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Abstract. We model and analyze the Signal end-to-end messaging pro-
tocol within the UC framework. In particular:

– We formulate an ideal functionality that captures end-to-end secure
messaging, in a setting with PKI and an untrusted server, against
an adversary that has full control over the network and can adap-
tively and momentarily compromise parties at any time and obtain
their entire internal states. In particular our analysis captures the
forward secrecy and recovery-of-security properties of Signal and the
conditions under which they break.

– We model the main components of the Signal architecture (PKI
and long-term keys, the backbone continuous-key-exchange or
“asymmetric ratchet,” epoch-level symmetric ratchets, authenti-
cated encryption) as individual ideal functionalities that are real-
ized and analyzed separately and then composed using the UC and
Global-State UC theorems.

– We show how the ideal functionalities representing these compo-
nents can be realized using standard cryptographic primitives under
minimal hardness assumptions.

Our modeling introduces additional innovations that enable arguing
about the security of Signal irrespective of the underlying communication
medium, as well as secure composition of dynamically generated modules
that share state. These features, together with the basic modularity of
the UC framework, will hopefully facilitate the use of both Signal-as-a-
whole and its individual components within cryptographic applications.

Two other features of our modeling are the treatment of fully adaptive
corruptions, and making minimal use of random oracle abstractions. In
particular, we show how to realize continuous key exchange in the plain
model, while preserving security against adaptive corruptions.

1 Introduction

Secure communication, namely allowing Alice and Bob to exchange messages
securely, over an untrusted communication channel, without having to trust any
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intermediate component or party, is perhaps the quintessential cryptographic
problem. Indeed, constructing and breaking secure communication protocols, as
well as modeling security concerns and guarantees, providing a security analysis,
and then breaking the modeling and analysis, has been a mainstay of cryptog-
raphy since its early days.

Successful secure communication protocols have naturally been built to
secure existing communication patterns. Indeed, IPSec has been designed to pro-
vide IP-layer end-to-end security for general peer-to-peer communication with-
out the need to trust routers and other intermediaries, while SSL (which evolved
into TLS) has been designed to secure client-server interactions, especially in
the context of web browsing, and PGP has been designed to secure email com-
munication.

Securing the communication over messaging applications poses a very dif-
ferent set of challenges, even for the case of pairwise communication (which is
the focus of this work). First, the communicating parties do not typically have
any direct communication connection and may not ever be online at the same
time. Instead, they can communicate only via an untrusted server. Next, the
communication may be intermittent and have large variability in volumes and
level of interactivity. At the same time, a received message should be processed
immediately and locally. Furthermore, connections may span very long periods
of time, during which it is reasonable to assume that the endpoint devices would
be periodically hacked or otherwise compromised – and hopefully later regain
security.

The Signal protocol has been designed to give a response to these specific
challenges of secure messaging, and in doing so it has revolutionized the con-
cept of secure communication over the Internet in many ways. Built on top of
predecessors like Off-The-Record [14], the Signal protocol is currently used to
transmit hundreds of billions of messages per day [49].

Modeling the requirements of secure messaging in general, and analyzing the
security properties of the Signal protocol in particular, has proved to be challeng-
ing and has inspired multiple analytical works [1–3,7,10,11,13,15,17,25–33,35–
37,46–48,52–55,57]. Some of these works directly address the Signal architecture
and realization, whereas others propose new cryptographic primitives that are
inspired by Signal’s various modules.

The Need for Composable Security Analysis. Standalone security analyses of the
Signal protocol are not always sufficient to capture the security of an entire mes-
saging ecosystem that includes (components of) the Signal protocol. People typ-
ically participate concurrently in several conversations spanning several multi-
platform chat services (e.g., smartphone and web), and the subtleties between a
chat service and the underlying messaging protocol have led to network and sys-
tems security issues (e.g., [31,32,40]). For example, the Signal protocol is com-
bined with other cryptographic protocols in WhatsApp [56] to perform abuse
reporting or Status [50] and Slyo [51] to perform cryptocurrency transactions
and Tor-style onion routing.
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Moreover, Signal isn’t always employed as a single monolithic protocol.
Rather, variations and subcomponents of the Signal protocol are used within
the Noise protocol family [45], file sharing services like Keybase [38] (which per-
forms less frequent ratcheting), and videoconferencing services like Zoom [39]
(which isn’t concerned with asynchrony).

This state of affairs seems to call for a security analysis within a frame-
work that allows for modular analysis and composable security guarantees. First
steps in this direction were taken by the work of Jost, Maurer, and Mularczyk
[37] that defines an abstract ratcheting service within the Constructive Cryp-
tography framework [41,42], and concurrent work by Bienstock et al. [12] that
formulates an ideal functionality of the Signal protocol within the UC frame-
work (see Sect. 1.5 for details). However, neither of these works give a modular
decomposition of Signal into its basic components (as described in [44].)

The Apparent Non-modularity of Signal. One of the main sticking points when
modeling and analyzing Signal in a composable fashion is that the protocol
purposefully breaks away from the traditional structure of a short-lived “key
exchange” module followed by a longer-lived module that primarily encrypts
and decrypts messages using symmetric authenticated encryption. Instead, it
features an intricate “continuous key exchange” module where shared keys are
continually being updated, in an effort to provide forward security (i.e., prevent-
ing an attacker from learning past messages), as well as enabling the parties to
quickly regain security as soon as the attacker loses access. Furthermore, Sig-
nal’s process of updating the shared keys crucially depends on feedback from
the “downstream” authenticated encryption module. This creates a seemingly
inherent circularity between the key exchange and the authenticated encryp-
tion modules, and gets in the way of basing the security of Signal on tradi-
tional components such as authenticated symmetric encryption, authenticated
key exchange, and key-derivation functions.

Security of Signal in Face of Adaptive Corruptions. Another potentially thorny
aspect of the security of secure messaging protocols (Signal included) is the
need to protect against an adversary that decides whom and when to corrupt,
adaptively, based on all the communication seen so far. Indeed, not only is stan-
dard semantic security not known to imply security in this setting: there exist
encryption schemes that are semantically secure (under reasonable intractability
assumptions) but completely break in such a setting [34].

1.1 This Work

This work proposes a modular analysis of the Signal protocol and its components
using the language of universally composable (UC) security [18,19]. We focus on
modeling Signal at the level specified in their documentation [44] (i.e., not limited
to any single choice, of cipher suite), taking care to adhere to the abstractions
within the specification.
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We provide an ideal functionality, FSM, for secure messaging along with indi-
vidual ideal functionalities that capture each module within Signal’s architec-
ture. We then compose the modules to realize the top-level secure messaging
functionality and demonstrate how to realize the modules in a manner consistent
with the Signal specification [44]. Our instantiation achieves adaptive security
against transient corruptions while making minimal use of the random oracle
model. This combination of composability and modularity makes Signal and its
components conveniently plug-and-play: future analyses can easily re-purpose
or swap out instantiations of the modules in this work without needing to redo
most of the security analysis.

In the process, we propose a new abstraction for Signal’s continuous key
derivation module, which we call a Cascaded PRF-PRG (CPRFG), and we show
that it suffices for Signal’s continuous key exchange module to achieve adaptive
security. We also show how to construct CPRFGs from PRGs and puncturable
PRFs. This may be of independent interest.

The rest of the Introduction is organized as follows. Section 1.2 presents and
motivates our formulation of FSM. Section 1.3 presents and motivates the for-
mulation of the individual modules, and describes how these modules can be
realized. Section 1.5 discusses related work.

1.2 On the Ideal Secure Messaging Functionality, FSM

We provide an ideal functionality FSM that captures end-to-end secure mes-
saging, with some Signal-specific caveats. The goal here is to provide idealized
security guarantees that will allow the analysis of existing protocols that use
Signal, as well as enable Signal (or any protocol that realizes FSM) to be readily
usable as a component within other protocols in security-preserving manner.

When a party asks to encrypt a message, FSM returns a string to the party
that represents the encapsulated message. When a party asks to decrypt (and
provides the representative string), the functionality checks whether the provided
string matches a prior encapsulation, and returns the original message in case
of a match. The encapsulation string is generated via adversarially provided
code that doesn’t get any information about the encapsulated message, thereby
guaranteeing secrecy.

Simple User Interface. The above encapsulation and decapsulation requests are
the only ways that a parent protocol interacts with FSM. In particular, the parent
protocol is not required to keep state related to the session, such as epoch-
ids or sequence numbers. In addition to simplicity, this imparts the additional
guarantee that a badly designed parent protocol cannot harm the security of a
protocol realising FSM.

Abstracting Away Network Delivery. The fact that FSM models a secure mes-
saging scheme as a set of local algorithms (an encapsulation algorithm and a
decapsulation one) substantially simplifies traditional UC modeling of secure
communication, where the communication medium is modeled as part of the
service provided by the protocol and the actual communication is abstracted
away.
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Furthermore, the fact that FSM returns to the parent protocol an actual string
(that represents an idealized encapsulated message) allows the parent protocol to
further process the string as needed, similarly to what’s done in existing systems.

