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Preface

The 42nd International Cryptology Conference (CRYPTO 2022) was held at the
University of California, Santa Barbara, California, USA, during August 15–18, 2022.
The conference had a hybrid format, with some presentations made in person, and some
delivered virtually. CRYPTO 2022 was sponsored by the International Association for
Cryptologic Research (IACR). The conference was preceded by two days of workshops
on various topics.

The conference set new records for both submissions and publications: 455 papers
were submitted, and 100 were accepted. Two papers were merged into a single joint
paper. Three pairs of papers were soft-merged, meaning that they were written sepa-
rately, but only one paper in each pair was given a presentation slot at the conference.
This resulted in 96 presentations, a record by some margin for a non-virtual edition
of Crypto. It took a Program Committee of 72 cryptography experts working with
435 external reviewers almost three months to select the accepted papers. We Chairs
extend our heartfelt gratitude for the effort and professionalism displayed by the Program
Committee; it was our pleasure to be your Chairs.

We experimented with some new policies and mechanisms this year. The most
important had to do with the quality of reviewing, author feedback and interaction with
the authors.

Shortly after the standard doubly-blind reviewing stage, we assigned a unique
discussion leader (DL) to every paper. The DL’s job was to make sure the paper received
a thorough and fair treatment, and to moderate interactive communication between the
reviewers and authors (described below). The DL also prepared a “Reviewers’ consen-
sus summary”, which provided the authors with a concise summary of the discussion,
the decision, and overall trajectory of the paper throughout the process. Many authors
expressed gratitude for receiving the Reviewers’ consensus summary, in addition to the
usual reviews and scores. Overall, feedback on our DL experiment was quite positive,
and we recommend it to future chairs to adopt this process as well.

We also experimented with an “interactive rebuttal” process. Traditionally, the
rebuttal process has consisted of a single round: the authors were provided with the
initial reviews, and had one opportunity to respond prior to the final decision. While
better than no opportunity to rebut, our opinion is that the traditional process suffers
from several important flaws. First, the authors were left to respond in (say) 750 words
to multiple reviews that are, each, much longer. Too often, the authors are left to divine
what are the crucial points to address; getting this wrong can lead to reviewers feel-
ing that the rebuttal has missed (or dismissed) what mattered to them. In any case, the
authors had no idea if their rebuttal was correctly focused, let alone convincing, until
the decisions and final reviews were released. In many instances, the final reviews gave
no signal that the rebuttal had been thoughtfully considered. In our view, and personal
experience, the traditional rebuttal process led to frustration on both sides, with review-
ers and authors feeling that their time had been wasted. Moreover, it had unclear benefits
in terms of helping the PC to pick the best possible program.
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To address this, we created a review form that required reviewers to make
explicit what were their core concerns and criticisms; and we allowed for multiple,
DL-moderated, rounds of communication between the reviewers and the authors.

Our review form had exactly one field visible to the authors during the initial rebuttal
round. The field was called “Question/Clarifications for Authors”, and reviewers were
instructed to include only those things that had significant bearing upon the reviewer’s
accept/reject stance. We gave all reviewers detailed guidance on things that must be
included. For example, any claimed errors, crucial prior work that was not cited, or
other objective weaknesses that appeared in the detailed review comments. In addition,
the reviewers were instructed to clearly state less objective concerns that factored into
their initial score and disposition towards the paper. Thus, the authors should know
exactly what to focus upon in their response. While not perfect, the new rebuttal format
was a resounding success. Very strong/weak papers typically had very short rebuttals,
allowing the PC to focus their time and energy on papers in need of extensive discussion
or additional reviews.

In concert with the new review form and detailed review instructions, we also
implemented interactive discussions between the reviewers and authors. The traditional
rebuttal round became the first round of the interactive discussion.One roundwas enough
for a fraction of the papers (primarily papers that were very strong or very weak), but the
evaluation of most submissions benefited from numerous rounds: reviewers were able to
sharpen their questions, authors were able to address points directly and in greater detail.
The whole review process shifted more towards a collegial technical exchange. We did
not encounter any problems that we initially feared, e.g., authors spamming the PC with
comment. We believe that having the DLs moderate these interactions was important
for keeping emotions and egos in check, and for encouraging reviewers to share any
significant new concerns with the authors.

A few minor hiccups notwithstanding, the focused review forms and the “interactive
rebuttal” mechanism received a lot of positive feedback, and we strongly encourage
future chairs to adopt this tradition.

We also mention several smaller details which worked well. First, our review form
included a “Brief Score Justification” field that remained reviewer-visible (only) for the
entire process. This was a space for reviewers to speak freely, but concisely, about how
they came to their scores. As Chairs, we found this extremely useful for getting a quick
view of each paper’s reviews. Second, we had an early rejection round roughly in the
middle of our reviewing process. This allowed us to reject roughly half of submissions,
i.e., those that clearly had no chance of being accepted to the final program. The process
generally worked, and we tried to err on the side of caution, keeping papers alive if
the PC was unsure of their seemingly negative views. For example, we allowed PC
members to tag papers that they wanted to keep alive, even to the point of overturning
a preliminary decision to early reject. However, we did feel slightly rushed in finalizing
the early reject decisions, as we made them after less than two weeks after the initial
reviewing round, and less than a week after the initial rebuttal round. Part of this rush
was due to late reviews. Thus, we recommend that future chairs give themselves a bit
more slack in the schedule, and perhaps add a second (less) early rejection round. Third,
we experimented with allowing PC members to have a variable number of submissions,
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rather than the usual hard limits (e.g., at most one or two). Concretely, at most 4 papers
could be submitted; the first paper was “free”, but every subsequent paper submitted by
the PC member resulted in this PC member getting roughly three more papers to review,
and one additional DL appointment. We adopted this policy to make it easier for experts
to accept our invitation to join the PC. (As always, the chairs were not allowed to submit
papers.) Despite some unexpected difficulties and complaints about this system, most
having to do with the logistic difficulty of assigning DLs to PC members with late initial
reviews, many PC members told us that they appreciated the flexibility to submit more
papers, especially when students were involved. We found no evidence that our system
resulted in more accepted papers that were co-authored by the PCmembers, or any other
biases and irregularities. Hence, we found it to be positive, overall.

The Program Committee recognized three papers and their authors for particularly
outstanding work

– “Batch Arguments for NP and More from Standard Bilinear Group Assumptions,” by
Brent Waters and David Wu

– “Breaking Rainbow Takes a Weekend on a Laptop”, by Ward Beullens
– “Some Easy Instances of Ideal-SVP and Implications to the Partial Vandermonde
Knapsack Problem”, by Katharina Boudgoust, Erell Gachon, and Alice Pellet-Mary

We were very pleased to have Yehuda Lindell as the Invited Speaker at CRYPTO
2022, who spoke about “The MPC journey from theoretical foundations to commercial
success: a story of science and business”.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2022. Additionally, we are
grateful to the following people for helping to make CRYPTO 2022 a success: Allison
Bishop (General Chair, CRYPTO 2022), Kevin McCurley and Kay McKelly (IACR IT
experts), Carmit Hazay (Workshops Chair), and Whitney Morris and her staff at UCSB
conference services.

We would also like to thank the generous sponsors, all of the authors of the
submissions, the rump session chair, the regular session chairs, and the speakers.

August 2022 Yevgeniy Dodis
Thomas Shrimpton
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Abstract. We model and analyze the Signal end-to-end messaging pro-
tocol within the UC framework. In particular:

– We formulate an ideal functionality that captures end-to-end secure
messaging, in a setting with PKI and an untrusted server, against
an adversary that has full control over the network and can adap-
tively and momentarily compromise parties at any time and obtain
their entire internal states. In particular our analysis captures the
forward secrecy and recovery-of-security properties of Signal and the
conditions under which they break.

– We model the main components of the Signal architecture (PKI
and long-term keys, the backbone continuous-key-exchange or
“asymmetric ratchet,” epoch-level symmetric ratchets, authenti-
cated encryption) as individual ideal functionalities that are real-
ized and analyzed separately and then composed using the UC and
Global-State UC theorems.

– We show how the ideal functionalities representing these compo-
nents can be realized using standard cryptographic primitives under
minimal hardness assumptions.

Our modeling introduces additional innovations that enable arguing
about the security of Signal irrespective of the underlying communication
medium, as well as secure composition of dynamically generated modules
that share state. These features, together with the basic modularity of
the UC framework, will hopefully facilitate the use of both Signal-as-a-
whole and its individual components within cryptographic applications.

Two other features of our modeling are the treatment of fully adaptive
corruptions, and making minimal use of random oracle abstractions. In
particular, we show how to realize continuous key exchange in the plain
model, while preserving security against adaptive corruptions.

1 Introduction

Secure communication, namely allowing Alice and Bob to exchange messages
securely, over an untrusted communication channel, without having to trust any
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intermediate component or party, is perhaps the quintessential cryptographic
problem. Indeed, constructing and breaking secure communication protocols, as
well as modeling security concerns and guarantees, providing a security analysis,
and then breaking the modeling and analysis, has been a mainstay of cryptog-
raphy since its early days.

Successful secure communication protocols have naturally been built to
secure existing communication patterns. Indeed, IPSec has been designed to pro-
vide IP-layer end-to-end security for general peer-to-peer communication with-
out the need to trust routers and other intermediaries, while SSL (which evolved
into TLS) has been designed to secure client-server interactions, especially in
the context of web browsing, and PGP has been designed to secure email com-
munication.

Securing the communication over messaging applications poses a very dif-
ferent set of challenges, even for the case of pairwise communication (which is
the focus of this work). First, the communicating parties do not typically have
any direct communication connection and may not ever be online at the same
time. Instead, they can communicate only via an untrusted server. Next, the
communication may be intermittent and have large variability in volumes and
level of interactivity. At the same time, a received message should be processed
immediately and locally. Furthermore, connections may span very long periods
of time, during which it is reasonable to assume that the endpoint devices would
be periodically hacked or otherwise compromised – and hopefully later regain
security.

The Signal protocol has been designed to give a response to these specific
challenges of secure messaging, and in doing so it has revolutionized the con-
cept of secure communication over the Internet in many ways. Built on top of
predecessors like Off-The-Record [14], the Signal protocol is currently used to
transmit hundreds of billions of messages per day [49].

Modeling the requirements of secure messaging in general, and analyzing the
security properties of the Signal protocol in particular, has proved to be challeng-
ing and has inspired multiple analytical works [1–3,7,10,11,13,15,17,25–33,35–
37,46–48,52–55,57]. Some of these works directly address the Signal architecture
and realization, whereas others propose new cryptographic primitives that are
inspired by Signal’s various modules.

The Need for Composable Security Analysis. Standalone security analyses of the
Signal protocol are not always sufficient to capture the security of an entire mes-
saging ecosystem that includes (components of) the Signal protocol. People typ-
ically participate concurrently in several conversations spanning several multi-
platform chat services (e.g., smartphone and web), and the subtleties between a
chat service and the underlying messaging protocol have led to network and sys-
tems security issues (e.g., [31,32,40]). For example, the Signal protocol is com-
bined with other cryptographic protocols in WhatsApp [56] to perform abuse
reporting or Status [50] and Slyo [51] to perform cryptocurrency transactions
and Tor-style onion routing.
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Moreover, Signal isn’t always employed as a single monolithic protocol.
Rather, variations and subcomponents of the Signal protocol are used within
the Noise protocol family [45], file sharing services like Keybase [38] (which per-
forms less frequent ratcheting), and videoconferencing services like Zoom [39]
(which isn’t concerned with asynchrony).

This state of affairs seems to call for a security analysis within a frame-
work that allows for modular analysis and composable security guarantees. First
steps in this direction were taken by the work of Jost, Maurer, and Mularczyk
[37] that defines an abstract ratcheting service within the Constructive Cryp-
tography framework [41,42], and concurrent work by Bienstock et al. [12] that
formulates an ideal functionality of the Signal protocol within the UC frame-
work (see Sect. 1.5 for details). However, neither of these works give a modular
decomposition of Signal into its basic components (as described in [44].)

The Apparent Non-modularity of Signal. One of the main sticking points when
modeling and analyzing Signal in a composable fashion is that the protocol
purposefully breaks away from the traditional structure of a short-lived “key
exchange” module followed by a longer-lived module that primarily encrypts
and decrypts messages using symmetric authenticated encryption. Instead, it
features an intricate “continuous key exchange” module where shared keys are
continually being updated, in an effort to provide forward security (i.e., prevent-
ing an attacker from learning past messages), as well as enabling the parties to
quickly regain security as soon as the attacker loses access. Furthermore, Sig-
nal’s process of updating the shared keys crucially depends on feedback from
the “downstream” authenticated encryption module. This creates a seemingly
inherent circularity between the key exchange and the authenticated encryp-
tion modules, and gets in the way of basing the security of Signal on tradi-
tional components such as authenticated symmetric encryption, authenticated
key exchange, and key-derivation functions.

Security of Signal in Face of Adaptive Corruptions. Another potentially thorny
aspect of the security of secure messaging protocols (Signal included) is the
need to protect against an adversary that decides whom and when to corrupt,
adaptively, based on all the communication seen so far. Indeed, not only is stan-
dard semantic security not known to imply security in this setting: there exist
encryption schemes that are semantically secure (under reasonable intractability
assumptions) but completely break in such a setting [34].

1.1 This Work

This work proposes a modular analysis of the Signal protocol and its components
using the language of universally composable (UC) security [18,19]. We focus on
modeling Signal at the level specified in their documentation [44] (i.e., not limited
to any single choice, of cipher suite), taking care to adhere to the abstractions
within the specification.
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We provide an ideal functionality, FSM, for secure messaging along with indi-
vidual ideal functionalities that capture each module within Signal’s architec-
ture. We then compose the modules to realize the top-level secure messaging
functionality and demonstrate how to realize the modules in a manner consistent
with the Signal specification [44]. Our instantiation achieves adaptive security
against transient corruptions while making minimal use of the random oracle
model. This combination of composability and modularity makes Signal and its
components conveniently plug-and-play: future analyses can easily re-purpose
or swap out instantiations of the modules in this work without needing to redo
most of the security analysis.

In the process, we propose a new abstraction for Signal’s continuous key
derivation module, which we call a Cascaded PRF-PRG (CPRFG), and we show
that it suffices for Signal’s continuous key exchange module to achieve adaptive
security. We also show how to construct CPRFGs from PRGs and puncturable
PRFs. This may be of independent interest.

The rest of the Introduction is organized as follows. Section 1.2 presents and
motivates our formulation of FSM. Section 1.3 presents and motivates the for-
mulation of the individual modules, and describes how these modules can be
realized. Section 1.5 discusses related work.

1.2 On the Ideal Secure Messaging Functionality, FSM

We provide an ideal functionality FSM that captures end-to-end secure mes-
saging, with some Signal-specific caveats. The goal here is to provide idealized
security guarantees that will allow the analysis of existing protocols that use
Signal, as well as enable Signal (or any protocol that realizes FSM) to be readily
usable as a component within other protocols in security-preserving manner.

When a party asks to encrypt a message, FSM returns a string to the party
that represents the encapsulated message. When a party asks to decrypt (and
provides the representative string), the functionality checks whether the provided
string matches a prior encapsulation, and returns the original message in case
of a match. The encapsulation string is generated via adversarially provided
code that doesn’t get any information about the encapsulated message, thereby
guaranteeing secrecy.

Simple User Interface. The above encapsulation and decapsulation requests are
the only ways that a parent protocol interacts with FSM. In particular, the parent
protocol is not required to keep state related to the session, such as epoch-
ids or sequence numbers. In addition to simplicity, this imparts the additional
guarantee that a badly designed parent protocol cannot harm the security of a
protocol realising FSM.

Abstracting Away Network Delivery. The fact that FSM models a secure mes-
saging scheme as a set of local algorithms (an encapsulation algorithm and a
decapsulation one) substantially simplifies traditional UC modeling of secure
communication, where the communication medium is modeled as part of the
service provided by the protocol and the actual communication is abstracted
away.
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Furthermore, the fact that FSM returns to the parent protocol an actual string
(that represents an idealized encapsulated message) allows the parent protocol to
further process the string as needed, similarly to what’s done in existing systems.

Immediate Decryption. FSM guarantees that message decapsulation requests are
fulfilled locally on the receiver’s machine, and are not susceptible to potential
network delays. Furthermore, this holds even if only a subset of the messages
arrive, and arrival is out of order (as formalized in [1]). To provide this guaran-
tee within the UC framework, we introduce a mechanism that enables FSM to
execute adversarially provided code, without enabling the adversary to prevent
immediate fulfillment of a decapsulation request. See more details in Sect. 2.

Modeling of PKI and Long Term Keys. We directly model Signal’s specific design
for the public keys and associated secret keys that are used to identify parties
across multiple sessions. Specifically, we formulate a “PKI” functionality FDIR

that models a public “bulletin board,” which stores the long-term, ephemeral,
and one-time public keys associated with identities of parties. In addition, we
model “long term private key” module FLTM for each identity. This module stores
the private keys associated with the public keys of the corresponding party. Both
functionalities are modeled as global, namely they are used as subroutines by mul-
tiple instances of FSM. This modeling is what allows to tie the two participants
of a session to long-term identities. Similarly to [16,24], we treat these modules
as incorruptible. It is stressed, however, that, following the Signal architecture,
our realization of FSM calls the FLTM module of each party exactly once, at the
beginning of the session.

Modelling Corruptions. Resilience to recurring but transient break-ins is one of
the main design goals of Signal. We facilitate the exposition of these proper-
ties as follows. First, we model corruption as an instantaneous event where the
adversary learns the entire state of the corrupted party.

The security guarantees for corruption and recovery are then specified as
follows. When the adversary instructs FSM to corrupt a party, it is provided all
the messages that have been sent to that party and were not yet received. In
addition, the party is marked as compromised until a certain future point in
the execution. While compromised, all the messages sent and received by the
party are disclosed to the adversary, who can also instruct FSM to decapsulate
ciphertexts to any plaintext of its choice. This captures the fact that as long as
any one of the parties is compromised, neither party can securely authenticate
incoming messages.

Forward secrecy guarantees that the adversary learns nothing about any mes-
sages that have been sent and received by the party until the point of corruption.
Furthermore, the adversary obtains no information on the history of the session
such as its duration or the long term identity of the peer. In FSM, this is guaran-
teed because corruption does not provide the adversary with any messages that
were previously sent and successfully received.
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On the other hand, the specific point by which a compromised party regains
its security is Signal-specific and described in more detail within. After this point,
the adversary no longer obtains the messages the messages sent and received by
the parties; furthermore, the adversary can no longer instruct FSM to decapsulate
forged ciphertexts.

Resilience to Adaptive Corruptions. All the security guarantees provided by FSM

hold in the presence of an adversary that has access to the entire communication
among the parties and adaptively decides when and whom to corrupt based on all
the communication seen so far. In particular, we do not impose any restrictions
on when a party can be corrupted.

Signal-Specific Limitations. The properties discussed so far relate to the general
task of secure messaging. In addition, FSM incorporates the following two relax-
ations that represent known weaknesses that are specific to the Signal design.

First, Signal does not give parties a way to detect whether their peers have
received forged messages in their name during corruption. (Such situations may
occur when either party was corrupted in the past and then recovered.) This
represents a known weakness of Signal [15,31]. Consequently, FSM exhibits a
similar behavior.

Second, as remarked in the Signal documentation [44], when one of the par-
ties is compromised, an adversary can “fork” the messaging session. That is, the
adversary can create a person-in-the-middle situation where both parties believe
they are talking with each other in a joint session, and yet they are actually both
talking with the adversary. Furthermore, this can remain the case indefinitely,
even when no party is compromised anymore. (In fact, we know this situation is
inherent in an unauthenticated network with transient attacks, at least without
repeated use of a long-term uncompromised public key [20].) While such a sit-
uation is mentioned in the Signal design documents, pinpointing and analyzing
the conditions under which forking occurs has not been formally done before our
work and the concurrent work by Bienstock et al. [12]. In our modeling, FSM

forks when one of the parties is compromised, and at the same time the other
party successfully decapsulates a forged incoming message with an “epoch ID”
that is different than the one used by the sender. In that case, FSM remains
forked indefinitely, without any additional corruptions.

1.3 Realizing FSM, Modularly

Signal’s strong forward secrecy and recovery from compromise guarantees are
obtained via an intricate mechanism where shared keys are continually being
updated, and each key is used to encapsulate at most a single message.

To help keep the parties in sync regarding which key to use for a given
message, the conversation is logically partitioned into sending epochs, where
each sending epoch is associated with one of the two parties, and consists of
all the messages sent by that party from the end of its previous sending epoch
until the first time this party successfully decapsulates an incoming message that
belongs to the peer’s latest sending epoch.
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Within each sending epoch, the keys are pseudorandomly generated one after
the other in a chain. The initial chaining key for each epoch is generated from a
‘root chain’ that ratchets forward every time a new sending epoch starts. Each
ratcheting of the root chain involves a Diffie-Hellman key exchange; the resulting
Diffe-Hellman secret is then used as input to the root ratchet (along with an
existing chaining value). The public values of each such Diffie-Hellman exchange
are piggybacked on the messages within the epoch and therefore authenticated
using the same AEAD used for the data. Furthermore, these public values are
used as unique identifiers of the sending epoch that each message is a part of.
This mechanism allows the parties to keep in sync without storing any long-term
information about the history of the session.

The Signal architecture document [44] de-composes the above mechanism
into 3 main cryptographic modules, plus non-cryptographic code used to put
these modules together. The modules are: (1) a symmetric authenticated encryp-
tion with associated data (AEAD) scheme that is applied to individual mes-
sages; (2) a symmetric key ratcheting mechanism to evolve the key between
messages within an epoch; (3) an asymmetric key ratcheting (or “continuous
key exchange”) mechanism to evolve the “root chain.” Since these modules are
useful for applications beyond this particular protocol, we follow this partition-
ing and decompose Signal’s protocol into similar components. (Our partitioning
into components is also inspired by that of Alwen et al. [1].)

We model the security of each component as an ideal functionality within
the UC framework. (These are Faead,FmKE,FeKE, respectively.) This allows us to
distill the properties provided by each module and demonstrate how they can be
composed, along with the appropriate management code to obtain the desired
functionality—namely to realize FSM. The management code (specifically, pro-
tocols Πfs aead and ΠSGNL), does not directly access any keying material. Indeed,
these protocols realise their respective specifications, namely Ffs aead and FSM,
perfectly—see Theorems 1 and 2.

Before proceeding to describe the modules in more detail, we highlight the
following apparent circularity in the security dependence between these modules:
the messages in each sending epoch need to be authenticated (by the AEAD in
use) using a key k that’s derived from the message itself. Thus, modular security
analysis along the above partitioning to modules might initially appear to be
impossible.

The critical observation that allows us to proceed with modular decomposi-
tion is that the continuous key exchange module (which in our modeling corre-
sponds to FeKE) need not determine the authenticity of new epoch identifiers.
Rather, this module is only tasked to assign a fresh pseudorandom secret key
with each new epoch identifier, be it authentic or not. The determination of
whether a new purported epoch identifier is authentic (or a forgery caused by
an adversarially generated incoming message) is done elsewhere – specifically at
the management level.
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Fig. 1. Modeling and realizing secure messaging: The general subroutine structure.
Ideal functionalities are denoted by F and protocols by Π. Thin vertical arrows denote
subroutine calls, whereas thick horizontal arrows denote realization. Functionalities
FDIR,FLTM,FpRO are global with respect to FSM, whereas FeKE (and ΠeKE) are global
for FmKE, and each instance of FmKE (and the corresponding instance of ΠmKE) are
global for Faead. (Color figure online)

We proceed to provide a more detailed overview of our partitioning and the
general protocol logic. See also Fig. 1.

FeKE. The core component of the protocol is the epoch key exchange functional-
ity FeKE, which captures the generation of the initial shared secret key from the
public information, as well as the continuous Diffie-Hellman protocol that gener-
ates the unique epoch identifiers and the “root chain” of secret keys. Whenever
a party wishes to start a new epoch as a sender, it asks FeKE for a new epoch
identifier, as well as an associated secret key. The receiving party of an epoch
must present an epoch identifier, and is then given the associated secret key.

As mentioned, we allow the receiving party of a new epoch to present multiple
potential epoch identifiers, and obtain a secret epoch key associated with each
one of these identifiers. Furthermore, while only one of these keys is the one used
by the sender for this epoch, all the keys provided by FeKE are guaranteed to
appear random and independent to the adversary. In other words, FeKE leaves it
to the receiver to determine which of the candidate identifiers for the new epoch
is the correct one. (If FeKE recognizes, from observing the corruption activity
and the generated epoch IDs, that the session has forked, then it exposes the



Universally Composable End-to-End Secure Messaging 11

secret keys to the adversary.) We postpone the discussion of realizing FeKE to
the end of this section.

FmKE. The per-epoch key chain is captured by an ideal functionality FmKE that
is identified by an epoch-id, and generates, one at a time, a sequence of random
symmetric keys associated with this epoch-id. The length of the chain is not
a priori bounded; however, once FmKE receives an instruction to end the chain
for a party, it complies. FmKE guarantees forward secrecy by making each key
retrievable at most once by each party; that is, the key becomes inaccessible upon
first retrieval, even for a corrupted party. However, it does not post-compromise
security: once corrupted, all the future keys in the sequence are exposed to the
adversary.

FmKE is realized by a protocol, ΠmKE, that first calls FeKE with its current
epoch-id, to obtain the initial chaining key associated with that epoch-id. The
rest of the keys in this epoch are derived using a generic length-doubling PRG
(of which Signal’s typical instantiation using HKDF is a special case).

Demonstrating that ΠmKE realizes FmKE is relatively straightforward, except
for the need to address the fact that the same instance of FeKE is used by
multiple instances of ΠmKE. Using the formalism of [5], we thus show that ΠmKE

UC-realizes FmKE in the presence of a global FeKE.

Faead. Authenticated encryption with associated data is captured by ideal func-
tionality Faead, which provides a one-time ideal authenticated encryption service:
the encrypting party calls Faead with a plaintext and a recipient identity, and
obtains an opaque ciphertext. Once the recipient presents the ciphertext, Faead

returns the plaintext. (The recipient is given the plaintext only once, even when
corrupted.) The “associated data,” namely the public part of the authenticated
message, is captured via the session identifier of Faead.

Faead is realized via protocol Πaead, which employs an authenticated encryp-
tion algorithm using a key obtained from FmKE. If we had opted to assert secu-
rity against non-adaptive corruptions, any standard AEAD scheme would do.
However, we strive to provide simulation-based security in the presence of fully
adaptive corruptions, which is provably impossible in the plain model whenever
the key is shorter than the plaintext [43]. We get around this issue by realiz-
ing Faead in the programmable random oracle model. While we provide a very
simple AEAD protocol in this model, many common block cipher-based AEADs
can also realize Faead provided we model the block cipher as a programmable
random oracle. It is stressed however that the random oracle is used only in
the case of short keys and adaptive corruptions. In particular, when corruptions
are non-adaptive or the plaintext is sufficiently short, our protocol continues
to UC-realize Faead even when the random oracle is replaced by the identity
function.

Since each instance of FmKE is used by multiple instances of Πaead, we treat
FmKE as a global functionality with respect to Πaead. That is, we show that Πaead

UC-realizes Faead in the presence of (a global) FmKE.
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Ffs aead. Functionality Ffs aead is an abstraction of the management module that
handles the encapsulation and decapsulation of all the messages within a single
epoch. An instance of Ffs aead is created by the main module of Signal whenever
a new epoch is created, with session ID that contains the identifier of this epoch.
Ffs aead then provides encapsulation and decapsulation services, akin to those of
Faead, for all the messages in its epoch. In addition, once instructed by the main
module that its epoch has ended, Faead no longer allows encapsulation of new
messages—even when the party is corrupted.

Ffs aead is realized (perfectly, and in a straightforward way) by protocol
Πfs aead that calls multiple instances of Faead, plus an instance of FmKE for this
epoch - where, again, the session ID of FmKE contains the current epoch ID.

ΠSGNL. At the highest level of abstraction, we have each of the two parties run
protocol ΠSGNL. When initiating a session, or starting a new epoch within a
session, (i.e., when encapsulating the first message in an epoch), ΠSGNL first
calls FeKE to obtain the identifier of that epoch, then creates an instance of
Ffs aead for that epoch ID and asks this instance to encapsulate the first message
of the epoch. All subsequent messages of this epoch are encapsulated via the
same instance of Ffs aead.

On the receiver side, once ΠSGNL obtains an encapsulated message in a new
epoch ID, it creates an instance of Ffs aead for that epoch ID and asks this
instance to decapsulate the message. It is stressed that the epoch ID on the
incoming message may well be a forgery; however in this case it is guaranteed
that decapsulation will fail, since the peer has encapsulated this message with
respect to a different epoch ID, namely a different instance of Ffs aead. (This is
where the circular dependence breaks: even though the environment may invoke
ΠSGNL on arbitrary incoming encapsulated message, along with related epoch
IDs, Ffs aead is guaranteed to reject unless the encapsulated message uses the
same epoch ID as the as actual sender. Getting under the hood, this happens
since the instances of FmKE that correspond to different epoch IDs generate keys
that are mutually pseudorandom.) IT is stressed that ΠSGNL is purely “manage-
ment code” in the sense that it only handles idealized primitives and does not
directly access cryptographic keying material. Commensurately, it UC-realizes
FSM perfectly.

Realizing FeKE. Recall that FeKE is tasked to generate, at the beginning of each
new epoch, multiple alternative keys for that epoch – a key for each potential
epoch-id for that epoch. This should be done while preserving simulatability in
the presence of adaptive corruptions.

Following the Signal architecture, the main component of the protocol that
realizes FeKE is a key derivation function (KDF) that combines existing secret
state, with new public information (namely the public Diffie-Hellman exponents,
which also double-up as an epoch-id), and a new shared key (the corresponding
Diffie-Hellman secret), to obtains a new secret key associated with the given
epoch-id, along with potential new local secret state for the KDF.
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If the KDF is modeled as a random oracle then it is relatively straightforward
to show that the resulting protocol UC-realizes FeKE.

On the other extreme, it can be seen that no plain-model instantiation of
the KDF module, with bounded-size local state, can possibly realize FeKE in our
setting. Indeed, since the adversary can obtain unboundedly many alternative
keys for a given epoch, where all keys are generated using the same bounded-size
secret state, the Nielsen bound [43] applies.

We propose a middle-ground solution: we show how to instantiate the KDF
via a plain-model primitive where the local state grows linearly with the num-
ber of keys requested from FeKE at the beginning of a given epoch. Once the
epoch advances, the state shrinks back to its original size. Our instantiation uses
standard primitives: pseudorandom generators and puncturable pseudorandom
functions. We also abstract the properties of our construction into a primitive
which we call cascaded pseudorandom function and generator (CPRFG), follow-
ing a primitive of [1] that is used for a similar purpose. We stress however that
technically the primitives are quite different; we elaborate in the related work
section.

1.4 Streamlining UC Analysis

We highlight two additional modeling and analytical techniques that we used to
simplify the overall analysis. We hope that these would be useful elsewhere.

Multiple Levels of Global State. Our analysis makes extensive use of universal
composition with global state (UCGS) within the plain UC model, as formulated
and proven in [5]. Specifically, we use UCGS to model a global directory that
holds the public keys of parties, as well as the long-term storage, within each
party, of the secret keys associated with said public keys. Similarly, we use UCGS
to model the fact that a single instance of FeKE is used by multiple instances of
ΠmKE, and that a single instance of FmKE is used by multiple instances of Πaead.
The random oracle is also modeled as a global functionality.

To facilitate our multi-layer use of the UCGS theorem we also prove a simple-
but-useful lemma that allows us to get around the following difficulty. Recall that
the UCGS theorem allows demonstrating that protocol π UC-realizes function-
ality F in the presence of some other ‘global’ functionality G that takes inputs
from π, F , and also potentially directly from the environment. Furthermore, we
would like to use multiple levels of UCGS: after showing that π UC-realizes F in
the presence of G, we wish to argue that π UC-realizes F in the presence of pro-
tocol γ, where γ is some protocol that UC-realizes G. However, such implication
is not true in general [6,24].

Lemma 1 in Sect. 2 asserts that, if γ UC-realizes G via some simulator S,
then for any π that UC-realizes F in the presence of G, it also holds that π UC-
realizes F in the presence of GS , where GS be the functionality that combines
G and S in the natural way. We then show that, for the protocols in this work,
having access to GS suffices.
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Multiple Levels of Corruptions. The UC framework allows the adversary to adap-
tively and individually corrupt each party in each module within a composite
protocol. While this is very general, it makes the handling of corruption events
(where typically the internal states of multiple modules are exposed together)
rather complex. We thus adopt a somewhat simpler modeling of party corrup-
tion: We let the environment directly corrupt parties and obtain their local
states. Furthermore, a corrupted module forwards the corruption notice to all
its subroutines and collects the local states of all to report to the environment.
Ideal functionalities operate similarly, except that they ask their respective sim-
ulators for the appropriate simulated local states. In addition to being simpler,
this modeling provide tighter correspondence between the real and ideal execu-
tions and is thus preferable whenever realizable (which is the case in this work).

1.5 Related Work

This section briefly surveys the state of the art for security analyses of the
Signal architecture in particular and end-to-end secure messaging in general,
highlighting the differences from and similarities to the present work.

There is a long line of research into the design and analysis of two-party
Signal messaging, its subcomponents, and variants of the Signal architecture;
this research builds upon decades of study into key exchange protocols (e.g., [8,
9,22,23]) and self-healing after corruption (e.g., [20,28,30]). Some of these secure
messaging analyses purposely consider a limited notion of adaptive security in
order to analyze instantiations of Signal based on standardized crypto primitives
(e.g., [1,10,32,36,57]). Other works consider a strong threat model in which the
adversary is malicious, fully adaptive, and can tamper with local state [4,7,35,
37,46], which then intrinsically requires strong HIBE-like primitives that depart
from the Signal specification. By contrast, we follow a middle ground in this
work: our adversary is fully adaptive and has no restrictions on when it can
corrupt a party, yet its corruptions are instantaneous and passive.

We stress that, while this work is inspired by the clear game-based modeling
and analyses of Signal in works like Alwen et al. [1], our modeling differs in a
number of significant ways. For one, our analysis provides a composable secu-
rity guarantee. Furthermore, we directly model secrecy against a fully adaptive
adversary that decides who and when to corrupt based on all the information
seen so far. In contrast, Alwen et al. [1] guarantee secrecy only against a selective
adversary that determines ahead of time who and when it will corrupt.

There are two prior works that perform composable analyses of Signal. In
concurrent work to our own, Bienstock et al. [12] provide an alternative modeling
of an ideal secure messaging within the UC framework and demonstrate how the
Signal protocol can be modeled in a way that is shown to realize their formulation
of ideal secure messaging. Like this work, they demonstrate several shortcomings
of previous formulations, such as overlooking the effect of choosing keys too
early or keeping them around for too long. They also propose and analyze an
enhancement of the double ratchet structure that helps parties regain security
faster following a compromise event. Additionally, Jost, Maurer, and Mularczyk
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[37] conduct an analysis in the constructive cryptography framework. Their work
provides a model for message transmission as well as one for ratcheting protocols.

That said, the ideal functionalities in [12] and [37] differ from our FSM in a
number of ways. First, their modeling does not account for the session initiation
process, nor the PKI and long-term key modules that are an integral part of any
secure messaging application. Second, they include the communication medium
as part of the protocol, which (a) makes it harder to argue about immediate
decryption and (b) means that an instantiation of Signal would have to include
an entire TCP/IP stack, which weakens modularity and inhibits the use of Signal
as a sub-routine within larger functionalities.

Additionally, Bienstock et al. [12] models all key derivation modules as ran-
dom oracles rather than formalizing the partition of continuous key exchange
components within the UC framework as done in this work, and their modeling
forces the “calling protocol” to keep track of—and ensure uniqueness for—the
message IDs for the Secure Messaging functionality/protocol, which might create
a security risk. On the other hand, [12] accounts for adversarial choice of ran-
domness, which our modeling does not account for. Also, Jost et al. [37] requires
explicit modeling of a global event history (a list of events having happened at
each module), restricts the real-world adversary’s events based on this global
event history, and employs a HIBE-based implementation that is quite different
than that of Signal (and ours) and requires heavier cryptographic primitives.

2 Universally Composable Security: New Capabilities

This work makes extensive use of UC with global subroutines, which allow anal-
ysis that a protocol Π UC-realizes functionality F in the presence of a global
subroutine G that is not subroutine-respecting. Due to space constraints, we
defer a primer of UC security (with global subroutines) to the full version of this
work [21]. In this space, we describe two new modeling techniques that simplify
our analysis, and may be of more general interest.

The first technique relates to applying the UC theorem to global function-
alities. As stated in Sect. 1.4, the analysis in this work requires the ability to
apply composition with global state across multiple layers of Fig. 1. We prove
the following lemma in the full version of this work [21].

Lemma 1. Let Π be a protocol that UC-realizes an ideal functionality F, and
let S be a simulator that demonstrates this fact, i.e. execE,Π ≈ execE,F,S . Then
protocols Π and FS UC-emulate each other. Consequently, for any protocol ρ
and ideal functionality Γ we have that ρ UC-realizes Γ in the presence of Π if
and only if ρ UC-realizes Γ in the presence of FS .

The second technique is that, in order to model the immediate encryption and
immediate decryption properties of secure messaging, we require the adversary
to upload static code (which we call I) to the global Flib—shown in Fig. 2—that
the relevant functionality will run in honest cases of the execution. This static
code is specific to the protocol that realizes the functionality, and essentially it
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Flib

Obtaining adversarial code: When receiving a message (τ, α, linking) from the
adversary record it. //α represents the adversarial code, and τ represents the code of the

target machines to obtain code α. The linking flag lets Flib know whether the adversarial code

calls adversarial code for other target machines.

Delivering adversarial code: When receiving input τ from a party, find the
latest (τ, α, linking) that has been recorded. //This code runs for a bounded amount

of time; if it exceeds its specified running time, then it outputs ⊥.

1. If no such (τ, α, linking) was recorded, output ⊥.
2. If linking == true then:

– Go through program α and link the program by doing the following for
all calls to dependencies (τ ′, I):
(a) Find the latest (τ ′, α′, linking′) that has been recorded.
(b) If no such record exists for a dependency, output ⊥.
(c) If linking′ == true then run this compilation on α′ starting at step 2.
(d) Inline the code for the calls to α′.
(e) If this is the last dependency, record (τ, α, linking = false).

3. Output α.

Fig. 2. The code library functionality, Flib

acts as the ideal-world simulator during an honest execution. This ensures that
the functionality does not need to wait for the adversary to encrypt or decrypt
messages that are not corrupted. In cases where the message or ciphertext is
corrupted, the fully adaptive adversary is called for input (for example, asking
A to encrypt a message or decrypt a ciphertext). The state of the static code
I is maintained across calls in a variable stateI , and it is sent to the adversary
upon corruption. Flib is global because the static code must be defined at the
time that the functionality is instantiated; however, the use of Flib specifically is
mainly a matter of plumbing rather than a topic of conceptual importance.

3 Formal Modeling and Analysis

In this section, we showcase our modular, iterative process for decomposing the
ideal secure messaging functionality FSM into a collection of functionalities and
protocols that each address one specific purpose. After fully specifying FSM itself,
we present its realization at the “second level” of Fig. 1 by ΠSGNL, Ffs aead, and
FeKE, and at the “third level” by functionalities Faead and FmKE.

Due to space constraints, we only give brief descriptions of these function-
alities here and defer more exposition to the full version of this work [21]. The
full version also contains rigorous specifications of the remaining protocols (on
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the far right of Fig. 1) and all underlying global functionalities (in blue at the
bottom of Fig. 1), along with proofs of all theorems in this section.

Secure Messaging Functionality. Our top-level functionality FSM can be
found in Figs. 3 to 4. It takes two types of inputs: SendMessage is used to encap-
sulate a message for sending to the peer, whereas ReceiveMessage is used to
decapsulate a received message. We also have a Corrupt input; this is a ‘modeling
input’ that is used to capture party corruption. In addition, FSM takes a number
of ‘side channel’ messages from the adversary which are used to fine-tune the
security guarantees. It relies on three global functionalities whose specifications
are provided in the full version of this work [21]: FDIR representing the directory
of public keys, FLTM representing the long-term key storage within a party, and
a programmable random oracle FpRO.

The Double Ratchet. In our first layer, we decompose FSM into two compo-
nents that model the interconnected pieces of the double ratchet: a public key
exchange component FeKE and a symmetric key authenticated encryption com-
ponent Ffs aead. These components are ‘glued’ together with a manager protocol
ΠSGNL.

There are three primary takeaways from the design of ΠSGNL (Fig. 5): it has
the same input-output API as our ideal functionality FSM, it displays a idealized
version of the double ratchet with clearly distinct roles for the two ratcheting sub-
routines, and finally it moves closer toward realism. Added features at this level
of abstraction include key material stored within party states, explicit account-
ing for out-of-order messages by holding onto missed message keys, and epochs
being identified directly by their epoch id rather than an idealized epoch num
ordering.

The epoch key exchange functionality FeKE (Figs. 6 to 7) comprises the public
key “backbone” of the secure messaging continuous key agreement. The function-
ality is persistent during the entire session, mapping (epoch id0, epoch id1) pairs
to sending and receiving chain keys for the symmetric ratchet. It also provides
recovery from a state compromise (aka, post-compromise security).

The forward secure authenticated encryption functionality Ffs aead (Figs. 8 to
9) models the symmetric key ratchet for secure messaging. Each Ffs aead instance
handles the encryption and decryption of messages for a single epoch. The proto-
col Πfs aead realizes Ffs aead by outsourcing authenticated encryption and decryp-
tion of each message to separate Faead instances, described below.

Theorem 1. Protocol ΠSGNL (perfectly) UC-realizes the ideal functionality FSM

in the presence of FDIR and FLTM.

The Symmetric Ratchet: Realizing Ffs aead. Next, we decompose the sym-
metric key component of Signal into two smaller pieces: a one-time-use authenti-
cated encryption routine Faead, and a message key exchange functionality FmKE

that interfaces with the epoch key exchange to produce the symmetric chain
keys.
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FSM (Part 1)

The local session ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose
identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpretation of pid0 and pid1 as complete identities of the two calling machines.
It also has internal adversary code I = Ism. We initialize the state for I to be stateI = ⊥.

Sending messages: On receiving (SendMessage, m) from pid do: //Here pid is an extended
identity of a machine.

1. If initialized not set do: //initialization
– If pid �= pid0, end the activation. Otherwise, send (ConfirmRegistration) to (FLTM, pid).
– Upon output (ConfirmRegistration, t) from FLTM, if t = Fail end the activation. Else

input (GetInitKeys) to FDIR.
– Upon output (GetInitKeys, pid1, ikpk1 , rkpk1 , okpk1 ) from FDIR: if okpk1 = ⊥, end the activa-

tion. Else:
• Set initialized, epoch num0 = 0, sent msgnum0 = 0, rcv msgnum0 = 0,N self0 =

0, diverge parties = false.
• Create the dictionaries advControl = {}, id dict = {}, and N dict = {}. Initialize

advControl[epoch num0] = ⊥ and advControl[e] = ∞ for all e ≥ 0. //advControl
will record which parties are adversarially controlled in each epoch, id dict maps
epoch id’s to epoch numbers, and N dict will hold the number of messages sent
in each epoch.

– Call Flib with input FSM to obtain the internal code I.
2. Let i be such that pid = pidi. Increment sent msgnumi by 1.
3. If leak ∈ advControl[epoch numi] or diverge parties = true: Send a backdoor message

(stateI , SendMessage, pid, m) to A.
4. Else (leak /∈ advControl[epoch numi] and diverge parties = false): Run

I(stateI , SendMessage, pid, |m|)
5. Upon obtaining (state′

I , SendMessage, pid, epoch id, c) from A or I do:
– Update stateI ← state′

I .
– If sent msgnumi == 1: If epoch id equals any of the keys in the dictionary id dict then

end the activation. Else record id dict[epoch id] = epoch numi.
– Set h = (epoch id, sent msgnumi, N selfi). //N selfi holds the # of messages sent by

pidi in its previous sending epoch.
– If diverge parties = false then record (pid, h, c, m). //If the parties’ states have di-

verged, then encrypted messages are no longer recorded.
– Output (SendMessage, sid, pid, h, c) to pid.

Corrupt: On receiving a (Corrupt, pidi) request from Env for pidi ∈ {pid0, pid1}, do:

1. Append (epoch numi, sent msg numi, received msg numi) to the list corruptionsi.
2. For all epochs e ≤ epoch numi, set advControl[e] = {leak, inject} to allow the adversary

to influence messages still in transit.
3. Create a list pending msgs with all records of the form (pid1−i, h, c, m) corresponding to

headers for which there is no record (Authenticate, pid1−i, h, , 1) (these are the messages
that were not decrypted yet).

4. Send a request (stateI , ReportState, pidi, pending msgs) to A.
5. On receiving a state (ReportState, pidi, S) from A, send S to Env.

Fig. 3. The Secure Messaging Functionality FSM
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FSM (Part 2)

The local session ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose
identity is neither pid0 nor pid1 are ignored. //For notational simplicity we assume some fixed
interpretation of pid0 and pid1 as complete identities of the two calling machines.
It also has internal adversary code I = Ism. We initialize the state for I to be stateI = ⊥.

Receiving messages: On receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid,
do:

1. Let i be such that pid = pidi.
2. If this is the first ReceiveMessage request: If i = 0 then end the activation. Else (pid = pid1),

initialize the responder:
– Send (ConfirmRegistration) to (FLTM, pid).
– Upon receiving the output (ConfirmRegistration, t) from FLTM: If t = Fail then end

activation. Else provide input (GetResponseKeys, pid0, pid1) to FDIR.
– Upon receiving output (GetResponseKeys, pid0, ikpk0 ) from FDIR, set epoch num1 = 1,

sent msgnum1 = 0, and rcv msgnum1 = 0.
3. If there already was a successful ReceiveMessage for h (i.e there is a record

(Authenticate, h, c′, 1) for some c′), or this ciphertext previously failed to authenticate
(i.e. a record (Authenticate, h, c, 0) exits), output (ReceiveMessage, h, c, Fail) to pid.

4. If epoch id appears as a key in id dict, set epoch num = id dict[epoch id].
Else: //this is a new epoch id that hasn’t been generated within SendMessage

– If sent msgnumi = 0, output (ReceiveMessage, h, c, Fail) to pid. //pid is in a receiving
state and hasn’t sent any messages in its current sending epoch, so it should not be
accepting messages with a new epoch id.

– Otherwise set epoch num = epoch numi + 1.
//this temporary variable will never be made permanent if decryption is unsuccessful.

5. If msg num > N dict[epoch num], output (ReceiveMessage, h, c, Fail) to pid
//For epoch num’s that are not finished yet, the N dict returns a default value of ∞, so
this check passes automatically.

6. If (diverge parties = false and inject /∈ advControl[epoch num]): Run
I(stateI , inject, pid, h, c) //Honest Case

7. Else: send backdoor message (stateI , inject, pid, h, c) to A // FSM is asking the adversary
for advice on how to decrypt c.

8. On receiving (state′
I , inject, h, c, v) from A or I update stateI ← state′

I and:
If (sender, h, c, m) is recorded then record (Authenticate, pid, h, c, 1) and set m∗ = m. Else:

– If v = ⊥: record (Authenticate, pid, h, c, 0) and output (ReceiveMessage, h, c, Fail).
– If v �= ⊥ and diverge parties = false and inject /∈ advControl[epoch num], then:

• If there is no record (sender, h, c∗, m) for header h, output
(ReceiveMessage, h, c, Fail). //since h contains N , this value will match
the view of the sender if this check succeeds.

• Else (there is such a record), record (Authenticate, h, c, 1) and set m∗ = m.
//allowing for authenticating a message with a different mac

If v �= ⊥ and (diverge parties = true or inject ∈ advControl[epoch num])), then:
• Record (Authenticate, h, c, 1), and set m∗ = v.
• If epoch id does not appear as a key in id dict then set diverge parties = true.

//diverge parties is being set here.
9. If epoch numi < epoch num, do: //we only get to this step if decryption is successful

– Set N dict[epoch num − 2] = N , epoch numi += 2, N selfi = sent msgnumi, and
sent msgnumi = 0.

– if diverge parties = false then:
• If advControl[epoch num−1] = {leak, inject} and epoch numi /∈ corruptionsi, then

set advControl[epoch num] = {leak}. //Corruption status is changed if this is the
other party’s first new sending epoch that involves a fresh epoch id generated
after corruption.

• If advControl[epoch num − 1] = {leak}, then set advControl[epoch num] = ⊥.
10. Output (ReceiveMessage, h, m∗) to pid.

Fig. 4. The Secure Messaging Functionality FSM
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ΠSGNL

SendMessage: Upon receiving input (SendMessage, m) from pid, do:

1. If this is the first activation do: //initialization for the initiator of the session
– Parse the local session id sid to retrieve the party identifiers (pid0, pid1) for the ini-

tiator and responder. If pid0 is different from either the local party identifier pid, or
the party identifier of pid, end the activation.

– Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0, Nlast = 0.
– Provide input (ConfirmReceivingEpoch, ⊥) to (FeKE, sid.eKE).
– On receiving (ConfirmReceivingEpoch, epoch id) from (FeKE, sid.eKE), set epoch idself =

epoch id.
– Initialize a list receiving epochs = [].

2. Provide input (Encrypt, m, Nlast) to (Ffs aead, sid.fs), where sid.fs = (sid, epoch idself).
//Ffs aead already knows epoch id and msg num

3. On receiving (Encrypt, c, Nlast) from (Ffs aead, sid.fs), delete m, increment sent msg num +=
1, output (SendMessage, sid, h, c) to pid, where h = (epoch idself , sent msg num, Nlast).

ReceiveMessage: Upon receiving (ReceiveMessage, h = (epoch id,msg num, N), c) from pid:

1. If this is the first activation then do: //initialization for the responder of the session
– Parse the local session identifier sid to retrieve the party identifiers (pid0, pid1) for

the initiator and responder. If pid1 is different from either the local party identifier,
or the party identifier for pid, then end the activation.

– Initialize epoch idself = ⊥, epoch idpartner = ⊥, sent msg num = 0 and Nlast = 0,
received msg num = 0.

– Initialize a dictionary missed msgs = {} and a list receiving epochs = [].
2. Provide input (Decrypt, c,msg num, N) to (Ffs aead, sid.fs = (sid, epoch id)).
3. Upon receiving (Decrypt, c,msg num, N, v) from (Ffs aead, sid.fs): if v = Fail then send

(ReceiveMessage, h, ad, Fail) to pid. //Otherwise, v is the decrypted message
4. While msg num > received msg num:

//note down any expected messages
– Append received msg num to the entry missed msgs[epoch id].
– Increment received msg num+ = 1.

5. If msg num is in the entry missed msgs[epoch id]:
– remove it from the list.
– If the entry missed msgs[epoch id] is now an empty list then remove epoch id from

missed msgs.keys.
6. Else (msg num /∈ missed msgs[epoch id]):

– If epoch id = epoch idpartner or sent msg num = 0, output (ReceiveMessage, h, c, ⊥).
Otherwise continue. //Starting new epoch–ratchet forward

– Append the numbers received msg num, . . . , N to the entry missed msgs[epoch id].
– Send (StopDecrypting, N) to (Ffs aead, (sid, epoch idpartner)). //‘Closing’ the Ffs aead for

the last epoch.
– On receiving (StopDecrypting, Success), update epoch idpartner = epoch id, and send

(StopEncrypting) to (Ffs aead, (sid, epoch idself)).
– On receiving (StopEncrypting, Success), send (ConfirmReceivingEpoch, epoch id) to

(FeKE, sid.eKE).
– On receiving (ConfirmReceivingEpoch, epoch id∗), update epoch idself = epoch id∗,

Nlast = sent msg num, and sent msg num = 0.
7. Output (ReceiveMessage, h, c, v) to pid while deleting the decrypted message v.

Corruption: Upon receiving (Corrupt, pid) from Env:
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for

modelling purposes.

1. Initialize a list S and send (Corrupt) as input to (FeKE, sid.eKE = “eKE”, sid).
2. On receiving (Corrupt, SeKE) from (FeKE, sid.eKE = “eKE”, sid), add it to S and con-

tinue. //now corrupt individual Ffs aead instances.
3. For epoch id ∈ missed msgs.keys do:

– Send (Corrupt) as input to (Ffs aead, sid.fs = (“fs aead′′, sid, epoch id)).
– On receiving Sepoch id, add it to S.

4. Output (Corrupt, pidi, S) to Env.

Fig. 5. The Signal Protocol, ΠSGNL
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FeKE

This functionality has a session id sid.eKE that takes the following format: sid.eKE =
(“eKE”, sid). Inputs arriving from machines whose identity is neither pid0 nor pid1 are ig-
nored. //For notational simplicity we assume some fixed interpertation of pid0 and pid1 as
complete identities of the two calling machines.

ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from
(ΠSGNL, sid, pidi):

1. If this is the first activation:
– Parse sid to retrieve two party ids (pid0, pid1) for the initiator and responder parties

and store them. If pid0 �= pidi, then end the activation.
– Provide input (GetInitKeys, pid1, pid0) to (FDIR).
– Upon receiving output (GetInitKeys, ikpk1 , rkpk1 , okpk1 ) from (FDIR): if okpkpid1

= ⊥
then output (ConfirmReceivingEpoch, Fail). Else, set epoch id partner0 =
epoch id self1 = okpkpid1

, set epoch num0 = −2, epoch num1 = −1, ini-
tialize empty lists corruptions0, corruptions1, compromised epochs, and send
(ComputeSendingRootKey, ikpk1 , rkpk1 , okpk1 ) to FLTM.

– On receiving (ComputeSendingRootKey, k, ekpk), continue. //Don’t start the conversa-
tion if the one time keys belonging to the other party have run out.

– Call Flib to obtain internal code I. Initialize the state for I to be stateI = ⊥.
2. If this is not the first activation, set epoch id partneri = epoch id∗. //save epoch id partner

from input if this is not the first activation.
3. If epoch id partneri �= epoch id self1−i, then diverge parties = true. //determine if the par-

ties’ views have diverged
4. If diverge parties, send a backdoor message (stateI , GenEpochId, i, epoch id∗) to A.
5. Else, run I(stateI , GenEpochId, i, epoch id∗)
6. Upon receiving (state′

I , GenEpochId, i, epoch id) from A or from I, update stateI ← state′
I

and do the following:
– If epoch id is the same as the input to any previous invocation of

ConfirmReceivingEpoch, end the activation.
– Update epoch numi += 2. Then set epoch id selfi = epoch id,

epoch num dict[epoch id] = epoch numi, and got sending keyi = false.
7. Output (ConfirmReceivingEpoch, epoch id selfi) to (ΠSGNL, sid, pidi).

(The rest of this functionality is in Fig. 7)

Fig. 6. The Epoch Key Exchange Functionality, FeKE

Each authenticated encryption functionality instance Faead (Fig. 10) handles
the encryption, decryption, and authentication of a particular message for a
particular epoch. It hands the ciphertext or message back to Πfs aead.

Theorem 2. Protocol Πfs aead (perfectly) UC-realizes Ffs aead, in the presence of
FDIR,FLTM,FpRO, and FΠeKE

eKE = (SeKE,FeKE).

Note that the simulator SeKE, along with a proof of this theorem, are deferred
to the full version of this work [21].

Each instance of the message key exchange functionality FmKE (Fig. 11) han-
dles the key derivation for the symmetric ratchet for a particular epoch. Specif-
ically, it provides key seed’s to Πaead instances that are then expanded to any
length using the global random oracle FpRO. When instructed, it also closes
epochs at a certain message number N by generating all key seed’s up to N and
later disallowing the generation of any further key seeds for its epoch.
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FeKE continued...

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid):

1. Set i such that pid = pidi.
2. If ConfirmReceivingEpoch has never been run successfully (i.e epoch id self0 hasn’t been

initialized) or got sending keyi = true, then end the activation. //the functionality isn’t
initialized or the sending key for the current epoch has already been retrieved

3. Sample sending chain keyi
$← Kep from the key distribution. //In the honest case, the key

is not known to the adversary. Otherwise the key will get overwritten in the following
step.

4. If diverge parties = true, or epoch numi ∈ compromised epochs, then:
– Send backdoor message (stateI , GetSendingKey, i) to A
– On receiving backdoor message (state′

I , GetSendingKey, i, Ksend) from A, update
stateI ← state′

I and set sending chain keyi = Ksend.
5. Set got sending keyi = true and output (GetSendingKey, sending chain keyi).

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid, pid):

1. If pid /∈ {pid0, pid1} then end this activation. Otherwise, set i such that pid = pidi.
2. If ConfirmReceivingEpoch has never been run successfully (i.e epoch id self0 hasn’t been

initialized) or sending chain key1−i has been deleted then end the activation.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Parse epoch id = (epoch id′, ekpkj , okpki←j) and set temp epoch id partner = epoch id′

– Send (GetResponseKeys, pid1−i) to FDIR.
– Upon receiving (GetResponseKeys, ikpkj ), send input

(ComputeReceivingRootKey, ikpkj , ekpkj , okpki←j) to FLTM.
– Upon receiving (ComputeReceivingRootKey, k), call Flib to obtain internal code I. Ini-

tialize the state for I to be stateI = ⊥.
4. If diverge parties = true or epoch id �= epoch id self1−i: //Let A choose key

– Send (stateI , GetReceivingKey, i, epoch id) to A
– Upon receiving (state′

I , GetReceivingKey, i, epoch id, recv chain key∗) from A, update
stateI ← state′

I .
– If diverge parties = false and epoch numi + 1 /∈ compromised epochs, add epoch id to

receive attempts[epoch num].
5. Else (diverge parties = false and epoch id = epoch id self1−i), set recv chain keyi =

sending chain key1−i //Expected case
6. Output (GetReceivingKey, recv chain keyi) and erase recv chain keyi.

Corrupt: On receiving a (Corrupt) request from (ΠSGNL, sid, pidi) for i ∈ {0, 1} do:

– Add epoch id selfi to the list corruptionsi.
– Add epoch numi, epoch numi + 1, epoch numi + 2, epoch numi + 3 to the list

compromised epochs. //We need the compromise to go through the following stages: fully
compromised, sender randomness updated, both parties’ randomness updated.

– Initialize an empty list leak = [] and a variable recv chain key = ⊥.
– If epoch num1−i > epoch numi:

• Set recv chain key = sending chain key1−i.
• If epoch num1−i ∈ receive attempts.keys then set leak = receive attempts[epoch num1−i]

– Send (ReportState, stateI , i, recv chain keyi, leak) to A.
– Upon receiving (ReportState, i, S) from A, output (Corrupt, S) to (ΠSGNL, sid, pidi).

Fig. 7. The Epoch Key Exchange Functionality, FeKE (continued)
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Ffs aead

This functionality processes encryptions and decryptions for a single epoch and has session id
sid.fs that takes the following format: sid.fs = (“fs aead”, sid = (sid′, (pid0, pid1)), epoch id).
Inputs arriving from machines whose identity is neither pid0 nor pid1 are ignored. //For
notational simplicity we assume some fixed interpertation of pid0 and pid1 as complete identities
of the two calling machines. It also has internal adversary code I = Ifs.

Encrypt: On receiving input (Encrypt, m, N) from (ΠMAN , sid, pid) do:

1. If this is the first activation then:
– Let i be such that pid = pidi and initialize msg num = 0 and stateI to empty, sender

sender = i.
– Call Flib with input Ffs aead to obtain the internal code I.

2. Verify that sid matches the one in the local state and pid = pidb, otherwise end the
activation.

3. If the sender has deleted the ability to encrypt messages, then end the activation.
4. Increment msg num = msg num + 1.
5. If IsCorrupt? = false: Run I(stateI , Encrypt, pid,msg num, N, |m|). Obtain the updated

state stateI and the output (Encrypt, pid, c,msg num, N).
6. If IsCorrupt? = true: Send a backdoor message (stateI , Encrypt, pid,msg num, N, m) to A.

Upon receiving a response (stateI , Encrypt, pid, c,msg num, N), record the updated state
stateI .

7. Record (m, c,msg num, N) and output (Encrypt, c) to (ΠMAN , sid, pid).

(The rest of this functionality is in Fig. 9)

Fig. 8. The Forward-Secure Encryption Functionality Ffs aead

Theorem 3. Assume that PRG is a secure length-doubling pseudorandom gen-
erator. Then protocol ΠmKE UC-realizes FmKE in the presence of FDIR,FLTM, and
FΠeKE

eKE = (SeKE,FeKE).

The Public Ratchet: RealizingFeKE. By this point we have already described
all of the functionalities in our model. As shown in Fig. 1, it only remains to
construct real-world protocols that realize each of them. We defer a description
of Πaead to the full version [21] and show only the result here.

Theorem 4. Assuming the unforgeability of (MAC,Verify), protocol Πaead UC-
realizes the ideal functionality Faead in the presence of FpRO, as well as FΠ

mKE =
(SmKE,FmKE),FΠeKE

eKE = (SeKE,FeKE),FDIR,FLTM,Flib.

Instantiating FeKE via ΠeKE (Figs. 12 to 13) is subtle. The main challenge, as
observed by Alwen et al. [1] and others, is that the key derivation module within
the public ratchet must maintain security if either of the previous root key or the
newly generated ephemeral keys are uncompromised. Alwen et al. formalized this
guarantee by way of constructing a new primitive: a PRF-PRG. In this work, we
make two important improvements upon this construction. First, we contribute
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Ffs aead continued...

Decrypt: On receiving (Decrypt, c,msg num, N) from (ΠSGNL, sid, pid) do:

1. Verify that sid matches the one in the local state and pid = pid1−sender, otherwise end the
activation. //end the activation if the decrypt request is not from the receiving party

2. If msg num is set as inaccessible, or there is a record (Authenticate, c,msg num, N, 0), then
output (Decrypt, c,msg num, N, Fail) to (ΠSGNL, sid, pid).

3. If IsCorrupt? = false:
– Run I(stateI , Authenticate, pid, c,msg num, N) and obtain updated state stateI and

output (Authenticate, pid, c,msg num, N, v).
– If v = ⊥, then record (Authenticate, c,msg num, N, 0) and output

(Decrypt, c,msg num, N, Fail) to (ΠSGNL, sid, pid).
– Otherwise, mark msg num as inaccessible and output (Decrypt, c,msg num, N, m) to

(ΠSGNL, sid, pid).
4. Else (IsCorrupt? = true):

– Send (stateI , inject, pid, c,msg num, N) to A.
– On receiving the updated stateI and (inject, v) from A, do:

• If v = ⊥, record (Authenticate, c,msg num, N, 0) and output
(Decrypt, c,msg num, N, Fail).

• Else, then mark msg num as inaccessible and output (Decrypt, c,msg num, N, v)
to (ΠSGNL, sid, pid).

StopEncrypting: On receiving (StopEncrypting) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, if pid �= pidsender, or if this is the first
activation: end the activation.

2. Otherwise, note that pidi has deleted the ability to encrypt future messages. Output
(StopEncrypting, Success).

StopDecrypting: On receiving (StopDecrypting,msg num∗) from (ΠSGNL, sid, pid) do:

1. If sid doesn’t match the one in the local state, pid �= pid1−sender, or no messages have been
successfully decrypted by pidi: end the activation.

2. Mark all msg num > msg num∗ as inaccessible, and output (StopDecrypting, Success) to
(ΠSGNL, sid, pid).

Corrupt: On receiving (Corrupt, pid) from (ΠSGNL, sid, pid):

1. Record (Corrupt, pid) and set IsCorrupt? = true.
2. If pid = pid1−sender (pid is the receiver), let leak = {(pidsender, h =

(epoch id,msg num, N), c, m)} be the set of all messages sent by pidsender which are
not marked as inaccessible.

3. Otherwise (pid is the sender), set leak = ∅
4. Send (ReportState, stateI , pid, leak) to A.
5. Upon receiving a response (ReportState, stateI , pid, S) from A, send S to (ΠSGNL, sid, pid).

Fig. 9. The Forward-Secure Encryption Functionality Ffs aead (continued)

a new construction called a Cascaded PRF-PRG that allows for equivocation, in
order to maintain security against adaptive adversaries. Second, we provide an
instantiation in the plain model based on punctured PRFs.
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Faead

This functionality has a session id sid.aead = (“aead′′, sid.fs,msg num) where
sid.fs = (“fs aead”, sid = (sid′, pid0, pid1), epoch id). It also has internal adversary
code I = Iaead.

We initialize the state for I to be stateI = ⊥.

Encryption: On receiving (Encrypt, m, N) from (Πfs aead, sid.fs, pid):

1. If this is not the first encryption request or pid /∈ (pid0, pid1), end the activation. Let i be
such that pid = pidi.

2. Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid)
3. Upon receiving output (RetrieveKey, pid, k) from (FmKE, sid.mKE, pid):

– If k =⊥ then end the activation. //The key is not available.
– Else if IsCorrupt? = false:

• Call Flib with input Faead to obtain the internal code I.
• Run I(stateI , Encrypt, pid, |m|, N), obtain the updated state stateI , and the out-

put (Encrypt, pid, c).
• Record the tuple (c, k, m, N, 1), record i as the sender, and set ready2decrypt =

true.
– Else (k �=⊥ and IsCorrupt? = true):

• Send a backdoor message (stateI , Encrypt, pid, m, N) to A.
• Upon receiving a response (stateI , Encrypt, pid, c), record the updated state

stateI , record the tuple (c, k, m, N, 1), record i as the sender, and set
ready2decrypt = true.

– Output (Encrypt, c) to (Πfs aead, sid.fs, pid).

Decryption: On receiving (Decrypt, c, N) from (Πfs aead, sid.fs, pid):

1. If there hasn’t been a successful encryption request, if pid �= pid1−i, or if ready2decrypt =
false then output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).

2. Provide input (RetrieveKey, pid) to (FmKE, sid.mKE, pid).
3. Upon obtaining a response (RetrieveKey, pid, k) from FmKE: If k = ⊥ then output

(Decrypt, Fail). //Failure of decryption can occur for an honest receiver so we need an
explicit failure notification.

4. If there is a record (c, k, m, N, 1), note ready2decrypt = false and output (Decrypt, m) to
(Πfs aead, sid.fs, pid).

5. If there is a record (c, N, 0), output (Decrypt, Fail) to (Πfs aead, sid.fs, pid).
6. If IsCorrupt? = false

– Run I(stateI , Authenticate, pid, c, N) and obtain updated state stateI and a value v
from I.

– If v = ⊥ then record (c, N, 0), and output (Decrypt, Fail).
– Otherwise, note ready2decrypt = false, and output (Decrypt, m).

7. Else (IsCorrupt? = true)
– Send backdoor message (stateI , inject, pid, c, N) to A.
– Upon receiving response (inject, pid, c, N, v) from A continue.
– If v = ⊥ then record (c, N, 0), and output (Decrypt, Fail).
– Else, note ready2decrypt = false, and output (Decrypt, v).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs, pid):

1. End the activation if pid /∈ (pid0, pid1). Otherwise, let i be such that pid = pidi. Else, set
IsCorrupt? to true, and send (ReportState, stateI) to A.

2. Upon receiving a response (ReportState, pid, S) from A, send (Corrupt, S) to
(Πfs aead, sid.fs).

Fig. 10. The Authenticated Encryption with Associated Data Functionality, Faead
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FmKE

This functionality has a session id sid.mKE that takes the following format:
sid.mKE = (“mKE”, sid.fs). Where sid.fs = (“fs aead”, sid, epoch id). The local ses-
sion ID is parsed as sid = (sid′, pid0, pid1). Inputs arriving from machines whose identity is
neither pid0 nor pid1 are ignored.

This functionality is parametrized by a seed length λ

RetrieveKey: On receiving (RetrieveKey, pid) from (Πaead, sid.aead), where sid.aead =
(“aead”, sid.fs,msg num), or Faead if IsCorrupt? = true:

1. If this is the first activation,
– Initialize dictionary key dict and variables IsCorrupt? = false, msg num0,msg num1 =

0.
– Parse sid to recover the two party ids (pid0, pid1).

2. If pid /∈ {pid0, pid1} then end this activation.
3. End the activation if there is record (Retrieved, i,msg num) or a record (StopKeys, i, N)

for N < msg num.
4. If IsCorrupt? = false:

– If msg num ∈ key dict.keys, set k = key dict[msg num].

– Else (msg num /∈ key dict.keys), set k
$← {0, 1}λ.

5. Else (IsCorrupt? = true):
– Send (RetrieveKey, pid,msg num) to the the adversary.
– Upon receiving (RetrieveKey, pid, k) from the adversary, continue.

6. Store key dict[msg num] = k.
7. If msg num > msg numi, set msg numi = msg num. //msg numi is the largest successfully

retrieved message by party i.
8. Record (Retrieved, i,msg num) and output (RetrieveKey, pid, k) to (Πaead, sid.aead).

StopKeys: On receiving (StopKeys, N) from (Πfs aead, sid.fs =
(“fs aead”, sid, epoch id, b), pid),

– Run steps 3-7 of RetrieveKey for all msg num such that msg numi < msg num ≤ N .
– Record (StopKeys, i, N) and output (StopKeys, Success).

Corruption: On receiving (Corrupt) from (Πfs aead, sid.fs = (“fs aead”, sid, epoch id, b), pid):

1. Let i be such that pid = pidi.
2. Set IsCorrupt? = true, create empty lists keys in transit, pending msgs, and initialize

chain key
$← {0, 1}λ.

3. If msg numi = 0 send (GetReceivingKey, epoch id) to (ΠeKE, sid.eKE, pid).
//The chain key is selected at random unless the receiver is corrupted before retrieving
any keys for the epoch, this is because later chain keys should be unrelated to the initial
one due to the PRG property. If the receiver has not retrieved any keys, we get the chain
key from ΠeKE to provide to the simulator so that it matches the real world.
//Also note that we only get corrupted if the sender has already initialized this box =⇒
the sender’s msg num will never be 0.

4. On receiving (GetReceivingKey, recv chain key) set chain key = recv chain key.
5. For all msg num ∈ key dict.keys, if there is no record (Retrieved, i,msg num) then append

(msg num, key dict[msg num]) to keys in transit and append msg num to pending msgs.
6. If there is a record (StopKeys, i, N) then let chain key = ⊥.
7. Send (ReportState, i, keys in transit,msg numi, chain key) to A.
8. On receiving a response (ReportState, i, S) from A:

– Output (Corrupt, pending msgs, S) to (Πfs aead, sid.fs, pidi).

Fig. 11. The Message Key Exchange Functionality FmKE
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ΠeKE

This protocol has a party id pid and session id sid.eKE of the form: sid.eKE = (“eKE”, sid)
where sid = (sid′, pid0, pid1).

keyGen chooses a random Diffie-Hellman exponent epoch key
$← |G| for a known group G and

sets epoch id = gepoch key.
ConfirmReceivingEpoch: On input (ConfirmReceivingEpoch, epoch id∗) from
(ΠSGNL, sid, pid′):

1. If pid′ �= pid, then end the activation. Let i be such that pid = pidi.
2. Set temp epoch id partneri = epoch id∗.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Send (GetInitKeys, pid1−i, pidi) to FDIR.
– Upon receiving (GetInitKeys, ikpkj , rkpkj , okpkj←i), send input

(ComputeSendingRootKey, ikpkj , rkpkj , okpkj←i) to FLTM.

– Upon receiving (ComputeSendingRootKey, k, ekpki ), set root key = k.
– Do steps 4-6 of Compute Sending Chain Key
– Erase ekpki and output (ConfirmReceivingEpoch, epoch idself ||ekpki ||okpkj←i) to

(ΠSGNL, sid, pidi)
4. Else (this is not the first activation):

– Compute Sending Chain Key.
– Output (ConfirmReceivingEpoch, epoch idself) to (ΠSGNL, sid, pidi).

GetSendingKey: On receiving input (GetSendingKey) from (ΠmKE , sid.mKE, pid′):

1. If pid′ �= pid, or if sending chain key has already been erased, end the activation.
2. Output (GetSendingKey, sending chain key) and erase sending chain key.

GetReceivingKey: On receiving input (GetReceivingKey, epoch id) from (ΠmKE , sid, pid′):

1. If pid′ �= pid, then end the activation. Otherwise, let i be such that pid = pidi.
2. Set temp epoch id partner = epoch id.
3. If this is the first activation:

– Initialize state variables root key, epoch id, epoch key, sending chain key = ⊥.
– Parse epoch id = (epoch id′, ekpkj , okpki←j) and set temp epoch id partner = epoch id′

– Send (GetResponseKeys, pid1−i) to FDIR.
– Upon receiving (GetResponseKeys, ikpkj ), send input

(ComputeReceivingRootKey, ikpkj , ekpkj , okpki←j) to FLTM.
– Upon receiving (ComputeReceivingRootKey, k), set root key = k.

4. Compute Receiving Chain Key.
5. Output (GetReceivingKey, temp recv chain key) and erase temp recv chain key.

(The rest of this protocol is in Fig. 13)

Fig. 12. The Epoch Key Exchange Protocol ΠeKE
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ΠeKE continued...

Corrupt: On receiving (Corrupt) from (ΠSGNL, sid, pidi): return
(epoch key, epoch idself , epoch idpartner, root key) to (ΠSGNL, sid, pidi)
//Note that the Corrupt interface is not part of the “real” protocol; it is only included for

UC-modelling purposes.
//Below are subroutines used in the interfaces above. The calls to Advance and Compute use

ΠKDF that is a cascaded PRF − PRNG
Compute Sending Chain Key:

1. Compute root input = Exp(temp epoch idpartner, epoch keyself).
2. Compute (root key) = ΠKDF.Advance(root key, root input).
3. Generate a key pair (epoch keyself , epoch idself) ← keyGen().
4. Compute the next input root input = Exp(temp epoch idpartner, epoch keyself).
5. Compute (root key, sending chain key) = ΠKDF.Compute(root key, root input).
6. Finally, advance (root key) = ΠKDF.Advance(root key, root input)
7. Erase root input. //The old root key is overwritten and therefore erased. The old sending

chain key was already erased.

Compute Receiving Chain Key:

1. Compute root input = Exp(temp epoch idpartner, epoch keyself).
2. Compute (root key, temp recv chain key) = ΠKDF.Compute(root key, root input).
3. Erase root input. //The old root key is overwritten and therefore already erased.

Fig. 13. The Epoch Key Exchange Protocol ΠeKE (continued)

Theorem 5. Assume that KDF : {0, 1}n → {0, 1}2n is a CPRFG, that the
DDH assumption holds in the group G. Then protocol ΠeKE UC-realizes the
ideal functionality FeKE in the presence of global functionalities FDIR and FLTM.

Cascaded PRF-PRG. The goal of this primitive is to formalize the require-
ments required of a key derivation function (KDF) to adhere to the Signal
specification [44] in the adaptive setting. We consider a stateful key derivation
function (KDF) with two algorithms. Algorithm Compute(root key, root input) =
(chain key, root key′) is given a state root key and randomizer root input, and
computes a chaining key chain key and an updated state root key′ (discarding
the old state). Algorithm Advance(root key, root input) = root key′ is given a
state root key and randomizer root input, and updates the state for a new epoch.

Our cascaded PRF-PRG definition requires that the KDF be secure against
an adversary who can repeatedly execute methods (Compute) and (Advance) at
will, and who can also obtain the module’s local state at any time. More specifi-
cally, we require existence of a simulator such that no adversary can distinguish
an interaction with the scheme from an ideal interaction (Fig. 14) where the keys
are truly random and the exposed state is generated by the simulator.
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Cascaded PRF-PRG Security Game

Security game for a KDF (Compute,Advance) with domain {0, 1}n for the initial secret state,
domain {0, 1}m(n) for the chaining keys and domain {Rn}n∈N for the randomizer, and a
simulator S :
Real game:

– Oracle O is initialized with random state s ← {0, 1}n.
– On input (Compute, root input): O runs Compute(s, root input) = (chain key, root key′), out-

puts chain key and changes state s = root key′.
– On input (Advance): O chooses root input′ ← Rn at random, runs Advance(s, root input′) =

root key′, and changes state s = root key′.
– On input (Expose-Advance): O outputs the old state s, chooses root input′ ← Rn at random,

computes Advance(s, root input′) = root key′, and changes state s = root key′.

Ideal game:

– Oracle O is initialized with a state consisting of a random function F : Rn → {0, 1}m.
– On input (Compute, root input): O outputs F (root input) = chain key.
– On input (Advance): O updates its state to a new random function F : Rn → {0, 1}m.
– On input (Expose-Advance): O outputs S((root input1, F (root input1)), . . . , (root inputk,

F (root inputk)), where root input1, . . . , root inputk are all the queries made by A since the
last Advance query and F is the currently used random function. Finally O updates its
state to a new random function F : Rn → {0, 1}m.

Fig. 14. Cascaded PRF-PRG Security Game

Definition 1 (Cascaded PRF-PRG (CPRFG)). A KDF (Compute,
Advance) is a cascaded PRF-PRG (CPRFG) if there exist polytime algorithm S such
that any polytime oracle machineA can distinguish between the real and ideal inter-
actions described in Fig. 14 only with advantage that is negligible in n.

In the full version of this work [21], we show two constructions of a Cascaded
PRF-PRG: a straightforward one based on a programmable random oracle, and
a non-trivial construction in the plain model based on a puncturable PRF and
a PRF-PRG (in the style of Alwen et al. [1]).
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Abstract. The Messaging Layer Security (MLS) protocol is an open
standard for end-to-end (E2E) secure group messaging being developed
by the IETF, poised for deployment to consumers, industry, and govern-
ment. It is designed to provide E2E privacy and authenticity for messages
in long-lived sessions whenever possible, despite the participation (at
times) of malicious insiders that can adaptively interact with the PKI at
will, actively deviate from the protocol, leak honest parties’ states, and
fully control the network. The core of the MLS protocol (from which
it inherits essentially all of its efficiency and security properties) is a
Continuous Group Key Agreement (CGKA) protocol. It provides asyn-
chronous E2E group management by allowing group members to agree
on a fresh independent symmetric key after every change to the group’s
state (e.g. when someone joins/leaves the group).

In this work, we make progress towards a precise understanding of
the insider security of MLS (Draft 12). On the theory side, we over-
come several subtleties to formulate the first notion of insider security
for CGKA (or group messaging). Next, we isolate the core components
of MLS to obtain a CGKA protocol we dub Insider Secure TreeKEM
(ITK). Finally, we give a rigorous security proof for ITK. In particular,
this work also initiates the study of insider secure CGKA and group
messaging protocols. Along the way we give three new (very practical)
attacks on MLS and corresponding fixes. (Those fixes have now been
included into the standard.) We also describe a second attack against
MLS-like CGKA protocols proven secure under all previously considered
security notions (including those designed specifically to analyze MLS).
These attacks highlight the pitfalls in simplifying security notions even
in the name of tractability.

1 Introduction

1.1 Background and Motivation

A Continuous Group Key Agreement (CGKA) protocol allows an evolving group
of parties to agree on a continuous sequence of shared symmetric keys. Most
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CGKA protocols are designed to be truly practical even when used over an
adversarial network by large groups of uncoordinated parties with little, if any,
common points of trust.

CGKA protocols should be end-to-end (E2E) secure and use asynchronous
communication (in contrast to older, highly interactive, Dynamic Group Key
Agreement protocols). That is, no assumptions are made about when or for
how long parties are online. Instead, an (untrusted) network is expected only to
buffer packets for each party until they come online again. As a consequence,
all actions a party might wish to take must be performed non-interactively.
Moreover, protocols cannot rely on specially designated parties (like the group
managers in broadcast encryption). To achieve E2E security, protocols shouldn’t
rely on trusted third parties including the PKI that distributes long and short
term public keys.1

Intuitively, CGKA protocols encapsulate the cryptographic core necessary to
build higher-level distributed E2E secure group applications like secure messag-
ing (not unlike how Key Encapsulation captures the core of Public Key Encryp-
tion). Any change to a group’s state (e.g. parties joining/leaving) initiates a
new epoch in a CGKA session. Each epoch E is equipped with its own uniform
and independent epoch key kE , called the application secret of E, which can
be derived by all group members in E. The term “application secret” reflects
the expectation that kE will be used by a higher-level cryptographic application
during E.2 For example, kE might seed a key schedule to derive (epoch specific)
symmetric keys and nonces, allowing group members in E to use authenticated
encryption for exchanging private and authenticated messages during E.

The Messaging Layer Security Protocol. Probably the most important family of
CGKA protocols today is TreeKEM. An initial version was introduced in [34].
It was soon followed by a more precise description in [18] and the improved
version [14]. Another major revision came with the introduction of the “propose-
and-commit” paradigm [17]. The product of this evolution (implicitly) makes up
most of the cryptographic core of the latest draft (Draft 12) of the Messaging
Layer Security (MLS) protocol [13]. It is this most recent version which is the
main focus of this work.

MLS is being developed under the auspices of the IETF. It aims to set an
open standard for E2E secure group messaging; in particular, for very large
groups (e.g. 50K users). MLS is being developed by an international collabora-
tion of academic cryptographers and industry actors including Cisco, Cloudflare,
Facebook, Google, Twitter, Wickr, and Wire. Together, these already provide
messaging services to over 2 billion users across all sectors of society. The IETF
is currently soliciting more feedback from the cryptographic community in hopes
of finalizing the current draft.
1 Concretely, the servers distributing keys are normally not trusted per se. Instead

trust is established by, say, further equipping participants with tools to perform
out-of-band audits of the responses they receive from the server.

2 In the newest draft of MLS the term “application secret” has been changed to
“encryption secret”.
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Insider Security. Intuitively, MLS is designed to provide security whenever pos-
sible in the face of a weak PKI and despite potential participation by malicious
insiders with very powerful adaptive capabilities. These include full control of the
network and repeatedly leaking the local states of honest users and even choos-
ing their random coins3. However, thus far it has remained open how to formally
capture (let alone analyze) such a security notion for CGKA/group messaging.
Instead, simplified security models have been used to analyze (various versions
of) TreeKEM. See Sect. 1.3 for a thorough discussion. Most critically, none of
these models let the adversary deliver arbitrary packets; a very natural capabil-
ity for a real-world attacker controlling the network. Further, they do not let the
adversary register public keys in the PKI (let alone without proving knowledge
of the corresponding secret keys) or choose all random coins of corrupt parties.

1.2 Our Contribution

New Security Model. To further our understanding of how MLS behaves against
such insider attacks, we first precisely define insider security of CGKA. In our
new model, the adversary has all above-mentioned capabilities available to mali-
cious insiders. Our notion captures correctness as well as the following security
goals: security of epoch secret keys, authenticity and agreement on group state.
Formally, our model extends the notions in [8] to capture a more accurate and
untrusted PKI (solving an open problem from [8]). E.g., in our model the adver-
sary can register arbitrary (even long term) public keys on behalf of parties
and without proving knowledge of corresponding secrets. Of course, security is
degraded for epochs in which such keys are used but, crucially, only those.

We note that our notion can be used to analyze different CGKA protocols
and compare their security guarantees. We believe that it should be directly
applicable to (propose/commit versions of) protocols like [6,10,29]. Further, in
a subsequent work [28] the authors use it (after small modification) to prove that
their protocol enjoys the same security as TreeKEM.

Security of TreeKEM. Second, we isolate the core features of the full MLS proto-
col, Draft 12 (the most recent draft at the time of writing) sufficient for realizing
an insider secure CGKA protocol. We call the result Insider Secure TreeKEM
(ITK). Specifically, ITK augments TreeKEM with message authentication, tree-
signing, confirmation keys and small parts of MLS’s key schedule.

Third, we prove that ITK is secure in our model. Our analysis unveiled three
new (and quite practical) attacks on MLS Draft 10. All attacks require the
capabilities of malicious insiders, and hence they are outside the models used
so far to analyze MLS, which explains why they went unnoticed until now. We
proposed fixes for each of the three attacks. They have since been incorporated
into to the IETF standard (in Draft 11) and are already reflected in ITK. In
summary, the result of the attacks are as follows:

3 We stress that adversarially chosen coins can lead to real-world attacks, see e.g. [22].
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1. A malicious insider can invite a victim to an artificial group (that includes
any number of other honest parties) such that the adversary can continue to
derive epoch secrets in the group even after they were supposedly removed
from the group by the victim.

2. A malicious insider can break agreement. That is, they can craft two packets
delivering each to a different honest user with the result that they will both
accept them, agree on their next epoch secret keys, but will in fact be out-
of-sync and no longer accept each other’s messages.

3. The mode of MLS where ITK packets are not encrypted provides weaker
authenticity than intended.

The first attack is the most interesting, since it relies on the flawed design of
the so-called tree-signing mechanism, adopted due to a lack of (even intuitive)
clarity around what it should do (which lead to differing constructions being
proposed and significant debate on the topic within the MLS working group,
e.g. [1,32,35]). This work finally elucidates what is the goal of tree signing.

Justifying the New Model. Finally, to justify our model and the importance of
formally capturing the complete adversarial capabilities against which CGKA
protocols intend to defend, we formally prove the following: First, for each of
the three fixes for the above mentioned attacks, ITK modified to undo the fix
is not secure in our model. Second, we observe that all previous analyses of
CGKA protocols (including TreeKEM and others) in simplified models assumed
CPA security of the encryption schemes they use, implying that this is sufficient
(see e.g. [6,7,10]). We show that this is an oversimplification by demonstrating
a practical attack on ITK modified to use a particular (contrived) CPA secure
scheme, resulting in malicious insiders being able to compute epoch secrets after
having been removed from the group. Again, we show that the above modification
of ITK is not secure in our model. (Fortunately, as implied by [5], the PKE used
in MLS is indeed CCA secure which we show to be sufficient.)

1.3 Related Work

Analyses of MLS. A summary is given in Table 1. The research on CGKA was
initiated with the introduction of the Asynchronous Ratcheting Tree (ART) pro-
tocol by Cohn-Gordon et al. in [24]. ART later was adopted as part of MLS Draft
1, before being replaced by TreeKEM as part of Draft 2. TreeKEM based MLS
has been analyzed in the computational setting (using the game-based approach)
in the works [6,7,21]. The work by [6] analyzed the TreeKEM portion of MLS
and, to this end, coined the respective CGKA abstraction. On the other hand,
[7] considers the full MLS protocol and, importantly, validates the soundness of
the CGKA abstraction as an intermediate building block.

In contrast to this work, [6,7] however used simplified security models. In [6]
the adversary is forced to deliver packets in the same order to all parties and
learns nothing about the coins of parties she has compromised. Meanwhile, [7]
permits arbitrary packet delivery scheduling and leaks the random coins of cor-
rupt parties but still does not allow the adversary to choose corrupt parties’
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Table 1. Related work: Analyses of MLS.

MLS Version Part Analyzed Adversarial Model Considers Group Splits Framework

[24] Draft 1

(ART)

CGKA in static

groups

active yes part game-based,

part symbolic

[6] Draft 6 CGKA passive no game-based

[19] Draft 7 Messaging insider yes symbolic

[7] Draft 11 Messaging semi-active yes game-based

[21] Draft 11 Key derivation insider n/a game-based

[25] Draft 11 Multi-group

messaging

n/a n/a n/a

this work Draft 12 CGKA insider yes UC

coins. Neither model allows fully active attacks. In [6], the adversary cannot
modify/inject packets at all while in [7] she may only deliver modified/injected
packets to an honest party if the party will reject the packet.

Further, [21] focuses exclusively on the pseudorandomness of secrets pro-
duced by the key derivation process in MLS. So, unlike other works, they do not
consider the general effects malformed protocol packets can have (e.g. as part of
an arbitrary active attack). Instead they focus only on a specific set of effects
such packets could have on the key derivation mechanism in MLS. (So for exam-
ple, they make no statements about authenticity.) In contrast to the other two
works, they also only allow for a limited type of adaptivity where adversaries
must leak secrets at the moment they are first derived and no later. On the
other hand, [21] considers a more fine-grained leakage model where secrets can
be individually leaked rather than the whole local state of the victim at once.
Finally, the recent work of [25] considers the PCS guarantees provided by MLS
in the multi-session setting. Surprisingly, they identify significant inefficiencies
in terms of the amount of bandwidth (and computation) required by a multi-
session MLS client to return to a fully secure state after a state compromise.
They present intuitive deficiencies of MLS-style constructions but they do not
define a formal security model.

Complementing the above line of work, the paper [19] analyzed the insider
security of TreeKEM as of Draft 7 in the symbolic setting (in the sense of
Dolev-Yao). Their model covers most intuitive adversary’s abilities and secu-
rity properties considered in this work. Actually, they even consider a slightly
more fine-grained corruption model that allows the adversary to corrupt individ-
ual keys held by parties. It is noteworthy, however, that [19] analyze a version
of TreeKEM that does not yet have any tree-signing mechanism. Consequently,
they find an attack on TreeKEM Draft 7 (that would also appear in our insider
security model) and proposes a strong version of tree signing (aka. “tree-hash
based parent hash”) that prevents it. Unfortunately, that scheme soon became
unworkable (i.e. not correct) as it conflicts with new mechanisms in subsequent
drafts of TreeKEM, namely truncation and unmerged leaves. Thus, Draft 9
TreeKEM/MLS adopted a different, more efficient version of tree signing. In
this work, we show however that the latter version is too weak and propose a
new tree-signing mechanism providing the desired security.
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Table 2. Related work: Other CGKA protocols. Top: protocols that improve efficiency
over TreeKEM. Bottom: protocols that improve security.

Protocol Approach to Improving Efficiency
Adversarial
Model

Considers
Group Splitting Framework

[10] Tainted TreeKEM Geared to a setting with administrators passive yes game-based

[36] Causal TreeKEM Concurrency (static groups, no PCS) passive yes game-based

[20]
Concurrent Group
Ratcheting

Concurrency (static groups)
passive
synchronous

no game-based

[4] CoCoA
Concurrency and partial views of the
group state (*) passive yes game-based

[3] DeCAF
Concurrency and partial views of the
group state (faster PCS than CoCoA)

passive yes game-based

[28] CmPKE Server-aided CGKA: better bandwidth insider yes UC

[9] SAIK Server-aided CGKA: better bandwidth active yes UC

[2] Grafting Key Trees Utilize multiple overlapping groups n/a n/a n/a

Protocol Security Goal
Adversarial
Model

Considers
Group Splitting Framework

[6] RTreeKEM Stronger PCFS passive no game-based

[8] Optimally Secure Best-possible security active yes UC

[27] Membership Private ART Hiding group roster and
message senders n/a n/a n/a

(*) Partial views means that parties fetch parts of their state on demand from an untrusted server.

Other CGKA Protocols. Numerous alternative CGKA protocols have been con-
sidered, in various security models, as summarized in Table 2. First, the Tainted
TreeKEM protocol [10] exhibits a different complexity profile than the TreeKEM
protocol, optimized for groups with a small set of “administrators” (i.e., parties
making changes to the group roster). It was shown to enjoy the same security
as TreeKEM, Draft 7, at least with regards to adaptive but passive adversaries.

Another line of research aims for better efficiency than that of TreeKEM.
First, the works [3,4,20,36] achieve this by supporting (to various degrees) con-
current changes to the group state. Further, the works [9,28] proposed a different
communication model of CGKA: Instead of an untrusted broadcast channel, they
consider a more general (untrusted) delivery service that processes the messages
and delivers to each party only the part it needs, greatly improving bandwidth.
We note that [9] uses a simplified security model based on [8], while [28] uses the
model proposed in this work. Finally, the work [2] introduced new techniques to
accommodate for multiple intersecting groups, which may enable to get better
efficiency than running several CGKAs in parallel, partially remedying the issues
uncovered by [25]. (They do not specify a CGKA protocol.)

From a different angle, various constructions aim to improve on the security
guarantees of TreeKEM and MLS. First, the RTreeKEM construction of [6]
improved on the forward secrecy properties of the TreeKEM family of protocols,
albeit by making use of non-standard (but practically efficient) cryptographic
components. Further, the three CGKA protocols in [8] eschew the constraint of
practical efficiency to instead focus on exploring new mechanisms for achieving
the increasingly stringent security notions introduced in that work. In particular,
they introduce two notions of so-called robustness for CGKA. A weakly robust
CGKA ensures that if a honest party in epoch E accepts an arbitrary packet
p, then all other honest parties in epoch E either end up in the same state
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as that party or reject p. In a strongly robust CGKA it is further guaranteed
that then all other parties currently in E will accept p. Note that neither ITK
nor MLS (as a whole) are strongly robust.4 A variant of strong robustness has
also been considered by [26] who propose efficient zero-knowledge proofs with
which a group member can prove to the delivery server that his message is
well formed. They observe that in case the server behaves honestly, this allows
the server to prevent group splitting attacks (a type of denial-of-service) caused
by malicious insiders. Albeit, they do not introduce or analyze a full CGKA or
messaging protocol. Finally, [27] presented CGKA with novel membership hiding
properties. However, no security definitions are given.

1.4 Outline of the Rest of the Paper

We define insider secure CGKA in Sect. 3. In Sect. 4, we specify the ITK protocol.
We then formalize the exact security properties achieved by ITK and sketch the
respective security proof in Sect. 5. The four attacks are described in Sect. 6.

2 Preliminaries

2.1 Notation

We use v ← x to denote assigning the value x to the variable v and v ←$ S to
denote sampling an element u.a.r. from a set S. If V denotes a variable storing a
set, then we write V +← x and V -← x as shorthands for V ← V ∪{x} and V ←
V \{x}, respectively. We further make use of associative arrays and use A[i] ← x
and y ← A[i] to denote assignment and retrieval of element i, respectively.
Additionally, we denote by A[∗] ← v the initialization of the array to the default
value v. Further, we use the following keywords: req cond denotes that if the
condition cond is false, then the current function unwinds all state changes and
returns ⊥. assert cond is used in the description of functionalities to validate
inputs of the simulator. It means that if cond is false, then the given functionality
permanently halts, making the real and ideal worlds trivially distinguishable.

2.2 Universal Composability

We use the Universal Composability (UC) framework [23].

The Corruption Model. We use the—standard for CGKA/SGM but non-
standard for UC—corruption model of continuous state leakage (transient pas-
sive corruptions) and adversarially chosen randomness of [8].5 In a nutshell, this
corruption model allows the adversary to repeatedly corrupt parties by sending

4 E.g. a malformed (commit) packet can be constructed by an insider such that part
of the group accepts it but the rest do not.

5 Passive corruptions and full network control allow to emulate active corruptions.
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them two types of corruption messages: (1) a message Expose causes the party
to send its current state to the adversary (once), (2) a message (CorrRand, b)
sets the party’s rand-corrupted flag to b. If b is set, the party’s randomness-
sampling algorithm is replaced by the adversary providing the coins instead.
Ideal functionalities are activated upon corruptions and can adjust their behav-
ior accordingly.

Restricted Environments. In order to avoid the so-called commitment problem
caused by adaptive corruptions in simulation-based frameworks, we restrict the
environment not to corrupt parties at certain times. (This roughly corresponds
to ruling out “trivial attacks” in game-based definitions. In simulation-based
frameworks, such attacks are no longer trivial, but security against them requires
strong cryptographic tools and is not achieved by most protocols.) To this end,
we use the technique used in [8] (based on prior work by Backes et al. [12]
and Jost et al. [30]) and consider a weakened variant of UC security that only
quantifies over a restricted set of so-called admissible environments that do not
exhibit the commitment problem. Whether an environment Z is admissible or
not is defined as part of the ideal functionality F: The functionality can specify
certain boolean conditions, and Z is then called admissible (for F), if it has
negligible probability of violating any such condition when interacting with F.

3 Insider-Secure Continuous Group Key Agreement

This section defines security of CGKA protocols. For better readability, we skip
some less crucial details. We refer to the full version [11] for the precise definition.

3.1 Overview

Security via Idealized Services. We model security and correctness of CGKA in
the Universal Composability (UC) framework [23]. At a high level, this means
that a CGKA protocol is secure if no efficient environment Z can distinguish
between the following two experiments: First, in the real world experiment, Z
interacts with an instance of the CGKA protocol. It controls all parties, i.e., it
chooses their inputs and receives their outputs and the adversary, i.e., it corrupts
parties. Second, in the ideal world experiment, Z interacts with an ideal CGKA
functionality Fcgka and a simulator S. Fcgka represents the idealized “CGKA
service” a CGKA protocol should provide and is secure by design (like a trusted
third party). S translates the real-world adversary’s actions into corresponding
ones in the ideal world. Since Fcgka is secure by definition, this implies that
the real-world execution cannot exhibit any attacks either. Readers not familiar
with UC should think of Z as the adversary attacking the protocol.

In our model, analogous to [8], whenever Z instructs a party to perform
some group operation (e.g. adding a new member) Fcgka simply hands back
an idealized protocol message to that party—it is then up to Z to deliver those
protocol messages to the other group members, thus not making any assumptions
on the underlying network or the architecture of the delivery service.
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The Attack Model. In this work, we consider a powerful adversary that (a) fully
controls the network (i.e., the delivery service), and (b) potentially colludes
with malicious insiders. The former is captured by having Z (i.e., the attacker)
deliver packets. The latter is captured by giving the adversary the following
abilities: to register arbitrary PKI keys on behalf of any party, to repeatedly
leak parties’ states and to choose randomness used by parties. The first attack
vector is reflected in our PKI functionalities in Sect. 3.2. The latter two vectors
are reflected in our choice of UC corruption model described in Sect. 2.

We remark that additionally considering a model with malicious insider
attacker but an honest delivery infrastructure is an interesting open problem. It
appears, however, that in case of MLS an honest delivery server cannot prevent
most of a malicious insider’s attacks such as group-splitting attacks (see below).

Security Guarantees. Our model captures the following security properties: con-
sistency, confidentiality and authenticity. They are reflected in different aspects
of the ideal functionality Fcgka. We note that Fcgka maintains a symbolic repre-
sentation of the group’s evolution, including corruptions, in the form of a history
graph [7], where nodes represent epochs.

Intuitively, consistency means that all parties in the same epoch agree on the
group state, including e.g. the history of the group’s evolution. This is formalized
by Fcgka outputting consistent information to all parties in the same node of the
graph. Fcgka is parameterized by a predicate safe which identifies confidential
epochs, i.e., ones for which the adversary must have no information about its
group secret, for a given CGKA protocol and graph. For each confidential epoch,
Fcgka chooses a random and independent secret (and outputs it to parties who
decide to fetch it) while for other epochs the key is arbitrary, i.e., chosen by
the simulator. Authenticity for a party A and epoch E holds if Z cannot inject
messages on behalf of A in E. Fcgka is parameterized by a predicate inj-allowed
which decides whether messages can be injected on behalf of the party.

The PKI. In the real-world experiment, the parties execute the protocol that
furthermore interacts with the (untrusted) PKI. The latter is modeled as two UC
functionalities: Authentication Service (AS) which manages long-term identity
keys and Key Service (KS) that allows parties to upload single-use key packages,
used by group members to non-interactively add them to the group (see Sect. 3.2
for details). Our model is agnostic to how these functionalities are realized, as
long as the behavior we describe is implemented.

The primary interaction with the PKI is not group specific and, thus, it is
assumed to be handled by the higher-level protocol embedding CGKA. Intu-
itively, this means that the protocol requires that the environment registers all
keys necessary for a given group operation before performing it. As the PKI
management is exposed to the environment in the real world, those operations
also need to be available in the ideal world. We achieve this by having “ideal-
world variants” of the AS and KS, which should be thought of as part of Fcgka.
The ideal AS records which keys have been exposed, which is then used to define
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the predicates. The actual keys in the ideal world do not convey any particular
meaning beyond serving as identifiers.

Group-Splitting Attacks. The following attack is inherent to any CGKA protocol:
A malicious delivery service selectively forwards different packets to different
group members, causing them to have inconsistent views of the group’s evolution.
Such members will never end up in the same epoch again (and so they will not
be able to communicate), as this would contradict the consistency property. Our
ideal functionality Fcgka accounts for this with the history graph forming a tree,
with different branches representing different partitions.

We remark that there is another type of splitting attack where (the delivery
service may be honest but) a malicious insider creates a message that is accepted
by some but not other members of the group. (Note that all parties accepting
the commit will end up in a consistent state.) MLS does not prevent this attack,
and this is reflected in our model. We note that the only way to prevent such
attacks that we are aware of relies on zero-knowledge proofs [8,26] which are not
widely implemented primitives MLS is constrained to use.

On the Choice of UC Security. First, the UC framework lends itself well to strong
and comprehensive security definitions. Indeed, UC definitions naturally gravi-
tate towards strongest possible guarantees. In fact, formalizing weak guarantees
typically takes extra effort: Each of a protocol’s weaknesses must be explicitly
accounted for by providing the simulator all the necessary capabilities to emulate
the effect when interacting with the ideal functionality. In contrast, game-based
notions lend themselves well to simple definitions that focus on the core of a
problem—potentially deliberately ignoring certain attack vectors (such as active
attacks in many of the secure group-messaging work) for simplicity.

Second, the UC framework provides plenty of useful conventions and building
blocks, such as the interaction with complex setup functionalities. Third, the
UC framework allows us to directly formalize the guarantees, independent of the
concrete scheme. For instance, when an active attacker can inject messages, we
care about the potential effects and not so much about which exact bit-string the
attacker might craft has which effect—which is handled by the simulator in our
UC-based notion. (Game-based formalizations, such as [7], often circumvent this
by augmenting the primitive to output additional information specially needed
for formalizing the game, such as the interpretation of a given message.)

3.2 PKI Setup

In general, we model fully untrusted PKI, where the adversary can register arbi-
trary keys for any party (looking ahead, security guarantees degrade if such keys
are used in the protocol). This especially models insider attacks.6 All function-
alities are formally defined in the full version [11].
6 In particular, we do not assume so-called key-registration with knowledge. This is

a significantly stronger assumption, typically not achieved by the heuristic checks
deployed in reality, and it is not needed for security of ITK.
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Authentication Service (AS). The AS provides an abstract credential mechanism
that maps from user identities, e.g. phone numbers, to long-term identity keys
of the given user. Different credential mechanisms of MLS are abstracted by the
functionality Fas, which maintains a set of registered pairs (id, spk), denoting
that user id registered the key spk under their identity. It works as follows:

– A party id can check if a pair (id′, spk′) is registered.
– id can register a new key. In this case, Fas generates a pair (spk, ssk) (the key-

generation algorithm is a parameter), sends spk to id and registers (id, spk).
spk can be later retrieved at any time and then deleted.7 If id’s randomness
is corrupted, the adversary provides the key-generation randomness.

– The adversary can register an arbitrary pair (id, spk).
– When a party’s state is exposed, all secret keys it has generated but not

deleted yet are leaked to the adversary.

Key Service (KS). The KS allows parties to upload one-time key packages,
used to add them to groups while they are offline. This is abstracted by the
functionality Fks. Fks maintains pairs (id, kp), denoting a user’s identity and a
registered key package. For each (id, kp), Fks stores id’s long-term key spk which
authenticates the package and for some (id, kp), it stores the secret key. Fks

works as follows:

– A party id can request a key package for another party id′. Fks sends to id a
kp chosen by the adversary in an arbitrary way, i.e. the KS is fully untrusted.

– id can register a new key package. To this end, id specifies a long-term key
pair (spk, ssk) (reflecting that a key package may be signed), Fks generates a
fresh package (kp, sk) for id (using a package-generation algorithm that takes
as input (spk, ssk)), sends kp to id and registers (id, kp) with spk.

– id can retrieve all its secret keys (this accounts for the protocol not a priori
knowing which key package has been used to add it to the group).

– id can delete one of its secret keys. When its state is exposed, all secret keys
it generated but not deleted are leaked to the adversary.

Note that the adversary does not need to register its own packages, since it
already determines all retrieved packages.

Ideal-World Variants. The ideal-world variant of AS, F iw
as , marks leaked and

adversarially registered long-term keys as exposed. The ideal-world variant of
KS, F iw

ks , stores the same mapping between key package and long-term key as
Fks. Intuitively, each key package for which the long-term key spk is exposed
(according to AS) is considered exposed. (For simplicity, our ideal world abstracts
away key packages. We believe this to be a good trade-off between abstraction
and fine-grained guarantees.) Both F iw

as and F iw
ks are not parameterized by key-

generation algorithms. Instead, on key registration, the adversary is asked to
provide a key pair.
7 The secret key must be fetched separately, because the key is registered by the

environment before the secret key is fetched by the protocol.
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3.3 Interfaces of the CGKA Functionality

This section explains the inputs to Fcgka, which defines the syntax of CGKA.

Proposals and Commits. ITK is a so-called propose-and-commit variant of a
CGKA, where current group members can propose to add new members, remove
existing ones, or update their own key material (for PCS) by sending out a
corresponding proposal message. The proposals do not affect the group state
immediately. Rather, they (potentially) take effect upon transitioning to the
next epoch: The party initiating the transition collects a list of proposals in a
commit message broadcast to the group. Upon receiving such a message, each
party applies the indicated proposals and transitions to the new epoch. For
simplicity, we delegate the buffering of proposals to the higher-level protocol.

Identity Keys. In a real-world deployment, long-term identity keys maintained
by the Authentication Service (AS) are likely to be shared across groups. Hence,
we also delegate their handling to the higher-level messaging application invoking
CGKA. In general, in each group a party uses one signing key at a time. Upon
issuing an operation updating the CGKA secrets—i.e., proposing an update
or committing—the higher-level may decide to update the signing key as well.
Those operations, thus, explicitly take a signing public key spk as input.

Formal Syntax. The functionality accepts the following inputs (for simplicity,
we treat the party’s identity id as implicitly known to the protocol):

– Group Creation: (Create, spk) creates a new group with id being the single
member, using the signing public key spk. (This input is only allowed once.)

– Add, Remove Proposals: p ← (Propose, add-idt) (resp., p ← (Propose,
rem-idt)) proposes to add (resp., remove) the party idt. It outputs a proposal
p, or ⊥ if either id is not in or idt already in (resp., not in) the group.

– Update Proposal: p ← (Propose, up-spk) proposes to update the member’s
key material, and optionally the long-term signature verification key spk. It
outputs an update proposal message p (or ⊥ if id is not in the group).

– Commit: (c, w) ← (Commit, �p, spk) commits the vector of proposals �p and
outputs the commit message c and the (optional) welcome message w. The
operation optionally updates the signing public key of the committer.

– Process: (idc, propSem) ← (Process, c, �p) processes the message c commit-
ting proposals �p and advances id to the next epoch.8 It outputs the committer
idc and a vector conveying the semantics of the applied proposals.

– Join: (roster, idc) ← (Join, w) allows id (who is not yet a group member) to
join the group using the welcome message w. It outputs the roster, i.e. the
set of identities and long-term keys of all group members, and the identity
idc of the member who committed the add proposal.

– Key: K ← Key queries the current application secret. This can only be
queried once per epoch by each group member (otherwise returning ⊥).

8 For simplicity, we require that the higher-level protocol that buffers proposals
also finds the list p matching c. This is without loss of generality, since ITK uses
MLSPlaintext for sending proposals, and c includes hashes of proposals in �p.
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(a) The passive case. Alice processes c1
and c2.
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(b) Bob joins using injected w′. We don’t
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(c) Bob (honestly) commits, creating c4
in detached tree.
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(d) Alice commits with bad randomness
and re-computes c′ corresponding to w′.
We attach the root.

Fig. 1. An example execution with injections and bad randomness, and the correspond-
ing history graph. For simplicity, proposal nodes are excluded.

3.4 History Graph

The functionality Fcgka uses history graphs to symbolically represent a group’s
evolution. A history graph is a labeled directed graph. It has two types of nodes:
commit and proposal nodes, representing all executed commit and propose opera-
tions, respectively. Note that each commit node represents an epoch. The nodes’
labels, furthermore, keep track of all the additional information relevant for
defining security. In particular, all nodes store the following values:

– orig: the party whose action created the node, i.e., the message sender;
– par: the parent commit node, representing the sender’s current epoch;
– stat ∈ {good, bad, adv}: a status flag indicating whether secret information

corresponding to the node is known to the adversary. Concretely, adv means
that the adversary created this node by injecting the message, bad means
that it was created using adversarial randomness (hence it is well-formed but
the adversary knows the secrets), and good means that it is secure.

Proposal nodes further store the following value:

– act ∈ {up-spk, add-idt-spkt, rem-idt}: the proposed action. The also keeps track
of the signature keys: add-idt-spkt means that idt is added with the public key
spkt, and up-spk reflects the respective input to the update proposal.

Commit nodes further store the following values:

– pro: the ordered list of committed proposals;
– mem: the list of group members and their signature public keys;
– key: the group key;
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– chall: a flag indicating whether the application secret has been challenged,
i.e., chall is true if a random group key has been generated for this node, and
false if the key was set by the adversary (or not generated);

– exp: a set keeping track of parties corrupted in this node, including whether
only their secret state used to process the next commit message or also the
current application secret leaked.

3.5 Details of the CGKA Functionality

This section presents a simplified version of Fcgka. Compared to the precise
definition in the full version [11], we skip some less relevant border cases and
details. A pseudo-code description is in Figs. 2, 3 and 4 and an example history
graph built by Fcgka is in Fig. 1. We next build some intuition about how Fcgka

works.

The Passive Case. For the start, consider environments that do not inject or
corrupt randomness (this relates to parts of the functionality not marked by
[Inj] or [RndCor]). Here, Fcgka simply builds a history graph, where nodes are
identified by messages, and the root is identified by the label root0 (see Fig. 1a).
Moreover, Fcgka stores for each party id a pointer Ptr[id] to its current history-
graph node. If, for example, id proposes to add idt, Fcgka creates a new proposal
node identified by a message p chosen by the adversary, and hands p to id. Some
other party can now commit p (having received it from the environment), which,
analogously, creates a commit node identified by c. Then, if a party processes c,
Fcgka simply moves its pointer. The graph is initialized by a designated party
idcreator, who creates the group with itself as a single member and can then invite
additional members.

If a party id is exposed, Fcgka records in the history graph which information
inherently leaks from its state. This will be used by the predicate safe (recall
that it determines if the epoch’s key is random or arbitrary). In particular, two
points are worth mentioning. First, we require that after outputting the group
key, id removes it from its state (this is important for forward secrecy of the
higher-level messaging protocol). Fcgka uses the flag HasKey[id] to keep track of
whether id outputted the key. Second, id has to store in its state key material
for updates and commits it created in the current epoch. Accordingly, upon id’s
exposure Fcgka sets the status stat of all such nodes to bad (note that leaking
secrets has the same effect as choosing them with bad randomness).

Injections. The parts of Fcgka related to injections are marked by comments
containing [Inj]. As an example, say the environment makes id process a commit
message c′ not obtained from Fcgka, and hence not identifying any node. Fcgka

first asks the adversary if c′ is simply malformed and, if this is the case, output
⊥ to id. If the message is not malformed, the functionality creates the new
commit node, allowing the adversary to interpret the sender orig′. We guarantee
agreement—if any other party transitions to this node, it will output the same
committer orig′, member set mem′, group key etc. (recall that it is contained in
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Functionality Fcgka : Initialization

Parameters: predicate safe(c) (are group secrets in c secure), predicate inj-allowed(c, id)
(is injecting allegedly from id in c allowed), group creator’s identity idcreator.

Initialization
// Pointers, commit nodes, proposal nodes
Ptr[∗],Node[∗],Prop[∗] ← ⊥
// Welcome message to commit message mapping
Wel[∗] ← ⊥
RndCor[∗] ← good; HasKey[∗] ← false

rootCtr ← 0

Input (Create, spk) from idcreator
// The group can be created only once.
req Node[root0] = ⊥ ∧ *usable-spk(idcreator, spk)
// Create the root node and transition idcreator there.
Node[root0] ← commit node with orig = idcreator,

mem = {(idcreator, spk)} and stat = RndCor[idcreator].
Ptr[idcreator] ← root0
HasKey[idcreator] ← true

Functionality Fcgka : Propose and Commit

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt}
from id

Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘prop′, id, act) then

req ack
// Compute the proposal node this action creates.
P ← proposal node with par = Ptr[id], orig = id,

act = act, stat = RndCor[id].
if act = add then

// Adv. can choose the key package for adds.
Receive spkt from the adversary
P.act ← add-spkt

// Insert P into HG.
Receive p from the adversary.
if Prop[p] = ⊥ then

// Passive case: created a new node.
Prop[p] ← P

else
// [Inj] [RndCor] Re-computing existing p.
assert *consistent-nodes(Prop[p], P )

if RndCor[id] then
// [RndCor] Signed with bad randomness.
Notify F iw

as that id’s spk is compromised.
return p

Input (Commit,p, spk) from id
Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘comm′, id,p, spk) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p s.t. Prop[p] = ⊥ do

Prop[p] ← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Compute the commit node this action creates.
C ← commit node with par = Ptr[id], orig = id,

stat = RndCor[id] pro = p, and
mem = *members(Ptr[id], id,p, spk)

// Insert C into HG.
Receive (c, rt) from the adversary.
if Node[c] = ⊥ ∧ rt = ⊥ then

// Passive case: create new node.
Node[c] ← C

else if Node[c] �= ⊥ then
// [Inj] [RndCor] Re-computing injected c.
assert *consistent-nodes(Node[c], C)

else
// [Inj] [RndCor] c explains a detached root.
Set Node[rootrt].par ← Ptr[id] and then replace

each occurrence of rootrt in the HG by c.
assert *consistent-nodes(Node[c], C)

// [Inj] Check that inserting C does not violate
authenticity and HG-consistency.
assert *cons-invariant ∧ *auth-invariant
if RndCor[id] then

// [RndCor] Commit signed with bad rand.
Notify F iw

as that id’s current spk is compromised.
Receive w from the adversary.
if Wel[w] �= ⊥ then

req *consistent-nodes(Wel[w], C)
Wel[w] ← c.
return (c, w)

Fig. 2. Fcgka: initialization, propose and commit. Parts related to injections and ran-
domness corruptions are marked by comments containing [Inj] and [RndCor], respec-
tively.
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Functionality Fcgka : Process and Join

Input (Process, c,p) from id
Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘proc′, id, c,p) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p s.t. Prop[p] = ⊥ do

Prop[p] ← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Commit node id expects to transition to.
Receive from the adversary (orig′, spk′).
C ← commit node with par = Ptr[id], orig = orig′,

pro = p , mem = *members(Ptr[id], id,p, spk′)
// [Inj] If c is injected, then assign a node to it.
if Node[c] = ⊥ then

// If c explains detached root, let adv. specify it.
Receive rt from the adversary.
if rt �= ⊥ then

Set Node[rootrt].par ← Ptr[id] and replace
each occurrence of rootrt in the HG by c.

else
Node[c] ← C
Node[c].stat ← adv

// Check that id transitions to expected node.
assert consistent-nodes(Node[c], C)
// Transition id.
if ∃p ∈ p : Prop[p].act = rem-id then

Ptr[id] ← ⊥
else

Ptr[id] ← c
HasKey[id] ← true

// Check that invariants are not violated.
assert *cons-invariant ∧ *auth-invariant
return *output-process(C)

Input (Join, w) from id
Send id and all inputs to the adv. and receive ack.
req ack
// [Inj] If w is injected, then assign a commit
node to it.
if Wel[w] = ⊥ then

// If w leads to existing node, the adversary
can specify it.
Receive c from the adversary.
if c �= ⊥ then

Wel[w] ← c
else

// Create detached root.
rootCtr++
Wel[w] ← rootrootCtr
Node[rootrootCtr] ← commit node with

par = ⊥, pro = ⊥, stat = adv, and
orig and mem chosen by the adv.

