
Password-Authenticated Key Exchange
from Group Actions

Michel Abdalla1,2 , Thorsten Eisenhofer3, Eike Kiltz3 ,
Sabrina Kunzweiler3 , and Doreen Riepel3(B)

1 DFINITY, Zürich, Switzerland
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

michel.abdalla@ens.fr
3 Ruhr-Universität Bochum, Bochum, Germany

{thorsten.eisenhofer,eike.kiltz,sabrina.kunzweiler,doreen.riepel}@rub.de

Abstract. We present two provably secure password-authenticated key
exchange (PAKE) protocols based on a commutative group action. To
date the most important instantiation of isogeny-based group actions is
given by CSIDH. To model the properties more accurately, we extend the
framework of cryptographic group actions (Alamati et al., ASIACRYPT
2020) by the ability of computing the quadratic twist of an elliptic curve.
This property is always present in the CSIDH setting and turns out to
be crucial in the security analysis of our PAKE protocols.

Despite the resemblance, the translation of Diffie-Hellman based
PAKE protocols to group actions either does not work with known
techniques or is insecure (“How not to create an isogeny-based PAKE”,
Azarderakhsh et al., ACNS 2020). We overcome the difficulties mentioned
in previous work by using a “bit-by-bit” approach, where each password
bit is considered separately.

Our first protocol X-GA-PAKE� can be executed in a single round.
Both parties need to send two set elements for each password bit
in order to prevent offline dictionary attacks. The second protocol
Com-GA-PAKE� requires only one set element per password bit, but one
party has to send a commitment on its message first. We also discuss
different optimizations that can be used to reduce the computational
cost. We provide comprehensive security proofs for our base protocols
and deduce security for the optimized versions.

Keywords: Password-authenticated key exchange · group actions ·
CSIDH

1 Introduction

Password-authenticated key exchange (PAKE) enables two parties to securely
establish a joint session key assuming that they only share a low-entropy secret
known as the password. This reflects that passwords are often represented in
short human-readable formats and are chosen from a small set of possible values,
often referred to as dictionary.
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13508, pp. 699–728, 2022.
https://doi.org/10.1007/978-3-031-15979-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15979-4_24&domain=pdf
http://orcid.org/0000-0002-2447-4329
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0002-6179-2094
http://orcid.org/0000-0002-4990-0929
https://doi.org/10.1007/978-3-031-15979-4_24

700 M. Abdalla et al.

Since the introduction of PAKE by Bellovin and Merritt [8], many PAKE
protocols have been proposed, including SPEKE [20], SPAKE2 [4], J-PAKE [19]
and CPace [18]. In particular over the last few years, the design and construc-
tion of PAKE protocols has attracted increasing attention, as the Crypto Forum
Research Group (CFRG) which is part of the Internet Research Task Force
(IETF) started a selection process to decide which PAKE protocols should be
used in IETF protocols. Recently, CPace was selected as the recommended pro-
tocol for symmetric PAKE, where both parties share the same password.

Different models have been used to formally prove security of PAKE proto-
cols, like indistinguishability-based models or the universal composability frame-
work. In general, a PAKE protocol should resist offline and online dictionary
attacks. On the one hand an adversary should not be able to perform an exhaus-
tive search of the password offline. On the other hand, an active adversary should
only be able to try a small number of passwords in one protocol execution. Fur-
thermore, forward security ensures that session keys are still secure, even if the
password is leaked at a later point in time. The same should hold if session keys
are disclosed, which should not affect security of other session keys.

CSIDH and Group Actions. The PAKE protocols mentioned above are
mostly based on a Diffie-Hellman key exchange in a prime order group. A
promising post-quantum replacement is isogeny-based key exchange. The dif-
ferent isogeny-based protocols can be divided into two groups. On the one hand
there are constructions based on commutative group actions on a set of ellip-
tic curves. The first proposals by Couveignes [12], and Stolbunov and Rostovt-
sev [27] suggested to use the action of the class group cl(O) on the set of Fq-
isomorphism classes of ordinary elliptic curves with endomorphism ring O. In
2018, Castryck et al. showed that this idea can also be adapted to the class
group action on the set of Fp-isomorphism classes of supersingular elliptic curves
[11]. The resulting scheme is called CSIDH and constitutes the first practical key
exchange scheme based on class group actions.

In [12], Couveignes introduces hard homogeneous spaces - an abstract frame-
work for group actions that models isogeny-based assumptions. This framework
has been further refined by Alamati et al. in [5]. Using the abstract setting
of cryptographic group actions the authors develop several new cryptographic
primitives that can be instantiated with CSIDH. On the other hand there is
the Supersingular Isogeny Diffie-Hellman (SIDH) protocol suggested by Jao and
De Feo in 2011 [21]. Here, the set of Fp2 -isomorphism classes of supersingular
elliptic curves is considered. The endomorphism ring of a supersingular elliptic
curve over Fp2 is non-commutative, hence protocols based on SIDH do not fall
into the group action framework.

We now recall the framework of (restricted) effective group actions introduced
in [5]. Throughout, G denotes a finite commutative group and X a set. We assume
that G acts regularly on X via the operator � : G×X → X . Regularity guarantees
that for any x, y ∈ X there exists precisely one group element g ∈ G satisfying

Password-Authenticated Key Exchange from Group Actions 701

y = g �x. Broadly speaking, we are interested in group actions, where evaluation
is easy, but the “discrete logarithm problem” is hard. Expressed differently:

– Given x ∈ X and g ∈ G, one can efficiently compute the set element y = g �x.
– Given x, y ∈ X , it is hard to find the element g ∈ G satisfying y = g � x.

These properties facilitate the definition of a Diffie-Hellman key exchange. Let
x be some fixed set element. Alice chooses a secret gA ∈ G and publishes
yA = gA � x. Similarly Bob chooses gB ∈ G and publishes yB = gB � x. They can
both compute the shared secret yAB = gA �yB = gB �yA. The group action com-
putational Diffie-Hellman problem (GA-CDH) then states that given yA and yB ,
it is hard to compute yAB . We refer to Sect. 3 for more precise definitions.

Contributions and Technical Details. Our main contributions are the two
PAKE protocols X-GA-PAKE� and Com-GA-PAKE� based on commutative group
actions. These are the first two provably secure PAKE protocols that are directly
constructed from isogenies.

Group Actions with Twists. To date the most important instantiation of
isogeny-based group actions is given by CSIDH. To model this situation more
accurately, we suggest an enhancement of the framework which includes the
ability of computing the quadratic twist of an elliptic curve efficiently. This
property is inherent to CSIDH (cf. [11]) and it turns out to be crucial in the
security analysis of our PAKE protocols. On the one hand, twisting allows us to
construct an offline dictionary attack against our first natural PAKE attempt
GA-PAKE�. Notably, this first protocol is secure for group actions where twisting
is not possible efficiently. On the other hand, twists play an important role in
various security reductions applied to prove the security of our new protocols
X-GA-PAKE� and Com-GA-PAKE�. Interestingly, this is also the case when twists
are not part of any of the two problems involved in the reduction.

First attempt: GA-PAKE�. Our two secure PAKE protocols are modifications
of GA-PAKE�. In order to illustrate the main idea behind the protocols, we
describe GA-PAKE� in more detail here. The protocol (Fig. 1) can be seen as
an adaption of the simple password exponential key exchange protocol SPEKE
[20] to the group action setting. In SPEKE the password is used to hash to a
generator of the group. Then the user and the server establish a session key
following the Diffie-Hellman key exchange. Directly translating this protocol to
the group action setting requires to hash the password to a random set element
x ∈ X . For isogeny-based group actions, this is still an open problem, hence (at
the moment) a straight-forward translation of SPEKE is not possible (see also [6,
§4.1]). In GA-PAKE� we map the password to an �-tuple of elements in X instead
of hashing to one element. More precisely, two elements crs = (x0, x1) ∈ X 2 are
fixed by a trusted party and a password pw = (b1, . . . , b�) ∈ {0, 1}� is mapped to
the tuple (xb1 , · · · , xb�

) ∈ X �. Then a Diffie-Hellman key exchange is performed
with basis xbi

for each i ∈ [�]. This means the user generates � random group
elements u1, . . . , u� and computes the elements xU

1 = u1 � xb1 , . . . , x
U
� = u� � xb�

which it sends to the server. Similarly, the server generates � random group
elements s1, . . . , s� and computes xS

1 = s1 � xb1 , . . . , x
S
� = s� � xb�

which it sends

702 M. Abdalla et al.

Fig. 1. First Attempt: Protocol GA-PAKE�.

to the user. Note that the messages may be sent simultaneously in one round.
Then both parties compute zi = ui � xS

i = si � xU
i for each i ∈ [�]. Finally

the session key K is computed as K = H(U,S, xU
1 , ..., xU

� , xS
1, ..., x

S
� , pw, z1, ..., z�),

where H : {0, 1}∗ → K is a hash function into the key space K.
In Sect. 5, we present an offline dictionary attack against GA-PAKE� for

group actions with twists. This attack is not captured by the abstract group
action framework defined in [5] which underlines the necessity of our suggested
enhancement of the framework. Roughly speaking, the attack uses the fact that
an attacker can choose its message in dependence on the other party’s message.
Using twists, it can then achieve that certain terms in the key derivation cancel
out and the session key no longer depends on the other party’s input.

Secure PAKE: X-GA-PAKE� and Com-GA-PAKE�. The protocol X-GA-PAKE�

is a modified version of GA-PAKE�. Here security is achieved by doubling the
message length in the first round of the protocol and tripling it in the key
derivation. Intuitively the additional parts of the message can be viewed as
an additional challenge for the key derivation that inhibits an attacker from
choosing its message depending on the other party’s message. The security of
the protocol relies on a new computational assumption, SqInv-GA-StCDH, in
which the adversary needs to compute the square and the inverse of its input at
the same time (cf. Definition 7, Theorem 1).