Immediate Decryption. FSM guarantees that message decapsulation requests are
fulfilled locally on the receiver’s machine, and are not susceptible to potential
network delays. Furthermore, this holds even if only a subset of the messages
arrive, and arrival is out of order (as formalized in [1]). To provide this guaran-
tee within the UC framework, we introduce a mechanism that enables FSM to
execute adversarially provided code, without enabling the adversary to prevent
immediate fulfillment of a decapsulation request. See more details in Sect. 2.

Modeling of PKI and Long Term Keys. We directly model Signal’s specific design
for the public keys and associated secret keys that are used to identify parties
across multiple sessions. Specifically, we formulate a “PKI” functionality FDIR

that models a public “bulletin board,” which stores the long-term, ephemeral,
and one-time public keys associated with identities of parties. In addition, we
model “long term private key” module FLTM for each identity. This module stores
the private keys associated with the public keys of the corresponding party. Both
functionalities are modeled as global, namely they are used as subroutines by mul-
tiple instances of FSM. This modeling is what allows to tie the two participants
of a session to long-term identities. Similarly to [16,24], we treat these modules
as incorruptible. It is stressed, however, that, following the Signal architecture,
our realization of FSM calls the FLTM module of each party exactly once, at the
beginning of the session.

Modelling Corruptions. Resilience to recurring but transient break-ins is one of
the main design goals of Signal. We facilitate the exposition of these proper-
ties as follows. First, we model corruption as an instantaneous event where the
adversary learns the entire state of the corrupted party.

The security guarantees for corruption and recovery are then specified as
follows. When the adversary instructs FSM to corrupt a party, it is provided all
the messages that have been sent to that party and were not yet received. In
addition, the party is marked as compromised until a certain future point in
the execution. While compromised, all the messages sent and received by the
party are disclosed to the adversary, who can also instruct FSM to decapsulate
ciphertexts to any plaintext of its choice. This captures the fact that as long as
any one of the parties is compromised, neither party can securely authenticate
incoming messages.

Forward secrecy guarantees that the adversary learns nothing about any mes-
sages that have been sent and received by the party until the point of corruption.
Furthermore, the adversary obtains no information on the history of the session
such as its duration or the long term identity of the peer. In FSM, this is guaran-
teed because corruption does not provide the adversary with any messages that
were previously sent and successfully received.
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On the other hand, the specific point by which a compromised party regains
its security is Signal-specific and described in more detail within. After this point,
the adversary no longer obtains the messages the messages sent and received by
the parties; furthermore, the adversary can no longer instruct FSM to decapsulate
forged ciphertexts.

Resilience to Adaptive Corruptions. All the security guarantees provided by FSM

hold in the presence of an adversary that has access to the entire communication
among the parties and adaptively decides when and whom to corrupt based on all
the communication seen so far. In particular, we do not impose any restrictions
on when a party can be corrupted.

Signal-Specific Limitations. The properties discussed so far relate to the general
task of secure messaging. In addition, FSM incorporates the following two relax-
ations that represent known weaknesses that are specific to the Signal design.

First, Signal does not give parties a way to detect whether their peers have
received forged messages in their name during corruption. (Such situations may
occur when either party was corrupted in the past and then recovered.) This
represents a known weakness of Signal [15,31]. Consequently, FSM exhibits a
similar behavior.

Second, as remarked in the Signal documentation [44], when one of the par-
ties is compromised, an adversary can “fork” the messaging session. That is, the
adversary can create a person-in-the-middle situation where both parties believe
they are talking with each other in a joint session, and yet they are actually both
talking with the adversary. Furthermore, this can remain the case indefinitely,
even when no party is compromised anymore. (In fact, we know this situation is
inherent in an unauthenticated network with transient attacks, at least without
repeated use of a long-term uncompromised public key [20].) While such a sit-
uation is mentioned in the Signal design documents, pinpointing and analyzing
the conditions under which forking occurs has not been formally done before our
work and the concurrent work by Bienstock et al. [12]. In our modeling, FSM

forks when one of the parties is compromised, and at the same time the other
party successfully decapsulates a forged incoming message with an “epoch ID”
that is different than the one used by the sender. In that case, FSM remains
forked indefinitely, without any additional corruptions.

1.3 Realizing FSM, Modularly

Signal’s strong forward secrecy and recovery from compromise guarantees are
obtained via an intricate mechanism where shared keys are continually being
updated, and each key is used to encapsulate at most a single message.

To help keep the parties in sync regarding which key to use for a given
message, the conversation is logically partitioned into sending epochs, where
each sending epoch is associated with one of the two parties, and consists of
all the messages sent by that party from the end of its previous sending epoch
until the first time this party successfully decapsulates an incoming message that
belongs to the peer’s latest sending epoch.
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Within each sending epoch, the keys are pseudorandomly generated one after
the other in a chain. The initial chaining key for each epoch is generated from a
‘root chain’ that ratchets forward every time a new sending epoch starts. Each
ratcheting of the root chain involves a Diffie-Hellman key exchange; the resulting
Diffe-Hellman secret is then used as input to the root ratchet (along with an
existing chaining value). The public values of each such Diffie-Hellman exchange
are piggybacked on the messages within the epoch and therefore authenticated
using the same AEAD used for the data. Furthermore, these public values are
used as unique identifiers of the sending epoch that each message is a part of.
This mechanism allows the parties to keep in sync without storing any long-term
information about the history of the session.

The Signal architecture document [44] de-composes the above mechanism
into 3 main cryptographic modules, plus non-cryptographic code used to put
these modules together. The modules are: (1) a symmetric authenticated encryp-
tion with associated data (AEAD) scheme that is applied to individual mes-
sages; (2) a symmetric key ratcheting mechanism to evolve the key between
messages within an epoch; (3) an asymmetric key ratcheting (or “continuous
key exchange”) mechanism to evolve the “root chain.” Since these modules are
useful for applications beyond this particular protocol, we follow this partition-
ing and decompose Signal’s protocol into similar components. (Our partitioning
into components is also inspired by that of Alwen et al. [1].)

We model the security of each component as an ideal functionality within
the UC framework. (These are Faead,FmKE,FeKE, respectively.) This allows us to
distill the properties provided by each module and demonstrate how they can be
composed, along with the appropriate management code to obtain the desired
functionality—namely to realize FSM. The management code (specifically, pro-
tocols Πfs aead and ΠSGNL), does not directly access any keying material. Indeed,
these protocols realise their respective specifications, namely Ffs aead and FSM,
perfectly—see Theorems 1 and 2.

Before proceeding to describe the modules in more detail, we highlight the
following apparent circularity in the security dependence between these modules:
the messages in each sending epoch need to be authenticated (by the AEAD in
use) using a key k that’s derived from the message itself. Thus, modular security
analysis along the above partitioning to modules might initially appear to be
impossible.

The critical observation that allows us to proceed with modular decomposi-
tion is that the continuous key exchange module (which in our modeling corre-
sponds to FeKE) need not determine the authenticity of new epoch identifiers.
Rather, this module is only tasked to assign a fresh pseudorandom secret key
with each new epoch identifier, be it authentic or not. The determination of
whether a new purported epoch identifier is authentic (or a forgery caused by
an adversarially generated incoming message) is done elsewhere – specifically at
the management level.
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Fig. 1. Modeling and realizing secure messaging: The general subroutine structure.
Ideal functionalities are denoted by F and protocols by Π. Thin vertical arrows denote
subroutine calls, whereas thick horizontal arrows denote realization. Functionalities
FDIR,FLTM,FpRO are global with respect to FSM, whereas FeKE (and ΠeKE) are global
for FmKE, and each instance of FmKE (and the corresponding instance of ΠmKE) are
global for Faead. (Color figure online)

We proceed to provide a more detailed overview of our partitioning and the
general protocol logic. See also Fig. 1.

FeKE. The core component of the protocol is the epoch key exchange functional-
ity FeKE, which captures the generation of the initial shared secret key from the
public information, as well as the continuous Diffie-Hellman protocol that gener-
ates the unique epoch identifiers and the “root chain” of secret keys. Whenever
a party wishes to start a new epoch as a sender, it asks FeKE for a new epoch
identifier, as well as an associated secret key. The receiving party of an epoch
must present an epoch identifier, and is then given the associated secret key.

As mentioned, we allow the receiving party of a new epoch to present multiple
potential epoch identifiers, and obtain a secret epoch key associated with each
one of these identifiers. Furthermore, while only one of these keys is the one used
by the sender for this epoch, all the keys provided by FeKE are guaranteed to
appear random and independent to the adversary. In other words, FeKE leaves it
to the receiver to determine which of the candidate identifiers for the new epoch
is the correct one. (If FeKE recognizes, from observing the corruption activity
and the generated epoch IDs, that the session has forked, then it exposes the
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secret keys to the adversary.) We postpone the discussion of realizing FeKE to
the end of this section.