// Transition id.
Ptr[id] ← Wel[w]
HasKey[id] ← true

// Check that joining id does not violate authen-
ticity and HG-consistency.
assert *cons-invariant ∧ *auth-invariant
return *output-join(Node[Wel[w]])

Functionality Fcgka : Corruptions and Group Key

Input (Expose, id) from the adversary
// Record leaked information: if id is in the group, its
state contains:
if Ptr[id] = ⊥ then

// 1) secrets needed to process other parties’ mes-
sages and potentially the group key
Node[Ptr[id]].exp +← (id,HasKey[id])
// 2) secrets needed to process id’s own messages
For each commit or update-proposal node with
orig = id and par = Ptr[id], set stat ← bad.
// 3) the signing key
Notify F iw

as that id’s current spk is compromised.
// Whether id is in the group or not, its state contains
secrets needed to process welcome messages.
for c s.t. *can-join(Node[c], id) do

Node[c].exp +← (id, true)
// Disallow adaptive corruptions in some cases.
This input is not allowed if ∃c s.t Node[c].chall = true

and ¬safe(c)

Input (CorrRand, id, b), b∈{good, bad} from adv.
RndCor[id] ← b

Input Key from id
// Only possible if id has the key.
req Ptr[id] �= ⊥ ∧ HasKey[id]
// Set the key if id is the first party fetching it in
its node. (Guarantees consistency across parties.)
if Node[Ptr[id]].key = ⊥ then

if safe(Ptr[id]) then
Set key to a fresh random key and chall to
true.

else
Let the adversary choose key and set chall
to false.

// id should remove the key from his state
HasKey[id] ← false

return Node[Ptr[id]].key

Fig. 3. Fcgka: inputs process, join, key and corruptions. Parts related to injections are
marked by comments containing [Inj].
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Functionality Fcgka : Helpers

helper *require-correctness(‘comm′, id, c,p)
Returns true if a) c and each p ∈ p identifies a node
with stat �= adv, and b) Ptr[id] = Node[c].par, and c)
p = Node[c].pro.

helper *require-correctness(‘proc′, id,p, spk)
Returns true if *usable-spk(id, spk) and ∀p ∈ p :
Prop[p] �= ⊥ and the vector can be committed by id
(in its current node) according to MLS spec.

helper *require-correctness(‘prop′, id, act)
Returns true if act=up-spk and *usable-spk(id, spk)
or if act = rem-idt and removing idt is allowed accord-
ing to MLS spec.

helper *usable-spk(id, spk)
Returns true if if either spk is id’s current spk, or id
has the secret key according to F iw

as .

helper *members(C, id,p, spk)
Computes the member set after id, currently in C,
calls commits with inputs p and spk, according to
MLS spec. For each member, the set contains a tuples
(id′, spk′), indicating the member’s identity and his
identity key.

helper *can-join(C, id)
Returns true if C.pro adds id with spk and, ac-
cording to F iw

ks , id has a secret key for some key-
package registered together with spk.

helper *output-process(C)
Computes committer idc and proposal semantics
propSem, returned by Process when transitioning
into C.

helper *output-join(C)
Computes roster and committer idc, returned
when joining into C.

helper *consistent-nodes(N,N ′)
Returns true if all values in proposal or commit
nodes N and N ′ except status match.

helper *auth-invariant
Returns true if there is no proposal or commit
node s.t. stat = adv and inj-allowed(par, id) is
false, where par is the node’s parent.s

helper *cons-invariant
Returns true if HG has no cycles, each id is in
the member set of Ptr[id] and for each non-root c,
the parent of each p in c’s pro vector is c’s parent.

Fig. 4. Additional helpers for Fcgka.

the output of process). Note that we also guarantee correctness—if the input of
process is an honest message c generated by Fcgka, then the adversary cannot
make the commit fail.

A more challenging scenario is when the environment injects a welcome mes-
sage w′. Now there are two possibilities. First, w′ could lead to an existing
node. In this case, Fcgka asks the adversary to provide the node c and records
that w′ leads to it. We require agreement—any party subsequently joining using
w′ transitions to c. However, in general, we cannot expect that the adversary
(i.e., simulator), given an arbitrary w′ computed by the environment, can come
up with the whole commit message c′ and its position in the history graph.9

Therefore, in this case Fcgka creates a detached root, identified by a unique
label rootrootCtr, where rootCtr is a counter. If at some later point, e.g. after an
additional commit by the newly joined party, the environment injects c′ corre-
sponding to w′, then the root is attached and re-labeled as c′. This scenario is
depicted in Figs. 1b to 1d. We require consistency—when creating a detached
root, the adversary chooses the member set, but when it is attached, we check
that it matches the new parent.

9 For instance, say the environment computes a long chain of commits in its head and
injects the last one. It is not clear how to construct a protocol for which it is possible
to identify all ancestors, without including all their hashes in w.
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Corrupted Randomness. The relevant parts of Fcgka are marked by [RndCor].
Corrupted randomness leads to two adverse effects. First, the adversary can
make parties re-compute existing messages, leading to the following scenarios:

– A party re-computes a message it already computed. In this case, Fcgka only
checks that the previous message was computed with the same inputs.

– A party re-computes a message previously injected by the environment. Here,
Fcgka verifies that the semantics of the existing node chosen by the adversary
upon injection are consistent with the correct semantics computed using the
party’s inputs. (Technically, instead of creating a new node, Fcgka checks that
the node it would have created is consistent with the existing one.)

– A party re-computes a commit c′ corresponding to an injected welcome mes-
sage (see Fig. 1d). In this case, Fcgka attaches the detached root, just like in
case c′ was injected into process.

Second, we note that each protocol message in MLS is signed, potentially
using ECDSA, which reveals the secret key in case bad randomness is used.
Therefore, every time a party id generates a message with bad randomness,
Fcgka notifies Fas, which marks all long-term keys of id as exposed.

Adaptive Corruptions. Adaptive corruptions become a problem if an exposure
reveals secret keys that can be used to compute a key that has already been
outputted by Fcgka at random, i.e. a “challenge” key. Since fully adaptive secu-
rity is not achieved by TreeKEM (without resorting to programmable random
oracles), we restrict the environment not to corrupt if for some nodes with the
flag chall set to true this would cause safe to switch to false.10

4 The Insider-Secure TreeKEM Protocol

This section provides a (high-level) description of the Insider-Secure TreeKEM
(ITK) protocol. A formal description of the protocol can be found in the full
version [11].

Distributed State. The primary object constituting the distributed state of the
ITK protocol is the ratchet tree τ . The ratchet tree is a labeled binary tree (i.e., a
binary tree where nodes have a number of named properties), where each group
member is assigned to a leaf and each internal node represents the sub-group of
parties whose leaves are part of the node’s sub-tree.

To give a brief overview, each node has two (potentially empty) labels pk
and sk, storing a key pair of a PKE scheme. Leaves have an additional label
spk, storing a long-term signature public key of the leaf’s owner. The root has
a number of additional shared symmetric secret keys as labels (see below). See
Fig. 5 for an example of a ratchet tree with the labels. The public part of τ

10 In game based definitions, such corruptions are usually disallowed, as they allow to
trivially distinguish. Our notion achieves the same level of adaptivity.
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symmetric keys
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C , sk′

C )
spkC

Charlie

Fig. 5. (Left) An example ratchet tree τ for a group with three members. For Invariant
(1), the public labels (green) are known to all parties. For Invariant (2), the secret labels
(red) in a node v are only known to parties in v’s subtree, e.g. Bob knows skB , skAB and
skABC∗. (Right) the tree after Charlie commits removing Bob and adding Dave. The
empty node is blank. Messages to Alice and Dave are encrypted under its resolution
(pkA, pkD). (Color figure online)

consists of the tree structure, the leaf assignment, as well as all public labels,
i.e., those storing public keys. The secret part consists of the labels storing secret
keys and the symmetric keys. The ITK protocol maintains two invariants:

Invariant (1): The public part of τ is known to all parties.
Invariant (2): The secret labels in a node v are known only to the owners
of leaves in the sub-tree rooted at v.

Evolving the Tree. Each epoch has one fixed ratchet tree τ . Proposals represent
changes to τ , and a commit chooses which changes should be applied when
advancing to the next epoch.

A remove proposal represents removing from τ all keys known to the removed
party (see Fig. 5). That is, its leaf is cleared, and all keys in its direct path—i.e.,
the path from the party’s leaf to the root—are blanked, meaning that all their
labels are cleared. This is followed by shrinking the tree by removing unneeded
leaves from the right side of the tree. Note that until a blanked node gets a new
key pair assigned (as explained shortly), in order to encrypt to the respective
subgroup one has to encrypt to the node’s children instead (and recursing if
either child is blanked as well). The minimal set of non-blanked nodes covering
a given subgroup is called the subgroup’s resolution.

An update proposes removing all keys currently known to the party (and
hence possibly affected by state leakage), and replacing the public key in their
leaf (and possibly the long-term verification key) by a fresh one, specified in the
proposal. Hence, τ is modified as in a remove proposal, but instead of clearing
the leaf, its key is replaced.

Finally, an add proposal indicates the new member’s identity (defined on a
higher application level), its long-term public key from the AS, and an ephemeral
public key from KS. It represents the following modification: First, a leaf has to
be assigned, with the public label set according to the public key from the pro-
posal. If there exists a currently unused leaf, then this can be reused, otherwise
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a new leaf is added to the tree. In order to satisfy invariant (2), the party com-
mitting the add proposal would then have to communicate to the new member
all secret keys on its direct path. Unfortunately, it can only communicate the
keys for nodes above the least common ancestor of its and the new member’s
leaves. For all other nodes, the new member is added to a so-called unmerged
leaf set, which can be accounted for when determining the node’s resolution.

Re-keying. Whenever a party commits a sequence of proposals, they additionally
replace their leaf key (providing an implicit update) and re-key their direct path.
In order to maintain invariant (1) on the group state, the committer includes all
new public keys in the commit message.

To minimize the number of secret keys needed to be communicated as part
of the commit message, the committer samples the fresh key pairs along the
path by “hashing up the tree”. That is, the committer derives a sequence of path
secrets si, one for each node on the path, where s0 for the leaf is random and si+1

is derived from si using the HKDF.Expand function. Then, each si is expanded
again (with a different label) to derive random coins for the key generation. The
secret sn for the root, called the commit secret, is not used to generate a key
pair, but instead used to derive the epoch’s symmetric keys (see below). This
implies that each other party only needs to be able to retrieve the path secret of
the least common ancestor of their and the committer’s leaves. Hence, invariant
(2) can be maintained by including in the commit each path secret encrypted to
(the resolution of) the node’s child not on the direct path.

Note that for PCS, the new secret keys must not be computable using the
committer’s state from before sending the commit (we want that a commit heals
the committer from a state). Hence, the committer simply stores all new secrets
explicitly until the commit is confirmed.

Key Schedule. Each epoch has several associated symmetric keys, four of which
are relevant for this paper: The application secret is the key exported to the
higher-level protocol, the membership key is used for protecting message authen-
ticity, the init secret is mixed into the next epoch’s key schedule, and the con-
firmation key ensures agreement on the cryptographic material.

The epoch’s keys are derived from the commit secret computed in the re-
keying process, mixed with (some additional context and) the previous epoch’s
init secret. This ensures that only parties who knew the prior epoch’s secrets
can derive the new keys. One purpose of this is improving FS: corrupting a
party in an epoch, say, 5 must not allow to derive the application secret for a
prior epoch, say, 3. As, however, some internal nodes of the ratchet tree remain
unchanged between epochs 3 and 5, it might be possible for the adversary to
decrypt the commit secret of epoch 3, given the leakage from epoch 5. Mixing
in the init secret of epoch 2 thus ensures that this is information is of no value
per se (unless some party in epoch 2 was already corrupted.)

Welcoming Members. Whenever a commit adds new members to the group,
the committer must send a welcome message to the new members, providing
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them with the necessary state. First, the welcome message contains the public
group information, such as the public part of the ratchet tree. Second, it includes
(encrypted) joiner secret, which combines current commit secret and previous
init secret and allows the new members to execute the key schedule. Finally, it
contains the seed to derive the secrets on the joint path, which the committer
just re-keyed. (Recall that for the other nodes on the new party’s direct path
they are simply added to the unmerged leaves set, indicating that they do not
know the corresponding secrets.) The above seeds, as well as the joiner secret,
are encrypted under the public key (obtained from KS), specified in the add
proposal (which thus serves dual purposes).

Security Mechanisms. All messages intended for existing group members—
commit messages and proposals—are subject to message framing, which binds
them to the group and epoch, indicates the sender, and protects the message’s
authenticity. The sender first signs the group identifier, the epoch, his leaf index,
and the message using his private signing key. This in particular prevents imper-
sonation by another (malicious) group member.

Since the signing key, however, is shared across groups and its replacement
is also not tied to the PCS guarantees of the group, each package is additionally
authenticated using shared key material. Proposals are MACed using the mem-
bership key, while commit messages are protected using the confirmation tag
(see below). Further, commit messages that include remove proposals are addi-
tionally MACed using the membership key, since the confirmation tag cannot
be verified by the removed members. In summary, to tamper or inject messages
an adversary must both know at least the sender’s signing key as well as the
epoch’s symmetric keys.

The protocol makes use of two (running) hashes on the communication tran-
script to authenticate the group’s history. For authentication purposes, it uses
the confirmed transcript hash, which is computed by hashing the previous epoch’s
interim transcript hash, the content of the commit message, and its signature.
The interim transcript hash is then computed by hashing the confirmed tran-
script hash with the confirmation tag. Each commit message moreover contains
a so-called confirmation tag that allows the receiving members to immediately
verify whether they agree on the new epoch’s key-schedule. To this end, the
committer computes a MAC on the confirmed transcript hash under the new
epoch’s confirmation key.

Finally, ITK uses a mechanism called tree signing to achieve a certain level
of insider security. We discuss this aspect in detail in Sect. 6.3.

Remark 1 (Simplifications and Deviations). While ITK closely follows the IETF
MLS protocol draft, there are some small deviations as well as some omissions. In
particular, our model assumes a fixed protocol version and ciphersuite, and omits
features such as advanced meta-data protection, external proposals and commits,
exporters, preshared keys, as well as extensions. We discuss those deviations and
their implications on our results in more detail in the full version [11].
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5 Security of ITK

Security of ITK is expressed by the predicates safe(c, id) and inj-allowed(c, id),
where c is a commit message identifying a history graph node and id is a party.
The predicates are formally stated in Fig. 6. They are defined using recursive
deduction rules know(c, id) and know(c, ‘epoch’), indicating that the adversary
knows id’s secrets (such as the leaf secret), and that it knows the epoch secrets
(such as the init secret), respectively. In more detail:

– know(c, id) consists of three conditions, the last two being recursive. Condi-
tion a) is true if id’s secrets in c are known to the adversary because they
leaked as part of an exposure or were injected by the adversary in id’s name
(due to many attack vectors, this can happen in many ways, see Fig. 6). The
conditions b) and c) reflect that in ITK only commits sent by or affect id (id
updates, is added, or removed) are guaranteed to modify all id’s secrets. If c is
not of this type, then know(c, id) is implied by know(Node[c].par, id) (condi-
tion b)). If a child c′ of c is not of this type, then it is implied by know(c′, id)
(condition c)).

– know(c, ‘epoch’) takes into account the fact that ITK derives epoch secrets
using the initSecret from the previous epoch, and hence achieves slightly better
FS compared to parties’ individual secrets.
In particular, the adversary knows the epoch secrets in c only if it corrupted a
party in c, or knows the epoch secrets in c’s parent and knows individual secret
of some party id in c. The latter condition allows the adversary to process c
using id’s protocol and is formalized by the *can-traverse predicate.

– The only difference between ¬safe(c) and know(c, ‘epoch’) is that the appli-
cation secret is not leaked if id is exposed in c after outputting it.

With the predicates safe and inj-allowed, we can now state the following
security statement for ITK.

Theorem 1. Assuming that PKE is IND-CCA secure, and that Sig is EUF-
CMA secure, then the ITK protocol securely realizes (F iw

as ,F iw
ks ,Fcgka) in the

(Fas,Fks,Gro)-hybrid model, where Fcgka uses the predicates safe and inj-
allowed from Fig. 6 and calls to HKDF.Expand, HKDF.Extract and MAC func-
tions are replaced by calls to the global random oracle Gro.

Proof (Sketch). We here provide the high level proof idea; the complete proof
is presented in the full version [11]. The proof proceeds in three steps. The first
step is to show that various consistency mechanisms, such as MACing the group
context, guarantee consistency of the distributed group state. More precisely,
the real world (Hybrid 1) is indistinguishable from the following Hybrid 2: The
experiment includes a modified CGKA functionality, Freal

cgka, which differs from
Fcgka in that it uses safe = false and inj-allowed = true. The functionality
interacts with the trivial simulator who sets all keys and messages according to
the protocol. The second step is to show that IND-CCA of the PKE scheme
guarantees confidentiality: Hybrid 2 is indistinguishable from Hybrid 3 where
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Predicate safe

Knowledge of parties’ secrets.

know(c, id) ⇐⇒
a) // id’s state leaks directly e.g. via corruption (see below):

*state-directly-leaks(c, id) ∨
b) // know state in the parent:

(Node[c].par �= ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c].par, id)) ∨
c) // know state in a child:

∃c′ : (Node[c′].par = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id))

*state-directly-leaks(c, id) ⇐⇒
a) // id has been exposed in c:

(id, ∗) ∈ Node[c].exp ∨
b) // c is in a detached tree and id’s spk is exposed

∃rt : *ancestor(rootrt, c) ∧ ∃spk : (id, spk) ∈ Node[c].mem ∧ spk ∈ Exposed ∨
c) // id’s secrets in c are injected by the adversary:

((id, spk) ∈ Node[c].mem ∧ *secrets-injected(c, id))

*secrets-injected(c, id) ⇐⇒
a) // id is the sender of c and c was injected or generated with bad randomness

(Node[c].orig = id ∧ Node[c].stat �= good) ∨
b) // c commits an update of id that is injected or generated with bad randomness

∃p ∈ Node[c].pro : (Prop[p].act = up-∗ ∧ Prop[p].orig = id ∧ Prop[p].stat �= good) ∨
c) // c adds id with corrupted spk

∃p ∈ Node[c].pro : (Prop[p].act = add-id-spk ∧ spk ∈ Exposed)

*secrets-replaced(c, id) ⇐⇒ Node[c].orig = id ∨ ∃p ∈ Node[c].pro :
Prop[p].act ∈ {add-id-∗, rem-id} ∨ (Prop[p].act = up- ∗ ∧ Prop[p].orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c].exp �= ∅ ∨ *can-traverse(c)

// Can the adversary process c using exposed individual secrets and parent’s init secret?
*can-traverse(c) ⇐⇒
a) // orphan root with a corrupted signature public key:

(Node[c].par = ⊥ ∧ (∗, spk) ∈ Node[c].mem ∧ spk ∈ Exposed) ∨
b) // commit to an add proposal that uses an exposed key package:

(∃p ∈ Node[c].pro : Prop[p].act = add-id-spk ∧ spk ∈ Exposed) ∨
c) // secrets encrypted in the welcome message under an exposed leaf key

*leaf-welcome-key-reuse(c) ∨
d) // know necessary info to traverse the edge:

(know(c, ∗) ∧ (c = root∗ ∨ know(Node[c].par, ‘epoch’)))

*leaf-welcome-key-reuse(c) ⇐⇒ ∃id, p ∈ Node[c].pro : Prop[p].act = add-id-∗
∧ ∃cd : *ancestor(c, cd) ∧ (id, ∗) ∈ Node[cd].exp
∧ no node ch with *secrets-replaced(ch, id) on c-cd path

Safe and can-inject.

safe(c) ⇐⇒ ¬ (∗, true) ∈ Node[c].exp ∨ *can-traverse(c)
)

inj-allowed(c, id) ⇐⇒ Node[c].mem[id] ∈ Exposed ∧ know(c, ‘epoch’)

Fig. 6. The safety and injectability predicates for the CGKA functionality reflecting
the sub-optimal security of the ITK protocol.
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application and membership secrets in safe epochs are random, i.e. the original
safe is restored. The final step is to show that unforgeability of the MAC and
signature schemes implies that Hybrid 3 is indistinguishable from the ideal world,
where the original inj-allowed is restored as well. (Considering confidentiality
before integrity, while somewhat unusual, is necessary, because we must first
argue secrecy of MAC keys. We note that IND-CPA would be anyway insufficient,
because some injections are inherently possible.)

In this overview, we sketch the core of our proof, which is the second step
concerning confidentiality. For simplicity, we do not consider randomness corrup-
tions. We now proceed in two parts: first, we consider only passive environments,
which do not inject messages. In the second part, we show how to modify the
passive strategy to deal with active environments.

Part 1: Passive Security. For simplicity, consider Frand
cgka, which uses the original

safe only for the first (safe) key it sets (think of the first step in the hybrid argu-
ment). The goal is to show that IND-CPA security of the PKE scheme implies
that Freal

cgka and Frand
cgka, both with the trivial simulator, are indistinguishable for

passive environments.
Unfortunately, already the passive setting turns out challenging for the fol-

lowing reason: The path secrets in a (safe) commit c are encrypted under public
keys created in another commit c′, which contains encryptions of the corre-
sponding secret keys under public keys created in another commit c′′, and so on.
Moreover, the keys are related by hash chains (of path secrets). Even worse, the
environment can adaptively choose who to corrupt, revealing some subset of the
secret keys, which mean that we cannot simply apply the hybrid argument to
replace encryptions of secret keys by encryptions of zeros.11

To tackle adaptivity and related keys, we adapt the techniques of [10,33].
Namely, we define a new security notion for PKE, called (modified) Generalized
Selective Decryption (GSD),12 which generalizes the way ITK uses PKE together
with the hash function to derive its secrets. Roughly speaking, the GSD game
creates a graph, where each node stores a secret seed. The adversary can instruct
the game to 1) create a node with a random seed, 2) create a node v where the
seed is a hash of the seed of another node u, 3) use a (different) hash of the seed
in a node u to derive a key pair, use the public key to encrypt the seed in a node
v and send the public key and ciphertext to the adversary. Each of the actions 2)
and 3) creates an edge (u, v) to indicate their relation. Moreover, the adversary
can adaptively corrupt nodes and receive their seeds. For the challenge of the
game, she receives either a seed from a sink node or a random value. (See the
full proof for a precise definition.)13 It remains to be shown that 1) GSD security
11 Observe that at the time a ciphertext is created we do not know if the key it contains

will be used to create a safe epoch, or if some receiver will be corrupted.
12 GSD was first defined for symmetric encryption [33] and then extended to prove

security of TreeKEM [10]. Our notion is an extension of [10].
13 The GSD game in the full proof is inherently more complex. For example, recall

that joiner secret is a hash of init and commit secrets. Accordingly, the adversary is
allowed to create nodes whose seeds are hashes of two other seeds.
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implies secrecy of ITK keys, and 2) IND-CPA security implies GSD security. The
latter proof is adapted from [10], so we now focus on 1).

To be a bit more concrete, assume an environment Z distinguighes between
Freal

cgka and Frand
cgka (each with the trivial simulator). We construct an adversary

A against GSD security of the PKE scheme in the standard way: A executes
the code of Freal

cgka and the trivial simulator, except for all honest commits and
updates, public keys and epoch keys are created using the GSD game. If a party
is corrupted, A corrupts all GSD nodes needed to compute its state. Finally, A
replaces the first key outputted by Freal

cgka by its challenge.

Part 2: Injections. We sketch the main points of how the strategy from the
passive setting can be adapted to show that IND-CCA security of PKE implies
secrecy of keys in the presence of active environments. There are three types of
messages Z can inject: proposals, commits and welcome messages. Proposals are
the least problematic. Say Z injects an update proposal p′ with public key pk′ on
behalf of Alice. Since Alice will never process a commit containing p′, allegedly
from her, that she did not send, all epochs created by such commits and their
descendants are not safe until Alice is removed. This also removes pk′ and any
secrets encrypted to it. So, A can generate all secrets sent to pk′ itself, as they
don’t matter for any safe epoch.

Now say Z makes Bob process an injected commit c′ and assume Bob uses
an honest key, i.e., one created in the GSD game for an uncorrupted node. Say
Bob’s ciphertext in c′ is ctxt. There are a few possible scenarios:

– A has never seen ctxt (e.g. because Z computed a commit in his head).
Clearly, IND-CPA is not sufficient here. Hence, we extend the GSD game by
a decrypt oracle (which does not work on ciphertexts that allow to trivially
compute the challenge) and prove that the new notion is implied by IND-
CCA.

– A generated ctxt using the GSD game, as part of a commit message c creating
a safe epoch (note that c and c′ may differ in places other than ctxt). Now the
decrypt oracle cannot be used, but fortunately the confirmation tag comes to
the rescue. Indeed, any tag accepted by Bob allows A to extract the joiner in
c from Z’s RO queries (we soon explain how) and compute the application
secret in c. Hence, A can request GSD challenge for this secret and win.
For simplicity, assume c and c′ are siblings, i.e., Bob is currently in c’s parent
(see the full proof for other cases). Recall that the tag is a MAC under the
new epoch’s confirmation key over the transcript hash, and that the transcript
hash contains the whole commit message c or c′ (except the tag). The MAC
is modeled as an RO call on input (confirmation key, transcript hash), so
the only way for Z to compute a valid tag for c′ is to query the RO on
input (confirmation key in c′, transcript hash updated with c′). Moreover,
the confirmation key is a hash of the joiner secret, so A can extract the
joiner secret in c′ as well (note that the joiner secret is never encrypted).
Now observe that the joiner secret is a hash of the init and commit secrets.
Moreover, the init secret is the same in c and c′, since they are siblings, as is
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the commit secret due to ctxt being the same. Hence, the joiner secret of c is
the same as the one extracted from c′. ��

6 Insider Attacks

We first discuss three insider attacks on the design of MLS Draft 10 (as it stood
prior to applying the fixes proposed as part of this work). Each is practical,
yet violates the design goals of MLS. Next, we present an insider attack on
MLS made possible when its ciphersuite is replaced by a weaker one that still
meets assumptions deemed sufficient in previous analyses. Together these attacks
highlight the limitations of prior security notions.

6.1 An Attack on Authenticity in Certain Modes

MLS supports two wire formats for packets: MLSCiphertext, meant to provide
extra metadata protection by applying an extra layer of authenticated symmetric
encryption, and MLSPlaintext, allowing for additional server-assisted efficiency
improvements. As part of our analysis, we realized that an MLSCiphertext (unin-
tentionally) provides stronger authentication guarantees than an MLSPlaintext:
Forging the latter requires only signature keys of a group member while the for-
mer also requires knowing the current epoch’s key. This results in weaker than
expected PCS since signature keys will be rotated much less frequently than
epoch keys: Despite a party having issued an update proposal or a commit the
adversary may, thus, still be able to forge certain types of messages, such as
proposals.

Theorem 2. The ITKAtk-1 protocol, which behaves like the ITK protocol but
does not include membership tags, does not securely realize (F iw

as ,F iw
ks ,Fcgka) in

the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe and inj-
allowed from Fig. 6.

Proof (Sketch). Let S be an arbitrary simulator and consider the following envi-
ronment Z that initially sets up a group consisting of three parties A, B, and C
in the same group state. In this state, Z then corrupts party A, hence learns its
signing key sskA. Then, Z instructs A to issue a commit message c with an empty
list of proposals and the old spkA. (This causes A to update its ephemeral key
and resample the compromised path in the ratchet tree, but keep its long-term
signing key.) Now, Z crafts a proposal message p∗ that removes C on behalf of
A, according to the (modified) protocol ITKAtk-1. Note that all the included val-
ues are public and thus known to the environment, and Z can sign the proposal
using the leaked sskA. (Important: note that the environment does not instruct
A do create such a proposal command, but forges it!) Finally, Z instructs B to
commit to this proposal p∗ and lets B process the respective commit message
c∗. If B accepts and outputs the correct semantics for p∗, then Z returns 1,
otherwise it returns 0.
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It is easy to see that Z outputs 1 when interacting with the hybrid world
as p∗ is a valid proposal created identically to how the honest party A would.
Now consider the ideal world functionality and observe that after A issues the
commit c2 all parties are in the same state, which is further marked as good,
i.e., with stat = good for it is created by an honest party with good random-
ness. We now observe that functionality’s authenticity invariant will fail at the
end of B committing p∗, as inj-allowed(c,A) (whether the adversary can inject
on behalf of A) in the parent state (the one created by A’s second commit) as
know(c, ‘epoch′) will return false indicating that the adversary does not know
the symmetric key of said state. Hence, when interacting with the ideal func-
tionality the authenticity invariant prevents B from successfully committing to
the proposal p∗, causing Z to return 0. ��

To bring the authenticity guarantees in line, we proposed adding a MAC to
MLSPlaintexts [15].

6.2 Breaking Agreement

The way the transcript hash was computed and included in the confirmation tag
in the original proposal of MLS lead to counter-intuitive behavior, where parties
think they are in-sync and agree on all relevant state when they are not.

More concretely, the package’s signature was not included into the confirmed
transcript hash, but it was included into the interim transcript hash. Suppose
that a malicious insider creates two valid commit messages c and c′, which only
differ in the signatures, and sends them to Alice and Bob respectively. If both
signatures check out (which for most signatures an insider can achieve) then Alice
and Bob both end up with the same confirmed transcript hash and, thus, with
the same confirmation tag. Therefore, they both transition to the new epoch,
agree on all epoch secrets and can exchange application messages. However,
MLS messages Alice sends now include confirmation tags computed using the
mismatching interim transcript hash, and hence are not accepted by Bob.

In our security model this shows up as a break on the notion of a group state,
as formalized by the history graph nodes. That is, in our model each history
graph node is supposed to correspond to a well-defined and consistent group
state. The way the transcript hash used to be computed violated this property,
as on the one hand parties had the same key and could exchange messages (same
state) while on the other hand parties would no longer be able to process each
other’s commit messages (different states). In particular, when processing two
such related commit messages c and c′ that only differ in the signature, in the
ideal functionality Fcgka the parties end up in two distinct states. Yet, in the
real world execution the parties would still accept each other’s proposals, which
in Fcgka is ruled out by the consistency invariant.

Theorem 3. Assume the signature scheme Sig does not have unique signatures
(this strong property is not achieved by the schemes used by MLS). Then, the
ITKAtk-2 protocol, which behaves like ITK using Sig but does not include the
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package’s signature into the confirmed transcript hash, does not securely real-
ize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the

predicates safe and inj-allowed from Fig. 6.

Proof (Sketch). Let S be an arbitrary simulator and consider the following envi-
ronment Z that initially sets up a group consisting of parties A, B, and C that
are in the same consistent state, as in the previous proof. Then, the environment
acts as a malicious insider A sending semi-inconsistent commit messages to B
and C. To this end, it corrupts party A and learns sskA. Afterwards it computes
a commit message c1 (to an empty proposal list) and another one c′

1 by first
copying c1 and then replacing the signature by a different valid one. It delivers
c1 to B and c′

1 to C. Finally, Z instructs B to create a proposal p that removes
A from the group. Moreover, instruct both B and C to first commit to this pro-
posal (creating commit messages c2 and c′

2, respectively) and have each of the
parties process their own commit message. If both parties successfully process
their commit messages, Z outputs 1, and 0 otherwise.

It is easy to see that when interacting with the hybrid world both B and
C successfully process their own commits, as the interim transcript hash does
not affect the proposal p, making it valid for both B and C whose views agree
in everything but the interim transcript hash. In the ideal world, however, p
is associated with B’s node and as a result cannot be committed to by C, as
enforced by the consistency invariant. (In our model two different ciphertexts c1
and c′

1 cannot point to the same node.) As a result, Z outputs 0 when interacting
with the ideal world. ��

Our fix that moves the signature into the confirmed transcript hash has been
incorporated into MLS [16].

6.3 Inadequate Joiner Security (Tree-Signing)

The role of the tree-signing mechanism of MLS is to provide additional guar-
antees for joiners by leveraging the long-term signature keys distributed by the
PKI. Intuitively, we may hope for the following guarantee: A joiner (potentially
invited by a malicious insider to a non-existing group) ends up in a secure epoch
once all malicious parties have been removed. A bit more precisely, a key is
corrupt if the secret key is registered by or leaked to a malicious actor.

Surprisingly, we can show that the initial tree signing mechanism introduced
in MLS Draft 9 does not achieve this guarantee. Rather, it achieves something
much weaker: A joiner ends up in a secure epoch once all members with the
following types of long-term signature keys have been removed: (a) corrupt keys
and (b) keys used in a different epoch that includes a key of type (a). We believe
this to be an unexpectedly weak guarantee. In particular, it means that malicious
insiders can read messages after being removed.14

14 It also seems to contradict the (informal) notion of the “tree-invariant” often cited
on the MLS mailing list.
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Fig. 7. The attack on the tree signing of ITKAtk-3. (Color figure online)

The Attack on Tree-Signing. We call ITK using the tree-signing mechanism from
MLS Draft 9 ITKAtk-3. We next present a simple and highly practical attack
against ITKAtk-3. It results in groups with epochs containing no keys of type A)
yet for which the epoch key is easy to compute by the malicious insiders.

We first recall the tree signing of ITKAtk-3. It works by storing in each ratchet-
tree node v a value v.parentHash computed as follows.

if v.isroot then v.parentHash ← ε
else v.parentHash ← Hash(v.parent.pk, v.parent.parentHash)

Further, each leaf contains a signature over its content, including its parentHash,
under the long-term key of its owner. This means that during each commit the
committer signs the new parentHash of their leaf, which binds all new PKE
public keys they generated. We say that the committer’s signature attests to the
new PKE keys. Now joiners can verify that each public key in the ratchet tree
they receive in the welcome message is attested to by some group member who
generated it. (The joiners check the validity of the long-term keys in the PKI.)

Intuitively, the issue is, however, that committers only attest to the key pairs
they (honestly) generated, but not to which parties they informed of the secret
keys. This allows a malicious insider to create his own ratchet tree, where they
knows secrets of nodes that are not on his direct path. Therefore, removing them
from the fake group doesn’t cause removal of every key they knows, breaking
Invariant (2) of the protocol.

Theorem 4. The ITKAtk-3 protocol, that behaves like ITK but with the MLS
Draft 9 tree-signing mechanism, does not securely realize (F iw

as ,F iw
ks ,Fcgka) in

the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe and inj-
allowed from Fig. 6.

Proof (Sketch). The attack is illustrated in Fig. 7. Assume that the environment
Z sets up a group with a group creator A adding parties B and C (in this order),
leading in the hybrid world to ratchet tree depicted in Fig. 7a. In this state, the
adversary corrupts party B, which henceforth is assumed to be malicious, while A
and C are never corrupted and, thus, honest. In the following Z acts on behalf
of the corrupted B and builds the fake ratchet tree from Fig. 7b, meaning Z
swaps parties B and C (their public keys), then adds party D on behalf of B to
the group, outputting a respective welcome message w using B’s leaked signing
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key. Crucially, we observe that the ratchet tree from Fig. 7b represents a valid
one that D will accept: In Fig. 7a C’s leaf signature only attested to C’s leaf
key (the green one) as the parent hash field is empty. Second, A’s leaf signature
does not attests to B’s leaf key (but only the blue ones) as the parent hash only
includes the nodes on A’s direct path to the root. Third, Z can re-key B’s new
path and attest to the fresh keys (the red ones) using the leaked signing key.

The environment then delivers w to D, joining them to the fake group, and
afterwards Z instructs D remove B, i.e., to propose, commit, and then process
the respective commit message c′. Finally, Z queries D’s group key key and also
computes the expected group key key′ by taking D’s commit message and using
the secret key known to Z marked in Fig. 7c and perform the same computation
C would in the ITKAtk-3 protocol. If key = key′, then Z outputs 1 and 0 otherwise.

It remains to convince ourselves that Z distinguishes with non-negligible
probability for any simulator S. It is easy to see that when interacting with
the hybrid world Z outputs 1. Finally, consider the ideal-world. We argue that
safe(c′) = true meaning that the functionality outputs an independent and
u.a.r. key and, thus, Z outputs 0 with overwhelming probability. First, it is easy
to see that S has to join D to a detached root as no other group state matches,
e.g., none has D as a member. Next, observe that D has not been corrupted
implying that the node created by D’s commit is marked with Node[c′].stat =
good and has no direct exposures, i.e., Node[c′].exp = ∅. As a result, we have
safe(c′) = ¬*can-traverse(c′) while *can-traverse(c′) = false as clearly only
case (d) might apply but know(c′, id) = false for all id ∈ {A,B,C,D} for the
following reasons: First, A, C, and D have never been corrupted, in particu-
lar implying *state-directly-leaks(c′, id) = false and know(root1, id) = false,
where root1 denotes the detached root to which D joined. Second, for B,
observe that *state-directly-leaks(c′, B) = false as B /∈ Node[c′].mem and
B /∈ Node[c′].exp while *secrets-replaced(c′, B) = true as B has been removed
from that state. Thus, we can deduce that safe(c′) = true, concluding the proof.

��

Fixing Tree Signing. In essence, we can prevent the attack by modifying the
parent hash such that committers attest to the key pairs they generated and to
which parties were informed about the secret keys. We can achieve this by com-
puting the parent hash v.parentHash as Hash(w.pk, w.parentHash, w.memberCert)
where w is v’s parent and memberCert attests to the set of parties informed about
the w.sk. It is left to find a good candidate for memberCert; one that is secure
and easy to compute. We next discuss 3 candidates for memberCert.

The first candidate is called the leaf parent hash. This is the most direct
solution which simply sets w.memberCert to the list of all leaves in the subtree
of v.sibling that are not unmerged at w. Observe that, by Invariant (2) of ITK, the
owners of these leaves, and only they, were informed about w.sk (recall that the
unmerged leaves are defined as those that do not know w.sk). One disadvantage
of the leaf hash is that it is not very implementation-friendly.

The second candidate, called the tree parent hash, has been initially consid-
ered for MLS [35]. It basically sets w.memberCert to the tree hash of v.sibling
with the unmerged leaves omitted (recall that ITK computes the tree hash as the
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Merkle hash of the ratchet tree). Observe that the tree hash binds strictly more
than the leaf hash. The tree hash would be more straightforward to compute.
Unfortunately, it is not workable due to other mechanisms of MLS.15

Therefore, we propose a new candidate called the resolution parent hash.
It improves upon the leaf hash in 2 ways: it is more implementation-friendly
and it has slightly better deniability properties.16 The resolution hash sets
memberCert to the PKE public keys of nodes in u.origChildResolution where
u.origChildResolution is the resolution of u with the unmerged leaves of u.parent
omitted. Observe that u.origChildResolution is the resolution of u at the time the
last committer in the subtree of v generated the key pair of w.

The reason this works is less direct than in the case of leaf and tree hashes.
Intuitively, assume all long-term keys in the subtree of w are uncorrupted. The
honest committer who generated w’s key pair attests to w.pk and all PKE keys
in u.origChildResolution, i.e. those they encrypted w.sk to. These PKE keys are
in turn attested to by the honest members in their subtrees who generated them.
Applying this argument recursively and relying on the security of the encryption
scheme, we can conclude that all key pairs in the ratchet tree remain secure.

6.4 IND-CPA Security Is Insufficient

Many prior analysis of MLS only assume IND-CPA security of the PKE scheme
it uses. However, there are PKE schemes that are IND-CPA secure but that
make MLS clearly insecure against active attackers—despite MLS employing
signatures and MACs to protect authenticity—highlighting the inadequacies of
those works’ simplified security models to account for all relevant aspects (and
the danger of analyzing too piecemeal protocols without considering their com-
position in general).

Consider the protocol ITKcpa which behaves like ITK but replaces its PKE
scheme with PKE∗. PKE∗ is IND-CPA secure and has the following property: a
ciphertext ctx containing a message m can be modified into ctxi, s.t. decrypting
ctxi outputs ⊥ if and only if the i-th bit of m is 0, and otherwise decrypting
ctxi outputs m.17 The following attack shows that ITKcpa is clearly insecure in
the setting with active attackers. In particular, a malicious insider can decrypt
messages after being removed from the group. Let κ denote the length of a path
secret used by MLS. The attack proceeds as follows:

1. An honest execution leads to an epoch E1 where the group has N = 4κ
members P1, . . . , PN , ordered according to their leaves from left to right.
Further, the ratchet tree has no blanks.

15 With adds and removes, the subtree of v can grow or shrink since the last commit,
changing the tree hash. It is not clear how to revert these changes.

16 With the leaf hash, members sign each other’s credentials, thus attesting to being
in a group together. The resolution hash gets rid of this side effect.

17 PKE∗ can be easily obtained as a straightforward adaptation of the artificial sym-
metric encryption scheme by Krawczyk [31] (used to show that the authenticate-
then-encrypt paradigm is not secure in general) to the public key setting.
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2. The adversary corrupts P1 and PN .
3. P1 (honestly) sends a commit c1, creating an epoch E2. PN−1 transitions to

E2, and sends a commit c2 that removes PN , creating epoch E3.
The expectation is that E3 is secure due to PCS and removing all corrupted
members. The adversary will next compute group key in E3.

4. The adversary has the following information: P1’s signing key ssk1 (the same
in all epochs), the secret key sk of the right child of the root in E1 (corrupted
PN knows sk), the init secret in E1 and the ciphertexts ctxRoot and ctxLchild
encrypting P1’s two last path secrets in c1.
The adversary shouldn’t know the path secret s encrypted in ctxLchild, since
this breaks the tree invariant. He will next learn s it bit by bit.

5. The members who will decrypt ctxLchild are Pκ+1 to P2κ. For i = 1 to κ,
the adversary injects to Pκ+i the packet c1 modified as follows:
(a) Replace ctxLchild by ctxLchildi obtained using the PKE∗ property.
(b) Update the confirmation tag accordingly: 1) Decrypt ctxRoot using sk.

The result is the next path secret s′ after s. 2) Use s′ to compute the
commit secret. 3) Compute the new key schedule using the init secret in
E1 and the commit secret from 2). 4) Compute the tag.

(c) Update the signature using ssk1.
6. Clearly, if Pκ+i accepts, then the i-th bit of s is 0, else 1.

Now the adversary uses s to compute the key in E3.
7. Using s, the adversary derives the secret key for the left child of the root

in E2. Since this node is in the copath of PN−1, the adversary can use it to
decrypt the commit secret from c2. The adversary then computes the init
secret in E2 by honestly running PN ’s protocol and mixes it with the commit
to derive the key schedule in E3.

Clearly, however, the safe predicate of our Fcgka functionality considers the
resulting key from epoch E3 as secure. Hence, we get the following result.

Theorem 5. The ITKcpa protocol that behaves like ITK does not securely real-
ize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the

predicates safe and inj-allowed from Fig. 6.

Proof. We show that for every simulator S, there exists an environment Z that
has non-negligible advantage in distinguishing the ideal world from the real world
with ITKcpa. Let S be any simulator. The environment Z executes the attack
described above, i.e., it gives appropriate instructions to honest parties and per-
forms the adversary’s attacks. Let key′ denote the group key computed at the
end by the adversary. Z fetches the group key key in E3 (via the Key query to
say P5). If key = key′, it outputs 1 else 0.

We will show that safe is true in E3. Given this, we can conclude the proof
with the following observations: Clearly, in the real world, Z always outputs 1
(for simplicity we assume perfect correctness). In the ideal world, since safe is
true, key is chosen by Fcgka random and independent of S. Since key′ is computed
by Z only from information given to S, this means that with overwhelming
probability key 	= key′, and hence Z outputs 0.
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It remains to show that safe is true. Informally, the only corruptions are
of P1 and PN in E1. Transitioning to E1 “heals” from P1’s corruption, since
this is an honest commit from them, and transitioning to E3 heals from PN ’s
corruption, since they are removed.

Formally, we will show that know is false for all parties in E3. This will
mean that *can-traverse(c2) = false (by inspection, all other conditions that
can make it true do not occur). Hence, safe is true in E3.

Observe that know can only be true for P1 and PN , as *state-directly-leaks
is only true for these parties in E1. First, *secrets-replaced(c1, P1) is true,
since None[c1].orig = P1. Therefore, know(c1, P1) = false and by recursion
know(c2, P1) = false. Second, *secrets-replaced(c2, P2) is true, since it includes
a proposal with act = rem-PN . Therefore, know(c1, P1) = false. ��
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1 IBM Research Europe, Ruschlikon, Switzerland
nkn@zurich.ibm.com

2 ETH Zurich, Zurich, Switzerland

Abstract. We present a much-improved practical protocol, based on the
hardness of Module-SIS and Module-LWE problems, for proving knowl-
edge of a short vector �s satisfying A�s “ �t mod q. The currently most-
efficient technique for constructing such a proof works by showing that
the �∞ norm of �s is small. It creates a commitment to a polynomial vector
m whose CRT coefficients are the coefficients of �s and then shows that
(1) A ·CRT(m) “ �t mod q and (2) in the case that we want to prove that
the �∞ norm is at most 1, the polynomial product (m ´ 1) ·m · (m ` 1)
equals to 0. While these schemes are already quite practical, the require-
ment of using the CRT embedding and only being naturally adapted to
proving the �∞-norm, somewhat hinders the efficiency of this approach.

In this work, we show that there is a more direct and more efficient
way to prove that the coefficients of �s have a small �2 norm which does
not require an equivocation with the �∞ norm, nor any conversion to
the CRT representation. We observe that the inner product between two
vectors �r and �s can be made to appear as a coefficient of a product (or
sum of products) between polynomials which are functions of �r and �s.
Thus, by using a polynomial product proof system and hiding all but one
coefficient, we are able to prove knowledge of the inner product of two
vectors (or of a vector with itself) modulo q. Using a cheap, “approxi-
mate range proof”, one can then lift the proof to be over Z instead of Zq.
Our protocols for proving short norms work over all (interesting) poly-
nomial rings, but are particularly efficient for rings like Z[X]{(Xn `1) in
which the function relating the inner product of vectors and polynomial
products happens to be a “nice” automorphism.

The new proof system can be plugged into constructions of various
lattice-based privacy primitives in a black-box manner. As examples, we
instantiate a verifiable encryption scheme and a group signature scheme
which are more than twice as compact as the previously best solutions.

1 Introduction

The fundamental hardness assumption upon which lattice-based cryptography
rests is that it is computationally difficult to find a low-norm vector s satisfying

As “ t mod q. (1)
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It is then natural that for creating privacy-preserving protocols based on the
hardness of lattice problems, one is usually required to prove the knowledge of
an s satisfying the above, or a related, equality. Unlike in the analogous case
of discrete logarithms, where proving knowledge of a secret s satisfying gs “ t
turns out to have a very simple and efficient solution [36], the added requirement
of showing that ‖s‖ is small turns out to be a major complication for practical
lattice cryptography.

Over polynomial rings (i.e. rings of the form Z[X]{(f(X)), where f(X) is
a monic, irreducible polynomial), one can give a fairly-efficient zero-knowledge
proof of knowledge of a vector s̄ and a polynomial c with small coefficients
satisfying

As̄ “ ct mod q, (2)

where ‖s̄‖ is some factor (depending on the dimension of s) larger than ‖s‖
[24,25]. While such proofs are good enough for constructing fairly efficient basic
protocols (e.g. signature schemes [4,15,24,25]), the fact that the norm of the
extracted s̄ is noticeably larger than that of s, along with the presence of the extra
multiplicand c, makes these proofs awkward to use in many other situations. This
very often results in the protocols employing these proofs being less efficient than
necessary, or in not giving the resulting scheme the desired functionality.

As simple examples of inefficiencies that may creep up when only being able
to prove (2), consider Regev-style lattice-based encryption schemes (e.g. [32,35])
where s is the randomness (including the message) and t is the ciphertext. In
order to decrypt, it is necessary for t to have a short pre-image, and so being
able to only prove knowledge of (2) is not enough to guarantee that the cipher-
text t can be decrypted because it is ct that has a short pre-image, not t (and
c is not known to the decryptor). A consequence of this is that the currently
most-efficient lattice-based verifiable encryption scheme [26] has the undesirable
property that the expected decryption time is equal to the adversary’s running
time because the decryptor needs to essentially guess c. Employing this scheme
in the real world would thus require setting up a scenario where the adversary
cannot use too much time to construct the proof. Other lattice-based construc-
tions (e.g. group signature schemes [28]) were required to select much larger
parameters than needed in order to accommodate the presence of the multi-
plicand c and the “slack” between the length of the known solution s and the
solution s̄ that one can prove.

1.1 Prior Art for Proofs of (1)

Early protocols for exactly proving (1) used the combinatorial algorithm of Stern
[37] to prove that the �∞ norm of s is bounded by revealing a random permu-
tation of s. The main problem with these protocols was that their soundness
error was 2{3, and so they had to be repeated around 200 times to achieve an
acceptably small (i.e. 2´128) soundness error. This resulted in proofs for even
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basic statements1 being more than 1MB in size [23], while more interesting con-
structions required outputs on the order of dozens of Megabytes (e.g. [22]). A
noticeable improvement was achieved in [9] by generically combining Stern’s pro-
tocol with a “cut-and-choose” technique to noticeably decrease the soundness
error of each protocol run (at the expense of higher running times). This allowed
proofs for basic statements to be around 200 KB in size.

A very different, more algebraic, approach for proving (1) utilized lattice-
based commitments and zero-knowledge proofs about committed values to prove
relations between the coefficients of s and also prove a bound on its �∞ norm.
The first such protocols [11,17,38] had proof sizes that were on the order of
several hundred kilobytes. These schemes were greatly improved in [3,16], where
it was shown how to very efficiently prove products of polynomial products over
a ring and then linear relations over the CRT coefficients of committed values.
Optimizations of these techniques [31] decreased the proof size for the basic
example to around 33 KB.

The high level idea for these proofs, when s has coefficients in the set
{´1, 0, 1}, is to create a BDLOP commitment [6] to a polynomial m whose
CRT coefficients are the coefficients of s, prove this (linear) relationship as well
as the one in (1) [16], and then prove that (m ´ 1) · m · (m ` 1) “ 0 [3].

There are a few intrinsic elements of this approach which hinder its effi-
ciency, especially in certain situations. The first is that m consists of large poly-
nomial coefficients, and so committing to it requires using a more expensive
commitment scheme, which is especially costly when s is long2 (we discuss this
in more detail when talking about various commitments in Sect. 1.3). Another
downside is that for vectors s with somewhat-large coefficients, such as ones
that are obtained from trapdoor sampling (e.g. [1,34]), proving the smallness of
the �∞-norm becomes significantly costlier because the degree of the polynomial
product increases. There is also an incompatibility between the requirement that
the underlying ring has a lot of CRT slots and negligible soundness error of the
protocol – thus a part of the protocol needs to be repeated for soundness ampli-
fication. And finally, proving the �2 norm, rather than the �∞ one, is very often
what one would like to do when constructing proofs for lattice-based primitives.
This is because efficient trapdoor-sampling used in many lattice primitives pro-
duces vectors of (tightly) bounded �2 norm, and noise also generation generally
results in tight �2-norm bounds.

1 A standard example that has been used for comparison-purposes in several works
is 1024 ˆ 2048 integer matrix A, a 32-bit modulus q, and s having coefficients in
{´1, 0, 1} (or ‖s‖ �

√
2048).

2 The aforementioned framework was most appropriate for committing to small-
dimensional messages (e.g. in protocols related to anonymous transactions (e.g.
[18,19,31]) and proving various relationships between them.
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1.2 Our Results

We propose a simpler, more efficient, and more direct approach for proving a
tight bound on the �2 norm of s satisfying (1). Unlike in the previous approach,
we do not need to recommit to s in CRT form, and therefore don’t have a ring
algebra requirement which had a negative effect on the protocol soundness. Fur-
thermore, not needing to create a BDLOP commitment to s noticeably shrinks
the proof size. In particular, we define a commitment scheme which combines
the Ajtai [2] and BDLOP [6] commitments into one, and then put the long com-
mitment to s into the “Ajtai” part of the commitment scheme, which does not
increase the commitment size.3

We then observe that the inner product of two vectors over Z can be made
to appear as the constant coefficient of a polynomial product, or as a coefficient
in a sum of polynomial products. Our protocol for proving the �2-norm of s is
then a specific application of a more general protocol that can prove knowledge
of constant coefficients of quadratic relations over polynomial rings for messages
that are committed in the “Ajtai” and “BDLOP” parts of our new commitment.
Our protocols are built up in a black-box manner from basic building blocks,
and can then also be used in a black box manner for implementing the zero-
knowledge proof parts of various lattice-based primitives. As examples, the ZK
proof of the basic relation from (1) is « 2.5X shorter than in previous works,
a verifiable encryption scheme can be as short as the one from [26] without the
constraint that the decryption time is proportional to the adversary’s attack
time, and we give a group signature scheme whose signatures are more than 2X
smaller than the currently most compact one.

Our proof system for the basic equality from (1) is around 14 KB, and approx-
imately 8 KB of that consists of just the “minimum” commitment (i.e. a com-
mitment to just one element in Rq that doesn’t include s) and its opening proof.
This shows that our construction is quite close to being optimal for any approach
that requires creating a commitment to s using known lattice-based commitment
schemes. Since all zero-knowledge proofs that we’re aware of for showing that a
secret s satisfies f(s) work by first committing to s, it appears that any signif-
icant improvement to this proof system (e.g. another factor of 2) would require
noticeable improvements in fundamental lattice primitives, basing security on
stronger assumptions, or a noticeable departure from the current approach.

We now give a detailed overview of the techniques and results in this work,
and then sketch how our framework can be used to construct lattice-based pri-
vacy protocols.

1.3 Techniques Overview

Throughout most of the introduction and paper, we will concentrate on the
ring Rq “ Zq[X]{(Xd ` 1), as our constructions are most efficient here because

3 The BDLOP part of the commitment scheme is then used for low-dimensional aux-
iliary elements that will need to be committed to later in the protocol.
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they can utilize a specific automorphism in this ring. Towards the end of this
section and in the full version of the paper [27], we describe how to adapt our
construction, and most applications, to other rings that do not have this algebraic
structure. All our constructions will be based on the hardness of the Module-SIS
and Module-LWE problems and one should think of the degree of the underlying
ring d to be something small like 64 or 128 (we use 128 for all our instantiations).

Commitment Schemes. In the original Ajtai commitment scheme, implicit in
[2], one commits to a message s1 using randomness s2, where ‖si‖ are small, as

A1s1 ` A2s2 “ t mod q. (3)

It’s easy to see that creating a second valid opening (s′
1, s

′
2) for the same com-

mitment value t is equivalent to solving the SIS problem over Rq, and the hid-
ing aspect of the commitment scheme is based on the indistinguishability of
(A2,A2s2) from uniform. A useful feature of the above commitment scheme is
that the dimension of the message s1 does not increase the commitment size.
And since the hardness of SIS does not really depend on the dimension of the
solution, increasing the dimension of s1 does not negatively impact the security
either. On the other hand, one does need the coefficients of s1 to be small.

A different commitment scheme, called the BDLOP scheme [6], commits to
a message m using randomness s as

[
A
B

]
· s `

[
0
m

]
“

[
tA

tB

]
mod q, (4)

where only the randomness s needs to have a small norm. An opening of this
commitment is just s since it uniquely determines m, and so it is again easy to
see that two different openings lead to a solution to SIS for the matrix A. The
hiding property of this commitment is based on the indistinguishability from

uniform of
([

A
B

]
,

[
A
B

]
· s

)
.

This scheme has two advantages and one disadvantage over the one in (3).
The disadvantage is that both the commitment size and the opening size grow
linearly with the dimension of the message vector m. An advantage is that
the coefficients of m can be arbitrarily large modulo q. The other advantage
is that if one plans ahead and sets the dimension of s large enough, one can
very cheaply append commitments of new elements in Rq. For example, if we
have already created a commitment to m as in (4) and would like to commit
to another polynomial vector m′, we can compute B′s ` m′ “ t′

B mod q, where

B′ is some public randomness. If

⎛
⎝

⎡
⎣A

B
B′

⎤
⎦ ,

⎡
⎣A

B
B′

⎤
⎦ · s

⎞
⎠ is indistinguishable from

uniform, then (tA, tB , t′
B) is a commitment to m,m′. Note that committing to k

extra Rq elements requires growing the commitment size by only k Rq elements,
something that cannot be done using the scheme from (3).
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For optimality, our construction will require features from both of these
schemes, and it actually turns out to be possible to combine the two of them
into one. So to commit to a message s1 with a small norm, and a message m
with unrestricted coefficients (modulo q), one can create a commitment

[
A1

0

]
· s1 `

[
A2

B

]
· s2 `

[
0
m

]
“

[
tA

tB

]
mod q, (5)

where the randomness is s2. We will call this combination of the Ajtai and
BDLOP commitment scheme, the ABDLOP commitment. The savings over cre-
ating two separate commitments is that instead of needing the t term from (3)
and the tA term from (4), we only have the tA term. So we get an Ajtai com-
mitment to s1 for free! And similarly, the opening does not require both s2 from
(3) and s from (4).

One can show that (5) is indeed a commitment scheme and has an effi-
cient zero-knowledge opening proof.4 Furthermore, there is also an efficient zero-
knowledge proof (much like in [6]) which allows one to efficiently show that the
committed values s1,m satisfy a relation over Rq

R1s1 ` Rmm “ u mod q, (6)

where the matrices R1,Rm, and the vector u are public. This proof system is
given in Fig. 4, and we just mention that the proof size is not affected by the
sizes of R1 and Rm. In other words, the proof size for proving linear relations
over Rq is the same as the proof size of just proving knowledge of the committed
values. The only way in which this proof puts a restriction on the underlying ring
is that the modulus q must be large enough so that the extracted SIS solution
is hard, and that the challenge set C is such that the difference of challenges is
(with high probability) invertible. This can be done by choosing the modulus q
in a way that Xd ` 1 splits into very few irreducible factors of the form Xk ´ ri

modulo q (or the prime factors of q), which in turn implies that all elements of
Rq with small coefficients are invertible [33].

The way this commitment scheme will be used in our protocols is that we
will put high-dimensional messages with small coefficients into s1, while putting
small-dimensional values with large coefficients – generally auxiliary “garbage
terms” that we will need to commit to during the protocol which aid in proving
relations among the elements in s1 – into m.

Inner Products over Zq . Suppose that instead of just wanting to prove linear
relations over Rq, as above, we wanted to prove linear relations over Zq. That
is, if we let R1, Rm be integer matrices, and we write �s1 and �m to be integer
vectors whose coefficients are the integer coefficients of the polynomial vectors
s1 and m, then we would like to prove that R1�s1 ` Rm �m “ �u mod q.

4 As for the Ajtai and BDLOP commitments, the opening needs to be carefully defined
because the ZK proof only proves approximate relations as in (2). The details are in
Sect. 3.1.
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An important observation is the following: if �r “ (r0, r1, . . . , rd´1), �s “
(s0, s1, . . . , sd´1) P Z

d
q are vectors and r(X) “ ∑

i riX
i, s(X) “ ∑

i siX
i P Rq

are the corresponding polynomials, then 〈�r,�s〉 mod q is equal to the constant
coefficient of the polynomial product r(X´1) ·s(X) over Rq.5 Similarly, for �r,�s P
Z

kd
q , one can define the corresponding polynomial vectors r “ (r1, . . . , rk), s “

(s1, . . . , sk) P Rk
q to have the same coefficients as �r,�s in the straightforward man-

ner, then 〈�r,�s〉 mod q is equal to the constant coefficient of
∑

i ri(X´1) · si(X),
where the multiplication is performed over Rq.

For a polynomial h “ h0 ` h1X ` . . . ` hd´1X
d´1 P Rq, we will write h̃ to

mean the constant coefficient h0. The procedure to prove that 〈�r,�s〉 mod q “ α is
then to create polynomial vectors r, s such that 〈̃r, s〉 (where the inner product is
over Rq) is equal to 〈�r,�s〉. One can hope to use the protocol from Fig. 4 to prove
the linear relation over Rq, which would imply the linear relation over Zq. The
problem is that naively proving the relation over Rq would necessarily require
the prover to reveal all the coefficients of 〈r, s〉 instead of just the constant one,
which implies giving out extra information about the committed vector �s, and
so is clearly not zero-knowledge.

We now outline the solution to this problem for general linear functions. For
a linear function f : Rk

q Ñ Rq, we would like to prove that the committed values
s1,m in the ABDLOP commitment satisfy f̃(s1,m) “ 0 (for aesthetics, we will
write f̃(x) to mean f̃(x)). In order to mask all but the constant coefficient, we
use a masking technique from [16], where the prover first creates a commitment
to a polynomial g P Rq such that g̃ “ 0 and all of its other coefficients are chosen
uniformly at random. In our proof system, he commits to this polynomial in the
“BDLOP part” of (5) by outputting tg “ 〈b, s2〉 ` g, where b is some random
public polynomial vector. The verifier then sends a random challenge γ P Zq,
and the prover computes

h “ γ · f(s1,m) ` g. (7)

The prover then creates a proof, as in Fig. 4, that the committed values s1,m, and
g satisfy this linear relation, and sends h along with this proof to the verifier. The
verifier simply checks the validity of the linear proof, and also that h̃ “ 0 mod q.

The proof leaks no information about all but the constant coefficient of
f(s1,m) because they are masked by the completely random coefficients of
g. To see that this proof is sound, note that for all g, if f̃(s1,m) �“ 0, then
Prγ [γ · f̃(s1,m) ` g̃ “ 0] � 1{q1, where q1 is the smallest prime factor of q. In
order to reduce the soundness error down to ε, the prover would need to create
a commitment to λ different gi, where (1{q1)λ “ ε and then reply to λ different
challenges γi by creating λ different hi as in (7). Since the gi are just one poly-
nomial in Rq, the hi are also just one polynomial each, and so amplifying the
proof requires sending just 2λ extra elements in Rq.

5 For a polynomial r(X) “
d´1∑

i“0
riX

i P Rq, r(X´1) “ r0 ´
d´1∑

i“1
riX

d´i.
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The above shows that proving one relation f̃(s1,m) “ 0 requires a small
number λ of extra polynomials g and h. Usually, we will want to prove many
such linear equations, and so it would be quite inefficient if our proof size grew
linearly in their number. But, just like in the basic protocol in Fig. 4, we can
show that the number of equations that we need to prove does not affect the
size of the proof. If we would like to prove k equations f̃i(s1,m) “ 0, the prover
still sends the term g in the first round (let’s ignore the amplification for now),
but this time instead of sending just one random challenge γ P Zq, the verifier
sends k random challenges γi. The prover then creates the equation

h “
∑

i

γi · fi(s1,m) ` g, (8)

and sends h along with a proof that the s1,m, and g satisfy the above. The
verifier checks the proof and that h̃ “ 0 mod q. Hence, the fact that this proof
leaks no information and that the soundness error is again 1{q1 is virtually
identical as for (7).

Quadratic Relations and Norms. In the above, we saw an overview of how
one can prove knowledge of inner products over Rq and Zq when one of the
values is committed to and the other is public. We now show how to do the
same thing when both values are in the commitment – in other words, how to
prove quadratic relations over committed values.

The most efficient protocol for proving quadratic relations between commit-
ted polynomials in Rq is given in [3]. That protocol assumes that the elements
were committed using the BDLOP commitment scheme, and one can show that
a similar approach works for the ABDLOP scheme as well. And so one can prove
arbitrary quadratic relations over Rq between the committed polynomials in the
polynomial vector s1 and m in (5). We will now explain how to use this proof
system, together with the ideas presented above, to construct a proof that the
s satisfying (1) has small �2-norm. For simplicity of this description, let’s just
suppose that we would like to prove that ‖s‖ “ β instead of ‖s‖ � β.6 The idea
is to first commit to s as part of the s1 part of (5) (i.e. in the “Ajtai part” of
the ABDLOP scheme). Then we use the observation from the previous section
that notes that if s1 “ (s1, . . . , sk) P Rk

q , then ‖s‖2 is the constant coefficient
of

∑
i si(X´1) · si(X). We cannot directly use the proof system for linear proofs

because that one assumed that one of the multiplicands was public. We thus
need to extend the protocol from [3] to prove knowledge of

∑
i si(X´1) · si(X)

when having a commitment to s.
Let us recall the main ideas from [3] and then see how they can be applied to

the ABDLOP commitment. Suppose, for example, that we wanted to prove that

6 To prove the latter, one would commit to a vector �b which is the binary represen-
tation of the integer β2 ´ ‖s‖2 and then prove that it is indeed binary and that

〈�b, (1, 2, 22, ...0, . . . , 0)〉 is β2 ´ ‖s‖2; which implies that the latter is positive. Note

that it is still a quadratic relation in the committed values s and �b.
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s1s2 ´ s3 “ 0, and we had commitments to si in the Ajtai part of the ABDLOP
commitment (i.e. the si are part of the s1 in (5)). If one looks at the protocol
in Fig. 4 for proving knowledge of committed values in the ABDLOP protocol,
then we note that the prover sends the vector z1 “ cs1 ` y1. This z1 consists of
terms zi “ sic ` yi, where c is a polynomial challenge (with small coefficients)
and yi is a masking polynomial whose job is to hide si.

The high level idea in which the protocol from [3] (and some that preceded it
[11,17,38]) proves quadratic relations is by having the verifier create a quadratic
equation (in c) out of the linear equations zi “ csi ` yi. That is, the verifier
computes

z1z2 ´ cz3 “ (s1s2 ´ s3)c2 ` g1c ` g0, (9)

where g1 and g0 are some terms which depend on yi and si and are committed
to by the prover prior to receiving the challenge c.7 The above is a quadratic
equation in the variable c (since all the other terms are already committed
to), and so if the prover shows that z1z2 ´ cz3 “ g1c ` g0 (i.e. it’s actually a
linear equation) it will imply that with high probability the quadratic coefficient,
s1s2 ´ s3 is equal to 0.

To prove that the constant coefficient of s(X´1) · s(X) is some value β, one
can try to do something similar. Here, it becomes important that the function
mapping s to s(X´1) is an automorphism (call it σ) for Rq. Given the term
z “ sc ` y, the verifier is able to compute

σ(z)·z´σ(c)·c·β2 “ (σ(s)·s´β2)·σ(c)·c`σ(s)·y ·σ(c)`s·σ(y)·c`σ(y)·y, (10)

and, if the above is equal to g2 ·σ(c) ` g1 · c ` g0, would like to conclude that the
coefficients in front of σ(c) · c is 0. Unfortunately, we can’t conclude this because
the c and σ(c) are not independent. What we instead do is choose the challenges
c from a set that is fixed under this automorphism – that is, σ(c) “ c. Then (10)
becomes

σ(z) · z ´ c2β2 “ (σ(s) · s ´ β2) · c2 ` (σ(s) · y ` s · σ(y)) · c ` σ(y) · y, (11)

and we again have a quadratic equation in c. Luckily, the requirement that
σ(c) “ c does not restrict the challenge set too much. In particular, if we choose

c P Rq to be of the form c “ c0 `
d{2´1∑
i“1

ci · (Xi ´ Xd´i), where ci P Zq, then

c “ σ(c).8 So we are free to set d{2 coefficients of the challenge polynomial
instead of the usual d. So obtaining the same soundness requires the coefficients
to be a little larger, but this has a rather small effect on the proof size.

The protocol in Fig. 5 is a very general protocol for proving that a quadratic
function in the coefficients of s1 and m, and the automorphisms of s1 and m,

7 [3] showed that the yi were already implicitly committed to by the first part of the
protocol.

8 This is easy to see because σ(Xi´Xd´i) “ X´i´Xi´d, and multiplying by ´Xd “ 1,
we obtain σ(Xi ´ Xd´i) “ ´Xd´i ` Xi.



80 V. Lyubashevsky et al.

is satisfied as long as the challenge set is fixed under the particular automor-
phism. If we only want to prove the �2 norm, then we do not want to prove a
quadratic function over Rq, but rather we just want to prove something about
the constant coefficient of a quadratic relation over Rq. To do this, we employ
the same masking technique as in (7) that we used for our linear proofs over Zq.
Furthermore, just like in the linear proofs setting, if we need to prove multiple
quadratic relations, we can first combine them into one equation, and then the
proof size does not increase. Also note that we can clearly combine linear and
quadratic equations together into one quadratic equation. The full protocol is
presented in Fig. 7.

We are almost done, except for the fact that all of our proofs are modulo q.
That is, the protocol only proves that ‖s‖2 “ β2 mod q, which is not the same
as proving ‖s‖2 “ β2. In order to prove that there is no “wraparound” modulo
q, we employ a version of the “approximate range proof” technique to show
that the coefficients of s are all small-enough. We do not need a sharp bound
on these coefficients, but just need to show that they are small-enough that no
wraparound occurs. For this, we use the technique [7,8,20,29] of committing to
a masking vector �y (in the BDLOP part of (5)), receiving a ´1{0{1 challenge
matrix R, and outputting �z “ R�s ` �y (and doing a rejection sampling to hide
�s). It can be shown that if ‖�z‖ is small, then ‖�s‖ is also small. The dimension of
�y and �z is small (between 128 and 256), and so the extra commitment to �y and
the revealing of �z is inexpensive. The protocol for the approximate range proof,
and the general protocol proving these approximate range proofs in combination
with other quadratic functions are given in the full version of the paper [27].

Putting Everything Together. The structure for proving (1) involves creat-
ing an ABDLOP commitment as in (5) with s1 “ s and making the randomness
s2 long enough to accommodate future commitments to a few intermediate terms
necessary in the proof. One then uses the aforementioned proofs to show that
‖s1‖ is small, and that the linear equation in (1) is satisfied. Notice that we
don’t really need any ring structure on the equation in (1); if it is over Zq, we
can simply prove it using the linear proofs over Zq. This is computationally more
expensive than if the equation were over Rq, because for every multiplication
over Zq, we have to compute one multiplication over Rq, but the proof size will
be the same.

We also note that the modulus in (1) does not have to be the same as in the
commitment scheme. In fact, it will often be necessary to use a larger modulus
in the commitment scheme because it has to be larger than ‖s‖2. For example,
we can set the commitment scheme modulus to p · q and then simply lift the
equation in (1) to this modulus by multiplying both sides of it by p. As long as
the challenge differences are invertible in the ring Rq and Rp, all the protocols
go through unchanged.

Another possibility is, instead of proving As “ t mod q, one proves that

As ´ t “ r · q (12)
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over the integers. If each row of A consists of m integer coefficients, then each
coefficient of r has magnitude at most mq. One can then do the proof system
using a larger modulus p, and also prove that each coefficient of q´1(As´t) mod
p is small using the approximate range proof. The advantage of this method over
using pq as the modulus for the commitment scheme, as above, is that it allows
the commitment scheme modulus p to be a prime, and so one needs fewer terms
for coefficient masking (see the discussion after (7)), which could save a few
kilobytes in the complete proof. A disadvantage is that there is now the extra
secret r term that needs to be dealt with.

Useful Extensions. While we concentrated on proving the smallness of the
�2-norm of a vector �s (or more generally the knowledge of the inner product
between two vectors), it is also possible to use our techniques to prove many other
inter-vector relations. In particular, a useful relation (e.g. if dealing with general
functions/circuits) is proving the knowledge of the component-wise product �r˝�s.
This can be generally accomplished by proving a polynomial product over a ring
Rp of two vectors r and s whose CRT coefficients are �r and �s. The important
thing is to choose a prime p such that the polynomial Xd ` 1 factors into linear
factors modulo p. As mentioned above, by simply subtracting off the remainder as
in (12), one can use different moduli for the commitment scheme for the relations
that we would like to prove. Thus one can choose a “CRT-friendly” modulus
for the underlying relation, while using a modulus that allows the polynomial
differences to be invertible (so not a CRT-friendly one) for the commitment
scheme.

We also point out that proving inner products can be directly used to prove
another very natural function – showing that all the coefficients of a vector are
from the set {0, 1}. For this, one uses the observation that �s has coefficients in
{0, 1} if and only if 〈�s,�1 ´ �s〉 “ 0. And since given a commitment for �s, one can
maul it into a commitment to �1´�s, one can generically apply the aforementioned
protocol in Fig. 7.

Using Other Rings. In proving that the norm of a polynomial s was small,
we exploited the fact that in the ring R, ˜s(X´1) · s “ ‖s‖2 and that s(X´1)
was an automorphism. In the full version of the paper, we show that the same
high level ideas can also be made to work for rings that don’t have this algebraic
structure. Specifically, for all rings R “ Z[X]{(Xd ` fd´1X

d´1 ` . . . ` f1X ± 1),

there exists a linear function g : R Ñ R such that g̃(r) · s is equal to 〈�r,�s〉.
If g is not an automorphism, then proving knowledge of ‖s‖2 “ g̃(s) · s would
require the prover to commit to both s and g(s), and then also prove the linear
relationship between the commitments of s and g(s). Opening two commitments
instead of one will increase the proof size, but this is slightly mitigated by the
fact that the challenges no longer need to be restricted to be fixed under any
automorphism.
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Sample Constructions. In the full version of the paper, we present various
instantiations of lattice-based primitives that can be constructed using our zero-
knowledge proof system. We now give a very high-level description of a group sig-
nature scheme. In a group signature scheme, the Setup Authority uses a master
secret keys to distribute member secret keys to the members of the group. The
members can then use their secret keys to sign messages on behalf of the group.
An entity known as the Opener (or group manager) also has a special secret key
that allows him to obtain the identity of the signer of any message. The privacy
criterion states that it should be impossible, for everyone but the Opener, to trace
back a signature to the particular user, nor link that two signatures were signed by
the same user. Conversely, the traceability requirement states that every message
signed by a user with identity μ will get traced back to him by the Opener. Group
signatures are an interesting primitive in their own right, but are particularly use-
ful in determining the practicality of zero-knowledge proofs as they contain some
ingredients which are prevalent throughout privacy-based cryptography.

We show how we can use our improved ZK proof to construct a lattice-based
group signature following the framework of [13,28]. The master public key is
[A | B],u, and the secret key of a group member with identity μ is a short

vector
[
s1
s2

]
such that

[A | B ` μG] ·
[
s1
s2

]
“ u mod q. (13)

The setup authority with a trapdoor for the lattice L “ {x : [A | B] · x “
0 mod q} can create such short vectors which are distributed according to a
discrete Gaussian distribution [1,34].

The group member’s signature of a message consists of a Module-LWE
encryption of his identity μ as

[
A′

b

]
· r `

[
0

�p{2�μ
]

“ t mod p, (14)

where A′,b is the public key (of the Opener) and r is the randomness, together

with a ZKPoK that he knows μ, r, and
[
s1
s2

]
satisfying (13) and (14). The message

that the user is signing is, as usual, put into the input of the hash function used
in the Fiat-Shamir transform of the ZKPoK.

To create this signature, the user commits to s1, s2, r, μ in the “Ajtai” part
of the ABDLOP commitment (5). He then proves that the norms of s1, s2, r are
small, that μ has 0{1 coefficients, and that (14) and (13) hold. Notice that (14)
is just a linear equation and proving (13) is proving the quadratic relation As1 `
Bs2 ` Gμs2 “ u mod q. All of these proofs fit into the appropriate quadratic
functions and the full description of the group signature is given in the full
version of the paper.

The security of the scheme rests on the fact that creating a valid proof on a μ
that is not the user’s identity implies having a solution to (13) on a new identity,
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which is directly equivalent to breaking the ABB signature scheme [1,34], which
in turn implies breaking the Module-SIS problem. Prior to this work, proving
tight bounds on the �2 norm of polynomial vectors with somewhat large coef-
ficients was not very efficient, and so constructions of group signature schemes
using this approach [13,28] did not prove (13), but rather proved an approximate
version of it as in (2) – i.e. they proved knowledge of s̄1, s̄2, c satisfying

[A | B ` μG] ·
[
s̄1
s̄2

]
“ cu mod q, (15)

where ‖s̄i‖ " ‖si‖.
A consequence of being only able to prove the above is a vicious cycle of the

larger norms and the presence of c resulting in a larger extracted solution to
the Module-SIS problem, which in turn requires having a larger modulus for SIS
security, which then also requires a larger lattice dimension for LWE security.
Furthermore, because these schemes relied on the verifiable encryption scheme
of [26], they also did not prove (14), but rather an approximate version of it as
in (2). The implication is that in order to decrypt, the Opener needed to guess
the unknown c, which in expectation requires the same number of guesses as the
adversary’s number of calls to the random oracle during the proof. Thus special
care would be needed to instantiate the scheme in an environment that would
not allow the adversary to be able to have too much time to try and forge a
signature. We believe that efficiently eliminating this requirement in all lattice-
based schemes requiring a verifiable encryption scheme is a notable improvement
on the state of affairs.

Table 1. Our group signature and that of [28].

Public Key Size Signature Size
Opening Time Independent

of Adversary’s Forgery Time

[28] 96 KB 203 KB ˆ
This Work 48 KB 92 KB �

We compare the instantiation of the group signature from this paper to the
previously most efficient one from [28] in Table 1. We mention that there are also
tree-based group signatures (e.g. [10,18]) which have shorter outputs for small
group sizes, but have the disadvantage that the signing time, verification time,
and public key size are linear in the group size. The signature length of these
schemes also grows slightly with the group size, and for groups having more
than «221 members, our scheme has a comparable signature size (in addition to
a much smaller public key and signing/verification times).
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Table 2. The table on the left compares the difference in proof size of proving knowl-
edge of short �s,�e satisfying A�s ` �e “ �t mod q, where A P Z

1024ˆ1024
q and q « 232,

and ‖(�s,�e)‖ �
√

2048. The protocol from [30] needs to make the additional restriction
that all the coefficients in �s,�e are from {´1, 0, 1}. The table on the right compares our
instantiation of a verifiable encryption scheme from this paper with [26] and [30].

Proof Size

[30] 33KB

This Work 14KB

Ciphertext Size Proof Size

Decryption Time

Independent of

Forgery Time

[26] 9KB 9KB ˆ
[30]a 4KB 33–44KB �

This Work 1KB 19KB �
a This paper presents a verifiable decryption scheme, but the proof size for a verifiable
encryption scheme constructed in the same manner would be similar. At the very least, it
needs to be as large as the proof of the basic equation in (1).

Part of the group signature includes a verifiable encryption scheme, in which
the encryptor proves that the encryption is valid. When looked at separately, this
scheme has a similar size to the one from [26], but with the noticeable advantage
of not having a dependency between the decryption time and the adversary’s
forgery time. We also give a comparison of the proof size for the basic system in
(1) between our proof system and the prior best one from [30] that followed the
framework of [3] and [16]. The comparisons for the verifiable encryption scheme
and the basic proof system are in Table 2 and detailed descriptions of the proofs
can be found in the full version of the paper.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1, . . . , qn be a product
of n odd primes where q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. We
write �v P Z

m
q to denote vectors over a ring Zq. Matrices over Zq will be written

as regular capital letters R. By default, all vectors are column vectors. We write
�v||�w for a usual concatenation of �v and �w (which is still a column vector). For
�v, �w P Z

k
q , �v ˝ �w is the usual component-wise multiplication. For simplicity, we

denote �u2 “ �u ˝ �u. We write x ← S when x P S is sampled uniformly at random
from the finite set S and similarly x ← D when x is sampled according to the
distribution D. Let [n] :“ {1, . . . , n}.

For a power of two d and a positive integer p, denote R and Rp respectively
to be the rings Z[X]{(Xd ` 1) and Zp[X]{(Xd ` 1). Lower-case letters denote
elements in R or Rp and bold lower-case (resp. upper-case) letters represent
column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial
f P Rp, denote �f P Z

d
q to be the coefficient vector of f . By default, we write its
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i-th coefficient as its corresponding regular font letter subscript i, e.g. fd{2 P Zp

is the coefficient corresponding to Xd{2 of f P Rp. For the constant coefficient,
however, we will denote f̃ :“ f0 P Zp. The ring R has a group of automorphisms
Aut(R) that is isomorphic to Z

ˆ
2d. Let σi P Aut(Rq) be defined by σi(X) “ Xi.

For readability, we denote for an arbitrary vector m P Rk:

σi(m) :“ (σi(m1), . . . , σi(mk))

and similarly σi(R) for any matrix R. When we write 〈u,v〉 P Z for u,v P Rk,
we mean the inner product of their corresponding coefficient vectors.

For an element w P Zq, we write ‖w‖∞ to mean |w mod± q|. Define the �∞
and �p norms for w “ w0 ` w1X ` . . . ` wd´1X

d´1 P R as follows:

‖w‖∞ “ max
j

‖wj‖∞, ‖w‖p “ p

√
‖w0‖p∞ ` . . . ` ‖wd´1‖p∞.

If w “ (w1, . . . , wm) P Rk, then

‖w‖∞ “ max
j

‖wj‖∞, ‖w‖p “ p
√

‖w1‖p ` . . . ` ‖wk‖p.

By default, ‖w‖ :“ ‖w‖2. Similarly, we define the norms for vectors over Zq.
Denote Sγ “ {x P Rq : ‖x‖∞ � γ}.

2.2 Probability Distributions

We first define the discrete Gaussian distribution used for the rejection sampling.

Definition 1. The discrete Gaussian distribution on R� centered around v P R�

with standard deviation s ą 0 is given by

D�
v,s(z) “ e´‖z´v‖2{2s2∑

z′PR� e´‖z′‖2{2s2 .

When it is centered around 0 P R� we write D�
s “ D�

0,s.

We will use the following tail bound, which follows from [5, Lemma 1.5(i)].

Lemma 1. Let z ← Dm
s . Then Pr

[
‖z‖ ą t · s√md

]
ă

(
te

1´t2
2

)md

.

Next, we recall the binomial distribution.

Definition 2. The binomial distribution with a positive integer parameter κ,
written as Binκ is the distribution

∑κ
i“1(ai ´ bi), where ai, bi ← {0, 1}. The

variance of this distribution is κ{2 and it holds that Binκ1 ± Binκ2 “ Binκ1`κ2 .
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2.3 Module-SIS and Module-LWE Problems

Security of the [6] commitment scheme used in our protocols relies on the
well-known computational lattice problems, namely Module-LWE (MLWE) and
Module-SIS (MSIS) [15,21]. Both problems are defined over Rq.

Definition 3 (MSISκ,m,B). Given A ← Rκˆm
q , the Module-SIS problem with

parameters κ,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă ‖z‖ � B. An algorithm A is said to have advantage ε in solving
MSISκ,m,B if

Pr
[
0 ă ‖z‖∞ � B ∧ Az “ 0

∣∣A ← Rκˆm
q ; z ← A(A)

]
� ε.

Definition 4 (MLWEm,λ,χ). The Module-LWE problem with parameters
m,λ ą 0 and an error distribution χ over R asks the adversary A to distin-
guish between the following two cases: 1) (A,As ` e) for A ← Rmˆλ

q , a secret
vector s ← χλ and error vector e ← χm, and 2) (A, b) ← Rmˆλ

q ˆ Rm
q . Then,

A is said to have advantage ε in solving MLWEm,λ,χ if∣∣Pr
[
b “ 1

∣∣A ← Rmˆλ
q ; s ← χλ; e ← χm; b ← A(A,As ` e)

]
(16)

´ Pr
[
b “ 1

∣∣A ← Rmˆλ
q ; b ← Rm

q ; b ← A(A, b)
]∣∣ � ε.

We also recall the (simplified) Extended Module-LWE problem [30].

Definition 5 (Extended-MLWEm,λ,χ,C,s). The Extended Module-LWE prob-
lem with parameters m,λ ą 0, probability distribution χ over Rq, challenge space
C Ď Rq and the standard deviation s asks the adversary A to distinguish between
the following two cases:

1. (B,Br, c, z, sign (〈z, cr〉)) for B ← Rmˆ(m`λ)
q , a secret vector r ← χm`λ and

z ← D
(m`λ)
s , c ← C

2. (B,u, c, z, sign (〈z, cr〉)) for B ← Rmˆ(m`λ)
q ,u ← Rm

q , z ← D
(m`λ)
s , c ← C,

where sign(a) “ 1 if a � 0 and 0 otherwise. Then, A is said to have advantage
ε in solving Extended-MLWEm,λ,χ,C,s if

∣∣∣Pr
[
b “ 1

∣∣∣B ← Rmˆ(m`λ)
q ; r ← χm`λ; z ← D

(m`λ)
s ; c ← C; b ← A(B,Br, z, c, s)

]

´ Pr
[
b “ 1

∣∣∣B ← Rmˆλ
q ; u ← Rm

q ; z ← D
(m`λ)
s ; c ← C ; b ← A(B,u, z, c, s)

]∣∣∣ � ε.

where s “ sign (〈z, cr〉).

2.4 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z
whose distribution should be independent of a secret message/randomness vector
r, so that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z “ y ` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, c ← C is a challenge
polynomial, and y is a “masking” vector. In order to remove the dependency of
z on r, one applies rejection sampling [25].
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Lemma 2 (Rejection Sampling [14,25,30]). Let V Ď R� be a set of polyno-
mials with norm at most T and ρ : V → [0, 1] be a probability distribution. Fix
the standard deviation s “ γT . Then, the following statements hold.

1. Let M “ exp(14{γ`1{(2γ2)). Now, sample v ← ρ and y ← D�
s, set z “ y`v,

and run b ← Rej1(z,v, s) as defined in Fig. 1. Then, the probability that b “ 0
is at least (1 ´ 2´128){M and the distribution of (v, z), conditioned on b “ 0,
is within statistical distance of 2´128 of the product distribution ρ ˆ D�

s.
2. Let M “ exp(1{(2γ2)). Now, sample v ← ρ and y ← D�

s, set z “ y ` v, and
run b ← Rej2(z,v, s) as defined in Fig. 1. Then, the probability that b “ 0 is at
least 1{(2M) and the distribution of (v, z), conditioned on b “ 0, is identical
to the distribution F where F is defined as follows: sample v ← ρ, z ← Dld

s

conditioned on 〈v, z〉 � 0 and output (v, z).
3. Let M “ exp(1{(2γ2)). Now, sample v ← ρ, β ← {0, 1} and y ← D�

s, set
z “ y ` (´1)βv, and run b ← Rej0(z,v, s) as defined in Fig. 2. Then, the
probability that b “ 0 is at least 1{M and the distribution of (v, z), conditioned
on b “ 0, is identical to the product distribution ρ ˆ D�

s.

Fig. 1. Two rejection sampling algorithms: the one used generally in previous works
[25] (left) and the one proposed recently in [30] (right).

We recall how parameters s and M in the first statement Lemma 2 are
selected. Concretely, the repetition rate M is chosen to be an upper-bound on:

D�
s(z)

D�
v,s(z)

“ exp
(´2〈z,v〉 ` ‖v‖2

2s2

)
� exp

(
28s‖v‖ ` ‖v‖2

2s2

)
“ M. (17)

For the inequality we used the which says that with probability at least 1 ´ 2128

we have |〈z,v〉| ă 14s‖v‖ for z ← D�
s [5,25]. Hence, by setting s “ 13‖v‖ we

obtain M « 3.
Recently, Lyubashevsky et al. [30] proposed a modified rejection sampling

algorithm (see Rej2(z,v, s) in Fig. 1) where it forces z to satisfy 〈z,v〉 � 0, oth-
erwise it aborts. With this additional assumption, we can set M in the following
way:

exp
(´2〈z,v〉 ` ‖v‖2

2s2

)
� exp

(‖v‖2
2s2

)
“ M. (18)
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Hence, for M « 3 one would select s “ 0.675 · ‖v‖. Note that the probability for
z ← D�

s that 〈z,v〉 � 0 is at least 1{2. Hence, the expected number of rejections
would be at most 2M “ 6. On the other hand, if one aims for M “ 6 repetitions
using (17), then s “ 8 ·‖v‖. Thus, [30] manages to reduce the standard deviation
by more than a factor of 10. Further, we remark that this method is still not
as efficient as using bimodal Gaussians [14], since even though the value M is
calculated exactly as in (18), the expected number of rejections is at most M
and not 2M . We summarise the results from [14,30] in the latter two statements
of Lemma 2.

Rej0 s
01 u 0, 1
02 If u 1

M exp v 2

2s2
cosh

σ2

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Fig. 2. Bimodal rejection sampling [14].

Finally, we highlight that the procedure in the second statement of Lemma 2
reveals the sign of 〈z,v〉. This is still fine when working with “one-time commit-
ments” [30] since we only leak one bit of information if v is a randomness vector
which is generated every execution. However, secure signature schemes cannot
be produced using this method because each generation of a signature reveals
some information about the secret key.

By using this technique, zero-knowledge property (or rather commit-and-
prove simulatability as described in later sections) of our protocols relies on
the (simplified) Extended-MLWE problem [30] where the adversary is given the
additional one bit of information about the secret. We describe this problem in
Sect. 2.3.

2.5 Challenge Space

In our applications, the set V Ď R� will consist of vectors of the form cr where
c P Rq is sampled from a challenge space C and r P R�

q comes from a set of secret
(either randomness or message) vectors. In order to set the standard deviation
for rejection sampling, we need to bound the norm of such vectors. Here, we
present a new way to bound ‖cr‖.

Lemma 3. Let r P R�
q and c P Rq. Then, for any power-of-two k, we have

‖cr‖ � 2k
√‖σ´1 (ck) ck‖1 · ‖r‖.

We provide the proof in the full version of the paper. In order to apply this
lemma, we fix a power-of-two k and set the challenge space C as:

C :“ {c P Sσ
κ : 2k

√
‖σ´1 (ck) ck‖1 � η} (19)
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where
Sσ

κ :“ {c P Sκ : σ(c) “ c} . (20)

and the σ P Aut(Rq) will be specified in our protocols. Also, we denote C̄ :“
{c ´ c′ : c, c′ P C and c �“ c′} to be the set of differences of any two distinct
elements in C. In practice, σ P {σ1, σ´1}. We will choose the constants η such
that (experimentally) the probability for c ← Sσ

κ to satisfy 2k
√

‖σ´1 (ck) ck‖1 � η
is at least 99%. In our experiments, we observe that the bounds in Lemma 3 are
about 4 ´ 6X larger than the actual norms ‖cr‖.

For security of our protocols, we need κ ă 1
2
√
2
q
1{2
1 to ensure the invertibility

property of the challenge space C, i.e. the difference of any two distinct elements
of C is invertible over Rq. Indeed, this property follows from [33]. However, if we
set σ :“ σ´1 then we can apply our new result in the full version of the paper
and thus we only need κ ă q1{2. Secondly, to achieve negligible soundness error
under the MSIS assumption, we will need |C| to be exponentially large. In Fig. 3
we propose example parameters to instantiate the challenge space C for different
automorphisms σ. Finally, for implementation purposes, in order to sample from
C, we simply generate c ← Sσ

κ and check whether 2k
√‖σ´1 (ck) ck‖1 � η. Hence,

we cannot choose k to be too large.

σ d κ η Sσ
κ C

σ1 128 1 27 2202 2201

σ 1 128 2 59 2148 2147

Fig. 3. Example parameters to instantiate the challenge space C :“ {c P Sκ : σ(c) “
c ∧ 2k

√‖σ´1 (ck) ck‖1 � η} for a modulus q such that its smallest prime divisor q1 is
greater than 8. In our examples we picked k “ 32.

Setting the Standard Deviation. By definition of the challenge space C and
Lemma 3, if we know that ‖r‖ � α, then we can set the standard deviation
s :“ γηα where γ ą 0 defines the repetition rate M . On the other hand, if
‖r‖∞ � ν, e.g. because r ← S�

ν , then we can set s :“ γνη
√

�n.

3 The ABDLOP Commitment Scheme and Proofs
of Linear Relations

In this section we formally present the ABDLOP commitment scheme together
with ZKPoK of the committed messages. In the same protocol, we also include
a proof of knowledge that the committed messages satisfy some arbitrary linear
relations over Rq (Fig. 4). In the full version of the paper, we also show how one
can use this commitment scheme and proof of knowledge to prove knowledge
of linear relations over Zq. This latter proof is best modelled as a commit-
and-prove protocol because it will be creating some intermediate commitments
under the same randomness, which cannot be simulated. In particular, what we
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prove is that the view, for all possible committed messages, is computationally
indistinguishable from commitments to 0.

3.1 The ABDLOP Commitment Scheme

Figure 4 presents the ABDLOP commitment scheme, which commits to messages
s1 and m, using randomness s2, and then proves knowledge of these messages
and that they satisfy the relation R1s1 `Rmm “ u. The challenge space C is as
in (19). The standard deviations s1 and s2 are set as in Sect. 2.4 so as to provide
a balance between the running time of the algorithm (the lower the values, the
higher the probability that the protocol will need to be repeated) and the secu-
rity of the commitment scheme based on the hardness of the MSIS problem (the
higher the values, the easier the problem becomes). Because the most common
way in which our commitment scheme will be used involves committing to some
values, proving that they satisfy some relations, and then never using the com-
mitment again, we use a more efficient rejection sampling (Rej2 in Fig. 1) from
[30], which ends up leaking one bit of the secret, on the randomness part of the
commitment (i.e. s2). If one will not be throwing out this commitment, then one
should use Rej1 for everything.

The hiding property of the commitment scheme follows from the MLWE prob-

lem when s2 is chosen from some distribution such that
([

A2

B

]
,

[
A2

B

]
· s2

)
is

indistinguishable from uniform. The zero-knowledge property of the protocol fol-
lows from the standard argument from [25,30] showing that z1, z2 are distributed
according to Dm1

s1 and Dm2
s2 (possibly with 1 bit of leakage for the latter) inde-

pendent of s1 and s2. The correctness of the protocol then follows due to the
fact that mid-dimensional integer vectors sampled from a discrete Gaussian with
standard deviation si has norm at most si

√
2mid with overwhelming probabil-

ity [5].
The commitment opening needs to be defined to be whatever one can extract

from the protocol. Since the protocol is an approximate proof of knowledge, it
does not prove knowledge of s1, s2 satisfying A1s1 ` A2s2 “ tA, but instead an
approximate proof as in (2). Lemma 4 states that under the assumption that
the Module-SIS problem is hard, the extracted values (s̄1, s̄2) are unique and
they satisfy the desired linear equation R1s̄1 ` Rm(tB ´ Bs̄2) “ u, where m is
implicitly defined as tB ´ Bs̄2. The last statement proved in the Lemma shows,
as in [3], that not only are the extracted commitments si, unique but also zi ´cs̄i

is uniquely determined by the first two moves of the protocol. This is crucial to
efficiently proving knowledge of polynomial products later in the paper.

As far as the communication complexity of the protocol, it is important to
note that in the real protocol, one would not actually send w and v, but instead
send their hash. Then one would verify the hash of the equalities. Therefore
proving linear relations over Rq is not any more costly, communication-wise,
than just proving knowledge of the committed values. We don’t write the hashes
in our protocols because when they eventually get converted to non-interactive
ones using the Fiat-Shamir transform, the hashes will naturally enter the picture.
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We will refer to the protocol in Fig. 4 as Π
(1)
many ((s2, s1,m), (f1, f2, . . . , fN )),

where the fi are linear functions mapping (s1,m) to Rq such that fi(s1,m) “ 0,
represented by the rows of R1,Rm, and u.

Lemma 4. The protocol in Fig. 4 is a proof of knowledge of (s̄1, s̄2, c̄) P Rm1
q ˆ

Rm2
q ˆ C̄ satisfying

1. A1s̄1 ` A2s̄2 “ tA

2. ‖s̄ic̄‖ � 2si

√
2mid for i “ 1, 2

3. R1s̄1 ` Rm(tB ´ Bs̄2) “ u

Furthermore, under the assumption that MSISn,m1`m2,B is hard for B “
8η

√
(s1

√
2m1d)2 ` (s2

√
2m2d)2,

4. This (s̄1, s̄2) is unique
5. For any two valid transcripts (w,v, c, z1, z2) and (w,v, c′, z′

1, z
′
2), it holds that

zi ´ cs̄i “ z′
i ´ c′s̄i.

We present the proof of Lemma 4 in the full version of the paper.

4 Proofs of Quadratic Relations

In this section we show how to prove various quadratic equations between com-
mitted messages using the ABDLOP commitment. More concretely, suppose we
have message vectors s1 P Rm1

q and m P R�
q such that ‖s1‖ � α. Let σ P Aut(Rq)

be a public automorphism over R of degree k and for presentation purposes
define:

(σi(x))iP[k] :“ (x, σ(x), . . . , σk´1(x)) P Rka
q

for arbitrary vector x P Ra
q . Then, we consider the following statements:

– Single quadratic equation with automorphisms. For a public k(m1 ` �)-variate
quadratic function f over Rq,

f
(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0.

– Many quadratic equations with automorphisms. For N public k(m1`�)-variate
quadratic functions f1, . . . , fN over Rq,

fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 for j P [N ].

– Many quadratic equations with automorphisms and a proof that polynomial
evaluations have no constant coefficients. For N `M public k(m1 `�)-variate
quadratic functions f1, . . . , fN and F1, . . . , FM over Rq, the following hold:

• fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 for j P [N ],
• let xj :“ Fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) P Rq for j P [M ]. Then x̃1 “ . . . “
x̃M “ 0.

Remark 1. Similarly as for [3], our techniques can be easily generalized to prove
higher degree relations. Concretely, if we want to prove degree k equations, we
end up committing to k ´ 1 additional garbage terms. Throughout this paper,
however, we will only consider quadratic relations.



92 V. Lyubashevsky et al.

Fig. 4. Proof of knowledge Π
(1)
many ((s2, s1,m), (f1, f2, . . . , fN )) of (s1, s2, c̄) P Rm1

q ˆ
Rm2

q ˆ C̄ satisfying (i) A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) ‖sic̄‖ � 2si

√
2mid for

i “ 1, 2 and (iii) fi(s1,m) “ 0 for i P [N ] where each f1, . . . , fN : Rm1`�
q Ñ Rq is a

linear function. The linear functions fi are represented by the corresponding rows of
matrices u,R1,Rm and prove u “ R1s1 ` Rmm where RNˆm1

1 ,RNˆ�
m ,u P RN

q are
public.

4.1 Single Quadratic Equation with Automorphisms

Let (tA, tB) be the commitment to the message pair (s1,m) under randomness
s2, i.e. [

tA

tB

]
“

[
A1

0

]
· s1 `

[
A2

B

]
· s2 `

[
0
m

]
.

Suppose the prover wants to prove knowledge of the message

s “
[
(σi(s1))iP[k]
(σi(m))iP[k]

]
P Rk(m1`�)

q

such that f(s) “ 0 where f is a k(m1 ` �)-variate quadratic function over Rq.
Note that each function f can be written explicitly as:

f(s) “ sT R2s ` rT
1 s ` r0
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where r0 P Rq, r1 P Rk(m1`�)
q and R2 P Rk(m1`�)ˆk(m1`�)

q .
In order to prove this relation, let us consider the protocol for proving linear

equations over Rq in Fig. 4. In the last round, the honest prover sends the masked
openings zi “ csi ` yi of si for i “ 1, 2 where the challenge space C is defined
as in (19) with the σ automorphism. Even though this is not the case for m, we
can define the masked opening of m as

zm :“ ctB ´ Bz2 “ cm ´ By2.

By construction, zm can be computed by the verifier.
Define the following vectors y and z:

y :“
[

(σi(y1))iP[k]
´(σi(By2))iP[k]

]
P Rk(m1`�)

q (21)

and

z :“
[

(σi(z1))iP[k]
(σi(zm))iP[k]

]
“ c

[
(σi(s1))iP[k]
(σi(m))iP[k]

]
`

[
(σi(y1))iP[k]

´(σi(By2))iP[k]

]
“ cs ` y. (22)

Here we used the fact that for c P C, σ(c) “ c. Then, we have

zT R2z ` crT
1 z ` c2r0 “ c2

(
sT R2s ` rT

1 s ` r0
) ` cg1 ` g0 (23)

where polynomials g1 and g0 are defined as:

g1 “ sT R2y ` yT R2s ` rT
1 y, g0 “ yT R2y.

Hence, we want to prove that the quadratic term in the expression zT R2z `
crT

1 z`c2r0 vanishes. This is done by first sending a commitment t to the polyno-
mial g1, i.e. t “ bT s2`g1 as well as v :“ g0`bT y2 in the clear. Then, given t and
the masked opening z2 of s2, the verifier can compute f “ ct´bT z2 “ cg1´bT y2.
Finally, it checks whether

zT R2z ` crT
1 z ` c2r0 ´ f

?“ v

which is a simple transformation of (23) when sT R2s ` rT
1 s ` r0 “ 0.

We present the full protocol in Fig. 5 which follows the commit-and-prove
paradigm [12,30]. Namely, we assume the prover has already sent the com-
mitments tAtB to the verifier using fresh randomness s2 ← χm2 . Prover
starts by sampling masking vectors y1 ← Dm1

s1 ,y2 ← Dm2
s and computing

w “ A1y1 ` A2y2. Then, it calculates g1 “ sT R2y ` yT R2s ` rT
1 y, where

y is defined in (21), and the commitment t “ bT s2 `g1 to g1. Finally, the prover
sets v “ yT R2y ` bT y2 and sends w, t, v to the verifier.

Next, given a challenge c ← C, the prover computes zi “ csi `yi for i “ 1, 2
and applies rejection sampling. If it does not abort, the prover outputs z1, z2.

Eventually, the verifier checks whether z1 and z2 have small norms, A1z1 `
A2z2 “ w ` ctA and zT R2z ` crT

1 z ` c2r0 ´ f “ v where z is defined in (22)
and f is defined as f “ ct ´ bT z2.

We summarise security properties of the protocol in Fig. 5 in the full version
of the paper.
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Fig. 5. Commit-and-prove protocol Π(2) ((s2, s1,m), σ, f) for messages (s1,m) P
Rm1`�

q , randomness s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1`A2s2 “ tA, Bs2`m “ tB

(ii) ‖sic̄‖ � 2si

√
2mid for i “ 1, 2 and (iii) f

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 where func-

tion f : Rk(m1`�)
q Ñ Rq is defined as f(x) :“ xTR2x` rT

1 x` r0. Here, we assume that
the commitment (tA, tB) was generated honestly and already sent by the prover. In
particular, s2 ← χm2 .
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Fig. 6. Commit-and-prove protocol Π
(2)
many ((s2, s1,m), σ, (f1, f2, . . . , fN )) for messages

(s1,m) P Rm1`�
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA,
Bs2 ` m “ tB (ii) ‖sic̄‖ � 2si

√
2mid for i “ 1, 2 (where si are used in Fig. 5) and (iii)

fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 for j P [N ]. Vector b is used in the sub-protocol Π(2).

4.2 Many Quadratic Equations with Automorphisms

We consider a scenario when the prover wants to simultaneously prove N
quadratic relations. Clearly, if one were to prove them separately using the app-
roach from Sect. 4.1, one would end up committing to N garbage polynomials
g. Here, we circumvent this issue by linear-combining the N equations into one
quadratic equation and prove it using the protocol in Fig. 5. This results in com-
mitting to only one garbage polynomials at the cost of reducing the soundness
error by a negligible additive factor.

More precisely, suppose that we want to prove for N public k(m1 `�)-variate
quadratic functions f1, . . . , fN over Rq that

fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 for i P [N ]. (24)

We let the verifier begin by sending challenges μ1, . . . , μN ← Rq. Then, we define
a single quadratic function

f :“
N∑

i“j

μjfj

and prove that
f

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 (25)

using the protocol from Fig. 5. Now, we observe that if one of the conditions in
(24) does not hold, then Eq. 25 is satisfied with probability at most q

´d{2
1 (recall

that Xd ` 1 splits into two irreducible factors modulo each qi).
The protocol is provided in Fig. 6. We skip the full security analysis since it

will be implicitly included in the more general case in the next subsection.
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4.3 Polynomial Evaluations with Vanishing Constant Coefficients

Suppose we want to prove simultaneously N quadratic relations (i.e. (24)) and
additionally prove that for quadratic k(m1 ` �)-variate polynomials F1, . . . , FM ,
evaluations Fj

(
(σi(s1))iP[k], (σi(m))iP[k]

)
have the constant coefficient equal to

zero. Concretely, if we denote

xj :“ Fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) P Rq

then x̃j “ 0 for j P [M ].
For simplicity we first present an approach with soundness error 1{q1. We

apply the strategy from [16] and first commit to a random masking polynomial
g ← {x P Rq : x̃ “ 0}. Then, given random challenges γ1, . . . , γM ← Zq, we send

h :“ g `
M∑

j“1

γjFj

(
(σi(s1))iP[k], (σi(m))iP[k]

)
(26)

to the verifier. Then, it simply checks whether the constant coefficient of h is indeed
equal to zero. What is left to prove is that h is well-formed, i.e. (26) holds. This is
done by defining the quadratic function fN`1 : Rk(m1`�`1)

q Ñ Rq as follows.
Let x1 P Rkm1

q , x2 “ (x2,1, . . . ,x2,k) P Rk(�`1)
q and denote

x2,j :“ x(m)
2,j ‖ x

(g)
2,j P R�`1

q for j P [k], x(m)
2 :“

(
x(m)
2,1 , . . . ,x(m)

2,k

)
.

Then,

fN`1 (x1,x2) :“ x
(g)
2,1 `

M∑
j“1

γjFj

(
x1,x

(m)
2

)
´ h.

By construction, if (x1,x2) “ (σi(s1))iP[k], (σi(m ‖ g))iP[k] then

x1 “ σi(s1))iP[k], x(m)
2 “ (σi(m))iP[k] and x

(g)
2,1 “ g.

Moreover, (26) holds if and only if

fN`1

(
(σi(s1))iP[k], (σi(m ‖ g))iP[k]

) “ 0.

Recall that we also want to prove (24). We can define analogous polynomials
f1, . . . , fN : Rk(m1`�`1)

q Ñ Rq as:

fj(x1,x2) :“ fj

(
x1,x

(m)
2

)
.

Hence, we simply want to prove that for every j “ 1, 2, . . . , N ` 1:

fj

(
(σi(s1))iP[k], (σi(m ‖ g))iP[k]

) “ 0.

Finally, this can then be directly done using the protocol

Π(2)
many ((s2, s1,m, g), σ, (f1, f2, . . . , fN`1))
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Private information: (s1,m) P Rm1`�
q so that ‖s1‖ � α, s2 ← χm2

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P R�ˆm2
q ,Bg P Rλˆm2

q ,b P
Rm2

q[
tA

tB

]

“
[
A1

0

]

· s1 `
[
A2

B

]

· s2 `
[
0
m

]

,

f1, . . . , fN , F1, . . . , FM : Rk(m1`�)
q Ñ Rq, σ P Aut(Rq)

Prover Verifier

s :“
[
(σi(s1))iP[k]
(σi(m))iP[k]

]

g :“ (g1, . . . , gλ) ← {x : Rq : x̃ “ 0}λ

tg :“ Bgs2 ` g
tg �

Γ “ (γi,j) ← Z
λˆM
q

(γi,j)iP[λ],jP[M ]�
for i P [λ] :

hi :“ gi ` ∑M
j“1 γi,jFj (s)

h1, . . . , hλ�
define f1, . . . , fN`λ as in (28) and (29)

run Π
(2)
many

(
(s2, s1,m ‖ g), σ, (fi)iP[N`λ]

)
Accept iff

Π
(2)
many verifies and

h̃1 “ . . . “ h̃λ “ 0

Fig. 7. Commit-and-prove protocol Π
(2)
eval ((s2, s1,m), σ, (f1, . . . , fN ), (F1, . . . , FM )) for

messages (s1,m) P Rm1`�
q , randomness s2 P Rm2

q and c̄ P C̄ which satisfy:
A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) ‖sic̄‖ � 2si

√
2mid for i “ 1, 2, (iii)

fj

(
(σi(s1))iP[k], (σi(m))iP[k]

) “ 0 for j P [N ] (where si are used in Fig. 5) and (iv)
all the evaluations Fj

(
(σi(s1))iP[k], (σi(m))iP[k]

)
, where j P [M ], have constant coeffi-

cients equal to zero. Vector b is used in the sub-protocol Π
(2)
many.

in Fig. 6.
We provide intuition for the soundness argument. Assume that the verifier

is convinced that h is of the correct form (26) and h̃ “ 0. Also, note that a
cheating prover committed to g before seeing the challenges γ1, . . . , γM . Hence,
if for some j P [M ], the constant coefficient of Fj

(
(σi(s1))iP[k], (σi(m))iP[k]

)
is

non-zero, then the cheating prover has probability at most 1{q1 of guessing the
constant coefficient of

∑M
j“1 γjFj

(
(σi(s1))iP[k], (σi(m))iP[k]

)
.

Boosting Soundness. We exponentially decrease the soundness error by par-
allel repetition. Namely, in order to obtain q´λ

1 soundness error, we commit to
λ random masking polynomials g “ (g1, . . . , gλ) ← {x : Rq : x̃ “ 0}λ as follows:

tg :“ Bgs2 ` g.

Then, we send tg to the verifier which in return outputs the challenge matrix
(γi,j)iP[λ],jP[M ] ← Z

λˆM
q . Then, we compute the vector h “ (h1, . . . , hλ) as
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follows:

⎡
⎢⎢⎢⎣

h1

h2

...
hλ

⎤
⎥⎥⎥⎦ “

⎡
⎢⎢⎢⎣

g1
g2
...

gλ

⎤
⎥⎥⎥⎦ `

⎡
⎢⎣

γ1,1 γ1,2 · · · γ1,M

...
... · · · ...

γλ,1 γλ,2 · · · γλ,M

⎤
⎥⎦

⎡
⎢⎢⎢⎣

F1

(
(σi(s1))iP[k], (σi(m))iP[k]

)
F2

(
(σi(s1))iP[k], (σi(m))iP[k]

)
...

FM

(
(σi(s1))iP[k], (σi(m))iP[k]

)

⎤
⎥⎥⎥⎦ (27)

and send it to the verifier. It directly checks if all polynomials h1, . . . , hλ P Rq

have constant coefficients equal to zero.
As before, we still need to prove that vector h was constructed correctly. We

reduce this problem to proving quadratic relations. Namely, we define polyno-
mials fN`1, . . . , fN`λ : Rk(m1`�`λ)

q Ñ Rq as follows.
Let x1 P Rkm1

q , x2 “ (x2,1, . . . ,x2,k) P Rk(�`λ)
q and denote

x2,j :“
(
x(m)
2,j ,x(g)

2,j

)
P R�`λ

q for j P [k],

x(m)
2 :“

(
x(m)
2,1 , . . . ,x(m)

2,k

)
, x(g)

2,1 :“
(
x
(g)
2,1,1, . . . , x

(g)
2,1,λ

)
.

Then,

fN`i (x1,x2) :“ x
(g)
2,1,i `

M∑
j“1

γi,jFj

(
x1,x

(m)
2

)
´ hi for i P [λ]. (28)

By construction, if (x1,x2) “ (σi(s1))iP[k], (σi(m ‖ g))iP[k] then

x1 “ (σi(s1))iP[k], x(m)
2 “ (σi(m))iP[k] and x

(g)
2,1,i “ gi.

Furthermore, Eq. (27) is true if and only if for all j P [λ] we have:

fN`j

(
(σi(s1))iP[k], (σi(m ‖ g))iP[k]

) “ 0.

Since we also need to prove (24), for convenience we define polynomials
f1, . . . , fN : Rk(m1`�`λ)

q Ñ Rq as:

fj(x1,x2) :“ fj

(
x1,x

(m)
2

)
. (29)

Finally, we simply run Πquad´many

(
(s2, s1,m,g), σ, (fj)jP[N`λ]

)
from Fig. 6. We

summarise the protocol in Fig. 7 and provide commitment and proof size analysis
in the full version of the paper.

Note that with this approach we need to commit to additional λ garbage
polynomials. In the full version of the paper we describe an optimisation which
reduces the number of garbage polynomials by a factor of two in a scenario for
σ :“ σ´1. As discussed in the introduction, this will indeed be the automorphism
that is going to be used throughout the paper.
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Abstract. A succinct non-interactive argument of knowledge (SNARK)
allows a prover to produce a short proof that certifies the veracity of a cer-
tain NP-statement. In the last decade, a large body of work has studied
candidate constructions that are secure against quantum attackers. Unfor-
tunately, no known candidate matches the efficiency and desirable features
of (pre-quantum) constructions based on bilinear pairings.

In this work, we make progress on this question. We propose the first
lattice-based SNARK that simultaneously satisfies many desirable prop-
erties: It (i) is tentatively post-quantum secure, (ii) is publicly-verifiable,
(iii) has a logarithmic-time verifier and (iv) has a purely algebraic struc-
ture making it amenable to efficient recursive composition. Our construc-
tion stems from a general technical toolkit that we develop to translate
pairing-based schemes to lattice-based ones. At the heart of our SNARK
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is a new lattice-based vector commitment (VC) scheme supporting open-
ings to constant-degreemultivariate polynomialmaps,which is a candidate
solution for the open problem of constructing VC schemes with openings to
beyond linear functions.However, the security of our constructions is based
on a new family of lattice-based computational assumptions which natu-
rally generalises the standard Short Integer Solution (SIS) assumption.

1 Introduction

A succinct non-interactive argument of knowledge (SNARK) [45,58] allows a
prover to convince a verifier that they know a witness to an NP statement. The
succinctness property demands that the size of the proof and, after preprocess-
ing, the work of the verifier are sublinear in (ideally independent of) the time
needed to check the validity of the witness. Over the last decade, SNARKs have
witnessed a meteoric rise in their efficiency and applicability [9,11,13,22,30,62].
More recently, SNARKs have found their way into real-world systems in the
context of blockchain-based cryptocurrencies [10,15,18,20,47].

The looming threat of quantum computers has given rise to a movement in
the cryptographic community to investigate cryptographic constructions from
assumptions that would plausibly withstand the presence of a quantum attacker.
Unfortunately, present SNARKs based on post-quantum assumptions are in
many ways inferior to pre-quantum constructions based on bilinear pairings.
The goal of this work is to make progress in this area.

1.1 The Seascape of SNARKs

To put our work into context, we give a brief outline of the current seascape
of SNARK constructions1. We split the schemes depending on the underlying
cryptographic assumptions used as the source of hardness.

Bilinear Pairings. To date, the most efficient and feature-rich SNARKs are con-
structed over bilinear pairing groups (e.g. [42]) with a trusted setup. Typically,
a pairing-based SNARK proof consists of only a small constant number of base
group elements and is also publicly verifiable. Furthermore, offline preprocessing
can often be performed, such that the online verification time is sublinear in the size
of the statement being proved and the corresponding witness. Moreover, pairing-
based SNARKs are favourable because of their algebraic structures that is known
to enable proof batching [21,50] and efficient recursive composition [12]. However,
due to their reliance on the hardness of problems related to discrete logarithms,
pairing-based SNARKs are not sound against a cheating quantum prover.

Random Oracles. Promising post-quantum candidate for SNARKs are con-
structions based on Micali’s CS proofs paradigm: They are obtained by first
building an interactive argument using (generalisations of) probabilistically
checkable proofs (PCP) [45], then compiling it into a non-interactive one using
the Fiat-Shamir transformation [27] in the random oracle (RO) model.

A major difference between pairing-based and RO-based SNARKs, from
both theoretical and practical perspectives, is the algebraic structure of the
1 It can be succinctly verified that SNARKs, like sharks, are creatures of the sea.
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verification algorithm. In RO-based SNARKs, the verification algorithms query
the RO, which is a combinatorial object. This is especially important when recur-
sively composing the SNARK: On the theoretical side, proving the knowledge
of a valid RO-based SNARK proof requires specifying the circuit computing the
RO. This makes it challenging to formally argue about soundness, even in the
RO model. From a practical perspective, the RO is instantiated with crypto-
graphic hash functions, which typically have high multiplicative degree.2 Since
the multiplicative degree of the relation being proven often dominates the prover
computation complexity in SNARKs, proving the satisfiability of a cryptographic
hash function becomes computationally expensive.
Lattices. A prominent source of hardness for post-quantum security are com-
putational problems over lattices. Not only do lattice-based assumptions allow
us to build most standard cryptographic primitives, e.g. [34,66], but also enable
new powerful primitives [33,38,39,72], which are currently out of the reach of
group-based assumptions. Unfortunately, in the context of SNARKs, lattices
have yet to be established as competitive alternatives to group-based construc-
tions. So far, lattice-based SNARKs either require designated verifiers [32,43] or
linear-time verification [6,19].