The protocol Com-GA-PAKE� is a modification of GA-PAKE� as well. In order
to achieve security against offline dictionary attacks, the protocol requires that
the server sends a commitment before receiving the first message from the user.
This prevents that any party chooses its message depending on the other party’s
message. We reduce the security of the protocol to the hardness of standard
security assumptions in the isogeny-based setting (Theorem 2). An overview of
our results is provided in Fig. 2.

Optimizations. Both X-GA-PAKE� and Com-GA-PAKE� require to com-
pute multiple group action evaluations. In the last section, we discuss two

Password-Authenticated Key Exchange from Group Actions 703

Fig. 2. Overview of our security implications between assumptions (round boxes) and
schemes (square boxes). Note that there exists an attack against protocol GA-PAKE�

using twists which makes it insecure for CSIDH. Our two main protocols X-GA-PAKE�

and Com-GA-PAKE� are proven secure under protocol-specific assumptions, but we
also give reductions to simpler assumptions making use of the twisting property. Solid
arrows denote tight reductions, dashed arrows non-tight reductions.

optimizations that can be used to reduce the number of evaluations and show
that these do not affect the security of the protocols. The first makes a tradeoff
between the size of the public parameters (the common reference string crs) and
the number of elements that have to be sent as well as the group actions that
have to be performed. The second optimization relies on the possibility to com-
pute twists efficiently, which is yet another advantage of adding this property to
the framework and which allows to decrease the size of the public parameters by
a factor of 2. We denote the final optimizations by Com-GA-PAKEt

�,N and X-GA-
PAKEt

�,N , where N is a parameter for the crs size. If N equals 1, we omit it. An
overview and example of the parameter choice is provided in Table 1.

Difficulties in Constructing PAKE from Isogenies. Terada and Yoneyama
[30] proposed isogeny-based PAKE based on the EKE approach. The basic idea
is that the parties perform an SIDH or CSIDH key exchange where the messages
are encrypted with the password. However, as shown in [6], these protocols are
not only vulnerable to offline dictionary attacks, but a modified version is even
vulnerable to man-in-the-middle attacks. The main reason for the insecurity
is that the elliptic curves used in the key exchange and encrypted with the
password are distinguishable from random bitstrings. An exhaustive search over
all passwords just requires to check if the decrypted message is a valid curve.

Another proposal based on SIDH was made by Taraskin et al. [29]. In this pro-
tocol the password is used to obfuscate the auxiliary points that are exchanged
during an SIDH key exchange. While their obfuscation method prevents a cer-
tain type of offline dictionary attack, the authors were not able to provide a
security proof for their protocol. The same is true for a symmetric variant of
the protocol proposed by Soukharev and Hess [28]. Until now these are the only
PAKE protocol based on isogenies which are not broken.

As noted in [6], other popular Diffie-Hellman constructions may also not be
directly translated into the isogeny setting. The main reason is that hashing into

704 M. Abdalla et al.

Table 1. Overview of our two optimized protocols Com-GA-PAKEt
�,N and X-GA-

PAKEt
�,N and comparison to the only other CSIDH-based constructions. All protocols

use a bit-wise approach, i.e., passwords are treated as bitstrings of length �. Sample
values for � = 128 are marked in gray. “Elements” refers to the number of set elements
(+ strings or symmetric ciphertexts) that each party has to send. “Evaluations” refers
to the number of group action evaluations that each party has to perform. “Rew.” indi-
cates that rewinding is used to reduce to the assumption indicated in the table and
GA-DDH refers to the group action decisional Diffie-Hellman problem.

Protocol |crs| Elements Evaluations Rounds Assumption Rew. ROM

X-GA-PAKEt�,N 2N−1 2�/N 5�/N
1 SqInv-GA-StCDH no yes

↪→ (�, N) = (128, 8) 128 32 80

Com-GA-PAKEt�,N 2N−1 �/N (+1) 2�/N
3 Sq-GA-GapCDH yes yes

↪→ (�, N) = (128, 8) 128 16 (+1) 32

OT-based� [10,24] 1 3� (+6�) 11�
4 GA-CDH yes yes

↪→ � = 128 1 384 (+768) 1408

OT-based� [5,10,25] 4 > �2 > �2
3 GA-DDH + CCA PKE no no

↪→ � = 128 4 > 16, 000 > 16, 000

the set of supersingular elliptic curves is still an open problem. This approach is
for example used in SPEKE. (However, we show how to non-trivially translate
the idea.) Also the approach of J-PAKE seems difficult as in this scheme different
public keys are combined to obtain certain “mixed” public keys. In isogeny-based
protocols, the public keys are elliptic curves and there is no natural ring structure
on the set of elliptic curves that would allow to combine two elliptic curves.

In the following, we elaborate known generic constructions of PAKE from
hash proof systems (HPS) and oblivious transfer (OT). We explain that the
only known isogeny-based HPS is not suitable for generic constructions. On the
other hand, the isogeny-based OT protocols from the literature are suited for
generic constructions. However, we show that the resulting PAKE protocols are
less efficient than our new proposals.

Using the framework of cryptographic group actions, Alamati et al. construct
a universal hash proof system [5, §4.1]. In general, it is known how to build CCA-
secure encryption [13] and also PAKE from hash proof systems [17]. However, the
details here are less clear. The hashing key consists of multiple elements linear
in the size of the universality parameter. The reason being that we can only
make use of one group operation provided by the group action. This also needs
to be considered when constructing an encryption scheme. In order to construct
PAKE, the framework by Gennaro and Lindell and follow-up works require a
hash proof system for the language of ciphertexts of a public-key encryption
scheme, which seems to be hard to construct given only the operation of the
group action. The HPS in [5] is only based on a DDH-like assumption.

It is well known that PAKE can also be generically constructed from OT [10].
One construction uses a UC-secure OT protocol and the other one a statistically

Password-Authenticated Key Exchange from Group Actions 705

receiver-private OT protocol. In both, the password is interpreted as a bit string
and for each bit, the user and server run the oblivious transfer protocol for
randomly chosen messages which will be used to derive the session key. In the
following, we apply the construction to two existing OT protocols.

– Alamati et al. propose a two-message statistically sender -private OT, however
we can construct a similar receiver-private OT protocol based on their dual-
mode public-key encryption scheme and the transformation given in [25]. The
resulting OT protocol already uses a “bit-by-bit” approach, hence the resulting
PAKE will have communication and computation complexity quadratic in the
parameter �.

– Recently, Lai et al. proposed a new very efficient CSIDH-based OT protocol
using twists and the random oracle model [24]. However, in order to achieve
active security the protocol needs four rounds.1 Additionally applying the
generic PAKE compiler results in a protocol with complexity linear in �.

The efficiency of the generic constructions is compared to our new protocols in
Table 1. While the computational cost of our protocols Com-GA-PAKE�,N and
X-GA-PAKE�,N is also linear in �, the cost is considerably lower for concrete
instantiations. Moreover, our scheme X-GA-PAKE�,N is the only one-round pro-
tocol, where both parties send simultaneous flows.

Open Problems and Future Work. Until now, protocols based on CSIDH or
group actions that use search problems together with the random oracle model
do not consider quantum access to the ROM [16,22–24,31]. Since PAKE proofs
are already complex, we also did not prove security in the QROM. Although
no reprogramming of the random oracle is necessary, the main difficulty in the
QROM is to simulate the real session keys using the decision oracle. We leave
this as future work. We believe that we can easily allow quantum access to
the additional random oracle that is used in Com-GA-PAKE� to commit on the
message. In this case, the output is transferred classically in the first message
flow such that extraction is possible using recently developed techniques [15].

As [24], we use rewinding to reduce the interactive assumption underly-
ing Com-GA-PAKE� to a standard assumption. An interesting open question is
whether current techniques enabling quantum rewinding are applicable here.

Outline. Section 3 sets the framework for our paper. We introduce (restricted)
effective group actions with twists and define the computational assumptions
underlying the security of our protocols. In Sect. 4, we give some background on
the security model that is used in the subsequent sections. In Sect. 5 we present
our first attempt for a PAKE protocol, GA-PAKE�, and explain its security gap.
Section 6 contains a thorough analysis of our new secure protocol X-GA-PAKE�.
In Sect. 7 we present the protocol Com-GA-PAKE� and sketch the security proof.
Finally, we discuss possible optimizations of the protocols in Sect. 8.
1 The original (three-round) version of this protocol was later found to have a (fix-

able) bug, cf. https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/
20/slides.pdf.

https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf
https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf

706 M. Abdalla et al.

2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ..., n}. For
m = 1, we simply write [n]. For a set S, s $← S denotes that s is sampled
uniformly and independently at random from S. y ← A(x1, x2, ...) denotes that
on input x1, x2, ... the probabilistic algorithm A returns y. AO denotes that
algorithm A has access to oracle O. An adversary is a probabilistic algorithm.
We will use code-based games, where Pr[G ⇒ 1] denotes the probability that
the final output of game G is 1.

3 (Restricted) Effective Group Actions (with Twists)

In this section we recall the definition of (restricted) effective group actions
from [5], which provides an abstract framework to build cryptographic primitives
relying on isogeny-based assumptions such as CSIDH. Moreover, we suggest
an enhancement of this framework, by introducing (restricted) effective group
actions with twists. This addition is essential for the security analysis of our new
PAKE protocols.

Definition 1 (Group Action). Let (G, ·) be a group with identity element
id ∈ G, and X a set. A map

� : G × X → X
is a group action if it satisfies the following properties:

1. Identity: id �x = x for all x ∈ X .
2. Compatibility: (g · h) � x = g � (h � x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is
commutative. Moreover we assume that the group action is regular. This means
that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g � x.

Definition 2 (Effective Group Action). Let (G,X , �) be a group action
satisfying the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for member-
ship and equality testing, (random) sampling, group operation and inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to com-

pute g � x given g and x.

Then we call x̃ ∈ X the origin and (G,X , �, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong.
Therefore we will consider the weaker notion of restricted effective group actions.

Password-Authenticated Key Exchange from Group Actions 707

Definition 3 (Restricted Effective Group Action). Let (G,X , �) be a
group action and let g = (g1, ..., gn) be a generating set for G. Assume that
the following properties are satisfied:
1. The group G is finite and n = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi �x

and g−1
i � x.