FmKE. The per-epoch key chain is captured by an ideal functionality FmKE that
is identified by an epoch-id, and generates, one at a time, a sequence of random
symmetric keys associated with this epoch-id. The length of the chain is not
a priori bounded; however, once FmKE receives an instruction to end the chain
for a party, it complies. FmKE guarantees forward secrecy by making each key
retrievable at most once by each party; that is, the key becomes inaccessible upon
first retrieval, even for a corrupted party. However, it does not post-compromise
security: once corrupted, all the future keys in the sequence are exposed to the
adversary.

FmKE is realized by a protocol, ΠmKE, that first calls FeKE with its current
epoch-id, to obtain the initial chaining key associated with that epoch-id. The
rest of the keys in this epoch are derived using a generic length-doubling PRG
(of which Signal’s typical instantiation using HKDF is a special case).

Demonstrating that ΠmKE realizes FmKE is relatively straightforward, except
for the need to address the fact that the same instance of FeKE is used by
multiple instances of ΠmKE. Using the formalism of [5], we thus show that ΠmKE

UC-realizes FmKE in the presence of a global FeKE.

Faead. Authenticated encryption with associated data is captured by ideal func-
tionality Faead, which provides a one-time ideal authenticated encryption service:
the encrypting party calls Faead with a plaintext and a recipient identity, and
obtains an opaque ciphertext. Once the recipient presents the ciphertext, Faead

returns the plaintext. (The recipient is given the plaintext only once, even when
corrupted.) The “associated data,” namely the public part of the authenticated
message, is captured via the session identifier of Faead.

Faead is realized via protocol Πaead, which employs an authenticated encryp-
tion algorithm using a key obtained from FmKE. If we had opted to assert secu-
rity against non-adaptive corruptions, any standard AEAD scheme would do.
However, we strive to provide simulation-based security in the presence of fully
adaptive corruptions, which is provably impossible in the plain model whenever
the key is shorter than the plaintext [43]. We get around this issue by realiz-
ing Faead in the programmable random oracle model. While we provide a very
simple AEAD protocol in this model, many common block cipher-based AEADs
can also realize Faead provided we model the block cipher as a programmable
random oracle. It is stressed however that the random oracle is used only in
the case of short keys and adaptive corruptions. In particular, when corruptions
are non-adaptive or the plaintext is sufficiently short, our protocol continues
to UC-realize Faead even when the random oracle is replaced by the identity
function.

Since each instance of FmKE is used by multiple instances of Πaead, we treat
FmKE as a global functionality with respect to Πaead. That is, we show that Πaead

UC-realizes Faead in the presence of (a global) FmKE.
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Ffs aead. Functionality Ffs aead is an abstraction of the management module that
handles the encapsulation and decapsulation of all the messages within a single
epoch. An instance of Ffs aead is created by the main module of Signal whenever
a new epoch is created, with session ID that contains the identifier of this epoch.
Ffs aead then provides encapsulation and decapsulation services, akin to those of
Faead, for all the messages in its epoch. In addition, once instructed by the main
module that its epoch has ended, Faead no longer allows encapsulation of new
messages—even when the party is corrupted.

Ffs aead is realized (perfectly, and in a straightforward way) by protocol
Πfs aead that calls multiple instances of Faead, plus an instance of FmKE for this
epoch - where, again, the session ID of FmKE contains the current epoch ID.

ΠSGNL. At the highest level of abstraction, we have each of the two parties run
protocol ΠSGNL. When initiating a session, or starting a new epoch within a
session, (i.e., when encapsulating the first message in an epoch), ΠSGNL first
calls FeKE to obtain the identifier of that epoch, then creates an instance of
Ffs aead for that epoch ID and asks this instance to encapsulate the first message
of the epoch. All subsequent messages of this epoch are encapsulated via the
same instance of Ffs aead.

On the receiver side, once ΠSGNL obtains an encapsulated message in a new
epoch ID, it creates an instance of Ffs aead for that epoch ID and asks this
instance to decapsulate the message. It is stressed that the epoch ID on the
incoming message may well be a forgery; however in this case it is guaranteed
that decapsulation will fail, since the peer has encapsulated this message with
respect to a different epoch ID, namely a different instance of Ffs aead. (This is
where the circular dependence breaks: even though the environment may invoke
ΠSGNL on arbitrary incoming encapsulated message, along with related epoch
IDs, Ffs aead is guaranteed to reject unless the encapsulated message uses the
same epoch ID as the as actual sender. Getting under the hood, this happens
since the instances of FmKE that correspond to different epoch IDs generate keys
that are mutually pseudorandom.) IT is stressed that ΠSGNL is purely “manage-
ment code” in the sense that it only handles idealized primitives and does not
directly access cryptographic keying material. Commensurately, it UC-realizes
FSM perfectly.

Realizing FeKE. Recall that FeKE is tasked to generate, at the beginning of each
new epoch, multiple alternative keys for that epoch – a key for each potential
epoch-id for that epoch. This should be done while preserving simulatability in
the presence of adaptive corruptions.

Following the Signal architecture, the main component of the protocol that
realizes FeKE is a key derivation function (KDF) that combines existing secret
state, with new public information (namely the public Diffie-Hellman exponents,
which also double-up as an epoch-id), and a new shared key (the corresponding
Diffie-Hellman secret), to obtains a new secret key associated with the given
epoch-id, along with potential new local secret state for the KDF.
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If the KDF is modeled as a random oracle then it is relatively straightforward
to show that the resulting protocol UC-realizes FeKE.

On the other extreme, it can be seen that no plain-model instantiation of
the KDF module, with bounded-size local state, can possibly realize FeKE in our
setting. Indeed, since the adversary can obtain unboundedly many alternative
keys for a given epoch, where all keys are generated using the same bounded-size
secret state, the Nielsen bound [43] applies.

We propose a middle-ground solution: we show how to instantiate the KDF
via a plain-model primitive where the local state grows linearly with the num-
ber of keys requested from FeKE at the beginning of a given epoch. Once the
epoch advances, the state shrinks back to its original size. Our instantiation uses
standard primitives: pseudorandom generators and puncturable pseudorandom
functions. We also abstract the properties of our construction into a primitive
which we call cascaded pseudorandom function and generator (CPRFG), follow-
ing a primitive of [1] that is used for a similar purpose. We stress however that
technically the primitives are quite different; we elaborate in the related work
section.

1.4 Streamlining UC Analysis

We highlight two additional modeling and analytical techniques that we used to
simplify the overall analysis. We hope that these would be useful elsewhere.

Multiple Levels of Global State. Our analysis makes extensive use of universal
composition with global state (UCGS) within the plain UC model, as formulated
and proven in [5]. Specifically, we use UCGS to model a global directory that
holds the public keys of parties, as well as the long-term storage, within each
party, of the secret keys associated with said public keys. Similarly, we use UCGS
to model the fact that a single instance of FeKE is used by multiple instances of
ΠmKE, and that a single instance of FmKE is used by multiple instances of Πaead.
The random oracle is also modeled as a global functionality.

To facilitate our multi-layer use of the UCGS theorem we also prove a simple-
but-useful lemma that allows us to get around the following difficulty. Recall that
the UCGS theorem allows demonstrating that protocol π UC-realizes function-
ality F in the presence of some other ‘global’ functionality G that takes inputs
from π, F , and also potentially directly from the environment. Furthermore, we
would like to use multiple levels of UCGS: after showing that π UC-realizes F in
the presence of G, we wish to argue that π UC-realizes F in the presence of pro-
tocol γ, where γ is some protocol that UC-realizes G. However, such implication
is not true in general [6,24].

Lemma 1 in Sect. 2 asserts that, if γ UC-realizes G via some simulator S,
then for any π that UC-realizes F in the presence of G, it also holds that π UC-
realizes F in the presence of GS , where GS be the functionality that combines
G and S in the natural way. We then show that, for the protocols in this work,
having access to GS suffices.
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Multiple Levels of Corruptions. The UC framework allows the adversary to adap-
tively and individually corrupt each party in each module within a composite
protocol. While this is very general, it makes the handling of corruption events
(where typically the internal states of multiple modules are exposed together)
rather complex. We thus adopt a somewhat simpler modeling of party corrup-
tion: We let the environment directly corrupt parties and obtain their local
states. Furthermore, a corrupted module forwards the corruption notice to all
its subroutines and collects the local states of all to report to the environment.
Ideal functionalities operate similarly, except that they ask their respective sim-
ulators for the appropriate simulated local states. In addition to being simpler,
this modeling provide tighter correspondence between the real and ideal execu-
tions and is thus preferable whenever realizable (which is the case in this work).

1.5 Related Work

This section briefly surveys the state of the art for security analyses of the
Signal architecture in particular and end-to-end secure messaging in general,
highlighting the differences from and similarities to the present work.