Beyond their theoretical appeal, one additional motivation for constructing
lattice-based SNARKs is that they are potentially more compatible with other
basic lattice-based primitives when composing them to construct more advanced
systems. More concretely, consider the task of proving the satisfiability of certain
algebraic relations over a ring R by a solution vector of norm bounded by some δ,
a language which arises naturally when composing lattice-based building blocks.
Using an argument system for proving algebraic relations over a finite field with-
out norm constraints, arithmetisation would be needed to express certain witness
component in, say, binary representation and translate the bounded-norm con-
dition to the satisfiability of a potentially-high-degree polynomial, depending on
the choice of the norm and the norm bound δ. In contrast, the bounded-norm
constraint could be proven natively if we have an argument system which sup-
ports proving the satisfiability of algebraic relations over R by solutions of norm
bounded by some α ≤ δ. This is done by expressing the solution vector in a likely
more compact O(α)-ary representation such that, if the representation has norm
bounded by α, then the original solution has norm bounded by δ.

1.2 Our Contributions

In this work, we construct the first lattice-based SNARK for an NP-complete
language defined over a ring R. Specifically, the language being supported is the
satisfiability of polynomial maps over R by bounded-norm solutions. Our con-
struction qualitatively matches pairing-based SNARKs, i.e. it is publicly ver-
ifiable and can achieve sublinear verification time given preprocessing, while
requiring a trusted setup. In addition, it is tentatively post-quantum secure.
Furthermore, our construction uses only algebraic operations over a ring R, and
is therefore friendly to recursive composition. The soundness of our scheme is

2 Though we mention that there is recent progress [5,40] in crafting hash functions
that are friendlier to multiparty computation and argument systems.
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based on new lattice-based (knowledge) assumptions. The introduction of new
knowledge assumptions is, to some extent, necessary: The work of Gentry and
Wichs [35] shows that the soundness of any SNARK cannot be based on falsifi-
able assumptions in a black-box manner. We summarise the main steps of our
work in the following.

(1) Translation Technique. We put forward a new paradigm for translating
pairing-based constructions to the lattice world. Our constructions stem
from techniques from the literature on pairing-based cryptography [53],
while simultaneously exploiting the ring structure offered by the lattice set-
ting. We develop the necessary technical toolkit that helps us mimic opera-
tions of pairing-based VC constructions in the lattice setting. We view this
translation strategy as a major conceptual contribution of our work and we
expect it to be instrumental in enabling new applications of lattice-based
cryptography.

(2) Vector Commitments for Constant-Degree Polynomials. A vector
commitment (VC) allows a committer to commit to a vector of w values
x := (x0, . . . , xw−1) ∈ Rw and then reveal selected portions of the input
vector, or more generically a function f : Rw → Rt over the input vector,
along with a proof π that can be publicly verified. We require both the com-
mitment and the opening proof to be compact. In terms of security, we want
to ensure an adversary cannot output a valid opening proof for an incorrect
function evaluation of the input vector. VCs have been established as a cen-
tral primitive in cryptography [23,24,29,37,49,52]. As a central technical
contribution, we present the first (lattice-based) VC that supports openings
beyond linear functions. Specifically, our VC commits to short vectors of
ring elements x ∈ Rw and supports openings to constant-degree d multi-
variate polynomial maps. We then show how this VC is sufficient to con-
struct SNARKs for the satisfiability of degree-d polynomial maps (which is
NP-complete for d ≥ 2) by bounded-norm solutions.

(3) New Assumptions and Analysis. Our translation techniques (and conse-
quently the resulting cryptographic schemes) rely on a new family of assump-
tions that we refer to as the k-Ring-Inhomogenous Short Integer Solution (or
k-R-ISIS for short) assumptions. Roughly, a k-R-ISIS assumption says that
it is hard to find a short preimage ug∗ satisfying 〈a,ug∗〉 = g∗(v) mod q,
where g∗ is a Laurent monomial3 and v is a random point, given short
preimages of other Laurent monomials G evaluated on the same random
point. Our new assumptions can be viewed as inhomogenous ring variants
of the k-SIS assumption [17,54] (where the rational functions are zeros). The
key difference to k-SIS is that we allow to hand out more preimages than
the dimension of a but these preimages are all of different images.

In fact, the assumptions we introduce, k-M -ISIS, are slightly more general
in being defined over modules rather than rings. Our generalisation to modules

3 A Laurent monomial is a monomial where negative powers are allowed. Generally,
one could consider k-R-ISIS problems for rational functions.
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is motivated by the knowledge assumptions that we also introduce. In the knowl-
edge assumptions images live in a moderately sized submodule.

We consider the introduction and study of the k-R-ISIS assumptions as a
contribution to the programme of charting the territory between LWE and mul-
tilinear maps assumptions called for in [1].

To gain confidence in our newly introduced assumptions, we initiate their
study. We show that certain subclasses of the k-R-ISIS problems (parameterised
by the algebraic structure on the k-R-ISIS images) are as hard as the R-SIS
problem. We show that, as expected, the k-M -ISIS problems are as hard as their
k-R-ISIS counterparts, although the former have slightly skewed parameters. We
also show that certain k-M -ISIS problems are as hard as the k-M -SIS problem,
the natural module variant of the k-SIS problem, where the former have higher
module ranks. Furthermore, we show that the k-M -ISIS problems for (G, g∗) is
as hard as those for (G, 0), and that the hardness is preserved when scaling both
G and g∗ multiplicatively by any non-zero Laurent monomial.

However, since none of the reductions from well-established problems cover
the case we rely upon in our constructions, we perform cryptanalysis to assess the
hardness of general k-M -ISIS problems. While we did not identify any structural
weaknesses, we encourage independent analysis to gain confidence in or invalidate
our assumptions.

(4) Post-Quantum Security. As a contribution of independent interest, we
show that our VC satisfies a strong notion of binding known as collapsing
(as an ordinary commitment, not with respect to functional openings), a
recently introduced security notion in the quantum setting [70]. For this, we
introduce a new technique of embedding NTRU ciphertexts into the public
parameters of our VC. To the best of our knowledge, this is the first VC not
based on Merkle trees that is shown to satisfy such a notion.

(5) New Applications. Our SNARK supports proving the satisfiability of
polynomial maps over R by bounded-norm solutions, a language which
directly captures those statements which naturally arise in lattice-based
cryptographic constructions. We highlight two native applications of our
SNARK which do not rely on expensive conversions between different NP-
complete languages.

The first application is the recursive composition of our SNARK, which refers
to the process of using the SNARK to prove knowledge of another SNARK
proof and the satisfiability of a polynomial map; for details see the full version.
This is natively supported because the verification algorithm of our SNARK
construction is itself checking the satisfiability of certain algebraic relations over
R by a bounded-norm solution. Recursive composition of SNARKs is a general
purpose technique for aggregating proofs or proving complex statements in a
piece-by-piece fashion. The technique is also useful for constructing incremental
verifiable computation [71] and verifiable delay functions [14,41].

The second application is the aggregation of GPV signatures [34]. While
it is folklore that any signatures can be aggregated by a SNARK for an NP-
complete language, we stress that the GPV verification algorithm, again, checks
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the satisfiability of certain algebraic relations over R by a bounded-norm solution
which our SNARK natively supports. We discuss how to handle relations in Rq

in the full version of this work. Apart from obtaining short aggregated GPV
signatures, in the setting where a set of n signers are signing a common message
at a time, the verification of the aggregated signatures could be preprocessed,
resulting in an online verification time sublinear in n. As a bonus result on GPV
signatures, we further show how to construct lattice-based adaptor signatures [7]
based on the GPV paradigm. Combining the two results, we obtain the first
aggregatable adaptor signatures from any assumption.

Open Problems. Our work paves the way for what we believe to be an excit-
ing line of research. As we initiate the study of inhomogenous variants of the
k-SIS assumptions, we ask whether better (possibly quantum) algorithms can be
found for solving this problem that exploit the additional algebraic structure. We
also presume that for further families of rational functions the k-R-ISIS assump-
tion can be shown to be as hard as standard hard lattice problems. Another
compelling question is to study new cryptographic applications of the k-R-ISIS
family. We expect that such an abstraction will be useful in transferring tech-
niques from pairing-based cryptography into the lattice world.

1.3 Technical Overview

We give a concise overview of the process of obtaining our lattice-based SNARK.
From Vector Commitments to SNARKs. In this work, we are interested
in VCs supporting openings to constant-degree-d w-variate t-output polynomial
maps with bounded coefficients. The standard properties of interest for VCs are:

Compactness. Commitments and opening proofs are of size poly(λ,
log w, log t).

Binding. It is infeasible to produce a commitment c and proofs for polynomials
maps, such that the system of equations induced by them is not satisfiable.4

In addition, we require the following stronger notion of binding.

Extractability. To produce a commitment c and a proof that the image of a
polynomial map f at the committed vector is y, one must know a preimage
x such that c is a commitment of x and f(x) = y.

It is well known that one can construct SNARKs from VCs supporting linear
openings in the RO model [49]. However, in this work we take a different route
and adopt a more structured approach to construct SNARKs. Specifically, recall
that the satisfiability of systems of degree-d polynomials is NP-complete for any
constant d ≥ 2. As such, a SNARK can be trivially constructed from a compact
and extractable VC for degree-d polynomials: The prover simply commits to
the root of the system (f,y) and immediately produces an opening proof for
(f,y). As a concrete example, a popular NP-complete language supported by
existing SNARKs is rank-1 constraint satisfiability (R1CS). An R1CS instance
consists of three matrices (A,B,C) over a field or in general a ring. The instance
4 This generalises position binding.
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is satisfied by a vector x if (A · (1,x)) ◦ (B · (1,x)) = (C · (1,x)), where ◦
denotes the Hardamard product. It is easy to see that an R1CS instance is
a special case of an instance (f,y) of degree-2 polynomial satisfiability where
f(X) := (A · (1,X)) ◦ (B · (1,X)) − (C · (1,X)) and y = 0. For a full description
of our SNARK we refer the reader to the full version of the paper.

Throughout the rest of this overview, we therefore focus on constructing
lattice-based VCs supporting degree-d openings. Since known constructions are
restricted to positional openings, we turn our attention to pairing-based schemes
(which support linear openings) and develop a new strategy to translate them
into lattice-based VCs and simultaneously to extend the degree to d > 1.

General Translation Strategy. Our strategy for constructing a lattice-based
VC is a novel translation technique that lets us port techniques from the pairing-
land to the lattice-land. We describe a general translation strategy for translating
not only VC but also potentially other pairing-based constructions to the lattice
setting. For the group setting, we adopt the implicit notation for bilinear groups
G1, G2, and Gt of prime order q, i.e. the vector of elements in Gi with (entry-wise)
discrete logarithm x ∈ Zq base an arbitrary fixed generator of Gi is denoted by
[x]i, with group operations written additively, and the pairing product between
[x]1 and [y]2 is written as 〈[x]1, [y]2〉. For the lattice setting, we let R be a
cyclotomic ring, q ∈ N be a large enough rational prime such that random
elements in Rq := R/qR are invertible with non-negligible probability.

Consider a pairing-based construction where the elements {[1]1, [g(v)]t}g∈G
are publicly available to all parties, where G is a set of linearly-independent
rational functions and v is a vector of secret exponents. An authority, knowing
the secret exponents v, is responsible for giving out secret elements {[g(v)]2}g∈G
to user A. In turn, user A can compute [u]2 :=

∑
g∈G cg · [g(v)]2 and present it

to user B, who can then check the correctness of [u]2 by checking

〈[1]1, [u]2〉
?=

∑

g∈G
cg · [g(v)]t.

Note that in this check one side of the pairing (i.e. [1]1) is public, while the
other side (i.e. [u]2) is computed from secrets delegated by the authority to user
A. This property will be crucial for our translation technique to apply.

The above structure can be seen in many pairing-based constructions. For
example, the secret vector v could be a trapdoor, a master secret key of
an identity-based encryption scheme, or a signing key; the delegated secrets
{[g(v)]2}g∈G could be hints given alongside the public parameters of a VC, an
identity-based secret key, or a signature; and the pairing-product check could be
for opening proof verification, decryption, or signature verification.

Our strategy of translating the above to a lattice-based construction is as fol-
lows. First, the public elements {[1]1, [g(v)]t}g∈G over G1 and Gt are translated
to the public vector and elements {a, g(v)}g∈G , where a and v are random vec-
tors over Rq and R×

q respectively. Since {g(v)}g∈G does not necessarily hide v in
the lattice setting (e.g. when G consists of many linear functions), the authority
might as well publicly hand out the vectors {a,v} directly. Next, the secret ele-
ments {[g(v)]2}g∈G are translated to the short secret vectors {ug}g∈G satisfying
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〈a,ug〉 = g(v) mod q. These short preimages can be sampled given a trapdoor of
a, which the authority should have generated alongside a. Given {ug}g∈G , user
A can similarly compute u :=

∑
g∈G cg ·ug, although the coefficients cg are now

required to be short. The pairing-product check is then translated to checking

〈a,u〉 ?≡
∑

g∈G
cg · g(v) mod q and u is short.

The same strategy can also be used to translate (conjectured-)hard com-
putational problems over bilinear groups to the lattice setting to obtain also
seemingly-hard problems. For example, consider a variant of the �-Diffie-Hellman
Exponent problem, which asks to find [v�]2 given ([1]1, [1]2, [v]2, . . . , [v�−1]2).
A natural lattice-counterpart of the problem is to find a short preimage u�

satisfying 〈a,u�〉 ≡ v� mod q given short preimages (ui)i∈Z�
each satisfying

〈a,ui〉 = vi mod q.
We remark that a direct translation of pairing-based constructions does not

necessarily yield the most efficient lattice-based scheme. For this reason, it will
be useful to generalise pairing-based constructions into a family parameterised
by the function class G. We will then have the freedom to pick G to optimise the
efficiency of translated lattice-based scheme.

Translating Vector Commitments. We next demonstrate how the above
translation strategy can be applied to translate pairing-based VCs, using the
following pairing-based VC with openings to linear forms f : Zw

q → Zq adapted
from [24,49,52] as an example.

– Public parameters:
(

[1]1, [1]2, ([vi]1)i∈Zw
, ([v̄j ]2)j∈Zw

, ([vi · v̄j ]2)i,j∈Zw:i�=j ,

[v̄]t

)

where v̄ =
∏

k∈Zw
vk and v̄j = v̄/vj .

– Committing x ∈ Zq: [c]1 :=
∑

i∈Zw
xi · [vi]1 = 〈[v]1,x〉

– Opening f : [u]2 :=
∑

i,j∈Zw:i�=j fj · xi · [vi · v̄j ]2
– Verifying (f, y): 〈[1]1, [u]2〉

?=
〈
[c]1,

∑
j∈Zw

fj · [v̄j ]2
〉

− y · [v̄]t

The weak binding property of the scheme, i.e. the infeasibility of opening
a commitment c to both (f, y) and (f, y′) with y 
= y′, relies on the hardness
of computing [v̄]2, whose exponent corresponds to evaluating the “target mono-
mial”

∏
k∈Zw

Xk at v. Notice that the target monomial is set up in such a way
that [v̄]t = [vi]1 · [v̄i]2 holds for all i ∈ Zw, where [v̄i]2 can be viewed as a “com-
plement” of [vi]1. Consequently, the value y = 〈f ,x〉 appears as the coefficient
of [v̄]t in the inner product

〈∑
i∈Zw

xi · [vi]1,
∑

j∈Zw
fj · [v̄j ]2

〉
.

While the above pairing-based scheme is ready to be translated to the lattice
setting using our translation strategy, to prepare for our generalised scheme
for higher-degree polynomials, we divide the target and complement monomials
by

∏
k∈Zw

Xk. The complement of Xi becomes X−1
i and the target monomial

becomes the constant 1. Concretely, we divide the opening and the verification
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equation by v̄ to obtain

[u′]2 :=
∑

i,j∈Zw:i�=j

fj · xi · [vi/vj ]2

〈[1]1, [u′]2〉 ?=

〈

[c]1,
∑

j∈Zw

fj · [v−1
j ]

2

〉

− y · [1]t.

Recall that in the VC construction above we relied on the hardness of com-
puting [v̄]2. What we have done here might seem absurd, since the element [1]2
now is given in the group setting, but finding a short pre-image of a fixed image,
say 1, is seemingly hard in the lattice setting. Indeed, translating the modified
scheme, we derive the following lattice-based scheme.

– Public Parameters:
(
a,v, (ui,j)i�=j∈Zw

)
where 〈a,ui,j〉 ≡ vi/vj , ui,j are short

– Committing x ∈ Rw: c := 〈v,x〉 mod q
– Opening f : u :=

∑
i,j∈Zw:i�=j fj · xi · ui,j

– Verifying (f, y): 〈a,u〉 ?≡
(∑

j∈Zw
fj · v−1

j

)
· c − y mod q and u is short

For correctness, we require that the committed vector x and the function f
both have short coefficients.

The weak binding property of the translated lattice-based scheme relies on
the hardness of finding a short preimage of (a small multiple of) 1 given short
preimages of vi/vj for all i, j ∈ Zw with i 
= j – a new computational assumption
obtained by translating its pairing-counterpart, which belongs to a new family
of assumptions called the k-R-ISIS assumption family.

Furthermore, the computation of
∑

j∈Zw
fj · v−1

j in the verification equation
can be preprocessed before knowing the commitment c and the opening proof
u, such that the online verification can be performed in time sublinear in w.

Supporting Higher-Degree Polynomials. Notice that in the group setting
the (modified) verification algorithm can be seen as evaluating the linear form f
at ([v−1

0 ]2 · [c]1, . . . , [v−1
w−1]2 · [c]1) where [c]1 supposedly encodes x. In the group

setting, f has to be linear since we cannot multiply two G1 elements together to
get an encoding of the Kronecker product x ⊗ x.

In the lattice setting, however, the commitment c is a ring element and thus
we can evaluate a non-linear polynomial f at (v−1

0 · c, . . . , v−1
w−1 · c). Moreover,

we notice that each degree-d monomial xe is encoded in cd as (a factor of) the
coefficient of ve, which has a natural complement v−e satisfying (ve) · (v−e) =
1, our modified target monomial. This suggests the possibility of generalising
the translated lattice-based scheme above to support openings to higher-degree
polynomials. Indeed, this technique allows us to generalise the scheme to support
bounded-coefficient polynomials of degrees up to a constant, whose weak binding
property is now based on another member of the k-R-ISIS assumption family.

Achieving Compactness and Extractability. The VC scheme obtained
above achieves succinctness, i.e. commitments and opening proofs are of size
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sublinear in w (not t), and weak binding, which fall short of the compactness
and extractability required to construct a SNARK. Indeed, a black-box construc-
tion of SNARK using this VC is unlikely since, so far, we are only relying on
falsifiable assumptions. To resolve this problem, we propose a knowledge version
of the k-R-ISIS assumptions. For concreteness, we will use the following member
of the knowledge k-R-ISIS assumption family:

Let a′ ←$ R�
q and v ←$ Rw

q be random vectors and t ←$ Rq be a random
element such that |t · Rq| is super-polynomial in λ and |t · Rq|/|Rq| is
negligible in λ. If there exists an efficient algorithm A which, given short
vectors u′

i satisfying 〈a′,u′
i〉 = vi · t mod q for all i ∈ Zw, produces (c,u′)

such that u′ is a short vector satisfying 〈a′,u′〉 = c · t mod q, then there
exists an efficient extractor EA which extracts a short vector x ∈ Rw such
that 〈v,x〉 = c mod q.

Equipped with this k-R-ISIS of knowledge assumption, we can upgrade our
VC construction to achieve extractability as follows. First, we let the public
parameters to additionally include (a′, (u′

i)i∈Zw
, t). Here t generates an ideal that

is small enough for random elements in Rq not to be contained within it, but
big enough to provide sufficient entropy. Next, we let the committer also include
u′ =

∑
i∈Zw

xi · u′
i in an opening proof. Finally, we let the verifier additionally

check that u′ is short and 〈a′,u′〉 = c · t mod q.
To see why the modified scheme is extractable, suppose an adversary is able

to produce a commitment c and a valid opening proof for (f, y). By the k-R-ISIS
of knowledge assumption, we can extract a short vector x ∈ Rw such that
〈v,x〉 = c mod q. Now, if f(x) = y′ 
= y, we can use the extracted x to compute
a valid opening proof for (f, y′). However, being able to produce valid opening
proofs for both (f, y) and (f, y′) with y 
= y′ violates the weak binding property.
We therefore conclude that f(x) = y.

It remains to show how we can achieve compactness. Since our lattice-based
VC schemes preserve the property of the original pairing-based schemes that the
verification algorithm is linearly-homomorphic in the opening proofs, a natural
strategy towards compactness is to aggregate multiple opening proofs into one
using a random linear combination, with coefficients generated using a random
oracle. The binding property of an aggregated opening proof can be proven using
a classic rewinding argument which involves inverting a Vandermode matrix
defined by the randomness used for aggregation. This strategy works particu-
larly well in the prime-order group setting since scalars are field elements and
Vandermonde matrices defined by distinct field elements are always invertible.
In the lattice setting, however, the coefficients used for aggregation have to be
chosen from a set where the difference between any pair of elements is (almost)
invertible (over R) for an analogous argument to go through. This is a severe
limitation since sets satisfying this property cannot be too large [4].

To achieve compactness in the lattice setting, we are forced to use a different
strategy. Specifically, the coefficients h = (hi)i∈Zt

∈ R that we use to aggregate
opening proofs are given by an instance of the R-SIS problem over Rp (taking
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smallest R-representatives of Rp elements) sampled as part of the public param-
eters, where p is chosen such that the R-SIS assumption is believed to hold over
Rp while p is small relative to q.

To see why extractability still holds, suppose an adversary is able to produce
a commitment c and a valid opening proof for (f, y) where f =

∑
i∈Zt

hi · fi and
y =

∑
i∈Zt

hi·yi. By our previous argument, we can extract x satisfying f(x) = y.
Suppose it is not the case that fi(x) = yi for all i ∈ Zt, then (fi(x) − yi)i∈Zt

is a short vector satisfying
∑

i∈Zt
hi · (fi(x) − yi) = 0 over R, which implies∑

i∈Zt
hi · (fi(x) − yi) = 0 mod p, breaking the R-SIS assumption over Rp.

Discussion and Generalisations. We discuss the resulting VC scheme obta-
ined through the aforementioned series of transformations. Our VC scheme sup-
ports openings to w-variate t-output constant-degree polynomial maps with
bounded coefficients. The scheme achieves compactness and extractability, where
the latter is based on the standard R-SIS assumption over Rp and our two new
assumptions: k-R-ISIS and the k-R-ISIS of knowledge assumption over Rq, where
p is short relative to q. The construction uses only algebraic operations over R
and Rq. Furthermore, a major part of the verification equation can be precom-
puted, so that the online verification time is sublinear in w and t.

Our construction and the k-R-ISIS (of knowledge) assumption families admit
natural generalisations to the module setting, where the vector a is replaced by a
matrix A and other components are modified accordingly. Expectedly, we show
that the module versions of the k-R-ISIS assumptions are at least as hard as the
ring versions for certain parameter choices.

In many applications (e.g. aggregating signatures), often only a main part
(e.g. a set of signature verification keys) of the function-image tuple (f, y) is
known in advance, while the remaining small part (e.g. a message signed by all
parties) is known when it comes the time to perform verification. It is desirable
to preprocess the main part of (f, y) offline, so that the online verification cost
is only dependent on the size of the small part. In our formal construction,
we capture this flexibility by considering y itself to be a polynomial map, and
allowing f and y to take an (additional, for f) public input z. This allows the
maps (f, y) to be preprocessed, such that the online cost depends mostly on z.

1.4 Application

We highlight an application of interest of our VC, and in particular of the result-
ing SNARK, in aggregating GPV signatures [34]. As a bonus result, we also show
how to build adaptor signatures [7] based on GPV signatures while preserving
aggregatability. For more comprehensive details we refer the reader to the full
version of the paper.

Aggregate GPV Signatures. GPV signatures [34] are a lattice-based sig-
nature scheme paradigm of which an instantiation is a finalist in the NIST
Post-Quantum Process (Falcon [65]). On a high level, a GPV signature on a
message m is a short vector u such that A · u ≡ v mod q, where A is the pub-
lic key, v = H(m) with the hash function H modelled as a random oracle in
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the security analysis. The verification is simply the check of the linear relation
A · u ≡ v mod q and that u is short.

Our SNARK can be used to prove knowledge of GPV signatures natively
given the signature verification involves algebraic operations only. For instance,
to aggregate n signatures (ui)i∈Zn

on the same message m (a scenario that arises
in a PoS consensus protocol [26]), the aggregator can compute a SNARK proof
of knowledge of short (ui)i∈Zn

satisfying Ai · ui = v mod q, where Ai is the
public key of the i-th signer. The aggregated signature i.e. the SNARK proof,
can be verified in time sublinear in the number of signers and signatures n by
first preprocessing the part of the verification equation depending on (Ai)i∈Zn

.
In fact, this preprocessing step is one-time for the given set of signers, and the
online verification after knowing m is only logarithmic in n. If the signers sign
different messages, a similar SNARK but now over the different messages results
in a compact proof, but with verification time linear in n (similar to the case
of BLS signatures [16]). Such aggregation can result in compact blocks in a
blockchain as shown for the case of BLS signatures [16], but now with post-
quantum security.

Aggregate Adaptor Signatures. Adaptor signatures [7] let a user generate
an encryption σ̂ of a signature σ on a message m with respect to an instance
Y of a hard language L. Here σ̂ is also referred to as a pre-signature. Given
the public key, it is efficient to verify if a given pre-signature σ̂ is indeed valid
with respect to the instance and the message. One can adapt the pre-signature
σ̂ into a valid signature σ given the witness y for the instance Y , and given σ̂
and σ one can efficiently extract the witness y. The primitive has found itself
useful in enhancing efficiency and privacy of conditional payments in cryptocur-
rencies [7], and aggregation of signatures adds clear benefits to this primitive.
In the following we discuss how GPV signatures can be turned into adaptor sig-
natures, which consequently implies that they can be aggregated via our newly
constructed SNARK.

We consider the lattice trapdoor from [61] for our GPV signatures, and view
the GPV signatures as follows. The public parameters are given by a uniformly
random matrix A, the signing key is sk := X, where X is a short norm matrix
such that the public key, Y := A ·X, is distributed statistically close to random.
The signature is simply (z, c) such that during verification we have [A|G+Y] ·
[z|c]T = H(m) and ‖(c, z)‖ is small as stipulated by GPV signatures. Here G is
the gadget matrix. We choose the hard language

L := {(A,v′) : ∃ u′ s.t . A · u′ = v′ ∧ ‖u′‖ ≤ β∗},

where A ∈ Rη×�
q , v′ ∈ Rη

q . A pre-signature σ̂ is simply (c, ẑ) with v′ as the hard
instance, such that during pre-signature verification, it holds that [A|G + Y] ·
[ẑ|c]T = H(m) − v′ and ‖(c, ẑ)‖ is small. It is easy to adapt σ̂ given the witness
u′ by setting z := ẑ + u′ and σ := (c, z). To extract a witness one can simply
compute u′ := z − z′. We have that the extracted u′ has a slightly higher norm
than that was used to adapt the pre-signature. The security of our scheme only
relies on the M -SIS problem and the RO model.
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1.5 Related Work

Apart from applications to succinct arguments [49], VCs have found numer-
ous applications, such as verifiable databases [24], verifiable decentralized stor-
age [23], updatable zero-knowledge sets [55,59], keyless Proofs of Retrievability
(PoR) [28,29], pseudonymous credentials [44], and cryptocurrencies with state-
less transaction validation [25]. Several works have studied various extensions to
VC, with updatable commitments and proofs [24], aggregatable opening proofs
for different commitments [37], and incremental aggregatable proofs [23].

Libert, Ramanna, and Yung [52] showed that a VC for linear functions over
Zq implies a polynomial commitment for polynomials over Zq. The result was
obtained by VC-committing to the coefficient vector of the polynomial and open-
ing it to a linear function whose coefficients are evaluations of monomials at the
evaluation point. Since our VC only allows committing to a short vector x ∈ Rw

and opening to a polynomial map f with short coefficients, we need to suitably
tune the norm bound α of f and x to obtain similar applications. Concretely,
by setting α ≈ δd+1 ·γd

R where γR is the ring expansion factor of R, we obtain a
polynomial commitment for degree-d multivariate polynomials with coefficients
bounded by δ which supports evaluations at vectors of norm also bounded by
δ. Note that only constant-degree polynomials are supported by our polynomial
commitment since α depends exponentially on d.

In the same work [52], Libert, Ramanna, and Yung also showed that the
polynomial commitment constructed from a VC for linear functions over Zq

implies an accumulator for Zq elements, the construction requires committing
to the polynomial p(X) =

∏
a∈A(X − a) encoding the set A of elements to be

accumulated. The polynomial commitment obtained via our VC unfortunately
does not support committing to p(X) since its degree is as large as |A|.

In a recent work [63], Peikert, Pepin, and Sharp proposed a VC for positional
openings based on the standard SIS assumption. Relative to our construction
outlined in Sect. 1.3, their construction can be interpreted as follows. Instead of
handing out preimages ui,j with 〈a,ui,j〉 = vj/vi mod q, they sample multiple
ai for i ∈ Zw and let ui,j satisfy 〈ai,ui,j〉 = vj mod q. To verify an opening to
position i, the vector ai is used. The removal of the non-linear term vj/vi allows
proving security from the SIS assumption. On the flip side, using a different vec-
tor ai to verify openings to different positions i forbids the standard technique
of aggregating openings using a random linear combination. Furthermore, there
seems to be no natural way of generalising their construction to support func-
tional openings without significantly changing the VC model, e.g. introducing
an authority responsible for issuing functional opening keys [63]. Even if we con-
sider the model with an authority, the resulting VC only satisfies weak binding
(using the terminology of our work) making it unsuitable to be transformed into
a SNARG: There is in fact an explicit attack when compiling their VC (with
authority) into a SNARG.5

5 We stress that this does not contradict any of the claims made in [63], but rather
exemplifies the difference between their approach and ours.
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Prior to our work, all lattice-based SNARKs were in the designated-verifier
setting. These constructions [32,43] are based on “linear-only” assumptions
which are similar in spirit to the knowledge k-M -ISIS assumptions introduced
in this work but with a key difference: While linear-only assumptions are with
respect to specific encryption schemes, our assumptions are with respect to gen-
eral rings. In terms of applications, linear-only encryption has always been used
to construct designated-verifier primitives. In contrast, knowledge k-M -ISIS nat-
urally leads to constructions of publicly verifiable primitives.

2 Preliminaries

Let λ ∈ N denote the security parameter. Define N0 := N∪{0}. Let R be a ring.
We write R[X] for the (multivariate) polynomial ring over R and R(X) for the
ring of (multivariate) rational functions over R with intermediates X = (Xi :
i ∈ Zw). We write 〈G〉 for the ideal resp. module spanned by the elements of
the set G ⊂ Rη for η ∈ N. When G is a singleton set we may suppress the {·}
notation. We write |〈G〉| for size of the ideal 〈G〉 as a set.

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote
by K = Q(ζm) the cyclotomic field of order m ≥ 2 and degree n = ϕ(m), and
by R = Z[ζm] its ring of integers, called a cyclotomic ring for short. We have
R ∼= Z[x]/ 〈Φm(x)〉, where Φm(x) is the m-th cyclotomic polynomial. If m is a
power of 2, we call R a power-of-2 cyclotomic ring. If m is a prime-power, we call
R a prime-power cyclotomic ring. Let q ∈ N be prime, we write Rq := R/qR
and R×

q for all invertible elements in Rq. We have that Rq splits into f fields
of degree φ(m)/f . We write vec(r) ∈ Z

n for the coefficient vector of r (with the
powerful basis). For any r ∈ R there exists a matrix rot(r) ∈ Z

n×n s.t. ∀s ∈ R
we have vec(r · s) = rot(r) · vec(s). For elements x ∈ R we denote the infinity
norm of its coefficient vector as ‖x‖ := ‖vec(x)‖. If x ∈ R� we write ‖x‖ for the
infinity norm of x. We write ‖ · ‖p for the �p-norm, e.g. ‖ · ‖2 for the Euclidean
norm. We write MG(·) for a function that takes vectors indexed by G and returns
a matrix where each column corresponds to one such vector. We write In for the
identity matrix of dimension n over whatever ring is clear from context.

For w ∈ N, x = (xi : i ∈ Zw) ∈ Rw, and e = (ei : i ∈ Zw) ∈ Z
w, we write

xe :=
∏

i∈Zw
xei

i whenever it is defined. For v = (vi : i ∈ Zw) ∈ (R×
q )w, we

write v̄ := (v−1
i : i ∈ Zw) for the entry-wise inverse of v. A Laurent monomial

g(X) ∈ R(X) is an expression g(X) = Xe :=
∏

i∈Zw
Xei

i with exponent vector
e = (ei : i ∈ Zw) ∈ Z

w.
We may suppress arbitrary subscripts and superscripts from problem and

advantage notations when those are clear from context. We write x ← D for
sampling from the distribution D and x ←$ S to sample an element from the
finite space S uniformly at random. We write U(S) for the uniform distribution
over S and {uG} := {ug}g∈G .

Definition 1 (Ring Expansion Factor). Let R be a ring. The expansion
factor of R, denoted by γR, is γR := maxa,bR

‖a·b‖
‖a‖·‖b‖ .
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Proposition 1 ([4]). If R = Z[ζm] is a prime-power cyclotomic ring, then γR ≤
2n. If R = Z[ζm] is a power-of-2 cyclotomic ring, then γR ≤ n.

Proposition 2. Let q = ω((w · f)f/φ(m)) be a rational prime such that Rq splits
into f fields each of size qϕ(m)/f . For v ←$ Rw

q , we have v ∈ (R×
q )w with non-

negligible probability.

Proof. The probability that v ∈ (R×
q )w is (1 − 1/qϕ(m)/f )

w·f ≥ 1 − (w · f)/
qϕ(m)/f which is non-negligible. ��

For the rest of this work, we implicitly assume q is large enough so that a
uniformly random v ←$ Rw

q satisfies v ∈ (R×
q )w with non-negligible probability.

2.1 Lattices

We write Λ(B) for the Euclidean lattice generated by the columns of B ∈ Z
n×d =

[b0| . . .bd−1], i.e. {zi · bi | zi ∈ Z}. When B has full rank we call it a basis and
when n = d we say that Λ(B) has full rank. The determinant of a full rank lattice
is the absolute value of the determinant of any of its bases. Minkowski’s theorem
implies that there is a vector x ∈ Λ ⊂ R

d of (infinity) norm ‖x‖ ≤ det(Λ)1/d

when Λ has full rank. The Gaussian heuristic predicts that a random full-rank

lattice Λ contains a shortest vector of (Euclidean) norm ≈
√

d
2π e · det(Λ)1/d.

For any c ∈ R
n and any real σ > 0, the (spherical) Gaussian function with

standard deviation parameter σ and centre c is:

∀x ∈ R
n, ρσ,c(x) = exp

(

−π · ‖x − c‖22
σ2

)

.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn. The (spherical) discrete
Gaussian distribution over a lattice Λ ∈ R

n, with standard deviation parameter
σ > 0 and centre c is:

∀x ∈ Λ,DΛ,σ,c =
ρσ,c(x)
ρσ,c(Λ)

,

where ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x). When c = 0 we omit the subscript c. We may
write DR,σ where we interpret R to be the lattice spanned by R.

The dual of a lattice Λ is defined by Λ∗ = {y ∈ R
n : yT · Λ ⊆ Z}. The smooth-

ing parameter of an n-dimensional lattice Λ with respect to ε > 0, denoted ηε(Λ),
is the smallest σ > 0, such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lattice reduction with parameter κ returns a vector of Euclidean norm ≈
δd−1 ·det(Λ)1/d where δ is the root Hermite factor δ and a function of κ.6 A root
Hermite factor δ ≈

(
κ

2π e

)1/(2κ) can be achieved in time 20.292κ+o(κ) classically
using the BKZ algorithm [67] with block size κ and sieving as the SVP oracle [8]
(quantum algorithms do not promise a sufficiently substantial speed-up [3,48]).
Concretely, for λ = 128 we require κ ≥ 484 and thus δ ≤ 1.0034.

6 The literature routinely simplifies the first expression to ≈ δd · det(Λ)1/d.
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2.2 Sampling Algorithms

The following relies on analogues of the Leftover Hash Lemma over rings attest-
ing that given ai ←$ U(Rη

q ) and ri ←$ D where D is a small uniform [60,69] or

discrete Gaussian distribution [57,68], we have that
(
a0, . . . ,a�−1,

∑
0≤i<� ai · ri

)

is close to uniform. In what follows, we will write lhl(R, η, q,D) for an algorithm
that outputs a minimal � ∈ N ensuring that the resulting distribution is within
negl(λ) to uniform. We may also write lhl(R, η, q, β) for some D outputting ele-
ments bounded by β (with overwhelming probability). In many cases the reader
may think � ∈ O(η logβ(q)). Let (TrapGen,SampD,SampPre) be PPT algorithms
with the following syntax and properties [31,34,61]:

– (A, td) ← TrapGen(1η, 1�, q,R, β) takes dimensions η, � ∈ N, a modulus q ∈ N,
a ring R, and a norm bound β ∈ R. It generates a matrix A ∈ Rη×�

q and a
trapdoor td. For any n ∈ poly(λ) and � ≥ lhl(R, η, q, β), the distribution of A
is within negl(λ) statistical distance of U(Rη×�

q ).
– u ← SampD(1η, 1�,R, β′) with � ≥ lhl(R, η, q, β) outputs an element in u ∈

R� with norm bound β′ ≥ β. We have that v := A ·u mod q is within negl(λ)
statistical distance to U(Rη

q ).
– u ← SampPre(td,v, β′) with � ≥ lhl(R, η, q, β) takes a trapdoor td, a vector
v ∈ Rη

q , and a norm bound β′ ≥ β. It samples u ∈ R� satisfying A · u ≡
v mod q and ‖u‖ ≤ β′. Furthermore, u is within negl(λ) statistical distance
to u ← SampD(1η, 1�,R, β′) conditioned on v ≡ A ·u mod q. The syntax can
be extended in the natural way for SampPre to take a matrix V as input, in
which case SampPre is run on each column of V and the output vectors are
concatenated column-wise to form a matrix.

For all algorithms we may replace β by D where it is understood that D outputs
samples bounded by β (with overwhelming probability).

2.3 Hard Problems

The Short Integer Solution problem was introduced in the seminal work of
Ajtai [2]. It asks to find a short element (of Euclidean norm β2) in the ker-
nel of a random matrix mod q. An inhomogeneous version, asking to find a short
solution to a linear algebra problem mod q was formalised later [60].

For both problems, it was shown [34] that solving the problem for q ≥ β2 ·
ω(

√
n · log n) implies solving certain presumed hard lattice problems (finding a

short basis) to within approximation factor β2 · Õ(
√

n). Thus, since β2 ≥ β∞,
an appropriate choice of parameters is n = poly(λ), q ≥ β∞ · n · log n and
� ≥ 2n logβ∞ q. An algorithm solving ISIS can be used to solve SIS (by making
one of the columns of A the target) and solving ISIS twice allows to solve SIS
by considering the difference of these solutions. Ring variants were introduced
in [56,60,64]; module variants in [51].

Definition 2 (M -SIS, adapted from [51]). Let R, η, q, �, β depend on λ. The
Module-SIS (or M-SIS) problem, denoted M -SISRq,η,�,β∗ , is: Given a uniform
A ←$ Rη×�

q , t ≡ 0 mod q find some u 
= 0 ∈ R� such that ‖u‖∞ ≤ β∗ and A ·
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u ≡ t mod q. We write Advm-sis
Rq,η,�,β∗(λ) for the advantage of any algorithm A in

solving M -SISRq,η,�,β∗ . We assume Advm-sis
Rq,η,�,β∗,A(λ) ≤ negl(λ) for appropriately

chosen Rq, η, �, β∗ and PPT A. When t 
= 0 we speak of the Module-ISIS or M-
ISIS problem, denoted M -ISISRq,η,�,β∗ . When η = 1 we speak of Ring-(I)SIS or
R-(I)SIS, denoted R-SISRq,�,β∗ or R-ISISRq,�,β∗ .

In [51] it was shown that solving Module-SIS is as hard as finding a short basis
in modules. In [56,64] it was shown that solving Ring-SIS is as hard as find a short
vector in any ideal in R. A similar result was established for Ring-ISIS [60]. From
a cryptanalytic perspective, no known algorithm solves Ring/Module-(I)SIS sig-
nificantly faster than those solving (I)SIS. Our assumption is a generalisation
and adaptation to more general rings of the k-SIS assumption.

Definition 3 (k-M -SIS, generalised from [17,54]). For any integer k ≥ 0,
an instance of the k-M -SISRq,η,�,β,β∗ problem is a matrix A ∈ Rη×�

q and a set
of k vectors u0, . . .uk−1 s.t. A · ui ≡ 0 mod q. A solution to the problem is a
nonzero vector u ∈ R� such that

‖u‖∞ ≤ β, A · u ≡ 0, and u /∈ K- span({ui}0≤i<k).

If B is an algorithms that takes as input a matrix A ∈ Rη×�
q and vectors ui ∈ R�

for 0 ≤ i < k, we define Advk-m-sis
Rq,η,�,β,β∗,B(λ) to be the probability that B outputs

a solution to the k-M -SISRq,η,�,β,β∗ problem instance A,u0, . . . ,uk−1 over uni-
formly random A ∈ Rη×�

q and ui drawn from SampD(1η, 1�,R, β) conditioned
on A · ui ≡ 0 mod q.

In [17,54] it is shown that if SIS is hard for Zn×(�−k)
q and norm bound β then

k-M -SISZq,n,�,β′,β′′ is hard for any k < �, and certain β′, β′′ ∈ poly(β). Looking
ahead, here we are interested in k-R-SISRq,�,β,β∗ := k-M -SISRq,1,�,β,β∗ .

3 The k-M -ISIS Assumption

We first introduce a family of assumptions over modules – k-M -ISIS – which we
then specialise to rings to obtain k-R-ISIS mentioned above.

We note that the most immediate candidate notion for k-ISIS, i.e. generalising
k-SIS, is to simply hand out short preimages of random images and then ask
the adversary to solve ISIS. This notion is trivially equivalent to ISIS since short
preimages of random images can be efficiently sampled by sampling short u ∈ Z

�

and computing t := A · u. The same reasoning can be lifted to R. On the other
hand, k-SIS is trivially insecure when k ≥ � in the intuitive sence since then
{ui} constitutes a trapdoor for A when the ui are linearly independent [34].
Formally, the problem as stated is impossible to solve since all vectors will be in
Q- span({ui}0≤i<k), i.e. there are no valid solutions.

Our variants are neither trivially equivalent to M -ISIS nor immediately bro-
ken when k > � by imposing on the images an algebraic structure which is inde-
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pendent of the challenge matrix A. Before stating our family of assumptions, we
define a notion of admissibility to formally rule out trivial wins.

Definition 4 (k-M -ISIS-Admissible). Let g(X) ∈ R(X) be a Laurent mono-
mial, i.e. g(X) = Xe :=

∏
i∈Zw

Xei
i for some exponent vector e = (ei : i ∈

Zw) ∈ Z
w. Let G ⊂ R(X) be a set of Laurent monomials with k := |G| and let G

be a vector of those monomials. Let g∗ ∈ R(X) be a target Laurent monomial.
We call a family G k-M -ISIS-admissible if (i) all g ∈ G have constant degree,
i.e. ‖e‖1 ∈ O(1); (ii) all g ∈ G are distinct, i.e. G is not a multiset; and (iii)
0 
∈ G. We call a family (G, g∗) k-M -ISIS-admissible if G is k-M -ISIS-admissible,
g∗ has constant degree, and g∗ /∈ G.

Remark 1. Condition (i) rules out monomials that depend on the ring R, such
as Xφ(m). Condition (ii) rules out that trivial linear combinations of known
preimages produce a preimage for the target. Condition (iii) rules out trivially
producing multiple preimages of the same image. On the other hand, we do not
target full generality here but restrict ourselves to a slight generalisation of what
we require in this work. It is plausible that we can replace Laurent monomials
by Laurent “terms”, i.e. with coefficients 
= 1 in Rq, or rational functions.

Definition 5 (k-M -ISIS Assumptions). Let �, η ∈ N. Let q be a rational
prime, R the m-th cyclotomic ring, and Rq := R/qR. Let T ⊂ Rη

q be such
that, for any t = (ti)i∈Zη

∈ T , 〈{ti}〉 = Rq. Let G ⊂ R(X) be a set of w-variate
Laurent monomial. Let g∗ ∈ R(X) be a target Laurent monomial. Let (G, g∗)
be k-M -ISIS-admissible. Let Ḡ := G ∪ {g∗}. Let β ≥ 1 and β∗ ≥ 1 be reals. For
η, � ∈ N, g ∈ Ḡ, � ≥ lhl(R, η, q, β), A ∈ Rη×�

q , t ∈ T , and v ∈ (R×
q )w, let

Dg,A,t,v be a distribution over

{ug ∈ R� : A · ug ≡ g(v) · t mod q, ‖ug‖ ≤ β}.

Let D := {Dg,A,t,v : η, � ∈ N, g ∈ Ḡ,A ∈ Rη×�
q ,v ∈ (R×

q )w} be the family of
these distributions. Write pp := (Rq, η, �, w,G, g∗,D, T , β, β∗). The k-M -ISISpp
assumption states that for any PPT adversary A we have Advk-r-isispp,A (λ) ≤
negl(λ), where

Advk-m-isis
pp,A (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

A · ug∗ ≡ s∗ · g∗(v) · t
∧ 0 < ‖s∗‖ ≤ β∗

∧ ‖ug∗‖ ≤ β∗

∧ (g∗,ug∗) 
= (0,0)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A ←$ Rη×�
q mod q

t ←$ T ; v ←$ (R×
q )w

ug ←$ Dg,A,t,v, ∀ g ∈ G
(s∗,ug∗) ← A (A, t, {uG},v)

⎤

⎥
⎥
⎥
⎥
⎦

.

Remark 2. Since for any t′ ∈ T there exist matrices X,Y s.t. X · Y ≡ I, X ·
t′ ≡ (1, 0, . . . , 0)T mod q and Y · (1, 0, . . . , 0)T ≡ t′ mod q, we can assume that
T = {(1, 0, . . . , 0)T} without loss of generality.

Definition 6 (k-R-ISIS). When η = 1 we may write

k-R-ISISRq,�,w,G,g∗,D,T ,β,β∗ := k-M -ISISRq,1,�,w,G,g∗,D,T ,β,β∗ .
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Remark 3. Analogous to the �-Diffie-Hellman exponent assumption, an example
of (w,G, g∗) is w = 1, G = {1,X, . . . ,X�,X�+2, . . . , X2�}, and g∗(X) = X�+1 for
some � ∈ N.

As written above we have a separate assumption for each family of (G, g∗)
which are application dependent. As we will show below, there are (G, g∗) that are
as hard as M -ISIS and our discussion of admissibility indicates that some (G, g∗)
are trivially insecure. However, to encourage analysis and to avoid “bodacious
assumptions” [46] we make the following, strong, meta assumption.

Definition 7 (k-M -ISIS Meta Assumption). For any k-M -ISIS-admissible
(G, g∗), k-M -ISISpp is hard.

3.1 Knowledge Variants

We next propose a “knowledge” version of the k-M -ISIS assumption. It captures
the intuition that if the images are restricted to scalar multiples of t then the only
way to produce preimages of them under A is to perform a linear combination
of the given preimages under A with small coefficients.

Definition 8 (Knowledge k-M -ISIS Assumption). Adopt the notation from
Definition 5, but let pp := (Rq, η, �, w,G,D, T , α, β, β∗) where α ≥ 1 is real and
η > 1. The knowledge k-M -ISISpp assumption states that for any PPT adversary
A there exists a PPT extractor EA such that Advk-m-isis

pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A · u ≡ c · t mod q

∧ ‖u‖ ≤ β∗

∧ ¬

⎛

⎜
⎝

c ≡
∑

g∈G
xg · g(v)

∧ ‖(xg)g∈G‖ ≤ α

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A ←$ Rη×�
q

t ←$ T ; v ←$ (R×
q )w

ug ←$ Dg,A,t,v, ∀ g ∈ G
(
(c,u), (xg)g∈G

)

← (A‖EA) (A, t, {uG},v)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the notation (A‖EA) means that A and EA are run on the same input
including the randomness, and (c,u) and (xg)g∈G are the outputs of A and EA
respectively.

The knowledge k-M -ISIS assumption, as stated, only makes sense for η ≥
2, i.e. not for k-R-ISIS. To see this, consider an adversary A which does the
following: First, it samples random short u and checks whether A · u is in the
submodule of Rη

q generated by t. If not, A aborts. If so, it finds c such that
A ·u = c · t mod q and outputs (c,u). When η = 1 and assuming without loss of
generality that T = {(1, 0, . . . , 0)T}, we observe that t = 1 generates Rq, which
means A never aborts. Clearly, when A does not abort, it has no “knowledge”
of how c can be expressed as a linear combination of {g(v)}g∈G . Note that when
η ≥ 2 the adversary A aborts with overwhelming probability since A · u is
close to uniform over Rη

q but the submodule generated by t is only a negligible
faction of Rη

q . However, in order to be able to pun about “crises of knowledge”,
we also define a ring version of the knowledge assumption. In the ring setting,
we consider proper ideals rather than submodules.
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Definition 9 (Knowledge k-R-ISIS Assumption). Let the parameters pp be
as in Definition 5 except that η = 1 and T contains elements t ∈ Rq s.t.
1/| 〈t〉 | = negl(λ) and | 〈t〉 |/|Rq| = negl(λ).7 The knowledge k-R-ISISpp assump-
tion states that for any PPT adversary A there exists a PPT extractor EA such
that Advk-r-isispp,A (λ) ≤ negl(λ), where

Advk-r-isispp,A (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

〈a,u〉 ≡ c · t mod q

∧ ‖u‖ ≤ β∗

∧ ¬

⎛

⎜
⎝

c ≡
∑

g∈G
xg · g(v)

∧ ‖(xg)g∈G‖ ≤ α

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a ←$ R�
q

t ←$ T ; v ←$ (R×
q )w

ug ←$ Dg,a,t,v, ∀ g ∈ G
(
(c,u), (xg)g∈G

)

← (A‖EA) (a, t, {uG},v)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 10 (k-M -ISISMetaKnowledgeAssumption).For any k-M -ISIS-
admissible G, the knowledge k-M -ISISpp assumption holds.

We provide reductions for some parameter regimes and some preliminary
cryptanalysis of our assumption in the full version of this work.

4 Compact Extractable Vector Commitments

We construct compact extractable vector commitments with openings to
constant-degree multivariate polynomial maps from the knowledge k-M -ISIS
assumption.

4.1 Definitions

We define a non-interactive variant of vector commitments with preprocessing.

Definition 11 (Vector Commitments (VC)). A (preprocessing non-inter
active) vector commitment (VC) scheme is parameterised by the families

F = {Fs,w,t ⊆ {f : Rs × Rw → Rt}}s,w,t∈N and

Y = {Ys,t ⊆ {y : Rs → Rt}}s,t∈N

of functions over R and an input alphabet X ⊆ R. The parameters s, w, and t are
the dimensions of public inputs, secret inputs, and outputs of f respectively. The
VC scheme consists of the PPT algorithms (Setup,Com,Open,PreVerify,Verify)
defined as follows:

– pp ← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parame-
ters on input the security parameter λ ∈ N and the size parameters s, w, t ∈ N.

7 Concretely, let T be the set of all Rq elements t where half of the components of t
in the Chinese remainder theorem (CRT) representation are zero and the other half
are non-zero. Note that this is well-defined only when 〈q〉 is not a prime ideal in R.
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– (c, aux) ← Com(pp,x): The commitment algorithm generates a commitment
c of a given vector x ∈ X w with some auxiliary opening information aux.

– π ← Open(pp, f, z, aux): The opening algorithm generates a proof π for f(z, ·)
for the public input z ∈ X s and function f ∈ Fs,w,t.

– ppf,y ← PreVerify(pp, (f, y)): Given functions f ∈ Fs,w,t and y ∈ Ys,t, the
verification preprocessing algorithm generates the preprocessed public param-
eters ppf,y for verifying proofs for (f, y).

– b ← Verify(ppf,y, z, c, π): The verification algorithm inputs a preprocessed pub-
lic parameters ppf,y, a public input z ∈ X s, a commitment c, and an opening
proof π. It outputs a bit b deciding whether to accept or reject that the vector
x committed in c satisfies f(z,x) = y(z).

Definition 12 (Correctness). A VC scheme for (F ,X ,Y) is said to be cor-
rect if for any λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z,x, y) ∈
Fs,w,t × X s × X w × Ys,t satisfying f(z,x) = y(z), any (c, aux) ∈, (pp,x), any
π ∈ Open(pp, f, z, aux), and any ppf,y ∈ PreVerify(pp, (f, y)), it holds that
Verify(ppf,y, z, c, π) = 1.

Informally, a VC scheme is extractable if, whenever an adversary A is able to
produce a commitment c and a valid opening proof π for some (f(z, ·), y(z)), then
it must “know” a preimage x which is committed in c and satisfies f(z,x) = y(z).
Clearly, an extractable VC must also be binding, i.e. it is infeasible to open a
commitment c to a set {(fi(zi, ·), yi(zi))}i of inconsistent function-image tuples.

Definition 13 (Extractability). Let κ : N
4 → [0, 1]. A VC scheme for

(F ,X ,Y) is said to be κ-extractable if for any PPT adversary A there exists
a PPT extractor EA such that the following probability is at most κ(λ, s, w, t):

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(
Verify(ppf,y, z, c, π) = 1

)

∧ ((f, z,x, y) /∈ Fs,w,t × X s × X w × Ys,t

∨ c′ �= c ∨ f(z,x) �= y(z))

∣∣∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1λ, 1s, 1w, 1t)

(f, y, z, c, π) ← A(pp; rA)

(x, r) ← EA(pp; rA)

(c′, aux′) ← Com(pp,x; r)

ppf,y ← PreVerify(pp, (f, y))

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In case Com is deterministic, we suppress the output r of EA. We say that the
scheme is extractable if it is κ-extractable and κ(λ, s, w, t) is negligible in λ for
any s, w, t ∈ poly(λ).

Definition 14 (Compactness). A VC scheme for (F ,X ,Y) is said to be com-
pact if there exists p(λ, s, w, t) ∈ poly(λ, log s, log w, log t) such that for any
λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z,x, y) ∈ Fs,w,t × X s ×
X w × Ys,t, any (c, aux) ∈ Com(pp,x), and any π ∈ Open(pp, f, z, aux), it holds
that max{|c|, |π|} ≤ p(λ, s, w, t), where | · | denotes the description size.

4.2 Construction

A formal description of our VC construction is in Fig. 1 where important param-
eters and shorthands are listed and explained in Table 1.
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Table 1. Parameters and shorthands with λ as security parameter.

s ∈ N Dimension of public input z

w ∈ N Dimension of v and secret input x

t ∈ N Number of outputs

d ∈ N O(1) Degree of polynomial maps

n ∈ N poly(λ) Degree of R
α ∈ R poly(λ) Norm bound for f and x

β ∈ R poly(λ) Norm bound for public preimages

δi ∈ R poly(λ, s, w, t) (Theorem 1) Norm bound for opening proof ui

δp ∈ R (s + w + d)d αd+1 γd n Norm bound of evaluation of a degree-d (s + w)-variate

polynomial with coefficients of norm bounded by α at a

point of norm bounded by α

p ∈ N ≥ δp n log n Moduli for Rp

q ∈ N ≥ max{δ0, δ1} · n log n Moduli for Rq

ηi ∈ N O(1) Number of rows of Ai

�i ∈ N ≥ lhl(R, ηi, q, β) Number of columns of Ai

X ⊆ R {x ∈ R : ‖x‖ ≤ α} R elements with norm bound α

Fs,w,t Degree-d (s + w)-variate t-output homogeneous polynomial

maps over X
Ys,t s-variate t-output polynomial maps over X
Ek ⊆ N

w
0 {e ∈ N

w
0 : ‖e‖1 = k} Non-negative integer vectors of 1-norm k, for k ∈ [d]

G0 ⊆ R(X)
⋃d

k=1{Xe′−e : e′ �= e ∈ Ek} Laurent monomials expressible as ratios of distinct

degree-k monomials, for k ∈ [d]

G1 ⊆ R(X) {Xi : i ∈ Zw} Degree-1 monomials
(

k
e

) (
k

e0,...,ew−1

)
Multinomial coefficient, for e ∈ Ek and k ∈ [d]

Ti Subset of Rηi
q (Definition 5)

fi,e For f(Z, X) ∈ Fs,w,t, fi,e(Z) is the coefficient of the

monomial Xe of the i-th output

The public parameters consists of a k-M -ISIS instance (A0, t0,v, (u0,g)g∈G0
)

over Rq, a correlated k-M -ISIS of knowledge instance (A1, t1,v, (u1,g)g∈G1
) over

Rq sharing the same v as the k-M -ISIS instance, and a R-SIS instance h over
Rp, where p is short relative to q. Intuitively, the k-M -ISIS instance is for weak
binding, the knowledge k-M -ISIS instance is for upgrading weak binding to
extractability, and the R-SIS instance is for compactness. The commitment c
to a vector x is simply c := 〈v,x〉 mod q.

We next explain the opening and verification mechanism. Suppose for the
moment that f(z, ·) is a single-output polynomial, i.e. t = 1. Consider the com-
mitment c of x and the evaluation of f(z, ·) at (v−1

0 ·c, . . . , v−1
w ·c) as polynomials

in v. The value f(z,x) is encoded as the constant term in the evaluation poly-
nomial. To open the commitment c of x to a function f(z, ·), the committer
computes the coefficient of each non-zero Laurent monomial g ∈ G0 in the eval-
uation polynomial, and use these coefficients to compute a linear combination
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Fig. 1. Our VC Construction.

of (u0,g)g∈G0 to produce u0. In general, for t ≥ 1, the committer further com-
presses the multiple instances of u0 into a single one using a linear combination
with coefficients given by h. To enable extraction (in the security proof), the
committer also provides u1 which is a linear combination of (u1,g)g∈G1 using x
as coefficients. Given the above, the meaning behind the verification algorithm
is immediate.

Finally, we explain the choice of p and q in Table 1. First, p is chosen such
that the element f(z,x) − y(z) is considered short (in the context of R-SIS
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problems) relative to p for all f ∈ Fs,w,t, y ∈ Ys,t, z ∈ X s, and x ∈ X w. By
some routine calculations, we can see that for such choice of (f, z,x, y), we have
‖f(z,x)−y(z)‖ ≤ (s + w + d)d ·αd+1 ·γd

R. A standard choice for R-SIS problems
over Rp is for p to be at least n log n times the norm bound; we thus simply pick
this. Similarly, q is chosen such that δ0 and δ1 are both considered short relative
to q, concretely by setting q to be n log n times the maximum among them.8

Remark 4 (Updating Commitments and Opening Proofs). We discuss the cost
of updating a commitment of x to that of x′, and an opening proof for f(z,x)
to that of f ′(z′,x′), omitting fixed poly(λ) factors. Due to the linearity of the
commitment c = 〈v,x〉 mod q and opening proof component u1 =

∑
i∈Zw

xi ·
u1,Xi

in the committed vector x, they can be updated for a new committed vector
x′ easily by adding 〈v,x′ − x〉 mod q and

∑
i∈Zw

(x′
i − xi) · u1,Xi

respectively.
The computation complexity of the update is O(Δ), where Δ is the Hamming
distance between x and x′. Updating the u0,e terms is more computationally
expensive due to its non-linearity in x. The cost of computing the difference
term for u0,e is linear in

(
w
k

)
−

(
w−Δ

k

)
= O(Δk) for each e ∈ Ek and each k ∈ [d].

The total work needed for updating {u0,e}e∈Ek,k∈[d] is thus O(wd · Δd). For
fixed x and hence fixed {u0,e}e∈Ek,k∈[d], updating u0 by the same method costs
computation linear in the Hamming distance between the coefficient vector of
f(z, ·) and that of f ′(z′, ·).

We show that our VC construction is correct, extractable under a knowledge
k-M -ISIS assumption, and compact. The formal analysis of the theorems are
deferred to the full version.

Theorem 1. For d = O(1), �0 := �1 := lhl(R, η, q, β),

δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R and δ1 = w · α · β · γR,

our VC construction in Fig. 1 is correct.

Theorem 2. Our VC construction for (F ,X ,Y) is extractable if it is correct, β ≥
α, �i ≥ lhl(R, ηi, q, β) for i ∈ {0, 1}, and the k-M -ISISRq,η0,�0,w,G0,1,D0,T0,β,2δ0

assumption, the knowledge version k-M -ISISRq,η1,�1,w,G1,D1,T1,α,β,δ1 assumption,
and the R-SISRp,t,2δp

assumption hold, where Di is such that the distribution
{

(Ai, ti, {uGi
},v)

∣
∣
∣
∣
∣

Ai ←$ Rηi×�i
q ; ti ←$ Ti; v ←$ (R×

q )w

ug ←$ D0,g,Ai,ti,v, ∀g ∈ Gi

}

is statistically close to the distribution
{
(Ai, ti, {uGi

},v)

∣∣∣∣∣
Ai ←$ Rηi×�i

q ; ti ←$ Ti; v ←$ (R×
q )w

ug ←$ SampD(1ηi , 1�i , R, β) : Ai · ug ≡ g(v) · ti mod q, ∀g ∈ Gi

}
.

8 In practice the gap may be smaller or larger and when picking parameters we opti-
mise over these gaps.
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Fig. 2. Combined size (in KB) of a commitment and an opening proof for the concrete
parameters chosen in Theorem 3, setting λ = 128, optimising for ρ and comparing with
SNARK proof sizes in prior works [36, Fig. 5]. We picked α = s.

Theorem 3. For n ∈ poly(λ), q, δ0, δ1 ∈ poly(λ, s, w, t), and �0, �1 ∈ Θ(log q) =
polylog(λ, s, w, t), covering the choices of parameters in Theorems 1 and 2, the
VC construction in Fig. 1 is compact.

Concretely, let R be a power-of-2 cyclotomic ring so that γR = n. For s =
w = t ≥ n and for the following choices of parameters,

d, η0, η1 = O(1), β ≥ α

δ0 = 2 · p · t · (s + d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

δ1 = w · α · β · γR,

p ≈ δp · n · log n, q ≈ δ0 · n · log n, and
�0 = �1 = lhl(R, 1, q, β) ≈ 2 logβ q,

a commitment and openings are of size O(n log s), and O(n·(log s + log β)2/ log β),
respectively. The minimum is attained at β = Θ(s), where an opening proof is of
size O(n log s).

To translate these into concrete sizes we need to pick n such that solv-
ing k-R-ISIS and R-SIS costs ≈ 2λ operations. Here it can be beneficial to
set q = δρ

0 · n · log n for some parameter ρ ∈ N. Specifically, we require
that R-SISRq,�0,2·√n·δ0 , R-SISRq,�1,2·√n·δ1 and R-SISRp,t,2·√n·δp

are hard where
δp := (s + w + d)d · αd+1 · γd

R. The factor of two arises from our reduction and
the factor

√
n translates between �∞ and �2. In Fig. 2 we report the concrete

combined size (in KB) of a commitment and an opening proof for the concrete
parameters chosen in Theorem 3, specifically setting d = 2, η0 = η1 = 1, and
β = s = w = t ∈ {210, 211, . . . , 240}.

To analyse computation complexity, we assume the concrete parameter
choices in Theorem 3 with the exception that s, w, t are treated as free vari-



Lattice-Based SNARKs 127

Table 2. Computation complexities (in number of R or Rq operations) of our VC.

Com O(w2d · (log s + log w + log t + log β)/ log β)

Open O(t · (s + w)d · (log s + log w + log t + log β)/ log β)

PreVerify O(t · (s + w)d)

Verify O(sd + (log s + log w + log t + log β)/ log β)

ables for more fine-grained complexity measures and to highlight the benefits
of preprocessing. For simplicity, we assume max{s, w, t} ≥ n. The computa-
tion complexities (in number of R or Rq operations) of Com, Open, PreVerify,
and Verify are reported in Table 2. Note that each R or Rq operation takes at
most poly(λ, log s, log w, log t) time. In summary, the combined time needed to
commit to x and open to f(z, ·) is quasi-quadratic in the time needed to com-
pute f(z,x), and the time needed to pre-verify (f, y) is quasi-linear in the time
needed to compute f(z,x). We highlight that the online verification cost, i.e. the
computation complexity of Verify, is dominated additively by sd where s is the
dimension of the public input. In applications where sd = O(log w + log t) and
setting β = Θ(w + t), the online verification cost (in number of bit operations)
is O(n log w + n log t).
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Abstract. We propose a practical sublinear-size zero-knowledge proof
system for Rank-1 Constraint Satisfaction (R1CS) based on lattices.
The proof size scales asymptotically with the square root of the witness
size. Concretely, the size becomes 2–3 times smaller than Ligero (ACM
CCS 2017), which also exhibits square root scaling, for large instances
of R1CS. At the core lies an interactive variant of the Schwartz-Zippel
Lemma that might be of independent interest.

1 Introduction

Zero-Knowledge proof systems are an important tool in the construction of many
cryptographic protocols, especially in the area of privacy-preserving cryptogra-
phy. This paper is about zero-knowledge proof systems based on techniques and
hardness assumptions from lattice cryptography. In recent years there has been a
lot of progress in the construction of lattice-based proof systems whose proof sizes
scale linearly with the statement size [ESS+19,EZS+19,ALS20,ENS20,LNS20].
The concrete proof sizes for typical statements have been reduced by a factor of
about 100 over earlier proof systems. This in turn has made it possible to con-
struct efficient advanced quantum-safe privacy-preserving schemes, for example
group and ring signature schemes, that achieve or get near to practically accept-
able bandwidth requirements [ESLL19,LNPS21,LNS21b].

On the other hand, the linear scaling of the proof systems implies that they
are only practical for proving relatively small statements and great care needs to
be taken to minimize the statement sizes when using them in the construction of
advanced schemes. For example, the linear-size proof systems can not be used to
construct efficient group signature schemes on top of vetted lattice-based basic
signature schemes such as the NIST PQC finalists Dilithium [DKL+18] and
Falcon [FHK+18]. Dilithium and Falcon involve a hash function that is modeled
as a random oracle and proving a preimage to such a hash function would lead
to a very large proof size.

For solving this problem and more generally for being able to prove arbi-
trary circuit satisfaction with lattice-based proof systems, practically efficient
sublinear-size proof systems are needed. There are several proposals of asymptot-
ically sublinear lattice-based proof systems in the literature [BBC+18,BLNS20,
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ACK21,AL21], but their concrete proof sizes are not analyzed in the papers
and they are not practically efficient. These sublinear-size lattice-based proof
systems use adaptations and extensions of techniques from discrete-log-based
proof systems. In particular several forms of “folding” stemming from the two-
tiered commitment scheme [Gro11] and Bulletproofs [BBB+18]. While folding
techniques are very effective in the discrete-log setting and retain asymptotic effi-
ciency in the lattice setting, they do not play nicely with the shortness require-
ment in lattice cryptography. This leads to a concrete blow-up of the proof size.
We exemplify this in the case of lattice-based Bulletproofs. On a high level, it
must be possible to invert the folding in the extraction such that the extracted
solution vector is still short. For general (short) challenges this will not be the
case. In [BLNS20,ACK21] monomial challenges Xi are used that result in a large
soundness error which can not be boosted [AF21]. But even when ignoring this
problem, the length of the extracted solution vector grows by a factor of 12d3 for
every level of folding where d is the dimension of the polynomial ring. Then the
parameters must be chosen such that the Module Short Integer Solution problem
(Module-SIS) is hard with respect to the length of the extracted solution vector,
resulting in the need for large integer moduli q. It follows that the length of the
extracted solution becomes prohibitively large for less than 10 foldings. When
choosing an optimal number of foldings the required modulus q still needs to be
in the order of several hundred bits and the proof size turns out to be in excess
of 100 Megabytes for typical example applications.

In light of these problems, we construct the first concretely efficient sublinear-
size lattice-base zero-knowledge proof system in this paper. Our proof system
uses new techniques that avoid any folding and the proof size scales with the
square root of the statement size. We apply it for proving R1CS [BCG+13] where
it is most efficient and achieves optimal sizes for numbers of constraints above
220. Because of the square root scaling, we compare our proof system to the
PCP-type Ligero proof system [AHIV17], and more specifically to the straight-
forward extension Ligero-R1CS from [BCR+19] to the R1CS language, which
also exhibits square root scaling and is faster and less memory-demanding than
other PCP-type proof systems. In the setting over a finite field of size 128 bits
our system results in a proof size of 10.79 Megabytes for 224 constraints, whereas
Ligero results in 31.83 Megabytes, for the same field size, number of constraints,
and comparable soundness error around 2−110.

Outside of lattice-based cryptography there has been tremendous progress
in the construction of practical zero-knowledge proof systems and they have
progressed to the point where they can be used routinely to prove relatively
large arithmetic circuits with practical costs. When restricting to (plausibly)
quantum-safe protocols, the PCP-type systems like Ligero++ [BFH+20] or
Aurora [BCR+19] achieve proof sizes that scale poly-logarithmically with the
witness size and have small concrete base sizes in the order of 100 Kilo-
bytes. Moreover, these systems only rely on unstructured quantum-safe hardness
assumptions (hash functions). It is clear that the polylogarithmic proof systems
with small concrete costs like e.g. Aurora offer much smaller proof sizes for large
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statements than our square-root sized proof system. We use the comparison with
Ligero to be able to claim practicality of our proof system. Namely, that our proof
system has very small constants for a proof system that asymptotically scales
with the square root of the witness size. It is an important and interesting open
research question whether it will be possible to improve upon the polylogarith-
mic PCP-type systems by relying on structured quantum-safe assumptions as
for example lattice-based assumptions, which for example has been achieved for
basic signature schemes where lattice-based signatures are more efficient than
hash-based ones.

Next to the conventional publicly verifiable proof systems this paper is about,
there has recently been much work on (lattice-based) proof systems in the des-
ignated verifier preprocessing model. For example, [GMNO18], MAC’n’Cheese
[BMRS21], Wolverine [WYKW21], QuickSilver [YSWW21], and [ISW21]. These
proof systems achieve very practical sizes but are not directly comparable to
publicly verifiable protocols.

1.1 Technical Overview

Our proof system from this paper is constructed in two stages and uses the
protocols from [ALS20,ENS20] as a building block. First, we construct an exact
binary amortized opening proof for many lattice-based hashes. Then we use
this proof to prove an opening to a Merkle hash tree via induction over the
levels of the tree. Both proofs can be amended to also prove linear and product
relations among the preimage coefficients. We now give some more details about
the techniques.

Our sublinear-size proof system is presented as a protocol for proving preim-
ages to many collision-resistant hashes �ui = A�si over a cyclotomic polynomial
ring, typically Rq = Zq[X]/(X128 + 1) with fully splitting prime q ≈ 2128. The
preimages �si are binary and lie in {0, 1}m ⊂ Rm/128

q where m is a multiple of
128. The hashes can be commitments if parts of the �si are random, but our proof
system does not rely on this. Concretely, there are n hashes to m bits each, and
we want m ≈ n and a proof size that is linear in n. Then our proof system scales
with the square root of the witness size. We start from an amortized approximate
opening proof for all the hashes that is a variant of the protocol in [LNS21a]. In
the protocol the prover sends an amortized masked opening

�z = �y + x1�s1 + · · · + xn�sn,

where �y is the masking vector and xi ∈ Zq are integer challenges. We forget the
polynomial structure and let �si be the coefficient vectors corresponding to the
�si. We then enhance the protocol with a binary proof that shows that all the
�si are binary vectors �si ∈ {0, 1}m. To this end, we construct the polynomial (in
the xi)

f(x1, . . . , xn) = 〈�ϕ, �z ◦ ((x1 + · · · + xn)�1 − �z)〉
for a challenge vector �ϕ. Here ◦ denotes the componentwise product. The terms
divisible by x2

i for i ∈ {1, . . . , n} are given by 〈�ϕ,�si ◦ (�1 − �si)〉 and vanish when
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�si is binary, which we want to prove. There are now two problems that we need
to overcome to make this work. First, there is a quadratic number (n2 +n+2)/2
of terms that we would need to commit to in order to prove that the interesting
terms divisible by x2

i vanish. These are called garbage commitments and they
would be very expensive and not result in a sublinear-size proof system. Secondly,
it is not clear how to prove hat �z is always of the same form with fixed masking
vector �y so that the polynomial f is really independent of the challenges. We solve
the first problem with a technique that can be seen as a multi-round interactive
variant of the Schwartz-Zippel lemma. The high-level idea is that we prove

f(x1, . . . , xn) = f0 + f1(x1) + f
(x1)
2 (x2) + · · · + f (x1,...,xn−1)

n (xn), (1)

where f0 ∈ Zq and f
(x1,...,xi−1)
i ∈ Zq[xi] is a degree-one polynomial in xi with

zero constant coefficient, depending on x1, . . . , xi−1. More precisely, we do not
prove that the f

(x1,...,xi−1)
i (xi) are in fact multivariate polynomials in x1, . . . , xi

of degree 2 whose terms x2
i vanish. It suffices to prove that they are arbitrary

functions from Z
i−1
q to Zq[xi] given by (x1, . . . , xi−1) �→ f (x1,...,xi−1)(xi) where

the image polynomials are of the form γixi for all (x1, . . . , xi−1). The impor-
tant information is that f

(x1,...,xi−1)
i does not depend on xi, . . . , xn. This can

be proven in a protocol with 2n rounds where the prover has to commit to the
coefficient γi for f (x1,...,xi−1) after he has received the challenges x1, . . . , xi−1 but
before getting the challenges xi, . . . , xn. Then, intuitively, if �si is not binary, the
prover can not use γixi to make Eq. (1) true for all (x1, . . . , xn) because the
left-hand side contains the non-zero term 〈�ϕ,�si ◦ (�1 − �si)〉x2

i that is quadratic
in xi. He can also not use the later γj because they all get multiplied by later
challenges xj that the prover does not know when making the commitments. A
precise analysis shows that this argument has soundness error 2n/q for uniformly
random challenges xi.

So our protocol will have many rounds but we do not consider this to be
a problem as we are only interested in the non-interactive variant where the
number of rounds has no direct impact on the performance of the proof system.
The interactive variant only serves as a convenient intermediate representation
that is easy to reason about. From a theoretical point of view our multi round
protocol is simple in that the extraction algorithm is relatively straight-forward
compared to for example Bulletproofs where a complicated tree extraction algo-
rithm is needed.

For the second problem we do not know how to prove that �z must follow
the fixed form from using the approximate opening proof protocol alone. But
in conjunction with the binary proof protocol it turns out to be provable. The
argument proceeds along the following lines. Let �s∗

i be the bound weak openings
to the hashes �ui that we can extract from the approximate proof. If they are
not all binary, then there is a last non-binary vector �s∗

i0
. We can write �z −

xi0+1�s
∗
i0+1 − · · · − xn�s∗

n = �y∗ + xi0�s
∗
i0

in any accepting transcript where A�y∗ =
�w + x1�u1 + · · · + xi0−1�ui0−1. So this can be viewed as a masked opening of the
single secret vector �s∗

i0
because the left hand side is short. Then we can use the

argument for the non-amortized case to argue that the prover is bound to the
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�y∗ in all interactions with fixed first challenges x1, . . . , xi0−1. Indeed, if in an
accepting transcript �z′ = �y∗∗ + x′

i0
�s∗

i0
+ · · · + x′

n�s∗
n with �y∗∗ 
= �y∗∗, then we can

compute a short Module-SIS solution

x̄(�y∗−�y∗∗) = x̄(�z−�z′−(xi0+1−x′
i0+1)�s

∗
i0+1−· · ·−(xn−x′

n)�s∗
n)−(xi0 −x′

i0)x̄�s∗
i0

for A, where x̄ is a difference of two challenges such that x̄�s∗
i0

is short. This in
turn suffices to show that the prover has small success probability in the binary
proof restricted to the vectors �si0 , . . . , �sn.

Given this exact amortized binary opening proof, we extend it to be also
able to prove linear and product relations on the secret vectors. This already
provides a sublinear-size proof system even when the size of the commitments
�ui is counted as part of the proof size. There are n hashes, each of essentially
constant size. Unfortunately, this simple sublinear-size proof system is only com-
petitive in a small regime of parameters. We achieve competitive proof sizes for
larger parameters in a further protocol where we use the previous exact amor-
tized binary opening proof as a building block to prove knowledge of a Merkle
tree opening by induction over the levels of the tree when only the root hash is
given (see Sect. 5 and the full version of the paper.).

So we use a Merkle tree with hashes �ui = A�si for i = 1, . . . , 2a − 1, where
�u1 is the root hash and �u2a−1 , . . . , �u2a−1 are the leaves. The binary preimages
�si are the expansions of the two children �u2i and �u2i+1; that is, �si = �si,l ‖ �si,r

and �u2i = G�si,l, �u2i+1 = G�si,r. Here G is the power-of-two gadget matrix
G = I ⊗ (1, 2, . . . , 2�log q�), i.e. the identity matrix tensored with the two-power
vector.

Now, in the protocol the prover sends an amortized masked opening of all
the preimages,

�z = �y +
2a−1∑

i=1

xi�si.

The main idea is that all the terms xi�si for i > 1 can be absorbed into the
masking vector so that we have �z = �y0 + x1�s1. This is just a masked opening of
�s1 and the verifier checks that

A�z = �w0 + x1�u1

using the vector �w0 = A�y0 = A�y +
∑2a−1

i=2 si�ui that he has received from the
prover before the challenge x1. Next, from this opening proof we can extract �s1.
Moreover the prover also proves the linear relation

�w0 = �w1 + x2G�s1,l + x3G�s1,r

for a vector �w1 = A�y1 = A�y+
∑2a−1

i=4 xi�ui that he has sent before the challenges
x2 and x3. So, this implies

A�z = �w1 + x1�u1 + x2�u2 + x3�u3.
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In other words the extracted �s1 defines the hashes in the first level of the tree
and there is a proof for the verification equation of an amortized opening proof
for this level. So we can continue recursively and extract level by level from the
prover until we have an opening for the full tree. Our protocol can be seen as
a sequence of exact amortized binary opening proofs, one for each level for the
tree, that use the linear proof technique to prove the verification equation for
the proof for the next level. The proof also shows that all the preimages �si are
binary as this is needed for the approach to work, as explained.

We use our Merkle tree opening protocol that can also prove linear and
product relations on the preimages of the leaves to prove instances of Rank-1
Constraint Satisfaction (R1CS) [BCG+13] which is an NP-complete problem.
Recall that in the (simplified) R1CS setting, the prover P wants to convince the
verifier V that it knows a vector �s ∈ Z

k
q such that

(A�s) ◦ (B�s) = C�s (2)

where A,B,C ∈ Z
k×k
q are public matrices and ◦ denotes the component-wise

product. The usual way to prove such a relation is to first commit to �s as well
as to the vectors

�a = A�s,�b = B�s,�c = C�s. (3)

Then, P only needs to prove the linear relations described in (3) and the multi-
plicative relation �a◦�b = �c. This method requires us to commit to three additional
vectors over Zq of length k.

Table 1 contains a comparison of our proof system for R1CS to Ligero. We
chose a range of constraints above 220 as our proof system is most effective
for such large numbers of constraints. In particular, we observe that for large
instances, e.g. k ≥ 224, our system achieves 2–3 times smaller proof sizes than
Ligero. The proof sizes for Ligero were directly measured by running the imple-
mentation from https://github.com/scipr-lab/libiop. For both proof systems we
used a field size of about 128 bits and comparable soundness errors.

2 Preliminaries

2.1 Notation

Let q be an odd prime, and Zq denote the ring of integers modulo q. For r ∈ Z,
we define r mod q to be the unique element in the interval [− q−1

2 , q−1
2 ] that is

congruent to r modulo q. We write �v ∈ Z
m
q to denote vectors over Zq and matrices

over Zq will be written as regular capital letters M . By default, all vectors are
column vectors. We write �v ‖ �w for the concatenation of �v and �w (which is still

a column vector). We write x
$← S when x ∈ S is sampled uniformly at random

from the finite set S and similarly x
$← D when x is sampled according to the

distribution D.
Let d be a power of two and denote R and Rq to be the rings Z[X]/(Xd +1)

and Zq[X]/(Xd + 1), respectively. Bold lower-case letters p denote elements in

https://github.com/scipr-lab/libiop
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Table 1. Comparison of proof sizes between our proof system for R1CS over Zq with
q ≈ 2128, and Ligero.

Proof Size

Number of constraints Soundness error Ligero Our System

219 2−115 4.58 MB 4.53 MB

220 2−114 8.35 MB 5.22 MB

221 2−113 8.90 MB 6.08 MB

222 2−112 16.23 MB 7.19 MB

223 2−111 17.39 MB 10.79 MB

224 2−110 31.83 MB 13.21 MB

225 2−109 34.15 MB 16.59 MB

226 2−108 62.14 MB 21.68 MB

227 2−107 66.03 MB 29.04 MB

228 2−106 121.90 MB 42.42 MB

R or Rq and bold lower-case letters with arrows �b represent column vectors
with components in R or Rq. We also use bold upper-case letters for matrices
B over R or Rq. The ring Rq is a Zq-module spanned by the power basis
{1,X, . . . ,Xd−1}. The multiplication homomorphism x �→ ax for an a = a0 +
· · · + ad−1X

d−1 ∈ Rq is represented by the negacyclic rotation matrix

Rot(a) =

⎛

⎜⎜⎜⎝

a0 −ad−1 . . . −a1

a1 a0 . . . −a2

...
...

. . .
...

ad−1 ad−2 . . . a0

⎞

⎟⎟⎟⎠ ∈ Z
d×d
q .

This extends to Rq-module homomorphisms given by A ∈ Rm×n in a block-
wise fashion. They are represented by Rot(A) ∈ Z

md×nd
q .

In this paper we choose prime q such that Zq contains a primitive 2d-th
root of unity ζ ∈ Zq but no elements whose order is a higher power of two, i.e.
q − 1 ≡ 2d (mod 4d). Therefore, we have

Xd + 1 ≡
d−1∏

j=0

(
X − ζ2j+1

)
(mod q) (4)

where ζ2j+1 (j ∈ Zd) ranges over all the d primitive 2d-th roots of unity.
We define the Number Theoretic Transform (NTT) of a polynomial p ∈ Rq as
follows:

NTT(p) :=

⎡

⎢⎣
p̂0

...
p̂d−1

⎤

⎥⎦ ∈ Z
d
q where p̂j = p mod (X − ζ2j+1).

We will use the property that for any polynomials f , g ∈ Rq, we have
NTT(f) ◦ NTT(g) = NTT(fg) where ◦ is the component-wise vector multi-
plication.

We also define the inverse NTT operation. Namely, for a vector �v ∈ Z
d
q ,

NTT−1(�v) is the polynomial p ∈ Rq such that NTT(p) = �v.
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Norms and Sizes. For an element w ∈ Zq, we write |w| to mean |w mod q|.
Define the �∞ and �2 norms for w ∈ Rq as follows,

‖w‖∞ = max
i

|wi| and ‖w‖2 =
√

|w0|2 + . . . + |wd−1|2.

Similarly, for �w = (w1, . . . ,wk) ∈ Rk, we define

‖ �w‖∞ = max
i

‖wi‖∞ and ‖ �w‖2 =
√

‖w1‖22 + . . . + ‖wk‖22.

2.2 Module-SIS and Module-LWE Problems

We employ the computationally binding and computationally hiding commit-
ment scheme from [BDL+18] in our protocols, and rely on the well-known
Module-LWE (MLWE) and Module-SIS (MSIS) problems [LPR10,Din12,LS15,
Mic02,LM06,PR06] problems to prove the security of our constructions. Both
problems are defined over a ring Rq for a positive modulus q ∈ Z

+.

Definition 1 (MSISκ,β). In the Module-SIS problem with parameters κ, λ > 0

and β < q a uniformly random matrix A
$← Rκ×(κ+λ)

q is given. Then the goal is
to find a vector �s ∈ Rκ+λ

q such that A�s = �0 and 0 < ‖�s‖2 ≤ β. We say that an
adversary A has advantage ε in solving MSISκ,β if

Pr
[
A�s = �0 and 0 < ‖�s‖2 ≤ β

∣∣∣A $← Rκ×(κ+λ)
q ; �s ← A(A)

]
≥ ε.

Definition 2 (MLWEλ,χ). In the Module-LWE problem with parameters κ, λ >

0 and χ an “error” distribution over Zq, a pair (A, �t) ∈ Rκ×(κ+λ)
q ×Rκ

q is given
where A is uniformly random. Then the goal is to distinguish between the two
cases where either �t is given by �t = A�s for a secret vector �s

$← χ(κ+λ)d sampled
from the error distribution, or �t is independently uniformly random. We say that
an adversary A has advantage ε in distinguishing MLWEλ,χ if

∣∣∣Pr
[
b = 1

∣∣∣A $← Rκ×(κ+λ)
q ; �s

$← χ(κ+λ)d; �t = A�s; b ← A(A, t)
]

− Pr
[
b = 1

∣∣∣A $← Rκ×(κ+λ)
q ; �t

$← Rκ
q ; b ← A(A, �t)

]∣∣∣ ≥ ε.

For our practical security estimations of these two problems against known
attacks, the parameter κ in the Module-LWE problem and the parameter λ in
the Module-SIS problem do not play a crucial role. Therefore, we omit then in
the notations MSISκ,β and MLWEλ,χ.

2.3 Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with coef-
ficients −1, 0, 1. We define the following probability distribution C : C → [0, 1].
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The coefficients of a challenge c
$← C are independently identically distributed

with P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4.
Consider the coefficients of the polynomial c mod (X − ζ2j+1) for c ← C.

Then, all coefficients follow the same distribution over Zq. Let us write Y for the
random variable over Zq that follows this distribution. Attema et al. [ALS20]
give an upper bound on the maximum probability of Y .

Lemma 1. Let the random variable Y over Zq be defined as above. Then for all
x ∈ Zq,

Pr[Y = x] ≤ 1
q

+
2d

q

∑

j∈Z
×
q /〈ζ〉

d−1∏

i=0

∣∣∣∣
1
2

+
1
2

cos(2πjyζi/q)
∣∣∣∣ . (5)

One observes that computing the sum on the right-hand side would take
essentially O(q) time. Hence, computing the upper-bound for Pr[Y = x] is infea-
sible for large primes q. However, based on experiments for smaller primes1, we
assume that the probability is very close to 1/q. In fact, this process exhibits a
phase-shift behaviour, where the probability very rapidly drops to values close
to 1/q as soon as the entropy of c is slightly higher than log q.

2.4 BDLOP Commitment Scheme

We use a variant of the commitment scheme from [BDL+18], which allows to
commit to a vector of polynomials in Rq

2. Suppose that we want to commit to
�m = (m1, . . . ,mμ)T ∈ Rμ

q . Then, in the commitment parameter generation, a

uniformly random matrix B0
$← Rκ×(κ+λ+μ)

q and vectors �b1, . . . ,�bμ
$← Rκ+λ+μ

q

are generated and output as public parameters. In practice they never have to
be stored because they can be expanded from a short seed. One may choose to
generate B0,�b1, . . . ,�bμ in a more structured way as in [BDL+18] since it saves
some computation.

To commit to �m, we first sample �r
$← χ(κ+λ+μ)d. Now, there are two parts

of the commitment scheme; the binding part and the message encoding part. We
compute

�t0 = B0�r,

ti = 〈�bi, �r〉 + mi for i = 1, . . . , μ,

where �t0 forms the binding part and each ti encodes a message polynomial mi.
The commitment �t = �t0 ‖ t1 ‖ · · · ‖ tμ is computationally hiding under the
MLWEλ,χ assumption and computationally binding under the MSISκ,β assump-
tion for some q > β > 2

√
(κ + λ + μ)d; see [BDL+18].

1 In particular, [ALS20,ENS20] computed that for q ≈ 232, the maximum probability
for each coefficient of c mod X4 − ζ8j+4 is around 2−31.4.

2 We provide more background on commitment schemes in the full version.
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Moreover, the scheme is not only binding for the opening ( �m, �r) known by
the prover, but also binding with respect to a relaxed opening ( �m∗, c̄, �r∗). The
relaxed opening also includes a short invertible polynomial c̄ and the randomness
vector �r∗ is longer than �r. Attema et al. [ALS20] further reduce the requirements
of an opening and define the notion of a weak opening (see the full version).

3 Interactive Schwartz-Zippel

The Schwartz-Zippel Lemma [Sch80,Zip79] (first proven by Ore [Ore22]) is an
important tool in the construction of many zero-knowledge proof systems. It says
that for a non-zero polynomial f ∈ Zq[X1, . . . , Xn] of total degree d, the probabil-
ity that f(x1, . . . , xn) = 0 for independently uniformly random x1, . . . , xn ∈ Zq

is at most d/q. Note that the probability does not depend on the number n of
variables. This is used in zero-knowledge proof systems by committing to the
coefficients cα of f , where α = (α1, . . . , αn) ∈ N

n is a multi-index, and then
proving

f(x1, . . . , xn) =
∑

|α |≤d

cαxα1
1 . . . xαn

n

for uniformly random challenges x1, . . . , xn ∈ Zq from the verifier. Then, if the
coefficient commitments where made before the challenges xi were known by
the prover, it is clear that the coefficients must be independent from the xi.
So, this implies that f =

∑
|α |≤d cαXα1

1 . . . Xαn
n with soundness error d/q. Now,

one is usually only interested in a few of the coefficients cα , typically the n
coefficients of the pure highest-degree terms divisible by Xd

i for some i. The rest
are called garbage coefficients. But since the total number of coefficients, and
hence commitments, is equal to

(
n+d

d

)
, this gets impractical already for small

n and therefore the multivariate case with n > 1 is not often used in practical
zero-knowledge proof systems.

In this section we develop a new proof technique that only needs a number of
garbage commitments that is linear in n while having a modest cost of a linear
loss in soundness. First, we decompose the polynomial f such that

f(X1, . . . , Xn) = f0 + f1(X1) + · · · + fn(X1, . . . , Xn), (6)

where f0 ∈ Zq is the constant coefficient of f and fi ∈ Zq[X1, . . . , Xi], i ≥ 1,
consist of the monomials cαXα1

1 . . . Xαn
n of f with αi ≥ 1 and αi+1 = · · · = αn =

0, i.e. the monomials that are divisible by Xi but not by any Xj for j > i. Next,
note that every polynomial fi can be viewed as a univariate polynomial in Xi

over the ring Zq[X1, . . . , Xi−1], divisible by Xi. More precisely, fi = fi,1Xi+· · ·+
fi,d−1X

d−1
i + liX

d
i where fi,j ∈ Zq[X1, . . . , Xi−1] and li ∈ Zq since f is of total

degree d. Now, we are only really interested in the coefficients li, and it turns
out there is no need to prove that the other coefficients are actually polynomials
in X1, . . . , Xi−1 of degree at most d − 1. Indeed, we have the following lemma.
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Lemma 2. Let f : Zn
q → Zq be a function of the form

f(x1, . . . , xn) = f0 + f1(x1) + f
(x1)
2 (x2) + · · · + f (x1,...,xn−1)

n (xn),

where f0 ∈ Zq, f1 ∈ Zq[X1], and, for i ≥ 2, fi ∈ (Zq[Xi])Z
i−1
q , i.e. fi is a

function from Z
i−1
q to Zq[Xi], given by (x1, . . . , xi−1) �→ f

(x1,...,xi−1)
i . Suppose

that f
(x1,...,xi−1)
i is divisible by Xi (i.e. has zero constant coefficient) and of degree

at most d for all (x1, . . . , xi−1) ∈ Z
i−1
q , i ≥ 1. Moreover, suppose that there

exists a j ≥ 1 such that f
(x1,...,xj−1)
j 
= 0 for all (x1, . . . , xj−1) ∈ Z

j−1
q . Then, for

uniformly random (x1, . . . , xn) ∈ Z
n
q , the probability that f(x1, . . . , xn) = 0 is at

most (n + 1 − j)d/q. That is,

Pr [f(x1, . . . , xn) = 0] ≤ (n + 1 − j)d
q

.

Proof. We write f≤i for the partial function

f≤i(x1, . . . , xi) = f0 + f1(x1) + f
(x1)
2 (x2) + · · · + f

(x1,...,xi−1)
i (xi)

that only includes the functions up to fi. In particular, f≤n = f . Then we find

Pr [f(x1, . . . , xn) = 0]
= Pr [f≤n−1(x1, . . . , xn−1) = 0]

· Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) = 0]
+ Pr [f≤n−1(x1, . . . , xn−1) 
= 0]

· Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 
= 0]

≤ Pr [f≤n−1(x1, . . . , xn−1) = 0]
+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 
= 0]

≤ Pr [f≤n−2(x1, . . . , xn−2) = 0]
+ Pr [f≤n−1(x1, . . . , xn−1) = 0 | f≤n−2(x1, . . . , xn−2) 
= 0]
+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 
= 0]

≤ . . .

≤ Pr [f≤j(x1, . . . , xj) = 0]
+ Pr [f≤j+1(x1, . . . , xj+1) = 0 | f≤j(x1, . . . , xj) 
= 0]
+ . . .

+ Pr [f(x1, . . . , xn) = 0 | f≤n−1(x1, . . . , xn−1) 
= 0] .

Consider the first probability Pr [f≤j(x1, . . . , xj) = 0] after the last inequality.
For every choice (x′

1, . . . , x
′
j−1) ∈ Z

j−1
q , the function

f≤j(x′
1, . . . , x

′
j−1, xj) = f≤j−1(x′

1, . . . , x
′
j−1) + f

(x′
1,...,x′

j−1)

j (xj)

is a fixed univariate polynomial in xj of degree at most d and the random variable
xj is independent from it. Moreover, we know from the assumption in the lemma
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that the polynomial is non-zero since fj is non-zero and divisible by xj ; that is,
fj is never constant. Therefore,

Pr [f≤j(x1, . . . , xj) = 0]

=
∑

x′
1,...,x′

j−1∈Zq

Pr
[
x1 = x′

1 ∧ · · · ∧ xj−1 = x′
j−1

]
Pr

[
f≤j(x′

1, . . . , x
′
j−1, xj) = 0

]

≤
∑

x′
1,...,x′

j−1∈Zq

(
1
q

)j−1
d

q
=

d

q
.

Similarly, for the other probabilities Pr [f≤i(x1, . . . , xi) = 0 |f≤i−1(x1, . . . ,
xi−1) 
= 0] we interpret f≤i(x1, . . . , xi) as the evaluation of a polynomial of
degree at most d at the independently uniformly random point xi. This time
we condition on the event that the constant coefficient of the polynomial, which
is given by f≤i−1(x1, . . . , xi−1), is non-zero. Hence,

Pr [f≤i(x1, . . . , xi) = 0 | f≤i−1(x1, . . . , xi−1) 
= 0] ≤ d/q

for all i = j + 1, . . . , n. ��

3.1 Making Use of Lemma 2 in Zero-Knowledge Protocols

Suppose we want to prove that the polynomial f ∈ Zq[X1, . . . , Xn] of total degree
d does not contain any terms divisible by Xd

i for any i; that is, f is of degree
at most d − 1 in each Xi. Then decompose f as in Eq. (6), and define the func-
tions Z

i−1
q → Zq[Xi], (x1, . . . , xi−1) �→ f

(x1,...,xi−1)
i (Xi) = fi(x1, . . . , xi−1,Xi),

that forget the polynomial structure of fi in the variables X1, . . . , Xi. Now, in a
multi-round protocol where the uniformly random challenges xi are spread-out
over 2n rounds we can commit to the d−1 coefficients γi,k of f

(x1,...,xi−1)
i (Xi) =

γi,1Xi + · · ·+γi,d−1X
d−1
i immediately after seeing x1, . . . , xi−1 but before know-

ing xi, . . . , xn. Then we show

f(x1, . . . , xn) −
(

γ0 +
d−1∑

k=1

γ1,kxk
1 + · · · +

d−1∑

k=1

γn,kxk
n

)
= 0.

Here we assume that we know how to prove that some element of Zq is the
evaluation f(x1, . . . , xn) of the fixed polynomial f of degree d. The fact that the
commitments to the coefficients γi,k were produced before xi, . . . , xn were known
shows that they can only be functions of x1, . . . , xi−1. So, we have effectively
proven

g0 + g1(x1) + g
(x1)
2 (x2) + · · · + g(x1,...,xn−1)

n (xn) = 0,

for uniformly random (x1, . . . , xn) ∈ Z
n
q and functions gi as in Lemma 2 that

fulfill the requirements that they have zero constant coefficient and are of degree
at most d. Furthermore, for each i ∈ {1, . . . , n} and all (x′

1, . . . , x
′
i−1) ∈ Z

i−1
q ,

the coefficient for Xd
i of g

(x′
1,...,x′

i−1)

i is given by the corresponding coefficient in
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f . It follows that we proven f to be of degree d − 1 in all Xi with soundness
error nd/q. Note that we only needed n(d − 1) + 1 garbage commitments.

As an example, in our lattice-based protocols we let the prover ultimately
send amortized masked openings �z(x1, . . . , xn) = �y + x1�s1 + · · · + xn�sn of secret
vectors �si ∈ Z

m
q with challenges xi ∈ Zq, and we want to be able to prove that all

secret vectors are binary. So, using another uniformly random challenge vector
�ϕ ∈ Z

m
q , we want to show that the quadratic (d = 2) polynomial

f(x1, . . . , xn) = 〈�z ◦ ((x1 + · · · + xn)�1 − �z), �ϕ〉 (7)

does not contain terms of the form x2
i . Here each of the polynomials f

(x1,...,xi−1)
i

involves only one garbage coefficient and is of the form f
(x1,...,xi−1)
i (Xi) = γiXi.

So we end up only needing n + 1 garbage commitments to the coefficients γi.
The protocol proceeds as follows. The prover receives the challenge vector �ϕ and
commits to the first garbage coefficient γ0 = −〈�y ◦ �y, �ϕ〉. Then, over the course
of the next 2n rounds, the protocol alternates between the prover committing
to the next garbage coefficient

γi =

〈
�y ◦ (1 − 2�si) +

i−1∑

j=1

xj(�sj ◦ (�1 − �si) + �si ◦ (�1 − �sj)), �ϕ

〉
,

and the verifier sending the next challenge xi, for i = 1, . . . , n. Afterwards, the
protocol is finished by proving the linear relation (in the garbage coefficients)

〈�z ◦ ((x1 + · · · + xn)�1 − �z), �ϕ〉 − (γ0 + γ1x1 + · · · + γnxn) = 0. (8)

In the PCP literature, when proving such pointwise multiplicative relations
on many vectors, a different technique is used to keep the number of garbage coef-
ficients linear in the number of vectors. Namely, instead of multivariate masked
openings of degree one, univariate openings of degree n are used where the dif-
ferent vectors are separated as the basis coefficients with respect to a basis given
by Lagrange interpolation polynomials. See [GGPR13] for details. This tech-
nique does not seem to be compatible with our lattice-based setting. Concretely,
we will later need to conclude from SIS hardness that the prover is bound to
the vectors in the masked opening and our approach for achieving this requires
multivariate openings.

Moreover, the so-called sum check protocols for multivariate polynomials
from [LFKN92,Sha92] have similarities with our protocol. These protocols also
have n rounds and in each round the polynomial is reduced to a univariate
polynomial.

We don’t consider it a problem that our protocol has many rounds. We
don’t view the number of rounds to be of practical importance that needs to be
optimized. The interactive variants of our protocols only serve as a convenient
intermediate representation that is easy to reason about. But in practice only
the non-interactive variants will ever be used and there the number of rounds
only has an indirect effect on for example the prover and verifier runtime and
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the soundness error but no independent relevance. If the protocol can achieve
negligible soundness error and still has acceptable runtimes and proof sizes, then
the number of rounds doesn’t matter.

4 Exact Amortized Binary Opening Proof

The aim of this section is to present a protocol for proving knowledge of (exactly)
binary preimages �si ∈ {0, 1}m ⊂ Rm/d

q to n collision-resistant hashes �ui =
A�si. Our starting point is the approximate amortized proof that goes back to
[BBC+18]. There the prover samples a short masking vector �y and commits to
it by sending �w = A�y. The verifier then sends n short challenge polynomials
c1, . . . , cn and the prover replies by sending the amortized masked opening �z =
�y + c1�s1 + · · · + cn�sn. The verifier accepts if �z is short and a preimage of
�w + c1�u1 + · · · + cn�un. This protocol is sound, because, for every i = 1, . . . , n,
the prover must be able to answer two challenge tuples successfully that differ
only in the one challenge ci. Then the difference of the two corresponding masked
openings yields the approximate solution A(�z − �z′) = (ci − c′

i)�ui.
Next, we want to get rid of the perturbation factors c̄i = ci − c′

i. In gen-
eral and for efficient parameters they are not invertible so we can not simply
divide through, but it is possible to use the strategy from [ALS20] where one
pieces together many extractions from potentially several parallel repetitions of
the protocol in order to get so-called weak openings �s∗

i such that A�s∗
i = �ui

(c.f. [ALS20, Definition 4.2]). The weak openings are not necessarily short but
the prover is still bound to them; see [ALS20, Lemma 4.3].

Now, to extend the proof and show that the �s∗
i are in fact binary, the amor-

tized masked opening �z from above with polynomial challenges is not of much
help. The problem is that the polynomial product effectively intermingles all the
secret coefficients and then it seems inefficient to prove all the quadratic rela-
tions about individual coefficients that we need for proving that each and every
coefficient is binary. Therefore, our protocol has a second stage with integer
challenges xi ∈ Zq and masked opening

�z = �y + x1�s1 + · · · + xn�sn.

To get as much soundness as possible, and at the same time not increase q more
than necessary, we want the challenges xi to be uniformly random modulo q. But
since we are relying on MSIS hardness we can not send �z directly. Instead, we
compose it from l short �zj with short integer challenges xi,j ∈ Z, j = 0, . . . , l−1.
More precisely, we set δ = �q1/l�, and xi mod q = xi,0 + · · · + xi,l−1δ

l−1 (non-
negative standard representative), where 0 ≤ xi,j < δ. Then, the prover sends
the polynomial vectors

�zj = �yj + x1,j�s1 + · · · + xn,j�sn.

In principle the second stage with integer challenges xi,j alone would allow to
extract the weak openings �s∗

i , but we still include the first stage with polynomial
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challenges as it turns out that the final norm bound for which we need Module-
SIS to be hard depends on the norm of the product of two challenges. Hence,
when one of the challenges can be a shorter polynomial challenge, this results in
a smaller Module-SIS norm bound and ultimately smaller proof sizes.

Next, for the actual binary proof we work with the composed �z = �z0 +
· · · + �zl−1δ

l−1. We forget the polynomial structure and let �z = �y + x1�s1 + · · · +
xn�sn ∈ Z

m
q be given by the coefficient vectors that correspond to the polynomial

vectors. This allows for the approach from Sect. 3.1 for proving that all secret
coefficients are binary. Let �ϕ ∈ Z

m
q be a uniformly random challenge vector from

the verifier. Eventually we need to prove Eq. (8) with garbage coefficients γi that
are from commitments produced interactively with increasing dependence on the
challenges xi as explained. We use the BDLOP commitment scheme and apply
the linear proof from [ENS20], which we call the auxiliary proof in this protocol.
Since our binary proof has a soundness error bigger than 1/q, there is no need to
apply the soundness boosting techniques for the linear proof. That is, we use the
simpler proof without automorphisms. So, after the initial approximate proof, at
the beginning of the second stage, the prover initializes the BDLOP commitment
scheme. He samples a randomness vector �r(t) ∈ Rκ2+λ+μ

q and commits to it in
the top part �t0 = B0�r ∈ Rκ2

q . Here κ2, λ, and μ = �(n + 1)/d� + 1 are the
BDLOP MSIS rank, MLWE rank, and message rank, respectively. Since the
prover needs to commit to only one Zq-element at a time and not a full Rq-
polynomial, he is going to send individual NTT coefficients of the low part of
the BDLOP commitment scheme. More precisely, the prover precomputes the
NTT vector �e = NTT(B1�r

(t)) ∈ Z
�(n+1)/d�d
q . Then, when he wants to commit

to γi ∈ Zq, he sends τi = ei + γi, i = 0, . . . , n. In the end the verifier has the full
commitment polynomial vector �t2 = NTT−1(�τ) = B2�r + NTT−1(�γ).

After the initialization of BDLOP, the prover samples l masking vectors �yj

for the short shares �zj of �z and sends the commitments �wj = A�yj , together
with �t0. The verifier follows by sending the challenge vector �ϕ for the binary
proof. Next, the core subprotocol with 2n+2 rounds starts. Here the prover and
verifier alternate between garbage commitments to the parts fi = γixi of the
polynomial f(x1, . . . , xn) in Eq. (7), and the challenges xi. Finally, the prover
computes the shares �zj , performs rejection sampling on them, and sends them
if there was no rejection. This concludes the second stage and main part of the
protocol. Finally, the protocol is finished with the auxiliary proof for Eq. (8),
exactly as in [ENS20].

Before we spell-out the protocol in detail in Fig. 1 and then analyze its secu-
rity, we mention a technical problem that we have to overcome in the security
proof of the protocol. When we sketched the binary proof in Sect. 3.1, we assumed
that �z is the evaluation of a fixed polynomial in the challenges x1, . . . , xn. In other
words for the extraction this means that we must be sure that

�z = �y∗ + x1�s
∗
1 + · · · + xn�s∗

n
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in (almost all) accepting transcripts with always the same weak openings �y∗

and �s∗
i . The problem is that this is harder to prove in our amortized setting. Let

us recall the argument for the single-secret case with �z = �y∗ + x�s∗, which was
presented in [ALS20]. If we find some accepting transcript where the masked
opening �z′ is given by �z′ = �y∗∗ + x′�s∗ with a different �y∗∗ 
= �y∗, then we know
a challenge difference x̄ such that x̄�s∗ is short and x̄(�z − �z′) − (x − x′)x̄�s∗ =
x̄(�y∗ − �y∗∗) 
= 0 is a Module-SIS solution. This argument can not be extended to
the amortized setting since we would need to multiply by many different x̄i and
not find a sufficiently short Module-SIS solution. But it turns out we can turn the
whole argument around and proceed via the contraposition. Concretely, if one
of the weak openings �s∗

i is not binary, then we must be able to find accepting
transcripts with different �y∗∗ that results in a SIS solution. See the proof of
Theorem 1 for the details (Fig. 3).

Theorem 1. The protocol in Fig. 1 is correct, computationally honest veri-
fier zero-knowledge under the Module-LWE assumption and computationally
knowledge-sound under the Module-SIS assumption. More precisely, let p be the
maximum probability of c mod X − ζ as in Lemma 1. Let ω be a bound on the
�1-norm of the ci.

Then, for correctness, unless the honest prover P aborts due to rejection
sampling, it convinces the honest verifier V with overwhelming probability.

For zero-knowledge, there exists an efficient simulator S, that, without access
to the secret �si, outputs a simulation of a non-aborting transcript of the protocol
between P and V for every statement �ui = A�si. An algorithm that can distin-
guish the simulation from the real transcript with advantage ε can distinguish
MLWEλ,χ with advantage ε − 2100 in the same running time.

For knowledge-soundness, there is an extractor E with the following prop-
erties. When given resettable black-box access to a deterministic prover P∗

that convinces V with probability ε > (2n + 2)/q + p, E either outputs binary
preimages �s∗

i ∈ {0, 1}m for all hashes �ui, an MSISκ,B solution for A with
B = 4(ωβ2 + δβ1 + nωδ

√
m), or an MSISκ2,8ωβ3 solution for B0.

The proof of Theorem 1 is contained in the full version of the paper.

Remark. In the interest of simplicity, we have chosen to present the protocol
for binary secret vectors only. It should be clear that the protocol can easily
be adapted to prove knowledge of secret preimages that have coefficients from
a larger interval, for example ternary coefficients in {−1, 0, 1}. Then the prover
would send two garbage commitments before each challenge xi.

4.1 Extending the Proof to Linear and Product Relations

In applications of our exact opening proof one usually also wants to prove linear
and product relations on the preimage (coefficient) vectors �si. We now show
that our protocol can easily be extended to include such relations with little
additional cost.
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Prover P Verifier V
Inputs:

B0 ∈ Rκ2×(κ2+λ+μ)
q B0, B1,�b2

B1 ∈ R(μ−1)×(κ2+λ+μ)
q A, �ui

�b2 ∈ Rκ2+λ+μ
q

A ∈ Rκ×m/d
q

For i = 1, . . . , n :

�si ∈ {0, 1}m ⊂ Rm/d
q

�ui = A�si

The prover and verifier run the approximate amortized opening proof from Figure 2,
〈Papprox(A, �si), Vapprox(A, �ui)〉. The verifier rejects if Vapprox rejects.

(�r(t), �t0, �e) = AUXINIT(B0, B1)

For j = 0, . . . , l − 1 :

�yj
$← Dm

s2

�wj = A�yj

�t0, �wj �

�ϕ� �ϕ
$← Z

m
q

�y =

l−1∑

j=0

�yjδ
j

γ0 = −〈�y ◦ �y, �ϕ〉
τ0 = e0 + γ0

τ0 �

The prover and verifier run the core protocol from Figure 4, (τ1, x1, . . . , τn, xn) =
〈Pcore(�e, �y, �ϕ,�si), Vcore()〉. Then they set �τ = (τ0, . . . , τn)T , �x = (1, x1, . . . , xn)T and
�t1 = NTT−1(�τ), and decompose xi = xi,0 + · · · + xi,l−1δ

l−1 for i = 1, . . . , n. The
prover keeps the garbage coefficients γi from Pcore and sets �γ = (γ0, . . . , γn)T .

For j = 0, . . . , l − 1 :

�zj = �yj +

n∑

i=1

xi,j�si

If Rej ((�zj), (�yj), s2) = 1, abort
�zj �

VERIFY(A, �ui, �wj , xi,j , �zj)

The prover and verifier run the auxiliary linear proof from Figure 5,
〈Paux(B, �r(t), �t, �γ, �x), Vaux(B, �t, p, �x)〉, where p = 〈�z ◦ ((x1 + · · · + xn)�1 − �z), �ϕ〉 for
�z =

∑l−1
j=0 �zjδ

j . The verifier accepts if Vaux accepts.

Fig. 1. Exact amortized opening proof for lattice-based hashes.
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Prover Papprox Verifier Vapprox

Inputs:

A ∈ Rκ×m/d
q A, �ui

For i = 1, . . . , n :

�si ∈ {0, 1}m ⊂ Rm/d
q

�ui = A�si

�y(c) $← Dm
s1

�w(c) = A�y(c) �w(c)
�

ci� ci
$← C ∀i ∈ [n]

�z(c) = �w(c) +
n∑

i=1

ci�si

If Rej
(
�z(c), �y(c), s1

)
= 1, abort �z(c)

�

‖�z(c)‖ ?≤ s1
√
2m = β1

A�z(c) ?= �w(c) +
n∑

i=1

ci�ui

Fig. 2. Approximate amortized opening proof for lattice-based hashes. Used for boot-
strapping the exact amortized proof in Fig. 1.

VERIFY(A, �ui, �wj , xi,j , �zj)
01 For j = 0, . . . , l − 1 :

02 ‖�zj‖
?≤ s2

√
2m = β2

03 A�zj
?= �wj +

∑n
i=1 xi,j �ui

AUXINIT(B0,B1)

01 �r(t) $← χ(κ2+λ+μ)d

02 �t0 = B0�r
(t)

03 �e = NTT(B1�r
(t))

04 return (�r(t), �t0, �e)

VERIFYAUX(B, �t, �w(t), c(t), �z(t), θ,h,v, p, �x)

01 h0
?= 0

02 ‖�z(t)‖ ?≤ s3
√

2(κ2 + λ + μ)d = β3

03 B0�z(t) ?= �w(t) + c(t)�t0
04 〈�b2, �z(t)〉 + 〈NTT−1(dθ�x),B1�z(t)〉

?= v + c(t)(t2 + 〈NTT−1(dθ�x), �t1〉 − θp − h)

Fig. 3. Helper functions VERIFY(), AUXINIT() and VERIFYAUX() used by exact amor-
tized opening proof in Fig. 1. They check the verification equations, initialize the aux-
iliary commitment, and check the verification equations of the auxiliary linear proof,
respectively.
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Prover Pcore Verifier Vcore

Inputs:

�e ∈ Z
n+1
q

ϕ�,y� ∈ Z
m
q

�s1, . . . , �sn ∈ Z
m
q

γ1 = 〈�y ◦ (�1 − 2�s1) ϕ�, 〉
τ1 = e1 + γ1

τ1 �
x1� x1

$← Z
×
q

γ2 =〈�y ◦ (�1 − 2�s2) ϕ�, 〉
+ x1〈�s1 ◦ (�1 − �s2) + �s2 ◦ (�1 − �s1) ϕ�, 〉

τ2 = e2 + γ2
τ2 �
x2� x2

$← Z
×
q

...

γn =〈�y ◦ (�1 − 2�sn) ϕ�, 〉

+
n−1∑
i=1

xi〈�si ◦ (�1 − �sn) + �sn ◦ (�1 − �si) ϕ�, 〉

τn = en + γn
τn �
xn� xn

$← Z
×
q

Fig. 4. Core protocol for exact amortized opening proof in Fig. 1
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Prover Paux Verifier Vaux

Inputs:

B0 ∈ Rκ2×(κ2+λ+μ)
q B0,B1,�b2

B1 ∈ R(μ−1)×(κ2+λ+μ)
q

�t0, �t1

�b2 ∈ Rκ2+λ+μ
q p ∈ Zq

�r(t) ∈ {−1, 0, 1}(κ2+λ+μ)d ⊂ Rκ2+λ+μ
q �x ∈ Z

(μ−1)d
q

�t0 = B0�r
(t)

�t1 = B1�r
(t) + NTT−1(�γ)

�γ, �x ∈ Z
(μ−1)d
q

g
$← {g ∈ Rq | g0 = 0}

t2 = 〈�b2, �r(t)〉 + g

�y(t) $← D(κ2+λ+μ)d
s3

�w(t) = B0�y(t) t2, �w(t)

�
θ� θ

$← Zq

h = g + 〈NTT−1(dθ�x),NTT−1(�γ)〉 − θ〈�x,�γ〉

v = 〈�b2, �y(t)〉 + 〈NTT−1(dθ�x),B1�y(t)〉 h,v �

c(t)� c(t)
$← C

�z(t) = �y(t) + c(t)�r(t)

If Rej
(
�z(t), �y(t), s3

)
= 1, abort �z(t)

�

VERIFYAUX(B, �t,

�w(t), c(t), �z(t),

θ,h,v, p, �x)

Fig. 5. Auxiliary linear proof needed in our exact amortized opening proof in Fig. 1
and in the tree opening proof.
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Linear Relations. Let �s = �s1 ‖ · · · ‖ �sn be the concatenation of all the binary
�si and M = (M1, . . . ,Mn) ∈ Z

ν×nm
q with Mi ∈ Z

ν×m
q be a public matrix. Now

suppose in full generality that we want to prove the linear equation

M�s = M1�s1 + · · · + Mn�sn = �v

for some public vector �v ∈ Rν
q . So this is an “unstructured” linear equation not

necessarily compatible with the polynomial structure. As usual, the equation can
be proven by probabilistically reducing it to a scalar product first. So we prove

〈M�s − �v, �ψ〉 = 〈�s,MT �ψ〉 − 〈�v, �ψ〉 =
n∑

i=1

〈�si,M
T
i

�ψ〉 − 〈�v, �ψ〉 = 0

for a uniformly random challenge vector �ψ ∈ Z
ν
q that is given to the prover after

the hashes �ui = A�si are known.
Now, we use a very similar approach to the one from Sect. 3.1. Concretely,

let �ρ = x−1
1 �ρ1 + · · · + x−1

n �ρn where �ρi = MT
i

�ψ. Then we want to show that in
the multivariate quadratic polynomial

flin(x1, . . . , xn) = 〈�z, �ρ〉 − 〈�v, �ψ〉
the constant coefficient vanishes. More precisely, we want to prove the relation

〈�z, �ρ〉 − 〈�v, �ψ〉 −
n∑

i=1

(γ2i−1x
−1
i + γ2ixi) = 0

with garbage coefficients

γ
(lin)
2i−1 = 〈�y, �ρi〉 +

i−1∑

i=1

xj〈�sj , �ρi〉,

γ
(lin)
2i =

i−1∑

j=1

x−1
j 〈�si, �ρj〉.