Then we call (G,X , �, x̃) a restricted effective group action (REGA).

3.1 Isogeny-Based REGAs

An important instantiation of REGAs is provided by isogeny-based group actions.
We will focus on the CSIDH setting and present a refined definition of REGAs
tailored to this situation.

Let p be a large prime of the form p = 4 · �1 · · · �n − 1, where the �i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve
E0 is supersingular and its Fp-rational endomorphism ring is O = Z[π], where π
is the Frobenius endomorphism. Let E��p(O) be the set of elliptic curves defined
over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set
E��p(O), i.e., there is a map

� : cl(O) × E��p(O) → E��p(O)
([a], E) �→ [a] � E,

satisfying the properties from Definition 1 [11, Theorem 7]. Moreover the analysis
in [11] readily shows that (cl(O), E��p(O), �,E0) is indeed a REGA.

Elliptic curves in E��p(O) admit equations of the form EA : y2 = x3+Ax2+x,
which allows to represent them by their Montgomery coefficient A ∈ Fp. An
intrinsic property of the CSIDH group action which is not covered by Definition
3, is the following. For any curve EA = [a] � E0 ∈ E��p(O), its quadratic twist is
easily computed as (EA)t = E−A and satisfies the property (EA)t = [a]−1 � E0.

Definition 4 ((Restricted) Effective Group Action with Twists). We
say that a (R)EGA (G,X , �, x̃) is a (Restricted) Effective Group Action with
Twists ((R)EGAT) if there exists an efficient algorithm that given x = g � x̃ ∈ X
computes xt = g−1 � x̃.

As noted in [11, §10], this property contrasts with the classical group-based
setting. It has already been used for the design of new cryptographic primitives
based on CSIDH such as the signature scheme CSIFiSh [9] and the OT protocol
in [24]. Moreover, it is important to consider twists in the security analysis of
schemes based on group actions. In Sect. 5 we use twists to construct an attack
on the protocol GA-PAKE� showing that it cannot be securely instantiated with
the CSIDH group action. On the other hand, we prove that GA-PAKE� is secure
when instantiated with a group action without efficient twisting. The proof for
that is given in the full version [1, Appendix C].

708 M. Abdalla et al.

3.2 Computational Assumptions

For cryptographic applications, we are interested in (restricted) effective group
actions that are equipped with the following hardness properties:

– Given (x, y) ∈ X 2, it is hard to find g ∈ G such that y = g � x.
– Given (x, y0, y1) ∈ X 3, it is hard to find z = (g0 · g1) � x, where g0, g1 ∈ G are

such that y0 = g0 � x and y1 = g1 � x.

In [5] such group actions are called cryptographic group actions, and in [12] they
are called hard homogeneous spaces.

The two hardness assumptions are the natural generalizations of the dis-
crete logarithm assumption and the Diffie-Hellman assumption in the traditional
group based setting. In analogy to this setting, we introduce the notation

GA-CDHx(y0, y1) = g0 � y1, where g0 ∈ G such that y0 = g0 � x

and define the decision oracle

GA-DDHx(y0, y1, z) =

{
1 if GA-CDHx(y0, y1) = z,

0 otherwise.

For both, GA-CDH and GA-DDH, we omit the index x if x = x̃, i. e., we set
GA-CDHx̃(y0, y1) = GA-CDH(y0, y1) and equivalently for GA-DDHx̃(y0, y1, z).

We now introduce three computational problems GA-StCDH, GA-GapCDH,
SqInv-GA-StCDH (Definitions 5 to 7). The security of our PAKE protocols relies
on the hardness of these problems.

The first two problems are variants of the standard Diffie-Hellman problem,
where an adversary is either given access to some fixed-basis decision oracles
(indicated by the prefix strong) or to a general decision oracle (indicated by the
prefix gap). Note that these problems were already defined and used in previous
work [16,22,23,31]. Since the problem from Definition 7 has not been studied in
any previous work, we provide evidence for its hardness in Remark 3.

Definition 5 (Group Action Strong Computational Diffie-Hellman
Problem (GA-StCDH)). On input (g � x̃, h � x̃) ∈ X 2, the GA-StCDH prob-
lem requires to compute the set element (g · h) � x̃. To an effective group action
XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-StCDH
XXX (A) := Pr[AGA-DDH(g�x̃,·,·)(g � x̃, h � x̃) ⇒ (g · h) � x̃],

where (g, h) $← G2 and A has access to decision oracle GA-DDH(g � x̃, ·, ·).

Definition 6 (Group Action Gap Computational Diffie-Hellman Prob-
lem (GA-GapCDH)). On input (g � x̃, h � x̃) ∈ X 2, the GA-GapCDH problem
requires to compute the set element (g · h) � x̃. To an effective group action
XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g � x̃, h � x̃) ⇒ (g · h) � x̃],

where (g, h) $← G2 and A has access to a general decision oracle GA-DDH∗.

Password-Authenticated Key Exchange from Group Actions 709

Remark 2. A group action where the group action computational Diffie-Hellman
problem (without any decision oracle) is hard, is the same as a weak unpre-
dictable group action as defined by Alamati et al. [5]. Further details are given
in the full version [1, Appendix A]. Also note that the ability to compute the
twist of a set element does not help in solving these problems. Hence, all results
based on these problems remain true for (R)EGAT.

Definition 7 (Square-Inverse GA-StCDH (SqInv-GA-StCDH)). On input
x = g � x̃, the SqInv-GA-StCDH problem requires to find a tuple (y, y0, y1) ∈
X 3 such that y0 = g2 � y and y1 = g−1 � y. For a group action XXX ∈
{EGA,REGA,EGAT,REGAT}, we define the advantage function of A as

AdvSqInv-GA-StCDH
XXX (A) := Pr

⎡
⎣y0 = GA-CDHxt(x, y)

y1 = GA-CDH(xt, y)

∣∣∣∣∣∣
g $← G

x = g � x̃
(y, y0, y1) ← AO(x)

⎤
⎦ ,

where O = {GA-DDHxt(x, ·, ·),GA-DDH(x, ·, ·)}.
Remark 3. Intuitively SqInv-GA-StCDH is hard if we assume that the adversary
can only use the group and twist operation. To go into more detail, A can choose
y only based on known elements, that is either based on x̃, its input x or xt.

If A chooses y = α�x̃ for some α ∈ G, then it can easily compute y1 = α�xt,
but not y0 = αg2 � x̃. If A chooses y = α�x, then computing y1 = α�x̃ is trivial,
but computing y0 = αg3 � x̃ is hard. If A chooses y = α � xt, then computing
y0 = α � x is trivial, but computing y1 = αg−2 � x̃ is hard.

4 Password Authenticated Key Exchange

Password-authenticated key exchange (PAKE) allows two parties, typically
referred to as the user and the server, to establish a shared session key with
the help of a short secret, known as a password, which can be drawn from a
small set of possible values. To prove security of a PAKE protocol, we use the
indistinguishability-based model by Bellare, Pointcheval and Rogaway [7] and
its extension to multiple test queries by Abdalla, Fouque and Pointcheval [2].

The name spaces for users U and servers S are assumed to be disjoint. Each
pair of user and server (U,S) ∈ U × S holds a shared password pwUS. A party P
denotes either a user or server. Each party P has multiple instances πi

P and each
instance has its own state. We denote the session key space by K. Passwords are
bit strings of length � and we define the password space as PW � {0, 1}�.

Instance State. The state of an instance πi
P is a tuple (e, tr,K, acc) where

– e stores the (secret) ephemeral values chosen by the party in that instance.
– tr stores the trace of that instance, i.e., the user and server name involved in

the protocol execution and the messages sent and received by that instance.
– K is the accepted session key.
– acc is a Boolean flag that indicates whether the instance has accepted the

session key. As long as the instance did not receive the last message, acc = ⊥.

To access individual components of the state, we write πt
P.{e, tr,K, acc}.

710 M. Abdalla et al.

Partnering. Partnering is defined via matching conversations. In particular, a
user instance πt0

U and a server instance πt1
S are partnered iff

πt0
U .acc = πt1

S .acc = true and πt0
U .tr = πt1

S .tr.

Two user instances are never partnered, neither are two server instances. We
define a partner predicate Partner(πt0

P0
, πt1

P1
) which outputs 1 if the two instances

πt0
P0

and πt1
P1

are partnered and 0 otherwise.

Security Experiment. The security experiment is played between a challenger
and an adversary A. The challenger draws a random challenge bit β and creates
the public parameters. Then it outputs the public parameters to A. Now A has
access to the following oracles:

– Execute(U, t0,S, t1): one complete protocol execution between user instance
πt0
U and server instance πt1

S . This query models security against passive adver-
saries.

– SendInit, SendResp, SendTermInit, SendTermResp: send oracles to
model security against active adversaries. SendTermResp is only available
for three-message protocols.

– Corrupt(U,S): outputs the shared password pwUS of U and S.
– Reveal(P, t): outputs the session key of instance πt

P.
– Test(P, t): challenge query. Depending on the challenge bit β, the experiment

outputs either the session key of instance πt
P or a uniformly random key. By

πt
P.test = true, we mark an instance as tested.

We denote the experiment by ExpPAKE. The pseudocode is given in G0 in Fig. 5,
instantiated with our first PAKE protocol.

Freshness. During the game, we register if a query is allowed to prevent trivial
wins. Therefore, we define a freshness predicate Fresh(P, i). An instance πt

P is
fresh iff

1. πt
P accepted.

2. πt
P was not queried to Test or Reveal before.

3. At least one of the following conditions holds:
3.1 πt

P accepted during a query to Execute.
3.2 There exists more than one partner instance.
3.3 A unique fresh partner instance exists.
3.4 No partner exists and Corrupt was not queried.

Definition 8 (Security of PAKE). We define the security experiment, part-
nering and freshness conditions as above. The advantage of an adversary A
against a password authenticated key exchange protocol PAKE in ExpPAKE is
defined as

AdvPAKE(A) :=
∣∣∣∣Pr[ExpPAKE ⇒ 1] − 1

2

∣∣∣∣ .