There is a long line of research into the design and analysis of two-party
Signal messaging, its subcomponents, and variants of the Signal architecture;
this research builds upon decades of study into key exchange protocols (e.g., [8,
9,22,23]) and self-healing after corruption (e.g., [20,28,30]). Some of these secure
messaging analyses purposely consider a limited notion of adaptive security in
order to analyze instantiations of Signal based on standardized crypto primitives
(e.g., [1,10,32,36,57]). Other works consider a strong threat model in which the
adversary is malicious, fully adaptive, and can tamper with local state [4,7,35,
37,46], which then intrinsically requires strong HIBE-like primitives that depart
from the Signal specification. By contrast, we follow a middle ground in this
work: our adversary is fully adaptive and has no restrictions on when it can
corrupt a party, yet its corruptions are instantaneous and passive.

We stress that, while this work is inspired by the clear game-based modeling
and analyses of Signal in works like Alwen et al. [1], our modeling differs in a
number of significant ways. For one, our analysis provides a composable secu-
rity guarantee. Furthermore, we directly model secrecy against a fully adaptive
adversary that decides who and when to corrupt based on all the information
seen so far. In contrast, Alwen et al. [1] guarantee secrecy only against a selective
adversary that determines ahead of time who and when it will corrupt.

There are two prior works that perform composable analyses of Signal. In
concurrent work to our own, Bienstock et al. [12] provide an alternative modeling
of an ideal secure messaging within the UC framework and demonstrate how the
Signal protocol can be modeled in a way that is shown to realize their formulation
of ideal secure messaging. Like this work, they demonstrate several shortcomings
of previous formulations, such as overlooking the effect of choosing keys too
early or keeping them around for too long. They also propose and analyze an
enhancement of the double ratchet structure that helps parties regain security
faster following a compromise event. Additionally, Jost, Maurer, and Mularczyk
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[37] conduct an analysis in the constructive cryptography framework. Their work
provides a model for message transmission as well as one for ratcheting protocols.

That said, the ideal functionalities in [12] and [37] differ from our FSM in a
number of ways. First, their modeling does not account for the session initiation
process, nor the PKI and long-term key modules that are an integral part of any
secure messaging application. Second, they include the communication medium
as part of the protocol, which (a) makes it harder to argue about immediate
decryption and (b) means that an instantiation of Signal would have to include
an entire TCP/IP stack, which weakens modularity and inhibits the use of Signal
as a sub-routine within larger functionalities.

Additionally, Bienstock et al. [12] models all key derivation modules as ran-
dom oracles rather than formalizing the partition of continuous key exchange
components within the UC framework as done in this work, and their modeling
forces the “calling protocol” to keep track of—and ensure uniqueness for—the
message IDs for the Secure Messaging functionality/protocol, which might create
a security risk. On the other hand, [12] accounts for adversarial choice of ran-
domness, which our modeling does not account for. Also, Jost et al. [37] requires
explicit modeling of a global event history (a list of events having happened at
each module), restricts the real-world adversary’s events based on this global
event history, and employs a HIBE-based implementation that is quite different
than that of Signal (and ours) and requires heavier cryptographic primitives.

2 Universally Composable Security: New Capabilities

This work makes extensive use of UC with global subroutines, which allow anal-
ysis that a protocol Π UC-realizes functionality F in the presence of a global
subroutine G that is not subroutine-respecting. Due to space constraints, we
defer a primer of UC security (with global subroutines) to the full version of this
work [21]. In this space, we describe two new modeling techniques that simplify
our analysis, and may be of more general interest.

The first technique relates to applying the UC theorem to global function-
alities. As stated in Sect. 1.4, the analysis in this work requires the ability to
apply composition with global state across multiple layers of Fig. 1. We prove
the following lemma in the full version of this work [21].

Lemma 1. Let Π be a protocol that UC-realizes an ideal functionality F, and
let S be a simulator that demonstrates this fact, i.e. execE,Π ≈ execE,F,S . Then
protocols Π and FS UC-emulate each other. Consequently, for any protocol ρ
and ideal functionality Γ we have that ρ UC-realizes Γ in the presence of Π if
and only if ρ UC-realizes Γ in the presence of FS .

The second technique is that, in order to model the immediate encryption and
immediate decryption properties of secure messaging, we require the adversary
to upload static code (which we call I) to the global Flib—shown in Fig. 2—that
the relevant functionality will run in honest cases of the execution. This static
code is specific to the protocol that realizes the functionality, and essentially it
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Flib

Obtaining adversarial code: When receiving a message (τ, α, linking) from the
adversary record it. //α represents the adversarial code, and τ represents the code of the

target machines to obtain code α. The linking flag lets Flib know whether the adversarial code

calls adversarial code for other target machines.

Delivering adversarial code: When receiving input τ from a party, find the
latest (τ, α, linking) that has been recorded. //This code runs for a bounded amount

of time; if it exceeds its specified running time, then it outputs ⊥.

1. If no such (τ, α, linking) was recorded, output ⊥.
2. If linking == true then:

– Go through program α and link the program by doing the following for
all calls to dependencies (τ ′, I):
(a) Find the latest (τ ′, α′, linking′) that has been recorded.
(b) If no such record exists for a dependency, output ⊥.
(c) If linking′ == true then run this compilation on α′ starting at step 2.
(d) Inline the code for the calls to α′.
(e) If this is the last dependency, record (τ, α, linking = false).

3. Output α.

Fig. 2. The code library functionality, Flib

acts as the ideal-world simulator during an honest execution. This ensures that
the functionality does not need to wait for the adversary to encrypt or decrypt
messages that are not corrupted. In cases where the message or ciphertext is
corrupted, the fully adaptive adversary is called for input (for example, asking
A to encrypt a message or decrypt a ciphertext). The state of the static code
I is maintained across calls in a variable stateI , and it is sent to the adversary
upon corruption. Flib is global because the static code must be defined at the
time that the functionality is instantiated; however, the use of Flib specifically is
mainly a matter of plumbing rather than a topic of conceptual importance.

3 Formal Modeling and Analysis

In this section, we showcase our modular, iterative process for decomposing the
ideal secure messaging functionality FSM into a collection of functionalities and
protocols that each address one specific purpose. After fully specifying FSM itself,
we present its realization at the “second level” of Fig. 1 by ΠSGNL, Ffs aead, and
FeKE, and at the “third level” by functionalities Faead and FmKE.

Due to space constraints, we only give brief descriptions of these function-
alities here and defer more exposition to the full version of this work [21]. The
full version also contains rigorous specifications of the remaining protocols (on
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the far right of Fig. 1) and all underlying global functionalities (in blue at the
bottom of Fig. 1), along with proofs of all theorems in this section.

Secure Messaging Functionality. Our top-level functionality FSM can be
found in Figs. 3 to 4. It takes two types of inputs: SendMessage is used to encap-
sulate a message for sending to the peer, whereas ReceiveMessage is used to
decapsulate a received message. We also have a Corrupt input; this is a ‘modeling
input’ that is used to capture party corruption. In addition, FSM takes a number
of ‘side channel’ messages from the adversary which are used to fine-tune the
security guarantees. It relies on three global functionalities whose specifications
are provided in the full version of this work [21]: FDIR representing the directory
of public keys, FLTM representing the long-term key storage within a party, and
a programmable random oracle FpRO.

The Double Ratchet. In our first layer, we decompose FSM into two compo-
nents that model the interconnected pieces of the double ratchet: a public key
exchange component FeKE and a symmetric key authenticated encryption com-
ponent Ffs aead. These components are ‘glued’ together with a manager protocol
ΠSGNL.

There are three primary takeaways from the design of ΠSGNL (Fig. 5): it has
the same input-output API as our ideal functionality FSM, it displays a idealized
version of the double ratchet with clearly distinct roles for the two ratcheting sub-
routines, and finally it moves closer toward realism. Added features at this level
of abstraction include key material stored within party states, explicit account-
ing for out-of-order messages by holding onto missed message keys, and epochs
being identified directly by their epoch id rather than an idealized epoch num
ordering.

The epoch key exchange functionality FeKE (Figs. 6 to 7) comprises the public
key “backbone” of the secure messaging continuous key agreement. The function-
ality is persistent during the entire session, mapping (epoch id0, epoch id1) pairs
to sending and receiving chain keys for the symmetric ratchet. It also provides
recovery from a state compromise (aka, post-compromise security).

The forward secure authenticated encryption functionality Ffs aead (Figs. 8 to
9) models the symmetric key ratchet for secure messaging. Each Ffs aead instance
handles the encryption and decryption of messages for a single epoch. The proto-
col Πfs aead realizes Ffs aead by outsourcing authenticated encryption and decryp-
tion of each message to separate Faead instances, described below.

Theorem 1. Protocol ΠSGNL (perfectly) UC-realizes the ideal functionality FSM

in the presence of FDIR and FLTM.