We can share the garbage commitments between the linear and binary proofs
by simply adding flin to f from Eq. (7). That is, we finally prove

〈�z ◦ ((x1 + · · · + xn)�1 − �z), �ϕ〉 + 〈�z, �ρ〉 − 〈�v, �ψ〉

−
(

γ0 +
n∑

i=1

(γ2i−1x
−1
i + γ2ixi)

)
= 0.

This is sufficient although the equation now contains the constant garbage coef-
ficient γ0 so that it is not immediately clear why the contribution from the linear
proof to the constant term vanishes. The reason is that the prover can commit
to γ0 = −〈�y ◦ �y, �ϕ〉 before the challenge �ψ is known. Then, if the linear equa-
tion M�s = �v were false, there would be a uniformly random contribution to the
constant term that is independent from γ0.
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Product Relations. By product relations we mean multiplicative relations
of the form s1s2 = s3 between coefficients s1, s2, s3 of the secret vectors �si.
For simplicity we restrict to the case where the coefficients s1, s2, s3 are from
the same vector �si and the relation holds in all vectors �si. More precisely, we
consider relations si,j1si,j2 = si,j3 for a triple (j1, j2, j3) ∈ {0, . . . , m−1}3 and all
i. This is sufficient for many applications by packing the �si in a suitable manner.
For example, if we want to hash three binary vectors �a,�b,�c ∈ {0, 1}kn for some
k ≥ 1, and prove that �a◦�b = �c, then we write �a = �a1 ‖ · · · ‖ �ak with �ai ∈ {0, 1}n,
and let �si be the columns of the matrix with rows �aT

i ,�bT
i ,�cT

i ,

(
�s1 . . . �sn

)
=
(
�a1 · · · �ak

�b1 · · · �bk �c1 · · · �ck

)T

.

Now to prove the above relation we need to show that si,jsi,j+k = si,j+2k for all
i = 1, . . . , n and j = 0, . . . , k − 1. Note that such relations are only a very slight
generalisation of the relations si,j(1 − si,j) = 0 that we already prove in the
binary proof. More general product relations are possible, but they come with a
cost of more garbage commitments.

In the protocol, for every product relation si,j1si,j2 = si,j3 we add the poly-
nomial

fprod(x1, . . . , xn) = (zj1zj2 − (x1 + · · · + xn)zj3)θ

for a uniformly random challenge θ ∈ Zq to the previous f + flin that we prove.
Similarly as f from the binary proof, the polynomial fprod is a quadratic poly-
nomial that has no terms divisible by x2

i if the product relation is true.

4.2 Proof Size

We study the size of the proof that is output by the non-interactive ver-
sion of the protocol in this section. The non-interactive version is obtained
by applying the Fiat-Shamir transform. We handle the slightly more general
case where the secret vectors �si are not necessarily binary but have coef-
ficients in the range {−�b/2�, . . . , �(b − 1)/2�}. Then there are (b − 1)n + 1
garbage coefficients. The masking vector commitments �w(c), �wj and �w(t) do
not need to be included in the proof since they can be computed from the
verification equations and then verified with the random oracle when the chal-
lenges are included in the proof. For �w(c) and �w(t) this is always efficient.
Whether it is also efficient for the �wj depends on n. For large n the cost of
the n challenges xi becomes bigger than the cost of the �wj . The polynomial
v in the auxiliary proof does not need to be transmitted either. Hence a com-
plete proof amounts to the objects �c, �z(c) for the approximate amortized proof;
�t0, �ϕ, �t1, �x, �zj for the main part; and t2, θ,h, c(t), �z(t) for the auxiliary proof.
The actual size of the challenges as (vectors of) polynomials or Zq-integers
does not contribute to the proof size since they can be expanded from small
seeds by using a PRG. For the security level we are aiming for, 16 bytes suffice
for each challenge seed. The full-size elements �t0, �t1, t2,h have a total size of
(κ2 +μ+1)d�log q� = (κ2 + �((b − 1)n + 1)/d�+2)d�log q� bits. Next, the short
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vectors �z(c), �zj , �z
(t) have size m log 12s1 + lm log 12s2 + (κ2 + λ + μ)d log 12s3

bits. Here we assume that the coefficients of the short vectors are bounded by
6si in absolute value, which can be ensured by the prover. Finally, the challenges
�c, �ϕ, �x, θ, c(t) need 4 + n seeds of total size 128(4 + n) bits.

We now compute the required standard deviations s1, s2, s3 for the Gaussian
masking vectors �y(c), �yj and �y(t). So, we need to bound the �2 norms of the
secrets vectors c1�s1 + · · · + cn�sn, x1,j�s1 + · · · + xn,j�sn, and c(t)�r. For the rejec-
tion sampling we use the improved algorithm from [LNS21a] that leaks one bit
of information about the secret. In usual applications of the proof system the
prover will only ever compute one or at most very few proofs about a partic-
ular set of hashes �ui. We assume that the challenge polynomial distribution C
for ci and c(t) is such that the polynomial coefficients are independently iden-
tically distributed in {−1, 0, 1} with probabilities 1/4, 1/2, 1/4, respectively. So
the challenge polynomials have 3d/2 bits of entropy. In particular, for ring rank
d = 128 and fully splitting q of length around 128 bits, the NTT coefficients of ci

will have maximum probability p close to 1/q. Then, a coefficient of a polynomial
in ci�si is the weighted sum of d independent coefficients of ci, where the weights
are given by the coefficients of the corresponding polynomial in �si (up to signs).
Moreover, a coefficient of c1�s1 + · · · + cn�sn is the sum of dn such coefficients.
Write Sn for this random variable. Its distribution is centered and has standard
deviation sn ≤ �b/2�√dn/2. By the central limit theorem, the distribution of the
standardization Sn

sn
converges to the standard normal distribution for n → ∞.

This is also true for the random variable S′
n that is distributed according to the

discrete Gaussian Distribution Dsn with the same standard deviation as Sn. So,
for all x ∈ Z,

lim
n→∞ |Pr [Sn ≤ xsn] − Pr [S′

n ≤ xsn]| = 0,

and Dsn is a good model for the distribution of the coefficients of c1�s1+· · ·+cn�sn.
By the tail bound, a coefficient is smaller than than 14�b/2�√dn/2 in absolute
value with probability bigger than 1 − 2−140. Then, using the union bound we
conclude that no coefficient is bigger than that. Therefore, we have

‖c1�s1 + · · · + cn�sn‖2 ≤ 14
⌊

b

2

⌋√
dmn

2
= s1,

and similarly,

‖x1,j�s1 + · · · + xn,j�sn‖2 ≤ 14
⌊

b

2

⌋√
(δ2 − 1)dmn

12
= s2.

In the second inequality we have used that the discrete uniform distribution
on [−δ/2, δ/2 − 1] has standard deviation

√
(δ2 − 1)/12. For c(t)�r(t) we make

use of the fact that also �r(t) is random with polynomial coefficients distributed
according to the centered binomial distribution χ2 modulo 3. It follows that
every coefficient has standard deviation

√
5d/16, and, again by the tail and

union bounds, no coefficient is bigger than 14
√

5d/16 with large probability. So,
∥∥∥c(t)�r(t)

∥∥∥
2

≤ 14
√

5d2(κ2 + λ + μ)/16 = s3.
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Example. As an example we compute concrete sizes for proving n = 1024
hashes �ui = A�si of binary vectors �si of length m = 2048 over the ring Rq

of rank d = 128 modulo a 128-bit fully-splitting prime q. We choose l = 4 so
that δ ≈ 232. For the Module-SIS rank κ2 and the Module-LWE rank λ of the
BDLOP commitments scheme we use κ2 = 2 and λ = 32. Then MSISκ2,8dβ3 has
a classical Core-SVP cost of 2100 when using the BDGL16 sieve, and MLWEλ,χ2

has a classical Core-SVP cost of 2108. The height κ of A, i.e. the hash rank for
the �ui, does not influence the proof size of our protocol, but we need Module-SIS
to be hard for vectors of length B = 4(dβ2 + δβ1/2 + dnδb

√
m/4). This is for

example the case with κ = 7, where MSISκ,B has classical Core-SVP cost of 2213.
With these parameters we find that the proof size as explained above is 108.5
kilobytes. This translates to an amortized size of 108.6 bytes per equation.

One application of our amortized exact proof system is for proving statement
about the plaintexts in FHE ciphertexts. The FHE ciphertexts have a purpose
outside of the proof system and therefore their size does not count towards
the proof size. Moreover, they can not be compressed because otherwise one
could decrypt them anymore. Our proof system now allows to proof many such
ciphertexts with a small amortized cost.

5 Induction

In many applications the public input hashes �ui to our exact binary opening
proof from Sect. 4 are in fact produced as part of a larger zero-knowledge proof
system and their size counts towards the proof size. In the opening proof the two
dominating terms in the proof size are of order n log q for the garbage commit-
ments, and m log q for the masked openings, for a total of mn secret coefficients.
On the other hand, the hashes �ui are of size nκd log q. So we see that their size is
very significant for the overall bandwidth efficiency. In fact, the hashes are about
two orders of magnitude larger than their proof and it would be good if we did
not need to transmit all the �ui. In this section we show how this can in fact be
achieved by hashing them up in a Merkle hash tree and using our opening proof
as a building block to prove by induction an opening to the hash tree when only
the root hash is given.

Tree Construction. In our lattice-based hash tree, the hash input vector for
an inner node consists of the binary expansions of the hash output vectors from
the two children of the node. So the number of input bits m of the hash function
must be twice the number of output bits, i.e. m = 2κd�log q�. Then we define
the gadget matrix

G = Iκ ⊗ (
1 2 · · · 2�log q�−1

) ∈ Rκ×κ�log q�
q

that we use to reconstruct the hashes from their binary expansions. Now, the
hash tree is constructed as follows. Let a be the depth of the tree. Then, the
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inner nodes are given by

�ui = A�si, �si =
(

�si,l

�si,r

)
∈ {0, 1}m ⊂ Rm/d

q ,

G�si,l = �u2i,

G�si,r = �u2i+1

(9)

for i = 1, . . . , 2a−1 − 1. In particular �u1 is the root of the tree. The leafs
are �u2a−1+j = A�s2a−1+j for j = 0, . . . , 2a−1 − 1. More generally, the nodes
�u2k , . . . , �u2k+1−1 form level k of the tree, where 0 ≤ k ≤ a − 1.

Proof by Induction. So we have a total of n = 2a − 1 binary vectors �si that
recursively hash to �u1 and that we want to prove knowledge of. Our protocol is
easiest to understand as a sequence πa−1, πa−2, . . . , π0 of a = �log n� subproofs
that are essentially instances of our binary opening proof from Sect. 4. There is
one subproof for each level of the tree in the order from the leaves to the root,
and the subproofs are indexed by the corresponding level. More precisely, πk

proves knowledge of the level-k binary vectors �s2k , . . . , �s2k+1−1.
All the πk share one amortized masked opening of all the vectors �si. Hence,

in the very end the prover sends

�z = �y +
2a−1∑

i=1

xi�si.

Actually, the prover sends the short shares �zj = �yj +
∑

i xi,j�si that compose
to �z but we explain the protocol in terms of the single vector �z as this simpli-
fies the presentation. The 2k challenges x2k , . . . , x2k+1−1 for the level-k binary
vectors are from the subproof πk. Therefore and because of the reverse order-
ing of the subproofs, at the beginning of πk the prover knows all the challenges
x2k+1 , . . . , x2a−1 from deeper levels. We can thus absorb the terms xi�si, i ≥ 2k+1,
in �z into the masking vector and use

�yk = �y +
2a−1∑

i=2k+1

xi�si

as the masking vector in πk. So unlike in isolated instances of the binary opening
proof, πk inherits the mask from previous parts of the overall protocol instead
of sampling a fresh mask. The prover then sends the commitment �wk = A�yk

(composed from �wk,j = A�yk,j). Next, he engages in the 2k+1-round interaction
where he produces the garbage commitments and receives the challenges x2k+j

for proving exactly as before that the vectors �s2k+j are binary. Furthermore, the
verifier only knows the root hash �u1 and can check the verification equation

A�z = �w0 + x1�u1.
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for the last subproof π0 at the end of the protocol. So, to connect the subproofs
with each other and prove the verification equations for the πk, k ≥ 1, the prover
proves the following linear relations,

2k+1−1∑

i=2k

(x2iG�si,l + x2i+1G�si,r) = �wk − �wk+1. (10)

The challenges x2i, x2i+1, and the vectors �wk, �wk+1 are known by both the
prover and the verifier at the start of πk so this relation can be proven with the
linear proof technique from Sect. 4.1. Concretely, for each k = 0, . . . , a − 2 let
�ψk ∈ Z

κd
q be a challenge and define

�ρi = Rot

(
x2iG

†

x2i+1G
†

)
�ψk

for all i = 2k, . . . , 2k+1 with the multiplication matrix Rot(G†) associated to the
conjugate transpose of the polynomial matrix G. Then in πk the prover commits
to the garbage coefficients

γ
(lin)
2i−1 =

〈
�yk +

2k+1−1∑

j=i+1

xj�sj , �ρi

〉
,

γ
(lin)
2i =

〈
�si,

2a−1−1∑

j=i+1

x−1
j �ρj

〉

for i = 2k, . . . , 2k+1 − 1. Finally, the following linear relation is proven in the
auxiliary proof at the end of the protocol,

〈
�z,

2a−1−1∑

i=1

x−1
i �ρi

〉
−

a−2∑

k=0

〈
�wk − �wk+1, �ψk

〉

=
2a−1−1∑

i=1

(
x−1

i γ
(lin)
2i−1 + xiγ

(lin)
2i

)
.

We now explain at a high level why this protocol suffices for proving the hash
tree. For 0 ≤ k ≤ a− 2, consider the statement Sk that the prover knows binary
vectors �s1, . . . , �s2k−1 and corresponding �u1, . . . , �u2k+1−1 as in Eq. (9), and that

A�z = �wk′ +
2k

′+1−1∑

i=1

xi�ui (11)

is true for all 0 ≤ k′ ≤ k in (almost) all accepting interactions. The statement
is trivially true for k = 0 because the list of known vectors is empty in this case
and (11) is directly checked by the verifier.
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Now, we argue that the subproof πk proves the statement Sk+1 if Sk holds
true. We rewrite (11) and have

A

⎛

⎝�z −
2k−1∑

i=1

xi�si

⎞

⎠ = �wk +
2k+1−1∑

i=2k

xi�ui.

Here the preimage on the left hand side is short since �z is short and all the �si are
binary. So, for every accepting transcript we can compute a short vector �zk =
�z−∑2k−1

i=1 xi�si that fulfills the main verification equation for the binary opening
proof πk for level k. Conceptually this means any prover for the protocol in this
section can be converted to a prover for the level-k hashes exactly as in Sect. 4.
Therefore we can use the extractor for our exact opening proof from Sect. 4
and compute binary preimages �s2k , . . . , �s2k+1−1 for the hashes �u2k , . . . , �u2k+1−1.
Moreover the newly extracted binary preimages define the level-(k + 1) hashes
�u2k+1 , . . . , �u2k+2−1, and from the linear proof for (10) included in πk it follows
that

A�z = �wk +
2k+1−1∑

i=1

xiui = �wk+1 +
2k+2−1∑

i=1

xi�ui.

Therefore we have established that statement Sk+1 is true.
It then follows by induction that the statement Sa−1 is true. And a very

similar argument for the last-level proof πa−1, just without the linear proof
connecting to a previous level, shows that the prover also knows preimages for
the tree leaves, which completes the proof of the full hash tree.

Note that there is no problem with zero-knowledge associated with sending
all the �wk since they differ from �wa−1 = A�y only by terms of the form xi�ui

that we would send in the clear if we directly used the proof from Sect. 4. Finally
note that the size of the �wk is small—we have effectively traded the n + 1 = 2a

uniformly random vectors �ui, �w for the only a + 1 vectors �u1 and �wk.
As before we want to use the approximate amortized opening proof with

polynomial challenges to bootstrap our protocol in order to benefit from smaller
SIS norm bounds. Therefore, the prover also samples an additional masking
vector �y(c) at the beginning of the protocol. Then, in each subproof πk, he
first sends �w

(c)
k = A�y(c) +

∑2a−1
i=2k+1 ci�ui, and then receives the next challenge

polynomials c2k , . . . , �c2k+1−1. Finally, at the end of the protocol the prover sends
�z(c) = �y(c) +

∑2a−1
i=1 ci�si. The verifier checks that �z(c) is short and a preimage

of �w
(c)
0 + c1�u1.

We defer the specification of the protocol and its security analysis to the full
version of the paper. There we also describe how to apply it for proving R1CS,
and discuss the comparison of the protocol to Ligero.
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Abstract. We study the following question, first publicly posed by Hosoyamada
and Yamakawa in 2018. Can parties A,B with quantum computing power and
classical communication rely only on a random oracle (that can be queried in
quantum superposition) to agree on a key that is private from eavesdroppers?

We make the first progress on the question above and prove the following.
– When only one of the parties A is classical and the other party B is quantum

powered, as long as they ask a total of d oracle queries and agree on a key
with probability 1, then there is always a way to break the key agreement by
asking O(d2) number of classical oracle queries.

– When both parties can make quantum queries to the random oracle, we intro-
duce a natural conjecture, which if true would imply attacks with poly(d)
classical queries to the random oracle. Our conjecture, roughly speaking,
states that the multiplication of any two degree-d real-valued polynomials
over the Boolean hypercube of influence at most δ = 1/ poly(d) is nonzero.
We then prove our conjecture for exponentially small influences, which leads
to an (unconditional) classical 2O(md)-query attack on any such key agree-
ment protocol, where m is the oracle’s output length.

– Since our attacks are classical, we then ask whether it is always possi-
ble to find classical attacks on key agreements with imperfect complete-
ness in the quantum random oracle model. We prove a barrier for this app-
roach, by showing that if the folklore “Simulation Conjecture” (first for-
mally stated by Aaronson and Ambainis in 2009) about the possibility of
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simulating efficient-query quantum algorithms using efficient-query classi-
cal algorithms is false, then there is in fact such a secure key agreement in
the quantum random oracle model that cannot be broken classically.

1 Introduction

In a course project, now known as “Merkle Puzzles”, Merkle [Mer74] proposed the
first ever nontrivial key agreement protocol between two parties using an ideal hash
function. This protocol can be formally analyzed in the random oracle model (ROM)
to prove that Alice and Bob can ask d queries to a random oracle h and agree on a
key, while an eavesdropper Eve, who can see the exchanged messages t, needs Ω(d2)
queries to h to find the key. Shortly after, seminal works [DH76,RSA78] showed how to
achieve a super-polynomially secure key agreement protocol by relying on number the-
oretic assumptions. In comparison, Merkle’s protocol suffers from only offering poly-
nomial security. However, after all the years of research and newly developed candidate
constructions for public-key encryption and key agreements (see the survey [Bar17] for
such works), Merkle’s protocol enjoys a qualitative advantage: it only relies on an ide-
alized symmetric primitive, namely a random function without any structure. Indeed,
basing public-key encryption or key agreement on symmetric key primitives is still one
of the most fundamental open questions in cryptography.

Merkle’s protocol led to the following natural question (also attributed to Merkle
by [IR89]). Is there any d-query key agreement protocol in the ROMwith larger security
ω(d2), or is the O(d2) bound optimal?1 Impagliazzo and Rudich were the first to prove
an upper bound on the security of key agreement protocols in the ROM. They showed
that all such protocols can be broken by an attacker who asks Õ(dr)3 queries, where
r is the round complexity of the protocol. This result, in particular, showed that there
is no “black-box” way of obtaining key agreements from one-way functions, because
roughly speaking a random oracle is one-way with high probability. Finally, Barak and
Mahmoody [BM17] showed that every key agreement in the ROM can be broken by
O(d2) queries, showing that Merkle’s protocol was indeed optimal.

Key Agreement in a Quantum World. Merkle’s protocol and attacks of [IR89,BM17]
are all classical. With the growing interest in understanding the power and limitations
of quantum computation, this brings up the following natural question. What if parties
can perform quantum computation? Bennett and Brassard [BB84] showed that when
parties can communicate quantum bits, then there is an information-theoretically secure
key agreement protocol. This still leaves out the case of protocols with classical com-
munication, which is the focus of our work. Classical-communication protocols are
particularly attractive as they can be used over the current infrastructure (e.g., the Inter-
net). In this model, all the quantum computation is done locally by the parties who
exchange classical messages and aim to establish a private key. We refer to this model
as the quantum-computation classical-communication (QCCC) model.

1 Note that a sufficiently large polynomial gap could still be a meaningful fine-grained security,
particularly because this cap can only mean more security when the CPU clocks get shorter.
In particular, with faster computers, Alice and Bob can pick a larger d, while running in the
same time as before, while Eve now needs d times more running time than Alice and Bob.
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Quantum Random Oracle. A QCCC protocol in the quantum random oracle model
(QROM) allows a quantum-powered party to ask superposition queries to the oracle.
This party could be the honest parties or the attacker. Brassard and Salvail [BS08] and
Biham, Goren and Ishai [BGI08] revisited the security of Merkle’s protocol against
quantum adversaries and showed that Merkle’s protocol can be broken by a quantum
eavesdropper (essentially, Grover’s search [Gro96]) that asks O(d) number of quantum
queries to the random oracle. This showed that Merkle’s protocol gives no super-linear
security over d against quantum attackers. Brassard and Salvail [BS08] then showed
how to regain a super-linear gap by having Alice and Bob also leverage quantum queries
to the oracle. Their protocol had the extra property that only one of the parties Alice
and Bob needs to run a quantum algorithm.2 Brassard et al. [BHK+15] further improved
this result and showed that a quantum Alice and Bob can agree on a key by d queries,
while even a quantum attacker would require ≈ d2 number of queries to break it.

All of these works seek lower bounds on the gap between the query complexity of
quantum algorithms Alice/Bob and the adversary Eve. However, no previous work has
shown an upper bound on the achievable security. In fact, our current knowledge about
the limitations of security in the QROM is consistent with the possibility that QCCC
protocols can establish a key agreement over a classical channel, while it would take
exponentially many queries to the oracle (even by a quantum attacker) to find the key.
This brings up the main question of this work, which was also posed by Hosoyamada
and Yamakawa [HY20].3

Is there a key agreement protocol using classical communication, in which Alice
and Bob ask d quantum queries to a random oracle, while the eavesdropper
needs a super-polynomial dω(1) number of queries to find the key?

1.1 Our Results

In this work, we present the first barriers against obtaining super-polynomially secure
QCCC key agreement protocols in the QROM model.

Classical Alice Quantum Bob (CAQB). Our first result shows that when one of the par-
ties Alice is classical, the quadratic gap achieved by Merkle is optimal, even against
classical adversaries. This is an interesting setting on its own, as it can model unbal-
anced parties. For example, suppose Google wants to agree on a key with a typical user,
who does not have any quantum computing power, over the Internet. Then, our result
shows that there is a limit to how much security such protocols can achieve.

Theorem 1.1 (Attacking CAQB protocols – informal). Suppose Π is a QCCC d-
query key agreement protocol with perfect completeness in the QROM. If Alice is clas-
sical and only Bob uses quantum queries to the random oracle, then there is a classical
adversary who can find the key by asking O(d2) classical queries to the oracle.

2 In comparison, Theorem 1.1 shows that such protocols (with a classical party and a quantum
party) cannot offer more than quadratic security when the protocol has perfect completeness.

3 To the best of our knowledge, the question was first asked in 2018 [HY18].
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Note that the above result assumes that the two parties agree on a key with probabil-
ity one, and this is the case for all of our attacks in this work; extending them to allow
imperfect completeness is an intriguing question for future work.

Quantum Alice and Quantum Bob (QAQB). We then turn to study protocols in which
Alice and Bob both have quantum access to the oracle. For this more general setting, we
show a conditional result based on a conjecture about multilinear polynomials, which
will also prove for some extreme cases.

Some Basic Notions. We first recall some basic notions about polynomials. Suppose

f =
∑

S⊆[N ]

αS
∏

i∈S
xi

is a multilinear polynomial over binary variables xi ∈ {±1}, i ∈ [N ] and real coef-
ficients αS ∈ R,S ⊆ [N ]. The degree of f is maxαS �=0 |S| and the �2 norm of f is
‖f‖2 = Ex←{±1}N [f(x)2]. The influence of xi on f is defined as Infi(f) =

∑
i∈S α2

S ,
and more generally for a distribution F over such multilinear polynomials, we let
Infi(F ) = Ef←F [Infi(f)] denote the expected influence.

Conjecture 1.2 (Polynomial Compatibility). There is a function δ(d) = 1/poly(d),
such that the following holds for all d ∈ N. Suppose F,G are distributions over mul-
tilinear polynomials of degree d with variables x1, . . . , xN ∈ {±1} and �2-norm 1
and bounded influences Infi(F ), Infi(G) ≤ δ(d) for all i ∈ [N ]. Then, there exist
f ∈ supp(F ), g ∈ supp(G) and x ∈ {±1}N such that f(x) · g(x) �= 0.

All Assumptions are Needed. In Appendix B of the full version [ACC+22] we show,
through constructive examples, that for Conjecture 1.2 to be true one needs both F,G
to have both of the low-degree and low-influence conditions. Furthermore, we give
an example showing that relation between δ and the degree d must satisfy δ < 1

2d ,
otherwise the conjecture is false.

We then prove the following conditional result. We state the group structure Z
m
2

to clarify how the answers are read by the quantum algorithm. In particular, the oracle
answers are added (in Z

m
2 ) to the answer registers.

Theorem 1.3 (Attacking QAQB protocols – informal). If Alice and Bob ask a total
of d quantum queries to a random oracle h : [N ] → Z

m
2 and agree on a key k with

probability 1, and if Conjecture 1.2 holds, then there is an attacker who asks poly(d,m)
classical queries to h and finds the key k with probability 0.9.

More generally, we show that if the Polynomial Compatibility Conjecture holds
with respect to an influence δ, then for any d-query key agreement protocol using the
random oracle h : [N ] → {0, 1}m, there is an attacker who asks poly(dm/δ) number
of queries and finds the key with high probability. Thus while we are unable to prove
Conjecture 1.2 as stated, this motivates trying to prove it for some smaller influence δ
which is independent of the size of the input space N = 2κ for security parameter κ.

Random Oracles Using Other Groups for Answers. Random oracles can be defined
with an arbitrary Abelian group G (other than Z

m
2 ). We further extend Theorem 1.3 in
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two directions. We first generalize the Polynomial Compatibility Conjecture (see Con-
jecture 5.5) that is parameterized by an Abelian group G1, such that when G1 = Z2,
then this becomes Conjecture 1.2. We then show (see Lemma 4.8) that if this conjec-
ture holds for any constant-size Abelian group G1, then for all Abelian groups G2 we
can get poly(d, log |G2|)-query (classical) attacks on perfectly complete key agreement
protocols that use a random oracle h : [N ] → G2. Note that this reduction allows the
size of the group elements in G2 to grow polynomially with the security parameter κ,
while we still get a poly(κ)-query (classical) attack.

Proving the Conjecture for Exponentially Small Influence. We then prove (a variant of)
Conjecture 1.2 where δ is exponentially small δ(d) < O(2−d/d) as a function of d
instead of polynomially small. As a result, we obtain an O(2dm · d2)-query (classical)
attack on any key agreement in the QROM. Note that this is a nontrivial upper bound
on the security, only when the input length n is sufficiently larger than m (e.g., when
n = m2, or that the input space is {0, 1}∗, while the outputs have fixed length m).

Learning Heavy Queries for Quantum Protocols. One of the major contributions of our
work in proving Theorem 1.3 is to generalize the “heavy-queries learner” of Barak and
Mahmoody [BMG09a] to the quantum setting. In fact, doing so is crucial for us even
to come up with any candidate attack in the QAQB model, regardless of proving it to
be successful. Our quantum-heavy query learner could pave the way for proving more
separations in the quantum random oracle model.

Implications to Quantum Black-Box Separations. The poly(d)-query attacks of [IR89,
BM17] were used to obtain black-box separations for key agreement from one-way
functions. The same argument extends to the case of QCCC key agreements with perfect
completeness. Our Theorem 1.1 also leads to a poly(d,m) ≤ poly(κ)-query attack, and
hence can be used to obtain similar separations with respect to “quantum black-box”
constructions, for the case of perfect completeness and classical Alice. In a quantum
black-box construction [HY20] the reductions (to implement the primitive and prove
its security) can have quantum superposition access to the oracles they use. Our Theo-
rem 1.3 implies a similar separation for QCCC key agreement protocols from one-way
functions, but based on the assumption that Polynomial Compatibility Conjecture holds.
See Theorem 6.3 of the full version [ACC+22] for a formalization.

Attacking Other Primitives. Once we obtain polynomial-query attacks on QCCC key
agreement in the QROM model, we also immediately obtain further corollaries about
the impossibility of using quantum random oracles for realizing other primitives such
as public-key encryption and oblivious transfer, or more generally, any primitive P that
implies key agreement in a black-box way, when the communication and the inputs
are classical. For example, since oblivious transfer implies key agreement [GKM+00],
our Theorems 1.1 and 1.3 also extend to rules out the possibility of OT protocols with
perfect completeness in the QCCC model using random oracles. Similarly, our separa-
tions extend to similar separations from other primitives, such as Oblivious Transfer,
that imply key agreements in a black-box way.

Connection to the Simulation Conjecture. Since our attacks on perfectly complete key
agreement protocols in the QROM model are classical, it is natural to ask if such
classical attacks can be extended to all such protocols, even against protocols with
imperfect completeness. We show that obtaining such attacks would resolve a basic
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and long-standing open question about the power of quantum vs. classical algorithms.
That means obtaining such classical attacks unconditionallymight be quite challenging.
More specifically, a folklore conjecture, which we refer to as the “Simulation Conjec-
ture”, states that for any poly(κ)-query quantum algorithm Qh using a random oracle
h, and for any ε = 1/poly(κ), there is another poly(κ)-query classical algorithm Sh

that can approximate the acceptance probability Pr[Qh = 1] with ±ε additive error, for
1 − ε fraction of oracles h. Aaronson and Ambainis (see Conjecture 4 in [AA09]) for-
malized this conjecture and showed that it is implied by a Fourier-analytic conjecture,
now known as the Aaronson-Ambainis conjecture, that has some resemblance to our
Polynomial Compatibility Conjecture but also with key differences (see Sect. 1.3).

In this work, we observe that the Simulation Conjecture is in fact necessary for
extending classical attacks on key agreement protocols in the QCCC model using quan-
tum random oracles andwith negligible completeness error. Doing so shows that proving
an unconditional classical attack of poly(κ) query complexity onQCCC key agreements
in the QROM are not possible, unless one resolves the Simulation Conjecture positively.

Theorem 1.4 (QCCC key agreement against classical adversaries – informal). If
the Simulation Conjecture is false, then there is a key agreement in the QCCC model in
which quantum powered parties Alice and Bob use a random oracle to agree on a bit
b with probability 1 − negl(κ), while for an infinite set of security parameters κ, the
protocol is secure against all classical poly(κ)-query eavesdropping algorithms.

See Theorem 7.6 of the full version [ACC+22] for a formalization of the theorem
above, and see the next section below for a highlight of the ideas behind its proof.

1.2 Technical Overview

In this section, we highlight the ideas behind Theorems 1.1, 1.3, and 1.4.
Our starting point is the work of Brakerski et al. [BKSY11] that showed a simpler

attack and analysis than that of [IR89,BM17], to break any key agreement with perfect
completeness in the ROM using O(d2) queries. To obtain our results, we start by mod-
ifying the attack of [BKSY11] to a version that is more robust so that it can be adapted
to the quantum setting. We start by describing this attack for the setting that both Alice
and Bob are classical. We then discuss, step by step, the new ideas that are introduced
to extend the attack to the case of quantum parties.

Case of Classical Alice and Classical Bob. Let h : [N ] → {0, 1}m be the random
oracle. Suppose t is the (classical) transcript of the protocol, and PA (resp. PB) is the
partial function that defines the set of queries asked by Alice (resp. Bob) and their
answers. Let QA = dom(PA) (resp. QB = dom(PB)) be the set of queries asked by
Alice (resp. Bob). Also, let k be the key that Alice and Bob agree upon.

Attacking CACB Protocols. The adversary Eve E is given the transcript t and wants
to find out the key k. Our simple attack follows the “heavy query learning” approach
of [IR89,BM17]. Eve maintains a partial function L that defines the answers to the
queries QL that are asked by Eve has asked so far. (At the beginning L = ∅.) During
the attack, Eve asks any query x /∈ QL that is “ε-heavy for being in QA” conditioned on
what Eve knows so far: (L, t). More formally, x is called ε-heavy if Pr[x ∈ QA|L, t] ≥
ε. Whenever Eve reaches a point that there is no heavy query left to ask, Eve simply
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samples a full (fake) view V ′
A for Alice in her head and outputs the key k′

A that is
implied by V ′

A. We claim that the attack is both efficient and successful. Namely, Eve
asks an expected number of at most d/ε queries, and that it finds the key k′

A = k with
probability at least 1 − εd. Then, by taking ε ≈ 1/d we obtain the desired result.

Efficiency of the Attack. It is easy to prove, using the linearity of expectation, that
E[|L|] ≤ d/ε. This is roughly because every query asked by Eve has at least ε-chance
of being in QA, and that there are a limited |QA| ≤ d possible queries in QA.

Success of the Attack. Perhaps the more interesting aspect is the success of the attack,
which is argued based on two facts.

– Independence: For every fixed oracle h and transcript t, the random variables VA and
VB that describe the views of Alice and Bob conditioned on h and t are independent
random variables (i.e., they have a product distribution).

– Consistency: If (1) the views VA and VB are each consistent with the transcript t, and
(2) their partial functions PA, PB are also consistent partial functions, then one can
conclude that there is an oracle h that is consistent with each of the views VA, VB.
The second condition is equivalent to saying that there is a partial function L such
(1) L is consistent with both PA, PB, and (2) (QA \ QL) ∩ (QB \ QL) = ∅.4

The above two facts can be used to argue the success of the attack as follows. Let us
fix Bob’s (real) view VB. Let x ∈ QB be any particular query asked by Bob that is not
in QL, and hence not learned by Eve. Any such query shall be ε-light (otherwise it was
learned by Eve and hence in QL). Therefore, the probability that x is in Q′

A, where Q′
A

is the set of queries in the fake view V ′
A sampled by Eve, is at most ε. By a union bound,

with probability at least 1 − dε, it holds that P ′
A and PB are consistent (where P ′

A is the
partial function of the view of the fake Alice V ′

A sampled by Eve). This means that there
is a full oracle h that is consistent with both of V ′

A, VB. Then, by perfect completeness,
this means the key k = kB for Bob should match the key kE = k′

A output by Eve.

Case of Classical Alice and Quantum Bob. Here we describe what steps would be dif-
ferent when attacking protocols with a quantum Bob (but still classical Alice). Interest-
ingly, the attack description remains exactly the same as before. First note that, because
Alice is classical it is well-defined to talk about whether x ∈ QA or not at the end of
the protocol as once a query is asked by Alice it would belong to QA forever.5 The
efficiency analysis of the attack also remains the same as the CACB case above. Below,
we describe the key differences in the analysis of the success of the attack.

Success of the Attack. At a high level, we prove quantum variants for both of the Inde-
pendence and Consistency properties.

– Independence: We show that, even if Alice and Bob are both quantum, then their
“views” (i.e., the measurement of their registers) would be independent conditioned
on the fixed classical transcript t and oracle h. More generally, we show that the
joint quantum state of Alice and Bob, conditioned on h, t is a product state.

4 In [IR89,BM17], this condition is referred to as having no “intersection queries” outside L.
5 One cannot say the same thing for quantum algorithm Bob, as it might choose to “forget”
things about oracle as it proceeds.
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– Consistency: Again, we first prove a result that applies to the more general case of
two quantum parties. We start by using two ideas that were popularized following
the breakthrough work of Zhandry [Zha19]. First, we use a purified quantum ran-
dom oracle h that is in the uniform superposition over all possible classical oracles
(which is equivalent to using a classical random oracle). Second, we represent the
oracle’s answers in the Fourier domain, and denote the oracle ĥ.
We show that if parties ask a total of d queries to the oracle, then the joint quantum
state |φ〉 that describes both Alice’s and Bob’s registers W and the oracle ĥ (using
registers H) is “d-sparse” over its oracle part H , in the sense that ĥ can be repre-
sented with a degree d multi-linear polynomial f with variables xi, i ∈ [2n].
Finally, we show that in the case when Alice is classical, then if Alice’s fake queries
Q′

A do not intersect with the “queries” in S, where S is a (maximal) monomial∏
i∈S xi in f of deg(f), then there exists an oracle h such that (1) h is consistent

with the real views |φ〉, and (2) h is also consistent with Alice’s fake view V ′
A.

The above generalization of the Consistency condition allows us to now basically apply
the same argument used in the CACB case by treating the variables in the maximal
monomial S as Bob’s queries. In particular, once Q′

A ∩ S = ∅, then we conclude that
there is an oracle h that is consistent with each of V ′

A and the real (quantum) Alice and
Bob. Then, by the Independence property, h is consistent with V ′

A and real Bob at the
same time, and hence by perfect completeness the key implied by Alice’s fake view V ′

A

sampled by Eve shall match that of the real Bob.

Case of Quantum Alice and Quantum Bob. When it comes to the case of quan-
tum Alice and Bob, we can no longer use the classical attack of the CACB setting, as
both Alice and Bob can now ask superposition queries to the oracle (e.g., all of their
queries might have non-zero amplitude for all possible oracle queries). Hence, we need
to change the attack and its analysis. In this case, without loss of generality, we focus
on the simpler case that the key k is a bit.

Description of the Attack. In the previous case of CAQB, we described how we choose
to represent the (now quantum) random oracle ĥ in the Fourier domain. Roughly speak-
ing, in the Fourier domain, an oracle answer 0̂ to a query x, means that it has uniform
distribution (when measured in the computational basis), and any other answer ŷ �= 0̂
refers to non-uniform answers. Therefore, a “non-uniform” ŷ �= 0̂ answer here means
that either Alice or Bob have (at least partially) “read” the answer to x at some point.
More precisely, conditioned on all Eve knows, let px be the probability that after mea-
suring the answer to the query x in the Fourier basis, we obtain an answer other than
0̂. Then, informally speaking, we interpret px as the “probability that either Alice or
Bob has read x from the oracle”. In that case, if px ≥ ε, then Eve will call x quantum
ε-heavy. In the new attack, Eve goes ahead and asks any (classical query) x that is quan-
tum ε-heavy (under the new definition) and updates L as before. When no “quantum
ε-heavy query” is left, Eve outputs the more likely key k ∈ {0, 1}.
Efficiency. We generalize the efficiency argument for the classical case to the quantum
regime. Namely, if Alice and Bob ask a total of d queries to the oracle, then the quantum
ε-heavy learner Eve will stop after asking |L| queries, where we have E[|L|] ≤ d/ε.

Success of the Attack. Our goal is to show that once no quantum ε-heavy query is left,
then conditioned on Eve’s knowledge (t, L), at least one of the possible keys k ∈ {0, 1}
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is much more likely to be the key chosen by Alice and bob. In that case, Eve will indeed
succeed in finding the true key with high probability. For sake of contradiction, suppose
after learning L and conditioned on (t, L) both values of k ∈ {0, 1} have probabil-
ities ≈ 1/2. We would like to show that this situation violates perfect completeness.
As explained in the previous case of CAQB, once we view the oracle ĥ in the Fourier
domain, after Alice and Bob ask d oracle queries, the joint state of the oracle and the
registers of Alice and Bob corresponds to a distribution F over degree-d multi-linear
polynomials like f . The distribution is obtained by measuring the work registers of
Alice and Bob.6 Below, we further analyze this distribution over low-degree polynomi-
als, while for simplicity we assume that we deal with one fixed polynomial f .

Because at the end of the attack Eve has learned all the quantum ε-heavy queries of
the oracle, it can be shown that any unlearned query x, which corresponds to a variable
in the polynomial f , has influence (as defined prior to Conjecture 1.2) at most ε. Putting
things together, the polynomial f has the following properties: (1) f has �2 norm 1,
because of representing a quantum state, (2) f has degree d, and (3) the influence of
every variable in f is bounded by ε. Furthermore, if we let fb be the polynomials that
represent the “conditional states” of the oracle and Alice-Bob registers conditioned on
the key being k = b, then by the fact that the key k is still unbiased (in Eve’s view)
we can conclude that f0, f1 both essentially inherit all the properties of f (the only
difference being that the influences increase to ≈ 2ε instead of ε).

Our Conjecture 1.2 states that when ε is sufficiently small, any two polynomials
f0, f1 with properties stated above would have a nonzero product. This implies that
there exists an oracle h that is consistent with two very different executions with two
outcomes for the final key. By the Independence property, we can now choose Alice’s
view from the execution leading to the key 0 and choose Bob’s view from the execution
leading to key 1, but this violates the perfect completeness.

Obtaining Exponentially Small Influences. To prove the weaker variant of Conjec-
ture 1.2 where the influences are less than 2−d/d rather than the desired 1/poly(d),
the high level idea is as follows. Take any maximum-degree term appearing in f , and
consider what happens when we fix all variables except the ≤ d ones in the term.
Clearly, the resulting restriction of f is not a constant function so there is always some
assignment to the remaining d variables that makes f non-zero, regardless of how the
first variables were fixed. We show that, if g has all influences less than 2−d/d then
there is some assignment to the variables outside the term such that g is non-zero for all
assignments to the remaining d variables, yielding an x such that f(x) · g(x) �= 0. To
prove this property of g, we show that in expectation over a random assignment of the
variables outside the term, the resulting restriction of g has a constant term that domi-
nates all the non-constant terms. The exponential loss of 2d essentially comes from the
fact that there are 2d non-constant terms in this restriction of g.

Ideas behind Theorem 1.4.We now sketch some of the ideas behind the proof of Theo-
rem 1.4. We start by assuming that Q is a quantum algorithm accessing a random oracle
h that asks poly(κ) queries, while there is ε = 1/poly(κ) such that any poly(κ)-query

6 As expected, the formulation of our Polynomial Compatibility Conjecture is such that, to use
the conjecture for obtaining attacks, it does not matter in which basis the work registers of
Alice and Bob are measured.
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classical algorithm will fail to approximate Pr[Qh = 1] within ±ε additive error for at
least ε fraction of the sampled random oracles h. Note that even though a classical algo-
rithm cannot do so, a quantum algorithm (e.g., Alice or Bob) can indeed approximate
Pr[Qh] within an arbitrarily small additive error δ = 1/poly(κ). As a result, quantum
Alice and Bob can access the “same” number (approximately) that is, at least some-
times, not as accessible by the classical Eve. Therefore, roughly speaking, the quantum
parties can leverage on this “source of shared unpredictable” numbers and bootstrap it
to a full fledged key agreement that is secure against classical Eve in the QROM.

In more detail, we first show that the above argument leads to a “weak” key agree-
ment such that the key cannot be guessedwith probability 1−δ for some δ = 1/poly(κ).
We then use a careful number of repetitions to agree on a longer key that is much harder
for the adversary to guess. The proof of this steps relies on the fact that concurrent com-
position of interactive proofs (rather than arguments) decrease the soundness error opti-
mally. Then, one approach is to use the Goldreich-Levin technique to extract a uniform
key from the “unpredictable key”, and then bootstrap the completeness to 1 − negl(κ)
using the amplification technique of Holenstein [Hol05]. More conveniently, we use a
tool from the recent work of Haitner et al. [HMST21] that combines the last two steps.

Complexity of Our Attacks. When one aims to use only a random oracle for security,
then it means that the security is defined based on the number of adversary queries,
regardless of how computationally hard it is to run such attacks. Indeed, if one adds
computational intractability assumptions, one can ignore the random oracle all together
and run a computationally secure protocol. In this work, we also primarily focus on
studying the feasibility of key agreements from quantum random oracles in the QCCC
model, while the implications to fully black-box separations are also discussed in Sect. 6
of the full version [ACC+22]. For sake of completeness, here we also comment on the
computational complexity of our attack. In the classical setting, an NP oracle can be
used to “uniformly invert” efficient processes that do not use anNP oracle themselves
[BGP00]. This allows the adversary Eve to find the heavy queries, as needed in the
attack of [BMG09a], through repeated sampling of the views conditioned on the tran-
script.7). In the quantum setting, we can use a “post-selection” gate [Aar05] to do the
same thing. More formally, first we observe that Zhandry’s compressed oracle lets us
efficiently simulate the quantum random oracle while we maintain the “sampled oracle
answers” in the Fourier basis using a list of polynomial size. Then, using post-selection
one can sample oracle queries that are queried conditioned on the given transcript.
Finally, by repeated sampling, we can again efficiently find the heavy queries.

1.3 Related Work

Black-Box Separations. Impagliazzo and Rudich [IR89] initiated the field of “black-box
separations” by proving the existence of an oracle relative which one-way functions
exist but secure key agreement protocols do not. The notions of black-box reductions,
in various forms, were later formalized by Reingold, Trevisan, and Vadhan [RTV04].

Quantum Black-Box Separations. The work of Hosoyamada and Yamakawa [HY20]
initiated the study of “quantum black-box” separations by formalizing the notion

7 See Remark 3.2 in https://www.boazbarak.org/Papers/merkle.pdf.

https://www.boazbarak.org/Papers/merkle.pdf
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of quantum black-box constructions (for primitives with non-interactive adversaries)
and showing that even quantum black-box constructions cannot base collision resis-
tant hash functions on one-way functions. Their work extended the previous result of
Haitner et al. [HHRS07] about classical constructions to the quantum setting. Cao and
Xue [CX21] proved quantum black-box separation of one-way permutations from one-
way functions. Their work extended the previous result of Rudich [Rud88] and Kahn
et al. [KSS00] about classical constructions and classical security proofs, to the setting
of allowing quantum reductions of security.

The QCCC Model. The model of classical communication and quantum-powered par-
ties is also used in other lines of work. One such recent body of work aims to classically
verify a quantum computation [Mah18,CCY20,ACGH20,BKVV20,Zha21,Bar21].
More generally, an active line of work aims for designing on post-quantum security
(e.g., see the recent works [BS20,BKS21,ABG+21,ACP21]) in which we deal with
quantum powered adversaries, while the honest parties are fully classical. However, in
our setting, honest parties are also quantum powered.

Limitations of Random Oracles. Haitner et al. [HOZ16], and Mahmoody
et al. [MMP14] studied the limitations of using random oracles for secure multiparty
computation. It was shown in [HOZ16] that inputless functionalities cannot rely on
ROM to get security (unless they are trivially possible). [MMP14] showed that non-
trivial and non-complete two-party functionalities cannot be based on random oracles.
The work of Haitner et al. [HMO+21] studies the communication complexity of key
agreement from random oracles. It is interesting to see whether similar lower bounds
on the communication complexity of key agreement hold in the QROM model.

Comparison with the Aaronson-Ambainis Conjecture. As mentioned above, Aaronson
Ambainis [AA09] proved that if a Fourier-theoretic conjecture, with resemblance to our
Polynomial Compatibility Conjecture holds, then the Simulation Conjecture holds as
well. The AA Conjecture states that any bounded degree d polynomial f : {−1, 1}n →
[0, 1] with variance ε has a variable with influence at least poly(ε/d). In a language
closer to our Polynomial Compatibility Conjecture, the contrapositive of the AA Con-
jecture says that for any degree d polynomial f with constant variance and polynomially
small influences poly(Var[f ]/d), there must exist an x ∈ {0, 1}n such that |f(x)| > 1.
One interesting similarity is that both conjectures hold, when we assume exponentially
small influences [DFKO06]. Despite that, our conjecture and the AA conjecture do not
seem to be directly comparable, and it would be interesting to prove implications in
either direction between them. For the application to key agreements, the implications
of the two conjectures also seem incomparable. Our conjecture is tailored for perfect
completeness and can be applied when there is communication. On the contrary, the AA
conjecture can be applied to give an attack in the setting of imperfect completeness, but
(as far as we can see) it is limited to the case of no communication. Furthermore, the
“intersection” of these, i.e., the case of no communication and perfect completeness,
can be proved without a conjecture [OSSS05].
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2 Preliminaries and Notation

2.1 Quantum Computation

Let Σ be a finite and nonempty set of classical states. The finite dimensional Hilbert
space associated with a register X is defined to be C

|Σ| for Σ being the state set of
X . A quantum state of a register X is a unit vector in C

|Σ|. We use standard bra-ket
notation for vectors and their adjoint. That is, we can write |ψ〉X ∈ C

|Σ| as a vector

|ψ〉X =
∑

i∈Σ

αi|i〉X ,

where
∑

i∈Σ |αi|2 = 1, and {|i〉}i∈Σ is an orthonormal basis of C
|Σ|. We define 〈ψ|X

as the row vector that is conjugate to |ψ〉X . The inner product between |φ〉X and |ψ〉X

is denoted by 〈φ|ψ〉X . We sometimes neglect the subscripts when the corresponding
registers are clear form the context.

For combined registers Y = (X1, . . . , Xn), where Σi is the state set for each Xi,
the state set of Y is defined as Σ = Σ1 × · · · × Σn. The finite dimensional Hilbert
space associated with Y is defined to be C

|Σ1| ⊗ · · · ⊗ C
|Σn|. Since every register is

labeled by a distinct name, we sometimes permute the order of tensor product for ease
of expression. A quantum state |ψ〉AB over registers A, B is called a product state if
and only if it can be written as |ψ〉AB = |φ1〉A ⊗ |φ2〉B .

The evolution of a quantum state |ψ〉 ∈ C
|Σ| is governed by a unitary operator

U : C
|Σ| → C

|Σ|. The state becomes |ψ′〉 = U |ψ〉. The measurement operator corre-
sponding to a finite nonempty set of outcomes Γ is a set of operators {Mi}i∈Γ which
satisfies

∑
i∈Γ Mi

†Mi = I , where (·)† denotes Hermitian conjugation and I is the
identity operator. The probability of obtaining i by measuring |ψ〉 is ‖Mi|ψ〉‖22, and the
post-measurement state then collapses to Mi|ψ〉

‖Mi|ψ〉‖2
, where ‖ · ‖2 denotes the Euclidean

norm. An operator ΠX : C
|Σ| → C

|Σ| is called a projection operator (or projector) if
it satisfies Π2

X = ΠX . For projection operators acting on multiple registers of the form
ΠX1X2 = ΠX1 ⊗ IX2 , we write only the non-trivial part ΠX1 for convenience. We say
an operator A commutes with another operator B if AB = BA.

A quantum circuit consists of registers, unitary gates and measurements. By the
deferred measurement principle, all intermediate measurements can be delayed at the
end of the circuit by introducing ancillary registers. Without loss of generality, we
assume that at the end all the registers are measured in the computational basis. Indeed
(efficient) classical algorithms can be simulated using quantum circuits (efficiently).

Some of the components of our analysis rely on ideas inspired by the Compressed
Oracle technique of Zhandry [Zha19]. The following preliminary follows closely to the
formalization in Sect. 3 of [CFHL21].

The Computational and the Fourier Bases. LetY be a finite Abelian group of cardinality
|Y|. Let {|y〉}y∈Y be an orthonormal basis of C

|Y|, where the basis vectors are labeled
by the elements ofY . We refer to this basis as the computational basis. Let Ŷ be the dual
group of Y , which consists of all group homomorphisms Y → {ω ∈ C | |ω| = 1} and
is known to be isomorphic to Y , and thus to have cardinality |Y| as well.8 We consider

8 We do not rely on Ŷ and Y being isomorphic and think of them simply as disjoint sets.
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Ŷ to be an additive group; the neutral element is denoted 0̂. The Fourier basis {|ŷ〉}ŷ∈Ŷ
of C

|Y| is defined by the transformations below, where (·)∗ is complex conjugation.

|ŷ〉 =
1√|Y|

∑

y∈Y
ŷ(y)∗|y〉 |y〉 =

1√|Y|
∑

ŷ∈Ŷ
ŷ(y)|ŷ〉.

An elementary property of the Fourier basis is the following.

Fact 2.1. The operator defined by |y〉|y′〉 �→ |y + y′〉|y′〉 for all y, y′ ∈ Y is the same
as the operator defined by |ŷ〉|ŷ′〉 �→ |ŷ〉|ŷ′ − ŷ〉 for all ŷ, ŷ′ ∈ Ŷ .

Functions and Their (Quantum) Representations. Let H be the set of all functions h :
X → Y and Ĥ be the set of all functions ĥ : X → Ŷ . For any h ∈ H, we define
its quantum representation to be |h〉H :=

⊗
x∈X |h(x)〉Hx

in the computational basis,
where the register Hx is associated with C

|Y| for all x ∈ X , and the register H is
compounded of all Hx. One can view |h〉H as the vector representing the truth table of
h. Similarly, for any ĥ ∈ Ĥ we define |ĥ〉H :=

⊗
x∈X |ĥ(x)〉Hx

in the Fourier basis.

Both {|h〉H}h∈H and {|ĥ〉H}ĥ∈Ĥ are orthonormal bases of C
|Y||X|

.

Superposition Oracle. In the quantum random oracle model, an oracle-aided quantum
algorithmA consists of the query registerX , the answer register Y and ancillary register
Z. For convenience, we let W := (X,Y,Z) denote the internal registers of A. Initially,
a function h : X → Y is sampled from H uniformly at random, and A begins with
the state |0〉W . The algorithm A is able to ask adaptive quantum queries. Between the
queries, A can apply unitaries and perform measurements on its registers. The query
operation O is defined as the following unitary mapping in the computational basis.

|x〉X |y〉Y |h〉H �→ |x〉X |y + h(x)〉Y |h〉H

Since quantum operators are reversible, we assume the algorithm has access to O† as
well. By default, O acts as identity on registers other than X,Y and H .

We define the quantum state |Φ0〉H to be a uniform superposition over all h ∈ H

|Φ0〉H :=
∑

h∈H

1√|H| |h〉H =
⊗

x∈X
|0̂〉Hx

. (1)

The sampling of h is equivalent to measuring |Φ0〉H in the computational basis. Since
the unitary operators and measurements performed by A commute with the measure-
ment on |Φ0〉H , and the fact that registers in H are used only as control-bits for O, we
can delay the measurement on |Φ0〉H to the end of the computation.

Now, we analyze the behavior of the superposition oracle in the Fourier basis. By
Fact 2.1, O becomes

|x〉X |ŷ〉Y |ĥ〉H �→ |x〉X |ŷ〉Y

⊗

x′∈X
|ĥ(x′) − ŷ · δx,x′〉Hx′ (2)

in the Fourier basis, where δx,x′ = 1 when x = x′ and δx,x′ = 0 otherwise.
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2.2 Key Agreement Using Quantum Computation and Classical Communication

A key agreement protocol in the Quantum-Computation Classical-Computation
(QCCC) model is a protocol in which two quantum algorithms, Alice and Bob, can
query the oracle, apply quantum operation on their internal registers, and send classi-
cal strings over the public channel to the other party. We also refer to this model as
the Quantum-Alice Quantum-Bob model. The sequence of the strings sent during the
protocol is called the transcript of the protocol. Let WA and WB be Alice’s and Bob’s
internal registers, respectively. Before the protocol starts, an oracle function h is chosen
from H uniformly at random, and query operation Oh given the oracle h is defined as

Oh : |x〉|y〉 �→ |x〉|y + h(x)〉.
When we consider the case that Alice and Bob are both quantum algorithms, they start
with a product state |0〉WA

⊗ |0〉WB
. When Alice is a classical algorithm and Bob is a

quantum algorithm, Alice is given a random tape at the beginning. That is, Alice and
Bob start with a product state |rA〉WA

⊗ |0〉WB
, where rA ∈ {0, 1}∗ is uniform.

Apart from the real execution, we can take not only WA,WB but also the oracle
register H initialized as |Φ0〉H into account. As we mentioned, the sampling of h can
be postponed at the end. Additionally, by the deferred measurement principle, all the
intermediate measurements can be delayed as well. Now, the joint state of WA,WB and
H remains as a pure state during the protocol. Importantly, such a switching of view-
points could display several non-trivial properties providing better leverage while still
being perfectly indistinguishable from the previous one. Therefore, the analysis will
be done in the so-called purified view in the following sections. In other word, when-
ever any classical information appears, the joint state collapses to the corresponding
post-measurement state and stays pure. For any key agreement protocol, we define its
purified version as follows:

– Start with |0〉WA
|0〉WB

|Φ0〉H .
– Alice and Bob runs the protocol in superposition, that is, all the measurements
(including those used for generating the transcript9) are delayed and the query oper-
ator Oh is replaced by O.

– Let |Ψ〉WAWBH denote the state at the end of the protocol and |Ψt〉WAWBH be its
post-measurement that is consistent with the transcript t.

Definition 2.2 (Nonzero queries in Fourier basis). For any ĥ ∈ Ĥ, we define the set

Qĥ
:= {x : x ∈ X , ĥ(x) �= 0̂}

and the size of ĥ by

|ĥ| := |{x : x ∈ X , ĥ(x) �= 0̂}| = |Qĥ|.
9 By delaying the measurement for the transcript, one can view it as applying an CNOT gate,
where the controlled bit is the register that supposed to sent and the target bit is an ancilla.
Then, one sends the ancilla bit, and in the rest of the computation, the ancilla bits are served
only as control bits for Alice’s and Bob’s computation. The ancilla bits (transcript) remain
unchanged throughout the computation. Thus, it is equivalent to sending classical information,
and it is consistent with QCCC model.
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Definition 2.3 (Oracle support). For any vector |φ〉WH =
∑

w,ĥ∈Ĥ αw,ĥ|w〉W |ĥ〉Ĥ ,
we define the oracle support in the Fourier basis of |φ〉 as

ŝuppH(|φ〉) := {ĥ : ∃w s.t. αw,ĥ �= 0}.

We denote the largest ĥ in ŝuppH(|φ〉) as
ĥH
max(|φ〉) := arg max

ĥ∈ŝuppH(|φ〉)
|ĥ|.

(If the choice is not unique, then choose the alphabetically first one.) When the oracle
registers H are clear, we simply denote this by ĥmax(|φ〉). Similarly, if we write the
oracle part in the computational basis |φ〉WH =

∑
w,h∈H βw,h|w〉W |h〉H , then we

define the oracle support in the computational basis of |φ〉 as
suppH(|φ〉) := {h : ∃w s.t. βw,h �= 0}.

Lemma 2.4 (Sparse representation). If A asks at most d queries to the superposition
oracle, then for all possible outcomes of A’s intermediate measurements, the joint state
|ψ〉WH conditioned on the outcome satisfies |ĥmax(|ψ〉)| ≤ d.

Proof. We prove the lemma by induction on the number of queries asked by A, denoted
by q. For the base case q = 0, the joint state |ψ0〉WH = |0〉W |Φ0〉H satisfies the
statement. Assume that the joint state |ψk〉WH satisfies |ĥmax(|ψk〉)| ≤ k for some k.

For the induction step, since the unitaries and measurements act only on W , the
size of the state never increases. Moreover, for every x ∈ X , ŷ ∈ Ŷ and ĥ ∈ Ĥ, by the
observation in Eq. (2), the size of ĥ increases at most by one after the query operation.
Therefore, the size of the state increases at most by one. By induction hypothesis the
resulting state |ψk+1〉WH satisfies |ĥmax(|ψk+1〉)| ≤ k + 1. ��
Definition 2.5. A partial oracle L is a partial function from X to Y . The domain of L
is denoted by QL = dom(L). Equivalently, we view L as a finite set of pairs (x, yx) ∈
X × Y such that for all (x, yx), (x′, y′

x) ∈ L, x �= x′.

Note that our partial oracles are always in the computational basis. We say a partial
oracle L is consistent with h : X → Y if and only if h(x) = yx holds for all x ∈ QL.

Definition 2.6. For any partial oracle L, we define the associated projector ΠL by

ΠL :=
⊗

x∈QL

|yx〉〈yx|Hx

⊗

x/∈QL

IHx
,

where IHx
is the identity operator acting on Hx. It holds that ΠL|h〉H = |h〉H if h is

consistent with L, and ΠL|h〉H = 0 otherwise.

Lemma 2.7. Given a state |ψ〉WH and a partial oracle L, the state ΠL|ψ〉WH can be
written as

ΠL|ψ〉WH =
∑

w∈W,ĥ∈Ĥ′

α′
w,ĥ

|w〉W

⊗

x/∈QL

|ĥ(x)〉Hx

⊗

x∈QL

|yx〉Hx
,

where Ĥ′ is the set of functions from X \ QL to Ŷ . Furthermore, if |ĥH
max(|ψ〉)| ≤ d,

then |ĥH′
max(ΠL|ψ〉)| ≤ d, where H ′ is the set of registers corresponding to X \ QL.
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3 Attacking Classical-Alice Quantum-Bob Protocols

In this section, we consider the case where A is a classical algorithm and B is a quantum
algorithm and prove the following theorem.

Theorem 3.1 (Breaking CAQB protocols). Let (A,B) be a two-party protocol in
which algorithm classical A communicates with a quantum algorithm B and they both
have access to a random oracle h : X → Y , and at the end they agree on a key k
with probability 1. Suppose Alice asks at most dA classical oracle queries, while Bob
asks at most dB quantum oracle queries. Then, there is an eavesdropper E who, after
receiving the transcript t, asks at most dA·dB/λ queries to h after receiving the classical
transcript t and finds the key k with probability 1 − λ.

Note that in the above theorem, the adversary’s query complexity is dA ·dB/λ rather
than the simpler (still correct) bound of d2/λ where d = dA + dB. Even though, when
dA = Θ(dB), it also holds that dA · dB = Θ(d2), when the query complexity of the
parties are unbalanced, e.g., when dA =

√
κ, d = κ for security parameter κ, our

attacker’s query complexity will be O(κ1.5) rather than O(κ2). This is particularly a
natural scenario when the quantum-powered party is more powerful and can ask many
more queries. Later on, we will give a concrete construction of the adversary (Theorem
3.5) in the proof. Notice that the adversary is actually a classical algorithm, where it
only makes classical queries.

The rest of this section will be dedicated to proving the theorem. Before constructing
the attacker and analyzing it, we introduce some useful lemmas.

3.1 Useful Lemmas

Lemma 3.2 (Independence of quantum views in the QCCC model). Suppose two
quantum algorithms A and B interact classically in the quantum random oracle model.
Let WA and WB denote their registers respectively. Then, at any time during the pro-
tocol, conditioned on the transcript t and the fixed oracle h ∈ H, the joint state of the
registers WA and WB conditioned on t and h is a product state.

Proof. We prove the lemma by induction on the round index r. For the base case r = 0,
A and B’s joint state |0〉WA

⊗ |0〉WB
. Suppose for some k, A and B’s joint state after k

rounds is a product state conditioned on the transcript t and oracle h. For the induction
step, in the (k + 1)-th round, one of them will apply “deterministic” local unitaries
and query operators Oh conditioned on t and h. Therefore, further conditioned on the
message generated in this round, the resulting joint state is still a product state. ��
Lemma 3.3 (Consistency). Given a state |ψ〉H , if L is a partial oracle such that
Qĥmax(|ψ〉) ∩ QL = ∅, then ‖ΠL|ψ〉‖22 > 0. Equivalently, there exists at least one

oracle h ∈ H such that (i) h is consistent with L and (ii) h ∈ suppH(|ψ〉).

Proof. For convenience, we write ĥmax to denote ĥmax(|ψ〉), and we represent |ψ〉H =∑
ĥ γĥ|ĥ〉 in the Fourier basis. The proof directly comes from the following two claims:

Claim. γĥmax
ΠL|ĥmax〉 is not a zero vector.
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Proof of Section 3.1. Since Qĥmax
∩ QL = ∅ and γĥmax

�= 0 by definition, we have

γĥmax
ΠL|ĥmax〉 =

γĥmax√
|Y||QL|

⊗

x∈QL

|yx〉Hx

⊗

x/∈QL

|ĥmax(x)〉Hx
,

which is not a zero vector. ��
Claim. For all ĥ ∈ ŝuppH(|ψ〉) \ {ĥmax}, it holds that ΠL|ĥmax〉 is orthog-
onal to ΠL|ĥ〉. As a corollary, we have that γĥmax

ΠL|ĥmax〉 is orthogonal to
∑

ĥ�=ĥmax
γĥΠL|ĥ〉 since the latter is a linear combination of vectors which are orthog-

onal to the former.

Proof of Section 3.1. Since ĥmax is maximal and Qĥmax
∩ QL = ∅, for all ĥ ∈

ŝuppH(|ψ〉) \ {ĥmax}, it holds that
|{x : x ∈ X \ QL, ĥmax(x) �= 0̂}| ≥ |{x : x ∈ X \ QL, ĥ(x) �= 0̂}|.

For the case of |{x : x ∈ X \ QL, ĥmax(x) �= 0̂}| > |{x : x ∈ X \ QL, ĥ(x) �= 0̂}|,
there exist an x′ ∈ X \ QL such that ĥ(x′) = 0̂ and ĥmax(x′) �= 0̂. Therefore, we have

〈ĥ|ΠL|ĥmax〉 =
⊗

x∈QL

〈ĥ(x)|yx〉〈yx|ĥ(x)〉
⊗

x/∈QL

〈ĥ(x)|ĥmax(x)〉 = 0,

since 〈ĥ(x′)|ĥmax(x′)〉 = 0.
For the case of |{x : x ∈ X \QL, ĥmax(x) �= 0̂}| = |{x : x ∈ X \QL, ĥ(x) �= 0̂}|,

suppose there exists an ĥ such that ĥ(x) = ĥmax(x) holds for all x ∈ X \QL. There are
two possible cases. First, For all x ∈ QL, it holds that ĥ(x) = 0̂. BecauseQĥmax

∩QL =
∅, we have ĥmax(x) = 0 for all x ∈ QL. Consequently, we have ĥ = ĥmax which
contradicts to ĥ �= ĥmax. Second, there exists x ∈ QL such that ĥ(x) �= 0̂. It implies
|ĥ| > |ĥmax| which contradicts to the maximal size of ĥmax. Therefore, for all ĥ of
the second case, there exists an x′ ∈ X \ QL such that ĥ(x′) �= ĥmax(x′). It implies
〈ĥ|ΠL|ĥmax〉 = 0. ��
Finally, by Sect. 3.1 and Sect. 3.1 we can conclude that

‖ΠL|ψ〉‖22 = ‖γĥmax
ΠL|ĥmax〉‖22 +

∥∥∥
∑

ĥ �=ĥmax

γĥΠL|ĥ〉
∥∥∥
2

2
≥ ‖γĥmax

ΠL|ĥmax〉‖22 > 0.

��
The proof of the following lemma could be found in the full version [ACC+22].

Lemma 3.4 (Bounding the classical heavy queries). Let Q be a random variable
over subsets of universe U . Suppose z1, x1, z2, x2, . . . is a finite sequence of random
variables that are correlated with Q, and we have xi ∈ U ∪ {⊥} for all i. Suppose
xi = xj for i �= j, then xi = xj = ⊥. (Namely, no nontrivial xi gets repeated). For a
full sample z1, x1, z2, x2, . . . , call xi ε-heavy (conditioned on z1, x1, . . . , zi) if Pr[xi ∈
Q | z1, x1, . . . , zi] ≥ ε, and for the same sequence, define S = {xi | xi is ε-heavy}.
(Note that S is also a random variable correlated with Q.) Then, E[|S|] ≤ E[|Q|]/ε.
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3.2 The Attack and Its Analysis

Notation and Basic Notions. For a classical algorithmA (perhaps in a multi-party proto-
col) in an oracle model, we use VA = (rA, t, P ) to denote Alice’s view in an execution,
which consists of Alice’s randomness rA, the transcript t, and the partial oracle P of
query-answer pairs that Alice encounters during her execution. By fA we denote the
function which takes VA as input and outputs A’s key kA. We use QA = QP to refer
to the set of queries asked by A. Given transcript t and some partial knowledge about
the oracle h encoded by a partial oracle L, we call x an ε-heavy query for Alice (con-
ditioned on (t, L)) if Pr[x ∈ QA | t, L] ≥ ε, where the probability is over Alice’s
randomness and the oracle answers outside L.

Construction 3.5 (Attacking Classical-Alice Quantum-Bob protocols). Let (A,B)
be a key agreement protocol in which A (Alice) is classical and B (Bob) is quantum
and they both have access to a random oracle h. Given the transcript t, the attacking
algorithm E (Eve) is parameterized by ε and works as follows.

– Let L = ∅.
– While there is any ε-heavy query for Alice conditioned on (t, L), do the following.

• Ask the lexicographically first ε-heavy query for Alice from the oracle h.
• Update L by adding (x, h(x)) to L.

– Sample Alice’s view V ′
A conditioned on (t, L), and output the key k′

A = fA(V ′
A).

Lemma 3.6 (Efficiency). The expected number of queries asked by Eve in Construc-
tion 3.5 is at most dA/ε, where dA is the maximum number of queries asked by Alice.

Proof. The proof is identical to the efficiency argument of the attack from [BM17].
More formally, we can use the abstract Lemma 3.4 to derive the claim by letting Q
model Alice’s set of queries, xi be the ith query asked by E, and letting zi be the
information E receives about Q after asking xi−1. In particular z1 is the transcript, and
zi is the oracle answer to the query xi−1, in case it is asked, and xj = ⊥ if no heavy
query is left after asking xi for i < j. In this case, all the queries QL asked by Eve
E are ε-likely to be in QA conditioned on the transcript and the previously revealed
information encoded in L, and so at the end we have E[|L|] ≤ |dA|/ε. ��
Lemma 3.7 (Success). If Alice and Bob, respectively, ask a total of dA, dB oracle
queries (where Bob’s queries can be quantum queries) and agree on a key with proba-
bility 1, then Eve of Construction 3.5 outputs a key kE such that Pr[kE = k] ≥ 1− εdB,
where k is the key agreed by Alice and Bob.

Proof. For the proof, we need to define a “quantum extension” of Alice’s algorithm,
which is denoted by QA. QA basically runs A by making “pure” quantum queries to the
oracle h, and measuring Alice’s quantum registers WA would reveal the answers to the
oracles queries of the original Alice who is emulated by QA.

Let QAB be the combined party of QA and B. Let W be all the registers of QA
and B. Let W be the set of all possible outcomes of measuring registers W in the
computational basis. Below, let d = dA + dB be the total number of oracle queries.

For simplicity of presentation, we first give a proof with a looser probability 1 − εd
of finding the key. See the full version for the full proof for the tighter bound.
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Loose Analysis. Consider the purified version of the protocol execution, let |Ψt〉WH be
the state conditioned on the transcript t. Since there is at most d queries in total, it holds
that |ĥH

max(|Ψt〉)| ≤ d by Lemma 2.4. Suppose the attacker E asks her queries from the
oracle, starting from the transcript t, and obtains the partial oracle L where for every x
asked by E we have (x, yx) ∈ L. After she learns the first (x, yx), the state becomes
the post-measurement state corresponding to measuring |Ψt〉WH on register Hx with
the outcome yx. In this sense, for any t and L we can define the state conditioned on
them, denoted by |Ψt,L〉WH . Similarly, by Lemma 2.7 it holds that |ĥH′

max(|Ψt,L〉)| ≤ d.
Since the oracle registers corresponding to QL are now measured, we can consider
the “truncated” version of |Ψt,L〉WH by discarding those registers. Let H ′ be the set of
remaining registers, that is,H ′ = {Hx}x∈X\QL

. By |Ψt,L〉WH′ we denote the truncated
|Ψt,L〉WH . In the following analysis, we further assume that QAB measure the internal
registers W = (WA,WB) at the end of the protocol and then obtain the outcome w
in the computational basis. The resulting state is denoted by |Ψt,L,w〉WH′ . By Lemma
2.7, for any w it holds that |ĥH′

max(|Ψt,L,w〉)| ≤ d. In the following proof, we will show
that for every (t, L, w), E will find the correct key in (t, L, w) with probability at least
1 − εd. From now on, we fix an arbitrary (t, L, w) and define Qmax := QĥH′

max(|Ψt,L,w〉).
Recall that Alice A was a classical algorithm and all the ε-heavy queries of A were

already learned by the attacker E, and hence for any x /∈ QL we have Pr[x ∈ QA |
t, L] ≤ ε. In particular, this holds for every x ∈ Qmax. Therefore, by a union bound,
with probability at least 1 − ε|Qmax| ≥ 1 − εd, it holds that Q′

A ∩ Qmax = ∅, where
Q′

A is the set of queries in the fake view V ′
A of Alice sampled by Eve. All we have to

show is that for any Q′
A such that Q′

A ∩ Qmax = ∅, it holds that Eve finds Bob’s key:
fA(V ′

A) = kB. (By perfect completeness, it also holds that kB = kA.)
Let P ′

A be the set of query-answer pairs in the view V ′
A. We now apply Lemma 3.3

with L and H in Lemma 3.3 set to be P ′
A and H ′, respectively. Then, Lemma 3.3

shows that there exists an oracle |h〉 in the computational basis that is simultaneously
consistent with L, t, P ′

A (and hence Alice’s fake view V ′
A) and the measurements w of

real Alice and Bob. Hence, we have the following:

– The probability of obtaining h as the oracle and V ′
A as Alice’s view is nonzero.

– The probability of obtaining h as the oracle and w = wA, wB as the views of Alice
and Bob is nonzero. In particular, the probably of obtaining (h,wB) is nonzero.

By Lemma 3.2, we conclude that the probability of obtaining (V ′
A, h, wB) is nonzero.

Then, by the perfect completeness, the key output by V ′
A and wB should be equal, and

this finishes the proof of the weak bound, showing that Eve finds the key with probabil-
ity 1 − εd = 1 − ε(dA + dB). ��

4 Attacking Quantum-Alice Quantum-Bob Protocols

In this section, we consider the case where both A and B are quantum algorithms in the
QCCC model. In this general setting, we show a conditional result based on a conjec-
ture, that any QCCC key agreement protocol with perfect completeness can be broken
with an expected polynomial number of queries. While we have so far been unable to
prove the conjecture, we can prove a weaker version of the conjecture with exponen-
tially worse parameters, which still leads to a non-trivial attack on QCCC key agreement
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protocols. We present the conjecture and the variant that we can prove in Sect. 4.1. In
Sect. 4.2, we state the main result, which gives an efficient attack when combined with
the conjecture and a non-trivial attack when combined with the weak variant we can
prove. In Sect. 4.3, we prove the necessary lemma for our main result.

4.1 Main Conjecture and Related Notions

Let Y be an Abelian group of order |Y| and Ŷ be the dual group. Let H be the set of all
functions h : X → Y and Ĥ be the set of all functions ĥ : X → Ŷ .

Definition 4.1 ((Y, δ, d,N)-state). Let H be a register over the Hilbert space YN .
A quantum state |ψ〉 over registers W and H is a (Y, δ, d,N)-state if it satisfies the
following two conditions:

– d-sparsity: |ĥH
max(|ψ〉)| ≤ d.

– δ-lightness: For every x ∈ X , if we measure the Hx register of |ψ〉 in the Fourier
basis, the probability of getting 0̂ is at least 1 − δ.

The first item above is equivalent to saying that for any measurement of registers H
in the Fourier basis, and W in any basis, the oracle support in the Fourier basis (as
defined in Definition 2.3) is at most d. Also, looking ahead, the second property above
is equivalent to saying that |ψ〉 has no δ-heavy queries as defined in Definition 4.9.

Definition 4.2 (Compatibility). Two quantum states |ψ〉 and |φ〉 over registers W and
H are compatible if suppH(|ψ〉) ∩ suppH(|φ〉) �= ∅, i.e., if their oracle supports in the
computational basis (as defined in Definition 2.3) have non-empty intersection.

In general, we pose the following question. How small should δ be, as a function of
|Y| and d, in order to guarantee that any two (Y, δ, d,N)-states are compatible? Our
main conjecture is as follows.

Conjecture 4.3. There exists a finite Abelian group Y and δ = 1/poly(d) such that for
any d,N ∈ N, it holds that any two (Y, δ(d), d,N)-states |ψ〉 and |φ〉 are compatible.

Readers may notice that we introduce Conjecture 1.2 in terms of polynomials, while
Conjecture 4.3 is formulated in terms of quantum states. In Sect. 5.1, we will show that
two formulations are equivalent. We found that the one in quantum states is more natural
to use, while the one in polynomials has a clearer mathematical statement.

While we do not have a proof of Conjecture 4.3, we can prove the following theorem
when the influences are exponentially small. The proof is deferred to Sect. 5.2.

Theorem 4.4. For all groups Y , d,N ∈ N, and δ < |Y|−d/d, it holds that any two
(Y, δ, d,N)-states |ψ〉 and |φ〉 are compatible.

4.2 Attacking Quantum-Alice Quantum-Bob Protocols

Now we are ready to state our main result in this section, which states that if Conjec-
ture 4.3 holds for parameter δ, then any QCCC key agreement protocols can be broken
in roughly 1/poly(δ) queries. Additionally, by applying Theorem 4.4, we obtain an
attack by using exponentially-many queries without resorting to any conjecture. Out
results are formulated as the following two theorems.
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Theorem 4.5 (Polynomial-query attacks). Let (A,B) be a two-party QCCC protocol
where Alice and Bob asks at most d queries to a random oracle h whose range is Y .
If Conjecture 4.3 is true, then, there exists an attacker that breaks (A,B) by asking
poly(d, log |Y|) many classical queries to h and finds the key with probability ≥ 0.8.

Theorem 4.6 (Exponential-query attacks). Let (A,B) be a two-party QCCC proto-
col with a total of d queries to a random oracle h whose range is Y . Then, there is an
attacker who asks an expected number of |Y|dd2/λ classical queries to h and finds the
key with probability at least 1 − λ.

The rest of this section dedicates to proving Theorem 4.5 and Theorem 4.6. In a
nutshell, the proof consists of the following steps.

– In Lemma 4.7, we show that once any two (Y, δ = ε/λ, d,N)-states are compati-
ble, then any QCCC key agreement protocols can be broken in roughly 1/poly(δ)
queries. The exponential-query attack follows from Theorem 4.4 and Lemma 4.7.

– In Lemma 4.8, we show that if there exists a group Y such that any key agreement
using the oracle with the range Y is broken by polynomial-query attacks, then any
key agreements with a different group Y ′ can also be broken by such attacks.

In this section, Alice and Bob always output the same key k ∈ {0, 1} with probabil-
ity 1. Notice that assuming the output is just a bit only makes our impossibility stronger.
Besides, we say a key agreement protocol (Ah,Bh) using the random oracle h is (τ, s)-
broken, if there exists an attacker that finds the key in (Ah,Bh) with probability at least
τ after asking s many queries to h in expectation. We call the scheme (τ, s)-classically
broken, if the same thing holds using only classical queries in the attack.

Lemma 4.7 ((Conditionally) breaking QCCC protocols in the QROM). Let Y be
any finite Abelian group. Let (A,B) be a key agreement protocol with at most d quantum
queries to the random oracle h whose range is Y . If it holds that any two (Y, δ =
ε/λ, d,N)-states are compatible, then (A,B) is (1 − λ, d/ε)-classically broken.

The proof of Lemma 4.7 is given in Sect. 4.3.

Lemma 4.8 (Group equivalence). Suppose there exists a finite Abelian group Y , a
constant τ > 0 and a function s(·) such that for all d ∈ N and any single-bit key
agreement protocol (Ah1

1 ,Bh1
1 ) where Alice and Bob asks d queries to random ora-

cles h1 whose range is Y , it holds that (Ah1
1 ,Bh1

1 ) is (τ, s(d))-broken. Then, for any
finite Abelian group Y ′, any d′ ∈ N, δ > 0 and any single-bit key agreement protocol
(A′h′

,B′h′
) where Alice and Bob asks d′ queries to random oracles h′ whose range is

Y ′, (A′h′
,B′h′

) can be (τ − δ, 4s(md′))-broken, where m = �log|Y|(d′3|Y′|/4δ2)�.
The proof of Lemma 4.8 is given in Sect. 8.2 of the full version [ACC+22].

Proof of Theorem 4.5.Because Conjecture 4.3 is true, there exists a finite Abelian group
Y such that for any d,N ∈ N, any sufficiently small δ = 1/poly(d), it holds that any
two (Y, δ, d,N)-states |ψ〉 and |φ〉 are compatible. Then, Lemma 4.7 guarantees that
for any key agreement protocol (A,B) where Alice and Bob asks at most d queries
to an oracle h whose range is Y , there exists an attacker that breaks (A,B) by asking
poly(d) many queries to h in expectation and finds the key with probability at least 0.9.
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Next, by Lemma 4.8, for any finite Abelian group Y ′, d′ ∈ N, δ > 0 and single-bit
key agreement (A′h′

,B′h′
) where Alice and Bob asks d′ queries to random oracles h′

with range Y ′, (A′h′
,B′h′

) can be (0.9 − δ,poly(md′))-classically broken, where

m = �log|Y|(d′3|Y′|/4δ2)�.
Choosing δ = 0.1, we obtain a poly(d′, |Y ′|)-query attack which finds the key with
probability 0.8. Moreover, since d′, log |Y ′| are both at most poly(κ), where κ is the
security parameter (as Alice and Bob both run in time poly(κ)), this would lead to a
poly(κ)-query attack. ��
Proof of Theorem 4.6. The proof follows from Theorem 4.4 and Lemma 4.7 with ε/λ =
δ = |Y|−d/d. ��

4.3 Proof of Lemma 4.7

The rest of this section will be dedicated to proving Lemma 4.7.

Definition 4.9 (Quantum ε-heavy queries). For x ∈ X , let Πx :=
∑

ŷ∈Ŷ\{0̂}
|ŷ〉〈ŷ|Hx

. Given a quantum state |ψ〉WAWBH , the weight of any x ∈ X is defined as

w(x) := ‖Πx|ψ〉‖22.
We call x ∈ X a quantum ε-heavy query if w(x) ≥ ε.

Construction 4.10 (Attack). Suppose (A,B) is a quantum-Alice quantum-Bob key
agreement protocol using the random oracle h. Given the transcript t, attacking algo-
rithm E′ is parameterized by ε and works as follows.

1. Prepare L = ∅ and the classical description of the state

|ψ〉W ′
AW ′

BH′ = |0〉W ′
A
|0〉W ′

B
|Φ0〉H′ ,

where W ′
A,W ′

B and H ′ are the simulated registers for Alice, Bob and the oracle
prepared by E′.10

2. Simulate the state evolution during the protocol. Concretely, E′ calculates the state
in W ′

AW ′
BH ′ after each round in the protocol. Whenever E′ encounters the moments

in which Alice (Bob) send their messages, E′ calculates the post-measurement state
that is consistent with t.

3. While there is any query x /∈ L that is quantum ε-heavy conditioned on (t, L), do
the following.
(a) Ask the lexicographically first quantum ε-heavy query x from the real oracle h.
(b) Update the state in W ′

AW ′
BH ′ to the post-measurement state that is consistent

with (x, h(x)).
(c) Update L by adding (x, h(x)) to L.

4. When there is no quantum ε-heavy query left to ask, E′ obtains distributions of
Alice’s and Bob’s final keys conditioned on (L, t), and it outputs the key k ∈ {0, 1}
that has the highest probability of being Alice’s key in this distribution.

10 Recall that |Φ0〉 is a uniform superposition over all h ∈ H, defined as Eq. (1).
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Remark 4.11. The attacking algorithm E′ is purely classical. It does not need to actually
prepare quantum states and apply quantum operation to them. Instead, at each round,
the entire protocol, including the sampling of the oracle, can be represented as a pure
quantum state. The classical algorithm E′ only needs to query the real oracle h classi-
cally and simulate how that pure state evolves conditioned on the classical information
(t, L) that E′ has so far, and all of that is done in Eve’s head.

Lemma 4.12 (Efficiency). Let L be the final list of Eve’s algorithm in Construc-
tion 4.10. Then E[|L|] ≤ d/ε, where the probability is over the measurement outcomes.

Proof. By asking queries, Eve gradually gathers a set of query-answer pairs. It naturally
introduces a tree where each node corresponds to an intermediate state of L during the
procedure. At each node, Eve deterministically chooses the next query q based on t and
L and each of its children corresponds to different possible h(q) answered by the oracle.
Similar to the proof of Lemma 3.7, in the purified view we denote the state conditioned
on t and L by |Ψt,L〉. Formally, each node v of the tree consists of the following:

– A label (t, L).
– A quantum state |Ψv〉W ′

AW ′
BH′ := |Ψt,L〉W ′

AW ′
BH′ .

– A non-negative real number total weight W(v) defined as

W(v) :=
∑

x∈X\QL′

‖Πx|Ψt,L′〉‖22.

– A Boolean feature stop(v) ∈ {0, 1}. If there is no quantum ε-heavy query, then
stop(v) = 1. In particular, W(v) < ε implies stop(v) = 1.

The random walk on this tree can start from any node. Whenever stop(v) = 0, it
moves to of one of its children u according the distribution of measuring the register
Hq of |Ψv〉 in the computational basis, where q is Eve’s next query at v. Actually, this
distribution, denoted by Γ (v), is equivalent to the distribution of Eve’s query-answer
from h conditioned on t and L. By u ← Γ (v) we denote the step from v to its child u.
Observes that the depth of the tree is finite since |L| is at most |X |.

For any v and its children u, we have the following property

E
u←Γ (v)

[W(u)] =
∑

x∈X\QL′

∑

y∈Y
‖Πx|y〉〈y|H′

q
|Ψv〉‖22

=
∑

x∈X\QL′

∑

y∈Y
‖|y〉〈y|H′

q
Πx|Ψv〉‖22 =

∑

x∈X\QL′

‖Πx|Ψv〉‖22

=
∑

x∈X\QL

‖Πx|Ψv〉‖22 − ‖Πq|Ψv〉‖22 ≤ W(v) − ε,

(3)

where q is Eve’s next query at v, L is the partial oracle of v, and QL′ := QL ∪{q}. The
second equality holds since |y〉〈y|H′

q
commutes with Πx for all x ∈ X \ QL′ , and the

inequality is due to the heaviness of q.
We claim the following inequality holds for every v

E[|S(v)|] ≤ W(v)
ε

, (4)
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where by S(v) we denote the total number of steps that the random walk takes when
starting form v. We prove it by induction on the depth of the starting node. By D we
denote the depth of the tree. For v in depth D we shall have stop(v) = 1, in which
case |S(v)| = 0 ≤ W(v)/ε, and so the claim follows. Now suppose the inequality
holds for depth i nodes and we move to v in depth i − 1. If stop(v) = 0, again we
have |S(v)| = 0 ≤ W(v)/ε which is what we need. Otherwise, by induction and the
linearity of expectation,

E[|S(v)|] = 1 + E
u←Γ (v)

[E[|S(u)|]]

≤ 1 + E
u←Γ (v)

[W(u)/ε]

= 1 +
Eu←Γ (v)[W(u)]

ε

≤ 1 +
W(v) − ε

ε
=

W(v)
ε

,

where the first inequality is due to induction hypothesis and the second inequality fol-
lows by Eq. 3. By Lemma 2.4, the total weight of the root R (where the state is |Ψt〉 in
the purified view) is at most d since

W(R) =
∑

x∈X

∥∥∥
∑

ĥ∈Ĥ
αĥ|ψĥ〉W ′

AW ′
B
Πx|ĥ〉H′

∥∥∥
2

2
=

∑

ĥ∈Ĥ
|ĥ| · |αĥ|2 ≤ d ·

∑

ĥ∈Ĥ
|αĥ|2 = d,

where we represent the attached state as |Ψt〉W ′
AW ′

BH′ =
∑

ĥ αĥ|ψĥ〉W ′
AW ′

B
|ĥ〉H′ . There-

fore, starting from the root we have E[|L|] ≤ d/ε by Eq. 4. ��
Lemma 4.13 (Success). Suppose that Alice and Bob ask a total of d quantum queries.
If any two (|Y|, δ = ε/λ, d,N)-states are compatible, then there is an eavesdropper E
who finds the key k with probability at least 1 − λ.

Proof. Consider the purified version of the protocol. Let |Ψt〉WH be the joint state
after the protocol finishes, conditioned on the transcript t. By Lemma 2.4 it holds that
|ĥH

max(|Ψt〉)| ≤ d. After E′ learns the heavy queries, the resulting state becomes |Ψt,L〉
conditioned on L. Similarly, by Lemma 2.7 it holds that |ĥH′

max(|Ψt,L〉)| ≤ d. Since
the oracle registers corresponding to QL are now measured, we can consider the “trun-
cated” version of |Ψt,L〉WH by discarding those registers. Let H ′ = {Hx}x∈X\QL

be
the set of remaining registers. By |Ψt,L〉WH′ we denote the truncated |Ψt,L〉WH .

Now, set the register H in Definition 4.1 to be H ′. The state |Ψt,L〉 is d-sparse
and ε-light by definition, so |Ψt,L〉 is a (|Y|, ε, d)-state. Recall that at the end of the
attack, E′ learns all the heavy queries, calculates the key distribution of |Ψt,L〉 among
the remaining oracles and outputs the key with the highest probability to be outputted.
We are going to show that there exist a key k = b ∈ {0, 1} such that the probability of
the key b in the key distribution of |Ψt,L〉, denoted by Pr[k = b in |Ψt,L〉], is larger than
1 − λ. We will prove this by contradiction. Namely, in the following, suppose Pr[k = b
in |Ψt,L〉] ≥ λ for both b = 0 and b = 1.

Let |Ψt,L,k=b〉 be the residual state of |Ψt,L〉 conditioned on k = b. Observe that
|Ψt,L,k=b〉 is a (C, ε/λ, d)-state for both k ∈ {0, 1}. In addition, |Ψt,L,k=b〉 is d-sparse
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since |Ψt,L〉 is d-sparse and conditioning on k is a process acting on A and B’s registers
and will not affect the sparsity of the oracle. |Ψt,L,k=b〉 is ε/λ-light because |Ψt,L〉 is
ε-light and Pr[k = b in |Ψt,L〉] ≥ λ. By the premise in the lemma statement, |Ψt,L,k=0〉
and |Ψt,L,k=1〉 are compatible, which means that there exists an oracle h, a state wA ∈
WA which outputs the key k = 0, and a state wB ∈ WB outputs the key k = 1 such that
h is consistent with both wA and wB with nonzero probability, that is, there is a nonzero
chance that in a real execution of the protocol, A outputs the key 0 and B outputs the
key 1, which violates the perfect completeness of the protocol. ��
Proof of Theorem 4.7.We use the Eve of Construction 4.10 with parameter ε. Then, by
Lemma 4.12, the expected number of queries of Eve is at most d/ε, and by Lemma 4.13,
it finds the key with probability 1 − λ. ��

5 Case of Exponentially Small Influences: Proving Theorem 4.4

Before proving Theorem 4.4, we describe a connection between (|Y|, δ, d,N)-states
and distributions of polynomials with bounded degree and influence, giving an alterna-
tive formulation of Conjecture 4.3.

5.1 The Polynomial Formulation

As in the rest of the paper, we let Y be an Abelian group of order |Y| and Ŷ be its dual
group having 0̂ as the identity element. Recall that we are working with quantum states
over a register H whose basis states are all functions h : X → Y for some |X | = N .
To keep the notation clean in this section, we identify X with [N ] and view functions
h : X → Y as vectors in YN (i.e., we write hi rather than h(x) for a typical value).

We recall that any f : YN → C can be written in terms of its Fourier transform

f(x) =
∑

χ∈ŶN

f̂(χ)
N∏

i=1

χi(xi)

The degree of a character χ ∈ ŶN is deg(χ) = |{i |χi �= 0̂}|, and the degree
of f is deg(f) = max{deg(χ) | f̂(χ) �= 0}. The influence of variable i on f is
Infi(f) =

∑
χ∈ŶN

χi �=0̂

|f̂(χ)|2. We denote by max Inf(f) = maxi=1...N Infi(f) the max-

imum influence of f .

Definition 5.1 (State polynomial). For a quantum state |ψ〉 over the register H , the
state polynomial of |ψ〉 is the function fψ : YN → C defined by

fψ(h) = |Y|N/2 · 〈ψ|h〉 =
∑

χ∈ŶN

〈ψ|χ〉
N∏

i=1

χi(hi). (5)

Lemma 5.2 (Sparsity vs. degree, heaviness vs. influence). For a quantum state |ψ〉
over register H , fψ has the following properties.
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1. fψ has �2-norm equal to 1, i.e., Ex←YN |fψ(x)|2 = 1.
2. |ψ〉 is d-sparse if and only if deg(fψ) ≤ d.
3. |ψ〉 has no δ-heavy queries if and only if max Inf(fψ) ≤ δ.

Proof. For Item 1, we have by definition Ex←H[|fψ(x)|2 =
∑

h |〈ψ|h〉|2 = 1 (since
the set of h form a basis for the space). For Item 2, recall from Definition 4.1 that |ψ〉
is d-sparse if and only if |ĥH

max(|ψ〉)| ≤ d, i.e., if for χ ∈ Ŷ , we have 〈ψ|χ〉 �= 0 only
if d ≥ |{i |χi �= 0̂ }| = deg(χ). Equivalently, the non-zero terms in the right hand
side of (5) are those where deg(χ) ≤ d, i.e., deg(fψ) ≤ d. Finally, for Item 3, recall
from Definition 4.9 that |ψ〉 has no δ-heavy queries if and only if ‖Πi|ψ〉‖22 ≤ δ for all
i ∈ [N ], where Πi =

∑
χi∈Ŷ \0̂|χi〉〈χi|Hi

. Expanding, we see that

‖Πi|ψ〉‖22 =
∑

χ∈Ŷ N

χi �=0̂

|〈ψ|χ〉|2 = Infi(fψ).

��
Definition 5.3 (State polynomial distribution). For a quantum state |ψ〉 over registers
W,H , the state polynomial distribution of |ψ〉 is the distribution Fψ over polynomials
f : Y → C which is sampled by measuring W in some fixed basis and taking the
resulting state polynomial for H .

Observation 5.4. Two quantum states |ψ〉 and |φ〉 over registers W , H are compatible
if and only if there exist f ∈ supp(Fψ), g ∈ supp(Fφ) and an x ∈ YN such that
f(x) · g(x) �= 0.

The observations above motivate us to formulate our main conjecture in terms of
polynomials. Notice that, in the following formulation, we focus on the distributions of
functions whose range is R instead of C. Later on, in Theorem 5.6, we will show that it
suffices to consider real functions.

Conjecture 5.5. There exists a finite Abelian groupY and a function δ(d) = 1/poly(·)
such that the following holds for all d. Let F and G be two distributions of functions
from YN to R such that the following holds for all f ∈ supp(F ) and g ∈ supp(G).

– Unit �2 norm: f and g have �2-norm 1.
– d-degrees: deg(f) ≤ d and deg(g) ≤ d.
– δ-influences on average: For all i ∈ [N ], we have Ef←F [Infi(f)] ≤ δ and

Eg←G[Infi(g)] ≤ δ, where δ = δ(d).

Then, there is an f ∈ supp(F ), g ∈ supp(G), and x ∈ YN such that f(x) · g(x) �= 0.

Theorem 5.6. Conjecture 5.5 is true if and only if Conjecture 4.3 is true.

The proof is given in Appendix A of the full version [ACC+22].



On the Impossibility of Key Agreements from Quantum Random Oracles 191

5.2 Proving Theorem 4.4

In this subsection, we prove Theorem 4.4, using the polynomial formulation explained
in the previous subsection. In other words, we prove a weaker version of Conjecture 5.5
where we set δ < |Y|−d/d. Interestingly, the theorem holds without any influence
condition on F , and without any degree restriction on G. I.e., we only use that there is
an f ∈ supp(F ) of degree ≤ d, and that Eg←G[Infi(g)] ≤ δ for all i ∈ [N ].

For any f ∈ supp(F ), let f(x) =
∑

χ∈ŶX f̂(χ)χ(x) and χ∗ ∈ ŶN be a character

for which f̂(χ) �= 0 and deg(χ) = deg(f). Since deg(f) ≤ d we can without loss of
generality assume that χ∗

i = 0̂ for i = d + 1, . . . , N by reordering the coordinates.
Note that for any partial assignment x>d = (xd+1, . . . , xN ), the restricted function

f |x>d
is non-constant and in particular there exists a x≤d such that f(x≤d,x>d) �= 0.

For any function g : YN → C, decompose it as

g(x) =
∑

χ∈Ŷd

gχ(x>d)χ(x≤d)

for |Y|d functions {gχ}χ∈Ŷd on x>d. Writing 0̂ = (0̂, . . . , 0̂) ∈ Yd we then have

∑

χ�=0̂

E
x>d

[|gχ(x>d)|2
] ≤

d∑

i=1

∑

χi �=0̂

E
x>d

[|gχ(x>d)|2
]

=
d∑

i=1

Infi(g)

and Ex>d

[|g0̂(x>d)|2
] ≥ ‖g‖22 − ∑d

i=1 Infi(g). Thus, we have

E
x>d

⎡

⎣|g0̂(x>d)|2 − (|Y|d − 1)
∑

χ�=0̂

|gχ(x>d)|2
⎤

⎦ ≥ ‖g‖22 − |Y|d
d∑

i=1

Infi(g)

Taking the expectation over g ← G and using the condition Eg←G[Infi(g)] ≤ δ <
|Y|−d/d on the influences of G we thus conclude

E
g←G

E
x>d

⎡

⎣|g0̂(x>d)|2 − (|Y|d − 1)
∑

χ�=0̂

|gχ(x>d)|2
⎤

⎦ > 0.

In particular there exists a g ∈ supp(G) such that

E
x>d

[|g0̂(x>d)|2
]

> E
x>d

⎡

⎣(|Y|d − 1)
∑

χ�=0̂

|gχ(x>d)|2
⎤

⎦ ≥ E
x>d

⎡

⎢⎣

⎛

⎝
∑

χ�=0̂

|gχ(x>d)|
⎞

⎠
2
⎤

⎥⎦ ,

where the second inequality is Cauchy-Schwarz. It follows that there is x>d such that

|g0̂(x>d)| >
∑

χ�=0̂

|gχ(x>d)|.
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As observed above, for this x>d there must exist some x≤d such that f(x≤d,x>d) �= 0.
But, that means we obtain the following as desired.

|g(x≤d,x>d)| =

∣∣∣∣∣∣

∑

χ∈Ŷd

gχ(x>d)χ(x≤d)

∣∣∣∣∣∣
≥ |g0̂(x>d)| −

∑

χ�=0̂

|gχ(x>d)| > 0.
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Abstract. We construct a classically verifiable succinct interactive
argument for quantum computation (BQP) with communication com-
plexity and verifier runtime that are poly-logarithmic in the runtime of
the BQP computation (and polynomial in the security parameter). Our
protocol is secure assuming the post-quantum security of indistinguisha-
bility obfuscation (iO) and Learning with Errors (LWE). This is the first
succinct argument for quantum computation in the plain model ; prior
work (Chia-Chung-Yamakawa, TCC ’20) requires both a long common
reference string and non-black-box use of a hash function modeled as a
random oracle.

At a technical level, we revisit the framework for constructing classi-
cally verifiable quantum computation (Mahadev, FOCS ’18). We give
a self-contained, modular proof of security for Mahadev’s protocol,
which we believe is of independent interest. Our proof readily gener-
alizes to a setting in which the verifier’s first message (which consists
of many public keys) is compressed. Next, we formalize this notion of
compressed public keys; we view the object as a generalization of con-
strained/programmable PRFs and instantiate it based on indistinguisha-
bility obfuscation. Finally, we compile the above protocol into a fully
succinct argument using a (sufficiently composable) succinct argument
of knowledge for NP. Using our framework, we achieve several additional
results, including

– Succinct arguments for QMA (given multiple copies of the witness),
– Succinct non-interactive arguments for BQP (or QMA) in the quan-

tum random oracle model, and
– Succinct batch arguments for BQP (or QMA) assuming post-

quantum LWE (without iO).
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1 Introduction

Efficient verification of computation is one of the most fundamental and intrigu-
ing concepts in computer science, and lies at the heart of the P vs. NP question.
It has been studied in the classical setting for over three decades, giving rise to
beautiful notions such as interactive proofs [GMR85], multi-prover interactive
proofs [BGKW88], probabilistically checkable proofs [BFL90,ALM+92,AS92],
and culminating with the notion of a succinct (interactive and non-interactive)
argument [Kil92,Mic94]. Roughly speaking, a succinct argument for a T -time
computation enables a prover running in poly(T ) time to convince a polylog(T )-
time verifier of the correctness of the computation using only polylog(T ) bits of
communication, with soundness against all polynomial-time cheating provers.

In a breakthrough result in 2018, Mahadev [Mah18] presented an interac-
tive argument system that enables a classical verifier to check the correctness
of an arbitrary quantum computation. Mahadev’s protocol represents a differ-
ent kind of interactive argument—unlike the traditional setting in which the
prover simply has more computational resources (i.e., running time) than the
verifier, the prover in Mahadev’s protocol works in a qualitatively more pow-
erful computational model. More precisely, for any T -time quantum computa-
tion, Mahadev’s protocol enables a quantum prover running in time poly(T ) to
convince a classical poly(T )-time verifier with poly(T ) bits of classical communi-
cation. Soundness holds against all quantum polynomial-time cheating provers
under the post-quantum hardness of the learning with errors (LWE) problem.

A fundamental question is whether we can get the best of both worlds: can the
prover have both a more powerful computational model and significantly greater
computational resources? Namely, we want an interactive argument system for
T -time quantum computation in which the quantum prover runs in poly(T ) time
and convinces a polylog(T )-time classical verifier with polylog(T ) bits of classical
communication.

We answer this question affirmatively, both for poly(T )-time quantum com-
putations, corresponding to the complexity class BQP, and also for the non-
deterministic analog QMA.

Theorem 1.1 (Succinct Arguments for BQP). Let λ be a security parame-
ter. Assuming the existence of a post-quantum secure indistinguishability obfus-
cation scheme (iO) and the post-quantum hardness of the learning with errors
problem (LWE), there is an interactive argument system for any T -time quantum
computation on input x,1 where

– the prover is quantum and runs in time poly(T, λ),
– the verifier is classical and runs in time poly(log T, λ) + Õ(|x|),2 and
– the protocol uses poly(log T, λ) bits of classical communication.

1 A T -time quantum computation is a language L decidable by a bounded-error T -
time quantum Turing machine [BV97]. We leave it to future work to address more
complex tasks such as sampling problems (as in [CLLW20]).

2 As in the classical setting, some dependence on |x| is necessary at least to read the
input; as in [Kil92], we achieve a fairly minimal |x|-dependence.
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Theorem 1.2 (Succinct Arguments for QMA). Assuming the existence of
a post-quantum secure indistinguishability obfuscation scheme (iO) and the post-
quantum hardness of the learning with errors problem (LWE), there is an inter-
active argument system for any T -time quantum computation on input x and a
poly(T )-qubit witness, where

– the prover is quantum and runs in time poly(T, λ), using polynomially many
copies of the witness,3

– the verifier is classical and runs in time poly(log T, λ) + Õ(x), and
– the protocol uses poly(log T, λ) bits of classical communication.

A New Proof of Security for the [Mah18] Protocol. One might hope to prove The-
orems 1.1 and 1.2 by treating the Mahadev result as a “black box” and showing
that any (classical) interactive argument for quantum computations can be com-
pressed into a succinct protocol via a suitable cryptographic compiler. This is
especially appealing given the extremely technical nature of Mahadev’s security
proof. Unfortunately, for reasons that will become clear in the technical overview,
this kind of generic compilation seems unlikely to be achievable in our setting.
Even worse, there does not appear to be any easily formalized property of the
Mahadev protocol that would enable such a compilation.

Instead, our solution consists of two steps.

(1) We build a modified variant of the [Mah18] protocol and give an entirely self-
contained proof of security. This modified protocol satisfies a few technical
conditions that the original [Mah18] does not; most prominently, the first
verifier message of our modified protocol is already succinct.

(2) We give a generic compiler that converts the protocol from Step (1) into a
succinct argument system.

Our Step (1) also results in a self-contained proof of security of the original
[Mah18] protocol that is more modular and amenable to further modification
and generalization, which we believe will be useful for future work. Our analysis
builds upon [Mah18] itself as well as an alternative approach described in Vidick’s
(unpublished) lecture notes [Vid20]. A concrete consequence of our new proof
is that one of the two “hardcore bit” security requirements of the main building
block primitive (“extended noisy trapdoor claw-free functions”) in [Mah18] is not
necessary.

Additional Results. Beyond our main result of succinct arguments for BQP and
QMA, we explore a number of extensions and obtain various new protocols with
additional properties.

3 We inherit the need for polynomially-many copies of the witness from prior works.
This is a feature common to all previous classical verification protocols, and even to
the quantum verification protocol of [FHM18].
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– Non-Interactive: Although our protocols are not public-coin, we show how
to modify them in order to apply the Fiat-Shamir transformation and
round-collapse our protocols. As a result, we obtain designated-verifier non-
interactive arguments for BQP (and the non-deterministic analog QMA)
with security in the quantum random oracle model (QROM).

– Zero-Knowledge: We show how to lift both variants of our protocol (interactive
and non-interactive) to achieve zero-knowledge. We show a generic transfor-
mation based on classical two-party computation for reactive functionalities
that makes our protocols simulatable. This transformation does not add any
new computational assumption to the starting protocol.

– Batch Arguments from LWE: For the case of batch arguments, i.e., where the
parties engage in the parallel verification of n statements, we show a succinct
protocol that only assumes the post-quantum hardness of LWE (without iO).
In this context, succinctness requires that the verifier’s complexity scales with
the size of a single instance, but is independent of n.

Prior Work. As discussed above, Mahadev [Mah18] constructs a non-succinct
argument system for BQP/QMA under LWE. The only prior work addressing
succinct classical arguments for quantum computation is the recent work of
Chia, Chung and Yamakawa [CCY20]. [CCY20] constructs a classically verifiable
argument system for quantum computation in the following setting:

– The prover and verifier share a poly(T )-bits long, structured reference string
(which requires a trusted setup to instantiate) along with a hash function h
(e.g. SHA-3).

– The “online communication” of the protocol is succinct (poly(log T )).
– Security is heuristic: it can be proved when h is modeled as a random oracle,

but the protocol description itself explicitly requires the code of h (i.e. uses
h in a non-black-box way).

We specifically note that when viewed in the plain model (i.e., without setup),
the verifier must send the structured reference string to the prover, resulting in a
protocol that is not succinct. We note that [CCY20] was specifically optimizing
for a two-message protocol, but their approach seems incapable of achieving
succinctness in the plain model even if further interaction is allowed.

By contrast, our succinct interactive arguments are in the plain model and
are secure based on well-formed cryptographic assumptions, and our succinct
2-message arguments are proved secure in the QROM (and do not require a long
common reference string).

Finally, we remark that our approach to achieving succinct arguments fun-
damentally (and likely necessarily) differs from [CCY20] because we manipulate
the “inner workings” of the [Mah18] protocol; by contrast [CCY20] makes “black-
box” use of a specific soundness property of the [Mah18] protocol (referred to as
“computational orthogonality” by [ACGH20]) and is otherwise agnostic to how
the protocol is constructed.
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2 Technical Overview

Our starting point is Mahadev’s protocol for classical verification of quantum
computation [Mah18], the core ingredient of which is a measurement protocol.

2.1 Recap: Mahadev’s Measurement Protocol

We begin by reviewing Mahadev’s N -qubit measurement protocol. In Mahadev’s
protocol, a quantum prover holding an N -qubit quantum state ρ interacts with
a classical verifier, who wants to obtain the result of measuring ρ according to
measurement bases h ∈ {0, 1}N (hi specifies a basis choice for the ith qubit,
with hi = 1 corresponding to the Hadamard basis and hi = 0 corresponding to
the standard basis).

Trapdoor Claw-Free Functions. At the heart of the protocol is a cryptographic
primitive known as an injective/claw-free trapdoor function (a variant of lossy
trapdoor functions [PW08,PVW08,GVW15]), which consists of two trapdoor
function families Inj (for injective) and Cf (for claw-free), with the following
syntactic requirements:4

– Each function in Cf ∪ Inj is indexed by a public-key pk, where functions fpk ∈
Inj are injective and functions fpk ∈ Cf are two-to-one. Moreover, pk can be
sampled along with a secret key sk that enables computing f−1

pk (i.e., f−1
pk (y)

consists of a single pre-image if fpk ∈ Inj, and two pre-images if fpk ∈ Cf).
– All functions in Inj and Cf have domain {0, 1}�+1 (for some �) and the two

pre-images of y under fpk ∈ Cf are of the form (0, x0) and (1, x1) for some
x0, x1 ∈ {0, 1}�.

An injective/claw-free trapdoor function must satisfy the following security prop-
erties:5

1. Claw-Free/Injective Indistinguishability. A random function in fpk ←
Cf is computationally indistinguishable from a random function fpk ← Inj.

2. Adaptive Hardcore Bit. Given fpk ← Cf, it is computationally infeasible
to output both (1) a pair (x, y) satisfying fpk(x) = y and (2) a non-zero string
d ∈ {0, 1}�+1 such that d · (1, x0 ⊕ x1) = 0, where (0, x0) and (1, x1) are the
two preimages of y.6

To build some intuition about the usefulness of such function families, notice
that they can be used to commit to a single classical bit quite easily. The

4 The actual syntactic requirements are somewhat more complex due to the fact that
the functions in question are probabilistic.

5 In fact, Mahadev’s proof relies on two different hardcore bit properties, but we show
in this work that only the adaptive hardcore bit property is needed.

6 The full definition places a slightly stronger restriction on d than simply being non-
zero. However, this simplified version will suffice for this overview.
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commitment key is a function fpk ∈ Inj, and commitment to a bit b is y = fpk(b, x)
for a random x ∈ {0, 1}n. It is not hard to verify that this is a statistically bind-
ing and computationally hiding commitment of b. On the other hand, if fpk ∈ Cf,
it is a statistically hiding and computationally binding commitment of b.7

Protocol Description. With this intuition in mind, we now describe a (slightly
simplified version of) the Mahadev measurement protocol. Mahadev’s protocol
is a many-fold sequential repetition of the following one-bit challenge protocol.

V → P : The verifier samples N pairs of functions and their trapdoors: for every
i ∈ [�], he samples (pki, ski) ← Inj if hi = 0 and (pki, ski) ← Cf if hi = 1. He
sends the N -tuple of public keys (function descriptions) (pk1, . . . , pkN ) to the
prover.

P → V : The prover holds an N -qubit state ρ on register B = B1 ⊗ · · · BN . She
initializes registers X = X1 ⊗ · · · XN so that each Xi is an �-qubit register in
uniform superposition. Then she evaluates each fpki on the �+1 qubit register
Bi ⊗ Xi and measures the output to obtain yi. Finally, she sends (y1, . . . , yN )
to the verifier, keeping the registers B,X for herself.

V → P : The verifier picks a random challenge bit c ← {0, 1} and sends it to
the prover. c = 0 indicates a “test round” and c = 1 indicates a “measurement
round”.

P → V : If c = 0 (“test”), the prover measures each Bi ⊗ Xi in the standard
basis, obtaining (bi, xi) ∈ {0, 1}×{0, 1}�, and sends (bi, xi)Ni=1 to the verifier.
If c = 1 (“measure”), she measures each Bi ⊗ Xi in the Hadamard basis (i.e.,
she applies the Hadamard gate H on each qubit and then measures in the
standard basis), obtaining di ∈ {0, 1}�+1, and sends (di)Ni=1 to the verifier.

V (output): If c = 0 (“test”), V either accepts or rejects the interaction but
outputs nothing. In particular, V checks that fpki(bi, xi) = yi. If any of the
checks fail, reject.
If c = 1 (“measure”), proceed as follows. Let R ⊆ [N ] be the set of indices
where hi = 1, corresponding to Hadamard basis measurements, and let S =
[N ] \ R be the set of indices corresponding to standard basis measurements.
For each i ∈ R, V computes the two inverses (0, xi,0) and (1, xi,1) of yi

(which are guaranteed to exist since fpk,i ∈ Cf) using ski. V sets ui := d ·
(1, xi,0 ⊕ xi,1) as the ith measurement outcome. For every i ∈ S, V ignores
di, and sets vi to be the first bit of f−1

pki
(yi), computed using the trapdoor

ski (this is well-defined since fpk,i ∈ Inj). Finally V outputs the N -bit string
(u, v) ∈ {0, 1}R × {0, 1}S .

Mahadev [Mah18] proves that if a malicious prover P∗ passes the test round
with probability 1, then there exists an N -qubit quantum state ρ∗—independent
of the verifier’s measurement basis h—such that the result of measuring ρ∗

according to h is computationally indistinguishable from the verifier’s N -bit

7 In particular, fpk ∈ Cf satisfies Unruh’s definition of collapse-binding [Unr16].
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output distribution in the measurement round.8 While her definition requires
that such a ρ∗ exists, Vidick and Zhang [VZ21] showed that Mahadev’s proof
steps implicitly define an extractor that efficiently produces ρ∗ using black-box
access to P∗.

2.2 Defining a (Succinct) Measurement Protocol

Our first (straightforward but helpful) step is to give an explicit definition of
a commit-and-measure protocol that abstracts the completeness and soundness
properties of Mahadev’s measurement protocol as established in [Mah18,VZ21].
Roughly speaking, a commit-and-measure protocol is sound if, for any malicious
prover P∗ that passes the test round with probability 1 and any basis choice h,
there exists an efficient extractor that (without knowledge of h) interacts with
prover and outputs an extracted state τ such that the following are indistin-
guishable:

– the distribution of verifier outputs obtained in the measurement round from
interacting with P∗ using basis choice h, and

– the distribution of measurement outcomes obtained from measuring τ accord-
ing to h.

This abstraction will be particularly helpful for reasoning about our eventual
succinct measurement protocols, which will necessitate modifying Mahadev’s
original protocol.

Can a Measurement Protocol be Succinct? Given the definition of a measurement
protocol, an immediate concern arises with respect to obtaining succinct argu-
ments: the verifier’s input to the measurement protocol – the basis vector h – is
inherently non-succinct. Since the number of qubits N grows with the runtime
of the BQP computation when used to obtain quantum verification [FHM18],
this poses an immediate problem.

Our solution to this problem is to only consider basis vectors h that are
succinct ; our formalization is that h must be the truth table of an efficiently
computable function f : [logN ] → {0, 1}. For any such h, we can represent the
verifier’s input as a circuit C that computes h, removing the above obstacle.