Password-Authenticated Key Exchange from Group Actions 711

A PAKE is considered secure if the best the adversary can do is to perform
an online dictionary attack. More concretely, this means that the advantage of
the adversary should be negligibly close to qs/|PW| when passwords are drawn
uniformly and independently from PW, where qs is the number of send queries
made by the adversary.

Note that this definition captures weak forward secrecy. In the full version of
our paper, we give an extended security definition capturing also perfect forward
secrecy, as well as proofs for our protocols [1, Appendix F].

5 First Attempt: Protocol GA-PAKE�

The GA-PAKE� protocol was already introduced in the introduction (Sect. 1).
We refer to Fig. 1 for a description of the protocol. In contrast to the two PAKE
protocols from Sects. 6 and 7, GA-PAKE� is not secure for EGATs, i.e., if it is
possible to compute twists of set elements efficiently. In particular it should
not be instantiated with the CSIDH-group action. However, it is instructive to
examine its security and it serves as a good motivation for the design of the two
secure PAKE protocols X-GA-PAKE� and Com-GA-PAKE�.

In this section we present an offline dictionary attack against GA-PAKE� for
(R)EGAT. However, if twisting is hard, then we can prove security of GA-PAKE�

based on a hardness assumption that is similar to the simultaneous Diffie-
Hellman problem which was introduced to prove the security of TBPEKE and
CPace [3,26]. The proof for GA-PAKE� is given in the full version [1, Appendix
C].

Proposition 1. For EGATs, the protocol GA-PAKE� is vulnerable to offline dic-
tionary attacks.

Proof. We construct an adversary A that takes the role of the server. The attack
is summarized in Fig. 3. After receiving xU, the adversary computes

xS
i = s̃i � (xU

i)
t = s̃i � (ui � xbi

)t = (s̃i · u−1
i) � xt

bi
= (s̃i · u−1

i · g−1
bi

) � x̃

for each i ∈ [�] and sends xS
1, . . . , x

S
� to the user. Then the user computes zi =

ui � xS
i = (s̃i · g−1

bi
) � x̃ = s̃i � xt

bi
. For each i ∈ [�], the adversary A can now

compute zi for both possibilities bi = 0 and bi = 1. This allows him to compute
K for all possible passwords pw ∈ PW � {0, 1}� (being offline). �	
This offline attack can easily be used to win the security experiment with high
probability. A only needs to issue two send queries. It chooses any user U, initiates
a session and computes its message xS

1, ..., x
S
� as described in Fig. 3. It reveals

the corresponding session key and starts its offline attack by brute forcing all
pw ∈ PW until it finds a match for a candidate pw∗. Now A issues its second
send query. This time it computes the message following the protocol using pw∗

and derives a key K∗. It issues a test query and gets Kβ . If K∗ = Kβ , then
it outputs 0, otherwise it outputs 1. In case there is more than one password

712 M. Abdalla et al.

Fig. 3. Attack against GA-PAKE� using twists.

candidate, i.e., two inputs to H lead to the same K∗, then A can issue another
send and reveal query to rule out false positives. In the end, it can still happen
that β = 1 and K∗ = K, but this event only occurs with probability 1/|K|.
Corollary 1. For any adversary A against GA-PAKE� instantiated with an
EGAT, we have Pr[ExpGA-PAKE�

⇒ 1] = 1 − 1
|K| .

6 X-GA-PAKE�: One-Round PAKE from Group Actions

In the previous section we showed that GA-PAKE� is insecure when instantiated
with an EGAT. Here, we present the modification X-GA-PAKE�, which impedes
the offline dictionary attack presented in that section. Broadly speaking, the idea
is to double the message size of both parties in the first flow. In the second flow
it is then necessary to compute certain “cross products” which is only possible if
the previous message has been honestly generated. The letter X in X-GA-PAKE�

stands for cross product.
By means of these modifications, the protocol X-GA-PAKE� is provably secure

for EGATs. We show that its security can be reduced to the hardness of the
computational problems GA-StCDH and SqInv-GA-StCDH (Theorem 1).

The setup for X-GA-PAKE� is the same as for GA-PAKE�. The crs = (x0, x1)
comprises two elements of the set X , and the shared password is a bit string
(b1, . . . , b�) of length �. In the first flow of the protocol the user generates 2·� ran-
dom group elements, u1, . . . , u� and û1, . . . , û�. Using these elements it computes
the set elements xU

i = ui � xbi
and x̂U

i = ûi � xbi
for each i ∈ [�] and sends these

to the server. Simultaneously, the server generates the random group elements
s1, . . . , s� and ŝ1, . . . , ŝ�, which it uses to compute the set elements xS

i = si � xbi

and x̂S
i = ŝi � xbi

for each i ∈ [�] and sends these to the user. Upon receiving the
set elements from the other party, both the server and the user compute

zi,1 = ui � xS
i = si � xU

i , zi,2 = ûi � xS
i = si � x̂U

i , zi,3 = ui � x̂S
i = ŝi � xU

i ,

Password-Authenticated Key Exchange from Group Actions 713

Fig. 4. PAKE protocol X-GA-PAKE� from group actions.

for each i ∈ [�]. Finally, these elements are used to compute the session key K.
The protocol is sketched in Fig. 4.

We now prove the security of X-GA-PAKE� for EGATs.

Theorem 1 (Security of X-GA-PAKE�). For any adversary A against X-GA-
PAKE� that issues at most qe execute queries and qs send queries and where H
is modeled as a random oracle, there exist an adversary B1 against GA-StCDH
and an adversary B2 against SqInv-GA-StCDH such that

AdvX-GA-PAKE�
(A) ≤ AdvGA-StCDH

EGAT (B1) + AdvSqInv-GA-StCDH
EGAT (B2) +

qs

|PW| +
(qs + qe)2

|G|2�
.

Before proving Theorem 1, we will introduce a new computational assumption
which is tailored to the protocol.

Definition 9 (Double Simultaneous GA-StCDH (DSim-GA-StCDH)). On
input (x0, x1, w0, w1) = (g0 � x̃, g1 � x̃, h0 � x̃, h1 � x̃) ∈ X 4, the DSim-GA-StCDH
problem requires to find a tuple (y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
0 · h0 � y, g−1

0 · h1 � y, g−1
1 · h0 � y, g−1

1 · h1 � y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage
function of an adversary A as

AdvDSim-GA-StCDH
XXX (A) := Pr

⎡
⎢⎢⎣

y0 = GA-CDHx0 (w0, y)
y1 = GA-CDHx0 (w1, y)
y2 = GA-CDHx1 (w0, y)
y3 = GA-CDHx1 (w1, y)

∣∣∣∣∣∣∣∣

(g0, g1, h0, h1)
$← G4

(x0, x1) = (g0 � x̃, g1 � x̃)
(w0, w1) = (h0 � x̃, h1 � x̃)

(y, y0, y1, y2, y3) ← AO(x0, x1, w0, w1)

⎤
⎥⎥⎦ ,

where O = {GA-DDHxj
(wi, ·, ·)}i,j∈{0,1}.

Remark 4. Note that DSim-GA-StCDH may be viewed as the doubled version of
the Sim-GA-StCDH problem defined in the full version of the paper [1, Definition

714 M. Abdalla et al.

12]. The latter is an assumption underlying the security of GA-PAKE� and (in the
notation of the above problem) it only requires to find the tuple (y, y0, y2). For a
group action with twists, this admits the trivial solution (y, y0, y2) = (wt

0, x
t
0, x

t
1).

Such a trivial solution is inhibited by requiring to find y1 and y3 as well.

The DSim-GA-StCDH problem is implied by SqInv-GA-StCDH, more precisely

AdvDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B). (1)

A proof of this implication is given in the full version [1, Lemma 1].

Proof (of Theorem 1). Let A be an adversary against X-GA-PAKE�. Consider the
games in Figs. 5, 7, 8.

Game G0. This is the original game, hence

AdvX-GA-PAKE�
(A) ≤ |Pr[G0 ⇒ 1] − 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance com-
putes the same trace as any other accepted instance (line 69) or a user instance
computes the same trace as any other accepted user instance (line 84). In this
case, SendResp or SendTermInit return ⊥. We do the same if a trace that
is computed in an Execute query collides with one of a previously accepted
instance (line 28). Due to the difference lemma,

|Pr[G1 ⇒ 1] − Pr[G0 ⇒ 1]| ≤ Pr[badcoll].

Note that when badcoll is not raised, each instance is unique and has at most one
partner. In order to bound badcoll, recall that the trace of an oracle πt

P consists
of (U,S, xU = (xU

1 , ..., xU
�), x̂

U = (x̂U
1 , ...x̂U

�), x
S = (xS

1, ..., x
S
�), x̂

S = (x̂S
1, ..., x̂

S
�)),

where at least one of the message pairs (xU, x̂U) or (xS, x̂S) was chosen by the
game. Thus, badcoll can only happen if all those 2 ·� set elements collide with all
2 · � set elements of another instance. The probability that this happens for two
(fixed) sessions is |G|−2�, hence the union bound over qe and qs sessions yields

|Pr[G1 ⇒ 1] − Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(

qe + qs

2

)
· 1
|G|2�

≤ (qe + qs)2

|G|2�
.

Game G2. In game G2, we make the freshness explicit. To each oracle πt
P, we

assign an additional variable πt
P.fr which is updated during the game. In partic-

ular, all instances used in execute queries are marked as fresh (line 34).
An instance is fresh if the password was not corrupted yet (lines 72, 89).

Otherwise, it is not fresh (lines 74, 91). For user instances we also check if there
exists a fresh partner (line 87). If A issues a Corrupt query later, the freshness
variable will also be updated (line 103). When the session key of an instance is
revealed, this instance and its potential partner instance are marked as not fresh
(line 41). On a query to test, the game then only checks the freshness variable
(line 44). These are only a conceptual changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1].

