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Abstract. Commit-and-open Σ-protocols are a popular class of pro-
tocols for constructing non-interactive zero-knowledge arguments and
digital-signature schemes via the Fiat-Shamir transformation. Instan-
tiated with hash-based commitments, the resulting non-interactive
schemes enjoy tight online-extractability in the random oracle model.
Online extractability improves the tightness of security proofs for
the resulting digital-signature schemes by avoiding lossy rewinding or
forking-lemma based extraction.

In this work, we prove tight online extractability in the quantum
random oracle model (QROM), showing that the construction supports
post-quantum security. First, we consider the default case where com-
mitting is done by element-wise hashing. In a second part, we extend
our result to Merkle-tree based commitments. Our results yield a signif-
icant improvement of the provable post-quantum security of the digital-
signature scheme Picnic.

Our analysis makes use of a recent framework by Chung et
al. [CFHL21] for analysing quantum algorithms in the QROM using
purely classical reasoning. Therefore, our results can to a large extent
be understood and verified without prior knowledge of quantum infor-
mation science.

1 Introduction

Some interactive proofs come with amazing properties like zero-knowledge which
intuitively allows a prover to convince a verifier that she knows the witness to an
NP-statement without giving away information about this witness. Such zero-
knowledge proofs of knowledge are some of the most fascinating objects in cryp-
tography, and possibly in all of theoretical computer science. One might suspect
that their “magic” is due to the prover and verifier running an interactive proto-
col with each other, and that this interaction causes the verifier to be convinced.
Surprisingly, if the interactive proof is of suitable form, e.g. a Σ-protocol (i.e. a
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3-round public-coin protocol), the Fiat-Shamir transformation [FS87] provides
a natural way to remove the interaction from such protocols while preserving
(most of) the security properties, resulting in non-interactive zero-knowledge
proofs (NIZKs). The idea is to compute the challenge c as a hash c = H(a) of the
first message, rather than letting the verifier choose c. If the original Σ-protocol
has additional soundness properties, the resulting NIZK after the Fiat-Shamir
transformation is ideally suited to construct a digital-signature scheme, simply
by hashing the message m to be signed together with the first message a in
order to obtain the challenge c. The candidates Picnic [CDG+17] and Dilithium
[DKL+18] in the ongoing NIST post-quantum cryptography competition follow
this design paradigm.

This intuitive preservation of security properties under the Fiat-Shamir trans-
formation can be formalized in the random-oracle model (ROM), where the hash
function H is treated as a uniformly random function, and the security reduction
gets enhanced access to anybody who queries the random oracle, by seeing which
values are queried, and by possibly returning (random-looking) outputs. While
this situation is conveniently easy to handle in a non-quantum world, complica-
tions arise in the context of post-quantum security. When studying the security
of these non-quantum protocols against attackers equipped with large-enough
quantum computers, it is natural to assume that such attackers have access to
the public description of the employed hash function, and can therefore com-
pute it in superposition on their quantum computers. Therefore, the proper
notion of post-quantum security for random oracles is the quantum-accessible
random-oracle model (QROM) as introduced in [BDF+11]. Due to the difficulty
of recording adversarial random-oracle queries in superposition (also referred to
as the recording barrier), establishing post-quantum security in the QROM has
turned out to be quite a bit more difficult compared to the regular ROM.

Previous results in [DFMS19] (and concurrently in [LZ19b]) establish that for
any interactive Σ-protocol Π that is a proof of knowledge, the non-interactive
FS[Π] is a proof of knowledge in the QROM. [DFM20] simplified the techni-
cal proof and extended these results to multi-round interactive proofs. However,
the most desirable property from such a proof of knowledge is online extract-
ability Indeed, online extractability avoids rewinding, which typically causes a
significant loss in the security reduction and has other disadvantages (see later
for a comparison). Thus, online extractability allows for the tightest security
reductions.

Chailloux was the first to aim for showing online extractability of the Fiat-
Shamir transformation in the QROM when considering the relevant class of
commit-and-open (C&O) Σ-protocols and modelling the hash function used
for the commitments (and for computing the challenge) as a random oracle.
Indeed, the Fiat-Shamir transformation of such C&O Σ-protocols are known to
be online extractable in the classical ROM (see e.g. discussion in [Fis05]). In a
first attempt [Cha19], Chailloux tried to lift the argument to the quantum set-
ting by means of Zhandry’s compressed-oracle technique [Zha19], which offers
a powerful approach for re-establishing ROM results in the QROM, that has
been successful in many instances. Unfortunately, this first attempt contained a
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subtle flaw, which turned out to be unfixable, and despite changing the technical
approach, the latest version of this work still contains an open gap in the proof,
which is put as an assumption in [Cha21].1

In a recent article [DFMS21], online extractability of interactive C&O Σ-
protocols Π in the QROM is established ; the result applies as soon as Π
stisfies some liberal notion of special soundness, which is typically satisfied
. As pointed out in Appendix E of [DFMS21], one can use previous results
from [DFMS19,LZ19b,DFM20] to reduce the extractability of the resulting non-
interactive protocol FS[Π] to the extractability of the interactive protocol Π.
However, the resulting extraction error scales as O(ε/q2) which results in a pro-
hibitive loss for digital-signature schemes (see Table 1), leaving open the main
question originally posed by Chailloux:

How to establish tight security reductions of the Fiat-Shamir transformation
for commit-and-open Σ-protocols in the QROM?

As the technical quantum details of Zhandry’s compressed-oracle technique
are rather complicated and only accessible for experts, a recent article by Chung,
Fehr, Huang and Liao [CFHL21] establish a framework that allows researchers
without extensive quantum knowledge to still deploy the compressed-oracle tech-
nique (in certain cases), basically by reasoning about classical quantities only.
In short, the punchline of [CFHL21] is that, if applicable, one can prove quan-
tum query complexity lower bounds (think of collision finding, for instance) by
means of the following recipe, which is an abstraction of the technique devel-
oped in a line of works started by Zhandry [Zha19,LZ19a,CGLQ20,HM21]. First,
one considers the corresponding classical query complexity problem, analyzing
it by simulating the random oracle using lazy sampling and showing that the
database, which keeps track of the oracle queries and the responses, is unlikely
to satisfy a certain property (e.g. to contain a collision) after a bounded num-
ber of queries. Then, one lifts the analysis to the quantum setting by plugging
key observations from the classical analysis into generic theorems provided by
the [CFHL21] framework. A similar framework, using slightly different language
(and limited to sequential queries) was given in [CMS19].

1.1 Our Contributions

In this work, we slightly extend the framework from [CFHL21], and use it
to establish strong and tight security statements for a large, popular class of

1 Informally, quoting from [Cha21], the considered Assumption 2 is that the random
oracle can be replaced with a random function of a particular form “without harming
too much the studied scheme”. More formally, the security loss caused by the consid-
ered replacement is assumed to remain bounded by a given function of the number of
oracle queries. This assumption is rather ad-hoc and non-standard in that it is very
much tailored to the scheme and its proof. Furthermore, even though Assumption 2
is an assumption that could potentially be proven in future work , it is hard to judge
whether proving the assumption is actually any easier than proving the security of
the considered scheme directly, avoiding Assumption 2—as a matter of fact, in this
work we show that the latter is feasible, while Assumption 2 remains open.
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non-interactive zero-knowledge proofs and digital signature schemes. In broad
strokes, our contributions are threefold.

Online Extractability for a Class of NIZKs in the QROM. We prove
online extractability of the Fiat-Shamir transformation in the QROM for (a large
class of) C&O Σ-protocols. This solves the problem considered and attacked by
Chailloux. In more detail, we prove that if the considered C&O Σ-protocol sat-
isfies some very liberal notion of special soundness , then the resulting NIZK is a
proof of knowledge with online extractability in the QROM, i.e., when the hash
function used for the commitments and the FS transformation is modeled as a
quantum-accessible random oracle. Our security reduction is tight: Whenever a
prover outputs a valid proof, the online-extractor succeeds, except with a small
probability accounting for collision and preimage attacks on the involved hash
functions. For previous reductions, the guaranteed extraction success probability
was at least by a factor of q2 smaller than the succes probability of the prover
subjected to extraction (see Table 1). This is our main technical contribution,
see Theorem 4.2. Our result also applies to a variant of the Fiat-Shamir transfor-
mation where a digital signature scheme (DSS) is constructed. It thereby, for the
first time, enables a multiplicatively tight security reduction for, e.g., DSS based
on the MPC-in-the-head paradigm [IKOS07], like Picnic [CDG+17], Banquet
[BdSGK+21] and Rainier [DKR+21], in the QROM.

A More Efficient Unruh Transformation. When a Σ-protocol does not
have the mentioned C&O structure, a non-interactive proof of knowledge with
online extractability in the QROM can be obtained using the Unruh transforma-
tion [Unr15]. For technical reasons, the original Unruh transformation requires
the hash function to be length preserving, which may result in large commit-
ments, and thus large NIZKs and digital signature schemes. In the full version,
we revisit this transformation and show, by a rather direct application of our
main result above, that the online extractability of the Unruh transform still
holds when using a compressing hash function. The crucial observation is that
the Unruh transformation can be viewed as the composition of a “pre-Unruh”
transformation, which makes use of hash-based commitments and results in a
C&O protocol, and the Fiat-Shamir transformation. By applying our security
reduction, we then obtain the tight online extractability without requiring the
hash function to be length preserving.