However, in order for there to be any hope of this idea working, it must be
the case that measurement protocols for bases with succinct representations are
still useful for constructing delegation for BQP. Fortunately, it has been shown
[ACGH20] that classically verifiable (non-succinct) arguments for BQP can be
constructed by invoking Mahadev’s measurement protocol (and, by inspection
of the proof, any measurement protocol satisfying our definition) on a uniformly

8 This can be extended to provers that pass the test round with probability 1 − ε
by the gentle measurement lemma. In particular, an efficient distinguisher can only
distinguish the verifier’s output distribution from the result of measuring some ρ∗

with advantage poly(ε).



202 J. Bartusek et al.

random basis string h ← {0, 1}N . Then, by computational indistinguishability,
it is also possible to use a pseudorandom string h that has a succinct represen-
tation, i.e., h = (PRFs(1), ...,PRFs(N)) for some (post-quantum) pseudorandom
function PRF.

Thus, we focus for the moment on constructing a succinct measurement pro-
tocol for h with succinct representation, and return to the full delegation problem
later.

2.3 Constructing a Verifier-Succinct Measurement Protocol

Inspecting the description of the [Mah18] protocol, there are three distinct rea-
sons that the protocol is not succinct:

1. The verifier’s first message, which consists of N TCF public keys, is non-
succinct.

2. The prover’s two messages, consisting of the commitments yi and openings
zi respectively, are non-succinct.

3. The verifier’s decision predicate, as it is a function of these commitments and
openings, requires poly(N) time to evaluate.

The latter two issues turn out to be not too difficult to resolve (although there
is an important subtlety that we discuss later); for now, we focus on resolving
(1), which is our main technical contribution. Concretely, we want to construct
a measurement protocol for succinct bases h where the verifier’s first message is
succinct.

Idea: Compress the Verifier’s Message with iO. Given the problem formulation,
a natural idea presents itself: instead of having V send over N i.i.d. public keys
pki, perhaps V can send a succinct program PK that contains the description
of N public keys pki that are in some sense “pseudoindependent!” Using the
machinery of obfuscation and the “punctured programs” technique [SW14], it is
straightforward to write down a candidate program for this task: simply obfus-
cate the following code.

Here, C is an efficient circuit with truth table h, and Gen(1λ,mode) indicates
sampling either from Inj or Cf depending on whether hi = C(i) = 0 or hi =
C(i) = 1.

Letting PK denote an obfuscation of the above program, V could send PK
to P and allow the prover to compute each pki = PK(i) on its own, and the
protocol could essentially proceed as before, except that the verifier will have to
expand its PRF seed s into (sk1, ..., skN ) in order to compute its final output.
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Input: index i ≤ N
Hardwired Values: Puncturable PRF seed s. Circuit C.

– Compute mode = C(i) and r = PRFs(i).
– Compute (pki, ski) ← Gen(1λ,mode; r).
– Output pki.

Problem: Proving Soundness. While it is not hard to describe this plausible
modification to the [Mah18] protocol that compresses the verifier’s message, it is
very unclear how to argue that the modified protocol is sound. The obfuscation
literature has no shortage of proof techniques developed over the last 10 years,
but since we have made a “non-black-box” modification of the [Mah18] protocol,
a deep understanding of the [Mah18] proof of soundness is required in order to
understand to what extent these techniques are compatible with the application
at hand.

We believe it should be possible to incorporate punctured programming tech-
niques into Mahadev’s proof of soundness in [Mah18] and conclude the desired
soundness property of the new protocol. However, doing so would result in an
extremely complex proof that would require the reader to verify the entirety of
the [Mah18] (already very complicated) original security proof with our modifi-
cations in mind.

2.4 Proof of Soundness

Given the complicated nature of the [Mah18] proof of soundness, we instead
give a simpler and more modular proof of soundness for the [Mah18] measure-
ment protocol. Moreover, we give this proof for a generic variant of the [Mah18]
protocol where the prover is given an arbitrary representation PK of N TCF
public keys and show that precisely two properties of this representation PK are
required in order for the proof to go through:

– An appropriate generalization of the “dual-mode” property of individual TCFs
must hold for PK: for any two circuits C1, C2, it should be that PK1 generated
from basis C1 is computationally indistinguishable from PK2 generated from
basis C2. In fact, a stronger variant of this indistinguishability must hold:
it should be the case that PK1 ≈c PK2 even if the distinguisher is given all
secret keys skj such that C1(j) = C2(j).

– For every i, the adaptive hardcore bit property of fpki should hold even given
skj for all j 
= i.

Since these two properties are (essentially) all that is required for our proof to
go through, in order to obtain a verifier-succinct protocol, it suffices to show that
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the obfuscated program PK above satisfies these two properties, which follows
from standard techniques.

Thus, we proceed by describing our new soundness proof for the [Mah18]
measurement protocol, which transparently generalizes to the verifier-succinct
setting.

The “Operational Qubits” Approach. Let P ∗ denote a prover that passes the test
round (i.e., makes the verifier accept on the 0 challenge) with probability 1. Our
goal is to show that the prover in some sense “has an N -qubit state” such that
measuring this state in the h-bases produces the same (or an indistinguishable)
distribution as the verifier’s protocol output, which we will denote DP ∗,Out. This
N -qubit state should be efficiently computable from the prover’s internal state
|ψ〉; specifically, we use |ψ〉 to denote the prover’s state after its first message y
has been sent.

In order to show this, taking inspiration from [Vid20],9 we will proceed in
two steps:

1. Identify N “operational qubits” within |ψ〉. That is, we will identify a set of
2N observables Z1, ..., ZN ,X1, ...,XN (analogous to the “Pauli observables”
σz,1, ..., σz,N , σx,1, ...σx,N ) such that measuring |ψ〉 with these observables
gives the outcome distribution DP ∗,Out.

Provided that these 2N observables roughly “behave like” Pauli observ-
ables with respect to |ψ〉 (e.g. satisfy the X/Z uncertainty principle), one
could then hope to:

2. Extract a related state |ψ′〉 such that measuring |ψ′〉 in the actual stan-
dard/Hadamard bases matches the “pseudo-Pauli” {Zj}, {Xi}, measurements
of |ψ〉 (and therefore DP ∗,Out).

Relating the Verifier’s Output to Measuring |ψ〉. Our current goal is to achieve
Step (1) above. Let |ψ〉 denote P ∗’s post-commitment state and let U denote
the unitary such that P ∗’s opening is a measurement of U |ψ〉 in the Hadamard
basis.

Now, let us consider the verifier’s output distribution. The ith bit of the
verifier’s output when hi = 1 is defined to be d · (x0,i ⊕ x1,i) (where d is the
opening sent by the prover) of U |ψ〉 in the Hadamard basis. For each such i, we
can define an observable Xi characterizing this measurement, that roughly takes
the form

Xi ≈ U†(HZi
⊗ Id)

(∑
d

(−1)d·(1,x0,i⊕x1,i) |d〉〈d|Zi
⊗ IdI,{Zj}j �=i

)
(HZi

⊗ Id)U.

9 [Vid20] gives a soundness proof for a variant of the [Mah18] protocol, but in a quali-
tatively weaker setting. [Vid20] only proves indistinguishability of N -qubit measure-
ments that are either all in the standard basis or all in the Hadamard basis, and only
proves indistinguishability with respect to linear tests of the distribution (that is,
[Vid20] proves small-bias rather than full indistinguishability). Both of these relax-
ations are unacceptable in our setting, and achieving the latter specifically requires
a different proof strategy.
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Here we have slightly simplified the expression for Xi for the sake of presentation;
the correct definition of Xi (see the full version) must account for the case
where d is rejected by the verifier. To reiterate, the observable Xi is a syntactic
interpretation of the verifier’s output mi as a function of |ψ〉.

On the other hand, when hi = 0, the verifier’s output mi is not a priori
a measurement of |ψ〉; indeed, the verifier ignores the prover’s second message
and just inverts yi. However, under the assumption that the prover P ∗ passes
the test round with probability 1 − negl(λ), making use of the fact that fpki is
injective, this yi-inverse must be equal to what the prover would have sent in
the test round. This defines another observable on |ψ〉 that we call Zi:

Zi =
∑
b,x

(−1)b |b, x〉〈b, x|Zi
⊗ IdI,{Zj}j �=i

.

Finally, note that the operator Zi syntactically makes sense even when hi = 1.
However, Xi cannot even be defined when fpki is injective, corresponding to
hi = 0, since Xi explicitly requires two inverses of yi. Therefore, from now on,
we sample all (pki, ski) ← Cf (forcing all TCFs to be 2-to-1).

This brings us to the punchline of this step: by invoking a computational
assumption (the indistinguishability of Cf and Inj), we can define observables
(Xi, Zi) for all i ∈ [N ] such that for every i and every basis choice h, the
distribution resulting from measuring |ψ〉 with Xi (resp. Zi) matches the ith bit
of the verifier’s output distribution.

With a little more work, one can actually show that the verifier’s entire
output distribution in the h-basis is computationally indistinguishable from the
following distribution DP ∗,2-to-1:

– Sample keys (pki, ski) ← Cf. Run P ∗ to obtain y, |ψ〉.
– For each i such that hi = 0, measure the first bit of the prover’s ith response

register in the standard basis to obtain (and output) a bit bi.
– Measure U |ψ〉 in the Hadamard basis, obtaining strings (d1, ..., dN ).
– For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i).

Aside: Why Are These Zj and Xi Helpful? As alluded to earlier, this approach is
inspired by operational definitions of “having an N -qubit state,” which consists of
a state |ψ〉 and 2N “pseudo-Pauli” observables Z1, ..., ZN ,X1, ...XN that behave
“like Pauli observables” on |ψ〉. For example, it is possible to prove that many of
the “Pauli group relations” hold approximately on these Xi, Zj with respect to
|ψ〉, meaning that (for example)

〈ψ|ZiXiZi + Xi |ψ〉 = negl(λ)

and
〈ψ|ZjXiZj − Xi |ψ〉 = negl(λ)

for i 
= j. In fact, these relations turn out to encode the two basic properties of the
TCF fpki : the adaptive hardcore bit property (encoded in the first relation) and
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that fpki is indistinguishable from injective10 (encoded in the second relation)!
We will not directly prove the relations here, but they are implicit in our full
security proof and are the motivation for this proof strategy.

The Extracted State. Given these protocol observables Z1, ..., ZN ,X1, ...,XN , it
remains to implement Step (2) of our overall proof strategy: extracting a state
|ψ′〉 whose standard/Hadamard measurement outcomes match DP ∗,Out. At a
high level, this is achieved by “teleporting” the state |ψ〉 onto a fresh N -qubit
register in a way that transforms the “pseudo-Paulis” {Xi}, {Zj} into real Pauli
observables {σx,i}, {σz,j}.

Fix a choice of {Xi, Zi}, |ψ〉 ← Samp. For ease of notation, write H = Z ⊗
I ⊗U so that |ψ〉 ∈ H. We would like an efficient extraction procedure that takes
as input |ψ〉 ∈ H and generates an N -qubit state τ such that, roughly speaking,
measuring |ψ〉 with X/Z and measuring τ with σX/σZ produce indistinguishable
outcomes.

Intuition for the Extractor. Before we describe our extractor, we first pro-
vide some underlying intuition. For an arbitrary N -qubit Hilbert space, let
σx,i/σz,i denote the Pauli σx/σz observable acting on the ith qubit. For each
r, s ∈ {0, 1}N , define the N -qubit Pauli “parity” observables

σx(r) :=
∏

i:ri=1

σx,i , σz(s) :=
∏

i:ri=1

σz,i.

Suppose for a moment that |ψ〉 ∈ H is already an N -qubit state (i.e., H is an
N -qubit Hilbert space) and moreover, that each Xi/Zi observable is simply the
corresponding Pauli observable σx,i/σz,i. While these assumptions technically
trivialize the task (the state already has the form we want from the extracted
state), it will be instructive to write down an extractor that “teleports”
this state into another N -qubit external register.

We can do this by initializing two N -qubit registers A1 ⊗ A2 to |φ+〉⊗N

where |φ+〉 is the EPR state (|00〉+ |11〉)/√2 (the ith EPR pair lives on the ith
qubit of A1 and A2). Now consider the following steps, which are inspired by
the (N -qubit) quantum teleportation protocol

1. Initialize a 2N -qubit ancilla W to
∣∣02N

〉
, and apply H⊗2N to obtain the

uniform superposition.
2. Apply a “controlled-Pauli” unitary, which does the following for all r, s ∈

{0, 1}N and all |φ〉 ∈ H ⊗ A1:

|r, s〉W |φ〉H,A1
→ |r, s〉W (σx(r)σz(s)H ⊗ σx(r)σz(s)A1) |φ〉H,A1

3. Apply the unitary that XORs onto W the outcome of performing N Bell-basis
measurements11 on A1 ⊗ A2 onto W, i.e., for all u, v, r, s ∈ {0, 1}N :

|u, v〉W (σx(r)σz(s) ⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2

10 Technically, the property encoded is the collapsing of fpki , which is implied by (but
not equivalent to) being indistinguishable from injective.

11 The Bell basis consists of the 4 states (σa
xσb

z ⊗ Id)
∣
∣φ+〉

for a, b ∈ {0, 1} on 2 qubits.
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�→ |u ⊕ r, v ⊕ s〉W (σx(r)σz(s) ⊗ Id)A1,A2

∣∣φ+
〉⊗N

A1,A2
.

Finally, discard W.

One can show that the resulting state is

1
2N

∑
r,s∈{0,1}N

(σx(r)σz(s) ⊗ σx(r)σz(s) ⊗ Id) |ψ〉H
∣∣φ+

〉
A1,A2

=
∣∣φ+

〉
H,A1

|ψ〉A2
,

(1)
where |ψ〉 is now “teleported” into the A2 register.

The Full Extractor. To generalize this idea to the setting where |ψ〉 ∈ H is an
arbitrary quantum state and {Xi, Zi}i are an arbitrary collection of 2N observ-
ables, we simply replace each σx(r) and σz(s) acting on H above with the corre-
sponding parity observables X(r), Z(s), defined analogously (for r, s ∈ {0, 1}N

as

Z(s) =
N∏

i=1

Zsi
i and X(r) =

N∏
i=1

Xri
i .

The rough intuition is that as long as the {Xi} and {Zi} observables “behave
like” Pauli observables with respect to |ψ〉, the resulting procedure will “teleport”
|ψ〉 into the N -qubit register A2.

Relating Extracted State Measurements to Verifier Outputs. With the extracted
state defined to be the state on A2 after performing the “generalized teleporta-
tion” described above, it remains to prove that the distribution DP ∗,Ext resulting
from measuring the extracted state on A2 in the h-bases is indistinguishable from
DP ∗,2-to-1.

One can show (by a calculation) that DP ∗,Ext is the following distribution
(differences from DP ∗,2-to-1 in red)

1. Sample keys (pki, ski) ← Cf. Run P ∗ to obtain y, |ψ〉.
2. For each i such that hi = 0, measure the first bit of the prover’s ith response

register in the standard basis to obtain (and output) a bit bi.
3. For each i such that hi = 1, flip a random bit wi and apply the unitary Zwi

i .
4. Measure U |ψ〉 in the Hadamard basis, obtaining strings (d1, ..., dN ).
5. For each i such that hi = 1, compute (and output) di · (1, x0,i ⊕ x1,i) ⊕ wi.

We prove indistinguishability between the N -bit distributions DP ∗,Ext and
DP ∗,2-to-1 by considering N hybrid distributions, where the difference between
Hybrid j − 1 and Hybrid j is:

– an additional application of the unitary Zj in Item 3, and
– an additional XOR of ej (the jth standard basis vector) in Item 5.

To conclude the soundness proof, we show that Hybrid j − 1 and Hybrid j
in the following three steps.
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– First, we prove that the marginal distributions of Hybrid (j − 1) and Hybrid
j on N \ {j} are indistinguishable due to the collapsing property of fpkj .
Intuitively this holds because the marginal distributions on N \ {j} only
differ by the application of Zj , which is undetectable by collapsing.

– By invoking an elementary lemma about N -bit indistinguishability, the task
reduces to proving a 1-bit indistinguishability of the jth bit of Hybrid (j −
1) and Hybrid j, conditioned on an efficiently computable property of the
marginal distributions on N \ {j}.

– Finally, we show that the indistinguishability of the jth bit holds due to the
adaptive hardcore bit property of fpkj . At a very high level, the above jth bit
property involves a measurement of Xj , and the two hybrids differ in whether
a random Zb

j is applied before Xj is measured; in words, this exactly captures
the adaptive hardcore bit security game.
We refer the reader to the full version for a complete proof of indistinguisha-
bility.

2.5 From a Verifier-Succinct Measurement Protocol to Succinct
Arguments for BQP

Using Sects. 2.3 and 2.4, we have constructed a verifier-succinct measurement
protocol, for succinctly represented basis strings, with a single bit verifier chal-
lenge. What remains is to convert this into a (fully) succinct argument system
for BQP (or QMA). This is accomplished via the following transformations:

– Converting a measurement protocol into a quantum verification protocol. As
described earlier, this is achieved by combining the [FHM18] protocol for BQP
verification with a limited quantum verifier (as modified by [ACGH20]) with
our measurement protocol, using a PRF to generate a pseudorandom basis
choice instead of a uniformly random basis choice for the [FHM18,ACGH20]
verifier. This results in a verifier-succinct argument system for BQP/QMA
with constant soundness error.

– Parallel repetition to reduce the soundness error. This follows from the “com-
putational orthogonal projectors” property of the 1-bit challenge protocol
and follows from [ACGH20] (we give a somewhat more abstract formulation
of their idea in the full version). This results in a verifier-succinct argument
system for BQP/QMA with negligible soundness error.

– Converting a verifier-succinct argument system into a fully succinct argument
system. We elaborate on this last transformation below, as a few difficulties
come up in this step.

Assume that we are given a (for simplicity, 4-message) verifier-succinct argu-
ment system for BQP/QMA. Let m1,m2,m3,m4 denote the four messages in
such an argument system. In order to obtain a fully succinct argument system,
we must reduce (1) the prover communication complexity |m2| + |m4|, and (2)
the runtime of the verifier’s decision predicate.

The first idea that comes to mind is to ask the prover to send short (e.g.
Merkle tree) commitments σ2 and σ4 of m2 and m4, respectively, instead of
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sending m2 and m4 directly. At the end of the interaction, the prover and ver-
ifier could then engage in a succinct interactive argument (of knowledge) for a
(classical) NP statement that “the verifier would have accepted the committed
messages underlying σ2 and σ4”. One could potentially employ Kilian’s succinct
interactive argument of knowledge for NP which was recently shown to be post-
quantum secure under the post-quantum LWE assumption [CMSZ21].

There are a few issues with this naive idea. First of all, the verifier’s decision
predicate is private (it depends on the secret key SK in the measurement protocol
and the PRF seed for its basis), so the NP statement above is not well-formed.
One reasonable solution to this issue is to simply have the verifier send this
secret information st after the verifier-succinct protocol emulation has occurred
and before the NP-succinct argument has started. For certain applications (e.g.
obtaining a non-interactive protocol in the QROM) we would like to have a
public-coin protocol; this can be achieved by using fully homomorphic encryption
to encrypt this secret information in the first round rather than sending it in the
clear in a later round. For this overview, we focus on the private-coin variant of
the protocol.

Now, we can indeed write down the appropriate NP relation12

RV ={((h,m1, σ2,m3, σ4, st), (m2,m4)) : σ2 = h(m2) and
σ4 = h(m4) and V (st,m1,m2, c,m4) = accept}

and execute the aforementioned strategy. However, this construction turns out
not to work. Specifically, it does not seem possible to convert a cheating prover
P ∗ in the above fully succinct protocol into a cheating prover P ∗∗ for the verifier-
succinct protocol; for example, P ∗∗ needs to be able to produce a message m2

given only m1 from the verifier; meanwhile, the message m1 can only be extracted
from P ∗ by repeatedly rewinding P ∗’s last message algorithm, which requires
the verifier’s secret information st as input! This does not correspond to a valid
P ∗∗, who does not have access to st when computing m2.

Our refined compiler is to execute several arguments of knowledge: one right
after the prover sends σ2, proving knowledge of m2; another one right after she
sends σ4, proving knowledge of m4 (both before receiving the secret state st from
the verifier); and a third one for the relation RV described above. The first two
arguments of knowledge are for the relation

RH = {(h, σ),m) : h(m) = σ}
This allows for immediate extraction of m2 and m3 and appears to clear the
way for a reduction between the verifier-succinct and fully succinct protocol
soundness properties.

However, there is one remaining problem: the argument-of-knowledge prop-
erty of Kilian’s protocol proved by [CMSZ21] is insufficiently composable to be
used in our compiler. They demonstrate an extractor for Kilian’s protocol that
12 Note that the verifier also takes as input the QMA instance, but we suppress it here

for clarity.
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takes any quantum cheating prover that convinces the verifier and extracts a
witness from them. However, their post-quantum extractor might significantly
disturb the prover’s state, meaning that once we extract m2 above, we may not
be able to continue the prover execution in our reduction.

Fortunately, a recent work [LMS21] shows that a slight variant of Kilian’s
protocol is a succinct argument of knowledge for NP satisfying a composable
extraction property called “state-preservation.” This security property is exactly
what is required for our compiler to extract a valid cheating prover strategy P ∗∗

for the verifier-succinct argument given a cheating prover P ∗ for the compiled
protocol. A complete discussion of this is given in the full version.

This completes our construction of a succinct argument system for BQP (and
QMA). We discuss additional results (2-message protocols, zero knowledge, batch
arguments) in the full version of this paper.
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Abstract. Unclonable encryption, first introduced by Broadbent and
Lord (TQC’20), is a one-time encryption scheme with the following
security guarantee: any non-local adversary (A, B, C) cannot simultane-
ously distinguish encryptions of two equal length messages. This notion
is termed as unclonable indistinguishability. Prior works focused on
achieving a weaker notion of unclonable encryption, where we required
that any non-local adversary (A, B, C) cannot simultaneously recover the
entire message m. Seemingly innocuous, understanding the feasibility of
encryption schemes satisfying unclonable indistinguishability (even for
1-bit messages) has remained elusive.

We make progress towards establishing the feasibility of unclonable
encryption.

– We show that encryption schemes satisfying unclonable indistin-
guishability exist unconditionally in the quantum random oracle
model.

– Towards understanding the necessity of oracles, we present a nega-
tive result stipulating that a large class of encryption schemes cannot
satisfy unclonable indistinguishability.

– Finally, we also establish the feasibility of another closely related
primitive: copy-protection for single-bit output point functions. Prior
works only established the feasibility of copy-protection for multi-bit
output point functions or they achieved constant security error for
single-bit output point functions.

1 Introduction

Quantum information ushers in a new era for cryptography. Cryptographic con-
structs that are impossible to achieve classically can be realized using quantum
information. In particular, the no-cloning principle of quantum mechanics has
given rise to many wonderful primitives such as quantum money [24] and its
c© International Association for Cryptologic Research 2022
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variants [2,18,25], tamper detection [14], quantum copy-protection [1], one-shot
signatures [4], single-decryptor encryption [10,13], secure software leasing [6],
copy-detection [3] and many more.

Unclonable Encryption. Of particular interest is a primitive called unclonable
encryption, introduced by Broadbent and Lord [9]. Roughly speaking, unclon-
able encryption is a one-time secure encryption scheme with quantum ciphertexts
having the following security guarantee: any adversary given a ciphertext, mod-
eled as a quantum state, cannot produce two (possibly entangled) states that
both encode some information about the original message. This is formalized in
terms of a splitting game.

A splitting adversary (A,B, C) first has A receive as input an encryption of
mb, for two messages m0 and m1. A then outputs a bipartite state to B and C. B
and C additionally receive as input the classical decryption key and respectively
output bB and bC . They win if b = bB = bC . Clearly, A could give B the entire
ciphertext and C nothing, in which case bB = b but bC would be independent of
b, giving an overall winning probability of 1/2. Security therefore requires that
the splitting adversary wins with probability only negligibly larger than 1/2.
This security property, introduced by [9], is called unclonable indistinguishabil-
ity. Unclonable indistinguishability clearly implies plain semantic security, as A
could use any semantic security adversary to make a guess bA for b, and then
simply send bA to B and C, who set bB = bC := bA.

Unclonable encryption is motivated by a few interesting applications. Firstly,
unclonable encryption implies private-key quantum money. It is also useful for
preventing storage attacks where malicious entities steal ciphertexts in the hope
that they can decrypt them when the decryption key is compromised later.
Recently, the works of [5,11] showed that unclonable encryption implies copy-
protection for a restricted class of functions with computational correctness guar-
antees.

Despite being a natural primitive, actually constructing unclonable encryp-
tion (even for 1-bit messages!) and justifying its security has remained elusive.
Prior works [5,9] established the feasibility of unclonable encryption satisfying a
weaker property simply called unclonability: this is modeled similar to unclonable
indistinguishability, except that the message m encrypted is sampled uniformly
at random and both B and C are expected to guess the entire message m. This
weaker property is far less useful, and both applications listed above – prevent-
ing storage attacks and copy-protection – crucially rely on indistinguishability
security. Moreover, unclonability does not on its own even imply plain semantic
security, meaning the prior works must separately posit semantic security.

The following question has been left open from prior works:

Q1. Do encryption schemes satisfying unclonable indistinguishability,
exist?

Copy-Protection for Point Functions. Copy-protection, first introduced by
Aaronson [1], is another important primitive closely related to unclonable



214 P. Ananth et al.

encryption. Copy-protection is a compiler that converts a program into a quan-
tum state that not only retains the original functionality but also satisfies the
following property: a splitting adversary (A,B, C) first has A receive as input a
copy-protected state that can be used to compute a function f . A then outputs
a bipartite state to B and C. As part of the security guarantee, we require that
both B and C should not be able to simultaneously compute f .

While copy-protection is known to be impossible for general unlearnable func-
tions [6], we could still hope to achieve it for simple classes of functions. Of
particular interest to us is the class of point functions. A single-bit output point
function is of the form fy(·): it takes as input x and outputs 1 if and only if
x = y. One could also consider the notion of multi-bit output point functions,
where the function outputs a large string, rather than 0 or 1.

Prior works [5,11] either focus on constructing copy-protection for multi-bit
output point functions or they construct copy-protection for single-bit output
point functions with constant security, rather than optimal security, where the
adversary can only do negligibly better than a trivial guess.

Yet another important question that has been left open from prior works is
the following:

Q2. Does copy-protection for single-bit output point functions, with optimal
security, exist?

As we will see later, the techniques used in resolving Q1 will shed light on resolv-
ing Q2. Hence, we focus on highlighting challenges in resolving Q1. The reader
familiar with the challenges involved in constructing unclonable encryption could
skip Sect. 1.1 and directly go to Sect. 1.2.

1.1 Achieving Unclonable Indistinguishability: Challenges

We need to achieve a one-time secure encryption scheme for 1-bit messages satis-
fying unclonable indistinguishability: how hard can this problem be? Indeed one
might be tempted to conclude that going from the weaker unclonability property
to the stronger unclonable indistinguishability notion is a small step. The former
is a search problem while the latter is a decision problem, and could hope to apply
known search-to-decision reductions. As we will now explain, unfortunately this
intuition is false, due both to the effects of quantum information and also to the
fact that unclonable encryption involves multiple interacting adversaries.

– Recall that in an unclonable encryption scheme, the secret key is revealed to
both B and C. As a consequence, the secret information of any underlying
cryptographic tool we use to build unclonable encryption could be revealed.
For example, consider the following construction: to encrypt m ∈ {0, 1},
compute (r,PRF(k, r)⊕m), where k

$←− {0, 1}λ is the pseudorandom function
key and r

$←− {0, 1}λ is a random tag. In the security experiment, the secret
key, namely k, will be revealed to both B and C. This restricts the type of
cryptographic tools we can use to build unclonable encryption.
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– Another challenge is to perform security reductions. Typically, we use the
adversary to come up with a reduction that breaks a cryptographic game
that is either conjectured to be or provably hard. However, this is tricky
when there are two adversaries, B and C. Which of the two adversaries do
we use to break the underlying game? Suppose we decide to use B to break
the game. For all we know, A could have simply handed over the ciphertext
it received to B and clearly, B cannot be used to break the underlying game.
Even worse, Alice can send a superposition of B getting the ciphertext and C
receiving nothing v.s. C receiving the ciphertext and B getting nothing.

– Even if we somehow manage to achieve unclonable indistinguishability for 1-
bit messages, it is a priori unclear how to achieve unclonable indistinguisha-
bility for multi-bit messages. In classical cryptography, the standard trans-
formation goes from encryption of 1-bit messages to encryption of multi-bit
messages via a hybrid argument. This type of argument fails in the setting
of unclonable encryption. Let us illustrate why: suppose we encrypt a 2-bit
message m = m1||m2 by encrypting 1-bit messages m1 and m2, denoted
respectively by ρ1 and ρ2. This scheme is unfortunately insecure. An encryp-
tion of 11 can be (simultaneously) distinguished from an encryption of 00 by
a non-local adversary (A,B, C): A can send ρ1 to B and ρ2 to C. Since, both B
and C receive the secret key, they can check whether the underlying message
was 1 or 0.

– A recent result by Majenz, Schaffner and Tahmasbi [16] explores the diffi-
culties in constructing unclonable encryption schemes. They show that any
unclonable encryption scheme satisfying indistinguishability property needs
to have ciphertexts, when represented as density matrices, with sufficiently
large eigenvalues. As a consequence, it was shown that [9] did not satisfy
unclonable-indistinguishability property. Any unclonable encryption scheme
we come up with needs to overcome the hurdles set by [16].

We take an example below that concretely highlights some of the challenges
explained above.

Example: Issues with Using Extractors. For instance, we could hope to use ran-
domness extractors. To encrypt a message m, we output (ρx, cr,Ext(r, x) ⊕ m),
where ρx is an unclonable encryption of x satisfying the weaker unclonability
property, cr is a classical encryption of a random seed r, and Ext is an extrac-
tor using seed r. The intuition for this construction is that unclonable security
implies that at least one of the two parties, say B cannot predict x, and there-
fore x has min-entropy conditioned on B’s view. Therefore, Ext(r, x) extracts
bits that are statistically random against B, and thus completely hides m.

There are a few problems with this proposal. First, since A generates B’s
state and has access to the entire ciphertext, the conditional distribution of x
given Bob’s view will depend on cr. This breaks the extractor application, since
it requires r to be independent. One could hope to perform a hybrid argument
to replace cr with a random ciphertext, but this is not possible: B eventually
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learns the decryption key for cr and would be able to distinguish such a hybrid.
This example already begins to show how the usual intuition fails.

A deeper problem is that extractor definitions deal with a single party,
whereas unclonable encryption has two recipient parties. To illustrate the issue,
note that it is actually not the case that x has min-entropy against one of the
parties: if A randomly sends the ciphertext to B or C, each one of them can
predict x with probability 1/2, so the min-entropy is only 1. In such a case the
extractor guarantee is meaningless. Now, in this example one can condition on
the message A sends to B, C, and once conditioned it will in fact be the case that
one of the two parties has high min-entropy. But other strategies are possible
which break such a conditioning argument. For example, A could send messages
that are superposition v.s. B getting the ciphertext (and C nothing) v.s. C get-
ting the ciphertext (and B nothing). By being in superposition, we can no longer
condition on which party receives the ciphertext.

1.2 Our Results

We overcome the aforementioned challenges and make progress on addressing
both questions Q1 and Q2. We start with our results on unclonable encryption
before moving onto copy-protection.

Unclonable Encryption. For the first time, we establish the feasibility of unclon-
able encryption. Our result is in the quantum random oracle model. Specifically,
we prove the following.

Theorem 1 (Informal). There exists an unconditionally secure one-time
encryption scheme satisfying unclonable indistinguishability in the quantum ran-
dom oracle model.

Our construction is simple: we make novel use of coset states considered in recent
works [10]. However, our analysis is quite involved: among many other things,
we make use of threshold projective implementation introduced by Zhandry [25].

A recent work [5] showed a generic transformation from one-time unclonable
encryption to public-key unclonable encryption1. By combining the above the-
orem with the generic transformation of [5], we obtain a public-key unclonable
encryption satisfying the unclonable indistinguishability property.

Theorem 2 (Informal). Assuming the existence of post-quantum public-key
encryption, there exists a post-quantum public-key encryption scheme satisfying
the unclonable indistinguishability property in the quantum random oracle model.

It is natural to understand whether we can achieve unclonable encryption in
the plain model. Towards understanding this question, we show that a class of

1 While their result demonstrates that the generic transformation preserves the unclon-
ability property, we note that the same transformation preserves unclonable indis-
tinguishability.
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unclonable encryption schemes, that we call deterministic schemes, are impos-
sible to achieve. By ‘deterministic’, we mean that the encryptor is a unitary U
and the decryptor is U†. Moreover, the impossibility holds even if the encryptor
and the decryptor are allowed to run in exponential time!

In more detail, we show the following.

Theorem 3 (Informal). There do not exist unconditionally secure determin-
istic one-time encryption schemes satisfying the unclonable indistinguishability
property.

In light of the fact that any classical one-time encryption scheme can be made
deterministic without loss of generality2, we find the above result to be surpris-
ing. An interesting consequence of the above result is an alternate proof that the
conjugate encryption scheme of [9] does not satisfy unclonable indistiguishabil-
ity3. This was originally proven by [16].

We can overcome the impossibility result by either devising an encryption
algorithm that traces out part of the output register (in other words, performs
non-unitary operations) or the encryption scheme is based on computational
assumptions.

Copy-Protection for Point Functions. We also make progress on Q2. We show
that there exists copy-protection for single-bit output functions with optimal
security. Prior work by Coladangelo, Majenz and Poremba [11] achieved a copy-
protection scheme for single-bit output point functions that only achieved con-
stant security.

We show the following.

Theorem 4 (Informal). There exists a copy-protection scheme for single-bit
output point functions in the quantum random oracle model.

While there are generic transformations from unclonable encryption to copy-
protection for point functions explored in the prior works [5,11], the transfor-
mations only work for multi-bit point functions. Our construction extensively
makes use of the techniques for achieving unclonable encryption (Theorem 1).
Our result takes a step closer in understanding the classes of functions for which
the feasibility of copy-protection can be established in the plain model.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we cover all the nec-
essary preliminaries, including Jordan’s lemma, measuring success probability
of a quantum adversary and the definitions of unclonable encryption schemes.
Followed by Sect. 3, we recall coset states and their properties. We introduce a
new game called “strengthened MOE games in the QROM” and prove security
2 We can always include the randomness used in the encryption as part of the secret

key.
3 It is easy to see why conjugate encryption of multi-bit messages is insecure. The

insecurity of conjugate encryption of 1-bit messages was first established by [16].
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in this game. This part is our main result and consists of most technique novel-
ties. In Sect. 4, we build our unclonable encryption on the new property. In the
final section (Sect. 5), we present our construction for copy-protection of single-
output point functions Similar techniques as in Sect. 3 are used. Most details
are omitted and can be found in the full version, as well as our impossibility
result.

1.4 Technical Overview

Attempts Based on Wiesner States. We start by recalling the unclonable encryp-
tion scheme proposed by Broadbent and Lord [9]. The core idea is to encrypt a
message m under a randomly chosen secret key x and encode x into an unclon-
able quantum state ρx. Intuitively, for any splitting adversary (A,B, C), there is
no way for A to split ρx into two quantum states, such that no-communicating
B and C can both recover enough information about x to decrypt Enc(x,m).

A well-known choice of no-cloning states is the famous Wiesner conjugate
coding [24]. For a string x = x1x2 · · · xλ ∈ {0, 1}λ, λ bases are chosen uniformly
at random, one for each xi. Let θi denote the basis for xi. If θi is 0, xi is encoded
under the computational basis {|0〉 , |1〉}; otherwise, xi is encoded under the
Hadamard basis {|+〉 , |−〉}. The conjugate coding of x under basis θ is then
denoted by |xθ〉. By knowing θ, one can easily recover x from the Wiesner state.

The unclonability of Wiesner conjugate coding (or Wiesner states for short) is
well understood and characterized by monogamy-of-entanglement games (MOE
games) in [9,20]. In the same paper, Broadbent and Lord show that no strategy
wins the following MOE game4 with probability more than 0.85λ.

– A challenger samples uniformly at random x, θ ∈ {0, 1}λ and sends
|xθ〉 to A.

– A taking the input from the challenger, produces a bipartite state to B
and C.

– The non-communicating B and C then additionally receive the secret
basis information θ and make a guess xB, xC for x respectively.

– The splitting adversary (A, B, C) wins the game if and only if xB =
xC = x.

Fig. 1. MOE Games for Wiesner States.

A natural attempt to construct unclonable encryption schemes is by com-
posing one-time pad with Wiesner states. A secret key is the basis information
θ ∈ {0, 1}n. An encryption algorithm takes the secret key θ and a plaintext m,

4 This is a variant of MOE games discussed in [20]. We will be using this notation
throughout the paper.



On the Feasibility of Unclonable Encryption, and More 219

it samples a x ∈ {0, 1}n and outputs m ⊕ x together with the Wiesner conju-
gate coding of x, i.e. |xθ〉. However, such scheme can never satisfy unclonable
indistinguishability. Recall that unclonable indistinguishability requires either B
or C can not distinguish whether the ciphertext is an encryption of message m0

or m1. Broadbent and Lord observe that although it is hard for B and C to
completely recover the message, they can still recover half of the message and
hence simultaneously distinguish with probability 1.

Towards unclonable indistinguishability, they introduce a random oracle H :
{0, 1}λ × {0, 1}λ → {0, 1}n in their construction (Fig. 2). If an adversary can
distinguish between m0 ⊕ H(α, x) and m1 ⊕ H(α, x), it must query H(α, x)
at some point; hence, one can extract x from this adversary by measuring a
random query. Following the same reasoning, one may hope to base the security
(of Fig. 2) on the MOE games (Fig. 1), by extracting x from both parties.

Gen(1λ): on input λ, outputs uniformly random (α, θ) ∈ {0, 1}2λ.
EncH((α, θ), m): samples x ∈ {0, 1}λ, outputs (|xθ〉 , m ⊕ H(α, x)).
DecH((α, θ), (|xθ〉 , c)): recovers x from |xθ〉, outputs c ⊕ H(α, x).

Fig. 2. Unclonable Encryption by Broadbent and Lord.

The above idea, thought intuitive, is hard to instantiate. It will require simul-
taneous extraction of the secret x from both B and C. Since B and C can be highly
entangled with each other, a successful extraction of x on B’s register may always
result in an extraction failure on the other register. Broadbent and Lord use a
“simultaneous” variant of the so called “O2H” (one-way-to-hiding) lemma [21]
to prove their scheme satisfy unclonable indistinguishability for un-entangled
adversaries B, C, or for messages with constant length. The unclonable indistin-
guishability for general adversaries and message spaces remains quite unknown.

Even worse, Majenz, Schaffner and Tahmasbi [16] show that there is an
inherent limitation to this simultaneous variant of O2H lemma. They give an
explicit example that shatters the hope of proving unclonable indistinguishability
of the construction in [9] using this lemma.

Instantiating [9] Using Coset States. Facing with the above barrier, we may
resort to other states that possess some forms of unclonability. One candidate
is the so called “coset states”, first proposed by Vidick and Zhang [23] in the
context of proofs of quantum knowledge and later studied by Coladangelo et al.
[10] for copy-protection schemes.
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A coset state is described by three parameters: a subspace A ⊆ F
λ
2 of dimen-

sion λ/2 and two vectors s, s′ ∈ F
λ
2 denoting two cosets A + s and A⊥ + s′5; we

write the state as |As,s′〉. Coset states have many nice properties, among those
we only need the followings:

1. Given |As,s′〉 and a classical description of subspace A, an efficient quantum
algorithm can compute both s and s′.

2. No adversary can win the MOE game (Fig. 3) for coset states with probability
more than

√
e · (cos(π/8))λ (first proved in [10] and later improved by Culf

and Vidick [12]).

– A challenger samples uniformly at random a subspace A ⊆ F
λ
2 of di-

mension λ/2 s, s′ ∈ F
λ
2 and sends |As,s′〉 to A.

– A taking the input from the challenger, produces a bipartite state to B
and C.

– The non-communicating B and C then additionally receive a classical
description of the subspace A and make a guess sB, s′

B, sC , s′
C for s, s′

respectively.
– The splitting adversary (A, B, C) wins the game if and only if sB =

sC = s, s′
B = s′

C = s′.

Fig. 3. MOE Games for Coset States.

Readers may already notice the similarity between Wiesner states and coset
states. If we substitute the basis information θ with A and the secret x with s||s′,
we get coset states and their corresponding MOE games. Hence, we can translate
the construction in [9] using the languages of coset states. A question naturally
rises: if these two kinds of states are very similar, why replacing Wiesner states
with coset states even matters?

Indeed, they differ on one crucial place. Let us come back to Wiesner states.
As shown by [15] in the setting of private key quantum money, given |xθ〉 together
with an oracle Px that outputs 1 only if input y = x, there exists an efficient
quantum adversary that learns x without knowing θ. This further applies to the
MOE games for Wiesner states: if A additionally gets oracle access to Px, the
MOE game is no longer secure.

MOE games for coset states remain secure if oracles for checking s and s′

are given. More formally, let PA+s be an oracle that outputs 1 only if the input
y ∈ A+ s, similarly for PA⊥+s′ . No adversary (A,B, C) can win the MOE games
for coset states with more than some exponentially small probability in λ, even if

5 There are many vectors in A + s. In the rest of the discussion, we assume s is the
lexicographically smallest vector in A + s. Similarly for s′.
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A,B, C all query PA+s and PA⊥+s′ polynomially many times. We call this game
MOE game for coset states with membership checking oracles.

We now give our construction of unclonable encryption that satisfies unclon-
able indistinguishability in Fig. 4. In our construction, we get rid of the extra
input α in [9] construction. We believe α can be similarly removed in their con-
struction as well. Also note that in our construction, we only require coset states
and random oracles. The membership checking oracles will only be given to the
adversary when we prove its security. We indeed prove a stronger security guar-
antee. Due to this, we can not prove the security of their construction using
Wiesner states following the same idea; nonetheless, we do not know how to
disprove it. We leave it as an interesting open question.

Gen(1λ): on input λ, outputs uniformly random subspace A ⊆ F
λ
2 of

dimension λ/2.
EncH(A, m): samples s, s′ ∈ F

λ
2
a, outputs (|As,s′〉 , m ⊕ H(s, s′)).

DecH(A, (|As,s′〉 , c)): recovers s, s′ from the coset state, outputs c ⊕
H(s, s′).

a We again require s, s′ to be the lexicographically smallest vector in A+s
and A⊥ + s′.

Fig. 4. Our Unclonable Encryption Scheme.

Basing Security on Reprogram Games. Now we look at what property we require
for coset states to establish unclonable indistinguishability. We will focus on the
case n = 1 for length-1 messages in this section. By a sequence of standard
variable substitution, unclonable indistinguishability of our scheme can be based
on the following security game (Fig. 5) in the identical challenge mode, where
each of B, C tries to identify whether the oracle has been reprogrammed or not.
We want to show any adversary (A,B, C) only achieves successful probability
1/2 + negl; when B gets the coset state and C makes a random guess, they win
with probability 1/2.

Note that in the above reprogram game (Fig. 5), A has no access to H. This
is different from unclonable indistinguishability games or MOE games. Never-
theless, we show the oracle access to H does not help A and thus can be safely
removed by introducing a small loss.

The security of the reprogram games in the identical challenge mode can be
reduced to the security in the independent challenge mode. A careful analysis
of Jordan’s lemma (Sect. 2.3) is required to show such a reduction. We believe
that this reduction is highly non-trivial. However, since it is not the place that
highlights the difference between Wiesner states and coset states, we leave it to
the main body (Sect. 3.3).
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– H be a random oracle with binary range, H : Fλ
2 × F

λ
2 → {0, 1}.

Additionally, A, B, C get oracle access to PA+s and PA⊥+s′ .
– A challenger samples a coset state |As,s′〉 and sends (|As,s′〉 , H(s, s′))

to A.
– A (having no access to the random oracle H) taking the input from the

challenger, produces a bipartite state to B and C.
– The non-communicating B and C then receive a classical description of

the subspace A:
• Let H0 := H be the original random oracle.
• Let H1 be identical to H , except the outcome on (s, s′) is flipped.
• (Identical Challenge Mode): Flip a coin b, both B and C get oracle

access to Hb.
• (Independent Challenge Mode): Flip two coins bB, bC , B has oracle

access to HbB and C gets oracle access to HbC .
– B, C makes a guess b′, b′′ respectively.
– The adversary (A, B, C)wins the game if and only if b′ = b′′ = b (in the

identical challenge mode), or b′ = bB and b′′ = bC (in the independent
challenge mode).

Fig. 5. Reprogram Games for Coset States in the QROM

The remaining is to show the security of the game in the independent chal-
lenge mode. Inspired by the work of [26] which initiates the study of measuring
success probability of a quantum program, we show there is an efficient proce-
dure that operates locally on both the entangled adversaries (B, C) and outputs
(B′, pB), (C′, pC) such that: informally,

– B′ and C′ are un-entangled6.
– The success probability of B′ on guessing H0 or H1 is pB.
– The success probability of C′ on guessing H0 or H1 is pC .
– The expectation of pB ·pC is equal to (B, C)’s success probability in the repro-

gram game in the independent challenge mode.

The above procedure requires to run B′ and C′ on H and Hs,s′ . In other words,
the procedure should be able to reprogram H on the input (s, s′). Since the
procedure will be used in the reduction for breaking MOE games for coset states,
it should not know s or s′, but only knows A and PA+s, PA⊥+s′ . Nonetheless,
we show with the membership checking oracle, such reprogramming is possible:

H1 =

{
¬H(z, z′) Qs(z) = 1 and Qs′(z′) = 1
H(z, z′) Otherwise

,

6 Indeed, B′ and C′ satisfy a weaker guarantee than being un-entangled. They can still
be entangled but the same analysis we discuss applies to this weaker guarantee. For
ease of presentation, we assume that they are un-entangled.
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where Qs is the point function that only outputs 1 on s, similarly for Qs′ . The
remaining is to show Qs (or Qs′) can be instantiated by the classical description
of A and PA+s (or PA⊥+s′ respectively). Qs can be implemented by (1) check if
the input z is in A + s, (2) check if the input z is the lexicographically smallest
in A + s. Step (1) can be done via PA+s. Step (2) can be done by knowing A
and some z ∈ A+ s (which is known from step (1)): one can check if there exists
some lexicographically smaller z∗ such that (z − z∗) ∈ span(A); this can be done
efficiently by enumerating each coordinate and Gaussian elimination. Thus, both
Qs and Qs′ can be implemented.

Without membership checking oracle, we do not know how to reprogram a
random oracle, or run the above procedure. Thus the proof fails for Wiesner
states.

Finally, we prove the security of reprogram games in the independent chal-
lenge mode. If (A,B, C) has non-trivial success probability 1/2+γ for some large
γ, the above procedure must output large pB, pC > 1/2+γ/2 with non-negligible
probability. If B′ never queries H0 or H1 on (s, s′), the best probability it can
achieve is 1/2. Thus, by measuring a random query of B′, we can extract s, s′

with non-negligible probability. Similarly for C′. This violates the MOE games
for coset states with membership checking oracles, a contradiction. Therefore,
the security of the reprogram in the independent mode is established.

1.5 Related Work

Unclonable Encryption. Broadbent and Lord [9] demonstrated the feasibility of
unclonable encryption satisfying the weaker unclonability property. They present
two constructions. The first construction based on Wiesner states achieve 0.85n-
security (i.e., the probability that both B and C simultaneously guess the message
is at most 0.85n), where n is the length of the message being encrypted. Their
second construction, in the quantum random oracle model, achieves 9

2n +negl(λ)-
security. In the same work, they show that any construction satisfying 2−n-
unclonability implies unclonable indistinguishability property. Following Broad-
bent and Lord, Ananth and Kaleoglu [5] construct public-key and private-key
unclonable encryption schemes from computational assumptions. Even [5] only
achieve unclonable encryption with the weaker unclonability guarantees.

Majenz, Schaffner and Tahmasbi [16] explore the difficulties in constructing
unclonable encryption schemes. In particular, they show that any scheme achiev-
ing unclonable indistinguishability should have ciphertexts with large eigenval-
ues. Towards demonstrating a better bound for unclonability, they also showed
inherent limitations in the proof technique of Broadbent and Lord.

Copy-Protection. Copy-protection was first introduced by Aaronson [1].
Recently, Aaronson, Liu, Liu, Zhandry and Zhang [3] demonstrated the exis-
tence of copy-protection in the presence of classical oracles. Coladangelo, Majenz
and Poremba [11] showed that copy-protection for multi-bit output point
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functions exists in the quantum random oracle model. They also showed that
copy-protection for single-bit output point functions exists in the quantum ran-
dom oracle model with constant security.

Ananth and La Placa [6] showed a conditional result that copy-protection
for arbitrary unlearnable functions, without the use of any oracles, does not
exist. Recently, Coladangelo, Liu, Liu and Zhandry [10], assuming post-quantum
indistinguishability obfuscation and one-way functions, demonstrated the first
feasibility of copy-protection for a non-trivial class of functions (namely, pseu-
dorandom functions) in the plain model. Another recent work by Broadbent,
Jeffrey, Lord, Podder and Sundaram [8] studies copy-protection for a novel (but
weaker) variant of copy-protection.

2 Preliminaries

2.1 Basics

We will briefly introduce some basic notations in our work and some preliminaries
on quantum computing in this section.

We denote by λ the security parameter. We write poly(·) to denote an arbi-
trary polynomial and negl(·) to denote an arbitrary negligible function. We say
that an event happens with overwhelming probability if the probability is at least
1 − negl(λ).

Readers unfamiliar with quantum computation and quantum information
could refer to [17] for a comprehensive introduction.

Given Hilbert space H, we write S(H) for the unit sphere set {x : ||x||2 =
1} in H, U(H) for the set of unitaries acting on Hilbert space H, D(H) for
the set of density operators on H. We write HX to denote the Hilbert space
associated with a quantum register X. Given two quantum states ρ, σ, we denote
the (normalized) trace distance between them by

TD(ρ, σ) :=
1
2

‖ρ − σ‖tr .

We say that two states ρ, σ are δ-close if TD(ρ, σ) ≤ δ.
A positive operator-valued measurement (POVM) on the Hilbert space H

is defined as a set of positive semidefinite operators {Ei} on H that satisfies∑
i Ei = I. A projective measurement means the case that Eis are projectors.
A common technique in quantum computation is uncomputing [7]. A quan-

tum algorithm could be modeled as a unitary U acting on some hilbert space
H, then perform measurement on output registers on without loss of generality.
By uncomputation we mean that acting U† on the same hilbert space after the
measurement. It is easy to examine that if the measurement outputs same result
with overwhelming probability, the trace distance between the final state and
the original state is negligible.
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Quantum Oracle Algorithms. A quantum oracle for a function f is defined as
the controlled unitary Of : Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉. We define a query to the
quantum oracle as applying Of on the given quantum state once.

We say that a quantum adversary A with access to oracle(s) is query-bounded
if it makes at most p(λ) queries to each oracle for some polynomial p(·).

2.2 Quantum Random Oracle Model (QROM)

This is the quantum analogue of Random Oracle Model, where we model a hash
function H as a random classical function, and it can be accessed by an adversary
in superposition, modeled by the unitary OH .

The following theorem, paraphrased from [7], will be used for reprogramming
oracles without adversarial detection on inputs which are not queried with large
weight:

Theorem 5 ([7]). Let A be an adversary with oracle access to H : {0, 1}m →
{0, 1}n that makes at most T queries. Define |φi〉 as the global state after A
makes i queries, and Wy(|φi〉) as the sum of squared amplitudes in |φi〉 of terms
in which A queries H on input y. Let ε > 0 and let F ⊆ [0, T − 1] × {0, 1}m be
a set of time-string pairs such that

∑
(i,y)∈F Wy(|φi〉) ≤ ε2/T .

Let H ′ be an oracle obtained by reprogramming H on inputs (i, y) ∈ F to
arbitrary outputs. Define |φ′

i〉 as above for H ′. Then, TD(|φT 〉 , |φ′
T 〉) ≤ ε/2.

Note that the theorem can be straightforwardly generalized to mixed states
by convexity.

2.3 More on Jordan’s Lemma

We first recall the following version of Jordan’s lemma, adapted from [19] and
[22]:

Lemma 1. Let H be a finite-dimensional Hilbert space and let Π0,Π1 be any
two projectors in H, then there exists an orthogonal decomposition of H into one-
dimensional and two dimensional subspaces H = ⊕iSi that are invariant under
both Π0 and Π1; each Si is spanned by one or two eigenvectors of (Π0 +Π1)/2.

Whenever Si is 2-dimensional, there is a basis for it in which Π0 and Π1

(restricting on Si) take the form:

Π0,Si
=

(
1 0
0 0

)
and Π1,Si

=
(

c2i cisi

cisi s2i

)
,

where ci = cos θi and si = sin θi for some principal angle θi ∈ [0, π/2].

Proof. The proof can be found in the references above.

We additionally show a relation between two eigenvalues in the same Jordan
block.
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Lemma 2. For any two projectors Π0,Π1, let Si be a 2-dimensional subspace
in the above decomposition. Let |φ0〉 , |φ1〉 be two eigenvectors of (Π0 + Π1)/2
that span Si and λ0, λ1 be their eigenvalues. We have λ0 + λ1 = 1.

Proof. Restricting on Si, we have:

λ0 + λ1 = Tr [(Π0,Si
+ Π1,Si

)/2] = (1 + c2i + s2i )/2 = 1.

Corollary 1. For any two projectors Π0,Π1, let |φ0〉 and |φ1〉 be two eigenvec-
tors of (Π0 + Π1)/2 with eigenvalues λ0, λ1. If λ0 + λ1 �= 1, then

〈φ0|Π0|φ1〉 = 〈φ0|Π1|φ1〉 = 0.

Proof. If λ0+λ1 �= 1, by Lemma 2, |φ0〉 and |φ1〉 can not be in the same Jordan
block. Because |φ0〉 still belongs to the corresponding subspace S0 of its Jordan
block after the action of Π0, Π0 |φ0〉 is orthogonal to |φ1〉. Similarly, Π1 |φ0〉 is
orthogonal to |φ1〉.

2.4 Measuring Success Probability

In this section we list theorems about simultaneously approximating the eigen-
values of a bipartite quantum program which are crucial tools in our security
proofs.

Theorem 6 (Inefficient Measurement). Let P = (P,Q) be a binary out-
come POVM. Let D be the set of eigenvalues of P . There exists a projective mea-
surement E = {Ep}p∈D with index set D that satisfies the following: for every
quantum state ρ, let ρp be the sub-normalized post-measurement state obtained
after measuring ρ with respect to Ep. That is, ρp = EpρEp. We have,

(1) For every p ∈ D, ρp is an eigenvector of P with eigenvalue p;
(2) The probability of ρ when measured with respect to P is Tr[Pρ] =∑

p∈D Tr[Pρp].

A measurement E which satisfies these properties is the measurement in the
common eigenbasis of P and Q = I − P (due to simultaneous diagonalization
theorem, such common eigenbasis exists since P and Q commute). Let P have
eigenbasis {|ψi〉} with eigenvalues {λi}. Without loss of generality, let us assume
ρ is a pure state |ψ〉 〈ψ| and {λi} has no duplicated eigenvalues. We write |ψ〉 in
the eigenbasis of P : |ψ〉 =

∑
i αi |ψi〉. Applying E will result in an outcome λi

and a leftover state |ψi〉 with probability |αi|2.
Looking ahead, we will write a quantum program under the eigenbasis of P

in the proof of the strengthened MOE game.

Theorem 7 (Inefficient Threshold Measurement). Let P = (P,Q) be
a binary outcome POVM. Let P have eigenbasis {|ψi〉} with eigenvalues {λi}.
Then, for every γ ∈ (0, 1) there exists a projective measurement Eγ = (E≤γ , E>γ)
such that:

(1) E≤γ projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy λi ≤ γ;
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(2) E>γ projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy λi > γ.

Similarly, for every γ ∈ (0, 1/2), there exists a projective measurement E ′
γ =

(Ẽ≤γ , Ẽ>γ) such that:

(1) Ẽ≤γ projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy |λi − 1

2 | ≤ γ;
(2) Ẽ>γ projects a quantum state into the subspace spanned by {|ψi〉} whose

eigenvalues λi satisfy |λi − 1
2 | > γ.

It is easy to see how to construct Eγ , E ′
γ from E , e.g. by setting

Ẽ≤γ =
∑

i:|λi−1/2|≤γ

Eλi
.

Note that for any quantum state ρ, Tr[Ẽ>γρ] is the weight over eigenvectors
with eigenvalues λ that are γ away from 1/2.

Below, we give the formal theorem statement about efficient approximated
threshold measurement, which is adapted from Theorem 6.2 in [26] and Lemma
3 in [3].

Theorem 8 (Efficient Threshold Measurement). Let Pb = (Pb, Qb) be
a binary outcome POVM over Hilbert space Hb that is a mixture of projective
measurements for b ∈ {1, 2}. Let Pb have eigenbasis {|ψb

i 〉} with eigenvalues
{λb

i}. For every γ1, γ2 ∈ (0, 1), 0 < ε < min(γ1/2, γ2/2, 1 − γ1, 1 − γ2) and
δ > 0, there exist efficient binary-outcome quantum algorithms, interpreted as
the POVM element corresponding to outcome 1, ATIε,δPb,γ such that for every
quantum program ρ ∈ D(H1) ⊗ D(H2) the following are true about the product
algorithm ATIε,δP1,γ1

⊗ ATIε,δP2,γ2
:

(0) Let (Eb
≤γ , Eb

>γ) be the inefficient threshold measurement in Theorem 7 for
Hb.

(1) The probability of measuring 1 on both registers satisfies

Tr
[(
ATIε,δP1,γ1

⊗ ATIε,δP2,γ2

)
ρ
]

≥ Tr
[(

E1
>γ1+ε ⊗ E2

>γ2+ε

) · ρ
] − 2δ.

(2) The post-measurement state ρ′ after getting outcome (1,1) is 4δ-close to a
state in the support of

{|ψ1
i 〉 |ψ2

j 〉} such that λ1
i > γ1 − 2ε and λ2

j > γ2 − 2ε.
(3) The running time of the algorithm is polynomial in the running time of

P1, P2, 1/ε and log(1/δ).

Intuitively the theorem says that if a quantum state ρ has weight p on eigen-
vectors of (P1, P2) with eigenvalues greater than (γ1+ε, γ2+ε), then the quantum
algorithm will produce (with probability at least p − 2δ) a post-measurement
state which has weight 1 − 4δ on eigenvectors with eigenvalues greater than
(γ1 − 2ε, γ2 − 2ε).

In this paper, we will work with indistinguishability games. Therefore, we
will particularly be interested in the projective measurement that projects onto
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eigenvectors with eigenvalues away from 1/2 (meaning its behavior is more than
random guessing). For this reason, we will need the following symmetric version
of Theorem 8:

Theorem 9 (Efficient Symmetric Threshold Measurement). Let Pb =
(Pb, Qb) be a binary outcome POVM over Hilbert space Hb that is a mixture
of projective measurements for b ∈ {1, 2}. Let Pb have eigenbasis {|ψb

i 〉} with
eigenvalues {λb

i}. For every γ1, γ2 ∈ (0, 1/2), 0 < ε < min(γ1/2, γ2/2), and
δ > 0, there exist efficient binary-outcome quantum algorithms, interpreted as
the POVM element corresponding to outcome 1, SATIε,δPb,γ such that for every
quantum program ρ ∈ D(H1) ⊗ D(H2) the following are true about the product
algorithm SATIε,δP1,γ1

⊗ SATIε,δP2,γ2
:

(0) Let (Ẽb
≤γb

, Ẽb
>γb

) be the inefficient threshold measurement in Theorem 7 for
Hb.

(1) The probability of measuring 1 on both registers satisfies

Tr
[(
SATIε,δP1,γ1

⊗ SATIε,δP2,γ2

)
ρ
]

≥ Tr
[(

Ẽ1
>γ1+ε ⊗ Ẽ2

>γ2+ε

)
· ρ

]
− 2δ.

(2) The post-measurement state ρ′ after getting outcome (1,1) is 4δ-close to
a state in the support of

{|ψ1
i 〉 |ψ2

j 〉} such that |λ1
i − 1/2| > γ1 − 2ε and

|λ2
j − 1/2| > γ2 − 2ε.

(3) The running time of the algorithm is polynomial in the running time of
P1, P2, 1/ε and log(1/δ).

2.5 Unclonable Encryption

In this subsection, we provide the definition of unclonable encryption schemes.
By unclonable encryption, we are referring to the security defined in [5]. This is
a variant of the original security definition in [9], which forces one of m0,m1 to
be uniformly random. We would remark that our security is stronger than the
original one in [9], since in our definition m0,m1 can be arbitrarily chosen.

Definition 1. An unclonable encryption scheme is a triple of efficient quantum
algorithms (Gen,Enc,Dec) with the following interface:

– Gen(1λ) : sk on input a security parameter 1λ, returns a classical key sk.
– Enc(sk, |m〉 〈m|) : ρct takes the key sk and the message |m〉 〈m| for m ∈

{0, 1}poly(λ), outputs a quantum ciphertext ρct.
– Dec(sk, ρct) : ρm takes the key sk and the quantum ciphertext ρct, outputs a

message in the form of quantum states ρm.

Correctness. The following must hold for the encryption scheme. For sk ←
Gen(1λ), we must have Tr[|m〉 〈m|Dec(sk,Enc(sk, |m〉 〈m|))] ≥ 1 − negl(λ).

Unclonability. In the following sections, we focus on unclonable IND-CPA security.
To define our unclonable security, we introduce the following security game.

Definition 2 (Unclonable IND-CPA game). Let λ ∈ N
+. Given encryption

scheme S, consider the following game against the adversary (A,B, C).
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– The adversary A generates m0,m1 ∈ {0, 1}n(λ) and sends to the challenger
as the chosen plaintext.

– The challenger randomly chooses a bit b ∈ {0, 1} and returns Enc(sk,mb) to A.
A produces a quantum state ρBC in register B and C, and sends corresponding
registers to B and C.

– B and C receive the key sk, and output bits bB and bC respectively

and the adversary wins if bB = bC = b.

We denote the advantage (success probability) of above game by
advG,A,B,C(λ). We say that scheme S is informational (computational) secure
if for all(efficient) adversaries (G,A,B, C),

advG,A,B,C(λ) ≤ 1
2
+ negl(λ).

3 More on Coset States

In this section, we will recall the basic properties of coset states. We will then
introduce a strengthened unclonable game in the quantum random oracle model
(QROM), upon which we will build our unclonable encryption scheme. The last
subsection is devoted to prove the security of this strengthened game.

3.1 Preliminaries

In this subsection, we recall the basic definitions and properties of coset states
in [10]. Let A ⊆ F

n
2 be a subspace. Define its orthogonal complement of A as

A⊥ = {b ∈ F
n
2 | 〈a, b〉 mod 2 = 0, ∀a ∈ A}. It satisfies dim(A) + dim(A⊥) = n.

We also let |A| = 2dim(A) denote the size of A.

Definition 3 (Coset States). For any subspace A ⊆ F
n
2 and vectors s, s′ ∈ F

n
2 ,

the coset state |As,s′〉 is defined as:

|As,s′〉 = 1√|A|
∑
a∈A

(−1)〈s
′,a〉 |a + s〉 .

By applying H⊗n to the state |As,s′〉, one obtains exactly |A⊥
s′,s〉. Given

A, s, s′, the coset state is efficiently constructable.
For a subspace A and vectors s, s′, we define A + s = {v + s : v ∈ A}, and

A⊥ + s′ = {v + s′ : v ∈ A⊥}. We define PA+s and PA⊥+s′ as the membership
checking oracle for both cosets.

It is also convenient for later sections to define a canonical representation of
a coset A + s, with respect to subspace A,

Definition 4 (Canonical Representative of a Coset). For a subspace A,
we define the function CanA(·) such that CanA(s) is the lexicographically smallest
vector contained in A+s. We call this the canonical representative of coset A+s.
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If s̃ ∈ A + s, then CanA(s) = CanA(s̃). We also note that CanA(·) is
polynomial-time computable given the description of A. Accordingly, we can
efficiently sample from CS(A) := {CanA(s) : s ∈ F

n
2}, which denotes the set of

canonical representatives for A.
For a fixed subspace A, the coset states {|As,s′〉}s∈CS(A),s′∈CS(A⊥) form an

orthonormal basis. (See Lemma C.2 in [10])
Next, we recall the regular direct product and MOE properties of coset states.

These properties will be used to prove the strengthened unclonable property.

Direct Product Hardness

Theorem 10 (Theorem 4.5, 4.6 in [10]). Let A ⊆ F
λ
2 be a uniformly random

subspace of dimension λ
2 , and s, s′ be two uniformly random vectors from F

λ
2 . Let

ε > 0 such that 1/ε = o(2n/2). Given one copy of |As,s′〉 and oracle access to
PA+s and PA⊥+s′ , an adversary needs Ω(

√
ε2λ/2) queries to output a pair (v, w)

that v ∈ A + s and w ∈ A⊥ + s′ with probability at least ε.

An important corollary immediately follows.

Corollary 2. There exists an exponential function exp such that, for any query-
bounded (polynomially many queries to PA+s, PA⊥+s′) adversary, its probability
to output a pair (v, w) that v ∈ A+s and w ∈ A⊥+s′ is smaller than 1/exp (λ).

Monogamy-of-Entanglement (with Membership Checking Oracles).

Definition 5. Let λ ∈ N
+. Consider the following game between a challenger

and an adversary (A,B, C).
– The challenger picks a uniformly random subspace A ⊆ F

λ
2 of dimension λ

2 ,
and uniformly random vectors (s, s′) ∈ CS(A) × CS(A⊥). It sends |As,s′〉 to
A.

– A,B, C get (quantum) oracle access to PA+s and PA⊥+s′ .
– A creates a bipartite state on registers B and C. Then, A sends register B to

B, and C to C.
– The description of A is then sent to both B, C.
– B and C return respectively (s1, s′

1) and (s2, s′
2).

(A,B, C) wins if and only if for i ∈ {1, 2}, si = s and s′
i = s′.

We denote the advantage (success probability) of the above game by
advA,B,C(λ). We have the following theorem.

Theorem 11 (Theorem 4.14, 4.15 in [10]). There exists an exponential
function exp such that, for every λ ∈ N

+, for any query-bounded (polynomially
many queries to PA+s, PA⊥+s′) adversary (A,B, C),

advA,B,C(λ) ≤ 1/ exp(λ) .

Note that in [10], the authors only proved the above theorem for a sub-
exponential function and membership checking oracles are given in the form
of indistinguishability obfuscation (iO). The proof trivially holds if we replace
iO with VBB obfuscation (quantum access to these oracles). Culf and Vidick
[12] further proved the theorem holds for an exponential function.
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3.2 Strengthened MOE Game in the QROM

In this subsection, we will introduce the strengthened MOE game in the QROM
and state our main theorem. We present the proof in the next section.

Definition 6. Let λ ∈ N
+. Consider the following security game between a

challenger and an adversary (A,B, C) with a random oracle H : F
λ
2 × F

λ
2 →

{0, 1}n(λ).

– The adversary A generates Δ ∈ {0, 1}n(λ) and sends Δ to the challenger.
– The challenger samples a random subspace A ⊆ F

λ
2 of dimension λ/2 and

two random vectors (s, s′) ∈ CS(A) × CS(A⊥). The challenger also randomly
chooses a bit b ∈ {0, 1} and calculates w = H(s, s′) ⊕ (b · Δ).
It gives |As,s′〉 and w to A.

– A,B, C get (quantum) oracle access to PA+s and PA⊥+s′ .
– A produces a quantum state over registers BC and sends B to B and C to C.
– B, C are given the description of A, they try to produce bits bB, bC.

(A,B, C) win if and only if bB = bC = b.

We denote the advantage of the above game by advA,B,C(λ). Note that since
s, s′ is defined as the canonical vector of both cosets, they are uniquely defined;
similarly, H(s, s′) is also uniquely defined.

We show the following theorem:

Theorem 12. Let n = Ω(λ), then for every λ ∈ N
+ and all query-bounded

algorithms (A,B, C), advA,B,C(λ) ≤ 1
2 + negl(λ).

3.3 Proof for Theorem 12

Proof. We prove the theorem by following hybrid arguments.

Hybrid 0 This hybrid is the original game.

Hybrid 1 This hybrid follows Hybrid 0, but the oracle of A will be repro-
grammed as Hs,s′ defined as follows:

Hs,s′(z, z′) =

{
u if z = s, z′ = s′

H(z, z′) otherwise
,

where u ∈ {0, 1}n is chosen uniformly at random.

Hybrid 2 This hybrid will modify the access to random oracle of B and C.

– The adversary A generates Δ ∈ {0, 1}n(λ) and sends Δ to the challenger.
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– The challenger samples a random subspace A ⊆ F
λ
2 of dimension λ/2 and two

random vectors (s, s′) ∈ CS(A) × CS(A⊥). The challenger uniform randomly
samples a bit b ∈ {0, 1} and r ∈ {0, 1}n(λ), and defines the oracle Hb

s,s′ as
follows:

Hb
s,s′(z, z′) =

{
r ⊕ (b · Δ) if z = s, z′ = s′

H(z, z′) otherwise
,

It gives |As,s′〉 and r to A.
– A,B, C get (quantum) oracle access to PA+s and PA⊥+s′ .
– With access to quantum random oracle Hs,s′ , A produces a quantum state

over registers BC and sends B to B and C to C.
– With access to quantum random oracle Hb

s,s′ , B, C are given the description
of A, they try to produce bits bB, bC.

(A,B, C) win if and only if bB = bC = b.

We denote by pi the optimal success probability of the game in Hybrid i.
For the relations between different pi, we have following lemmas:

Lemma 3. |p0 − p1| ≤ negl(λ).

Lemma 4. p1 = p2.

Lemma 5. p2 ≤ 1
2 + negl(λ).

Combining the three lemmas, we have completed the proof of Theorem 12.
Now we provide proofs for lemmas beyond.

Proof for Lemma 3. We prove by contradiction. Suppose p0 ≥ p1 + 1/q(λ) for
some polynomial q(λ), then we can construct an adversary A′ that violates the
direct product hardness of coset states. A′ will perform as follows:

– A′ samples a random oracle H : Fλ
2 × F

λ
2 → {0, 1}n(λ).

– A′ simulates A using H and applies computational basis measurement on a
random quantum query made by A to the random oracle.

By Theorem 5, assuming A makes at most T queries, then A′ gets (s, s′) with
probability at least 4/(q2T ), a contradiction to Corollary 2.

Proof for Lemma 4. Fixing Δ and b, the two games are identical by renaming
the w = H(s, s′)⊕(b·Δ) to r. Since H(s, s′) is uniformly random, its distribution
is identical to r.

Proof for Lemma 5. Fixing A, r,Δ, two canonical vectors s, s′, let H−s,s′ be a
partial random oracle that is defined on every input except (s, s′). Fix any partial
random oracle H−s,s′ ,

we define two projectors ΠB
0 ,ΠB

1 over register B as:
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– ΠB
0 : runs B on input A with oracle access to H0

s,s′ where H0
s,s′ is the same

as H−s,s′ except on input (s, s′) it outputs r; it measures if the outcome is r;
then it undoes all the computation.

– ΠB
1 : similar to ΠB

0 except on input (s, s′), the random oracle H1
s,s′ outputs

r ⊕ Δ and it checks if the outcome is r ⊕ Δ.

Let {|φi〉}i be a set of the eigenvectors of (ΠB
0 +ΠB

1 )/2 with eigenvalues {λi}i.
Fixing the same A, s, s′, r and H−s,s′ , we can similarly define ΠC

0 ,ΠC
1 for C.

Let {|ψj〉}j be a set of the eigenvectors of (ΠC
0 +ΠC

1 )/2 with eigenvalues {μj}j .
Let |φBC〉 be the state prepared by A. Without loss of generality, we can

assume the state is pure. We write the state under the basis {|φi〉}i and {|ψj〉}j :

|φBC〉 =
∑
i,j

αi,j |φi〉B ⊗ |ψj〉C .

Lemma 6. Taken the randomness of A, s, s′ and H−s,s′ , for every polynomial
p(·), there exists a negligible function negl such that with overwhelming probability
the following weight is bounded:∑

i: |λi−1/2|>1/p
j: |μj−1/2|>1/p

|αi,j |2 ≤ negl(n).

The proof for this lemma is given at the end of this section.
With the above lemma, we can claim that over the randomness of A, s, s′

and H−s,s′ , for every polynomial p(·), |φBC〉 is negligibly close to the following
state |φ′

BC〉: ∑
i:|λi−1/2|≤1/p

αi,j |φi〉B ⊗ |ψj〉C +
∑

i:|λi−1/2|>1/p
j:|μj−1/2|≤1/p

αi,j |φi〉B ⊗ |ψj〉C .

For convenience, we name the left part as |φ′
B〉 (indicating B can not win) and

the right part as |φ′
C〉 (indicating C can not win). Thus, for every polynomial

p(·), there exists a negligible function negl(·), | |φBC〉 − (|φ′
B〉+ |φ′

C〉)|1 is at most
negl(·) (in expectation, taken the randomness of A, s, s′, r and H−s,s′).

The probability that (A,B, C) wins is at most:

(
∣∣(ΠB

0 ⊗ ΠC
0 ) |φ′

BC〉∣∣2 + ∣∣(ΠB
1 ⊗ ΠC

1 ) |φ′
BC〉∣∣2)/2.

ΠB
0 ⊗ ΠC

0 is the case that they both get access to H0 and ΠB
1 ⊗ ΠC

1 for H1.
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The probability is at most

(
∣∣(ΠB

0 ⊗ ΠC
0 )(|φ′

B〉 + |φ′
C〉)∣∣2 + ∣∣(ΠB

1 ⊗ ΠC
1 )(|φ′

B〉 + |φ′
C)〉

∣∣2)/2
=
1
2

· (〈φ′
B|(ΠB

0 ⊗ ΠC
0 )|φ′

B〉 + 〈φ′
B|(ΠB

1 ⊗ ΠC
1 )|φ′

B〉 + 〈φ′
C |(ΠB

0 ⊗ ΠC
0 )|φ′

C〉
+〈φ′

C |(ΠB
1 ⊗ ΠC

1 )|φ′
C〉) + Re

(〈φ′
B|(ΠB

0 ⊗ ΠC
0 )|φ′

C〉 + 〈φ′
B|(ΠB

1 ⊗ ΠC
1 )|φ′

C〉)
≤1
2

· (〈φ′
B|(ΠB

0 ⊗ I)|φ′
B〉 + 〈φ′

B|(ΠB
1 ⊗ I)|φ′

B〉 + 〈φ′
C |(I ⊗ ΠC

0 )|φ′
C〉

+〈φ′
C |(I ⊗ ΠC

1 )|φ′
C〉) + Re

(〈φ′
B|(ΠB

0 ⊗ ΠC
0 )|φ′

C〉 + 〈φ′
B|(ΠB

1 ⊗ ΠC
1 )|φ′

C〉) .

We bound each term separately.

– 1
2

(〈φ′
B|(ΠB

0 ⊗ I)|φ′
B〉 + 〈φ′

B|(ΠB
1 ⊗ I)|φ′

B〉). It is equal to 〈φ′
B|(ΠB

0 +ΠB
1 )/2⊗

I|φ′
B〉; by the definition of |φ′

B〉, it will be at most (12 + 1
p )| |φ′

B〉 |2.
– 1

2

(〈φ′
C |(I ⊗ ΠC

0 )|φ′
C〉 + 〈φ′

C |(I ⊗ ΠC
1 )|φ′

C〉). Similar to the above case, it is at
most (12 + 1

p )| |φ′
C〉 |2.

– Re
(〈φ′

B|(ΠB
0 ⊗ ΠC

0 )|φ′
C〉). By Corollary 1, the inner product will be 0:

〈φ′
B|(ΠB

0 ⊗ ΠC
0 )|φ′

C〉
=

∑
i:|λi−1/2|≤1/p

∑
i′:|λi′ −1/2|>1/p
j′:|μj′−1/2|≤1/p

α†
i,jαi′,j′〈φi|ΠB

0 |φi′〉〈ψj |ΠC
0 |ψj′〉;

since every possible i, i′ satisfy λi + λi′ �= 1, we have 〈φi|ΠB
0 |φi′〉 = 0.

– Re
(〈φ′

B|(ΠB
1 ⊗ ΠC

1 )|φ′
C〉). By Corollary 1, the inner product will be 0 as well.

Therefore, the total probability will be at most
(

1
2 + 1

p

)
(| |φ′

B〉 |2+ | |φ′
C〉 |2)+

negl(n) ≤ 1
2 + 1

p + negl(n).
Since the above statement holds for every polynomial p(·), it finishes the

proof for Theorem 12.
Finally, we give the proof for Lemma 6.

Proof of Lemma 6. We prove by contradiction: suppose there exists an adversary
(A,B, C) such that the weight, which we call W , is non-negligible, i.e. W >
1/q(λ) for some polynomial q(·), with some non-negligible probability η(λ). For
convenience, we will omit λ in the proof when it is clear from the context.

We construct the following adversary (A′,B′, C′) that breaks the regular MOE
game in Definition 5:

1. A′,B′, C′ get (quantum) oracle access to PA+s and PA⊥+s′ .
2. A′ first receives Δ from simulated A, it samples r ∈ {0, 1}n(λ) and a random

oracle H. Given |As,s′〉 , r and two membership checking oracles, it simulates
A via reprogrammed Hs,s′ , and produces |φBC〉; it gives B to B′ and C to C′.
Note that, although H is a total random oracle, we will later reprogram H at
the input (s, s′). Thus, H will only serve as H−s,s′ . Since A′ does not know
(s, s′), it is hard for A′ to only sample H−s,s′ .
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3. Define two projectors ΠB
0 ,ΠB

1 over register B as what we have described at
the beginning of the proof, with the random oracle H0

s,s′ and H1
s,s′ is defined

as:

H0
s,s′(z, z′) =

{
r if z = s, z′ = s′

H(z, z′) otherwise
,

and

H1
s,s′(z, z′) =

{
r ⊕ Δ if z = s, z′ = s′

H(z, z′) otherwise
.

Given PA+s, PA⊥+s′ and the description of A, one can efficiently implement
point functions that check the canonical vectors s and s′; thus, additionally
given H, H0

s,s′ and H1
s,s′ can also be efficiently simulated. Therefore, B′ can

implement both ΠB
0 ,ΠB

1 efficiently.
B′ gets B, it applies the efficient approximate threshold measurement
SATIε,δ(P,Q),γ in Theorem 9 with P = (ΠB

0 + ΠB
1 )/2, Q = I − P , γ = 3/4p,

ε = 1/4p and δ = 2−λ.
If the outcome is 1, B′ then runs B on the leftover state with H0 or H1 picked
uniformly at random. It measures and outputs a random query B makes to
the random oracle.

4. Similarly define ΠC
0 ,ΠC

1 as above on register C. C′ gets C, it applies the
efficient approximated threshold measurement SATIε,δ(P,Q),γ with P = (ΠC

0 +
ΠC

1 )/2, Q = I − P , γ = 3/4p, ε = 1/2p, and δ = 2−λ.
When the outcome is 1, C′ runs C on the leftover state with H0 or H1 picked
uniformly at random. It measures and outputs a random query to the random
oracle.

By Theorem 9 bullet (1), conditioned on W ≥ 1/q, both B′ and C′ will get
outcome 1 with probability 1/q − 2δ = O(1/q). When both outcomes are 1, by
bullet (2) of Theorem 9, the leftover state is 4δ-close to the the following state:∑

i:|λi−1/2|>1/4p
j:|μj−1/2|>1/4p

βi,j |φi〉B ⊗ |ψj〉C .

Observe that when B does not query (s, s′), it will succeed with probability
exactly 1/2. Therefore, by Theorem 5, the query weight of B on (s, s′) is at least
1/4p2T − negl(λ), where T is an upper-bound on the number of queries made
by B. Arguing similarly for C, we conclude that the adversary (A′,B′, C′) wins
with probability at least O(η/(qp4T 2)), which is non-negligible.

4 Unclonable Encryption in the QROM

The following is the unclonable encryption scheme for a single bit:
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1. sk = A where A is a random subspace A ⊆ F
n
2 of dimension n/2;

2. EncH(sk,m): it samples s ← CS(A) and s′ ← CS(A⊥) uniformly at random;
it outputs |As,s′〉, c = H(s, s′) ⊕ m;

3. DecH(sk = A, (|As,s′〉 , c)):
– It first computes s in superposition. We know that there is a classical

algorithm that on any vector in A + s and the description of A, outputs
the canonical vector of A+ s (which is s in this case). See [10] Definition
4.3 for more references.
We can run this classical algorithm coherently on |As,s′〉 to learn s.

– Since the algorithm on any vector in A + s outputs the same vector, the
quantum state stays intact. We can run the same algorithms coherently
on the Hadamard basis and the description of A⊥ to learn s′.

– Output c ⊕ H(s, s′).

With Theorem 12, we can show the scheme satisfy the unclonable IND-CPA
security.

Proof. If we have some adversary (A,B, C) for the scheme beyond, we can con-
struct an adversary (A′,B′, C′) for the strengthened MOE game with the same
advantage.

– The adversary A′ gets (m0,m1) ← A and sends Δ = m0 ⊕ m1 to the chal-
lenger.

– After receiving |As,s′〉 and w from the challenger, A′ calculates c = w ⊕ m0,
and sends (|As,s′〉 , c) to A. The output registers B,C of A are sent to B′, C′

respectively.
– B′, C′ exactly run the algorithm of B, C, and output their output respectively.

Thus we have concluded the unclonable IND-CPA security of our game.

Remark 1. Notice that compared to the strengthened MOE game, our construc-
tion does not provide additional membership checking oracles.

5 Copy-Protection for Point Functions in QROM

5.1 Copy-Protection Preliminaries

Below we present the definition of a copy-protection scheme.

Definition 7 (Copy-Protection Scheme). Let F = F(λ) be a class of effi-
ciently computable functions of the form f : X → Y . A copy protection scheme
for F is a pair of QPT algorithms (CopyProtect,Eval) such that:

– Copy Protected State Generation: CopyProtect(1λ, df ) takes as input the
security parameter 1λ and a classical description df of a function f ∈ F (that
efficiently computes f). It outputs a mixed state ρf ∈ D(HZ), where Z is the
output register.

– Evaluation: Eval(1λ, ρ, x) takes as input the security parameter 1λ, a mixed
state ρ ∈ D(HZ), and an input value x ∈ X. It outputs a bipartite state
ρ′ ⊗ |y〉 〈y| ∈ D(HZ) ⊗ D(HY ).
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We will sometimes abuse the notation and write Eval(1λ, ρ, x) to denote the
classical output y ∈ Y when the residual state ρ′ is not significant.

Definition 8 (Correctness). A copy-protection scheme (CopyProtect,Eval)
for F is δ-correct if the following holds: for every x ∈ X, f ∈ F ,

Pr
[
f(x) ← Eval(1λ, ρf , x) : ρf ← CopyProtect(1λ, df )

] ≥ δ.

If δ ≥ 1 − negl(λ), we simply say that the scheme is correct.

Remark 2. When δ is negligibly close to 1, the evaluation algorithm Eval can be
implemented so that it does not disturb the state ρf . This ensures that ρf can
be reused polynomially many times with arbitrary inputs.

We define security via a piracy experiment.

Definition 9 (Piracy Experiment). A piracy experiment is a security
game defined by a copy-protection scheme (CopyProtect,Eval) for a class of func-
tions F of the form f : X → Y , a distribution DF over F , and a class of dis-
tributions DX = {DX(f)}f∈F over X × X. It is the following game between a
challenger and an adversary, which is a triplet of algorithms (A,B, C):
– Setup Phase: The challenger samples a function f ← DF and sends ρf ←

CopyProtect(1λ, df ) to A.
– Splitting Phase: A applies a CPTP map to split ρf into a bipartite state

ρBC; it sends the B register to B and the C register to C. No communication
is allowed between B and C after this phase.

– Challenge Phase: The challenger samples (xB , xC) ← DX(f) and sends
xB, xC to B, C, respectively.

– Output Phase: B and C output yB ∈ Y and yC ∈ Y , respectively, and send
to the challenger. The challenger outputs 1 if yB = f(xB) and yC = f(xC),
indicating that the adversary has succeeded, and 0 otherwise.

The bit output by the challenger is denoted by PirExpCopyProtect,EvalDF ,DX
(1λ, (A,B, C)).

As noted by [11], the adversary can always succeed in this game with prob-
ability negligibly close to

ptriv(DF ,DX) := max
E∈{B,C} E

f←DF
(xB ,xC)←DX(f)

max
y∈Y

Pr [y | xE ]

by sending ρf to B and have C guess the most likely output y given input xC (or
vice versa). In other words, ptriv is the success probability of optimal guessing
strategy for one party E ∈ {B,C} given only the test input xE .

Bounding the success probability of the adversary is bounded by ptriv captures
the intuition that ρf is no more helpful for simultaneous evaluation than a black-
box program that could only be given to one party.
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Definition 10 (Copy-Protection Security). Let (CopyProtect,Eval) be a
copy-protection scheme for a class F of functions f : X → Y . Let DF be a
distribution over F and DX = {DX(f)}f∈F a class of distributions over X.
Then, (CopyProtect,Eval) is called (DF ,DX)-secure if there exists a negligible
function negl such that any QPT adversary (A,B, C) satisfies

Pr
[
b = 1 : b ← PirExpCopyProtect,EvalDF ,DX

(
1λ, (A,B, C))] ≤ ptriv(DF ,DX) + negl(λ).

Copy Protection for Point Functions. A point function fy : {0, 1}m → {0, 1} is
of the form

fy(x) =

{
1, x = y

0, x �= y
.

When dealing with point functions, the classical description of fy will simply
be y, and accordingly the distribution DF over point functions will be repre-
sented by a distribution D = Dλ over {0, 1}m. Since copy protection is trivially
impossible for a learnable distribution D, we are going to restrict our attention
to unlearnable distributions.

Definition 11. A distribution Dλ over {0, 1}m, with m = poly(λ), is called
unlearnable if for any query-bounded adversary Afy(·) with oracle access to fy(·),
we have

Pr
[
y′ = y : y←Dλ

y′←Afy(·)(1λ)

]
≤ negl(λ).

Definition 12 (Copy-Protection Security for Point Functions). Let m =
poly(λ) and F be the class of point functions fy : {0, 1}m → {0, 1}. Let DX =
{DX(f)}f∈F be a class of input distributions over {0, 1}m × {0, 1}m. A copy
protection scheme (CopyProtect,Eval) for F is called DX-secure if there exists
a negligible function negl such that (CopyProtect,Eval) is (Dλ,DX)-secure for
all unlearnable distributions Dλ over {0, 1}m.

5.2 Construction

In this section, we design copy-protection for a class of point functions. We set
n = 2λ and d = λ throughout the section. Our construction will use two hash
functions: (a) G : {0, 1}λ → {0, 1}n·d and (b) H : Fn

2 × F
n
2 → {0, 1}4n+λ. In the

security proof, we will treat G and H as random oracles. We will use F
n
2 and

{0, 1}n interchangeably.
We denote the set of all d-dimensional subspaces of Fn

2 by Sd.
We describe the copy-protection scheme (CopyProtect,Eval) for a class of

point functions F = {fy(·)}y∈{0,1}λ as follows:

– CopyProtect
(
1λ, y

)
: it takes as input λ in unary notation, y ∈ {0, 1}λ and

does the following:
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1. Compute v = G(y). Parse v as a concatenation of d vectors v1, . . . , vd,
where each vi has dimension n. Abort if the vectors {v1, . . . , vd} are not
linearly independent.

2. Let A = Span (v1, . . . , vd).
3. Sample s ← CS(A) and s′ ← CS(A⊥) uniformly at random.
4. Output the copy-protected state

σ = |As,s′〉〈As,s′ |X ⊗ |H(s, s′)〉〈H(s, s′)|Y.
– Eval(σ, x): on input the copy-protected state σ ∈ D(HX ⊗ HY), input x ∈

{0, 1}λ, it does the following:
1. Measure the register Y of σ to obtain the value θ. Call the resulting state

σ′.
2. Compute v = G(x). Parse v as a concatenation of d vectors v1, . . . , vd,

where each vi has dimension n. Abort if the vectors {v1, . . . , vd} are not
linearly independent.

3. Let A = Span (v1, . . . , vd).
4. Apply UA coherently on

σ′ ⊗ |02n〉〈02n|Z ⊗ |0poly(λ)〉〈0poly(λ)|anc to obtain the state σ′′, where UA

is a unitary that computes (s, s′) given |As,s′〉.
5. Query H on the register Z and store the answer in a new register out.
6. Measure the register out in the computational basis. Denote the post-

measurement state by σout and the measurement outcome by θ′.
7. If θ = θ′, output σout ⊗ |1〉〈1|. Otherwise, output σout ⊗ |0〉〈0|.
We first discuss at a high level why this construction works. Regarding cor-

rectness, we argue that Eval on input x �= y computes a random subspace A′,
such that |A′

s,s′〉 is nearly orthogonal to |As,s′〉. As a result, Eval recovers (s, s′)
incorrectly. Since as a sufficiently expanding hash function H is injective with
high probability, Eval fails.

As for security, first we show that it is hard for A to query the oracles G,H
on inputs y, (s, s′). Next, we argue that B and C cannot both recover (s, s′),
otherwise they break the MOE game in Theorem 11.

We give the formal statements below. Detailed proofs can be found in the
full version.

Lemma 7. (CopyProtect,Eval) satisfies correctness.

Lemma 8. (CopyProtect,Eval) is a DX-secure copy-protection scheme for point
functions with input length λ, where DX(y) = DB

y ×DC
y is a product distribution.

Remark 3. In our security proof, the adversary can run in unbounded time as
long as it is query-bounded.

Remark 4. Using techniques from the proof of Theorem 12, our scheme can also
be shown to be secure for the case when DX(y) samples correlated test inputs,
i.e. the case when either xB = xC = y or xB , xC are both random.
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Abstract. Lattice-based digital signature schemes following the hash-
and-sign design paradigm of Gentry, Peikert and Vaikuntanathan (GPV)
tend to offer an attractive level of efficiency, particularly when instanti-
ated with structured compact trapdoors. In particular, NIST postquan-
tum finalist Falcon is both quite fast for signing and verification and
quite compact: NIST notes that it has the smallest bandwidth (as mea-
sured in combined size of public key and signature) of all round 2 digi-
tal signature candidates. Nevertheless, while Falcon–512, for instance,
compares favorably to ECDSA–384 in terms of speed, its signatures are
well over 10 times larger. For applications that store large number of
signatures, or that require signatures to fit in prescribed packet sizes,
this can be a critical limitation.

In this paper, we explore several approaches to further improve the
size of hash-and-sign lattice-based signatures, particularly instantiated
over NTRU lattices like Falcon and its recent variant Mitaka. In par-
ticular, while GPV signatures are usually obtained by sampling lattice
points according to some spherical discrete Gaussian distribution, we
show that it can be beneficial to sample instead according to a suitably
chosen ellipsoidal discrete Gaussian: this is because only half of the sam-
pled Gaussian vector is actually output as the signature, while the other
half is recovered during verification. Making the half that actually occurs
in signatures shorter reduces signature size at essentially no security loss
(in a suitable range of parameters). Similarly, we show that reducing the
modulus q with respect to which signatures are computed can improve
signature size as well as verification key size almost “for free”; this is
particularly true for constructions like Falcon and Mitaka that do not
make substantial use of NTT-based multiplication (and rely instead on
transcendental FFT). Finally, we show that the Gaussian vectors in sig-
natures can be represented in a more compact way with appropriate
coding-theoretic techniques, improving signature size by an additional 7
to 14%. All in all, we manage to reduce the size of, e.g., Falcon signa-
tures by 30–40% at the cost of only 4–6 bits of Core-SVP security.
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1 Introduction

Currently deployed public-key cryptography is, to a large extent, vulnerable
to general-purpose quantum computers. As the likelihood increases that such
computers may be built in the coming decades, it appears important to prepare
the transition to quantum-secure primitives instead. Doing so, however, requires
postquantum schemes that are not far below currently deployed ones in terms
of efficiency. Selecting and recommending such schemes is the main goal of the
ongoing NIST standardization effort for postquantum cryptography. As part of
that effort, primitives based on algebraic lattices have generally been strong
contenders, with good performance and conservative security analyses: many of
the finalists are in that category.

For digital signatures in particular, two of the three NIST round 3 finalists are
lattice-based: Dilithium [11,29] and Falcon [37]. The third finalist, Rainbow [9],
is a multivariate scheme that boasts very short signatures and fast signing and
verification, but suffers from very large keys and has seen its security substantially
reduced by recent attacks [3]; as a result, NIST has leaned towards the lattice can-
didates. Indeed, the lattice-based signatures are the only “TLS-ready” candidates,
in the sense that they are reasonably efficient andhave a relatively small bandwidth
requirement (the sum of public key size and signature size, which is the relevant size
metric for TLS and other protocols relying on public key certificates). Recently,
isogeny-based signatures [8] have also emerged as possible options with even bet-
ter bandwidth requirements (although they were developed too late for the current
NIST process), but they are considerably slower than lattice-based schemes, and
thus limited in terms of possible applications.

Dilithium and Falcon represent each of the two main paradigms for the
construction of lattice-based signatures: Dilithium follows Lyubashevsky’s Fiat–
Shamir with aborts framework [27,28], while Falcon uses the hash-and-sign
framework of Gentry, Peikert and Vaikuntanathan [21]. Due to this and several
other design choices (such as the deliberate avoidance of Gaussian sampling),
Dilithium is substantially simpler and easier to implement. Falcon on the other
hand, is the strongest contender in terms of performance: it has signing times
on par with Dilithium or better, faster verification times, and its public key and
signature sizes are significantly smaller (by a factor of ≈1.5 for public keys and
≈3.5 for signatures at equivalent security levels). In fact, NIST mentions that
Falcon had the best bandwidth requirements of all nine round 2 candidates for
signatures.

In terms of speed, at least on larger CPU architectures, both Dilithium and
Falcon could replace currently deployed schemes without much trouble: for
example, Falcon–512 outperforms OpenSSL’s implementation of ECDSA (as
of version 1.1.1l) for all supported curve parameters in terms of verification
time (by far), and all parameters except nistp224 and nistp256 for signing. Key
and signature sizes, however, are a different story. While ECDSA over a 256-bit
curve has 32-byte verification keys and 64-byte signatures those numbers are 897
and 666 respectively for Falcon–512, and 1312 and 2420 respectively for the
smallest round 3 parameters of Dilithium: bandwidth requirements are thus ≈16
times larger with Falcon and ≈39 times larger with Dilithium.
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These larger key and signature sizes can be a serious impediment for numer-
ous applications. For example, the DNSSEC protocols transmits verification keys
as well as signatures on DNS records for signed DNS zones, and this information
has to fit within a single TCP DNS packet. ICANN has pointed out [38] how this
could cause difficulties for the transition to postquantum signatures. Similarly,
TLS handshakes involve the transmission of multiple signatures and verification
keys, and larger keys and signatures lead to more data transmission at hand-
shake stage. CloudFlare observed [41] that this caused the handshake to exceed
the initial TCP congestion window of most network infrastructure, leading to
substantial slowdown. DNSSEC and TLS (or routers worldwide) could in princi-
ple be updated to mitigate those issues, but the massive coordination needed to
do so makes that unlikely even in the medium term. Finally, some protocols like
blockchains also require storing considerable amounts of digital signatures, and
are therefore directly affected by signature size in terms of storage requirements
and communication cost.

In view of these challenges, exploring ways of making lattice-based signatures
and keys shorter is of clear importance.

1.1 Hash-and-Sign Signatures over Lattices

In this paper, we propose several approaches to reduce the size of lattice-based
signatures, with particular emphasis on hash-and-sign signatures over NTRU
lattices: we mainly have Falcon in mind, but our techniques also apply to its
recent variant Mitaka [17], as well as to the earlier scheme of Ducas, Lyuba-
shevsky and Prest [12]. In order to describe these approaches, it is useful to
briefly recall the structure of these schemes.

First, following the framework of Gentry, Peikert and Vaikuntanathan, hash-
and-sign signatures over lattices are constructed as follows: they are defined with
respect to a certain lattice L (a subgroup of Zd, say), which is usually chosen
q-ary (i.e., such that qZd ⊂ L for some integer modulus q). The signing key is
a good basis, or trapdoor, for the lattice L , the knowledge of which makes it
possible to solve the approximate closest vector problem for L within a relatively
small factor. In other words, given an arbitrary vector c ∈ Z

d, the trapdoor
makes it possible to find x ∈ L such that the distance ‖x−c‖ is relatively small.
By carefully randomizing this operation, it also becomes possible to do discrete
Gaussian sampling : sample a lattice point x ∈ L according to a distribution
statistically close to the discrete Gaussian DL ,σ,c over L centered at c with
relatively small standard deviation σ. On the other hand, the verification key
is a “bad” basis of L , with which one can decide membership to the lattice,
but that is not good enough to enable finding close vectors or sample discrete
Gaussians with small standard deviation.

Then, the signing algorithm proceeds as follows. The message to be signed
is hashed to a certain point c ∈ Z

d
q , and the signer uses its discrete Gaussian

sampling algorithm to sample a vector x ∈ L according to DL ,σ,c. The signature
is then the vector s = x − c, which is relatively short: ‖s‖ ≈ σ

√
d (it can also

be seen as a sample from the Gaussian distribution DL −c,σ supported over the
lattice coset L − c). To verify the signature, one recomputes c by hashing the
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message, checks that x = s + c belongs to the lattice L and that s is indeed
short. Security relies in a crucial way on the discrete Gaussian sampling, which
ensures that signatures follow a distribution that depend only on the lattice L
and the message, and not on the specific trapdoor used by the signer (contrary
to what happened in early insecure hash-and-sign constructions like NTRUSign
and GGH, in which signatures would leak information on the trapdoor, and
therefore ultimately allow key recovery [13,34,42]).1

A standard optimization is the following. Since the lattice L is q-ary, it
can be described by a parity-check matrix A ∈ Z

k×d
q such that x ∈ L if and

only if Ax ≡ 0 mod q. One can assume without loss of generality (at least for
prime q) that A = [A0|Ik] for some A0 ∈ Z

k×(d−k)
q . Thus, for any x = (x0,x1) ∈

Z
d−k ×Z

k, we have x ∈ L if and only if A0x0+x1 ≡ 0 mod q. In that setting, if
the signature s computed above is written as (s0, s1) ∈ Z

d−k×Z
k, one can simply

transmit the compressed signature s0. Indeed, the verifier can then recover s1
using the relation:

0 ≡ Ax ≡ A(s+ c) ≡ A0s0 + s1 +Ac mod q

and hence s1 ≡ −A0s0−Ac mod q. Signature verification then consists in recov-
ering the s1 component and checking that s is small as expected (if it is, it is
a valid signature with respect to the uncompressed verification algorithm by
construction, so compression does not weaken security).

A further optimization used in practical schemes is as regards to the represen-
tation of the signature vector s0. By construction, it follows a discrete Gaussian
distribution: therefore, its coefficients are far from uniform. They lie in an inter-
val [−B,B] with B = Θ(σ

√
log(d − k)), but concentrate around 0. Therefore,

simply representing them as numbers in [−B,B] is suboptimal: while the vec-
tor s0 has Θ

(
(d − k) log σ

)
bits of entropy, this naive representation would use

Θ
(
(d − k) log log(d − k)

)
more bits. This can be addressed by coding-theoretic

compression techniques: for example, Falcon (following the Gaussian-sampling
based Fiat–Shamir signature scheme BLISS [10]) uses Huffman coding to reduce
the representation size.

1.2 Our Contributions

Using the two techniques described above, it may seem that all the available
information on s is used to make the signature smaller: by transmitting only
s0, we fully use the fact that s is in a known lattice coset, and by carrying out
Huffman coding, we also take advantage of its Gaussian distribution. Since those
two properties basically describe the distribution, it does not seem easy to do
better.

In this paper, we explore and analyze three further strategies to reduce sig-
nature size (and, in one case, verification key size as well): one on the coding-
theoretic side, and two on the lattice side.
1 This independence of the distribution on the trapdoor could in principle be achieved

by distributions other than Gaussians, and it was recently shown to be feasible [30],
albeit with much worse parameters than can be achieved with Gaussian sampling.
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Improved Coding of Gaussian Vectors. Our first observation (although it is pre-
sented last in the paper) is that the Huffman coding technique used in Falcon
is fairly suboptimal: in particular, it represents the sign bit of Gaussian sam-
ples separately, and carries out a unary encoding of the absolute value, which
follows a folded Gaussian distribution. Instead, we show that we can represent
the whole Gaussian sample more compactly using batch Golomb-Rice coding
with ANS (Asymmetric Numeral System), and achieve a representation size for
the full vector very close to the entropy bound without any computationally
expensive technique like arithmetic coding. This allows us to reduce the size of
signatures for Falcon by 7–14% essentially for free, and applies to all Gaussian
sampling techniques in a black-box way.

Ellipsoidal Gaussians. Our second idea is based on the observation that the
hardness of the approximate closest vector problem that underlies the security of
a hash-and-sign based signature is, roughly speaking, determined by the volume
of the decoding domain (the domain around the hashed point c that contains
lattice vectors x corresponding to valid signatures s = x−c). When transmitting
the entire vector s, it is thus optimal to choose the decoding radius as a ball
around c, and hence sample x according to a spherical Gaussian around c, so
as to minimize the length of s for a fixed decoding volume. However, as we
have seen, we actually only transmit s0. Therefore, one can try to make the
actually transmitted signature shorter by choosing a different decoding domain
making the transmitted part s0 shorter, and the recovered part s1 longer, while
maintaining the overall decoding volume constant.

This intuition can be realized by sampling x according to an ellipsoidal dis-
crete Gaussian distribution instead of a spherical one. Indeed, existing lattice
Gaussian samplers either support ellipsoidal Gaussians out-of-the-box (as is the
case for the Klein–GPV [21] and Peikert [35] samplers) or can be fairly easily
adapted to do so for our ellipsoids of interest (as is the case for Prest’s hybrid
sampler [17,36] and the fast Fourier orthogonalization-based sampler [14] used
in Falcon).

There are of course substantial technical difficulties to address in order to
fully make this idea work. To begin with, one needs to verify that it is possible
to construct trapdoors for these ellipsoidal Gaussian samplers that achieve the
same decoding volume as the one we started from; this is experimentally vali-
dated in our case. Moreover, while preserving the decoding volume is a rule of
thumb to maintain security, extensive analysis is needed to evaluate the actual
security level of the resulting scheme, at least for practical constructions like
DLP, Falcon and Mitaka whose security is heuristic in nature (it provably
reduces to, e.g., approximate CVP in a certain family of lattices, but the concrete
parameters are too aggressive to support worst-case to average-case reductions
in the style of [39,40]). As a matter of fact, we find that this approach does
cause a mild security loss of a 3–4 bits for typical parameters, when reducing
signature size by 20–30%. Given the comfortable security margin of lattice-based
constructions, this is likely to be an acceptable trade-off in many contexts.



250 T. Espitau et al.

Using a Smaller Modulus q. A simpler idea of the same flavor as the previous
one is to simply reduce the modulus q with respect to which the q-ary lattice
L is defined. We focus on NTRU lattices in what follows. The security analysis
already carried out for the NTRU-based schemes DLP, Falcon and Mitaka
shows that, at the proposed parameters for those schemes (and unlike other
schemes like ModFalcon [6]), the best attacks are actually independent of q.
As a result, it is possible to increase or decrease q in a certain range at no security
loss, up to the point where other q-dependent attacks start to kick in.

For those lattices, the trapdoor makes it possible to sample signatures s ∼
DL −c,σ with parameter σ = Θ(

√
q): the transmitted vector s0 ∈ Z

d/2 then
has coefficients of magnitude ≈ √

q (and can be represented by Θ(log(d
√

q))
bits after encoding). Moreover, the module structure reduces the parity-check
matrix (i.e., the verification key of the signature scheme) to a single ring element
h which can be seen as a uniform-looking element of Zd/2

q . As a result, a very
simple way to reduce both signature size and verification key size is to choose
a smaller q: reducing q by a factor of γ should reduce signature size by roughly
d
4 log2 γ bits and verification key by d

2 log2 γ bits.
Falcon parameters (like BLISS, DLP, and Mitaka in the power-of-two

setting) are chosen for the modulus q = 12289, which is the smallest prime
with the property that q ≡ 1 mod 212, making it number theoretic transform-
friendly for power-of-two cyclotomics up to dimension 2048 (and in particular
also 512 and 1024). Reducing q loses this property, and therefore can be seen
as a trade-off. Practically speaking, however, this is a fairly minor trade-off as
far as larger CPU architectures are concerned, because Falcon mostly relies
on transcendental FFT instead of NTT for multiplication. NTT is only used for
simplicity in signature verification and a small part of key generation, but it is
easy to replace it by FFT followed by reduction modulo q everywhere, at little
performance cost. And the same holds for variants like Mitaka.

An obvious question, however, is how far we can go. Certainly, arbitrar-
ily small values of q should be impossible, if only for the fact that signatures
would not “fit” anymore (in the sense that ‖s‖∞ would exceed q/2). But even
before that, one encounters q-dependent attacks that slightly reduce security
with respect to forgeries, as well as an issue with the generation of trapdoors.
Normally, the NTRU trapdoor consists of a pair of ring elements (f ,g) such that
h = g/f mod q over the ring. Moreover, f and g have to be sampled such that
‖(f ,g)‖ ≈ √

q. As a result, f and g are normally sampled as discrete Gaussians
with parameter ≈ √

q/d. However, when q becomes small,
√

q/d can go below 1
(or more precisely, below the so-called “smoothing parameter” of Zd), at which
point the discrete Gaussian vector (f ,g) stops “behaving like” a continuous Gaus-
sian. It becomes ternary and sparse, with abnormally high probability of very
low Hamming weight, giving rise to weak keys with non-negligible probability.

The correct approach is then to generate (f ,g) directly as sparse ternary vec-
tors of prescribed Hamming weight in order to reach to target length ≈ √

q (and
this observation also applies to the ellipsoidal case for very skewed ellipsoids). This
eliminates the abnormal behavior of sub-smoothing discrete Gaussians, but still
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Table 1. Parameters and classical bit security estimates for Falcon and Mitaka with
q = 257 and ellipsoidal Gaussians with factor γ = 8 compared to the original schemes,
in dimension 512 and 1024.

Falcon–512 Mitaka–512

Security Sig Size Key Size Security Sig Size Key Size

Original 123 666 896 102 710 896
Small q = 257 118 425 576 94 475 576

Ellipsoidal γ = 8 116 410 896 92 460 896
Falcon–1024 Mitaka–1024

Security Sig Size Key Size Security Sig Size Key Size
Original 272 1280 1792 233 1405 1792

Small q = 257 264 805 1152 209 935 1152
Ellipsoidal γ = 8 261 780 1792 204 905 1792

opens up the possibility of additional attacks exploiting the small, sparse secret
keys. We therefore carefully analyze those attacks, and find that they allow us to
reduce q down to values like q = 257 at little security loss, and for very substantial
gains in terms of key and signature size!

Security Analysis. As was apparent from the previous discussion, the security
analysis of our new compression techniques relies on extensive cryptanalytic
work. Since there is no simple way of relating the security of a scheme like
Falcon between different values of q, or between different choices of Gaussian
covariance matrices, one has to estimate the best attacks in each setting and
parameter range. As usual, this is done separately for forgery (which follows
a fairly standard methodology, but with appropriate twists for the ellipsoidal
setting) and key recovery (where more subtle attacks come into play).

We in particular identify several parameter regimes relevant to the key recov-
ery analysis, and carefully evaluate possible attacks in each of them. For ellip-
soidal sampling, we distinguish between a range where both components (f ,g) of
the trapdoor are Gaussian, and a range where the smaller component becomes
ternary and sparse (and is therefore chosen with fixed Hamming weight). Sim-
ilarly, for the small q case, while the security analysis of Falcon and Mitaka
applies directly for Gaussian (f ,g), other attacks become relevant in the sparse
ternary regime.

As part of this analysis, we propose several new lattice-based attacks that
may be of independent interest.

Resulting Parameters. Example parameters achievable with our approaches,
including signature size, verification key size and classical bit security, are pre-
sented in Table 1. More complete numbers can be found in Table 2. As we can
see, our techniques lead to a gain of 30–40% in signature size for Falcon, for
example, at the cost of only a few bits of Core-SVP security. Using small q also
leads to a considerable improvement in key size, of around 35%.
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1.3 Related Works

Chuengsatiansup et al. extended the Falcon design to NTRU lattices of larger
(module) ranks and proposed ModFalcon [6]. This relaxation of constraints
lead to additional parameters sets for intermediate security level. We note that
our techniques can apply to ModFalcon as well.

In [5], Chen, Genise and Mukherjee introduce the notion of approximate trap-
doors to construct smaller hash-and-sign signatures based on LWE and SIS. The
size of such signatures is then further reduced using elliptic Gaussian sampling
in [23]. However, we stress that these constructions rely on Micciancio-Peikert
“gadget trapdoors” [31], and that adapting their techniques to the NTRU setting
that is the focus of our paper seems far from being straightforward. On the other
hand, some of our analysis and techniques could be used in Micciancio-Peikert
schemes. efficient than NTRU-trapdoor based signatures.

Asymmetric variants of LWE and SIS were studied in [43] and used to design
lattice-based cryptosystems. The asymmetry allows to reduce the bandwidth at
no cost on the security level, and the flavour reminds of the elliptic Gaussian sam-
pling of our work. We note that [43] focuses on lattice-based KEM and Fiat-Shamir
signatures, which have constraints and challenges quite different from our setting.

Lastly, some efforts have been made to design lattice schemes with a small
modulus. By using error correcting codes, the modulus in LWE-based KEMs
can be reduced to byte-level [26]. Fouque et al. designed BAT–KEM, also based
on optimal NTRU trapdoors combined with a new decryption approach to work
with small moduli [20]. While the underlying objects in there schemes and ours
are similar, the cryptanalysis of KEM and signatures are significantly different
problems. modulus size affects the security of the signature scheme.

2 Background

When f is a real-valued function over a countable set S, we note f(S) =∑
s∈S f(s) assuming that this sum is absolutely convergent. Write At for the

transpose of any matrix A. Let Q ∈ R
n×n be a symmetric matrix. We write

Q 	 0 when Q is positive definite, i.e. xtQx > 0 for all non-zero x ∈ R
n. We also

write Q1 	 Q2 when Q1 − Q2 	 0. It holds that Q 	 0 if and only if Q−1 	 0
and that Q1 	 Q2 	 0 if and only if Q−1

2 	 Q−1
1 	 0. A positive definite matrix

Q defines a norm as ‖x‖Q =
√
xtQx, and corresponds uniquely to a bilinear

form 〈x,y〉Q = xtQy. Let s1,Q(A) = maxx�=0
‖Ax‖Q

‖x‖Q
.

A lattice L is a discrete additive subgroup in a Euclidean space. When the
space is Rm, and if it is generated by (the columns of) B ∈ R

m×d, we also write
L (B) = {Bx | x ∈ Z

d}. If B has full column rank, then we call B a basis and
d the rank of L . When the ambient space is equipped with a norm ‖ · ‖Q, the
volume of L is VolQ(L ) = det(BtQB)

1
2 = |det(B)|√det(Q) for any basis B.

Power-of-Two Cyclotomic Fields. Let d = 2� for some integer � � 1 and ζd to be
a 2d-th primitive root of 1. Then for a fixed d, K := Q(ζd) is the d-th power-
of-two cyclotomic field, and its ring of algebraic integers is R := Z[ζd]. The field
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automorphism ζd �→ ζ−1
d = ζd corresponds to the complex conjugation, and we

write the image f∗ of f under this automorphism. We have K � Q[x]/(xd + 1)
and R � Z[x]/(xd + 1), and both are contained in KR := K ⊗ R � R[x]/(xd +
1). Each f =

∑d−1
i=0 fiζ

i
d ∈ KR can be identified2 with its coefficient vector

(f0, . . . , fd−1) ∈ R
d. The adjoint operation extends naturally to KR, and K +

R
is

the subspace of elements satisfying f∗ = f .
The cyclotomic field K comes with d complex field embeddings ϕi : K → C

which map f seen as a polynomial to its evaluations at the odd powers of ζd.
This defines the so-called canonical embedding ϕ(f) := (ϕ1(f), . . . , ϕd(f)). It
extends straightforwardly to KR and identifies it to the space H = {v ∈ C

d :
vi = vd/2+i, 1 � i � d/2}. For notational simplicity, we sometimes identify an
element x ∈ KR as ϕ(x) ∈ H and denote by ϕi(x) its i-th coordinate. Note that
ϕ(fg) = (ϕi(f)ϕi(g))i�d. When needed, this embedding extends entry-wise to
vectors or matrices over KR. We let K ++

R
be the subset of K +

R
which have all

positive coordinates in the canonical embedding. We have a partial ordering over
K +

R
by f 	 g if and only if f − g ∈ K ++

R
. The algebra KR is also equipped

with a norm N(x) =
∏

i ϕi(x), which extends the standard field norm.

KR-Valued Matrices. For Q ∈ K 2×2
R

, we write Q∗ its conjugate-transpose, where
∗ is the conjugation in KR. Positive definiteness extends to such matrices: we say
Q is totally positive definite when Q = Q∗and all the d matrices ϕi(Q) induced
by the field embeddings are hermitian positive definite. We then write Q 	 0.
For example, B∗B 	 0 for all B ∈ K 2×2

R
. A positive definite form over KR

corresponds uniquely to a KR-bilinear form 〈x,y〉Q = x∗Qy.3 Under the canon-
ical embedding, it induces a euclidean norm on H as ‖ϕ(x)‖2Q =

∑
i ϕi(〈x,x〉Q).

Such forms come with a corresponding notion of orthogonality. In particular,
the well-known Gram-Schmidt orthogonalization procedure for a pair of linearly
independent vectors b1,b2 ∈ K 2 is defined as b̃1 := b1, b̃2 := b2− 〈b1,b2〉Q

〈b1,b1〉Q
·b̃1.

One readily checks that 〈b̃1, b̃2〉Q = 0. The Gram-Schmidt matrix with columns
b̃1, b̃2 is denoted by B̃ and we have det B̃ = detB. For a given form Q, we let
|B|K ,Q = max(‖ϕ(〈b̃1, b̃1〉Q)‖∞, ‖ϕ(〈b̃2, b̃2〉Q)‖∞)1/2.

NTRU Lattices. This work deals with free R-modules of rank 2 in K 2, or in
other words, groups of the form M = Rx+Ry where x = (x1, x2),y = (y1, y2)
span K 2. A mild change compared to previous works on the subject is that
we equip the ambient space K 2

R
with a totally positive definite form Q and

its corresponding inner product. If we write B the basis matrix for M , the
volume of the associated lattice is VolQ(M ) = N(det(B∗QB))1/2. If B̃ is the
Gram-Schmidt orthogonalization of B with respect to Q, then we also have
VolQ(M )2 =

∏
i N(〈b̃i, b̃i〉Q).

Given f, g ∈ R such that f is invertible modulo some prime q ∈ Z, we let
h = f−1g mod q. The NTRU module determined by h isLNTRU =

{
(u, v) ∈ R2 :

2 This is the so-called coefficient embedding.
3 We keep the same notation as in the common real case, since in the context of our

work it will causes no confusion.
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uh − v = 0 mod q
}
. Two bases of this free module are of particular interest:

Bh =
[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG − gF = q, and ‖(F,G)‖ should be rela-
tively small. This module is usually seen as a lattice of volume qd N(detQ)1/2 in
(R2d, Q) in the coefficient embedding.

