and � a polynomial. Suppose that, with overwhelming probability over
the choice of h ← H, that h is ≤�-to-1. Then H is collapsing.

Proof. Assume toward contradiction that H is not collapsing. Let A = (A0,A1)
be the adversary for the collapsing game, with non-negligible advantage ε. We
will think of A1 as being a projective measurement on the joint system V × Xλ,
where V is the adversary’s internal state.

Observe that MX is equivalent to the composition of MY followed by MX ,
since the domain element uniquely determines the range element. Therefore, we
can think of both sides of the collapsing experiment as applying MY , and then
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the only difference is whether an additional MX is applied. We will therefore
always think of the output of A0 as having MY applied.

For a fixed h and result y from MY , suppose A1 has a distinguishing advan-
tage εh. Then we can apply Lemma 1 to extract two pre-images of y (and hence
a collision) with probability at least 2ε2h/(� − 1). By averaging over all h and y
and invoking convexity, we see that the overall probability of finding a collision
is at least 2ε2/(� − 1), which is non-negligible. ��

By combining with the fact that standard domain extension works for col-
lapsing hash functions, we have the following corollary:

Corollary 1. Assuming the existence of ≤�-to-1 PQ-CRHFs for a polynomial
�, there exist collapsing hash functions for arbitrary domains.

4 The Main Theorem

We now generalize the ≤�-to-1 case to a somewhat more general class of hash
functions. The main challenge, of course, is that general hash functions may not
be ≤�-to-1 for any polynomial �. This can be a problem even if the domain is
only slightly larger than the co-domain. Here, we show how to somewhat relax
the conditions on the hash function.

Definition 4. Let H = (Hλ)λ be a family of hash functions with domain Xλ

and co-domain Yλ. We say that H is semi-regular if there exists a polynomial r
and negligible negl such that

Pr
h←Hλ

[Δ2(h) > log r(λ)] < negl(λ) .

Equivalently, ‖h‖∞ ≤ r(λ) × ‖h‖22, except with negligible probability.

For a function h, we will call ‖h‖∞/‖h‖22 the regularity of h. A semi-regular
hash function is therefore one where the regularity is a polynomial except with
negligible probability.

Main Theorem. We now give our main theorem.

Theorem 2. If there exists a semi-regular PQ-CRHF, then there exists a col-
lapsing hash function.

The remainder of this section is devoted to proving Theorem 2. We start by
considering the following hash function:

Construction 1. Let H be a family of post-quantum collision resistant hash
functions with domain Xλ and co-domain Yλ. For parameters � ∈ Z, δ ∈ [0, 1],
let F be a �-wise δ-dependent injection with domain Yλ × {0, 1} and co-domain
Xλ. Then for any polynomial m = m(λ), we construct the following function
family H′ with domain {0, 1}m and co-domain Yλ, where h′ ← H′ is sampled
as follows: sample h ← H and for i = 1, . . . ,m × t, sample fi ← F , where t
is a parameter to be specified later. Also fix an arbitrary y0 ∈ Yλ. Then output
h′ : {0, 1}m → Yλ defined as:
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– For i = 1, . . . , u = (m − 1) × t + 1:
• Let zi = yi−1||xj if i = t(j − 1) + 1, otherwise let zi = yi−1||0.
• Let yi = h(fi(zi))

– Output yu

The operation of h′ is also given in Fig. 1.

Fig. 1. The first few iterations of Construction 1 for t = 3.

Remark 5. Note that Construction 1 is only defined for a bounded domain, since
it needs independent fi for each application of h. However, we can set m to be
large enough so that 2m � Yλ, obtaining a compressing collapsing function.
Then we can plug the result into a plain Merkle-Damg̊ard or other domain
extender, which are known to preserve collapsing [Unr16a]. The result is an
arbitrary-domain hash function that is collapsing.

Remark 6. Observe that some iterations of Construction 1 incorporate bits of
the input into the zi, while others just incorporate 0’s. This is mostly an artifact
of our proof of collapsing, and it is unclear if it is strictly needed. Looking
ahead, in each iteration that incorporates an input bit, the number of possible zi

values potentially doubles, while in other iterations, we show that the number of
possible zi values decreases with noticeable probability. By inserting sufficiently
many 0 iterations, we can make sure the number of possible zi values never gets
too large, which we can then use to apply Lemma 1.

For the remainder of the proof, we omit λ subscripts and write X = Xλ and
Y = Yλ to keep notation simple. Let Yi be the set of possible values for zi as x
ranges over all possible inputs, and Ni = |Yi|. Let Mi be the number of possible
values for yi. Observe that Ni = 2Mi for i = t(j −1)+1 and Ni = Mi otherwise.
Define the following quantities:

r = ‖h‖∞/‖h‖22 (4)
� = max(2re, 3 log |Y|) (5)

δ = |Y|−2

(|Y|
�

)−1

(6)

t = 200� (7)

Lemma 2. Except with negligible probability over the choice of h, fi, the follow-
ing hold:
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– Ni ≤ ‖h‖−2
2 for all i

– For all i, the function hi(y) = h(fi(y)), when restricted to Yi−1, is < �-to-1.

Before proving Lemma 2, we first demonstrate that it allows for proving Con-
struction 1 is collapsing. Note that only the second bullet is needed to prove
collapsing; the first bullet is facilitates our proof of Lemma 2 by induction.

Construction 1 is just Merkle-Damg̊ard, composed of u functions hi(y) =
h(fi(y)), where each hi has domain Yi−1 and the input to the hash has a number
of zeros inserted between the various input bits. Each of the hi are collision
resistant since the fi are injective. By Lemma 2, each of the hi are also < �-to-1
when restricting to the set of possible inputs. Hence by Theorem 1, each of the hi

are collapsing on their restricted domains. Unruh [Unr16a] shows that Merkle-
Damg̊ard is collapsing if the component hi are collapsing, hence Construction 1
is collapsing. The exact same proof works here, the only difference is that the hi

are only collapsing on the outputs of hi−1, but are potentially not collapsing on
the entire domain Yλ × {0, 1}. Nevertheless the same proof works here: imagine
yu is measured. Now measure zu, then zu−1, then zu−2, etc., until we measure
z1. The application of each measurement is undetectable by the collapsingness
of the hi on their restricted domains. By the time we have measured all of the
zi’s, we have measured the entire input. Hence measuring yu (the output of h′)
is indistinguishable from measuring the input x.

For completeness, we work out the proof here. We need to show that mea-
suring the final output yu vs measuring the input x is computationally indis-
tinguishable. We will do this through a hybrid argument. Let A = (A0,A1)
be a a collapsing adversary for H′

0, where the probability of distinguishing the
measurement Mh′

Y from MX is a non-negligible ε.
Consider evaluating h′ on a quantum superposition, writing the output yu

to a new register Yu. During iteration j, a number of intermediate values will be
stored in a register, including zj which will be stored in a register Zj . After the
final output yu of h′ is produced and written to a register Yu, all the intermediate
registers including the Zj will be uncomputed.

In Hybrid i, register Yu is measured to give yu, and also registers Zj for
j = i, . . . , u are all measured before uncomputation, giving zj . Let pi be the
probability A outputs 1 in Hybrid i.

Hybrid u+1 means none of the Zj registers are measured, whereas in Hybrid
1, all of the Zj are measured, which is equivalent to measuring the input registers.
Thus |p1 − pu+1| = ε, by our assumption that A is a collapsing adversary. For
each i, we obtain a collapsing adversary B(i) = (B(i)

0 ,B(i)
1 ) for hi with advantage

εi = |pi − pi+1|. B(i)
0 (hi) works as follows:

– It first chooses fj for j �= i, and constructs h′ as above. Then it simulates
A0(h′).

– A0 produces ρstate,X , where state is a register containing the adversary’s state
that gets forwarded to the next stage, and X is a register containing a super-
position of inputs to h′.
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B(i)
0 evaluates h′ on register X, and measures the registers Zi+1, . . . , Zu. Dur-

ing the uncomputation step, it uncomputes Yu and all the registers containing
all the intermediate values, except for the register Zi.

– B(i)
0 then outputs the joint system ρstate′,Zi

, where state′ = (state,X).

B(i)
1 , upon receiving ρstate′,Zi

, uncomputes the Zi registers, obtaining the system
ρstate′ = ρstate,X , which it feeds into A1. It outputs whatever A1 outputs.

Since B(i)
0 measures register Zi+1 to obtain zi+1 which includes yi = hi(zi), if

the challenger for B(i) measures the output of hi, the measurement is redundant
and has no effect on the state. Therefore, B(i) perfectly simulates Hybrid i + 1.
On the other hand, if the challenger measures the input, this is exactly the same
as measuring Zi to obtain zi. Hence B(i) perfectly simulates Hybrid i in this
case. Therefore, B(i) has advantage exactly εi = |pi − pi+1|.

We then turn each B(i) into a collision-finder for h, which we call C(i), follow-
ing Theorem 1. Conditioned on Lemma 2 holding, the functions hi are <�-to-1,
meaning C(i) finds a collision with probability at least 2ε2i /(� − 1). Notice that∑

i εi ≥ ε. Therefore, we can obtain an overall collision-finder C, which runs
C(i) for a random choice of i. By Cauchy-Schwartz, the probability C obtains a
collision is at least

2
u(� − 1)

∑

i

ε2i ≥ 2ε2

u2(� − 1)
,

which is non-negligible. This contradicts the assumed collision resistance of h.
We now turn to proving Lemma 2.
Proof. We prove by induction on i. Clearly N0 = 2 and h1 is at most 2-to-1.
We now fix h and f1, . . . , fi−1, which determines Yi−1 and Ni−1. We inductively
assume Ni−1 ≤ ‖h‖−2

2 . We first prove, with overwhelming probability over the
choice of fi, that hi is ≤ �-to-1 when restricted to Yi−1.

Toward that end, for any y ∈ Y, let py be the probability a random input to
h maps to y. For any set of � inputs x1, . . . , x�, the probability they all map to
the same output of h is:

Pr[hi(x1) = · · · = hi(x�)] ≤ Pr
wj←X

wj1 �=wj2∀j1 �=j2

[h(w1) = · · · = h(w�)] + δ

≤ Pr
wj←X

[h(w1) = · · · = h(w�)] + δ

=
∑

y∈Y
p�

y + δ = ‖h‖�
� + δ

Let V be the event that hi is not <�-to-1. Union-bounding over all sets of �
inputs in Yi−1, we have that

Pr[V ] ≤
(

Ni−1

�

)
(‖h‖�

� + δ)

≤ N �
i−1‖h‖�

�

�!
+ δ

(
Ni−1

�

)
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≤ N �
i−1‖h‖�−1

∞
�!

+ |Y|−2 Equations (1) and (6)

≤ (Ni−1‖h‖∞)�‖h‖−1
∞

�!
+ |Y|−2

≤ (Ni−1r‖h‖22)�|Y|
�!

+ |Y|−2 Equation (4)

≤ r�|Y|
�!

+ |Y|−2 Inductive assumption

≤
(re

�

)�

|Y| + |Y|−2 Stirling’s Approximation

≤ 2−�|Y| + |Y|−2 = 2 × |Y|−2 Equation (5)

|Y| must be superpolynomial by the assumed collision resistance of h, and so the
above quantity is negligible. Now it remains to prove the desired size bounds.
First recall that Nt(j−1)+1 ≤ 2Nt(j−1) and Ni ≤ Ni−1 for all i not of the form
t(j − 1) + 1. The following suffices to prove the size bound in Lemma 2:

Claim. Nt(j−1) ≤ ‖h‖−2
2 /2 for all j.

This claim implies that Nt(j−1)+1 ≤ ‖h‖−2
2 , and therefore all Nt(j−1)+k ≤ ‖h‖−2

2

for all k = 2, . . . , t, thus proving Lemma 2. We now prove the claim by induction.
Clearly for j = 1 we have that Nt(j−1) = N0 = 1, which is ≤ ‖h‖−2

2 /2 since
‖h‖22, the collision probability of two random inputs to h, must be negligible.
This establishes the base case.

We now inductively assume that Nt(j−1)+1 ≤ ‖h‖−2
2 . Our goal is to prove

that Nt(j−1)+t ≤ ‖h‖−2
2 /2. Note that if any i in the interval t(j − 1) + 2, . . . , tj

satisfy Ni ≤ ‖h‖−2
2 /2, then we are done since all subsequent i in the interval

have Ni ≤ Ni−1. From now on, we will therefore assume towards contradiction
that Ni > ‖h‖−2

2 /2 for all i in the interval.
Let Ci be the number of distinct pairs of colliding inputs to hi. We observe

the following:

Claim. If hi is <�-to-1, then Mi < Ni−1 − 2
� Ci.

The claim is proved as follows: by linearity, it suffices to consider the case where
hi has a single output, meaning Mi = 1 and Ni < �. In this case, we have that

Ni−1 − 2
�
Ci = Ni−1 − 2

�

(
Ni−1

2

)
= Ni−1 − Ni−1

�
(Ni−1 − 1)

> Ni−1 − (Ni−1 − 1) = 1 = Mi .

Therefore, to bound Ni = Mi for i = t(j − 1) + 2, . . . , tj, we need to bound
Ci. To do so, let P2 be the probability that two random distinct inputs to h map
to the same image. Then

P2 =
∑

y

py

(
py|X | − 1
|X | − 1

)
=

|X |‖h‖22 − 1
|X | − 1

≥ ‖h‖22 − |X |−1 .
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For a set L ⊆ Yi−1, let EL be the indicator function for the event that all L map
to the same value under hi. Then Ci =

∑
L⊆Yi−1:|L|=2 EL. We now calculate the

mean of Ci:

E[Ci] =
∑

L⊆Yi−1:|L|=2

E[EL] ≥
∑

L⊆Yi−1:|L|=2

(P2 − δ) ≥
(

Ni−1

2

)
P2 − 1

≥
(

Ni−1

2

)
(‖h‖22 − |X |−1) − 1 =

N2
i−1 − Ni−1

2
(‖h‖22 − |X |−1) − 1

≥ N2
i−1

2
(‖h‖22 − |X |−1) − 2 .

Recall that ‖h‖22 ≥ |Y|−1 ≥ 2|X |−1 and that Ni−1‖h‖22 ∈ (1/2, 1] by assumption.
Therefore, E[Ci] ≥ Ni−1/8 − 2.

From above we know that Pr[V ] ≤ 2|Y|−2. Now we have, for i = t(j − 1) +
2, . . . , tj and assuming each such Ni−1 > ‖h‖−2

2 ,

E[Ni] = E[Ni|¬V ](1 − Pr[V ]) + E[Ni|V ] Pr[V ]
≤ E[Ni−1 − (2/�)Ci|¬V ](1 − Pr[V ]) + Ni−1 Pr[V ]
≤ (Ni−1 − (2/�)E[Ci|¬V ])(1 − Pr[V ]) + Ni−1 Pr[V ]
≤ Ni−1 − (2/�)(E[Ci] − E[Ci|V ] Pr[V ]) + Ni−1 Pr[V ]
≤ Ni−1 − (2/�)(Ni−1/8 − 2) + (2/�E[Ci|V ] + Ni−1) Pr[V ]

≤ Ni−1 − (2/�)(Ni−1/8 − 2) + N2
i−1 Pr[V ]

≤ Ni−1 − (2/�)(Ni−1/8 − 2) + 2
≤ Ni−1 − Ni−1/5�

Since Ni is between 1 and Ni−1, we must have that

Pr[Ni < Ni−1(1 − 1/10�)] ≥ 1/10� .

Call an i “good” Ni < Ni−1(1−1/10�). Let T be the number of good i. Suppose
there are ≥ T good i in the interval t(j − 1) + 2, . . . , tj. Then Ntj < (1 −
1/10�)10�Nt(j−1)+1 ≤ (e−1 − o(1))‖h‖−2

2 ≤ ‖h‖−2
2 /2. Since we assumed this was

not the case, it must be that T < 10�. But E[T ] ≥ t/10� = 20�, so by Hoeffding’s
inequality,

Pr[T < 10�] ≤ Pr[T − E[T ] < −10�] < e−2(10�)2/t = e−� .

Thus, except with negligible probability, Ntj must in fact be ≤ ‖h‖−2
2 /2. This

completes the proof of Lemma 2 and hence Theorem 2. ��

5 Collapsing Hashes from LPN

In this section, we construct collapsing hash functions from the hardness of
learning parities with noise (LPN) in certain extreme parameter regimes.
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5.1 LPN-Based Hashing

For positive integers n,m > n and error rate ε ∈ [0, 0.5], define LPNn×m
ε to be

the following distribution: choose a random s ← Z
n
2 and random A ← Z

n×m
2 .

Choose a random e ∈ Bm
ε , Bε is the Bernoulli distribution: output 1 with proba-

bility ε and 0 otherwise. The output of LPNn×m
ε is then (A, sT ·A+ eT mod 2).

The LPN assumption states that it is computationally infeasible to distinguish
LPNn×m

ε from the uniform distribution Z
(n+1)×m
2 . Specifically:

Assumption 1. For parameters ε = ε(n),m = m(n), T = T (n), The (ε,m, T )-
LPN assumption is that, for any adversary A running in time at most T , there
exists a negligible negl(n) such that

|Pr[1 ← A(LPNn×m
ε )] − Pr[1 ← A(Z(n+1)×m

2 )]| < negl(n).

Brakerski et al. [BLVW19] and Yu et al. [YZW+19] show how to construct
a hash function from the LPN problem as follows:

Construction 2. Let Sm
w ⊆ {0, 1}m be the set of length-m vectors, where the

domain is divided into w blocks of size m/w, and each block contains exactly
a single 1. Let LPNHashn×m

w be the hash function family defined as follows:
h : Sm

w → {0, 1}n is specified by a random matrix A ∈ Z
n×m
2 . Then h(x) =

A · x mod 2.

Remark 7. Brakerski et al. allow for a slightly more general domain where the
inputs can have w 1’s in any position. For our analysis of semi-regularity, how-
ever, it will be convenient to use the domain Sm

w as defined.

Theorem 3 ([BLVW19]). Under the (O(log2 n/n), poly, poly)-LPN assump-
tion, LPNHashn×m

w is a PQ-CRHF for m = poly(n) and w = O(n/ log n).

Theorem 4 ([YZW+19]). The following are true:

– Under the (O(1), 2O(n0.5), 2O(n0.5+ε))-LPN assumption, LPNHashn×m
w is a PQ-

CRHF for n = O(log2 λ), m = λ, and w = O(log1+2ε λ).
– Under the (O(1), 2O(n/ log n), poly)-LPN assumption, LPNHashn×m

w is a PQ-
CRHF for m = poly(n) and w = O(n/ log n).

– Under the (O(n−0.5), 2O(n0.5/ log n), poly)-LPN assumption, LPNHashn×m
w is a

PQ-CRHF for m = poly(n) and w = O(n/ log n).

5.2 Semi-regularity of LPN-Based Hashing

We now prove that LPNHash is semi-regular, for appropriate parameter choices.

Theorem 5. For any m,n,w, let α :=
√

n(w/m) ln 2. If α ≤ 1/2 and αw ≤
2−n, then LPNHashn×m

w is semi-regular.

Before proving Theorem 5, we observe an immediate corollary:
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Corollary 2. If LPN is hard in any of the parameter regimes in Theorems 3
or 4, then collapsing hash functions exist:

Proof. By Theorem 2, it suffices to show that the settings of parameters in
Theorems 3 and 4 satisfy the conditions of Theorem 5. For the settings where
m = poly(n) and w = O(n/ log n), we just need to set m = nc and w = dn log n
where cd ≥ 2. Then α = o(1) and

αw =
(

dn2 ln 2
n1+c log n

)dn/2 log n

≤
(

1
nc−1

)dn/2 log n

≤ 2−n .

For the setting where n = O(log2 λ),m = λ = 2n0.5
, w = O(log1+2ε λ)) =

O(n0.5+ε), we have α = poly(n)2−O(n0.5) ≤ 2−O(n0.5−ε/2) = o(1) and αw ≤
2−O(n1+ε/2) < 2−n. ��
We now prove Theorem 5.

Proof. Our goal is to show that ‖h(Sm
w )‖∞ = poly/2n, which implies H∞(h) ≥

n − O(log n). Since H2(h) ≤ n, this would establish semi-regularity.
We will write A = (v1, . . . , vm) for vectors vi ∈ Z

n
2 . Let Di be the distribution

vj1 + vm/w+j2 + · · · v(m/w)(i−1)+ji
, where each ji is uniform in [m/w]. Then

h(Sm
w ) = Dw.

Lemma 3. Fix v1, . . . , v(m/w)i. Suppose ‖Di‖∞ = f/2n. Then except with prob-
ability 2−n over the choice of v(m/w)i+1, . . . , v(m/w)(i+1), ‖Di+1‖∞ ≤ (1+g)/2n,
where g = f

√
n(w/m) ln 2

Proof. For each x in {0, 1}n, define p
(i)
x := Pr[x ← Di]. Then

p(i+1)
x =

w

m

w/m∑

j=1

p
(i)
x⊕v(m/w)i+j

.

The v(m/w)i+j are just independent random vectors, so we can think of p
(i+1)
x as

a random variable which is the mean of w/m random samples of p
(i)
x′ for random

x′. Each of the p
(i)
x′ are non-negative random variables with mean 2−n (since

they must sum to 1) and maximum f × 2−n. By Hoeffding’s inequality,

Pr[p(i+1)
x > (1 + g)/2n] = Pr[p(i+1)

x − 2−n > g/2n] < e
−2(m/w) g2

f2 .

Union-bounding over all 2n different x, we have that

Pr[‖Di+1‖∞ > (1 + g)/2n] < 2n × e
−2(m/w) g2

f2 .

By setting g = f
√

n(w/m) ln 2, the right-hand side becomes 2−n, as desired. ��
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Notice that ‖D0‖∞ = 1. Let α =
√

n(w/m) ln 2. Union-bounding over all
i = 1, . . . , w, we therefore have that

‖Di+1‖∞ ≤ α‖Di‖∞ + 2−n .

for all i. Then

‖Dw‖∞ ≤ αw‖D0‖∞ +

(
w−1∑

i=0

αi

)
× 2−n ≤ αw +

1
1 − α

× 2−n .

If we set α so that αw ≤ 2−n and α ≤ 1/2, we have that ‖Dw‖∞ ≤ 3 × 2−n,
showing that LPNHash is semi-regular. ��

6 Collapsing Hashes from Expanders

Charles, Goren, and Lauter [CLG09], abstracting earlier ideas of Tillich and
Zémor [TZ94], propose an elegant way to construct collision resistant hash func-
tions from exponentially-large expander graphs, whose collision-resistance fol-
lows from the assumed difficulty of finding cycles in the graphs. A number of
graphs have been proposed for use in hash functions, such as:

– Charles et al. [CLG09] propose using isogeny graph on certain elliptic curves.
– Fuchs et al. [FLLT21] propose using the graph of Markov Triples.

We show that expander-based hashes satisfy our regularity condition, and hence
we can obtain collapsing hash functions under the same computational assump-
tions on expanders as for collision resistance.

6.1 Expander Graphs

Let G = (V,E) be an undirected graph. G is d-regular if every v ∈ V has exactly
d neighbors. Throughout, we will always assume our graphs are regular. Let
A = A(G) denote the adjacency matrix of G: the |V |× |V | matrix such that Ai,j

if (i, j) ∈ E and 0 otherwise. Since A is symmetric, it has |V | real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. For a d-regular graph, λ1 = d.

There are several equivalent definitions of expander graphs; the following
linear-algebraic definition captures the only property we will need.

Definition 5. A connected d-regular graph G is a (|V |, d, δ)-expander graph if
λ2 ≤ δd.

Walks on Expanders. Let G be a d-regular graph, and let v0 ∈ V be a node.
A walk on G starting from v0 is simply a sequence (v0, v1, v2, . . . ) such that
(vi−1, vi) ∈ E for all i > 0. A random walk is one where vi+1 is chosen uniformly
from the set of neighbors of vi. A non-backtracking walk is one where vi−1 �= vi+1

for all i > 0, and a random non-backtracking walk is a walk where vi+1 is chosen
uniformly from the neighbors of vi other than vi−1.

For a d regular graph, the nodes vi for a random walk and random non-
backtracking walk will converge to the uniform distribution over V as i → ∞.
We will use the notion of mixing time to characterize how fast this occurs.
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Definition 6. The mixing time of a random walk starting at v0 is defined as

τ(G) = min
t

{∣∣∣∣Pr[vt = u] − 1
|V |

∣∣∣∣ ≤ 1
2V |∀u ∈ V

}
,

where Pr[vt = u] is the probability that vt = u in the walk. The mixing time for
a random non-backtracking walk is defined as τ̃(G), and is defined analogously.

For both backtracking and non-backtracking walks, the mixing time is at
most O(log(|V |)/(1 − δ)). The backtracking case has long been known, and the
non-backtracking case follows from the fact that non-backtracking walks mix at
least as fast, as shown by [ABLS07].

6.2 Hash Functions Based on Expanders

Let G = (Gλ)λ where each Gλ is a family of d-regular connected graphs where
each G = (V,E) ∈ Gλ is exponentially large and implicitly represented. That is,
V ⊆ {0, 1}n(λ), and each G is represented by a polynomial-size string Desc(G).
There is an efficient procedure which computes the neighbors of any v ∈ V , given
Desc(G). We assume that Desc(G) includes a distinguished node v0, and that it
is possible to efficiently sample Desc(G) for a random G ← Gλ.

Definition 7. The Cycle Finding problem is hard in G if, for any QPT A,
A(Desc(G)), G ← Gλ outputs a simple cycle in G with negligible probability.

Based on cycle finding hardness, [CLG09] constructs the following hash:

Construction 3 ([CLG09]). Let ExHashG be the distribution over functions
hDesc(G) : [d−1]t → {0, 1}n(λ) for a random G ← Gλ defined as follows: interpret
each element x of [d−1]n as a length-n non-backtracking walk in G starting from
v0. That is, on the ith step, if the walk is currently at node vi and was previously
at vi−1, then xi selects amongst the d − 1 neighbors of vi other than vi−1. That
neighbor will be vi+1. Let vt be the end of the walk. Then hDesc(G)(x) = vt.

Theorem 6 ([CLG09]). ExHashG is a PQ-CRHF if cycle finding is hard in G.

Proof. We give the proof for completeness. Any collision in hDesc(G) gives two
non-backtracking walks W0 �= W1 that start at v0 and end at the same node
v. Assume without loss of generality that the nodes immediately before v in
W1,W1 are different. Let v1 be the last node before v where the walks coincide.
Then by concatenating the two paths from v1 to v under W0,W1 gives a simple
cycle. ��

[CLG09] propose using expander graphs as a minimal criteria for selecting G
where the cycle finding problem is hard. A uniformly random input to ExHashG
corresponds to a random non-backtracking walk on G. Since the mixing time of an
expander is logarithmic in |V |, it is polynomial for implicitly represented graphs.
Once the walk mixes, no node in the graph is more likely than 2/|V |, implying
‖h‖∞ ≤ 2/|V |. Meanwhile, ‖h‖22 ≥ 1/|V |. Therefore, for a polynomial-length
input, ExHashG is semi-regular with r ≤ 2. Therefore, we have the following:
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Corollary 3. Suppose G is a family of (|Vλ|, d, δ)-expander graph for a constant
δ. Then if cycle finding is hard for G, there exists collapsing hash functions.

When V is an appropriate set of elliptic curves and E are isogenies as pro-
posed by [CLG09], cycle-finding is a well-known challenging problem. The graph
of Markov triples has been explored by [FLLT21]. Other instantiations have been
proposed [CLG09,TZ94,PLQ12], but they have weaknesses [PLQ08].

7 Toward Collapsing Hashes from General Collision
Resistance

Here, we discuss the possibility of obtaining collapsing hashes from more gen-
eral PQ-CRHFs. In particular, we are interested in the case of symmetric hash
functions such as SHA2 or SHA3. It seems plausible that SHA2 or SHA3 would
be semi-regular: after all, if a hash function had certain images that were far
more likely than others, this would be considered a significant design weakness.
Unfortunately, we do not know how to prove unconditionally that, say, SHA2
or SHA3 are semi-regular. Instead, we simply conjecture it. The following shows
that this assumption is justified in the random oracle mode:

Lemma 4. Random oracles are semi-regular. In particular, for λ bit outputs, a
compressing random oracle has regularity at most λ.

Proof. By a standard balls-and-bins argument, for a random function F :
{0, 1}m → {0, 1}λ, the most likely output has probability H∞(F ) ≤ O(λ2−λ),
with all but negligible probability. On the other hand, ‖F‖22 ≥ 2−λ. Thus F has
regularity at most O(λ). ��
Since SHA2 or SHA3 are often modeled as random oracles, it therefore seems
reasonable to conjecture that they are semi-regular. Note that this is poten-
tially very different than assuming SHA2 or SHA3 are collapsing, even though
random oracles are collapsing. Indeed, the analysis of SHA2 and SHA3 has usu-
ally focused on classical security properties. Semi-regularity is a simple classical
property, whereas collapsing is a more complicated inherently quantum property.
Under the assumed quantum collision resistance and assumed regularity of either
SHA2 or SHA3, we therefore obtain a standard-model collapsing hash function
from classically-defined properties, which are much better understood.

7.1 Collapsing from Optimal Collision Resistance

Here, we give another, simpler, approach for justifying building collapsing hashes
from SHA2 or SHA3. Namely, we observe that symmetric hash functions are
usually treated as having optimal collision resistance, defined as follows:

Definition 8 (Optimal Collision Resistance). H is a post-quantum opti-
mally collision resistant if, for every QPT algorithm A, there exists a a polyno-
mial q(λ) such that

Pr
[

x0 �=x1, and
h(x0)=h(x1)

: h←Hλ

(x0,x1)←A(h)

]
<

q(λ)
|Yλ| ,
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where Yλ is the co-domain of h.

If SHA2 or SHA3 turned out to not be optimally collision resistant, this would
be considered a major weakness of the functions. It is therefore plausible to
conjecture such hardness.

Theorem 7. Suppose H is a hash function with domain Xλ and co-domain Yλ

such that |Xλ|/|Y|λ is polynomial. Equivalently, suppose H compressed by at
most logarithmically many bits. Then if H is post-quantum optimally collision
resistant, it is also collapsing.

Note that the function H may be optimally collision resistant, but fail to be semi-
regular: for example there may be a single input that is very likely, but infeasible
to find a pre-image of in polynomial time. Such an H is not semi-regular, but
could plausibly be optimally collision resistant. Thus, Theorem 7 offers a distinct
alternative to assuming semi-regularity, trading off a structural assumption for
a stronger hardness assumptions. Depending on the analysis performed, either
approach may be preferred.

Proof. Let A be a collapsing adversary with non-negligible advantage ε. Let |ψ〉
be the superposition of inputs to h produced by A, and y be the measured image
of |ψ〉. We give a simple adversary B for optimal collision resistance. B first runs
A(h) to get |ψ〉, and then applies the measurement Mh

Y to get y. Then it simply
measures |ψ〉 to get a pre-image x0 such that h(x0) = y. It finally chooses a
uniformly random input x1 ∈ Xλ and outputs (x0, x1).

By the optimal collision resistance of H, we know that B finds a collision
with probability at most p/|Yλ| for a polynomial p. But the probability B finds
a collision is just the expected fraction of Xλ that are pre-images of y but not
equal to x0. Since Xλ is only polynomially larger than Yλ, we therefore have
that the expected number of pre-images of y is polynomial �. In particular, with
probability at least 1/2, the number of pre-images is at most 2�.

But now we can use Lemma 1 to construct a different collision finding adver-
sary C. This is basically identical to the proof of Theorem 1: if y has � pre-images,
then C finds a collision with probability at least 2ε2/(�− 1). Therefore, C finds a
collision with probability at least ε2/2�, which is non-negligible and in particular
violates the optimal security of H. ��
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Abstract. We construct a two-message oblivious transfer protocol with
statistical sender privacy (SSP OT) based on the Learning Parity with
Noise (LPN) Assumption and a standard Nisan-Wigderson style deran-
domization assumption. Beyond being of interest on their own, SSP OT
protocols have proven to be a powerful tool toward minimizing the round
complexity in a wide array of cryptographic applications from proofs sys-
tems, through secure computation protocols, to hard problems in statis-
tical zero knowledge (SZK).

The protocol is plausibly post-quantum secure. The only other con-
structions with plausible post quantum security are based on the Learn-
ing with Errors (LWE) Assumption. Lacking the geometric structure of
LWE, our construction and analysis rely on a different set of techniques.

Technically, we first construct an SSP OT protocol in the common
random string model from LPN alone, and then derandomize the com-
mon random string. Most of the technical difficulty lies in the first step.
Here we prove a robustness property of the inner product randomness
extractor to a certain type of linear splitting attacks. A caveat of our
construction is that it relies on the so called low noise regime of LPN.
This aligns with our current complexity-theoretic understanding of LPN,
which only in the low noise regime is known to imply hardness in SZK.

1 Introduction

Learning Parity with Noise [16,17] is a prominent hardness assumption in cryp-
tography. The search version of the problem LPNε postulates that given access
to polynomially many samples (ai,at

is + ei) where s ← Fn
2 is a uniformly ran-

dom secret, each ai ← Fn
2 is a uniformly random vector, and each ei ← Bern(ε)

is a random Bernouli noise bit, it is hard to find the secret s. In the decision
version, which is equivalently hard [34], the samples are indistinguishable from
completely random samples, where ei ← F2 is uniformly random.

Much of the appeal of the LPN assumption stems from its direct relation
to the long-studied problem of decoding random linear codes, as well as its
plausible resilience to quantum attacks. Furthermore, in terms of applications,
LPN has led to simple and efficient constructions, for a both symmetric-key and
asymmetric-key primitives (c.f. [3,24,37,44]). Yet, our understanding of LPN,
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both in terms of hardness and in terms of applications, still seems to be lacking,
and in particular to be far behind our understanding of its cousin, the Learning
with Errors (LWE) assumption [46]. In LWE, instead of F2, we consider Fq for
a large (at least polynomial) modulus q, and instead of Bernouli noise ei, we
consider (discrete) Gaussian noise ei of norm � q.

Although the two have a similar flavour, the geometric structure endowed by
the two mentioned differences has made LWE substantially more versatile than
LPN. While LWE has led to a wide array of applications, including ground-
breaking ones such as fully-homomorphic encryption [23,28], the set of applica-
tions known from LPN is far more restricted (see also Sect. 1.3). At the same
time, there is no formal indication that LPN is less powerful than LWE, and the
effort to expand its reach continues.

Statistically Sender-Private OT. One powerful primitive that has been con-
structed from LWE [18,25] and has yet to be achieved under LPN is two-message
statistically sender-private oblivious transfer (SSP OT in short) [2,41]. Recall
that in an OT protocol [27,45], the sender S holds two messages (m0 m1) and
the receiver R holds a choice bit c ∈ {0, 1}. The goal is for R to learn the mes-
sage mc of its choice, without learning anything on the other message m1−c, and
without having S learn anything about the choice c. SSP OT requires that this
is done in minimal round complexity with a single message from the receiver R
and a single message returned from the sender S. Security is also taken to the
extreme, requiring that sender privacy, namely the hiding of m1−c, is statistical
(statistical receiver-privacy is impossible in this setting, as it would enable a
non-uniform malicious receiver to learn both sender messages).

As for the formal security notion, the gold-standard simulation guarantee
against malicious parties is known to be unobtainable (even with computational
sender privacy), without reliance on some form of setup. In contrast, in the
common random string model, Döttling, Garg, Hajiabadi, and Wichs [24] con-
struct a simulatable protocol with computational security (for both the receiver
and sender) from LPN

n
1
2 −ε . The standard security notion in this setting, intro-

duced in [2,41], relaxes the simulation requirement in a meaningful manner. On
the receiver side, receiver messages corresponding to different choice bits should
be computationally indistinguishable. On the sender side, any receiver message
information-theoretically fixes a choice c∗ ∈ {0, 1}, so that sender messages cor-
responding to different m1−c∗ are statistically indistinguishable.

Such SSP OT protocols have turned out to be highly useful, in particular
toward obtaining protocols with low round complexity. They have been used to
achieve two-message (statistically) witness indistinguishable protocols [5,33] and
weak zero-knowledge protocols [13,32], multi-party computation protocols with
minimal round complexity [4,6,7], improved round complexity for non-malleable
commitments [35,36], malicious circuit privacy for fully-homomorphic encryption
[42], and correctness amplification for indistinguishability obfuscators [14].

Up until recently, SSP OT protocols were only known based on number-
theoretic assumptions such as DDH [2,41] and QR and DCR [30], which are not
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resilient to quantum attacks. Brakerski and Dötling [18] gave the first construc-
tion that is plausibly post-quantum secure, based on LWE. Dötling et al. [25]
and Aggarwal et al. [1] provided additional constructions from LWE that also
achieve constant rate. The construction of [18] strongly relies on the tight con-
nection between LWE and lattices and in particular, the transference principle
[9]. The construction by [25] relies on trapdoor hash functions and the one by
Aggarwal et al. [1] is based on Algebraic Restriction Codes and a special form
of linear homomorphic encryption. Aiming to construct SSP OT from LPN, we
are once again faced with the fact that LPN lacks the geometrical structure
and expressiveness of LWE; in particular, in the context of LPN, there is no
analogous transference principle, and neither trapdoor hash functions nor linear
homomorphic encryption are known.

1.1 Our Results

We construct SSP OT assuming LPN log2 n
n

and a standard Nisan-Wigderson style

derandomization assumption, namely that there exists functions with (uniform)
time complexity 2O(n) and non-deterministic circuit complexity 2Ω(n). Toward
this, we first construct SSP OT in the common random string model, which is
already meaningful on its own, and where most of the technical difficulty lies.
We then show how to derandomize the common random string.

In more detail, we prove the following three results:

1. Assuming LPN log2 n
n

, there exists SSP OT in the common random string
model.

2. Any SSP OT in the common random string model, can be converted to one
in a relaxed model, where the receiver need not trust the common string. We
refer to this as the sender random string model, as the sender can generate
the common string.

3. Under the aforementioned derandomization assumption, any SSP OT in the
sender random string model can be transformed into one in the plain model,
provided that it has a certain bad-crs certification property. We prove that
the construction from the first result (in the common random string model)
satisfies this property, and that it is preserved by the transformation given
by the second result.

On Low-Noise LPN. Our construction relies on LPN in the so called low-noise
regime, where we could expect at most quasi-polynomial hardness [17]. This
indeed makes it mostly of theoretical interest. Improving the noise rate is an
intriguing problem that may very well require a significant leap in our under-
standing of the complexity of LPN. Indeed, a folklore fact is that SSP OT (even
in the common random string model) implies lossy public-key encryption, and
thus a construction of SSP OT from LPNε would imply that LPNε ∈ BPPSZK.
However, so far it is only known that LPNε ∈ BPPSZK for ε = O(log2 n/n)
[22], and there is no indication that this is also true for larger ε. We also note
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that there are in fact much more basic primitives than SSP OT, such as collision
resistant hashing (which is not even broken in SZK), that to date are only known
in the low noise regime.

On the Derandomization Assumption. Starting from the work of Barak, Ong, and
Vadhan [10], the use of Nisan-Wigderson syle derandomization has become quite
commonly used in cryptographic applications (c.f. [8,15,31]). The corresponding
assumption is a worst-case assumption that is considered to be a natural gen-
eralization of the assumption that EXP �⊂ NP. We also note that there is a
universal candidate for the assumption, by instantiating the hard function with
any E-complete language under linear reductions. In the body, we actually use
an even weaker uniform variant of the derandomization assumption. (See further
discussion in [10].)

1.2 Technical Overview

We now provide a technical overview of our constructions and proofs. Most of
the overview is dedicated to our protocol in the common random string model
(CRS), where most of the technical challenge lies. We then explain the second
step in which the CRS is derandomized.

A Basic Protocol. We start by describing the basic protocol in the CRS model.

– The CRS (A,v) will consist of a random matrix A ← F�×n
2 and a random

vector v ← F�
2, for a parameter � = poly(n).

– The receiver, with choice c ∈ {0, 1}, samples a secret s ← Fn
2 and a noise

vector e ← Bern(ε)�, and sends v0 := As + e + cv.
– The sender, with messages m0,m1 ∈ {0, 1}, samples a vector x ← X from

some low hamming-weight distribution X on F�
2, and sends back (xtA,xtv0+

m0,xtv1 + m1), where v1 = v0 + v.
– The receiver, now uses s to compute xtvc + mc − xtAs = mc + xte.

Correctness and SSP Against Semi-honest Receivers. In the above basic protocol,
the computational privacy of the receiver’s choice follows directly from LPNε.
The essential tradeoff is between correctness and statistical sender privacy (SSP).
On one hand, to ensure correctness we aim that xte = 0 with high enough
probability, and thus want x to be as sparse as possible. On the other hand,
given that xtA already leaks n bits of information about x, it should have min-
entropy greater than n, and thus cannot be too sparse.

To understand how to balance this tradeoff, let us first restrict attention to a
simple case of semi-honest receivers that follow the protocol as prescribed (here
in fact the receiver may also send the CRS). A simple intuition for SSP in this
setting is the fact that for the negative choice bit 1 − c, the receiver obtains

xtv1−c + m1−c = xt(As + e) + xtv + m1−c .
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Here the inner product xtv acts as a strong randomness extractor, so as long as
the min-entropy remaining in x is large enough H∞ (x | xtA) � n, the message
m1−c will remain statistically hidden. A back of the envelop calculation shows
that this already restricts our possible choice of parameters. It requires that we
choose ε = O(log2 n/n), which lets us choose X so to guarantee that xte = 0
with probability at least 1

2 + 1
poly(n) (the exact choice of X does not matter

at this point, e.g. it can be Bern(δ)� for an appropriate δ). Once we have this
correctness guarantee, we can amplify it, using standard parallel repetition.

Malicious Receivers. The main technical challenge and the bulk of our work is
proving that the above protocol is in fact also SSP against malicious receivers
(for an appropriate choice of distribution X ). The challenge lies in the fact that
a malicious receiver may now choose v0 arbitrarily and adaptively depending
on the seed v and the matrix A. Still, we need to ensure that any v0 ∈ F�

2,
now chosen as a function of v,A, fixes some c∗ ∈ {0, 1} such that xtv1−c∗ is
statistically close to uniform for x ← X , even given xtA. (To be more precise,
as described so far, the sender’s message includes an extra bit of leakage on x,
since it includes both xtv0 + m0 and xtv1 + m1. In the actual scheme, we use
two independent samples x0 and x1 for these two parts, so this is not an issue.)

One could hope that the inner product extractor is generally resilient to
such linear splitting attacks. That is, given the seed v the attacker may split
it adaptively to v0,v1 that sum to v, we can still hope that one of the seeds
still functions as a good extractor. However, it turns out that this is generally
not true. As an example, consider the distribution X ′, where x is sampled by
first choosing a uniformly random x ← F�

2, then flipping a random bit b ←
{0, 1}, and then zeroing out the first or second half of x according to b. Then
an attacker, given a seed v = (v1, . . . , v�) could split v into its two halves v0 =
(v1, . . . , v �

2
, 0, . . . , 0) and v1 = (0, . . . , 0, v �

2+1, . . . , v�). Then neither v0 nor v1 is
a good extractor: if we leak b, then although x|b has high entropy, either bit will
be predictable with probability 3/4. Indeed, this counter example strongly relies
on the fact that v0 is chosen adaptively depending on v.

Back to Our Case. While we cannot simply rely on the inner product being a
strong extractor, in our case the leakage on x has a specific form xtA, and we
also have the liberty of choosing the distribution X (provided that the previ-
ous correctness guarantees still hold). Indeed, we manage to prove that for an
appropriate choice of X SSP does hold. We now proceed to describe our choice
of distribution X , and the main steps in the proof, which is quite intricate.

Inspired by the LPN smoothing reduction of Brakerski et al. [22], we choose
a distribution X that behaves somewhat nicely in terms of Fourier analysis.
Specifically, we use the sampling with replacement distribution

X�,k :=
k∑

i=1

U{e1, . . . , el} ,
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which is the sum of k independent random unit vectors over F�
2. By choosing

the hamming weight k ≈ n/ log n, we guarantee that xte = 0 with probability
noticeably greater than half as required. Considering the attacker’s choice of v0

and the corresponding v1 = v0 + v, we aim to show that for some w ∈ {v0,v1}
we are guaranteed that xtw is close to uniform, even given xtA.

Relating Statistical Unpredictability to Coset Balance. We first observe that if
w is too close to the code generated by A, namely w = As∗ + e∗ for some low
hamming weight e∗, then xtw = xtAs∗ + xte∗ becomes predictable. Indeed,
xtAs∗ is determined by xtA and xte∗ is likely to be zero (this is exactly what
enables correctness). This is in fact also the case if w is too far from some
codeword, namely w = As∗ + 1 + e∗, where 1 is the all one vector. Predicting
xtw is similar to the previous case, except that we need to also predict xt1, but
this will be exactly k mod 2.

In conclusion, to guarantee statistical unpredictability, it is necessary that
all the vectors w + As in the coset w + A = {w + As : s ∈ Fn

2} will be rather
balanced, namely they should have hamming weight ‖w + As‖0 ≈ �/2. Using
Fourier analysis, we show that to some extent this is also sufficient. That is,
we characterize the unpredictability of xtw in terms of the balance parameter
βt := 1 − (2/�) ‖t‖0 of any coset member t ∈ w + A. Specifically, we prove:

SD
((

xtA,xtw
)
,
(
xtA, u

)) ≤ 1
2

∑

s∈Fn
2

|βAs+w|k ,

for any matrix A ∈ F�×n
2 , vector w ∈ F�

2, x ← X�,k, and u ← Bern(1/2). The
proof can be found in Sect. 3.2.

Our goal is thus to show that for at least one w ∈ {v0,v1 = v0 + v}, the total
balance

∑
s∈Fn

2
|βAs+w|k is negligible. To show this, we prove that the following

two coset balance properties hold with overwhelming probability over the choice
of the CRS (v,A):

1. Property 1: v is A-balanced for sums. This property means that for any
decomposition v0 +v1 = v, for at least one w ∈ {v0,v1}, the coset w +A is
somewhat balanced. Specifically, for every s, |βAs+w| ≤ 3/5.

2. Property 2: A is affinely balanced. This property means that in any coset
w + A most members are well balanced. Specifically, except for a set E of at
most 2o(k) vectors s, it holds that |βAs+w| ≤ 2−ω(n/k).

Combining these two properties, we can guarantee that for the w ∈ {v0,v1}
such that Property 1 holds:

∑

s

|βAs+w|k ≤
∑

s∈E

(3/5)k +
∑

s/∈E

2−ω(n) ,

which is negligible for our choice of k ≈ n/ log n. We refer the reader to Sect. 3
for more details regarding the proof, and in particular the proof that the above
two properties hold.
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From the CRS Model to the Sender Random String Model. We now explain how
to compile an SSP OT protocol (S,R) in the CRS model to a protocol (S′,R′)
in the sender random string model (SRS), where receiver privacy is guaranteed
even if the common string is chosen by a malicious sender. The transformation
is based on the idea of reverse randomization from Dwork and Naor’s NIZK to
ZAP transformation [26].

In the new protocol, the sender random string consists of many random
strings scrs1, . . . , scrsk. The receiver R′, given the sender random string, will
sample a single random string rcrs of its own, and will generate k corresponding
common strings crsi = scrsi ⊕ rcrs for the underlying protocol (S,R). It will then
run the underlying S in k parallel copies using crsi and his choice bit c. The
sender S′ will secret share each of its two messages m0 and m1 into m1

0, . . . ,m
k
0

and m1
1, . . . ,m

k
1 , and respond in each copy i by running the underlying S with

messages mi
0,m

i
1.

The computational receiver privacy is shown via a standard hybrid argument.
For SSP, k is chosen to be large enough to guarantee that for any receiver choice
of rcrs, at least one crsi will ensure SSP, this is sufficient due to the use of secret
sharing.

From the SRS Model to the Plain Model Using Derandomization. We now explain
how to derandomize the SRS to get a protocol in the plain model. Here we
again draw inspiration from the case of ZAPs. Barak, Ong, and Vadhan [10]
observe that in ZAPs a bad CRS, namely one relative to which there exist
false proofs, can be identified non-deterministically in fixed polynomial time
(for a given false statement, the certificate for badness is an accepting ZAP).
This allows them to derandomize the CRS using hitting set generators (HSG)
against co-nondeterministic circuits, which in turn can be constructed from the
aforementioned worst-case assumption [29]. Such a generator G deterministically
computes in polynomial time a set S = {crsi} of strings. G guarantees that if a
random string crs is not bad with high probability, then the set S will include at
least one string crsi that is not bad. This is sufficient for derandomizing ZAPs,
by running parallel ZAP instances with each crsi.

In our setting a bad SRS is one for which SSP does not hold. If such badness
is certifiable then we can rely on a similar transformation. As in ZAPs, we can
run the SSP OT protocol with each crsi in the generated set S, and like the
transformation from the previous paragraph, use secret sharing on the sender’s
end to guarantee SSP. However, unlike the case of ZAPs, for a general SSP OT
the badness of a given crs might not be certifiable. Hence we need to require this
explicitly from the underlying SSP OT. This means that we have to guarantee
that our SSP OT has this additional bad CRS certification property.

Guaranteeing Bad CRS Certification. Guaranteeing bad CRS certification boils
down to showing that our protocol in the CRS model has the property; indeed,
it is not hard to show that the transformation to the SRS model would preserve
bad CRS certification. Recall that in our construction, we proved that if a CRS
(A,v) possesses Properties 1 and 2, then it is not bad. It is not hard to see that
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if Property 1—v is A-balanced for sums—is not satisfied then this can be cer-
tified. The witness is a decomposition v0,v1 such that v = v0 + v1 along with
s0, s1, such that both Asi + vi are not somewhat balanced.

In contrast, it is not clear how to certify Property 2—A is affinely balanced.
For this purpose we identify an alternative algebraic property that is both certi-
fiable and implies affine balance; surprisingly we call it strong affine balance. The
property states that for any w, in any set of d ≈ n/ log2 n linearly independent
vectors s1, . . . , sd ∈ Fn

2 at least one coset member Asi + w is well balanced. If
this property does not hold, then this can be certified; the witness is w, s1, . . . , sd

that do not satisfy the property. Furthermore, we show that strong affine balance
implies affine balance. We refer the reader to Sect. 3 for more details.

1.3 More Related Work

Other Applications of LPN. The works of Brakerski et al. and Yu et al. build
collision-resistant hash function based on LPNlog2 n/n [22,48] (the latter also
shows certain tradeoffs between hardness and shrinkage) . [21] construct anony-
mous identity-based encryption assuming the hardness of LPNlog2 n/n. Braker-
ski, Mour, and Koppula [19] construct non-interactive zero-knowledge arguments
based on LPNn−(1/2+ε) and the existence of trapdoor-hash-functions (which can be
constructed from DDH). Bartusek et al. construct maliciously-secure, two-round
reusable multiparty computation in the CRS model based on LPN1/n1−ε [11].

The Hardness of LPN. The gap between LWE and LPN is also expressed in
hardness results. While the hardness of LWE can be based on the worst-case
hardness of long-studied lattice problems (c.f. [20,43,46]), worst-case to average
case reductions for LPN have only been recently discovered and are still very
limited (they essentially show that solving the relatively “easy case” of LPN log2 n

n

in the worst case can be reduced to solving a very “hard case” of LPN 1
2− 1

poly(n)

in the average case) [22,47].

2 Preliminaries

We rely on the following standard notation.

– Throughout, we identify {0, 1}� with F�
2 in the natural way, addition and

multiplication of elements in F2 refers to the corresponding field operations.
– We denote vectors and matrices in bold, whereas scalars are not bold.
– For a binary vector x, we denote by ‖x‖0 the hamming weight of x.
– We denote by E[X] the expected value of random variable X.
– For a distribution D, x ← D denotes sampling x from D. For a set S, x ← S

denotes uniformly sampling from S.

We rely on the standard notions of Turing machines and Boolean circuits.
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– We say that a Turing machine is PPT if it is probabilistic and runs in poly-
nomial time.

– For a PPTalgorithm M , we denote by M(x; r) the output of M on input x
and random coins r. For such an algorithm, and any input x, we may write
m ∈ M(x) to denote the fact that m is in the support of M(x; ·).

– A polynomial-size circuit family C is a sequence of circuits C = {Cn}n∈N,
such that each circuit Cn is of polynomial size nO(1) and has nO(1) input
and output bits. We also consider probabilistic circuits that may toss random
coins.

– We follow the standard convention of modeling any efficient adversary as
a family of polynomial-size circuits. For an adversary A corresponding to a
family of polynomial-size circuits {An}n∈N, we sometimes omit the subscript
n, when it is clear from the context.

– A function f : N → [0, 1] is negligible if f(n) = n−ω(1) and is noticeable if
f(n) = n−O(1).

– Two ensembles of random variables X = {Xi}n∈N,i∈In
, Y = {Yi}n∈N,i∈In

over the same set of indices I = ·∪n∈NIn are said to be computation-
ally indistinguishable (respectively, statistically indistinguishable), denoted
by X ≈c Y, if for every polynomial-size (respectively, unbounded) distin-
guisher A = {An}n∈N there exists a negligible function μ such that for all
n ∈ N, i ∈ In,

∣∣∣Pr [A(Xi) = 1] − Pr [A(Yi) = 1]
∣∣∣ ≤ μ(n) .