More Efficient NIZKs via Merkle Tree Based Commitments. In real-
world constructions based on C&O protocols, like e.g., the Picnic digital signa-
ture scheme, commitments and their openings are responsible for a significant
fraction of the signature/proof size. For certain parameters, this cost can be
reduced by using a collective commitment mechanism based on Merkle trees.
This was observed in passing, e.g. in [Fis05], and is exploited in the most recent
versions of Picnic. We formalize Merkle-tree-based C&O protocols and extend
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our main result to NIZKs constructed from them (see Theorem 5.2). Applications
include a security reduction of Picnic 3, the newest version of the Picnic digital
signature scheme, that is significantly tighter than existing ones: An adversary
against the Picnic 3 signature scheme in the QROM with success probability ε
can now be used to break the underlying hard problem with probability ε, up
to some additive error terms, while previous reductions yielded at most ε5/q10,
where q is the number of random oracle queries. We outline this reduction in
Sect. 5.3.

We compare our reductions in detail to existing techniques in Table 1.

Table 1. Comparison of the losses of different reductions for the construction of a
NIZK proof of knowledge (NIZK-PoK) from a special-sound (Merkle tree based) C&O
protocol with constant challenge space size C using r-fold parallel repetition and the
Fiat-Shamir transformation. “OE” stands for online extraction, 2-s for special sound-
ness, UF-NMA for plain unforgeability and DSS for digital signature scheme. If the
content of a cell in row “security property A ⇒ security property B” is f(ε), this means
that an adversary breaking property B with probability ε yields an adversary break-
ing property A with probabilty f(ε). Grey text indicates results that do not apply
to Merkle-tree-based C&O protocols like the one used to construct the digital signa-
ture schemes Picnic 2 [KZ20] and Picnic 3 [CDG+19b]. The additive error terms are
g(q, r, n) = C−r + O(rq2−n/2) + O(q32−n) and h(q, r, n) = O(q32−n) + O(q2C−r),
where n is the output length of the random oracles, and q is the number of adversarial
(quantum) queries to the random oracle. Finally, we note that the constants hidden by
the big-O in h(q, r, n) are reasonable, see Theorems 4.2 and 5.2.

2-s⇒PoK PoKFS⇒NIZK-PoK,

PoKFS⇒UF-NMA DSS

2-sFS⇒NIZK-PoK,

2-sFS⇒UF-NMA DSS

Unruh rewinding [Unr12]
+ generic FS [DFMS19] O(ε3) O(ε/q2) O(ε3/q6)

Σ-protocol OE [DFMS21]
+ generic FS [DFMS19] ε − g(q, r, n) O(ε/q2) O(ε/q2) − g(q, r, n)

this work:
NIZK OE – – ε − h(q, r, n)

1.2 Technical Overview

Our starting point is the fact that the compressed-oracle technique can be seen
as a variant of the classical lazy-sampling technique that is applicable in the
QROM. Namely, to some extent and informally described here, the compressed-
oracle technique gives access to a database that contains the hash values that
the adversary A, who has interacted with the random oracle (RO), may know.
In particular, up to a small error, for any claimed-to-be hash value y output
by A, one can find its preimage x by inspecting the database (and one can
safely conclude that A does not know a preimage of y if there is none in the
database). Recalling that a C&O Σ-protocol Π is an interactive proof where the
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first message consists of hash-based commitments, and exploiting that typically
some sort of special soundness property ensures that knowing sufficiently many
preimages of these commitments/hashes allows one to efficiently compute a wit-
ness, constructing an online extractor for the Fiat-Shamir transformation FS[Π]
then appears straightforward: The extractor E simply runs the (possibly dishon-
est) prover P ∗, answering RO queries using the compressed oracle. Once P ∗ has
finished and outputs a proof, E measures the compressed-oracle database and
classically reads off any preimages of the commitments in the proof. Finally, E
run the special soundness extractor that computes a witness from the obtained
preimages . It is, however, not obvious that the database contains the preimages
of the commitments that are not opened in the proof, or that these preimages
are correctly formed. Intuitively this should be the case: the RO used for the
Fiat-Shamir transformation replaces interaction in that it forces the prover to
chose a full set of commitments before knowing which ones need to be opened.
The crux lies in replacing this intuition by a rigorous proof .

The main insight leading to our proof is that the event that needs to be
controlled, namely that the prover succeeds yet the extractor fails, can be trans-
lated into a property SUC (as in “adversarial SUCcess”) of the compressed-
oracle database, which needs to be satisfied for the event to hold. It is some-
what of a peculiar property though. The database properties that have led to
query complexity lower bounds in prior work, e.g. for (multi-)collision finding
[LZ19a,HM21,CFHL21] and similar problems [Zha19,CGLQ20,BLZ21], require
the database to contain some particular input-output pairs (e.g. pairs that col-
lide), while the database property SUC additionally forbids certain input-output
pairs to be contained.

Indeed, the framework from [CFHL21] is almost expressive enough to treat
our problem. So, after a mild extension, we can apply it to prove that it is
hard for any query algorithm to cause the compressed-oracle database to have
property SUC. Analyzing the relevant classical statistical properties of SUC is
somewhat tedious but can be done (see the proof of Lemma 5.1). The resulting
bound on the probability for the database to satisfy SUC then gives us a bound
on the probability of the event that the prover succeeds in producing a valid
proof while at the same time fooling the extractor.

Whenever it is advantageous for communication complexity, a Merkle tree can
be used to collectively commit to all required messages in a C&O protocol. This
collective commitment is one of the optimizations that improve the performance
of, e.g. Picnic 2 [KZ20] over Picnic [CDG+17]. As the above-described argument
for the extractability of C&O protocols already analyses iterated hashing (the
hash-based commitments are hashed to compute the challenge), it generalizes
to Merkle-tree-based C&O protocols without too much effort. We present this
generalization in Sect. 5, and obtain similar bounds (see Theorem 5.2).

1.3 Additional Related Work

Besides the already mentioned work above, we note that Chiesa, Manohar and
Spooner [CMS19] consider and prove security of various SNARG constructions,



Efficient NIZKs and Signatures from Commit-and-Open Protocols 735

while we consider the Fiat-Shamir transformation of C&O protocols with a form
of special soundness. Similar in to [CFHL21], they also provide some tools for
deducing security of certain oracle games against quantum attacks by bounding
a natural classical variant of the game.

2 Preliminaries

Our main technical proofs reliy on the recently introduced framework by Chung,
Fehr, Huang, and Liao [CFHL21] for proving query complexity bounds in the
QROM. This framework exploits Zhandry’s compressed-oracle technique but
abstracts away all the quantum aspects, so that the reasoning becomes purely
classical. We give here an introduction to a simplified, and slightly adjusted ver-
sion that does not consider parallel queries. We start with recalling (a particular
view on) the compressed oracle. Along the way, we also give an improved version
of Zhandry’s central lemma for the compressed oracle.

Before getting into this, we fix the following standard notation. For any
positive integer � > 0, we set [�] := {1, 2, . . . , �}, and we let 2[�] denote the power
set of [�], i.e., the set of all subsets of [�].

Finally, for any finite non-empty set Z, C[Z] denotes the Hilbert space C|Z|

together with a basis {|z〉} labeled by the elements z ∈ Z.

2.1 The Compressed Oracle— Seen as Quantum Lazy Sampling

With the goal to analyze oracle algorithms that interact with a RO H : X → Y,
consider the set D of all functions D : X → Y∪{⊥}, where ⊥ is a special symbol.
Such a function is referred to as a database. Later, we will fix X = {0, 1}≤B and
Y = {0, 1}n. For D ∈ D, x ∈ X and y ∈ Y ∪{⊥}, D[x �→y] denotes the database
that maps x to y and otherwise coincides with D, i.e., D[x �→ y](x) = y and
D[x �→y](x̄) = D(x̄) for all x̄ ∈ X \ {x}.

Following the exposition of [CFHL21], the compressed-oracle technique is
a quantum analogue of the classical lazy-sampling technique, commonly used
to analyze algorithms in the classical ROM. In the classical lazy-sampling
technique, the (simulated) RO starts off with the empty database, i.e., with
D0 = ⊥, which maps any x ∈ X to ⊥. Then, recursively, upon a query x,
the current database Di is updated to Di+1 := Di if Di(x) �= ⊥, and to
Di+1 := Di[x �→ y] for a randomly chosen y ∈ Y otherwise. This construc-
tion ensures that |{x |Di(x) �= ⊥}| ≤ i; after i queries thus, using standard
sparse-encoding techniques, the database Di can be efficiently represented and
updated.