Password-Authenticated Key Exchange from Group Actions 715

GAMES G0-G4

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T) := (∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return �β = β′�

Execute(U, t0, S, t1)

09 if πt0
U �= ⊥ or πt1

S �= ⊥
10 return ⊥
11 (b1, ..., b�) := pwUS �G0-G3

12 u := (u1, ..., u�)
$← G�

13 û := (û1, ..., û�)
$← G�

14 s := (s1, ..., s�)
$← G�

15 ŝ := (ŝ1, ..., ŝ�)
$← G�

16 xU := (xU
1 , ..., xU

�) := (u1 � xb1 , ..., u� � xb�) �G0-G3

17 x̂U := (x̂U
1 , ..., x̂U

�) := (û1 � xb1 , ..., û� � xb�) �G0-G3

18 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�) �G0-G3

19 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�) �G0-G0

20 for i ∈ [�] : �G0-G3

21 zi := (zi,1, zi,2, zi,3) := (ui � xS
i , ûi � xS

i , ui � x̂S
i) �G0-G3

22 z := (z1, . . . , z�) �G0-G3

23 xU := (xU
1 , ..., xU

�) := (u1 � x̃, ..., u� � x̃) �G4

24 x̂U := (x̂U
1 , ..., x̂U

�) := (û1 � x̃, ..., û� � x̃) �G4

25 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃) �G4

26 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃) �G4

27 if ∃P ∈ U ∪S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

28 badcoll := true �G1-G4

29 return ⊥ �G1-G4

30 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z) �G0-G2

31 K $← K �G3-G4

32 πt0
U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)

33 πt1
S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)

34 (πt0
U .fr, πt1

S .fr) := (true, true) �G2-G4

35 return (U, xU, x̂U, S, xS, x̂S)

Reveal(P, t)

36 if πt
P.acc �= true or πt

P.test = true
37 return ⊥
38 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, πt′
P′) = 1

and πt′
P′ .test = true

39 return ⊥
40 ∀(P′, t′) s. t. πt′

P′ .tr = πt
P.tr �G2-G4

41 πt′
P′ .fr := false �G2-G4

42 return πt
P.K

Test(P, t)

43 if Fresh(πt
P) = false return ⊥ �G0-G1

44 if πt
P.fr = false return ⊥ �G2-G4

45 K∗
0 := Reveal(P, t)

46 if K∗
0 = ⊥ return ⊥

47 K∗
1

$← K
48 πt

P.test := true
49 return K∗

β

H(U, S, xU, x̂U, xS, x̂S, pw, z)

50 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
51 return K
52 T [U, S, xU, x̂U, xS, x̂S, pw, Z] $← K
53 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendInit(U, t, S)

54 if πt
U �= ⊥ return ⊥

55 (b1, ..., b�) := pwUS

56 u := (u1, ..., u�)
$← G�

57 û := (û1, ..., û�)
$← G�

58 xU := (xU
1 , ..., xU

�) := (u1 � xb1 , ..., u� � xb�)
59 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � xb1 , ..., û� � xb�)

60 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

61 πt
U.fr := false �G2-G4

62 return (U, xU, x̂U)

SendResp(S, t,U, xU, x̂U)

63 if πt
S �= ⊥ return ⊥

64 (b1, ..., b�) := pwUS

65 (s1, ..., s�)
$← G�

66 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�)

67 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�)

68 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

69 badcoll := true �G1-G4

70 return ⊥ �G1-G4

71 if (U, S) /∈ C �G2-G4

72 πt
S.fr := true �G2-G4

73 else �G2-G4

74 πt
S.fr := false �G2-G4

75 for i ∈ [�] :
76 zi := (zi,1, zi,2, zi,3) := (si � xU

i , s � x̂U
i , ŝi � xU

i)
77 z := (z1, ..., z�)
78 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
79 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
80 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

81 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

82 return ⊥
83 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

84 badcoll := true �G1-G4

85 return ⊥ �G1-G4

86 if ∃t′ s. t. πt′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true �G2-G4

87 πt
U.fr := true �G2-G4

88 else if (U, S) /∈ C �G2-G4

89 πt
U.fr := true �G2-G4

90 else �G2-G4

91 πt
U.fr := false �G2-G4

92 for i ∈ [�] :
93 zi := (zi,1, zi,2, zi,3) := (ui � xS

i , ûi � xS
i , ui � x̂S

i)
94 z := (z1, ..., z�)
95 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
96 πt

U := ((u, û), (U, S, xU, x̂UxS, x̂S), K, true)
97 return true

Corrupt(U, S)
98 if (U, S) ∈ C return ⊥
99 for P ∈ {U, S}

100 if ∃t s. t. πt
P.test = true

and �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1
101 return ⊥
102 ∀πt

P : if �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1 �G2-G4

103 πt
P.fr = false �G2-G4

104 C := C ∪ {(U, S)}
105 return pwUS

Fig. 5. Games G0-G4 for the proof of Theorem 1. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}.

716 M. Abdalla et al.

BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Te) := (∅, ∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 Stop.

H(U, S, xU, xS, pw, z)
09 if ∃(u, û, s, ŝ)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, u, û, s, ŝ) ∈ Te

10 (b1, ..., b�) := pw
11 for i ∈ [�]
12 (zi,1, zi,2, zi,3) := zi

13 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,1) = 1

14 Stop with (u−1
i · s−1

i · gbi) � zi,1

15 if GA-DDH(x, xS
i , (û

−1
i · gbi) � zi,2) = 1

16 Stop with (û−1
i · s−1

i · gbi) � zi,2

17 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,3) = 1

18 Stop with (u−1
i · ŝ−1

i · gbi) � zi,3

19 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
20 return K
21 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
22 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

Execute(U, t0, S, t1)

23 if πt0
U �= ⊥ or πt1

S �= ⊥
24 return ⊥
25 (b1, ..., b�) := pwUS

26 u := (u1, ..., u�)
$← G�

27 û := (û1, ..., û�)
$← G�

28 s := (s1, ..., s�)
$← G�

29 ŝ := (ŝ1, ..., ŝ�)
$← G�

30 xU := (xU
1 , ..., xU

�) := (u1 � x, ..., u� � x)
31 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � x, ..., û� � x)

32 xS := (xS
1, ..., x

S
�) := (s1 � y, ..., s� � y)

33 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � y, ..., ŝ� � y)

34 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

35 badcoll := true
36 return ⊥
37 ∀z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
38 for i ∈ [�]
39 (zi,1, zi,2, zi,3) := zi

40 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,1) = 1

41 Stop with (u−1
i · s−1

i · gbi) � zi,1

42 if GA-DDH(x, xS
i , (û

−1
i · gbi) � zi,2) = 1

43 Stop with (û−1
i · s−1

i · gbi) � zi,2

44 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,3) = 1

45 Stop with (u−1
i · ŝ−1

i · gbi) � zi,3

46 Te := Te ∪ {U, S, xU, x̂U, xS, x̂S, pwUS, u, û, s, ŝ}
47 K $← K
48 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
49 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
50 (πt0

U .fr, πt1
S .fr) := (true, true)

51 return (U, xU, x̂U, S, xS, x̂S)

Fig. 6. Adversary B1 against GA-StCDH for the proof of Theorem 1. A has access to
oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,
Test,H}. Oracles SendInit, SendResp, SendTermInit, Reveal, Corrupt and
Test are defined as in G2. Lines written in blue show how B1 simulates the game.
(Color figure online)

Game G3. In game G3, we choose random keys for instances queried to Execute.
We construct adversary B1 against GA-StCDH in Fig. 6 and show that

|Pr[G3 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1).

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g � x̃, h � x̃) and has access
to a decision oracle GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1)
as in game G3 and then runs adversary A. Queries to Execute are simulated
as follows: It chooses random group elements ui, ûi and si, ŝi for user and server
instances and i ∈ [�], but instead of using (x0, x1) to compute the set elements,
B1 uses x for the user instance and y for the server instance, independent of the
password bits bi (lines 30 to 33). We can rewrite this as

xU
i = ui � x = (ui · g) � x̃ = (ui · g · gbi

· g−1
bi

) � x̃ = (ui · g · g−1
bi

)︸ ︷︷ ︸
u′

i

�xbi
,

where u′
i is the group element that the user actually needs in order to compute

the session key. In the same way, û′
i = ûi ·g·g−1

bi
, s′

i = si ·h·g−1
bi

and ŝ′
i = ŝi ·h·g−1

bi
.

Password-Authenticated Key Exchange from Group Actions 717

Note that zi = (zi,1, zi,2, zi,3) is implicitly set to

zi,1 = (u′
i · s′

i) � xbi
= ui · g · si · h · g−1

bi
� x̃,

zi,2 = (û′
i · s′

i) � xbi
= ûi · g · si · h · g−1

bi
� x̃,

zi,3 = (u′
i · ŝ′

i) � xbi
= ui · g · ŝi · h · g−1

bi
� x̃.

Before choosing a random session key, we check if there has been a query to the
random oracle H that matches the session key (line 37–45). We iterate over the
entries in T , where U, S, xU, x̂U, xS, x̂S and pwUS match, and check if one of the
entries in z is correct. Note that we can use the following equivalences:

GA-CDHxbi
(xU

i , xS
i) = zi,1 ⇔ GA-CDH(x, xS

i) = (u−1
i · gbi

) � zi,1,

GA-CDHxbi
(x̂U

i , xS
i) = zi,2 ⇔ GA-CDH(x, xS

i) = (û−1
i · gbi

) � zi,2,

GA-CDHxbi
(xU

i , x̂S
i) = zi,3 ⇔ GA-CDH(x, x̂S

i) = (u−1
i · gbi

) � zi,3,

which allows us to use the restricted decision oracle GA-DDH(x, ·, ·). If one of
zi,1, zi,2, zi,3 is correct, B1 aborts and outputs the solution (g · h) � x̃ which is
respectively given by (u−1

i ·s−1
i ·gbi

)�zi,1, (û−1
i ·s−1

i ·gbi
)�zi,2 or (u−1

i ·ŝ−1
i ·gbi

)�zi,3.
Otherwise, we store the values ui, ûi and si, ŝi in list Te together with the

trace and the password (line 46) and choose a session key uniformly at random.
We need list Te to identify relevant queries to H. In particular, if the trace and
password appear in a query, we retrieve the values ui, ûi and si, ŝi to check
whether the provided zi are correct. We do this in the same way as described
above using the decision oracle (lines 09–18). If the oracle returns 1 for any zi,j ,
B1 aborts and outputs the solution for (g · h) � x̃ which is respectively given by
(u−1

i · s−1
i · gbi

) � zi,1, (û−1
i · s−1

i · gbi
) � zi,2 or (u−1

i · ŝ−1
i · gbi

) � zi,3.