Definition 2.1 (Distribution X�,k: sampling with replacement). Let
�, k ∈ N. We denote by X�,k the distribution over F�

2, where x ← X�,k is the
sum of k uniformly random standard basis vectors, sampled independently with
repetitions:

x :=
k∑

i=1

xi, where ∀i ∈ [k], xi ← {e1, . . . , e�} ,

where ej is the j-th standard basis vector.

We rely on the following basic lemmas.

Lemma 2.2 (Piling-Up Lemma [39]). Let v1, .., vk ∈ F2 i.i.d random vari-
ables such that E [vi] = ε, then:

Pr

[
k∑

i=1

vi = 1

]
=

1
2

− 1
2

(1 − 2ε)k
.

Lemma 2.3 (Random Vectors Are Balanced). Let � ∈ N and β ≥ √
1/�,

then:

Pr
w←F�

2

[∣∣∣∣‖w‖0 − �

2

∣∣∣∣ ≥ β�

]
≤ 2−β2� .

The latter lemma follows directly from a Chernoff-Hoeffding bound.
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2.1 Learning Parity with Noise

We recall the Learning Parity with Noise (LPN) assumption.

Definition 2.4 (LPN Assumption). For noise rate ε(n) ∈ [0, 1/2], the LPNε

assumption is that for any m(n) = nO(1),

{A,As + e}n∈N ≈c {A,u}n∈N ,

where A ← Fm×n
2 , s ← Fn

2 , e ← Bern(ε)m, and u ← Fm
2 .

2.2 Derandomization: Hitting Set Generators

We next define hitting set generators (HSGs) and state relevant results from the
literature. We address both HSGs against non-uniform circuits as well against
uniform algorithms. The non-uniform version is somewhat more common in the
literature and simpler to state. However, the (weaker) uniform version will suffice
for our purpose.

Definition 2.5 (Co-nondeterministic Circuits and Algorithms). A
co-nondeterministic boolean circuit C(x,w) (respectively, uniform algorithm
A(x,w)) takes x as a primary input and w as a witness. We define C(x) := 0
(respectively, A(x) := 0) if and only if there exists w such that C(x,w) = 0
(respectively, A(x,w) = 0).

Definition 2.6 (Hitting Set Generators). A deterministic polynomial-time
algorithm H(1m, 1s) that outputs a set of strings of length m, is a hitting set
generator against co-nondeterministic circuits, if for every m, s ∈ N, and every
co-non-deterministic circuit C : {0, 1}m → {0, 1} of size at most s:

Pr
x←{0,1}m

[C(x) = 1] > 1/2 =⇒ ∃y ∈ H(1m, 1s) : C(y) = 1 .

Definition 2.7 (Uniform Hitting Set Generators). A deterministic
polynomial-time algorithm H(1m, 1s(m)) that outputs a set of strings of length m,
is a hitting set generator against co-non-deterministic uniform algorithms, if
for every co-nondeterministic uniform algorithm A : {0, 1}∗ → {0, 1} of running
time at most s(m), and for sufficiently large m:

Pr
x←{0,1}m

[A(x) = 1] > 1/2 =⇒ ∃y ∈ H(1m, 1s(m)) : A(y) = 1 .

In the literature, a more general notion of ε-HSGs is often defined, where the
bound 1/2 is replaced by ε. In terms of computational assumptions, this differ-
ence is inconsequential due to general amplification results for HSGs [29].

Theorem 2.8 ([40]). Assume there exists a function f in E = Dtime(2O(n))
with non-deterministic circuit complexity 2Ω(n). Then, there exists an efficient
HSG against co-nondeterministic circuits.
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Gutfreund, Shaltiel and Ta-Shma [29] show that HSGs against co-
nondeterministic uniform algorithm can be obtained from a relaxed (uniform)
hardness assumption.

Definition 2.9 (AM). A probabilistic nondeterministic algorithm A(x, r, y)
takes in addition to its regular input x a randomness input r as well a non-
deterministic input y. We say that A computes a function f : {0, 1}∗ → {0, 1}
if for any x:

– f(x) = 1 =⇒ Prr [∃y : A(x, r, y) = 1] = 1 ,
– f(x) = 0 =⇒ Prr [∃y : A(x, r, y) = 1] ≤ 1

2 .

AM is the class of all languages decidable by probabilistic nondeterministic algo-
rithms running in time poly(n) where n = |x|. Similarly, AMTIME(t(n)) is
the class of all languages decidable by probabilistic nondeterministic algorithms
running in time at most t(n). Finally, [i.o.−AMTIME](t(n)) denotes the class
of all languages which have a probabilistic nondeterministic t(n)-running-time
algorithm deciding them for infinitely-many input lengths.

Theorem 2.10 ([29]). Assume E � [i.o. − AMTIME](2δn) for some δ > 0.
Then, there exists an efficient HSG against co-nondeterministic uniform algo-
rithms.

Note that the uniform assumption (as in Theorem 2.10) is indeed a relaxation
of the non-uniform one (as in Theorem 2.8), since non-uniformity can simulate
randomness. We also note that both assumptions are worst-case assumptions,
and that similar (or stronger) assumptions have by now become quite common
in cryptographic applications (c.f. [10,15,31]).

2.3 Statistical Sender-Private Oblivious Transfer

Oblivious Transfer (OT) is a protocol between two parties: a sender S and a
receiver R. The sender input consists of two secret messages m0,m1, and the
receiver input is a secret choice bit c. The protocol allows the receiver to learn mc,
and guarantees that the receiver gains no information regarding m1−c, whereas
the sender gains no information regarding the receiver choice bit c. We focus
on statistical sender privacy (SSP); namely, sender privacy holds even against
unbounded malicious receivers. Receiver privacy is computational. Furthermore,
we restrict attention to protocols with two messages (one from each party).

We consider three models of trusted setup:

– The common random string model: Here a common random string crs
is generated once and for all. The string is trusted by both the receiver and
sender.

– The sender random string model: This model is similar to the common
random string model, except that the receiver need not trust the string crs;
namely, receiver privacy holds for any choice of crs (even if adversarially made
by the sender).
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– The plain model: Here there is no trusted setup at all. Equivalently, the
setup procedure generating crs is deterministic.

We next define the notion in the common random string model, and then
extend it to the sender random string model and the plain model. In all defini-
tions, n indicates the security parameter.

Definition 2.11 (Two-message Statistically Sender-Private OT in CRS
model). A two-message Statistically sender-private OT in the common-random-
string model consists of PPT algorithms R = (R.Enc,R.Dec) and S, and an
associated polynomial ρ, with the following syntax:

1. R.Enc(crs, c): Gets crs ∈ {0, 1}ρ(n) and choice bit c ∈ F2 and outputs a message
rm and secret key sk.

2. S(crs,m0,m1, rm): Gets crs ∈ {0, 1}ρ(n), two bits m0,m1 ∈ F2, and rm, and
outputs a message sm.

3. R.Dec(crs, sk, sm): Gets crs ∈ {0, 1}ρ(n), secret key sk, and message sm, and
outputs a message bit.

We require the following:

– Correctness: For every c, m0, m1,

Pr

⎡

⎣R.Dec(crs, sk, sm) = mc

∣∣∣∣∣∣

crs ← {0, 1}ρ(n)

(rm, sk) ← R.Enc(crs, c)
sm ← S(crs,m0,m1, rm)

⎤

⎦ ≥ 1 − n−ω(1) .

– Receiver Privacy:

{
crs, rm

∣∣∣∣
crs ← {0, 1}ρ(n)

(rm, sk) ← R.Enc(crs, 0)

}

n∈N

≈c

{
crs, rm

∣∣∣∣
crs ← {0, 1}ρ(n)

(rm, sk) ← R.Enc(crs, 1)

}

n∈N

.

– Statistical Sender Privacy: There exists an (unbounded) OTExt, such that
for any (unbounded) R∗:

⎧
⎨

⎩crs, sm

∣∣∣∣∣∣

crs ← {0, 1}ρ(n)

rm ← R∗(crs)
sm ← S(crs,m0,m1, rm)

⎫
⎬

⎭
n,m0,m1

≈s

⎧
⎪⎪⎨

⎪⎪⎩
crs, sm

∣∣∣∣∣∣∣∣

crs ← {0, 1}ρ(n)

rm ← R∗(crs)
b ← OTExt(crs, rm)
sm ← S(crs,mb,mb, rm)

⎫
⎪⎪⎬

⎪⎪⎭
n,m0,m1

,

where n ∈ N,m0,m1 ∈ {0, 1}.
We now derive the definitions in the sender-random-string model and in the
plain model.
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Definition 2.12 (Two-message Statistically Sender-Private OT in SRS
model). A two-message Statistically sender-private OT in the sender-random-
string model is defined similarly to Definition 2.11, except that receiver privacy
holds for any choice of crs:
{
rm
∣∣ (rm, sk) ← R.Enc(crs, 0)

}
n,crs

≈c

{
rm
∣∣ (rm, sk) ← R.Enc(crs, 1)

}
n,crs

,

where n ∈ N, crs ∈ {0, 1}ρ(n).

Definition 2.13 (Two-message Statistically Sender-Private OT in
plain model). A two-message Statistically sender-private OT in the plain model
is defined similarly to Definition 2.11, except that crs is ignored by all algorithms.

Enhancements. We define two natural enhancements to the definition of SSP-
OT protocols in the CRS/SRS model. Relying on these enhancements, we will
show transformations between the three models (CRS, SRS, and plain). Further-
more, our core protocol (presented in Sect. 3) will satisfy these enhancements.

Bad CRS Certification. The first enhancement is for sender privacy, roughly
saying that there is an NP witness for a CRS being “bad for sender privacy”.
The exact definition follows.

Definition 2.14 (Bad CRS Certification). A two-message SSP OT protocol
in the CRS/SRS model has bad CRS certification if there exists a set B such
that:

– Statistical Sender Privacy Outside B: There exists an (unbounded)
OTExt, such that for any (unbounded) R∗:

{
sm

∣∣∣∣
rm ← R∗(crs)
sm ← S(crs,m0,m1, rm)

}

n,crs,m0,m1

≈s

⎧
⎨

⎩sm

∣∣∣∣∣∣

rm ← R∗(crs)
b ← OTExt(crs, rm)
sm ← S(crs,mb,mb, rm)

⎫
⎬

⎭
n,crs,m0,m1

,

where n ∈ N, crs ∈ {0, 1}ρ(n) \ B,m0,m1 ∈ {0, 1}.
– Negligible Density: Pr

[
crs ∈ B

∣∣ crs ← {0, 1}ρ(n)
] ≤ n−ω(1).

– Certification: B ∈ NP.

Remark 2.15 (Relation to the SSP in Definition 2.11). We note that SSP as
given by Definition 2.11 is in fact equivalent to the first two above conditions.
That is, if SSP holds, then there exists a set B satisfying the first two conditions,
and vice versa. The fact that the first two conditions imply SSP follows directly
from the definition. The other direction follows by an averaging argument.

Specifically, given that SSP holds, consider the malicious receiver R∗ that
given crs, chooses the message rm that maximizes the statistical distance between
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S(crs,m0,m1, rm) and S(crs,mb,mb, rm) where b is the extracted bit. Letting
ν be the statistical distance for a random crs, it holds that for all but a

√
ν

fraction of crs, the maximal statistical distance between S(crs,m0,m1, rm) and
S(crs,mb,mb, rm), over any choice of rm, is at most

√
ν. The corresponding set

B consists of this
√

ν fraction.

CRS-Free Correctness. The second enhancement is for the correctness property,
saying that correctness holds for any choice of CRS.

Definition 2.16. A two-message SSP OT protocol in the CRS/SRS model has
CRS-free correctness if:

min
crs∈{0,1}ρ(n)

m0,m1,c∈{0,1}

Pr
[
R.Dec(crs, sk, sm) = mc

∣∣∣∣
(rm, sk) ← R.Enc(crs, c)
sm ← S(crs,m0,m1, rm)

]

≥ 1 − n−ω(1) ,

where the probability is over the coins of the sender S and receiver R.

In Sect. 4.1, we show that this property can always be obtained for free with
no additional assumptions.

3 Two-Message SSP OT in the CRS Model

In this section, we present our two-message, statistically sender-private oblivious
transfer in the common random string model. We prove the following theorem.

Theorem 3.1. Under the LPN log2(n)
n

assumption, there exists a two-message
statistically-sender-private OT protocol in the CRS model. Moreover, the protocol
has CRS-free correctness and bad-CRS certification.

We describe the protocol in Fig. 1 and then proceed to analyze it. We describe
the protocol in its interactive form. The receiver algorithms R.Enc and R.Dec
correspond to the generation of the receiver message, and the decryption of the
sender message, respectively.

Parameters: n ∈ N is the security parameter, δ > 1 is a constant, � = n1+ 1
δ ,

ε = log2(n)
n , k = 4δ · n

log(n) , and r = n64δ+1.

3.1 Correctness and Receiver Privacy

We first prove correctness.

Proposition 3.2. The protocol is correct.
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Fig. 1. Two-message statistically-sender-private OT in the CRS model

Proof. In fact, we show CRS-free correctness. Fix any A ∈ F�×n
2 , v ∈ F�

2,
c,m0,m1 ∈ F2. Recall that, R samples s ← Fn

2 , e ← Bern(ε)�, sends v0 :=
As + e + c · v, and then S sets v1 := v0 + v. It follows that vc = As + e and for
every i ∈ [r],

zc
i = xt

c,iAs + xt
c,ie + mc

wi = xt
c,ie + mc where xc,i ← X�,k.

Thus, it suffices to show that the majority of (xt
c,1e, ...,xt

c,re) equals 1 with
negligible probability.

Claim. Let ε, �, k, r be functions of n as in our setting of parameters. Let e ←
Bern(ε)�, and x1, ...,xr ← X�,k be independent random variables. Then for large
enough n:

Pr
e,x1,...,xr

[
Maj(xt

1e, ...,xt
re) = 1

] ≤ exp (−ε�/3) + exp
(−r · 2−16kε/4

) ≤ n−ω(1).

Proof. First, by Lemma 2.2, for any w ∈ F�
2 with ‖w‖0 = η ≤ 2ε�,

Pr
x←X�,k

[
xtw = 1

]
= Pr

[
k∑

i=1

Bern
(η

�

)
= 1

]
=

1
2

− 1
2

(
1 − 2

η

�

)k

≤ 1
2

− 1
2

(1 − 4ε)k ≤ 1
2

− 1
2

· 2−8εk ,
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where we used the fact that ∀y ∈ [0, 1/2], 2−2y ≤ 1 − y.
For any such w, it holds by Chernoff-Hoeffding that

Pr
x1,...,xr

[
Maj(xt

1w, ...,xt
rw) = 1

] ≤ exp(−r · 2−16εk/4) .

Also by multiplicative Chernoff,

Pr
e←Bern(ε)�

[‖e‖0 > 2ε�] ≤ exp(−ε�/3) .

Overall,

Pr
e,x1,...,xr

[
Maj(xt

1e, ...,xt
re) = 1

]

≤ Pr
e

[‖e‖0 > 2ε�] + max
e:

‖e‖0≤2ε�

Pr
x1,...,xr

[
Maj(xt

1e, ...,xt
re) = 1

]

≤ exp(−ε�/3) + exp(−r · 2−16εk/4)

≤ exp(−n
1
δ (log2 n)/3) + exp(−n64δ+1 · n−64δ/4) ≤ n−ω(1) ,

where the first to last inequality is by our setting of the parameters.

This concludes the proof of CRS-free correctness.
Receiver privacy follows directly from the LPNε assumption:

Proposition 3.3. Under the LPNε assumption, the protocol satisfies receiver
privacy.

Proof. Under LPNε, the receiver message v0 is pseudorandom, regardless of its
choice bit c.

3.2 Statistical Sender Privacy Analysis

In this section we analyze the statistical sender privacy of the protocol. First, in
Sect. 3.2, we relate the statistical sender privacy to a certain measure of balance
on code cosets. Then in Sect. 3.2, we analyze the required balance conditions,
and deduce sufficient conditions for them to hold. Finally, in Sect. 3.2, we tie the
two together to deduce statistical sender privacy with bad-CRS certification.

Statistical Distance and Balanced Cosets. To prove statistical sender pri-
vacy, we aim to characterize which matrices A ∈ F�×n

2 and vectors w ∈ F�
2 are

such that xtw is statistically close to uniform even given the leakage xtA, when
x ← X�,k. We prove the following proposition, which relates the relevant statis-
tical distance to how balanced are vectors in the coset w + A of the linear code
given by A.
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Lemma 3.4. Let A ∈ F�×n
2 , w ∈ F�

2. Also, for t ∈ F�
2, let βt := 1 − 2

� ‖t‖0.
Then,

SD
((

xtA,xtw
)
,
(
xtA, u

)) ≤ 1
2

∑

s∈Fn
2

|βAs+w|k ,

where x ← X�,k, and u ← Bern
(
1
2

)
.

We prove the lemma using Fourier analysis on the Boolean cube. We start by
recalling the definition of the Hadamard matrix (corresponding to the Boolean
Fourier transform), and then state and prove two lemmas needed to prove Lemma
3.4.

Definition 3.5 (Hadamard matrix). The Hadamard matrices {H⊗n ∈
{±1}2n×2n}n∈N are defined inductively:

H⊗0 =
(
1
)

,

H⊗n =
(
H⊗(n−1) H⊗(n−1)

H⊗(n−1) −H⊗(n−1)

)
.

Note that for every x,y ∈ Fn
2 : H⊗n

x,y = (−1)〈x,y〉, where we identify strings in Fn
2

with indices in [2n] in the natural way.

Lemma 3.6. Let � ∈ N, n ∈ N, A ∈ F�×n
2 , w ∈ F�

2, and let D be a distribution
over F�

2, then:
⎛

⎜⎜⎜⎝

Prx←D

[
xtA = 	0,xtw = 0

]
− Prx←D

[
xtA = 	0,xtw = 1

]

...
Prx←D

[
xtA = 	1,xtw = 0

]
− Prx←D

[
xtA = 	1,xtw = 1

]

⎞

⎟⎟⎟⎠

=
1
2n

H⊗n

⎛

⎜⎜⎜⎝

Ex←D

[
(−1)x

t(A	0+w)
]

...
Ex←D

[
(−1)x

t(A	1+w)
]

⎞

⎟⎟⎟⎠ ,

where above we consider all 2n strings 	0, . . . , 	1 ∈ {0, 1}n according to lexico-
graphic order.

Proof. For any k ∈ N and B ∈ F�×k
2 , consider the distribution (xtB,xtw)x←D.

Note that for any b ∈ Fk
2 :

Pr
x←D

[
xtB = b

]
= Ex←D [1xtB=b] = Ex←D

⎡

⎣ 1
2k

∑

s∈Fk
2

(−1)〈xtB+b,s〉

⎤

⎦

=
1
2k

∑

s∈Fk
2

(−1)〈b,s〉 · Ex←D

[
(−1)x

tBs
]

,
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which means⎛

⎜⎜⎜⎝

Prx←D

[
xtB = 	0

]

...
Prx←D

[
xtB = 	1

]

⎞

⎟⎟⎟⎠ =
1
2k

H⊗k

⎛

⎜⎜⎜⎝

Ex←D

[
(−1)x

tB	0
]

...
Ex←D

[
(−1)x

tB	1
]

⎞

⎟⎟⎟⎠ .

Now, Because H⊗(n+1) =
(
H⊗n H⊗n

H⊗n −H⊗n

)
, the lemma follows when taking B =

(w|A) ∈ F�×(n+1)
2 .

Lemma 3.7. Let A ∈ F�×n
2 , w ∈ F�

2. Also, for t ∈ F�
2 let βt := 1− 2

� ‖t‖0. Then
for x ← X�,k,
⎛

⎜⎜⎜⎝

Prx
[
xtA = 	0,xtw = 0

]
− Prx

[
xtA = 	0,xtw = 1

]

...
Prx

[
xtA = 	1,xtw = 0

]
− Prx

[
xtA = 	1,xtw = 1

]

⎞

⎟⎟⎟⎠ =
1
2n

H⊗n

⎛

⎜⎝

βk
A	0+w

...
βk

A	1+w

⎞

⎟⎠ ,

where above we consider all 2n strings 	0, . . . , 	1 ∈ {0, 1}n according to lexico-
graphic order.

Proof. The lemma follows directly from Lemma 3.6, and the observation that
for any t ∈ F�

2,

Ex←X�,k

[
(−1)〈x,t〉

]
= Ex1,...,xk←{e1,..,e�}

[
k∏

i=1

(−1)〈xi,t〉
]

=
k∏

i=1

Ex1←{e1,..,e�}
[
(−1)〈x1,t〉

]
=
(

1 − 2
�

‖t‖0
)k

.

We are now ready to prove Lemma 3.4.

Proof (Proof of Lemma 3.4).

SDx←X�,k,u←Bern( 1
2 )

((
xtA,xtw

)
,
(
xtA, u

))

=
1
2

∑

a∈Fn
2

(∣∣∣∣Pr
x

[
xtA = a,xtw = 0

]− 1
2

Pr
x

[
xtA = a

]∣∣∣∣

+
∣∣∣∣Pr
x

[
xtA = a,xtw = 1

]− 1
2

Pr
x

[
xtA = a

]∣∣∣∣

)

=
1
2

∑

a∈Fn
2

(
1
2

∣∣∣Pr
x

[
xtA = a,xtw = 0

]− Pr
x

[
xtA = a,xtw = 1

]∣∣∣

+
1
2

∣∣∣Pr
x

[
xtA = a,xtw = 1

]− Pr
x

[
xtA = a,xtw = 0

]∣∣∣

)
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=
1
2

∑

a∈Fn
2

∣∣∣Pr
x

[
xtA = a,xtw = 0

]− Pr
x

[
xtA = a,xtw = 1

]∣∣∣

=
1
2

∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎝

Prx←X�,k

[
xtA = 	0,xtw = 0

]
− Prx←X�,k

[
xtA = 	0,xtw = 1

]

...
Prx←X�,k

[
xtA = 	1,xtw = 0

]
− Prx←X�,k

[
xtA = 	1,xtw = 1

]

⎞

⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
1

=
1
2

∥∥∥∥∥∥∥

1
2n

H⊗n

⎛

⎜⎝

βk
A	0+w

...
βk
A	1+w

⎞

⎟⎠

∥∥∥∥∥∥∥
1

(by Lemma 3.7)

≤ 1
2

∥∥∥∥∥∥∥

1
2n/2

H⊗n

⎛

⎜⎝

βk
A	0+w

...
βk
A	1+w

⎞

⎟⎠

∥∥∥∥∥∥∥
2

(Cauchy-Schwartz)

=
1
2

∥∥∥∥∥∥∥

⎛

⎜⎝

βk
A	0+w

...
βk
A	1+w

⎞

⎟⎠

∥∥∥∥∥∥∥
2

(2−n/2H⊗n is orthonormal)

≤ 1
2

∥∥∥∥∥∥∥

⎛

⎜⎝

βk
A	0+w

...
βk
A	1+w

⎞

⎟⎠

∥∥∥∥∥∥∥
1

.

This concludes the proof.

Balance of Code Cosets. Following Lemma 3.4 from the previous section, in
this section we analyze the balance properties of code cosets. Concretely, our goal
is to find sufficient conditions to guarantee that no matter how an adversarial
receiver decomposes v into v0 +v1 = v, it must be that one of the cosets vi +A
will be balanced (in which case we can invoke Lemma 3.4).

Step I: In Any Decomposition, One Coset is Somewhat Balanced. Our first step
is to show that when v as chosen at random (as in the CRS), then any sum
decomposition v = v0 + v1 will induce at least one coset vi + A in which all
members are somewhat balanced. Jumping ahead, this balance alone will not
suffice, and our second step will deal with the additional balance properties
required.

Definition 3.8. For all A ∈ F�×n
2 ,v ∈ F�

2, we use the (abuse of) notion
‖A + v‖0 to denote the minimal distance between v and the image of s �→ As,
formally: ‖A + v‖0 := mins∈Fn

2
‖As + v‖0.

Note that ‖A + v‖0 satisfies the triangle inequality:

‖A + (v0 + v1)‖0 ≤ ‖A + v0‖0 + ‖A + v1‖0 .
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Definition 3.9. Let A ∈ F�×n
2 , v ∈ F�

2. We say that v is A-balanced for sums
if for all v0,v1 such that v0 + v1 = v, there exists i ∈ {0, 1} such that for all
s ∈ Fn

2 :

�

5
≤ ‖As + vi‖0 ≤ 4�

5
.

Proposition 3.10 (A random v is A-balanced for sums). For any A ∈
F�×n
2 :

Pr
v←F�

2

[v is A-balanced for sums] ≥ 1 − 2n+1

2Ω(�)
.

Proof. Define A′ := (A|	1) ∈ F�×(n+1)
2 . Observe that:

Pr
v←F�

2

[
‖A′ + v‖0 ≥ 2

5
�

]
≥ Pr

v←F�
2

[
∀s ∈ Fn+1

2 :
∣∣∣∣‖A′s + v‖0 − �

2

∣∣∣∣ ≤ 1
10

�

]

≥ 1 − 2n+1

2Ω(�)
,

where the above follows from Lemma 2.3 and the fact that for any s, A′s+v
is uniformly random over F�

2, as well as a union bound.
Now, for any v0,v1 ∈ F�

2 such that v0 + v1 = v, by the triangle inequality,

‖A′ + v‖0 ≥ 2
5
� =⇒ ∃i ∈ {0, 1} : ‖A′ + vi‖0 ≥ 1

5
� .

Finally, observe that for every w ∈ F�
2 and γ ≤ 1/2, if ‖A′ + w‖0 ≥ γ� then

∀s ∈ Fn
2 :
∣∣‖As + w‖0 − 1

2�
∣∣ ≤ ( 12 − γ)�. Indeed, for all s ∈ F�

2:

‖As + w‖0 ≥ γ� =⇒ γ� − 1
2
� ≤ ‖As + w‖0 − 1

2
� ,

∥∥∥As + w + 	1
∥∥∥
0

≥ γ� =⇒ � − ‖As + w‖0 ≥ γ� =⇒ ‖As + w‖0 − 1
2
� ≤ 1

2
� − γ� .

The lemma now follows when setting γ = 1
5 .

Step II: Almost All Coset Members Are Well Balanced. The balance prop-
erty defined above is still not sufficient for meaningfully invoking the statis-
tical distance bound given by Lemma 3.4. Indeed, directly using the bound∑

s∈Fn
2

|βAs+w|k given by the lemma would require that the maximum bias β is
such that β � 2−n/k. However, in our case, to guarantee correctness k ≈ n/ log n
and bounding β by a constant is insufficient. Using a more careful analysis, we
will prove that in fact, for a random matrix A, it is the case that in all cosets
w + A, almost all members are well (rather than somewhat) balanced, and in
particular have maximal bias β � 2−n/k. This will allow using the relatively
weak balance property from Step I on a sufficiently small set. We proceed with
the relevant definitions and analysis.
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Definition 3.11 ((β,D)-Affine-Balance). Let β ∈ [0, 1], D ∈ N and A ∈
F�×n
2 . We say that A is (β,D)-affinely-balanced if for all w ∈ F�

2 there exists a
set Ew ⊆ Fn

2 such that |Ew| < D, and:

∀s ∈ Fn
2 \ Ew : (1 − β)

�

2
≤ ‖As + w‖0 ≤ (1 + β)

�

2
We also define (and achieve) a stronger balance property that will be useful for
showing bad-CRS certification.

Definition 3.12 ((β, d)-Strong-Balance). Let β ∈ [0, 1], d ∈ N and A ∈
F�×n
2 . We say that A is (β, d)-strongly-balanced if for all w ∈ F�

2, and any set of
d linearly independent vectors s1, ..., sd ∈ Fn

2 , there exists some i ∈ [d] such
that:

(1 − β)
�

2
≤ ‖Asi + w‖0 ≤ (1 + β)

�

2
.

Proposition 3.13 (From strong to affine balance). Any A ∈ F�×n
2 which

is (β, d)-strongly-balanced, is also (β, 2d)-affinely balanced.

Proof. The proposition follows from the fact that any set of 2d vectors over Fn
2

contains a set of d linearly independent vectors.

Proposition 3.14. For β ≥ �−1/2, a random A $←− F�×n
2 is (β, d)-strongly-

balanced with probability at least:

Pr
A←F�×n

2

[A is (β, d) − strongly-balanced] ≥ 1 − 2�+n·d+2d− 1
4dβ2� .

Proof. Assume A $←− F�×n
2 . We will bound the probability that A is not (β, d)-

strongly-balanced. This happens when there exists w ∈ {0, 1}� and d linearly
independent vectors s1, ..., sd such that ∀i ∈ [d] :

∣∣‖Asi + w‖0 − �
2

∣∣ > 1
2β�. We

bound the probability that such w, s1, ..., sd exist.
First, for any fixed w ∈ F�

2 and 0 �= s ∈ Fn
2 it holds that As + w is uniformly

distributed over {0, 1}�, and therefore from Lemma 2.3 we get:

Pr
A

[∣∣∣∣‖As + w‖0 − �

2

∣∣∣∣ >
1
2
β�

]
≤ 2− 1

4β2� .

Similarly, for any fixed w ∈ F�
2, and any set of d linearly independent vectors

{s1, ..., sd} ⊆ Fn
2 it holds that (As1 + w, ...,Asd + w) is uniformly distributed

over {0, 1}�×d, and independence implies:

Pr
A

[
∀i ∈ [d] :

∣∣∣∣‖Asi + w‖0 − �

2

∣∣∣∣ >
1
2
β�

]
≤
(
2− 1

4β2�
)d

Finally, by the union bound, and the fact that
(
m
k

) ≤ (
m·e
k

)k,

Pr
A

[
∃w ∈ {0, 1}�, linearly independent s1, ..., sd : ∀i ∈ [d],

∣∣∣∣‖Asi + w‖0 − �

2

∣∣∣∣ >
1

2
β�

]

≤ 2�

(
2n

d

) (
2− 1

4 β2�
)d

≤ 2�+n·d+2d− 1
4 dβ2� .
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Putting Things Together: Statistical Sender Privacy. We are now ready
to prove that the protocol is statistically-sender-private. In fact we will prove
the stronger property of bad-CRS certifiability.

Proposition 3.15. The protocol is statistically-sender-private. Moreover, it is
bad-CRS certifiable.

Proof. In what follows, δ = 1 + Θ(1), � = n1+ 1
δ and k = 4δn/log(n) are as

previously set in our construction, and d(n) = n/log2(n), β(n) = 4
√

n/� =
4n−1/(2δ).

We first define the set of bad CRSs:

B :=
⋃

n

{
(A,v) ∈ F�×n

2 × F�
2

∣∣∣∣
A is not(β, d)-strongly-balanced
ORv is notA-balanced for sums

}
.

We next establish each of the three requirements of sender-statistical-privacy
with bad CRS certification.

Claim. Sender statistical privacy outside of B is satisfied.

Proof. Fix (A,v) /∈ B and any decomposition v = v0+v1. Since v is A-balanced
for sums, there exists i ∈ {0, 1} such that for all s ∈ Fn

2 :

�

5
≤ ‖As + vi‖0 ≤ 4�

5
. (1)

Let i ∈ {0, 1} be (the minimal) such that the above holds.

The extractor OTExt(A,v,v0) outputs 1 − i.

To conclude the proof, we bound the statistical distance
SD ((xtA,xtvi) , (xtA, u)) for x ← X�,k, u ← Bern

(
1
2

)
. In what follows, for

t ∈ F�
2 let βt := 1 − 2

� ‖t‖0. Also, let Evi
⊆ Fn

2 be the set given by Definition
3.11, where its existence is guaranteed by Proposition 3.13 and the fact that A
is (β, d)-strongly-balanced.

SD
((

xtA,xtvi

)
,
(
xtA, u

))

≤
∑

s∈Fn
2

|βAs+vi
|k (By Lemma 3.4)

=
∑

s∈Evi

|βAs+vi
|k +

∑

s/∈Evi

|βAs+vi
|k

≤ |Evi
| · max

s∈Fn
2

|βAs+vi
|k + 2n · max

s/∈Evi

|βAs+vi
|k

≤ 2d · max
s∈Fn

2

|βAs+vi
|k + 2n · βk (By Definition 3.11)

≤ 2d · (3/5)k + 2n · βk (By Equation (1))
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= 2
n

log2 n · (3/5)
4δn
log n + 2n · (4n−1/(2δ))

4δn
log n (By our parameter setting)

= 2−Ω(n/ log n) + 2n · 2
8δn
log n −2n

= 2−Ω(n/ log n) .

Claim. B is certifiable.

Proof. (A,v) ∈ B if and only if either one of the following holds:

– A is not (β, d)-strongly-balanced: there exist w ∈ F�
2 and d linearly inde-

pendent vectors s1, .., sd ∈ Fn
2 such that ∀i ∈ [d]:

∣∣∣∣‖Asi + w‖0 − �

2

∣∣∣∣ > β
�

2
.

– v is not A balanced for sums: there exist v0,v1 ∈ F�
2, s0, s1 ∈ Fn

2 such
that v = v0 + v1 and for both i ∈ {0, 1}:

∣∣∣∣‖Asi + vi‖0 − �

2

∣∣∣∣ >
3
5

· �

2
.

Given (w, s1, .., sd), respectively (v0,v1, s0, s1), the first, respectively the second,
condition can be efficiently checked. Hence B ∈ NP.

Claim. B has negligible density

Proof. By Proposition 3.14,

Pr
A←F�×n

2

[A is not (β, d)-strongly-balanced]

≤ 2�+n·d+2d− 1
4dβ2�

= 2n1+1/δ+
n(n+2)
log2 n

−4 n2

log2 n

= 2−Ω(n2/ log2 n) .

By Lemma 3.10, for every A ∈ F�×n
2 :

Pr
v←F�

2

[v is not A-balanced for sums] ≤ 2n+1

2Ω(�)
≤ 2−Ω(n1+1/δ) .

Overall, by the union bound,

Pr
A,v

[(A,v) ∈ B] ≤ 2−Ω(n1+1/δ) .

This concludes the proof of Proposition 3.15.

4 From the CRS Model to the SRS and Plain Models

In this section, we show transformations from the CRS model to the SRS model,
and then to the plain model.
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4.1 From the CRS Model to the SRS Model

In this section, we show how to transform any two-message SSP OT in the
common random string model into one in the sender random string model. Recall
that this model is similar to the common random string model, except that
receiver privacy holds even for an adversarial (rather than random) choice of the
common string. The transformation is based on the idea of reverse randomization
from [26] (tracing back to [38]).

In what follows, we denote the original protocol by (S,R) and its CRS length
by ρ and construct a new protocol (S′,R′) with SRS length ρ2. The transforma-
tion is presented in Fig. 2.

Fig. 2. Two-message statistically-sender-private OT in the SRS model

We prove:

Theorem 4.1. Assuming (S,R) is a two-message statistically sender-private
OT in CRS model, then (S′,R′) is a two-message statistically sender-private
OT in SRS model. Moreover, (S′,R′) has CRS-free correctness (even if (S,R)
does not), and if (S,R) has bad-CRS certification so does (S′,R′).

Corollary 4.2. Under the LPN log2(n)
n

assumption, there exists a two-message
statistically-sender-private OT protocol in the SRS model. Moreover, the protocol
has CRS-free correctness and bad-CRS certification.

We prove Theorem 4.1 in the full version of the paper [12].
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4.2 From the SRS Model to the Plain Model

In this section, we show how to transform any two-message SSP OT in the
sender random string model that has CRS-free correctness and bad-CRS cer-
tification into one in the plain model. We do this assuming the existence of
hitting set generators (HSGs) against co-non-deterministic uniform algorithms,
which are in turn known from worst-case uniform assumption commonly used for
derandomizing AM. Similar (or even stronger) assumptions have become rather
common in in the cryptographic literature. (See more details in Sect. 2.2.)

In what follows, we denote the original protocol by (S,R), its CRS length
by ρ, and corresponding bad CRS set by B. Let DB be the co-non-deterministic
decider that outputs 0 on every x ∈ B and 1 on x /∈ B, and let t(m) = mO(1) be
its running time. Also let H be hitting-set generator against co-non-deterministic
uniform algorithms. We construct a new protocol (S′,R′). The transformation is
presented in Fig. 3.

Fig. 3. Two-message statistically-sender-private OT in the plain model

We prove:

Theorem 4.3. Assuming (S,R) is a two-message statistically sender-private
OT in SRS model with CRS-free correctness and bad-CRS certification, then
(S′,R′) is a two-message statistically sender-private OT in plain model.

Corollary 4.4. Under the LPN log2(n)
n

assumption, and the existence of hitting-
set generators against co-nondeterministic algorithms, there exists a two-message
statistically-sender-private OT protocol in the plain model.
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To prove Theorem 4.3, we prove each of the required properties.

Proposition 4.5. Protocol (S′,R′) is correct.

Proof. By the CRS-free correctness of the underlying protocol, correctness holds
for each crsi output by the hitting set generator H. It follows that except with
negligible probability n−ω(1) over the coins of (S′,R′), the receiver learns all mi

c

and mc = ⊕im
i
c.

Proposition 4.6. Protocol (S′,R′) satisfies receiver privacy.

Proof. Recall that the underlying protocol is secure in the SRS model, implying
that receiver privacy holds for any choice of CRS. In particular, it holds with
respect to each crsi output by H. Receiver privacy follows by a straightforward
hybrid argument.

Proposition 4.7. Protocol (S′,R′) is statistically-sender-private.

We prove Proposition 4.7 in the full version of the paper [12].
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Abstract. Is it possible to convert classical reductions into post-quantum
ones? It is customary to argue that while this is problematic in the inter-
active setting, non-interactive reductions do carry over. However, when
considering quantum auxiliary input, this conversion results in a non-
constructive post-quantum reduction that requires duplicating the quan-
tum auxiliary input, which is in general inefficient or even impossible. This
violates the win-win premise of provable cryptography: an attack against
a cryptographic primitive should lead to an algorithmic advantage.

We initiate the study of constructive quantum reductions and present
positive and negative results for converting large classes of classical
reductions to the post-quantum setting in a constructive manner. We
show that any non-interactive non-adaptive reduction from assumptions
with a polynomial solution space (such as decision assumptions) can be
made post-quantum constructive. In contrast, assumptions with super-
polynomial solution space (such as general search assumptions) cannot
be generally converted.

Along the way, we make several additional contributions:
1. We put forth a framework for reductions (or general interaction) with

stateful solvers for a computational problem, that may change their
internal state between consecutive calls. We show that such solvers
can still be utilized. This framework and our results are meaningful
even in the classical setting.

2. A consequence of our negative result is that quantum auxiliary
input that is useful against a problem with a super-polynomial solu-
tion space cannot be generically “restored” post-measurement. This
shows that the novel rewinding technique of Chiesa et al. (FOCS
2021) is tight in the sense that it cannot be extended beyond a poly-
nomial measurement space.

1 Introduction

The notion of provable security in cryptography has had a great impact on
the field and has become a de-facto gold standard in evaluating the security of
cryptographic primitives. A provably secure cryptographic primitive is stated in
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the form of a computational problem P , whose hardness is related by means
of reduction to that of another problem Q which is either by itself considered
intractable or in turn can be further reduced down the line. The reduction is
an algorithm that solves the problem Q provided that it is given access to an
algorithm that solves the problem P .

This gives rise to the “win-win principle” which stands as one of the main
motivations for using provably secure cryptography. The logic is the following.
Either an algorithmic solution for P cannot be found, i.e. the cryptographic
primitive P is secure for all intents and purposes, or one can find an algorithmic
solution for P which would imply an algorithmic solution for Q, thus contributing
to the state of the art in algorithms design. Indeed, cryptographic reductions are
the main working tool for the theoretical cryptographer. Numerous reductions
between cryptographic primitives are known and hundreds of such reductions
are published in the cryptographic literature every year.

The emergence of the quantum era in computing poses a new challenge to
provable security and the win-win principle. Many existing reductions in the
“pre-quantum” world implicitly or explicitly relied on the P -algorithm being
classical. These reductions are thus a-priori invalid when considering quantum
algorithms. A central line of investigation in the domain of post-quantum security
is thus dedicated to the following question.

To what extent can pre-quantum reductions be ported to the post-quantum
setting?

Such conversion may not always be possible. This is particularly a concern
when considering interactive problems, i.e. ones where the solution to P involves
multiple messages being exchanged with the solver algorithm. Indeed, one of the
most prominent techniques for proving security in the interactive setting, namely
the notion of rewinding, does not directly translate to the quantum setting and
moreover one can explicitly show cases where pre-quantum reductions exist but
post-quantum ones do not. In fact, this property was actually used to construct
proofs of computational quantumness [5] in which a party proves that it is quan-
tum by succeeding in a task for which there is a classical impossibility result
(under computational assumptions). In a nutshell, the reason is that a quantum
algorithm may keep a quantum state between rounds of interaction, and this
quantum state is measured and thus potentially destroyed in order to produce
the next message of interaction. It is therefore not possible to naively “rewind”
the interaction back to a previous step as is customary in many classical proofs.

The focus of this work, therefore, is on non-interactive cryptographic assump-
tions. These are problems P whose syntax contains a (randomized) instance
generator which generates some instance x, and a verifier that checks whether
solutions y are valid (with respect to x or more generally the randomness that
was used to generate x). The role of the solver algorithm in this case is simply
to take x as input and produce a y that “verifies well” (we avoid getting into
the exact formalism at this point).

Contrary to the interactive case, it is customary to postulate (often with-
out proof) that classical reductions to non-interactive cryptographic assump-
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tions carry over straightforwardly to the post-quantum setting since there is no
rewinding. There is a simple challenge-response interface that on the face of it
“does not care” whether the underlying P -solver is implemented classically or
quantumly. This viewpoint, however, is overly simplistic, since the P solver may
use quantum auxiliary input : a quantum state |s〉 that is used as a resource for
solving P . The state |s〉 can be the result of some natural process upon which
we have no control, or a result of some exhaustive preprocessing, or generated
in the course of execution of some protocol. At any rate, the means to produce
|s〉 are often not at our disposal, we just get a copy of the state.

In this case, similarly to the interactive setting, the quantum state is mea-
sured whenever the P -solver is called, and therefore, it potentially precludes us
from calling the P solver more than once. This issue is often addressed in the
literature by noticing that providing many copies of |s〉 would allow to call the
P solver multiple times – namely there exists a quantum state |s〉⊗t that allows
to solve Q given access to the P solver. Therefore, the existence of a classical
reduction still implies that if Q is intractable even given arbitrary auxiliary input,
then the same holds for P .

We argue that the aforementioned common “solution” for post-quantum
reductions in the presence of quantum auxiliary input is unsatisfactory. First
and foremost, this solution violates the win-win principle. While the argument
above indeed implies that (some form of) intractability for P follows from (some
form of) intractability for Q, it does not allow to convert an auxiliary-input algo-
rithm for P into an auxiliary-input algorithm for Q in a constructive manner,
since the transformation |s〉 → |s〉⊗t is not an efficient one. An additional related
concern is the durability of such reductions. Namely, that if we wish to execute
the reduction more than once (i.e. solve multiple instances of Q) then we need
to duplicate the state |s〉 an a-priori unbounded number of times.

Given this state of affairs, the question we are facing is the following.

To what extent can pre-quantum reductions to non-interactive assumptions be
ported to the post-quantum setting constructively and durably?

Naturally, we do not wish to redo decades of cryptographic work in re-proving
each result individually. Instead, we would like to identify the broadest class of
pre-quantum reductions that can be generically converted into the post-quantum
regime, and at the same time characterize the limitations where such generic
conversion is not possible. This is the focus of this work, and indeed we show a
generic transformation for a very broad class of reductions. Along the way we
develop an adversarial model for stateful adversaries that may be of interest in
its own right, even in the classical setting.

1.1 Our Main Results

We prove a general positive result for converting classical reductions into post-
quantum ones. In particular we consider non-adaptive reductions. In such reduc-
tions, the set of queries to the oracle is determined before any query is made. It
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turns out that an important parameter in our positive as well as our negative
result is the size of the solution space of the computational problem P (“the
cryptographic primitive”). Our positive results apply to cases where the solu-
tion space is polynomial.1 One notable example the case where P is a “decision
assumption”, namely the P solver is a distinguisher that returns a single bit as
output. Another notable example is the case where P is an NP search problem,
with unique solutions (e.g., injective one-way functions or unique signatures).
An informal result statement follows.

Theorem 1.1 (Positive result, informal). There exists an efficient trans-
formation for converting any classical non-adaptive black-box reduction from
assumption Q to assumption P , where P is a non-interactive assumption with a
polynomial solution space, into a constructive and durable post-quantum reduc-
tion from Q to P .

We prove a complementary negative result, for the case where P has a large
solution space. The negative result relies on the existence of classical indistin-
guishability obfuscation which is secure against quantum adversaries.

Theorem 1.2 (Negative result, informal). Assume the existence of post-
quantum secure indistinguishability obfuscation. Then there exist non-interactive
assumptions P , Q, where P has a super-polynomial solution space and the follow-
ing hold. There exists a classical non-adaptive black-box reduction from assump-
tion Q to assumption P , but there is no such constructive post-quantum reduc-
tion.

As explained above, in order to address the question of constructiveness,
we need to develop a new adversarial model and a host of tools to address this
question. An account of these intermediate contributions appears in the technical
overview below.

1.2 Our Techniques and Additional Contributions

Known approaches fall short of achieving constructiveness and durability since
they regard quantum auxiliary input similarly to its classical counterpart, despite
the inherent difference of the inability to duplicate or reuse quantum informa-
tion. We assert that the process of making multiple calls to an algorithm with
quantum side information is inherently stateful. Namely, the internal state of the
“oracle” changes and evolves over time. In this work we put forth a framework
for stateful solvers, namely algorithms that change their internal state and thus
their behavior over time.

In the post-quantum setting, reductions start from one-shot solvers. That is,
ones that have an initial state that allows them to provide an answer for a single

1 They in fact apply even if the solution space is polynomial per instance (but the
space is not the same for all instances), and a certain natural verifiability property
is satisfied (see Definition 3.2).
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instance of P successfully, but afterwards all bets are off. It seems natural (and, as
we show, turns out to be useful) to consider stateful solvers that propagate their
P -solving property throughout an execution, we call this property persistence.
Persistent solvers evolve their state in an arbitrary way subject to being able,
at any point in their evolution, to successfully answer a P -query (with some
noticeable advantage).

A Framework for Stateful Solvers. Section 3 is dedicated to formally defining
the notion of a (potentially stateful) solver and quantifying its success probability
in solving a problem P . We accordingly provide definitions for a post-quantum
reduction in this setting, and more specifically the notion of a post-quantum
black-box reduction. The standard notion of a classical black-box reduction is
recovered as a special case of our definition, when specializing to so-called state-
less P -solvers.

Using our new formalism, the task at hand is to convert a reduction that
expects to be interacting with a stateless solver, into one that is successful even
when given a one-shot stateful solver.

One-Shot Solvers Imply Persistent Solvers. One-shot solvers may seem
quite useless, since on the face of it they may only successfully respond to a
single query. However, our first technical result, in Sect. 4, is that they can in
fact be converted generically (but in a non-black-box manner) into persistent
solvers. Namely, ones that can answer an a-priori unbounded number of queries
and maintain roughly the same success probability. The persistent solver has a
state of length that is polynomially related to that of the one-shot solver. The
running time of the persistent solver increases with each query it is being asked.
That is, the time complexity of answering the t-th query scales with poly(t) for
a fixed polynomial. This still ensures that for any polynomial-length sequence of
queries, the total time to answer all queries is bounded by a fixed polynomial.
The persistent value of the resulting solver (i.e. the value that is maintained
for an a-priori unbounded number of times) is itself a random variable that
is determined during the conversion process. The expectation of the persistent
value is equal to the one-shot value of the solver we start from. (We note that it
is inherently impossible to achieve a non-probabilistic behavior, i.e. to ensure a
persistent value that is always above some threshold.2)

Our transformation is an extension of the techniques in the recent work of
Chiesa, Ma, Spooner and Zhandry [7], that can be interpreted as showing such
a transformation for “public-coin” cryptographic assumptions (ones where the
instances are uniformly distributed and the verification requires only the in-

2 To see this, consider the case where the one-shot auxiliary input |s〉 is a superpo-
sition giving weight

√
1 − ε to a value |⊥〉 that always makes the P -solver fail,

and giving weight
√

ε to a state that makes the P -solver perfectly successful.
Then, by trace-distance considerations, any processing of |s〉 must be ε-statistically-
indistinguishable from a case where |s〉 = |⊥〉. Therefore, with probability at least
1−ε the persistent value will be trivial. Nevertheless, using a Markov argument, if we
start from a one-shot solver with a non-negligible advantage, we recover, with a non-
negligible probability, a many-shot solver with a non-negligible persistent advantage.
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stance and the solution, and not the randomness that was used to generate the
instance). It is only in this step that we have the restriction that the solution
space of the problem needs to be polynomial, due to limitations of the [7] tech-
nique. Our negative result (further discussed below) proves that these limitations
are inherent.

The conversion from one-shot to persistent is the only transformation that
uses the solver in a non-black-box manner. In the rest of our (positive) results
we take a persistent P -solver and a bound on the length of its auxiliary quantum
state and only make black-box use of this solver, i.e., provide instances as input
and receive solutions as output. We do not further intervene with the evolution
of the state between consecutive calls to the solver.

Once we transformed our solver to being persistent, we are guaranteed that
we can make multiple P queries, and each one will be answered by a “successful”
solver. It may seem that our mission is complete. However, this is far from being
the case. While all queries are answered by a successful solver, these solvers
may be arbitrarily correlated. For example, thinking about a simple linearity
test where a reduction queries x1, x2, x3 = x1 ⊕ x2 and checks whether a linear
relation holds. It may be the case that for each query xi we get a response yi from
an approximately-linear function, and yet the solver “remembers” that x1, x2

were previously made as queries, and deliberately fails on x1 ⊕ x2 in the next
query. Another example, that will be quite useful to illustrate our transformation
is that of the Goldreich-Levin (GL) hardcore bit [12], where queries take the form
(f(x), ri), always with the same f(x), and with additional correlations between
the ri values across different queries. In particular, it may be the case that once
a query with some value f(x) has been made, the solver refuses to meaningfully
answer any additional queries with the same f(x).3

We note that attributing adversarial behavior to the solver is done for pur-
poses of analysis. Our transformation from one-shot to persistent appears quite
“innocent” and we do not know whether it can actually generate such patho-
logical behavior that will prevent reductions from running. However, we cannot
rule it out and therefore we consider a worst-case adversarial model.

When described in this way, it seems that only very specialized reductions
can be carried over to the post quantum setting. For example, ones that employ
a strong form of random self reduction when making solver queries. One such
case is the search-to-decision reduction for the learning with errors problem [20].
However, as the GL hardcore bit example demonstrates, this doesn’t even extend
to all search to decision reductions. We must therefore find a new way to utilize
stateful solvers. Indeed, the handle that we use is that while the solver may
change its behavior adversarially, its adversarial behavior is constrained by the
length of the auxiliary state |s〉 that it uses. We will indeed leverage the fact

3 We note that while the classical GL reduction, falls under our umbrella of non-
adaptive reductions, in this specific case, it is in fact known how to devise a single-
query quantum reduction [1]. This, however, does not resolve the question of durabil-
ity, and more importantly does not provide a general framework for all non-adaptive
reductions.
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that this state is polynomailly bounded to limit the adversarial powers of the
solver and handle more general reductions.

Before moving on to describe our techniques in this context, we notice that
while this adversarial model (of black-box access to a persistent solver) emerged
as a by-product of our work on quantum reductions, it is nevertheless a valid
model in its own right in both the quantum and classical setting. We may con-
sider interacting with an adversary/solver that is only guaranteed to be notice-
ably successful at every point in time but, unlike the standard notion of an
“oracle”, may change its behavior over time. In our case, we allow the behav-
ior to change arbitrarily, so long that the amount of information carried over
between executions is bounded (in our case, by the length of the state, which is
polynomially bounded).

Memoryless Persistent Solvers. Our next step, in Sect. 5, is to show that
a persistent solver, even with adversarial behavior, can be effectively converted
into a more predictable form of solver that we call memoryless (note that this is
different from our final goal which is to achieve a stateless solver). A memoryless
solver keeps track of the sequence number of the question it is asked (e.g. it knows
that it is now answering query number 4) but it is not allowed to remember any
information about the actual content of the previous queries that were made.

We show that a combination of a non-adaptive reduction and a persistent
solver induce a memoryless (persistent) solver (more accurately a distribution
over memoryless solvers). These memoryless solvers are accessible using a simu-
lator that, given access to the reduction and the original solver, efficiently simu-
lates the interaction of the reduction with the induced memoryless solver, up to
inverse-polynomial statistical distance. Note that we require that the reduction
is non-adaptive. Namely, its queries to the solver can be arbitrarily correlated
(as in the GL case), but the identity of the queries must not depend on the
answers to previous queries.