In the compressed-oracle quantum analogue of this lazy-sampling technique,
the (simulated) RO also starts off with the empty database, but now considered
as a quantum state |⊥〉 in the |D|-dimensional state space C[D], and after i
queries the state of the compressed oracle is then supported by databases |Di〉
for which |{x |Di(x)=⊥}| ≤ i.2 Here, the update is given by a unitary operator
2 This means that the density operator that describes the state of the compressed

oracle has its support contained in the span of these |Di〉.
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cO acting on C[X ]⊗C[Y]⊗C[D], i.e., on the query register, the response register,
and the state of the compressed oracle. With respect to the computational basis
{|x〉} of C[X ] and the Fourier basis {|ŷ〉} of C[Y], cO is a control unitary, i.e., of
the form cO =

∑
x,ŷ |x〉〈x|⊗|ŷ〉〈ŷ|⊗cOx,ŷ, where cOx,ŷ is a unitary on C[Y∪{⊥}],

which in the above expression is understood to act on the register that carries
the value of the database at the point x. More formally, cOx,ŷ acts on register
Rx when identifying C[D] with

⊗
x∈X C[Y ∪ {⊥}] by means of the isomorphism

|D〉 �→
⊗

x∈X |D(x)〉Rx
. We refer to Lemma 4.3 in the full version of [CFHL21]

for the full specification of cOx,ŷ.
The compressed oracle is tightly related to the purified oracle, which initiates

its internal state with a uniform superposition
∑

h |H〉 ∈ C[D] of all functions
H : X → Y, and then answers queries “in superposition”. Indeed, at any point
in time during the interaction with an oracle quantum algorithm A, the joint
state of A and the compressed oracle coincides with the joint state of A and the
purified oracle after “compressing” the latter.3 Formally, identifying C[D] with⊗

x∈X C[Y ∪{⊥}] again, the compression of the state of the purified oracle works
by applying the unitary Comp to each register Rx, where

Comp : |y〉 �→ (|y〉 + (|⊥〉 − |0̂〉)/
√

|Y|

for any y ∈ Y, and Comp : |⊥〉 �→ |0̂〉. Here, |0̂〉 is the 0̂-vector from the Fourier
basis {|ŷ〉} of C[Y].

Similarly to the classical case, by exploiting a quantum version of the sparse-
encoding technique, both the internal state of the compressed oracle and the
evolution cO can be efficiently computed. Furthermore, for any classical func-
tion f : D → T that can be efficiently computed when given the sparse rep-
resentation of D ∈ D, the corresponding quantum measurement given by the
projections Pt =

∑
D:f(D)=t |D〉〈D| can be efficiently performed when given the

sparse representation of the internal state of the compressed oracle. In partic-
ular, in Lemma 2.1 below, the condition y = D(x) for given x and y can be
efficiently checked by a measurement. See Appendix A in (the full version of)
[CFHL21], or Appendix B in [DFMS21] for more details on this technique.

In the classical lazy-sampling technique, if at the end of the execution of
an oracle algorithm A, having made q queries to the (lazy-sampled) RO, the
database Dq is such that, say, Dq(x) �= 0 for any x ∈ X , then A’s output
is unlikely to be a 0-preimage, i.e., an x that is hashed to 0 upon one more
query. A’s best chance is to output an x that he has not queried yet, and thus
Dq(x) = ⊥, and then he has a 1/|Y|-chance that Dq+1(x) := Dq[x �→y](x) = 0,
given that y is randomly chosen. Something similar holds in the quantum setting,
with some adjustments. The general statement is given by the following result
by Zhandry.

Lemma 2.1 (Lemma 5 in [Zha19]). Let R ⊆ X � × Y� × Z be a relation, and
let A be an oracle quantum algorithm that outputs x ∈ X �, y ∈ Y� and z ∈ Z.
3 The terminology is somewhat misleading here; the actual compression takes place

when invoking the sparse encoding (see below).
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Furthermore, let

p = p(A) := Pr[y=H(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the standard RO, ini-
tialized with a uniformly random function H, and let

p′ = p′(A) := Pr[y=D(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the compressed ora-
cle instead and D is obtained by measuring its internal state (in the basis
{|D〉}D∈D). Then √

p ≤
√

p′ +
√

�/|Y| .

In Sect. 2.3 we give an alternative (and in typical cases tighter) such relation
between the success probability of an algorithm interacting with the actual RO,
and probabilities obtained by inspecting the compressed oracle instead.

2.2 The Quantum Transition Capacity and Its Relevance

The above discussion shows that, in order to bound the success probability p
of an oracle algorithm A, it is sufficient to bound p′′, the probability of the
database D, obtained by measuring the internal state of the compressed oracle
after the interaction with A, satisfying a certain property (e.g., the property of
there existing an x such that D(x) = 0).

To facilitate that latter, Chung et al. [CFHL21] introduced a framework
that, in certain cases, allows to bound this alternative figure of merit by means
of purely classical reasoning. We briefly recall here some of the core elements
of this framework, which are relevant to us. Note that [CFHL21] considers the
parallel-query model, where in each of the q (sequential) interactions with the
RO, a q-query oracle algorithm A can make k queries simultaneously in parallel.
Here, we consider the (more) standard model of one query per interaction, i.e.,
setting k = 1. On the other hand, we state and prove a slight generalization of
Theorem 5.16 in [CFHL21] (when restricted to k = 1).

A subset P ⊆ D is called a database property. We say that D ∈ D satisfies P
if D ∈ P, and the complement of P is denoted ¬P = D \ P. For such a database
property P, [CFHL21] defines

�⊥ q
=⇒ P

�
as the square-root of the maximal

probability of D satisfying P when D is obtained by measuring the internal
state of the compressed oracle after the interaction with A, maximized over all
oracle quantum algorithms A with query complexity q, i.e., in short

�⊥ q
=⇒ P

�
:= max

A

√
Pr[D ∈ P] . (1)

In the context of Lemma 2.1 for the case Z = ∅, we can define the database
property PR := {D∈D | ∃x∈X � : (x,D(x))∈R} induced by R, and thus bound

p′(A) ≤ Pr[(x,D(x))∈R] ≤ Pr[D ∈ PR] ≤
�⊥ q

=⇒ PR
�2 (2)
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for any oracle quantum algorithm A with query complexity q.
Furthermore, Lemma 5.6 in [CFHL21] shows that for any target database

property P and for any sequence P0,P1, . . . ,Pq with ¬P0 = {⊥} and Pq = P,

�⊥ q
=⇒ P

�
≤

q∑

s=1

�
¬Ps−1 → Ps

�
, (3)

where, for any database properties P and P′, the definition of the quantum tran-
sition capacity

�
P → P′� is recalled in the full version.

The nice aspect of the framework of [CFHL21] is that it provides means to
manipulate and bound quantum transition capacities using purely classical rea-
soning, i.e., without the need to understand and work with the definition. Indeed,
for instance Theorem 2.2 below, which is a variant of Theorem 5.17 in (the full
version of) [CFHL21], shows how to bound

�
P → P′� by means of a certain

classical probability; furthermore, to facilitate the application of such theorems,
[CFHL21] showed that the quantum transition capacity satisfies several natural
manipulation rules, like

�
P → P′� =

�
P′ → P

�
(i.e., it is symmetric), and

�
P ∩ Q → P′� ≤ min

{�
P → P′�,

�
Q → P′�}

and

min
{�

P → P′�,
�
P → Q′�}

≤
�
P → P′ ∪ Q′� ≤

�
P → P′� +

�
P → Q′� ,

(4)

which allow to decompose complicated capacities into simpler ones. Therefore, by
means of the above series of inequalities with p from Lemma 2.1 on the left hand
side, it is possible (in certain cases) to bound the success probability of any oracle
quantum algorithm A in the QROM by means of the following recipe: (1) Choose
suitable transitions Ps−1 → Ps, (2) decompose the capacities

�
¬Ps−1 → Ps

�
into

simpler ones using manipulation rules as above, and (3) bound the simplified
capacities by certain classical probabilities, exploiting results like Theorem 2.2.

In order to state and later use Theorem 2.2, we need to introduce the following
additional concepts. As explained above, there is no need to actually spell out
the definition of the quantum transition capacity in order to use Theorem 2.2;
for completeness, and since it is needed for the proof of Theorem 2.2, we provide
it in the full version (where we also give the proof of Theorem 2.2).

For any database D ∈ D and any x ∈ X , D|x := {D[x �→ y] | y ∈ Y ∪ {⊥}}
denotes the set of all databases that coincide with D outside of x. Furthermore,
for a database property P,

P|D|x := {y ∈ Y ∪ {⊥} | D[x �→y] ∈ P} ⊆ Y ∪ {⊥}

denotes the set of values y for which D[x �→y] satisfies P.
The following is a variation of Theorem 5.17 in (the full version of) [CFHL21],

obtained by restricting k to 1. On the other hand, we exploit and include some
symmetry that is not explicit in the original statement. The proof, given in the
full version, is a small adjustment to the original proof.
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Theorem 2.2. Let P and P′ be database properties with trivial intersection, i.e.,
P ∩ P′ = ∅, and for every D ∈ D and x ∈ X let

Lx,D :=
{

P|D|x if ⊥ ∈ P′|D|x
P′|D|x if ⊥ ∈ P|D|x ,

with Lx,D being either of the two if ⊥ �∈ P|D|x ∪ P′|D|x .4 Then

�
P → P′� ≤ max

x,D

√
10P

[
U ∈Lx,D

]
,

where U is uniform over Y, and the maximization can be restricted to D ∈ D
and x ∈ X for which both P|D|x and P′|D|x are non-empty.