Lemma 1 ([17,36], adapted). Let Bf,g be a basis of an NTRU module and
b1 = (f, g). We have √

qN(detQ)1/(4d) � |Bf,g|K ,Q and

|Bf,g|2K ,Q = max
(

‖ϕ(〈b1,b1〉Q)‖∞,

∥
∥∥∥

q2 · detQ

ϕ(〈b1,b1〉Q)

∥
∥∥∥

∞

)
.

Gaussians Measures and Module Lattices. For a positive definite matrix
Q ∈ R

d×d, the Gaussian function with standard deviation σ is ρQ,σ(x) =
exp(− 1

2‖x‖2Q/σ2). The standard (spherical) Gaussian function corresponds to
Q = I. Then, for a full rank lattice L in R

d and a given t ∈ R
d, the discrete

Gaussian probability with parameters t and σ with respect to the form Q is
defined as DL ,Q,σ,t(x) =

ρQ,σ(x−t)
ρQ,σ(L −t) , where x ranges in L . When t = 0, we omit

it. When given a totally positive definite Q over KR and representing R-modules
with any embedding of K , we keep the same notation, that is, we omit writing
the embedding in formulas, as the context will always be clear.

For any positive definite form Q, there are always matrices T ∈ R
d×d such

that Q = TtT (one example is given by the Cholesky decomposition). One checks
that ρQ,σ(x) = ρI,σ(Tx) for any such T, and well-known results about lattice
Gaussian measures then extend to any form Q. The smoothing parameter of a
lattice L for a given ε > 0 is ηQ,ε(L ) = min{s > 0 : ρQ−1,1/s(L ∨) � 1 + ε}.
Here, L ∨ refers to the dual lattice, and its exact definition is not needed: in this
work, it is enough to know that for a full rank lattice L (B) ⊂ R

d, it is encoded
by B−t. The next lemma says that above the smoothing parameter, a discrete
Gaussian measure does not “see” cosets of a lattice (hence the name).

Lemma 2 (Adapted from [32]). Let Q be a positive definite form over R
d,

t ∈ R
d and ε > 0. Let L ⊂ R

d be a full rank lattice. If σ � ηQ,ε(L ), we have
ρQ,σ(L − t) ∈ [ 1−ε

1+ε , 1] · ρQ,σ(L ).

We will also use standard tail bounds for elliptic discrete Gaussians.

Lemma 3 (Adapted from [28]). Let Q be a positive definite form over R
d,

t ∈ R
d and ε > 0. Let L ⊂ R

d be a full rank lattice and x ← DL ,Q,σ,t, where
σ > ηQ,ε(L ). For any τ > 1, we have P[‖x−t‖Q > τ ·σ√

d] � 2· 1+ε
1−ε ·τd exp((1−

τ2)d/2).

Lastly, we give the following upper bound on the smoothing parameter.

Lemma 4 (Adapted from [17,21]). Let BR2 be a free R-module, and
[b1, . . . ,b2d] the basis of the associated lattice L in R

2d. Let ε > 0. For all
totally positive definite Q ∈ K 2×2

R
, we have ηQ ,ε(L ) � |B|Q ,K · ηε(Zd).
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Algorithm 1: Ring sampler

Input: A target center t ∈ KR, parameters σ ∈ K ×
R

and a real r > 0.
Result: y with distribution close to DR ,(σσ∗+r2)−1I,1,t

1 x ← σ · NK R

2 return �t − x�r

Algorithm 2: Module Elliptic Gaussian sampler

Input: A target center t ∈ K 2
R , a totally positive matrix Q ∈ K 2×2

R
, a

basis B = [b1,b2] of a free R-module M and its GSO [˜b1, ˜b2] with
respect to Q, and a parameter σ ∈ KR.

Result: z with distribution negligibly far from DM ,(σσ∗)−1Q,1,c.

1 Precomputed: τi :=
√

σσ∗
〈˜bi,˜bi〉 Q

− r2 ∈ K ++
R

.

2 s ← 0

3 ˜t2 ← 〈˜b2,t〉Q

〈˜b2,˜b2〉Q

4 x2 ← Algorithm 1(˜t2, τ2, r)
5 t′ ← t − x2b2, s ← x2b2

6 ˜t1 ← 〈˜b1,t′〉Q

〈˜b1,˜b1〉Q

7 x1 ← Algorithm 1(˜t1, τ1, r)
8 s ← s+ x1b1

9 return s

For any positive definite form Q ∈ R
2d×2d, we have ηQ,ε(L ) � max ‖b̃i‖Q·ηε(Z),

where b̃1, . . . , b̃2d is the Gram-Schmidt orthogonalization of the bi’s with respect

to Q. For any integer n > 0, we have ηε(Zn) � 1
π

√
log(2n(1+1/ε))

2 .

Some Gaussian Samplers. Algorithm 1 is a subcase of [35] and inspired of [17,36].
It allows to sample spherical discrete Gaussians in R for adequate parameters,
as long as a discrete Gaussian sampler over the integer is given.

Proposition 1 (Adapted from [17,35]). Let D be the output distribution of
Algorithm 1. If ε < 1

2 and r � ηε(R), then the statistical distance between D and

DR ,1,σσ∗+r2,t is bounded by 2ε and we have supy∈R

∣
∣∣ D (y)
DR ,(σσ∗+r2)−1I,1,t(y)

− 1
∣
∣∣ � 4ε.

We observe that equivalently, Algorithm 1 can reach any covariance parameter
τ ∈ K ++

R
as long as τ − r2 ∈ K ++

R
. Algorithm 2 is a generalization of the so-

called hybrid sampler of [17,36] to obtain Gaussian ring elements with elliptic
covariances.

Proposition 2. Let D be the output distribution of Algorithm 2. If ε < 1
2

and σσ∗ 	 (|B|K ,Q · ηε(R))2, then the statistical distance between D and
DM ,(σσ∗)−1Q,1,t is bounded by 7ε and we have supy∈M

∣
∣
∣
∣

D (y)
D

M ,(σσ∗)−1Q,1,t
(y) − 1

∣
∣
∣
∣
� 14ε.
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As already observed, sampling elliptically amounts to sampling spherically
but changing the form defining the metric. It is thus no surprise that the well-
known Klein sampler [21] can be extended identically by simply computing the
initial Gram-Schmidt orthogonalization with respect to the adequate form: this
change is purely syntactic. In particular, there is no obstruction either to extend-
ing Falcon’s fast Fourier sampler [14]: its core mechanic relies on the underlying
tower of cyclotomic field and an adequate representation of the Cholesky factor
for the lattice basis. The proof and description would be tedious and uneventful,
yet for the sake of modularity, we restrict ourselves to a statement in this article.

Proposition 3 (Adapted from [21,36]). The fast Fourier sampler of [37]
can be extended to a Gaussian sampler over a module lattice L (B) ∈ (R2d, Q).
Let D be its output distribution. Let also b̃1, . . . , b̃2d be the Gram-Schmidt of B
with respect to Q, ε < 1/2 and t ∈ R

2d. When σ > ηε(Z) · maxi�2d ‖b̃i‖Q, the
statistical distance between D and DL (B),Q,σ,t is bounded by (2d + 1)ε and we

have supy∈L (B)

∣∣∣ D (y)
DL (B),Q,σ,t(y)

− 1
∣∣∣ � (4d + 1)ε.

3 New Hash-and-Sign Tradeoffs

3.1 Shorter Signatures by Elliptic Sampling

In hash-and-sign over NTRU lattices, it is well-known that only one of the com-
ponents of a signature (s1, s2) ∈ LNTRU is needed as input to the verification
algorithm. This comes from the algebraic definition of such lattices, as we always
have s1h = s2 mod q when h is the corresponding public key. To compress sig-
natures, it, therefore, makes sense to try to minimize the magnitude of the
coefficients in the component that is sent. To this end, we let γ 	 1 (in KR) and
consider the totally positive form

Q =
(

γ2 0
0 γ−2

)
,

and keep the same notation for its version in the coefficient embedding. Note that
the resulting lattice volumes are preserved, as detQ = 1. Following Algorithm 3,
a signature is an elliptic Gaussian in LNTRU centered at c = (0, c), where c is the
(hash of the) message. Such random vectors can be sampled with Algorithm 2 or
implicit in Proposition 3, for an input basis Bf,g reaching a good quality (as con-
ditioned by Lemma 1). the smallest |Bf,g|Q,K is, the shortest the signatures are.

Now, since Q “favors” vectors with smaller first components, we send s1 as the
signature. Indeed, we can show that the first component of elliptic signatures has
an expected length shorter by a factor γ compared to “regular” spherical ones.
We however keep our discussion at an informal level for the sake of clarity, as the
arguments are standard. Note first that saying s ← DL ,Q,σ,c is equivalent to say-
ing Ts ← DTL ,I,σ,Tc for any T such that TtT = Q. Taking T = diag(γ, γ−1),
the first coordinates of Tc in the signing algorithm are 0. Therefore, the first
component of Ts, i.e. γs1, closely follows a Gaussian of covariance σ2Id, which
shows that the signature s1 has an expected length of essentially σ

√
d

γ .
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Algorithm 3: Hash-and-sign

Input: an NTRU trapdoor Bf,g and message m; a parameter σ > 0, a
quadratic form Q and an acceptance bound B > 0

Result: a signature s ∈ R.

1 c := hash(m) ∈ R, c :=

(

0
c

)

2 Sample s = (s1, s2) from DL (Bf,g),Q,σ,c with Algorithm 2
3 if ‖s − c‖Q > B then
4 Restart
5 end if
6 return s1

Algorithm 4: Verification

Input: an NTRU public key h and a signature s for a message m; a
quadratic form Q and and acceptance bound B > 0

Result: Accept or Reject.

1 c := hash(m) ∈ R
2 s′ = hs − c mod q
3 if ‖(s, s′)‖Q > B then
4 Reject
5 end if
6 Accept

3.2 Parameters Selection

The resilience of hash-and-sign over lattices against forgery requires signatures
to be short. Getting short signatures is achieved thanks to a trapdoor for LNTRU,
that is, a basis composed of short vectors with good properties with respect to
a selected sampling algorithm. We consider two instantiations of the framework,
namely, Falcon [37] and the recent Mitaka [17]. Each of these schemes find
good trapdoors with the following method. First, candidates f and g are sampled
according to a fixed distribution. Because the resulting lattice is morally a 2
dimensional object with prescribed volume q, it is possible to deduce the quality
Q(Bf,g) = α

√
q of the basis before computing it, so that if the expected quality

is good, the basis is completed, else another pair f, g is sampled. We first deal
with the value of α depending on the scheme, then discuss the distribution of
f, g.

In our work, we sometimes consider different norms on the ambient space.
This could have an impact on the quality that the key generation algorithm
achieves; our experiments however suggested that it has no impact on the trap-
doors we could find. Additionally, Falcon relies on the algebraic structure
of power-of-two cyclotomic fields, while Mitaka allow for more number field
choices. However, here, we will restrict to the power-two-cyclotomic case.
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3.2.1 Quality of Gaussian Samplers
Falcon uses the so-called fast Fourier sampler [14], while Mitaka relies on the
so-called hybrid sampler [36] to sample signatures. If b1,b2 is the module basis
of LNTRU and bZ

1 , . . . ,bZ

2d its corresponding lattice basis, the requirements are:

– QFalcon = maxi�2d ‖b̃Z

i ‖Q = αFalcon · √
q where αFalcon = 1.17;

– Qd,Mitaka = |Bf,g|Q,K = αd,Mitaka · √
q, where α512,Mitaka = 2.04 and

α1024,Mitaka = 2.33.

The standard deviation parameters for our signatures are set with Lemma 4 as
σ = rQ∗ where:

– we want σFalcon � ηε(Z) · αFalcon
√

q, so we take r = 1
π

√
log(2(1+1/ε))

2 ;

– we want σd,Mitaka � ηε(Zd) · αMitaka
√

q, so we take r = 1
π

√
log(2d(1+1/ε))

2 .

These parameters combined give us the tailcut rate of the used sampler. We set
the rejection bound as

ρ = τ · σ
√
2d, (1)

where τ = 1.04 is enough to guarantee that 90% of samples might be too long,
thanks to Lemma 3. Lastly, the analyses in [17] states that εMitaka = 2−41, while
Falcon claims εFalcon = 2−36.

3.2.2 On the Distribution of Secret Keys
The standard choice [12,37] for Falcon is to sample f, g as independent discrete
Gaussians in R to satisfy

E[‖(f, g)‖2Q] = α2
Falconq, (2)

which means the standard deviation parameter is σFalcon = rFalconαFalcon
√

q.
On top of several tricks to speed up the key-generation algorithm, Mitaka uses
a different strategy. The approach is to look for good trapdoors among those
which could already be used by Falcon. This also means that the expected
behavior of f, g for the Euclidean norm is the same. We now distinguish the
regime where the norm is changed and an elliptic signature is sampled, from the
regime where q is reduced and the signature are regular spherical samples.

Selection in Twisted Norm: To simplify the exposition, we take γ ∈ R. Condition
(2) becomes

γ2
E[‖f‖2] + 1

γ2
E[‖g‖2] = α2q. (3)

If we want to keep f, g as discrete Gaussians, Eq. (2) shows that we can select
σf = α

γ

√
q/2d and σg = γα

√
q/2d, where γ remains a priori arbitrary. This

choice4 has expectedly a large impact on the security, and γ should not be too
large either.
4 In particular, we could have selected a variable Hamming weight; our analyses sug-

gest that it is a suboptimal choice for security.
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In any case, when γ grows, there is a parameter window where f looks essen-
tially sparse and ternary, and the target standard deviation may be below the
smoothing parameter of Z. Since we can no longer predict the behavior of Gaus-
sians in that regime, it is then natural to sample it directly as a uniform ternary
vector of small (fixed) Hamming weight κ, and we now have E[|‖f‖2] = κ. This
change also enables different attacks exploiting the sparseness of f , see also
Sect. 4. The next step is simplified by balancing the terms in Eq. (3), asking

1
γ2

E[‖g‖2] = γ2κ =
α2q

2
. (4)

The distortion factor can then be as large as γ = α
√

q
2κ , and we can keep g

sampled as a spherical discrete Gaussian with σ2
g = (αγ)2 q

2d .

Selection for Small q’s: The ambient norm corresponds here to Q = I, and the
situation is simplified by taking the same distribution for f, g. As q is now close
to d, the standard deviation of secret keys in the usual setting makes them again
behave essentially like ternary and sparse vectors. This prompts us to sample
directly f, g uniform in the set of ternary vectors of hamming weight κ, which
translates in the following constraint:

κ =
α2q

2
. (5)

This implies in particular that q should be slightly smaller than 2d, and may
open the road for combinatoric and hybrid attacks against the secret keys.

4 Security Analysis

To assess the concrete security of our methods, we proceed using the usual crypt-
analytic methodology of estimating the complexity of the best attacks against key
recovery attacks on the one hand, and signature forgery on the other. For the rest
of this section, we consider that the ambient norm over our lattices is given by

‖x‖2γ = xtQγx with Qγ = Tt
γTγ and Tγ :=

[
γId

γ−1Id

]
, (6)

for some real γ � 1. To better reflect the impact of this distortion factor, we
propose a parameterized security analysis, and instantiate it depending on our
use case (either elliptic sampling, or “small q” regime with γ = 1).

Lattice Reduction Setting. In all of the following, we follow the so-called Geo-
metric series assumption (GSA), asserting that a reduced basis sees its Gram-
Schmidt vectors’ norm decrease with geometric decay. More formally, it can be
instantiated as follows for self-dual BKZ (DBKZ) reduction algorithm of Mic-
ciancio and Walter [33]: an output basis (b1, . . . ,bn) yielded by DBKZ algorithm
with block size β on a lattice L of rank n satisfies the following relation on the
length of its Gram-Schmidt vectors:

‖b̃i‖ = δ
n−2(i−1)
β VolQ(L )

1
n , where δβ =

(
(πβ)

1
β · β

2πe

) 1
2(β−1)

. (7)
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4.1 Forging Signatures

In the hash-and-sign paradigm signature, forging a signature boils down to find-
ing a point v ∈ LNTRU at distance at most ρ from a random space point x. Since
we are quite above λ1(LNTRU)/2, this is an instance of the Approximate Closest
Vector Problem (ApproxCVP). This problem can be solved using the so-called
Nearest-Cospace framework developed by Espitau and Kirchner in [18]. Under
the Geometric Series assumption, Theorem 3.3 of [18] states that the decoding
can be done in time Poly(d) calls to a cvp oracle in dimension β under the
condition

‖x − v‖γ � δ2d
β VolQγ

(LNTRU)
1
2d .

Equivalently,an adversary can consider the lattice spanned by TγBh and decode

Tγx in the usual �2norm ‖ · ‖, where Bh =
[
Id 0d

H qId

]
, and H is the matrix of

multiplication by h in the power basis of R.
While this change with regards to the classical situation of Falcon and

Mitaka [17,37] seems purely syntactic, it can have an impact on the best app-
roach to decoding, and some care must be taken in the details. Indeed, as men-
tioned in [6], a standard optimization of this attack consists in only considering
the lattice spanned by a subset of the vectors of the public basis and performing
the decoding within this sublattice. The only interesting subset seems to remove
only the k � d first vectors. The dimension is of course reduced by k, at the cost
of working with a lattice with of relatively bigger normalized covolume.

Let S ⊂ [d] a set of k indices. Write HS as the submatrix with column
indices outside of S, and IS the analogous submatrix of Id. Let also BS be the
corresponding submatrix of Bh while keeping all the “q vectors”. We then have

(TγBS)t(TγBS) =

(
γ2Id−k + 1

γ2Ht
SHS

q
γ2Ht

S
q
γ2HS

q2

γ2 Id

)

.

By Shur’s complement formula, we find

VolQγ
(L (BS))2 = (q/γ)2d · det(γ2Id−k) = q2dγ−2k.

As such, we need to enforce the following condition on the blocksize β with
respect to the rejection bound:

ρ � min
k�d

(
δ2d−k
β q

d
2d−k γ− k

2d−k
)
. (8)

From Sect. 3.2.1 and Eq. (1), we know that ρ is proportional to √
q once other

parameters are fixed. Then Eq. (8) is equivalent to

τ · α · ηε ·
√
2d � min

k�d

(
δ2d−k
β

(√
q

γ

) k
2d−k

)
, (9)

where α and ηε depends on whether Falcon or Mitaka parameters are consid-
ered.
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There are three noteworthy observations about Condition (9). In the previous
security analysis for Falcon and Mitaka, saturating the bound showed that
k = 0 was the best case5 from an attacker’s point of view. A first and immediate
observation is that the distortion of the norm directly impacts the hardness of
the forgery. For fixed q, larger distortion factors γ, we observed that γ � 2.3
for d = 512 and γ � 1.7 for d = 1024 made forgetting vectors interesting for
the attacker. The second one is more subtle. Note that the regime of schemes
such Falcon or Mitaka always assumes that q is fixed in advance. In our work,
we tolerate smaller q, and it turns out that when q gets smaller, an attacker
finds it advantageous to forget some of the vectors. Experimentally6 we found
that the phase transition happens when q � 2434 for d = 512 and q � 4820
when d = 1024. Lastly, Condition (9) reveals that tolerating smaller q’s with
the standard norm, or keeping usual (larger) choices but twisting the norm by
γ has essentially an identical effect on the forgery. One can indeed think of q/γ2

as a “reduced modulus”, or in other words, designing a signature scheme with
q′ = �q/γ2�. Hence from the point of view of forgery, our compression techniques
can be seen as equivalent. However, they differ notably when we enter the domain
of key recovery.

4.2 Key-Recovery Attacks

As advertised in Sect. 3.2, there are three distinct regimes to consider:

– in the twisted Gaussian regime, we twist the norm by γ > 1 and have
imbalanced Gaussian secret keys;

– the twisted-mixed regime, the norm is also twisted by a larger γ, so the
first half f of the secret key is now sparse ternary with Hamming weight κ;

– and in the small q regime, we keep the standard norm, but q � 2d/α2 so
that both f and g are sparse, ternary with Hamming weight κ = α2q/2.

A direct approach to key recovery is to do lattice reduction on the public
basis, aiming at finding a relatively short vector in the spanned lattice: such
attacks are addressed in Sect. 4.2.1. Whenever (a part of) the key becomes sparse
ternary, combinatorics and more importantly hybrid attacks (combining lattice
reduction and meet-in-the-middle approach) can be considered as a potential
threat. In particular, in our mixed setting, we propose in Sect. 4.2.2 a new hybrid
approach, of a slightly different flavor than the well-known Howgrave-Graham
approach [22].

We also identify a new attack exploiting the sparsity of the secret keys in
Sect. 4.2.3 The core idea is that when at least f is sparse, the number of “modulo
turns” k := (fh − g)/q is expected to be small too. This leads to another lattice
reduction attack in a suitable orthogonal lattice (of rank 2d in a 3d dimensional
space), that can also be improved by the “hybridization” approach. We also
consider different metric choices for the ambient space of the lattice. Finally, we
deal with algebraic, combinatoric, and classic hybrid attacks in Sect. 4.2.4.
5 But this does not hold for ModFalcon, as observed in [6].
6 It is of course possible to calculate the local maximum of the function, but an exper-

iment confirmation seems enough for the purpose of this work.
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4.2.1 Projection onto the Tail of the Reduced Basis
The key recovery consists in finding the private secret key (i.e. f, g ∈ R2) from
the sole data of the public elements q and h. The most powerful attacks are up-
to-our-knowledge realized through lattice reduction. It consists in constructing
the algebraic lattice over R spanned by the vectors (q, 0) and (h, 1) (i.e. the
public basis of the NTRU key) and retrieve the lattice vector s = (f, g) among
all possible lattice vectors of norm bounded by ‖s‖γ = σ

√
2d (or a functionally

equivalent vector, for instance (μg, μf) for any unit μ of the number field).
We make use of the so-called projection trick to avoid enumerating over all
the sphere of radius σ

√
2d (which contains around

(
2dσ2

q

)d vectors under the
Gaussian heuristic).

More precisely we proceed as follows. Set β to be the block size parameter
of the DBKZ algorithm and start by reducing the public basis with this latter
algorithm. Call b1, . . . ,b2d the resulting vectors. Then, if we can recover the pro-
jection of the secret key onto the orthogonal space P to Span(b1, . . . ,b2d−β−1),
then we can retrieve in polynomial time the full key by Babai nearest plane
algorithm to lift it to a lattice vector of the desired norm. Hence it is enough
to find the projection of the secret key among the shortest vectors of the lattice
generated by the last β vectors projected onto P.

Classically, sieving on this projected lattice will recover all vectors of norm
smaller than

√
4/3 ·�, where � is the norm of the 2d−β-th Gram-Schmidt vector

b̃2d−β of the reduced basis. Under the GSA (7), we therefore have:

� =
√

qδ−2d+2β+2
β ≈

(
β

2πe

)1− d
β

.

Moreover, considering that s behaves as a random vector of norm σ
√
2d,

and using the GSA again, the expected norm of its projection over P is√
β/(2d)‖s‖γ = β

1
2 σ. Hence, we will retrieve the projection among the sieved

vectors if β
1
2 σ �

√
4/3�, that is if the following condition is fulfilled:

σ2 � 4q
3β

· δ
4(β+1−d)
β (10)

Remark 1. This approach is similar to the one used in the security evaluation
of [1], but we use all the vectors given by the last step of sieving, resulting in a
slightly stronger attack and as such more conservative parameters choices.

Finding Short Vectors in Tweaked-Norm Setting: As our scheme suggests
the use of different (Euclidean) norms, when it comes to the analysis of key
recovery, it is also legitimate to wonder which norm is indeed the best to mount
lattice attacks. Let us assume that we take an inner product matrix G and

split in blocks of size d × d as G =
(

A B
BT C

)
with A,C ∈ Sym+(R, d). By

homogeneity, we can restrict the study to the case where the determinant of G
is 1. Hence, the squared norm of (f, g) (viewed as a vector over Z

2d) for this
norm is 〈Af, f〉+〈Cg, g〉 + 2〈f,Bg〉. Observe that since f, g (and thereof f,Bg)
are centered independent vectors, the expected value of the inner product 〈f,Bg〉
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is zero. Thus, we have by (bi)linearity:

E := E
[‖(f, g)‖2G

]
= E [〈Af, f〉] + E [〈Cg, g〉] + 2E [〈f,Bg〉]
= Tr(ACov(f)) + Tr(CCov(g)). (11)

Following Sect. 3.2.2, we have:

– in the twisted Gaussian regime, σ2
f = (α

γ )
2 · q

2d and σ2
g = (αγ)2 · q

2d ;
– in twisted-mixed f has scalar covariance7 with parameter κ

d = σ2
f ;

– in the small q regime, we have γ = 1 and Cov(f) = Cov(g) = α2q
2d .

In all cases, Eq. (11) becomes E = α2q
2d ·

(
1
γ2 Tr(A) + γ2 Tr(C)

)
. To favor lattice

attacks, the used norm defined by G should minimize E . By the arithmetic-
geometric inequality and Fischer’s inequality, we have

1
γ2

Tr(A)+γ2 Tr(C) � d

γ2
det(A)

1
d +dγ2 det(C)

1
d � 2d ·(det(A) det(C))

1
2d � 2d.

Hence E achieves a minimum α2q at Tr(A) = γ2d,Tr(C) = d
γ2 , which proves the

optimality of Qγ (Eq. (6)) whatever the regime.

4.2.2 An Hybrid Attack on Half-Sparse Vectors
We now show that we can improve this attack by exploiting the sparsity of the f
part of the secret key. Indeed, if its sparsity level is low, then with a reasonable
probability we can guess the positions of some zeros of the vector. If such a
guess of positions, say I ⊆ {1, · · · , 2d} appears to be correct, we can intersect
the NTRU lattice with Z

I . (where I refers to the complement of the set I in
the overset {1, · · · , 2d}) In this lattice, we can apply readily the methodology
of Sect. 4.2.1 to retrieve the intersected secret and as such the secret itself. This
new lattice has dimension 2d − |I| and its covolume is likely to be qd (see infra
for a discussion of this phenomena). As a result, the normalized covolume of the
intersection lattice is bigger than previously, and its dimension of course smaller.
As such, this final lattice reduction part is now easier and thus faster. Hence,
there exists a trade-off between the probability of right guessing (the more zeroes
to guess, the harder it becomes to correctly guess their positions) and the time
required by the lattice reduction.

Estimation of the Cost of the Attack

Good Guess Probability Estimation [Fixed Hamming Weight]. We now derive an
estimation of the probability of making a successful guess of the zero coefficients.
Suppose that the sparsity of f is 0 < κ < d and that |I| = k. Then, over the ran-
domness of f , the probability of getting a correct guess is equal to the probability
of f having its non-zero coefficient outside the k positions of I, i.e. is

(
d−k

κ

)(
d
κ

)
.

7 Indeed, E[fifj ] = 0 for i �= j and by invariance of the distribution by permutation,
all the diagonal elements are equal.
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Remark now that we can enhance this probability by remarking that it suffices
that a conjugate of f has is zero on I. It seems however difficult to estimate such
a probability explicitly as it depends on the pattern of I. An underestimate of
this probability consists in assuming that the event of right guessing for each
of the conjugates are independent. Using this heuristic, the average number of
conjugates with zeroes on I is d

(
d−k

κ

)(
d
κ

)−1
. This heuristic is in practice precise

enough for the simulation: we simulated the behavior, in cryptographically rele-
vant parameters, of this expectation by repeating the counting on 219 trials and
report a relative error of at most 0.5% for results greater than 2−12.

Volume of Intersection. Suppose now that a good guess was performed. We
intersect the whole NTRU L lattice with Z

I and claim that with high probability
this lattice has volume in �2 norm equal to qd/2. First, remark that it necessarily
q-ary and as such that it is sufficient to study the rank of L with Z

I , which will
be full rank with overwhelming probability, according to [7]. As such the volume
of the intersection is expected to be q

1
2 . We can now compute the volume in the

twisted norm ‖.‖γ . Remember that we obtained the intersection by removing d
rows coordinates over f , which are all scaled by the parameter γ in ‖.‖γ . Hence,
the volume is now scaled by the determinant of the intersected Gram matrix
G = Diag(I)QγDiag(I), which is exactly γk. All in all the (normalized) volume
of the intersected lattice for the twisted norm is q

d
2d−k γ

k
2d−k .

Remark 2. The normalized covolume of the intersection is now bigger than the
original normalized covolume (which is √

q), making the lattice reduction attack
slightly easier. However this normalized covolume is not large enough to enter the
overstretched NTRU regime (see [15] for recent developments on this matter).

Remark 3 (On non-fixed Hamming weight secrets). It could seem natural to let
the small secret vectors be sampled with ternary distribution and no restriction
on the Hamming weight (as a limit case of a tail cut Gaussian for instance).
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However this choice is suboptimal security-wise. Indeed in this case, a simple
estimation reveals that the probability of getting abnormally short vectors (i.e.
with shorter weight than expected) is sufficiently high to reduce the whole secu-
rity of the scheme: in other words, the fraction of generable weak keys is too
high. Fixing in advance the Hamming weight avoids this phenomenon and has
zero drawback on the key generation nor the scheme itself.

4.2.3 A New Attack Using the Small Number of Modulus Rounds
First of all, we stress that this attack only concerns the twisted-mixed and
small q regimes, as it exploits the sparseness of f . In the twisted Gaussian
regime, little can be said about the Hamming weight, and as the standard devi-
ation parameter is still above the smoothing of Z, it is also likely that the vector
is not “so ternary”, that is, it has enough coefficients of magnitude at least 2
so that the enumerating part of the attack becomes too costly anyway. As f
is small, we can give a closer look at the size of the polynomial hf − g which
vanishes mod q by the construction of the NTRU basis (Sect. 2). It appears that
k := 1

q (hf − g) has a norm closely related to the Hamming weight of f as it
grows proportionally to

√
κ (see infra. for an analysis of this fact). For small κ,

this quantity is sufficiently small to be exploited in the lattice reduction. Indeed,
instead of working modulo q as in the previous attack to recover directly f and
g, we can aim at recovering directly the vector (f, g, k) in a rank two module,
embedded in a K -vector space of dimension 3. Since fh − g = kq, this module
is nothing else than the orthogonal module to the vector (h,−1, q). A public

basis of this module (in rows) is B =
(
1 h 0
0 q 1

)
. On the space containing f, g the

metric is given by Qγ as defined in (6), and the “q part” is rescaled to take into
account the expected length of k. Equivalently, this metric is described over K
by the matrix D = diag(γ2, γ−2, δ2), for a parameter δ to be discussed later. The

corresponding Gram matrix is then G = BDB∗ =

(
γ2 + hh∗

γ2
qh
γ2

qh∗

γ2 δ2 + q2

γ2

)

, and it

follows that NK /Q(det(G)) = NK /Q

(
q2 + (γδ)2 + δ2

γ2 hh∗
)

. We now estimate

the expected normalized volume V = NK /Q(detG)1/4d of L (B). The intuition
guiding the calculation is that q2 will be the dominating term in the expansion
and that we want δ to be a “balancing parameter” for the expected norm of k.
Ultimately, its choice will make γδ to be a small fraction of q, and δ/γ to be
constant, see the full version [19] for details about the calculation:

E[V] � √
q ·

(
1 +

(γδ)2

q2
+

δ2

γ2
· d

12

)1/4

. (12)

On the Expected Size of k: We now give a model of the distribution of the
euclidean norm k in our setting, in the sense that its approximations match
accurately our experimental results. Let f be uniform among the set of ternary
polynomials of degree d with weight κ. Recall that we already assumed that
h is uniform in R/qR. Then, we model the coefficients of fh as a sum of κ
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independent discrete uniform random variables in [−q/2, q/2] ∩ Z. Such a sum
as expected value 0 and variance κ(q2−1)

12 . Assuming that the coefficients of hf
behaves independently, then the (squared) expected norm of the vector hf/q is
then dκ(q2−1)

12q2 ≈ dκ
12 . In the twisted–mixed regime, as seen in Sect. 3.2.2, the vector

g is a discrete Gaussian distributed with standard deviation σg = γα
√

q/2d, and
thus the expected squared norm of g/q is α4q2

κq2 = α4

κ . When q is small, Sect. 3.2.2
says ‖g‖2 = κ so that (fh − g)/q has a squared norm of κ( d

12 +
1
q ), which is still

reasonably close to dκ
12 . Therefore, a reasonable approximation for the expected

squared norm of k is

E[‖k‖2] = dκ

12
.

With that additional estimation in our arsenal, we can now see concrete
values for the parameters. We chose δ so that the vector (f, g, k) has balanced
coordinates in the given norm. Since we have E[‖(f, g, k)‖2D] = α2q + δ2E[‖k‖2],
we set δ2 = α2q

2E[‖k‖2] , and our attack has to find a short vector of expected

length α( 3q
2 )1/2. Now, in the twisted–mixed regime, we have (γδ)2 = 3α4

2κ2dq2 and
δ2

γ2 = 12
d , and in the small q regime, γ = 1 and δ2 = κ

E[‖k‖2] =
12
d . In any case,

Inequality (12) becomes:

E[V] �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α
√

q ·
(

2
α4 + 3

2κ2d

)1/4

in the twisted-mixed regime,

√
q ·

(
2 + 12

dq2

)1/4

in the small q regime.

For our smallest considered Hamming weight, we observe that E[V] � 1.19·√q
in the twisted–mixed regime. This was in turn confirmed by our experiments: we
computed the average of these normalized volumes for several classes of param-
eters and found that the ratio V/

√
q never exceeded α = 1.17. In the small q

regime, the experiments showed that V/
√

q � 1.19 on average too. As in the pre-
vious attack, the vector f is sparse so we hybridize the lattice reduction attack
with the guessing technique. The whole attack is algorithmically depicted in the
full version [19].

4.2.4 Combinatorial and Hybrid Attacks
In this section, we list the other possible type of attacks on signatures, which
are nonetheless not the most effective for the parameters we consider.

Exploiting the Algebraic Structure. The schemes we consider are defined over
algebraic lattices, which have a rich structure that could in principle lead to
improved attacks. However, there is no known way to improve all the algorithms
previously mentioned for their general lattice equivalent by more than poly-
nomial factors in an asymptotic sense (see for instance the speedup on lattice
reduction of [24]), and they do not affect our concrete security levels.
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Overstretched NTRU. As observed in [25] and reanalysed in [15], when the mod-
ulus q is significantly larger than the magnitudes of the NTRU secret key coef-
ficients, the attack on the key based on lattice reduction recovers the secret key
better than the results presented above. This so-called “overstretched NTRU”
parameters occurs when q > n2.484 for binary secrets, implying that, as it is
the case for Falcon and other NTRU-based NIST candidates, that even very
significant improvements to this attack would still be irrelevant to the security
of our proposed parameters: in fact, we are even further away from the fatigue
point when reducing q!

Combinatorial and Hybrid Attacks. Odlyzko’s meet-in-the-middle attack, and
its recent improvements by May and Kirshanova–May, are a priori very relevant
to our ternary sparse settings, particularly in the small-q case (and although
non-ternary errors has not been analyzed in the literature, the Kirshanova–May
improvements do in principle extend to that setting as well, and hence could
affect our ternary regime even for distortion). However, running bit security
estimator for the state-of-the-art attack of this type shows that it is very far
from competing with the lattice attacks considered earlier in this section. At
best, they yield time complexities over 2180 in dimension 512, for example.

The hybrid attack of Howgrave-Graham [22], and its improved analysis by
Wunderer, appears to be more of a threat in principle. However, again using the
available estimator (adapted to use the Core-SVP metric for BKZ cost) reveals
that attacks reach at best 2138 complexity in dimension 512, again not competing
with tailor-made lattice approaches.

4.3 Concrete Security Estimates

Under the heuristics we explicited, we can estimate the concrete bit security of
our techniques on the Falcon and Mitaka NTRU based hash and sign signa-
tures schemes. The analysis translates into concrete bit-security estimates fol-
lowing the methodology of NewHope [1], sometimes called “core-SVP method-
ology”. In this model [2], the bit complexity of lattice sieving (which is asymp-
totically the best SVP oracle) is taken as �0.292β� in the classical setting and
�0.2570β� in the quantum setting in dimension β (using the recent progress of
[4]).

4.3.1 Example Parameters
We now present the concrete data obtained for our new tradeoffs. In Table 2
we gathered several options for d ∈ {512, 1024}, and choices for moduli q and
distortion factor γ, for both Falcon and Mitaka. The bit-security was obtained
by taking into account our new attacks (impacting the more extremal ranges of
parameters) and the last quantum sieving exponent for the core-SVP hardness,
using updated versions of the scripts from the Falcon and Mitaka team. In
Figs. 1 and 2, we also provide curves representing the security level in function
of the main compression parameter.
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Table 2. Bit security estimates for Falcon and Mitaka with small q and ellipsoidal
Gaussians (compared to the original schemes), in dimension 512 and 1024. Security
levels are given in pairs Classical/Quantum.

Falcon-512 Mitaka-512

KeyRec Forgery Sig Size Key Size KeyRec Forgery Sig Size Key Size

Original 133/117 123/108 666 896 133/117 102/89 710 896

Small q = 1031 132/116 122/108 490 704 132/116 99/87 540 704
Small q = 521 132/116 121/106 455 640 132/116 97/85 505 640
Small q = 257 130/114 118/104 425 576 130/114 94/82 475 576

Distortion γ = 2 132/116 123/108 540 896 132/116 101/89 590 896
Distortion γ = 4 132/116 122/107 475 896 132/116 98/87 525 896
Distortion γ = 6 131/115 119/105 440 896 131/115 95/84 490 896
Distortion γ = 8 128/113 116/102 410 896 128/113 92/81 460 896

Distortion γ = 10 125/110 113/99 390 896 125/110 88/78 441 896

Falcon-1024 Mitaka-1024

Original 272/239 284/250 1280 1792 272/239 233/205 1405 1792

Small q = 1031 272/239 280/246 932 1408 272/239 224/197 1160 1408
Small q = 521 269/237 275/242 870 1280 269/237 218/191 1000 1280
Small q = 257 264/233 268/235 805 1152 264/233 209/184 935 1152

Distortion γ = 2 271/239 284/250 1033 1792 271/239 230/202 1160 1792
Distortion γ = 4 270/237 278/245 905 1792 270/237 221/195 1035 1792
Distortion γ = 6 267/235 271/239 830 1792 267/235 213/187 960 1792
Distortion γ = 8 261/229 263/232 780 1792 261/229 204/180 905 1792

5 Batch Compressing Gaussian Vectors

In this section, we deal with the problem of efficient and lossless compression of
a batch of random discrete Gaussian variables. Our goal is to further compress
the s1 part of the signature before outputting it. Of course, arithmetic coding
would reach almost perfect entropic coding at the cost of requiring arithmetic
computations of high precision floating-point numbers. We thus want to exploit
the specificities of Gaussian variables to design a near entropic compression while
retaining maximal efficiency.

5.1 Preliminary Information-Theoretical Analysis

Let n be a positive integer and X = (Xi)1�i�n be a sequence of independent
variables drawn under the discrete Gaussian distribution of standard deviation
σ (assumed to be larger than the smoothing parameter of Z). The entropy of
this random vector is (close to) H = n

2

(
1 + log2(2πσ2)

)
Therefore for a given

sample x, an entropic code for this distribution should have a codeword of length:

L(x) = H − n log2

(
e− ‖x‖2

2σ2

)
=

n

2

(
1 + log2(2π) +

‖x‖2
σ2 log(2)

)

︸ ︷︷ ︸
:=H

+n log2(σ)︸ ︷︷ ︸
:=T
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Fig. 1. Bit-security in function of the Hamming weight, q = 12289

Fig. 2. Bit-security in function of q, for d = 512 (left) and d = 1024 (right).

The decomposition of this expression in the two main terms H,T (which we
will refer to by Head and Tail) indicates two contributions, of different geomet-
rical interpretations. The H part can be thought of as the σ-quantile where x
landed, whereas the T part demonstrates that the log(σ) least significant bits
of each coefficient behave as uniform variables in [0, 2σ], giving the position of x
inside the quantile. This rough analysis invites us to work modulo σ: we can not
compress the log2(σ)-lower-order bits, but we can work on the most significant
bits.

5.2 Golomb-Rice Style Coding of a Single Variable

This preliminary observation leads to a first natural algorithm, working
coefficient-wise: we can not compress the reminder modulo σ, which remains
in binary form. If the quotient behaves roughly like a discrete normal distribu-
tion of unit standard deviation, then we can encode its values using a Huffman
encoding. We then stack the coded heads (as the Huffman code is prefix, we can
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decode the heads on the fly) and the tails together which are chunks of equal
lengths. Remark that as the modulus part can not be compressed it will take
up to �log2(σ)�-bits to be represented. As such, we will perform the euclidean
division by k = 2log2(σ)� instead of σ in order to maximize the information put
in the tail and retain the least possible information in the head part. The follow-
ing diagram presents an example of such encoding for on a sample (x1, x2, x3),
where xi = ti + hik:

t1 t2 t3H(h1) H(h2) H(h3)

This is very close to the so-called Golomb-Rice encoding of each coefficient
with split at k.

5.3 Batch-Coding and Full Signature Compression

Since the signature can be (somehow) interpreted as d independent samples, we
can compress them not individually but as a whole. We then want to encode
in the most efficient way the message consisting of the d quotients. We propose
here to rely on adaptive arithmetic encoding (or finite state entropy method),
usually referred as Asymmetric Numeral system (or ANS for short) of Duda [16].
The following diagram presents an example of such encoding for on a sample
(x1, x2, x3), where xi = ti + hik:

t1 t2 t3ANS(h1||h2||h3)

5.3.1 Ranged Arithmetic Encoding
Adapting the ranged version to our contexts, works as follow. Suppose that the
distribution of the quotient part is a discrete Gaussian of standard deviation σq,
denoted by G and of probability density function (pdf for short) ρ. As the size
of signature is itself bounded by construction, we can truncate this distribution
as well by a certain threshold T 8.

We also choose an integral quantization factor p > 0, and denote by f the
quantized quotient distribution of G�T , that is to say its approximation at p bits
of precision. More formally, we construct the distribution G(p)

�T as the distribution
of support {−T, . . . , T} and of pdf ρ̃ proportional to x �→ �2pρ�T (x)�2−p.

Then denoting by R(x) =
∑x

0 ρ̃(x) its cumulative distribution function, we
define the symbol encoding function to be

s :
∣∣
∣∣
[0; 2p−1] −→ [0, 2T ]

x �−→ argmins{F (s) � x < F (s + 1)}.

The coding function is now:
8 By truncating a discrete distribution D over Z of pdf p, we mean constructing

the distribution D�T of support {−T, . . . , T} ∩ Supp(D) and of pdf p�T (x) =

p(x)
(

∑T
u=−T p(u)

)−1
.
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C(x, s) =
⌊

x
f(s)2p � n

⌋
+ (x mod f [s])+F (s), The encoding of the (head) of

the signature is then performed iteratively by (left)-folding the function C: for a
sequence of integers [s1, . . . , sn], define inductively x0 := 0 and xi+1 = C(xi, si).
The encoded sequence is then the integer xn.

With this construction, the decoding function is now, denoting by & the
bitwise and operator, D(x) = (f(s)(x � n) + (x & (2n − 1)) − F (s), s) , used
again by left folding: given a compressed sequence represented as the integer x,
we stream out the sequence (si)i defined inductively by x0 = x, (xi+1, si+1) =
D(xi).

5.3.2 ANS on the Raw Input
As the distribution of the signature coefficient is public, we could use ANS
encoding directly on the coefficients. This is of course possible and naturally
would offer the best compression rates, but it would require to multiply larger
numbers. Indeed, using the aforementioned separation only requires handling the
head, which is encoded on a small integer, whereas a direct ANS would require
to handle arithmetic with numbers of around n/2 log(2πσ2) bits.

In addition, as the standard deviation of the quotients is small, the alphabet
will be very limited and we also can use a tabulated variant to completely avoid
arithmetic computations (or so-called finite-state-entropy methods).

5.4 Nearly Optimal Encoding for Hash-and-Sign Signatures

5.4.1 Encoding of Falcon Signatures
For completeness, we recall the compression process used in the Falcon. The
outline of the compression is quite similar to the one of Sect. 5.2, but the sign
is taken out of the coefficient and encoded as a separated bit. As such, the
quotient by σ is now following a folded-normal distribution. A careful study of
this distribution reveals that the corresponding Huffman coding corresponds to
the unary encoding of the variable. The following diagram presents an example
of such encoding for on a sample (x1, x2), where |xi| = ti +hik and si = sgn(xi)

t1 t20h1 1 s1 0h2 1 s2

5.4.2 Practical Comparison with Our Method
We exhibit a practical comparison of the compression performances between our
encoding and Falcon’s, together with the entropy lower bound. The experiments
reveal that our technique is nearly optimal (standing at at most 3 bytes to the
entropic limit). For dimension 512, we can save between 45 and 65 bytes com-
pared to Falcon’s Huffman-based coefficient-wise compression. In dimension
1024, the gaps now lie in between 80 and 130 bytes, which represents a total
gain of 7%–14% on the signature size (Fig. 3).
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Fig. 3. Comparison between Falcon and our encoding. The left figure is for d = 512,
the right one is for d = 1024. They are computed using a quantization factor of f = 16
(i.e. 16-bits approximation of the density function of the distribution).
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Abstract. Multi-signatures are protocols that allow a group of signers
to jointly produce a single signature on the same message. In recent
years, a number of practical multi-signature schemes have been pro-
posed in the discrete-log setting, such as MuSig2 (CRYPTO’21) and
DWMS (CRYPTO’21). The main technical challenge in constructing a
multi-signature scheme is to achieve a set of several desirable properties,
such as (1) security in the plain public-key (PPK) model, (2) concur-
rent security, (3) low online round complexity, and (4) key aggregation.
However, previous lattice-based, post-quantum counterparts to Schnorr
multi-signatures fail to satisfy these properties.

In this paper, we introduce MuSig-L, a lattice-based multi-signature
scheme simultaneously achieving these design goals for the first time.
Unlike the recent, round-efficient proposal of Damg̊ard et al. (PKC’21),
which had to rely on lattice-based trapdoor commitments, we do not
require any additional primitive in the protocol, while being able to
prove security from the standard module-SIS and LWE assumptions.
The resulting output signature of our scheme therefore looks closer to
the usual Fiat–Shamir-with-abort signatures.

1 Introduction

A multi-signature is a primitive that allows a group of signers holding individual
key pairs (sk1, pk1), . . . , (skn, pkn) to jointly produce a signature on a message
μ of their choice. A number of multi-signatures have been proposed in recent
years, mainly motivated by several new real-world applications such as cryp-
tocurrencies. Recent developments in the discrete log setting particularly gar-
nered renewed attention among practitioners, since some of them even serve as
a drop-in replacement for ordinary signatures already deployed in practice [36].

The main technical challenge when constructing a new multi-signature scheme
is to achieve a set of desirable properties, such as (1) security in the plain public-
key (PPK) model, (2) concurrent security, (3) low online round complexity, and
(4) key aggregation. The PPK model requires that each signer publishes its pub-
lic key in the clear without any dedicated interactive key generation protocol,
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and that no adversaries be able to convince a verifier that an honest party P1
1

participated in signing any messages, unless P1 has ever agreed on it. This is essen-
tially to prevent the well-known rogue-key attacks (e.g., [32]) in a plain way (i.e.,
without requiring proof of possession wherein each party must submit a proof to
prove knowledge of their secret key [39]). Thus proving security under the PPK
model is often considered ideal in the literature.

Several round-efficient Schnorr-based proposals with proof in the PPK model
appeared in the literature. However, the seminal work of Drijvers et al. [18]
pointed out subtle pitfalls of many existing interactive schemes, by presenting
an adversarial strategy that exploits many concurrent sessions. The adversary
in this scenario may launch multiple instances of the signing protocol with an
honest party, and forge a signature on a new message by carefully combining
signature shares from different sessions. Benhamouda et al. [9] recently improved
the attack and proved that those schemes can be broken even in polynomial time.
Given such devastating attacks, it is crucial to prove security of the scheme in
the model where concurrent sign queries are allowed.

Although some previous schemes, such as BN [7], MuSig [31], MuSig-DN [37],
mBCJ [18], and HBMS [6], are indeed provably secure against concurrent attacks,
they all require (at least) two rounds of interaction during the online phase,
i.e., after parties receive the message to sign. On the other hand, it is desir-
able in practice to preprocess part of the interaction and computation without
knowledge of the message to be signed, so that participants can minimize round/-
communication complexity later. Such an offline-online trick has become increas-
ingly common in context of general-purpose multi-party computation (e.g., [17]),
and therefore it is also another important design goal when constructing a
multi-signature. Recently, Nick, Ruffing, and Seurin [36], and Alper and Bur-
dges [4] concurrently proposed near-optimal Schnorr-based multi-signatures in
this paradigm. One remarkable feature of these schemes – MuSig2 and DWMS–
is that they only require a single round of interaction in the online phase while
retaining security against concurrent attacks. They also support key aggregation,
an additional optimization technique that takes a set of public keys to produce
a single combined Schnorr public key. It is crucial for a multi-signature scheme
to support key aggregation, because it allows verifiers to verify a signature with
an ordinary Schnorr public key and thus makes the scheme interoperable with
the existing verification algorithms.

State-of-the-Art in the Lattice Setting. As Schnorr-based constructions
do not withstand quantum attacks, it is an interesting question how to con-
struct post-quantum alternatives. Indeed, several lattice-based counterparts to
the aforementioned schemes exist in the literature [16,20,21,30]. All of these
schemes follow the so-called Fiat-Shamir with aborts (FSwA) paradigm [26],
which shares the basic structure with Schnorr. Hence, it is well-known that many
observations in the DLog setting can be reused to construct similar FSwA-based
instantiations, e.g., ES, MJ, and FH follow the ideas of BN three-round Schnorr

1 Note in multi-signature every honest party behaves identically and thinks of them-
selves as “P1” [7]. Other parties P2, . . . , Pn are called co-signers.
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multi-signature, and the most recent scheme due to Damg̊ard et al. [16] closely
follows the mBCJ two-round scheme. There are however several subtle issues
that only arise in the lattice world. For example, one inherent issue with the
Fiat-Shamir “with aborts” multi-signature is simulation of the honest sign ora-
cle. The basic idea of these schemes is to take the sum of usual FSwA sig-
natures produced by different parties as follows: party P1 first starts a proto-
col by sending “commit” messages w1 of the underlying Σ-protocol, and then
upon receiving w2, . . . ,wn from others, P1 locally derives challenge c by hash-
ing w :=

∑n
i=1 wi, together with the message μ to be signed. It then performs

rejection sampling on the response z1, and the protocol must restart as long as
there exists a party who rejected their response. This means that w1 is always
revealed, whether P1 aborts or not. However, there is currently no known way to
simulate (w1, c) for rejected instances, and thus publicly available proofs of ES
and MJ are incomplete, and FH had to rely on a non-standard assumption (which
they call “rejected” LWE). Although DOTT managed to circumvent the issue by
having P1 send a [5]-based trapdoor homomorphic commitment Commit(w1) to
keep w1 secret until rejection sampling is successful, their approach inevitably
makes the scheme incompatible with preprocessing: because each w1 must be
committed using message-dependent commitment keys, two rounds of interac-
tion must always happen online. Moreover, since their scheme has to output
combined commitments or randomness as part of the signature, the verifier also
needs to check an aggregated commitment is opened correctly. These are in fact
limitations inherited from mBCJ, and thus it is an interesting open question
whether lattice-based multi-signature can be securely improved while benefiting
from the latest tricks in the DL setting.

1.1 Our Contributions

In this paper, we introduce MuSig-L, a lattice-based multi-signature scheme
simultaneously achieving the aforementioned design goals for the first time: con-
current security in the PPK model, single-round online phase, and key aggre-
gation. In Table 1 we compare ours to previous schemes following the same
paradigm. Just as MuSig2 and DWMS, our MuSig-L allows parties to preprocess
the first-round “commit” messages before receiving the message to be signed.
Thus all they have to communicate during the online phase is the final response
value zi. Although the protocol must abort if there is one party that fails in
rejection sampling (which is also the case with other FSwA distributed/multi-
signatures), we can mitigate by executing sufficiently many parallel instances of
the protocol at once. Since security against concurrent attackers is crucial in this
setting, we provide detailed security proofs in a suitable model.

Our scheme does not require any additional primitive for instantiating the
protocol, unlike the two-round, provably secure scheme of Damg̊ard et al. This
was made possible by our generalized rejection sampling lemma in combination
with trapdoor preimage sampling of [34] and several technical lemmas, as we
sketch below. The resulting output signature of our scheme therefore looks much
closer to the usual Fiat–Shamir-with-abort signatures.
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Table 1. Comparison with previous DLog/FSwA-based multi-signatures with concur-
rent security in the plain-public key model. The column “#Off” indicates the number
of rounds that can be preprocessed in the offline phase (Although ES, MJ, and FH do
not explicitly support offline-online paradigm, we conjecture the first round of these
schemes can be securely preprocessed since they all follow the same blueprint of BN).
“#On” indicates the number of rounds that must occur online after receiving a signa-
ture to sign. The total number of rounds is thus given as “#Off + #On”. The column
“Agg.” indicates whether a scheme supports key aggregation or not.

Assumption #Off #On Agg. Note

BN [7] DL 1 2 N

MuSig [31] DL 1 2 Y

mBCJ [18] DL 0 2 Y

MuSig-DN [37] DL & DDH 0 2 Y

MuSig2 [36] AOMDL 1 1 Y

DWMS [4] AGM 1 1 Y

HBMS [6] DL 0 2 Y

ES [20] DCK 1 2 N Proof incomplete

MJ [30] RSIS 1 2 Y Proof incomplete

FH [21] MLWE & rMLWE 1 2 N Proof in QROM

DOTT [16] MLWE & MSIS 0 2 N TD Commitment

Our MuSig-L MLWE & MSIS 1 1 Y L must be a seta

aThis is because in our scheme each signer explicitly prohibits duplicate keys
in the key list L so that the security proof goes through in the offline-online
security model. The rationale behind this choice will be detailed in Sect. 4.5.

Although our MuSig-L partially follows tricks present in MuSig2 and DWMS,
the resulting scheme and our new proof techniques (outlined below) are signif-
icantly different from theirs. As a consequence, we are able to prove security
solely based on the standard SIS and LWE assumptions in the ring setting and
in the (classical) random oracle model, while MuSig2 and DWMS are proven
secure either under the “one-more” DL assumption or in the algebraic group
model.

1.2 Our Techniques

Scheme Overview. Figure 1 describes overview of our scheme, executed by P1.
In Sect. 3.1 we will provide more formal algorithm specifications. In MuSig-L, a
key pair is the same as in the usual FSwA: ski = si and pki = ti = Āsi, where
si consists of small elements in a ring Rq = Zq[X]/(F (X)). On receiving public
keys from the other parties, P1 derives “aggregation coefficients” by hashing a set
of keys and each public key held by Pi. Here the hash function is instantiated by
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the random oracle Hagg : {0, 1}∗ → C, where C is the same as the challenge space
used by the underlying FSwA Σ-protocol. It then constructs an aggregated key t̃
by taking the linear combination of all keys. This is similar to the key aggregation
technique introduced in MuSig [31] (where they choose ai to be uniform in Zq),
but we must carefully choose the size of aggregation coefficients so that it enables
security reduction to the Module-SIS assumption.

In the offline phase, parties exchange a bunch of “commit” messages w(1)
i , . . . ,

w(m)
i . We then use the “random linear combination” trick similar to MuSig2 and

DWMS, to aggregate the “commit” messages coming from the offline phase. That
is, we force everyone to derive the “nonce” coefficients b(j)’s through another
random oracle Hnon, and these nonces are used for computing a single aggregate
commit w̃. This operation essentially prevents malicious parties from adaptively
influencing inputs to the next random oracle Hsig deriving “joint challenge” c ∈ C
that all parties must agree on. Finally, P1 locally performs rejection sampling on
a potential response value z1, such that the distribution of revealed z1 is always
independent of the secret s1.

Generalized Rejection Sampling. Not relying on a commitment scheme has
a major drawback: we need to deal with possible leakage, due to both sending the
first messages in the clear, and with aggregating them using random coefficients.

As the w(j)
i are sent in the clear, the adversary A knows before receiv-

ing zi that the response will be sampled from the coset Λ⊥
ũ (Ā), where ũ :=

∑
j b(j)w(j)

1 +c·a1 ·t1. This information does not give A any advantage in case the
signing protocol succeeds. However, in case of abort A has gained some informa-
tion on z1, that is, it knows that some element of Λ⊥

ũ (Ā) has been rejected. This
could potentially leak information about the secret key, a subtle issue avoided in
[16] by opening the commitment to the first message only in case of a success.

The second issue is related to efficiency. Aggregating the “commit” messages
using some random coefficients implies that the distribution of the response z1
depends on those coefficients. In particular, the distributions of z1 is a Gaussian
with parameter Σ that changes with different choices of the b(j)’s. This is not just
a nuisance: Σ leaks information about the b(j)’s. It is not immediate to see why
this is concerning, as it only becomes an issue when simulating honest signers
in the security proof. Essentially, this requires to generate z1 after generating
w(1)

1 , . . . ,w(m)
1 with a trapdoor and sampling the b(j)’s using such a trapdoor.

Thus, the distribution of z1 has to be independent of the b(j)’s.
Perhaps unsurprisingly, rejection sampling can take care of all the leakage.

In particular, we show that the rejection sampling technique is secure even if:
(1) A knows the lattice coset, (2) the secret and public Gaussian distributions
have different centers, and covariance matrices (obviously, for this to make sense
neither difference can be too large). In fact, we prove a more general result than
what the security of MuSig-L needs, allowing not only spherical, but ellipsoidal
discrete Gaussians (i.e., Gaussians whose covariance matrix Σ is not diagonal).
The proof of this result required quite the effort: while we could follow the
structure of the proof of the original rejection sampling theorem, the intermediate
steps required to extend many existing results, either to the case of ellipsoidal
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Gaussians, or to sampling from lattice cosets, or both. Proofs were simplified by
relying on the canonical representation of ring elements, even though the rest
of the algorithms will use the coefficient representation. This is not an issue per
se, as these embeddings are isometric in power-of-2 cyclotomics. The result is a
rather powerful extension of the rejection sampling technique, that we believe of
independent interest.

Exploiting Trapdoor Sampling for Simulation. As usual, the main techni-
cal challenge in proving security of multi-signature is to simulate the behaviors
of an honest party P1 without knowledge of the actual secret key. Although our
rejection sampling lemma allows to simulate the distribution of z1 and thus the
aggregated offline outputs w̃1 = Āz1 − c · a1 · t1, it is not immediately clear how
one can make sure w̃1 is consistent with the offline messages w(j)

1 and nonces
b(j). One naive approach would be to mimic the security proof for MuSig2: they
essentially avoid the issue with simulation by relying on hardness of the one-
more DL problem, a stronger assumption that solving DL is still hard even after
making a limited number of queries to a DL solver oracle. Although a similar
lattice-based problem was recently introduced by Agrawal et al. [2] and it might
make an interesting alternative approach to proving our scheme, it is not a well-
studied assumption yet and we’re thus motivated to propose an entirely different
proof strategy.

One crucial observation in this work is that, in the lattice world, a sim-
ulator can secretly produce a trapdoor when creating the offline messages
W := [w(1)

1 , . . . ,w(m)
1 ], using the gadget-based trapdoor generation algorithm

of Micciancio and Peikert [34] with m = O(k log q). Once the corresponding
trapdoor is known, the simulator can now sample b = [b(1), . . . , b(m)] from a
coset Λ⊥

w̃1
(W) using a Gaussian preimage sampling for the SIS function fW.

In this way, our simulator can successfully output a simulated signature, offline
messages, and nonces b(j) that are all statistically indistinguishable with actual
outputs of the honest party. In Sect. 4.4 we realize this idea in the form of oracle
simulation lemma, which is proven by combining the utility lemma in Sect. 4.2
and instantiation of the trapdoor in Sect. 4.3. Finally, Sect. 4.5 formally states
CMA security of our scheme.

Supporting Technical Lemmas. Our analysis and the security proof of our
protocol rely on a number of technical facts related to discrete Gaussian distri-
butions over module lattices, sometimes with general covariance matrices. Most
of those facts are simple extensions and generalizations of well-known results in
the literature, while others are less easy to come up with. Since a number of
them may be of independent interest, we have tried to state them in a relatively
high level of generality, and to provide relatively self-contained proofs either way.

1.3 Other Related Work

Multi-signatures belong to a larger family of signatures that support aggregation,
its closest relatives being aggregate signatures and threshold signatures.
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Fig. 1. Stylized overview of our two-round lattice-based multi-signature
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There have been a number of results on threshold Schnorr-style signa-
tures [22,23,38,40]. However, to the best of our knowledge the most recent two-
round schemes all rely on non-standard assumptions. For example, the modular
approach to proving security of threshold and multi-signatures based on Schnorr
signatures in [15] strongly relies on the AGM, while the threshold signature
FROST [25] is proven secure in a non-standard heuristic which models the hash
function (a public primitive) used for deriving the coefficients for the linear com-
bination as a one-time VRF (a primitive with a secret key) in the security proof.

Threshold signatures can be instantiated from lattices, but the existing t-out-
of-n constructions require either to threshold secret share the signing key of GPV
signature [8], or FHE [3,11]. The multi-signature of [16] also gives rise to the n-
out-of-n threshold signature, and they in fact showed that essentially the same
tricks work under both security models. We therefore highlight adapting our
techniques in the threshold setting as an interesting direction for future work.
The panorama of aggregate signature from lattices is similar. A three-round
construction by Boneh and Kim [12] requires interactive aggregation, which again
closely follows the BN Schnorr-based scheme. The recent aggregate signature
by Boudgoust and Roux-Langlois [13] requires no interaction between signers
although the asymptotic signature size grows linearly in the number of signers.

2 Preliminaries

Notations. For positive integers a and b such that a < b we use the integer
interval notation [a, b] to denote {a, a + 1, . . . , b}. We also use [b] as shorthand
for [1, b]. We denote by y[j] the j-th component of vector y, and by In the identity
matrix of dimension n. If S is a set we write s ←$ S to indicate sampling s from
the uniform distribution defined over S; if D is a probability distribution we write
s ← D to indicate sampling s from D ; if A is a randomized (resp. deterministic)
algorithm we write s ← A (resp. s := A) to indicate assigning an output from
A to s. For a set S, 〈S〉 denotes a unique encoding of S (e.g., the sequence of
strings in lexicographic order). Throughout, the security parameter is denoted
by λ.

Power-of-Two Cyclotomics and Norms. We instantiate the scheme over
power-of-two cyclotomics. Let N be a power of two and ζ be a primitive 2Nth
root of unity. The 2Nth cyclotomic number field is denoted by K := Q(ζ) ∼=
Q[X]/(XN + 1) and the corresponding ring of algebraic integers is R := Z[ζ] ∼=
Z[X]/(XN + 1). Both are contained in KR := K ⊗ R ∼= R[X]/(XN + 1).
Throughout the paper, we fix q to be a prime satisfying q = 5 mod 8 and let
Rq := Zq[X]/(XN + 1). An Lp-norm for a module element v ∈ Rm is given by
the coefficient embedding: for v = (

∑N−1
i=0 vi,1X

i, . . . ,
∑N−1

i=0 vi,mXi)T , we define

‖v‖p := ‖(v0,1, . . . , vN−1,1, . . . , v0,m, . . . , vN−1,m)T ‖p.
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The Euclidean norm of a vector v = (v1, . . . , vm)T ∈ Rm in the canonical
representation is defined as

‖ϕ(v)‖2 :=
1√
N

·
√ ∑

i∈[n],j∈Z
∗
2N

|ϕj(vi)|2,

where the scaling factor is needed to ensure that ‖ϕ(1)‖ = 1. For power-of-2
cyclotomics, this choice of norm yields that the coefficient embedding and the
canonical embedding are isometric, thus we denote the L2-norm by ‖ · ‖ for both
representations.

We will need the following results on invertibility.

Lemma 1 ([29, Corollary 1.2]). Let N ≥ k > 1 be powers of 2 and q = 2k+1
mod 4k be a prime. Then any y in Rq that satisfies either 0 < ‖y‖∞ < 1√

k
· q1/k

or 0 < ‖y‖ < q1/k has an inverse in Rq.

Lemma 2 ([27, Lemma 2.2]). Let N > 1 be a power of 2 and q a prime
congruent to 5 mod 8. The ring Rq has exactly 2qN/2 − 1 elements without an
inverse. Moreover, every non-zero polynomial a in Rq with ‖a‖∞ <

√
q/2 has

an inverse.

Singular Values. Given a matrix B ∈ Kn×m
R

, let s1(B) (resp., sm(B)) be
the largest (resp., least) singular value of B, i.e., s1(B) = sup{‖Bv‖ : v ∈
Km

R
∧ ‖v‖ = 1} (resp., sm(B) = inf{‖Bv‖ : v ∈ Km

R
∧ ‖v‖ = 1}). For all

v, sm(B)‖v‖ ≤ ‖Bv‖ ≤ s1(B)‖v‖ . If B is a diagonal matrix, i.e., B = σiIm

for some σi ∈ KR, we have that s1(B) = maxi ‖σi‖ and sm(B) ≤ mini ‖σi‖ (the
proof trivially follows from standard bounds, cf. [33]).

Lemma 3. Given a symmetric positive definite matrix B ∈ Km×m
R

, and a
nonsingular matrix

√
B ∈ Km×m

R
such that B =

√
B

√
B

∗
, it holds that

si(B) = (si(
√

B))2 for i = 1,m, and s1(B−1) = (sm(B))−1.

Discrete Gaussian Distribution. Let Σ ∈ Km×m
R

be a symmetric positive
definite matrix, and let

√
Σ ∈ Km×m

R
be a nonsingular matrix such that Σ =√

Σ
√

Σ
∗
. The discrete Gaussian distribution DΣ,c,Λ over a lattice Λ ⊆ Rm with

parameters c and Σ is defined as

ρ√
Σ,c(z) := exp

(
−π‖

√
Σ

−1
(z − c)‖2

)
and Dm√

Σ,c,Λ
(z) :=

ρ√
Σ,c(z)

∑
x∈Λ ρ√

Σ(x)
.

We denote by Dm
Σ,c the discrete Gaussian over Rm, and omit c when c = 0. For

technical reasons, Gaussian sampling will be always be done w.r.t. the canoni-
cal representation, even though the rest of the algorithms will use the coefficient
representation. This is not an issue per se, as the canonical and coefficient embed-
dings are isometric, and our generalized rejection sampling technique holds for
the canonical representation. One should only be careful to use the canonical
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embedding whenever sampling from a Gaussian, and to immediately convert a
fresh sample to the coefficient embedding.

The smoothing parameter ηε(Λ) of a lattice for ε > 0 is the smallest s > 0
such that ρ1/sIm(Λ∗ \ {0}) ≤ ε. For a positive definite matrix

√
Σ, we say that

Σ ≥ ηε(Λ) (i.e., sm(Σ) ≥ ηε(Λ)) if ηε(
√

Σ
−1

Λ) ≤ 1, i.e., if ρ√
Σ

−1(Λ) ≤ ε. The
full version of the paper contains an upper bound on the smoothing parameter
of a uniformly random lattice. Throughout the paper we assume ε = 2−N .

The next lemma extends the classical bound on the norm of a sample from a
discrete ellipsoid Gaussian over the cosets. Its proof is analogous to the original; it
essentially follows observing that DΛ+u,

√
Σ(z) = ρ√

Σ(z)/ρ√
Σ(Λ+u) ∝ ρ√

Σ(z).

Lemma 4 ([1, Lemma 3] adapted to rings and sampling from cosets).
For any 0 < ε < 1, lattice Λ ⊆ Rm, u ∈ Rm, and symmetric positive definite
matrix Σ ∈ Km×m

R
such that sm(Σ) ≥ ηε(Λ),

Pr
[
‖z‖ ≥ s1(

√
Σ)

√
mN : z $←−Dm√

Σ,Λ+u

]
<

1 + ε

1 − ε
2−mN .

The following result is a direct generalization of [35, Theorem 3.3] to the ring
setting. The proof is identical, but we include it in the full version for the sake
of completeness.

Lemma 5. Let Λ ⊂ Rn be a full-rank module lattice, z1, . . . , zm ∈ R arbitrary
elements, and σ1, . . . , σm ∈ K++

R
satisfying σi �

√
2ηε(Λ) ·maxj ‖

√
zjz∗

j ‖ for all
i. Pick y1, . . . ,ym ∈ Kn

R
independently with distributions yi ∼ DΛ+ci,σi

for some
centers ci ∈ Kn

R
, and let y =

∑
i zi ·yi. Then, the distribution of y is statistically

close to DI ·Λ+c,σ where I is the ideal generated by the zi’s, c =
∑

i zi · ci and

σ =
√∑

i

ziz∗
i · σ2

i .

In particular, if the zi’s are coprime (i.e., I = R), the distribution of y statis-
tically close to DΛ+c,σ.

2.1 Assumptions

We restate the two lattice problems over a module that are standard in the liter-
ature: module short integer solution (MSIS) and learning with errors (MLWE).
Note that the latter k elements of s correspond to the error term of MLWE. The
set Sη is defined in Table 2.

Definition 1 (MSISq,k,�,β assumption). Let λ ∈ N be a security parameter.
For a prime q(λ), a bound β = β(λ) > 0 and positive integers k = k(λ),  =
(λ), the MSISq,k,�,β assumption holds if for any probabilistic polynomial-time
algorithm A, the following advantage is negligible in λ.

AdvMSIS
q,k,�,β(A) := Pr

[
0 < ‖x‖ ≤ β ∧ [A|Ik] · x = 0 mod q : A ←$ Rk×�

q ;x ← A(A)
]
.
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Definition 2 (MLWEq,k,�,η assumption). Let λ ∈ N be a security parameter.
For a prime q(λ), and positive integers k = k(λ),  = (λ), η = η(λ), the
MLWEq,k,�,η assumption holds if for any probabilistic polynomial-time algorithm
D, the following advantage is negligible in λ.

AdvMLWE
q,k,�,η(D) := |Pr

[
b = 1 : A ←$ Rk×�

q ; s ←$ S�+k
η ; t := [A|Ik] · s mod q; b ← D(A, t)

]

Pr
[
b = 1 : A ←$ Rk×�

q ; s ←$ S�+k
η ; t ←$ Rk

q ; b ← D(A, t)
]

|.

2.2 Offline-Online Multi-signature

Following [36], we define a two-round multi-signature scheme tailored to the
offline-online paradigm. A multi-signature MS consists of a tuple of algorithms
(Setup,Gen,KAgg,SignOff,SignOn,Agg,Ver).

– Setup(1λ) outputs public parameters pp. Throughout, we assume that pp is
given as implicit input to all other algorithms.

– Gen() outputs a key pair (pk, sk)
– KAgg(L) takes a set of public keys L = {pk1, . . . , pkn} and deterministically

outputs an aggregated public key p̃k.
– SignOff(sk) is an offline signing algorithm that can be run independently

of the message μ to sign. It outputs an offline message off and some state
information st.

– SignOn(st,msgs, sk, μ, {pk2, . . . , pkn}) is an online signing algorithm that takes
as input the state information passed on to by SignOff, offline messages
msgs = {off2, . . . , offn} from cosigners, a secret key sk, a message to sign
μ, and cosigner’s public keys {pk2, . . . , pkn}. It outputs an online message on.
Following the convention introduced in [7], each signer assign indices 1, . . . , n
to the signers, with itself being signer 1. In particular, these indices are merely
local references to each signer and thus they are not identities.

– Agg(on1, . . . , onn) takes online messages as input, and outputs an aggregated
signature σ, which might potentially contain ⊥.

– Ver(p̃k, μ, σ) takes an aggregated key p̃k, a message μ, and a signature σ as
input. It outputs 1 or 0.

Remark 1. Nick et al. [36] additionally defines “an aggregator node” in their
syntax to further optimize communication complexity of the protocol. We omit
this optimization because as we shall see later, our security proof relies on each
signer’s ability to check individual outputs from co-signers.

In this work, we propose a scheme where cosigners may abort (indicated by
on = ⊥ after running SignOn), which is inherent in the FSwA-based interactive
multi-signature [16,20,21]. Hence, a single run of the protocol fails to output
a valid signature with certain probability. To reduce such a correctness error,
we define correctness so that it explicitly handles τ parallel repetitions of the
signing protocol.
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Game 1: MS-CORMS(λ)

1: pp ← Setup(1λ)
2: for i ∈ [1, n] do
3: (pki, ski) ← Gen()
4: for j ∈ [1, τ ] do
5: (offi,j , sti,j) ← SignOff(ski)
6: msgsj := (off1,j , . . . , offn,j)
7: L := {pk1, . . . , pkn}

8: for j ∈ [1, τ ] do
9: for i ∈ [1, n] do

10: oni,j ← SignOn(sti,j ,msgsj \ {offi,j}, ski, μ, L \ {pki})

11: σj ← Agg(on1,j , . . . , onn,j)
12: if ∃j ∈ [1, τ ] : σj �= ⊥ then
13: return Ver(KAgg(L), μ, σj)
14: else
15: return 0

Definition 3 (MS-COR). A two-round multi-signature scheme MS has correct-
ness error δ if

Pr [0 ← MS-CORMS(λ, n, τ)] ≤ δ

where the game MS-CORMS is described in Game 1.

The following definition guarantees unforgeability of a multi-signature
scheme with two rounds of interactions. Note that we explicitly allow the adver-
sary to launch many signing sessions in parallel rather than forcing them to finish
every signing attempt before starting the next one. This models real-world adver-
sarial behaviors that exploit concurrent attacks as observed in Drijvers et al. [18]
It is also crucial for the offline sign oracle OSignOff to not take any message as
inputs, and instead a pair (μ,L) only gets included in the query set Q once
queried to OSignOn.

Definition 4 (MS-UF-CMA). A two-round multi-signature scheme MS is said
to be MS-UF-CMA secure in the random oracle model, if for any PPT adversary
A

AdvMS-UF-CMA
MS (A, λ) := Pr [1 ← MS-UF-CMAMS(A, λ)] ≤ negl(λ)

where the game MS-UF-CMAMS is described in Game 2 and H denotes the ran-
dom oracle.

As a special case, if the adversary makes no queries to the sign oracles OSignOff
and OSignOn in Game 2 and its advantage is negligible, a scheme MS is said to
be MS-UF-KOA (unforgeable against key only attacks).

3 Our MuSig-L Scheme

3.1 Definition of the Scheme

See Protocol 1 for detailed specifications. The basic algorithms, such as
Setup,Gen and Ver closely follow non-optimized version of the Dilithium-G sig-
nature [19]. In the offline phase each party outputs m individual “commit” mes-
sages, followed by their own public key.
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Game 2: MS-UF-CMAMS(A, λ)

1: pp ← Setup(1λ)
2: (pk1, sk1) ← Gen()
3: ctr := 0
4: S := ∅; Q := ∅

5: (L∗, μ∗, σ∗) ← AOSignOn,OSignOff,H(pp, pk1)
6: if (pk1 /∈ L∗) ∨ ((L∗, μ∗) ∈ Q) then
7: return 0
8: return Ver(KAgg(L∗), μ∗, σ∗)

OSignOff

1: ctr := ctr + 1
2: sid := ctr; S := S ∪ {sid}
3: (off, stsid) ← SignOff(sk1)
4: return off

OSignOn(sid,msgs, μ, {pk2, . . . , pkn})
1: if sid /∈ S then return ⊥
2: on ← SignOn(stsid,msgs, sk1, μ, {pk2, . . . , pkn})
3: L := {pk1, . . . , pkn}
4: Q := Q ∪ {(L, μ)}
5: S := S \ {sid}
6: return on

At the beginning of the online phase, a party P1 performs a few sanity checks
on the inputs. First, it checks that the offline messages from other parties do
contain a correct set of co-signer’s public keys. It then checks that its own public
key t1 does not appear in the received messages. As we shall see in the next
section, this is crucial for our security proof to go through, although we are not
aware of any attacks in case duplicates are allowed. Finally, it verifies the sum
of the mth commit messages w(m) has an invertible element. This is to prevent
the adversary from maliciously choosing their shares of commits so that the final
sum w̃ =

∑m
j=1 b(j) · w(j) completely cancels out.

If the inputs look reasonable, P1 proceeds by hashing encoded offline mes-
sages to derive randomness used for sampling Gaussian nonces b(j)’s. Since these
are generated from spherical Gaussian, the algorithm Samp can be efficiently
instantiated with existing samplers such as [24]. It then performs our general-
ized rejection sampling detailed in Sect. 3.2.

3.1.1 Parameters Each element of the secret signing key is chosen from
Sη ⊆ R parameterized by η ≥ 0 consisting of small polynomials: Sη =
{x ∈ R : ‖x‖∞ ≤ η}. As our scheme is defined over a module of dimension  + k
every signing key belongs to S�+k

η .
Moreover the challenge set C ⊆ R parameterized by κ ≥ 0 consists of small

and sparse polynomials, which will be used as the image of random oracles
Hsig and Hagg: C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ}. In particular, a set of differ-
ences C̄ := {c − c′ : c, c′ ∈ C ∧ c �= c′} consists of invertible elements thanks to
Lemma 1.

Finally, correctness requires q > 16σ1n (where n is the number of parties,
cf. Theorem 1) and αηκ2 < σ1 (cf. Lemma 6), and 2k�log2 q� + 1 >  + k is
required by security (cf. Sect. 4.3).
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Protocol 1: MuSig-L

The random oracles Hagg : {0, 1}∗ → C, Hsig : {0, 1}∗ → C, Hnon : {0, 1}∗ → {0, 1}l. 〈S〉 denotes
unique encoding of a set S, e.g., lexicographical ordering. || denotes concatenation of two strings.

Setup(1λ)
1: A ←$ Rk×�

q

2: Ā := [A|Ik]
3: pp := Ā
4: return pp

Gen()
1: s1 ←$ S�+k

η

2: t1 := Ās1 mod q
3: (pk, sk) := (t1, s1)
4: return (pk, sk)

Agg(on1, . . . , onn)
1: if ∃i ∈ [1, n] : zi = ⊥ then
2: return ⊥
3: z :=

∑n
i=1 zi

4: σ := (w̃, z)
5: return σ

KAgg(L)
1: {t1, . . . , tn} := L
2: for i ∈ [1, n] do
3: ai := Hagg(〈L〉, ti)
4: t̃ :=

∑n
i=1 aiti mod q

5: return t̃
Ver(pk, σ, μ)

1: (w̃, z) := σ
2: t̃ := pk
3: c := Hsig(w̃, μ, t̃)
4: if Āz−ct̃ = w̃ mod q∧‖z‖2 ≤ Bn then
5: return 1
6: else
7: return 0

Samp(r)
1: Sample b ∼ Dσb

using randomness r
2: return b

RejSamp(v, z, (b(j))j∈[m])

1: Σ := (σ2
1 + σ2

y

∑m
j=2(b

(j))∗b(j)) · I�+k

2: ρ ←$ [0, 1]

3: if ρ ≥ min

(
D �+k√

̂Σ
(z)

M ·D �+k√
Σ,v

(z)
, 1

)

then

4: return 0
5: return 1

SignOff(sk1)
1: s1 := sk1
2: y(1)

1 ← D�+k
σ1

3: For j ∈ [2,m] : y(j)
1 ← D�+k

σy

4: For j ∈ [1,m] : w(j)
1 := Āy(j)

1 mod q

5: ,1 := (w(1)
1 , . . . ,w(m)

1 )
6: off1 := (t1, ,1 )
7: st1 := (y(1)

1 , . . . ,y(m)
1 , ,1 )

8: return (off1, st1)
SignOn(st1,msgs, sk1, μ, (pk2, . . . , pkn))

1: (ti, ,i )i∈[2,n] := msgs
2: if 〈(ti)i∈[2,n]〉 �= 〈(pki)i∈[2,n]〉 then
3: return ⊥
4: if ∃i ≥ 2 : ti = t1 then
5: return ⊥
6: L := {t1, . . . , tn}
7: a1 := Hagg(〈L〉, t1)
8: t̃ := KAgg(L)
9: W := {ti||,i}i∈[n]

10: (r(j))j∈[2,m] := Hnon(〈W 〉, μ, t̃)
11: b(1) := 1
12: For j ∈ [2,m] : b(j) := Samp(r(j))
13: For j ∈ [1,m] : w(j) :=

∑n
i=1 w(j)

i

14: [w(m)
1 , . . . , w

(m)
k ]T := w(m)

15: if w
(m)
1 /∈ R×

q then
16: return ⊥
17: w̃ :=

∑m
j=1 b(j) · w(j) mod q

18: ỹ1 :=
∑m

j=1 b(j) · y(j)
1

19: c := Hsig(w̃, μ, t̃)
20: v := c · a1 · s1
21: z1 := v + ỹ1

22: if RejSamp(v, z1, (b(j))j∈[m]) = 0 : then
23: z1 := ⊥
24: on1 := (z1, w̃)
25: return on1
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Table 2. Parameters for our multi-signature. Further details can be found in the full
version.

Parameter Description

n Number of parties

τ Number of parallel repetitions

N = poly(λ) A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N -th cyclotomic polynomial

q = 5 mod 8 Prime modulus

w = �log2 q� Logarithm of the modulus

R = Z[X]/(f(X)) Cyclotomic ring

Rq = Zq[X]/(f(X)) Ring

k The height of random matrix A
� The width of random matrix A
B = σ1

√
N(� + k) The maximum L2-norm of signature share zi ∈ R�+k

Bn =
√

nB The maximum L2-norm of combined signature z ∈ R�+k

κ The maximum L1-norm of challenge vector c

C = {c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ} Challenge space where |C| =
(

N
κ

)
2κ

η The maximum L∞-norm of the secret s
Sη = {s ∈ R : ‖s‖∞ ≤ η} Set of small secrets

T = κ2η
√

N(� + k) Chosen to satisfy the hypotheses of Lemma 6

σ1 = σbσy

√
N(2kw + 1)(� + k) Standard deviation of the Gaussian distribution

σy = 29

π
√

π
2

2
Nk q

k
�+k N2

√
(kw + 1) (2 + N + log ((� + k)N)) Standard deviation of the Gaussian distribution

σb = 25/2√
π

· 2
2

Nk N3/2
√

kw + 1 Standard deviation of the Gaussian distribution

Σ̂ = diag(σ1, . . . , σ1) Covariance matrix of the target Gaussian distribution

α = σ1−1
T

Parameter defining M

t =
√

N
(π−1) log2 e

Parameter defining M

M = et/α+1/(2α2) The expected number of restarts until a single party can proceed

Mn = Mn The expected number of restarts until all n parties proceed simultaneously

l Output bit lengths of the random oracle Hnon

3.2 Rejection Sampling

We now describe the rejection sampling algorithm used in the generation of
a partial signature. For the sake of exposition, in this section we ignore the
subscript index i indicating which signer generated a given vector or element, as
we consider the view of only one signer.

To understand the distribution of the response z, we start from analyzing
the distribution of the masking vector ỹ =

∑m
j=1 b(j) ·y(j). The vectors y(j) and

the elements b(j) are sampled according different Gaussian distributions:

– The vectors y(j) ∈ R�+k are sampled from two discrete Gaussians with param-
eters σ1 > σy > 0 so that y(1) has higher entropy:

y(1) $←−D�+k
σ1

∧ y(j) $←−D�+k
σy

for all 1 < j ≤ m .

– The elements b(j) ∈ R, j = 1, . . . , m are all sampled from a discrete Gaussian
with parameter σb > 0 but the first, which is constant:

b(1) ← 1, b(j) $←−Dσb
for all 1 < j ≤ m .

Applying Lemma 5 with b(j) in the place of the zi and y(j) of yi yields that the
masking vector ỹ = y(1) +

∑m
j=2 b(j) · y(j) is distributed according to a discrete

Gaussian with parameter

Σ = s · I�+k ∈ K
(�+k)×(�+k)
R

, where s = σ2
1 + σ2

y ·
m∑

j=2

b(j)
∗
b(j) (1)
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As the products b(j)
∗
b(j) are small and σ1 � σy, we have that Σ ≈ σ2

1 · I�+k.
Generalizing the rejection sampling lemma to the case of sampling from ellipsoid
discrete Gaussians allows to ensure that the distribution of z does not depend on
the b(j), but it is always statistically close to a spherical Gaussian with parameter
σ1. However, as the first message of the protocol is sent in the clear instead of
being committed to like in [16], we also need to make sure that in case of aborts
this message does not leak information about the secret. In such a case, an
adversary knows that the rejected instance was sampled from the coset Λ⊥

ũ (Ā),

where ũ := Ā
(∑

j b(j)y(j)
)

+ c · a · t. Thus we need to further generalize the
rejection sampling technique, to the case in which the adversary always knows
from which coset the response has beet sampled.

Lemma 6 summarizes the rejection sampling technique used in MuSig-L; the
general result can be found in the full version. Its proof is similar to the proof of
the original rejection sampling lemma, but relies on a new result about the con-
centration of the squared norm of ellipsoidal Gaussians. Essentially, we first show
that the behavior of the two distributions is not that different when restricted to
Gaussian samples from cosets. Finally, we extend the original generalized rejec-
tion sampling lemma [26, Lemma 4.7] to consider the case of the behavior of
a pair of distributions over a subset of their domain . Observe that the latter
requires that the measure of the coset does not change significantly. All results
are proved w.r.t. the canonical embedding.

Lemma 6 (Rejection Sampling Algorithm). Let Λ ∈ R�+k be a lattice. Let
α, T,m > 0, ε ≤ 1/2. Define σ1, σb, σy > 0 such that σy > ηε(Λ⊥), σb > ηε(R),
and σ1 ≥ max{αT, σyσb

√
Nm( + k)}.

Consider a set V ⊆ R1×m × Rk × R�+k. Let h : V → [0, 1] be the compo-
sition of three probability distributions h := Db × Du × Dv, where Db returns
{1, b(2), . . . , b(m)} for b(j) $←−Dσb

, Du returns a vector u ∈ Rk, and Dv returns a
vector v ∈ R�+k such that ‖v‖ ≤ T .

Let Σ = (σ2
1 + σ2

y

∑m
j=2 b(j)

∗
b(j)) · I�+k, and Σ̂ = diag(σ2

1 , . . . , σ
2
1). Then, for

any t > 0, M := exp(π/α2 + πt/α), and ε := 2(1 + ε)/(1 − ε) exp(−t2(pi − 1))
the distribution of the following algorithm

RejSamp:
– (b(1), . . . , b(m),u,v) $←−h
– z $←−D�+k√

Σ,v,Λ⊥
u

– with probability 1 − min

(

1,
D �+k√

̂Σ
(z)

M ·D �+k√
Σ,v

(z)

)

, set z := ⊥

– output (z, b(1), . . . , b(m),u,v)
is within statistical distance ε

2M + 2ε
M of the distribution of:

SimRS:
– (b(1), . . . , b(m),u,v) $←−h
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– z $←−D�+k√
̂Σ,Λ⊥

u

– with probability 1 − 1/M , set z := ⊥
– output (z, b(1), . . . , b(m),u,v)

Moreover, RejSamp outputs something with probability larger than 1−ε
M (1 −

4ε
(1+ε)2 ).

Observe that efficient sampling from cosets requires a trapdoor for A, which is
not compatible with a reduction from MSIS with the matrix A. However, we
only use this lemma in the security reduction to prove that honest signing can
be simulated, thus this sampling does not have to be efficient.

Lemma 7. The definition of the signing algorithm of MuSig-L in Protocol 1
with the parameters in Table 2 satisfies the hypotheses of Lemma 6.

The proof of Lemma 7 is a routine calculation, thus we defer it to the full
version of the paper. Observe that the statistical distance is negligible, and the
probability of returning something is larger than 1/M(1 − negl(λ)) as ε = 2−N

and t is set so that exp(−t(π − 1) = 2−N = negl(λ).

3.3 Correctness and Efficiency Analysis

Theorem 1. MuSig-L has correctness error δ =
(
1 − 1

Mn

)τ (1 + negl(λ)) when
defined with the parameters in Table 2, i.e.,

Pr [0 ← MS-CORMS(λ, n, τ)] ≤ δ

where the game MS-CORMS is described in Game 1.

Proof. The correctness game MS-CORMS returns 0 if for every j ∈ [1, τ ] one of
the following five events occurs:

1. The public keys have not been encoded correctly:

bad1 := (〈(ti)i∈[2,n]〉 �= 〈(pki)i∈[2,n]〉) .

By definition of correctness, Pr [bad1] = 0.
2. There is a collision on the public keys:

bad2 := (∃i1, i2 ∈ [1, n] : ti1 = t12) .

The vectors ti are generated as the product of the public matrix Ā times a
secret vector sampled uniformly at random in the set S�+k

η . As Ā = [A|Ik],
multiplication by Ā is injective over the last k coefficients, and by the birthday
argument we obtain the bound Pr [bad2] ≤ n(n−1)

|Sk
η |2 = n(n−1)

ηkN ≤ 2−poly(λ).
3. The invertibility condition is not satisfied:

bad3 := (∃i ∈ [1, n] : w
(m)
1 /∈ R×

q ) .
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Again, the vector w
(m)
1 is the product of the first row of Ā times ȳ :=

∑n
i=1 y(m)

i . As σy ≥ ηε(R)
√

2, Lemma 5 applied component-wise to ȳ guar-
antees that each of its components is statistically close to a Gaussian with
parameter nσy. Thus, by [28, Corollary 7.5] (i.e., Lemma 8) w

(m)
1 is statisti-

cally close to uniform over the entire ring, (and the same for all the signers)
and Lemma 2 ensures that: Pr [bad3] = 2

qN/2 − 1
qN = 2−poly(λ).

4. One of the signers aborts during the RS step:

bad4 := (∃i ∈ [1, n] : RejSamp(v, z1, (b(j))j∈[m]) = 0) .

Lemma 7 shows that the hypotheses of Lemma 6 are satisfied, thus we have:
Pr [bad4] ≤ 1 − [ 1

M + ε+δ2−εδ2
M ]n = 1 − 1

Mn + negl(λ).
5. The aggregated signature does not pass verification:

bad5 := (Ver(KAgg(L), μ, σj) = 0) .

The verification includes two checks, the linear relation and the norm bound.
The former is trivially always satisfied, as the output of the hashes is the
same for all signers once the ordering of the components of the input to each
hash is set (e.g., to the lexicographical ordering). Analogously, the sampling
of the b(j)’s is deterministic once the nonces are computed, thus all the signers
get the same w̃. One only needs to estimate the probability that a honestly
generated z does not satisfy the norm bound.
By Lemma 6 zi is statistically close to a Gaussian with parameter Σ̂ =
σ1I�+k. Hence by Lemma 4 we can bound the norm of zi as: ‖zi‖ ≤
s1(

√
Σ)

√
N( + k) = σ1

√
N( + k) =: B. Since the sum of n independent

Gaussian samples with parameter σ1 is statistically close to Gaussian with√
n · σ1 (Lemma 5), the norm of the aggregate signature can be bound by

Bn =
√

n · B. Finally, we need to ensure that there is no wrap around when
aggregating signatures, i.e., that q/2 > n‖z‖∞. The norm of z can be bounded
as ‖z‖∞ ≤ 8σ1 by substituting m = 1, c = 1, and r = 8σb in Lemma B.6 of
the full version. The bound holds with probability smaller than 2−195. Hence,
q > 16nσ1 is enough to avoid the wrap around in the aggregation. The bound
holds with probability greater than 1 − 2−195. Thus Pr [bad5] ≤ n2−195.

Putting everything together we get that

Pr [0 ← MS-CORMS(λ, n, τ)] =
τ∏

j=1

5∑
i=1

Pr [badi] =

(
1 − 1

Mn
+ n2−195 + negl(λ)

)τ

.

��

3.3.1 Number of Aborts, Round Complexity, and Signature Length
In its standard form, this protocol requires some repetitions to deal with possible
aborts in order to produce a signature. As the probability that a single signer
outputs something is essentially 1

M (cf. Sect. 3.2), successful signing requires
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around Mn rounds, where M = exp(1/(2α2) + t/(2α)). Analogously to [16],
having a small Mn requires α ∝ n. However, as long as n = o(N−4) this does not
imply an increase in the norm of each signature share, as σ1 = O(N4

√
N). Larger

values of n yield an increase of roughly2 O(log(n)) in the signature size when
comparing with Dilithium-G. Standard optimizations are possible. For example,
running parallel executions of the same protocol at once yields at least one
instance in which no signer aborts, thus the protocol is exactly 2-rounds. To this
aim λ · log

(
Mn

Mn−1

)
parallel instances suffice.

The length of the signature only depends on Bn, as a standard optimization is
for signatures to be composed by (c, z) instead of (w̃, z). Verification in this case
amounts to checking c = Hsig(Āz − ct̃, μ, t̃) instead of Āz − ct̃ = w̃ in addition
to the norm check. With this optimization, signatures output by our scheme are
O(N( + k) log(σ1

√
n)) bits long. Relying on a trapdoor to simulate the signing

oracle in the security proof affects the length of the signature, as it yields σy =
O(N2

√
N) and σb = O(N2) (cf. Sect. 4.3). Moreover, our rejection sampling

technique requires σ1 to be larger than σy ·σb, i.e., σ1 = O(N4
√

N). This implies
that signature length is in fact O(N( + k) log(N

√
n)), i.e., larger than a non-

optimized, single-user version of Dilithium-G by a factor O(log(N
√

n)), but equal
to [16]3.

4 Security Proofs

4.1 Reduction to LWE and SIS

For simplicity, we first consider a situation where the adversary does not make
any sign oracle queries, i.e., Qs = 0. Our proof closely follows “the double forking
technique” of [31], except that in our scheme the aggregation coefficients ai’s are
picked from the challenge space C consisting of small and sparse ring elements.
Full security proof is deferred to the full version.

2 Observe that to avoid rejecting valid signatures due to arithmetic overflow q has to
be larger than the size of the coefficients in the aggregated signature, i.e., the size of
the ring has to grow linearly with

√
n too. This is inherent to additively aggregating

signatures. As observed in [16], having a larger q makes MSIS harder, but MLWE

easier. Compensating for it requires increasing N by a factor O
(
1 + log n

log q0

)
, where

q0 is the modulus used in the single party case. However, one usually sets q > 220,
which makes log n

log q0
less than 2 even for billions of users, and allows to neglect this

factor in the signature size estimates.
3 This is not immediately evident from their analysis of the signature length. In fact,

verifiability requires a signature to include the randomness used to generate the
commitments. Such randomness is sampled from a discrete Gaussian of parameter
s, which has to be large enough to be sampled using a trapdoor, i.e., linear in N
(cf. [16, Theorem 2]) times square root of the number of parties (since the sum of n
Gaussian randomness is output as a signature). This adds a factor O(log(N

√
n)) to

their signature length, making it equivalent to ours.
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Theorem 2. MuSig-L is MS-UF-KOA-secure under MSISq,k,�+1,β and
MLWEq,k,�,η assumptions with β = 8κ

√
B2

n + κ3. Concretely, for any PPT
adversary A against MS-UF-KOA that makes at most Q queries to the random
oracles, there exist PPT adversaries B′ and D such that

AdvMS-UF-KOA
MuSig-L (A) ≤ Q(2Q+ 3)

|C| +
2k+1

qkN/2
+ AdvMLWE

q,k,�,η(B′) +

√
Q2

|C| +Q
√

Q · AdvMSIS
q,k,�+1,β(D)

(2)

Proof Sketch. We first sketch the high-level ideas of proof. The complete reduc-
tion algorithms are described in the full version. First, we construct a “wrapper”
B that internally invokes A to obtain a forged signature. The wrapper makes sure
that a crucial query to Hsig with input t̃∗ is only made after the corresponding
query to Hagg, and aborts otherwise (indicated by the badagg flag). Moreover, it
guarantees that no aggregated keys collide with each other, and aborts other-
wise (indicated by the badkcol flag). By the MLWEq,k,�,η assumption, an honestly
generated public key t1 := t∗ = Ās∗ mod q is indistinguishable with a uniformly
random element in Rq. Hence, one can regard the input (A, t∗) as an instance
of the MSISq,k,�+1,β problem.

We then invoke the general forking lemma [7] twice. The first fork happens at
the return value of Hagg : {0, 1}∗ → C (handled by the algorithm D, internally
running C); the second fork happens at the return value of Hsig : {0, 1}∗ → C
(handled by C, internally running B). Hence, after running the wrapper B in
total 4 times, we get four forgeries satisfying the equations

w̃1 = Āz∗
1 − c∗

1

∑

i	=1

aiti − c∗
1a1,1t∗ = Āẑ∗

1 − ĉ∗
1

∑

i	=1

aiti − ĉ∗
1a1,1t∗ mod q (3)

w̃2 = Āz∗
2 − c∗

2

∑

i	=1

aiti − c∗
2a2,1t∗ = Āẑ∗

2 − ĉ∗
2

∑

i	=1

aiti − ĉ∗
2a2,1t∗ mod q (4)

where, in particular, c∗
1 �= ĉ∗

1, c∗
2 �= ĉ∗

2, and a1,1 �= a2,1 thanks to the forker
algorithms FB and FC , respectively. Rearranging the above equations, we get
that

Āz̄1 − c̄1
∑

i	=1

aiti − c̄1a1,1t∗ = 0 mod q (5)

Āz̄2 − c̄2
∑

i	=1

aiti − c̄2a2,1t∗ = 0 mod q (6)

where z̄i = z∗
i − ẑ∗

i and c̄i = c∗
i − ĉ∗

i for i = 1, 2, respectively. By multiplying
the first equation by c̄2 and the second by c̄1, the second terms cancel out. This
gives us

Ā(c̄2z̄1 − c̄1z̄2) − c̄1c̄2āt∗ = 0. (7)

where ā = a1,1 − a2,1. Since c̄1, c̄2, and ā are all non-zero and none of them are
zero-divisors thanks to Lemma 1, c̄1c̄2ā is guaranteed to be non-zero. Moreover,
both c̄2z̄1 − c̄1z̄2 and c̄1c̄2ā have relatively small L2-norms. Thus we obtain a
valid solution to SIS w.r.t. the instance matrix [A|Ik|t∗].
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4.2 Switching Lemma

Before sketching our CMA security proof, we first prove a simple yet very pow-
erful technical lemma. Let us first recall a regularity lemma in the ring setting.

Lemma 8 (Corollary 7.5 of [28]). Let F (X) be the 2N -th cyclotomic poly-
nomial and let R = Z[X]/(F (X)) and Rq = R/qR. For positive integers
k ≤ n ≤ poly(N), let Ā = [A|Ik] ∈ Rk×n

q , where Ik ∈ Rk×k
q is the identity matrix

and A ∈ R
k×(n−k)
q is uniformly random. Then with probability 1 − 2−Ω(N) over

the choice of A, the distribution of Āx ∈ Rk
q , where x ←$ Dn

σ with parameter
σ > 2N ·qk/n+2/(Nn), satisfies that the probability of each of the qNk possible out-
comes is in the interval (1 ± 2−Ω(N))q−Nk. In particular, it is within statistical
distance 2−Ω(N) of the uniform distribution over Rk

q .

As a consequence, we obtain the following switching lemma. This will make
the hybrid arguments for simulation significantly modular as we shall see soon.

Lemma 9 (Switching lemma). Let R,N, q, k, n and σ be as in Lemma 8.
Consider the following two algorithms:

A0: A ←$ R
k×(n−k)
q ; x ← Dn

σ ; u = [A|Ik] · x mod q; output (A,x,u).
A1: A ←$ R

k×(n−k)
q ; u ←$ Rk

q ; x ← Dn
Λ⊥

u (Ā),σ
; output (A,x,u).

Then Δ(A0,A1) = 2−Ω(N).

Proof. Let (Ai,Xi, Ui) be random variables corresponding to outputs of Ai. For
any fixed A ∈ R

k×(n−k)
q , x ∈ Rn

q and u ∈ Rk
q , we have

Pr
[
(A0,X0, U0) = (A,x,u)

]
= Pr[A0 = A] · Pr[X0 = x] ·

[
u = Āx mod q

]

=
1

|Rk×(n−k)
q |

· Dn
σ (x) ·

[
x ∈ Λ⊥

u (Ā)
]

where we have let Ā = [A|Ik], and
[
u = Āx mod q

]
=

[
x ∈ Λ⊥

u (Ā)
]

is the
Iverson bracket notation: it has value 1 if the condition is met and 0 otherwise.
Thus, the probability is 0 if x �∈ Λ⊥

u (Ā), and for x ∈ Λ⊥
u (Ā), we have:

Pr
[
(A0,X0, U0) = (A,x,u)

]
=

1

|Rk×(n−k)
q |

· ρσ(x)
ρσ(Rn)

=
1

qNk(n−k)
· ρσ(x)
ρσ(Λ⊥

u )
· ρσ(Λ⊥

u )
ρσ(Rn)

=
1

qNk(n−k)
· DΛ⊥

u (Ā),σ(x) · ρσ(Λ⊥
u )

ρσ(Rn)
.

In particular, summing over all possible choices of x for a fixed A, we see that:

ρσ(Λ⊥
u )

ρσ(Rn)
= Pr

x∼Dn
σ

[
u = Āx mod q

]
.
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We denote this probability HA,σ(u). In other words, HA,σ is the probability
distribution over Rk

q given by Ā ·Dn
σ mod q. To sum up, we have shown that for

all (A,x,u):

Pr
[
(A0,X0, U0) = (A,x,u)

]
=

{
Dn

Λ⊥
u (Ā),σ

(x) · HA,σ(u)
qNk(n−k) ifx ∈ Λ⊥

u (Ā),

0 ifx /∈ Λ⊥
u (Ā).

On the other hand, still for fixed A,u,x, we have:

Pr
[
(A1,X1, U1) = (A,x,u)

]
=

1

|Rk×(n−k)
q |

· 1
|Rk

q | · Dn
Λ⊥

u (Ā),σ(x)

=
1

qNk(n−k)
· 1
qNk

· Dn
Λ⊥

u (Ā),σ(x),

and in particular this probability is non zero only for vectors x ∈ Λ⊥
u (Ā). There-

fore, the statistical distance Δ(A0,A1) can be written as:

Δ(A0, A1) =
∑

A,u,x

∣∣∣ Pr
[
(A0, X0, U0) = (A,x,u)

] − Pr
[
(A1, X1, U1) = (A,x,u)

]∣∣∣

=
∑

A∈R
k×(n−k)
q ,u∈Rk

q

1

qNk(n−k)

∑
x∈Λ⊥

u (Ā)

Dn
Λ⊥

u (Ā),σ(x) ·
∣∣∣HA,σ(u) − 1

qNk

∣∣∣

=
∑

A∈R
k×(n−k)
q

1

qNk(n−k)

∑
u∈Rk

q

∣∣∣HA,σ(u) − 1

qNk

∣∣∣

=
∑

A∈R
k×(n−k)
q

1

qNk(n−k)
Δ

(
HA,σ,URk

q

)
,

for URk
q

the uniform distribution on Rk
q . Now Lemma 8 says that there exists a

subset S ⊂ Rk×(n−k)
q of cardinality at most 2−Ω(N)|Rk×(n−k)

q | such that for all
A �∈ S, we have Δ

(
HA,σ(u),URk

q

)
= 2−Ω(N). As a result:

Δ(A0,A1) =
∑

A∈S

1
qNk(n−k)

Δ
(
HA,σ,URk

q

)
+

∑

A	∈S

1
qNk(n−k)

Δ
(
HA,σ,URk

q

)

≤ |S|
qNk(n−k)

· 1 + 1 · 2−Ω(N) ≤ 2−Ω(N)

as required. ��

4.3 Simulating Nonces via Trapdoor Sampling

As a first step towards CMA security, recall that our goal is to simulate the view
of the adversary interacting with an honest singer P1. This essentially amounts to
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simulating the distribution of the offline messages (w(j)
1 )j∈[m], nonces (b(j))j∈[m],

challenge c, and z1, such that they satisfy the condition:

Āz1 − c · a1 · t1 =
m∑

j=1

b(j)w(j)
1 mod q. (8)

From our rejection sampling lemma (Lemma 6), we can indeed simulate c

and z1, and thus they already determine the sum w̃1 :=
∑m

j=1 b(j)w(j)
1 mod

q. However, since the offline commit messages w(j)
1 must be handed over to

the adversary before the simulator sees adversary’s commitments w(j)
i , we are

restricted to generating b(j)’s such that they “explain” the above constraint for
already fixed (w(j)

1 )j∈[m] and w̃1.
More concretely, after OSignOff outputs w(j)

1 , whenever the simulator
receives a query to Hnon or the online oracle OSignOn with adversarially chosen
w(j)

i and μ as inputs, the simulator already has to prepare c, z1 as well as b(j)

satisfying (8), and then program the random oracles Hnon and Hsig such that
they output b(j)’s and c, respectively.4 We overcome this technical hurdle by
making use of lattice-based trapdoor sampling. For readability we will drop the
party index “1” for the rest of this subsection.

Recall that the first “commit” messages are computed as w(j) := Āy(j) for
j = 1, . . . , m. From the regularity result (Lemma 8), they are statistically indis-
tinguishable with matrices uniformly sampled from Rk×m

q . Now let us define
suitable trapdoor generator and sampling algorithms to perform sign oracle
simulation. To sample the vector b := [b(2), . . . , b(m)], we take advantage of
the gadget-based trapdoor (Ring-)SIS inversion algorithm of [34]. (Recall that
b(1) = 1 so we only need to sample m − 1 elements.) Let W := [w(2), . . . ,w(m)]
be the parity check matrix for which we would like to obtain a trapdoor. For inte-
gers k,w = �log2 q�,m′ = kw + 1, let m = 2kw + 1. Let gT = [1, 2, 4, . . . , 2w−1]
be a gadget vector and G = Ik ⊗g ∈ Rk×kw be the corresponding gadget matrix.
Then the Micciancio-Peikert trapdoor can be directly applied as follows.

– TrapGen(1λ): It samples a uniformly random matrix [w(2), . . . ,w(kw+1)] ∈
Rk×kw

q . It sets W̄ = [w(2), . . . ,w(kw+1)] and samples the trapdoor matrix
R ∈ Rkw×kw following the Gaussian Dkw×kw

s̄ with parameter s̄. Then the
parity check matrix is defined as

W = [W̄|G − W̄R] ∈ Rk×2kw
q . (9)

It outputs (W,R).
– TrapSamp(R,w′, σb): Given a target vector w′ ∈ Rk, it samples a vector b ∈

R2kw = Rm−1, whose distribution is statistically close the discrete Gaussian
Dm−1

Λ⊥
w′ (W),σb

supported on the lattice coset

4 Note that once b(j)’s are simulated, finding corresponding uniform randomness r(j)’s
are easy assuming that the Samp algorithm is “sampleable” [14]. Such a property
can be for example satisfied by simple CDT-based samplers.
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Λ⊥
w′(W) := {x ∈ R2kw : W · x = w′ mod q}. (10)

This can be instantiated with [34, Alg. 3] or its adaptation in the module
setting [10]. Note that efficiency of the sampler does not matter here, since
trapdoor Gaussian sampling operations are only required by simulation, and
parties in the actual protocol are never asked to do so.

4.3.1 Indistinguishability of W Output by TrapGen We show that m
columns of the parity check matrix W generated as above is indistinguishable
with [w(2), . . . ,w(m)] in the actual protocol. We apply the regularity lemma
twice to argue that w(2), . . . ,w(m) are uniform both in the actual protocol and
in TrapGen, up to an negligible error.

– In the actual protocol, the distribution of w(2) = Āy(2), . . . ,w(m) = Āy(m)

is statistically close to uniform over Rk×2kw
q if

σy > 2N · qk/(�+k)+2/(N(�+k)) (11)

as required by Lemma 8. Note that, since the matrix Ā is reused, the statis-
tical distance grows linearly in m. The same remark applies to W̄R below.

– We now check the distribution of W output by TrapGen. By construction, the
distribution of kw columns W̄ = [w(2), . . . ,w(kw+1)] are uniform over Rk×kw

q .
As Lemma 8 requires a matrix to contain an identity submatrix, we need to
bound the probability that W̄ contains no invertible submatrix, i.e., W̄ is
not full rank. As our scheme assumes q = 5 mod 8, we can use Lemma 2 to
argue this only happens with negligible probability (see full version for formal
analysis). Hence, we can indeed apply Lemma 8 to guarantee the distribution
of W̄ · R is statistically close to uniform over Rk×kw

q if

s̄ > 2N · q1/w+2/(Nkw). (12)

4.3.2 Indistinguishability of b(j)’s Output by TrapSamp To sample from
spherical Guassian with parameter σb, the gadget-based TrapSamp algorithm
requires σb ≈ s1(R) · s1(

√
ΣG) [34, §5.4] where

√
ΣG is a parameter used when

performing Gaussian sampling from a coset Λ⊥
w′(G). As ΣG is a constant, we

only need to evaluate s1(R), which is s̄ ·O(
√

Nkw+
√

Nk log2 q) from [34, §5.2].
Together with the condition (12) on s̄ required by regularity, one can bound the
parameter σb.

4.4 Oracle Simulation Lemma

Now let us turn to our main goal: security against adversaries that make concur-
rent chosen-message queries. For our honest party oracle simulator to succeed,
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Algorithm 1: Simulation of honest signing algorithm

T (Ā, a, s, t)
// Offline

1: for j ∈ [1,m] do
2: if j = 1 then
3: y(1) ← D�+k

σ1

4: b(1) := 1
5: else
6: y(j) ← D�+k

σy

7: b(j) ← Dσb

8: w(j) := Āy(j) mod q

9: ỹ :=
∑m

j=1 b(j)y(j)

// Online
10: c ←$ C
11: v := c · a · s
12: z := v + ỹ
13: ρ ←$ [0, 1)

14: if ρ > min

(
D �+k√

̂Σ
(z)

M ·D �+k√
Σ,v

(z)
, 1

)

then

15: z := ⊥
16: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

S(Ā, a, t)
1: w(1) ←$ Rk

q

2: ([w(2), . . . ,w(m)],R) ← TrapGen(1λ)
3: z ← D�+k√

̂Σ

4: c ←$ C
5: w′ := Āz − c · a · t − w(1)

6: b(1) := 1
7: (b(2), . . . , b(m)) ← TrapSamp(R,w′, σb)
8: ρ ←$ [0, 1)
9: if ρ > 1/M then

10: z := ⊥
11: return (Ā, a, t, (w(j), b(j))j∈[m], c, z)

we need the following lemma. It can proved via standard hybrid arguments,
by invoking the switching lemma multiple times, indistinguishability of TrapGen
and TrapSamp as stated above, and our generalized rejection sampling lemma
(Lemma 6). Conditions on the parameters are detailed in the full version.

Lemma 10. Let σ1, σy, σb, Σ, Σ̂,M be parameters satisfying conditions in
Lemma 6 and Sect. 4.3. Suppose q = 5 mod 8 as in Lemma 2. Let A ←$ Rk×�,
Ā := [A|Ik], s ∈ S�+k

η , t := Ās, a ∈ C. The output distributions of T and S in
Algorithm 1 are statistically indistinguishable.

Proof. We prove via standard hybrid arguments. Each hybrid is detailed in the
full version.

– Hyb0 is identical to T .
– Hyb1 is identical to Hyb0, except that w(j)’s are sampled uniformly

and y(j)’s are sampled from Gaussian defined over a coset Λ⊥
w(j)(Ā) =

{x ∈ Rk+� : Āx = w(j) mod q}. From Lemma 9, Hyb0 and Hyb1 are statis-
tically close.

– Hyb2 is identical to Hyb1, except that ỹ, a linear combination of y(j)’s, is
directly sampled from Gaussian over a coset Λ⊥

w̃(Ā), where w̃ =
∑

j b(j)w(j)

mod q. From Lemma 5, Hyb1 and Hyb2 are statistically close.
– Hyb3 is identical to Hyb2, except that z is sampled from Gaussian over a coset

Λ⊥
u centered at v, where u = w̃ + c · a · t and v = c · a · s. Clearly, the output

distributions of Hyb2 and Hyb3 are equivalent.
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– Hyb4 is identical to Hyb3, except that z is sampled from Gaussian over a
coset Λ⊥

u centered at 0 and it is output with constant probability 1/M . From
Lemma 6, Hyb3 and Hyb4 are statistically close.

– Hyb5 is identical to Hyb4, except that w′ = w̃ − w(1) is uniformly sampled
from Rk

q and a vector [b(2), . . . , b(m)] is sampled from spherical Gaussian over
a coset Λ⊥

w′(W), where W = [w(2), . . . ,w(m)]. From Lemma 9, Hyb4 and
Hyb5 are statistically close.

– Hyb6 is identical to Hyb5, except that z is sampled from Gaussian over R�+k
q

and w̃ is defined as w̃ = Āz − c · a · t. From Lemma 9, Hyb5 and Hyb6 are
statistically close.

– Hyb7 is identical to Hyb6, except that a matrix [w(2), . . . ,w(m)] is generated
with the corresponding trapdoor R. From indistinguishability of the TrapGen
algorithm, Hyb6 and Hyb7 are statistically close.

– Hyb8 is identical to Hyb7, except that a vector [b(2), . . . , b(m)] is sampled using
the trapdoor sampling algorithm. From indistinguishability of the TrapSamp
algorithm, Hyb7 and Hyb8 are statistically close.

Note that the distribution output by Hyb8 is identical to one by S. This concludes
the proof. ��

4.5 MS-UF-CMA Security of MuSig-L

Given the oracle simulation lemma, we are finally ready to conclude with our
main theorem.

Theorem 3. If MuSig-L is MS-UF-KOA-secure, then it is MS-UF-CMA-secure.
Concretely, for any PPT adversary X against MS-UF-KOA that makes at most
Qh queries to the random oracles and in total Qs queries to OSignOff and
OSignOn, there exists PPT adversary A such that

AdvMS-UF-CMA
MuSig-L (X ) ≤ 2(Qh + Qs)2 ·

(
1 + 2−Ω(N)

qkN

)m

+
(2Qh + Qs)2

ρσb
(R)

+ e · (Qs + 1) ·
(
Qs · εs + AdvMS-UF-KOA

MuSig-L (A)
)

where εs is determined by the statistical distance of Lemma 10.

Proof Sketch. We sketch the high-level ideas. Full security proof is deferred to
the full version. We denote by H′

agg,H
′
non,H

′
sig (resp. Hagg,Hnon,Hsig) the random

oracles in the MS-UF-CMA game (resp. MS-UF-KOA game), respectively. On a
high-level, we simulate the adversary’s view by first producing a trapdoor for the
outputs of OSignOff, and then answer every query to OSignOn and Hnon using
a known trapdoor. In a bit more detail:

– OSignOff: For every concurrent session launched by the adversary, it stores in
table WT party 1’s commit messages [w(j)

1 , . . . ,w(m)
1 ] with a known trapdoor

R produced by the TrapGen algorithm.