The transformation relies on the fact that the solver has a bounded amount
of memory, say � qubit of state that is propagated through the execution. Our
strategy is to dazzle the solver with an abundance of i.i.d dummy queries, that
are sampled from the marginal distribution of the “real” queries (for example, in
the GL case, each dummy query will have the form (f(xi), ri) where xi, ri are both
random). In between the dummy queries, in random locations, we plant our real
queries, in random order. We prove that the solver, having only � qubits of state,
must answer our real queries as if they were dummy queries. This requires us to
develop a proper formalism and to prove a new lemma (Plug-In Lemma) using
tools from quantum information theory. See Sect. 9 in Ref. [3] for the full details.

Stateless Solvers at Last. Finally, we show in Sect. 6 that memoryless solvers
imply stateless solvers. This is again shown by means of simulation via a simi-
lar formalism to the previous result. Recall that a stateless solver must answer
all queries according to the same distribution. This transformation again relies
on the non-adaptive nature of the reduction, namely on the ability to gener-
ate all solver-queries ahead of time. To do this, we notice that we can think
of a memoryless solver simply as a sequence of stateless solvers that can be
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queried one at a time. Therefore, we can consider the induced stateless solver
that at every query picks a random solver from this collection and executes it on
the query. This indeed will result in a stateless solver. The solving probability of
the induced stateless solver is simply the average success probability of solvers
in the collection, which is concentrated due to persistence. Moreover, this behav-
ior can be simulated by randomly permuting the queries, while still calling the
solvers according to their order in the sequence.4

This way, asking the queries in a permuted order to the memoryless solver will
(almost) mimic the action of sampling a solver from the collection independently
for each query. The only reason why this mimic is not perfect is that permuted
queries are sampling “without repetition”, i.e. none of the solvers in the sequence
defined by the memoryless solver will be queried twice, whereas in the ideal
strategy we described above, it is possible that the same solver from the sequence
will be sampled more than once. We deal with this by making the number of
solvers in the sequence so big, that the probability of hitting the same solver
twice becomes very small (inversely polynomial for a polynomial of our choice).
We simply add to our queries of interest a large number of dummy “0 queries”,
and perform a random permutation on this extended set of queries.

Putting Things Together. In Sect. 7 we put all of the components together
and prove our main positive result, that any classical non-adaptive reduction
which relies on a non-interactive polynomial-solution-space assumption can be
made post quantum. This requires putting together the components in a careful
manner.

The fact that the first step in our transformation was to produce a persistent
P , allows us to continue using it even after having solved a Q instance. This
means that we can solve additional instances of Q, or use it to solve additional
instances of P or any other problem Q′ for which a non-adaptive reduction to
P exists. In particular, this property implies that our reduction is durable.

A Negative Result for Search Assumptions. We show in Sect. 8 that
a generic conversion from classical to constructive quantum reductions is not
always possible, even for the case of non-adaptive reductions to non-interactive
assumptions. In particular, if P is an assumption with a large solution space
(intuitively, a search assumption) this may not be possible.

We show our negative result by relying on a recently introduced primitive
known as tokenized signatures [2]. These are signature schemes with the standard
classical syntax, but for which it is possible to produce a quantum signature
token. The signature token allows to generate a single classical signature for
a message of the signer’s choice, but only one such signature can be created.
Tokenized signatures have been constructed relative to a classical oracle [2] or
based on cryptographic assumptions [8].

4 Remember that we have access to the memoryless solver which only allows to make
queries in order.
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We can define an “assumption” which is essentially the task of signing a ran-
dom message using a tokenized signature scheme.5 In the classical world, there is
a trivial reduction between the task of signing one random message and the task
of signing two random messages. However, if we consider a quantum solver that
holds the token as auxiliary input, then by definition it should not be possible
to use it to obtain two signatures for two different messages. Our negative result
holds for any conversion process that is constructive, and in particular does not
obtain any implicit non-uniform advice about the assumption.

1.3 Other Related Work

The question of which reductions can be translated from the classical to the
post-quantum setting also received significant attention in the context of the
random-oracle model (ROM), starting from the work of Boneh et al. [4]. The
question asked in these works is whether it is possible to convert reductions in
the classical ROM into ones the quantum ROM (QROM, where the adversary
is allowed to make quantum queries to the oracle). There are several results
proving that specific schemes that are secure in the ROM are also secure in the
QROM [10,11,14–17,21,23,24]. Recently, a more general “lifting theorem” was
given in [22], showing how to convert a proof in the ROM to one in the QROM
for any “search-type game” where a challenger makes only a constant number
of queries to the random oracle. This work also presented a negative result,
showing that there are schemes that are secure in the ROM yet are insecure in
the QROM. While the general motivation in these works is similar to ours, the
question they ask is quite different from ours. In the ROM/QROM, the solver
is allowed to make queries to the oracle (which is simulated by the reduction),
which is more similar to the setting where interactive-assumptions are used.

Our memoryless transformation (Sect. 5) relies heavily on the state of the
solver being bounded in length. The idea that bounded quantum memory can
be used to restrict an otherwise all powerful adversary is at the core of the
bounded quantum storage model. It can be shown (see, e.g., [9]) that it is possible
to achieve cryptographic abilities against strong adversaries while relying only
on a limit on the amount of quantum storage they can use. This setting is
quite different from ours, though, since the quantum bounded storage model
allows an unbounded amount of classical memory, which in our setting would
make it impossible to achieve any result. Indeed, the bounded storage model
requires quantum communication (whereas our reduction-solver communication
is completely classical), and thus the set of tools and techniques that are used
in both settings are completely different.

5 The assumption is instantiated by a verification key which we can think of as non-
uniformity of the assumption, see discussion in Sect. 8.
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2 Preliminaries and Tools

We say that a given function f(x1, . . . , xk) is poly(x1, . . . , xk), if there exist
constants c, C such that (x1 · x2 · . . . · xk)c ≤ f ≤ (x1 · x2 · . . . · xk)C .

We denote by TD the trace distance between two matrices.

Algorithms. By default, when referring to an algorithm we mean a classical
probabilistic (resp. quantum) algorithm. Algorithms may be uniform or non-
uniform, meaning that they have classical advice related to the input size (we
specify when uniformity matters). An efficient algorithm is also polynomial time.

Quantum Notation. We use standard quantum information in Dirac notation.
We denote quantum variables in boldface x and classical variables in lowercase x.
The density matrix of x is denoted ρx . Classical variables may also have (diago-
nal) density matrices. Quantum variables x,y have a joint density matrix ρx,y if
they can be jointly produced by an experiment. As usual, x,y are independent
if ρx,y = ρx ⊗ ρy . We never assume that quantum variables are independent
unless we explicitly say so. Quantum registers are denoted in capital letters. We
also sometimes use capital letters to denote distributions, where it is clear from
the context. For a finite Hilbert space H we denote by S(H) the set of density
matrices over quantum states in H.

A quantum procedure is a general quantum algorithm that can apply uni-
taries, append ancilla registers in 0 state, perform measurements in the compu-
tational basis and trace out registers. The complexity of F is the number of local
operations it performs (say, operations on up to 3 qubits are considered local).
If F is a quantum procedure then we denote by F (x) the application of F on x.
Any unitary induces a quantum procedure that implements this unitary, which
does not perform measurements or trace out registers, we call this procedure “a
unitary quantum circuit”.

Purification of Quantum Procedures and States. A quantum procedure
may introduce new ancilla qubits, perform intermediate measurement through-
out its computation and discard registers or parts thereof. However, any quantum
procedure can be purified into unitary form without much loss in complexity [19].
This is formally stated below.

Proposition 2.1. Let C be a general quantum procedure of complexity s. Then
it is possible to efficiently generate a unitary quantum circuit ̂C of size O(s),
such that for any quantum state (x,a), setting (y,z) = ̂C(x,0), it holds that
(y,a) has identical density matrix to (C(x),a).

Likewise, any quantum state can be viewed as a reduced density matrix of
the output of a unitary (which may be inefficient to implement).

Proposition 2.2. Let x be a variable with density matrix ρx . Then there exists
a unitary U over registers XY such that applying U(0,0), the reduced density
matrix of the value in the X register has density matrix ρx .
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2.1 The Plug-In Lemma

The following lemma is another manifestation of information incompressibility
in the quantum setting. Specifically, we are interested in an experiment in which
an all powerful compressing procedure attempts to compress t samples which
are arbitrarily distributed into � quantum bits. We show that this is infeasible
even in the weak sense in which a decoder receives the compressed value, and a
(j − 1)-prefix of the sequence, and is required to identify the j-th element. We
show that as t increases, the probability of succeeding in the experiment drops.
A formal statement follows.

Lemma 2.3 (Plug-In Lemma). Let �Y = (Y1, . . . , Yt) be a joint distribution
over t classical random variables. Let �y be distributed according to �Y . Let s be
an �-qubit random variable that has arbitrary dependence on �y. We let �yi denote
the prefix �yi = (y1, . . . , yi) for 1 ≤ i ≤ t, and �y0 is the empty vector (and
likewise for �Y ). Let J be the uniform distribution over [t] and let j ← J . Define
y′ ← Yj |(�Yj−1 = �yj−1). Then it holds that

TD((j, �yj−1, yj , s), (j, �yj−1, y
′, s)) ≤

√

�/(2t) . (1)

Note that the above two distributions are not identical even though (j, �yj−1, yj)
and (j, �yj−1, y

′) are identically distributed. The reason is that in both cases, s
is always generated as a function of �y, i.e. using yj and not y′

j .
The lemma is proven in the full version of this paper [3].

3 Assumptions, Stateful Solvers, and Reductions

In this section, we formally define the concepts of non-interactive cryptographic
assumptions, stateful solvers, and their value and advantage in breaking an
assumption.

3.1 Non-Interactive Assumptions

We define the notion of a non-interactive (falsifiable) cryptographic assumption
as in [13,18]. While we frame the notion as “cryptographic”, it can be viewed
more generally as a notion for average-case problems where the solution can be
verified.

Definition 3.1 (Non-Interactive Assumption). A non-interactive assump-
tion is associated with polynomials d(λ), n(λ),m(λ) and a tuple P = (G,V, c)
with the following syntax. The generator G takes as input 1λ and r ∈ {0, 1}d, it
returns x ∈ {0, 1}n. The verifier V takes as input 1λ and (r, y) ∈ {0, 1}d×{0, 1}m

and returns a single bit output. (Both G and V are deterministic.) c(λ) is the
assumption’s threshold.

We say that P is falsifiable if G,V are uniform polynomial-time algorithms
(in their input size).



Constructive Post-quantum Reductions 665

We also define a property called verifiably-polynomial image that roughly
speaking requires that any instance has at most polynomial many solutions and
that this can be verified in some weak sense. The property in particular captures
problems where the solution space {0, 1}m is of polynomial size such as decision
problems (where m = 1), and problems in NP where there are a few solutions
per instance (such as injective one-way functions).

Definition 3.2 (Verifiably-Polynomial Image). A non-interactive assump-
tion P has a verifiably-polynomial image if there exists an efficient verifier K
and a polynomial k = poly(λ), such that for any instance x ∈ {0, 1}n, the set
Yx := {y : K(1λ, x, y) = 1} of K-valid solutions is of size at most k and for any
valid instance x = G(1λ, r) and solution y such that V (1λ, r, y) = 1, it holds that
y ∈ Yx.

The traditional notion of the advantage in solving an assumption P is measured
in terms of the distance between the solving probability (which we term the
value) and the threshold c.

Definition 3.3 (Value and Advantage of Classical Functions). Let P =
(G,V,C) be a non-interactive assumption and let f = { fλ : {0, 1}n → {0, 1}m }λ

be a family of (possibly randomized) functions. For every λ ∈ N, we define the
corresponding value and advantage:

valP [f ](λ) : = Pr

⎡
⎣V (1λ, r, y) = 1

∣∣∣∣∣∣
r ← {0, 1}d

x = G(1λ, r)
y ← fλ(x)

⎤
⎦ , aP [f ](λ) : = |valP [f ](λ) − c(λ)| ,

where the probability is also above the randomness of fλ in case it is randomized.

3.2 Stateful Solvers

The premise of our work is that in the quantum setting, one ought to think
about stateful solvers, which generalizes the standard treatment of a solver as a
one-shot algorithm. We now define this formally.

Definition 3.4 (Stateful Solvers: Syntax). Let P be a non-interactive
assumption.

Let � = �(λ) be a function. A classical (resp. quantum) �-stateful solver
B = (B, state0 = {stateλ,0}λ) is defined as follows.

– B is a classical (resp. quantum) algorithm that takes as input 1λ, 1t, x ∈
{0, 1}n and state which is an �-bit (resp. qubit) string, and outputs a value y ∈
{0, 1}m and state′ which is an �-bit (resp. qubit) next-state. We let B(· · · )y
denote the y output and B(· · · )st denote the state′ output.

– state0 = {stateλ,0}λ is a sequence of classical (resp. quantum) states consist-
ing of � = �(λ) bits (resp. qubits).

We say that B is efficient if B runs in time poly(λ, t, n); i.e., in polynomial time
in the lengths of its inputs.
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Remark 3.5 (Non-uniformity). The algorithm B may have a non-uniform clas-
sical advice. It does not have any additional quantum advice.

Remark 3.6 (Dependence on Runtime). Our definition allows the running time
of efficient stateful solvers to depend polynomially on the “iteration” t. In par-
ticular, for any polynomial number of solving attempts t = poly(λ), the overall
running of the solver is polynomial. One could also consider a more stringent defi-
nition that requires that each call runs in fixed polynomial time independently of
the iteration number t. Jumping forward, we will show how a solver can preserve
its solving ability through time, but at the cost of running for longer in each step.
Doing this according to the more stringent time-independent definition remains
an open question.

It will be useful to define some properties of solvers with respect to an exten-
sion of the sovler’s execution transcript. The extension corresponds to the would-
be transcript of a purified version of the solver, running on a purified version of
the initial state. This will allow us to get a precise well-defined handle on the
evolution of quantum states throughout the lifetime of the solver. The extended
transcript will only be used for purposes of definition and analysis and will never
be required algorithmically.

Definition 3.7 (Stateful Solvers: Purifying Values). Consider a solver
B = (B, state0 = {stateλ,0}λ). Let Bλ,t,x denote the quantum procedure that
takes s as input and produces B(1λ, 1t, x, s) over registers SY . By Proposi-
tion 2.1, we can consider its purification ̂Bλ,t,x which acts on registers SY Ŷ

and takes as input (s,0,0). Then define ̂B(1λ, 1t, x, s) as the algorithm that
computes (s′,y, ŷ) = ̂Bλ,t,x(s,0,0), measures (y, ŷ) in the computational basis
to obtain (y, ŷ), and then outputs s′ as the state output, y as the solution output,
and ŷ as the purifying output.

In addition, by Proposition 2.2, there exists a (possibly inefficient) unitary
̂B0,λ that operates on two registers SŶ such that when applying (s0, ŷ0) ←
̂B0,λ(0,0), the reduced density matrix of s0 is identical to that of state0. Then
define ̂B0(1λ) as the quantum procedure that computes (s0, ŷ0) ← ̂B0,λ(0,0),
measures ŷ0 in the computational basis, and then outputs s0 as state0 and ŷ0 as
the purifying initial value.

We refer to the collection ̂B = { ̂Bi,λ,x } as a purification of B (it is not
unique).

Remark 3.8. We note that the purifying values can be arbitrarily long. These
values will only be used for analysis purposes and are never produced in an
actual execution, and hence we do not require any bound whatsoever on the
length of the purifying values or the complexity of producing them.

We now define the concept of a solver interaction, which captures the process
of repeatedly invoking a stateful solver by a given algorithm.



Constructive Post-quantum Reductions 667

Definition 3.9 (Solver Interaction). Let P = (G,V, c) be a non-interactive
assumption. For any stateful solver B = (B, state0) and corresponding purifi-
cation ̂B, and any algorithm A with input z ∈ {0, 1}∗, we consider the process
AB(1λ, z) of the algorithm interacting with the solver. We define this process
in two different yet equivalent manners: one which is efficient given the ability
to execute B, and one which may be inefficient but implies an identical output
distribution. The latter will include a production of all purifying values (Defini-
tion 3.7) which will be useful for definitions and analysis.

– We let state0 be as defined in B.
Equivalently: We let (state0, ŷ) ← ̂B0(1λ).

– A is invoked on input (1λ, z) and at every step i ≥ 1:
1. A submits a query xi ∈ {0, 1}n.
2. (yi, statei) ← B(1λ, 1i, xi, statei−1) is invoked.

Equivalently: (ŷi, yi, statei) ← ̂B(1λ, 1i, xi, statei−1) is invoked.
3. A obtains yi, and proceeds to the next step.

– At the end of the interaction A may produce an output w.

We sometimes refer to A as a solver-aided algorithm and use the shorthand AB
z

for the solver interaction and A
̂B
z for the purified solver interaction. We refer

to the random variables state0, state1, state2, . . . as the state random variables of
the interaction. We refer to the list of pairs of generated instances and solutions
(xi, yi) as the transcript of the interaction and denote it by ts. We also define
the extended transcript ̂ts of the execution as consisting of the value ŷ0 followed
by a list to triples (xi, yi, ŷi). Given an extended transcript ̂ts, we can produce
the standard transcript ts by removing all purifying values. We call this action
redaction and say that ts is the redacted transcript induced by ̂ts. Generating an
extended transcript according to the purified solver interaction A

̂B
z and redacting

it produces an identical distribution to the generation of the redacted transcript by
direct interaction AB

z . The length of a transcript/extended-transcript is the num-
ber of pairs/triples it contains (this means that an extended transcript of length
0 is not empty since it still contains ŷ0. The i-prefix of a transcript/extended-
transcript is denoted tsi/̂tsi and contains the first i pairs/triples (and also ŷ0 in
the extended case).

We show that the purifying values indeed purify the entire solver interaction,
in the sense that they determine all states statei as pure states for any solver
interaction.

Proposition 3.10. Let B = (B, state0) be a solver with purification ̂B and con-
sider the extended transcript ̂ts of the solver interaction A

̂B
z and let t be its

length. Then for all i ≤ t, the state statei is pure conditioned on ̂tsi. Specifically,
it has density matrix |s

̂tsi
〉〈s

̂tsi
| that is completely determined by ̂tsi (and there-

fore by the classical string ̂ts) and does not depend on any other parameter of
the execution.
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Proof. We consider the purifying description of the solver interaction A
̂B
z and

prove by induction. For t = 0, we recall that the pair (state0, ŷ) is generated
by applying ̂B0,λ on the zero state, followed by measuring the Ŷ register. The
pre-measurement state over registers SŶ is therefore pure, and can always be
written as

∑

ŷ

αŷ|sŷ〉S ⊗ |ŷ〉Ŷ , (2)

where αŷ are non-negative real values with
∑

ŷ α2
ŷ = 1, and |sŷ〉 are fully specified

unit vectors. Therefore, post-selecting on having measured the value ŷ0 in register
Ŷ , we have that the state in register S is exactly state0 = |sŷ0〉〈sŷ0 |, which
completes the base step of the proof.

Now assume that the above holds for all i < t. Consider a transcript ̂ts of
length t s.t. ̂ts = ̂tst−1‖(x, y, ŷ) for some ̂tst−1, x, y, ŷ.

Let us consider the state of the system right before the t-th query to the
solver. At this point, ̂tst−1 was already determined, and thus by induction we
know that statet−1 = |s

̂tst−1
〉〈s

̂tst−1
| is a pure state. At this point x has also been

determined.
By definition, statet is produced by executing a unitary ̂Bλ,t,x (that acts on

registers SY Ŷ ) on (statet−1,0,0), which is pure by the induction hypothesis,
and measuring the Y Ŷ registers. The analysis here is similar to the base case.
The pre-measurement state is pure (since it is induced by applying a unitary on
a pure state) and thus can always be written as

∑

y,ŷ

αy,ŷ|sy,ŷ〉S ⊗ |y, ŷ〉Y Ŷ , (3)

and as above αy are non-negative real values with
∑

y α2
y = 1, and |sy,ŷ〉 are fully

specified unit vectors. Post selecting on y, ŷ leaves us with register S containing
statet = |sy,ŷ〉〈sy,ŷ|, which completes the proof.

We are now ready to define the concepts of value and advantage of stateful
solvers. Traditionally, when thinking about stateless solvers, we consider their
one shot value, namely the probability that they solve the problem on a random
instance. Since they are stateless this probability does not change over time. In
the case of stateful solvers, this probability may change over time. Our definition
of the many shot values aims to capture exactly this. For any solver interaction
AB

z , the value at time t, captures the probability that the solver B successfully
solves a random instance at this time, after a given t-round interaction with
Az. This value is, in fact, a random variable that depends on the history of
the interaction. To make this precise, we consider any purification ̂B, and define
these values as a function of the extended transcript.

Definition 3.11 (Stateful Solvers: Value and Advantage). Let P be a
non-interactive assumption, B = (B, state0) be a corresponding stateful solver,
̂B a corresponding purification, and A a solver-aided algorithm with input z. For
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every λ, i ∈ N, let statei be the i-th pure state random variable of the solver
interaction A

̂B
z (determined by ̂tsi). The corresponding value random variables

are:

valP [i, A ̂B
z ](λ) := Pr

⎡

⎣V (1λ, r, y) = 1

∣

∣

∣

∣

∣

∣

r ← {0, 1}d

x = G(1λ, r)
(ŷi+1, y, statei+1) ← ̂B(1λ, 1i, x, statei)

⎤

⎦ ,

where the probability is over the choice of r and the measurement of ŷi+1, y.
The one-shot value of B is

valP [0,B](λ) := Pr

⎡

⎣V (1λ, r, y) = 1

∣

∣

∣

∣

∣

∣

r ← {0, 1}d

x = G(1λ, r)
(y, state1) ← B(1λ, x, state0)

⎤

⎦ ,

where the probability is over the choice of r, measurements of B, and (the possibly
mixed) state0. Note that this is in fact a number, independent of any A or the
choice of purification ̂B.

The corresponding advantage random variables are:

aP [i, A
̂B
z ](λ) :=

∣∣∣valP [i, A
̂B
z ](λ) − c(λ)

∣∣∣ aP [0, B](λ) := |valP [0, B](λ) − c(λ)| .

For a distribution B on solvers {Bα }α, we define the one-shot value of the
distribution as:

valP [0,B](λ) = Eα←B[valP [0,Bα](λ)] .

The corresponding advantage is aP [0,B](λ) = |c(λ) − valP [0,B](λ)|.
As the solver’s state evolves over time, its advantage in solving an assumption
may reduce or disappear altogether. This is in particular relevant to the quantum
setting, where when a solver is invoked its internal state is disturbed. Aiming to
capture solvers that remain useful over time, we next define the notion of solvers
with persistent value, namely, solvers whose value in solving a given assumption
is preserved through time. We define it more generally for distributions over
solvers; single solvers are a special case.

Definition 3.12 (Persistent Value). Let P be a non-interactive assumption.
A distribution B on solvers {Bα }α is η-persistent if there exist purifications
{ ̂Bα }α such that for any algorithm A with input z, with probability 1 − η over
the choice of solver α ← B and over an extended transcript ̂ts in the solver
interaction process A

̂Bα
z , there exists a value p such that:

max
i

∣

∣

∣valP [i, A ̂Bα
z ] − p

∣

∣

∣ ≤ η . (4)

We call p a persistent value. Given a random variable p∗(α) ⊆ [0, 1], we say that
a solver distribution is (p∗, η)-persistent if the condition holds for p∗(α).
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We next define the notion of a persistent advantage. This aims to capture
the case that solvers maintain a lower bound on their advantage through time.

Definition 3.13 (Persistent Advantage). Let P be a non-interactive
assumption with threshold c. A distribution B on solvers {Bα }α has ε-persistent
advantage if there exist purifications { ̂Bα }α such that for any algorithm A with
input z:

E

[

min
i

valP [i, A ̂Bα
z ]

]

≥ c + ε , (5)

where the expectation is over the choice of solver α ← B and over an extended
transcript ̂ts in the solver interaction process A

̂Bα
z .

In the above, We require that the advantage has a consistent sign (for sim-
plicity, positive). Intuitively, the reason we focus on persistence of the positive
advantage vt − c at time t, rather than the absolute advantage |vt − c|, is that if
the sign of vt − c arbitrarily changes after each solver invocation, then the solver
may not be as useful. (As a simple example, take a deterministic distinguisher
and turn it into a stateful distinguisher that flips the output of the original dis-
tinguisher at random with each invocation, deeming it useless.) We note that η
persistent solvers in particular preserve the sign of their advantage (up to η).

Memoryless and Stateless Solvers. A special case of the above definitions
is that of memoryless and stateless solvers.

Definition 3.14. A solver B = (B, state0) is memoryless if the size of its state
is � = 0. The solver is stateless if in addition (to being memoryless), the algo-
rithm B does not depend on 1t (in functionality or runtime).

Remark 3.15 (Persistent Value for Stateless and Memoryless Solvers). Note that
in the case of stateless solvers, successive invocations of the solver will always
result in the same output distribution. Here the one-shot (and many-shot) advan-
tage coincide with the standard notion of advantage for functions (Definition 3.3)
and values are persistent (Definition 3.12). Accordingly, stateless solvers exactly
capture the traditional notion of classical solvers, given by a randomized func-
tion.

Moreover, even for memoryless solvers, when considering the definition of
persistent solvers the value valP [i, A ̂B

z ] does not depend on Az at all (only on i),
and therefore it is a fixed number rather than a random variable. It follows that
for (p, η)-persistent memoryless solvers, Eq. (4) holds with probability 1.

3.3 Reductions

We now define the notion of a reduction. A reduction is a way to prove a claim
of the form “if there exists a successful solver for assumption P then there exists
a successful solver for an assumption Q”. We consider constructive reductions
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in the sense that they are an explicit uniform algorithm that takes as input a
successful solver for P and efficiently solves the problem Q.

The default notion of a reduction in the literature is one shot. In pparticular,
a given quantum P -solver is only assumed to have a meaningful one-shot advan-
tage in solving P , and there is no a priori guarantee on its advantage in any
many shot solving process, in particular there may not be any value persistence.
Likewise, the produced solver for the assumption Q is only required to have a
meaningful one-shot advantage. Below we define both the default notion of one-
shot reductions as well as the stronger notion of durable reductions requiring that
the resulting Q-solver also has persistent advantage, meaning that with notice-
able probability, the reduction can go on solving for an arbitrary polynomial
number of times.

Definition 3.16 (Reduction). A reduction from classically (resp. quantumly)
solving a non-interactive assumption Q to classically (resp. quantumly) solving
a non-interactive assumption P is an efficient classical (resp. quantum) uniform
algorithm R with the following guarantee. For any solver BP = (BP , state0) for P
with one-shot advantage ε and running time T , let state′

0 = (state0, BP , 11/ε, 1T ).
Then BQ = (R, state′

0) is a solver for Q with one-shot advantage ε′ =
poly(ε, T−1, λ−1) and running-time poly(T, ε−1, λ). We say that the reduction
is durable if BQ has poly(ε, T−1, λ−1)-persistent advantage.

We refer to a reduction from solving Q to classically (resp. quantumly) solving
P as a classical-solver (resp. quantum-solver) reduction.

Remark 3.17 (Many Shot Reductions). There could be several conceivable exten-
sions of the above definition that also account for the many-shot advantage. One
such natural extension is requiring that the reduction works only given a solver
with a persistent value (as in Definition 3.12). Jumping ahead, in Sect. 4, we
show that under certain conditions, persistent solving can in fact be reduced to
one-shot solving, even in the quantum setting.

Remark 3.18 (The Loss). We allow for a (fixed) polynomial loss in the advantage
and running time. One could naturally extend it to more general relations.

Classical Black-Box Reductions. In this work, we prove that several gen-
eral classes of classical reductions that a priori are only guaranteed to work for
classical solvers, can be enhanced efficiently to also work for quantum solvers.
Our focus is on black-box reductions; that is, reductions that are oblivious of
the representation and inner workings of the solver that they use (in contrast
to the above Definition 3.16, where the reduction obtains the full description of
the solver BP ).

We next formally define such black box reductions, using the terminology we
have already developed. Specifically, we capture the notion of a classical solver
for a given problem P as a stateless (classical) solver.

Definition 3.19 (Classical Black-Box Reduction). A classical black-box re-
duction, from solving a non-interactive assumption Q to solving a non-interactive
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assumption P , is an efficient classical solver-aided uniform algorithm R with the
following syntax and guarantee. R takes as input a security parameter 1λ, param-
eter 11/ε, and instance x ∈ {0, 1}nQ of Q. It interacts with a solver B for P (per
Definition 3.9) and produces an output y ∈ {0, 1}mQ . We require that for any
distribution B over stateless classical solvers {Bα }α such that B has advan-
tage at least ε in solving P , the corresponding solver distribution R over solvers
{RBα(1λ, 11/ε, ·) }α has advantage at least poly(ε, λ−1) in solving Q. The advan-
tage of R is positive if its value is always at least cQ (above the assumption Q’s
threshold), regardless of any P -solver.

We further say that the reduction R is non-adaptive if R produces all of
its oracle queries x1, . . . , xk ∈ {0, 1}nP to B in one shot, obtains all answers
y1, . . . , yk, and then produces its output y.

Remark 3.20. In our definition of solver interaction, a given solver B is only ever
invoked for the instance size nP (λ). Accordingly, the above definition restricts
attention to classical reductions that in order to solve problem Q for instance
size nQ(λ) make queries to a P -solver on a specific related input size np(λ).
While this is not without loss of generality, it does capture natural reductions.
(In fact, we are not aware of important reductions that do not adhere to this.)

Remark 3.21 (Deterministic Solver Reductions, Positive Advantage, and
Repeated Queries). We consider classical reductions that ought to work when
given a stateless solver from a distribution B over solvers {Bα }. (As a matter
of fact in our model, even once a stateless solver Bα is fixed, the process of
answering any given query is randomized, but this can be modeled as sampling
a deterministic stateless solver from another distribution B with the same advan-
tage.) A weaker notion of classical reductions only requires that the reduction
works for deterministic solvers. In the classical setting, this is typically not an
issue, as long as the reduction has the power to fix the solver’s randomness and
repeatedly replace it as needed. Jumping forward, when considering quantum
reductions, the randomness of a given solver may arise from the quantum nature
of the solving process, and the reduction may not be able to control it. Accord-
ingly, in our transformations from classical-solver reductions to quantum-solver
reductions, we will naturally need the classical reduction we start from to also
be able to deal with distributions over solvers.

We note that for typical assumptions Q such as search problems (with triv-
ial threshold c = 0) or decision problems (with solution length m = 1 and
trivial threshold c = 1/2), a classical reduction R from Q-solving to determin-
istic P -solving implies a classical reduction R’ from Q-solving to distributional
P -solving. Here two subtleties should be addressed. The first issue that could
prevent R from working for distributional P -solvers is that the sign of the advan-
tage of RB as a Q-solver may depend on the randomness of B and may cancel
out in expectation. For search assumptions Q, where c = 0, this cannot hap-
pen as any advantage is positive. For decision problems, this can be avoided by
slightly augmenting R to make sure that the advantage is always positive using
standard black-box techniques [6]. This incurs only a polynomial overhead in
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solving queries, or even just a single query, at the cost of quadratically decreas-
ing the advantage. The second issue concerns the running time of the reduction.
Specifically a reduction that works for deterministic oracles, excepts to get their
advantage 11/ε as input, where ε is the P -solver’s advantage. When executing
such a reduction with a solver distribution, we are given 11/ε, where ε is the
average advantage. Nevertheless, we can run the original reduction with input
12/ε. Note that the probability that that the advantage of a sampled oracle is at
least ε/2 is at least ε/2, and since the reduction has positive advantage, we are
overall guaranteed to maintain a noticeable advantage.

Following the above, for typical assumptions Q, we can in particular assume
w.l.o.g positive advantage. For simplicity, we also assume throughout that clas-
sical reductions We do not repeat queries. This is w.l.o.g as given a deterministic
oracle, the reduction can simply store previous answers and answer consistently
by itself.

4 Persistent Solvers in the Quantum Setting

In this section, invoking state restoration techniques from [7], we prove that
any one-shot solver for an assumption P with a verifiably-polynomial image (in
particular, decision problems) can be converted into a persistent solver for P .

Theorem 4.1 (Persistence Theorem). Let P be a non-interactive falsifiable
assumption with a verifiably-polynomial image. For any inverse polynomial func-
tion η, there exist efficient quantum algorithms S,R with the following syntax
and guarantee. SB(state0) takes as input a quantum algorithm B and state state0
and outputs a state state∗

0 and a value p∗ ∈ [0, 1]. RB(1λ, 1i, x, state∗
i−1) takes as

input B, a security parameter 1λ, step 1i, input x ∈ {0, 1}n, and state state∗
i−1

and outputs a solution y ∈ {0, 1}m and state state∗
i .

For any solver B = (B, state0) with one-shot value p = valP [0,B], considering
the random variable (state∗

0, p
∗) ← SB(state0), it holds that:

1. E [p∗] = p.
2. R∗ = (RB , state∗

0) sampled in this process is a distribution over efficient state-
ful solvers that is (p∗, η)-persistent.

Remark 4.2. The efficiency of the algorithms S,R is also polynomial in the run-
ning time of B. We avoid passing explicitly the running time bound as input to
simplify notation.

The proof relies on techniques from [7] and can be found in the full version
of this work [3].

5 Stateful Solvers to Memoryless Solvers

The following theorem shows that it is possible to convert stateful solvers into
memoryless solvers with the same value, albeit with a few caveats. First, the
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distribution of queries that is to be made to the memoryless solver needs to
be known ahead of time (i.e. it needs to be decided upfront in a non-adaptive
manner). Second, the resulting memoryless solver might not be efficiently exe-
cutable. Instead, we provide a simulator that can emulate its behavior, but only
once, and only on an input that comes from the prescribed distribution. The
simulator only manages to simulate the execution up to some statistical error,
and its running time is polynomial in the inverse of this error. A formal theorem
statement follows.

Theorem 5.1. There exists a polynomial time oracle-aided simulator
SimMemless with the following properties. Let B be a (p, η)-persistent �-stateful
solver for a falsifiable non-interactive assumption P and let D = {Dλ}λ be an
efficiently samplable distribution ensemble over k-tuples of P instances. Finally,
let δ be some parameter. Then there exists a (p, η)-persistent (but possibly ineffi-
cient) distribution over memoryless solvers B′ = B′

�,D,δ = (B′, ∅) for P such that
the following holds.

Consider sampling �x ← Dλ, and let B′(1λ, �x) be the transcript of the
process that feeds the elements of �x into B′ one-by-one in order (i.e. exe-
cutes B′(1λ, 1i, xi, ∅) in order). Then SimMemlessB,D(1λ, 1�, 11/δ, �x) makes non-
adaptive black-box access to B and produces a distribution that is within at most
δ statistical distance from B′(1λ, �x).

We note that our simulator is “almost” a black-box algorithm in B in the sense
that it takes the size of the state 1� as input, but otherwise it only makes black-
box queries to B. We also emphasize that the simulator does not depend at all
on p, η or any other property of B (other than �).

5.1 The Simulator SimMemless

We start by describing the simulator that will be used to prove Theorem 5.1.
The simulator SimMemless simply “floods” the solver B with queries from a fixed
distribution, and plants the elements of �x in random positions.

Specifically, SimMemlessB,D(1λ, 1�, 11/δ, �x) works as follows. Let t be such
that k

√

�/2t ≤ δ, i.e. t = O(�(k/δ)2). The simulator is also going to generate a
non-adaptive sequence of queries. We start by defining our “flooding” distribu-
tion.

Definition 5.2 (Random Marginal). Let D be a distribution over Xk, i.e.
k-tuples over a domain X. Then the random marginal distribution DU over X
is a distribution obtained by sampling (x1, . . . , xk) according to D, sampling a
random i in [k], and outputting xi as the final sample.

The simulator starts by sampling the following values.

1. A vector �z of k · t samples zj,i ← DU , where j ∈ [k], i ∈ [t].
2. k uniform samples ij ← [t], where j ∈ [k].
3. A uniform permutation π over [k].
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It then generates a sequence of queries �z∗ by taking the vector �z and, for all
j ∈ [k], replacing zj,ij

with xπ(j). Namely, thinking of �z as containing k sequences
of queries of length t each, we plug in a random element from �x in a random
location in each sequence.

The simulator then calls B on the queries in �z∗ in order, to obtain a sequence
of responses �y. Let yj,i be the (j, i) element in this sequence. We define y∗

j = yj,ij
.

The simulator returns the transcript ((x1, y
∗
π−1(1)), . . . , (xk, y∗

π−1(k))). Namely, we
output a transcript that pairs each xi with the response that B produces when
introduced to the query zj,ij

= xi, namely π(j) = i.

5.2 Proving Theorem 5.1

We now turn to prove the theorem. We start by defining a hybrid distribution
which is defined with respect to purifying executions of B. This will allow us
to make claims about extended transcripts, and finally to redact to standard
transcript and derive the proof of the theorem.

A Hybrid Distribution. To prove the theorem, we define the hybrid distri-
bution Sh, defined for every h ∈ {0, 1, . . . , k}.

1. Sample a uniform permutation π over [k].
2. For all j ∈ [k], sample a random index ij ∈ [t].
3. Sample �x from D.
4. Generate a sequence of queries zj,i for all j ∈ [k], i ∈ [t] as follows.

(a) For all j > h, set zj,ij
= xπ(j).

(b) Otherwise sample zj,ij
from DU .

5. Generate the extended transcript ̂ts of executing B (in a purifying manner)
on the entries zj,i in lexicographic order (i.e. starting with (1, 1), . . . , (1, t)
and concluding with (k, 1), . . . , (k, t)). We let ̂tsj,i denote the prefix of the
transcript prior to making the (j, i) query. We let |sj,i〉 denote the solver
state respective to ̂tsj,i, as guaranteed by Proposition 3.10. Notice that |s1,1〉
is the initial state state0 of B conditioned on ̂ts0 = ŷ0.

6. The output of the hybrid Sh then consists the following values, for all j ∈ [k]:
(a) The values ij , π(j).
(b) The quantum state in the beginning of the j-th run: |sj,1〉.
(c) The quantum state right before the ij-th query in the j-th sequence is

made: |sj,ij
〉.

(d) The value xπ(j), which is the ij-th query in the j-th sequence if j > h.
(e) An answer (yπ(j), ŷπ(j)) computed as follows.

– If j > h then set (yπ(j), ŷπ(j)) = (yj,ij
, ŷj,ij

) (i.e. the (y, ŷ)-part of the
(j, ij)-th triple in ̂ts).

– Otherwise generate (yπ(j), ŷπ(j)) as ̂B(1λ, 1t(j−1)+ij , xπ(j),
|sj,ij−1〉)y,ŷ.

In what follows, we will prove that the distributions induced by the first and
last hybrids are close in trace distance, as formalized below.
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Lemma 5.3. It holds that TD(S0,Sk) ≤ k
√

�/(2t).

Before proving Lemma 5.3, we argue that it implies the validity of Theorem 5.1.
Indeed, we observe that the output of the simulator SimMemless can be extracted
from S0 by simply outputting all of the pairs ((x1, y1), . . . , (xk, yk)). Applying
the same extraction procedure on the last hybrid Sk will lead to a sequence
((x1, y1), . . . , (xk, yk)) in which yπ(j) = B(1λ, 1t(j−1)+ij , xπ(j), |sj,ij−1〉)y. How-
ever, in the hybrid Sk, the transcript ̂ts, and therefore all states |sj,i〉, are gen-
erated independently of �x. Therefore, for every values of π, ̂ts one could define a
memoryless adversary B′ = (B′

π,̂ts
, ∅), defined by

B′
π,̂ts(1

λ, 1j , x, ∅) = B(1λ, 1t(j′−1)+ij′ , x, |sj′,ij′−1〉)y , (6)

with j′ = π−1(j). Note that the sequence of states is hard-wired into B′ and it
does not require to propagate a state throughout the execution.

We therefore indeed have that the solver B′ is a distribution over memory-
less solvers indicated by sampling π, ̂ts from their respective distributions and
executing B′

π,̂ts
. Since B is (p, η)-persistent, we have that with probability 1 − η

over ̂ts, all invocations of B(1λ, 1t(j′−1)+ij′ , x, |sj′,ij′−1〉) have value p± η, which
would imply that (B′

π,̂ts
, ∅) is (p, η)-persistent. Therefore, the distribution B′ is

also, by definition, (p, η)-persistent.

The proof of Lemma 5.3 will follow from a standard hybrid argument, given by
the following lemma.

Lemma 5.4. For all h ∈ {0, 1, . . . , k − 1} it holds that

TD(Sh,Sh+1) ≤
√

�/(2t) . (7)

Proof. We will show that the lemma holds true even when conditioning both
Sh,Sh+1 on any value for ̂tsh,1 (the (h · t)-prefix of the transcript ̂ts).

We will show that the lemma follows from the following claim.

Claim 5.5. Conditioning on any value of ̂tsh,1 for both Sh,Sh+1, the joint dis-
tribution of:

(ih, ̂tsh,ih
, |sh+1,1〉, (xπ(h), yπ(h), ŷπ(h))) (8)

is within trace distance
√

�/(2t) between Sh,Sh+1.

Given Claim 5.5, Lemma 5.4 follows since all other elements of the
two distributions Sh,Sh+1 can be sampled given ̂tsh,1 and (ih, ̂tsh,ih

,
|sh+1,1〉, (xπ(h), yπ(h), ŷπ(h))), as follows.

1. Sample the permutation π and the query vector �x conditioned on the value
xπ(h).

2. For very j ∈ [k] \ {h}, sample ij uniformly in [t].
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3. For all j < h, the transcript prefix ̂tsh,1 determines all states |sj,i〉 (for all i ∈
[t]), which in turn, together with �x, determines the distribution of yπ(j), ŷπ(j)

for all j < h (since this distribution is specified by applying the solver B on
xπ(j) with quantum state that is determined by the h-prefix).

4. For all j > h the outputs of both Sh,Sh+1 are determined as the outcomes of
an identical quantum process applied to the state |sh+1,1〉 (the initial state
of the (h + 1)-th sequence), considering that π and �x have been determined.

We now proceed to prove Claim 5.5, and focus on the distribution of
(ih, ̂tsh,ih

, |sh+1,1〉, (xπ(h), yπ(h), ŷπ(h))) in the two hybrids, given that ̂tsh,1 is
fixed. The claim follows straightforwardly from our information theoretic Plug-
In Lemma (Lemma 2.3), where the classical values yi in the lemma corresponds
to pairs (zh,i, yh,i, ŷh,i) generated in the h’th round in the hybrid experiment.
Note that since we fixed ̂tsh,1, the distribution over these classical values is also
fixed, and indeed the value s = |sh+1,1〉 depends on this sequence of t values.
The triple (xπ(h), yπ(h), ŷπ(h)) differs between Sh and Sh+1 since in the former it
is exactly equal to the ih+1 element in the h-th sequence, and in the latter it is
sampled from the marginal distribution of this element. We can therefore apply
the plug-in lemma directly to obtain the

√

�/(2t) bound on the trace distance
as Claim 5.5 requires. This completes the proof of the claim and thus also of the
lemma.

6 Memoryless Solvers to Stateless Solvers

Theorem 6.1. There exists a polynomial-time oracle-aided simulator
SimStateless with the following properties. Let B be a (p, η)-persistent memo-
ryless solver for a falsifiable non-interactive assumption P and let {Dλ}λ be an
efficiently samplable distribution ensemble over k-tuples of P instances. Let δ be
some parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) stateless solver
B′′ = B′′

δ = (B′′, ∅) for P such that the following holds. Consider sampling �x ←
Dλ, and let B′′(1λ, �x) be the transcript of the process that feeds the elements of
�x into B′′ (i.e. executes B′′(1λ, xi, ∅) for all xi). Then SimStatelessB(1λ, 11/δ, �x)
makes non-adaptive black-box access to B and produces a distribution that is
within at most δ statistical distance from B′′(1λ, �x).

Proof. The simulator SimStatelessB runs as follows. Given �x as input, it generates
a query vector �x′ of length t = k2 as follows. It samples, without repetitions, k
indices i1, . . . , ik and sets x′

j = xij
. All other values of x′ are set to 0 (or some

other fixed value).
After making the queries in �z to B and receiving an output vector �y′, the

simulator sets yj = yij
returns ((x1, y1), . . . , (xk, yk)).

Let us now define the stateless adversary B′′. On input x, B′′(1λ, x) samples
j ← [t] uniformly, and outputs y = B(1λ, 1j , x, ∅)y. The solver B′′ is also (p, η)-
persistent; indeed, its value is the average of values, which are all η-close to
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p. (Recall Remark 3.15 about persistent values for stateless and memoryless
solvers.)

To bound the statistical distance between SimStatelessB(1λ, 11/δ, �x) and
B′′(1λ, �x), we consider the case where in the course of the execution of B′′(1λ, �x),
all j’s that are sampled are distinct. This happens with probability at least
1 − k2/t = 1 − δ. Conditioned on this event, B′′(1λ, �x) is identically distributed
as SimStatelessB(1λ, 11/δ, �x). It follows that in general the statistical distance is
bounded by δ.

We conclude with a corollary that combines Theorem 5.1 and Theorem 6.1.

Corollary 6.2. There exists a polynomial-time simulator Sim with the follow-
ing properties. Let B be a (p, η)-persistent �-stateful solver for a falsifiable non-
interactive assumption P and let {Dλ}λ be an efficiently samplable distribution
ensemble over k-tuples of P instances. Finally, let δ be some parameter.

Then there exists a (p, η)-persistent (but possibly inefficient) distribution over
stateless solvers B′′ = B′′

�,D,δ = (B′′, ∅) for P . Consider sampling �x∗ ← Dλ, and
let B′′(1λ, �x∗) be the transcript of the process that feeds the elements of �x∗ into
B′′ (i.e. executes B′′(1λ, x∗

i , ∅) for all x∗
i ). Then SimB,D(1λ, 1�, 11/δ, �x∗) makes

non-adaptive black-box access to B and produces a distribution that is within at
most δ statistical distance from B′′(1λ, �x∗).

The proof can be found in the full version of the paper [3].

7 Classical Non-Adaptive Reductions and Quantum
Solvers

In this section, we show that a wide class of classical reductions can be translated
to the quantum setting. Specifically we start from any non-adaptive black-box
reductions from classically solving P with a verifiably-polynomial image (Defi-
nition 3.2), to classically solving Q. We transform it into a quantum reduction
from quantumly solving P to quantumly solving Q.

Theorem 7.1. Assume there exists a classical non-adaptive black-box reduc-
tion from solving a non-interactive assumption Q to solving a non-interactive
assumption P with a verifiably-polynomial image. Then there exists a quantum
reduction from solving Q to quantumly solving P . This reduction is durable if
the original classical reduction has positive advantage.

Proof. Let R be a classical non-adaptive black-box reduction from solving a non-
interactive assumption Q = (GQ, VQ, cQ) to solving a non-interactive assump-
tion P = (GP , VP , cP ). We present a quantum reduction R′ from solving Q to
quantumly solving P . We start by describing and analyzing R′ with a one-shot
advantage, and then extend it to address durability in the case that R has pos-
itive advantage. We assume w.l.o.g that R never makes the same query twice to
its oracle function (see Remark 3.21).
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Recalling Definition 3.16, R′ takes as input (1λ, 1t, xQ, state), where xQ ∈
{0, 1}nQ is potentially an instance of Q, and its initial state is state′

0 =
(state0, B, 11/ε, 1T ), where we are guaranteed that B = (state0, B) is a P solver
with advantage at least ε that runs in time at most T .

We let ε′ denote the advantage of R in solving Q when given access to
an oracle that solves P with advantage at least ε/2. We are guaranteed that
ε′ = poly(ε, λ−1). We set δ = ε′/2 and η = min{ε/4, ε′/2}.

We define a distribution D over ({0, 1}nP )k as the distribution over the set of
oracle queries produced by first sampling a uniform r′

Q and using it to generate
x′

Q = GQ(1λ, r′
Q), and finally executing R(1λ, 14/ε, x′

Q) to produce a k-tuple of
P -instances.

Having all of these definitions in place, we can now introduce the execution
of R′(1λ, 10, xQ, state′

0). Namely, we start by analyzing the one-shot execution
of R′ (the case t = 0).

1. Let R,S be the state restoration algorithms with respect to P as guaran-
teed by Theorem 4.1, with parameter η as defined above. Set (state∗

0, p
∗) ←

SB(state0). Define B0 = R∗ = (RB , state∗
0) and recall that B0 is (p∗, η)-

persistent, and that E[p∗] = p.
2. Execute R(1λ, 13/ε, xQ) to obtain the sequence of queries �x.
3. Recall the

simulator Sim guaranteed by Corollary 6.2. Execute SimB0,D(1λ, 1�, 11/δ, �x)
to obtain a transcript ts.

4. Extract the responses to �x from ts and resume the execution R from step 2
with these responses. Once the execution of R completes and a value yQ is
output, output yQ as the output of R′.

To analyze the one-shot value and advantage of R′, we start by analyzing
the performance of R′ conditioned on obtaining a fixed value p∗ in step 1 of the
execution. In this case B0 is (p∗, η)-persistent, and we can invoke Corollary 6.2 to
conclude that there exists a (p∗, η)-persistent distribution over stateless adver-
saries B′′

p∗ s.t. the output of R′ is within statistical distance δ from the execution
of RB′′

p∗ (1λ, 14/ε, xQ).
In turn, the execution of RB′′

p∗ (1λ, 10, xQ, state′
0) is equivalent to executing

RB′′
(1λ, 14/ε, xQ), where B′′ is a distribution over stateless solvers defined as

follows. First sample p∗ from its designated distribution, then sample B′′
p∗ from

the (p∗, η)-persistent distribution of stateless solvers. Recall that with probability
1 − η over the sampling of B′′

p∗ , it holds that the outcome is a (single) (p∗, η)-
persistent stateless solver and therefore that

∣

∣valP [0,B′′
p∗

] − p∗∣
∣ ≤ η. It follows

that with probability at least 1 − η:

|E[valP [0,B′′]] − p| =
∣

∣E

[

valP [0,B′′
p∗

] − p∗]∣
∣

≤ E

[ ∣

∣valP [0,B′′
p∗

] − p∗∣
∣

]

≤ η .

It follows that B′′ has advantage at least ε − 2η ≥ ε/2 in solving P . We have
therefore that RB′′

has advantage at least ε′ in solving Q. Since the output of
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R′ is within δ = ε′/2 statistical distance from RB′′
, we conclude that R′ has

advantage at least ε′/2. We therefore established the one-shot value of R′.
In the full version [3] we further show that R′ is durable.

8 An Impossibility Result for Search Assumptions

Our result in Sect. 7 transforms a classical non-adaptive reduction R from solv-
ing Q to classically solving P into a reduction R to quantumly solving P . It is
restricted to assumptions P with a verifiably-polynomial image. While this cap-
tures a large class of assumptions, such as all decision assumptions, it certainly
does not capture all assumptions of interest. In particular, it does not capture
search assumptions where the number of possible solutions per instance could
be super polynomial, such as say the hardness of inverting a one-way function
where the preimage size could be super-polynomial.

In this section we show that this is somewhat inherent. We prove that for
search assumptions, such a transformation cannot exist as long as the resulting
reduction R′ is explicit in the assumptions P,Q. In particular, it may obtain as
input the code of the algorithms describing P,Q, but does not get any implicit
non-uniform advice regarding these assumptions. Indeed, the transformation in
Sect. 7 (from classical non-adaptive reductions to quantum ones) as well as the
Persistence Theorem 4.1 on which it relies, the resulting quantum reduction R′

is in fact black-box in the assumptions P,Q, and in particular explicit.

Definition 8.1 (Assumption Pair Colletion). An assumption pair collec-
tion PQ consists of pairs of assumptions (P,Q), each given by its corresponding
(possibly non-uniform) algorithms (GP , VP , cP ) and (GQ, VQ, cQ).

Definition 8.2 (Explicit Reduction). An explicit quantum reduction for
assumption pair collection PQ is an efficient algorithm R with the follow-
ing guarantee. For any (P,Q) ∈ (P,Q) and any quantum solver BP =
(BP , state0) for P with one-shot advantage ε and running time T , let state′

0 =
(state0, (P,Q), BP , 11/ε, 1T ). Then BQ = (R, state′

0) is a solver for Q with one-
shot advantage poly(ε, T−1, λ−1) and running-time poly(T, ε−1, λ).

We say that the reduction is strongly explicit, instead of being given the
explicit description of (P,Q) as part of its input, it is given oracle access to
its corresponding algorithms.

Note that in the above definition state′
0 is formally a sequence

state′
0,λ

= (state0,λ, (P,Q)λ, BP,λ, 11/ε(λ), 1T (λ)) ,

where (P,Q)λ consist of their corresponding algorithms (possibly along with
their corresponding non-uniform advice) restricted to security parameter λ
(w.l.o.g circuits).

Restating our result from Sect. 7, we proved that for any pair collection PQ,
if for any (P,Q) ∈ P,Q, P has verifiably-polynomial image, and there exists a



Constructive Post-quantum Reductions 681

classical non-adaptive black-box reduction RP,Q from solving Q to solving P ,
then there also exists a strongly explicit quantum reduction R′ for PQ. We prove
that if P does not have a verifiably-polynomial image this may not be the case.

Theorem 8.3. There exists an assumption pair collection PQ, such that for
any (P,Q) ∈ P,Q, there exists a classical non-adaptive black-box reduction RP,Q

from solving Q to solving P , but there is no strongly explicit reduction R′ for PQ.
Assuming also post-quantum indistinguishability obfuscation, there also does not
exist an explicit reduction R′.