Remark 2.3. Both, P|D|x and P′|D|x , and thus also Lx,D, do not depend on the
value of D(x), only on the values of D outside of x.

2.3 An Improved Variant of Zhandry’s Lemma

We show here an alternative to Zhandry’s lemma (Lemma 2.1), which offers
a better bound in typical applications. To start with, note that Lemma 2.1
considers an algorithm A that not only outputs x = (x1, . . . , x�) but also y =
(y1, . . . , y�), where the latter is supposed to be the point-wise hash of x; indeed,
this is what is being checked in the definition of the probability p, along with
(x,y, z) ∈ R. This requirement is somewhat unnatural, in that an algorithm A
for, say, finding a collision, i.e., x1 �= x2 with H(x1) = H(x2), does not necessarily
output the (supposed to be equal) hashes y1 = H(x1) and y2 = H(x2). Of course,
this is no problem since one can easily transform such an algorithm A that does
not output the hashes into one that does, simply by making a few more (classical)
queries to the RO at the end of the execution, and then one can apply Lemma 2.1
to this tweaked algorithm Ã.

We show below that if we anyway consider this tweaked algorithm Ã, which
is promised to query the RO to obtain and then output the hashes of x =
(x1, . . . , x�), then we can actually improve the bound and avoid the square-roots
in Lemma 2.1. On top, the proof is much simpler than Zhandry’s proof for his
lemma. At the core is the following lemma; Coroallary 2.5 then puts it in a form
that is comparable to Lemma 2.1 and shows the improvement.

Lemma 2.4. Let A be an oracle quantum algorithm that outputs x =
(x1, ..., x�) ∈ X � and z ∈ Z. Let Ã be the oracle quantum algorithm that runs
A, makes � classical queries on the outputs xi to obtain y = H(x), and then
outputs (x,y, z). When Ã interacts with the compressed oracle instead, and at
the end D is obtained by measuring the internal state of the compressed oracle,
then, conditioned on Ã’s output (x,y, z),

Pr[y=D(x)|(x,y, z)] ≥ 1 − 2�

|Y| .

4 By the disjointness requirement, ⊥ cannot be contained in both.
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Proof. Consider first Ã interacting with the purified (yet uncompressed) oracle.
Conditioned on Ã’s output (x,y, z), the state of the oracle is then supported by
|H〉 with H(xi) = yi for all i ∈ {1, . . . , �}, i.e., the registers labeled by x1, ..., x�

are in state |y1〉 · · · |y�〉. Given that the compressed oracle is obtained by applying
Comp to all the registers, we thus have that

Pr[yi =y′
i|(x,y, z)] =

∣
∣〈yi|Comp|yi〉

∣
∣2 =

∣
∣
∣〈yi|

(
|yi〉 + 1√

|Y| (|⊥〉 − |0̂〉)
)∣
∣
∣
2

=
∣
∣
∣1 − 1√

|Y| 〈yi|0̂〉
∣
∣
∣
2

=
∣
∣
∣1 − 1

|Y|
∣
∣
∣
2

≥ 1 − 2
|Y| .

Applying union bound concludes the claim. ��

The following corollary of Lemma 2.4 is put in a form that can be nicely com-
pared with Lemma 2.1, understanding that typically Lemma 2.1 is applied to Ã.

Corollary 2.5. Let R ⊆ X � ×Y� ×Z be a relation. Let A be an oracle quantum
algorithm that outputs x ∈ X � and z ∈ Z, and let Ã be as in Lemma 2.4. Let

p◦(A) := Pr[(x,H(x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore,
let p(Ã) and p′(Ã) be defined as in Lemma 2.1 (but now for Ã). Then

p◦(A) = p(Ã) ≤ p′(Ã) +
2�

|Y| .

In the full version, we show yet another corollary of Lemma 2.4, where Ã
may make a more involved computation on x, possibly calling H adaptively.

3 Some Background on (Non-)Interactive Proofs

Throughout this and later sections, we consider a hash function H : X → Y, to
be modeled as a RO then. For concreteness and simplicity, we assume that all
relevant variables are encoded as bit strings, and that we can therefore choose
H : {0, 1}≤B → {0, 1}n for sufficiently large B and n.5

Let {Iλ}λ∈N and {Wλ}λ∈N be two families of sets, with the members being
labeled by the security parameter λ ∈ N. Let Rλ ⊆ Iλ × Wλ be a relation that
is polynomial-time computable in λ. w ∈ Wλ is called a witness for inst ∈ Iλ if
Rλ(inst, w), and Lλ is the language Lλ = {inst ∈ Iλ | ∃w ∈ Wλ : Rλ(inst, w)}.

Below, we recall some concepts in the context of interactive and non-
interactive proofs for such families {Rλ}λ∈N of relations. We start by discussing
the aspired security definition for non-interactive proofs.

5 B and n may depend on the security parameter λ ∈ N. We will then assume that B
and n can be computed from λ in polynomial time (in λ).
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3.1 Non-interactive Proofs and Online Extractability

An non-interactive proof in the random-oracle model for a family {Rλ}λ∈N of
relations consists of a pair (P,V) of oracle algorithms, referred to as prover and
verifier, both making queries to the RO H : X → Y. The prover P takes as
input λ ∈ N and an instance inst ∈ Lλ and outputs a proof π ∈ Πλ, and V takes
as input λ ∈ N and a pair (inst, π) ∈ Iλ × Πλ and outputs a Boolean value, 0 or
1, or accept or reject. The verifier V is required to run in time polynomial in
λ, while, per-se, P may have unbounded running time.6

By default, we require correctness and soundness, i.e., that for any λ ∈ N and
any inst ∈ Lλ the probability Pr

[
VH(λ, inst, π) : π ← PH(λ, inst)

]
is close to 1,

while for any λ ∈ N and any oracle quantum algorithm P∗ with bounded query
complexity the probability Pr

[
inst �∈ Lλ ∧ VH(λ, inst, π) : (inst, π) ← P∗H(λ)

]

is close to vanishing. The fact that the instance inst, for which P∗ tries to forge
a proof, is not given as input to P∗ but is instead chosen by P∗ is referred to as
P∗ being adaptive.

We now move towards defining online extractability (for adaptive P∗). For
that purpose, let P∗ be a dishonest prover as above, except that it potentially
outputs some additional auxiliary (possibly quantum) output Z next to (inst, π).
We then consider an interactive algorithm E , called online extractor, which takes
λ ∈ N as input and simulates the answers to the oracle queries in the execution
of VH ◦ P∗H(λ), which we define to run (inst, π, Z) ← P∗H(λ) followed by
v ← VH(λ, inst, π); furthermore, at the end, E outputs w ∈ Wλ. We denote the
execution of VH ◦ P∗H(λ) with the calls to H simulated by E , and considering
E ’s final output w as well, as (inst, π, Z; v;w) ← VE ◦ P∗E(λ).

Definition 3.1. A non-interactive proof in the (quantum-accessible) RO model
(QROM) for {Rλ}λ∈N is a proof of knowledge with online extractability (PoK-
OE) against adaptive adversaries if there exists an online extractor E, and func-
tions εsim (the simulation error) and εex (the extraction error), with the following
properties. For any λ ∈ N and for any dishonest prover P∗ with query complex-
ity q,

δ
(
[(inst, π, Z, v)]VH◦P∗H(λ), [(inst, π, Z, v)]VE◦P∗E(λ)

)
≤ εsim(λ, q, n) and

Pr
[
v = accept ∧ (inst, w) �∈ R : (inst, π, Z; v;w) ← VE ◦ P∗E(λ)

]
≤ εex(λ, q, n).

Furthermore, the runtime of E is polynomial in λ + q + n, and εsim(λ, q, n) and
εex(λ, q, n) are negligible in λ whenever q and n are polynomial in λ.

Remark 3.2. In the classical definition of a proof of knowledge, the extractor E
interacts with P∗ only, and the verifier V is not explicitly involved, but would
typically be run by E . Here, in the context of online extractability, it is neces-
sary to explicitly go through the verification procedure, which also makes oracle
queries, to determine whether a proof is valid, i.e., for the event v = accept to
be well defined.
6 Alternatively, one may consider a witness w for inst to be given as additional input

to P, and then ask P to be polynomial-time as well.
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3.2 (Commit-and-Open) Σ-Protocols

A Σ-protocol is a 3-round public-coin interactive proof (P,V) for a relation
Rλ ⊆ Iλ × Wλ, indexed by the security parameter. From now on, we leave any
dependencies on the security parameter implicit. We therefore simply write R
etc. By definition, a Σ-protocol has the following communication pattern. In the
first round, P sends a first message a; in the second round, V sends a random
challenge c ∈ C; and in the third round, P sends a response z. By a slight abuse
of notation, we sometimes write V(inst, a, c, z) for the predicate that determines
whether V accepts the transcript (a, c, z) on input inst.