302 C. Boschini et al.

– H′
non: Whenever it receives a query of the form ({ti||comi}i∈[n], μ, t̃), it first

makes sure that (1) there is no duplicate honest keys in the input, (2)
the mth sum of commit message contains an invertible element, and (3)
com1 = [w(j)

1 , . . . ,w(m)
1 ] (i.e., a commit message appended to the honest

party’s key t1) has been previously produced by OSignOff. It does (3) by
looking up the table WT, and if it finds a suitable trapdoor R associated
with the corresponding session ID, H′

non internally performs simulation fol-
lowing the procedures of Algorithm 1, and then programs outputs of the
random oracles H′

sig and H′
non accordingly. A simulated signature is finally

stored in the table ST.
– OSignOn: When the online oracle is queried, it always invokes H′

non first and
checks whether a simulated signature is recorded in ST. The simulation suc-
ceeds if that is the case, and aborts otherwise. The reason for aborts is that
H′

non must not produce simulated signatures for all queries, because it might
be that the adversary will later submit a forgery based on the challenge c
programmed inside H′

non. If that happens, the output of the external RO Hsig

is not consistent with that of H′
sig anymore, and thus the reduction cannot

win the MS-UF-KOA game. However, this issue can be handled by having
H′

non perform simulation only probabilistically, a proof technique similar to
[18] and [16]. Such “bad challenges” are then kept in the table CT, and we
evaluate the probability that the adversary does not use bad challenge to
create a forgery.

– Note that this is exactly where appended public keys come in to play,
and interestingly, they are crucial for proving security in the offline-online
paradigm. Consider a modified scheme where H′

non does not take individual
public keys, i.e., it simply derives randomness via H′

non(〈comi〉i∈[n], μ, t̃). It
is easy to see that the simulator would have a hard time looking up the
right trapdoor to perform simulation: say OSignOff has produced (com1,R)
in session 1 and (com′

1,R
′) in session 2, respectively. Now, if the adversary

queries H′
non with input ((com1, com′

1), μ, t̃) there is no way for the simula-
tor to determine which trapdoor should be used for performing simulation to
sign a queried message μ. E.g. if the simulator uses a trapdoor R, and the
adversary later queries OSignOn in session 2 with μ and com1 (by malicously
claiming com1 to be adversary’s offline commit), a signature previously simu-
lated by H′

non is clearly invalid. Essentially the same issue happens if t1 occurs
multiple times in the key list L.
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Abstract. Blind signatures, proposed by Chaum (CRYPTO’82), are
interactive protocols between a signer and a user, where a user can
obtain a signature without revealing the message to be signed. Recently,
Hauck et al. (EUROCRYPT’20) observed that all efficient lattice-based
blind signatures following the blueprint of the original blind signature by
Rükert (ASIACRYPT’10) have a flawed security proof. This puts us in a
situation where all known lattice-based blind signatures have at least two
of the following drawbacks: heuristic security; 1 MB or more signature
size; only supporting bounded polynomially many signatures, or being
based on non-standard assumptions.

In this work, we construct the first round-optimal (i.e., two-round)
lattice-based blind signature with a signature size roughly 100 KB
that supports unbounded polynomially many signatures and is prov-
ably secure under standard assumptions. Even if we allow non-standard
assumptions and more rounds, ours provide the shortest signature size
while simultaneously supporting unbounded polynomially many signa-
tures. The main idea of our work is revisiting the generic blind signature
construction by Fischlin (CRYPTO’06) and optimizing the commit-then-
open proof using techniques tailored to lattices. Our blind signature is
also the first construction to have a formal security proof in the quan-
tum random oracle model. Finally, our blind signature extends naturally
to partially blind signatures, where the user and signer can include an
agreed-upon public string in the message.

1 Introduction

1.1 Background

Blind signatures, originally proposed by Chaum [23], are interactive protocols
between a signer and a user, where a user can obtain a signature without reveal-
ing the message to be signed to the signer. Blind signatures satisfy two security
notions: one-more unforgeability and blindness. One-more unforgeability states
that if a malicious user engages only in at most � (possibly concurrent) signing
c© International Association for Cryptologic Research 2022
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sessions with the signer, then it cannot output more than � signatures. Blind-
ness states that a malicious signer can neither learn the message during the
signing session nor link a particular message-signature pair to a particular sign-
ing session. The typical applications of blind signatures include e-cash [23,25,43],
anonymous credentials [19,21], e-voting [24,32], and so on, and more recently,
it has found exciting applications in the context of adding privacy features to
blockchains [50] and privacy-preserving authentication tokens [1].

In this paper, we focus on one class of blind signatures that has recently
attracted a lot of attention: lattice-based blind signatures; currently the only
known class of blind signatures believed to withstand quantum attacks for
other related works). The first lattice-based blind signature was proposed by
Rükert [47], who followed a design paradigm similar to the classical Schnorr
or Okamoto-Schnorr blind signatures [45,48]. The blind signature consists of
three rounds and supports poly-logarithmically many signatures (in the secu-
rity parameter λ) before having to regenerate the verification key. This general
approach has been extended and optimized in subsequent works [8–10,36,44],
where BLAZE+ by Alkadri et al. [10] currently stands as the most efficient pro-
posal. However, recently, Hauck et al. [34] showed that all constructions following
the blueprint of Rükert’s blind signature contain the same bug in their security
proof1, consequently leaving them only heuristically secure at best. Building
on Rükert’s blind signature and optimizations employed by BLAZE+, Hauck et
al. managed to construct the first provably secure lattice-based blind signature.
Unfortunately, the security proof required very large parameter sets, and their
proposal resulted in a signature size of roughly 7.9 MB with a communication
cost of 34 MB and supported only 7 signatures per verification key. Thus, the
work of Hauck et al. [34] reopened the question of building efficient and provably
secure lattice-based blind signatures.

Very recently, two works aimed at solving this. One by Agrawal et al. [5].
Instead of following the three-move structure seen in Schnorr’s blind signa-
ture [48], Agrawal et al. builds on Fischlin [31] and Garg et al. [33] that provide
a generic construction of a two-move (i.e., round-optimal) blind signatures. Con-
cretely, they propose two constructions. One produces a short signature in the
range of a few KB with a communication cost of around 50 MB but comes with
several caveats: the scheme can support only bounded polynomially many signa-
tures; blindness only holds against very honest signers (i.e. the public key must
be generated honestly and the signer cannot deviate from the protocol), and
the scheme is only heuristically secure as it needs to homomorphically evaluate
a standard signature scheme that internally uses a hash function modeled as a
random oracle. The second can support unbounded polynomially many signa-
tures and blindness holds against honest signers (i.e. the public key must be
generated honestly but the signer can deviate from the protocol) but it requires
a new non-standard hardness assumption called the one-more-inhomogeneous

1 Alkadri et al. [8] claims to have fixed the bug of BLAZE+ (and thus by Rükert) but
we have found several errors in their security proof. This has been confirmed by the
authors through personal communication.
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SIS assumption. Moreover, the signature size becomes as large as 1 MB2,3, while
the communication cost is lowered to a few KB. The other work is by Lyuba-
shevsky et al. [39]. They propose a round-optimal blind signature based on a new
approach using one-time signatures and OR-proofs. Unlike [5], the security of
their blind signature is based on the standard hardness of the MSIS and MLWE
assumptions. However, the scheme only supports bounded polynomially many
signatures with a signature size of roughly 150 KB. The communication cost
is around 16 MB and the signer running time scales linearly in the maximum
number of signatures that can be signed.

In summary, all known lattice-based blind signatures have at least two of
the following drawbacks: heuristic security; 1 MB or more signature size; only
supporting bounded polynomially many signatures, or based on non-standard
assumptions. This leaves open the following natural question:

Can we construct an efficient and provably secure lattice-based blind signa-
ture supporting unbounded polynomially many signatures based on standard
assumptions?

As an independent interest, we also note that all provably secure lattice-based
blind signatures mentioned above are only proven secure against classical adver-
saries in the classical random oracle model (ROM). Indeed, most strategies used
to prove security completely break down when handling quantum adversaries
in the quantum ROM (QROM). Although we do not imagine all previous con-
structions can be broken using quantum adversaries, considering that one of the
main appeals of lattice-based cryptography is their resilience against quantum
adversaries, we believe any formal post-quantum security guarantee is highly
desirable.

1.2 Our Contribution

In this work, we answer the above question in the affirmative. We construct the
first round-optimal lattice-based blind signature with a signature size roughly
100 KB that supports unbounded many signatures and is provably secure under
standard assumptions. Even if we allow non-standard assumptions and more
rounds, ours provide the shortest signature size while also supporting unbounded
many signatures. The communication cost currently sits at 850 KB, but as
we explain later, we believe by using the right non-interactive zero-knowledge

2 Agrawal et al. provide an informal estimate of 30 KB to 100 KB and states to use
the NIZK by [29,41]. However, considering that their security proof relies on an exact
proof for a relation Cs = u for a large matrix C (since the authors argue that C is
indistinguishable from uniform with the leftover hash lemma) and a witness s with
entries as large as Ω(

√
q), even an optimistic estimate gives a lower bound of 1 MB

with current lattice-based NIZKs.
3 After submission of this paper, Agrawal et al. updated their paper to use the NIZK

by Lyubashevsky et al. [40] appearing at CRYPTO 2022. See [6] work for more
detail.
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(NIZK) proofs, we could cut this down to roughly 100 KB while maintaining the
same signature size. The security of our blind signature is established both in the
classical ROM and QROM. It is secure against malicious signers, where blind-
ness holds even when the signer can register malicious keys and deviate from the
protocol. Moreover, our scheme can be easily transformed into a partially blind
signature [2]. This allows the user and signer to include a common agreed-upon
message into the signature and has proven to be useful in applications such as
e-cash [23,25,43] and e-voting [24,32].

We obtain our blind signature by a new generic construction tailored to lat-
tices. The starting point of our work is the generic round-optimal blind signature
construction by Fischlin [31]. The signature in Fischlin’s blind signature consists
of a complex NIZK proof that informally proves possession of two things: a signa-
ture from a standard signature scheme and an opening to a commitment. At the
heart of our generic construction is a technique inspired by del Pino et al. [27]
that allows us to transform such complex statement into a simple lattice state-
ment consisting only of proving possession of a short vector. Consequently, we
can rely on well-known efficient lattice-based NIZKs such as those by Lyuba-
shevsky [37,38] to generate the signature.

One tool required by our generic construction is a multi-proof straight-line
extractable NIZK [16],4 which is used by the user to prove the well-formedness of
its first message sent to the signer. Informally, such an NIZK guarantees the exis-
tence of an extractor that, on input a simulation trapdoor and any adaptively
chosen proofs, outputs the corresponding witnesses. This is in sharp contrast
to standard NIZKs in the (Q)ROM where witness extraction is performed via
rewinding [14,45]. If we were to rely on rewinding-based extractions, our security
proof would incur an exponential security loss in the number of signing sessions,
and result in a scheme that can only support poly-logarithmically many sig-
natures. Similar issues crop up in the context of IND-CCA secure public key
encryptions [15,49] and group signatures [16]. In this work, to construct such
strong NIZKs for relatively complex lattice-based statements, we rely on the
recent technique of extractable linear homomorphic commitments proposed by
Katsumata [35].

Finally, we highlight that due to the modularity of our generic construction,
any future improvements in lattice-based NIZKs may lead to more efficient blind
signatures. For instance, if we were able to combine the technique of Katsumata
with the recent efficient lattice-based NIZKs [11,29], then we could potentially
reduce the communication cost from 850 KB to roughly 100 KB. We leave further
optimized instantiations of our generic construction as an interesting future work.

1.3 Technical Overview

We give an overview of our techniques in two parts. In Part 1, we explain the
high level idea of our generic construction and in Part 2, we explain how to
instantiate the building blocks.

4 This notion is also called online extractable in the literature.
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Part 1. We first explain our generic construction tailored to lattices.

Blind Signature by Fischlin. Our starting point is the generic construction
of blind signatures by Fischlin [31]. The blind signature is round optimal and
supports polynomially many signatures. His generic construction relies on gen-
eral NIZKs for a complex statement and the proof overhead (i.e. signature size)
becomes prohibitively large when instantiated using known lattice-based NIZKs.
Our goal is to replace this complex statement with a lattice-friendly statement.

We first recall Fischlin’s construction. In his construction, the signer pub-
lishes a verification key of a standard signature scheme as the verification key
vk of the blind signature and keeps the corresponding signing key sk secret. If
a user wants the signer to blindly sign on message M, it submits a commitment
com ← Com(M; rand) to the signer and obtains a signature σ

$← Sig(sk, com).
The user then constructs a ciphertext ct ← Enc(ek, com‖rand‖σ; rand′) using a
PKE scheme and constructs an NIZK proof π that proves

com = Com(M; rand) ∧ Verify(vk, σ, com) = �
∧ ct = Enc(ek, com‖rand‖σ; rand′), (1)

where the statement is (vk, ek, ct,M) and the witness is (com, rand, σ, rand′).
Finally, the user outputs Σ = (π, ct) as the blind signature. Here, we assume ek is
pseudorandom and is generated as an output of the random oracle. This ensures
that nobody, including a malicious signer, knows the corresponding decryption
key dk of the PKE scheme in the real-world. dk is only used during the secu-
rity proof of one-more unforgeability, where the reduction uses dk to decrypt
com‖rand‖σ from ct.

Although it is theoretically possible to instantiate Fischlin’s generic construc-
tion from lattices, the main bottleneck is constructing an efficient lattice-based
NIZK for Eq. (1). Agrawal et al. [5] attempts to heuristically5 instantiate Fis-
chlin’s generic construction based on Dilithium [28], one of the most efficient
lattice-based signatures, but they estimated the signature to require at least
100 KB with prover complexity approaching 1 h.

Lattice-Friendly Enc-then-Prove by del Pino et al. The main complexity
of Eq. (1) comes from the need to show possession of a valid signature on a
hidden message (i.e. com). Roughly, this is because we do not have a lattice-
based signature whose verification algorithm is compatible with known efficient
lattice-based NIZKs. Now, although not exactly what we require, we observe that
a technique used by del Pino et al. [27] for constructing efficient group signatures
comes close to what we need.

A group signature allows a user to anonymously sign on behalf of a group,
while a special entity called a group manager can deanonymize the signer should
the need arise. A typical recipe for constructing a group signature is the enc-
then-prove paradigm [20]. Each group user is assigned an identity I ∈ [N ], where
5 Their NIZK requires evaluating a hash function used by Dilithium which is modeled

as a random oracle. Considering that a random oracle does not have a function
description in the ROM, this approach fails to provide any form of provable security.
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N = poly(λ) is the size of the group, and the group manager provides a signature
σ

$← Sign(sk, I); this serves as a certificate for user I belonging to the group. To
sign on behalf of the group, user I constructs a ciphertext ct ← Enc(ek, I; rand′)
using a PKE scheme and constructs an NIZK proof π that proves

Verify(vk, σ, I) = � ∧ ct = Enc(ek, I; rand′), (2)

where the statement XGS is (vk, ek, ct) and the witness WGS is (σ, I, rand′). Note
that NIZKs based on the Fiat-Shamir paradigm allows to bind any message M
to a proof π so π indeed serves as a signature for M. Although Eq. (2) seems
simpler than Eq. (1), it serves our purpose since it still includes the most complex
component, which is proving a valid signature on a hidden message (i.e. I).

We briefly go over the group signature by del Pino et al. [27]. They use
Boyen’s lattice-based signature [4,18] as the underlying signature scheme. In
Boyen’s signature, the verification key consists of a random element u ∈ Rq and
vectors (a1,a2) ∈ Rk

q × Rk
q , where Rq is the polynomial ring Zq[X]/(Xd + 1).

The signing key sk is a short basis Ta1 ∈ Rk×k such that a1Ta1 = 0 mod q. To
give out a credential for user I ∈ [N ], the group manager views I as a message
and samples, using sk, a short vector e ∈ R2k satisfying

[a1|a2 + I · g]e� = u, (3)

where g is the so-called gadget matrix [42]. It outputs e as the certificate for
user I belonging to the group. If I can be made public, then a user can simply
use a standard lattice-based NIZK for proving MSIS/MLWE relations to prove
possession of the certificate e. That is, relations of the form a e� = u, where
(a, u) is the statement and e is the witness. On the other hand, if I needs to
be kept private, which is the case for group signatures, then Eq. (3) becomes
a quadratic relation over the witness and we no longer know how to prove it
efficiently using lattice-based NIZKs.

The technical novelty of del Pino et al. was to linearize Eq. (3) by using
the commitment scheme by Baum et al. [13], a.k.a., the BDLOP commitment.

The BDLOP commitment is of the form com =
[
t0
t1

]
=

[
b0

b1

]
R +

[
0

I · g
]
, where

b0,b1 ∈ Rk
q is the commitment key, R ∈ Rk×k is the commitment randomness,

and I ·g is the message. This commitment satisfies binding and hiding based on
the MSIS and MLWE assumptions. Using the lower half of the commitment t1,
we can rewrite the left hand side of Eq. (3) as

[a1|a2 + I · g]e� = [a1|a2 + b1R + I · g] e� − b1Re�
2

= [a1|a2 + t1|b1]
[

e�

−Re�
2

]
, (4)

where e = [e1|e2] ∈ R2k. Notice that [a1|a2 + t1|b1] consists only of public ele-
ments included in the statement XGS. Specifically, Eq. (3) can now be expressed
as an MSIS relation where the statement is [a1|a2 + t1|b1] and the witness vector
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is [e| − e2R�] ∈ R3k. Thus, the user transforms Eq. (3) into Eq. (4), constructs
an efficient NIZK proof π for Eq. (4), and finally outputs the group signature
Σ = (π, com).6

Reversing the Order for Blind Signatures. The technique of del Pino et al.
[27] can be seen as transforming a Boyen signature on message M into a sig-
nature on a commitment com of M. This is a good fit for the group signature
functionality; a group authority signs the message M = I in the clear and the
user can later prove possession of the signature while hiding its identity I by
planting a commitment com.

Our idea is to turn this technique around and use it for blind signatures. Blind
signature has an opposite functionality; the signer signs the message blindly
through a commitment and the user later unblinds the commitment to prove
possession of a signature. Concretely, a user first constructs a BDLOP commit-
ment com for a message I ∈ [N ] and sends it to the signer.7 The signer then pulls
out t1 ∈ Rk

q included in com and signs t1 with the Boyen signature. Specifically,
the signer samples a short vector e ∈ R2k satisfying

[a1|a2 + t1]e� = u.

The user then reverses the transformation in Eq. (4) to obtain

[a1|a2 + t1] e� = [a1|a2 + b1R + I · g] e� = [a1|a2 + I · g|b1]
[
e�

Re�
2

]
, (5)

where notice the right hand side has the desired form of a public vector being
multiplied by a short secret vector. Therefore, the signature output by the user
can be a standard NIZK proof π for the MSIS relation, where the statement is
[a1|a2 + I · g|b1] and the witness vector is [e|e2R�] ∈ R3k.

While the above construction satisfies correctness and blindness, it is not
clear how to prove one-more unforgeability. To explain why, let us first see how
del Pino et al. showed the unforgeability of their group signature. The reduction
simulates the group manager by sampling a1

$← Rk
q and programming a2 as

a2 = a1R∗−I∗ ·g for a random short matrix R∗, where I∗ ∈ [N ] is a guess for the
user on which the adversary forges on. When the adversary queries the certificate
for some user I �= I∗, the reduction can use standard techniques [3,22] to sample
a short vector for [a1|a2 + I · g] = [a1|a1R∗ + (I − I∗) · g] using the simulation
trapdoor R∗ and the fact that (I − I∗) is invertible over Rq. Once the adversary
outputs a forgery, which consists of a proof π and commitment t1 satisfying
Eq. (4), the reduction (roughly) extracts a witness (I ′,R′, e′) via rewinding the

6 To be precise, the user also needs to prove additional relations, e.g., com is a com-
mitment to some I ∈ [N ]. Since these details are not relevant to the core idea, we
omit them.

7 A keen reader may notice that the message space (i.e. group size) [N ] has to be
polynomial large for the security proof of [27] to work. We later show how to support
an exponentially large message space as required for blind signatures. .
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adversary. By soundness of the NIZK, the witness satisfies t1 = b1R′ + I ′ ·g (i.e.
a valid BDLOP commitment) and

[a1|a2 + t1|b1] e
′� =

[
a1|a1R

∗ − I∗ · g + b1R
′ + I′ · g|b1

]
e

′� = [a1|b1]

[
e

′�
1 +R∗e

′�
2

R′e
′�
2 + e

′�
3

]

,

where e′ = [e′
1|e′

2|e′
3] ∈ R3k and we assume the guess made by the reduction

is correct, i.e. I∗ = I ′, which happens with non-negligible probability when
N = poly(λ). Thus, the reduction can break the MSIS problem with respect to
the public vector [a1|b1] if the adversary breaks unforgeability.

Unfortunately, this proof strategy fails in the blind signature setting. In
the group signature setting, the reduction only had to sample from the vector
[a1|a2 + I · g] = [a1|a1R∗ + (I − I∗) · g], where I ∈ [N ] was the only component
controlled by the adversary. However, in the blind signature setting, the reduc-
tion must be able to sample from the vector [a1|a2 + t1] = [a1|a1R∗ − I∗ ·g+ t1]
for an arbitrary t1. This change no longer allows the reduction to rely on prior
trapdoor sampling techniques [3,22] and it is not obvious anymore how to sim-
ulate the real-world signer without the full trapdoor Ta1 .

Adding Proof of Wellformedness. To fix the above idea, we modify the user
to also include an NIZK proof πcom of the fact that com is well-formed, which in
particular implies that t1 = b1R′+I ′ ·g for some short R′ and I ′ ∈ [N ]. However,
this cannot be just any standard NIZK. When the reduction is given the proof
πcom and com from the adversary, it must extract (R′, I ′) from it without inter-
rupting the simulation. This is in contrast to rewinding-type extractions [14,45],
where the reduction performs extraction only after the adversary finished playing
the security game. For example, recall above to see how the reduction extracted
an MSIS solution from the adversary’s forgery in the unforgeability proof of the
group signature. To this end, as we have already pointed to in Sect. 1.2, we
rely on a stronger type of multi-proof straight-line extractable NIZK [16]. Such
NIZK allows the reduction to directly extract (R′, I ′) from the adversary without
altering its behavior.

In summary, the high level description of our blind signature is as follows.
The user first constructs a BDLOP commitment com for the message M and adds
a multi-proof straight-line extractable NIZK proof πcom of its well-formedness.
The signer receives (πcom, com) from the user and then samples a short vector
e such that [a1|a2 + t1|b1]e� = u, where notice that we modify the public
vector to also include b1. Given e from the signer, the user transforms the
signature verification equation into an MSIS relation following almost the same
computation as in Eq. (5), and outputs a standard NIZK proof π for the MSIS
relation as its signature.

In the security proof, the reduction uses the multi-proof straight-line
extractable NIZK to extract (R′, I ′) such that t1 = b1R′ +I ′ ·g without rewind-
ing the adversary. Then, it can rewrite [a1|a2 + t1|b1] as [a1|a1R∗ + b1R′ +
(I ′ − I∗) · g|b1]. Since (R∗,R′) serves as a simulation trapdoor for [a1|b1], the
reduction is able to sample a short vector using prior techniques [3,22] when
I ′ �= I∗. If the adversary outputs a forgery on message I∗, the reduction can
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obtain an MSIS solution following an argument similar to that of del Pino et al.
This completes the high-level description of our blind signature.

Omitted Details. As we briefly mentioned in Footnote 7, the above proof only
works when the message space [N ] is polynomially large, which was the only
case required in the context of group signatures. Here, if N was larger than
polynomial, the probability that the reduction guesses the message I∗ output by
the adversary becomes negligible. To support an exponential message space, we
hash the message I onto a carefully chosen exponential-sized set and sign the
hashed message instead. If the hash function is modeled as a random oracle, then
the reduction will be able to guess the hash of the message used in the forgery
with non-negligible probability. Although this simple idea no longer works in the
QROM since the adversary can query the entire input space in superposition,
we rely on the programming technique of Zhandry [51] to prove security.

Another subtle yet important detail we glossed over is the fact that typi-
cal lattice-based NIZKs do not allow for exact extraction/soundness. Namely,
the reduction may only be able to extract a witness (R′, I ′) such that ĉ ·
t1 = b1R′ + I ′ · g from the malicious user, where ĉ is some small invert-
ible element in Rq. In this case, [a1|a2 + t1|b1] can only be rewritten as
[a1|a1R∗ + b1(R′/ĉ) + (I ′/ĉ − I∗) · g|b1], where ĉ−1 is in general not small.
Then, since the trapdoor (R∗,R′/ĉ) is not necessarily small, it no longer fits the
description required by prior trapdoor sampling techniques [3,22]. We show that
prior sampling techniques can be naturally extended to work for this setting.

Part 2. Our generic construction relies on two NIZKs for different statements.
One is a multi-proof straight-line extractable NIZK used by the user to prove
the well-formedness of the first message, i.e. BDLOP commitment. The other
is a standard NIZK for the MSIS relation that only needs to be single-proof
extractable via rewinding, which is used by the user to construct the final blind
signature. We only explain the former as it is the more technically challenging
NIZK to construct.

To construct a multi-proof straight-line extractable NIZK, we rely on the
recent Katsumata transform [35]. At a high level, it provides a generic method
to upgrade many of the known lattice-based NIZKs proven to be secure in the
classical ROM to NIZKs secure in the QROM. More precisely, this transform can
be seen as a technique to upgrade a single-proof rewinding-extractable lattice-
based NIZK in the classical ROM into a single-proof straight-line extractable
NIZK in the QROM. We show that using a more fine-grained analysis, we can
further upgrade this transform to provide the desired multi-proof straight-line
extractable NIZK in the QROM. Thus, the question boils down to constructing a
lattice-based NIZK in the classical ROM that is compatible with the Katsumata
transform.

Recall the statement we need to prove was roughly t1 = b1R + M · g with
witness (R,M), where (R,M) are short/small elements over Rq. A standard way
to prove such relation is to first decompose the statement into (t1,i = b1r�

i +M ·
gi)i∈[k], where t1,i, gi and ri are the i-th elements and column of t1,g, and R,
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respectively. By rewriting each b1r�
i +M·gi into an MSIS relation as

[
b1|0
0|gi

] [
r�

i

M

]
,

we can prove that t1,i has the correct form for some small (r′
i,M

′
i) using standard

NIZKs for MSIS relations. We can then further prove that M′
i = M′

i+1 for all
i ∈ [k − 1] by proving linear relations between t1,i and t1,i+1.

It turns out that for concrete efficiency, the extraction/soundness slack on
R has a very large impact on the final signature size. For instance, if we use
Lyubashevsky’s NIZK [37,38] to prove the MSIS relation, we are only able to
extract a witness (R′, I ′) such that ĉ · t1 = b1R′ + I ′ · g for some small and
invertible ĉ. Although ĉ is relatively small, this negatively impacts the size of
the short vector sampled by the signer, which then negatively impacts the witness
size used by the user to construct the final blind signature. Due to the way the
slackness propagates in each step, the blow-up in the parameter accumulates
and the final blind signature can become quite large.

To this end, we use the exact proof by Bootle et al. [17] to prove the MSIS
relation and glue the proof of linear relation together. This allows the reduction
to extract an exact witness with regards to R′ but a relaxed witness with regards
to the message I ′. This idea is somewhat similar to the very recent “hybrid
exact/relaxed” lattice proofs introduced in an independent and concurrent work
by Esgin et al. [30]. We finish by showing that we can apply the Katsumata
transform to this new protocol to obtain the desired multi-proof straight-line
extractable NIZK. Here, we highlight that while using a more complex NIZK has a
positive impact on the final blind signature size, it harms the communication cost
from the user to the signer. This is because the exact proof of Bootle et al. [17]
has a larger proof size compared to the standard NIZK for MSIS/MLWE relations.
If we wanted to minimize the sum of the communication cost and signature size,
then other NIZKs could be a better fit. We believe one of the benefits of our
generic construction is that one can choose different instantiations of the NIZKs
to optimize the scheme concerning their specific metric. We also note that we
were not able to use the more recent efficient exact-proof NIZKs [11,29] since it
was non-trivial to apply the Katsumata transform. We leave it as an interesting
open question to extend the Katsumata transform to these efficient NIZKs.

Finally, the above NIZK gives us full straight-line extraction capability but
we show that we can relax this when considering the concrete proof of one-more
unforgeability of our blind signature (in the classical ROM). This allows us to
reduce the proof size of our NIZK by roughly 40 folds (i.e. from 34 MB to 851 KB).
At a very high level, the Katsumata transform applied to the proof of the linear
relation already allows us to straight-line extract a relaxed relation with regards
to R′ as well. If R′ is not the same as the R′′ extracted from the exact relation of
the proof of Bootle et al., then it turns out that we can solve the MSIS problem.
In other words, unless the adversary against the one-more unforgeability breaks
the MSIS assumption, the R′ that the reduction straight-line extracts from the
linear relation are exact, rather than being relaxed. Hence, the reduction tries
to straight-line extract from the linear proof, and if it fails to extract an exact
witness R′, then it can quit the simulation of the one-more unforgeability game.
It then simply resorts to rewinding the adversary to extract R′′ from the exact
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proof of Bootle et al. aiming to break the MSIS problem. Thus, we can reduce
the proof size by removing the Katsumata transform applied the exact proof of
Bootle et al.

2 Preliminaries

2.1 Blind Signature

We provide the definition of blind signatures. For simplicity, we give a definition
focusing on round-optimal (i.e. two-round) blind signatures.

Definition 2.1 (Blind Signature). A round-optimal blind signature
scheme ΠBS with a message space M consists of PPT algorithms
(BSGen,U1,S2,Uder,BSVerify) defined as follows:

BSGen(1λ) → (vk, sk): The key generation algorithm takes as input the security
parameter 1λ and outputs a verification key vk and a signing key sk.

U1(vk,M) → (ρ1, stU ): This is the user’s first message generation algorithm that
takes as input a verification key vk and a message M ∈ M and outputs a
first message ρ1 and a state stU .

S2(sk, ρ1) → ρ2: This is the signer’s second message generation algorithm that
takes as input a signing key sk and a first message ρ1 as input and outputs
a second message ρ2.

Uder(stU , ρ2) → Σ: This is the user’s signature derivation algorithm that takes as
input a state stU and a second message ρ2 as input and outputs a signature
Σ.

BSVerify(vk,M, Σ) → � or ⊥: This is a deterministic verification algorithm that
takes as input a verification key vk, a message M ∈ M, and a signature Σ,
and outputs � to indicate acceptance or ⊥ to indicate rejection.

Definition 2.2 (Correctness). A blind signature is correct if for any λ ∈ N

and M ∈ M, we have BSVerify(vk,M, Σ) = � with overwhelming probability
when (vk, sk) $← BSGen(1λ), (ρ1, stU ) $← U1(vk,M), ρ2

$← S2(sk, ρ1), and Σ
$←

Uder(stU , ρ2).

Definition 2.3 (One-More Unforgeability). A blind signature is classically
(resp. quantumly) one-more unforgeable if for any Q = poly(λ) and PPT (resp.
QPT) adversary A that makes at most Q classical queries, AdvOMU

ΠBS
(A) defined as

Pr

[
(vk, sk) $← BSGen(1λ)

{(Mi, Σi)}i∈[Q+1]
$← AS2(sk,·)(vk)

:
BSVerify(vk,Mi, Σi) = � for all i ∈ [Q + 1]
∧ {Mi}i∈[Q+1] is pairwise distinct

]
,

is negl(λ), where we say that {Mi}i∈[Q+1] is pairwise distinct if we have Mi �= Mj

for all i �= j.

Definition 2.4 (Blindness Under Malicious Keys). To define blindness,
we consider the following game between an adversary A and a challenger.
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Setup. A is given as input the security parameter 1λ, and sends a verification
key vk and a pair of messages (M0,M1) to the challenger.

First Message. The challenger generates (ρ1,b, stU,b)
$← U1(vk,Mb) for each

b ∈ {0, 1}, picks coin
$← {0, 1}, and gives (ρ1,coin, ρ1,1−coin) to A.

Second Message. The adversary sends (ρ2,coin, ρ2,1−coin) to the challenger.
Signature Derivation. The challenger generates Σb

$← Uder(stU,b, ρ2,b) for each
b ∈ {0, 1}. If BSVerify(vk,Mb, Σb) = ⊥ for either b = 0 or 1, then the chal-
lenger gives (⊥,⊥) to A. Otherwise, it gives (Σ0, Σ1) to A.

Guess. A outputs its guess coin′.

We say that A wins if coin = coin′. We say that a blind signature is classically
(resp. quantumly) blind against malicious senders if for any PPT (resp. QPT)
adversary A, we have Advblind

ΠBS
(A) := |Pr[A wins] − 1/2| = negl(λ).

2.2 Non-interactive Zero-Knowledge Proofs in the (Q)ROM

We consider a non-interactive zero-knowledge proof of knowledge (or simply
NIZK) in the (Q)ROM. We assume that the prover and verifier are provided
with a common random string crs. Looking ahead, our blind signature generates
this crs as the output of another random oracle so it does not rely on any trusted
setup, thus making the blind signature also blind against malicious senders.

Definition 2.5 (NIZK Proof System). A non-interactive zero-knowledge
(NIZK) proof system ΠNIZK for the relations R and Rgap (which are implicitly
parameterized by the security parameter λ)8 and a common random string crs
with length �(λ) consists of oracle-calling PPT algorithms (Prove,Verify) defined
as follows:

ProveO(crs,X,W) → π/⊥ : The prover algorithm takes as inputs a common
random string crs ∈ {0, 1}�, statement and witness pair (X,W) ∈ R, and
outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(crs,X, π) → �/⊥ : The verifier algorithm takes as inputs a crs, a state-
ment X and a proof π, and outputs either � (accept) or ⊥ (reject).

We denote by LR := {X | ∃W, (X,W) ∈ R} the language induced by R. Moreover,
we may omit crs when they are not required.

We rely on the standard notions of correctness, zero-knowledge, and single-
proof extractable NIZKs, which is typically defined as a specific type of proof of
knowledge in the literature. Below, we define a strong type of proof of knowledge
where we can directly extract from multiple statement and proof pairs output
by the adversary.

8 Unlike conventional definition of “gap” soundness, we do not require R ⊆ Rgap to
hold. The NIZK is useful as long as Rgap defines a hard language.
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Definition 2.6 (Multi-Proof Extractability). An NIZK proof system
ΠNIZK is classically (resp. quantumly) multi-proof extractable if there exists
a PPT (resp. QPT) oracle simulator Scrs and a PPT (resp. QPT) extractor
Multi-Extract with the following properties:

CRS Indistinguishability. For any PPT (resp. QPT) adversary A, the fol-
lowing advantage Advcrs

ΠNIZK
(A) is negl(λ):

∣∣∣Pr[crs $← {0, 1}� : A|O〉(crs) = 1] − Pr[(c̃rs, τ) $← Scrs(1λ) : A|O〉(c̃rs) = 1]
∣∣∣ .

Straight-Line Extractability. There exists constants c, e1, e2 and polynomial
p(λ) such that for any QH = poly(λ) and PPT (resp. QPT) adversary A that
makes at most QH random oracle queries with

Pr

[
(c̃rs, τ) $← Scrs(1λ),

{(Xi, πi)}i∈[QS]
$← A|O〉(c̃rs)

: ∀i ∈ [QS],VerifyO(c̃rs,Xi, πi) = �
]

≥ μ(λ),

we have,

Pr

[
(c̃rs, τ)

$← Scrs(1
λ), {(Xi, πi)}i∈[QS]

$← A|O〉(c̃rs),
{Wi

$← Multi-Extract(1λ,QH,QS, 1/μ, τ,Xi, πi)}i∈[QS]

:
∀i ∈ [QS], (Xi,Wi) ∈ Rgap

∧ VerifyO(c̃rs,Xi, πi) = �

]

is larger than μ(λ)/2 − negl(λ). Moreover, the runtime of Multi-Extract is upper
bounded by Qe1

H · Qe2
S · 1

μc · p(λ).

We show that for our NIZK, we have (c, e1, e2) = (1, 1, 0) in the classical set-
ting where p(λ) is roughly the time it takes to perform a standard PKE decryp-
tion. In the quantum setting, we instead have (c, e1, e2) = (1, 2, 1).

3 Lattice-Based Blind Signature from Compatible
Commitments

In this section, we provide our generic construction of a blind signature tailored
to lattices. A high level overview of our construction is provided in Sect. 1.3.

3.1 Trapdoor-Sampling-Compatible Commitments

We first explain the type of lattice-based commitments applicable to our generic
construction, which we call trapdoor-sampling-compatible commitments. For
instance, the BDLOP commitment by Baum et al. [13] is one specific instantia-
tion. We keep this layer of abstraction as we believe this captures the essential
properties required by our generic construction and allows drop-in of different
types of commitments.

Definition 3.1 (Trapdoor-Sampling-Compatibility). Let L and �com be
positive integers. Let ΠCom be a commitment scheme with message space
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M := RL
q and an �com-bit common random string crs. ΠCom is (k, δ)-trapdoor-

sampling-compatible if there exists accompanying deterministic PT algorithms
(ParseCom,ParseRand) such that for any crs ∈ {0, 1}�com , rand ∈ R, M ∈ M, and
com = Com(crs,M; rand), we have the following:

– (bi)i∈[L] ⊆ crs9, t = ParseCom(com), and (ri)i∈[L] = ParseRand(rand), where
bi ∈ Rk

q , t ∈ RL
q , and ri ∈ Rk;

– for each i ∈ [L], ti = bir�
i + Mi ∈ Rq, where ti is the i-th entry of t, Mi is

the i-th entry of M, and ri satisfies s1
(
[r�

1 | . . . |r�
L ]

) ≤ δ;
– finally, the concatenated vector [b1 | · · · | bL] ∈ RLk

q consists of elements in
{0, 1} ⊂ Rq or uniform random elements in Rq, where the probability is taken
over the randomness of crs

$← {0, 1}�com . Note that when bi and bj contain
duplicate entries, say the first entry of bi and bj are defined identically, then
we only consider randomness over one of them.

Roughly, δ dictates the “quality” of the randomness used to hide the message.
The choice of the spectral norm s1(·) is arbitrary, and for instance, we can use
the two-norm.

3.2 Construction of Blind Signature

Parameters. For reference, we provide in Table 1 the parameters used in the
scheme and in the security proof. The main parameters to keep in mind are
(q, d, k1, k2, k3): q and d define the polynomial ring Rq; k1 is the lattice dimension
used to perform trapdoor sampling; k2 is the dimension of the message space M
of the commitment scheme ΠCom; and k3 is the length of (bi)i∈[L=k2] of ΠCom.
For those only interested in the asymptotic, one can safely assume k1, k2, k3 are
the same value.

Building Blocks. Our blind signature ΠBS relies on the following building
blocks. The norm bounds on vectors and matrices are chosen with the later
concrete parameter selection in mind. For the asymptotic result, we could have
simply used the two-norm.

– A commitment scheme ΠCom with message space M = Rk2
q (i.e., L := k2 in

Definition 3.1), randomness space R, and an �com-bit common random string
crscom that satisfies hiding and (k3, δ)-trapdoor-sampling-compatiblity.

– A NIZK proof system Πs
NIZK (without a common random string) for the rela-

tions Rs and Rs
gap that satisfies correctness, zero-knowledge and single-proof

extractability, where Rs and Rs
gap are defined as follows:10

• Rs :=

⎧⎨
⎩

X = (a1,a2,
(bi)i∈[k2], u, h),

W = ẽ

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BU
Σ,i

∧ [a1 | a2 + h · g | b1 | · · · | bk2 ] ẽ
� = u

⎫⎬
⎭;

9 That is, we assume the bit-representation of each bi is included in crs. Without loss
of generality, we can think instead that crs lives in (Rk

q )L × {0, 1}�. .
10 With an abuse of notation, when we write (ẽ1, ẽ2, ẽ3) = ẽ ∈ Rk1+k2+k2·k3 , we assume

(ẽ1, ẽ2, ẽ3) ∈ Rk1 × Rk2 × Rk2·k3 .
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Table 1. Overview of parameters and notations. The rows following the second double
horizontal line are parameters mainly used in the security proof.

Parameter Explanation

Rq Polynomial ring Rq = Z[X]/(q, Xd + 1)

Binv Any a ∈ Rq s.t. ‖a‖2 ≤ Binv is invertible

k1 Size of lattice trapdoor T ∈ Rk1×k1

k2 Size of the message space M = Rk2
q for ΠCom

(k3, δ) Parameters for the trapdoor-sampling-compatible ΠCom

σ Gaussian parameter for trapdoor sampling

(�m
NIZK, �,) Length of crs for Πm

NIZK and ΠCom

δgap Spectral norm bound on the extracted com. rand.

BS
Σ,i, i ∈ [3] Two-norm bound on (e1, e2, e3) := e sampled by the signer

BU
Σ,i, i ∈ [3] Two-norm bound on real secret (ẽ1, ẽ2, ẽ3) := ẽ

BU,gap
Σ,i , i ∈ [3] Two-norm bound on extracted (ẽ1, ẽ2, ẽ3) := ẽ

Schal ⊂ Rq Challenge set of the interactive proof sys. implicit in Πm
NIZK

Bc One-norm bound on c ∈ Schal

Shash ⊂ Rq
Hashed message set with size > 2λ

s.t. ∀(c, h) ∈ Schal × Shash, ‖c · h‖2 ≤ Binv/2

ΔMLWE Bound s.t. search MLWE has non-unique solution

(χMLWE, BMLWE)
Noise distribution for decision MLWE,

where R
$← χk1×k2

MLWE ⇒ s1(R) ≤ BMLWE w.o.p

(χDSMR, BDSMR) Noise distribution χDSMR := DZ,BDSMR
for DSMR

BMSIS Two-norm bound on the solution for MSIS

• Rs
gap :=

⎧⎨
⎩

X = (a1,a2,
(bi)i∈[k2], u, h),

W = (ẽ, c)

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BU,gap
Σ,i ∧ ‖c‖1 ≤ Bc

∧ [a1 | a2 + h · g | b1 | · · · | bk2 ] ẽ
� = c · u

⎫⎬
⎭.

– A NIZK proof system Πm
NIZK (with a common random string comm

NIZK) for the
relations Rm and Rm

gap that satisfies correctness, zero-knowledge and multi-
proof extractability, where Rm and Rm

gap are defined as follows:

• Rm :=

{
X = (crscom, com),
W = (h, rand)

∣∣∣∣ (h, rand) ∈ Shash × R,
∧ com = Com(crscom, h · g; rand)

}
;

• Rm
gap :=

⎧⎨
⎩ X = (crscom, com),

W = (h′, c′, c, (ri)i∈[k2])

∣∣∣∣∣∣
‖h′‖2 ≤ Binv/2 ∧ ‖c′‖1, ‖c‖1 ≤ Bc

∧ s1
(
[r�

1 | · · · |r�
k2 ]

) ≤ δgap

∧ ti = bi(ri/c)� + (h′/c′) · gi

⎫⎬
⎭,

where t = ParseCom(com), (bi)i∈[k2] ⊆ crscom, g = [1 | b | · · · | bk2−1] ∈ Rk2
q

is the gadget matrix with k2 = �logb(q)�, and gi is the i-th element of g.
– Four hash functions Hcrs, HM, Hm, and Hs modeled as a random oracle in the

security proof. The latter two Hm and Hs are hash functions used by the NIZK
proof systems Πm

NIZK and Πs
NIZK, respectively. HM : {0, 1}∗ → Rq is a hash

function used to map messages to ring elements. Hcrs is a special hash function,
for which we only use the input 0. Specifically, Hcrs(0) = (crsmNIZK, crscom,a2)
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contains the common random strings crsmNIZK and crscom used by Πm
NIZK and

ΠCom, respectively, and a random vector a2 ∈ Rk2
q .

Construction. The construction of our blind signature ΠBS is provided below.
We assume Hcrs(0) = (crsmNIZK, crscom,a2) and (bi)i∈[k2] ⊆ crscom are derived
correctly by all the algorithms and omit the process of generating them.

BSGen(1λ) : It runs (a1,Ta1)
$← TrapGen(1k1d, q), samples s $← [−ΔMLWE,

ΔMLWE](k1+k2k3)
coeff

11 and sets u = [a1 | b1 | · · · | bk2 ] · s� ∈ Rq, where recall
a1 ∈ Rk1

q , bi ∈ Rk3
q for i ∈ [k2]. It then outputs (vk, sk) = ((a1, u),Ta1).

U1(vk,M) : It hashes h = HM(M), samples rand
$← R, and com-

putes com = Com(crscom, h · g; rand). It then creates a proof πm $←
ProveHm(crsmNIZK, (crscom, com), (h, rand)) that proves the wellformedness of the
commitment com, and outputs the first message ρ1 = (com, πm). Finally, it
sets its state as stU = rand.

S2(sk, ρ1) : It parses (com, πm) ← ρ1 and outputs ⊥ if VerifyHm(crsmNIZK,
(crscom, com), πm) = ⊥. Otherwise, it computes t ← ParseCom(com) and
samples a short vector e ∈ Rk1+k2+k2k3 such that

[a1 | a2 + t | b1 | · · · | bk2 ] · e� = u, (6)

using e $← SampleLeft(a1, [a2 + t | b1 | · · · | bk2 ] , u,Ta1 , σ). It outputs the
second message ρ2 = e.

Uder(stU , ρ2) : It parses (e1, e2, e3) := e ← ρ2, rand ← stU , and outputs ⊥ if
either ∃i ∈ [3], ‖ei‖2 > BS

Σ,i or Eq. (6) does not hold. Otherwise, it computes
t ← ParseCom(comcrs) and (ri)i∈[k2] ← ParseRand(rand), where h = HM(M),
ti = bir�

i + h · gi ∈ Rq, and ti and gi are the i-th entries of t and g,
respectively. It then rewrites the left hand side of Eq. (6) as follows:

[a1 | a2 + t | b1 | · · · | bk2 ] · e�

=
[
a1 | a2 + [b1r�

1 + h · g1 | · · · | bk2r
�
k2

+ h · gk2 ] | b1 | · · · | bk2

] · e�

= [a1 | a2 + h · g | b1 | · · · | bk2 ]

⎡
⎢⎢⎢⎢⎣

e�
1

e�
2

e2,1 · r�
1 + e�

3,1

. . .
e2,k2 · r�

k2
+ e�

3,k2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:ẽ∈Rk1+k2+k2k3

,

where e3 = [e3,1 | · · · | e3,k2 ] ∈ Rk2k3 and e2 = [e2,1 | · · · | e2,k2 ] ∈
Rk2 are parsed into appropriate sizes. It then creates a proof πs $←
ProveHs((a1,a2, (bi)i∈[k2], u, h), ẽ) that proves knowledge of a short vector
ẽ. If ⊥ ← VerifyHs((a1,a2, (bi)i∈[k2], u, h), πs), then it outputs Σ = ⊥. Oth-
erwise, it outputs Σ = πs as the signature.

11 For integers a and b such that a < b, [a, b]coeff ⊂ Rq denotes the set of all polynomials
in Rq with coefficients in [a, b].
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BSVerify(vk,M, Σ) : It parses πs ← Σ, sets h = HM(M), and returns the output
of VerifyHs((a1,a2, (bi)i∈[k2], u, h), πs).

Remark 3.1 (Variations of the Construction). We can consider slight variations
of the above construction. For instance, in case the commitment vectors satisfy
b1 = · · · = bk2 , which is the case for our concrete instantiation in Sect. 4.1,
the signer can alternatively sample e such that [a1 | a2 + t | b1] ·e� = u instead
of Eq. (6). Which variation offers the “best” blind signature highly depends on
many factors: the criteria that we wish to optimize (e.g., minimize the signature
size, minimize the total communication cost); the concrete choice of NIZKs and
commitments we use; and other implicit parameter selections.

The proof of correctness consists of a routine check. Blindness under malicious
keys follows from a standard proof using the zero-knowledge and hiding of the
underlying NIZKs and commitment.

3.3 Proof of One-More Unforgeability

The following establishes that our blind signature is one-more unforgeable even
against quantum adversaries in the QROM.

Theorem 3.1. The blind signature ΠBS is quantumly one-more unforge-
able if the two NIZKs Πs

NIZK for (Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap)

are quantumly single-proof and multi-proof extractable, respectively, and
the MSISd,1,k1+k2k3,BMSIS,q, MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1 and
DSMRd,k2k3−1,χDSMR,q,1 problems are hard.

Proof Sketch. Assume there exists a QPT adversary A with non-negligible
advantage ε against the one-more unforgeability game that makes at most QS

(classical) signature queries. Further assume A makes at most QHM
(resp. QHcrs ,

QHm ,QHs) (quantum) random oracle queries to HM (resp. Hcrs, Hm, Hs). We con-
sider a sequence of games, where we denote Ei as the event A wins in Gamei.
Game1 is the real one-more unforgeability game.

Game2 : The challenger simulates all the QRO’s by using 2QHcrs/2QHM
/

2QHs/2QHm -wise independent hash functions. This allows the challenger to effi-
ciently simulate the QROs.

Game3 : The challenger programs Hcrs(0) to use the simulated CRS c̃rs
m
NIZK output

by the CRS simulator Scrs of Πm
NIZK.

Game4 : When A submits ρj,1 = (comj , π
m
j ) to the challenger as its j-th (j ∈ [QS])

first message, the challenger runs Wj ← Multi-Extract(1λ,QHm ,QS, 1/μ, τ,Xj ,
πm

j ), where μ = Pr[E3] and Xj = (crscom, comj). Due to the definition of the
multi-proof extractor Multi-Extract (see Definition 2.6), the challenger succeeds
in extracting a witness in Rm

gap with non-negligible probability and runs in time
proportional to Qe1

Hm
· Qe2+1

S · 1
μc · p(λ), which is a polynomial.
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Game5 : The challenger replaces the function HM : M → Shash ⊂ Rq by a small-
range distribution. Specifically, it sets r = 2 ·C0 ·Q3

HM
/μ′, where μ′ = Pr[E4] and

C0 is some universal constant. It then samples h = (h1, · · · , hr)
$← (Shash)r and

P
$← Func(M, [r]), and defines HM as HM(x) = hP (x).

Game6 : The challenger samples a uniformly random index j∗ $← [r] at the begin-
ning of the game and performs two types of checks. First, when the challenger
extracts Wj = (h′

j , c
′
j , cj , (rj,i)i∈[k2]) ∈ Rm

gap from the first message ρj,1 submit-
ted to by A, the challenger checks if h′

j/c′
j �= hj∗ . Moreover, at the end of the

game, when A outputs the forgery {(Mi, Σi)}i∈[QS+1], the challenger checks if
M′

j∗ ∈ {Mi}i∈[QS+1] and if {HM(Mi)}i∈[QS+1] are pairwise distinct.

Game7 : After it samples j∗ $← [r] at the beginning of the game, the challenger
sets a2 = ã2 − hj∗ · g where ã2

$← Rk
q , and programs Hcrs(0) to use this a2.

Game8 : The challenger gets rid of the trapdoor Ta1 included in the secret
key sk. In particular, the challenger samples a1

$← Rk1
q , R $← χk1×k2

MLWE , and sets
ã2 = a1R. On input the first message ρ1 = (com, πm) from A, it extracts W =
(h′, c′, c, (ri)i∈[k2]) ∈ Rm

gap and computes

[a1 | a2 + t | b1 | · · · | bk2 ]

=

[
a1 | a1R − hj∗ · g +

[
b1r�

1

c
+

h′

c′ · g1 | · · · | bk2r
�
k2

c
+

h′

c′ · gk2

]
| b1 | · · · | bk2

]

=

[
a1 | b̂ |

[
a1 | b̂

]
R′ +

(
h′

c′ − hj∗

)
· g

]
· Pperm,

where b̂ = [b1 | · · · | bk2 ] ∈ Rk2k3
q , R̂ = Ik2 ⊗ [r�

1 | · · · | r�
k2

] ∈ Rk2k3×k2 , R′ =[
R
1
c R̂

]
∈ Rk2(k3+1)×k2 , and Pperm is a permutation matrix that appropriately

reorders the columns. It then samples a short vector e′ ∈ Rk1+k2+k2k3 such that[
a1 | b̂ |

[
a1 | b̂

]
R′ +

(
h′
c′ − hj∗

)
· g

]
·e′� = u, using the algorithm SampleRight.

By setting the parameters correctly, we have invertibility of h′/c′−hj∗ as required
by the sampling algorithm. The signer algorithm S2 finally outputs the second
message ρ2 = e′(P−1

perm)�.
At this point, the challenger in Game8 no longer relies on a trapdoor for

a1. Using the single-proof extractability of Πs
NIZK, the challenger will be able to

extract an MSIS solution with respect to [a1|b̂]. ��

3.4 Extension: Partially Blind Signatures

We are able to obtain a partially blind signature [2] with a simple modification to
our blind signature without increasing the signature size. To bind the signature
to a specific common message γ, the signer shifts the public syndrome u ∈ Rq

to u − HMc(γ), where HMc is a newly introduced hash function that is modeled
as a random oracle in the security proof.
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4 Instantiating Our Generic Construction

In this section, we instantiate our generic construction of blind signature, which
in particular involves concretizing the building blocks laid out in Sect. 3.2:
the trapdoor-sampling-compatible commitment scheme ΠCom, the single-proof
extractable NIZK proof system Πs

NIZK, and the multi-proof extractable NIZK
proof system Πm

NIZK. In Sect. 4.3 we provide a concrete set of parameters for our
resulting blind signature scheme.

4.1 Concrete Choices for Trapdoor-Sampling-Compatible
Commitments and Single-Proof Extractable NIZK

For the trapdoor-sampling-compatible commitment, we rely on (a slight variant
of) the BDLOP commitment by Baum et al. [13]. The common random string
is of the form crscom := (b0,b1) :=

(
[1|b′

0], [0|1|b′
1]

) ∈ Rk3
q′ ×Rk3

q , where we use
two different moduli q′ and q, and q is the modulus that explicitly showed up in
the blind signature construction in the previous section. The commitment to a
message M = (M1, · · · ,ML) ∈ RL

q is

com :=
[
t1//t2

]
=

([
b0

b1

]
R +

[
0

M1 | · · · | ML

]
mod q′

mod q

)
∈ RL

q′ × RL
q .

The single-proof extractable NIZK is based on the basic Lyubashevsky’s sigma
protocol [37,38], where soundness is argued through rewinding (or the forking
lemma [14,45] to be precise). One minor difference is that we take advantage
of the fact that the witness vector ẽ ∈ Rk1+k2+k3 has unbalanced size; the first
(k1 + k2)-entries are smaller than the last k3 entries.

4.2 Concrete Choice for Multi-proof Extractable NIZK

Preparation. Let us prepare some notations. Let Rq′ = Zq′ [X]/(Xd + 1) be
a ring that fully splits and consider the NTT over the ring Rq′ with NTT :
Rq′ → (Zd

q′)�, and NTT−1 : (Zd
q′)� → Rq′ . Here, we make it explicit that NTT

and NTT−1 operates over column vectors. These notions extend naturally to
matrices over Rq′ , where NTT−1 is only well-defined when the column length
of the matrix is divisible by d. We define Φ : Rq′ �→ (Zd

q′)� to be the map that
sends a polynomial to its (column) coefficient vector. We define Rot : Rq′ �→
Z

d×d
q′ to be the map that sends a polynomial a ∈ Rq′ to a matrix whose i-th

column is Φ
(
a · Xi mod (Xd + 1)

)
. It can be checked that for a, b ∈ Rq′ , we

have Rot(a)Φ (b) = Φ (a · b). We extend the definition of Rot to vectors in Rq′ ,
where we have Rot(b)Φ (a) = Φ (a · b) for (a,b) ∈ Rq′ × Rn

q′ . Here, note that

Rot(b) ∈ Z
dn×d
q′ and Φ (a) ∈ Z

d
q′

�. We use ◦ for the component-wise product of
matrices over Rq′ . Finally, we define the matrix Δ ∈ RL×L

q such that the first
column of Δ is g and all the diagonal entries except for the (1, 1)-th entry is −1.
Specifically, Δ is invertible over Rq and we have gΔ = [1|0| · · · |0].

Construction. We consider the relations (Rm,Rm
gap) defined as follows:
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– Rm :=

⎧⎨
⎩X = (crscom := (b0,b1), com),

W = (h, rand := R)

∣∣∣∣∣∣
h ∈ Shash ∧ R ∈ [−1, 1]k3×L

coeff ,

∧ com =

([
b0

b1

]
R +

[
0

h · g
]

mod q′

mod q

)⎫⎬
⎭;

– Rm
gap :=

⎧⎪⎪⎨
⎪⎪⎩

X = (crscom := (b0,b1), com),
W = (h′, c, (ri)i∈[L])

∣∣∣∣∣∣∣∣
‖h′‖2 ≤ Binv/2 ∧ ‖c‖1 ≤ Bc

∧ t = ParseCom(com)

∧R ∈ [−1, 1]k3×L
coeff

∧ ∀i ∈ [L], ti = b1r�
i + (h′/c) · q

i−1
L

⎫⎪⎪⎬
⎪⎪⎭,

Notice the gap relation Rm
gap has no slack for the commitment randomness.

We recover Rm
gap in Sect. 3.2 by setting δgap =

√
k3L · d.

The prove and verify algorithms of Πm
NIZK for the relations (Rm,Rm

gap) are pro-
vided in Figs. 1 and 2, respectively. The texts in gray are used by the exact proof
of [17], the texts in black without highlight are used to prove linear relations,
and finally the texts highlighted in gray are used for multi-proof straight-line
extractability as in [35]. The crs for Πm

NIZK consists of a random element H (used
for extraction) and random matrices (a0, (Ak)k∈[4]) (used for committing), and
the crs for ΠCom is a random tuple (b0,b1). Following prior conventions [17,35],
we prove that R ∈ [0, 2]k3×L

coeff instead, i.e., R consists of {0, 1, 2}-coefficient poly-
nomials. This is without loss of generality since we can add the all one matrix 1

to any R ∈ [−1, 1]k3×L
coeff to obtain a matrix in [0, 2]k3×L

coeff .
The protocol uses three polynomial rings: Rq′ = Zq′ [X]/(Xd + 1) is a fully

splitting ring used by Bootle et al.’s [17] exact proof; Rq = Zq[X]/(Xd + 1) is
a ring where any small element is invertible and is used by the linear proof;
RQ = ZQ[X]/(Xd + 1) is used by the the multi-proof straight-line extractabil-
ity as in [35], and in particular, we require the NTRU assumption to hold over
this ring. The interactive protocol implicit in our NIZK is defined with respect
to two challenge spaces. The challenge space used in the second (resp. fourth)
flow is Z

τ
q′ (resp. Cττ ′

X × Cham, where CX := {Xi | i ∈ [2d]} and Cham is the
set of {0, 1}-coefficient polynomials in Rq with Hamming weight smaller than
Bc). Specifically, we require any element with two-norm smaller than 2Bc to be
invertible over Rq. Here, τ and τ ′ are set so that qτ ≈ (2d)ττ ′ ≈ 2128 or asymp-
totically 1/qτ ≈ 1/(2d)ττ ′

= negl(λ). Our protocol also relies on several different
Gaussian distributions. They are used either to perform rejection sampling or to
invoke the MLWE and DSMR assumptions. The concrete parameter selection is
provided in Sect. 4.3.

Security. Below, we provide the proof sketch of the classical multi-proof
extractability.

Theorem 4.1. The NIZK Πm
NIZK in Figs. 1 and 2 is classically multi-

proof extractable with (c1, e1, e2) = (1, 1, 0) and p(λ) = poly(λ) if the
DSMRd,1,χDSMR,Q,p, MSISd,1,k4,16BZ,q′ , and MSISd,1,k3,2(BZ′+Bcδgap),q′ problems are
hard.

Proof. CRS indistinguishability is a simple consequence of the DSMRd,1,χDSMR,Q,p

assumption. The proof of straight-line extractability, which is the most technical
proof of this work, consists of three parts. We first show in Lemma 4.1 that
(roughly) if the adversary A outputs a valid proof, then A must have been able
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Fig. 1. Prove algorithm for the multi-proof NIZK Πm
NIZK for the relations (Rm, Rm

gap).
We illustrate the 5-round interactive protocol that implicitly underlies the NIZK.
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Fig. 2. Verify algorithm for the multi-proof NIZK for the relations (Rm, Rm
gap).
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to succeed on many challenges. That is, the probability that A succeeds in forging
a proof without a witness by guessing the output of the random oracle is at most
μ
2 −negl(λ), where μ is the advantage of A outputting a valid proof. We then show
in Lemma 4.2 a specific form of special soundness where an extractor Extractss
given the purported proof output by A along with several specific challenges,
extracts a witness in Rm

gap. We finally provide the description of our straight-
line extractor Multi-Extract that internally runs Extractss and bound its success
probability.

We present our first lemma which shows that if A outputs a valid proof,
then there must have been multiple challenges for which it could have succeeded
on. Formally, we define the sets {Γ1,i}i∈[τ ] and Γ2 that count for how many
challenges there exists a valid response, and argue that they cannot be too
small. More specifically, Γ1,i counts the number of second flow challenges ci for
which there exists at least two distinct βi,j ’s included in the fourth flow challenge
with a corresponding valid response. Γ2 on the other hand counts the number
of β′ included in the fourth flow challenge with a corresponding valid response.
Roughly, the former (resp. latter) set is the set of challenges for which A was
able to complete the exact proof of Bootle et al. (resp. proof of linear relation).

Lemma 4.1. Consider an interactive protocol as defined implicitly in Fig. 1.
That is, the transcript is (a1, c1, a2, c2, resp), where c1, c2 are the challenges
the (honest) verifier samples uniformly at random and resp is the response(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ ]×[τ ′],Z′, ζ, f ′

1, f
′
2,F

′
1,F

′
2

)
sent by the prover. For any

statement X, first, second, third, and fourth flows a1, c1, a2, and c2, respectively,
we define the following sets for all i ∈ [τ ]:

Γ1,i(a1, c1, a2, c2)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ci ∈ Zq′

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ci′)i′∈[τ ] ← c1, c1 := (ci) ∪ (ci′)i′∈[τ ]\{i},
(β = (βi′,j′)(i′,j′)∈[τ ]×[τ ′], β

′) ← c2
∃j ∈ [τ ′], distinct

(
βi,j , β

′
i,j

) ∈ (CX)2,

β := (βi,j) ∪ (
βi′,j′

)
(i′,j′) �=(i,j)

, β
′
:= (β

′
i,j) ∪ (

βi′,j′
)
(i′,j′) �=(i,j)

,

∃(a2, a
′
2), (resp, resp

′) s.t. (a1, c1, a2, c2 :=
(
β, β′), resp) and

(a1, c1, a′
2, c2 :=

(
β

′
, β′), resp′) are valid

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Γ2(X, a1, c1, a2, c2)

:=
{

β
′ ∈ Cham | (β, β′) ← c2, ∃resp s.t. (a1, c1, a2, c2 := (β, β

′
), resp) is valid

}
,

where we say a transcript (a1, c1, a2, c2, resp) is valid if the proof πm implicitly
defined by (a1, c1, a2, c2, resp) is valid for statement X.

Then, for any QH = poly(λ) and PPT adversary A that makes at most QH

random oracle queries with

Pr

[
(c̃rsmNIZK, τ)

$← Scrs(1
λ),

{(Xk, πm
k )}k∈[QS]

$← AHm(1λ, c̃rsmNIZK),
: ∀k ∈ [QS],Verify

Hm(c̃rs,Xk, πm
k ) =�

]
≥ μ(λ),
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we have,

Pr

⎡
⎣ (c̃rsmNIZK, τ)

$← Scrs(1
λ),

{(Xk, πm
k )}k∈[QS]

$← AHm(1λ, c̃rsmNIZK),
:

∀k ∈ [QS],VerifyHm(c̃rsmNIZK,Xk, πm
k ) = �

∧∃i∈[τ ], |Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)|≥3
∧ |Γ2(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ μ

2QH
|Cham|

⎤
⎦

is at least μ(λ)/2 − negl(λ)

Proof Sketch. For simplicity, denote Γ
(k)
1,i := Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k) and

Γ
(k)
2 := Γ2(Xk, a1,k, c1,k, a2,k, c2,k) for each (k, i) ∈ [QS] × [τ ]. We denote

by ValidProofs the event that VerifyHm(c̃rsmNIZK,Xk, πm
k ) = � for all k ∈ [QS].

Then, to lower bound the desired probability, it suffices to upper bound∑
k∈[QS]

Pr[ValidProofs∧∀i ∈ [τ ], |Γ (k)
1,i < 3|] and

∑
k∈[QS]

Pr[ValidProofs∧|Γ (k)
2 | <

μ
2QH

· |Cham|]. To obtain the bound on the later, observe that if Γ
(k)
2 has size at

most T , then even a computationally unbounded (classical) adversary can find
an input that hashes to Γ

(k)
2 with probability at most T/Cham for every RO

query. We can tune the size of T to get the desired bound. The bound on the
former requires more work since at a high level the adversary can cheat twice;
once for the second flow challenge and once for the fourth flow challenge. We
show that if it cheats with respect to the second (resp. fourth) flow challenge
then even a computationally unbounded (classical) adversary cannot cheat in
the fourth (resp. second) flow challenge. ��

We note that the main differences of the proof in the classical ROM and
QROM is the bound in the statement of Lemma 4.1 and how it is proven.
Informally, the reason why the above proof fails is because a quantum adversary
can query the random oracle on all the input space in super position. To this
end, we rely on (roughly) the optimality of the Grover’s search to bound the
success probability of the adversary.

We next show a restricted notion of the standard special soundness for inter-
active protocols. Typically, an extractor for special soundness is provided multi-
ple valid transcripts containing the same commitments and is asked to extract a
witness from them. Below, we show that for our particular interactive protocol,
the extractor only requires one valid transcript along with several challenges for
which existence of a valid response is guaranteed. Put differently, rather than tak-
ing multiple valid transcripts as input, our extractor only requires one transcript
and the challenges included in the remaining valid transcripts. As explained in
the overview of [6], the crux of the proof is that given a valid challenge, the
extractor can extract parts of the response by using the trapdoor τ (i.e., NTRU
decryption key).

Lemma 4.2. Consider the following 7 valid transcripts for a statement X:

– For (η, b) ∈ [3] × [2], trans(η,b) :=
(
a1, c

(η)
1 := (c(η)i )i∈[τ ], a

(η)
2 , c(η,b)

2 :=
(β(η,b) := (β(η,b)

i,j )(i,j)∈[τ ]×[τ ′], β
′), resp(η,b)

)
,

– t̂rans
(1,0)

:= (a1, c
(1)
1 , a

(1)
2 , ĉ(1,b)

2 := (β(1,0), β̂′), r̂esp(1,0)),
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such that there exists (i∗, j∗
1 , j∗

2 , j∗
3 ) ∈ [τ ] × [τ ′]3 that (c(1)i∗ , c

(2)
i∗ , c

(3)
i∗ ) are pair-

wise distinct, (β(1,0)
i∗,j∗

1
, β

(1,1)
i∗,j∗

1
), (β(2,0)

i∗,j∗
2
, β

(2,1)
i∗,j∗

2
), and (β(3,0)

i∗,j∗
3
, β

(3,1)
i∗,j∗

3
) are each pairwise

distinct, and β′ �= β̂′.
Then, there exists a deterministic PT special sound extractor

Extractss such that given a trapdoor τ to c̃rs
m
NIZK, any statement X and(

trans(1,0),
(
β
(η,0)
i∗,j∗

η
, β

(η,1)
i∗,j∗

η

)
η∈[3]

,
(
β′, β̂′)) included in any of the 7 valid transcripts

of the above form, Extractss outputs a witness W such that (X,W) ∈ Rm
gap or a

solution to the MSISd,1,k4,16BZ,q′ problem with respect to a0 ∈ Rk4
q′ included in

c̃rs
m
NIZK or a solution to the MSISd,1,k3,2(BZ′+Bcδgap),q′ problem with respect to

b0 ∈ Rk3
q′ included in crscom.

Proof Sketch. The proof consists of three parts: in Part (A), we extract a witness

that proves the linear relation (i.e.,
[
t1
t2

]
=

[
b0

b1

]
R′ +

[
0

hg

]
); in Part (B), if the

extracted witness from Part (A) is not in Rm
gap, then we further extract a different

witness that proves the exact relation for t1 (i.e., t1 = b0R′′); in Part (C), we
show that given two different openings to t1, we can extract a solution to an
MSIS problem. Looking ahead, if Extractss does not succeed in outputting a
valid witness for Rm

gap in Part (A), then it will only output a solution to the
MSIS solution in the following Parts (B) and (C). This subtle observation will
be used to optimize the proof size of our multi-proof extractable NIZK in the
classical ROM.

Part (A). First observe that from trans(1,0), we have

V̄′ + β′ · V′ = HF(1,0)′

1 + pF(1,0)′

2 + Z(1,0)′
(over RQ).

Notice the right hand side is a valid NTRU ciphertext. Namely, by using the
trapdoor τ = (f, v) such that H = p · v · f−1 (i.e., secret key for the NTRU
encryption scheme), Extractss can decrypt V̄′ + β′ ·V′ to recover the “message”
Z(1,0)′

. Formally, Z(1,0)′
= f−1 · (f · (V̄′ + β′ · V′) mod Q) mod p. Moreover,

by setting the parameters appropriately, the NTRU encryption scheme will have
no decryption error. Thus, if V̄′ + β′ ·V′ is guaranteed to be in the above form,
then the possible Z(1,0)′

that can be included in resp(1,0) is unique. In other
words, there can not exist a distinct Ẑ(1,0)′

in resp(1,0) such that verification
still holds. The same argument holds for the ζ(1,0) component since we have
v′ + β′ · v′ = Hf

(1,0)′

1 + pf
(1,0)′

2 + ζ(1,0).
With this observation in mind, given trans(1,0) and β̂′, Extractss first performs

NTRU decryption as follows, which is guaranteed to succeed by assumption:

Ẑ(1,0)′
:= f−1 · (f · (V̄′ + β̂′ · V′) mod Q) mod p,

ζ̂(1,0) := f−1 · (f · (v′ + β̂′ · v′) mod Q) mod p.

As argued above, this Ẑ(1,0)′
and ζ̂(1,0) are guaranteed to be included in t̂rans

(1,0)
,

where note that t̂rans
(1,0)

is not provided to Extractss as input. Since trans(1,0)
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and t̂rans
(1,0)

are valid and share the same first flow a1, they also satisfy the
same verification equations regarding w′

1 and w′
2 (see Fig. 2). Extractss subtracts

these equations to remove w′
1 and w′

2, and obtains the following:

(β′ − β̂′) · t1 = b0

(
Z(1,0)′ − Ẑ(1,0)′)

(over Rq′),

(β′ − β̂′) · t2Δ = b1

(
Z(1,0)′ − Ẑ(1,0)′)

Δ + [ζ(1,0) − ζ̂(1,0) | 0 | · · · | 0] (over Rq).

By multiplying Δ−1 from both sides in the later equation, Extractss obtains

(β′ − β̂′) · t2 = b1

(
Z(1,0)′ − Ẑ(1,0)′)

+ (ζ(1,0) − ζ̂(1,0)) · g.

Due to our parameter selection, (β′ − β̂′) is small and is guaranteed to be invert-
ible over Rq. Extractss then checks if R′ :=

(
Z(1,0)′ − Ẑ(1,0)′)

/(β′ − β̂′)−1 consists
of polynomials with {0, 1, 2}-coefficients. If so, W := ((ζ(1,0)−ζ̂(1,0)), (β′−β̂′),R′)
is a valid witness for Rm

gap and thus Extractss outputs W.
We highlight again that if Extractss does not succeed in outputting a valid

witness for Rm
gap in Part (A), then it can only output a solution to the MSIS

problem in Parts (B) and (C). ��
We are now ready to finish the proof of Theorem 4.1. The goal of Multi-Extract

is to collect the necessary inputs to invoke Extractss defined in Lemma 4.2. Let
us informally explain in a bit more detail.

Given a valid proof πm, Multi-Extract first goes over the challenges in Cham

to find another β′
t for which there exists a valid response. Concretely, it decrypts

(v′+β′
t ·v′) and (V

′
+β′

t+V′) and searches for a pair (ζt,Z′
t) that satisfies ‖ζt‖2 <

B ∧ ‖Z′
t‖2 < BZ′ ∧ w′

1 = b0Z′
t −β′

t ·t1 ∧ w′
2 = b1Z′

tΔ+[ζt|0| · · · |0]−β′
t ·t2Δ.

If this is satisfied, respt =
(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ ]×[τ ′],Z′

t, ζt, f
′
1, f

′
2,F

′
1,F

′
2

)
is guaranteed to be another valid response where the fourth flow challenge is
c2,t = (β, β′

t). Note that this corresponds to r̂esp
(1,0) and β̂′ in Lemma 4.2.

Multi-Extract then goes over all the challenges in CX , which it can do since
|CX | = 2d = poly(λ). Concretely, for all β ∈ CX , it decrypts (V̄i′,j′ +β ·Vi′) for
all (i′, j′) ∈ [τ ]×[τ ′], and checks if it correctly decrypts to some “message” Zβ,i′,j′

such that ‖Zβ,i′,j′‖2 < BZ. Note that unlike for the above set of challenges in
Cham, this check itself does not guarantee that there exists a valid transcript
for challenge β ∈ CX . This is because the fact that a valid Zβ,i′,j′ exists does
not imply that there exists an associated valid third flow a2. However, the main
observation is that if a valid transcript for challenge β ∈ CX exists, then (V̄i′,j′ +
β · Vi′) must decrypt to Zβ,i′,j′ such that ‖Zβ,i′,j′‖2 < BZ.

Finally, Multi-Extract is ready to run Extractss. It runs through all three pairs
of distinct challenges

(
β
(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3]

it collected while going over CX and

executes Extractss
(
τ,X,

(
β
(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3]

, (β, β̂′)
)
. We show via Lemmata 4.1

and 4.2 that with non-negligible probability, one of the set of inputs to Extractss
must be in the specified form detailed in Lemma 4.2. Moreover, Extractss is only
invoked a polynomially number of times. Thus, assuming the MSIS problem is
difficult, Multi-Extract extracts a witness in Rm

gap in polynomial time. ��
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4.3 Putting Everything Together

Table 2. Concrete parameters for our scheme.

par. q q′ p Q τ τ ′ κ d k1 k2 k3 k4 Bc σ γDSMR, γD, γD′ , γE

value ∼ 260 ∼ 224 ∼ 232 ∼ 266 6 2 2 2048 3 5 4 19 36 226 1

Roughly, we consider all the constraints that need to be satisfied by the correct-
ness and security of our blind signature and use the LWE-Estimator from [7] so
that every MLWE, MSIS, and DSMR assumptions give at least 128 bits of security.
We employ the technique of Bai-Galbraith [12] to reduce the dimension of the
signature by 2. We also consider that Gaussians can be encoded in log(2σ) bits
by using the encoding of e.g. [46]. The size of the resulting signature is 102.6 KB
and we get a first flow message of size 34 MB. However, as explained in the
technical overview, we can reduce the first flow message in the classical ROM
by removing the Katsumata transform [35] applied to the exact proof of Bootle
et al. [17]. With this optimization, the first flow message is greatly reduced to
851 KB (Table 2).

Possible Optimizations. We also mention several possible optimizations. We can
first consider using matrices A1,A2,B1 instead of a1,a2,b1 and lowering the
degree d to e.g. 512. This can lower both the signature and first flow message
size. This way we would have better granularity when modifying parameters,
however we would need a module-NTRU trapdoor on the matrix A1 which is
not constructed in [26] and seems nontrivial to obtain. Another solution would
be to additionally prove the sparseness of R in the multi-proof extractable NIZK,
which allows to lower the signature size since we will be able to extract R with
better quality. This is possible by proving statements about the hamming weight
of R but it would make the protocol much more complicated and the size of the
first flow message may increase. Using either of these improvements we could
lower the signature size to around 50 KB.

Another possible avenue for improvement would be reducing the size of the
first flow by considering a better exact zero-knowledge proof. In all likelihood
using the same proof as [29] would give the same improvement and bring the
size of the first flow down to around 110 KB. However using this zero-knowledge
proof is not completely straightforward as extraction is more complicated and
the arguments used in Lemma 4.2 might not apply any more, especially when
considering extraction in the QROM.

We leave further optimized instantiation of our generic construction as an
interesting future work.
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26. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices. In: ASIACCS 2020, pp. 853–
866 (2020)

27. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In: ACM CCS 2018, pp. 574–591
(2018)

28. Ducas, L., et al.: CRYSTALS-dilithium: a lattice-based digital signature scheme.
IACR TCHES 1, 238–268 (2018)

29. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 9

30. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and VRFs. Cryptology ePrint Archive (2022)

31. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

32. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/978-3-642-13013-7_29
https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-69053-0_32
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/3-540-45961-8_15
https://doi.org/10.1007/0-387-34799-2_25
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/3-540-57220-1_66


A New Framework for More Efficient Lattice-Based Blind Signature 335
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Abstract. Minimizing the energy cost and carbon footprint of the Bit-
coin blockchain and related protocols is one of the most widely identi-
fied open questions in the cryptocurrency space. Substituting the proof-of-
work (PoW) primitive in Nakamoto’s longest-chain protocol with a proof
of useful work (PoUW) has been long theorized as an ideal solution in
many respects but, to this day, the concept still lacks a convincingly secure
realization.

In this work we put forth Ofelimos, a novel PoUW-based blockchain
protocol whose consensus mechanism simultaneously realizes a decentral-
ized optimization-problem solver.Our protocol is built around anovel local
search algorithm, which we call Doubly Parallel Local Search (DPLS), that
is especially crafted to suit implementation as the PoUW component of
our blockchain protocol. We provide a thorough security analysis of our
protocol and additionally present metrics that reflect the usefulness of the
system. DPLS can be used to implement variants of popular local search
algorithms such as WalkSAT that are used for real world combinatorial
optimization tasks. In this way, our work paves the way for safely using
blockchain systems as generic optimization engines for a variety of hard
optimization problems for which a publicly verifiable solution is desired.

Keywords: Blockchain · consensus · proof-of-useful-work · stochastic
local search

1 Introduction

Blockchain protocols based on Proof of Work (PoW) capitalize on computa-
tional work performed by protocol participants, called miners, to ensure the
security of the maintained transaction ledger. In the most prominent Proof-of-
Work blockchain designs, the work performed serves no other purpose besides
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maintaining security. These protocols also combine permissionless participation
with incentives, offering rewards to miners that commit computational effort
to the protocol. This has led to an increasing global commitment of energy to
systems like Bitcoin as the value of the currency has grown. At the time of this
writing, Bitcoin has an annualized energy expenditure on par with many small
to medium countries (see, e.g., the Cambridge Bitcoin Electricity Consumption
Index, https://cbeci.org).

This trend was identified early on as an important concern in the Bit-
coin ecosystem and motivated consideration of two major avenues for potential
improvement to the underlying blockchain protocol. The first is aimed at replac-
ing the PoW mechanism with an alternate resource lottery with potentially
“greener” characteristics, e.g., proof of stake [14,23,31], proof of space [17,40],
proof of space-time [37], and similar mechanisms. A common challenge faced by
these approaches is to ensure that the security of the resulting scheme has not
been eroded by the change in the underlying primitive (from “work” to some-
thing else). The second direction—which, in principle, could entirely ameliorate
the issue and is the focus of this work—is to repurpose the invested computa-
tional effort towards solving real-world problems. This direction thus posits a
proof-of-useful-work (PoUW) design approach for blockchain protocols.

Early designs and implementation attempts such as Noocoin [13] and Prime-
coin [32] highlighted the fundamental issue that would plague future progress
towards a satisfactory PoUW system. If the work solved is sufficiently generic,
then an attacker may direct the system towards solving problem instances that
are easy for them (e.g., due to precomputation or other private advantages “hid-
den” in the underlying instance-space structure) and hence operate with an
advantage in the underlying proof-of-work mechansim, threatening security. At
the same time, minimizing the attacker’s ability to manipulate the system by
adopting more structured “useful” work may render the system’s computations
useless in practice (e.g., Primecoin [32] and Gapcoin [19] compute sequences of
Cunningham primes and gaps between primes respectively—both mathematical
objects of dubious usefulness).

1.1 Our Contributions

We propose the first PoUW-based blockchain protocol that is accompanied by
a thorough security and usefulness analysis. Central to our construction is a
novel general-purpose algorithm for stochastic local search called Doubly Parallel
Local Search (DPLS). Our key technique for protocol design is to mold the whole
blockchain protocol execution into a DPLS engine that demonstrably performs
the steps of the algorithm in a publicly verifiable manner. The PoUW operation
in our consensus protocol has the miners collectively run DPLS on instances
contributed by interested clients. In more detail, our results are the following.

(I) Doubly Parallel Local Search (DPLS). We put forth a new algorithm
for stochastic local search. With DPLS we achieve the following two-pronged
objective: (i) The structural properties of the algorithm suitably reflect the

https://cbeci.org
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stochastic dynamics of the underlying permissionless blockchain operation so
that a blockchain execution can be viewed as a virtual machine running the
algorithm; (ii) Stochastic local search is a powerful, well-studied, and generic
algorithmic paradigm for solving computationally hard optimization problems.
Thus the DPLS algorithm itself can be evaluated in the context of the broad
family of existing stochastic local search algorithm variants and, in particular,
assessed with respect to problems of high real-world value.

DPLS is a general-purpose stochastic local search algorithm based on an
underlying algorithm M , called the exploration algorithm: Given a set of points
in the solution space, M searches for a better solution via a local exploration
process that requires a modicum of computational effort. (For example, M might
call for a fixed number of steps of gradient descent at each input point.) Based
on M , DPLS follows a “doubly” parallel search strategy where a number of paths
are pursued in parallel, and in each path a number of exploration threads via M
are executed; finally, the best one according to a scoring function is selected.

(II) Moderately Hard DAG Computations. To consider the possibility of
using a DPLS solver within a proof-of-work setting, it is essential to articulate
the conditions under which running the basic exploration algorithm M exhibits
moderate hardness (MH). This property is the necessary requirement for a com-
putational problem to be applicable in the blockchain setting. What makes the
modeling more challenging compared to, say, the case of Bitcoin’s PoW algo-
rithm is that we cannot resort to an idealized model (such as the Random Oracle
Model) and must express the moderate hardness property in a way that can be
suitably utilized in the security arguments of the blockchain protocol.

To capture this and at the same time reflect the parallelizable nature of
DPLS, we focus on the DAG-computation abstraction which has been widely
used in the modeling of parallel computations (e.g., see [1,39]). In the setting of
DPLS the main computational unit is the exploration algorithm M and we are
principally interested in expressing the moderate hardness of DAG computations
over M . The delicate part of this modeling is to express the advantage ε of
the adversary over the honest parties as a function of its ability to “grind” the
randomness of the DAG computation as well as capitalize on any advantage
obtained from observing previously published steps in the computation.

(III) The PoUW-Based Blockchain Protocol. At a high level, our protocol
calls for parties to post instances for problems of interest in the ledger, while
locking funds denominated in the ledger’s native token to incentivize miners to
work towards solving them. Maintaining the blockchain translates to performing
steps of the DPLS algorithm for the instances in the ledger and being rewarded
for that—with foresight, we stress that solving such instances directly (or post-
ing pre-solved instances) will not help an adversary in extending the ledger any
faster. Problem posers can keep funding a particular DPLS computation when-
ever its funds are getting depleted.

The cornerstone of our protocol is its PoUW mechanism that operates in
three stages. In the “pre-hash” stage, random strings are repeatedly generated
and hashed until one is found that achieves a small hash (as in a standard PoW).
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This string will constitute the random seed for the DPLS exploration algorithm
M and will be useful for controlling “grinding attacks” in which an adversary
attempts to force adoption of a random string that yields a comparatively easy
computation. When the exploration stage terminates, a “post-hash” step deter-
mines with a single hash query whether the resulting value qualifies as a PoUW.
This “sandwiching” of M between two small hashes is essential for security since
it forces an adversarial miner to seed the computation with a randomly selected
seed and learn that a successful block can be issued only after the exploration
step M is complete. However, if we apply this idea naively (e.g., as a drop-in
replacement to Bitcoin’s PoW algorithm), there are three major disadvantages:
first, a number of useful exploration steps will go to waste, since they won’t lead
to a block; second, adjusting the hardness of block production (which is needed
for blockchain security) would impact usefulness (since miners will spend too
much effort trying to find small hashes) and, finally, we do not want waste com-
putational cycles by repeating M -computations to verify newly mined blocks.

We resolve these issues with three mechanisms. First, taking advantage of
the scoring function, we have the miners publish the best value they have pro-
duced based on all their post-hash attempts; in this way, progress in the DPLS
computation is not lost. Note that deviating from this strategy may only impact
usefulness—the security of the protocol is maintained against any Byzantine
deviation. Second, we adopt the 2-for-1 PoW mechanism of [20], which allows
for the production of two types of blocks with a single hash attempt: either an
“input block”, in which case it is inserted in the blockchain as a transaction, or a
“ranking block”, which extends the blockchain and refers to any number of input
blocks. Using this decoupling mechanism, we can keep the steady progress of the
DPLS computation and adjust the underlying (ranking) block hardness indepen-
dently. The crucial property this ensures is that as more miners join the protocol
the DPLS computation is sped up proportionally; on the other hand, ranking
block production can be kept steady as required for the security of the underlying
blockchain protocol. In this way, the more real-world useful problem instances
are submitted to the system (as evidenced by the increased funding locked with
each one and the platform’s native token appreciation), the more computational
power will be introduced to the DPLS engine to solve them. Finally, instead of
requiring verification to repeat the computations of M , block producers issue
a suitable succinct non-interactive argument of knowledge (SNARG) (see, e.g.,
[24]), so that verifier complexity becomes independent of M .

We prove our protocol secure under a standard “honest majority” assump-
tion reminiscent of the Bitcoin protocol analysis, where the distance above 1/2
depends, among other parameters, on “moderate hardness advantage” ε. (We
note that even if ε = 1, which is to say that we have no moderate hardness
guarantees at all, our protocol remains secure with a bound close to 3/4).

As a final remark, our security treatment must additionally contend with a
novel probabilistic challenge. In particular, a fundamental assumption adopted
by previous proof-of-work analyses is absent: the guarantee that miners’ proof-
of-work victories are given by independent Poisson (or “discrete Poisson”)



Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 343

processes. In our setting, the process by which miners produce proofs of work is
given by a non-trivial Markov chain reflecting the features described above: e.g.,
pre-hashing, useful work computation, post-hashing, and SNARG computation.
Furthermore, adversarial miners are under no obligation to follow the Markov
chain; for example, they may restart the process when they choose. (From this
perspective, the classical analysis can be viewed as a chain with a single “mining”
state with two transitions, one corresponding to a failed mining attempt—which
simply carries the chain back to the same mining state—and one corresponding
to a successful mining attempt.) This complex mining model even poses signifi-
cant challenges for the analysis of honest players because honest players’ states
in the chain may be synchronized by various events (such as the beginning of
the protocol or, depending on the details of the algorithm, delivery of a new
block). Unfortunately, such synchronization is a direct threat to the production
of desirable “uniquely honest” time periods, during which a unique honest miner
generates a proof of work. Such uniquely honest time periods are an emblematic
ingredient in the consistency of such systems (see, e.g., [30] where this is explored
in detail). To manage these correlations in the model, we consider the aggregate
Markov chain carried out by (all) the honest players and establish that when the
parameters of the chain are under suitable control—essentially, that the “Pois-
son” parts of the chain “dominate” the other parts of the chain corresponding to
useful work and SNARG computation—the chain converges very rapidly to the
ideal distribution where each honest participant is in an independent stationary
distribution. We then apply the recurrence-time properties of the stationary dis-
tribution along with standard tail bounds for independent random variables to
bound the events of interest. This is then leveraged to establish the stochastic
properties necessary for consistency. We remark that our techniques here are
quite general, and could be applied to quite complex “mining chains,” so long
as they have a sufficiently substantial “Poisson part” (corresponding to standard
proof-of-work discovery). In particular, the techniques can be applied to a generic
mining problem—even one with very little variance in time to completion—so
long as it is followed by a sufficiently difficult proof of work.

(IV) Usefulness Metrics. We devise a two-pronged approach to measuring
usefulness. Recall first that our blockchain protocol can be thought as a decen-
tralized DPLS solver. The first usefulness metric asks how good is the blockchain
execution as a DPLS engine. This can be done by measuring the ratio per unit
of time of the number of steps that the blockchain protocol spends in DPLS
computations compared to its total number of steps. We call this metric Ueng,
as it can be thought to capture the efficiency of the blockchain protocol as an
“engine” that runs DPLS. The second metric, denoted Ualg, reflects how useful
DPLS computations are themselves. For a given instance distribution we define
this metric as the ratio between the expected number of steps of the best algo-
rithm for that instance distribution divided by the expected number of steps that
DPLS takes. Note that identifying the best algorithm for a problem is typically
infeasible based on current state of the art, so in this case the best algorithm can
be simply substituted with the best known algorithm for the problem at hand.
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Combining the above two metrics, we can obtain, as an overall metric of useful-
ness, the product Ueng · Ualg. The key advantage of our two-pronged approach
is that we can completely characterize Ueng with protocol analysis, while Ualg is
an empirical metric that must be assessed in the context of a specific class of
problems.

To conclude the discussion onusefulnessmetrics, wemention that for our proto-
col it holds that (i) Ueng ≤ 1/2, which stems from the fact that we balance the pre-
hash probability of success to require the same effort as the worst-case time com-
plexity of M—this enables us to prove security for any advantage ε in the underly-
ing MH assumption; and (ii)Ueng will be close to 1/2 if M ’s runtime distribution is
sufficiently concentrated and the rate at which blocks are produced is sufficiently
small compared to the SNARG cost. We note that the 1/2 bound can be surpassed
by taking into account the sensitivity of ε and adaptively setting the pre-hash dif-
ficulty, however such a direction would be only feasible if we restrict the class of
exploration algorithms M to those whose hardness is well understood. Estimating
Ualg requires some real-world baseline – as an illustrative example we choose Walk-
SAT [28,43], a popular local search algorithm for satisfiability problems. Given this
choice,Ualg would result from comparing how the DPLS implementation fares with
respect to running WalkSAT in isolation. Exploring this direction further goes out-
side the scope of the present paper but we give some insights in the full version of
the paper [18]. It is worth noting that the instance distribution would be an impor-
tant consideration in this analysis; for illustrative purposes in the full version of the
paper, we use Blocks World Planning, a well known NP-hard problem in AI [26] for
which there is an abundance of public data sets. Using WalkSAT as the baseline,
we show that a single-thread implementation of DPLS performs reasonably well
against WalkSAT, investing about twice as much computational steps, i.e., some-
thing that amounts to an estimation of Ualg ≈ 1/2. Similar results are obtained
from additional experiments that reflect adversarial deviations and the effect of
parallelization.

The above results are evidence for the non-negligible real-world usefulness
of our PoUW-based blockchain protocol. We anticipate that investigating fur-
ther the DPLS blockchain engine as an optimization solver will be an exciting
research direction from an algorithmic perspective. There is yet another benefi-
cial dimension of using our blockchain protocol as a DPLS solver: optimization is
executed collaboratively in a publicly verifiable manner. Depending on the task,
public verifiability has intrinsic usefulness and this can be seen as the price the
system pays for the remaining ratio 1 − Ueng · Ualg. For instance, optimization
tasks such as athletic-competition tournament scheduling or various matching
problems (e.g., the allocation of residents to hospitals or radio frequency auc-
tions) can benefit from public verifiability; see the full version of the paper [18]
for further discussion and references.

1.2 Related Work

Beyond the early work mentioned above [13,19,32], a number of other works
investigated the concept. One line of research considered hybrid constructions
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where the miner can choose between applying either standard PoW or doing some
potentially useful computation [11,38,45]. Further constructions for PoUW min-
ing were given by Loe et al. [34], Dotan et al. [16], and, closer to our work, Bal-
dominos et al. [7] and Lihu et al. [33], who suggested to base PoUW on stochastic
search and machine-learning problems. In all these previous approaches the secu-
rity of the system was not rigorously analyzed and, in many cases, concrete attacks
by e.g., an adversary who directly plants easy instances to solve, are feasible.

In contrast to the above, a formal security approach was adopted by [8] but
the published version of the work retracted the “usefulness” dimension of the
original paper. Also, their proof-of-work construction is not suited for permis-
sionless ledgers as it does not introduce any variance in puzzle-completion time.

Finally, some alternative approaches to the problem at hand that are worth
mentioning in our context are the concept of “merged mining”, a technique
employed in a number of cryptocurrencies where the mining effort for the
blockchain has a dual use as mining Bitcoin and hence it is “useful” in this
sense: Permacoin [36] where, via proofs of retrievability, the usefulness dimen-
sion is in maintaining a public file store; and useful work enforced via a trusted
execution environment [44] where, in contrast to the above solutions, full trust
in a specific hardware manufacturer is required.

We stress that, to the best of our knowledge, no prior fully decentralized,
PoUW-based blockchain protocol has been published along with a thorough
security (or usefulness) analysis.

1.3 Organization of the Paper

In Sect. 2 we describe the computational model and some basic notation. DPLS
is presented in Sect. 3. Next, we expand on our notion of moderately hard DAG
computations in Sect. 4. In Sect. 5 we present our blockchain protocol, whose
security and usefulness we analyze in Sect. 6. Applications and experimental
results, as well as some of the code and proofs are presented in the full version
of the paper [18].

2 Preliminaries

Notation. For k ∈ N
+, [k] denotes the set {1, . . . , k}. We denote sequences by

(ai)i∈I , where I is a countable index set. For a set X, x ← X denotes sampling
an element from X uniformly at random. For a distribution U over a set X,
x ← U denotes sampling an element of X according to U . By Um we denote the
uniform distribution over {0, 1}m. We denote that some function f is negligible
in λ by f(λ) < negl(λ). We let λ denote the security parameter.

Security Model. We adopt the computational model of [21], which is a variant
of the model presented in [20]. There, the set of parties {P1, . . . , Pn} running the
protocol is fixed and the parties, the environment Z, the adversary A, and the



346 M. Fitzi et al.

control program C coordinating the execution are all modeled as IRAMs. The
adversary A is active and can corrupt up to t parties in order to break security.

Communication Model. We follow the communication model used by most
previous works [6,41] that analyze blockchain protocols in the cryptographic set-
ting, where time is discrete and the network is (partially) synchronous. In more
detail, the protocol advances in rounds and communication happens through a
diffusion functionality. Honest parties can use it to send messages which may be
adaptively delayed for up to Δ rounds by the adversary, but are guaranteed to
be received by everyone in the network. Communication is not authenticated, in
the sense that the functionality does not provide any guarantees regarding the
origin of sent messages. Finally, the adversary is rushing and can additionally
choose to send its own messages only to a subset of the parties.

Setup. All parties have access to a common reference string (CRS), sampled
from a known efficiently samplable distribution, which is used to instantiate a
succinct non-interactive argument (SNARG) system [24] SNARG = (S,P,V).
Note that there are several ways to securely establish a CRS for a SNARG in
a permissionless blockchain environment. In particular, assuming the slightly
stronger notion of an updatable structured reference string (SRS) [25,35], the
construction of [29] allows to obtain a common reference string.

Random Oracle. Parties have access to a random-oracle (RO) functionality [9].
We use both RO and non-RO based moderately hard problems and, in order to
argue about security, we need to be able to compare their computational costs.
We thus assume that a query to RO takes cH computational steps both for the
honest parties and the adversary.

Concrete Modeling. A and Z have a concrete bound of t · cH steps they can
take per round as well as an upper bound θ on the number of messages they can
send per round.

3 Doubly Parallel Local Search

One approach to designing a PoUW blockchain for optimization problems is to:
(i) first pick your favorite optimization algorithm, and then (ii) try to design a
blockchain protocol around it. The disadvantage of such an approach is that any
change in the target optimization problem may result in vital changes to the
blockchain and consensus system, requiring new security proofs. Here, instead,
we adopt a modular approach where we first build a PoUW blockchain based on
a generic optimization algorithm, and later, with minimal overhead, instantiate
it with the problem-specific parameters. This allows for re-using our blockchain
analysis for different instantiations of the optimization algorithm.

We start by giving an overview of DPLS, the generic optimization algorithm
that our blockchain protocol is implementing from a client’s point of view, i.e.,
ignoring the internal details of the blockchain algorithm.



Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work 347

3.1 Overview

Clients of our protocol publish on the blockchain the optimization problems
that they want miners to solve. Miners, on the other hand, run the Doubly
Parallel Local Search (DPLS) algorithm to solve these problems. Solving large
optimization problems may require more work than what can be computed by
a miner during the mining of a single block. Thus, we design DPLS to be a
distributed algorithm where the computation result is obtained by multiple state
updates – each corresponding to a block –, some of them possibly occurring
concurrently. Concurrent updates is the first source of parallelism of DPLS.

In its core, DPLS follows the well-known stochastic local search approach:
it searches a solution space X by repeatedly exploring the neighborhood of a
currently selected point, looking for a neighboring point that promises progress
towards an optimal solution. More concretely, based on the description of a
problem instance Λ, DPLS gradually builds a directed acyclic graph (DAG)
G recording the already explored points in X. A single exploration step then
consists of invoking a generic exploration algorithm M on G, yielding a new
point in X, with the goal of extending G by a point of better quality (computed
by a scoring algorithm gΛ), thereby progressing the exploration. Note that, in
a strictly sequential execution, a ‘linear’ graph G may be sufficient. However,
maintaining a DAG of explored points allows for more general flavors of local
search where multiple threads are concurrently explored by different parties.

As communication and local pre-computation are important resources in per-
missionless systems, we cannot afford to publish every exploration step computed
by miners. Instead, each miner performs many randomized local exploration
steps in a batch, publishing only the best one of them. To this end, the explo-
ration algorithm M is parametrized by an inner state z that determines the
initial state of the search in a batch, e.g., a common starting location in G to
focus the batched search, and a randomness seed r ensuring that same-batch
steps are independent. Batched search is the second source of parallelism of our
doubly parallel algorithm.

Given the above, DPLS is parametrized by the following problem-specific
sub-algorithms:

– Initialization algorithm Init(Λ): A probabilistic algorithm that takes as input
an instance description Λ and outputs a DAG G.

– Focus algorithm F(Λ,G): A probabilistic algorithm that takes as input Λ,G
and outputs an inner-state string z.

– Exploration algorithm MΛ(G, z, r): A deterministic algorithm that takes as
input a DAG G, an inner state z, and a seed r, and outputs a point x ∈ X.

– Scoring algorithm gΛ(x): A deterministic algorithm that takes as input Λ and
x ∈ X, and outputs the score y ∈ R of x.

– Termination algorithm Finished(Λ,G): A deterministic algorithm that takes
as input Λ,G and outputs 1 if the algorithm has finished, and 0 otherwise.
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3.2 DPLS Modeled in a Blockchain Setting

Problem solving starts by the problem setter posting an instance description Λ
together with the output of Init(Λ) in the blockchain, in the form of a special
transaction. Miners work on such an instance by running the Update procedure
(Algorithm1), which makes use of the sub-algorithms introduced above. The
outputs produced are posted to the blockchain and are in turn used by other
parties to produce additional updates. The search algorithm ends when predicate
Finished(Λ,G) becomes true.

Update takes as inputs the chosen instance description Λ and the party’s
current view of the DAG G. The inner state z is generated using algorithm
F(Λ,G), while the number of invocations of M in a single batch, denoted by k,
is distributed according to the geometric distribution, with the exact parameters
of the distribution set by the protocol designer. The sampling of k from the geo-
metric distribution models its integration into the useful-work mining procedure
where each computation of M qualifies for block production with probability
p2—the miner must find a block to publish a state update. After k is fixed,
that many seeds (ri)i∈[k] are sampled independently at random, and algorithm
M(G, z, ri) is invoked k times, with the best-scoring result (according to function
g) being output by Update.

Algorithm 1. The state update procedure.
function Update(Λ, G)

z ← F(Λ, G) � Compute the inner state
k ← Geom(p2) � Sample from geometric
(ri)i∈[k] ← Uk

m � Sample uniformly
S := {(z, ri, xi)|xi := M(G, z, ri), i ∈ [k]} � Invoke M
(z, r, x) := arg max(z,r,x)∈S g(x) � Pick best
return (z, r, x)

3.3 An Example

We present an instantiation of DPLS (Init, F, M , g, Finished) for a variant of the
classical WalkSAT algorithm [28,43] for the SAT problem.

First, we give a summary of the original WalkSAT algorithm. Starting from
some initial configuration, at each step, WalkSAT picks a variable to flip as
follows: Given the current configuration, one of the unsatisfied clauses is chosen
at random. For each of the variables involved in the clause, a grade is computed
which is equal to the number of clauses that are going to be broken (i.e., turn from
satisfied to unsatisfied) if the chosen variable is flipped. If there exist variables
that have grade 0, then one of them is selected at random and flipped. Otherwise,
a variable is selected (and flipped) at random, with probability wp coming from
the selected clause, and with probability 1− wp coming from the variables with
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the best grade. The walk continues until a solution is found, or some other
condition is met, e.g., an upper bound on the total number of flips is reached.
If no solution is found, the algorithm can be restarted from some other point in
the solution space.

In the DPLS variant, the instance description Λ encodes the description
of the SAT instance, i.e., the number of variables and the different clauses,
with the solution space X being equal to the possible configurations of the SAT
variables. Init(Λ), to aid parallelization, outputs a number of different initial
configurations in X. In each invocation of Update, miners run function F to
pick at random which point/configuration in G to work on and encode this
information in z. Given this configuration, exploration algorithm M(G, z, r) is set
to run WalkSAT for a fixed number of flips. Note, that the starting configuration
is the same for the different runs of M in a single Update invocation, allowing
miners to focus their search. On the other hand, the randomness used by the
different WalkSAT invocations comes from the respective seeds (r), leading to
the exploration of different points in the solution space. To choose the best one
among these points, g counts the number of satisfied clauses in the respective
ending configurations. Hence, Update outputs the configuration that maximizes
g, which is then possibly going to be used by another miner as the starting
point of another run of Update. The algorithm terminates after a predefined
number of updates have been posted. For the detailed code and the experimental
evaluation of the performance of this algorithm, we point the reader to the full
version of the paper [18].

3.4 Generality of the Approach

Most well-known stochastic-local-search (SLS) algorithms [27] can be mapped
to DPLS as follows: The Init function provides the initial information needed,
e.g., a number of different starting locations for parallel search. Given the cur-
rent location, M is set to explore a single location in its neighborhood and any
randomness needed is provided by the seed. Consequently, Update can be inter-
preted as exploring different points in the neighborhood, and then returning the
one that maximizes the scoring function. This point can then serve as the next
point in the search. We expect better performance when the total neighbor-
hood size is sufficiently large, such that miners do not explore the same points
due to desynchronization and the fact that the points searched are randomly
determined. A subclass of SLS algorithms that has this characteristic is Very
Large Scale Neighborhood search algorithms [2], where the algorithm (partially)
searches a very large neighborhood before making its next step. We provide more
evidence about the generality and possible real world applications of DPLS in
the full version of the paper [18].

4 Moderately Hard DAG Computations

In DPLS, most of the work is spent running the exploration algorithm M . Hence,
it is natural to base security on the moderate hardness of this computation. We
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next describe in detail the syntax and relevant security properties required for
its use in a PoUW protocol.

4.1 Syntax

As explained earlier, an important aspect of DPLS is that state updates are
performed in a distributed way, and without much coordination. Based on this
observation, we adopt a DAG structure for computations involving M , where
each computation corresponds to a vertex on the DAG and depends on multiple
previous vertices. Our notion generalizes the iterated computation paradigm [10,
22], where each computation depends on a single vertex.

We note that the parameters of the computation performed will be possibly
influenced by the adversary, in the sense that he may try to post a client problem
to be solved, only with the purpose of subverting the underlying blockchain
protocol. As the security of the blockchain depends on the hardness of individual
computations of M , we must guarantee that they remain moderately hard even
when parameters are chosen maliciously.

Taking into account these considerations, new vertices of the DAG are gener-
ated based on the current view, an inner-state string, and, an unpredictable seed.
As explained earlier, the inner-state string allows parties to focus their work in
the context of DPLS. On the other hand, the seed randomizes the computation
to force the adversary to do work of average-case complexity—in contrast to
possibly selecting “cheap” instances to gain an advantage in block production.
Next, we formally introduce the notion of a DAG computation.

Definition 1. (DAG computation/transcript.) A DAG computation is a
sequence of instance descriptions I = (Λλ)λ. For every value of the security
parameter λ ∈ N, an instance description Λ specifies:

1. a finite, non-empty set Z (inner state);
2. a finite, non-empty set X (output);
3. a deterministic verification algorithm V ; and
4. a deterministic exploration algorithm M .

A transcript of a DAG computation Λ corresponds to a labeled DAG G where
each vertex in G is labeled with a tuple (z, r, x) ∈ Z × {0, 1}λ × X (edges have
no labels). We say that G is valid if and only if V (G) = 1.

Additionally, the following conditions are satisfied:

– (closure) if G and G′ are valid, then G ∪ G′ is also valid1;
– (correctness) for a valid G and x ← M(G, z, r), it holds that G ⊕ (z, r, x) is

valid, where G ⊕ (z, r, x) denotes the transcript resulting by adding a vertex
with label (z, r, x) to G that is connected to all other vertices.

We write Λ[Z,X, V,M ] to indicate that Λ specifies Z,X, V,M as above.

1 Closure ensures that concurrently extending a transcript does not break validity.
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We require that the instance descriptions, as well as the elements of the sets
Z,X, can be uniquely encoded as bit strings of length polynomial in λ. For
simplicity, we will sometimes denote by VΛ,MΛ the algorithms corresponding to
instance description Λ.

4.2 Moderate Hardness

Next, we introduce a moderate-hardness (MH) notion for DAG computations.
Our notion builds on ideas found in [21,22]. On a high level, we require that
the time the adversary takes to generate a given number of new vertexes in the
DAG, is proportional to their number.

We proceed to describe the security experiment in more detail. Let t be equal
to the worst-case complexity of M . The adversary has access to three oracles
O,M,V. Its goal is to compute m new vertices for seeds generated at random
from oracle O in less than (1 − ε) · mt steps, where ε reflects the advantage
of the adversary compared to M . The adversary is allowed to query oracle O
more than m times, and possibly use oracles M and V to simulate new honestly
computed vertexes and verify whether a DAG computation is valid, respectively.
ε is parameterized by the respective rates of queries qO/m, qM/m, qV/m to reflect
the possible adversarial advantage. We note, that oracles M and V are provided
to aid composition;2 We require that the property holds with overwhelming
probability for all m greater than some parameter k.

As we want to build a blockchain that can accommodate solving multiple
optimization problems, MH is expressed w.r.t. a family of DAG computations
(per security parameter level), each corresponding to a different instantiation of
the DPLS algorithm.

Definition 2. Let I = ((Λλ,i)i)λ be a family of DAG computations. I is (t, ε, k)-
Moderately Hard (MH) if for any PPT RAM A = (A1,A2), λ ∈ N, and all poly-
nomially large m ≥ k, it holds that the adversary wins with probability negl(λ)
in ExpMH

A,I,ε,t(1
λ,m)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

st ← A1(1λ); ((Λi, Gi, zi, ri, xi))i∈[m] ← AO,V,M
2 (st);

b1 := StepsAO,M,V
2

(1λ, st) < (1 − ε(
qO
m

,
qV
m

,
qM
m

))m · t;

b2 :=
m∧

i=1

((Gi, zi, ri) ∈ QO ∧ VΛi
(Gi ⊕ (zi, ri, xi)) = 1);

return b1 ∧ b2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

where qO queries are made to oracle O(Λ,G, z) =
{
r ← {0, 1}λ; return r

}
, qV

queries are made to oracle

V(Λ,G, z) = {if VΛ(G) = 0, then return 0, else return 1} ,

2 In the blockchain setting, the adversary sees blocks generated by other parties, sim-
ulated by oracle M, and sends out blocks that other parties may drop or adopt
depending on whether they are valid, simulated by oracle V.
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and qM queries are made to oracle

M(Λ,G, z) =

{
if VΛ(G) = 0, then return ⊥
else, r ← {0, 1}λ; return (r,MΛ(G, z, r),StepsMΛ

(G, z, r))

}

.

Remark 1. For simplicity, in the MH experiment the adversary (A2) is given
the power to select the DAG transcript it wants to extend (Gi). However we do
not want this to be an impediment on its running time in case (a part of) Gi

is already defined in the output of A1; for this reason we will allow A2 to also
determine Gi implicitly by referencing the output of A1.

Finally, we argue that for any MH DAG computation the speed-up the adver-
sary gets by seeing extra problem instances is bounded. Looking forward, we
note that this property will be the cornerstone for the protection of our pro-
tocol against grinding attacks. The main idea is that if an attacker A could
get a speed-up on performing DAG computations due to seeing extra problem
instances, then we would be able to construct another attacker A′ that could
break MH by initially running A and then performing any remaining “unsolved
but queried” DAG computations using M . In the language developed above,
extra instances are modeled as extra queries to oracle O, while the adversarial
speed-up can be captured by the adversarial advantage difference ε(1 + a, b, c)
from ε(1, b, c), where a is the percentage of extra queries. We point to the full
version of the paper for the formal proof of the lemma.

Lemma 1. Let I be a family of DAG computations that is (t, ε, k)-MH. Then,
I is also is (t, ε′, k)-MH, where for any a ≥ 0, b, c: ε′(1 + a, b, c) := ε(1, b, c) + a

Remark 2. It is important to note that (t, ε, k)-moderate hardness, for reasonable
parameters, is not achievable for all families of DAG computations. To illustrate
this, consider a family of DAG computations allowing for an instance to be
crafted in the following way: a key pair of a trapdoor permutation is generated
by the adversary, the public key is embedded in the instance, and the exploration
algorithm M is designed such that it implies computing the pre-image of a
random nonce. Clearly, such a DAG computation would not be moderately hard
in any reasonable way.

Still, moderate hardness seems to be a reasonable assumption for a large class
of computations with sufficiently simple exploration and verification algorithms,
e.g., for the core randomized search computation of stochastic local search algo-
rithms [27]. The adversary now can still craft problems trying to gain compu-
tational advantage in the DAG computation, but the unpredictability of the
randomness seed can help to mitigate this effect to a large extent.

Having given an outline of the DPLS optimization algorithm as well as the
necessary vocabulary for moderate hardness, we proceed to present Ofelimos, the
PoUW blockchain protocol, which builds on the moderate hardness of a generic
useful computation to implement both DPLS and a transaction ledger.
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5 The PoUW Blockchain Protocol

5.1 Protocol Description

We start, by listing a number of (informal) requirements that any protocol imple-
menting DPLS must satisfy to qualify as a candidate protocol for useful-work
mining. We then describe our protocol while motivating the design choices by
these requirements. The requirements are motivated from both sides: blockchain
security, as well as, efficiency of the DPLS algorithm:

1. Blockchain security:
(a) No grinding: the adversary cannot gain mining advantage by cherry-

picking DPLS exploration steps of low complexity.
(b) Precomputation resilience: problem instances cannot be adversarily man-

ufactured such that the adversary gains access to faster block production.
Computation before seeing the head of the chain to be extended cannot
contribute towards computing the respective PoUW.

(c) Adjustable mining difficulty: The block difficulty can be adjusted to the
mining power applied by the network.

2. DPLS efficiency:
(a) Frequent updates: Results about new points explored are published (rel-

atively) fast.
(b) Small overhead: The computational overhead of integrating exploration

algorithm M into PoUW is small (implying that honest mining performs
useful work).

The high-level architecture of the protocol is similar to Bitcoin, i.e., blocks
are chained together by referencing each other by hash, and, during each round,
a miner selects the longest chain from his view, and tries to extend it by a block.
Two modifications are applied: standard PoW is replaced by PoUW, and we
apply 2-for-1 PoW [20] in order to accommodate different types of blocks for
reasons explained below. See Fig. 1 for further reference.

The core of the mining algorithm consists of applying the exploration algo-
rithm M , constituting the ‘useful part’ of the PoUW. To defend against precom-
putation (Requirement 1a), the computation of M is prepended by hashing the
candidate block (first H box in Fig. 1), thereby randomizing the computation
to be performed by M . Similarly to Nakamoto consensus, this ‘pre-hash’ of the
block must lie below an initial target T1, to antagonize grinding for parameters
of M that result in lower-than-average computation complexity: resampling new
parameters must be more expensive than the worst-case complexity of M .

By Requirement 1c, the mining-success probability must be reduced below
the success probability of hashing against T1—which is fully determined by the
computational characteristics of the problem instance and unrelated to mining
participation in the network. One possibility to address this issue would be to
further lower the target T1 to make pre-hashing as hard as required for ledger
security; however, this would come against a big loss in usefulness, as miners
would spend most of their time performing hashing. Instead, we have the miner
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M(G, z, r′) input block
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else
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Fig. 1. Diagram of the PoUW mining procedure.

feed the output of M into one single round of ‘post-hashing’ (see second H box in
the figure) that decides, against a threshold T3, whether the block is eligible for
publication. This second threshold adjusts the overall mining difficulty to a level
required by the security analysis to guarantee good and secure blockchain char-
acteristics. Note the additional effect of post-hashing to adapt mining difficulty:
the miner only learns whether a PoUW attempt is successful after executing M ,
i.e., the computation cannot be cut short to speed up block creation.

A miner loops, many times, the computation sequence of pre-hashing (against
T1), useful work, and one post-hash, until the post-hash of a sequence lies below
T3, allowing for the block to be published. To preserve progress, the best point
(by means of scoring algorithm g) from all recent computation sequences is
stored for eventual inclusion in a future block to be published. Note that finding
a good new point is decoupled from mining success, thus helping to establish
Requirement 1b. Furthermore, only publishing the best one from a batch of
new points, rather than greedily publishing all of them incrementally, helps to
accommodate Requirement 2b.

Considering Requirement 2a under Bitcoin parameters, we cannot afford that
a miner waits with his update until he mines a block. For this reason, we incor-
porate 2-for-1 PoW to allow for the publication of different types of blocks,
so-called ranking blocks which are ‘standard’ Bitcoin blocks of high difficulty
(target T2), and so-called input blocks of low difficulty (target T3, i.e., hash
range T2 < h ≤ T3) which are not part of the chain but are rather handled
like transactions to be eventually referenced by a ranking block. A miner now
includes his best point explored whenever he hits either type of a block; and
by setting the input-block difficulty low enough, the update rate per miner is
high enough to distribute progress in the explored points fast, while having no
considerable impact on the blockchain characteristics.

A block contains two points explored using M : the ‘winner’ one that lead to
the small post-hash, and the ‘best’ one that is included to progress the DPLS
algorithm. In order to accommodate 2b, we minimize the cost of block verification
by having the miner append a SNARG proving correctness of both exploration
points contributing to the block, i.e., a SNARG proving membership to the
following language: L = {((Λ,G, z, r′, x′), (Λb, Gb, zb, r

′
b, x

′))|VΛ(G⊕(z, r′, x′)) =
1∧VΛb

(Gb ⊕(zb, r
′
b, x

′
b)) = 1}, where G⊕(z, r′, x′) denotes the graph G extended

with vertex (z, r′, x′) as defined in Sect. 4.
A detailed description of the PoUW procedure is given in Algorithm 2.

The mining algorithm is parametrized by the longest blockchain received C,
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the message to be included in the block m, the problem instance Λ selected by
the miner to work on,3 the related transcript G extracted from C, and the selected
inner state z. The pre-hash input includes these parameters, the hash of the pre-
vious block s, and a random nonce r; and yields a unique seed r′ for M . At this
point, all parameters of M , Λ,G, z, and r′, are fully determined based on the data
initially hashed, thus establishing that each small pre-hash found by the adversary
can only be used to perform one matching post-hash attempt. We note that if, in a
round, a miner does not have enough steps to finish running the PoUW procedure,
e.g., he only manages to find a small pre-hash, he continues the next round from
the point it stopped.