The theorem is proven in the full version of the paper [3].
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Abstract. A systematic approach to the fixed-key analysis of differen-
tial probabilities is proposed. It is based on the propagation of ‘qua-
sidifferential trails’, which keep track of probabilistic linear relations on
the values satisfying a differential characteristic in a theoretically sound
way. It is shown that the fixed-key probability of a differential can be
expressed as the sum of the correlations of its quasidifferential trails.

The theoretical foundations of the method are based on an extension
of the difference-distribution table, which we call the quasidifferential
transition matrix. The role of these matrices is analogous to that of
correlation matrices in linear cryptanalysis. This puts the theory of dif-
ferential and linear cryptanalysis on an equal footing.

The practical applicability of the proposed methodology is demon-
strated by analyzing several differentials for RECTANGLE, KNOT, Speck
and Simon. The analysis is automated and applicable to other SPN and
ARX designs. Several attacks are shown to be invalid, most others turn
out to work only for some keys but can be improved for weak-keys.

Keywords: Differential cryptanalysis · Hypothesis of stochastic
equivalence · Correlation matrices · RECTANGLE · KNOT · Speck ·
Simon

1 Introduction

At CRYPTO 1990, Biham and Shamir [5] published the first reduced-round
differential attacks on the block cipher DES. Differential cryptanalysis is now one
of the cornerstones of the security analysis of block ciphers and hash functions.
Its central problem is to count the number of inputs of a function for which a
given input difference results in a particular output difference or, what amounts
to the same, to compute the probability of a differential.

For functions that can be written as a composition of simple operations,
the standard procedure is to analyze sequences of intermediate differences or
characteristics. The probability of a characteristic is then heuristically estimated
by multiplying the probabilities of the intermediate differentials. In the context
of block ciphers, Lai, Massey and Murphy [16] showed that this procedure yields
the correct value of the key-averaged probability for Markov ciphers.

However, since the key is fixed throughout a differential attack, even the
average data-complexity cannot be computed from the average probability of
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13509, pp. 687–716, 2022.
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differentials alone. Hence, Lai et al. [16] introduced an additional assumption
known as the hypothesis of stochastic equivalence. It states that the probability
for each key is close to the average probability.

In practice, it turns out that the probability can vary significantly between
keys. Hence, standard assumptions may lead to incorrect conclusions. Further-
more, averages may hide weak-key attacks that can considerably degrade secu-
rity. Finally, the same formalism is used even when there is no key, such as for
cryptographic permutations, or when the cryptanalyst has full control over the
key, such as in many hash functions.

From a theoretical viewpoint, it can be argued that the standard approach to
differential cryptanalysis is incomplete, since it does not offer any tools to com-
pute probabilities beyond the average case. This is in contrast to linear crypt-
analysis [20], where key-dependence is much better understood. In particular,
the correlation matrix approach of Daemen et al. [10] shows that the correlation
of a linear approximation is precisely equal to the sum of the correlations of all
its linear trails.

Previous Work. Knudsen [15] already observed significant deviations from the
hypothesis of stochastic equivalence for the characteristics used in the differential
analysis of DES. Experiments such as those of Ankele and Kölbl [2] and Heys [14]
further suggest that such deviations are the norm rather than the exception.

Daemen and Rijmen [11] showed that the fixed-key probability of two-round
characteristics of AES is either zero or 2h, with h an integer independent of
the key. Such characteristics are called plateau characteristics, and have been
used in several other contexts [9,19,21,25]. Although plateau characteristics are
the only systematic method to analyze fixed-key probabilities for S-box-based
ciphers, their scope remains limited. They assume that the input or output values
satisfying a differential over the S-box form an affine space. In addition, their
analysis becomes difficult for more than two rounds.

For constructions relying on modular additions, several techniques were
developed in the context of collision attacks on hash functions. These methods
keep track of additional information about the values satisfying a characteristic.
For example, the breakthrough results of Wang et al. [26] rely on signed differ-
ences. De Cannière and Rechberger [12] extended these to generalized differences,
allowing arbitrary constraints to be imposed on individual bits. Leurent [18]
proposed a framework for ARX-constructions based on two-bit conditions. Xu
et al. [27] recently introduced signed sums, which are single-bit conditions.
Despite their merit, these techniques have significant limitations. Imposing
conditions directly on values becomes difficult for keyed functions, since key-
additions result in conditions that potentially depend on many unknown bits.
Hence, these methods are limited to keyless functions except for local, key-
independent effects in ciphers such as XTEA that use modular additions between
dependent values. Furthermore, the conditions that are imposed cannot fully
explain the probability of a characteristic, and the right choice of the type of
conditions to use depends on the function under analysis.
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Contribution. We develop a general methodology to analyze the fixed-key proba-
bilities of differentials. It allows propagating probabilistic linear relations on the
values satisfying differential characteristics in a theoretically sound way. The
theoretical foundations of the proposed approach are inspired by the correlation
matrix framework [10] and its recent generalization [4] that provide a natural
description of linear cryptanalysis.

Section 3 builds up an extension of the difference-distribution table that we
call the quasidifferential transition matrix. It is obtained by performing a change-
of-basis on the permutation matrices describing the propagation of probability
distributions of pairs through a function, analogous to the construction of corre-
lation matrices using the Fourier transformation. Our choice of basis ensures that
the difference distribution table is obtained as a submatrix, and simultaneously
diagonalizes the transition matrices corresponding to round-key additions.

By construction, quasidifferential transition matrices satisfy similar proper-
ties as correlation matrices. For example, composition of functions corresponds
to multiplication of quasidifferential transition matrices. This property leads to
quasidifferential trails, the central notion of our methodology. In Sect. 4, we prove
that the sum of the correlations of all quasidifferential trails in a characteristic
is equal to its exact probability. Likewise, the probability of a differential is
the sum of the correlations of all quasidifferential trails. A few quasidifferential
trails often capture the essence of the key-dependence. For example, the key-
dependence in the DES characteristics observed by Knudsen [15] is explained by
taking into account one additional one-round quasidifferential trail.

To demonstrate the practical applicability of our methodology, we apply it to
four primitives. To this end, an algorithm to compute the quasidifferential transi-
tion matrix of general functions in time proportional (up to logarithmic factors)
to the size of the matrix is given in Sect. 5. In addition, the quasidifferential
transition matrix of bitwise-and and modular addition are determined.

Section 6 presents an automated search tool for quasidifferential trails in
RECTANGLE [28]. The implementation is provided as supplementary material1,
and can also be used for the analysis of other, similar ciphers. Our analysis shows
that the best published key-recovery attack on round-reduced RECTANGLE does
not work, but we show how to modify it to obtain a valid weak-key attack.

In Sect. 7 we apply the same tool to KNOT [29], a second-round candidate
in the NIST lightweight cryptography competition. We show that previously
proposed reduced-round forgery and collision attacks do not work, because the
characteristics they rely on have probability zero. At the same time, we show
that their probabilities are two orders of magnitude larger for some choices of
the round constants.

Section 8 reevaluates the best published attacks on Speck. The analysis relies
on an automated search tool that is provided as supplementary material. It can
easily be modified for other ARX designs. We find that most of the attacks
we analyzed only work for a subset of keys. However, we also show that for

1 All of our source code can be found at https://github.com/TimBeyne/quasidiff
erential-trails.

https://github.com/TimBeyne/quasidifferential-trails
https://github.com/TimBeyne/quasidifferential-trails
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weak keys, attacks with lower data-complexity can be obtained. In the extended
version of the paper, we provide a similar search tool for Simon.

2 Preliminaries and Related Work

Most of the notations used in this paper are standard, or will be introduced where
necessary. Throughout this paper, random variables are denoted in boldface. The
average of a random variable x will be denoted by Ex, and its variance by Varx.
All key-dependent probabilities given in this paper are with respect to a fixed
key, unless it is explicity mentioned that they are averages.

2.1 Differential Cryptanalysis

Differential cryptanalysis [5,6] is a technique to analyze the propagation of dif-
ferences through a function F : Fn

2 → F
m
2 . Typically, the cryptanalyst attempts

to find a differential (a, b) ∈ F
n
2 × F

m
2 such that the difference equation

F(x) + F(x + a) = b , (1)

has a large number of solutions in x. The ordered pairs (x, x+a) for which Eq. (1)
holds are called right pairs for the differential (a, b). The number of right
pairs divided by 2n is called the probability of the differential. The difference-
distribution table DDTF is a 2n × 2m table with rows and columns indexed by
input and output differences respectively. The corresponding entries are equal
to the number of right pairs for a particular differential:

DDTF
a,b = |{x ∈ F

n
2 | F(x) + F(x + a) = b}| = 2n Pr [F(x) + F(x + a) = b] ,

with x uniform random on F
n
2 . A differential with probability p � 2−n results

in a distinguisher with data-complexity O(1/p) .

Characteristics. Computing or estimating the probability of a differential for a
general function with many inputs can be computationally difficult. However,
differential cryptanalysis is typically applied to functions F of the form F =
Fr ◦ · · · ◦ F1, where the functions Fi admit differentials with relatively high
probability and are usually easier to analyze. In this case, the probability of a
differential (a1, ar+1) can be estimated based on characteristics. A characteristic
is a sequence (a1, a2, . . . , ar+1) of compatible intermediate input and output
differences for each of the functions Fi. For simplicity of notation, assume that
m = n and the functions Fi are all n-bit functions. It holds that

Pr [F(x) + F(x + a1) = ar+1] =
∑

a2,...,ar

Pr [
∧r

i=1 Fi(xi) + Fi(xi + ai) = ai+1] ,

with x1 uniform random on F
n
2 and xi = Fi−1(xi−1) for i = 2, . . . , r. The prob-

ability of a characteristic is often estimated using the assumption that interme-
diate differentials are independent:

Pr [
∧r

i=1 Fi(xi) + Fi(xi + ai) = ai+1] =
r∏

i=1

Pr [Fi(zi) + Fi(zi + ai) = ai+1] .
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Under the same independence heuristic, combining the equations above yields

DDTF
a1,ar+1

/2n =
∑

a2,...,ar

r∏

i=1

DDTFi
ai,ai+1

/2n . (2)

We stress that Eq. (2) is an approximation, and it is easy to come up with
examples such as F = F2 ◦ F1 with F2 = F−1

1 where it fails spectacularly.

Key-Averaged Probabilities. If the functions F1, . . . ,Fr depend on keys k1, . . . , kr,
then the heuristic Eq. (2) can be motivated using the Markov cipher assump-
tion [16]. In particular, it can be shown that if all round keys are uniform random
and independent, then the key-averaged probability of a characteristic is indeed
equal to the product of the intermediate key-averaged probabilities.

Aside from the fact that most ciphers are not true Markov ciphers due to
round-key dependencies introduced by the key-schedule, one is ultimately inter-
ested in fixed-key rather than key-averaged probabilities. Importantly, this is
true even when computing the key-averaged data-complexity of an attack. After
all, in general E [1/pk ] �= 1/E [pk ] with pk the probability for a random key k.

Hence, to bridge this gap, an additional hypothesis was introduced by Lai,
Massey and Murphy [16, §2]. Informally, the hypothesis of stochastic equivalence
states that the key-averaged probability of a characteristic is close to its fixed-
key probability for any particular key. As discussed in the introduction, previous
work has shown that this assumption is often unrealistic.

2.2 Linear Cryptanalysis

Although the average probability of characteristics and differentials is relatively
well understood, few techniques are known to analyze fixed-key probabilities.
This contrasts with linear cryptanalysis, where linear trails give a complete
description of the correlation of linear approximations even in the fixed-key
setting.

A natural way to describe linear cryptanalysis is by means of correlation
matrices. These matrices were first introduced by Daemen et al. [10]. Although
the scope of the present paper is limited to differential cryptanalysis only, it is
useful to introduce these matrices as they provide an important motivation for
the quasidifferential transition matrices that will be introduced in Sect. 3.

From the viewpoint introduced in [3,4], correlation matrices represent linear
operators that act on functions Fn

2 → R such as probability distributions. In the
following, let R[Fn

2 ] denote the vector space of such functions. The functions δx

such that δx(y) = 1 if y = x and zero elsewhere form an orthonormal basis for
R[Fn

2 ] with respect to the inner product 〈f, g〉 =
∑

x∈F
n
2

f(x) g(x). Below, this
basis will be referred to as the standard basis.

Another convenient basis for R[Fn
2 ] consists of the group characters of F

n
2 .

These are homomorphisms from F
n
2 to the multiplicative group C\{0}. Any such

homomorphism is of the form χu(x) = (−1)uTx with u ∈ F
n
2 . The characters χu

form an orthogonal basis for R[Fn
2 ]. Specifically, 〈χu, χv〉 = 2n δu(v). Hence, any

function f ∈ R[Fn
2 ] can be expressed as a linear combination of the characters



692 T. Beyne and V. Rijmen

χu. This leads to the Fourier transformation, which is defined in Definition 2.1.
The basis {χu | u ∈ F

n
2} will be called the character basis.

Definition 2.1 (Fourier transformation). Let f : Fn
2 → R be a function.

The Fourier transformation of f is the function Fnf : F
n
2 → R defined by

(Fnf)(u) = 〈χu, f〉. That is, (Fnf)(u)/2n is the coordinate corresponding to
the basis function χu when f is expressed in the character basis.

The motivation for using the character basis is that it simplifies the effect
of translating functions by a constant. In particular, if g(x) = f(x + t), then
(Fng)(u) = χu(t) (Fnf)(u) because χu(x + t) = χu(t)χu(x) by the definition of
characters as group homomorphisms.

Correlation matrices describe how a function F : Fn
2 → F

m
2 transforms func-

tions in R[Fn
2 ] to functions in R[Fm

2 ]. In the standard basis, the relation is
expressed by a permutation matrix that is called the transition matrix in Defin-
tion 2.2. The same linear transformation can be expressed in the Fourier basis
and this yields Definition 2.3.

Definition 2.2 (Transition matrix [4, Definition 3.2]). Let F : Fn
2 → F

m
2

be a function. Define T F : R[Fn
2 ] → R[Fm

2 ] as the unique linear operator defined
by δx 	→ δF(x) for all x ∈ F

n
2 . The transition matrix of F is the coordinate repre-

sentation of T F with respect to the standard bases of R[Fn
2 ] and R[Fm

2 ].

Definition 2.3 (Correlation matrix [4, Definition 3.3]). Let F : Fn
2 → F

m
2

be a function. Define CF : R[Fn
2 ] → R[Fm

2 ] as the Fourier transformation of
T F. That is, CF = Fm T F F−1

n . The correlation matrix of F is the coordinate
representation of CF with respect to the standard bases of R[Fn

2 ] and R[Fm
2 ].

The coordinates of the correlation matrix CF correspond to the correlations
of linear approximations over F. In particular, CF

v,u = 2Pr [vTF(x) + uTx = 0]−1
with x uniform random. In fact, the original definition of correlation matrices
due to Daemen et al. [10] starts from this equivalence.

Correlation matrices satisfy several natural properties, most of which are
direct consequences of the properties of transition matrices and Defintion 2.3. In
particular, for a function F = Fr ◦ · · · ◦ F1, it holds that

CF = CFrCFr−1 · · · CF1 .

Expanding the above equation in coordinates yields the following identity:

CF
ur+1,u1

=
∑

u2,...,ur

r∏

i=1

CFi
ui+1,ui

. (3)

That is, the correlation of a linear approximation is equal to the sum of the
correlations of all linear trails defined by the intermediate masks u2, . . . , ur.
This result should be compared with Eq. (2) for differentials. However, there is
a fundamental difference: whereas Eq. (2) is heuristic and at best true on average
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with respect to independent uniform random round keys, Eq. (3) holds exactly
without any assumptions.

As argued in the introduction, closing the gap between Eq. (2) and Eq. (3)
is essential to achieve a more complete understanding of differential cryptanal-
ysis. To this end, Sect. 3 introduces quasidifferential transition matrices as a
differential analog of correlation matrices.

3 Quasidifferential Transition Matrices

The probability of differentials can be described exactly by tracking the distribu-
tion of pairs of state values. Such a distribution can be described by a function
p : Fn

2 × F
n
2 → [0, 1] ⊆ R. There exists a transition matrix which describes the

propagation of such probability distributions through a function F : Fn
2 → F

m
2 .

However, keeping track of pairs directly is inconvenient because it does not
provide a simple description of translations – which are essential to understand
key-dependence. In Sect. 3.1, we define a new basis that is nicer to work with.
In Sect. 3.2, it is then shown that expressing transition matrices in this new
basis leads to matrices with similar properties as correlation matrices. These
quasidifferential transition matrices will be used in Sect. 4 to give a natural
fixed-key description of differential cryptanalysis.

3.1 Quasidifferential Basis

As discussed in Sect. 2, the Fourier transformation simplifies the effect of trans-
lations on functions. However, the character basis is not suitable to describe
differences between the halves of pairs in a straightforward way. The basis pro-
posed in Defintion 3.1 below is a hybrid solution. Up to scaling, it contains the
probability distributions of uniform random pairs with a fixed difference and, as
shown below, it simplifies the effect of translations.

Definition 3.1 (Quasidifferential basis). Let n be a positive integer. For
any u, a ∈ F

n
2 , the function βu,a : Fn

2 × F
n
2 → R is defined by

βu,a(x, y) = χu(x) δa(x + y) .

The set of all βu,a will be called the quasidifferential basis for R[Fn
2 × F

n
2 ].

The functions βu,a are not only linearly independent, but also orthogonal.
This is shown in Theorem 3.1, which also states the important translation-
invariance property.

Theorem 3.1. The quasidifferential basis defined in Definition 3.1 is
translation-invariant and orthogonal. Specifically:

(1) For all (u, a), (v, b) ∈ F
n
2 × F

n
2 , it holds that 〈βv,b, βu,a〉 = 2n δv(u) δb(a).

(2) For all (u, a) ∈ F
n
2 × F

n
2 and t ∈ F

n
2 , it holds that

βu,a(x + t, y + t) = χu(t)βu,a(x, y) .
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Proof. The first property follows from the expression

〈βv,b, βu,a〉 =
∑

(x,y)∈F
n
2 ×F

n
2

χv(x) δb(x + y)χu(x) δa(x + y) .

Indeed, if a �= b, then x + y = a and x + y = b never hold simultaneously. If
a = b, then the result follows from the orthogonality of the characters χu. The
translation-invariance follows from the fact that χu(x + t) = χu(t)χu(x). ��

Similar to the Fourier transformation, we define the change-of-basis operator
Qn : R[Fn

2 × F
n
2 ] → R[Fn

2 × F
n
2 ] by (Qnf)(u, a) = 〈βu,a, f〉. By Theorem 3.1 (1),

(Qnf)(u, a)/2n is then indeed the coordinate corresponding to basis function
βu,a when f is expressed in the quasidifferential basis.

3.2 Quasidifferential Transition Matrix

Recall from Sect. 2.2 that the correlation matrix of a function F : Fn
2 → F

m
2 with

transition matrix T F is defined as CF = Fm T FF−1
n . Below, we define the qua-

sidifferential transition matrix similarly using the change-of-basis operator Qn

and the transition matrix for pairs of values. The latter matrix can be succinctly
written as the Kronecker (or tensor) product T F ⊗ T F, which is defined as a
22m × 22n matrix with coordinates

(T F ⊗ T F)(y1,y2),(x1,x2) = T F
y1,x1

T F
y2,x2

= δy1(F(x1))δy2(F(x2)) .

Note that we index the coordinates of T F ⊗ T F directly by pairs of bitvectors.
This avoids choosing an arbitrary convention for converting between integers
and bitvector pairs.

Definition 3.2 (Quasidifferential transition matrix). Let n and m be pos-
itive integers and F : Fn

2 → F
m
2 a function. The quasidifferential transition matrix

DF is defined as the matrix-representation of T F ⊗ T F with respect to the qua-
sidifferential basis defined in Defintion 3.1. That is, DF = Qm(T F ⊗ T F)Q−1

n .

To make Defintion 3.2 more concrete, we compute the coordinates of DF. Like
for T F ⊗T F, the coordinates of DF will be indexed by pairs (u, a) ∈ F

n
2 ×F

n
2 and

(v, b) ∈ F
m
2 × F

m
2 . By the orthogonality of the quasidifferential basis (Theorem

3.1 (1)), it holds that Q−1
n = QT

n/2n and consequently

DF
(v,b), (u,a) = 〈δ(v,b) ,Qn(T F ⊗ T F)QT

n δ(u,a)〉/2n = 〈βv,b, (T F ⊗ T F)βu,a〉/2n .

Working this out yields the following expression:

DF
(v,b), (u,a) =

1
2n

∑

(x,y)∈F
n
2 ×F

n
2

χu(x)χv(F(x)) δa(x + y)δb(F(x) + F(y))

=
1
2n

∑

x∈F
n
2

F(x+a)=F(x)+b

(−1)uTx+vTF(x) . (4)
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For u = v = 0, Eq. (4) reduces to the probability of the differential with input
difference a and output difference b. That is, DF

(0,b),(0,a) = 2−n DDTF
a,b. For a =

b = 0, one obtains the coordinates of the correlation matrix of F. Specifically,
DF

(v,0),(u,0) = CF
v,u. More generally, the right hand side of Eq. 4 can be interpreted

as a kind of correlation matrix for the function F when restricted to the right
pair set of the differential (a, b). That is, the coordinates of DF express the
correlations of probabilistic linear relations (‘linear approximations’) between
the input and output values of the right pairs.

The following result summarizes some of the basic properties of quasidifferen-
tial transition matrices. Properties (1) to (3) are identical to those of corrrelation
matrices [4, Theorem 3.1], and their proofs are nearly identical. For Theorem
3.2 (2), the Kronecker product of two quasidifferential transition matrices is
defined by

(DF1 ⊗ DF2)(v1‖v2,b1‖b2),(u1‖u2,a1‖a2) = DF1
(v1,b1),(u1,a1)

DF2
(v2,b2),(u2,a2)

,

with x‖y the concatenation of bitvectors x and y.

Theorem 3.2. Let n and m be positive integers and F : Fn
2 → F

m
2 a function.

The matrix DF has the following properties:

(1) If F is a bijection, then DF is an orthogonal matrix.
(2) If F = (F1, . . . ,Fm), then DF =

⊗m
i=1 DFi . (boxed maps)

(3) If F = F2 ◦ F1, then DF = DF2DF1 . (composition)
(4) If F(x) = x + t for some t ∈ F

m
2 , then DF

(v,b),(u,a) = χv(t) δv(u) δb(a).
(5) If F is a linear function, then DF

(v,b),(u,a) = δu(FT(v)) δb(F(a)).

Proof. Property (1) follows from the fact that T F ⊗ T F is a permutation matrix
when F is a bijection and the fact that Qn/

√
2n is an orthogonal matrix by The-

orem 3.1 (1). Property (2) follows immediately from the analogous result for
T F⊗T F and the separability of the basis. Property (3) also follows from the same
property for T F⊗T F. The fourth property is due to the translation invariance and
orthogonality of the quasidifferential basis (Theorem 3.1). Finally, Property (5)
can be deduced from Eq. (4):

DF
(v,b), (u,a) =

1
2n

∑

x∈F
n
2

F(x+a)=F(x)+b

(−1)(u+FT(v))Tx = δu(FT(v)) δb(F(a)) ,

where the second equality follows from the orthogonality of characters and the
fact that F(x + a) = F(x) + b if and only if b = F(a). ��

Consider the S-box S : F4
2 → F

4
2 of the lightweight block cipher RECTANGLE,

given by S = (3 a)(0 6 7 9)(1 5 e 4)(2 c 8 b d f) in cycle notation. The 256×256
quasidifferential transition matrix of S is shown in Fig. 1, with colors representing
the absolute value of the entries. The integer indices correspond to pairs (u, a)
by the map (u, a) 	→ int(u) + 16 × int(a), where int(u) =

∑4
i=1 ui24−i.
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Figure 1 immediately reveals a number of properties of quasidifferential tran-
sition matrices. The top-left square in Fig. 1 corresponds to the correlation
matrix of S. Each block shows the correlations of probabilistic linear relations
between the input and output values for the right pairs. Hence, Fig. 1 looks like
a ‘magnified’ version of the difference-distribution table of S.

Fig. 1. The quasidifferential transition matrix DS of the RECTANGLE S-box S. Blue
cells correspond to values of absolute value 1/8, orange cells to 1/4, and green cells to
1/2. Empty cells correspond to zeros. (Color figure online)

4 Quasidifferential Trails

Motivated by the notion of linear trails and Eq. (3) from Sect. 2.2, the following
definition defines quasidifferential trails. In Sect. 4.1, it will be shown that exact
expressions for the probabilities of differentials can be given in terms of the
correlations of quasidifferential trails.

Definition 4.1. A quasidifferential trail for a function F = Fr ◦ · · · ◦ F1 is a
sequence �1,�2, . . . , �r+1 of mask-difference pairs �i = (ui, ai). The correla-
tion of this quasidifferential trail is defined as

∏r
i=1 DFi

�i+1,�i
.

Quasidifferential trails with u1 = u2 = . . . = ur+1 = 0 correspond to charac-
teristics. Their correlation is equal to the product of the one-round probabilities
of the characteristic with differences a1, . . . , ar+1:

r∏

i=1

DF
(0,ai+1),(0,ai)

=
r∏

i=1

Pr [Fi(x + ai) = Fi(x) + ai+1] ,

with x uniform random on F
n
2 . This follows from Eq. (4) and Definition 4.1.
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4.1 Exact Probabilities from Quasidifferential Trails

Theorem 3.2 (2) implies that the sum of the correlations of all quasidiffer-
ential trails with input and output mask-difference pairs �1 = (0, a1) and
�r+1 = (0, ar+1) respectively, is equal to the exact probability of the differential
with input difference a1 and output difference ar+1. Specifically, expanding the
coordinate of DF =

∏r
i=1 DFi corresponding to this differential yields

DF
�r+1,�1

=
∑

�2,...,�r

r∏

i=1

DFi
�i+1,�i

. (5)

This expression also holds when the input or output mask is nonzero. Further-
more, as shown in Theorem 4.1, quasidifferential trails also allow computing the
probability of a characteristic. This result should be compared with Eq. (3).

Theorem 4.1. Let F : F
n
2 → F

m
2 be a function such that F = Fr ◦ . . . ◦ F1.

The probability of a characteristic with differences a1, . . . , ar+1 is equal to the
sum of the correlations of all quasidifferential trails with the same intermediate
differences:

Pr [
∧r

i=1Fi(xi + ai) = Fi(xi) + ai+1] =
∑

u2,...,ur

r∏

i=1

DFi

(ui+1,ai+1),(ui,ai)
,

with u1 = ur+1 = 0, xi = Fi−1(xi−1) for i = 2, . . . , r and x1 uniform random
on F

n
2 .

Proof. Substituting Eq. (4) in the right-hand side above yields
r∏

i=1

DFi

(ui+1,ai+1),(ui,ai)
=

1
2nr

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1

(−1)uT
ixi+uT

i+1Fi(xi) .

Summing over u2, . . . , ur then results in the equation

∑

u2,...,ur

r∏

i=1

DFi

(ui+1,ai+1),(ui,ai)
=

1
2nr

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1

∑

ui

(−1)uT
i (xi+1+Fi(xi))

=
1
2n

∑

x1,...,xr

F(xi+ai)=F(xi)+ai+1

r∏

i=1

δxi+1(Fi(xi)) .

Writing the right-hand side in terms of probabilities gives desired the result. ��
Theorem 4.1 can also be obtained using the following intuitive argument,

illustrated in Fig. 2. Let G = (F1,F2 ◦ F1, . . . ,Fr ◦ · · · ◦ F1). A differential for G
with input difference a1 and output difference (a2, . . . , ar+1) is equivalent to a
characteristic for F = Fr ◦ · · · ◦ F1 with intermediate differences a2, . . . , ar. For
the linear function L(x) = x‖x, Theorem 3.2 (5) yields DL

(v,b),(u,a) = δu(v1 +
v2) δb1(a) δb2(a) with v = v1‖v2 and b = b1‖b2. Hence, all trails through G are of
the form shown in Fig. 2 and the result follows from Eq. (5).
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F1 F2 Fr

a1

0
a2

u2

a2

u2

a3

u3

a3

u3

ar

ur

0
a2

0
a3

ar+1

0

Fig. 2. Quasidifferential trail through the function G. Differences are indicated in
orange (above), masks in blue (below). (Color figure online)

4.2 Example: Differential Cryptanalysis of DES

As a first example of quasidifferential trails and Theorem 4.1, we consider the
effect of key-dependence on the differential cryptanalysis of DES by Biham
and Shamir [5,6]. The example in this section is particularly simple, but more
advanced applications will be discussed in Sects. 6 and 8.

Recall that the differential cryptanalysis of DES is based on an iterative
characteristic of the form shown in Fig. 3. There exist two differences that achieve
the same maximal average probability of approximately 2−7.87. For simplicity
(the other case is similar), we will consider the difference a = 0x19600000. The
key-dependence of this characteristic was already noted by Knudsen [15, §5],
who explained it using an argument specific to DES. Below, it will be shown
that the general methodology of quasidifferential trails automatically provides a
simple explanation.

The round function Fk of DES consists of a linear expansion function E :
F
32
2 → F

48
2 , which duplicates certain bits, followed by the key addition and a

nonlinear layer S consisting of eight 6-bit to 4-bit S-boxes. Finally, the S-box
layer is followed by a bit-permutation P. The key-averaged probability of the
characteristic in Fig. 3 is easily computed from the difference-distribution tables
of the first three S-boxes: 14/64 × 8/64 × 10/64 = 1120/643.

However, the structure of the round function of DES leads to one-round qua-
sidifferential trails, as shown on the right side of Fig. 3. In particular, since E
is not surjective, there exist masks u �= 0 such that ET(u) = 0. For the dif-
ference a mentioned above, there exists one such quasidifferential trail with
u = 0x001400000000. The correlation of this trail can be computed from
the quasidifferential transition matrix for the first three S-boxes and equals
χu(k2) 14/64×−8/64×6/64 = −χu(k2) 672/643. It follows that a full description
of the probability of the characteristic over 2r rounds is given by

pk =
r∏

i=1

(
1120
643

− (−1)k2i,12+k2i,14
672
643

)
.

Although for every two rounds only two trails are especially important, these
trails can be combined in many ways. In particular, the expression above is
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F

k1a 0
00

0 a

F

k2
a0

a 0

P S E
0
0

0
0

E(a)
u

E(a)
u

a

0
k2

Fig. 3. Iterative characteristic for two rounds of DES.

equivalent to a sum over 2r quasidifferential trails. This is a typical way in
which a relatively small local effect can result in significant variations in the
overall probability of a characteristic.

Due to the above, the probability of the thirteen round differential used in
the differential attack of Biham and Shamir [6] is roughly 17 times larger for one
in 64 keys and more than 244 times smaller than the average probability for an
equal number of keys, as previously observed by Knudsen [15].

It is natural to wonder if there exist other quasidifferential trails with large
absolute correlation. For example, a more general three-round effect can occur
when ET(u) �= 0. However, most quasidifferential trails activating four or less
additional S-boxes have correlation zero because the correlation of a linear
approximation with input mask 1 or 32 and output mask 1, 2, 4 or 8 is zero for
all S-boxes. This follows from the fact that the S-boxes are permutations when
the first and last input bits are fixed. It can be checked that the best three-round
quasidifferential trail of this type has absolute correlation at most 2−19.41.

4.3 Interpretation of Quasidifferential Trails

As discussed in Sect. 3.2, the coordinates of DF can be interpreted as the cor-
relations of linear approximations between the input and output values for the
right pairs of a differential. Quasidifferential trails provide a way to connect such
approximations through a sequence of functions.

Since |DF
(v,b),(u,a)| never exceeds the probability of the differential (a, b), the

quasidifferential trails with the highest correlation tend to have nonzero masks in
only a few rounds. We refer to these quasidifferential trails as ‘local’. In general,
the best quasidifferential trails typically activate as few S-boxes as possible. An
S-box is active if the output mask or the input difference is nonzero.

Quasidifferential trails with absolute correlation equal to the correlation of
the corresponding differential trail are of particular interest. They correspond to
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deterministic linear relations on the intermediate values of right pairs. Perhaps
surprisingly, many ciphers admit such quasidifferential trails. One reason for this
is that the differentials of many popular S-boxes are planar [11]. That is, the
right values form an affine space. Propagating this affine space is the basis of
the plateau characteristics approach [11], but is difficult to do for more than two
rounds. Theorem 4.2 is related to these quasidifferential trails and will be useful
in Sects. 6 to 8.

Theorem 4.2. For a function F = Fr ◦ · · · ◦F1 and a characteristic a1, . . . , ar+1

with correlation p (as quasidifferential trail), it holds that:

(1) If (u1, a1), . . . , (ur+1, ar+1) is a quasidifferential trail with correlation
(−1)b p where b ∈ {0, 1}, then for any quasidifferential trail (v1, a1), . . . ,
(vr+1, ar+1) with correlation c, the correlation of the quasidifferential trail
(u1 + v1, a1), . . . , (vr+1 + ur+1, ar+1) is (−1)b c.

(2) If the correlations of any number of quasidifferential trails with differences
a1, . . . , ar+1 and correlation ±p sum to zero, then the probability of the char-
acteristic a1, . . . , ar+1 is zero.

Proof. By Theorem 4.1 the second property follows from the first one, since it
implies that the set of all quasidifferential trails can be partitioned into subsets
whose correlations sum to zero. For the first property, note that the correlation
of the quasidifferential trail (u1, a1), . . . , (ur+1, ar+1) equals ±p if and only if
DFi

(ui+1,ai+1),(ui,ai)
= ±DFi

(0,ai+1),(0,ai)
for i = 1, . . . , r − 1.

By Eq. (4), this implies that uT
i+1Fi(x) = uT

i x + bi for all x such that Fi(x +
ai) = Fi(x) + ai+1. Hence, again by Eq. (4), the correlation of the ith transition
of the quasidifferential trail (u1 +v1, a1), . . . , (ur+1 +vr+1, ar+1) is multiplied by
a factor (−1)bi . The result then follows from b =

∑r
i=1 bi. ��

Finally, we briefly consider how strong quasidifferential trails can exist for a
large number of rounds of a cipher. For every active S-box in a quasidifferential
trail that is not active in the corresponding characteristic, the correlation of the
trail contains a factor equal to the correlation of an ordinary linear approxima-
tion over that S-box. These approximations never have correlation ±1, since the
S-box is a nonlinear function. Hence, to avoid activating too many differentially
inactive S-boxes, the masks of the quasidifferential trail should follow the differ-
ences as closely as possible. By Theorem 3.2 (5), one structural property that
makes this more likely is if the linear layer L of the cipher satisfies L−1 = LT.
Such ‘self-dual’ linear layers, including all bit-permutations, are in common use.
Insights such as these can be used by designers to avoid strong key-dependency
or, should they choose to do so, to amplify key-dependent effects on purpose.

4.4 Key-Alternating Ciphers

For key-alternating ciphers, quasidifferential trails with nonzero masks have an
intuitive interpretation. Let F = Fr ◦ · · · ◦ F1 with Fi(x) = Gi(x) + ki. By Equa-
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tion (5) and Theorem 3.1 (2), it holds that

DF
�r+1,�1

=
∑

�2,...,�r

r∏

i=1

(−1)uT
i+1kiDGi

�i+1,�i
, (6)

where �i = (ui, ai) for i = 1, . . . , r+1. It is easy to see that for u0 = ur = 0, the
average of the above with respect to independent uniform random round keys
k1, . . . , kr is equal to the sum of the average probabilities of all characteristics.
More generally, one has the following result.

Theorem 4.3. Let F = Fr ◦ · · · ◦F1 with Fi(x) = Gi(x)+ ki. If k = (k1, . . . ,kr)
is a uniform random variable on a set K, then

Pr [F(x + a) = F(x) + b] =
∑

u2,...,ur
a2,...,ar

(u2,...,ur)⊥K

r∏

i=1

DGi

(ui+1,ai+1),(ui,ai)
,

where u1 = ur+1 = 0 and the probability is over a uniform random x and over
the keys k1, . . . ,kr. In particular, for K = F

n
2 , only quasidifferential trails with

zero masks contribute to the key-averaged probability of the differential.

Proof. Taking the average of both sides of Eq. (6) with respect to k1, . . . ,kr

yields the result, since
∑r

i=1 uT
i+1ki is zero when (u2, . . . , ur) ∈ K⊥ and uniform

random otherwise. ��
A result similar to Theorem 4.3 but for characteristics follows from Theorem

4.1. Furthermore, Eq. (6) allows computing the variance of the probability of a
differential:

E
[
DF

�r+1,�1

]2 + Var
[
DF

�r+1,�1

]
=

∑

�2,...,�r

r∏

i=1

(
DGi

�i+1,�i

)2
.

This result is analogous to a well-known result of Nyberg [22] in the context of
linear cryptanalysis, which states that the variance of the correlation of a linear
approximation is equal to the sum of the squared correlations of the linear trails
in the approximation.

5 Computing the Quasidifferential Transition Matrix

The differential cryptanalysis of specific primitives using quasidifferential trails
requires calculating the quasidifferential transition matrix for each round trans-
formation. For affine functions, Theorem 3.2 (4) and (5) show how to compute
the quasidifferential transition matrix.

In general, calculating the quasidifferential transition matrix is nontrivial
because the dimensions of the matrix DF scale exponentially with the number
of input and output bits of F. In the following two sections, we show that this
is not an issue for most primitives: we provide efficient methods to compute the
quasidifferential transition matrix for small (such as 4- or 8-bit) S-boxes, for the
bitwise-and operations and for modular additions.
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5.1 S-boxes

The matrix DF can be computed using a number of operations roughly propor-
tional to its number of elements. Specifically, for a function F : Fn

2 → F
m
2 , the

matrix DF can be computed in O((n+m)22n+2m) time using a method similar to
the fast Fourier transform. Specifically, the matrix Qn with columns βu,a satisfies
Qn = Q⊗n

1 . It follows that there exists an efficient divide-and-conquer algorithm
for multiplication with Qn or its transpose, analogous to the fast Fourier trans-
form. Hence, since DF = Qm (T F ⊗ T F)QT

n/2n by Definition 3.2, the matrix
DF can be computed by applying this divide-and-conquer multiplication algo-
rithm to both the rows and columns of T F ⊗T F. A Sage implementation of this
algorithm is provided as supplementary material. It is also possible to compute
the quasidifferential transition matrix from the correlation matrix of F using
essentially the same approach. This is discussed in the extended version of the
paper.

5.2 Bitwise-And and Modular Addition

Several ciphers use bitwise-and or modular addition as their nonlinear com-
ponents. Although these functions potentially have many input and output
bits, they are highly structured. This makes it possible to express the entries
of their quasidifferential transition matrix in terms of relatively simple logical
constraints. These constraints can be used to model the propagation of quasid-
ifferential trails in such ciphers as an MILP, SAT or SMT problem, cf. Sect. 8.

In the following, the bitwise-and of x, y ∈ F
n
2 will be denoted by x ∧ y, the

bitwise or by x ∨ y. We also define and(x‖y) = x ∧ y. The bitwise complement
of x will be written as x̄. The addition of the integers represented by x and y
modulo 2n will be denoted by add(x‖y). Finally, we write x � y when xi ≤ yi

for i = 1, . . . , n.

Bitwise-And. The quasidifferential transition matrix of and is easy to compute
because it acts on each bit independently. Hence, Theorem 3.2 (2) can be used.
This results in the following theorem. The proof can be found in the extended
version of the paper.

Theorem 5.1. Let a, b, c ∈ F
n
2 be differences and u, v, w ∈ F

n
2 masks. It holds

that Dand
(w,c), (u‖v,a‖b) �= 0 if and only if c � a∨b, u∨v � a∨b∨w and a∧u+b∧v =

c ∧ w. Furthermore, if these conditions hold, then

Dand
(w,c), (u‖v,a‖b) = 2−wt(a∨b)−wt(w∧ā∧b̄) (−1)uT(ā∧c)+vT(a∧c)+uT(a∧b) .

Modular Addition. The quasidifferential transition matrix of add can be com-
puted using its CCZ equivalence to a quadratic function [23] that is nearly the
same as bitwise-and. This results in Theorem 5.2. The proof is given in the
extended version of the paper. In Theorem 5.2, the linear map M : Fn

2 → F
n
2 is

defined by M(x)1 = 0 and M(x)i =
∑i−1

j=1 xj for i > 1 and its ‘pseudoinverse’
is M†(x) = [x + (x � 1)] � 1, where � and � denote left and right shifts
respectively.
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Theorem 5.2. Denote the map of modular addition with modulus 2n by add :
F
2n
2 → F

n
2 . Furthermore, let a, b, c ∈ F

n
2 be differences and u, v, w ∈ F

n
2 masks. It

holds that Dadd
(w,c),(u‖v,a‖b) �= 0 if and only if

c′
1 = 0

M†c′ � a′ ∨ b′

u′ ∨ v′ � a′ ∨ b′ ∨ MTw′

a′ ∧ u′ + b′ ∧ v′ = c′ ∧ MTw′

(a′
n = b′

n = 0) ∨ (a′
nu′

n + b′
nv′

n �= w′
n) ∨ (a′

nv′
n = ā′

nu′
n) ,

where (a′, b′, c′) = (b+c, a+c, a+b+c) and (u′, v′, w′) = (u+w, v+w, u+v+w).
Furthermore, if the above conditions hold, then

Dadd
(w,c), (u‖v,a‖b) = 2z−wt(a′∨b′)−wt(MTw′∧ā′∧b̄′) (−1)(ā

′∧M†c′+a′∧b′)Tu′+(a′∧M†c′)Tv′
,

where z = (a′
n ∨ b′

n) ∧ (a′
nu′

n + b′
nv′

n = w′
n) ∧ (a′

nv′
n �= ā′

nu′
n).

6 Application to RECTANGLE

RECTANGLE [28] is a 64-bit substitution-permutation network, with a nonlinear
layer consisting of 4-bit S-boxes and a bit-permutation as the linear layer. The
state is represented by a 4 × 16 array of bits. For the specification of RECTAN-
GLE, we refer the reader to the extended version of the paper.

There are several reasons why RECTANGLE is an interesting target to illus-
trate the use of quasidifferential trails. The linear layer is a bit-permutation and
simpler compared to similar ciphers such as PRESENT [8]. In particular, it rotates
the second, third and fourth rows of the state by 1, 12 and 13 bits respectively.
As discussed in Sect. 4.3, the self-duality of bit-permutations potentially results
in quasidifferential trails with high absolute correlation relative to the probabil-
ity of the corresponding differential trail. In addition, differential cryptanalysis
is the dominant attack for RECTANGLE. The optimal differentials for RECTAN-
GLE also have a limited differential effect, i.e. they contain few characteristics.
This simplifies the analysis.

To perform the analysis in this section, we developed an SMT-based program
to automate the search for quasidifferential trails in RECTANGLE. This tool is
provided as supplementary material and can easily be adapted to similar ciphers
such as PRESENT. Additional details can be found in the extended version of
the paper.

6.1 Differentials

Table 1 lists several differentials for RECTANGLE. Differential i is a 14-round
differential used in the best published key-recovery attack on RECTANGLE [28].
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Although its probability is suboptimal, its input and output differences are bet-
ted suited for key-recovery. The corresponding 18-round key-recovery attack
requires 264 data and enough memory to hold 272 counters. The time-complexity
amounts to 278.67 (80-bit key) or 2126.66 (128-bit key) 18-round encryptions. A
success probability of 67% is claimed.

Differential ii has a dominant characteristic with average probability 2−61.
Based on the analysis of the designers (which included differential effects), this
differential is believed to have a maximal average probability. Up to rotational
equivalence, there are a total of 32 such differentials. However, as discussed
below, these differentials all have similar behavior.

The average probability of differential iii is suboptimal, but the analysis in
Sect. 6.2 shows that its probability is much larger for some keys.

Table 1. Differentials (a, b) for 14 rounds of RECTANGLE. The column pavg gives an
estimate of the average differential probability for independent round-keys.

a b pavg Comment №

0020000600000000 0004000000000020 2−63 + 2−66 18-round key-recovery i

0100007000000000 0861008400000010 2−61 + 2 · 2−64 ‘Optimal’ (1 of 32). ii

00000000c0000600 0004000000000020 2 · 2−65 + 13 · 2−68 ‘Suboptimal’. iii

6.2 Analysis

In order to search for optimal quasidifferential trails, we model the propagation
of the masks for a fixed difference as a ‘Satisfiability Modulo Theories’ (SMT)
problem. Using Theorem 4.1, quasidifferential trails allow us to compute the
probability of a characteristic. The extended version of the paper contains addi-
tional information about the SMT model and its implementation.

Differential i. For completeness, we list the two dominant characteristics for
this differential in the extended version of the paper. The first two columns of
Table 2 list the number of quasidifferential trails of each correlation for these two
characteristics.

Any characteristic has at least one quasidifferential trail with correlation
equal to its average probability pavg, namely the trail with all-zero masks. The
fact that the first characteristic has two quasidifferential trails with correlation
±pavg and the second four, is special. Table 3 shows two of these trails (one for
each characteristic) with the same masks. Only rounds 9 to 12 are shown, since
the masks are zero in all other rounds. Hence, these two trails describe a local,
three-round effect. This is already an interesting outcome of our approach by
itself, since previous techniques such as plateau characteristics are not able to
describe such three-round effects.
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Table 2. Number of quasidifferential trails for 14 rounds of RECTANGLE.

|c|/pavg Differential i Differential ii Differential iii

2−63 2−66 2−61 2−64 2−64 2−65 2−65

1 2 4 2 2 4 32 32

2−1 2 4 2 2 4 32 32

2−2 26 52 24 24 48 352 352

2−3 26 60 24 24 56 480 480

2−4 182 396 176 176 384 2656 2656

Table 3. Differences and masks for two three-round quasidifferential trails with abso-
lute correlation 2−13 and 2−19. The masks are the same for both trails.

Differences (ptrail = 2−63) Differences (ptrail = 2−66) Masks (both)

.........2....6. .........2....6. ................

.........c....2. .........c....2. .........c......

............86.. ............86.. ............84..

............12.. ............92.. ............12..

............3... ............3..8 ............3...

............8... ............8..1 ................

Note that the propagation of the masks closely follows that of the differences.
As discussed in Sect. 4.3, this is beneficial to obtain quasidifferential trails with
high correlation. The correlation for the quasidifferential trail corresponding to
the first characteristic in rounds 9 to 12 is equal to

(−1)κ1 × DS
(c,c),(2,0)D

S
(2,0),(6,0) × DS

(1,1),(8,8)D
S
(2,2),(6,4) × DS

(8,0),(3,3)

= (−1)κ1 × −1
8

× 1
4

× 1
8

× 1
4

× 1
8

= (−1)1+κ1 2−13 ,

where κ1 = k10,10+k10,15+k11,12+k11,13. Similarly, for the second characteristic,
the correlation of the quasidifferential trail is equal to

(−1)κ1 × DS
(c,c),(2,0)D

S
(2,0),(6,0) × DS

(9,1),(8,8)D
S
(2,2),(6,4) × DS

(8,0),(3,3)D
S
(1,0),(8,0)

= (−1)κ1 × −1
8

× 1
4

× −1
8

× 1
4

× 1
8

× 1
8

= (−1)κ1 2−19 .

Note the sign difference compared to the first characteristic. As shown below, it
implies that the two characteristics are incompatible: for each key, one of them
must have probability zero. Taking into account the first four quasidifferential
trails, the probability of the first characteristic is

pi,1 ≈ (
1 − (−1)κ1

)(
1 + (−1)λ/2

)
2−63 = 1κ1=1

(
1 + (−1)λ/2

)
2−62 ,

where λ is a linear combination of round-key bits. Although we did not include
all quasidifferential trails in the analysis, Theorem 4.2 (2) allows concluding
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that the characteristic has probability zero when κ1 = 0. Furthermore, it can
be argued that lower-correlation trails are typically less significant. Although
it is possible that for example the 26 trails with correlation 2−65 contribute a
term of magnitude 2−63.3, this only happens for a small fraction of keys since
it requires the signs of all these trails to point in the same direction. For the
second characteristic, considering the first 8 trails results in

pi,2 ≈ (
1 + (−1)κ1 − (−1)κ2 − (−1)κ1+κ2

)(
1 + (−1)λ/2

)
2−66

= 1κ1=01κ2=1

(
1 + (−1)λ/2

)
2−64 .

Impact on the Key-Recovery Attack. The time-complexity of the 18-round key-
recovery attack based on differential i is determined by the number of remaining
pairs for the right key after filtering the data. For the maximal number of input
structures, the number of remaining unordered pairs will be pi 263.

If κ1 = 0, then the number of pairs is 1κ2=1(2 + (−1)λ)/4 on average over
the remaining key bits. Since this is less than one for all values of κ2 and λ, the
key-recovery advantage will be too low to improve over brute-force.

For κ1 = 1, the average number of unordered pairs is 2 + (−1)λ. Using a
threshold of one pair as in the original attack, this gives a time-complexity of
277.65 (80-bit key) or 2125.65 (128-bit key) assuming that the cost of evaluating
the key-schedule is negligible compared to the cost of evaluating the cipher.
Assuming that the number of right pairs follows a Poisson distribution within
each key class, the success probability is then approximately (1 − e−1)/2 + (1 −
e−3)/2 ≈ 79%. Hence, for this case, the attack still marginally improves over
exhaustive search. However, achieving this improvement requires filtering for
weak keys using the condition κ1 = 1 during the key-recovery phase. Otherwise,
no improvement over exhaustive search is obtained. The observations above can
be summarized as follows.

Result 1. The key-recovery attack on 18-round RECTANGLE from [28] using
differential i does not improve over exhaustive search. For keys with k10,10 +
k10,15 + k11,12 + k11,13 = 1, the attack can be modified to filter out keys not
satisfying this condition and then achieves a success probability of approximately
79% with a time-complexity of 277.65 (80-bit key) or 2125.65 (128-bit key) 18-
round encryptions. The attack requires 264 data and enough memory to store
272 counters.

By Result 1, there is a rectified 18-round key-recovery attack on RECTANGLE
with average success probability 39.5% and (marginally) better time-complexity
than exhaustive search.

Differential ii. The analysis of differential ii is very similar to that of i. The three
dominant characteristics are given in the extended version of the paper. Based
on the first four trails for the first two characteristics and the first eight trails
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for the second, the characteristic probabilities are

pii,1 ≈ 1κ1=1

(
1 + (−1)λ/2

)
2−60

pii,2 ≈ 1κ1=1

(
1 + (−1)λ/2

)
2−63

pii,3 ≈ 1κ1=01κ2=0

(
1 + (−1)λ/2

)
2−62 .

That is, for half of the keys, the dominant characteristic actually has no right
pairs. For the other keys, its probability is roughly twice as large. The second
characteristic shows similar behavior. Also note that the third characteristic is
not compatible with the first two.

A similar analysis was performed for all other (up to rotational equivalence)
14-round differentials with a dominant characteristic of average probability 2−61.
The results were essentially the same.

Differential iii. Both characteristics with probability 2−65 are given in the
extended version of the paper. Based on the 32 quasidifferential trails with cor-
relation 2−65, we find that the first characteristic has a nonzero probability if
and only if 5 linearly independent equations in the round keys hold. The aver-
age probability over these keys is 2−60. For the second characteristic, we find a
similar effect with slightly different conditions on the round keys. Like for the
first characteristic, the average probability over these keys is 2−60. Furthermore,
the conditions for the two characteristics to have nonzero probability (given in
the extended version) are incompatible. Hence, the sum of the probabilities of
the first two characteristics is 2−60 for 1/16 keys and zero for all other keys.

In addition, there are 13 characteristics with an average probability of 2−68.
We find that each of these characteristics has nonzero probability zero for only
1/64 or 1/128 keys. The conditions for this to happen may partially overlap or
be inconsistent with the conditions for the first two characteristics.

7 Application to KNOT

In order to illustrate the relevance of our techniques to the analysis of permuta-
tions, we analyze several differential attacks on the KNOT family of permutations
and their authenticated-encryption and hashing modes [29]. KNOT is a large-
state variant of RECTANGLE and was a second-round candidate in the NIST
lightweight cryptography project. In this paper, we only consider the primary
variant, which is a 256-bit permutation. The state is represented by a 4 × 64
rectangular array. The round function operations are similar to those of RECT-
ANGLE, but a different S-box is used and the third and fourth row of the state
are rotated by 8 and 25 positions respectively. Additional details may be found
in the extended version of the paper.

7.1 Differentials

At the 2020 NIST lightweight cryptography workshop, Zhang et al. [30] pre-
sented several differential attacks on round-reduced KNOT authenticated encryp-
tion and hashing modes. The differentials used in these attacks are listed in
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Table 4, along with their estimated probabilities (without taking into account
quasidifferential trails). In this section, it will be shown that these attacks do
not work because the probability of the differentials in Table 4 is much smaller
than expected. Furthermore, it will be shown that there exist round constants
for which their probabilities are two orders of magnitude larger. All relevant
characteristics are listed in the extended version of the paper.