For the purpose of this work, a commit-and-open Σ-protocol, or C&O Σ-
protocol or C&O protocol for short, is a Σ-protocol Π = (P,V) of a special
form, involving a hash function H that is modeled as a RO.7 Concretely, in a
C&O protocol, the transcript (a, c, z) is of the following form. The first message
a consists of commitments y1, . . . , y�, computed as yi = H(mi) for messages
m1, . . . , m� ∈ M, and possibly an additional string a◦8. The challenge c is picked
uniformly at random from the challenge space C ⊆ 2[�], which is set to be a subset
of 2[�]. Finally, the response z is given by mc = (mi)i∈c. Eventually, V accepts if
and only if H(mi) = yi for all i ∈ c and some given predicate V (inst, c,mc, a◦)
is satisfied.

For the above to be meaningful, we obviously need that M ⊆ X , i.e., the bit
size of the possible mi’s are upper bounded by B. Furthermore, the parameter n
determines the hardness of finding a collision in H (in the random oracle model),
and thus the level of binding the commitments provide.

Remark 3.3. Looking ahead, we may also consider a generalization of the above
notion of a C&O protocol, where the first message is parsed as a single commit-
ment y of the � messages m1, . . . , m� and where this commitment is computed by
means of an arbitrary “multi-message” commitment scheme involving H, which
has the property that any subset of m1, . . . , m� can be opened without revealing
the remaining mi’s. The above component-wise hashing is then one particular
instantiation, but alternatively one can for instance also compute y by means of
a Merkle tree (see Sect. 5.1), and then open individual mi’s by revealing the cor-
responding authentication paths. We stress that the concepts discussed below:
the notions of S-soundness and S-soundness∗ and the probability pStriv, do not
depend on the choice of commitment scheme, and thus remain unaffected when
considering such a Merkle-tree-based C&O protocol. To emphasize the default
choice of the commitment scheme, which is element-wise hashing, we sometimes
also speak of an ordinary C&O protocol.

7 One could also refer to Σ-protocols that use non-hash-based commitments, and/or
are analyzed in the standard model, as C&O protocols, but this is not the scope here.

8 Note that mi ∈ M may consist of the actual “message” (computed by the prover
using the witness w), possibly concatenated with randomness.
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3.3 S-soundness of C&O Σ-Protocols

We briefly recall the notion of S-soundness and S-soundness∗ for C&O pro-
tocols, as considered in [DFMS21], which offers a convenient general notion of
special soundness, or more generally k-soundness for C&O protocols. A similar
notion of S-soundness naturally exists for plain Σ-protocols, i.e., Σ-protocols in
the plain model. For completeness, we formalize the latter in the full version.

Here and below, given a C&O protocol Π with challenge space C ⊆ 2[�], we
let S ⊆ 2C be an arbitrary non-empty, monotone increasing set of subsets S ⊆ C,
where the monotonicity means that S ∈ S ∧ S ⊆ S′ ⇒ S′ ∈ S. We then also
set Smin := {S ∈ S | S◦ � S ⇒ S◦ �∈ S} to be the minimal sets in S.

For simplicity, the reader can consider S = Tk := {S ⊆ C | |S| ≥ k} for some
threshold k, and thus Smin = {S ⊆ C | |S| = k}. This then corresponds to the
notion of k-soundness for C&O protocols, which in turn means that the witness
can be computed from valid responses to k (or more) distinct challenges for a
given first message y1, . . . , y�, assuming the messages m1, . . . , m� to be uniquely
determined by their commitments.

Definition 3.4 ([DFMS21] Def. 5.1). A C&O protocol Π is S-sound if there
exists an efficient deterministic algorithm ES(inst,m1, . . . , m�, a◦, S) that takes
as input an instance inst ∈ I, messages m1, . . . , m� ∈ M∪{⊥}, a string a◦, and
a set S ∈ Smin, and outputs a witness for inst if V (inst, c,mc, a◦) for all c ∈ S.9

A slightly stronger condition than S-soundness is the following variant, which
differs in that the extractor needs to work as soon as there exists a set S as
specified, without the extractor being given S as input. We refer to [DFMS21]
for a more detailed discussion of this aspect. As explained there, whether S is
given or not often makes no (big) difference.

For instance, when Smin consists of a polynomial number of sets S then the
extractor can do a brute-force search to find S, and so S-soundness∗ is then
implied by S-soundness. Also, the r-fold parallel repetition of a S-sound proto-
col, which by default is a S∨r-sound protocol (see [DFMS21]), is automatically
S∨-sound∗ if Smin is polynomial in size: the extractor can then do a brute-force
search in every repeated instance.

Definition 3.5 ([DFMS21] Def. 5.2). A C&O protocol Π is S-sound∗ if there
exists an efficient deterministic algorithm E∗

S(inst,m1, . . . , m�, a◦) that takes as
input an instance inst ∈ I and strings m1, . . . , m� ∈ M ∪ {⊥} and a◦, and it
outputs a witness for inst if there exists S ∈ S such that V (inst, c,mc, a◦) for all
c ∈ S.

As in [DFMS21], we define

pStriv :=
1
|C| max

Ŝ 	∈S
|Ŝ| , (5)

9 The restriction for S to be in Smin, rather than in S, is to avoid an exponentially
sized input while asking ES to be efficient.
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capturing the “trivial” attack of picking a set Ŝ = {ĉ1, . . . , ĉm} �∈ S of chal-
lenges ĉi ∈ C and then prepare m̂ = (m̂1, . . . , m̂�) and a◦ in such a way that
V (inst, c, m̂c, a◦) holds if c ∈ Ŝ. After committing to m̂1, . . . , m̂�, the prover can
successfully answer to challenges c ∈ Ŝ.

3.4 The Fiat-Shamir Transformation of (C&O) Σ-Protocols

The Fiat-Shamir (FS) transformation [FS87] turns arbitrary Σ-protocols into
non-interactive proofs in the random oracle model by setting the challenge c ∈ C
to be the hash of the instance and the first message a. For this transformation to
work smoothly, it is typically assumed that |C| is a power of 2 and its elements
are represented as bit strings of size log |C|, so that one can indeed set c to be
(the first log |C| bits of) the hash H(inst, a). The assumption on |C| is essentially
without loss of generality (WLOG), since one can always reduce the size of |C|
to the next lower power of 2, at the cost of losing at most 1 bit of security.
However, for a C&O Σ-protocol, where a challenge space C is a (typically strict)
subset of 2[�], there is not necessarily a natural way to represent c ∈ C as a
bitstring of size log |C|. Therefore, we will make it explicit that the challenge-set
c ∈ C ⊂ 2[�] is computed from the “raw randomness” H(inst, y1, . . . , y�, a◦) in a
deterministic way as c = γ ◦ H(inst, y1, . . . , y�, a◦) for an appropriate function
γ : Y → C, mapping a uniformly random hash in Y to a random challenge-set
in C. Obviously, for H(inst, y1, . . . , y�, a◦) to be defined, in addition to M ⊆ X
we also need that I × Y� ⊆ X , which again just means that B needs to be large
enough. We write FS[Π] for the FS transformation of a (C&O) Σ-protocol Π.

Remark 3.6. Additionally, we need that n is sufficiently large, so that there is
a sufficient amount of randomness in the hash value H(inst, y1, . . . , y�) in order
to be mapped to a random c ∈ C. The canonical choice for γ is then the func-
tion that the interactive verifier applies to his local randomness to compute the
random challenge c ∈ C. To simplify the exposition, we assume that n is indeed
sufficiently large. Otherwise, one can simply set Y := {0, 1}n′

instead, for suffi-
ciently large n′, and then let yi be H(mi) truncated to the original number n of
bits again. This truncation has no effect on our results.

Remark 3.7. We assume WLOG that the two kinds of inputs to H, i.e., mi

and (inst, y1, . . . , y�, a◦), are differently formatted, e.g., bit strings of different
respective sizes or prefixes (this is referred to as domain separation). In other
words, we assume that M and I × Y� are disjoint.

Remark 3.8. When considering the adaptive security of a FS transformation
FS[Π] of a C&O protocol Π for a relation R, the additional string a◦, which
may be part of the first message a of the original protocol Π, may WLOG be
considered to be part of the instance inst instead.

Indeed, any dishonest prover P∗ against FS[Π], which (by Definition 3.1)
outputs an instance inst and a proof π = (a◦, y1, . . . y�), can alternatively be
parsed as a dishonest prover that outputs an instance inst′ = (inst, a◦) and a
proof π′ = (y1, . . . y�). Thus, P∗ can be parsed as a dishonest prover against



Efficient NIZKs and Signatures from Commit-and-Open Protocols 745

FS[Π ′], where the C&O protocol Π ′ works as Π, except that a◦ is considered as
part of the instance, rather than as part of the first message, and thus Π ′ is a
C&O protocol for the relation ((inst, a◦), w) ∈ R′ :⇔ (inst, w) ∈ R.10 Therefore,
security (in the sense of Definition 3.1) for FS[Π ′] implies that of FS[Π].

4 Online Extractability of the FS-Transformation: The
Case of Ordinary C&O Protocols

We now consider the FS transformation FS[Π] of an ordinary C&O protocol
Π. Our goal is to show that FS[Π] admits online extraction. We note that by
exploiting Remark 3.8, we may assume WLOG that the first message of Π
consists of the commitments y1, . . . , y� only, and no additional string a◦. In
Sect. 5, we then consider the case of Merkle-tree-based C&O protocols.