The Symmetric Ratchet: Realizing Ffs aead. Next, we decompose the sym-
metric key component of Signal into two smaller pieces: a one-time-use authenti-
cated encryption routine Faead, and a message key exchange functionality FmKE

that interfaces with the epoch key exchange to produce the symmetric chain
keys.
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FSM (Part 1)

The local session ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose
identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpretation of pid0 and pid1 as complete identities of the two calling machines.
It also has internal adversary code I = Ism. We initialize the state for I to be stateI = ⊥.

Sending messages: On receiving (SendMessage, m) from pid do: //Here pid is an extended
identity of a machine.

1. If initialized not set do: //initialization
– If pid �= pid0, end the activation. Otherwise, send (ConfirmRegistration) to (FLTM, pid).
– Upon output (ConfirmRegistration, t) from FLTM, if t = Fail end the activation. Else

input (GetInitKeys) to FDIR.
– Upon output (GetInitKeys, pid1, ikpk1 , rkpk1 , okpk1 ) from FDIR: if okpk1 = ⊥, end the activa-

tion. Else:
• Set initialized, epoch num0 = 0, sent msgnum0 = 0, rcv msgnum0 = 0,N self0 =

0, diverge parties = false.
• Create the dictionaries advControl = {}, id dict = {}, and N dict = {}. Initialize

advControl[epoch num0] = ⊥ and advControl[e] = ∞ for all e ≥ 0. //advControl
will record which parties are adversarially controlled in each epoch, id dict maps
epoch id’s to epoch numbers, and N dict will hold the number of messages sent
in each epoch.

– Call Flib with input FSM to obtain the internal code I.
2. Let i be such that pid = pidi. Increment sent msgnumi by 1.
3. If leak ∈ advControl[epoch numi] or diverge parties = true: Send a backdoor message

(stateI , SendMessage, pid, m) to A.
4. Else (leak /∈ advControl[epoch numi] and diverge parties = false): Run

I(stateI , SendMessage, pid, |m|)
5. Upon obtaining (state′

I , SendMessage, pid, epoch id, c) from A or I do:
– Update stateI ← state′

I .
– If sent msgnumi == 1: If epoch id equals any of the keys in the dictionary id dict then

end the activation. Else record id dict[epoch id] = epoch numi.
– Set h = (epoch id, sent msgnumi, N selfi). //N selfi holds the # of messages sent by

pidi in its previous sending epoch.
– If diverge parties = false then record (pid, h, c, m). //If the parties’ states have di-

verged, then encrypted messages are no longer recorded.
– Output (SendMessage, sid, pid, h, c) to pid.

Corrupt: On receiving a (Corrupt, pidi) request from Env for pidi ∈ {pid0, pid1}, do:

1. Append (epoch numi, sent msg numi, received msg numi) to the list corruptionsi.
2. For all epochs e ≤ epoch numi, set advControl[e] = {leak, inject} to allow the adversary

to influence messages still in transit.
3. Create a list pending msgs with all records of the form (pid1−i, h, c, m) corresponding to

headers for which there is no record (Authenticate, pid1−i, h, , 1) (these are the messages
that were not decrypted yet).

4. Send a request (stateI , ReportState, pidi, pending msgs) to A.
5. On receiving a state (ReportState, pidi, S) from A, send S to Env.

Fig. 3. The Secure Messaging Functionality FSM
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FSM (Part 2)

The local session ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose
identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpretation of pid0 and pid1 as complete identities of the two calling machines.
It also has internal adversary code I = Ism. We initialize the state for I to be stateI = ⊥.

Receiving messages: On receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid,
do:

1. Let i be such that pid = pidi.
2. If this is the first ReceiveMessage request: If i = 0 then end the activation. Else (pid = pid1),

initialize the responder:
– Send (ConfirmRegistration) to (FLTM, pid).
– Upon receiving the output (ConfirmRegistration, t) from FLTM: If t = Fail then end

activation. Else provide input (GetResponseKeys, pid0, pid1) to FDIR.
– Upon receiving output (GetResponseKeys, pid0, ikpk0 ) from FDIR, set epoch num1 = 1,

sent msgnum1 = 0, and rcv msgnum1 = 0.
3. If there already was a successful ReceiveMessage for h (i.e there is a record

(Authenticate, h, c′, 1) for some c′), or this ciphertext previously failed to authenticate
(i.e. a record (Authenticate, h, c, 0) exits), output (ReceiveMessage, h, c, Fail) to pid.

4. If epoch id appears as a key in id dict, set epoch num = id dict[epoch id].
Else: //this is a new epoch id that hasn’t been generated within SendMessage

– If sent msgnumi = 0, output (ReceiveMessage, h, c, Fail) to pid. //pid is in a receiving
state and hasn’t sent any messages in its current sending epoch, so it should not be
accepting messages with a new epoch id.

– Otherwise set epoch num = epoch numi + 1.
//this temporary variable will never be made permanent if decryption is unsuccessful.

5. If msg num > N dict[epoch num], output (ReceiveMessage, h, c, Fail) to pid
//For epoch num’s that are not finished yet, the N dict returns a default value of ∞, so
this check passes automatically.

6. If (diverge parties = false and inject /∈ advControl[epoch num]): Run
I(stateI , inject, pid, h, c) //Honest Case

7. Else: send backdoor message (stateI , inject, pid, h, c) to A // FSM is asking the adversary
for advice on how to decrypt c.

8. On receiving (state′
I , inject, h, c, v) from A or I update stateI ← state′

I and:
If (sender, h, c, m) is recorded then record (Authenticate, pid, h, c, 1) and set m∗ = m. Else:

– If v = ⊥: record (Authenticate, pid, h, c, 0) and output (ReceiveMessage, h, c, Fail).
– If v �= ⊥ and diverge parties = false and inject /∈ advControl[epoch num], then:

• If there is no record (sender, h, c∗, m) for header h, output
(ReceiveMessage, h, c, Fail). //since h contains N , this value will match
the view of the sender if this check succeeds.

• Else (there is such a record), record (Authenticate, h, c, 1) and set m∗ = m.
//allowing for authenticating a message with a different mac

If v �= ⊥ and (diverge parties = true or inject ∈ advControl[epoch num])), then:
• Record (Authenticate, h, c, 1), and set m∗ = v.
• If epoch id does not appear as a key in id dict then set diverge parties = true.

//diverge parties is being set here.
9. If epoch numi < epoch num, do: //we only get to this step if decryption is successful

– Set N dict[epoch num − 2] = N , epoch numi += 2, N selfi = sent msgnumi, and
sent msgnumi = 0.

– if diverge parties = false then:
• If advControl[epoch num−1] = {leak, inject} and epoch numi /∈ corruptionsi, then

set advControl[epoch num] = {leak}. //Corruption status is changed if this is the
other party’s first new sending epoch that involves a fresh epoch id generated
after corruption.

• If advControl[epoch num − 1] = {leak}, then set advControl[epoch num] = ⊥.
10. Output (ReceiveMessage, h, m∗) to pid.

Fig. 4. The Secure Messaging Functionality FSM
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ΠSGNL

SendMessage: Upon receiving input (SendMessage, m) from pid, do:

1. If this is the first activation do: //initialization for the initiator of the session
– Parse the local session id sid to retrieve the party identifiers (pid0, pid1) for the ini-

tiator and responder. If pid0 is different from either the local party identifier pid, or
the party identifier of pid, end the activation.

– Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0, Nlast = 0.
– Provide input (ConfirmReceivingEpoch, ⊥) to (FeKE, sid.eKE).
– On receiving (ConfirmReceivingEpoch, epoch id) from (FeKE, sid.eKE), set epoch idself =

epoch id.
– Initialize a list receiving epochs = [].

2. Provide input (Encrypt, m, Nlast) to (Ffs aead, sid.fs), where sid.fs = (sid, epoch idself).
//Ffs aead already knows epoch id and msg num

3. On receiving (Encrypt, c, Nlast) from (Ffs aead, sid.fs), delete m, increment sent msg num +=
1, output (SendMessage, sid, h, c) to pid, where h = (epoch idself , sent msg num, Nlast).

ReceiveMessage: Upon receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid:

1. If this is the first activation then do: //initialization for the responder of the session
– Parse the local session identifier sid to retrieve the party identifiers (pid0, pid1) for

the initiator and responder. If pid1 is different from either the local party identifier,
or the party identifier for pid, then end the activation.

– Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0 and Nlast = 0,
received msg num = 0.

– Initialize a dictionary missed msgs = {} and a list receiving epochs = [].
2. Provide input (Decrypt, c,msg num, N) to (Ffs aead, sid.fs = (sid, epoch id)).
3. Upon receiving (Decrypt, c,msg num, N, v) from (Ffs aead, sid.fs): if v = Fail then send

(ReceiveMessage, h, ad, Fail) to pid. //Otherwise, v is the decrypted message
4. While msg num > received msg num:

//note down any expected messages
– Append received msg num to the entry missed msgs[epoch id].
– Increment received msg num+ = 1.