Game G4. In game G4, we remove the password from execute queries. In partic-
ular, we do not compute xU, x̂U, xS, x̂S to the basis xbi

, but simply use x̃. Note
that the values have the same distribution as in the previous game. Also, the
group elements u, û, s and ŝ are not used to derive the key. Hence, this change
is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1].

Game G5. G5 is given in Fig. 7. In this game we want to replace the session keys
by random for all fresh instances in oracles SendResp and SendTermInit
(lines 62, 83). Therefore, we introduce an additional independent random oracle
Ts which maps only the trace of an instance to a key (lines 63, 84). We keep
partner instances consistent, i.e., in case the adversary queries SendTermInit
for a user instance and there exists a fresh partner instance, then we retrieve the
corresponding key from Ts and also assign it to this instance (line 78). For all
instances that are not fresh, we simply compute the correct key using random
oracle H (lines 66–69, 87–90). If a session is fresh and there is an inconsistency
between T and Ts, we raise flag bad. This happens in the following cases:

718 M. Abdalla et al.

– a server instance is about to compute the session key, the password was not
corrupted, but there already exists an entry in T with the correct password
and z (lines 60–61).

– a user instance is about to compute the session key, there exists no partner
instance and the password was not corrupted, but there already exists an
entry in T with the correct password and z (lines 81–82).

– the random oracle is queried on some trace that appears in Ts together with
the correct password and z (lines 36–47). At this point, we also check if
the password was corrupted in the meantime and if this is the case and the
adversary issues the correct query, we output the key stored in Ts (line 46)
as this instance cannot be tested. This case corresponds to perfect forward
secrecy which we cover in the full version of the paper [1, Appendix E].

When bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad].

Game G6. G6 is given in Fig. 8. In this game we remove the password from
send queries and generate passwords as late as possible, that is either when the
adversary issues a corrupt query (line 21) or after it has stopped with output β′

(line 07). In SendInit and SendResp we still choose group elements ui, ûi, si

and ŝi uniformly at random, but now compute xU
i , x̂U

i , xS
i and x̂S

i using the origin
element (lines 26, 27, 51 and 52). Thus, depending on which password is chosen
afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0) � x0 = (ui · g−1
1) � x1

and analogously for x̂U
i , xS

i and x̂S
i . For all instances that are not fresh, we have

to compute the real session key using zi = (si ·g−1
bi

�xU
i , si ·g−1

bi
� x̂U

i , ŝi ·g−1
bi

�xU
i)

(line 70) or zi = (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i) (line 97). Note that the

password is already defined for these instances.
Recall that event bad in game G5 is raised whenever there is an inconsistency

in the random oracle queries and the keys of fresh instances. In this game, we
split event bad into two different events:

– badpw captures the event that there exists more than one valid entry in T
for the same trace of a fresh instance, but different passwords.

– badguess happens only if badpw does not happen and is raised if there exists
a valid entry in T for the trace of a fresh instance and the correct password,
where the password was not corrupted when the query to H was made.

To identify the different events, we introduce a new set Tbad. For all fresh
instances in SendResp and SendTermInit, we now iterate over all entries
in T that contain the corresponding trace. We check if the given password and
z are valid for this trace by computing the real values z′ in the same way as for
non-fresh instances. If z = z′, we add this entry to the set Tbad (lines 57–63, 84–
90). We essentially do the same when the random oracle H is queried on a trace

Password-Authenticated Key Exchange from Group Actions 719

GAME G5

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Ts) := (∅, ∅, ∅)
03 bad := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return �β = β′�

Execute(U, t0, S, t1)

09 if πt0
U �= ⊥ or πt1

S �= ⊥: return ⊥
10 u := (u1, ..., u�)

$← G�

11 û := (û1, ..., û�)
$← G�

12 s := (s1, ..., s�)
$← G�

13 ŝ := (ŝ1, ..., ŝ�)
$← G�

14 xU := (xU
1 , ..., xU

�) := (u1 � x̃, ..., u� � x̃)
15 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � x̃, ..., û� � x̃)

16 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃)

17 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃)

18 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

19 return ⊥
20 K $← K
21 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
22 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
23 (πt0

U .fr, πt1
S .fr) := (true, true)

24 return (U, xU, x̂U, S, xS, x̂S)

SendInit(U, t, S)

25 if πt
U �= ⊥ return ⊥

26 (b1, ..., b�) := pwUS

27 u := (u1, ..., u�)
$← G�

28 û := (û1, ..., û�)
$← G�

29 xU := (xU
1 , ..., xU

�) := (u1 � xb1 , ..., u� � xb�)
30 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � xb1 , ..., û� � xb�)

31 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

32 πt
U.fr := false

33 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

34 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
35 return K
36 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts and pw = pwUS

37 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
38 for i ∈ [�]
39 z′

i := (ui � xS
i , ûi � xS

i , ui � x̂S
i)

40 z′ := (z′
1, ..., z

′
�)

41 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
42 for i ∈ [�]
43 z′

i := (si � xU
i , si � x̂U

i , ŝi � xU
i)

44 z′ := (z′
1, ..., z

′
�)

45 if z = z′

46 if (U, S) ∈ C: return K
47 if (U, S) /∈ C: bad := true
48 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
49 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)

50 if πt
S �= ⊥ return ⊥

51 (b1, ..., b�) := pwUS

52 s := (s1, ..., s�)
$← G�

53 ŝ := (ŝ1, ..., ŝ�)
$← G�

54 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�)

55 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�)

56 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

57 return ⊥
58 if (U, S) /∈ C
59 πt

S.fr := true
60 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (si � xU
i , si � x̂U

i , ŝi � xU
i) ∀i ∈ [�]

61 bad := true
62 K $← K
63 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
64 else
65 πt

S.fr := false
66 for i ∈ [�]
67 zi := (si � xU

i , si � x̂U
i , ŝi � xU

i)
68 z := (z1, ..., z�)
69 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
70 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

72 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

73 return ⊥
74 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
75 return ⊥
76 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true

77 πt
U.fr := true

78 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
79 else if (U, S) /∈ C
80 πt

U.fr := true
81 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (ui � xS
i , ûi � xS

i , ui � x̂S
i) ∀i ∈ [�]

82 bad := true
83 K $← K
84 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
85 else
86 πt

U.fr := false
87 for i ∈ [�]
88 zi := (ui � xS

i , ûi � xS
i , ui � x̂S

i)
89 z := (z1, ..., z�)
90 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
91 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
92 return true

Fig. 7. Game G5 for the proof of Theorem 1. A has access to oracles O := {Execute,
SendInit, SendResp, SendTermInit, Reveal, Corrupt, Test, H}. Reveal, Test
and Corrupt are defined as in Figure 5. Differences to G4 are highlighted in blue.
(Color figure online)

that appears in Ts. Here, the adversary specifies the password and we check if z
is valid for that password using the ui, ûi stored in Ts for user instances and si, ŝi

for server instances. If z is valid and the instance is still fresh, we add the query

720 M. Abdalla et al.

GAME G6

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
03 (badguess,badpw) := (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad

and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, x̂U, xS, x̂S, z

s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ Tbad

12 badguess := true
13 return �β = β′�

Corrupt(U, S)
14 if (U, S) ∈ C return ⊥
15 for P ∈ {U, S}
16 if ∃t s. t. πt

P.test = true
and �P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, πt′
P′) = 1

17 return ⊥
18 ∀πt

P : if �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1
19 πt

P.fr = false
20 C := C ∪ {(U, S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)

23 if πt
U �= ⊥ return ⊥

24 u := (u1, ..., u�)
$← G�

25 û := (û1, ..., û�)
$← G�

26 xU := (xU
1 , ..., xU

�) := (u1 � x̃, ..., u� � x̃)
27 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � x̃, ..., û� � x̃)

28 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

29 πt
U.fr := ⊥

30 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

31 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
32 return K
33 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts

34 (b1, ..., b�) := pw
35 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
36 for i ∈ [�]
37 z′

i := (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i)

38 z′ := (z′
1, ..., z

′
�)

39 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
40 for i ∈ [�]
41 z′

i := (si · g−1
bi

� xU
i , si · g−1

bi
� x̂U

i , ŝi · g−1
bi

� xU
i)

42 z′ := (z′
1, ..., z

′
�)

43 if z = z′

44 if (U, S) ∈ C and pw = pwUS: return K
45 if (U, S) /∈ C: Tbad := Tbad ∪ {U, S, xU, x̂U, xS, x̂S, pw, z}
46 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
47 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)

48 if πt
S �= ⊥ return ⊥

49 s := (s1, ..., s�)
$← G�

50 ŝ := (ŝ1, ..., ŝ�)
$← G�

51 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃)

52 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃)

53 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

54 return ⊥
55 if (U, S) /∈ C
56 πt

S.fr := true
57 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
58 (b1, ..., b�) := pw
59 for i ∈ [�]
60 z′

i := (si · g−1
bi

� xU
i , si · g−1

bi
� x̂U

i , ŝi · g−1
bi

� xU
i)

61 z′ := (z′
1, ..., z

′
�)

62 if z = z′

63 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
64 K $← K
65 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
66 else
67 πt

S.fr := false
68 (b1, ..., b�) := pwUS

69 for i ∈ [�]
70 zi := (si · g−1

bi
� xU

i , si · g−1
bi

� x̂U
i , ŝi · g−1

bi
� xU

i)
71 z := (z1, ..., z�)
72 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
73 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
74 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

75 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

76 return ⊥
77 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
78 return ⊥
79 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true

80 πt
U.fr := true

81 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
82 else if (U, S) /∈ C
83 πt

U.fr := true
84 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
85 (b1, ..., b�) := pw
86 for i ∈ [�]
87 z′

i := (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i)

88 z′ := (z′
1, ..., z

′
�)

89 if z = z′

90 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
91 K $← K
92 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
93 else
94 πt

U.fr := false
95 (b1, ..., b�) := pwUS

96 for i ∈ [�]
97 zi := (ui · g−1

bi
� xS

i , ûi · g−1
bi

� xS
i , ui · g−1

bi
� x̂S

i)
98 z := (z1, ..., z�)
99 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)

100 πt
U := ((u1, ..., u�), (U, S, xU, x̂U, xS, x̂S), K, true)

101 return true

Fig. 8. Game G6 for the proof of Theorem 1. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
H}. Oracles Reveal and Test are defined as in game G4 in Figure 5. Oracle Execute
is defined as in Figure 7. Differences to G5 are highlighted in blue. (Color figure online)

to Tbad (lines 33–45). In case the password was corrupted in the meantime, we
output the key stored in Ts as introduced in the previous game.