Table 4. Differentials for r rounds of KNOT-256. The column pavg gives an estimate
of the ‘average’ differential probability (for independent uniform random round con-
stants). The differences are given in the extended version of the paper.

r pavg Application №

10 5 × 2−56 Hash collision and AEAD forgery. i

12 10 × 2−66 Hash collision and AEAD forgery. ii

7.2 Analysis

The analysis of the differentials in Table 4 is similar to the analysis for RECT-
ANGLE. The SMT-model for RECTANGLE can easily be modified to efficiently
search for quasidifferential trails in KNOT.

Differential i. Based on the quasidifferential trails with correlation 2−56 for each
of the five characteristics with pavg = 2−56, we conclude that all of them have
probability zero for the standard round constants of KNOT-256. Hence, the dif-
ferential probability is much lower than what might be expected from the ‘aver-
age’. Even if there exist other characteristics with unexpectedly large probability
(a scenario considered below), this is a significant issue for the collision attack
on the KNOT hash function. Indeed, the collision search consists of finding a
right pair for one of the best few characteristics, since this is significantly easier
than finding a right pair for the differential by random search.

Despite the observations above, it is possible that there exists a low-
probability characteristic with an unexpectedly high probability for the default
round constants. The differential contains four characteristics with ‘average’
probability 2−60. However, by analyzing the corresponding quasidifferential
trails, we find that they too have probability zero. Next, there are 17 char-
acteristics with ‘average’ probability 2−62. Again, we find that all of them have
probability zero. We also considered 24 characteristics with ‘average’ probabil-
ities 2−63 and 2−65 and found that they have probability zero. Although we
did not analyze all characteristics with probability 2−66 or lower, they can only
have a high nonzero probability for a very small fraction of round constants.
Given the number of such characteristics, it is unlikely that a high probability
characteristic exists.

On the flip side, there exist round constants for which one or more of the
five characteristics have probability 2−50. This is due to the existence of 64
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quasidifferential characteristics with absolute correlation 2−56. A careful inspec-
tion of the conditions on the round constants shows that there exist variants
of KNOT with modified constants for which the probability of differential i is
approximately 5 · 2−50 = 2−47.7. Further improvements are possible by taking
into account additional characteristics and quasidifferential trails.

Differential ii. The analysis of the 12-round differential is similar to the 10-
round differential, and leads to similar conclusions. This is not surprising given
that both characteristics follow a similar pattern up to rotational symmetry.
We find that each of the 10 dominant characteristics has probability zero for
the default round constants. In addition, we did not find any characteristics
with ‘average’ probability 2−70 or higher with a nonzero probability. Hence, it
is unlikely that the 12-round forgery and collision attacks presented by Zhang
et al. are valid. Finally, we can identify round constants for which one or more
of the 10 characteristics has a probability of 2−59.

8 Application to Speck

In this section we investigate the key-dependency of several differentials for
Speck from the literature. The bitvector constraints for modular addition from
Theorem 5.2 are the main ingredient of our SMT-model. The same approach
can be applied to any ARX block cipher or permutation. The implementation
of our model is provided as supplementary material.

In Sect. 8.1 we provide a simple explanation (using a single quasidifferential
trail) for an experimental observation of Ankele and Kölbl [2] on Speck-64. In
Sects. 8.2 and 8.3 we analyze the differentials used in the best published attacks
on all variants of Speck. In the extended version of the paper, Speck is briefly
reviewed.

8.1 Explaining Observations of Ankele and Kölbl on Speck-64

Ankele and Kölbl [2] experimentally estimated the probability of a 7-round dif-
ferential for Speck-64 for 10000 random keys and found that the distribution of
the number of rights pairs is bimodal. Their results are reproduced in Fig. 4, but
colored to indicate two key classes that follow from the analysis below.

The fact that the histogram in Fig. 4 is bimodal already suggests the presence
of an important quasidifferential trail with nonzero masks. Automatic search
reveals that the best such quasidifferential trail has correlation 2−23. The domi-
nant characteristic (with probability 2−21) and the masks of the quasidifferential
trail with correlation 2−23 are shown in Table 5.

The quasidifferential trail from Table 5 only involves the modular additions
of the first two rounds. Figure 5 shows the propagation of the mask-difference
pairs for these rounds in more detail. Following Sect. 4.3, the interpretation of
this trail is that there exists a linear combination of the output of the first
modular addition which is biased for the right pairs. This implies that a rotated
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Fig. 4. Number of right pairs for the Speck-64 differential from [2], for a total of 10000
keys. For each key, 230 pairs were sampled uniformly at random.

Table 5. Differential trail with probabil-
ity 2−21 for 7 rounds of Speck-64, and the
masks of a quasidifferential trail with cor-
relation 2−23.

Differences Masks

4...4.92 1.42..4. ........ ........

82.2.... ..12.2.. 18...... ........

..9..... ....1... ........ ........

....8... ........ ........ ........

......8. ......8. ........ ........

8.....8. 8....48. ........ ........

..8..48. ..8.2.84 ........ ........

8.8.a.8. 8481a4a. ........ ........

≪ 3

10420040

00000000

92400040

00000000

82100200

00000000

82020000

18000000

k1

≫ 8
00120200

0000000000820200

00180000

00120200

00000000

00900000

00000000

Fig. 5. Quasidifferential trail with cor-
relation 2−5 × 2−6 = 2−11 through two
rounds of Speck-64, with differences in
orange and masks in blue. (Color figure
online)

linear combination of the left input of the second modular addition is biased.
This bias results in a smaller or larger number of right pairs, depending on the
value of a linear combination of bits of k1. Specifically, the probability can be
estimated as

2−21 + (−1)k1,28+k1,29 2−23 .

For 230 random input pairs, the average number of right pairs is still 29 = 512.
However, the above formula predicts that the average is 512+27 = 640 if k1,28 =
k1,29 and 512 − 27 = 384 otherwise. This explains most of the variation in the
experimental results shown in Fig. 4. Additional effects, such as the more limited
bimodal behavior for k1,28 �= k1,29, can be explained by taking into account
additional quasidifferential trails.

8.2 Analysis of Differential Attacks on Speck-32

The best published attacks on reduced-round Speck are differential attacks using
the enumeration key-recovery strategy proposed by Dinur [13]. Given an r-round
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differential, an r+3 round attack is obtained by prepending one round (for free)
and appending two rounds. For variants with longer key lengths, one performs
the same attack for each guess of the last few round keys.

In this section, we analyze the best published attacks on Speck-32 reduced
to 11–14 rounds. These attacks rely on the 6–9 round differentials shown in
Table 6. Lee et al. [17] report on a 10-round differential with average probability
2−30.39, but it does not lead to a 15-round key-recovery attack because the time-
complexity would be 231.39 for a success probability of 1 − 1/e ≈ 63%.

Table 6. Differentials (a, b) for r-round Speck-32.

r a b pavg Reference №

6 0211 0a04 850a 9520 2−13 Abed et al. [1] i

7 0a60 4205 850a 9520 2−18 Abed et al. [1] ii

8 1488 1008 850a 9520 2−24 + 2−27 Abed et al. [1] iii

9 8054 a900 0040 0542 2−30 + 2 · 2−33† Biryukov et al. [7], Song et al. [24] iv

† 3060307 · 2−47 ≈ 2−29.45 with characteristics of average probability ≤ 2−49

Differentials i and ii. The six round differential i is dominated by a characteristic
with average probability 2−13, given in the extended version of the paper. The
next-best characteristic has average probability 2−23 and will be ignored in our
analysis. We find two quasidifferential trails with correlation ±2−15 and two with
correlation ±2−17. There also exist trails with absolute correlation 2−19 and
lower, but their effect on the probability is limited except for a small fraction of
keys. Grouping these trails appropriately, the following estimate is obtained:

pi ≈ (1 + (−1)0003
Tk5/4)(1 + (−1)0180

Tk5/4)2−13 ,

where, for simplicity, only one trail of correlation ±2−17 is included.
The analysis of the seven round differential is similar. The dominant differ-

ential trail has average probability 2−18 and is the same as the six round trail
with one additional round at the beginning. Hence,

pii ≈ (1 + (−1)0003
Tk6/4)(1 + (−1)0180

Tk6/4)2−18 .

Differential iii. The differential is dominated by two characteristics. The first has
average probability 2−24. Since the last part of these characteristics is the same
as for the dominant characteristics of differentials i and ii, some of the same
quasidifferential trails are obtained. However, there also exist quasidifferential
trails with correlation equal to the probability of the trail. This implies that there
exists keys for which these characteristics have probability zero. Specifically, for
the first characteristic, we find that

piii,1 ≈ 10600Tk2=011800Tk3=0(1 + (−1)0003
Tk7/4)(1 + (−1)0180

Tk7/4) 2−22 .
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That is, its probability is zero for 3/4 keys, but four times larger for the other
keys. For the second characteristic, we have

piii,2 ≈ 10600Tk2=011800Tk3=010a00Tk2=0(1+(−1)0003
Tk7/4)(1+(−1)0180

Tk7/4) 2−24.

Hence, the second characteristic has nonzero probability only when the first
probability is nonzero and 0a00Tk2 = 0.

Differential iv. The probability is dominated by three characteristics (listed in
the extended version of the paper). Additional characteristics only increase the
overall probability, but more detailed analysis reveals that many additional char-
acteristics have probability zero for most keys, and high probability for a rela-
tively small fraction of keys.

The first characteristic has average probability 2−30. Based on all quasidif-
ferential trails with absolute correlation ≥ 2−32, we obtain

piv,1 ≈ 1000cTk5=0(1 − (−1)0180
Tk1/4) 2−29 .

For the second characteristic (with average probability 2−33), the quasidifferen-
tial trails with absolute correlation ≥ 2−34 yield

piv,2 ≈ 16000Tk2=1(1 + (−1)000c
Tk5/2 + (−1)0300

Tk4+000cTk5/2) 2−32 .

Note that one of the two quasidifferential trails with absolute correlation 2−34

involves three modular additions. By Theorem 4.2, the condition 6000Tk2 = 1 is
necessary to obtain a nonzero probability. However, the conditions 0300Tk4 = 0
and 000cTk5 = 1 only imply a small but possibly nonzero correlation. For the
third characteristic, we consider all quasidifferential trails with absolute correla-
tion ≥ 2−35 and obtain

piv,3 ≈ 10c00Tk2=11000cTk5=0(1 − (−1)0180
Tk1/2) 2−31 .

Note that the condition 000cTk5 = 0 is shared with the first characteristic. Since
the probability of the second characteristic is too low, this implies that previous
key-recovery attacks on 14 rounds of Speck-32 work for only half of the keys.

Impact on Key-Recovery Attacks. The above analysis allows us to reevaluate
the best published attacks on reduced-round Speck-32. The attack on 13 rounds
only works for one in four keys. Likewise, the attack on 14 rounds works only
for half of the keys. Another way to formulate this is that the (key-averaged)
success probability of these attacks is much lower than expected. For eleven
and twelve rounds, the success probability is also slightly lower, but less so.
Unfortunately, restoring the previous success-probability is not possible except
by using alternative differentials.

However, if the results of our analysis are taken into account, weak-key attacks
with lower data requirements are obtained. These attacks can be optimized
either with respect to the number of weak keys, or with respect to the data-
complexity. To minimize the data-complexity, we make assumptions on the key
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to maximize the probability of the differential. To maximize the number of keys
for which the attack works, only conditions to ensure nonzero probabilities are
imposed. Assuming that the adversary stops requesting data once the key has been
found2, these attacks require less data than what would be expected based on the
average-case analysis.

Table 7. Rectified attacks on r-round Speck-32.

r
Time Data Weak-keys

Comment
encryptions chosen plaintexts density

11
245.36 213.36 2−2 Optimized for data

245.88 213.88 1 Optimized for number of keys

12
250.36 218.36 2−2 Optimized for data

250.88 218.88 1 Optimized for number of keys

13
254.03 222.03 2−5 Optimized for data

256.20 224.20 2−2 Optimized for number of keys

14 261.84 229.84 2−1 Optimized for number of keys

The results are shown in Table 7. For example, the 6-round differential (11
round attack) has a probability at most (1 + 1/4)2 2−13 ≈ 2−12.36. With early
stopping, the average number of pairs required is 213(1/(1 − 1/4)2 + 2/(1 −
1/42) + 1/(1 + 1/4)2)/4 ≈ 212.88. For 14 rounds, we omit the attack optimizing
the data-complexity, since it requires more time than exhaustive search over a
key space of size 264−1 for a similar success probability.

8.3 Analysis of Differential Attacks on Larger Variants of Speck

The techniques to analyze Speck-32 in Sect. 8.2 carry over to the larger variants
of Speck. In this section, we reevaluate the best published attacks on these
variants. They rely on the key-recovery technique of Dinur [13] and are based
on the differentials shown in Table 8 below. For 16 rounds of Speck-96, Song et
al. [24] also propose a differential with average probability 2−94.94. However, we
do not include it as its probability is too low to improve over exhaustive search.

Most of the differentials in Table 8 rely on a significant differential effect.
Nevertheless, the analysis below will be limited to a few characteristics in each
case. This is done only to simplify the analysis, since each characteristic has its
own key-dependent behaviour that is not independent of other characteristics.
Note that including additional characteristics can only increase the probability of
the differential. In addition, it will be shown that key-dependence is much more
significant than the differential effect for all differentials in Table 8. A detailed
analysis of the differentials in Table 8 is given in the extended version.
2 This is possible due to the way the key-recovery attack works.
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Table 8. Differentials for r-round Speck-n (differences in the extended version). The
average differential probability is pavg, the average probability of the analyzed charac-
teristics is pchar. The values pmin and pmax are the minimum and maximum value of the
probability of the analyzed characteristics.

n r pavg pchar pmin pmax Reference №

48 11 2−44.31 2−46 + 2−47 0 2−43 Song et al. [24] i

64 15 2−60.56 2−62 0 2−59 Song et al. [24] ii

96 15 2−81.00 2−81 0 2−73.68 Song et al. [24] iii

128 20 2−124.35 4 · 2−128 0 2−120.36 Song et al. [24] iv

Table 9. Rectified attacks on r-round Speck.

Variant r
Time Data Weak-keys

Comment
encryptions chosen plaintexts density

48/72 15
268 244 2−3 Optimized for data

268.58 244.58 2−2 Optimized for number of keys

48/96 16
292 244 2−3 Optimized for data

292.58 244.58 2−2 Optimized for number of keys

64/96 19 292 260 2−3 ——

64/128 20 2124 260 2−3 ——

96/96 18
274.68 274.68 2−9 Optimized for data

277.25 277.25 2−6 Optimized for number of keys

96/144 19
2122.68 274.68 2−9 Optimized for data

2125.25 277.25 2−6 Optimized for number of keys

128/m 20
2121.36 2121.36 2−7 Distinguisher (data-optimized)

2125.36 2125.36 2−3 Distinguisher (key-optimized)

Impact on Key-Recovery Attacks. The analysis above directly impacts the key-
recovery attacks based on the differentials from Table 8. Like for Speck-32, all
of these attacks have lower success probability than previously expected. Never-
theless, the analysis also leads to weak-key attacks with lower data-complexity.
The results are summarized in Table 9.

Note that for Speck-128, our analysis shows that the key-recovery attacks
probably do not improve over exhaustive search over the reduced key-space.
Improvements may be possible if checking the weak-key conditions can be made
comparatively cheap, provided that checking candidate keys dominates the cost.
Since a detailed analysis of the time-complexity is outside of the scope of this
paper, Table 9 only lists a distinguisher for this case. Although our analysis did
not include all characteristics, these would only increase the average differential
probability by 2−124.9. Further analysis shows that the probabilities of these
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characteristics are strongly key-dependent. Hence, the key-recovery attacks on
Speck-128 from [24] most likely do not improve over exhaustive search.
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Abstract. Meet-in-the-middle (MITM) is a general paradigm where
internal states are computed along two independent paths (‘forwards’
and ‘backwards’) that are then matched. Over time, MITM attacks
improved using more refined techniques and exploiting additional free-
doms and structure, which makes it more involved to find and optimize
such attacks. This has led to the use of detailed attack models for generic
solvers to automatically search for improved attacks, notably a MILP
model developed by Bao et al. at EUROCRYPT 2021.

In this paper, we study a simpler MILP modeling combining a greatly
reduced attack representation as input to the generic solver, together
with a theoretical analysis that, for any solution, proves the existence
and complexity of a detailed attack. This modeling allows to find both
classical and quantum attacks on a broad class of cryptographic permuta-
tions. First, Present-like constructions, with the permutations from the
Spongent hash functions: we improve the MITM step in distinguishers
by up to 3 rounds. Second, AES-like designs: despite being much simpler
than Bao et al.’s, our model allows to recover the best previous results.
The only limitation is that we do not use degrees of freedom from the
key schedule. Third, we show that the model can be extended to target
more permutations, like Feistel networks. In this context we give new
Guess-and-determine attacks on reduced Simpira v2 and Sparkle.

Finally, using our model, we find several new quantum preimage and
pseudo-preimage attacks (e.g. Haraka v2, Simpira v2 . . . ) targeting the
same number of rounds as the classical attacks.

Keywords: MITM Attacks · Permutation-based hashing · Preimage
attacks · Merging algorithms · Quantum cryptanalysis

1 Introduction

Meet-in-the-middle is a general attack paradigm against cryptographic primi-
tives where internal states are computed along two independent paths (‘forwards’
and ‘backwards’) that are then matched to produce a complete path solution.
MITM attacks can be traced back to Diffie and Hellman’s time-memory trade-
off on Double-encryption [23]. Since then, they have been successfully applied
over the years on block ciphers and hash functions [1,14,26,33,36,37]. Moreover,
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MITM attacks have been improved using more refined techniques and exploiting
additional freedoms and structure (e.g., using internal state guesses [26], splice-
and-cut [1,33], bicliques [38], 3-subset MITM [14]), which also makes it more
involved to find and optimize such attacks.

An important trend in cryptanalysis is the application of automatic tools
to search for improved attacks. The search of an attack of a certain form is
translated into a search or optimization problem, which is solved using an off-the-
shelf SAT, constraint programming (CP), Mixed Integer Linear Programming
(MILP) solver. Thus the difficulty of finding an attack by hand is replaced by
that of finding a proper modeling of the attack search space into a corresponding
search/optimization problem. This has naturally led to a bottom-up modeling
including low-level attack details, such that any solution directly corresponds to
an instantiation of the attack.

MITM Attacks on Hash Functions. Hash functions are often built from a com-
pression function, using a simple domain extender such as Merkle-Damg̊ard
[21,41]. This compression function, in turn, can be built from a block cipher
Ek using one of the twelve secure PGV modes [43], usually one of the three most
common: Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and Miyaguchi-
Preneel (MP). A preimage attack on the hash function can be reduced to one
on the compression function.

In [44], Sasaki introduced a MITM preimage attack on AES hashing modes
targeting as much as 7 rounds. This attack already integrates advanced tech-
niques such as the initial structure and matching through MixColumns, which
is reviewed later. Bao et al. [3] improved the attacks of [44] by making use
of degrees of freedom from the key-schedule path; that is, allowing a varying
chaining value instead of considering a fixed one. In [4], an MILP framework for
automatic search of MITM attacks was introduced. It applies to all AES-based
hash functions, whose internal state is defined as an array of fixed-size cells and
whose operations mimic the operations of the AES block cipher. This modeling
led to many improved results; in particular, the first 8-round preimage attack
on a hash function using AES-128. Later on, this modeling was improved in [5]
and [25]. The former introduced the technique of guess-and-determine in the
solver, while the latter extended the search to collision attacks and key-recovery
attacks against block ciphers.

Limits of Rule-Based Modeling. In AES-based hash functions, internal states
are represented as an array of cells corresponding to the S-Boxes. The MITM
attack can entirely be specified by a certain coloring of these cells (backwards,
forwards, unspecified). Propagation rules can then be defined, which specify the
admissible coloring transitions at each stage of the cipher, while computing the
parameters which give the time and memory complexities of the MITM attack.
This is a bottom-up approach, as the validity of the path is enforced locally.

However, the definition of these rules is quite involved, and the follow-up
works [5,25] added even more rules to capture new techniques. This increases,
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in turn, the complexity of the model, which (as reported in [5]) requires more
human intervention to limit the search space.

Furthermore, the rule-based modeling in [4] is limited to AES-like ciphers.
These primitives have the property that the linear layer is strongly aligned with
the S-Box layer, and all the operations can be defined at cell-level (bytes in
the case of AES), instead at bit-level. Extending the rule-based modeling to
other primitives was one of the main open questions in [4], which would typi-
cally require moving to a bit-level and increasing model complexity. Our goal
is to develop a powerful model that is both broadly applicable and significantly
simpler than rule-based models.

Quantum Preimage Attacks. It is well-known that Grover’s quantum search algo-
rithm [30] halves the bits of preimage security that one can expect from a hash
function, e.g., instead of requiring 2128 computations of a 128-bit hash function,
Grover’s search can find a preimage in about 264 evaluations of a quantum cir-
cuit for the function. However, Grover search is only a generic algorithm. There
might exist dedicated quantum attacks that, for a given design, find a preimage
in less time. Such attacks determine the security margin of a hash function in
a post-quantum context, especially for hash-based signature schemes [2]. But
to date, while quantum collision attacks have been significantly studied [34,35],
little is known on quantum preimage attacks.

1.1 Our Contributions

Top-Down Modeling. In this work we do not follow the detailed bottom-up mod-
eling where any solution directly corresponds to an instantiation of the attack.
Ideally, the modeling should remain simple, and lead to feasible search times,
while at the same time, cover a large space of potential attacks. Hence instead,
we study a simpler top-down modeling paradigm in which we search for a greatly
simplified attack representation excluding many details, for which we are able to
prove the existence of an optimized attack instantiation and its corresponding
complexity (see Lemma 2 and Theorem 1 in Sect. 4). This has several benefits.
First, the abstract representation makes it more generically applicable to a wide
set of designs. Second, it enables analysis of not only classical attacks, but quan-
tum attacks as well with minor changes. Third, the resulting model input to the
solver is significantly smaller, which typically means it can be solved faster and
thus it is more practical to cover larger primitives and/or more rounds.

MITM Preimage Attacks. We apply this top-down modeling paradigm to MITM
preimage attacks. Our representation is close to the dedicated solvers introduced
in [16,22], and complementary to the bottom-up modeling developed in [4,5,25].
Instead of defining local rules for the propagation of cell coloring between cells,
we consider a global view of the MITM attack capturing only which cells belong
to the forward and the backward paths, and optimize the attack time complexity
as a function of the cells. This view has two advantages: first, its simplicity.
Second, its genericity, as it is not limited to strongly aligned designs and allows to
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target a larger class than AES-based hashing. In fact, we start with applications
to “Present-like” permutations, and only later, rewrite AES-based primitives
as “Present-like”, using the Super S-Box.

Our approach is so far limited to permutations: we do not use degrees of
freedom of the key-schedule. This restriction makes our tool oblivious to the most
advanced attacks on hashing using AES. However, many recent hash functions,
especially small-range hash functions like Simpira v2 [31] or Haraka v2 [40], or
more generally, Sponge designs like SHA-3, are only based on permutations.

Our modeling also admits a generic translation of classical MITM attacks into
quantum attacks. We find these attacks using our automatic tool, by a mere
change in the optimization goal. In fact, the valid paths for quantum attacks
correspond to classical paths under new memory constraints. When applicable,
our quantum attacks reach the same number of rounds as the classical ones.

Outline and Results. In Sect. 2, we recall previous results and elaborate on the
definition and modeling of a MITM attack in [4,5,25]. The rest of the paper fol-
lows our new approach. We define our cell-coloring representation, and merging-
based MITM attacks, in Sect. 3. In Sect. 4, we simplify this representation and
detail our MILP modeling for classical and quantum attacks. Next, we demon-
strate the versatility of our approach and obtain existing and new state-of-the-art
attacks.

In Sect. 5, we study the class of Present-like permutations, which have the
same operations as the block cipher Present: individual S-Boxes, followed by
a linear layer which exchanges bits between pairs of S-Boxes. We improve the
MITM step in the distinguishers on the permutations of the Spongent family.

In Sect. 6, we study the class of AES-like permutations. With the Super
S-Box, AES itself becomes a small Present-like cipher. We recover previ-
ous results on these permutations and give new quantum preimage attacks
on reduced-round AES, Haraka v2 and Grøstl (these results are summarized
in Table 1).

In Sect. 7, we study an extended class of permutations in which the lin-
ear layer contains XORs. In particular, we study Generalized Feistel Networks
and obtain generic and practical guess-and-determine distinguishers on GFNs,
reduced-round Simpira permutations, and reduced-step Sparkle permutations
(summarized in Tables 3 and 4). The distinguishers on Simpira are converted into
preimage attacks (see Table 1).

Our code is available at: github.com/AndreSchrottenloher/mitm-milp. We
used the MILP solver of the SCIP Optimization Suite [29].

2 Preliminaries

In this section, we describe the families of Present-like, AES-like and Feistel-
like permutations targeted in this paper. We recall MITM problems and the
rule-based framework studied in [3–5,25,44]. We choose to focus only on single-
target pseudo-preimage attacks, and refer to [3] for a clear depiction of generic
techniques to convert pseudo-preimage to preimage attacks.

https://github.com/AndreSchrottenloher/mitm-milp
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Table 1. Our new (pseudo)-preimage attacks, with points of comparison to previous
works. QRAQM = quantum-accessible quantum memory. The generic time given can
be higher than the security claims of the design. |n: A partial preimage attack over
n-bits. (Q): Using QRAQM.

Target Type Rounds Time Generic time Memory Source

AES-128 Classical 8 2120 2128 240 [4]

AES-128 Quantum 7 263.34 264 28 (Q) Sect. 6.1

Haraka-256 v2 Classical 4.5/5 2224 2256 232 [4]

Haraka-256 v2 Quantum 4.5/5 2115.55 2128 232(Q) Sect. 6.2

Haraka-512 v2 Classical 5.5/5 2240 2256 2128 [4]

Haraka-512 v2 Classical 5.5/5 2240 2256 216 Sect. 6.2

Haraka-512 v2 Quantum 5.5/5 2123.34 2128 216(Q) Sect. 6.2

Haraka-512 v2 |32 Classical 5.5/5 216 232 216 Sect. 6.2

Haraka-512 v2 |64 Classical 5/5 232 264 232 Full version [45]

SPHINCS+-Haraka Quantum 3.5/5 264.65 285.33 negl Sect. 6.2

Grøstl-256 OT Classical 6/10 2224 2256 2128 [5]

Grøstl-256 OT Quantum 6/10 2123.56 2128 2112(Q) Sect. 6.3

Grøstl-512 OT Classical 8/14 2472 2512 2224 [5]

Grøstl-512 OT Quantum 8/14 2255.55 2256 256(Q) Sect. 6.3

Simpira-2 Classical 5/15 2128 2256 negl Sect. 7.2

Simpira-2 Quantum 5/15 264 2128 negl Sect. 7.2

Simpira-4 Classical 9/15 2128 2256 negl Sect. 7.2

Simpira-4 Quantum 9/15 264 2128 negl Sect. 7.2

2.1 Families of Designs

Present-like. We name this family after the block cipher Present [13]. It is a
Substitution-Permutation Network (SPN) with an internal state of b = 16 cells
of 4 bits. Its round function applies in order: (1) the round key addition, (2) the
Present S-Box on each cell independently, and (3) the linear layer defined by
the bit-permutation:

P (j) =

{
4b − 1 if j = 4b − 1;
(j · b) mod 4b − 1 otherwise.

That is, the j-th bit of the state after an S-Box layer is moved to the P (j)-th
bit of the state before the next key addition. In particular, each cell at a given
round connects to 4 cells at the next round. Thus, Present is an SPN in the
strict sense that the “permutation” is a permutation of bits. In this paper, we
consider the analysis of Present in the known-key setting (see e.g. [10]), where
the key is fixed, which turns the cipher into a permutation. The Spongent-π
family of permutations1, which are used in the Spongent hash function [11] is
a generalization of the Present design to larger state sizes, with b ranging from

1 This denomination is from [9] . Previously the permutation did not have a name, or
was named “Spongent” by metonymy.
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22 to 192. By abstracting out the S-Box, other designs such as Gimli [8] can be
considered as Present-like.

AES-like. The AES, designed by Daemen and Rijmen [20], is the standardized
version of the candidate Rijndael [19] which was chosen in an open competition
organized by the NIST. It is a block cipher with a state of 16 bytes (128 bits).
The bytes are arranged in a 4 × 4 array, where the byte at position (i, j) is
numbered 4j + i. Each round contains the following operations in order: (1)
AddRoundKey (ARK): the subkey is XORed to the state, (2) SubBytes (SB): the
8-bit S-Box is applied to each byte independently, (3) ShiftRows (SR): the row
number i (starting from 0) is shifted by i bytes left, and (4) MixColumns (MC):
the columns of the state are multiplied by an MDS matrix. Importantly, all these
operations can be defined at byte level (strong alignment).

The class of AES-like designs studied in previous works [4] can then be
defined as follows: the internal state is an array of cells (not necessarily bytes)
and the round function combines ARK, SB, MC and operations that swap cells
(SR, or MIX in Haraka). In general the mixing function must be MDS, though the
extension in [25] does not require this. Since we are interested in permutations,
the ARK layer is replaced by AddConstant (AC).

Feistel-like. We consider permutations based on Generalized Feistel Networks
(GFNs). The state of a GFN is formed of b ≥ 2 branches. We denote branches
by Si. Apart from swapping branches, the basic operation in a GFN is to apply a
round function F on a well-chosen pair (Si, Sj): (Si, Sj) �→ (Si, Sj ⊕F (Si)). Our
main example is the Simpira v2 [31] family of permutations, where the branches
are AES states, and the round functions apply two rounds of AES. This is an
instance of the double-SP structures defined in [15], and a case in which the F
functions are permutations.

More generally, we can extend the class of GFN to Feistel-like permuta-
tions by allowing permutations to be applied in place on branches, and not
only through round functions: Si �→ Π(Si). This does not make a difference
from our modeling perspective. In particular, the Sparkle family of permuta-
tions [7] adopts such a Feistel-like structure, but with non-linear permutations
on the branches, and linear mixing layers. Though it is not strictly a GFN, our
modeling captures it as well.

2.2 Generic Depiction of MITM Attacks

We consider the MITM attack framework as represented in Fig. 1 using the
splice-and-cut and initial structure techniques. The key schedule is ignored due
to our restriction to permutations, and we reason only with the internal states.

The goal of the MITM attack is to find a sequence of internal states which
satisfy a closed computational path: there is a relation between the value before
the first round and the value after the last round. In order to do so, one starts
by separating the path in two chunks (splice-and-cut): the backward chunk �
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Fig. 1. MITM attack depiction with the splice-and-cut and initial structure techniques.

and the forward chunk �. Both chunks form independent computation paths.
One then finds a partial match between them at some round.

In addition, one usually starts at some initial structure • which fixes some
part of the internal state to constant values. The total complexity depends on
(1) the amount of these global guesses, (2) the degree of freedom of both chunks,
and (3) the amount of matching. All these parameters are completely determined
by the definition of chunks. As an example, we detail the 7-round attack on AES
of Sasaki [44] in the full version of the paper [45].

2.3 Rule-Based Modeling and Limits

A MILP model for searching MITM attacks on AES-like designs has been intro-
duced in [4] and further improved in [5,25].

Given the byte-level structure of the design, one fixes a starting round and an
ending round where the matching occurs (all possibilities are enumerated). Then,
each byte is ‘colored’ like in Fig. 1. There are four ‘colors’ (backward, forwards,
initial, unknown), which are encoded on two Boolean variables. Only the ARK
(if the key-schedule is used) and MC operations change the colors. A series of
rules is then enforced, as constraints, on the coloring transitions through these
operations. For example, going through MC forwards, one “unknown” byte in
input implies all bytes “unknown” in output; if all bytes are “initial” in input,
then they are all “initial” in output, etc. Other constraints have to be enforced
if we go backwards.

At the starting states, there are “initial degrees of freedom” which count
the number of forward and backward bytes. The forward computation path,
respectively backwards, consume these degrees of freedom under an enforcement
of the propagation rules. There must remain enough degrees of freedom at the
ending round, in order to ensure some matching.

This representation captures a large number of possible paths (including the
key-schedule, contrary to this paper). However, there are several downsides. First
of all, the rule-based modeling is complex, and the set of paths depends crucially
on the implementation of the propagation rules. For example, the introduction
of Guess-and-determine in [5] required to add more rules to take into account
this additional technique. The approach so far is bottom-up in the sense that the
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set of possible paths is defined by the local propagation rules. (In contrast, in
this paper we use a global approach, in which the objective function is directly
computed from the coloring. Advanced techniques such as Guess-and-determine
are covered by design and without the need for new rules.)

Second, the above model [4] works only for AES-like designs, and extending it
to bit-oriented ciphers is far from obvious, as stated in [25]. Notably, it becomes
unclear how the S-Box and linear layer will interact. Our model overcomes this
problem, albeit restricted to permutations.

3 Cell-Coloring Representation of MITM Attacks

In this section, we define the classes of designs under study, and the class of
merging-based MITM attacks which we are interested in. These attacks have
been previously studied in [16,22] in a very generic setting in combination with
a dedicated search tool. Although the search space is similar, our approach differs
by using MILP instead. The basis of our representation is Present-like designs.
We extend it in two directions: AES-like designs on the one hand, more complex
linear layers on the other hand. These are referred in this work as the “Present-
like setting”, the “AES-like setting” and the “extended setting”.

3.1 Cell-Based Representations

Let π = πr−1 ◦ . . . ◦ π0 be an r-round permutation. We consider the application
of π to an initial state s0, and write si the state before round i. Thus sr is the
final state and we have: ∀i ≥ 0, si+1 = πi(si).

For now π is assumed to be a Substitution-Permutation Network (SPN). We
can cut each si into b cells of w bits, denoted as si

j where 0 ≤ j ≤ b − 1. Each
round applies individual S-Boxes S to the cells (substitution), then a linear layer
between them (permutation). By abuse of notation, we also name “cell” the pair
xi

j = (si
j , S(si

j)). Thus cells are 2w-bit words, which can only take 2w values.
The linear layer of round i relates the cells xi

j to the cells xi+1
j . We have now

completely unfolded the equation sr = π(s0), into a system of linear equations
on the cells. So far this view is the same as in [16,22].

Present-like Setting. The archetype of a Present-like design is represented
on Fig. 2. Here we have two rounds with 4 cells each, of 4 bits. The linear
layer merely swaps bits. Thus, it can be entirely represented by pairwise linear
relations between the cells. All the information necessary for finding attacks then
holds in a simple directed, weighted graph G = (N,E):

• a node x ∈ N is a cell x with a width parameter wx;
• an edge (x, x′) ∈ E is a linear relation between a cell x at a given round, and

a cell x′ at the next round, with a width wx,x′ (we use purposefully the same
term as for cells).
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Fig. 2. Example of a 4-cell Present-like design.

The width of a cell corresponds to the combined width that a set of edges needs
to have to determine the cell’s value. Hence, the widths of cells and edges are
relative to each other. We set the width of cells to 1, and the width of edges
to a fraction (0.25 in Fig. 2). It follows from the Present-like structure that
the combined width of incoming edges, resp., of outgoing edges, is equal to the
width of the cell:

∀x ∈ N,
∑

x′|(x,x′)∈E

wx,x′ =
∑

x′|(x′,x)∈E

wx′,x = wx . (1)

To simplify, we make the following assumption on the S-Boxes similar to the
“heuristic assumption” in Sect. 4.1 of [16]. It would be true on average if the
S-Boxes were drawn at random, and it is not true for fixed S-Boxes. Our final
complexity estimates rely in fact on a global heuristic, rather than this local one.

Assumption 1 (S-Boxes). Given fixed edges with a combined width u ≤ 1, a
cell x of w bits can take exactly 2w(1−u) values.

AES-like Setting. Our cell-based representation of AES-like designs is different
from the one in previous works like [4,16,22]. These works considered the S-
Boxes as individual cells. Instead, we want to represent AES-like operations in
a way that looks like a Present-like design, with linear relations between pairs
of cells. For this we use the Super S-Box representation.

In the analysis of AES, the Super S-Box consists in considering the MC
operation, followed by SB, as a single, large S-Box of 4 × 8 = 32 bits. In our
representation, the cells are the columns of a given AES-like state, as represented
on Fig. 3 (or the rows, if MixColumns were to be replaced by MixRows). In that
case, the MC operation is the one of the previous round, and the SR operation
becomes an exchange of bytes between super-cells: two rounds of AES can then
be represented as in Fig. 2. The relative widths of cells and edges are unchanged;
each edge represents a byte, and each cell a column of 32 bits.

Extended Setting. In order to target even more designs, we show how to model
any linear layer for which a bit of xi is obtained by XORing several bits of xi−1.
This allows for example to model the permutation Ascon [24] (though we did
not obtain interesting results on this design). This XOR operation requires the
introduction of new cells:
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SB◦
SR

x0 (round 0)
MC◦
AC

z0 (round 0)
SB◦
SR

x1 (round 1) z1 (round 1)

Fig. 3. 2 rounds of AES, with a single (super-)cell.

• b-branching cells: a cell x of width wx = v, with one incoming edge and b
outgoing edges of width v each;

• b-XOR cells: a cell x of width wx = bv, with b incoming edges and one
outgoing edge of width v each. The inputs are b bits, and the output is the
XOR of them.

These cells allow to keep a graph structure, where the width of a cell still corre-
sponds to a combined width of edges that allows to determine the cell’s value.
In b-branching cells, all edges have the same value, and in b-XOR cells, knowing
b edges allows to deduce the remaining one. The difference with Present-like
designs is that Eq. 1 is not satisfied anymore. In order to separate successive
rounds, three layers for a single round (S-Box, branching, XOR) may be needed.

3.2 Meet-in-the-Middle Problems

The goal of a MITM attack is, using the cell-based representation, to find values
for all cells such that a given equation system is satisfied. The starting equation
system encoding sr = π(s0) is trivial, where sr can be computed from s0 and
vice-versa. By adding new linear relations between s0 and sr, this becomes a
closed computational path. The relations between s0 and sr can also be encoded
into the undirected graph of Sect. 3.1. We mostly consider wrapping constraints,
where we put new edges between cells s0 and sr, and input-output constraints,
where we fix some bits in the s0 and sr to arbitrary constants.

Problem 1 (Meet-in-the-middle problem). Consider a permutation π(s0) = sr.
Then given either uw bits of wrapping constraints L(s0, sr) = 0; or instead ui

bits of input constraints L(s0) = 0 together with uo bits of output constraints
L(sr) = 0, find a pair of states (s0, sr) that satisfy these constraints. (Here each
L is a linear function over F2.)

Given query access (forwards and backwards) to a random permutation,
an adversary must make respectively O(2uw) and O

(
2min(ui,uo)

)
queries to

solve Problem 1. These complexities are to be multiplied by the number of
requested solutions. This defines the generic difficulty of the problem. Note that
for solutions to exist, uw (resp. ui + uo) cannot exceed the state size of the per-
mutation. The number of solutions of the problem (in log2) can be computed by:( ∑

x∈N

wx −
∑

(x,x′)∈E

wx,x′

)
− ui − uo , (2)

where the sum over all edges includes wrapping constraints (if applicable).
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3.3 Merging-Based MITM Attacks

Now that we have defined the cell-based representation, we can move on to the
definition of merging-based attacks. This class of attacks is borrowed from [16,22].
However, while they persue a dedicated bottom-up solver to automatically search
for attacks, we follow a top-down MILP modeling approach. We focus for now
on the basic Present-like setting.

Reduced Lists. Let us consider a set of cells X = (xi
j)(i,j)∈IJX

, i.e., nodes in
the directed graph G = (N,E) that represents the MITM equation system. We
define the reduced list R[X] as the set of all value assignments (vi

j)(i,j)∈IJX
to

X that satisfy all linear constraints between the cells of X.
E.g., we may consider in Fig. 2 a reduced list R[x0

0, x
1
0], which contains all

assignments (s00, S(s00)), (s
1
0, S(s10)) such that (S(s00))|1 = (s10)|0 (the second bit of

S(s00) is equal to the first bit of s10). In particular, the list has size |R[x0
0, x

1
0|] = 27.

A reduced list is entirely determined by its defining set of cells. It forms the
set of solutions to a subsystem of equations. Our goal can now be rephrased as
follows: Compute an element from the reduced list of all cells: R[{x|x ∈ N}].
Indeed, by definition, this is a solution to the MITM equation system.

Base Lists. We start with base lists: reduced lists R[{xi
j}] of individual cells.

These are simply the list of all input-outputs through the S-Box: (si
j , S(si

j)). In
extended mode, base lists for branching and XOR cells are likewise trivial.

Merging Lists. Merging is the fundamental algorithmic operation to construct
bigger lists. It corresponds to the “recursive combinations of solvers” considered
in Sect. 4.2 of [16], where the “solvers” produce the solutions of a given equation
subsystem: merging the lists corresponds to merging two subsystems.

Lemma 1. Let R[X1] and R[X2] be two reduced lists. From them, the reduced
list R[X1 ∪ X2] can be computed in time:

max(|R[X1 ∪ X2]|, |R[X1]|, |R[X2]|) . (3)

Proof. Let Y be the set of linear equations of the system whose support is
included in X1 ∪ X2, but not in X1 nor X2. Then by definition of reduced lists,
we have: |R[X1 ∪ X2]| = |R[X1]| × |R[X2]|/(

∑
L∈Y width(L)).

We separate each linear equation L of Y into its X1-part L1 and its X2-
part L2: the equation becomes L(X) = L1(X1) ⊕ L2(X2) = 0. We compute
L1(X1) for all cell assignments in R[X1], likewise we compute L2(X2) for all cell
assignments in R[X2]. We then sort both lists with respect to these values, and
we look for collisions. The collision pairs are computed efficiently by iterating
over both lists, and give the matching cell assignments of R[X1 ∪ X2]. ��

Remark 1. The merging operation is the same in the extended setting. In the
AES-like setting, there can be implicit linear relations between cells. This cor-
responds to matching through MixColumns; we explain how we model this
in Sect. 4.3.
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It can be shown by a trivial induction that, if Assumption 1 holds for indi-
vidual cells, then the sizes of all reduced lists are exactly powers of 2. Of course
this is true only on average if we consider S-Boxes drawn at random. In practice,
the S-Boxes are fixed, but the deviation from this average is small.

Definition. A merging-based MITM attack is a merging strategy represented by
a binary tree T , whose nodes are identified by sets of cells X, such that: • the
leaves contain individual cells; • the root contains the set of all cells; • the set
of cells of a given node is the union of the set of cells of its children. Then each
node represents a reduced list. The attack consists in computing the reduced
lists in any order consistent with the tree. By Lemma 1, its time complexity is
given by maxX∈T |R[X]| .

The strategy of [16,22] is an exploration of the merging strategies, starting
from individual cells and computing the complexity of reduced lists until enough
cells are covered. Paths stop when the complexity exceeds the generic one. Thus,
the dedicated solver that they use is also bottom-up, not in the definition of
constraints like [4], but in the way it computes the complexity of possible attacks.

3.4 Global Edges

In all settings (Present, AES, extended), an important extension of merging-
based MITM attacks is the ability to guess globally the value of an edge. We use
global edges in three cases.

Input-Output Constraints. To model input-output constraints, we create wrap-
ping constraints and make these edges global. With this view, we remark that
a MITM problem always has same or lower complexity with a given amount of
wrapping constraints compared to the same amount of input-output constraints.

Reducing the Number of Solutions. In the Present and AES-like setting, it can
be seen that when the system admits more than 1 solution, we can set global
edges of a combined width equal to the quantity of Eq. 2. As long as the width
of global edges on a given cell does not exceed 1, there is on average a solution.
(This is not true in the “extended” setting, where global edges can a priori
create inconsistencies in the system and more care is required.)

Reducing the Memory. Global edges allow to reduce the size of intermediate lists
in the merging strategy. We can easily prove that they do not allow to reduce
the time complexity. If we consider a system with α global edges, that admits
a solution with probability 2−α, we can redo any merging strategy by removing
these global edges: the size of lists increases by a factor 2α at most. Since the
time complexity is the maximum of list sizes (multiplied by the loop on global
guesses), it stays the same in both cases.

Global edges correspond to the initial structure in previous works on MITM
attacks. An interesting consequence of this remark is that the initial structure
is actually not necessary to obtain the best time complexity: it suffices to share
its components between the backward and forward paths.
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Fig. 4. 12-round MITM attack on Gimli. The matching edges between the two final
lists are highlighted in cyan.

3.5 Example: Gimli

Before we elaborate on our MILP modeling, we detail a simple example of a
merging-based attack: the state-recovery on 12-round Gimli-Cipher of [27].

Gimli [8] is a cryptographic permutation with 384-bit state divided into 4
cells of 96 bits each. The full permutation has 24 rounds that apply an SP-Box
to each cell individually, and then, every two round, perform a linear layer. The
linear layer is either a small swap (32 bits are exchanged between cell 0 and 1,
and between 2 and 3) or a big swap (32 bits are exchanged between cell 0 and 2,
and between 1 and 3). In the cell-based representation, each cell has width 1,
three input and three output branches of width 1/3 each, as can be seen in Fig. 4.
We do not need to consider the details of the SP-Box.

The attack of [27] targets Gimli-Cipher, where Gimli is used in a Duplex
mode. The recovery of the internal state can be reduced to the following problem.
Given the cell-based representation of Fig. 4, where a single edge is fixed in the 4
input and output cells, the goal is to find the list of size 24×32 = 2128 (4/3 cells)
of all possible values of the full state, in time less than 2256 (8/3 cells). The
merging strategy is given in Fig. 5, where the list sizes are computed in log2 and
relatively to a cell. The time and memory complexities are 2192 (2 cells).

4 Simplification and MILP Modeling

In Sect. 3 we have given a very generic definition of merging-based MITM attacks.
We postulate that this definition contains all structural MITM attacks on per-
mutations known to date. Unfortunately, this search space is too large for MILP
solvers to be practical. Hence we consider a subset of these attacks, using only two
lists, a forward list and a backward list. We motivate this definition in Sect. 4.1
and show how to obtain the list sizes from their cells. Then, we show in Sect. 4.2
how to obtain a MITM attack with a complexity determined by the list sizes.
Finally in Sect. 4.3 we detail the MILP model itself.
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Fig. 5. Merging strategy for the 12-round attack against Gimli-Cipher of [27]. Some
lists are omitted by symmetry.

4.1 A Simpler Definition

In line with the “Meet-in-the-middle” terminology, we consider a merging strat-
egy made of only three reduced lists: a forward list R[XF ], a backward list R[XB ]
and a merged list R[XF ∪ XB ].

Forward and Backward Lists. Ultimately, the time complexity of the MITM
attack is computed as a function of the list sizes, so we must define sets XB and
XF in such a way that the list sizes |R[XF ]| and —R[XB ]| are simple functions
of XF and XB respectively. In the generic binary trees, we used the fact that
the size of leaves can be trivially computed (a list with a single cell of width w
contains 2w elements). Here we are simply making these leaves more complex,
so that only two leaves are needed in the end.

Lemma 2. Let X be a set of cells such that: (1) there is at least one round
0 ≤ i ≤ r − 1 such that no cell xi

j belongs to X; (2) for every global linear
constraint connecting cells xi

j1
and xi+1

j2
, then only one of these two cells can be

in X, and always either the one of the lower round number (backward case) or
the upper round number ( forward case). Let � be the quantity:

� =
∑
x∈X

(
wx −

∑
(x,x′)∈E

x′∈X

w(x,x′)

)
−

∑
(x,x′)∈E

x∈X∨x′∈X
(x,x′) is global

w(x,x′) , (4)

then R[X] is of size exactly 2�. In the Present-like / AES-like setting, it can
be constructed in time 2� with negligible memory.
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Here, forward and backward lists follow the same intuition as in standard
MITM attacks, where there are two computational paths going into different
directions. But this direction is only enforced because of global edges.

Proof. The size of a list is given by the sum of all widths of the cells, minus the
linear constraints between them, minus the globally fixed edges. Since at least
one round is cut, we can reorder the terms and associate all linear constraints
(x, x′) between round i and i + 1 to the cell x at round i: we obtain the formula
for �. Let us consider the backward list. We have:

�B =
∑
x∈X

(
wx −

∑
(x,x′)∈E

x′∈X

w(x,x′) −
∑

(x,x′)∈E
(x,x′) is global

w(x,x′)

)
, (5)

and we remark that each term is greater than zero: indeed, we cannot have
x′ ∈ X and (x, x′) global at the same time, by assumption, and in the Present-
like setting, we have wx ≥

∑
(x,x′)∈E w(x,x′). This is not true in the extended

setting (due to branching cells), but we can work around this in practice.
One constructs R[X] follows: separate X into Xr−1, . . ., X0, assuming that

no cell is covered at round r. We start at round r−1: we take values for all edges
(x, x′) ∈ E with x ∈ Xr−1 that are not already global. Next, at round r − 2,
we take values for all edges (x, x′) with x ∈ Xr−2 that are neither connected
to x′ ∈ Xr−1, nor global. Each time, the number of bits to guess corresponds
precisely to another term in �. For the forward list, we rewrite � as:

�F =
∑
x∈X

(
wx −

∑
(x′,x)∈E

x′∈X

w(x′,x) −
∑

(x′,x)∈E
(x′,x) is global

w(x,x′)

)
, (6)

and we change the direction of the procedure. This is a streaming procedure,
which outputs the list elements without requiring any storage. In both cases, the
list size corresponds exactly to the number of bits that we have to guess. ��

Simple Condition of Success. Initially, we required the merging strategy to com-
pute the reduced list of all cells. However, we can stop as soon as all cells can
be deduced from the current list. That is, given a valid sequence of values for the
cells of XF ∪XB , we can deduce all the others without guessing new edges. Since
we are studying a permutation, a sufficient condition (that we enforce) is that
XF ∪ XB covers a complete round. (Intuitively, we dismiss the trivial merging
steps consisting in adding the remaining cells one by one.)

Disjoint Paths. In the Present- and AES-like settings (but not the “extended”
setting), the sets XF and XB can be made disjoint at no loss. Since any inter-
section between XF and XB can either be removed from XF , or from XB , and
in at least one case both list sizes decrease (the merged list remains unchanged).
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4.2 From a Coloring to an Attack

Now we show that to any valid triple of sets XB , XF , XF ∪XB , there corresponds
a MITM procedure whose time and memory complexities are determined solely
by the size of the three lists involved. We use �B , �F , �M to denote the log2
of these list sizes, counted relatively to a cell. Our goal is to minimize this
complexity. We assume for simplicity that the merging problem admits a single
solution; it is easy to generalize this to multiple solutions in the classical setting.

Theorem 1. Assume that XB and XF are defined as in Lemma 2, and XF ∪XB

covers at least one round completely. let g be the sum of all widths of global
edges. Then there exists a classical and a quantum algorithm solving the MITM
problem with the following complexities in log2, relatively to a cell size. The
classical algorithm has memory complexity mc = min(�F , �B) and time complex-
ity tc = g + max(�F , �B , �M ). The quantum algorithm has memory mq = mc =
min(�F , �B) and time complexity tq = g

2 +max
(
min(�F , �B), 1

2 max(�F , �B , �M )
)
.

Proof (sketch). In the classical setting, both leaf lists can be computed on the
fly, we only need to store one of them (the smallest). The memory complexity
is thus (in log2) min(�F , �B) and the time complexity g + max(�F , �B , �M ) (we
must repeat the merging for every choice of global edges). One should note that
by the definition of the leaf lists, there is no variance in their size. There can be a
variance in the merged list size, which is usually dismissed in classical analyses.

Given a path for a two-list MITM attack, we can also write down a quantum
algorithm to solve it. In short, this algorithm creates the smallest list (e.g., the
forward one), then performs a Grover search in the merged list for a solution.
We refer to the full version of the paper [45] for technical details. The algorithm
requires quantum-accessible quantum memory (QRAQM). Assuming a single
solution, the quantum time complexity can be bounded by:

2
(π

4
2g/2 + 1

) (
2�F +

(π

4

√
2�B + 1

) (
π√
2

max
(

1,

√
2�M

2�B

)
+ 6

))
(7)

quantum evaluations of the attacked permutation, for a 1/2 chance of success.
Asymptotically, this formula can be simplified into 2tq , where:

tq =
g

2
+ max

(
min(�F , �B),

1
2

max(�F , �B , �M )
)

, (8)

which concludes the proof. ��

Criterion for a Quantum Attack. By comparing the quantum and classical time
exponents, one can see that quantum attacks require an additional constraint
compared to classical attacks: One can see that a classical MITM procedure
constitutes an attack if tc < t where t is the generic time exponent to solve
the MITM problem; in the quantum setting, this time is reduced by a square-
root factor due to Grover search, so we need tq < t/2. Unsurprisingly, any
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quantum MITM attack turns into a classical attack: tq ≤ t/2 =⇒ tc ≤ t. In the
other direction, if we have a valid classical path, and if the following additional
constraint is satisfied: min(�F , �B) ≤ 1

2 max(�F , �B , �M ) , then it also gives a
valid quantum attack. This is true in particular when �M = 0 and �F ≤ 1

2�B .

4.3 MILP Modeling

From the analysis above, we can see that we want to solve the problem:

Minimize the complexity formulas of Theorem 1, under the constraints
on XF and XB given by Lemma 2, and the constraint that XF ∪XB covers
at least one round completely.