Our analysis of FS[Π] uses the framework of Chung et al. [CFHL21], discussed
and outlined in Sect. 2. Thus, at the core of our analysis is a bound on a certain
quantum transition capacity. This is treated in the upcoming subsection.

4.1 Technical Preface

We first introduce a couple of elementary database properties (related to CoL-
lisions and the SiZe of the database) that will be useful for us:

CL := {D | ∃x �=x′ : D(x)=D(x′) �=⊥} and SZ≤s := {D |#{z|D(z) �=⊥} ≤ s}.

Next, for an instance inst ∈ I, we want to specify the database property that
captures a cheating prover that succeeds in producing an accepting proof while
fooling the extractor. For the purpose of specifying this database property, we
introduce the following notation. For a given database D ∈ D and for a com-
mitment y ∈ Y, we define D−1(y) to be the smallest x ∈ X with D(x) = y, with
the convention that D−1(y) := ⊥ if there is no such x, as well as D−1(⊥) := ⊥.
By removing collisions, we ensure that there is at most one such x; thus, tak-
ing the smallest one in case of multiple choices is not important but only for
well-definedness. The database property of interest can now be defined as

SUC :=
{

D

∣
∣
∣
∣

∃y ∈ Y� and inst ∈ I so that m := D−1(y) satisfies
V (inst, c,mc) for c := γ ◦ D(inst,y) and

(
inst, E∗(inst,m)

)
�∈ R

}

.

(6)
Informally, assuming no collisions (i.e., restricting to D �∈ CL), the database

property SUC captures whether a database D admits a valid proof π = (y,mc)
for an instance inst for which the (canonical) extractor, which first computes m
by inverting D and then runs E∗, fails to produce a witness.

10 We do not specify the local computation of the honest prover P ′ in Π ′ = (P ′, V ′),
i.e., how to act when a◦ is part of the input, and in general it might not be efficient,
but this is fine since we are interested in the security against dishonest provers.
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Our (first) goal is to show that
�
⊥ q

=⇒ SUC ∪ CL
�

is small, capturing that
it is unlikely that after q queries the compressed database contains collisions
or admits a valid proof upon which the extractor fails. Indeed, we show the
following, where pStriv is the trivial cheating probability of Π as defined in (5).

Lemma 4.1.
�
⊥ q

=⇒ SUC ∪ CL
�

≤ 2eq3/22−n/2 + q
√

10max
(
q� · 2−n, pStriv

)
.

We begin with an outline of the proof. In a first step, by using (3) and union-
bound-like properties of the transition capacity, and additionally exploiting a
bound from [CFHL21] to control the transition capacity of CL, we reduce the
problem to bounding the quantum transition capacity

�
SZ≤s\SUC → SUC

�
for

s < q. Informally, this capacity is a measure of the “likelihood” — but then in a
quantum-sense — that a database D ∈ D that is bounded in size and not in SUC
turns into a database D′ that is in SUC, when D is updated to D′ = D[x �→U ]
with U uniformly random in Y, for any fixed x.

We emphasize that the state of the compressed oracle at any point is a
superposition of databases, and a query is made up of a superposition of inputs;
nevertheless, due to Theorem 2.2, the above classical intuition is actually very
close to what needs to be shown to rigorously bound the considered quantum
transition capacity. Formally, as will become clear in the proof below, we need to
show that for any database D ∈ SZ≤s\SUC and for any x ∈ X with D(x) = ⊥,
the probability that D[x �→U ] ∈ SUC is small. Below, this probability is bounded
in the Case 2 and Case 3 parts of the proof, where the two cases distinguish
between x being a “commit query” or a “challenge query”.

Informally, for D with D(x) = ⊥, if x is a “commit query” then assigning a
value to D(x) can only turn D �∈ SUC into D[x �→u] ∈ SUC, if u is a coordinate of
some y ∈ Y� for which D(inst,y) �= ⊥ for some inst. Indeed, otherwise, D[x �→u]
does not contribute to a valid proof π that did not exist before. Thus, given the
bound s < q on the size of D, this happens with probability at most q�/2n for
a random u. Similarly, if x is a “challenge query”, i.e. of the form x = (inst,y),
then assigning a value u to D(x) can only make a difference if V (inst, c,mc) is
satisfied for c = γ(u) and m = D−1(y), while E∗(inst,m) is not a witness for
inst. However, for a random u, this is bounded by pStriv.

But then, on top of the above, due to the quantum nature of the quantum
transition capacity,11 Theorem 2.2 requires to also show the “reverse”, i.e., that
for any D ∈ SUC and for any x ∈ X with D(x) �= ⊥, the probability that
D[x �→U ] ∈ SZ≤s\SUC is small; this is analyzed in Case 1 below.

Thus, by exploiting the framework of [CFHL21], the core of the reasoning
is purely classical, very closely mimicking how one would have to reason the
classical setting with a classical RO. Due to the rather complex definition of
SUC, the formal argument in each case is still somewhat cumbersome.

11 At the core, this is related to the reversibility of quantum computing and the resulting
ability to “uncompute” a query.
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Proof. We first observe that, by (3) (which is Lemma 5.6 in [CFHL21]) and basic
properties of the quantum transition capacity as in (4),

�
⊥ q

=⇒ SUC ∪ CL
�

≤
q−1∑

s=0

�
SZ≤s\SUC\CL → SUC ∪ CL ∪ ¬SZ≤s+1

�

≤
q−1∑

s=0

(�
SZ≤s → ¬SZ≤s+1

�
+

�
SZ≤s\CL → CL

�
+

�
SZ≤s\SUC → SUC

�)
. (7)

The first term,
�
SZ≤s → ¬SZ≤s+1

�
, vanishes, while the second term was shown

to be bounded as
�
SZ≤s\CL → CL

�
≤ 2e

√
(s + 1)/|Y| ≤ 2e

√
q/2n (8)

in Example 5.28 in [CFHL21]. Thus, it remains to control the third term, which
we will do by means of Theorem 2.2 with P := SZ≤s \ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 2.3, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.
Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′

D|x . So, Theorem 2.2
instructs us to set L := PD|x , where we leave the dependency of L on D and
x implicit to simplify notation. Given that D ∈ SUC, we can consider inst and
y as promised by the definition of SUC in (6), i.e., such that V (inst, c,mc) and(
inst, E∗(inst,m)

)
�∈ R for

c := γ ◦ D(inst,y) and mi := D−1(yi) ,

where it is understood that m = (m1, . . . , m�). Recall that D(x) = ⊥; thus,
by definition of the mi’s, it must be that x �= mi for all i, and the fact that
V (inst, c,mc) is satisfied for c as defined implies that x �= (inst,y). Furthermore,

u ∈ L ⇐⇒ D[x �→u] ∈ P =⇒ D[x �→u] �∈ SUC =⇒ u ∈ {y1, . . . , y�} ,

where the last implication is easiest seen by contraposition: Assume that u �∈
{y1, . . . , y�}. Then, also recalling that x �= mi, we have that mi = D−1(yi) =
D[x �→ u]−1(yi). But also c = γ ◦ D(inst,y) = γ ◦ D[x �→ u](inst,y). Together,
this implies that the defining property of SUC is also satisfied for D[x �→u], i.e.,
D[x �→u] ∈ SUC, as was to be shown. Thus, we can bound

P [U ∈L] ≤ P [U ∈{y1, . . . , y�}] ≤ �

|Y| . (9)

Case 2: D �∈ SUC, and x is a “commit query”, i.e., x = m ∈ M. In particular,
⊥ �∈ P′|D|x (by the assumption that D(x) = ⊥) and so in light of Theorem 2.2
we may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x �→u] ∈ P′ = SUC =⇒ ∃ inst,y, i : D(inst,y) �= ⊥ ∧ u = yi . (10)
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The last implication can be seen as follows. By definition of SUC, the assump-
tion D[x �→ u] ∈ SUC implies the existence of inst and y = (y1, . . . , y�) with
V (inst, c,mc) and

(
inst, E∗(inst,m)

)
�∈ R for

c := γ ◦ D[x �→u](inst,y) = γ ◦ D(inst,y) and mi := D[x �→u]−1(yi) ,

where the equality in the definition of c exploits that x is not a “challenge”
query. With the goal to reach a contradiction, assume that u �= yi for all i. This
assumption implies that D[x �→ u](x) = u �= yi. But also D(x) = ⊥ �= yi, and
hence for all ξ ∈ X and i ∈ {1, . . . , �}: D(ξ) = yi ⇔ D[x �→u](ξ) = yi. Therefore,
mi = D[x �→ u]−1(yi) = D−1(yi) for all i, and the above then implies that
D ∈ SUC, a contradiction. Thus, there exists i for which u = yi; furthermore,
D(inst,y) �= ⊥ given that V (inst, u,mc) is satisfied for c = γ ◦ D(inst,y). This
shows the claimed implication. Thus, we can bound

P [U ∈L] ≤ P [∃ inst,y, i : D(inst,y) �= ⊥ ∧ u = yi] ≤ s�/|Y| ≤ q�/|Y| . (11)

Case 3: D �∈ SUC, and x is a “challenge query”, i.e., x = (inst,y) ∈ I × Y�. Set
m = (m1, . . . , m�) for mi := D−1(yi). Again, we have that ⊥ �∈ SUC|D|x = P′

D|x ,
and so by Theorem 2.2 we may set L := P′

D|x . Here, we can argue that

u ∈ L ⇐⇒ D[x �→u] ∈ P′ = SUC =⇒ V (inst, u,mγ(u))∧
(
inst, E∗(inst,m)

)
�∈ R ,

where the final implication can be seen as follows. By definition of SUC, the
assumption D[x �→ u] ∈ SUC implies the existence of inst′ and y′ = (y′

1, . . . , y
′
�)

with V (inst′, u,m′
c) and E∗(inst′,m′) �= w for

c := γ ◦ D[x �→u](inst′,y′) and m′
i := D[x �→u]−1(y′

i) = D−1(y′
i) ,

where the very last equality exploits that x is not a “commit” query. With the
goal to come to a contradiction, assume that (inst′,y′) �= (inst,y) = x. Then,
c = γ ◦ D[x �→ u](inst′,y′) = γ ◦ D(inst′,y′), and the above then implies that
D ∈ SUC, a contradiction. Thus, (inst′,y′) = (inst,y) = x. In particular, m′ = m
and c = γ ◦ D[x �→ u](inst′,y′) = γ ◦ D[x �→ u](x) = γ(u). Hence, the claimed
implication holds.