Password-Authenticated Key Exchange from Group Actions 721

After the adversary terminates, we check Tbad whether event badpw (line 09)
or event badguess (line 12) occurred. We will bound these events below. First
note that whenever bad is raised in G5, then either flag badguess or badpw is
raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess].

Finally, we bound the probabilities of the two events. We start with badpw. In
Fig. 9, we construct adversary B2 against DSim-GA-StCDH that simulates G6.

We show that when badpw occurs, then B2 can solve DSim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvDSim-GA-StCDH
EGA (B2).

Adversary B2 inputs (x0, x1, w0, w1), where x0 = g0 � x̃, x1 = g1 � x̃, w0 = h0 � x̃
and w1 = h1�x̃ for group elements g0, g1, h0, h1 ∈ G chosen uniformly at random.
Adversary B2 also has access to decision oracles GA-DDHxj

(wi, ·, ·) for (i, j) ∈
{0, 1}2. It runs adversary A on (x0, x1). Queries to SendInit are simulated as
follows: B2 chooses group elements ui and ûi uniformly at random and sets

xU
i = ui � w0 = (ui · h0 · g−1

0) � x0 = (ui · h0 · g−1
1) � x1,

x̂U
i = ûi � w1 = (ûi · h1 · g−1

0) � x0 = (ûi · h1 · g−1
1) � x1.

The simulation of xS
i and x̂S

i in SendResp is done in the same way, choosing
random si and ŝi. In case the server instance is fresh, we must check if there
already exists an entry in T that causes an inconsistency. As in G6, we iterate
over all pw, z, in T that contain the trace of this instance. In particular, we must
check whether

zi,1 = GA-CDHxbi
(xU

i , xS
i) ⇔ GA-CDHxbi

(w0, x
U
i) = s−1

i � zi,1,

zi,2 = GA-CDHxbi
(x̂U

i , xS
i) ⇔ GA-CDHxbi

(w0, x̂
U
i) = s−1

i � zi,2,

zi,3 = GA-CDHxbi
(xU

i , x̂S
i) ⇔ GA-CDHxbi

(w1, x
U
i) = ŝ−1

i � zi,3,

which can be done with the decision oracles GA-DDHxbi
(wj , ·, ·). If all zi are

valid, then we add this entry to Tbad (lines 56–59).
If the instance is not fresh, then we have to compute the correct key. We

check list T for a valid entry z as explained above and if it exists, we assign this
value to the session key (line 66). Otherwise, we choose a random key and add
a special entry to T , which instead of z contains the secret group elements si

and ŝi (line 69) so that we can patch the random oracle later. SendTermInit
is simulated analogously, using the secret group elements ui and ûi.

Now we look at the random oracle queries. If the trace is contained in set
Ts which means the corresponding instance was fresh when the send query was
issued, we check if z is valid using the GA-DDH oracle. We do this as described
above, depending on whether it is a user or a server instance (lines 25, 31). In
case z is valid, we first check if the instance is still fresh (i.e., the password was
not corrupted in the meantime) and if this is the case, we add the query to Tbad

722 M. Abdalla et al.

B{GA-DDHxj
(wi,·,·)}i,j∈{0,1}

2 (x0, x1, w0, w1)
00 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad

and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

06 (b1, ..., b�) := pw
07 (b′

1, ..., b
′
�) := pw′

08 Find first index i such that bi �= b′
i

09 W.l.o.g. let bi = 0, b′
i = 1

10 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
11 Stop with (xS

i , u
−1
i � zi,1, û

−1
i � zi,2, u

−1
i � z′

i,1, û
−1
i � z′

i,2)
12 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
13 Stop with (xU

i , s−1
i � zi,1, ŝ

−1
i � zi,3, s

−1
i � z′

i,1, ŝ
−1
i � z′

i,3)

SendInit(U, t, S)

14 if πt
U �= ⊥ return ⊥

15 u := u1, ..., u�)
$← G�

16 û := (û1, ..., û�)
$← G�

17 xU := (xU
1 , ..., xU

�) := (u1 � w0, ..., u� � w0)
18 x̂U := (x̂U

1 , ..., x̂U
�) := (û1 � w1, ..., û� � w1)

19 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

20 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

21 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
22 return K
23 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts

24 (b1, ..., b�) := pw
25 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
26 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

27 if (U, S) /∈ C
28 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
29 if (U, S) ∈ C and pw = pwUS

30 return K
31 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
32 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]
33 if (U, S) /∈ C
34 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
35 if (U, S) ∈ C and pw = pwUS

36 return K
37 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
38 (b1, ..., b�) := pw
39 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

40 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
41 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ) ∈ T
42 (b1, ..., b�) := pw
43 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

44 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
45 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
46 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU)

47 if πt
S �= ⊥ return ⊥

48 s := (s1, ..., s�)
$← G�

49 ŝ := (ŝ1, ..., ŝ�)
$← G�

50 xS := (xS
1, ..., x

S
�) := (s1 � w0, ..., s� � w0)

51 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � w1, ..., ŝ� � w1)

52 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

53 return ⊥
54 if (U, S) /∈ C
55 πt

S.fr := true
56 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
57 (b1, ..., b�) := pw
58 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

59 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
60 K $← K
61 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
62 else
63 πt

S.fr := false
64 (b1, ..., b�) := pwUS

65 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
and GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

66 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
67 else
68 K $← K
69 T [U, S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
70 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

72 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥) return ⊥

73 if ∃P ∈ U , t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) return ⊥

74 if ∃t′ s. t. πt′
S .tr = (U, S, xU, x̂U, xS, x̂S) and πt′

S .fr = true
75 πt

U.fr := true
76 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
77 else if (U, S) /∈ C
78 πt

U.fr := true
79 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
80 (b1, ..., b�) := pw
81 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

82 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
83 K $← K
84 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
85 else
86 πt

S.fr := false
87 (b1, ..., b�) := pwUS

88 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
and GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

89 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
90 else
91 K $← K
92 T [U, S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
93 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
94 return true

Fig. 9. Adversary B2 against DSim-GA-StCDH for the proof of Theorem 1. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal, Corrupt and Test are defined as
in G6. Lines written in blue show how B2 simulates the game. (Color figure online)

(lines 28, 34). Otherwise, if the password was corrupted and is specified in the
query, we return the session key stored in Ts (lines 30, 36).

Password-Authenticated Key Exchange from Group Actions 723

Next, we check if the query matches a special entry in T that was added in
SendResp or SendTermInit for a non-fresh instance, which means we have to
output the same key that was chosen before. Again, we can use the GA-DDH
oracle and differentiate between user and server instances (lines 37–44).

After A terminates with output β′, B2 chooses the passwords which have not
been generated in a Corrupt query yet. If badpw occurred (lines 05–13), then
there must be two entries in Tbad for the same trace and different passwords
pw �= pw′ along with values z and z′. Let i be the first index where the two
passwords differ, i.e., bi �= b′

i. Without loss of generality assume that bi = 0 and
b′
i = 1, otherwise swap pw, z and pw′, z′. If the entries in Tbad are those of a user

instance, we retrieve the secret group elements u,ûi from Ts.
Recall that the DSim-GA-StCDH problem requires to compute y0 =

GA-CDHx0(w0, y), y1 = GA-CDHx0(w1, y), y2 = GA-CDHx1(w0, y) and y3 =
GA-CDHx1(w1, y), where y can be chosen by the adversary. B2 sets y = xS

i , and
outputs y and

y0 = u−1
i � zi,1 = GA-CDHx0(u

−1
i � xU

i , xS
i) = GA-CDHx0(w0, x

S
i),

y1 = û−1
i � zi,2 = GA-CDHx0(û

−1
i � x̂U

i , xS
i) = GA-CDHx0(w1, x

S
i),

y2 = u−1
i � z′

i,1 = GA-CDHx1(u
−1
i � xU

i , xS
i) = GA-CDHx1(w0, x

S
i),

y3 = û−1
i � z′

i,2 = GA-CDHx1(û
−1
i � x̂U

i , xS
i) = GA-CDHx1(w1, x

S
i).

If the instance is a server instance, B2 outputs (y, y0, y1, y2, y3) = (xU
i , s−1

i �
zi,1, ŝ

−1
i � zi,3, s

−1
i � z′

i,1, ŝ
−1
i � z′

i,3). This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw

does not happen. Hence, for each instance there is at most one entry in Tbad and
the size of Tbad is at most qs. As all entries were added before the corresponding
password was sampled, the probability is bounded by

Pr[G6 ⇒ badguess] ≤ qs

|PW| .

Finally, note that if none of the bad events happens in G6, all session keys
output by Test are uniformly random and the adversary can only guess β.
Hence, Pr[G6 ⇒ 1] = 1

2 . Collecting the probabilities and using Eq. 1 yields the
bound in Theorem 1. �	

7 Com-GA-PAKE�: Three-Round PAKE from Group
Actions

In this section we present a second modification of GA-PAKE�, which can
be securely instantiated with an EGAT. The protocol Com-GA-PAKE� extends
GA-PAKE� by a commitment that has to be sent before sending the actual mes-
sages. This ensures that the server cannot choose the set elements depending on
the message it receives from the user which was the crucial step in the attack

724 M. Abdalla et al.

against GA-PAKE�. In the second round, the user sends its message to the server
and only after receiving that message, the server sends its message to the user.
The protocol is sketched in Fig. 10 and its security is established in Theorem 2.
While this protocol adds two rounds to the original protocol, the total compu-
tational cost is lower than for X-GA-PAKE�.