Our MILP model essentially uses boolean variables to represent XF and XB ,
continuous variables to represent global edges, and expresses the list sizes �F ,
�B , and �M depending on these variables. This model can be generated from the
weighted graph (N,E) defined in Sect. 3.

Present-like Setting: Variables. We start with the basic Present-like constraints
and explain afterwards the extensions. For each cell x, we introduce boolean
coloring variables colF [x], colB [x] and colM [x] to represent the sets XF , XB and
XM := XF ∪ XB . We have the constraint colM [x] = max(colF [x], colB [x]).

We constrain some round to be absent from XF (resp. XB), it can be chosen
manually or not. For each edge (x, x′), we introduce a variable global[x, x′] which
is 1 if the edge is globally guessed, 0 otherwise. It can be relaxed to a continuous
variable. We constrain XF ∪ XB to cover at least one round entirely (chosen
manually or not). Finally, we impose that for each edge (x, x′):

colF [x] ≤ 1 − global[x, x′] colB [x′] ≤ 1 − global[x, x′]
colB [x] ≥ global[x, x′] colF [x′] ≥ global[x, x′]

Here the two constraints on the first line ensure that the conditions of Lemma
2 are satisfied. The second line is not required, but it simplifies the formula for
� of Lemma 2. Since each global constraints reduces the size of both the forward
and the backward lists, we can introduce a term of global reduction:

g =
∑

(x,x′)∈E

global[x, x′]wx,x′ , (9)

which contains all of their contribution. At this point, we have defined a valid
MITM strategy, and it only remains to compute the list sizes.

List Sizes. The list sizes are computed in log2 and relatively to the width of a cell
(in practice cells may have different widths). For each list, there are two terms
that intervene: the contribution of individual cells and the global reduction. For
the forward list, following Eq. 6, we define the variables:

contribF [x] ≥ wxcolF (x) −
∑

(x′,x)∈E

wx′,xcolF (x′) , (10)
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and we have: �F =
(∑

x∈N contribF [x]
)

− g. For the backward list, we define:

contribB [x] ≥ wxcolB(x) −
∑

(x,x′)∈E

wx,x′colB(x′) (11)

and we have similarly �B =
(∑

x∈N contribB [x]
)
− g. For the merged list, we can

go either forwards or backwards, for example:

contribM [x] ≥ wxcolM (x) −
∑

(x,x′)∈E

wx,x′colM (x′), �M =
∑
x∈N

contribM [x] − g .

(12)
Since we have now expressed the list sizes, we implement the time and memory
complexities using the formulas of Theorem 1, e.g., classically:

memory = min(�F , �B), time = g + max(�F , �B , �M ) .

The primary optimization goal is the time and the secondary goal is the memory.

Extended Setting. In the extended setting, we must allow a negative contribution
of the cells in each list. We have lower bounds: contribF [x] ≥ wx −

∑
(y,x)∈E wx,y

and contribB [x] ≥ wx −
∑

(x,y)∈E wy,x which can be negative for branching cells.
This is the only required change.

AES-like Setting. So far, our model considers the AES Super S-Box as a com-
pletely unknown function. We make two modifications to allow two techniques.

First, matching through MC. When we know u ≥ 4 bytes in the input and
output of an AES Super S-Box, we can reduce the merged list size by u − 4.
Indeed, these edges are individual S-Boxes, and we can write linear equations
between them using MixColumns. In order to model this, we modify the defi-
nition of colM [x]. We authorize a cell of the merged list to be covered even if
it does not belong to XF ∪ XB , as soon as enough input and output edges are
covered. This should not, however, happen at two successive rounds.

Second, optimizing the memory through MC. This is important for reaching
better memory complexities on AES-like designs, but also, better quantum times.
Assume that there exists a cell that belongs to the merged list but not the
forward and backward ones. Assume that there are fi input edges from the
forward list, fo output edges from the forward list, and respectively bi and bo

such edges for the backward list. Recall that each edge here corresponds to an
individual S-Box. Then we can add some shared constraints on these cells and
make these constraints global. Indeed, if we know that: �1(x0, x1, x2, x3, y0) = 0
and �2(x0, x1, x2, x3, y1) = 0, we can create a global constraint �′

1(x0, x1, x2) = t
and �′

2(y0, y1) = t. Going through MC, we can add up to fi + fo + bi + bo − w
such linear constraints, where w is the cell width in number of edges (4 in the
case of AES). Furthermore, we need to have less such new constraints than fo

and bi respectively: this ensures the existence of a streaming procedure for the
lists and the validity of an adapted version of Lemma 2.
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Practical Improvements. Our code is more optimized than the presentation given
in this section. In particular, we removed the global[x, x′] variables attached to
edges and replaced them by “global reduction” variables attached to each cell.
These variables unify the Present-like and AES-like settings, since they account
both for the global edges and the reduction through MC.

Reducing the Search Space. There are several ways to reduce the search space
without affecting the optimality. First, we can prune the graph by removing
cells that do not have both input and output edges (for example in the MITM
attack on Present of Sect. 5, many cells from the first and last rounds can
be removed). Second, when two cells in the graph have the same forward and
backward connections, their colorings can always be exchanged without changing
the list sizes. This reduces massively the search space size in the case of highly
symmetric AES-like designs, for example Grøstl-256 (see Sect. 6.3).

5 Application to PRESENT-like Permutations

Gimli. With our tool, we can prove the optimality of the 12-round state-recovery
attack recalled in Sect. 3.5. Here our 2-list MILP model is not enough, since the
two lists merged at level 1 in the tree span all the rounds. So, contrary to most
of our examples, we used an extension to 4 lists.

Present and Spongent. The current best distinguishers on known-key
Present [10] and reduced-round Spongent-π [47] combine a MITM layer and
a truncated differential layer. By improving the MITM layer, we improve indi-
rectly the number of rounds that can be targeted.

In a nutshell, the goal is to construct the list of 256 input states that satisfy a
4-bit input constraint and a 4-bit output constraint, in time less than 260. In [10]
the constraint is put at position 13; for Spongent-π we tried the position 0. We
conjecture that due to the high amount of symmetries in the design, the number
of attacked rounds should remain the same independently of this position.

The MITM layer for [10] reaches 7 rounds, in time 256 and memory 232. The
time is optimal, but we improve the memory to 212. Next, we find an attack with
one more round. The time complexity then rises to 258 (14.5 cells) and the mem-
ory complexity to 243 (10.75 cells). In order to make the optimization converge,
we used the following simplification: we merged pairwise the cells of the middle
rounds. These pairs of cells thus have the same coloration; this simplification
reduces greatly the number of variables, while still allowing interesting results.

Spongent. This strategy was extended in [47] to the Spongent-π permutations,
which are used in the hash function Spongent [11] and the permutation-based
AEAD Elephant [9] (in the “Dumbo” version). Following [47, Table 1], we denote
the number of rounds of both phases (truncated differential and MITM) by r0
and r1 and report them in Table 2, where our new results appear in bold in
the last column. The table contains all state sizes specified in [9,11,12]. Here
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Table 2. Versions of Spongent, results from [47] and our improvements.

State size

(bits)

Rounds

Attacked / full
Cells r0 r1 New r0

Present 64 31 / 31 16 7 24 8 (+ 1)

Spongent-88/80/8 88 30 / 45 22 7 23 8 (+ 1)

Spongent-128/128/8 136 43 / 70 34 7 36 8 (+ 1)

Spongent-π[160] 160 80 40 9

Spongent-160/160/16 176 53 / 90 44 7 46 9 (+ 2)

Spongent-160/160/80 240 69 / 120 60 7 62 10 (+ 3)

Spongent-88/176/88 264 77 / 135 66 9 68 10 (+ 1)

Spongent-256/256/16 272 68 / 140 68 9 69 10 (+ 1)

Spongent-224/224/112 336 95 / 170 84 9 86 10 (+ 1)

Spongent-128/256/128 384 109 / 195 96 11 98 11

Spongent-160/320/160 480 132 / 240 120 9 123 12 (+ 3)

Spongent-224/448/224 672 181 / 340 168 9 172 12 (+ 3)

Spongent-256/512/256 768 192 / 385 192 11 194 12 (+ 1)

the notation Spongent-n/c/r refers to [12], where n is the output hash size, c
the capacity and r the rate, while Spongent-π refers to the permutation itself.
The 160-bit version used in Elephant [9] was not studied previously, because
Spongent-π[160] does not appear among the different parameterizations of the
Spongent hash functions.

As in [10], the MITM layer finds all the input-output pairs such that: 4 bits
of an S-Box are fixed in input, and in output, to arbitrary values. The generic
complexity would be 2b−4 evaluations of the permutation. The lowest complexity
possible is 2b−8 since this is the number of solutions. Since the state size becomes
quite large, we do not use our tool as an optimization, but rather as a solver:
we set the minimal complexity 2b−8 as optimization goal and kill the process if
it runs for too long (say, 500 s). By our experiments, we expect solutions to be
found quite quickly, if they exist.

6 Application to AES-Based Permutations

As remarked above, our model does not include degrees of freedom of the key-
schedule, and some of the previous preimage attacks on AES-like hashing cannot
be recovered. However, all known results on AES-based permutations [3–5,25],
except the non-linear computation of neutral words proposed in [5] (see the
example of Grøstl below), can be recovered by our simplified modeling. We only
present new attacks obtained by our tool in this section. In the classical setting,
we improve the attack on Haraka-512 v2 of [4]. In the quantum setting, we give
attacks on reduced-round AES, Haraka and Grøstl.

Note that an AES-like state is an n × m matrix of bytes, which we represent
as m cells with n input and output edges. The SR operation moves individual
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Fig. 6. AES 7-round quantum attack. �: backward, �: forward, �: matching
through MC (new cells in the merged list), ↔: global edges.

bytes between the cells. When the last MC operation is omitted, and round
r − 1 is connected to round 0, then round 0 can actually be bypassed. Indeed,
the columns at the beginning of round 1 (before SB), which correspond to the
cells at round 1 in our representation, can immediately be linked to the columns
at round r − 1 (which correspond to the cells at round r − 1). Though MC has
been removed, we usually keep the last SR operation; this creates a special round
in which bytes are exchanged between pairs of cells only.

6.1 Quantum Attack on 7-Round AES

On this example, like the following ones, our attack is a pseudo-preimage attack
that, given a target t, finds x such that x ⊕ AES(x) = t. None of the attacks
known classically can be adapted in the quantum setting (they don’t satisfy the
condition given in Sect. 4.2), so we use our tool to find a new optimization. The
path is displayed in Fig. 6.

Details of the Attack. We count the complexities in cells. The attack has 2.75
global guesses, with 0.75 global edges and 2 additional reductions through MC
at round 1. For each of these 2.75 choices, we compute the three lists.

First, the backward � list is of size 0.25. We start by x2
3 which contributes

only to 0.25. We move to x0
0 and x0

2 which are entirely determined by the reduc-
tion through MC of round 1. We deduce x5

0, x
5
2. Second, the forward � list is

of size 1. We start by x2
0, x

2
1, x

2
2, which have only 3 − 2 = 1 degree of freedom by

the reduction through MC of round 1. We deduce x3
0, x

3
1, x

3
2. Third, the merged

list is of size ≤ 1. We match through MC at round 4, each cell gives 0.25 degree
of matching, so one would be enough.

This corresponds to an attack of classical time 2120 and memory 28, so equiv-
alent to the attack of [44]. However, using Eq. 8, we obtain a quantum time 260,
and with the precise formula of Eq. 7, we have a time of 263.34 quantum evalua-
tions of the primitive (Grover search would stand at 264.65).

6.2 New Attacks on Haraka V2

Haraka v2 [40] is a short-input AES-like hash function intended for use within
post-quantum signature schemes based on hash functions, such as SPHINCS+ [2].
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There are two variants: (1) Haraka-256 v2 hashes 256 bits to 256 using a 256-bit
permutation in feed-forward mode: x �→ π256(x)⊕x; (2) Haraka-512 v2 hashes 512
bits to 256 using a 512-bit permutation with a truncation: x �→ trunc(π512(x)⊕x).
The internal state of Haraka-256 v2 (resp -512) is the concatenation of 2 (resp. 4)
AES states. The columns of these states are numbered from 0 to 7 (resp. 0 to 15).
Each Haraka round (total 5) applies two AES rounds (AC, SB, SR, MC) individ-
ually on the states, followed by a MIX operation which permutes the columns:

MIX512 : 0, . . . , 15 �→ (3, 11, 7, 15), (8, 0, 12, 4), (9, 1, 13, 5), (2, 10, 6, 14)
MIX256 : 0, . . . , 7 �→ (0, 4, 1, 5), (2, 6, 3, 7)

The truncation trunc extracts the columns (2, 3, 6, 7, 8, 9, 12, 13).

Integration in SPHINCS, SPHINCS+ and Attacks. In [39], Kölbl proposed to
integrate Haraka into SPHINCS. Here both Haraka-256 v2 and Haraka-512 v2
need 256 bits of classical preimage security and 128 bits of quantum preimage
security (see [39], Sect. 3). In [4], the authors found a classical 4.5-round preim-
age attack on Haraka-256 v2 and a 5.5-round attack (extended by 0.5 round) on
Haraka-512 v2. None of the attacks of [4] apply directly to the post-quantum sig-
nature scheme SPHINCS+ [2], an “alternate” finalist of the NIST post-quantum
standardization process. Here Haraka-512 is used in a Sponge with 256 bits of rate
and 256 bits of capacity. The targeted security level is 128 bits due to a generic
second-preimage attack. We obtain a classical MITM attack on 4.5 rounds of
complexity 2192, and a quantum preimage attack on 3.5 rounds of complexity
264. The details are provided in the full version of the paper [45].

New Quantum Attack on Haraka-256 v2. The attack path of [4] does not meet
our criteria for quantum attacks, since both the forward and backward lists have
size 1 cell, and the total time complexity is 7 cells. However, a reoptimization
allows to reach an attack with 5 global guesses, a forward list of size 2, a back-
ward list of size 1 and a merged list of size 2 (details in the full version of the
paper [45]). By Eq. 7, this gives a quantum time 2115.55 against a generic 2128.

Improved Attack on Haraka-512 v2. The 5.5 round attack of [4] has time com-
plexity 2240 (7.5 cells) and memory complexity 2128 (4 cells). In order to make
our optimization converge faster, we constrain the pattern in the first and last
rounds to contain full active AES states, like in [4]). We obtain the path of Fig. 7,
which reduces the memory down to 0.5 cell (216). The main difference with the
framework of [4] is that the matching occurs in several rounds separately.

We first guess 28 bytes •: xa
3 [0, 1, 5, 6, 10, 11, 12, 15], xd

3[10, 11, 12, 15], xa
4 [4−

11], xb
4[0, 1, 2, 3, 12, 13, 14, 15], and we precompute two linear relations between

the first and second columns of zd
2 and wd

2 , and one linear relation for each
column between z6 and w6. The total is 46 bytes, i.e., 11.5 cells, of global guesses
(including 8 for free). Then for the forward � list (size 0.5 cells), we start
from wd

2 . We have 4 bytes and two precomputed linear relations, thus 2 bytes
of freedom. We continue to compute until z6. In each column, we have one byte
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Fig. 7. Path of our improved attack on Haraka-512 v2. �: backward, �: forward, •:
guessed
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Fig. 8. Path of the quantum attack on Grøstl-256 OT. �: backward, �: forward, �:
matching through MC (new cells in the merged list), ↔: global edges.

of precomputed linear relation, thus we can deduce all the blue bytes in w6

immediately. We continue until x9. Next, for the backward � list (size 4 cells),
we start from z6. There are 32 red bytes and 16 precomputed linear relations,
thus 16 bytes (4 cells) of freedom. From there we can compute backwards until
w2. We deduce zd

2 [0, 7] using the two precomputed relations, and the rest by
direct computation. We compute until wa

10. Finally, a matching of more than 2
bytes occurs between rounds 9 and 10. With these lists, the classical time stays
at 2240. By Eq. 7, the quantum time is 2123.34, against 2128 generically.

This attack of large complexity also yields a practical partial preimage attack
that finds x such that MC−1(x ⊕ π(x)) has 32 bits to zero, in about 216 eval-
uations of Haraka-512 v2. We just have to run a single merging step, fixing
the global variables. For each choice of forward and backward values in the
merged list, we recompute the initial state x. This x is such that the two cells
MC−1(x ⊕ π(x))a[10, 13] are zero. Since the merged list is of size 216, by enu-
merating it in times 216, we will find an element with 16 more zero bits.

6.3 Quantum Attack on Grøstl OT

The output transformation (OT) of Grøstl-256 [28] is an AES-like permutation
P operating on an 8 × 8 matrix of bytes (thus 512 bits in total). The goal is to
find a state x such that trunc256(P (x) ⊕ x) = t for some target value t, say zero.
The generic complexity is 2256.

With our tool, we can recover the 6-round attack of [25, Appendix D]. We
can also recover the improved time complexity of [5] (2224, 3.5 cells), but not
its memory complexity, because their procedure for the backward list is more
complex than a streaming procedure. We obtain only a memory 2224.

New Quantum Attack. We do not know if the approach of [5] could lead to a
quantum attack, as they require a memory of size 2128: in the quantum setting,
one cannot afford a precomputation of time 2128 since it already becomes larger



Simplified MITM Modeling for Permutations 741

than the limit given by Grover search. By optimizing for the quantum time com-
plexity, our tool finds the path of Fig. 8. There are 4.25 global guesses (including
4 free guesses), with 2.5 cells of global linear constraints and 0.25 reduction
through MixColumns in each of the 7 green cells at round 4. First, the forward
� list (1.75 cells): we start from x2

0. We deduce immediately the blue cells at
round 3 and 4. Then using the 1.75 cells of precomputed equations at round 4,
we deduce completely x5

0 and x5
1. There remains 6 bytes (0.75 cells) to guess to

obtain x0
4. Second, the backward � list (3.5 cells): we start from round 3. With

the 1.75 precomputed equations and 0.75 guessed values, there remain 3.5 cells
of freedom. We deduce completely the cells at round 2. Finally, matching: there
is 0.75 cell of matching between round 2 and 3 and 1 cell of matching through
MC between round 0 and round 2, so 1.75 in total, which gives a merged list of
size 3.5 cells. By Eq. 7, the quantum time is 2123.56, against 2128 generically.

For 8 rounds of Grøstl-512, there are no symmetries anymore, and the model
becomes quite large. We simplify it by merging the cells in groups of 4. Then,
we use the results as “hints” for the detailed version. We reobtain the time com-
plexity of [5] with a corresponding memory complexity of 2304 (instead of 2224),
and we find a quantum attack detailed in the full version of the paper [45].

7 Applications to Feistel Networks

7.1 GFNs and Simpira

The extended setting that we defined in Sect. 3 allows to model a large class of
permutations, and in particular, GFNs and Sparkle.

Simpira v2 (simply Simpira in what follows) is a family of permutations pro-
posed in [31]. For each b ≥ 2, Simpira-b is a b-branch GFN where each branch is a
128-bit AES state. (Though in contrast to a GFN, the branches are not swapped
and the round functions are simply applied in place). Simpira-2 is a standard FN,
Simpira-3 a 3-branch type-I GFN in the classification of [48], Simpira-4 a type-II
4-branch GFN, Simpira-6 and Simpira-8 have structures taken from [46]. Each
round function performs 2 complete rounds of AES with a certain round con-
stant; we use Πi to denote them (where i indicates the current round constant).
Examples for Simpira-2, -3 and -4 are depicted in the full version of the paper [45].

For b ≥ 2, we can use any permutation in the family to define a small-range
hash function Gb by feed-forwarding:

Gb :

{
{0, 1}b×128 → {0, 1}256
x �→ trunc(Simpira-b(x) + x)

(13)

where trunc is the truncation to the first 256 bits. The proposal SPHINCS-
Simpira [32] uses G2 and G4 in SPHINCS+.

The authors of Simpira claim only 128-bit preimage security for the functions
Gb, although the generic classical preimage search would stand at atime 2256.
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Table 3. Distinguishers on Simpira: number of rounds attacked (rounds/total rounds)
by our automatic MITM tool, and by a dedicated GAD approach.

b 2 3 4 6 8

MITM (automatic) Inapplicable 8/21 7/15 9/15 9/18

GAD 5/15 11/21 9/15 9/15 9/18

SPHINCS-Simpira [32] also claims 128-bit quantum preimage security. The quan-
tum security of Simpira was studied in [42], but only regarding collision attacks.
Among the known results on unkeyed GFNs, e.g. a 5-round distinguisher on a
2-branch FN [18] and a 8-round distinguisher on the 4-branch, type-II GFN [17],
we did not find immediate preimage attacks on the Gb.

Results of the Extended Model. By making no structural assumption on the
round functions, our model represents any GFN as a directed graph of 2-XOR
cells (corresponding to round functions) and 2-branching cells. We may add
dummy cells (1-branching cells) to separate clearly the rounds. The round func-
tions do not need to be permutations; the attacks have a complexity at least the
size of one branch, which is the cost of inverting a round function by brute force.

In order to maximize the number of rounds attacked, we consider a full
wrapping constraint. We remove the memory optimization: we look for attacks
of time and memory complexity 2(b−1)w against generic 2bw, where w is the
branch width. Then, we run our tool with a 4-list MILP model. The results are
reported in Table 3.

7.2 Guess-and-Determine Attacks on GFNs

We remarked that, with the Simpira-b structures for b ≤ 8, we could attack the
same number of rounds, and more, using much simpler Guess-and-determine
(GAD) attacks. These results are also given in Table 3. The increased number of
rounds is due to the linearity of the XOR, which is not captured by our cell-based
modeling (see Simpira-2 below).

These attacks are partial preimage attacks on the hash functions Gb. We
find x such that Gb(x) = 0128|∗. From there, we have a full preimage of Gb

in classical time 2128 and quantum time 264, still valid if we replace the Πi by
random functions Fi (we can invert the Fi by brute force).

Example: Simpira-2. We explain our strategy with a 5-round attack on Simpira-
2 (see Fig. 16 in the full version of the paper [45]). We index the branches as
follows: first, the initial state is named S0, . . . , Sb−1. Then, each time a new
operation Si ← Si ⊕ F (Sj) is applied, the resulting state is named Sk, with the
current index k (which is then incremented). So we want to solve the following
equation system:

S1 ⊕ S2 = Π1(S0), S2 ⊕ S4 = Π3(S3) S0 ⊕ S3 = Π2(S2)
S0 ⊕ S3 = Π4(S4), S4 ⊕ S6 = Π5(S5), S0 = S5 (wrapping) .
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Table 4. Distinguishers on Sparkle. * The attacks from Table 4.9 in [6], can be
extended by one step when attacking the permutation instead of the AEAD mode.

Target Type Steps Time Generic time Memory Source

Sparkle-256 Classical 5/10 296 2128 296 [6] *

Sparkle-384 Classical 5/11 2128 2192 2128 [6] *

Sparkle-512 Classical 5/12 2192 2256 2160 [6] *

Sparkle-256 Practical 4/10 negl. 264 negl. This paper

Sparkle-384 Practical 4/11 negl. 264 negl. This paper

Sparkle-512 Practical 5/12 < 232 264 negl. This paper

As we can see, there are 6 equations and 7 variables, since we have put a wrapping
constraint on one branch. We can simplify this system by removing all variables
that intervene in a single equation, i.e., S6 and S1. We obtain:

S0 ⊕ S3 = Π2(S2), S2 ⊕ S4 = Π3(S3), S0 ⊕ S3 = Π4(S4) .

From this we obtain the new equation Π4(S4) = Π2(S2), which is not captured
by our cell-based modeling. Guessing S4 (our only degree of freedom) we can
deduce S2, and all the other variables follow. After trying for b = 2, 3, 4, 6, 8, we
found that this expansion of the equation system was only useful for Simpira-2
and Simpira-4. The appropriate internal guesses are found automatically using
another automated tool, which would work for any GFN construction.

7.3 Application to Sparkle

Sparkle is a family of permutations upon which the NIST LWC candidate
Schwaemm/Esch (respectively for AEAD and hashing) [7] is based. We refer
to the submission document [6] for a complete specification of Sparkle, since
we abstract out most of its components.

There exists three variants Sparkle-256, -384 and -512, with respectively b =
4, 6 and 8 branches of 64 bits. One step of Sparkle has the following operations:
(1) an ARX-box (using round constants to disrupt symmetries) is applied to all
branches. (2) a linear function of the b/2 left branches is computed (noted �′

in [6], and L here). (3) each left branch i ≤ b/2 is XORed to branch i + b/2; the
output of L is also XORed to each branch i + b/2. (4) the b/2 right branches
are swapped following a standard GFN pattern, and then, the groups of left and
right branches are swapped.

Sparkle is not a GFN since the “round function” is actually linear, and
the non-linear functions (the ARX boxes) are computed alongside the branches.
But this makes no difference for our extended representation. We obtain results
similar to Simpira: the MILP solver finds 4-step MITM distinguishers on the 3
variants of the permutation, and these can be simplified and improved with a
GAD strategy. The details are given in the full version of the paper [45].
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Our results are summarized in Table 4. We found a GAD distinguisher of
complexity 1 for 4-step Sparkle-256 and -384, and a practical 5-step distin-
guisher for Sparkle-512, which combines the GAD strategy with SAT solving.
It highlights another limitation of our automatic approach: the ARX boxes are
viewed as random permutations, although solving some ARX equations can be
done practically.

As a comparison, the birthday-differential GAD attacks given in the NIST
submission document [6], which break 4 steps in the authenticated encryption
mode Schwaemm, can also be turned into 5-step distinguishers for the permu-
tation. But they have large complexities, and our distinguishers are the first
practical ones.
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Abstract. Deliberately weakened ciphers are of great interest in politi-
cal discussion on law enforcement, as in the constantly recurring crypto
wars, and have been put in the spotlight of academics by recent progress.
A paper at Eurocrypt 2021 showed a strong indication that the security
of the widely-deployed stream cipher GEA-1 was deliberately and secretly
weakened to 40 bits in order to fulfill European export restrictions that
have been in place in the late 1990s. However, no explanation of how
this could have been constructed was given. On the other hand, we have
seen theMALICIOUS design framework, published at CRYPTO 2020, that
allows to construct tweakable block ciphers with a backdoor, where the dif-
ficulty of recovering the backdoor relies on well-understood cryptographic
assumptions. The constructed tweakable block cipher however is rather
unusual and very different from, say, general-purpose ciphers like the AES.

In this paper, we pick up both topics. For GEA-1 we thoroughly explain
how the weakness was constructed, solving the main open question of
the work mentioned above. By generalizing MALICIOUS we – for the
first time – construct backdoored tweakable block ciphers that follow
modern design principles for general-purpose block ciphers, i.e., more
natural-looking deliberately weakened tweakable block ciphers.

Keywords: Cryptanalysis · GPRS · GEA-1 · Stream cipher ·
Tweakable block cipher · LFSR · Malicious · Invariant attacks

1 Introduction

The design of deliberate and often hidden weaknesses in (symmetric) crypto-
graphic primitives has a long history, both in practical examples as well as in
academic constructions. For the former, among the most famous examples are
the block cipher DES [32], for which the key size was deliberately weakened to
56 bits, and the pseudonumber generator Dual EC DRBG, which was equipped
with a backdoor (see [28]) by a proper selection of its parameters. We refer
to [9] for a detailed survey on the standardization and the weakness of Dual
EC DRBG. We also like to mention the Russian cipher GOST (R 34.12-2015),
aka Kuznyechik, where the S-box was shown to have undisclosed structures [29].
c© International Association for Cryptologic Research 2022
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In [12] a nice argument was given that this structure is indeed very unlikely to
appear by chance.

For academic constructions, we have seen approaches based on hiding a
highly-biased linear approximation [31,33] over a block cipher and approaches
based on partitioning cryptanalysis [19], where the backdoor consists of a
partition of the plaintext space that is preserved under the encryption func-
tion [5,18,27]. The latter approach is related to invariant subspace attacks [24]
and nonlinear invariant attacks [36]. In the case of hash functions, the work [1]
showed how to design malicious variants of SHA-1 with built-in collisions.

For all of these academic constructions, the designers either do not claim
security of the backdoor in the sense that it cannot be recovered even if its
general form is known, or there is an attack which recovers the backdoor from
the specification of the cipher (see e.g., [39]).

The interest into deliberately weakening symmetric primitives has been
increased recently, again with respect to both aspects. On the one hand, the
work [8] showed that there is a strong indication that the security of the widely
deployed cipher GEA-1 was deliberately and secretly weakened to 40 bits in order
to fulfill European export restrictions. On the other hand, we have seen the MALI-
CIOUS design framework [30] that allows to construct a tweakable block cipher
with a backdoor. One of the interesting features within this framework is that
the difficulty of recovering the backdoor relies on well-understood cryptographic
principles.

The MALICIOUS Framework. The authors defined the following four notions
a cryptographic backdoor can fulfill, which we directly quote from [30].

– Undetectability: this security notion represents the inability for an
external entity to realize the existence of the hidden backdoor.

– Undiscoverability: it represents the inability for an attacker to find the
hidden backdoor, even if the general form of the backdoor is known.

– Untraceability: it states that an attack based on the backdoor should
not reveal any information about the backdoor itself.

– Practicability: this usability notion stipulates that the backdoor is
practical, in the sense that it is easy to recover the secret key once
the backdoor is known.

The basic idea of the MALICIOUS framework is to construct a tweakable
block cipher such that for a particular malicious tweak pair (t, t′), the instance
of the cipher for this tweak pair exhibits a differential property that allows for a
practical cryptoanalytic attack. The tweak pair (t, t′) is secured by being a pair
of preimages for outputs of an extendable-output function (XOF) H.

With such a construction, the backdoor fulfills the notions of practicability,
undiscoverability, and undetectability, but not untraceability.

The instances given in [30] are based on the block cipher LowMC [2]. The
drawback is that the round function needs to be constructed by using a rather
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complex (basically random) linear layer and a partial S-box layer. As suggested
for future work in [30], it would be interesting to find similar constructions which
are based on cryptoanalytic attacks other than differential cryptanalysis, as this
might lead to more natural instances.

Deliberate Weakness in GEA-1. General Packet Radio Service (GPRS) is
a mobile data standard based on the GSM (2G) technology, and was widely
deployed during the late 1990s s and the early 2000s. At the cryptographic level,
the data processed by the GPRS protocol is protected by a stream cipher. In
1998, ETSI Security Algorithms Group of Experts (SAGE) initially designed
the proprietary 64-bit encryption algorithm GEA-1 for this purpose. The cipher
GEA-1 is depicted in Fig. 2 and consists of three LFSRs with different lengths and
a non-linear Boolean function combining their outputs to produce the keystream.

Although classical algebraic attacks on GEA-1 (e.g., those based on lineariza-
tion) are hard to conduct in practice because of the limit on the data available to
an adversary, in [8] the authors showed that GEA-1 does not achieve an adequate
security level. Indeed, they presented an attack on GEA-1 with complexity cor-
responding to a security level of 40 bits. It is based on a simple but remarkable
observation: After the linear initialization procedure, the joint state of two of the
LFSRs have a joint entropy of only 40 bits, whereas their joint size adds up to 64
bits. This loss of entropy directly leads to a classical meet-in-the-middle attack
with time complexity 240. Recently, in [3], the authors presented an attack on
GEA-1 with the same time complexity but a reduced memory complexity of only
4 MiB (instead of 44.5 GiB).

The authors of [8] further analyzed how frequently this surprising observation
occurs for randomly chosen LFSRs. For this, they replaced the (two) LFSRs used
in GEA-1 by primitive LFSRs in Galois mode of the corresponding size chosen
uniformly at random and computed the loss of entropy. After roughly one million
trials, the maximal loss that was observed was at most 9 bits,1 demonstrating
that this behavior is (i) very rare and thus (ii) most likely built in to keep the
ciphers effective strength at 40 bits.

One important question was not answered in [8], namely: How was this config-
uration of LFSRs constructed? By extrapolating the experimental observations
given in [8, Table 2], we estimate the cost of constructing this simply by randomly
picking primitive LFSRs to be in the range of roughly 247 trials, summing up
to around 265 binary operations in total.2 Taking into account that the design
is already more than 20 years old, the cost of this would have been prohibitive.
This strongly indicated that there must be a more elaborated and efficient way
of achieving the desired setting.

1 When considering all possible combinations of two of the three registers in GEA-1,
the maximal observed loss was 11 bits.

2 We estimate the number of expected solutions to be s · 2−2d+1, where s denotes the
sample space and d the desired entropy loss. For each sample, one has to solve a
linear system of dimension 64 to compute the entropy loss.
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1.1 Our Contribution

Deconstructing GEA-1: Choosing LFSRs with a Hidden Weakness. In
the case of GEA-1 we answer the open question on how to construct a GEA-1-
like cipher with such a reduced security. Our observations and analysis, relying
mainly on the polynomial representation of the involved LFSRs, imply that the
actual GEA-1 instance could have been obtained from our construction.

For this we describe the states, the initialization and the intersection of states
by polynomials over F2. This description allows to formulate the conditions for a
set-up that enables an attack as the one on GEA-1 in terms of divisibility of state
polynomials by the characteristic polynomial of the LFSRs. In a second step, we
explain a possible construction of pairs of LFSRs with the desired entropy loss.
The general idea here is to turn the problem around by starting with elements
in the kernel and then searching for suitable LFSRs.

We show by decomposing the kernel of GEA-1 that it can be easily constructed
using our approach. As GEA-1 is then only one example of the (re?)-discovered
design strategy, we elaborate about other possible parameter choices in Sect. 3.2
and discuss the limits of this approach.

As a side remark, the above mentioned use of LFSRs in Galois mode can now
also be justified: A Fibonacci LFSR that is based on a random characteristic
polynomial, and thus very likely has many taps, is unfavorable to implement in
software and thus unusual. For an LFSR in Galois mode, the choice of a random
characteristic polynomial resulting in many taps is desirable.

In contrast to the MALICIOUS framework, the weakness in GEA-1 is based on
hiding a cryptoanalytic attack. This approach has the drawback that in principle
everybody can recover this attack and can decipher messages encrypted with this
system. Thus, this design fails to fulfill three of the four conditions for a backdoor
proposed by [30], i.e., undiscoverability, undetectability and untraceability.

Constructing Backdoors: Trivial and Natural Variants of MALICIOUS.
As described above, the original MALICIOUS framework was formulated in terms
of differential cryptanalysis only. For our results, we use a naturally generalized
version of the framework.

Our contribution is twofold. First, we show that any (tweakable) block cipher
can be tweaked in a very simple way in order to comply with the MALICIOUS
framework. In a nutshell, the idea of constructing such an instance is to check
if the message hashes to a certain fixed value and if so, return the key instead
of the encrypted message. If the hash does not match, the cipher is executed
unchanged.

While this example shows that the initial goals of the MALICIOUS framework
can be achieved in a trivial way, this artificial construction does not give further
insights on how to construct hidden weaknesses. Ideally, a malicious designer
would aim for constructing a rather natural instance which follows modern design
principles in symmetric cryptography and for which a sound design rationale
can be formulated. Towards achieving this goal, we propose two new instances
of the MALICIOUS framework as our second contribution. While the instances
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presented in [30] rely on the existence of a high-probability differential, we base
our construction on an invariant subspace, resp., nonlinear invariant, for the
malicious tweak value. As we argue, this allows for more natural instances. In
particular, in Sect. 5, we show how to use the round function of the Advanced
Encryption Standard (AES) and to adapt the key schedule in order to embed a
backdoor based on an invariant subspace over the round function. More precisely,
we exploit an invariant subspace that is already known since 2004, see [23].
In Sect. 6, we construct a dedicated cipher, called Boomslang, that embeds a
backdoor based on a nonlinear invariant over two consecutive round functions.

Compared to previous constructions not based on the MALICIOUS frame-
work, in particular [27] and [31], our constructions also directly improve upon
the usability of the backdoor as they enable significantly more practical key-
recovery attacks.

Our constructions constitute the first backdoored ciphers that follow modern
design principles of general-purpose block ciphers, and are expected to achieve
competitive performance characteristics.

Ethical Aspect of Our Research. We (the authors) do not have the goal
to support people in building intentionally weakened ciphers. A first step in
order to prevent the use of intentionally weakened designs in the future is to
investigate the design space of such constructions. Only when knowing what
potential attackers, in this case acting as malicious developers of cryptographic
primitives, are capable of doing, we are able to prevent them from doing so.

2 GEA-1 and Its Cryptoanalytic Properties

In this section we recall the description of the stream cipher GEA-1 as well as
its weakness, both as presented in [8]. Before doing so, we define and recall the
basic mathematics behind the cipher.

2.1 Preliminaries

As usual, a matrix A ∈ F
m×n
2 corresponds to a linear map from F

n
2 to F

m
2 by

matrix-vector multiplication from the right. Thus the ith column of A is the
image of ei := (0, 0, . . . , 1, 0 . . . , 0)� ∈ F

n
2 , i.e., the ith canonical unit vector.

Galois Mode LFSRs. We recall some basic facts about linear feedback shift
registers (LFSRs) in Galois mode, as depicted in Fig. 1. For further reading we
refer to [35, p. 378 ff.] and [20, p. 227].
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. . .

∧ ∧ ∧ ∧ ∧

. . .

l0 l1 ln−2 ln−1

a0 a1 an−3 an−2 an−1

Fig. 1. An LFSR in Galois mode.

Given an LFSR L in Galois mode of degree n with entries in F2, clocking the
state l = (l0, . . . , ln−1) is equivalent to the matrix-vector multiplication

GL · l =

⎡
⎢⎢⎢⎢⎢⎣

a0 1 0 · · · 0
a1 0 1 · · · 0
...

...
...

. . .
...

an−2 0 0 · · · 1
an−1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

l0
l1
...

ln−2

ln−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a0l0 + l1
a1l0 + l2

...
an−2l0 + ln−1

an−1l0

⎤
⎥⎥⎥⎥⎥⎦

.

The characteristic polynomial of GL is

g := det(XIn + GL) = Xn + a0X
n−1 + · · · + an−2X + an−1 ∈ F2[X]

and is a multiple of the minimal polynomial of GL. Here, In denotes the n × n
identity matrix. Although LFSRs in Galois mode can be defined more generally,
we only consider the case where g is primitive. That is, g is the minimal polyno-
mial of an element α ∈ F2n that generates the multiplicative group F

×
2n . In this

case, g is also the minimal polynomial of GL. Only primitive polynomials are of
cryptographic interest as they correspond to LFSRs with a maximal period of
2n−1. Since primitive polynomials are necessarily irreducible, we have an−1 �= 0,
which is equivalent to the fact that GL is invertible. Conversely, any primitive
polynomial g corresponds to an (invertible) companion matrix of an LFSR in
Galois mode with minimal polynomial g.

Galois Matrices. In the sequel, the matrix GL will be called a Galois matrix
of degree n and the corresponding minimal polynomial the Galois polynomial.
Moreover, given an LFSR L in Galois mode with minimal polynomial g, we also
denote the Galois matrix by Gg if appropriate.

To describe our construction, we need the following properties of Galois
matrices. These are well-known facts from classical ring or field theory respec-
tively (e.g., see [25,37]). To keep the paper self-contained and to enhance read-
ability we include a proof below.

Theorem 1. Given a Galois matrix Gg of degree n with primitive Galois poly-
nomial g, let F2[Gg] := {∑m

i=0 ti Gi
g | m ∈ N, t ∈ F

m+1
2 } be the subring of Fn×n

2

generated by Gg and let (g) denote the ideal generated by g ∈ F2[X]. Then the
following statements are true.

1. The map ψ : F2[X]/(g) → F2[Gg] defined by ψ(
∑m

i=0 tiX
i) =

∑m
i=0 tiG

i
g is a

ring isomorphism.3

3 Note that we use
∑m

i=0 tiX
i as a shorthand for the corresponding coset of F2[X].



754 C. Beierle et al.

2. Every nonzero element v ∈ F
n
2 is Gg-cyclic, i.e., {v,Ggv, . . . , Gn−1

g v} is a
basis for F

n
2 .

Proof. By the definition of minimal polynomials, the set of all polynomials p
with p(M) = 0 for a matrix M with minimal polynomial q is equal to the ideal
(q). Since (q) is a maximal ideal, F2[X]/(q) is a finite field of degree n over F2.
As remarked above, g is primitive and the minimal polynomial of Gg. Thus, the
canonical map φ : F2[X] −→ F2[Gg] : p �→ p(Gg) has kernel (g) and hence ψ is
an isomorphism by the first isomorphism theorem.

For the second claim, suppose the vectors v,Ggv, . . . , Gn−1
g v are linearly

dependent. Then there exist t0, . . . , tn−1 ∈ F2 such that not all ti equal zero
and ∑n−1

i=0 ti Gi
g v =

( ∑n−1
i=0 ti Gi

g

)
v = 0 .

By applying the isomorphism ψ−1, we get that 0 �= ∑n−1
i=0 tiX

i ∈ F2[X]/(g) as
the degree of the polynomial

∑n−1
i=0 tiX

i is at most n− 1 and not all ti are equal
to zero. As F2[X]/(g) is a finite field, any nonzero element such as

∑n−1
i=0 tiX

i

is invertible. Since any isomorphism maps invertible elements to invertible ele-
ments, it follows that

∑n−1
i=0 tiG

i
g is invertible. Hence

( ∑n−1
i=0 tiG

i
g

)
v �= 0 as

v �= 0. This is a contradiction and therefore, v is Gg-cyclic. ��
Remark 1. Note that F2[X]/(g) is a field. The matrix Gg is the representation
matrix of the linear mapping p �→ Xp over the finite field F2[X]/(g) with respect
to the basis Xn−1,Xn−2, . . . , 1. This connection to a central mapping in the
theory of finite fields (also called Galois fields), the so-called left multiplication,
leads to the name for these kind of LFSRs.

The following corollary is extensively used in the remainder of this paper.
The proof is a straightforward application of Theorem 1 and therefore omitted.

Corollary 1. Let e0 denote the vector e0 := (1, 0, . . . , 0)� ∈ F
n
2 and Gg a Galois

matrix of degree n for a primitive polynomial g. Then, for m ≥ 0, ti ∈ F2, i =
0, . . . ,m, we have

∑m
i=0 tiG

i
ge0 = 0 if and only if g divides

∑m
i=0 tiX

i in F2[X].

2.2 Description of GEA-1

We now turn to the description of GEA-1, and in particular the mechanism used
to initialize the LFSR registers.

Keystream Generation. The keystream is generated from three LFSRs over F2,
called A,B and C, together with a 7-bit non-linear filter function f . The registers
A, B and C have lengths 31, 32 and 33, respectively and the LFSRs work in
Galois mode. In particular, the Galois polynomials corresponding to LFSRs A,
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B and C are

gA = X31 + X30 + X28 + X27 + X23 + X22 + X21 + X19 + X18 + X15

+ X11 + X10 + X8 + X7 + X6 + X4 + X3 + X2 + 1 ,

gB = X32 + X31 + X29 + X25 + X19 + X18 + X17 + X16 + X9 + X8

+ X7 + X3 + X2 + X + 1 ,

gC = X33 + X30 + X27 + X23 + X21 + X20 + X19 + X18 + X17 + X15

+ X14 + X11 + X10 + X9 + X4 + X2 + 1 ,

respectively. The function f belongs to a class of cryptographically strong
Boolean functions that can be decomposed into two bent functions on 6 bits.
For the considerations below, the choice of f is irrelevant and we omit it here.

When all registers have been initialized (see below), the actual keystream
generation starts. This is done by taking the bits at seven specified positions
in each register to be the input to f . The outputs of the three f -functions
are XORed together to produce one bit of the keystream. Figure 2 shows the
particular feedback positions of each register, as well as which positions form
which input to f . After calculating a single keystream bit, all registers are clocked
once each before the process is repeated to generate the next bit.

f

f

f

ai

bi

ci

zi

A

B

C

Fig. 2. Overview of the keystream generation of GEA-1 [8].

Initialization. The cipher is initialized using a non-linear feedback shift register
S of length 64. This register is filled with zeros at the start of the initialization
process. The input for initializing GEA-1 consists of a public 32-bit initialization
vector iv, one public bit dir (indicating direction of communication/uplink or
downlink in a cellular network), and a 64-bit secret key k. The initialization
starts by clocking S for 97 times, feeding in one input bit with every clock. The
input bits are introduced in the order iv0, iv1, . . . , iv31, dir, k0, k1, . . . , k63. When
all input bits have been loaded, the register is clocked another 128 times with
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zeros as input. The feedback function consists of f , XORed with the bit that is
shifted out, and XORed with the next bit from the input sequence.

After S has been clocked 225 times, the content of the register is taken
as a 64-bit vector s = (s0, . . . , s63). This string is taken as a seed for ini-
tializing A,B and C as follows. First, all three registers are initialized with
zeros. Then, each register is clocked 64 times, with an si-bit XORed onto the
bit that is shifted out before feedback. Register A inserts the bits from s in
the natural order s0, s1, ..., s63. The sequence s is cyclically shifted by 16 posi-
tions before being inserted to register B, so the bits are entered in the order
s16, s17, . . . , s63, s0, . . . , s15. For register C the sequence s is cyclically shifted by
32 positions before insertion starts. Figure 3 depicts the process for register B.
If any of the registers A,B or C end up in the all-zero state, the bit in position
zero of the register is forcibly set to one before keystream generation starts.

s16, s17, . . . , s63, s0, s1, . . . , s15

Fig. 3. Initialization of register B [8].

As already observed in [8], if we exclude the unlikely case that any of the
three registers A,B or C is still in the all-zero state after the shifted insertion of
s, the initialization process of the three registers with the string s is obviously
linear and therefore there exist three matrices MA ∈ F

31×64
2 , MB ∈ F

32×64
2 and

MC ∈ F
33×64
2 such that α = MAs, β = MBs, and γ = MCs, where α, β and γ

denote the states of the three LFSRs after the initialization phase.

2.3 The Attack on GEA-1

Let us consider the initialization matrices MA ∈ F
31×64
2 , MB ∈ F

32×64
2 and

MC ∈ F
33×64
2 such that α = MAs, β = MBs, and γ = MCs. We exclude here

the unlikely case that α, β or γ is still in the all-zero state after the shifted
insertion of s. These three matrices have full rank. This implies that the number
of possible starting states after initialization is maximal when each LFSR is
considered independently, i.e., there are 231 − 1 possible states for register A,
232−1 possible states for register B, and 233−1 possible states for register C, as
should be expected. This corresponds to the linear mappings represented by MA,
MB and MC having kernels of dimension of at least 33, 32 and 31, respectively.
However, when considering pairs of registers, one gets a decomposition of F64

2 as
a direct sum of the kernels of the linear mappings. In [8] it was observed that if
one denotes TA,C := ker(MA) ∩ ker(MC) and UB := ker(MB), then

dim(TA,C) = 24, dim(UB) = 32, and UB ∩ TA,C = {0} .

From this, it directly follows that F
64
2 can be decomposed into the direct sum

UB ⊕ TA,C ⊕ V , where V is of dimension 8. Thus, for the key-dependent and
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secret string s, there exists a unique representation s = u + t + v with u ∈ UB,
t ∈ TA,C , v ∈ V and

β = MB(u + t + v) = MB(t + v)
α = MA(u + t + v) = MA(u + v)
γ = MC(u + t + v) = MC(u + v) .

Indeed, from this decomposition, s can be computed with a meet-in-the-
middle attack with a complexity4 of 237 GEA-1 evaluations to build (and sort)
a table with 232 entries of size 89 bit (65 keystream bits to reconstruct the key
uniquely with high probability and 24 bits for t leading to this keystream) and
a brute-force step of complexity 240 GEA-1 evaluations for each new session key
k0, . . . , k63. For more details of the attack see [8]. Note that once s is recovered
it is easy to recover k0, . . . , k63 by clocking the S-register backwards. Hence,
the attack has to be conducted only once per GPRS session and is done in 240

operations once the table has been computed. In other words, the joint state of
A and C can be described with only 40 bits and thus can take only 240 possible
values. This is the key observation of the attack and in [8] computer simulations
are used to argue that such a decomposition of the key space is highly unlikely
to occur accidentally. The main question arising in this context is how to design
such a system. As demonstrated by the experiments conducted in [8], a trial and
error approach is elusive. This question will be answered in the next section.

3 Deconstructing GEA-1: Shifting Matters

In this section we will give a method to build ciphers of GEA-1 type which are
vulnerable to the attack described above and thereby answer the corresponding
question in [8].

It will become apparent (without giving a rigorous proof) that systems of
GEA-1 type with a keyspace that can be decomposed into a direct sum as above
only appear for very special choices of the shift constants together with very
special choices for the Galois polynomials. This is remarkable because one could
intuitively expect that shifting only strengthens the system.

In general, this demonstrates that it is not recommended to modify the canon-
ical way of feeding the key into the LFSRs. Indeed, only by modifying this ini-
tialization and by using the shifted key for the individual LFSRs, the attack
becomes possible.

3.1 The Impact of Shifting

We first settle the question how to find two primitive Galois polynomials g1 ∈
F2[X] and g2 ∈ F2[X] of degree d1 and d2, respectively, such that for the corre-
sponding Galois matrices Gg1 and Gg2 , the dimension of Tg1,g2,cs := ker(Mg1) ∩
4 The complexity is measured by the amount of operations that are roughly as complex

as GEA-1 evaluations (for generating a keystream of size ≤ 128 bit).
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ker(Mg2,cs) is at least ξ with cs ∈ {0, 1, . . . , κ − 1} being the cyclic shift employed
during the initialization and κ being the size of the session key (64 in case of
GEA-1). Without loss of generality we focus on this case. It is a routine matter to
extend the approach presented in the sequel to the case where in both initialization
phases a shift is applied. First of all, note that the columns of Mg1 (the initializa-
tion matrix without a shift) consist of Gκ−i

g1
e0, where e0 := (1, 0, . . . , 0)� ∈ F

d1
2

and i = 0, . . . , κ−1. Note that we have to clock the register i times before the first
bit of si not equal to zero is plugged into the register and thus the state becomes
non-zero. This explains the shape of MGg1

. Suppose t ∈ ker(Gg1), then

0 = Mg1t =
κ−1∑
i=0

ti Gκ−i
gi

e0 .

By Corollary 1, the above holds if and only if g1 divides
∑κ−1

i=0 ti Xκ−i . In the
case of g2, a similar reasoning takes into account the effect of cs such that the
columns of Mg2,cs (the initialization matrix with a shift) consist of Gcs−i

g2
e0 if

i < cs and Gκ−i+cs
g2

e0 otherwise, where e0 := (1, 0, . . . , 0)� ∈ F
d2
2 . Note that now

we have to clock the register κ + i − cs times before the first non-zero bit of si

is plugged into the register and thus the state is non-zero. This gives the first
case. The second follows in the same way. In the same vein as above we get that

0 = Mg2,cs t =
cs−1∑
i=0

ti Gcs−i
g2

e0 +
κ−1∑
i=cs

ti Gκ−i+cs
g2

e0

if and only if g2 divides
∑cs−1

i=0 tiX
cs−i +

∑κ−1
i=cs ti Xκ−i+cs. Hence, a vector

t ∈ F
κ
2 lies in Tg1,g2,cs if and only if g1 divides

∑κ−1
i=0 ti Xκ−i and g2 divides∑cs−1

i=0 ti Xcs−i +
∑κ−1

i=cs ti Xκ−i+cs. More specifically, we have the following the-
orem which shows how to control the dimension of Tg1,g2,cs.

Theorem 2. Let g1, g2 ∈ F2[X] be two primitive Galois polynomials and cs ∈
{0, 1, . . . , κ−1} an integer. For t ∈ Tg1,g2,cs we define the associated polynomials

p1 :=
κ−1∑
i=0

ti Xκ−i, p2 :=
cs−1∑
i=0

ti Xcs−i +
κ−1∑
i=cs

ti Xκ−i+cs .

Let

r1 = min{k : Xk is a monomial with non-zero coefficient in p1},
r2 = min{k : Xk is a monomial with non-zero coefficient in p2},
r3 = min{r1, r2}

Then

1. The polynomial p1 is divisible by g1 and the polynomial p2 is divisible by g2.
2. For all 0 ≤ s ≤ r3−1, the shifted vectors ts := (0, . . . , 0, t0, t1, . . . , tκ−1−s)� ∈

F
κ
2 are elements of Tg1,g2,cs.
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3. The elements ts are linearly independent and thus span a subspace of Tg1,g2,cs

of dimension r3.

Proof. The first property was already established above. By definition, it holds
that tκ−1−(r1−1) = 1, as it is the coefficient of Xr1 in p1. We further have
tκ−1−(r1−1)+1 = 0, tκ−1−(r1−1)+2 = 0, . . . , tκ−1 = 0 from the definition of r1.
Hence, the elements ts are linearly independent.

Since t ∈ Tg1,g2,cs we have that g1 divides p1 and g2 divides p2. By definition
of r3, the associated polynomials of ts are of the form X−sp1,X

−sp2 and still
contained in F2[X]. Therefore they are also divisible by g1 and g2. Thus the
elements ts form a subspace of dimension r3 of Tg1,g2,cs. ��
Remark 2. Note that slightly more can be said about the structure of good
choices for g1 and g2 and the corresponding space Tg1,g2,cs. For example looking
at the reciprocal polynomials of g1 and g2 results in the same dimension for the
kernel.