Thus, we can bound

P [U ∈L] ≤ P [V (inst, γ(U),mγ(U)) ∧ E∗(inst,m) �= w]
≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} �∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} �∈ S] ≤ max
S 	∈S

P [γ(U) ∈ S] ≤ pStriv . (12)

By Theorem 2.2, we now get
�
SZ≤s\SUC\CL → SUC

�
≤ max

x,D

√
10P

[
U ∈Lx,D

]

≤
√

10
√

max
(
�/|Y|, q�/|Y|, pStriv

)
≤

√
10

√
max

(
q� · 2−n, pStriv

)
,

where we have used Eqs. (9), (11) and (12) in the second inequality. Combining
with Eqs. (8) and (7) yields the desired bound. ��
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4.2 Online Extractability of the Fiat-Shamir Transformation

We are now ready to state and proof the claimed online-extractability result for
the FS transformation of (ordinary) C&O protocols.

Theorem 4.2. Let Π be a S-sound∗ ordinary C&O protocol with challenge
space Cλ and � = �(λ) commitments, and set κ = κ(λ) := maxc∈Cλ

|c|. Then,
FS[Π] is a PoK-OE in the QROM (as in Definition 3.1), with εsim(λ, q, n) = 0
and

εex(λ, q, n) ≤ 2(κ + 1) · 2−n +
(

2eq3/22−n/2 + q
√

10max
(
q� · 2−n, pStriv

)
)2

≤ (22� + 60)q32−n + 20q2pStriv .

The runtime of the extractor is dominated by running the compressed oracle,
which has complexity O(q2) · poly(n,B), and running E∗.

We note that the above bound on εex is asymptotically tight, except for the
factor �. Indeed, the binding property of the hash-based commitment can be
invalidated by means of a collision finding attack, which succeeds with probabil-
ity Ω(q3/2n). Furthermore the trivial soundness attack, which potentially applies
to a S-sound∗ C&O protocol Π, can be complemented with a Grover search,
yielding an attack against FS[Π] that succeeds with probability Ω(q2pStriv). The
non-tightness by a factor of � is very mild in most cases. In particular, the num-
ber of commitments � is polynomial in λ and thus in n. For the most common
case of a parallel repetition of a protocol with a constant number of commit-
ments, using a hash function with output length linear in λ (e.g. n = 3λ) results
in � = O(n) = O(λ).

Proof. We consider an arbitrary but fixed λ ∈ N. For simplicity, we assume that
|c| is the same for all c ∈ Cλ, and thus equal to κ = κ(λ). If it is not, we could
always make the prover output a couple of dummy outputs mi to match the
upper bound on |c|. Let P∗ be a dishonest prover that, after making q queries to
a RO H, outputs (inst, π) = (inst,y,m◦) plus some (possibly quantum) auxiliary
output Z. In the experiment VE ◦P∗E(λ), our extractor E works as follows while
simulating all queries to H (by P∗ and V) with the compressed oracle:

1. Run P∗(λ) to obtain (inst, π, Z) where π = (y,m◦) with m◦ = (m1, . . . , mκ).
2. Run V(λ, inst, π) to obtain v. In detail: obtain h0 := H(inst,y) and hj :=

H(mj) for j ∈ {1, . . . , κ}, and set v := accept if and only if the pair consisting
of x =

(
(inst,y),m1, . . . , mκ

)
and h = (h0, h1, . . . , hκ) satisfies the relation

R̃, defined to hold if and only if

(h1, . . . , hκ) = yc ∧ V (inst, c,m◦) where c := γ(h0) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗(inst,m) on input inst and m := D−1(y) to obtain w.
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Note that in the views of both P∗ and V, the interaction with H and the interac-
tion with E differ only in that their oracle queries are answered by a compressed
oracle instead of a real random-oracle in the latter case. This simulation is perfect
and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Lemma 2.4, the additional classical
oracle queries that V performs in V ◦ P∗ then match up with the algorithm Ã,
with h0, . . . , hκ here playing the role of y1, . . . , y� in Lemma 2.4. Thus,

Pr
[
h �= D(x)

]
≤ 2(κ(λ) + 1) · 2−n .

Therefore, we can bound the figure of merit εex as

εex(λ, q, n) = Pr
[
v = accept ∧ (inst, w) /∈ R

]

= Pr
[
(x,h) ∈ R̃ ∧ (inst, w) /∈ R

]

≤ Pr
[(
x,D(x)

)
∈ R̃ ∧ (inst, w) /∈ R

]
+ 2(κ(λ) + 1) · 2−n

≤ Pr[
(
x,D(x)

)
∈ R̃ ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL]

+ Pr[D ∈ SUC ∪ CL] + 2(κ(λ) + 1) · 2−n .

Using the definition of R̃, understanding that c := γ ◦ D(inst,y), we can write
the first term as

Pr
[
D(m◦) = yc ∧ V (λ, inst, c,m◦) ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL

]

≤ Pr
[
V (λ, inst, c,mc) for m := D−1(y) ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL

]

≤ Pr
[
D ∈ SUC |D �∈ SUC ∪ CL

]
= 0 ,

where the first equality exploits that D(m) = y iff m = D−1(y) for D �∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ (2κ(λ) + 1) · 2−n + Pr
[
D ∈ SUC ∪ CL

]

≤ (2κ(λ) + 1) · 2−n +
�
⊥ q

=⇒ SUC ∪ CL
�2

,

using Eq. (1) in the last inequality. The bound now follows from Lemma 4.1. ��

5 Online Extractability of the FS-Transformation: The
Case of Merkle-tree-based C&O Protocols

For an ordinary C&O protocol with reasonable concrete security (e.g., 128 bits),
the number of commitments � might be considerable. In this case, the communi-
cation complexity of the protocol (and thus the size of the non-interactive proof
system, or digital-signature scheme, obtained via the FS transformation) can be
reduced by using a Merkle tree to collectively commit to the � strings mi. Such
a construction is mentioned in [Fis05], and it is used in the construction of the
digital-signature schemes Picnic2 and Picnic3 [KKW18,KZ20,CDG+19a]. The
Merkle-tree-based C&O mechanism shrinks the commitment information from
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� · n to n, at the expense of increasing the cost of opening |c| values mi by an
additive term of about � |c| · n · log �.

The cost of opening can, in fact, be slightly reduced again, by streamlining
the opening information. When opening several leaves of a Merkle tree, the
authentication paths overlap, so opening requires a number of hash values less
than h per leaf, where h is the height of the tree. This overlap was observed
and exploited in the octopus authentication algorithm which constitutes one of
the optimizations of the stateless hash-based signature scheme gravity-SPHINCS
[AE18], as well as in Picnic2 and Picnic3 [KZ20]. In the following section, we
formalize tree-based collective commitment schemes with “octopus” opening.

5.1 Merkle-Tree-Based C&O Protocols

In line with Remark 3.3, we can consider C&O protocols with a different choice of
commitment scheme, compared to the default choice of committing by element-
wise hashing. Here, we discuss a particular choice of an alternative commitment
scheme, which gives rise to more efficient C&O protocols in certain cases when �
is large. Informally, we consider C&O protocols where m1, . . . , m� is committed
to by using a Merkle tree, and individual mi’s are opened by announcing the
corresponding authentication paths.

To make this more formal, we introduce the following notation (see the full
version for a formal discussion, and see Fig. 1 for an example). For simplicity,
we assume that � is a power of 2. We write MTreeH(m) for the Merkle tree of
messages m = (m1, . . . , m�) computed using hash function H; more formally, the
(labels of the) vertices in the Merkle tree are recursively computed as lv(m) :=
H

(
lv‖0(m)‖lv‖1(m)

)
, with the leaves being the hashes of the mi’s. MRootH(m)

then denotes the root of the Merkle tree. Furthermore, for c ⊆ [�], we write
MAuthH(c,m) for the union of the authentication paths for all messages mi with
i ∈ c, and the octopus MOctoH(c,m) denotes all the vertices needed to compute
all the authentication paths in MAuthH(c,m), but excluding the hashes of the
actual messages mi with i ∈ c (see Fig. 1).