5. If msg num is in the entry missed msgs[epoch id]:
– remove it from the list.
– If the entry missed msgs[epoch id] is now an empty list then remove epoch id from

missed msgs.keys.
6. Else (msg num /∈ missed msgs[epoch id]):

– If epoch id = epoch idpartner or sent msg num = 0, output (ReceiveMessage, h, c, ⊥).
Otherwise continue. //Starting new epoch–ratchet forward

– Append the numbers received msg num, . . . , N to the entry missed msgs[epoch id].
– Send (StopDecrypting, N) to (Ffs aead, (sid, epoch idpartner)). //‘Closing’ the Ffs aead for

the last epoch.
– On receiving (StopDecrypting, Success), update epoch idpartner = epoch id, and send

(StopEncrypting) to (Ffs aead, (sid, epoch idself)).
– On receiving (StopEncrypting, Success), send (ConfirmReceivingEpoch, epoch id) to

(FeKE, sid.eKE).
– On receiving (ConfirmReceivingEpoch, epoch id∗), update epoch idself = epoch id∗,

Nlast = sent msg num, and sent msg num = 0.
7. Output (ReceiveMessage, h, c, v) to pid while deleting the decrypted message v.

Corruption: Upon receiving (Corrupt, pid) from Env:
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for

modelling purposes.

1. Initialize a list S and send (Corrupt) as input to (FeKE, sid.eKE = “eKE”, sid).
2. On receiving (Corrupt, SeKE) from (FeKE, sid.eKE = “eKE”, sid), add it to S and con-

tinue. //now corrupt individual Ffs aead instances.
3. For epoch id ∈ missed msgs.keys do:

– Send (Corrupt) as input to (Ffs aead, sid.fs = (“fs aead′′, sid, epoch id)).
– On receiving Sepoch id, add it to S.

4. Output (Corrupt, pidi, S) to Env.

Fig. 5. The Signal Protocol, ΠSGNL
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FeKE

This functionality has a session id sid.eKE that takes the following format: sid.eKE =
(“eKE”, sid). Inputs arriving from machines whose identity is neither pid0 nor pid1 are ig-
nored. //For notational simplicity we assume some fixed interpertation of pid0 and pid1 as
complete identities of the two calling machines.

ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from
(ΠSGNL, sid, pidi):

1. If this is the first activation:
– Parse sid to retrieve two party ids (pid0, pid1) for the initiator and responder parties

and store them. If pid0 �= pidi, then end the activation.
– Provide input (GetInitKeys, pid1, pid0) to (FDIR).
– Upon receiving output (GetInitKeys, ikpk1 , rkpk1 , okpk1 ) from (FDIR): if okpkpid1

= ⊥
then output (ConfirmReceivingEpoch, Fail). Else, set epoch id partner0 =
epoch id self1 = okpkpid1

, set epoch num0 = −2, epoch num1 = −1, ini-
tialize empty lists corruptions0, corruptions1, compromised epochs, and send
(ComputeSendingRootKey, ikpk1 , rkpk1 , okpk1 ) to FLTM.

– On receiving (ComputeSendingRootKey, k, ekpk), continue. //Don’t start the conversa-
tion if the one time keys belonging to the other party have run out.

– Call Flib to obtain internal code I. Initialize the state for I to be stateI = ⊥.
2. If this is not the first activation, set epoch id partneri = epoch id∗. //save epoch id partner

from input if this is not the first activation.
3. If epoch id partneri �= epoch id self1−i, then diverge parties = true. //determine if the par-

ties’ views have diverged
4. If diverge parties, send a backdoor message (stateI , GenEpochId, i, epoch id∗) to A.
5. Else, run I(stateI , GenEpochId, i, epoch id∗)
6. Upon receiving (state′

I , GenEpochId, i, epoch id) from A or from I, update stateI ← state′
I

and do the following:
– If epoch id is the same as the input to any previous invocation of

ConfirmReceivingEpoch, end the activation.
– Update epoch numi += 2. Then set epoch id selfi = epoch id,

epoch num dict[epoch id] = epoch numi, and got sending keyi = false.
7. Output (ConfirmReceivingEpoch, epoch id selfi) to (ΠSGNL, sid, pidi).

(The rest of this functionality is in Fig. 7)

Fig. 6. The Epoch Key Exchange Functionality, FeKE

Each authenticated encryption functionality instance Faead (Fig. 10) handles
the encryption, decryption, and authentication of a particular message for a
particular epoch. It hands the ciphertext or message back to Πfs aead.

Theorem 2. Protocol Πfs aead (perfectly) UC-realizes Ffs aead, in the presence of
FDIR,FLTM,FpRO, and FΠeKE

eKE = (SeKE,FeKE).

Note that the simulator SeKE, along with a proof of this theorem, are deferred
to the full version of this work [21].

Each instance of the message key exchange functionality FmKE (Fig. 11) han-
dles the key derivation for the symmetric ratchet for a particular epoch. Specif-
ically, it provides key seed’s to Πaead instances that are then expanded to any
length using the global random oracle FpRO. When instructed, it also closes
epochs at a certain message number N by generating all key seed’s up to N and
later disallowing the generation of any further key seeds for its epoch.
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FeKE continued...

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid):

1. Set i such that pid = pidi.
2. If ConfirmReceivingEpoch has never been run successfully (i.e epoch id self0 hasn’t been

initialized) or got sending keyi = true, then end the activation. //the functionality isn’t
initialized or the sending key for the current epoch has already been retrieved

3. Sample sending chain keyi
$← Kep from the key distribution. //In the honest case, the key

is not known to the adversary. Otherwise the key will get overwritten in the following
step.

4. If diverge parties = true, or epoch numi ∈ compromised epochs, then:
– Send backdoor message (stateI , GetSendingKey, i) to A
– On receiving backdoor message (state′

I , GetSendingKey, i, Ksend) from A, update
stateI ← state′

I and set sending chain keyi = Ksend.
5. Set got sending keyi = true and output (GetSendingKey, sending chain keyi).

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid, pid):

1. If pid /∈ {pid0, pid1} then end this activation. Otherwise, set i such that pid = pidi.
2. If ConfirmReceivingEpoch has never been run successfully (i.e epoch id self0 hasn’t been

initialized) or sending chain key1−i has been deleted then end the activation.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Parse epoch id = (epoch id′, ekpkj , okpki←j) and set temp epoch id partner = epoch id′

– Send (GetResponseKeys, pid1−i) to FDIR.
– Upon receiving (GetResponseKeys, ikpkj ), send input

(ComputeReceivingRootKey, ikpkj , ekpkj , okpki←j) to FLTM.
– Upon receiving (ComputeReceivingRootKey, k), call Flib to obtain internal code I. Ini-

tialize the state for I to be stateI = ⊥.
4. If diverge parties = true or epoch id �= epoch id self1−i: //Let A choose key

– Send (stateI , GetReceivingKey, i, epoch id) to A
– Upon receiving (state′

I , GetReceivingKey, i, epoch id, recv chain key∗) from A, update
stateI ← state′

I .
– If diverge parties = false and epoch numi + 1 /∈ compromised epochs, add epoch id to

receive attempts[epoch num].
5. Else (diverge parties = false and epoch id = epoch id self1−i), set recv chain keyi =

sending chain key1−i //Expected case
6. Output (GetReceivingKey, recv chain keyi) and erase recv chain keyi.

Corrupt: On receiving a (Corrupt) request from (ΠSGNL, sid, pidi) for i ∈ {0, 1} do:

– Add epoch id selfi to the list corruptionsi.
– Add epoch numi, epoch numi + 1, epoch numi + 2, epoch numi + 3 to the list

compromised epochs. //We need the compromise to go through the following stages: fully
compromised, sender randomness updated, both parties’ randomness updated.

– Initialize an empty list leak = [] and a variable recv chain key = ⊥.
– If epoch num1−i > epoch numi:

• Set recv chain key = sending chain key1−i.
• If epoch num1−i ∈ receive attempts.keys then set leak = receive attempts[epoch num1−i]

– Send (ReportState, stateI , i, recv chain keyi, leak) to A.
– Upon receiving (ReportState, i, S) from A, output (Corrupt, S) to (ΠSGNL, sid, pidi).

Fig. 7. The Epoch Key Exchange Functionality, FeKE (continued)
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Ffs aead

This functionality processes encryptions and decryptions for a single epoch and has session id
sid.fs that takes the following format: sid.fs = (“fs aead”, sid = (sid′, (pid0, pid1)), epoch id).
Inputs arriving from machines whose identity is neither pid0 nor pid1 are ignored. //For
notational simplicity we assume some fixed interpertation of pid0 and pid1 as complete identities
of the two calling machines. It also has internal adversary code I = Ifs.