For this let κ be even and cs = κ/2. If t ∈ Tg1,g2,cs for two primitive
polynomials g1, g2 ∈ F2[X], we have t∗ = (tκ−1, . . . , t1, t0) ∈ Tg∗

1 ,g∗
2 ,cs, where

g∗
i (X) := Xdeg gigi(X−1) denotes the reciprocal polynomial of gi. This can be

seen as follows. For the polynomials p1 and p2 defined in Theorem 2, we let
qi(X) := Xκpi(X−1). Then,

Xq1 =
κ−1∑
i=0

t∗i X
κ−i, Xq2 =

cs−1∑
i=0

t∗i X
cs−i +

κ−1∑
i=cs

t∗i X
κ−i+cs

and t∗ ∈ Tg∗
1 ,g∗

2 ,cs if g∗
i divides Xqi for i ∈ {1, 2}. Since qi = Xκ−deg pip∗

i , this
happens if g∗

i divides p∗
i for i ∈ {1, 2}. By assumption, t ∈ Tg1,g2,cs, so gi divides

pi for i ∈ {1, 2}, and therefore g∗
i also divides p∗

i for i ∈ {1, 2}. Moreover gi is
primitive if and only if g∗

i is primitive.

3.2 Constructing the Galois Polynomials

The principle to construct systems vulnerable to the attack described in Sect. 2.3
is now fairly simple. We start with an element in the (potential) kernel, that
would imply the desired dimension by the above theorem. Then, we construct
the two polynomials p1 and p2 and check if they are divisible by primitive poly-
nomials of the desired degree. We explain this in more detail below, first for the
parameters used in GEA-1 and then for the general case.

The Case of GEA-1. We give an example for the case of κ = 64, cs = 32, ξ = 24,
and primitive polynomials g1, g2 of degree d1 = 31, d2 = 33. Those parameters
correspond exactly to the case of GEA-1. Other parameter choices are discussed
below.

First of all we will construct an element t = (t0, . . . , t63)� of the form such
that applying Theorem 2 yields t ∈ Tg1,g2,cs, where Tg1,g2,cs is of dimension 24.
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For this, let us fix t such that ti = 0 for i ∈ {9, 10, . . . , 31} ∪ {41, . . . , 63} and
t0 = t40 = 1. We consider the polynomials

p1 := X64 +
8∑

i=1

ti X64−i +
39∑

i=32

ti X64−i + X24 ∈ F2[X]

p2 := X32 +
8∑

i=1

ti X32−i +
39∑

i=32

ti X64−i+32 + X56 ∈ F2[X]

to guarantee a kernel of dimension at least 24 if there exist proper g1, g2 of
degree 31,33 such that t ∈ Tg1,g2,cs. In the positive case the lower bound for
the dimension (here 24) is a direct consequence of Theorem 2. We have 216

possibilities to fix such an element t, i.e., to choose the above pair of polynomials
p1, p2. We choose such an element t uniformly at random and check if p1 is
divisible by a primitive polynomial g1 of degree 31 and if p2 is divisible by a
primitive polynomial g2 of degree 33.

It is well known that the number of primitive elements of a finite field of qn

elements, where q is a prime number, is ϕ(qn − 1) (see e.g., [22, p. 56]). Here, ϕ
denotes Euler’s totient function. Hence the number of primitive polynomials in
our case is ϕ(231 −1)/31 and ϕ(233 −1)/33, because the 31 (resp., 33) roots of a
primitive polynomial of degree 31 (resp., 33) are all primitive. By construction
p1 = X24 · h1, where h1 ∈ F2[X] with deg(h1(X)) = 40, independently of the
choice of the ti. Analogously, p2 = X24 ·h2, where h2 ∈ F2[X] with deg(h2(X)) ≤
40. The overall number of polynomials of degree 40 having a primitive divisor
of degree 31 is 29 · ϕ(231 − 1)/31 and similarly 28 · ϕ(233 − 1)/33 for polynomials
of degree at most 40 with a primitive divisor of degree 33. Therefore, under an
independence assumption, we expect the probability that both h1 has a primitive
divisor of degree 31 and h2 has a primitive divisor of degree 33 to be

ϕ(231 − 1)
31 · 231

ϕ(233 − 1)
33 · 233

≈ 1
1250

.

As we have 216 possibilities to vary p1 and p2, we expect to be successful to find
the sought for polynomials g1 and g2 with t ∈ Tg1,g2,cs.

Indeed, the primitive polynomials gA and gC used in GEA-1 are exactly of this
form. More precisely, the element t satisfying (t0, . . . , t8) = (1, 0, 1, 1, 0, 0, 1, 1, 1),
(t32, . . . , t40) = (0, 0, 1, 1, 1, 1, 0, 0, 1), ti = 0 for i ∈ {9, 10, . . . , 31} ∪ {41, . . . , 63}
is contained in TA,C . The corresponding polynomial p1 is divided by

gA = X31 + X30 + X28 + X27 + X23 + X22 + X21 + X19 + X18 + X15

+ X11 + X10 + X8 + X7 + X6 + X4 + X3 + X2 + 1 ∈ F2[X]

and the corresponding polynomial p2 is divisible by

gC = X33 + X30 + X27 + X23 + X21 + X20 + X19 + X18 + X17 + X15

+ X14 + X11 + X10 + X9 + X4 + X2 + 1 ∈ F2[X] .
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As expected by Theorem 2, the 24-dimensional linear space TA,C is spanned by
the shifted elements ts = (0, . . . , 0, t0, t1, . . . , t63−s)� ∈ F

64
2 , 0 ≤ s ≤ 23.

From the 216 possibilities to choose t, except from the example given above,
also 47 other choices yield primitive divisors of p1 and p2 with degree 31 and
33, respectively. Note that once we have been successful in finding the primitive
polynomials g1 and g2, we could choose a primitive polynomial g3 of degree 32
and check if Ug3 ∩ Tg1,g2,cs = {0} in order to construct a stream cipher similar
to GEA-1. In Appendix A of the full version of this paper [6], we provide a
sage [34] code that allows to construct such weak GEA-1-like instances based on
this construction. By the algorithm above, it is possible to find a shift cs and
corresponding polynomials such that the resulting system can be broken with
the attack described in Sect. 2.3.

Moreover, we conducted slightly more general experiments. Our results (given
by the case of 
1 = 31 in Table 3 in Appendix B of the full version) imply that
it would have been possible to design the two LFSRs A and C of GEA-1 such
that they yield a kernel intersection of dimension 26, reducing the security of
GEA-1 from 40 to 38 bits. Interestingly, the designers decided not to do so, which
suggests that they were aiming at 40 bits security exactly.

The General Case. We now focus on the case of an arbitrary (even) key length
κ and aim to construct two LFSRs of size 
1 and 
2 such that the kernel has a
dimension of (at least) ξ. In order to simplify the discussion and the notation,
we focus on the case of cs = κ/2. The case of other shift values can be handled
in a similar way as long as cs ≥ ξ.

In order to construct the two LFSRs, i.e., the corresponding primitive poly-
nomials of degree 
1 and 
2, we start again by an element in the kernel that, due
to Theorem 2, guarantees a kernel intersection of dimension at least ξ. That is,
we consider a vector t ∈ F

κ
2 such that

ti = 0 for i ∈
{κ

2
− ξ + 1, . . . ,

κ

2
− 1

}
∪ {κ − ξ + 1, . . . , κ − 1}

and t0 = tκ−ξ = 1. To this choice of t, we get the corresponding polynomials

p1 := Xκ +

κ
2 −ξ∑
i=1

tiX
κ−i +

κ−ξ−1∑
i=κ

2

tiX
κ−i + Xξ ∈ F2[X] (1)

p2 := X
κ
2 +

κ
2 −ξ∑
i=1

tiX
κ
2 −i +

κ−ξ−1∑
i=κ

2

tiX
κ−i+κ

2 + Xξ+κ
2 ∈ F2[X] . (2)

The number of vectors t and thus the number of pairs of polynomials (p1, p2) we
can construct this way is N = 2κ−2ξ. To successfully construct the LFSRs with
a kernel intersection of dimension at least ξ, we require that p1 is divisible by a
primitive polynomial of degree 
1 and p2 is divisible by a primitive polynomial
of degree 
2. To analyze the successes probability, we use as before a heuristic
approach. More precisely, we assume that (p1, p2) behaves as a uniformly and
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independently chosen pair of polynomials (of degree κ and less than or equal to
κ respectively) with respect to their probability of being divisible by primitive
polynomials of the desired degree.

The number of polynomials of degree n with a primitive divisor of degree 

is, analogously as above, given by

Pn,� := 2n−� ϕ(2� − 1)



.

In addition, the probability that a uniform random polynomial of degree n is
divisible by a primitive divisor of degree 
 is

Ψ� :=
Pn,�

2n
=

ϕ(2� − 1)

2�

.

Note that Ψ� is also the probability of a polynomial of degree less than or equal
to n to be divisible by a primitive divisor of degree 
, as both nominator and
denominator are multiplied by a factor of two in this case.

While computing lower bounds on Euler’s totient function is non trivial, for
our purpose it is sufficient, easier, and more precise to compute ϕ(2� − 1) for
practical relevant values of 
. For 
 ≤ 512 we computed explicitly that

2�

ϕ(2� − 1)
≤ 3.4 , (3)

using a computer program.
Following the above heuristic on the random behavior of p1 and p2 we get

that the probability for a successful construction for one fixed t is given by

Ψ�1Ψ�2 =
ϕ(2�1 − 1)


1 · 2�1

ϕ(2�2 − 1)

2 · 2�2

.

From Eq. (3), the expected number of trials until suitable polynomials are found
can be bounded by

(Ψ�1Ψ�2)
−1 ≤ 12
1
2

for 
i ≤ 512, i ∈ {1, 2}. This shows that the approach is easily feasible for all
practical relevant choices of 
1 and 
2 and can be expected to find valid solutions
as long as the number of candidates N is larger than the expected number of
trials. Note that for concrete parameters with a large ξ, 
1, 
2, it is better to
check if (Ψ�1Ψ�2)

−1 ≤ N as N becomes relatively small and 12
1
2 significantly
larger than (Ψ�1Ψ�2)

−1
.

Applicability to Longer Keys. We recall that in the attack on GEA-1, the keyspace
F
64
2 was decomposed into the direct sum UB ⊕ TA,C ⊕ V such that β = MB(u +

t + v) = MB(t + v), α = MA(u + t + v) = MA(u + v), and γ = MC(u + t + v) =
MC(u + v), where dim(UB ⊕ V ) = 40 and dim(TA,C ⊕ V ) = 32. In general, if
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the key size is κ, a straightforward divide-and-conquer attack could be applied
by either building a table of size at least 2dim(TA,C⊕V ) bitstrings and conducting
exhaustive search of complexity 2dim(UB⊕V ) cipher evaluations or vice versa.

Let us now discuss whether it is possible to build weak GEA-1-like instances
operating on a larger keyspace. For this, we restrict to the case of extending the
lengths of the three involved LFSRs and do not consider extending the number
of LFSRs. The reason is that the attack requires two steps; (1) building a table of
size exponentially in the dimension of the kernel intersection, (2) an exhaustive
search of complexity exponentially in the state size of the remaining register(s).
Since our construction yielding a large kernel intersection only works for two
LFSRs, adding more LFSRs would increase the complexity of the second step.

For κ = 96, it is possible to choose primitive polynomials gA and gC of
degree 47 and 49, respectively, such that for the corresponding LFSRs A and C
we have dim TA,C = 44 (where the shift for initializing LFSR C is cs = 48). Those
parameters directly correspond to the maximal dimension that can be expected
by the formulas above and are also verified experimentally (see in Table 3 in
Appendix B in the full version). To find this specific polynomials we have checked
if it is possible to have dimTA,C ≥ 42, i.e., ξ = 42 and 
1 = 47, 
2 = 49. As
(Ψ�1Ψ�2)

−1 ≈ 2500 and N = 212 = 4096 our approach should be successful with
high probability. Indeed our algorithm computed the above solution with the
even larger TA,C of dimension 44. Note that these parameters are chosen at the
edge with respect to our theory. We could then choose a primitive polynomial
gB of degree 48 such that dim UB = 48 and such that the keyspace can be
decomposed into F

96
2 = UB ⊕TA,C ⊕V with dimV = 4. Thus, we can break such

a scheme with time complexity 252 cipher evaluations and memory complexity
248 · 141 bits.5 The size of such a table is 4512 TiB.

For larger key sizes, this approach quickly gets infeasible. For example, if we
would aim for a key length of κ = 112 bit (i.e., the minimum security required by
NIST), we would choose gA, gB , and gC of degrees 55, 56, and 57, respectively,
such that dim TA,C = 50, dimUB = 56 and dimV = 6. Other choices would
only allow for other trade-offs between memory and computation, but not for
reducing both. The divide-and-conquer (or meet-in-the-middle) attack against
such a GEA-1 instance would require

2dimUB · (κ + 1 + dimTA,C + dim V ) = 256 · (113 + 56) = 256 · 169

bits of memory, which corresponds to 1,384,448 TiB. Hence this approach is
tailored to key spaces of smaller sizes.

3.3 Properties of the GEA-1 Intentional Weakness

The weakness of GEA-1 can be understood as a hidden, or obfuscated, cryptona-
lytic attack. It does not fulfill the property of undetectability, or even undiscov-
5 The length of each entry in the table must be large enough to avoid false key can-

didates. Similarly as described in [8, Section 3.1], we assume that each bitstring
in the table is of size � + dim(TA,C), where � is the minimum integer such that
(1 − 2−�)2

κ ≥ 0.5.
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erability, simply because everyone who has the specification of GEA-1 and some
knowledge of cryptoanalysis is in principle capable of finding the weakness and
is able to exploit the attack. Of course, the fact that the GEA-1 algorithm was
not made public by the designers significantly hardened the discoverability of
the weakness.

In the next part, we focus on the MALICIOUS framework, which is a method
for inserting a practical and undetectable backdoor within a symmetric crypto-
graphic algorithm, more precisely within a tweakable block cipher.

4 Revisiting the MALICIOUS Framework

In contrast to a hidden cryptographic weakness as in the case of GEA-1, the
specification of the tweakable block cipher can be published entirely.

In the following, we discuss a simple instance of the MALICIOUS frame-
work [30] that inserts a practical, undetectable backdoor into a tweakable block
cipher. For this, let H : F�

2 → F
m
2 be a cryptographic hash function and let

E : Fκ
2 × F

τ
2 × F

n
2 → F

n
2 be a (secure) tweakable block cipher with tweak length

τ , key length κ, and block length n. The malicious designer chooses a tweak
t� ∈ F

τ
2 uniformly at random and computes s := H(t�). The chosen tweak t�

will serve as the secret backdoor. The designer then defines the tweakable block
cipher Ẽ : Fκ

2 × F
τ
2 × F

n
2 → F

n
2 as

Ẽ(k, t, x) :=

{
E(k, t, x) if H(t) �= s

x + k if H(t) = s .
(4)

In other words, if the backdoor t� is used as the tweak, the tweakable block
cipher Ẽ simply applies the permutation x �→ x + k, which allows the malicious
designer to recover the key k with one known plaintext/ciphertext pair. Due to
this simple key-recovery attack, the backdoor fulfills the notion of practicability.
If we assume that the hash function H is preimage resistant up to q queries, a user
having oracle access to Ẽ cannot recover the backdoor t� with less than q queries.
Therefore, the backdoor fulfills the notion of undiscoverability. More generally,
under the same assumption on H, a user cannot even prove the existence of
a secret backdoor with less than q queries to Ẽ. The reason is that the user
cannot distinguish between whether the tweakable block cipher defined by Eq. (4)
was designed by a malicious designer who knows t� and generated s = H(t�)
accordingly or by an honest designer who simply chose a random s ∈ F

m
2 to

specify Ẽ. Therefore, the backdoor fulfills the notion of undetectability.
We conclude that the backdoor in the simple construction defined in Eq. (4)

fulfills the same security notions as the backdoor in the original MALICIOUS
framework. However, similar to the original MALICIOUS framework, the back-
door in Ẽ does not fulfill the notion of untraceability ; once Ẽ is queried with the
tweak t�, the full backdoor is revealed.
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5 Malicious AES

We now describe how to construct a tweakable variant of the AES with a mod-
ified key-schedule to obtain a more natural backdoored cipher based on the
MALICIOUS framework. Instead of constructing a probability-one differential
over the cipher for a secret pair of tweak values (as in the original MALICIOUS
framework), we embed an invariant subspace that holds for a secret tweak value.
For the sake of completeness, we briefly recall the definition of the AES round
function. For further details, we refer to the book by Daemen and Rijmen [14].

5.1 Description of the AES

The AES is a family of block ciphers with a block length of 128 bits, supporting
three different key lengths of 128, 192, and 256 bits. In this section, we con-
centrate on the AES variant with a 128-bit key. For each fixed key, the AES
operates as a permutation on F

128
2 . For a simpler description of the algorithm,

we represent the AES as a family of permutations on F
4×4
28 . The internal state

can then be described by a 4× 4 array with elements in F28 (also called cells) as
⎡
⎢⎢⎣

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

⎤
⎥⎥⎦ .

The unkeyed round function R : (F28)4×4 → (F28)4×4 of AES is defined as the
composition of the operations SubBytes, ShiftRows and MixColumns such that

R = MixColumns ◦ ShiftRows ◦ SubBytes .

The functions on the right-hand side are defined as follows.

SubBytes is a parallel application of the 8-bit AES S-box S : F28 → F28 to all
16 cells of the internal state. We refer to [14] for the definition of S, since its
details are not important for our construction.

ShiftRows cyclically rotates the ith row of the state i positions to the left, for all
i ∈ {0, 1, 2, 3}.

MixColumns multiplies the columns of the state with a matrix M . Again, we
refer to [14] for the definition of M .

The unkeyed AES rounds are interleaved by the addition of a round key. The
latter operation will be denoted by Addki

: x �→ x + ki. The ith round function
of the AES is then given by

Ri = Addki
◦ R .

The round keys ki are generated from the 128-bit master key k by the AES key
schedule, i.e., we have (k0, k1, . . . , k10) = KeySchedule(k). We refer to [14] for
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the specification of the function KeySchedule. With the above notation, the AES
variant with a 128-bit key can then be described as

AESk = Addk10 ◦ ShiftRows ◦ SubBytes ◦ R9 ◦ · · · ◦ R2 ◦ R1 ◦ Addk0 ,

where (k0, k1, . . . , k10) = KeySchedule(k).

5.2 Specification of MaliciousAES

In this section, we define a tweakable variant of the AES that incorporates a
backdoor based on the MALICIOUS framework. The round function of Mali-
ciousAES is identical to that of the AES, but its key schedule is different and
it supports an arbitrary-length tweak. Note that, for other reasons, changing
the AES key-scheduling has been discussed previously, e.g. in [21] and [15] to
increase the resistance of AES against dedicated attacks.

Key and Tweak Schedule. Let k ∈ F
κ
2 be a κ-bit master key. The partial (64-

bit) round keys k0, . . . , k10 ∈ F
64
2 are derived from the master key using a key

scheduling function. The details of this function are left open. For reasons dis-
cussed in Sect. 5.3, it will be required that there is an efficient algorithm to
uniquely determine 64 bits of k given the value of k10. The actual round keys
are then equal to (k′

0, . . . , k
′
10) = MaliciousKeySchedule(k), where the ith round

key k′
i is defined by

k′
i =

⎡
⎢⎢⎣
ki,0 ki,4 ki,0 ki,4

ki,1 ki,5 ki,1 ki,5

ki,2 ki,6 ki,2 ki,6

ki,3 ki,7 ki,3 ki,7

⎤
⎥⎥⎦ , for i = 0, . . . , 9 and k′

10 =

⎡
⎢⎢⎣

k10,0 k10,4 0 0
k10,1 k10,5 0 0
k10,2 k10,6 0 0
k10,3 k10,7 0 0

⎤
⎥⎥⎦ ,

with ki,0, . . . , ki,7 being the bytes of ki. In order to support arbitrary-length
tweaks, the ith partial round tweak ti ∈ F

64
2 will be derived from the master

tweak t using an extendable output function H, i.e., (t0, . . . , t9) = H(t). The full
round tweaks are then equal to (t′0, . . . , t

′
9) = MaliciousTweakSchedule(t) where

t′i is defined by

t′i =

⎡
⎢⎢⎣

ci,0 ci,4 ti,0 ti,4
ci,1 ci,5 ti,1 ti,5
ci,2 ci,6 ti,2 ti,6
ci,3 ci,7 ti,3 ti,7

⎤
⎥⎥⎦ ,

with ti,0, . . . , ti,7 being the bytes of ti and ci,0, . . . , ci,7 being the bytes of ci.
The values c0, . . . , c9 are round constants that appear to look random but, as
explained below, are not necessarily so.

Overall Structure. The ith round function is defined by R′
i = Addk′

i+t′
i
◦ R and

the tweakable block cipher MaliciousAES can then be described as

MaliciousAESk,t = Addk′
10

◦ ShiftRows ◦ SubBytes ◦ R′
9 ◦ · · · ◦ R′

1 ◦ Addk′
0+t′

0
,

where we have (k′
0, . . . , k

′
10) = MaliciousKeySchedule(k) and we have

(t′0, . . . , t
′
9) = MaliciousTweakSchedule(t).
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Backdoor Setup. Similar to the instances of the MALICIOUS framework pre-
sented in [30], we aim to introduce a tweak input such that the cipher can easily
be broken for a special secret value of the tweak. To set up a backdoored instance
of MaliciousAES, the attacker chooses a secret tweak t� and computes the values
(t�0, . . . , t

�
9) = H(t�). The round constants c0, . . . , c9 are then chosen as ci = t�i

for i = 0, . . . , 9. It will be shown in Sect. 5.3 that this choice results in the desired
backdoor.

5.3 Description of the Backdoor

The backdoor in MaliciousAES is based on an invariant subspace for the round
function R of the AES. For the secret backdoor tweak t�, this subspace is pre-
served up to the penultimate round of the cipher. Below, the invariant subspace
for R, its extension to MaliciousAES and the key-recovery procedure are discussed.

Invariant Subspace for R. Consider the linear subspace I ⊆ (F28)4×4 in which
the first column of the 4 × 4 state matrix is equal to the third column and the
second column is equal to the fourth column, i.e.,

I :=

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

a0,0 a0,1 a0,0 a0,1

a1,0 a1,1 a1,0 a1,1

a2,0 a2,1 a2,0 a2,1

a3,0 a3,1 a3,0 a3,1

⎤
⎥⎥⎦

∣∣∣∣∣ ∀i ∈ {0, 1, 2, 3}, j ∈ {0, 1} : ai,j ∈ F28

⎫
⎪⎪⎬
⎪⎪⎭

. (5)

It is well known (see, e.g., [23, Prop. 5]) that I is an invariant subspace for
the unkeyed AES round function R, i.e., R(I) = I. Indeed, I is invariant for
all of the three operations SubBytes, ShiftRows, and MixColumns independently.
However, since I is in general not invariant over the addition with a round key,
I cannot be used as an invariant subspace over multiple AES rounds interleaved
with round key additions.

Invariant Subspace for MaliciousAES. When the cipher is evaluated with the
malicious tweak value t�, we have that each round tweak t′i with i = 0, . . . , 9 is
contained in I by construction. Hence, I is an invariant subspace for Addk′

0+t′
0

and more generally over any tweaked and keyed round function R′
i, i = 1, . . . , 9.

The structure of the invariant subspace is depicted in Fig. 4. Iterating this prop-
erty yields

(Addk′
10

◦ MaliciousAESk,t�)(I) = I .

Under the assumption that for a tweak t �= t�, each value ti of (t0, . . . , t9) = H(t)
for i ∈ {0, . . . , 9} is randomly drawn from a uniform distribution over F

64
2 , the

probability that, for a fixed j ∈ {0, . . . , 9}, the value t′j is contained in I is equal
to (2−8)8 = 2−64. Therefore, we expect that for a tweak t �= t�, the invariant
subspace property is already broken after the first round of MaliciousAES. For
this reason, if H is a cryptographically secure function, the backdoor fulfills the
notions of undiscoverability and undetectability.
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x0 x4 x0 x4

x1 x5 x1 x5

x2 x6 x2 x6

x3 x7 x3 x7

z0 z4 z0 z4

z1 z5 z1 z5

z2 z6 z2 z6

z3 z7 z3 z7

z0 z4 z0 z4

z5 z1 z5 z1

z2 z6 z2 z6

z7 z3 z7 z3

z′
0 z′

4 z′
0 z′

4

z′
1 z′

5 z′
1 z′

5

z′
2 z′

6 z′
2 z′

6

z′
3 z′

7 z′
3 z′

7

z′′
0 z′′

4 z′′
0 z′′

4

z′′
1 z′′

5 z′′
1 z′′

5

z′′
2 z′′

6 z′′
2 z′′

6

z′′
3 z′′

7 z′′
3 z′′

7

y0 y4 y0 y4

y1 y5 y1 y5

y2 y6 y2 y6

y3 y7 y3 y7

ki,0 ki,4 ki,0 ki,4

ki,1 ki,5 ki,1 ki,5

ki,6ki,2ki,6ki,2

ki,3 ki,7 ki,3 ki,7

ci,0ci,4 0 0
ci,1ci,5 0 0
ci,2ci,6 0 0
ci,3ci,7 0 0

0 0 ti,0 ti,4
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SB SR MC

Fig. 4. An invariant subspace over one round of MaliciousAES under tweak t�. In the
input state, if the first column is equal to the third column and the second column
is equal to the fourth column, the same property holds for the output state after one
round.

Key-Recovery Strategy. For t�, the last round key k′
10 (which is constructed

from k10 ∈ F
64
2 ) can be recovered using a chosen plaintext attack with a single

plaintext/ciphertext pair. For x ∈ I and y = MaliciousAESk,t�(x), we have

∀i ∈ {0, 1, 2, 3} : k10,i = yi,0 + yi,2, k10,4+i = yi,1 + yi,3 ,

where yi,j is the byte in row i and column j of the ciphertext y. Hence, the
64-bit partial round key k10 can directly be recovered. From k10, we can then
recover k by guessing the remaining κ − 64 bits. Therefore, if κ is sufficiently
small, MaliciousAES fulfills the notion of practicability.

Larger Keys. We only provided a very simple malicious variant of AES which
uses 64-bit round keys derived from a master key of length κ bits. This approach
is especially suitable when the master key is short, such as κ = 64. There are
several straightforward methods to construct instances operating on larger keys.
For instance, one can build a similar construction based on Rijndael-192 or
Rijndael-256 [14]. For larger κ, one could also enforce other properties on the last
(say the last two) round keys and use more elaborated key-guessing techniques
to recover more than 64 bits of key information.

Security Arguments. We do not provide an explicit security analysis for Mali-
ciousAES as (i) most of the security arguments for AES are equally valid for
MaliciousAES and (ii) increasing the number of rounds of MaliciousAES does not
invalidate the backdoor but should invalidate all potential non-backdoor based
attacks.

6 A Dedicated Tweakable Block Cipher

In this section, we propose the backdoored dedicated tweakable block cipher
Boomslang. Similar to MaliciousAES, the proposed cipher relies on the MALI-
CIOUS framework to achieve undiscoverability. However, the backdoor is based



Constructing and Deconstructing Intentional Weaknesses 769

on a nonlinear invariant rather than an invariant subspace. In fact, the back-
door implies the existence of an iterative perfect linear approximation over four
rounds of the cipher. Hence, it can also be compared to the recently proposed
block cipher DooR [31], which contains a backdoor based on linear cryptanalysis.
However, the design rationale of DooR is weaker and it does not offer undiscov-
erability, so it has only limited practicability.

6.1 Specification of Boomslang

The cipher operates on 128-bit blocks and the state will be represented by a
4 × 8 array of 4-bit cells. The key k is a 128-bit value, and the tweak t can be
any bitstring of arbitrary (bounded) length.

Round Operations. The overall structure of the round function is shown in Fig. 5
and it closely follows that of the AES. Specifically, the unkeyed round function
of Boomslang can be written as

R = MixColumns ◦ ShiftRows ◦ SubBytes .

Below, each of the functions on the right-hand side will be briefly discussed.

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Fig. 5. Overview of the round function: SubBytes, ShiftRows, MixColumns and the addi-
tion of constants.

SubBytes consists of the parallel application of an S-box S to the 4-bit cells of
the state. The S-box is the nonlinear function S : F4

2 → F
4
2 defined by Table 1.

ShiftRows is similar to the AES ShiftRows step. If the rows are numbered from
zero to three with zero corresponding to the top row, then ShiftRows rotates
the ith row of the state over 4 · i bits to the left.

MixColumns consists of a columnwise multiplication with a lightweight matrix
from the family of quasi-MDS matrices that was proposed for Qarma-64 [4].
Let us denote the cells within one column of the state by (x0, . . . , x3),
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where xi ∈ F
4
2. MixColumns maps each column (x0, . . . , x3) to a new column

(y0, . . . , y3) defined by

yi = xi+1 + (xi+2 ≪ 1) + (xi+3 ≪ 2) ,

for i = 0, . . . , 3 and where the addition of the indices is regarded modulo 4.
The inverse mapping is given by

xi = yi+3 + (yi+1 ≪ 2) + (yi+2 ≪ 3) ,

for i = 0, . . . , 3. In software, MixColumns can be implemented using bitslicing.

Table 1. The 4-bit S-box S.

0 1 2 3 4 5 6 7 8 9 a b c d e f
8 2 4 a 5 f 7 6 0 c b 9 e d 1 3

The 2ith round function is then defined as

R2i = Addki
◦ Addc2i

◦ R ,

where ci are round constants and ki round
keys. The round keys ki can be derived using
an arbitrary key schedule. Since we do not aim
for related-key security, we propose ki = k for
simplicity. Similarly, the (2i + 1)th round function is defined as

R2i+1 = Addti
◦ Addc2i+1 ◦ R .

The ith round tweak ti is derived from the master tweak t using a strong tweak-
scheduling function. Specifically, (t0, t1, . . .) = H(t) where H is an extendable
output function such as SHAKE [17]. The round constants ci should appear to
look random, but – as discussed below – they are not necessarily so. Some specific
conditions on these constants, all of which are likely to be satisfied for a uniform
random choice, are discussed in Sect. 6.2.

Overall Structure. The overall cipher is the composition of the round functions
R0,R1, . . .. The number of rounds, denoted by r, is required to be even, so that
the last round function always performs a round-tweak addition. Based on the
analysis in Sect. 6.2, r = 32 is a reasonable choice. The key k is also added to
the plaintext and σ(k) is added to the state after the last round, with σ being
a linear orthomorphism, i.e., we have that both k �→ σ(k) and k �→ σ(k) + k are
permutations. Specifically, we use σ(k) = (k ≫ 1)+(k � 63) as in Prince [13].
In summary, the overall cipher is defined by

Boomslang = Addσ(k) ◦ Rr−1 ◦ · · · ◦ R1 ◦ R0 ◦ Addk .

Backdoor Setup. To set up a backdoored instance of Boomslang, one must choose
a secret tweak t� and compute the corresponding round tweaks (t�0, t

�
1, . . .) =

H(t�). The round constants c2i+1 should then be chosen as c2i+1 = t�i for i =
0, . . . , r/2 − 1.

Given a few hundred known plaintext/ciphertext pairs encrypted under the
tweak t�, it will then be possible to efficiently recover the full key. The mechanism
for doing so will be explained in Sect. 6.3.
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6.2 Design Rationale

In this section, we argue that the design of Boomslang follows standard modern
design principles. Our security analysis focuses on differential and linear crypt-
analysis, and invariants. The latter two are of particular relevance with respect to
the backdoor that will be revealed in Sect. 6.3. In the following, we first motivate
the overall structure of Boomslang and then discuss the choice of the individual
components.

Overall Structure. The design follows the wide-trail strategy [14, Chapter 9]
with some changes to obtain a more lightweight cipher. Whenever possible, the
design was kept as simple as possible and close to that of the AES.

In general, the proposed cipher is geared towards hardware. This is the moti-
vation for relying on 4-bit S-boxes rather than 8-bit S-boxes as in the AES. In
software, the 4 × 8 state allows storing the rows as 32-bit words. The S-box and
linear layer can then be implemented using bitslicing.

The key schedule is chosen as the identity function, although other key sched-
ules could also be used. Since related-key security was not a design goal, we
decided to choose the simplest option. In addition, having a linear key schedule
sometimes enables more straightforward security arguments. For example, the
arguments from [7] related to the choice of round constants to prevent invariants
are only applicable to linear key schedules.

Finally, the choice of the tweak schedule can be motivated by the goal of
supporting arbitrary-length tweaks. Since related tweak security is important,
it seems necessary to use a cryptographically strong hash function or XOF to
derive round tweaks from the master tweak.

Choice of the Components. We now argue that all of the basic components used
in the cipher are individually acceptable choices from the current state of the
art.

SubBytes. The S-box has a maximum absolute correlation of 1/2 for nonzero
masks and a maximum differential probability of 1/4 for nonzero differences.
The S-box is chosen such that it is not an involution.

ShiftRows. The cell permutation is chosen such that the cells of each column
end up in different columns of the state. Shifting rows is a natural choice
because it allows for an efficient software implementation, and it is the same
as for the AES.

MixColumns. The MixColumns map is inspired by the linear layer of Qarma-
64 [4]. Specifically, the transformation of each column is defined by a circulant
matrix M of the form

M =

⎡
⎢⎢⎣

0 Xa Xb Xc

Xc 0 Xa Xb

Xb Xc 0 Xa

Xa Xb Xc 0

⎤
⎥⎥⎦ ,
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over the F2-vector space F2[X]/(X4 + 1). The input bitvector can be consid-
ered as an element of this space by the isomorphism δi �→ Xi−1, where δi is
the ith standard basis vector of F4

2.
The matrix M is invertible with circulant inverse of the same form if and
only if a ≡ c (mod 4) or a ≡ c + 2 (mod 4). All of these matrices have
branch number four, which is the maximum possible for this type of matrix.
Furthermore, we impose the following criteria:

– Unlike in Qarma-64, we require that M is not an involution. Equivalently,
2b �≡ 0 (mod 4). The motivation for this requirement is that involutions
more easily lead to 2-round invariants, as demonstrated in the case of
Midori-64 [10].

– M should not be orthogonal or nearly orthogonal, i. e. M−1 �= cM� for
any c ∈ F2[X]/(X4 + 1). This requirement is motivated by the fact that
any quadratic form of the type

∑m
i=1 x�

i Qxi is a nonlinear invariant for
an m × m orthogonal matrix [36]. More generally, for a nearly orthog-
onal matrix, any such quadratic function which is also invariant under
multiplication by c is a nonlinear invariant.

The second criterium leads to the requirement that Xa+b �= Xb+c or equiv-
alently a �≡ c (mod 4). From the viewpoint of software implementations, it
makes sense to choose one of a, b or c equal to zero. Choosing a = 0 and b = 1
then gives c = 2.

Linear and Differential Cryptanalysis. The wide-trail strategy directly gives
upper bounds on the absolute correlation of linear trails and on the probability
of differential characteristics. In particular, since M has a branch number of four,
the number of active S-boxes over four rounds is at least 16 [14, Theorem 9.4.1].
Hence, after 16 rounds the average probability of any differential characteristic
is lower than 2−128 and the absolute correlation of any linear trail is at most
2−64. The suggested choice of 32 rounds was obtained by taking twice as many
rounds; taking into account potential improvements and key-recovery attacks.

In fact, it is to some extent possible to extend the above results to linear
approximations and differentials. In particular, for independent uniform random
constants, [26, Corollary 1 & 2] imply that the average probability of any 4-
round differential and the average squared correlation of any 4-round linear
approximation is at most (2−2×(4−1))4 = 2−24.

Invariants. Several lightweight ciphers have been found vulnerable to invariant
subspace [24] and nonlinear invariant attacks [36]. Hence, it is natural to attempt
to rule out the existence of invariants in Boomslang.

The argument from [7] can be used to rule out joint invariants over all the
affine layers (i.e., linear layers together with the constant additions) for a large
number of rounds using only the properties of the linear layer and the round
constants. Specifically, the security argument depends on the dimension of of the
smallest subspace invariant under the linear layer and containing the differences
of the constants. For the linear layer L = MixColumns ◦ ShiftRows of Boomslang
and constants c0, . . . , cr−1, denote this space by WL(c0+c1, c0+c2, . . . , c0+cr−1).
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If WL(c0 + c1, c0 + c2, . . . , c0 + cr−1) = F
128
2 , then joint invariants over the affine

layers can be ruled out with high probability. The linear map L has 16 invariant
factors and its minimal polynomial is (X + 1)8. Hence, by [7, Proposition 11],

Pr
c0,...,c23

[dimWL(c0 + c1, c0 + c2, . . . , c0 + c23) = 128] =
15∏

i=0

(
1 − 1

223−i

)
≥ 0.99 ,

for uniformly chosen random constants c0, . . . , c23. Hence, 24 rounds are sufficient
to rule out with high probability the existence of such invariants. Note that this
argument does not yet rule out invariants over a small number of rounds and
also does not cover generalized and closed-loop invariants [38].

Most invariants considered in previous attacks have independent cells (‘rank-
one’, from the viewpoint of [10]), as this leads to an easier analysis of the SubBytes
and ShiftRows steps. To investigate this in more detail, we used the tool from
[11, §6.2] to obtain the rank-one invariants of the linear layer M . Although M
has some rank-one invariants, they do not correspond to Boolean functions or
sets, and there are no shared invariants between M and the S-box layer.

6.3 Description of the Backdoor

The backdoor is a two-round invariant, which is not invariant for one round.
This is similar to one of the invariants of two-rounds of Midori-64 [10], but
unlike in that case the property is not invariant under the linear layer. Indeed,
as discussed above, that would not be possible due to the choice of the linear
layer. Importantly, the invariant only exists for the secret weak tweak for which
the round constants in even rounds cancel out.

Two-Round Nonlinear Invariant. Let f : F
4
2 → F2 and g : F

4
2 → F2 be the

Boolean functions defined by

f(z0, z1, z2, z3) = (z0 + z2)(z1 + z3) + z0 + z2 + z3 + 1
g(z0, z1, z2, z3) = (z0 + z2)(z1 + z3) + z2 .

The functions f and g can be used to form a perfect nonlinear approximation
of M . This is due to the fact that the term (z0 + z2)(z1 + z3) is invariant under
rotations of z0, . . . , z3. Hence, if y = MixColumns(x), then

31∑
i=0

g(y4i, y4i+1, y4i+2, y4i+3) =
31∑

i=0

f(x4i, x4i+1, x4i+2, x4i+3) .

Furthermore, it is easy to see that

31∑
i=0

a�(y4i, y4i+1, y4i+2, y4i+3) =
31∑

i=0

5�(x4i, x4i+1, x4i+2, x4i+3) .
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The S-box S defined in Table 1 also satisfies

5�S(z0, z1, z2, z3) = g(z0, z1, z2, z3)

f(S(z0, z1, z2, z3)) = a�(z0, z1, z2, z3) .

Since linear functions are invariant under the addition of any constant, and
because the constants are cancelled out by the tweak in even rounds, one obtains
the following two-round invariant:

31∑
i=0

g(y4i, y4i+1, y4i+2, y4i+3) = c +
31∑

i=0

g(x4i, x4i+1, x4i+2, x4i+3) ,

where y = (R2i+1 ◦ R2i)(x). The full nonlinear trail is illustrated in Fig. 6. Note
that the last step only works for one in 264 constants, but the constants are
chosen such that there exists a tweak so that the constants are weak in all
odd-numbered rounds.

Alternatively, the nonlinear invariant discussed above can be described from
the point of view introduced in [10,11]. Let

w = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0)�/2

v = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1, 0, 0)�/2 .

In the above, w and v are the Walsh-Hadamard transform of f and g respectively.
It holds that CMw⊗4 = v⊗4, with CM being the correlation matrix of the linear
layer and ⊗ the tensor product. Furthermore, the S-box satisfies CSv = δ5 and
CSδa = w. The vector v is invariant under one in four constants.

Key-Recovery Strategy. The addition of whitenening keys k and σ(k) leads to an
efficient key-recovery attack. Specifically, one can use the fact that there exist

 ∈ F

128
2 and b ∈ F2 such that for every plaintext/ciphertext pair (x, y) encrypted

under the backdoored tweak,

31∑
i=0

g(xi + ki) +
31∑

i=0

g(yi + σ(k)i) = 
�k + b ,

with x1, . . . x32, y1, . . . , y32 and k1, . . . , k32 being the nibbles of x, y and k, respec-
tively. Since σ is an orthomorphism, the 64 bits of k that are nonlinearly mixed
with x are linearly independent from the bits of k that are nonlinearly mixed
with y. Hence, given q messages, one can on average recover q bits of the key
even when q ≥ 64.

Solving the system of equations is easy because of the low number of
quadratic terms. One can either use Gröbner basis methods, exploiting the low
degree of regularity of the system, or one can directly rely on linearization.
Since g contains only a single quadratic term, each equation contains at most
64 quadratic terms. Hence, given 192 known plaintext/ciphertext pairs, the full
key can be recovered using less than 1923 ≤ 223 bit operations.



Constructing and Deconstructing Intentional Weaknesses 775

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

SR

SB MC

AC

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f f f

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

SR

SB MC

AC

Fig. 6. Two-round invariant for Boomslang.

Construction of the Backdoor. The backdoor primarily relies on the choice of
the S-box. The tool from [11, §6.2] was used to find symmetric nonlinear rank-
one approximations of the linear layer M . This resulted in the choice of the
vectors w and v listed above. One can then easily generate S-boxes such that
the conditions CSv = δ5 and CSv = δ10 are satisfied. There are still significant
degrees of freedom left in the choice of the S-box. These could be used to satisfy
additional design criteria, or to argue that the S-box was generated based on
certain magic constants.

7 Conclusion

Feeding a session key into LFSRs by making use of shifts is common in many
designs, e.g., besides in GEA-1 and GEA-2 it is also used in A5/1. Our work demon-
strates that those shifts, together with a clever choice of feedback polynomials
and filtering, can be used to deliberately weaken the construction. We gave an
explicit and efficient way to construct those choices for a large variety of param-
eters. Our construction includes the choices made for GEA-1 indicating that this
(or a related) strategy was used in the actual design process. On the positive
side, we again see that, in line with [8], this is unlikely to happen unintentionally.
While our theory is described with a focus on LFSRs in Galois mode, it applies
to LFSRs in Fibonacci mode as well. However, our construction yields random
looking feedback polynomials and thus seemingly selected taps. While for Galois
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LFSRs and software implementations, this does not affect performance, it does
for LFSRs in Fibonacci mode. Here, the number of taps determines the number
of XOR operations and thus the construction is less interesting in this case as it
contradicts well-established design rationales.

In the second part of the paper, we outlined two designs of a tweakable block
cipher that embed a hidden trapdoor, based on the MALICIOUS framework. Our
constructions stress the importance of justifying the every single part of the
design. One possible approach is unswervingness (see [16]) as a design require-
ment. In a nutshell, the notion of unswervingness demands that each instance
of a (block) cipher fulfilling all the requirements given in its design rationale is
secure. However, this might be highly non-trivial to achieve as a designer.

For the MALICIOUS framework, it would be very interesting to actually inves-
tigate how backdoors could be triggered by many tweaks. In the original work
[30] two tweaks were necessary to enable the backdoor, while for our instances
a single tweak is sufficient. Using many tweaks could potentially lead to achiev-
ing untraceability as one could hide the tweaks needed to activate the backdoor
with tweaks that do not. The goal would then be that finding the correct subset
becomes exponentially hard in the number of tweaks.
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Abstract. In this paper we deepen our understanding of how to apply
Simon’s algorithm to break symmetric cryptographic primitives.

On the one hand, we automate the search for new attacks. Using this
approach we automatically find the first efficient key-recovery attacks
against constructions like 5-round MISTY L-FK or 5-round Feistel-FK
(with internal permutation) using Simon’s algorithm.

On the other hand, we study generalizations of Simon’s algorithm
using non-standard Hadamard matrices, with the aim to expand the
quantum symmetric cryptanalysis toolkit with properties other than
the periods. Our main conclusion here is that none of these generaliza-
tions can accomplish that, and we conclude that exploiting non-standard
Hadamard matrices with quantum computers to break symmetric prim-
itives will require fundamentally new attacks.

Keywords: Symmetric Cryptanalysis · Simon’s algorithm ·
Bernstein-Vazirani algorithm · Fourier transform · Walsh-Hadamard
transform · automatic search · circuits normal form

1 Introduction

Unlike for many public-key schemes, for which the implications of the availability
of quantum computers of suitable size were clear from the start, the situation is
less well understood for symmetric primitives. The initial general consensus was
essentially that only Grover’s algorithm, which gives a quadratic speed-up for the
problem of exhaustive search [12], is of interest to attack symmetric cryptosys-
tems with quantum resources. This changed after Kuwakado and Morii published
theoretical quantum attacks on two classically provable secure constructions, the
3-round Feistel [17] and Even-Mansour [18], using Simon’s algorithm.

Simon’s algorithm allows to efficiently compute the period of a Boolean func-
tion f , when f is accessible as a quantum oracle, and with the given premise that
f is a 2-1 function having a unique period. The fact that f has to be accessible
by a quantum oracle, often referred to as the Q2 setting, makes those attacks less
relevant in practice for now, but certainly an interesting research topic. More-
over, ideas like the ones presented in [2] show how this class of attacks can have
implications in the Q1 setting, where f can only be queried classically.

c© International Association for Cryptologic Research 2022
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Another closely related algorithm to efficiently compute periods uses the
Bernstein-Vazirani routine [1], as was already observed in [27]. This routine,
see Sect. 2.1 for details, is very similar to the one used in Simon’s algorithm.
It outputs a vector x that belongs to the support of the Walsh-Hadamard (or
Fourier) transformation f̂ of f , defined as

f̂(x) :=
∑

y

(−1)f(y)+〈x,y〉 = (H0φ)x (1)

where (H0φ)x is the x.th component of the multiplication vector between the
standard Hadamard matrix H0 and the vector

φ =
(
(−1)f(0), . . . , (−1)f(2n−1)

)T

.

Therefore, with enough outputs of this routine we can compute the orthogonal
of the support of f̂ , which is the space of linear structures of f . Since the 0-
linear structures of f are exactly the periods, the above algorithm essentially
corresponds to Simon’s algorithm, but highlights better its relation to the Walsh-
Hadamard transformation of f .

The interest sparked by Kuwakado’s and Morii’s work resulted in the pub-
lication of attacks on many other constructions using quantum period finding
[15,20,26], a better understanding of how the algorithm works with a relaxed
premise on f [15], or without quantum oracle access to f [2,3], in the presence of
noise [23], and when trying to minimize the amount of qubits required [22]. The
most recent work in this context is by Bonnetain et al. who introduced Quantum
Linearization attacks in [4].

The idea behind most of these attacks is to build a function f , based on the
target cryptographic scheme E, that has a non-trivial period. So far, by more
and more sophisticated and hand-optimized constructions, this class of attacks
has made possible to come up with distinguishers on many constructions, like
Feistel ciphers up to 6 rounds [8,14,17], MISTY [8,11] or forgery attacks on
different kind of authenticated encryptions [13,15,25]. It should be noted that
some of these attacks are highly non-trivial and can actually look fairly involved,
see e.g. the attack for 6-round Feistel-FK [14]. Searching for new attacks and
understanding the security of new constructions has become a cumbersome and
error-prone task.

Moreover, those improvements and applications build on exploiting the peri-
odicity of the involved construction only. However, other criteria are of interest
as well. As an example, it would be of great value to be able to compute the alge-
braic degree and related properties of Boolean functions efficiently on a quantum
computer. However, the search for efficient quantum algorithms exploiting crite-
ria of Boolean functions other than linear structures has not yet been successful.

One large class of possible algorithms arise naturally from Simon’s algorithm
by replacing H0 in Eq. (1) by any other Hadamard matrix H, which corresponds
to changing the second Hadamard gate H0 in the Bernstein-Vazirani routine with
a gate that computes the unitary transformation H, as we will see in Sect. 4.
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Those algorithms are therefore worth studying. In particular it is of interest to
understand if they could lead to new items in the quantum toolbox of symmetric
cryptanalysis.

Our Contribution

Our contribution is twofold. First, we simplify the search for new applications
of Simon’s algorithm and thereby overcome the increasing complexity of the
attacks in the literature.

Second, we study the usefulness of the natural extensions of Simon’s algo-
rithm mentioned above in the context of symmetric cryptanalysis.

Automatizing. Towards achieving the first goal, introduced in Sect. 3, we propose
to automate the search of such functions. More precisely, we present a generic
algorithm that aims at finding, given a symmetric cryptographic scheme E, non-
trivial periodic functions f , that can then be efficiently computed by a quantum
computer.

Our approach here is to represent those functions f dependent on E by a
class of circuits. Those circuits can make use of oracle gates for E and potentially
further oracle gates for internal parts of the scheme E. We then automatically
examine all circuits up to a certain number of gates and test each of them
for periodicity, by instantiating the respective function on small dimensions. Of
course, this means that many useless circuits, as well as many useless periods,
are generated. The main technical contribution and work is aimed at addressing
this problem, and keeping the process efficient by pruning the search tree. We
discuss the details in Sect. 5.

As a proof of concept, we rediscover many of the attacks already known.
Moreover, and more importantly, our algorithm automatically leads to new
attacks. Indeed, it finds new periodic functions for 4-round Feistel-FK and 5-
round Feistel-FK with internal permutation, as well as 4-round MISTY R-FK
and 5-round MISTY L-FK. Those lead to the first known key-recovery attacks
on these constructions in polynomial time. Further, we show that our approach
is also applicable in the Grover-Meets-Simon case. We give new attacks for the
permutation-based Encrypted Davies-Meyer and sum of key alternating ciphers
constructions.

Generalizations. Regarding the generalization of Simon’s algorithm we argue
in Sect. 4 that none of those algorithms is likely to be helpful for speeding-up
known attacks on quantum computers.

We do so by arguing that none of the new algorithms arising from this gener-
alizaion of Simon’s algorithm allow the computation of any property of Boolean
functions that is invariant under linear equivalence. Since most of the properties
used in cryptography, like the algebraic degree, the balancedeness, the nonlinear-
ity (order) or differential uniformity of f are indeed linear invariant, this brings
us to conclude that any property related to this is unlikely to be of relevance for
existing attack vectors.
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While this result might not be surprising, it (i) sheds some light on the
lack of alternative quantum algorithms and (ii) might be of independent inter-
est. Indeed, it is technically based on a new characterization of the standard
Hadamard matrix, proved using a general result on the structure of the auto-
morphism group of the general linear group over F2 due to Dieudonné [9].

Outline

We explain preliminaries in Sect. 2, followed by the new attacks in Sect. 3.
Section 4 presents our main result regarding the generalization of Simon’s algo-
rithm. Sections 5 and 6 respectively give more details about our automated search
and the proof of our result on generalized Simon. We conclude our results in
Sect. 7.

2 Preliminaries

Let F2 be the finite field with two elements and F
n
2 a vector space of dimension n

over F2. We will often identify the elements of F
n
2 with the integers {0, . . . , 2n −

1}, without making it explicit unless required by the context. We denote by
GL(n, F2) the general linear group of invertible matrices of order n over F2. We
will ignore normalization factors for quantum states in order to simplify notation
and concepts. We denote the rising factorial x · (x + 1) · · · (x + n − 1) as xn̄.

2.1 Some Generalities on Boolean Functions

A Boolean function is any function f : F
n
2 → F2. We denote the set of Boolean

functions by Bn. We may identify the set of Boolean functions over F
n
2 with

the set of polynomials F2[X1, . . . , Xn]/(X2
1 , . . . , X2

n), in which case a Boolean
function f can be written as

f(X) =
∑

u∈F
n
2

auXu (2)

for some au ∈ F2 and where we have denoted by Xu the monomial Xu1
1 · · · Xun

n .
Equation (2) is also known as the Algebraic Normal Form of f .

For a given Boolean function f : F
n
2 → F2, the Walsh-Hadamard transform

of f is defined as the function f̂ : F
n
2 → Z such that

f̂(α) =
∑

x∈F
n
2

(−1)f(x)+〈α,x〉,

where we indicate with 〈·, ·〉 the scalar product over F
n
2 defined by 〈x, y〉 =

x1y1 + . . . + xnyn for any x = (x1, . . . , xn) and y = (y1, . . . , yn).
Finally, let us denote the support of f̂ by supp(f̂ ) = {α ∈ F

n
2 : f̂(α) �= 0}.

From the perspective of the Fourier transformation, Simon’s algorithm can be
interpreted as using the following relation between the Walsh-Hadamard trans-
formation and the linear structures of a function f .
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Theorem 1 (Proposition 29 in [6]). Let e �= 0 be an element of F
n
2 . We have

that
f(x) + f(x + e) = 0 ∀x ∈ F

n
2

(resp. f(x) + f(x + e) = 1) if and only if

{0, e} ⊂ supp(f̂ )⊥

(resp. supp(f̂ ) ∩ {0, e}⊥ is the empty set).