Fig. 10. PAKE protocol Com-GA-PAKE� from group actions.

Theorem 2 (Security of Com-GA-PAKE�). For any adversary A against
Com-GA-PAKE� that issues at most qe execute queries, qs send queries and at
most qG and qH queries to random oracles G and H, there exist an adversary B1

against GA-StCDH and an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE�
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs� ·
√
AdvGA-GapCDH

EGAT (B2) +
(qs + qe)2

|G|�

+
qGqs

|G|� +
2 · (qG + qs + qe)2

2λ
+

qs

|PW| ,

where λ is the output length of G in bits.

The proof is similar to the one of Theorem 1 so we will only sketch it here. The
full proof is given in the long version of the paper [1, Appendix E].

Proof (Sketch). After ensuring that all traces are unique, we need to deal with
the commitment and in particular collisions. First, we require that there are
never two inputs to the random oracle G that return the same commitment.
This is to ensure that the adversary cannot open a commitment to a different
value, which might depend on previous messages.

Second, we need to ensure that after the adversary has seen a commitment, it
does not query G on the input, which is the hiding property of the commitment.

Password-Authenticated Key Exchange from Group Actions 725

What we actually do here is that we choose a random commitment in the first
round. Only later we choose the input and patch the random oracle accordingly.

Now we can replace the session keys of instances which are used in exe-
cute queries. Here, the freshness condition allows the adversary to corrupt the
password. However, as both xS and xU are generated by the experiment, the
only chance to notice this change is to solve the GA-StCDH problem, where the
decision oracle is required to simulate instances correctly.

In order to replace the session keys of fresh instances which are used in send
queries, we make the key independent of the password. The session key of a fresh
instance is now defined by the trace of that instance. The only issue that may
arise here is an inconsistency between the session key that is derived using the
trace and the session key that is derived using the random oracle H. Whenever
such an inconsistency occurs, we differentiate between two cases:

– There exists more than one valid entry in TH for the same trace of a fresh
instance, but different passwords.

– There exists a valid entry in TH for the trace of a fresh instance and the
correct password, where the password was not corrupted when the query to
H was made.

Finally, we bound the probabilities of the two cases. Similar to Theorem 1, we
will define a new computational problem that reflects exactly the interaction in
the protocol. We show that this problem is implied by GA-GapCDH using the
reset lemma. The general idea is that the adversary can always compute the
session key for one password guess, but not for a second one. After excluding
this, we choose the actual password, which is possible because session keys are
computed independently of the password. Thus, looking at one fixed instance,
the probability that the adversary guessed the password correctly is 1/|PW|. �	

8 Variants of the PAKE Protocols

Both protocols X-GA-PAKE� and Com-GA-PAKE� require that the user and the
server generate multiple random group elements and evaluate their action on
certain set elements. In this section we present two optimizations that allow us
to reduce the number of random group elements and the number of evaluations.

8.1 Increasing the Number of Public Parameters

In X-GA-PAKE� and Com-GA-PAKE� the common reference string is set to crs :=
(x0, x1) ∈ X 2. Increasing the number of public parameters allows to reduce the
number of group action evaluations in the execution of the protocol. The idea is
similar to the optimizations deployed to speed up the CSIDH-based signatures
schemes SeaSign [14] and CSI-FiSh [9]. We refer to Table 1 in the introduction
for an overview and example of the parameter choice.

We explain the changes on the basis of protocol X-GA-PAKE�. The variant
of Com-GA-PAKE� is similar and is provided in the full version of the paper

726 M. Abdalla et al.

[1, Appendix E], together with a security analysis for both variants. For some
positive integer N dividing �, we set

crs := (x0, . . . , x2N −1) ∈ X 2N

and pw = (b1, ..., b�/N) ∈ {0, ..., 2N − 1}�/N .

Note that as before, the password is a bitstring of length �, but it is divided into
�/N blocks of length N . In particular xbi

refers to one of the 2N different set
elements in the crs. The general outline of the protocol does not change. The
only difference is that in the first step both the server and the user only generate
2 ·�/N random group elements (instead of 2 ·�). Hence they only need to perform
2 · �/N group action evaluations in the first round and 3 · �/N evaluations in the
session key derivation. We write X-GA-PAKE�,N for this variant of the protocol.

8.2 Using Twists in the Setup

Both X-GA-PAKE� and Com-GA-PAKE� require that some trusted party gener-
ates two random set elements crs = (x0, x1). Here, we shortly discuss the setup
where x1 is replaced by the twist of x0, i.e. crs := (x0, x

t
0).

This simplification is particularly helpful when applied to one of the variants
from the previous subsection. These modified versions require to generate 2N

random set elements for the crs. Using twists it suffices to generate 2N−1 elements
(x0, . . . , x2N−1−1) ∈ X 2N−1

and setting xi+2N−1 = xt
i for each i ∈ [0, 2N−1 − 1].

The security of X-GA-PAKEt
� and Com-GA-PAKEt

� (the twisted versions of the
protocols) is discussed in the full version [1, Appendices D, E].

Acknowledgments. Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler and Doreen
Riepel were supported by the DFG under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972.

References

1. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. Cryptology ePrint Archive, Report
2022/770 (2022). https://eprint.iacr.org/2022/770

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4_6

3. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. Cryptology ePrint
Archive, Report 2021/114 (2021). https://eprint.iacr.org/2021/114

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14

5. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part
II. LNCS, vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_14

https://eprint.iacr.org/2022/770
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://eprint.iacr.org/2021/114
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14

Password-Authenticated Key Exchange from Group Actions 727

6. Azarderakhsh, R., Jao, D., Koziel, B., LeGrow, J.T., Soukharev, V., Taraskin, O.:
How not to create an isogeny-based PAKE. In: Conti, M., Zhou, J., Casalicchio, E.,
Spognardi, A. (eds.) ACNS 2020, Part I. LNCS, vol. 12146, pp. 169–186. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_9

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press, May 1992. https://doi.org/10.
1109/RISP.1992.213269

9. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_9

10. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8_27

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3_15

12. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7_4

14. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol.
11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4_26

15. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Online-extractability in the quan-
tum random-oracle model. Cryptology ePrint Archive, Report 2021/280 (2021).
https://eprint.iacr.org/2021/280

16. Fujioka, A., Takashima, K., Yoneyama, K.: One-round authenticated group key
exchange from isogenies. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS,
vol. 11821, pp. 330–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-31919-9_20

17. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–
543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_33 .
https://eprint.iacr.org/2003/032.ps.gz

18. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://doi.org/10.13154/tches.
v2019.i2.1-48. https://tches.iacr.org/index.php/TCHES/article/view/7384

19. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Cryptology
ePrint Archive, Report 2010/190 (2010). https://eprint.iacr.org/2010/190

https://doi.org/10.1007/978-3-030-57808-4_9
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://eprint.iacr.org/2021/280
https://doi.org/10.1007/978-3-030-31919-9_20
https://doi.org/10.1007/978-3-030-31919-9_20
https://doi.org/10.1007/3-540-39200-9_33
https://eprint.iacr.org/2003/032.ps.gz
https://doi.org/10.13154/tches.v2019.i2.1-48
https://doi.org/10.13154/tches.v2019.i2.1-48
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://eprint.iacr.org/2010/190

728 M. Abdalla et al.

20. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

21. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

22. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated
key exchange from random self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC
2020. LNCS, vol. 12593, pp. 58–84. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-68890-5_4

23. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with
optimal tightness. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 451–479. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81652-0_18

24. Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and
UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 213–241. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77870-5_8

25. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5_31

26. Pointcheval, D., Wang, G.: VTBPEKE: verifier-based two-basis password expo-
nential key exchange. In: Karri, R., Sinanoglu, O., Sadeghi, A.R., Yi, X. (eds.)
ASIACCS 2017, pp. 301–312. ACM Press, April 2017

27. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

28. Soukharev, V., Hess, B.: PQDH: a quantum-safe replacement for Diffie-Hellman
based on SIDH. Cryptology ePrint Archive, Report 2019/730 (2019). https://
eprint.iacr.org/2019/730

29. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An isogeny-based password-
authenticated key establishment protocol. Cryptology ePrint Archive, Report
2018/886 (2018). https://eprint.iacr.org/2018/886

30. Terada, S., Yoneyama, K.: Password-based authenticated key exchange from stan-
dard isogeny assumptions. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS,
vol. 11821, pp. 41–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31919-9_3

31. Yoneyama, K.: Post-quantum variants of ISO/IEC standards: compact chosen
ciphertext secure key encapsulation mechanism from isogeny. In: Proceedings of
the 5th ACM Workshop on Security Standardisation Research Workshop, SSR
2019, pp. 13–21. Association for Computing Machinery, New York (2019). https://
doi.org/10.1145/3338500.3360336

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2019/730
https://eprint.iacr.org/2019/730
https://eprint.iacr.org/2018/886
https://doi.org/10.1007/978-3-030-31919-9_3
https://doi.org/10.1007/978-3-030-31919-9_3
https://doi.org/10.1145/3338500.3360336
https://doi.org/10.1145/3338500.3360336

	Password-Authenticated Key Exchange from Group Actions
	1 Introduction
	2 Preliminaries
	3 (Restricted) Effective Group Actions (with Twists)
	3.1 Isogeny-Based REGAs
	3.2 Computational Assumptions

	4 Password Authenticated Key Exchange
	5 First Attempt: Protocol GA-PAKE
	6 X-GA-PAKE: One-Round PAKE from Group Actions
	7 Com-GA-PAKE: Three-Round PAKE from Group Actions
	8 Variants of the PAKE Protocols
	8.1 Increasing the Number of Public Parameters
	8.2 Using Twists in the Setup

	References