Encrypt: On receiving input (Encrypt, m, N) from (ΠMAN , sid, pid) do:

1. If this is the first activation then:
– Let i be such that pid = pidi and initialize msg num = 0 and stateI to empty, sender

sender = i.
– Call Flib with input Ffs aead to obtain the internal code I.

2. Verify that sid matches the one in the local state and pid = pidb, otherwise end the
activation.

3. If the sender has deleted the ability to encrypt messages, then end the activation.
4. Increment msg num = msg num + 1.
5. If IsCorrupt? = false: Run I(stateI , Encrypt, pid,msg num, N, |m|). Obtain the updated

state stateI and the output (Encrypt, pid, c,msg num, N).
6. If IsCorrupt? = true: Send a backdoor message (stateI , Encrypt, pid,msg num, N, m) to A.

Upon receiving a response (stateI , Encrypt, pid, c,msg num, N), record the updated state
stateI .

7. Record (m, c,msg num, N) and output (Encrypt, c) to (ΠMAN , sid, pid).

(The rest of this functionality is in Fig. 9)

Fig. 8. The Forward-Secure Encryption Functionality Ffs aead

Theorem 3. Assume that PRG is a secure length-doubling pseudorandom gen-
erator. Then protocol ΠmKE UC-realizes FmKE in the presence of FDIR,FLTM, and
FΠeKE

eKE = (SeKE,FeKE).

The Public Ratchet: RealizingFeKE. By this point we have already described
all of the functionalities in our model. As shown in Fig. 1, it only remains to
construct real-world protocols that realize each of them. We defer a description
of Πaead to the full version [21] and show only the result here.

Theorem 4. Assuming the unforgeability of (MAC,Verify), protocol Πaead UC-
realizes the ideal functionality Faead in the presence of FpRO, as well as FΠ

mKE =
(SmKE,FmKE),FΠeKE

eKE = (SeKE,FeKE),FDIR,FLTM,Flib.

Instantiating FeKE via ΠeKE (Figs. 12 to 13) is subtle. The main challenge, as
observed by Alwen et al. [1] and others, is that the key derivation module within
the public ratchet must maintain security if either of the previous root key or the
newly generated ephemeral keys are uncompromised. Alwen et al. formalized this
guarantee by way of constructing a new primitive: a PRF-PRG. In this work, we
make two important improvements upon this construction. First, we contribute
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Ffs aead continued...

Decrypt: On receiving (Decrypt, c,msg num, N) from (ΠSGNL, sid, pid) do:

1. Verify that sid matches the one in the local state and pid = pid1−sender, otherwise end the
activation. //end the activation if the decrypt request is not from the receiving party

2. If msg num is set as inaccessible, or there is a record (Authenticate, c,msg num, N, 0), then
output (Decrypt, c,msg num, N, Fail) to (ΠSGNL, sid, pid).

3. If IsCorrupt? = false:
– Run I(stateI , Authenticate, pid, c,msg num, N) and obtain updated state stateI and

output (Authenticate, pid, c,msg num, N, v).
– If v = ⊥, then record (Authenticate, c,msg num, N, 0) and output

(Decrypt, c,msg num, N, Fail) to (ΠSGNL, sid, pid).
– Otherwise, mark msg num as inaccessible and output (Decrypt, c,msg num, N, m) to

(ΠSGNL, sid, pid).
4. Else (IsCorrupt? = true):

– Send (stateI , inject, pid, c,msg num, N) to A.
– On receiving the updated stateI and (inject, v) from A, do:

• If v = ⊥, record (Authenticate, c,msg num, N, 0) and output
(Decrypt, c,msg num, N, Fail).

• Else, then mark msg num as inaccessible and output (Decrypt, c,msg num, N, v)
to (ΠSGNL, sid, pid).

StopEncrypting: On receiving (StopEncrypting) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, if pid �= pidsender, or if this is the first
activation: end the activation.

2. Otherwise, note that pidi has deleted the ability to encrypt future messages. Output
(StopEncrypting, Success).

StopDecrypting: On receiving (StopDecrypting,msg num∗) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, pid �= pid1−sender, or no messages have been
successfully decrypted by pidi: end the activation.

2. Mark all msg num > msg num∗ as inaccessible, and output (StopDecrypting, Success) to
(ΠSGNL, sid, pid).

Corrupt: On receiving (Corrupt, pid) from (ΠSGNL, sid, pid):

1. Record (Corrupt, pid) and set IsCorrupt? = true.
2. If pid = pid1−sender (pid is the receiver), let leak = {(pidsender, h =

(epoch id,msg num, N), c, m)} be the set of all messages sent by pidsender which are
not marked as inaccessible.

3. Otherwise (pid is the sender), set leak = ∅
4. Send (ReportState, stateI , pid, leak) to A.
5. Upon receiving a response (ReportState, stateI , pid, S) from A, send S to (ΠSGNL, sid, pid).

Fig. 9. The Forward-Secure Encryption Functionality Ffs aead (continued)

a new construction called a Cascaded PRF-PRG that allows for equivocation, in
order to maintain security against adaptive adversaries. Second, we provide an
instantiation in the plain model based on punctured PRFs.
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Faead

This functionality has a session id sid.aead = (“aead′′, sid.fs,msg num) where
sid.fs = (“fs aead”, sid = (sid′, pid0, pid1), epoch id). It also has internal adversary
code I = Iaead.

We initialize the state for I to be stateI = ⊥.

Encryption: On receiving (Encrypt, m, N) from (Πfs aead, sid.fs, pid):

1. If this is not the first encryption request or pid /∈ (pid0, pid1), end the activation. Let i be
such that pid = pidi.

2. Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid)
3. Upon receiving output (RetrieveKey, pid, k) from (FmKE, sid.mKE, pid):

– If k =⊥ then end the activation. //The key is not available.
– Else if IsCorrupt? = false:

• Call Flib with input Faead to obtain the internal code I.
• Run I(stateI , Encrypt, pid, |m|, N), obtain the updated state stateI , and the out-

put (Encrypt, pid, c).
• Record the tuple (c, k, m, N, 1), record i as the sender, and set ready2decrypt =

true.
– Else (k �=⊥ and IsCorrupt? = true):

• Send a backdoor message (stateI , Encrypt, pid, m, N) to A.
• Upon receiving a response (stateI , Encrypt, pid, c), record the updated state

stateI , record the tuple (c, k, m, N, 1), record i as the sender, and set
ready2decrypt = true.

– Output (Encrypt, c) to (Πfs aead, sid.fs, pid).

Decryption: On receiving (Decrypt, c, N) from (Πfs aead, sid.fs, pid):

1. If there hasn’t been a successful encryption request, if pid �= pid1−i, or if ready2decrypt =
false then output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).

2. Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid).
3. Upon obtaining a response (RetrieveKey, pid, k) from FmKE: If k = ⊥ then output

(Decrypt, Fail). //Failure of decryption can occur for an honest receiver so we need an
explicit failure notification.

4. If there is a record (c, k, m, N, 1), note ready2decrypt = false and output (Decrypt, m) to
(Πfs aead, sid.fs, pid).

5. If there is a record (c, N, 0), output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).
6. If IsCorrupt? = false

– Run I(stateI , Authenticate, pid, c, N) and obtain updated state stateI and a value v
from I.

– If v = ⊥ then record (c, N, 0), and output (Decrypt, Fail).
– Otherwise, note ready2decrypt = false, and output (Decrypt, m).

7. Else (IsCorrupt? = true)
– Send backdoor message (stateI , inject, pid, c, N) to A.
– Upon receiving response (inject, pid, c, N, v) from A continue.
– If v = ⊥ then record (c, N, 0), and output (Decrypt, Fail).
– Else, note ready2decrypt = false, and output (Decrypt, v).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs, pid):

1. End the activation if pid /∈ (pid0, pid1). Otherwise, let i be such that pid = pidi. Else, set
IsCorrupt? to true, and send (ReportState, stateI) to A.

2. Upon receiving a response (ReportState, pid, S) from A, send (Corrupt, S) to
(Πfs aead, sid.fs).

Fig. 10. The Authenticated Encryption with Associated Data Functionality, Faead
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FmKE

This functionality has a session id sid.mKE that takes the following format:
sid.mKE = (“mKE”, sid.fs). Where sid.fs = (“fs aead”, sid, epoch id). The local ses-
sion ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose identity is
neither pid0 nor pid1 are ignored.

This functionality is parametrized by a seed length λ

RetrieveKey: On receiving (RetrieveKey, pid) from (Πaead, sid.aead), where sid.aead =
(“aead”, sid.fs,msg num), or Faead if IsCorrupt? = true:

1. If this is the first activation,
– Initialize dictionary key dict and variables IsCorrupt? = false, msg num0,msg num1 =

0.
– Parse sid to recover the two party ids (pid0, pid1).

2. If pid /∈ {pid0, pid1} then end this activation.
3. End the activation if there is record (Retrieved, i,msg num) or a record (StopKeys, i, N)

for N < msg num.
4. If IsCorrupt? = false:

– If msg num ∈ key dict.keys, set k = key dict[msg num].