We refer to [6] for more background on Boolean functions and in particular
for a discussion of cryptographic criteria. We here limit ourselves to highlight-
ing the fact that most of those criteria are invariant under linear equivalence.
That is, given two Boolean functions f, g ∈ Bn such that for all x ∈ F

n
2 it holds

that f(x) = g(L(x)), where L is an isomorphism, then f and g behave iden-
tical with respect to the main criteria. Those criteria that are linear invariant
include the algebraic degree, the non-linearity, the differential uniformity, and
the balancedness of f and g.

2.2 Quantum Period Finding and the Hadamard Gate

We will briefly recall the Hadamard gate which will be in many ways the focus
of the second part of the paper. To this end, we simply remind that the state
of n qubits can be represented as a unitary vector in C

2n and that a quantum
transformation is represented as a unitary transformation. We indicate a basis
for C

2n as |i〉, where i is an integer between 0 and 2n − 1 written in its binary
representation. No further knowledge about quantum computation is necessary
for the purpose of this paper, and we refer to [24] for details.

The Hadamard gate on one qubit is such that

|0〉 
→ (|0〉 + |1〉)
|1〉 
→ (|0〉 − |1〉).

In other words, it is represented by the matrix

H0 =
[
1 1
1 −1

]
.

Applied to an n-qubit vector, it is represented by the matrix H⊗n
0 , given by

(
H⊗n

0

)
x,y

= (−1)〈x,y〉 for all 0 ≤ x, y ≤ 2n − 1,

which will act on the basis vector |x〉 as

|x〉 
→
2n−1∑

y=0

(−1)〈x,y〉 |y〉 .

For the rest of the paper, we will indicate the above transformation simply by
H0, regardless of the dimension n, unless there is possibility for ambiguity.
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Let us now consider the quantum implementation of a Boolean function
f : F

n
2 → F2

Uf : |x〉 |y〉 
→ |x〉 |y ⊕ f(x)〉 for any x ∈ F
n
2 and y ∈ F2.

The unitary transforms just presented are the building blocks for the quan-
tum routine used in Bernstein-Vazirani algorithm (as well as Simon’s), which
allow to efficiently compute the support of the Walsh-Hadamard transforma-
tion, since the state before measurement is

2n−1∑

y=0

(
2n−1∑

x=0

(−1)f(x)+〈x,y〉
)

|y〉 |−〉 =
2n−1∑

y=0

f̂(y) |y〉 |−〉 (3)

where |−〉 = |0〉 − |1〉. Therefore, measuring the first n-qubit register will yield
y with probability proportional to f̂(y)2. With a sufficient number of y, it is
therefore possible to compute the space generated by the support of the Walsh-
Hadamard transform of a random function f , which is exactly the orthogonal of
the space of linear structures for f due to Theorem 1.

From this, it follows that this routine can be used to efficiently compute
periods of a random Boolean function, as was already noted in [28]. More details
about this will be given in Sect. 4.1. Note that this can be extended to find
linear structures in the case where the codomain of f has dimension larger than
1 by considering each component separately, as it is discussed in [28]. A brief
description of Simon’s algorithm and a comparison with Bernstein-Vazirani can
be found in the extended version of the paper [5].

In this work, we are mostly interested in finding new meaningful crypto-
graphic periods (Sect. 3), and less interested in how they are computed. There-
fore, we always assume that the functions we deal with are random enough
to make the quantum period finding efficient. For a more thorough discussion
about the precise conditions that a function has to satisfy in order for this to be
possible, we refer to [2] and [28].

Furthermore, the way of efficiently computing the Walsh-Hadamard trans-
form of f thanks to Eq. (3) leads to the question of whether it is possible to
generalize the construction in order to efficiently compute other kinds of trans-
form of f that could possibly capture different properties of f (Sect. 6.1). For
this, we recall the definition of the class of Hadamard matrices.

Definition 1. Let H ∈ R
N×N be a matrix. We say that H is a Hadamard

matrix of order N if

(H)x,y ∈ {−1, 1} for all 1 ≤ x, y ≤ N and HT H = NIN ,

where IN is the identity matrix and N ∈ N.

2.3 Description of Feistel and MISTY

In this work, we present new attacks on the Feistel and MISTY construction
using quantum period finding. Therefore, we now briefly describe these families
of ciphers.



Generalizations and Automatized Applications of Simon’s Algorithm 785

Feistel. The Feistel cipher, also known as Luby-Rackoff cipher, is a simple way
of turning random functions into a pseudorandom permutation. To do so, given
r round functions F0, F1, . . . , Fr−1 : F

n
2 → F

n
2 and input (L0, R0) ∈ F

n
2 × F

n
2 , one

computes the output (Lr, Rr) by computing

Li+1 = Ri Ri+1 = Fi(Ri) ⊕ Li

for i = 0, 1, . . . , r − 1. If we replace the secret random permutations with one
public permutation F and round keys ki which we xor to the output of F , we
obtain the so called Feistel-FK construction which we depict in Fig. 1.

MISTY. Matsui [21] proposed the MISTY structure as a way to design block
ciphers with provable security against differential and linear cryptanalysis. In
some ways, MISTY is similar to Feistel. That is, there is a left and a right part
that are altered and swap in every round. But in contrast to Feistel, MISTY
decryption requires the inverse of the round function. Furthermore, there is a
left and a right version of MISTY, which we denote by MISTY L and MISTY
R resp.. Let (Li, Ri) be the input to the i-th round of MISTY L-F with round
function Fi. Then the output (Li+1, Ri+1) is defined by

Li+1 = Ri Ri+1 = Fi(Li) ⊕ Ri.

For MISTY R-F we have

Li+1 = Ri ⊕ Fi(Li) Ri+1 = Fi(Li).

Analogous to Feistel, in practice we might replace the secret round functions Fi

by one public permutation F in combination with round keys ki. We can inject
ki either before we apply F or afterwards. We call the former KF and the latter
FK. In this work, we study 5-round MISTY L-FK and 4-round MISTY R-FK.
For both, one round is depicted in Fig. 1.

Fki

Li Ri

Li+1 Ri+1

(a) Feistel-FK

F

ki

Li Ri

Li+1 Ri+1

(b) MISTY L-FK

F

ki

Li Ri

Li+1 Ri+1

(c) MISTY R-FK

Fig. 1. Feistel and MISTY constructions.
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3 Finding New Applications

In this section, we first briefly describe how new applications of Simon’s algo-
rithm can be found automatically. After that, we present new attacks against
MISTY and Feistel. We found these with a straightforward sage implementation
of our algorithm.1 A more detailed analysis, especially regarding the efficiency
of our approach, is presented in Sect. 5.

3.1 The Idea: Finding Circuits

One goal of this work is to automate the step of searching a suitable periodic
function f for some cryptographic construction E so that f leads to an attack
on E based on Simon’s algorithm. In a nutshell, the idea for this is to simply
test all sensible functions that depend on E, which we denote informally by
FE , for periodicity. Although this idea is simple, it raises two questions. First,
what functions FE do we need to test and second, how can we efficiently check
whether f is periodic or not? The latter is easy to answer. We just instantiate E
with a small input size s.t. we can evaluate f on all possible inputs. The former
is more profound. Our approach is to represent FE by a class of circuits. That
is, we fix the inputs of f and the operations f consists of. We call these gate
functions. Most importantly, the set of gate functions contains oracle gates for
E. Then we can automatically examine all functions that consists of one gate,
all functions that consists of two gates and so on. E.g., consider the quantum
attack on 3-round Feistel from [17] which is based on the function

f(x, b) = ENCL(x, αb) ⊕ αb̄ = F1(x ⊕ F0(αb)) ⊕ αb ⊕ αb̄

with period s = (F0(α0) ⊕ F0(α1))||1. Here, α0, α1 ∈ F
n
2 are arbitrary distinct

constants. Now consider Fig. 2a which shows a circuit Cf that represents f .
To find this, we start with a circuit that only contains the input nodes X =
{x, αb, αb̄}. Then, we investigate all circuits that consist of one additional node
that represents a function from G = {⊕, ENCL, ENCR} where ENCL and
ENCR correspond to the left and right part of the output of the 3-round Feistel
cipher. After that, we investigate all the circuits that consist of two additional
nodes, and thereby we encounter Cf with period s.

3.2 New Attacks on MISTY and Feistel

We now present new key-recovery attacks on MISTY and Feistel. The corre-
sponding circuits that were found by our implementation are depicted in Fig. 2b
for the first attack and in the extended version of the paper [5] for the other
attacks. The proofs of periodicity of the used functions are also given in the
extended version of the paper.

Recall that for the sake of simplicity, we assume that Simon’s algorithm will
always yield the correct period. For rigorous proofs of correctness the strategy in
1 See https://www.doi.org/10.5281/zenodo.6623768.

https://www.doi.org/10.5281/zenodo.6623768
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⊕

EncL

αb
αb̄x

2

1

1 2

(a) Circuit Cf .

⊕

ENCL ENCR

⊕

F

x

1 2

2

1

2

1
1

2

3

(b) Circuit Cf1 .

Fig. 2. Circuits for attack against 3-round Feistel cipher from [17] and against 4-round
MISTY R-FK from Sect. 3.2.

[15] can be adopted to argue that either Simon’s promise is sufficiently fulfilled,
or differential-based attacks exist.

Because here the focus is to automatically find periodic functions, we leave
this and other details such as how one can implement the functions on a quantum
computer for future work.

Key-Recovery Attack on 4-Round MISTY R-FK. For 4-round MISTY R-FK,
Cui et al. [8] mention a distinguishing attack but they do not give it explicitly.
Our automated search yields

f1(x) = ENCL(x, x ⊕ F (x)) ⊕ ENCR(x, x ⊕ F (x)) (4)

with period s1 = k0. This immediately leads to a full key-recovery attack. After
we have recovered k0 using Simon’s algorithm, we can simply uncompute the
first round before we make a query and extend the output of the oracle by an
additional round, i.e., we use

L′
0 = F−1(R0 ⊕ k0)

R′
0 = L0 ⊕ R0

ENC ′
R(L0, R0) = F (ENCL(L′

0, R
′
0)) ⊕ k4

ENC ′
L(L0, R0) = ENCR(L′

0, R
′
0) ⊕ ENC ′

R(L0, R0)

instead of ENCL and ENCR to recover k1. Here, k4 is of course not a secret key,
but a random value chosen by us to simulate an additional round. We repeat this
procedure to recover k2 and k3. Notice that there may be more efficient ways to
recover the other round keys once k0 is uncovered. But for sake of simplicity, we
will stick to this generic argument.

Key-Recovery Attack on 5-Round MISTY L-FK. Cui et al. [8] also give a dis-
tinguisher for 5-round MISTY L-FK. Again, we improve on this and give a
key-recovery attack based on the function

f2(x) = ENCL(F−1(F−1(x) ⊕ x), F−1(x)) ⊕ F (x). (5)
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The corresponding period is s2 = k0. Therefore, we can use the same idea as for
4-round MISTY R-FK to recover all keys.

Key-Recovery Attack on 4-Round Feistel-FK. For 4-round Feistel-FK, our auto-
mated search algorithm yields

f3(x) = ENCR(x, α) ⊕ F (ENCL(x, α)) ⊕ F (x) (6)

with period s3 = k0 ⊕ F (α). Here, α ∈ F
n
2 is an arbitrary constant. Again, we

can use the same idea as for 4-round MISTY R-FK to recover all keys.

Key Recovery Attack on 5-Round Feistel-FK. This time, we use a slightly dif-
ferent idea for the search. That is, once we have discovered a periodic function
whose period bears some information on the keys, we use this period as a con-
stant in our next search. Thereby, we find the following functions.

f4(x) = ENCR(F (x), x) ⊕ F (ENCL(F (x), x)) ⊕ F (x) (7)

f5(x) = ENCL(F (F−1(x) ⊕ s4), F−1(x) ⊕ s4) ⊕ F (x) ⊕ F−1(x) (8)

The corresponding periods are s4 = F (k0) ⊕ k1 and s5 = k0 ⊕ k2. Notice that f5
uses the inverse of the internal function F , and thus we have to assume that F
is bijective. It is well-known that this is not necessary for Feistel networks, but
we nonetheless believe that our attack is of interest.

The first step of our attack, once again, is to use Simon’s algorithm to find
s4 and s5. After that, we use a classical query to obtain an auxiliary value

h = ENCR(F (s4), s4) ⊕ F (ENCL(F (s4), s4)) ⊕ F (0) = k0 ⊕ k2 ⊕ k4.

Now we can restore k4 = h⊕s5. Thereby, we have learned the last round key and
can continue similarly to the attacks where we learned the first round key, i.e.,
we add a round before we make a query and uncompute the last round afterward
to find k3. We repeat this procedure to learn k2, k1 and k0.

3.3 Grover-Meets-Simon: New Attacks on pEDM and SoKAC

Our approach cannot only be used to find quantum attacks based on Simon’s
algorithm but leads also to attacks based on the Grover-Meets-Simon algo-
rithm [20]. In those attacks, the attacker first makes a guess u for part of the key,
say k1, (the Grover part). Only for the correct guess, i.e., if u = k1, the attacker
gets a periodic function, which is then the detected with Simon’s algorithm.

To find such, we add a second input node u and then check periodicity for
all values of u separately.

Key Recovery Attack on pEDM. In [10], the authors introduced the permutation-
based Encrypted Davies-Meyer construction. For a random permutation P and
secret keys k0 and k1, we have

pEDM(x) = P (P (x ⊕ k0) ⊕ (x ⊕ k0) ⊕ k1) ⊕ k0.
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Now, it is easy to verify that

f(u, x) = pEDM(x) ⊕ P (P (x) ⊕ x ⊕ u)

has period k0 for u = k1 and thus both keys can be recovered using the Grover-
Meets-Simon attack.

Key Recovery Attack on SoKAC. Similar to the attack on pEDM, for the sum
of key alternating ciphers [7] with two permutations P1, P2 and two keys k0, k1,
we have

SoKAC(x) = P2(P1(x ⊕ k0) ⊕ k1) ⊕ k0 ⊕ P1(x ⊕ k0)

and

f(u, x) = SoKAC(x) ⊕ P2(P1(x) ⊕ u) ⊕ P1(x)

has period k0 for u = k1 and thus both keys can be recovered using the Grover-
Meets-Simon attack.

3.4 Applications to Classical Cryptanalysis

Obviously, periodic functions as presented in Sect. 3.2 do not only lead to quan-
tum attacks based on Simon’s algorithm, but also to classical birthday-bound
attacks. Similarly, attacks based on Grover-Meets-Simon can be converted to
classical attacks too. Even more practical classical attacks, polynomial-time
attacks, are special cases where one has to find a constant function, i.e. a function
where all elements are periods. However, during our work we have not encoun-
tered any such function, which is not surprising at least for the constructions
with classical security proofs. Nevertheless, we believe that our tool is a valuable
addition to the toolbox of symmetric cryptanalysis. It can be applied to many
more constructions in the future. In particularly, it might be of use already in
the actual design process of a new construction as a tool to quickly rule out
insecure approaches.

4 Generalizing Simon’s Algorithm

There are many properties of Boolean functions that have been found to be
meaningful from a cryptographic point of view, but most of them have not yet
been found to be significantly more easy to compute with quantum resources.

In this section we discuss how we attempted to address this problem by
investigating whether it is possible to generalize Simon’s algorithm, or rather
the Bernstein-Vazirani algorithm, in order to be able to compute other poten-
tially interesting properties of Boolean functions, focusing on linear invariant
properties: we conclude that the generalization we propose does not allow to do
that, by proving that the corresponding generalization of the Walsh-Hadamard
transform is not linear invariant. A more formal discussion of the precise state-
ments and proofs will be given in Sect. 6. Note that we focus on the case of
Walsh-Hadamard or Fourier-transformations over F2 only.
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4.1 The Idea: Using Non-standard Hadamard Matrices

In order to understand our idea for generalizing Simon’s algorithm, we consider
the following small variation of the quantum routine used in Simon’s algorithm,
due to Bernstein-Vazirani [1], where H0 corresponds to the standard Hadamard
transform (H0)x,y = (−1)〈x,y〉.

|0n〉
|−〉

H0
Uf

H0

This circuit outputs a vector x that belongs to the support of the Walsh-
Hadamard (or Fourier) transformation f̂ of f . This is due to the fact that the
state of the n-qubit register before the final application of H0, ignoring the
constant that makes the state unitary, is represented by

φ :=
(
(−1)f(0), . . . , (−1)f(2n−1)

)T

,

and applying H0 to φ yields a vector whose components are

(H0φ)x =
∑

y

(−1)f(y)+〈x,y〉 = f̂(x). (9)

Therefore, since a measurement of such a state results in a x such that f̂(x) �=
0, with enough measurements of the above circuit, we can compute the space
generated by the support of f̂ and recover the space of the linear structures of f
thanks to Theorem 1. More precisely, the measurement yields x with probability
f̂(x)2

22n . However, for the purpose of this work, we are simply interested in the fact
that the measurement of the state at the end of the circuit is a vector x such
that f̂(x) �= 0. For a more thorough analysis of the algorithm we refer to [27].

The idea behind our generalization is to consider Hadamard matrices other
than the standard one. More precisely, in this paper we will study the class of
transforms given by

f̂H(x) :=
∑

y

(−1)f(y)+g(x,y) = (Hφ)x

with H being a Hadamard matrix (H)x,y = (−1)g(x,y). This corresponds to
studying the following generalization of the previous circuit, which we call
Simon(H).

|0n〉
|−〉

H0
Uf

H

This circuit outputs x such that f̂H(x) �= 0 and could be used to compute
efficiently (under the hypothesis that H can also be efficiently implemented)
information about f̂H(x). In particular, echoing Simon’s algorithm, the space
generated by its support could be computed and could potentially correspond
to a (cryptographically) relevant property of f (as is the case for H = H0).



Generalizations and Automatized Applications of Simon’s Algorithm 791

4.2 Results

There are several interesting discussions raising from this perspective. First,
as the number of Hadamard matrices to consider for f̂H(x) (or equivalently
Simon(H)) is huge even for small dimensions, reducing their amount using a
suitable notion of equivalence is of interest. Second, and most importantly, the
question is if computing those transforms can be used to compute anything of
(cryptographic) relevance.

In this paper we discuss those points. We show in Sect. 6.1 that the usual
notion of equivalence for Hadamard matrices2 nicely translates into equivalent
quantum algorithms. More precisely, given two equivalent Hadamard matrices
H and H ′, the Simon(H ′) circuit can be turned into the Simon(H) circuit by
classical pre- and post-processing (Proposition 1).

Regarding the question of whether anything relevant can be computed with
Hadamard matrices that are not equivalent to the standard Hadamard (and
therefore not to the standard Fourier-transform), we argue that this is not the
case for any property that is invariant under linear equivalence. This brings us
to conclude that any property related to this is unlikely to be of relevance for
existing attack vectors (since most of the properties used in cryptography, like
the algebraic degree, the balancedeness, the nonlinearity (order) of f are indeed
linear invariant).

Indeed, we observe that the fact that Simon(H0) allows to compute such a
criterion, i.e. the existence of linear structures, can be seen as a consequence of
the fact that, for any isomorphism A

f̂ ◦ A = f̂ ◦ B,

where B−1 = AT .
Our main result, stated in the next theorem and proved in Sect. 6.2, is that

this property already classifies the standard Hadamard transformation.

Theorem 2. If for any A ∈ GL(n, F2) there exists B ∈ GL(n, F2) such that for
all Boolean functions f we have

f̂ ◦ A
H

= f̂H ◦ B

then H is equivalent to H0.

This result implies that, if H is not equivalent to H0, then the transform f̂H

cannot capture any linear invariant property of f , because the transform itself
does not vary linearly.

Note that there is a technical caveat: indeed, we cannot strictly exclude that
the circuit Simon(H) could be used to compute properties that are linear invari-
ant even if H is not equivalent to H0. For example, for the space Vf generated by

2 A list of possible representatives of Hadamard matrices up to dimension 28 is known
and can be found here: http://neilsloane.com/hadamard/.

http://neilsloane.com/hadamard/
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supp(f̂H) Theorem 2 does not directly imply that Vf is also not linear invariant.
However, such a behaviour would be very surprising.

Therefore we conclude that, unless H is equivalent to H0, it is unlikely that
the algorithm given by Simon(H) could compute any property of f that is linear
invariant.

5 Constructing Circuits: Efficiency Considerations

We already described the basic idea of finding periodic functions in Sect. 3.1.
In this section, we explain our approach in more detail. We define a notion of
circuits, establish a normal form for these, and work out how many circuits there
are. Furthermore, we describe how we exclude useless and enumerate good cir-
cuits, and also how we filter out trivial periods. After that, we use our algorithm
to rediscover known results automatically. Thereby, we do not only demonstrate
that our approach is indeed sensible, but we also gather valuable experience that
we reuse when we look for novel attacks.

5.1 Circuits

Different variants of circuits are used in a variety of contexts. Our idea of a
circuit is mostly inspired by Boolean circuits used in computational complexity
theory and related fields. Since we are mainly interested in a practical way of
automatically generating circuits, we choose to define circuits from the ground
up. Thereby, we can make sure that our formalism and our implementation are
well-matched.

Definition 2 (Syntax of Circuits). A circuit C = (D,X,G , vout, n) is
defined by

– a directed acyclic graph D = (V,E) with labeled nodes and edges,
– a set of input nodes X ⊂ V ,
– a set of gate functions G = {G0, G1, . . . , Gg−1} where Gi : F

n
2 × F

n
2 → F

n
2 ,

– an output node vout ∈ V .

We assume V = {0, 1, . . . , p − 1} and X = {0, 1, . . . , q − 1} for some p, q ∈ N.
Nodes v ∈ V \ X are labeled with gate functions. We denote the gate function
associated with v by vG. For all v ∈ V \ X there is a left and a right predecessor
of v which we denote by vL and vR resp.. It must hold that vL < v and vR < v.
The edge (vL, v) is labeled with 1 and (vR, v) is labeled with 2. If vL = vR, then
(vL, v) is labeled with 3. There are no other edges. We denote |V \X| as the size
of C.

Throughout this work, we will omit parts of this formal definition if they
are clear from the context. We want to stress that gate functions only take two
inputs and have one output.
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Definition 3 (Semantics of Circuits). For a circuit C = (D,X,G , vout, n)
and an input assignment A : X → F

n
2 , the output of a node v is defined as

out(v) =

{
A(v) if v ∈ X

vG(out(vL), out(vR)) if v ∈ V \ X.

The output of C is set to out(vout). We denote the function described by C as
Cf .

Of course, in our algorithm, we want to avoid checking the same function
multiple times. Therefore, we want to establish a normal form for circuits next.
To do so, we first define an equivalence relation in a straightforward way. Then
we illustrate a non-normal circuit in Example 1 and formalize the concept of
equivalent nodes, loose ends and ordered circuits. Finally, we define the circuit
normal form in Definition 9.

Definition 4 (Equivalence of Circuits). Two circuits C and C ′ are said to
be equivalent if they correspond to the same function, i.e., if Cf = C ′

f . We denote
this as C ∼ C ′.

Example 1. The circuit in Fig. 3a meets Definition 2 and by Definition 3 com-
putes the function f(x, y, z) = G2(G0(x, y), G1(G0(x, y), z)). However, notice
that there are two nodes (marked in blue) that compute the same intermedi-
ate value and another node (marked in green) that is never used. Hence, this
is not a natural way of representing f . In contrast, the circuit in Fig. 3b, which
also computes f , has no useless nodes and therefore, is a more sensible way to
represent f .

G2

G1

G0G0 G0

x y z X

1

2

1

2

1
2 1 2

1 2

(a) Circuit in non-normal form.

G2

G1

G0

x y z X

1
2

1

2
1 2

(b) Circuit in normal form.

Fig. 3. A circuit in (non-)normal form.

Definition 5 (Equivalence of Nodes). All nodes in a circuit C are equivalent
to itself. For all x ∈ X there is no other node than x that is equivalent to x.
We define the equivalence of two nodes u, v ∈ V \ X, which we denote by u ∼ v,
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inductively by stating that u and v are equivalent if both are assigned with the
same gate function and uL ∼ vL and uR ∼ vR. We call a circuit onefold if there
are no two distinct nodes that are equivalent.

Definition 6 (Loose End). A node v ∈ V \ X in a circuit C is called a loose
end if v �= vout and there is no edge (v, u, l) ∈ E for some node u and a label l.

Recall that a non-input node v in a circuit C is just a natural number that
is labeled with a gate function, and that we require that v is greater than its
predecessors. In other words, we assert that the order of the natural numbers
< is a topological order of the underlying graph of C. Thereby, starting with
the empty circuit that only contains the input nodes X, < describes an order in
which we can add the gates to obtain the complete circuit C. But notice that
this order is not always unique because C is not required to have a path that
contains all nodes. Of course, we demand uniqueness so that we do not check
the same circuit multiple times. Therefore, we commit to a specific topological
order. As a first step, we formalize the depth of v, i.e., the length of the longest
path from an input node to v.

Definition 7 (Depth of a Node). For a node v in a circuit C we define the
depth d of v as

d(v) = max{d(vL), d(vR)} + 1

where d(x) = 0 for all x ∈ X.

Now it only remains to sort nodes of the same depth. The input nodes X =
{0, 1, . . . , q − 1} are given, so we simply use < for X. For non-input nodes, we
use the associated gate function and the left and right predecessor. For the gate
functions we assume that G = {G0, G1, . . . , Gg−1} is ordered by G0 < G1 <
· · · < Gg−1. We formalize this in the following definition.

Definition 8 (Order of Nodes and Ordered Circuit). For two nodes u, v ∈
V in a onefold circuit C we have u ≺ v if u �= v and

– d(u) < d(v) or
– u, v ∈ X and u < v or
– d(u) = d(v) and uG < vG or
– d(u) = d(v) and uG = vG and uL ≺ vL or
– d(u) = d(v) and uG = vG and uL = vL and uR ≺ vR.

We call a circuit ordered if for all pairwise distinct nodes u, v ∈ V it holds that
u < v ⇐⇒ u ≺ v.

Definition 9 (Normal form for Circuits). A circuit C is in normal form
if C is onefold, without loose ends and ordered. We call such circuits normal.

Lemma 1. For every circuit C, there is an equivalent circuit C ′ s.t. C ′ is in
normal form and has at most as many nodes as C.
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Proof. To bring C into normal form, we first make C onefold. To do so, for all
equivalent nodes u, v ∈ V we remove u and replace edges (u,w, l) by (v, w, l).
After that, we remove all loose ends. Last, we make C ordered by permuting the
underlying graph D and its labels accordingly. �

Now that we have established our definitions for circuits, we want to study
the number of possible circuits. Recall that our basic approach is to fix X and
G based on the construction we are interested in, and also bound the number
of non-input nodes by some k ∈ N. The essential part here is that there are
gates in G that correspond to oracles an attacker would have access to in the
corresponding security games. For now, we only restrict the size of X and G ,
i.e., we consider the circuit class

C (q, g, k) = {C | |X| = q, |G | = g, |V \ X| = k}.

Strictly speaking, we should not only consider circuits of size exactly k but
circuits of size up to k. But as we will see, for our application there are by far
more circuits of size k then there are circuits of size k − 1. So for the sake of
simplicity, in our analysis, we only consider circuits of size exactly k.

Of course, we are mainly interested in the number of normal circuits, i.e., in
the size of

Cnorm(q, g, k) = {C ∈ C (q, g, k) | C is normal}
because from Lemma 1 it immediately follows that they cover all circuits up to
equivalence. Nevertheless, we will first derive the number of all circuits of size k
which we will then use to estimate the number of normal circuits.

To determine the number of all circuits, we consider a tree T with root X
and depth k, where every edge corresponds to adding a new gate. The leaves of
this tree are the circuits in C (q, g, k). We call T the circuit tree of C (q, g, k).
T is diagrammed in Fig. 4. There are g · q2 possible ways to add the first gate.
g · (q + 1)2 for the next and so on. In total, the number of all leaves is

|C (q, g, k)| =
k−1∏

i=0

g · (q + i)2 = gk ·
(
qk

)2

. (10)

Therefore, the circuit size k has the highest impact on the number of all circuits
and the number of input nodes q has a slightly higher impact than the number
of gate functions g.

Now, to estimate the number of normal circuits, we wrote a sage script that
essentially generates random circuits and then checks if they are normal. The
results of this simulation, as well as the number of all circuits, are illustrated in
Fig. 5 for the parameters k ≤ 9 and (q, g) ∈ {(1, 3), (3, 3), (3, 5)}. The choice of
these parameters is motivated by the idea of using X = {x} or X = {x, αb, αb̄}
and G = {⊕, ENC,DEC} where ENC and DEC might be split into a left and
a right half. We can draw two conclusions from Fig. 5. On the one hand, for
small circuit classes, i.e., for circuit of size five or smaller, we might iterate all
normal circuits with moderate computing power. On the other hand, we need
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Fig. 4. Circuit tree T of C (q, g, k). By +(G, l, r) we denote the adding of a node with
gate function G, left predecessor l and right predecessor r.

to reduce the number of circuit further for larger classes. To do so, we establish
a set of rules R that circuits have to comply with. These rules are basically an
expansion of our already set up requirement that circuits must be normal. But
they also include requirements that are based on the concrete choice of X and G .
E.g., one gate function that we always use is the XOR function, and it is natural
to require that the inputs of the XOR are ordered since XOR is commutative.
Thus, we consider the class of circuits

C (X,G , k, R) = {C | C has input nodes X, gate functions G ,

|V \ X| = k,∀r ∈ R : r(C) = 1}.

Notice that here we overload the notation because we are not interested in the
pure size of X and G anymore. In the following, we use R(C) = ∧r∈Rr(C) to
shorten the notation.

5.2 Enumerating Circuits

The most straightforward way of enumerating C (X,G , k, R) is surely to simply
enumerate all circuits of size k with input nodes X and gate functions G . Then,
for each circuit, we can check whether it complies with R. But, as we have seen
in the last section, there are many more circuits than circuits in normal form.
So, this approach is rather inefficient.
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Fig. 5. Number of circuits for various parameters.

To find a better strategy, we assume that we cannot only test R on a complete
circuit C ∈ C (X,G , k, ∅) but also on every partial circuit

C ′ ∈
⋃

1≤i<k

C (X,G , i, ∅)

in such a way that no partial circuit C ′ with R(C ′) = 0 can be extended to a
circuit C s.t. R(C) = 1. E.g., again consider the XOR gate and observe that
once we added a bad XOR gate, there is no way to get to a good circuit. The
same applies to all other rules we use. Now recall the circuit tree T from Fig. 4.
We are interested in enumerating all leaves C of T for which R(C) = 1 holds.
Let us assume, that we have already identified the first, i.e., the leftmost, circuit
C∗ with this property. Then, we will first check all right siblings of C∗. After
that, we test R(C†) where C† is the first right sibling of the parent of C∗. If
R(C†) = 1 we will check all children of C†. Otherwise, we continue with the
next sibling of C†. At some point, there are no more siblings of C† left. Then,
we continue with the same approach on the level of the parent of C†. As soon
as we hit the root of T we are finished with our search.

Notice that, since the setting is rather vague, neither can we exclude that
there are more efficient ways to enumerate circuits or even find periodic circuits
nor can we give a general runtime analysis of our approach. Instead, we will
analyze the runtime for concrete and practical examples in Sect. 5.4.

One rule that we always want to use is

rnormal(C) =

{
1 if C is in normal form
0 else.

Therefore, we now describe how rnormal can be checked on partial circuits. First,
recall that we call a circuit normal if it is onefold, without loose ends and ordered.
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For loose ends, we observe that with each new node, we can get rid of at most
one loose end. So if

|{v ∈ V \ X | �u ∈ V : v = uL ∨ v = uR}| > 1 + (k − (|V | − |X|))

holds for a partial circuit C ′, there is no way of adding k − (|V | − |X|) nodes to
C ′ to obtain a circuit without loose ends. To check whether C ′ is ordered, we
only have to test u ≺ v as defined in Definition 8 where v is the last added and
u is the second but last added node resp. This is because we will check R(C ′)
only if the predecessor of C ′ complied with R. For the same reason, if v is the
last added node, it suffices to check whether the set

{u ∈ V | uG = vG and uL = vL and uR = vR}

is empty to check if C ′ is onefold. This is because if C ′ without v is onefold then

uL ∼ vL ⇐⇒ uL = vL

and the same holds for the right predecessor.

5.3 Testing a Circuit for Periodicity

Testing a circuit C, i.e., the function Cf , for periodicity is fairly simple because
we can evaluate Cf on all inputs and then check whether there are any periods.
When we enumerate circuits, we do not evaluate each circuit from the ground
up. Instead, we store the evaluation of each node s.t. after adding a node and
checking that it complies with all rules, we only have to evaluate the new node.

Aside from that, we want to filter out as much trivial periods as possible. By
trivial periods, we mean periods that bear no useful information. For example,
consider the function

f(x) = E(x) ⊕ E(x ⊕ α)

where E is an encryption oracle and α is an arbitrary constant. Obviously, f
has a period s = α. But this has nothing to do with the structure of E and in
fact, if we replace E with a truly random function E′, the period persists. Since
our enumeration will encounter functions of this kind, we want to check whether
a period is trivial or not. To do so, we can replace all oracles by their random
version and see whether the period persists. If so, we discard the period. Notice
that the period may change since the period could depend on the oracle gates,
e.g., consider f as above but replace α with E(α). We want to remark that this
essentially matches the definition of a distinguisher, i.e., a non-trivial period is
a property that is present in the real but not in the random case.

Notice, since we instantiate the constructions with a small input size, we
might identify or miss a period accidentally. In practice, this was never a problem
and in case of uncertainty, we can always repeat the search with fresh randomness
or slightly increase the input size.
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5.4 Setup of Our Search

Known Attacks. Here, we rediscover known attacks with our automated search
algorithm. Of course, the primary intention here is to identify sound choices for
gates, inputs and rules that we can reuse when we search for novel attacks. Fur-
thermore, we use the occasion to investigate the running time of our algorithm
in a practical scenario.

Recall that the attack on the Even-Mansour cipher [18] is based on the func-
tion

f(x) = ENC(x) ⊕ P (x) = P (x ⊕ k0) ⊕ k1 ⊕ P (x) (11)

with period s = k0. Therefore, our attack requires input nodes X = {x} and
gates G = {⊕, ENC,P}. Notice that, both ENC and P are functions of one
variable, but our definition requires that both are functions of two variables.
Therefore, we set the rule

rSI(C) =

{
1 if ∀v ∈ V : vG ∈ {ENC,P} ⇒ vL = vR

0 else.

We can enforce rSI simply by checking if vG ∈ {ENC,P} ⇒ vL = vR holds for
each node v that we add to a circuit. Furthermore, since for Even-Mansour P is
just a public permutation, only circuits that contain at least one ENC gate are
of interest. Therefore, we add the rule

r1E(C) =

{
1 if ∃v ∈ V : vG = ENC

0 else.

This rule is of course only enforced for complete circuits, i.e., for circuits of size
k. Equivalently, we can say that r1E(C ′) = 1 for all partial circuits C ′. Last, we
add a rule that eliminates some circuits that are equivalent to another circuit
because of the commutative or self inverse properties of the XOR function. That
is, r⊕ excludes all circuits that contain a node v with vG = ⊕ for which vL ≺ vR

does not hold. Again, this can be checked each time we add a new gate. This also
excludes circuits which compute the XOR of a node with itself. In addition, r⊕
shall exclude circuits for which there is a node that contributes twice to a XOR
sum, and also circuits for which there are two nodes that compute the same
XOR sum. To check these, for each node v we store a set Σv that is defined as
follows

Σv =

{
{v} if v ∈ X or vG �= ⊕
ΣvL

∪ ΣvR
if vG = ⊕.

Thereby, Σv contains all nodes that contribute to the XOR sum if v is an XOR
gate. So if we add a new node v we only have to check that the intersection
ΣvL

∩ ΣvR
is empty and that there is no other node u s.t. Σu = Σv.

As we saw in Sect. 3.1, the distinguishing attack by Kuwakado and Morii
against 3-round Feistel cipher uses the function

f(x, b) = ENCL(x, αb) ⊕ αb̄ = F1(x ⊕ F0(αb)) ⊕ αb ⊕ αb̄
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with period s = (F0(α0) ⊕ F0(α1))||1 where α0, α1 ∈ F
n
2 are arbitrary

distinct constants. To find this f , we use X = {x, αb, αb̄} and set G =
{⊕, ENCL, ENCR}. In terms of rules, we first notice that αb and αb̄ are equiv-
alent for the attack. Therefore, we demand that αb appears first. Further, the
output must depend on x and at least on one of αb and αb̄ because otherwise
there will be trivial periods. To check this, for complete circuits, we simply check
whether there is a path from x to vout and from αb or αb̄ to vout. All the above
rules do not exclude useful periodic circuits from the search. To decrease the
search space even further, we limit the number of oracle queries to one. There-
fore, ENCL and ENCR each are allowed only once in a circuit. If they both
appear in a circuit, we require them to have the same inputs. Last, we enforce
that ENCL and ENCR depend on x. This, again, can be checked with a reach-
ability test in the underlying digraph, and excludes circuits that, e.g., compute
ENCL(αb, αb̄). Although the last two rules might exclude useful periodic cir-
cuits, based on the periodic functions from the literature and our experience, we
believe that this are reasonable additions to our set of rules.

Other attacks make also use of decryption queries, e.g., in [14, Section 5]
the authors present a quantum chosen-ciphertext distinguisher against 4-round
Feistel. To find such, we add decryption oracles to the set of gate functions. So,
for Feistel, we have G = {⊕, ENCL, ENCR,DECL,DECR}. Naturally, we add
a rule to exclude circuits that, e.g., decrypt an unaltered ciphertext. Further, we
demand that DEC gates depend on ENC gates.

We now briefly discuss the complexity of the searches on Even-Mansour and
Feistel. Consider Fig. 5 for k up to 6 and compare it with Fig. 6 which shows
the complexity, i.e., the number of tests our algorithm needs. The solid lines
are essentially the same in both plots. A trivial search algorithm would test all
circuits (solid lines) for normality and then test all normal circuits (dotted lines
from Fig. 5) for periodicity. Our algorithm does not only test for normality, but
also for other rules defined by R. But these tests are done in a sophisticated way
on (partial) circuits. Therefore, for our choices of R, a single test is not more
complex than a test for normality. But the number of tests is clearly reduced
(solid vs. dashed lines). And so is the number of tests for periodicity (dotted
lines from Fig. 5 vs dotted lines from Fig. 6).

MISTY. Next, we describe how we set up our automated search algorithm to
find periodic functions for 4-round MISTY R-FK and 5-round MISTY L-FK.
Based on our insights from the previous section, we choose gates

G = {⊕, ENCL, ENCR, F, F−1}.

So, we split the encryption gate in the same manner as for our searches on Feistel
structures. In terms of rules, we use rnormal and r⊕ and of course also ensure
that F and F−1 only take a single input and do not uncompute each other. If we
search for large circuits of size k > 5 we also restrict the number of encryption
queries to one, again in the same way as we did for Feistel. For the input nodes
X we either choose only a single input x or x and a constant α. For 5-round
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Fig. 6. Number of circuits and tests in practice.

MISTY L-FK, the search yields not only f2 from Eq. (5) but also the following
additional functions ti with periods ri.

t1(x) = ENCL(F−1(x), α) ⊕ x r1 = F (α) ⊕ k1

t2(x) = ENCR(F−1(F−1(x)), F−1(x)) ⊕ x r2 = F (k0) ⊕ k2

t3(x) = ENCL(F−1(F−1(x)), F−1(x)) ⊕ F (x)

⊕ ENCR(F−1(F−1(x)), F−1(x)) r3 = k0 ⊕ k1 ⊕ k2 ⊕ F (k0)

t4(x) = ENCL(F−1(F−1(x)), F−1(x)) ⊕ F (x) ⊕ x r4 = k0 ⊕ k1

Here, α ∈ F
n
2 is an arbitrary constant. However, notice that these are of course

our polished results. In reality, we might have encountered some variations first.
For instance, if we choose the circuit size k for t1 too large, we find circuits
where α is permuted first. Furthermore, notice the close connection between t2,
t3 and t4 and their corresponding periods. We have t4(x) = t2(x) ⊕ t3(x) and
r4 = r2 ⊕ r3. This is of course due to the internal structure of MISTY and
nothing we can exploit in general. E.g., consider t1 and t2. It is easy to verify
that t1(x) ⊕ t2(x) is not periodic.

For MISTY, the search that yielded the circuit for t3, for which we have
|X| = 1, |G | = 5 and k = 7, was the most expensive one. Our laptop took six
minutes to traverse the circuit tree of size 241 by doing 225 rule tests and 218

periodicity tests.

Feistel. For our search on Feistel, we use essentially the same setup as before.
Furthermore, for 4-round Feistel-FK, our search yields not only f3 from Eq. (6)
but also

t5(x) = ENCL(F (x), x) ⊕ F (x)



802 F. Canale et al.

with period r5 = k1 ⊕ F (k0).
For the second search on 5-rounds Feistel-FK, we add a gate function F−1

and remove ENCL or ENCR to reduce the runtime. This search, for which we
have |X| = 2, |G | = 4 and k = 7, was the most expensive one. Our laptop took
twelve minutes to traverse the circuit tree of size 244 by doing 226 rule tests and
219 periodicity tests.

6 Proofs of the Results in Section 4

In this section we first show that equivalent Hadamard matrices give rise to
essentially equivalent quantum algorithms (Proposition 1). Finally, we give a
proof of Theorem 2, with the exception of a technical result whose proof can be
found in the extended version of the paper [5].

6.1 Equivalence of Hadamard Transformations

Let us now consider a Hadamard matrix H ∈ R
2n×2n and consider it given as

(H)x,y = (−1)g(x,y),

for a suitable choice of g : F
n
2 × F

n
2 → F2.

We define the Fourier-like transformation of H as follows

Definition 10. For a Boolean function f : F
n
2 → F2, we define

f̂H(x) := (Hφ)x =
∑

y∈F
n
2

(−1)f(y)+g(x,y),

where (Hφ)x is the component x of the vector H0φ, and φ is the vector

φ =
(
(−1)f(0), . . . , (−1)f(2n−1)

)T

.

Hadamard matrices are an interesting research topic on their own, with fun-
damental questions still being unsolved. In particular, it is not even clear for
which dimension N Hadamard matrices exist. A famous conjecture states that
there exists at least one Hadamard matrix if the dimension is divisible by four.
This is still an open problem and, at the time of writing, the smallest such integer
for which no Hadamard matrix is known is N = 668 [16].

However, since we work on vector spaces of dimension 2n for some n ∈ N, we
know that there is at least one Hadamard matrix for each of these dimensions,
and that is indeed H0.

In fact, a related question that is more interesting for our context is under-
standing how many different Hadamard matrices exist in each dimension that
could possibly result in meaningfully different routines Simon(H). To this end,
we consider the following – standard – notion of equivalence.
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Definition 11. Two Hadamard matrices H,H ′ are said to be equivalent if there
exist diagonal matrices D1,D2 whose diagonals take entries in {−1, 1} and per-
mutation matrices P1, P2 such that

H ′ = P1D1HD2P2.

Similarly, we will say that two transformations f̂H and f̂H′
are equivalent if H

and H ′ are equivalent.

As proved in [5], two equivalent matrices H and H ′ will result in the circuits
Simon(H) and Simon(H ′) being the same, up to some classical pre- and post-
processing, as we state in the following result.

Proposition 1. Let H and H ′ be two equivalent Hadamard matrices. There
exist functions PRE : Bn → Bn and POST : F

n
2 → F

n
2 such that, for any f : F

n
2 →

F2

Pr(x ← Simon(H ′)(f)) = Pr(x ← POST(Simon(H)(PRE(f))).

Thus Simon(H), with some classical pre- and post-processing, perfectly sim-
ulates the routine Simon(H ′) for any H ′ equivalent to H. It follows that we can
indeed reduce ourselves to consider only non-equivalent Hadamard matrices.

6.2 Proof of Theorem 2

In this section we provide a proof of Theorem 2. First, we prove that we can
reduce the problem to the simpler case where the matrix B is not arbitrary and
simply consider B = AT (Proposition 2), thanks to a result on the structure of
the group GL(n, F2). After that, we prove that the possibility for H are then
limited (Proposition 3) and conclude the proof.

Let us consider a Hadamard matrix H and let f̂H : F
n
2 → Z be its transform

f̂H(i) = (Hφ)i as in Sect. 4.1. Let g : F
n
2 × F

n
2 → F2 be the (unique) Boolean

function implicitly defined by (−1)g(x,y) = (H)x,y. We will make this relation
explicit by indicating H as Hg. The idea of the proof of Theorem 2 is that, if
f̂Hg satisfies the theorem, then the corresponding Boolean function g is (almost)
the scalar product, and therefore Hg is equivalent to H0 = H〈x,y〉.

Indeed, let for any Boolean function f we have:

f̂ ◦ A
Hg

(x) =
∑

y∈F
n
2

(−1)(f◦A)(y)+g(x,y) =
∑

y∈F
n
2

(−1)f(y)+g(x,A−1y)

where we considered A−1 instead of A for ease of notation. On the other hand,

(f̂Hg ◦ B)(x) =
∑

y∈F
n
2

(−1)f(y)+g(Bx,y).

Given the arbitrary choice of f , the above quantities are equal for all x ∈ F
n
2 if

and only if
g(Bx, y) = g(x,A−1y) (12)
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for all x, y ∈ F
n
2 . In fact, if there exist χ, υ ∈ F

n
2 for which Eq. (13) does not hold,

then if we consider the Boolean function fχ(y) := g(χ,A−1y) for all y ∈ F
n
2 , it is

clear that f̂χ ◦ A
Hg

(χ) �= f̂
Hg
χ ◦ B(χ). Furthermore, notice that for the arbitrary

choice of A, Eq. (12) is equivalent to finding B such that

g(x,Ay) = g(B−1x, y). (13)

Therefore proving the theorem is equivalent to solving Eq. (13).
The main difficulty of the proof is the a priori freedom in choosing B for a

given A. We therefore want to first understand what is the dependence of B on
A. To do so, we define the function Fg : GL(n, F2) → GL(n, F2) such that

Fg(A) = B.

The key observation is that this mapping is actually an automorphism over
GL(n, F2). Indeed, if g is a solution of Eq. (13), Fg is a well-defined function
because if for A ∈ GL(n, F2) there existed two distinct B,B′ ∈ GL(n, F2) such
that Eq. (13) holds, then if we consider z ∈ F

n
2 such that B−1z �= (B′)−1z, we

would have that

g(B−1z, x) = g(z,Ax) = g((B′)−1z, x)

for all x ∈ F
n
2 . But this contradicts the fact that HgH

T
g is the identity matrix.

The same reasoning shows that Fg is injective, and therefore bijective. Fur-
thermore, it also holds that Fg(A · A′) = Fg(A) · Fg(A′), from which it follows
that Fg is an automorphism over GL(n, F2). Luckily for us, it is possible to char-
acterize such automorphisms in a nice way, thanks to a result due to Dieudonné
[9], which can be found in a more convenient formulation for our purposes in
[19].

Lemma 2 ([9,19]). For every automorphism F of GL(n, F2), there exists G ∈
GL(n, F2) such that either

F (A) = G−1AG or F (A) = G−1(AT )−1G (14)

for all A ∈ GL(n, F2).

This characterization, together with the considerations above, will allow us
to reduce the proof to the case of Theorem 2 with B = (AT )−1, as is stated by
the following proposition.

Proposition 2. For any g such that Hg is Hadamard and that fulfils Eq. (13),
there exists a matrix G ∈ GL(n, F2) such that g(x, y) = g(Gx, y), where g fulfils

g(x,Ay) = g(AT x, y). (15)

Proof. The result is trivial for n = 1, 2 and thus we assume n ≥ 3 from now on.
Let us suppose that Fg is of the first form, i.e. it exists G ∈ GL(n, F2) such

that Fg(A) = G−1AG for all A ∈ GL(n, F2). Let us prove that this is not
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possible. Let x �= y ∈ F
n
2 \ {0}. Then, since Hg is Hadamard, we have that∑

z∈F
n
2
(−1)g(x,z)+g(z,y) = 0, that is there are exactly 2n−1 values of z for which

g(x, z) �= g(z, y). This means that for any n ≥ 3 we can find z1, z2 such that
z1 �∈ {0, Gx} and z2 �∈ {0, G−1y} and g(x, z1) �= g(x, z2). Then, there exits
A ∈ GL(n, F2) such that y = Az1 and x = G−1A−1Gz2 (that is, A is such that
z1 
→A y and Gx 
→A Gz2), so that

g(z2, y) = g(z2, Az1) = g(Fg(A)−1z2, z1) = g(G−1A−1Gz2, z1) = g(x, z1)

which leads to a contradiction.
Let us now suppose that Fg is of the second form, i.e. Fg(A) = G−1(AT )−1G

for some G ∈ GL(n, F2). Consider g such that g(x, y) = g(x, (GT )−1y). Since
(GT )−1 is a permutation, we have that Hg is Hadamard if and only if Hg is
Hadamard and, furthermore, g satisfies Eq. (13) with B = Fg(A)−1 = G−1AT G
if and only if for all x, y ∈ F

n
2 and z = GT y

g(x,Az) = g(x,AGT y) = g(x, (GT )−1AGT y) = g(Fg((GT )−1AGT )−1x, y)

= g(AT x, y) = g(AT x,GT y) = g(AT x, z),

i.e. g satisfies Eq. (13) with B = AT . This is true for any A ∈ GL(n, F2) and
concludes the proof. �

In other words, for the proof of Theorem 2 we can consider without loss of
generality the case B = Fg(A) = (AT )−1.

What is now left to conclude is that if Fg(A)−1 = AT , then g is almost the
scalar product 〈x, y〉. This is exactly what the following proposition states. The
rather technical proof can be found in [5].

Proposition 3. Let g : F
n
2 × F

n
2 → F

n
2 such that for any A ∈ GL(n, F2)

g(x,Ay) = g(AT x, y) (16)

for all x, y ∈ F
n
2 . Then

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + ε3〈x, y〉 + ε4δ{(0,0)}(x, y)

where δM is the indicator function of a set M and ε0, . . . , ε4 ∈ F2.

Remark 1. The family of functions g of the proposition are the very natural
solutions that are found by observing that we have

1. if g, h are solutions then g + h is also a solution;
2. the scalar product 〈x, y〉 is a solution;
3. if g(x, y) = δM (x, y), where M is either {(0, 0)} or {0} × F

n
2 or F

n
2 × {0}

or F
n
2 × F

n
2 , then g is a solution because for any A ∈ GL(n, F2) and any

B ∈ GL(n, F2), g(x,Ay) = g(x, y) = g(Bx, y).

Now we can conclude the proof of Theorem 2.
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Proof of Theorem 2. We restrict to the case of g such that Hg is Hadamard and
fulfils Eq. (16). If g represents a Hadamard matrix Hg, then we know that

(HgH
T
g )α,β =

∑

x∈F
n
2

(−1)g(x,α)+g(x,β)

is zero whenever α �= β. We can assume the form given in Proposition 3, that is

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + ε3〈x, y〉 + ε4δ{(0,0)}(x, y).

Then we have

g(x, α) + g(x, β) = ε2(δ{0}(α) + δ{0}(β)) + ε3〈x, α + β〉+
ε4(δ{(0,0)}(x, α) + δ{(0,0)}(x, β))

so that
∑

x∈F
n
2

(−1)g(x,α)+g(x,β) =
∑

x∈F
n
2

(−1)ε3〈x,α+β〉+ε4(δ{(0,0)}(x,α)+δ{(0,0)}(x,β)).

But if α = 0 and β �= 0, then we must have that

(HgH
T
g )0,β =

∑

x∈F
n
2

(−1)g(x,0)+g(x,β) =
∑

x∈F
n
2

(−1)ε3〈x,β〉+ε4(δ0(x)) = 0

where we have used the fact that Hg is Hadamard. But
∑

x∈F
n
2
(−1)〈x,β〉 = 0, as

β �= 0. Then, the above equality holds if and only if ε3 = 1 and ε4 = 0. It follows
that if g is Hadamard and satisfies Eq. (16) then

g(x, y) = ε0 + ε1δ{0}(x) + ε2δ{0}(y) + 〈Gx, y〉
which means that Hg = (−1)ε0(Dδ{0})ε1H0(Dδ{0})ε2 , where Dh is the diagonal
matrix such that (Dδ{0})z,z = δ{0}(z) for all z ∈ F

n
2 . Therefore, we conclude that

Hg is indeed equivalent to H0. Thus concludes the proof of our main result. �

7 Conclusion

Motivated by the search for alternative ways to attack symmetric primitives, our
goal was to find new applications of Simon’s algorithm, as well as study possible
generalizations.

On the one hand, we have seen that the standard Hadamard transformation
is the only one that preserves linear equivalence. This result suggests that using
alternative Hadamard transformations will not help in improving known attack
vectors using the well studied linear-invariant cryptographic criteria. However,
it does not exclude the possibility of new attacks based on non linear-invariant
properties, that could profit from Simon(H). Moreover, for exploiting the stan-
dard criteria, our result shows that it is most promising to focus on the standard
Hadamard-transform when searching for new quantum algorithms.
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On the other hand, we have successfully automatized the search of periodic
functions, resulting in new key-recovery attacks. However, our algorithm can be
applied to other targets and can be still improved in order to search for larger
circuits. We leave a more optimized and parallelized implementation or the use
of a different representation of the functions, possibly allowing for the use of
symbolic computation, as interesting future work.
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