A Merkle-tree-based C&O protocol is now defined to be a variation of a C&O
protocol, as hinted at in Remark 3.3, where the first message of the protocol,
i.e., the commitment of m = (m1, . . . , m�), is computed as y = MRootH(m), and
the response z for challenge-set c then consists of the messages mc = (mi)i∈c

together with O = MOctoH(c,m). The verifier V then accepts if and only if
mc and O “hash down to” y and the predicate V (λ, inst, c,mc, a) is satisfied.
More formally, the former means that V computes MAuthH(c,m) from O ∪
{(lf(i),H(mi)) | i ∈ c} in the obvious way, and then checks whether l∅(m) = y.
This verification is denoted by OctoVerifyH(c, y,mc, O).

Looking ahead, we may also consider a variation where the verifier resamples
the challenge c if the resulting octopus is bigger than a given bound. Formally,
this means that the challenge space of the Merkle-tree-based C&O protocol is
restricted to those challenges c ∈ [�] for which Octo(c) is not too large.
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y

H(m2) H(m3)H(m1) H(m4) H(m5) H(m6) H(m7) H(m8)

Fig. 1. The Merkle tree MTreeH(m) for m = (m1, . . . , m8) with MRootH(m) = y. The
yellow vertices mark the octopus MOctoH({1},m), which is revealed (along with m1)
when opening the commitment y to m1. (Color figure online)

5.2 Online Extractability of the Fiat-Shamir Transformation

The analysis in Sect. 4 can be generalized to the case of FS-transformed Merkle-
tree-based C&O protocols. To that end, we generalize the notation from that
section as follows. Let Π be a Merkle-tree-based C&O protocol with number
of messages to be committed equal to � = 2h where h is the height of the
commitment Merkle tree.12

For a given database D ∈ D, recall from Sect. 4 the definition of D−1; applied
to a tuple y = (y1, . . . , y�) ∈ Y� of commitments, D−1 attempts to recover
the corresponding committed messages m1, . . . , m�. Here, in a similar spirit but
now considering the Merkle-tree commitment, MRoot−1

D attempts to recover the
committed messages from the root label of the Merkle tree.

In more detail, for a commitment y ∈ Y = {0, 1}n we reverse engineer the
Merkle tree in the obvious way; namely, accepting a small clash in notation with
the labeling function lv(m) defined for a tuple m ∈ M�, we set the root label
l∅(y) := y, and recursively define

(
lv‖0(y), lv‖1(y)

)
:= split ◦ D−1

(
lv(y)

)
∈ Y × Y

for ∅ �= v ∈ {0, 1}≤h, where split maps any 2n-bit string, parsed as y1‖y2 with
y1, y2 ∈ {0, 1}n, to the pair (y1, y2) of n-bit strings, while it maps anything else
to (⊥,⊥). Then, accepting a small clash in notation again, we set

MTreeD(y) := {lv(y) | v ∈ {0, 1}≤h} ,

and finally, with lf(i) denoting the i-th leaf in the tree,

MRoot−1
D (y) :=

(
D−1

(
llf(1)(y)

)
, . . . , D−1

(
llf(�)(y)

))
.

12 As in the previous section we assume that � is a power of 2 for ease of exposition.
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Following the strategy we used in Sect. 4, we define the database property

SUC :=
{

D

∣
∣
∣
∣

∃ y ∈ Y and inst ∈ I so that m := MRoot−1
D (y) satisfies

V (inst, c,mc) for c := γ ◦ D(inst, y) and
(
inst, E∗(inst,m)

)
�∈ R

}

,

and our first goal is to show that
�
⊥ q

=⇒ SUC ∪ CL
�

is small.

Lemma 5.1.
�
⊥ q

=⇒ SUC∪CL
�

≤ 2eq3/22−n/2 + q
√

10max
(
q� · 2−n+1, pStriv

)
.

The proof works exactly as the proof of Lemma 4.1, accounting for some
syntactic differences due to the Merkle tree commitment. In particular, where in
Case 1 and 2 of the proof of Lemma 4.1 we have to exclude U from falling on one
of the hash values y1, . . . , y� in order to keep the m that was constructed from
the database intact, we now have a similar restriction for U , but with respect to
the whole tree MTreeD(y). The full proof can be found in the full version.

Similarly to Theorem 4.2, we now obtain the following.

Theorem 5.2. Let Π be an S-sound∗ Merkle-tree-based C&O protocol with
challenge space Cλ. Then FS[Π] is a PoK-OE in the QROM (as in Definition
3.1), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ log � + 1) · 2−n+
(
2eq3/22−n/2+ q

√
10 max

(
q� · 2−n+1, pS

triv

))2

≤ (22� log � + 60) q32−n + 20q2pS
triv

where κ = κ(λ) := maxc∈Cλ
|c| and � is the number of leaves of the Merkle-tree-

based commitment. The running time of the extractor is dominated by running
the compressed oracle, which has complexity O(q2)·poly(n,B), and by computing
MRoot−1

D (y) and running E∗.

Here again the proof follows exactly the outline of its counterpart from Sect. 4.2,
with some minor alterations to cope with the formalism of a Merkle-tree based
C&O Σ-protocol. The difference in the bound is simply due to the difference
between Lemmas 4.1 and 5.1. We refer to the full version for the full proof.

5.3 Discussion: Application to Picnic, and Limiting the Proof Size

Application to Picnic. A prominent use case of C&O protocols is the con-
struction of digital signature schemes via the FS transformation. An impor-
tant example is Picnic [CDG+17] currently under consideration as an alternate
candidate in the NIST standardization process for post-quantum cryptographic
schemes [NIS]. On a high level, the design of Picnic can be described as fol-
lows. A C&O Σ-protocol is constructed using the MPC-in-the-head paradigm
[IKOS07]. Then, the FS transformation is applied in the usual way to obtain a
digital signature scheme. There are three evolutions of Picnic: Picnic-FS, Picnic
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2 and Picnic 3.13 Picnic-FS uses plain hash-based commitments, while Picnic 2
and Picnic 3 use a Merkle-tree-based collective commitment.

All three evolutions enjoy provable post-quantum security when the hash
function used for the FS transformation is modeled as a (quantum-accessible)
RO. The best reduction applying to all of them proceeds as follows. First,
Unruh’s rewinding lemma [Unr12] is used to construct a knowledge extractor for
the underlying Σ-protocol based on an appropriate S-soundness notion. Then,
the generic QROM reduction for the FS transformation from [DFMS19] is used
to construct a knowledge extractor for the signature scheme in the QROM from
the extractor for the Σ-protocol. Finally, the technique from [GHHM21] is used
for simulating the chosen-message oracle to reduce breaking NMA (no-message
attack) security to breaking CMA (chosen-message attack) security. This final
step connects to the previous one because for the signature scheme the witness
extracted from an NMA attacker is the secret key.

The first two steps, i.e. Unruh’s rewinding and [DFMS19], are not tight: The
former loses at least a fifth power in the Picnic case, and the latter a factor of q2,
where q is the number of RO queries. This means that an NMA attacker with
success probability ε can be used to break the underlying hard problem with
probability Ω(ε5/q10) (or worse, depending on the Picnic variant).

For Picnic-FS (only), when in addition modeling the hash function used for
the commitments as a RO, Unruh’s rewinding can be replaced with tight online
extraction from [DFMS21]. The remaining loss due to the FS reduction is of
order ε/q2, up to some additive terms accounting for search and collision finding
in the RO, a sizable improvement over the above but still not tight.

By analyzing the FS transformation of a C&O protocol (with or without
Merkle tree commitments) directly, our results provide a tight alternative to the
above lossy reductions. Using Theorems 4.2 (for Picnic-FS) and 5.2 (for Picnic
2 and Picnic 3) we can avoid all multiplicative/power losses in the reduction for
NMA security. An NMA attacker with success probability ε can thus be used
to break the underlying hard problem with probability Ω(ε), up to unavoidable
additive terms due to search and collision finding in the RO.

An Observation About Octopus Opening Sizes. Depending on the param-
eters of the C&O protocol, the octopus opening information, MOcto(c,m) can
be much smaller than the concatenation of the individual authentication paths.
On the other hand, it is also variable in size (namely dependent on the choice of
the challenge c), and the variance can be significant (see e.g. the computations
for gravity SPHINCS in [AE18]). In the context of a digital signature scheme
constructed via the FS transformation of a Merkle-tree-based C&O protocol,
like, e.g., Picnic 2 and Picnic 3, this leads to the undesirable property of a vari-
able signature size, where signatures can be quite a bit larger in the worst case
than on average. This might, e.g., lead to problems when looking for a drop-in
replacement for quantum-broken digital signature schemes for use in a larger
protocol, where signatures need to be stored in a data field of fixed size.
13 There is also a version using the Unruh transformation.
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One option to mitigate this situation is to cut off the tail of the octopus size
distribution, i.e. to restrict the challenge space of the Merkle-tree-based C&O
protocol to challenges whose octopus is not larger than some bound. This can
be done before applying the FS transformation, e.g. using rejection sampling.
In that way, one obtains a digital signature scheme with significantly reduced
worst case signature size, at the expense of a tiny security loss.
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