– Else (msg num /∈ key dict.keys), set k
$← {0, 1}λ.

5. Else (IsCorrupt? = true):
– Send (RetrieveKey, pid,msg num) to the the adversary.
– Upon receiving (RetrieveKey, pid, k) from the adversary, continue.

6. Store key dict[msg num] = k.
7. If msg num > msg numi, set msg numi = msg num. //msg numi is the largest successfully

retrieved message by party i.
8. Record (Retrieved, i,msg num) and output (RetrieveKey, pid, k) to (Πaead, sid.aead).

StopKeys: On receiving (StopKeys, N) from (Πfs aead, sid.fs =
(“fs aead”, sid, epoch id, b), pid),

– Run steps 3-7 of RetrieveKey for all msg num such that msg numi < msg num ≤ N .
– Record (StopKeys, i, N) and output (StopKeys, Success).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs = (“fs aead”, sid, epoch id, b), pid):

1. Let i be such that pid = pidi.
2. Set IsCorrupt? = true, create empty lists keys in transit, pending msgs, and initialize

chain key
$← {0, 1}λ.

3. If msg numi = 0 send (GetReceivingKey, epoch id) to (ΠeKE, sid.eKE, pid).
//The chain key is selected at random unless the receiver is corrupted before retrieving
any keys for the epoch, this is because later chain keys should be unrelated to the initial
one due to the PRG property. If the receiver has not retrieved any keys, we get the chain
key from ΠeKE to provide to the simulator so that it matches the real world.
//Also note that we only get corrupted if the sender has already initialized this box =⇒
the sender’s msg num will never be 0.

4. On receiving (GetReceivingKey, recv chain key) set chain key = recv chain key.
5. For all msg num ∈ key dict.keys, if there is no record (Retrieved, i,msg num) then append

(msg num, key dict[msg num]) to keys in transit and append msg num to pending msgs.
6. If there is a record (StopKeys, i, N) then let chain key = ⊥.
7. Send (ReportState, i, keys in transit,msg numi, chain key) to A.
8. On receiving a response (ReportState, i, S) from A:

– Output (Corrupt, pending msgs, S) to (Πfs aead, sid.fs, pidi).

Fig. 11. The Message Key Exchange Functionality FmKE
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ΠeKE

This protocol has a party id pid and session id sid.eKE of the form: sid.eKE = (“eKE”, sid)
where sid = (sid′, pid0, pid1).

keyGen chooses a random Diffie-Hellman exponent epoch key
$← |G| for a known group G and

sets epoch id = gepoch key.
ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from
(ΠSGNL, sid, pid′):

1. If pid′ �= pid, then end the activation. Let i be such that pid = pidi.
2. Set temp epoch id partneri = epoch id∗.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Send (GetInitKeys, pid1−i, pidi) to FDIR.
– Upon receiving (GetInitKeys, ikpkj , rkpkj , okpkj←i), send input

(ComputeSendingRootKey, ikpkj , rkpkj , okpkj←i) to FLTM.

– Upon receiving (ComputeSendingRootKey, k, ekpki ), set root key = k.
– Do steps 4-6 of Compute Sending Chain Key
– Erase ekpki and output (ConfirmReceivingEpoch, epoch idself ||ekpki ||okpkj←i) to

(ΠSGNL, sid, pidi)
4. Else (this is not the first activation):

– Compute Sending Chain Key.
– Output (ConfirmReceivingEpoch, epoch idself) to (ΠSGNL, sid, pidi).

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid′):

1. If pid′ �= pid, or if sending chain key has already been erased, end the activation.
2. Output (GetSendingKey, sending chain key) and erase sending chain key.

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid, pid′):

1. If pid′ �= pid, then end the activation. Otherwise, let i be such that pid = pidi.
2. Set temp epoch id partner = epoch id.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Parse epoch id = (epoch id′, ekpkj , okpki←j) and set temp epoch id partner = epoch id′

– Send (GetResponseKeys, pid1−i) to FDIR.
– Upon receiving (GetResponseKeys, ikpkj ), send input

(ComputeReceivingRootKey, ikpkj , ekpkj , okpki←j) to FLTM.
– Upon receiving (ComputeReceivingRootKey, k), set root key = k.

4. Compute Receiving Chain Key.
5. Output (GetReceivingKey, temp recv chain key) and erase temp recv chain key.

(The rest of this protocol is in Fig. 13)

Fig. 12. The Epoch Key Exchange Protocol ΠeKE
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ΠeKE continued...

Corrupt: On receiving (Corrupt) from (ΠSGNL, sid, pidi): return
(epoch key, epoch idself , epoch idpartner, root key) to (ΠSGNL, sid, pidi)
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for

UC-modelling purposes.
//Below are subroutines used in the interfaces above. The calls to Advance and Compute use

ΠKDF that is a cascaded PRF − PRNG
Compute Sending Chain Key:

1. Compute root input = Exp(temp epoch idpartner, epoch keyself).
2. Compute (root key) = ΠKDF.Advance(root key, root input).
3. Generate a key pair (epoch keyself , epoch idself) ← keyGen().
4. Compute the next input root input = Exp(temp epoch idpartner, epoch keyself).
5. Compute (root key, sending chain key) = ΠKDF.Compute(root key, root input).
6. Finally, advance (root key) = ΠKDF.Advance(root key, root input)
7. Erase root input. //The old root key is overwritten and therefore erased. The old sending

chain key was already erased.

Compute Receiving Chain Key:

1. Compute root input = Exp(temp epoch idpartner, epoch keyself).
2. Compute (root key, temp recv chain key) = ΠKDF.Compute(root key, root input).
3. Erase root input. //The old root key is overwritten and therefore already erased.

Fig. 13. The Epoch Key Exchange Protocol ΠeKE (continued)

Theorem 5. Assume that KDF : {0, 1}n → {0, 1}2n is a CPRFG, that the
DDH assumption holds in the group G. Then protocol ΠeKE UC-realizes the
ideal functionality FeKE in the presence of global functionalities FDIR and FLTM.

Cascaded PRF-PRG. The goal of this primitive is to formalize the require-
ments required of a key derivation function (KDF) to adhere to the Signal
specification [44] in the adaptive setting. We consider a stateful key derivation
function (KDF) with two algorithms. Algorithm Compute(root key, root input) =
(chain key, root key′) is given a state root key and randomizer root input, and
computes a chaining key chain key and an updated state root key′ (discarding
the old state). Algorithm Advance(root key, root input) = root key′ is given a
state root key and randomizer root input, and updates the state for a new epoch.

Our cascaded PRF-PRG definition requires that the KDF be secure against
an adversary who can repeatedly execute methods (Compute) and (Advance) at
will, and who can also obtain the module’s local state at any time. More specifi-
cally, we require existence of a simulator such that no adversary can distinguish
an interaction with the scheme from an ideal interaction (Fig. 14) where the keys
are truly random and the exposed state is generated by the simulator.
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Cascaded PRF-PRG Security Game

Security game for a KDF (Compute,Advance) with domain {0, 1}n for the initial secret state,
domain {0, 1}m(n) for the chaining keys and domain {Rn}n∈N for the randomizer, and a
simulator S :
Real game:

– Oracle O is initialized with random state s ← {0, 1}n.
– On input (Compute, root input): O runs Compute(s, root input) = (chain key, root key′), out-

puts chain key and changes state s = root key′.
– On input (Advance): O chooses root input′ ← Rn at random, runs Advance(s, root input′) =

root key′, and changes state s = root key′.
– On input (Expose-Advance): O outputs the old state s, chooses root input′ ← Rn at random,

computes Advance(s, root input′) = root key′, and changes state s = root key′.

Ideal game:

– Oracle O is initialized with a state consisting of a random function F : Rn → {0, 1}m.
– On input (Compute, root input): O outputs F (root input) = chain key.
– On input (Advance): O updates its state to a new random function F : Rn → {0, 1}m.
– On input (Expose-Advance): O outputs S((root input1, F (root input1)), . . . , (root inputk,

F (root inputk)), where root input1, . . . , root inputk are all the queries made by A since the
last Advance query and F is the currently used random function. Finally O updates its
state to a new random function F : Rn → {0, 1}m.

Fig. 14. Cascaded PRF-PRG Security Game

Definition 1 (Cascaded PRF-PRG (CPRFG)). A KDF (Compute,
Advance) is a cascaded PRF-PRG (CPRFG) if there exist polytime algorithm S such
that any polytime oracle machineA can distinguish between the real and ideal inter-
actions described in Fig. 14 only with advantage that is negligible in n.

In the full version of this work [21], we show two constructions of a Cascaded
PRF-PRG: a straightforward one based on a programmable random oracle, and
a non-trivial construction in the plain model based on a puncturable PRF and
a PRF-PRG (in the style of Alwen et al. [1]).
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