Algorithm 2. The PoUW procedure is parameterized by hardness parameters
T1, T2, T3 ∈ N, the SNARG system, hash function H(·), the explore algorithm
M , and scoring algorithm g.
1: var (scoreb, Λb, stb, com) := (∞, ⊥, ⊥, ⊥) � Best attempt - global variables
2: var z := ⊥ � Inner state
3:
4: function PoUW(C, m, Λ, G)
5: s := H(head(C))
6: if (Λ �= Λb) then z ← F(Λ, G) � Reset inner state
7: r ← Uλ � Sample nonce
8: h := H(s, m, com, Λ, G, z, r)
9: if (h < T1) then � Pre-hash

10: r′ := H(h) � Seed
11: x′ := MΛ(G, z, r′) � DAG computation
12: h′ := H(r′, x′)
13: if (h′ < T3) then � Post-hash
14: st := (s, m, com, Λ, G, z, r, x′)
15: π := SNARG.P(Σ, (st, stb)); � Correctness proof
16: B := 〈st, stb, π〉
17: if (h′ < T2) then C = CB � New ranking block
18: else Diffuse((input, B)) � New input block
19: (scoreb, Λb, stb, com) := (∞, ⊥, ⊥, ⊥) � Reset best attempt
20: else
21: if ((Λ �= Λb) or (gΛ(x′) > scoreb)) then � New best found
22: (scoreb, Λb, stb, com) := (gΛ(x′), Λ, st, H(stb))

23: return C

Moreover, ranking blocks are also treated as input blocks, and can be included
in the payload of other ranking blocks. As in [20], an input block can be included
in the payload of different ranking blocks in diverging chains, which ensures that

3 Even if there are no problem instances posted by clients on the blockchain, e.g., during
bootstrapping, miners can always generate a MH problem based on the hash of the
block they are extending (a fixed-time hash-based PoW ([4,12]) is sufficient for this
purpose). This amounts to a ‘fall-back’ DPLS computation.
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all input blocks mined by an honest party will eventually be included in the
main chain, and no progress is ever lost. The full pseudo-code of the protocol is
presented in the full version of the paper [18].

Remark 3. (SNARG overhead) Note that usefulness is not necessarily substan-
tially impacted by a large SNARG-computation overhead as each state update
involves a large number of exploration steps (on average) but SNARGs for only
two of the M -computations performed. This average number of exploration steps
can thus be raised in a trade-off against the state-update frequency in the system,
helping to establish Requirement 2b.

5.2 Deployment Considerations

The following two practical aspects are of special importance when deploying
our PoUW blockchain:

Multiple Problem Instances. The system must be able to handle multiple
problem instances as the computation of a particular instance will eventually ter-
minate. Also, multiple instances should be able to be computed concurrently to
give them fair chances to progress. We achieve this concurrency by running the pro-
tocol in epochs, and interleaving different problem instances by assigning exactly
one instance to each epoch. As exposed in the full version of the paper, interleaving
has an additional advantage: during the epoch, unconfirmed input blocks can be
immediately extended in the DAG without risking that the referrer block becomes
invalid due to possible non-inclusion of the referenced block in the main chain—
thus facilitating fast progress during the time slots allocated to the problem.

Incentive Structure. The participation of miners in the system must be incen-
tivized to guarantee blockchain security and progress in the useful computation.
Also, since the miner is free in choosing which one of their state updates to
publish in their block, choosing a good solution should be rewarded in order to
expedite progress in the useful computation. In the full version, we elaborate on
meeting these conditions as well as on guaranteeing reward fairness along the
lines of the Fruitchains construction [42].

6 Security Analysis

Next, we formally analyze the security of our protocol. First, we show that—
assuming that the underlying DAG computation is moderately hard and that
honest parties control the majority of the computational power in the network—
our protocol implements a robust transaction ledger. Then, we define and analyze
its usefulness rate.

6.1 Ledger Security

Let Π denote our blockchain protocol. The consistency analysis of the longest
chain rule appearing in Π involves a number of new challenges, including: (i)
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an exotic Markov chain governing the mining dynamics and the possibility of
“restarts” in this chain generated by the delivery of a new block, perhaps by the
adversary, and (ii) basing the hardness of generating new blocks to a problem
satisfying the weak moderate hardness notion introduced in Sect. 4. We adapt
the language of [5,31] to this setting and then develop the tools necessary for
the associated probabilistic analysis. (Our treatment below does not require
familiarity with these previous papers.)

For simplicity, in the main body of the paper, we discuss the case without
restarts, which is to say that the protocol carried out by the honest parties
does not restart the mining process when it learns of a longer chain, but rather
completes the current computation. Intuitively, restarts improve the security
properties of the blockchain, as they help ensure that honest parties are mining
on current chains. However, the situation is somewhat complicated by the fact
that restarts do permit the adversary to correlate the states of the honest par-
ties in the Markov chain. Specifically, note that an adversary holding a chain
that exceeds the length of those chains currently held by honest parties may
strategically release the chain to honest players—perhaps with detailed knowl-
edge about their current state—so as to achieve some short-term control over
the distribution of honest mining successes. Despite such correlations, we show
in the full version of the paper that the intuition above is correct: the adversarial
advantage achieved by exposing adversarial blocks to honest miners is overshad-
owed by the fact that such exposures increase the length of the blockchain held
by the honest recipient; in the language of the analysis below, such an exposure
has an effect just as beneficial as an honest mining victory!

We adopt a discrete time model, dividing time into short “rounds” with dura-
tion cH equal to the time taken to carry out a hash query. We reflect the
essential block-generation events of an execution of the protocol with a char-
acteristic string: this determines, for each round, the number of adversarial and
honest ranking blocks generated. Thus our characteristic strings have the struc-
ture w = w1, . . . , wL where each wi = (hi, ai) ∈ N

2 and hi and ai denotes the
number of honest and adversarial ranking block discoveries, respectively; here L
is the lifetime of the protocol.

Ultimately, our protocol Π determines a blockchain of ranking blocks, which
themselves refer to input blocks. Such a structure determines a linear order on
the collection of input blocks referenced in the blockchain of ranking blocks (by
ordering input blocks referenced in a particular ranking block according to the
order of their references in the ranking block). Ultimately, we wish to establish
the two fundamental ledger properties: liveness and persistence.

Persistence with parameter k ∈ N. Once a node of the system proclaims
a certain input block in the stable part of its ledger L, the remaining nodes
either report the input block in the same position of their ledgers, or report a
stable ledger which is a prefix of L. Here the notion of stability is a predicate
that is parametrized by a security parameter k; specifically, an input block
is declared stable if and only if it is in a (ranking) block that is more than k
(ranking) blocks deep in the ledger.
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Liveness with parameter u ∈ N. If all honest nodes in the system attempt to
include a certain input block then, after the passing of time corresponding to
u rounds, all nodes report the input block as stable.

We establish these properties as consequences of three more elementary prop-
erties of the blockchain of ranking blocks, originally formulated in [20] (we use
a slightly adapted formulation from [15]):

– Common Prefix (CP); with parameter k ∈ N. The chains C1, C2 adopted
by two honest parties at the onset of rounds r1 ≤ r2 are such that C�k

1 ≺ C2,
where C�k

1 denotes the chain obtained by removing the last k blocks from C1,
and ≺ denotes the prefix relation.

– Existential Chain Quality (ECQ); with parameter s ∈ N. Consider the
chain C adopted by an honest party at the onset of a round and any portion of
C spanning s prior rounds; then at least one honestly-generated block appears
in this portion.

– Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider the
chain C possessed by an honest party at the onset of a round and any portion
of C spanning s contiguous prior rounds; then the number of blocks appearing
in this portion of the chain is at least τs. We call τ the speed coefficient.

One of the important conclusions of previous work is that these properties
(CP, CG, and ECQ) directly imply liveness and persistence and—from an ana-
lytic perspective—can be guaranteed merely based on the characteristic string
associated with a particular execution. This fact is fairly immediate for CG and
ECQ, whereas identification of the properties of the characteristic string that
guarantee CP is more delicate.

In the full version of the paper we give a summary of this theory and describe
an extension with restarts. Fortunately, it is possible to succinctly reflect the
conclusions of this theory as they relate to our needs, which is done below.

To continue, we first introduce two assumptions related to the level of mod-
erate hardness of the underlying DAG-computation family I used by Π, and the
complexity of the SNARG system used.

Assumption 1. For parameters t̂, ε̂, k̂, we assume that the DAG computation
family I used in Π is (t̂, ε̂, k̂)-moderately hard.

Assumption 2. For parameters cP, cV, cS, we assume that there exists a
SNARG system SNARG where running the prover (resp., verifier, setup) takes
cP (resp. cV, cS) steps.

Let w = w1, . . . , wL be a characteristic string, as above. We fix a constant Γ ,
a time period with the following Γ -serializing guarantee: if a ranking block B2 is
generated by an honest party P at least Γ rounds after the honestly-generated
ranking block B1 is diffused, then the full computation supporting B2 (including
the prehash) was carried out while P was aware of B1. In our setting, Γ can be
set to 2 + Δ + cP/cH + t̂/cH (corresponding to the number of rounds taken to
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produce the prehash (≤ 1), useful work (≤ t̂/cH), post-hash (≤ 1), and SNARG
(cP/cH) for block B2 in addition to any network delay). With this in mind, we say
that t is a Γ -isolated uniquely successful round if the region wt−Γ . . . wt . . . wt+Γ

satisfies ht = 1 and, furthermore, that the sum
∑

hi = 1 over this region (recall
wi = (ai, hi)). Note that a round cannot be isolated if it is not followed by at
least Γ symbols. For each t define It to be an indicator variable for the event
that t is an isolated uniquely successful round.

The basic quantities of interest are given by two conventions for accounting
for the balance of adversarial and honest successes.

Definition 3 (The barrier walk; the free walk). Let x = x1, . . . , xn ∈ N
∗.

Define the barrier walk B(x) by the recursive rule B(ε) = 0 (for the empty string
ε) and, for any x ∈ N

∗ and a ∈ N, B(xa) = max(B(x) + a, 0). Likewise, define
the free walk F (x) =

∑
i xi.

Definition 4. For a characteristic string w ∈ (N2)L and 0 < t ≤ L, define the
margin effect w∗

t = at −It ∈ N (and w∗ to be the sequence of elements of N given
by this rule). We then define B∗(w) = B(w∗) and F (w) = F (w∗). Finally, for a
characteristic string w = xy with |x| = 
, we define the 
-isolated margin of w
to be β�(w) = B(x∗) + F (y∗).

The role of 
-isolated margin is clarified by the following, which establishes
a direct connection to common prefix.

Theorem 1. Let w ∈ (N2)L be the characteristic string associated with an exe-
cution satisfying the Γ -serializing guarantee. Suppose, further, that (i.) the exe-
cution satisfies (k/s, s)-CG, and (ii.) for any prefix xy of w for which |y| ≥ s,
we have β|x|(xy) < 0. Then the execution satisfies k-CP.

This is the major component in the following theorem; as noted, the details
of this existing theory are discussed in the full version of the paper.

Theorem 2. Let DΠ be a distribution on characteristic strings of length L
(induced by a protocol Π), λ a security parameter, and α > β two constants
corresponding to the rate of uniquely isolated blocks and the rate of adversar-
ial blocks, respectively. Assume that for a constant δ < (α − β)/2, when w is
drawn from DΠ , every interval of w of length poly(λ) has at least α− δ uniquely
isolated blocks and no more than β + δ adversarial blocks except with negligible
probability. Then, except with negligible probability, the protocol satisfies (i.) CG
with s = poly(λ) and constant speed coefficient, (ii.) ECQ with s = poly(λ), and
(iii.) CP with parameter k = poly(λ).

Analysis of the Markov Chain. In light of the description above, we are
specifically interested in analyzing the sequence of (i.) adversarial mining suc-
cesses and (ii.) uniquely isolated honest successes. The analysis is simplified by
the fact that the time evolution of the honest parties is independent. We focus
on the Markov chain pictured below, showing nodes for “pre-hash”, “post-hash”,
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and both “ranking” and “input” block production. It is convenient for us to fur-
ther decorate our transitions with delays: orange edges are traversed in a single
round (or cH time, corresponding to hash queries), the gray edges are traversed
instantaneously, and the blue edges have transition times given by the distribu-
tion of useful work (upper bounded by t̂) and SNARG times (cP). (Note that
the timing delays indicated in this chain could be implemented with paths of
individual states connected by edges with unit delay, so this presentation can be
reflected with a standard Markov chain.) While the basic security properties of
the protocol depend only on the production of ranking blocks, the dynamics of
the Markov chain depends on both ranking and input block production.

qpre qpost

qrank

qinputp1

1 − p1

1 − (p2 + p3)

p2

p3

We begin by establishing that—despite the fact that honest parties begin the
protocol synchronized (in “pre”)—they quickly converge to mutually independent
positions in the mining chain. Looking ahead, this mixing argument will be
instrumental to establish bounds on uniquely isolated block production.

The Mixing Time; Convergence to Mutual Independence. By a standard
coupling argument we get the following:

Lemma 2. Consider m particles P1, . . . , Pm independently evolving on the
Markov chain with any fixed initial states. Let (S1, . . . , Sm) denote a random
variable so that each coordinate is independent and stationary on the chain.
Then letting T = L(1 + (t̂ + cP)/cH),

‖(PT
1 , . . . , PT

m) − (S1, . . . , Sm)‖t.v ≤ m(1 − pcouple)L,

where ‖X − Y ‖t.v denotes the distance in total variation between the random
variables X and Y . Here pcouple > 0 is a constant that depends only on cP/t̂.

Proof. We proceed with a standard coupling argument. Consider m particles
(parties) P1, . . . , Pm, initially in the state qpre, that carry out simultaneous, inde-
pendent evolution according to the dynamics of the chain. We wish to show that
the joint distribution of positions of all the particles quickly converges to m
independent copies of the stationary distribution. For this purpose, consider
m additional particles R1, . . . , Rm on the chain, initially distributed indepen-
dently according to the stationary distribution. We let P t

i and Rt
i denote the

positions of the particles at time t. We give a simple coupling C of the evolu-
tion of P t

1 , . . . , P
t
m with Rt

1, . . . , R
t
m, and apply the standard “coupling lemma”

which establishes convergence to the stationary distribution. The coupling C
is described, at each time step, by a family of random variables U t

i ; for each
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i ∈ {1, . . . , m}, U t
i : Q → Q is a function where Q is the set of states of the

chain (which is in fact larger than the diagram indicates as a result of imple-
menting the “long” transitions). The “update functions” Ui are chosen so that
the full ensemble of entries (U t

i (q)) (over all t, i, and q ∈ Q) are independent
and each Ui(q) is distributed according to the defining distribution for the state
q. Then Pi and Ri are updated according to the same update: P t+1

i = Ui(P t
i )

and Rt+1
i = Ui(Rt

i). Observe that the dynamics of the P t
i are as promised, each

independently evolving according to the chain; the same is true of the Rt
i, which

of course continue to be independent and stationary. Observe that if Rt
i = P t

i

at some time t this property will be retained by the coupling in the future (as
they are subject to the same update function). Now, consider any time period of
length E = 1+ (t̂+ cP)/cH rounds and any pair of particles Pi and Qi. Observe
that both particles must visit the state qpre during this time period (as t̂ and cP
are upper bounds on the transition times of the blue transitions); it follows that
if the first of the two particles to visit qpre remains in that state for the remain-
der of the E time steps then the two particles must couple (that is, coincide
during this time period and forever after). Recalling that we take T1 ≥ t̂/cH ,
we find that the probability that that first particle remains in qpre when the
second one arrives is at least pcouple := (1 − p1)E/cH = (1 − p1)(t̂+cP)/cH =
[(1 − p1)t̂/cH ](1+cP/t̂) ≥ [(1 − 1/T1)T1 ](1+cP/t̂) ≥ (1/e − O(1/T1))(1+cP/t̂). Thus
pcouple is a constant larger than zero (and can be lower bounded as a function of
the constant cP/t̂). Note that the events that Pi couples with Ri (for distinct i)
during such an epoch are independent, and it follows that after L such epochs
the probability that there is a pair (Pi, Ri) that has not coupled is no more
than n(1 − pcouple)L. By the standard coupling lemma (see, e.g., [3, §12]), after
L epochs the distance in total variation between (P1, . . . , Pm) and the indepen-
dent stationary distribution in each coordinate is no more than m(1− pcouple)L,
which tends to zero exponentially quickly in L. This proves the lemma. ��

Bounds on the Events of Interest. Consider, as above, the population of
particles (players) P1, . . . , Pn on the Markov chain. According to an evolution of
these particles, given by the random variables P t

i , we are interested in establish-
ing upper bounds on the rate at which the adversary produces ranking blocks,
and a lower bound on the rate at which the honest players produce uniquely
isolated blocks.

Lemma 3. Consider m parties, with arbitrary initial conditions but evolving
independently on the Markov chain. Let S = (t̂ + cP)/cH + 1 and consider any
interval of R rounds, the first of which starts at least S steps after the evolution
begins. Then the probability that a particular player generates at least k ranking
blocks in this interval is no more than

(
R+S

k

)
(p1p2)k ≤ (R + S)k(p1p2)k.

Lemma 4. Consider m independent parties walking on the Markov chain in the
stationary distribution. Let p∗

rank denote the stationary probability of qrank, then

Pr[t is a uniquely isolated round] ≥ m(1 − (3Γ )p1p2)mp∗
rank.
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In light of Lemma 2, the following is immediate.

Lemma 5. Consider m players evolving according to the Markov chain, where
the players are initially stationary and independent. Let pcouple denote the cou-
pling constant of Lemma 2. Consider two rounds š < s for which |š − s| ≥
L(1 + (t̂ + cP)/cH). Let Is denote the indicator random variable for the event
that s is uniquely isolated. Let C denote an arbitrary event depending only on
the players trajectories prior to š. Then |Pr[Is|C] − Pr[Is]| ≤ (1 − pcouple)L.

Lemma 6. Consider m players evolving on the Markov chain with any fixed
initial states. Let piso denote the probability that a round is uniquely isolated
under the stationary distribution, bounded below by Lemma 4. Fix a parameter
σ > 0 and define L = ln(pisoσ/2)/ ln(1 − pcouple) and E = L(1 + (t̂ + cP)/cH).
Let {R, . . . , R + S − 1} be a sequence of rounds for which R ≥ E. Let Is be the
event that the players produce a uniquely isolated block in round s. Then

Pr

[
∑

s

Is ≤ (1 − σ)pisoS

]

≤ E exp
(

− (1 − σ/2)σ2piso · S

8E

)

.

Analysis of the Adversarial Successes. Next, we proceed to bound the rate
of adversarial mining successes. Our analysis is going to depend on the level of
moderate hardness of the underlying DAG computations family.

By Lemma 1 we argued that the speed-up the adversary gets by each extra
queries to oracle O is bounded. In fact for a single extra query, the lemma
tells us that the adversary can speed up its computation by t̂ steps. Thus, in
order to protect our protocol from grinding attacks, we set the pre-hash hardness
parameter p1 to cH/((1 + σ)t̂ + 4), where σ ∈ (0, 1) is a parameter associated
with the concentration bounds we use later in our analysis. This implies that
finding a small pre-hash takes on expectation cH/p1 = (1 + σ)t̂ + 4 > t̂ steps,
i.e., it is more expensive than running M directly to compute a new PoUW; the
extra steps added are related to costs occurring in our reduction later.

To aid our presentation, we define t′ := t+(2n+4(p2+p3)(ncP+tcV)) ·p1/cH

to be the increased corruption power the adversary gets, due to fact that our
reduction to the MH of I is not tight, mainly because of the cost of generating
and verifying SNARG proofs. With foresight, we let β be an estimation of the
rate at which the adversary produces ranking blocks

β := p2/
[
(1 − ε̂(1, 2, 2n/t′)) · t̂ + (1/((1 + σ)p1) + 1) · (cH − 4p1)

]
.

The expected number of steps to find a block, β−1, is basically the number of
attempts needed to find a small post-hash (1/p2), times the number of steps
needed to find a small pre-hash (cH/p1) plus the time needed to perform the
DAG computation ((1− ε̂) · t̂). The other constants of the formula are related to
our security analysis, i.e., our reduction from an attacker against the blockchain
to an attacker against MH. Finally, the parameters 0, 2, 2n/t′ of ε̂ relate to the
rate at which the adversary queries oracles qO, qV , qM as explained in Sect. 4.
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Table 1. The parameters of our analysis.

λ : security parameter
n : number of parties
t : adversarial corruption bound
t′ : amplified adversarial corruption bound
cH : “mining” steps each party takes per round
cP, cV : SNARG prover/verifier cost
ε̂, t̂, k̂ : MH DAG parameters
T1, p1 = T1/2λ : target/success probability of prehash
T2, p2 = T2/2λ : ” of ranking block posthash
T3, p3 =

T3−T2
2λ : ” of input block posthash

σ : concentration-bound parameter
Δ, Γ : network/serialization worst-case delay
β : upper bound on ranking-block computation rate
δMH : adversarial advantage in DAG computation rate
δSteps : honest advantage in number of steps per round
δtot : upper bound on the total block generation rate

Let r.v. Z(S) denote the maximum number of distinct blocks computed by
the adversary during S, where the pre-hash query for each of these blocks was
also issued to the RO during S. We prove in the full version that the adversary
cannot mine fresh ranking blocks with rate and probability better than that of
breaking the moderate hardness experiment. The main proof idea is to use an
adversary that creates blocks fast, to create another adversary that breaks the
moderate hardness of I. A summary of our notation is given in Table 1.

Lemma 7. For any set of consecutive rounds S, where |S| ≥ k̂(1 + σ)p2/(β ·
t′cH), it holds that Z(S) ≥ (1 + σ)β · t′cH |S| with probability negl(λ).

Putting Everything Together. Next, we show that the probability that a
uniquely successful round happens is larger than the expected adversarial min-
ing rate per round. Towards this purpose, our next assumption ensures that
the computational steps advantage of honest parties outperforms the moderate
hardness advantage of the adversary, while at the same time the rate at which
blocks are produced is upper bounded.

Assumption 3. There exist constants δMH, δSteps and δtot ∈ (0, 1), such that for
sufficiently large λ ∈ N:
- (n − t)(1 − δSteps) ≥ t′ (Steps per round gap)
- p∗

rank ≥ (1 − δMH)β · cH (Moderate hardness gap)
- δSteps − δMH ≥ δtot (Steps vs. Moderate hardness gap)
- δtot > 3Γ · βcH(n − t) (Bounded block generation rate).

Based on Assumption 3, we can prove that the rate of uniquely successful rounds
is bigger than the rate at which the adversary generates blocks.

Lemma 8. It holds that piso > (1 + δtot)βt′cH .
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Together with the appropriate concentration bounds proved in Lemmas 6
and 7, Lemma 8 is sufficient to apply Theorem 2 for Π, which in turn implies
that Π satisfies both Persistence and Liveness with overwhelming probability.

Corollary 1. Given Assumptions 1, 2 and 3, Ofelimos satisfies Persistence and
Liveness for k, u ∈ poly(λ), except with negligible probability.

Finally, in the full version, we argue that under ideal conditions, i.e. optimal
MH, small SNARG costs, etc., Ofelimos can tolerate any dishonest minority.

A More Detailed Treatment of Useful Work Completion Times. The
analysis above calibrates pre-hash hardness as a function of t̂, the worst-case
completion time of useful work. In certain settings of interest, the time com-
plexity of the useful work task may satisfy a significantly stronger bound with
very high probability, in which case this reduced bound can take the place of t̂
with only minimal changes to the development above. Specifically, if the time
complexity is t < t̂ except with negligible probability, the value t can be uni-
formly substituted for t̂ above with the addition of negligible error terms in the
theorems above.

Security Against Multiple Problem Instances. As discussed in Sect. 5.2,
our protocol can handle multiple problem instances by interleaving them. Note,
that our security analysis extends to this case, since it is agnostic of the level of
MH of problem instances. Instead of trying to detect the hardness level of the M
computation corresponding to each submitted problem instance, our approach
is to keep pre-hash hardness fixed throughout the execution of the protocol, at
a level where even if the submitted computation is not MH we still retain some
security guarantees.

DPLS Against Adversarial Participation. Executing DPLS in our permis-
sionless PoUW setting potentially implies substantial adversarial participation
which can negatively influence the algorithmic performance. In particular, the
adversary may not follow Algorithm 1, e.g., by publishing the result of the worst
execution of M , instead of the best one.

While the presentation of DPLS is agnostic to adversarial participation, its
embedding PoUW protocol is responsible to provide the respective defenses. In
the full version of the paper, we present two important quality guarantees of our
implementation of DPLS by our PoUW protocol as long as the adversary only
controls a minority of the computational power: (i) during any sufficiently large
round interval, honest parties contribute new updates at least proportionally to
their relative mining power —in particular, the honest parties contribute more
updates than the adversary; (ii) the adversary cannot extensively manipulate
the score of its updates, as we enforce each update to additionally include the
result of a “random” execution of M from the batch (the one that resulted in a
small post-hash), which can be used to replace “best” execution if it had worse
score in comparison.

Remark 4. (Grinding resistance amplification) As a corollary of our main hard-
ness lemma, we can argue about the amplification of grinding resistance of a
MH DAG computation achieved by the following construction: first, the new
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exploration algorithm tries to find a small pre-hash, which then uses to seed the
initial (potentially weakly grinding resistant) DAG computation4. Similarly to
our PoUW, we set the hardness of finding the pre-hash to be approximately equal
to the worst-case complexity of the initial DAG computation. By our lemma,
it easily follows that this construction is maximally grinding resistant, i.e., the
adversary gains no advantage by seeing extra problem instances, while incur-
ring only a small loss on MH and ensuring that the (potentially useful) initial
computation remains a substantial part of the exploration algorithm. In fact, we
can do even better in the case where the initial DAG computation enjoys some
limited form of grinding resistance, by downgrading the hardness of finding a
small pre-hash proportionally to the grinding resistance parameter.

Having argued about the security of Ofelimos as a transaction ledger, we
turn our attention to its usefulness as a problem solving system.

6.2 Protocol Usefulness

The goal of any PoUW-based blockchain protocol is to be used to solve some,
external to the blockchain, computational problem. We say that such a proto-
col has a high usefulness rate if the total computational work spent to run the
blockchain and solve the external problem is not much bigger than just solv-
ing the problem with the best possible algorithm (for the setting considered),
denoted by Abest. We study this rate for our protocol using two metrics. The
first metric, Ueng, measures the overall ratio of computational steps, performed
by honest parties, that the engine directs towards running the DPLS algorithm.
Intuitively this metric captures how effective the protocol is as a DPLS engine.
We generically define Ueng as follows:

Ueng := E[DPLS steps per block]/E[total steps per block]

Next, we analyze Ueng for Ofelimos. First, note that since we set pre-hash
hardness based on the worst-case complexity of M , Ofelimos’s Ueng naturally
depends on M ’s runtime distribution being concentrated close to t̂. Fortunately,
the core search function of local search algorithms, which M aims to model, usu-
ally boils down to iteratively evaluating candidate solutions in a neighborhood,
thus making it easy for us to exactly calibrate its runtime, e.g., by counting the
number of candidates evaluated. Assuming that this is indeed true, and M ’s
running time is almost always t̂, we show that for appropriate protocol param-
eters Ofelimos has a Ueng close to 1/2, i.e., half of the total work mining a new
block goes to running the DPLS engine. The intuition is that as we decrease the
probability of finding a new (input or ranking) block, hashing and running M
costs dominate the cost of running the SNARG prover. Given now that for our
scheme the cost of hashing is approximately equal to the cost of running M , the
result is immediate. We formalize this in the next lemma.

4 Our PoUW “collapses” to this construction if we set p2 := 1, p3 := 0.
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Lemma 9. Assume M has a fixed running time. Then, for any ρ > σ + 4/t̂, if
p2 + p3 < (ρ−σ)t̂−4

2·cP , Ueng is greater than 1
2+ρ .

The second metric, Ualg, compares the complexity of DPLS to algorithm
Abest. Note, that for Ualg we only take into account the DPLS computation steps
and no other steps related to the protocol, e.g., hashing, computing SNARGs.

Ualg := E[total steps of Abest]/E[total steps of DPLS]

Ualg cannot be studied generically as it depends on the specific external problem
solved as well as the computational model we consider. For example, we expect
Ualg to be much larger when we consider the best algorithm in a distributed
setting compared to the best one in the single machine setting. Instead, in the
full version of the paper, we showcase how Ualg can be estimated experimentally
for our WalkSAT DPLS variant.

The two metrics that we introduced clearly separate costs associated with
the ledger protocol (hashing and SNARGS) from costs that are induced by the
specific algorithm implement. In fact, in the case where blocks are computed
using the honest mining algorithm, the product of the two metrics is a good
approximation of the usefulness rate.

Remark 5. (Improved Ueng) In the analysis of our protocol we did not make any
assumptions about the grinding resistance of the underlying DAG computation
I. This had the effect of setting the pre-hash hardness (cH/p1) to be approxi-
mately equal to t̂, in turn leading to Ueng being less than 1/2. If I enjoys some
non-trivial level of grinding resistance, we can take advantage of it and down-
grade the pre-hash hardness, with the effect of having exactly the same security
guarantees but with potentially much less work invested in hashing. In the case
where I is maximally grinding resistant, this leads to Ueng being close to 1.

Acknowledgments. We thank Laurent Michel for providing us with valuable infor-
mation about state-of-the-art stochastic local-search algorithms and their application
to real-world problems.
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Abstract. A proof of exponentiation (PoE) in a group G of unknown
order allows a prover to convince a verifier that a tuple (x, q, T, y) ∈
G×N×N×G satisfies xqT

= y. This primitive has recently found excit-
ing applications in the constructions of verifiable delay functions and
succinct arguments of knowledge. The most practical PoEs only achieve
soundness either under computational assumptions, i.e., they are argu-
ments (Wesolowski, Journal of Cryptology 2020), or in groups that come
with the promise of not having any small subgroups (Pietrzak, ITCS
2019). The only statistically-sound PoE in general groups of unknown
order is due to Block et al. (CRYPTO 2021), and can be seen as an elab-
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say λ = 80, the number of repetitions required (and thus the blow-up in
communication) is as large as λ.
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1 Introduction

In a proof of exponentiation (PoE) in a group G, a prover P aims at convincing
a verifier V that a tuple (x, q, T, y) ∈ G×N×N×G satisfies xqT

= y. Note that
such proofs are only of interest if the order ord(G) of G is not known: otherwise,
one can efficiently compute xqT

by first computing the exponent modulo the
group order, i.e., e = qT mod ord(G), and then computing xe using a single
exponentiation xe in G.

PoEs in groups of unknown order have found applications for constructing
verifiable delay functions (VDFs) [40,50] and as building blocks for time- and
space-efficient succinct non-interactive arguments of knowledge (SNARK) [7]. In
these applications, the prover and verifier get (x, q, T ) and then P computes xqT

by exponentiating to the power q sequentially1 T times:

x → xq → xq2 → xq3 → . . . → xqT

.

In the next step, P sends y to V and then they run an interactive protocol where
P convinces V that y = xqT

. The existing protocols are all public-coin and, thus,
can be made non-interactive in the random-oracle model using the Fiat-Shamir
heuristic [27].

Soundness of PoEs. In the PoEs mentioned above, the prover’s computation for
the proof is marginal compared to the T exponentiations required to compute y
in the first place, but the proofs differ in size. As illustrated in Table 1, in [50]
the proof is just one group element, in [40] it is log(T ) elements and in [7] it is
λ log(T ) elements for a statistical security parameter λ.

On the other hand, [7] is statistically-sound (and the non-interactive proof
inherits this security in the random oracle model), while the soundness of [50]
relies on a new computational hardness assumption called adaptive root assump-
tion. Like with the proof-size, [40] lies in-between the other two protocols also
in terms of the assumptions required for its soundness. It relies on the low order
assumption, which requires that it is hard to find a (non-identity) element with
low order in G. This assumption is weaker than the adaptive root assumption [10]
and, in groups where no low order elements exist, it holds unconditionally and,
thus, the [40] PoE has statistical soundness.

The two concrete groups of unknown order that have been suggested are RSA
groups [41] and class groups of imaginary quadratic fields [13]. An RSA group
Z

∗
N is defined by a product N = p · q of two large randomly sampled primes

p, q. In [40], it was observed that if p, q are chosen to be safe primes2 then the
subgroup of quadratic residues of Z∗

N has no low order elements and, thus, the
PoE is statistically-sound.

1 In VDFs, it is an explicit “sequentiality assumption” that y = xqT

cannot be com-
puted faster (i.e., with fewer sequential computational steps) than as described
above, even when using massive parallelism.

2 A prime p is safe if (p − 1)/2 is also prime.
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While class groups are much less studied than RSA groups, they have one
major advantage, explained next. The only known way to sample an RSA group
is to first sample p, q and then output N = p·q, but this means the sampler knows
the factorization and thus the group order (p − 1)(q − 1). For such groups to be
used for VDFs or SNARKs, one thus needs to either employ some trusted party
to sample N and truthfully delete p, q, or sample N in an expensive multiparty
computation (see, e.g., [17,28] and the references therein). Class groups on the
other hand have a “transparent” setup: they can be sampled obliviously in the
sense that a random string specifies a group without revealing the order of the
group. However, our understanding of non-standard assumptions, like the low-
order assumption, is still developing in class groups: in 2020 the authors of [3]
showed how to break the low-order assumption in class groups for some classes
of prime numbers.

Why Statistical Soundness? Recall that the only statistically-sound PoE in a
group with transparent setup is from [7]. There, the PoE is used in a proof of
knowledge and, to argue statistical knowledge-soundness of the protocol, the
underlying PoE must be statistically-sound.

Also when a PoE is used in VDFs, statistical soundness can be crucial as
such VDFs still provide some security even when the group order is revealed.
Moreover, in settings where the group order is supposed to be known by some
parties, it allows for a much more efficient setup. We discuss those two settings
below.

Recall that a VDF has two security properties: the first is the sequentiality,
which states that the output y := xqT

cannot be computed faster than by T
sequential exponentiations; the second is the soundness of the proof certifying
that y is the correct output. If a VDF is statistically-sound then, even in the
worst case where an attacker learns the group order (say because the trusted
setup failed, or in the case of sampling a weak class group), the attacker will
only be able to compute the output fast but it will still not be able to lie about
its value. In a design like Chia (chia.net), which combines VDFs with proofs of
space to get a secure permissionless blockchain, an attacker that occasionally
learns the group order (Chia uses class groups which are sampled freshly every
10min) has limited impact on the security, but breaking the soundness of the
VDF could be potentially devastating.3

Statistically-sound VDFs have also been used to construct randomness bea-
cons like in the RandRunner protocol [46]. Their setup is not transparent: every
party participating in the protocol realizing the beacon will sample two safe
primes which then can be used in Pietrzak’s statistically-sound PoE. The fact
that these parties know the factorization is actually a feature, as they are occa-
sionally required to use it as a trapdoor to compute and broadcast a VDF output

3 A minor nuisance would be the need to roll back the blockchain once a flawed
proof was added and recognized. But an attacker that can forge proofs controls the
randomness, and thus can do things like attaching a pre-computed chain to the
current one in order to do a double spending attack with only little resources.

https://www.chia.net/
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and the PoE certifying its correctness fast. To prevent parties from lying, they
must provide a zero-knowledge proof that their modulus is the product of two
safes primes. Using the statistically-sound PoE from this work, we can avoid this
expensive ZK proof and just use any RSA modulus, at the cost of larger PoEs
for the individual proofs.

Generally, by using a VDF that is statistically-sound in any group allows us
to skip the expensive zero-knowledge proof showing that a group was sampled
correctly during setup (i.e., it has no low order elements) for protocols where
statistical soundness is required because the party sampling the group knows
the group order and, thus, could easily break soundness otherwise. Apart from
randomness beacons as RandRunner, a related scenario comes up in the fair
multiparty coin-flipping protocol of Freitag et al. [30]. This methodology might
also be useful for (non-interactive) timed commitments [11] or encryption [32].

1.1 Our Contribution

As outlined above, Wesolowski’s PoE has proofs of size one (group element)
under the adaptive root assumption, Pietrzak’s PoE has proofs of size log(T )
under the weaker low order assumption, and the PoE of Block et al. has proofs
of size log(T )·λ for a statistical security parameter λ, say λ = 80. The protocol of
Block et al. is the only PoE with statistical soundness in a group with transparent
setup.

In this work, we present a new PoE to certify that (x, q, T, y) satisfies y = xqT

with statistical soundness in all groups. Our PoE only works for q of a special
form. Namely, q is the product of all primes less than some bound B and, for such
q, we get a proof-size log(T ) · λ/ log(B), i.e., by a factor log(B) smaller than in
Block et al. [7]. Fortunately for the applications to VDFs or SNARKs discussed
above, the choice of q does not really matter: in the SNARKs application [7]
one can use any q that is sufficiently large.4 For VDFs, one typically just sets
q = 2, so exponentiation means one squaring. Having a more general q we can use
square and multiply, so each exponentiation are �log(q)� (not just one) sequential
squarings with some multiplications in-between. Note that if q was a power of 2
(which it is not in our case), say 2k, the initial exponentiation would be of the
form x(2k)T

, so one would set the time parameter to T = T ′/k in order to get a
challenge that takes time T ′ to compute. Similarly, for our choice of q one sets
the time parameter to T = �T ′/ log(q)� to get a challenge that takes sequential
time T ′ to compute.

We cannot choose B too large, as a larger B negatively affects the verifier’s
complexity. As illustrated in Fig. 2, in our most basic protocol, the verifier’s
complexity is roughly the same as in Block et al. for B = 521. For this B, we get
the proof down from λ = 80 to 9 = �80/ log(B)� elements for each of the log(T )
rounds as illustrated in Fig. 1. In practice, this means that, e.g., for T = 232

4 In [7] many results are stated only for odd choices of q. In Appendix B we show that
they also hold for even q.
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Fig. 1. Number of elements sent by the prover in one round for 80-bit security depend-
ing on the bound B. The dotted blue line is the proof-size in [7], the orange graph is
the proof-size in our protocol and the dashed green line is the proof-size in [40] (which
is one element per round). (Color figure online)

Fig. 2. Number of multiplications of the verifier in one round for 80-bit security depend-
ing on the bound B. The dotted blue line is the number of multiplications in [7], the
orange graph is the number of multiplications in our protocol and the dashed green
line is the verifier’s complexity in [40]. In Fig. 4 we dissect the orange curve. (Color
figure online)

and a group with elements of size 2048 bits, the proof-size drops from 655KB
to 74KB.

Basic Protocol and Proof Idea. Our starting point is the following observa-
tion on the soundness in Pietrzak’s PoE: Pietrzak’s protocol proceeds in log(T )
rounds, where each round starts with a claim xqT ?= y and ends with a claim
y′ ?= x′qT/2

for a T of half the size. Assume that, at the beginning of a round,
we have the wrong claim that y′ ?= xqT

while y = xqT

, where y′ = y · α with
α �∈ {1,−1}. The soundness of the protocol then depends on the order ord(α) of
α (i.e., αord(α) = 1). Concretely, if ord(α) = pe for some prime power e of p at
the beginning of a round (in this introduction, we only consider the special case
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of a single prime power as it already contains all interesting aspects) then the
claim at the end of the round is still wrong with probability 1 − 1/pe (i.e., this
round has a soundness error of 1/pe). More generally, for any t ≤ e, we end up
with a claim for some y · α′ instead of the correct y with probability 1 − 1/pt,
where ord(α′) = pe′

for e′ ≥ e − t.
Note that this means that Pietrzak’s protocol is statistically-sound if no low

order elements exist. The PoE by Block et al. does not need any assumption
about ord(α), and it achieves statistical soundness even if ord(α) = 2 (while
Pietrzak’s PoE is only 1/2 sound for such α) by basically running λ PoEs in
parallel. In each round, one starts with λ claims of the form xqT ?= y and, for
each claim, the prover provides μ which it claims is the “midpoint” satisfying
both xqT/2 ?= μ, μqT/2 ?= y. At this point, we have 2λ claims, at least one of
which is wrong if one of the original claims was wrong. These 2λ claims are then
randomly combined into λ claims of the form xqT/2 ?= y. Each of these claims is
individually wrong with probability 1/2 and, thus, at least one of them is wrong
with probability 1−2−λ. Each round gets the exponent in the claims down from
T to T/2 and, after log(T ) rounds, we have claims that the verifier can efficiently
verify itself with a single exponentiation.

In our protocol, we use a similar strategy as Block et al.: We run ρ PoEs in
parallel (where ρ can be smaller than the statistical parameter λ). Unlike Block
et al., we require q to be of a special form, in our basic protocol it is the product
of all primes less than some bound B. If ord(α) has a prime divisor p > B then
we use the same security argument as above (but with p not 2) to get soundness
error p−ρ ≤ B−ρ, in this case we get soundness 2−λ as Block et al. with only
ρ ≈ λ/ log(B) instead of λ repetitions. Otherwise, we have ord(α) = pe for some
p < B. If the prime power e is large, concretely e ≥ log(T ) log(B) then we again
can basically use the argument above. In each of the log(T ) rounds, the prime
power must go down by log(B) on average, and even for p = 2 that only happens
with prob 2− log(B) = 1/B.

Therefore, we are left with the case ord(α) = pe with e ≤ C = log(T ) log(B).
To handle this case, we change the statement to be proven from y

?= xqT

to
y′ ?= xqT −C

and we let the verifier compute the final y = y′qC

itself. Assume
that the prover wrongly claims y′′ ?= xqT −C

with y′′ = y′ · α. With α as above,
the final exponentiations of the verifier eliminate α. Since now the order pe of α

divides qC , we have that αqC

= 1 and, so,

y′′qC

= (y′ · α)q
C

= y′qC · αqC

= y′qC

= y.

Improving the Verifier’s Complexity. The basic protocol that we just outlined
decreases the number of parallel repetitions, and thus the proof-size in the non-
interactive case, by a factor log(B). But the verifier has to carry out some extra
work as it must compute the final exponentiation (y′, q, C) → y′qC

by itself.
This can be quite expensive, especially if we batch many proofs together. In the
same group and for the same T , both protocols of Pietrzak and Block et al. can
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handle many PoEs basically at the price of a single PoE plus a small additive
complexity overhead for each proof (this is, in fact, exploited in the SNARKs
from [7]). In this work, we show that such batching works even for different values
of T . Though, one problem for our new PoE is that, while this batching works
also for the first phase of our protocol, the final exponentiation of the verifier
cannot be trivially batched and, thus, it must be performed for each statement
individually.

We thus further improve the protocol in two ways getting mostly rid of
the extra cost for the final exponentiation. The first improvement leverages the
observation that, by setting q to be not just the product of all primes < B
but taking each prime p with power log(B)/ log(p), we can already decrease
the exponent C for the final exponentiation from log(T ) log(B) to log(T ). The
second improvement comes from the observation that the final exponentiation
(y′, q, C) → y′qC

can be replaced by just another PoE and, using our batching,
this statement itself can be just batched together with the original statement. As
the exponent (C = log(T ) with the first improvement) is much smaller than T ,
the final exponentiation now only needs log(C) = log log(T ) rounds. Iterating

this idea log∗(T ) times (which is at most 5 = log∗(22
22

2

) = log∗(265536) in
practice) we get the number of exponentiations down to 1 with a modest increase
(from ρ · log(T ) to ρ · (log(T ) + log∗(T )) group elements) in proof-size. This
batching argument only works so conveniently for T of a special form, basically
powers of 2: T in the (relevant) range 217 < T < 265536 should be of the form
T = 2t +216 + 24 + 22 + 1. For general T the verifier’s cost grows with basically
the Hamming weight of log(T ). In Appendix B.1 we analyze the gain in efficiency
of the polynomial commitment in [7] when we use this improved version of our
PoE as a building block instead of the PoE proposed in [7].

1.2 Additional Related Work

PoE, SNARGs and VDFs. Verifiable Delay Function (VDF), as a cryptographic
primitive, was first formalised in [9]. In addition to defining its security require-
ments, [9] provided theoretical constructions based on incrementally-verifiable
computation [48]. Loosely speaking, they used repeated (structured) hashing
as their delay function and then relied on succinct non-interactive arguments
(SNARGs) to enable efficient verifiability of the result of the repeated hashing.
As explained in Sect. 1, (non-interactive) PoE are closely related to VDFs: the
practical VDFs of Pietrzak [40] and Wesolowski [50] use repeated squaring in a
group of unknown order as their delay function and use a PoE on top to enable
efficient, public verifiability of the result of the repeated squaring. The difference
between [40] and [50] lies in the way the PoE is implemented: an overview and
comparison of these PoE protocols can be found in [10]. Moreover, there is evi-
dence that to construct VDFs over groups, the reliance on the group order being
unknown is inherent [37,45], which lends even more importance to PoE protocols
from the perspective of efficient VDFs. Finally, PoE have recently been used as
a crucial building block in constructing space-efficient general-purpose succinct
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non-interactive arguments of knowledge (SNARKs) [2,7,14], thus establishing a
converse relationship.

Additional Related Work to VDFs. VDFs have also been proposed in other alge-
braic settings: e.g., the constructions in [16,25,47] are based on supersingular
isogenies with the motivation to achieve (some notion of) post-quantum secu-
rity.5 In addition to the basic VDFs, refined variants of VDFs have also been
explored. For a “continuous” VDF [23], it should be possible (loosely speak-
ing) to take a proof and iterate it to produce a proof for the next iteration of
the delay function (instead of having to recompute the proof for the new value
from scratch). A “tight” VDF [20] necessitates that the amount of work that is
required to generate a proof to be ‘comparable’ to that required to just com-
pute the function. Finally, we point out that existence of VDFs has implications
in complexity theory, in particular to the existence of average-case hardness in
complexity classes of total search problems such as PPAD [18,23,34].

Timed-Release Cryptography. VDFs fall under the umbrella of timed-release
cryptographic primitives [38]. The first of such objects were time-lock puzzles
(TLP) [42] and timed commitments [11]. A TLP can be regarded as a delay func-
tion that also allows efficient sampling of its output (via a trapdoor). The TLP
from [42] uses repeated squaring in RSA group as the delay function, while the
output can be efficiently determined using the factorisation of the modulus as
trapdoor. Constructions of TLP are scarce – the only other known construction
is from [6] and it relies on obfuscation-like assumptions. Prior to VDFs the notion
of proofs of sequential work (PoSW) was introduced by Mahmoody, Moran an
Vadhan [36]. Like in a VDF, in a PoSW a prover on input some challenge x and
time parameter T must perform an (inherently sequential) computation of Θ(T )
steps and provide an efficiently verifiable proof. VDFs are a stronger notion than
PoSW as in the latter the proof only certifies that a sequential computation was
done, while in a VDF has an additional – for many applications crucial – “unique-
ness” property, it certifies that some particular value is the correct output of a
deterministic sequential computation. Unlike TLPs, PoSWs can be constructed
from random oracles (RO) [35]. The construction from [36] is based on ROs but is
not really practical as the prover needs not just T time but also linear in T space
to compute the PoSW. A construction using just log(T ) space was given in [19],
constructions with extra properties like being that “reversible” [1] or “incremen-
tal” [21] were recently proposed. Existing PoSW are quantum secure [8], while
as mentioned above, for VDFs post quantum security is largely open. Before
practical VDFs were found, the sloth function of Lenstra and Wesolowski [33]
was the closest we had to a unique PoSW. The reason sloth was not a unique
PoSW was that verification took time linear in the time to compute the output,

5 Note that the delay functions in the RSA group and class groups of imaginary
quadratic field lose their sequentiality property in the quantum setting since the
order of these groups can be efficiently computed.
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but verification is faster by a constant around 1000 (leveraging the difference of
squaring and taking roots in groups of known order) and can be parallelized.

Repeated Squaring. The use of repeated squaring (a special case of repeated
exponentiation) in a group of unknown order as an inherently sequential opera-
tion can be traced back to [15,42]. In the algebraic setting of RSA group, there is
evidence that speeding up repeated squaring is tantamount to factoring [32,44].
Further support for the sequential hardness of the problem was given in [51] and
[49]. In [29] Freitag and Komargodski give a lower bound for the verifier’s com-
plexity in interactive proofs for repeated squaring in the generic group model.

Batch Verification. The idea of using batching to reduce the amortized cost
per operation has been explored for a host of cryptographic primitives such as,
e.g., key agreement [5], signatures [39], and public-key encryption [26]. Closer to
our topic, the problem of batching the verification of multiple exponentiations
in arbitrary groups (not necessary of unknown order) was studied in [4]. They
make a heavy use of the random subset and random exponents technique (as
pointed out in [43]), which we also do. Building on [4], Rotem [43] recently
explored batch-verification of VDFs: as mentioned in Sect. 3, Rotem focused
on the verification of statements with the same time parameter, whereas our
batching does not have this restriction. We refer the reader to [43] for further
related work on batching.

2 Basic Protocol

Block et al. [7] constructed a statistically-sound PoE in any group of unknown
order using the PoE from [40] as starting point. To achieve λ bits of security,
their construction requires a multiplicative factor of λ in proof-size compared to
[40]. Below, we first explain the PoE from [7] in a bit more detail (than Sect. 1.1),
and then we explain how our protocol reduces this overhead. For now we just
focus on improving the proof-size, but the verifier complexity of our protocol will
increase, especially in settings where we batch many proofs – later, in Sect. 3,
we will show how to get down the verifier’s complexity.

Statistical PoE from [7]. To interactively prove the statement xqT ?= y, the
prover and verifier first make λ copies of the statement. In every round of the
protocol, the original claims are reduced to “smaller” statements by reducing the
exponent qTi to qTi+1 := qTi/2 as follows: The i-th round starts with a set of λ

statements {xqTi

i
?= yi}i∈[1,λ]. The prover then sends λ many “midpoints” {μi :=

xqTi/2

i }i∈[1,λ] resulting in 2λ statements of the form {uqTi/2

i
?= vi}i∈[1,2λ]. To avoid

a blow-up in the number of statements in every round, the verifier recombines
these 2λ statements by taking a random subset of them and multiplying the
statements in the subset together, i.e., obtaining a single statement. To ensure
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soundness, the verifier performs λ many of such recombinations independently
and the round ends with λ many new smaller statements. It is easy to see why the
recombination step must be performed λ many times: Suppose only one of the
2λ statements is incorrect before the recombination step. Then, with probability
1/2, the incorrect statement is not chosen among the statements in the random
subset used during the recombination step and the resulting new statement is
correct. If all new statements are correct, then the verifier falsely outputs accept
at the end of the protocol and, therefore, the verifier must perform λ many
independent recombinations to ensure λ bit security.

Our Protocol. In this work, we improve the efficiency of the above PoE by
introducing the following changes in the protocol:

1. Instead of sampling a subset to construct a new statement, we take each
statement to a random exponent in {0, 1, . . . , 2κ − 1}, where κ is some small
integer, and then multiply them together.

2. We set
q :=

∏

prime p<B

p, (1)

where B is some fixed bound, which can be chosen depending on the appli-
cation of the PoE.

3. We define a constant C such that the prover gives a proof for the statement
xqT −C ?= y′ (i.e., a C-th root of the original statement) and the verifier com-
putes the final check (y′)q

C

= y itself.

The above changes allow us to reduce the number of repetitions from λ to ρ :=
λ/ log(B) (for λ bits security). At a first glance, it could seem like the first
change is sufficient to avoid the need for λ independent recombinations since the
probability that an incorrect statement is part of a new statement is not 1/2
anymore but seemingly 1/2κ. Unfortunately, it is not the case that taking κ-bit
exponents for the recombination step achieves such a drastic improvement in
the bound on the probability of accepting an incorrect statement. Note that the
process of raising an incorrect statement to some exponent can also result in a
correct statement. This is indeed very likely if an incorrect statement xqT ?= y
is “close” to the correct one in the sense that y is the correct result multiplied
by a low-order element α. If, for example, this element α is of order two and
the statement is raised to an even exponent, say two, the resulting statement
(xqT

)2 ?= (yα)2 will be a valid one. This observation underlies an attack on [40]
that was first described6 in [10] and it is also the reason why [40] is statistically-
sound only in groups that have no elements of small order.

To circumvent the above attack using low-order elements, we introduce the
second and third change in the protocol: instead of the original statement xqT ?=
y, the (honest) prover only proves the (shorter) modified statement xqT −C ?= y′,
6 The observation that random batching can be attacked using low-order elements was

already made in [12].
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where y′ := xqT −C

, and the verifier checks (y′)q
C ?= y by itself as the final step.

Moreover, to ensure that all the low orders are covered, we define q to be the
product of all small prime numbers up to a certain bound B as in Eq. (1). Now,
a malicious prover that tries to cheat on an original statement by proving a
wrong modified statement7 will get caught in the final exponentiation as long as
the wrong modified statement is “close” to the correct one, where “close” means
that the correct result can be multiplied by an element α whose order only has
small prime divisors (prime numbers less than B) and the prime divisors have
small exponents (integers up to C). To see this, observe that if the modified
statement is xqT −C ?= y′α (which is wrong), the final exponentiation with qC

leads to rejection since

(αy′)q
C

= 1 · (xqT −C

)q
C

= xqT �= y,

where αqC

= 1 holds in G because of our assumption that it has low order.
The above changes allow us to restrict to adversaries that try to convince the
verifier of statements that are “far” from correct, i.e., where the correct result
is multiplied by an element whose order either has a large prime divisor or a
divisor which is a small prime number with a large exponent. However, in this
case the probability that the protocol ends with only correct statements and the
verifier falsely accepts at the end of the protocol is less than log(T ) · 2−λ for
parameters C = log(T ) log(B) and ρ = λ/ log(B), where ρ takes the role of λ in
[7], i.e., it is basically the number of parallel repetitions of Pietrzak’s protocol.

We give a formal description of our protocol in Fig. 3. For clarity of exposi-
tion8, we assume that T = 2t +C for some t ∈ N. Note that, similarly to [7], the
starting instance in our protocol can either contain ρ many different statements
with exponent qT or ρ many copies of the same statement.

2.1 Soundness

We show that our protocol is statistically-sound for arbitrary groups of unknown
order. In particular, soundness holds against adversaries that can construct group
elements of small order:

Theorem 1. Let B be any prime number such that q :=
∏

prime p<B p and
ρ ∈ N be the number of repetitions per round. If we set C = log(T ) log(B)
and let κ → ∞, the verifier V will output accept on an incorrect statement
(x, y, T = 2t + C) with probability at most

t

Bρ
.

7 If the (malicious) prover does not cheat on the modified statement, the verifier will
anyway catch it during the final exponentiation.

8 The case where T − C is not a power of 2 can be handled by a standard approach
similar to [40, Section 3.1].
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Instance: (x, T, y), where x, y ∈ G and T ∈ N

Parameters: (determined in the analysis)
1. bound B ∈ N, which defines the base q :=

∏
prime p<B p

2. constant for exponentiation C ∈ N

3. number of parallel repetitions ρ ∈ N

4. size of individual random coin κ ∈ N

Statement: xqT

= y

Protocol: For the ease of exposition, we assume that T = 2t + C. The protocol
consists of t rounds described in Item 2 below.

1. The prover sends y′ = xqT −C

to the verifier, defining the initial ρ instances
{(x0,j , y0,j , T0)}j∈[1,ρ], where T0 := T − C and, for j ∈ [1, ρ], x0,j := x and
y0,j := y′.

2. In round i ∈ [1, t], the prover and verifier engage in the following halving
sub-protocol:
(a) Let {(xi−1,j , yi−1,j , Ti−1 = 2t−i+1)}j∈[1,ρ] be the instance from round

i − 1.
(b) The prover sends the midpoints {μi,j := xq

Ti−1/2

i−1,j }j∈[1,ρ] defining 2ρ
smaller instances

{(xi−1,j , μi,j , Ti := Ti−1/2)}j∈[1,ρ] and {(μi,j , yi−1,j , Ti)}j∈[1,ρ],

which we denote {(ui,k, vi,k, Ti)}k∈[1,2ρ].
(c) The verifier sends a random challenge {ri,j,k}j∈[1,ρ],k∈[1,2ρ] to the prover,

where ri,j,k ← {0, 1}κ independently for all j ∈ [1, ρ] and k ∈ [1, 2ρ].
(d) They both set {(xi,j , yi,j , Ti)}j∈[1,ρ], where

xi,j :=
∏

k∈[1,2ρ]

u
ri,j,k

i,k and yi,j :=
∏

k∈[1,2ρ]

v
ri,j,k

i,k ,

and proceed to the next round.
3. The verifier accepts only if xq

t,j = yt,j and (y′)q
C

= y for all j ∈ [1, ρ].
Otherwise, it rejects.

Fig. 3. Our basic Proof of Exponentiation.

A parameter of our PoE is the bit-size κ of each random element sampled
by the verifier. In the statement of Theorem 1, we consider the limit case with κ
approaching infinity for the sake of readability. Note that if r is sampled from a
randomness space of size 2κ we have Pr [p divides r] = 1/p + 1/2κ. In the limit
case κ → ∞, the probability is 1/p. In practice, κ needs to be chosen carefully
such that the protocol is still efficient but the probability of the above event is
close enough to 1/p. We discuss this point further in Sect. 2.2.
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Before proving Theorem 1, we explain how the order of a group element
affects soundness. Let xqT −C

= y′ but a malicious prover claims that the result
is xqT −C

= y′α. We say that the second statement is α-wrong. Then soundness
of the protocol depends on the order of α:

In the execution of the protocol, the prover first sends a midpoint μ, which
results in two statements μ

?= xq(T −C)/2
and μq(T −C)/2 ?= y′α. Note that whatever

the prover claims to be μ, one of the two statements will be incorrect, so for now
we can assume that the prover sends a correct midpoint μ = xq(T −C)/2

. We copy
each statement ρ many times, raise each copy to a random exponent rk and
then multiply the 2ρ statements together. This results in a new statement that
is correct whenever

αr1αr2 . . . αrρ = αr1+r2+···+rρ = 1.

This is the case when r1 + r2 + · · · + rρ ≡ 0 mod ord(α), which happens with
probability 1/ord(α) if we assume that the randomness space is large enough
(for more information on the size of the randomness see Sect. 2.2). This means
that whenever ord(α) is large, it is unlikely that the statement is transformed
into a correct statement after a single round. However, the order of the element
that makes the statement incorrect can also decrease round by round until the
statement is transformed into a correct one. To show this, we use the following
well-known fact. A proof can be found in any standard textbook on group theory
(e.g., [22, Proposition 5]).

Proposition 1. Let G be a group, α ∈ G a group element and m a positive
integer. It holds that

ord(αm) =
ord(α)

gcd(ord(α),m)
.

From Proposition 1 we get that ord(αr1+r2+···+rρ) < ord(α) whenever r1 + r2 +
· · · + rρ ≡ 0 mod d, where d is a divisor of ord(α). If the order decreases in
all of the ρ many new statements obtained this way, the adversary has a better
chance to end up with a correct statement in one of the following rounds. We
want to bound the probability that after some round of the protocol all of the
statements are correct. To this end we need the following Lemma which bounds
the probability that recombining a set of m > ρ statements, where at least one
statement is wrong, gives ρ correct statements. In the proof of Theorem 1 we
always have m = 2ρ. Later in Sect. 3 we show how to prove many statements
simultaneously so we will use the lemma with different values m.
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Lemma 1. Let {(xi, yi, T )}i∈[1,m] be a set of m statements such that at least
one of the statements is α-wrong for some α ∈ G. Let {(x̃j , ỹj , T )}j∈[1,ρ] be a
set of ρ statements defined as

x̃j :=
∏

i∈[1,m]

x
rj,i

i and ỹj :=
∏

i∈[1,m]

y
rj,i

i

with independently sampled rj,i ← Z2κ uniformly at random for all i ∈ [1,m]
and j ∈ [1, ρ]. Let B be any prime number. If we let κ → ∞, the new statements
satisfy the following properties with probability at least 1 − (1/B)ρ:

1. If for some prime p ≥ B we have p | ord(α), at least one of the instances
{(x̃j , ỹj , T )}j∈[1,ρ] is α̃-wrong and p | ord(α̃).

2. If for some prime p < B and some integer e ≥ log(B) we have pe | ord(α),
at least one of the instances {(x̃j , ỹj , T )}j∈[1,ρ] is α̃-wrong and pe−log(B)+1 |
ord(α̃).

Proof. Since we want to lower bound the probabilities of the above events, it is
sufficient to consider the case where ord(α) has a single prime divisor. So, we
assume ord(α) = pe for some prime p and integer e. Using α, we can express
the statements {(xi, yi, T )}i∈[1,m] equivalently in the form {(xi, hiα

ai , T )}i∈[1,m],

where xqT

i = hi are the correct results for all i ∈ [1,m], ai ∈ Z and at least one
of the ai = 1. A new statement (x̃j , ỹj , T ) is computed as

x̃j :=
∏

i∈[1,m]

x
rj,i

i and ỹj :=
∏

i∈[1,m]

(hiα
ai)rj,i .

Let α̃ :=
∏

i∈[1,m] α
ai·rj,i . By Proposition 1, the order of α̃ is

pe

gcd(pe,
∑m

i=1 airj,i)
= pe−s

for some s ∈ {0, 1, . . . , e}. The probability that s ≥ k for any k ∈ {0, 1, . . . , e} is

Pr[s ≥ k] = Pr

[
m∑

i=1

airj,i ≡ 0 mod pk

]
=

1
pk

.

To obtain the first claim of the lemma, we set e = 1 and p = B. The
probability that the new statement is correct is the probability that s = 1,
which is 1/B. Hence, the probability that all of the ρ new instances are correct
is 1/Bρ.

We obtain the second claim of the lemma by setting e ≥ log(B) and observing
that the probability of s ≥ log(B) is 1/plog(B) ≤ 1/2log(B) = 1/B. Hence, the
probability that this is the case for all ρ statements is at most 1/Bρ. ��
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Proof (of Theorem 1). Assume that the correct result in Step 2 of the protocol
is xqT −C

= y′ but a malicious prover claims that it is xqT −C

= y′α (i.e., makes
a statement that is α-wrong). Notice that in the case where ord(α) | qC we
have that (y′α)q

C

= (y′)q
C

= y and, hence, the verifier ends up rejecting after
Step 3 of the protocol. It follows that an adversary who wants to convince the
verifier that the result is not y needs to choose an element α of order not dividing
qC . The adversary wins if all of the ρ statements are correct after t rounds of
the protocol. From the discussion above we know that the best option for the
adversary is either picking an element of order 2C+1 or an element of order
p, where p is the smallest prime not dividing qC . We analyze the two cases
separately.

Case 1: Let ord(α) = p. Assume that in round i of the protocol we have ρ
many statements {(xi−1,j , yi−1,jα

ai−1,j , Ti−1)}j∈[1,ρ] where ai−1,j ∈ Z for all
j ∈ [1, ρ]. If ai−1,j ≡ 0 mod p, the statement is correct. Otherwise it is wrong
and, by Proposition 1 and the primality of p, we know that αai−1,j has order
p. We assume that at least one of the ai−1,j is not divisible by p and we bound
the probability that all of the statements are correct in round i + 1.
In Step 2 of the protocol, the prover sends midpoints μi,j which results in 2ρ
statements

{(xi−1,j , μi,j , Ti = Ti/2)}j∈[1,ρ] and {(μi,j , yi−1,jα
ai−1,j , Ti)}j∈[1,ρ],

which we denote by {(ui,k, vi,kαbi,k , Ti)}k∈[1,2ρ]. Note that at least one of the
bi,k is nonzero modulo p, no matter which elements μi,j the prover sends.
Hence, the assumption of Lemma 1 is satisfied, so the probability that all of
the statements in round i+1 are correct is at most 1/Bρ. By the union bound,
we get that the probability that all statements are correct after t rounds is

t

Bρ
.

Case 2: Let ord(α) = 2C+1 where C = t� for some � ≥ log(B). In order to
end up with a correct statement after t rounds, the adversary has to decrease
the order of the wrong element by a factor of 2� on average per round. In
particular (by an averaging argument) there has to be one round where the
order decreases by at least 2�.
Assume that in round i of the protocol we have ρ statements of the form
{(xi−1,j , yi−1,jα

ai−1,j , Ti−1)}j∈[1,ρ] where ai−1,j ∈ Z. Without loss of gener-
ality, let αai−1,1 have the largest order of all αai−1,j .
The prover sends midpoints μi,j which results in 2ρ statements

{(xi−1,j , μi,j , Ti = Ti/2)}j∈[1,ρ] and {(μi,j , yi−1,jα
ai−1,j , Ti)}j∈[1,ρ],

which we denote by {(ui,k, vi,kαbi,k , Ti)}k∈[1,2ρ].
We note that whatever midpoint the prover sends, the order of the element
that makes one of the two statements μi,1

?= xqTi

i−1,1 and μqTi

i,1
?= yi−1,1α

ai−1,1
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incorrect is at least ord(αai−1,1). To see this, assume that μi,1 is the correct
midpoint but the adversary sends μi,1β for some group element β. Then the
second statement becomes μqTi

i,1
?= yi−1,1α

ai−1,1β−qTi , which is γ-wrong for
γ := αai−1,1β−qTi . Since αai−1,1 = γβqTi we have that ord(αai−1,1) divides
lcm(ord(γ), ord(βqTi )). It follows that ord(αai−1,1) divides either ord(γ) or
ord(βqTi ) (and hence ord(β)) because the order of αai−1,1 is a power of 2.
By Lemma 1, we get that the probability that none of the statements in
round i + 1 is α̃-wrong, where α̃ is some element with order divisible by
ord(αai−1,1)/2�−1, is at most 1/Bρ. By the union bound, we conclude that
the adversary wins after t rounds with probability at most

t

Bρ
.

Cases 1 and 2 together yield Theorem 1. ��
Corollary 1. For C := t log(B) the Fiat-Shamir transform of our PoE yields a
sound non-interactive protocol.

Proof. As we have seen above, a malicious prover is able to convince the verifier
of a wrong statement only if there is one round where at least one of the following
two events happens depending on which attack is chosen:

– an α-wrong statement where ord(α) has a prime divisor of size at least B is
transformed into a correct one or

– the order of the wrong element decreases by at least 2C/t.

We know that the probability that the output of a random oracle results in such
an event is (1/B)ρ since by our choice of C we have 1/2ρC/t = (1/B)ρ. By the
union bound, the probability that a malicious prover that makes up to Q queries
to the random oracle will find such a query is at most Q · (1/B)ρ. ��

2.2 Efficiency

In this section, we analyze the efficiency of the Fiat-Shamir transform of our
PoE for proving a statement of the form xqT ?= y with T = 2t + C.

Randomness Space. In order to keep the cost of exponentiation with random
coins low, we need to make the size of the randomness space as small as pos-
sible while ensuring that divisibility by B is almost uniformly distributed. For
concreteness, we use log(B)+ 5 random bits. Then it holds for any prime p > B
and c ∈ Zp that

Pr
r←Z

2�log(B)�+5

[r = c mod p] <
1
B

+
1

B · 25 ≈ 1.03
B

.
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Fig. 4. Number of multiplications of the verifier in one round for 80-bit security depend-
ing on the bound B. The orange graph is the total verifier’s complexity for one round,
the blue dotted graph is the cost of the interactive part of the protocol and the green
dashed graph is the cost of the final exponentiation divided by the number of rounds
(i.e., we amortize the cost of the final exponentiation over the number of rounds).
(Color figure online)

Verifier’s Efficiency. The work for the verifier consists of two parts: 1) the inter-
active part, which is dominated by t ·4ρ2 exponentiations (with exponents of size
log(B) + 5) and ρ exponentiations with q, and 2) the final exponentiation with
qC . Each exponentiation with a z-bit exponent via “square and multiply” costs
about 1.5z multiplications (i.e., z plus the Hamming weight of the exponent),
so the small exponentiations have complexity 6tρ2(log(B)+5). Additionally, the
verifier performs 2tρ2 multiplications to recombine the statements. The expo-
nentiation with qC takes C · log(q) multiplications. If we set C = t · log(B), the
total of multiplications performed by the verifier is approximately

t · ((6 log(B) + 32)ρ2 + log(B) · log(q)) + ρ log(q) ≈ t log(B)(6ρ2 + 2B) + 2ρB,

where we use the upper bound q ≤ 4B of Erdős [24] . As an example, consider
an implementation where t = 32, B = 521, and ρ = �80/ log(521)�=9. Then we
have log(q) ≈ 703, so the cost for the verifier is around 426000 multiplications.

In Fig. 4, we plot the complexity of the verifier in a single round of the
interactive protocol for different values of B. Additionally, we consider the curves
for the verifier’s complexity of only the interaction with the prover and only the
final exponentiation separately. Observe that, for B < 227, the total complexity
decreases as B increases due to the fact that the number of repetitions λ/ log(B)
decreases faster than the increasing cost of the final exponentiation with qC (the
latter increases linearly with B). Beyond B = 227, it is the other way round
and, thus, the total cost increases. Note that B = 227 implies q ≈ 2287. If an
application requires either a value q that is much larger than this or PoEs for
multiple statements (e.g., in [7], where λ many PoEs are needed in each round),
then the final exponentiation of the verifier becomes too expensive. We present
two modifications of the protocol that improve this complexity significantly: In
Appendix A, we show how to replace C = log(T ) log(B) with C = log(T ) by
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Table 1. Comparison of different PoEs. Verifier’s complexity is measured in the number
of multiplications and proof-size |π| in the number of group elements. We denote by
λ the statistical security parameter. [40] is statistically-sound only in groups without
elements of small order.

PoE statistically-sound Verifier’s complexity |π|
Our PoE yes (6( λ

log(B) )
2 + 2B) log(B) log(T ) + 2λ

log(B)
λ

log(B) log(T )

[7] yes 2λ2 log(T ) + 2λ log(q) λ log(T )

[40] in some G 3λ log(T ) log(T )

[50] no log(T ) + 3λ 1

slightly modifying how we set q. In Sect. 3, we show how to compute the last
step interactively without increasing the number of rounds.

Prover’s Efficiency. The prover needs to compute xqT

and the midpoints μi,j .
Computing xqT

takes log(q) · T multiplications. If the prover stores the value
xqT/2

during that computation, then computing the midpoints takes another
ρ · log(q) ·(T/4+T/8+ . . .+1) ≈ ρ · log(q) ·T/2 multiplications. This number can
be significantly reduced by storing a few more elements during the computation
of xqT

similarly to [40, Section 6.2]. For sufficiently large values of T , the cost
for computing the proof can be made small compared to the cost of the T
exponentiations required to compute the output and, moreover, the computation
of the proof can be easily be parallelized. For this reason we mostly ignore the
prover’s complexity in the comparisons.

Communication Complexity. The communication complexity from the prover to
the verifier is of interest as it equals the proof-size after using the Fiat-Shamir
heuristic. In each of the t rounds, our prover sends ρ many midpoints which
are of size logN . If logN = 2048, t = 32, and ρ = 9 then the communication
complexity is approximately 219 bits.

Comparison with Alternative PoEs. In Table 1, we compare our protocol with
the proofs of exponentiation from [7,40], and [50]. We list the proof-size and
verifier’s complexity. Prover’s complexity is omitted since the main computation
for the prover in all the protocols is dominated by the same factor, i.e., the cost
of T sequential exponentiations to compute the output.

We observe that [50] is the most efficient PoE regarding verifier’s complexity
and proof-size. However, it is not statistically-sound. [40] introduces only a minor
increase in overhead, but it has the drawback that it is only statistically-sound
in groups with no low-order elements other than the identity. The PoE from [7]
and our PoE are both statistically-sound in all groups, while the proof-size of our
PoE improves by a factor of log(B) upon [7] and we compare the communication
complexity per round for different values of B in Fig. 1.

The verifier’s efficiency of our PoE depends on the choice of the bound
B which also determines the size of q. In Fig. 2, we compare the number of
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multiplications per round for the verifier in both protocols for different choices
of B. Additionally to the work in each round, the verifier computes λ many expo-
nentiations with q in the last round of [7] and ρ many exponentiations with q in
the last round of our interactive protocol. We see that the verifier’s complexity
improves for B ∈ (59, 499), which corresponds to q ∈ (271, 2685).

It is important to note that this is the verifier’s complexity for proving a
single statement. The PoE in [7] achieves the same verifier’s efficiency for prov-
ing λ many different statements with the same exponent simultaneously. Our
protocol incurs additional log(T ) log(q) multiplications for every new statement,
since the verifier has to compute the final exponentiation individually for every
statement. In Sect. 3, we give a batching protocol that reduces the cost of the
final exponentiation to log(q), which enables us to prove arbitrarily many state-
ments simultaneously without significantly increasing the proof-size and verifier’s
complexity.

3 Reducing (Verifier-) Complexity by Batching

In this section, we show how to prove arbitrary many statements simultaneously
without increasing the number of rounds. This batching protocol serves two
purposes:

1. Efficiently proving multiple independent statements. This is needed for exam-
ple in the polynomial commitment scheme of [7], where in each round λ many
statements need to be proven;

2. Reducing the verifier’s complexity of the final exponentiation with qC in our
basic protocol. Instead of performing the computation locally, the verifier can
request an additional PoE for the statement (y′)q

C

= y and verify it simulta-
neously with the original PoE. While now we need to do a final exponentiation
for the new statement, the exponent drops from log(T ) to log log(T ).

In [43] Rotem gives a batching technique for arbitrary PoEs, where the state-
ments have the same exponent. We describe a batching technique for our PoE,
where the statements can have different exponents. Furthermore, the protocol
can be easily adapted to the PoEs in [40] and [7].

3.1 The Protocol

Assume the prover wants to prove two statements in the same group G:

gq2t+C1

1
?= h1 and gq2s+C2

2
?= h2.

The statements can either be independent or one of them is the statement from
the final verifier exponentiation of the other. The two statements can be proven
simultaneously as follows: First the prover sends the statements

gq2t

1
?= h′

1 and gq2s

2
?= h′

2.
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We can assume that t = � + s for some � ∈ N. Begin with the proof of the first
statement. After executing the protocol for � − 1 rounds and the prover sending
midpoints in round �, we have 2ρ statements of the form

uq2s

j
?= vj

for j ∈ [2ρ]. The prover makes this 2ρ + 1 statements by adding gq2s

2
?= h′

2 to
these statements. Next the verifier sends ρ · (2ρ + 1) random coins and both
parties create ρ new statements similarly to the original protocol. Then they
proceed with the PoE protocol. Note that this process neither reduces soundness
of the proof of the first statement nor of the second statement since by Lemma
1 we only need one of the statements that are being combined to be incorrect.
In the end the verifier checks if (h′

1)
qC1 = h1 and (h′

2)
qC2 = h2. This process

can be extended to arbitrary-many statements of the form gq2r
+Ci

i
?= hi with the

protocol given in Fig. 5. Note that in Step 4 we do not specify whether the verifier
checks (h′

i)
qC

i = hi by carrying out the computation locally or by appending the
statement to the instances. This depends on the size of C and on the application.

Remark 1. In the case where the exponents of q are not powers of 2, one can
simply divide a statement of the form xqS ?= y for S ∈ N into smaller statements
as follows: Let (s0, s1, . . . , sm) be the binary representation of S. Then we have

xqS

= xq
∑

sk·2k

= x
∏

qsk·2k

= y.

This gives at most m+ 1 smaller statements xqs0 ?= y1 and yqsi·2i

i
?= yi+1 for

i ∈ [1,m] where ym+1 = y. Again these statements can be proven simultaneously
with the batching protocol.

The theorem below follows immediately from the description of the batching
protocol and Remark 1.

Theorem 2. For any m ∈ N the statements {(gi, hi, Si + Ci)}i∈[1,m] can be
proven in at most 1 + maxi log(Si) rounds where additionally to one execution
of the PoE protocol the following computations need to be performed:

1. P and V perform

2ρ
m∑

i=1

h(Si)

additional exponentiations with exponents of size log(B) + 5. Here h(Si)
denotes the hamming weight of Si;

2. V performs m−1 additional exponentiations with exponents qCi for i ∈ [1,m]\
{argmaxi Si};

and the communication complexity increases by m − 1 group elements.
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Instance: {(gi, hi, 2
ti + Ci)}i∈[1,m] with gi, hi ∈ G and t1 > t2 > . . . > tm ∈ N

Claim: gq2ti+Ci

i = hi over G for all i ∈ [1, m] and q ∈ N

Parameters: (determined in the analysis)
1. number of rounds of parallel repetition ρ
2. size of individual random coin κ

Protocol:

1. The prover sends h′
i := gq2ti

i for all i ∈ [1, m] to the verifier.
2. Execute Step 2 of the PoE protocol for (g1, h

′
1, 2

t1) for t1 − t2 − 1 rounds.
3. In round i ∈ [1, m − 1] of the batching protocol we have ρ instances of the

form {(xj , yj , 2
ti+1+1)}j∈[1,ρ]:

(a) The prover sends ρ midpoints {μj}j∈[1,ρ], which results in 2ρ instances
{(uk, vk, 2ti+1)}k∈[1,2ρ]

(b) The prover and verifier append (gj+1, h
′
j+1, 2

ti+1) to the instances result-
ing in 2ρ + 1 instances of the form {(ũk, ṽk, 2ti+1)}k∈[1,2ρ+1].

(c) The verifier sends the random challenge {rj,k}j∈[1,ρ],k∈[1,2ρ+1], where
rj,k ∈ {0, 1}κ.

(d) They both set {(x̃j , ỹj , 2
ti+1)}j∈[1,ρ] as the instance for the next execution

of the PoE protocol, where

x̃j :=
∏

k∈[1,2ρ+1]

ũ
rj,k

k and ỹj :=
∏

k∈[1,2ρ+1]

ṽ
rj,k

k

(e) If i < m−1: Execute Step 2 of the PoE protocol for ti+1−ti+2−1 rounds.
Else: Execute Step 2 of the PoE protocol for tm rounds until the state-
ments are of the form {(x∗

j , y∗
j , 1)}j∈[1,ρ].

4. At the end of m − 1 rounds, the verifier accepts if and only if (x∗
j )

q = y∗
j for

all j ∈ [1, ρ] and (h′
i)

qCi
= hi for all i ∈ [1, m].

Fig. 5. Batching protocol for PoE.

Soundness of the protocol follows immediately from Lemma 1 and Theorem 1
since in the statement of Lemma 1 we consider a set of arbitrary many statements
of the form (xi, yi, T ) in any round. This means that the proof of Theorem 1
also holds when new statements are added during the execution of the protocol.

Theorem 3. Let B be any prime number such that q :=
∏

prime p<B p and
ρ ∈ N be the number of repetitions per round. If we set C = log(T ) log(B) and
let κ → ∞, the verifier V will output accept on instance {(gi, hi, 2ti+Ci)}i∈[1,m],
where t1 ≥ t2 ≥ . . . ≥ tm and at least one statements is incorrect, with probability
at most

t1
Bρ

.
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3.2 Improving Verifier’s Efficiency

In this section we analyze how the batching protocol reduces the number of
multiplications for verifying a statement of the form xqT ?= y. In Appendix B.1
we analyze the gain in efficiency of the polynomial commitment in [7] when we
use this improved version of our PoE as a building block instead of the PoE
proposed in [7].

The first prover message is the value y′ = xqT −C

, where C ≥ log(T ). The key
idea is that the verifier does not carry out the last exponentiation with qC but
the prover gives an interactive proof of the statement (y′)q

C

= y (a “smaller”
PoE). This reduces the final exponentiation to (y′′)q

C′
= y, where y′′ is the first

prover message in the smaller PoE and C ′ ≥ log(C) is much smaller than C.
This statement can again be proven interactively by an even smaller PoE. In
fact, this trick can be applied recursively until the verifier only has to perform a
single exponentiation with q in the final step. We make two assumptions in this
section:

1. We have q =
∏

prime p<B p�log(B)/ log(p)� such that the constant C in the PoE
protocol is lower bounded only by log(T ) and not log(T ) log(B). This is the
trick we discuss in Appendix A. This assumption is needed to reduce the
exponent from qC to q and should be adopted in practice if one wants to
make use of the recursion.

2. Instead of setting C to exactly log(T ), we set C = 22
22

+ 22
2
+ 22 + 1, which

will always be larger than log(T ) in practice. This assumption is mainly for
the ease of presentation and need not be adopted in practice.

Reducing the Exponent from qC to qlog(C). We know that exponentiation with
qC takes C log(q) multiplications. In order to reduce this cost for the verifier,
we slightly modify the protocol in the following way: Instead of the verifier
performing the last exponentiation locally, the verifier and the prover run the
batching protocol with instances

{(x, y, T = T0 + C), (y′, y, C = S0 + C ′)},

where C ′ = log(C). This modification introduces 3ρ·h(S0)(log(B)+5) additional
multiplications during the interactive part of the protocol (by Theorem 2) but
reduces the complexity of the final exponentiation to

C ′ log(q) = log(C) log(q) ≈ log log(T ) log(q).

By our special choice of C we have h(S0) = 1 so we can ignore it in the remainder
of the section
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Applying the Recursion. As we have seen, the exponent qC can be reduced to
qC′

. Now, the verifier can either perform the final exponentiation with qC′
or

apply the above procedure recursively until the verifier only has to do a single
exponentiation with q in the final step. We denote the number of recursions
needed until the exponent is reduced to q by log∗(C). We have that the entire
recursion adds at most 3 log∗(C)ρ · (log(B)+5) multiplications during the inter-
active part of the protocol but reduces the work of the final exponentiation from
log(T ) log(q) to log(q).

In Sect. 2.2 we saw that the verifier’s complexity without any batching is

log(T ) · ((6 log(B) + 32)ρ2 + log(q)) + ρ log(q).

Our batching protocol reduces the number of multiplications for verifying the
proof of a single statement to approximately

log(T )(6 log(B) + 32)ρ2 + 3 log∗(C)ρ · (log(B) + 5) + (ρ + 1) log(q)

and increases the proof-size to log∗(C) + ρ log(T ) group elements.

Proving Multiple Statements. With this optimization of the cost of verifying a
single statement we can now compute the complexity of verifying m statements
with our improved protocol. Each additional statement that either has exponent
qT or a smaller power of q adds log(q) multiplications to compute the final
exponentiation, 3 log∗(C)ρ · (log(B) + 5) multiplications during the interactive
part and increases the proof-size by at most log∗(C) elements. We conclude that
m many statements can be proven with verifier’s complexity

log(T )(6 log(B) + 32)ρ2 + 3m log∗(C)ρ · (log(B) + 5) + (ρ + m) log(q)

and communication complexity m log∗(C) + ρ log(T ).

A Improving Verifier’s Efficiency

In Fig. 2 we see that for large values of B and q the verifier’s complexity increases
because the final computation (y′)q

C

becomes expensive. The cost of this com-
putation is C · log(q), where so far we have set C = t log(B). We can reduce this
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Fig. 6. Number of multiplications of the verifier in one round for 80-bit security depend-
ing on the bound B. The blue line is the number of multiplications in [7], the dotted
orange graph is the complexity of our protocol with C = t log(B), the red graph is
the complexity in our protocol with C = t log(B)/2 and the green line is the verifier’s
complexity in [40]. (Color figure online)

number to C = t log(B)/2 by setting q to

q = 22 · 32 ·
∏

3<p<B

p. (2)

It is straightforward to check that this does not affect our soundness bound, but
it has a notable effect on verifier’s efficiency as shown in Fig. 6.

This approach can be generalized to setting C = t log(B)/k for any integer
k ≤ log(B). To ensure soundness we need to modify q as follows: Let m be the
largest prime number such that m < 2k. Then we set

q = 2k · 3�k/ log(3)� · 5�k/ log(5)� · · · m�k/ log(m)� ·
∏

m<p<B

p.

In particular, the choice of q that optimizes verifier’s efficiency for large values
of B is

q =
∏

p<B

p�log(B)/ log(p)�

for which we can set C = t. The cost for the verifier with this parameters is shown
in Fig. 7. We conclude that the verifier’s complexity of our scheme improves upon
[7] for values of B from 59 up to 2749, which corresponds to values of q between
approximately 271 and 2400·log(2749) ≈ 23167.

B Application in Polynomial Commitments

In this section we analyse the gain in efficiency when we use our PoE as a building
block instead of the one proposed in [7].

In the full version of the paper [31] we provide an overview of the polynomial
commitment scheme in [7]. Here we only state the key properties that the PoE
should satisfy in order to be applicable in the polynomial commitment scheme.
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Fig. 7. Number of multiplications of the verifier in one round for 80-bit security depend-
ing on the bound B. The dotted blue line is the number of multiplications in [7], the
orange graph is the complexity of our protocol with C = t and q as above and the
green line is verifier’s complexity in [40] (which is 240 multiplications). (Color figure
online)

Requirements from the PoE. Note that the use of the PoE in the [7] polynomial
commitment is more or less black-box. However, there are two important criteria
that it should satisfy.

1. Firstly, the PoE has to satisfy statistical soundness so that the knowledge
soundness of the polynomial commitment built upon it can be argued ([7,
Lemma 6.4]).9 Our PoE satisfies statistical soundness.

2. Secondly, the base q used in the PoE protocol is borrowed from the poly-
nomial commitment. In order for the polynomial commitment to satisfy its
homomorphic properties, [7] set it to be a large, odd integer – in particular,
they require q � p · 2npoly(λ). This requirement that q be large, as we saw
in Sect. 2 is advantageous for our PoE. On the other hand, the requirement
that q be odd is in conflict with our trick of choosing an even q as in Eq. (1).
However, we show in the full version of the paper [31] that the requirement
that q be odd is not necessary in [7].

B.1 Efficiency

In this section we analyze the improvement in efficiency of the polynomial com-
mitment scheme in [7] using our PoE, the batching protocol and the optimiza-
tion in Appendix A. In the polynomial commitment scheme the PoE protocol is

used to prove statements of the form xq2n−k−1

i = yi for every i ∈ [λ] and every
k ∈ {0, 1, . . . , n − 1}.

Communication Complexity. In [7] the communication complexity of proving λ
many statements with the same exponent is λ(n − k − 1) group elements. This

9 To be precise, it suffices for the soundness of the PoE to be based on a hardness
assumption that is at most as strong as the hardness assumption that is used for
showing the binding or knowledge soundness of the polynomial commitment.
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gives a total PoE proof-size of

λ

n−1∑

k=0

(n − k − 1) =
λ

2
(n − 1)n.

As we have seen in Sect. 3.2, in our PoE the cost of proving λn statements,
in which the largest exponent is qn−1, is

λn log∗(n − 1) +
λ

log(B)
(n − 1).

We conclude that we decrease the proof-size of the polynomial commitment
by a factor of approximately n/(2 log∗(n − 1)). This number can be increased
to n/2 at the cost of a higher verifier complexity. More generally, the number of
recursive steps explained in Sect. 3.2 can be used to choose a trade-off between
proof-size and verifier efficiency.

Verifier’s Efficiency. In [7] the verifier’s complexity of proving λ many state-
ments with the same exponent is 2λ2(n − k − 1) + λ log(q) multiplications. This
gives a total verifier’s complexity of

2λ2
n−1∑

k=0

((n − k − 1) + λ log(q)) = (λ log(q) + 2λ2(n − 1))n.

As we have seen in Sect. 3.2, in our PoE the cost of verifying λn statements,
in which the largest exponent is qn−1, is

(n − 1)(6 log(B) + 32)ρ2 + 3λn log∗(C)ρ · (log(B) + 5) + (ρ + λn) log(q) ≈ 15λ2n + λn log(q).

Since in practice we have n ≈ 32, we conclude that the verifier’s efficiency of
the polynomial commitment scheme implemented with our PoE is comparable
to that in [7].
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Abstract. Many decentralized systems rely on flooding protocols for
message dissemination. In such a protocol, the sender of a message sends
it to a randomly selected set of peers. These peers again send the mes-
sage to their randomly selected peers, until every network participant
has received the message. This type of protocols clearly fail in face of an
adaptive adversary who can simply corrupt all peers of the sender and
thereby prevent the message from being delivered. Nevertheless, flood-
ing protocols are commonly used within protocols that aim to be cryp-
tographically secure, most notably in blockchain protocols. While it is
possible to revert to static corruptions, this gives unsatisfactory security
guarantees, especially in the setting of a blockchain that is supposed to
run for an extended period of time.

To be able to provide meaningful security guarantees in such settings,
we give precise semantics to what we call δ-delayed adversaries in the
Universal Composability (UC) framework. Such adversaries can adap-
tively corrupt parties, but there is a delay of time δ from when an adver-
sary decides to corrupt a party until they succeed in overtaking control
of the party. Within this model, we formally prove the intuitive result
that flooding protocols are secure against δ-delayed adversaries when δ
is at least the time it takes to send a message from one peer to another
plus the time it takes the recipient to resend the message. To this end,
we show how to reduce the adaptive setting with a δ-delayed adversary
to a static experiment with an Erdős-Rényi graph. Using the established
theory of Erdős-Rényi graphs, we provide upper bounds on the propa-
gation time of the flooding functionality for different neighborhood sizes
of the gossip network. More concretely, we show the following for secu-
rity parameter κ, point-to-point channels with delay at most Δ, and n
parties in total, with a sufficiently delayed adversary that can corrupt
any constant fraction of the parties: If all parties send to Ω(κ) parties on
average, then we can realize a flooding functionality with maximal delay
O

(
Δ · log(n)

)
; and if all parties send to Ω

(√
κn

)
parties on average, we

can realize a flooding functionality with maximal delay O(Δ).
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1 Introduction

1.1 Motivation

In Nakamoto-style blockchains (NSBs) such as Bitcoin [35], several parties con-
tinuously try to solve cryptographic puzzles. The first party solving the puzzle
“wins” the right to create a new block extending the previously longest chain.
This block is then distributed to all other parties, who continue solving puzzles
to create the next block. Extensive research has shown for different variation of
NSBs that security can be guaranteed if a majority of the puzzles are solved by
honest parties and if blocks can be propagated fast enough to ensure with high
probability that the next winner has learned about the previous block before
creating a new block [19,20,37,39].

Since future block creators are unpredictable, these protocols have a high
resilience against adaptive corruptions. Intuitively, the only chance to exploit
the adaptivity of corruptions is to corrupt a party after learning that it has
solved a puzzle and subsequently prevent this party from distributing the created
block. An adversary with the power to stop messages from being delivered (or
changing the message) by corrupting the sender after sending but before the
message is delivered, is often referred to as strongly adaptive [1]. On the other
hand, if messages from honest senders are guaranteed to be delivered regardless
of whether the sender gets corrupted before delivery, the adversary is only weakly
adaptive, or equivalently, atomic message send (AMS) [18] is assumed.

Indeed, several papers [19,20,37] have proven the security of Bitcoin’s consen-
sus against adaptive corruptions, and Ouroboros Praos [15] has been developed
as a proof-of-stake blockchain with resilience against fully adaptive corruptions
as one of the main selling points. To achieve this, these papers have to assume
atomic message dissemination. In reality, however, NSBs typically use complex
peer-to-peer networks to disseminate blocks, in which each party propagates
messages to only a small set of other parties (referred to as their neighbors),
who will then propagate it to their neighbors and so forth. Even if the point-to-
point channels between neighbors allow atomic sends, the overall network will
not provide this guarantee because an adaptive adversary can simply corrupt
all neighbors of the sender and thereby stop the block from being propagated.
Hence, when considering the full protocol, which combines a NSB with a peer-to-
peer flooding network, security against fully adaptive corruptions can no longer
be guaranteed.

Formalizing Delayed Adaptive Corruptions. To provide meaningful guarantees
to blockchain protocols including their peer-to-peer network, we observe that
intuitively, one needs to restrict the corruption speed of an adversary such that
parties in the peer-to-peer network have enough time to pass on the block they
receive before being corrupted. Based on this observation, we introduce a precise
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model for δ-delayed adversaries in the Universal Composability framework [7].
Using this model, one can quantify the minimum amount of time δ it takes from
when an adversary targets and starts attacking a specific party until this party
is actually under adversarial control and prove the security of protocols against
such corruptions. This allows us to describe exactly what kind of adversaries
different P2P networks and protocols build on top can withstand.

Note that the corruption speed of an adaptive adversary also has a natural
translation to reality. For an attacker to succeed in attacking some physical
machine it necessarily takes some time from targeting the machine to actually
hack into the network (by either physical or digital means) and take over the
computer. Denial-of-service attacks are arguably faster to mount, but it still
takes nonzero time to target a specific machine.

While unstructured peer-to-peer networks for message dissemination are the
main focus of our paper, delayed adversaries have much broader applications
and were in fact already used in other works, with varying degree of formality.
For example, the original Ouroboros [27], in contrast to its successor Ouroboros
Praos [15], which only requires AMS, needs that corruptions are sufficiently
delayed. The same is true for Snow White [14], another early proof-of-stake
blockchain. Another example is Hybrid Consensus [38], which periodically elects
committees using a blockchain and remains secure if corruptions are delayed
until the next committee is selected. The same applies to blockchain sharding
proposals [29,31,41] in which the members of shards are periodically chosen.

Concrete Analysis of Flooding Networks. As mentioned above, the security of
NSBs crucially relies on the assumption that blocks are with high probability
propagated to other parties before the next winner creates another new block. If
an upper bound on the propagation time is known, the difficulty of the puzzles
can be set accordingly to provide this guarantee. Setting the difficulty based on
a too optimistic assumption on the delay jeopardizes the security of the system,
and setting it based on a too loose upper bound degrades efficiency. Knowing a
tight bound on the propagation delay is thus key for the security and efficiency
of an NSB.

Even more critical for the security of NSBs are so-called eclipse attacks that
prevent some parties from receiving blocks [22,32]. Furthermore, for large-scale
distributed systems, the number of neighbors has a significant impact on the
required communication. In particular, it is infeasible to simply send the mes-
sage directly to everybody. In this work, we provide constructions for flooding
networks with provable security against eclipse attacks in a well-defined adver-
sarial model and show different trade-offs between the propagation time and
neighborhood sizes.

Terminology. In the literature different terminology has been used for the pro-
cess of disseminating a message to all parties. Common terminology includes
“broadcast”, “flood” and “multicast”. In this paper, we will use the terminology
“flood” for this process. Contrary to byzantine broadcast, there is no agreement
requirement for a flooding network if the sender of a message is dishonest.
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1.2 Contributions and Results

Our contributions are twofold:

1. We give precise semantics to δ-delayed corruptions (introduced in [38] as δ-
agile corruptions) within the UC framework [8]. We define the semantics via
corruption shells which allows us to prove how this type of corruptions relate
to standard adaptive corruptions.

2. We define a functionality for disseminating information, Flood, that can be
used to implement a secure NSB, and that we implement using a flooding pro-
tocol against a slightly delayed adversary. Importantly, we quantify exactly
how much is meant by “slightly” in terms of guarantees provided by the under-
lying point-to-point channels. We provide two instantiations of our protocol
with different efficiency trade-offs.

Below we lay out the specifics of the individual contributions and state our
results in more detail.

Precise Model for δ-Delayed Adversaries. We define a δ-delayed adversary as an
adversary which uses at least δ time to perform a corruption. We define this
notion precisely within the UC framework using the notion of time from [4]. We
do so by elaborating on the notion of corruption-shells from [8].

Using the idea of corruption shells, we give semantics to both “normal” byzan-
tine adaptive corruption and δ-delayed corruptions. We capture the semantics
of byzantine adaptive corruptions in a corruption-shell, BReal, for protocols and
in a corruption-shell, BIdeal, for ideal functionalities. Similarly, we capture the
semantics of δ-delayed adversaries in a corruption-shell, Dδ

Real, for protocols and
in a corruption-shell, Dδ

Ideal, for ideal functionalities. Dδ
Real and Dδ

Ideal accepts
two inputs: Precorrupt and Corrupt (both indexed by a specific party). Both shells
ensure that at least δ time has passed after receiving Precorrupt before reacting
upon Corrupt. Any Corrupt input that is sent prematurely is ignored.

Having defined the semantics for both standard adaptive corruptions and for
δ-delayed corruptions using corruption shells, we state basic results relating the
two models. We show that a protocol is secure against a standard adaptive adver-
sary iff it is secure against a 0-delayed adversary (Theorem 1). Furthermore, we
show that if a protocol is secure against a “fast” adversary, then this implies that
it is also secure against a “slow” adversary (Theorem 2). Together these results
allow constructions proven secure in the standard model of adaptive adversaries
to be reused when constructing new protocols secure against a δ-delayed adver-
sary, and to compose protocols that are secure against adversaries with different
delays.

Flooding Networks. We define a functionality for flooding messages, FΔ
Flood. It

ensures that all parties learn messages that an honest party has sent or has
received within Δ time, and is thereby similar to the flooding functionality
assumed in many consensus protocols. We realize our flooding functionality with
both a naive protocol, πNaiveFlood, where everybody simply sends to everybody,
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and a more advanced protocol, πERFlood(ρ), where all parties choose to send to
other parties with probability ρ.

In order to realize the flooding functionality, we introduce a functionality for a
point-to-point channel Fσ,Δ

MessageTransfer. This functionality is also parameterized by
a bound for the delivery time Δ, and additionally has a parameter σ describing
the time an honest party needs to stay honest after starting to send the message
for the delivery guarantee to apply. If σ = 0 then this corresponds to assuming
AMS. On the other hand, if σ ≥ δ and we consider δ-delayed adversaries, then
this corresponds to not assuming AMS. However, having the time quantified
allows us to relate this time to the delay we can tolerate when building more
advanced constructions. In particular, we show that πERFlood using Fσ,Δ

MessageTransfer
implements FΔ′

Flood against a (σ + Δ)-delayed adversary.
In this setting, we provide two different ways to instantiate the probability

parameter ρ of πERFlood, each presenting a different efficiency trade-off. Con-
cretely, let h denote the minimum number of parties that will stay honest
throughout the execution of the protocol, let n denote the total number of par-
ties, and let κ be the security parameter. We provide the following two instan-
tiations:

Instantiation 1: Guaranteed delivery within Δ′ := 2 · Δ for ρ :=
√

κ
h .

Instantiation 2: Guaranteed delivery within Δ′ := Δ·(5 log
(

n
2κ

)
+2

)
for ρ := κ

h .

Both instantiations ensure that the statistical distance between the ideal and the
real executions of πERFlood and FΔ′

Flood is negligible in the security parameter. We
provide concrete bounds for the statistical distance in Corollary 1. Furthermore,
standard probability bounds ensure that each instantiation has a neighborhood
of O(n · ρ) with high probability.

1.3 Techniques

An Erdős-Rényi graph [17] is a graph where each edge appears with an equal
and independent probability. Our flooding protocol πERFlood is strongly inspired
by this type of graph. Our main technical contributions are thus concerned
with transporting bounds for Erdős-Rényi graphs to the cryptographic setting,
especially in presence of adaptive adversaries.

Concrete Bounds for Erdős-Rényi Graphs. The asymptotic behavior of Erdős-
Rényi graphs has been thoroughly studied in the literature (for a comprehensive
overview see [6]). However, bounds about a graph’s behavior when the amount
of nodes goes towards infinity is of little use for protocols that are supposed to be
run by a finite number of parties. For a protocol imitating the behavior of such
graphs, we need concrete bounds when a security parameter is increased. As a
technical contribution, we prove such concrete upper-bounds for the diameter of
Erdős-Rényi graphs.

Applying Erdős-Rényi Graph Results in the Presence of Adaptive Adversaries.
For a flooding protocol as πERFlood, it is straightforward to apply bounds about
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the diameter of an Erdős-Rényi to also bound the probability that a message is
not delivered in the protocol in presence of a static adversary. However, for an
adaptive adversary that is capable of preventing certain nodes from connecting
to their neighbors, it is by no means this easy. Our main technical contribution is
to transfer the bounds on the diameter of an Erdős-Rényi graph to our flooding
protocol in presence of an adaptive adversary. We achieve this by relating the
protocol execution to 7 random experiments.

First, we relate the protocol execution to a well-defined game between an
adversary and an oracle, which returns a graph. The rules of the game is that
an adversary can query the oracle to reveal the edges of a node and query the
oracle to remove a node from the graph. However, once either an incoming or
outgoing edge to a node has been revealed, the adversary can no longer remove
this node. This game mimics the powers of a slightly delayed adaptive adversary
in the real protocol.

We relate this game to a similar game but with undirected edges, and do a
couple of simple gamehops where we show that an adversary does not gain any
additional advantage w.r.t. increasing the diameter by stopping this game at an
early point nor injecting any additional edges.

As the adversary can only remove nodes for which no information has been
revealed, one might be led to believe that the Erdős-Rényi graph results apply
for this game. However, the adversary can still dynamically control the size of
the graph that is returned. At first, this may seem innocent, but in fact, it is
not. Deciding whether or not more nodes are to be included in the graph, can
amplify the probability that the returned graph has a high diameter.

Therefore, we relate this game to a new game, which is similar to the other,
except that the oracle now at random fixes the size of the graph beforehand.
The oracle fixes the size of the graph by making a uniform guess in the range of
possible sizes. In case of a correct guess (a guess identical to what the adversary
anyway would end up with), the adversary is only left with the choice of which
parties to include in the random graph. Finally, we show that this game is equally
distributed to a game which specifically embeds an Erdős-Rényi graph of the
fixed size. This allows us to apply results bounding diameter of Erdős-Rényi
graphs to bound the probability that a message is not delivered timely.

Due to space constraints, many technical details are left out of this version.
We refer to the full version of this paper [33] for these.

1.4 Related Work

Hybrid Consensus. Hybrid Consensus [38] is a consensus protocol that uses a
blockchain to periodically select committees as subsets of the parties partici-
pating in the blockchain protocol, who can subsequently produce blocks more
efficiently. Once a committee has been chosen, a fully adaptive adversary can
simply corrupt the majority of its members to break the security of the protocol.
Hence, the protocol is only secure against corruptions that are delayed until the
next committee gets selected.
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To prove the security of hybrid consensus, that paper introduces τ -agile cor-
ruptions, which essentially correspond to the capabilities of our τ -delayed adver-
saries. While that paper also uses the UC framework, the definitions for the
corruption model mostly remain at a high level. For example, their definitions
assume there is some notion of time, which does not exist in the original UC
formalism. There are also no clear definitions of how the delayed corruptions are
precisely embedded in the UC execution model.

In contrast to that, our work provides a precise embedding of the corrup-
tion model in the standard UC framework. This allows us to compose protocols
formulated in standard UC with protocols proven secure against δ-delayed adver-
saries. It is thus fair to say that the hybrid consensus paper has introduced the
delayed corruption model at an intuitive, semi-formal level, while our work fills
in several missing technical details to provide a precise formalization within the
UC framework.

Time in UC. [25] models time using a clock functionality that is local to each pro-
tocol. This functionality synchronizes the parties by only allowing the adversary
to advance time when all parties have reported that they have been activated.
As this is a local functionality, other ideal functionalities have no access to it,
and therefore need to provide their own notion of time which can clutter the
final guarantees from the functionality.

[28] takes a similar approach to Katz et al., but changes the clock to be a
global functionality in GUC [9]. This enables several different protocols to rely on
the same notion of time when composed and also solves the problem of time not
being available to ideal functionalities. Both functionalities and parties can query
the global clock for the current time, and thus inherently makes any protocol
modelled with this a synchronous protocol.

A different approach is taken in [4]. They take the standpoint that parties
should be oblivious to the passing of time. To allow this they introduce a global
functionality, dubbed a ticker (written ḠTicker), which exposes an interface to
learn about the passing of time to functionalities only. In particular honest par-
ties are oblivious to the passing of time. This allows time to be modelled without
having synchrony as an inherent assumption. The specific timing-assumptions
can then be captured by adding an extra ideal functionality which exposes rele-
vant information to the parties.

Contrary to [4,25,28], [10] focuses on modeling and making real time available
to parties in GUC, and use this to model the expiration of certificates in a
public-key infrastructure. In their modeling, a global clock can be advanced by
the environment without restrictions. In this work, our protocols do not rely on
real-time, but rather on an abstract notion of time used to state assumptions and
guarantees about the delivery time of channels and protocols. For the guarantees
to be upheld, we rely on restrictions about how time is advanced (namely that all
parties have to be activated once each abstract time step) by the environment.

We chose to rely on the modeling of time from [4]. This allows us to model
general timing assumptions on the capabilities of the adversary without tying
our modeling to a particular assumption on synchrony for actual protocols.
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Epidemic and Gossip Protocols. Epidemic algorithms or gossip protocols were
first considered for data dissemination by Demers et al. [16], and have been
studied extensively since then, see e.g., [5,13,21,23,24,26]. In this line of work,
many different protocols have been considered. Some are very closely related to
our flooding protocol, where parties simply forward to a random set of parties,
and some are more advanced, letting parties keep sending to new random peers
until a certain number of recipients replied that they already knew the message.
However, this line of work considers only random failures [26] or incomplete
network topologies [13,23] and not adaptive corruptions of a malicious adversary.
Hence, while some of the protocols are applicable to our setting, their analysis
is not. Among other results, [26] showed how random node failures affect the
success probability of a flooding process similar to ours. For this setting, they
derive connectivity bounds similar to the bounds for logarithmic diameter we
present in this work.

Kadcast. Kadcast [40] is a structured peer-to-peer network for blockchains. The
paper claims that unstructured networks are inherently inefficient because many
superfluous messages are sent to parties who already received the message from
other peers. They instead propose a structured network based on Kademlia [34],
in which every node has O(log n) neighbors and the diameter of the graph is
also O(log n). Additionally, their protocol includes a parameter for controlling
the redundancy and thus the resistance to attacks. Due to the structured nature,
the suggested network is, however, not secure against adaptive corruptions of any
kind.

The Hidden Graph Model. Chandran et al. [11] consider communication locality
of multi-party computation (MPC) protocols, which corresponds to the maxi-
mal number of parties each honest party needs to interact with. They construct
an MPC protocol with poly-logarithmic communication locality that is secure
against adaptive corruptions and that runs in a poly-logarithmic number of
rounds. Their protocol uses a random communication graph, similar to our flood-
ing protocols. To be secure against adaptive corruptions, they however need to
assume that the communication graph between honest parties remains hidden,
i.e., they allow honest parties to communicate securely without an adversary
learning who is communicating with whom. Furthermore, they only prove very
loose bounds on the locality and diameter of the obtained graph by showing that
both are poly-logarithmic. In the full version of this work [33], we replicate this
result but with concrete bounds.

Message Dissemination Relying on Resource Assumptions. Recently, the prob-
lem of disseminating messages assuming a constant fraction of honest resources
(computational power, stake, etc.) instead of assuming a constant fraction of
honest parties (as assumed in this work) has received attention. Extending on
results from this work, [30] provides an efficient flooding protocol relying on a
constant fraction of the resources behaving honestly. Their protocols achieve an
asymptotic efficiency similar to the protocol presented in this work. [12] presents
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a block dissemination protocol for the Ouroboros Praos protocol [15] that also
relies on the majority of honest stake assumption. By using long-lived connec-
tions between parties, they prevent a specific denial-of-service attack possible
in the protocol. However, this comes at the cost of allowing a small fraction of
honest parties to be eclipsed.

2 Preliminaries

2.1 Notation

We use the infix notation “:=” for assigning a variable a (new) value, the infix
notation “�” to emphasize that a concept is being defined formally for the first
time, the infix notation “==” to denote an equality test returning a boolean
value, and the infix notation “::” to denote list-extension. In our proofs we will
use the acronyms LHS and RHS to refer to respectively the left-hand side and
the right-hand side of an equality.

When describing functionalities we let P be a set of unique party identifiers
(PIDs) and will leave out session-identifiers for clarity of presentation. As a
convention we use the variable t ∈ N to denote the maximal number of parties
an adversary can corrupt, use the variable n := |P| to denote the total number
of parties in a protocol (except when we state and prove general results about
graphs) and h := n−t to denote the minimal number of honest parties. Whenever
we refer to honest parties we will refer to parties that have not received any
precorrupt or corrupt tokens.

2.2 Universally Composable Security

The UC framework is a general framework for describing and proving crypto-
graphic protocols secure. Its main selling point is that protocols can be described
and proven secure in a modular manner while ensuring that the protocol in
question remains secure independently of how one may compose the protocol in
question with other protocols. We build upon the journal version of UC [8] and
refer to this for details about the framework. Below we recap two peculiarities
of the framework that are important for our model (Sect. 3).

Corruptions. The UC framework has no built-in semantics for corruption of
parties in a protocol. Instead, it is up to each individual protocol description
to describe the semantics of corruptions whenever the adversary signals that a
specific party should be corrupted. Having no built-in corruption model in UC
makes the composition theorem independent of a particular corruption model.
This allows several different corruption models to be captured within the frame-
work. Some machinery is however common for many different types of corrup-
tions.
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The Corruption Aggregation ITI. The intuition behind UC-security is to trans-
late an attack on the protocol to an attack on the specification (the ideal func-
tionality) and thereby show that an adversary does not gain any capabilities
interacting with an implementation that another adversary did not have inter-
acting with the ideal functionality. That is to show that any attack is not really
an attack as it was already allowed by the specification. This translation between
attacks is what is known as a simulator.

For this intuition to make sense when active corruptions are possible, the
translation between attacks on the protocol and the specification necessarily
needs to be corruption preserving. That is, it should not require more corruptions
to attack the ideal functionality than what it takes to attack the real protocol.
In order to ensure this, an additional Interactive Turing Machine Instance (ITI)
called the corruption aggregation ITI is run aside the parties in protocol. When-
ever a party is corrupted, it registers as corrupted by the corruption aggregation
ITI. The environment can then query the corruption aggregation ITI in order
to get an overview of who is currently corrupted. Similarly, the ideal function-
ality makes information about who is corrupted available to the environment.
Note that the corruption aggregation ITI is only present for modeling purposes
and thus not present when deploying a protocol. In that way, if the simulator
corrupts differently than the adversary, the environment is immediately able to
distinguish.

Identity Masking Function and PIDs. The UC framework allows for a very fine-
grained control over what knowledge about corruptions is leaked to the envi-
ronment, by parameterizing the corruptions using an identity-masking-function,
which parties will apply to the information that they send to the corruption
aggregation ITI. This can allow an adversary to corrupt only sub-protocols of
a party instead of an entire party. We leave this out of the definitions below
for clarity as we will always consider corruptions of entire parties (known as
PID-wise corruptions within the framework).

Time. There is no built-in notion of time in UC. However, the flexibility of the
framework allows to model a notion of time using an ideal functionality. In this
work we adopt the notion of time presented in TARDIS [4].

In TARDIS time is modelled via a global functionality dubbed a ticker (writ-
ten ḠTicker). The ticker’s job is to keep track of time and enforce that any party
has enough time to perform the actions that it wishes to perform between any
two time-steps. It does so by allowing parties to register by the functionality and
only allows the environment to progress time once it has heard that this is okay
from all registered parties.

Functionalities can query the ticker and get an answer to whether or not time
has passed since the last time they asked the ticker. Importantly, this query can
only be made by functionalities and not parties. That is, this modeling of time
does not tie the protocols to be designed under a specific synchrony assumption,
as parties are oblivious to time. The only way that they can observe the passing
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of time is by asking functionalities. This parallels the real world in that we do
not have raw access to time, only clocks. The level of information functionalities
provide to parties about time is what determines possible assumptions about
synchrony.

The complete ticker functionality as described in TARDIS as well as a small
note about preventing fast-forwarding is provided in the full version of this
work [33].

Ticked?-convention. In the remainder of this paper, we adopt the convention (also
used in [4]) that when describing ideal functionalities we omit Ticked? queries to
ḠTicker from the description. Functionalities are instead assumed to make this
query whenever they are activated and in case of a positive answer perform
whatever action that is described by Tick. We furthermore adopt the conven-
tion that for brevity we leave out registration of functionalities and parties by
the global ticker. All of the functionalities and protocols we consider will upon
initialization as the first thing register by the global ticker.

Global Functionalities within Plain UC. Technically, the ticker functionality in
TARDIS is defined within the GUC framework [9]. However, as pointed out
in [2], the GUC framework has not been updated since its introduction, even
though that it relies on the UC framework which has been revised and updated
several times since. Furthermore, [2] points out that several technical subtleties
of the composition theorem of GUC are under-specified which at best leaves its
correctness unproven. The compatibility with the latest version of UC which we
use in this work is thus unclear.

However, [2] introduces machinery to handle “global subroutines”, which
can be used to model similar global setup assumptions to global functionalities,
and extends the composition theorem of UC to cover such “global subroutines”
directly within the version of UC also adapted for this work. Additionally, they
show how examples of global functionalities that instead can be modelled as
global subroutines. One of their examples [2, Section 4.3] of such a transforma-
tion is, that they show that [3] that implements a transaction ledger using a
global clock (similar to the one from [25]), instead could have been done directly
within UC, by modeling the clock as a global subroutine instead of a global
functionality. We note that ḠTicker is regular (informally, it does not spawn new
ITIs) and as all of the protocols considered in this work are ḠTicker-subroutine
respecting (informally, all subroutines except ḠTicker only communicate with ITIs
within the session). Therefore, we can use the same approach as [2, Section 4.3]
(in particular can adopt the same identity bound for the environment to ensure
that the ticker works as expected) to keep our modeling within plain UC.

3 Delayed Adversaries Within UC

In this section we describe the semantics of delayed corruptions within the
UC framework. First, we introduce the semantics for δ-delayed corruptions
via corruption shells. Next, we revisit the standard adaptive corruptions using
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corruption-shells. Finally, we relate the standard notion of adaptive corruptions
to a 0-delayed adversary.

We define the notion of a delayed adversary precisely within the UC-model
via what we call δ-delayed corruptions or a δ-delayed adversary. For such an
adversary, it takes at least δ time to execute a corruption. The delay can be
thought of as either the time it takes to hack into the system or the time it
takes to physically orchestrate and attack on the specific property that hosts
the system. To capture this within UC we introduce an additional token that
an adversary has to use when wanting to corrupt a party. The two corruption
tokens that can be passed to a party are the Precorrupt token and the Corrupt
token. When receiving a Precorrupt token, the party notes the time it received
this token, t, and ignores all Corrupt tokens that are received before t + δ. When
a Corrupt token is received at or after time t + δ, the party becomes corrupted in
the usual manner.

Below we give a more precise description of how this corruption model can
be captured within the UC framework.

3.1 The δ-Delay Shell

It is tedious and error-prone to include code that models corruption behavior
in each protocol description and ideal functionality description. We therefore
separate the concern of describing corruption behaviors to that of describing the
protocol, by introducing protocol transformers, dubbed shells, which extend a
protocol that does not handle corruption tokens into one that obeys a particular
corruption behavior. In particular we provide the following two shells for δ-
delayed corruptions:

Dδ
Real: This a wrapper around a protocol π. It ensures that the protocol respects
δ-delayed corruptions. The wrapper preserves the functionality of π but addi-
tionally ensures that corruptions are executed as expected.

Dδ
Ideal: This is a wrapper around an ideal functionality F . It ensures that the
functionality respects δ-delayed corruptions and preserves the functionality
of F but additionally ensures that corruptions are executed as expected.

Both shells intuitively work in the same way: They keep track of when
Precorrupt tokens are delivered and only accept corruption tokens for a partic-
ular party δ time later. Having two different shells is, however, necessary as the
protocol shell needs to wrap the individual ITMs actually executing the pro-
tocol, whereas the ideal shell needs to wrap only the ITM running the ideal
functionality.

Additionally, both shells allow the first message that is sent to a specific party
to initialize the precorruption time. The delay shells for real parties ensure to
use this initialization option when an inner protocol sends a message to a sub-
routine for the first time. This ensures that the time of precorruption is inherited
when new sub-routines are spawned and thereby induces the natural behavior for
PID-wise corruptions, i.e., that any sub-routine can be corrupted no later than
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the routine that spawned it. The initialized precorruption time is allowed to be
negative. This allows the environment to start the protocol in a state where
some parties are precorrupted in the past, and hence be able to immediately
corrupt these parties at the start of the protocol (similar to letting some parties
be statically corrupted).

The shells that wrap the individual party’s ITMs do not have access to query
the ticker for the time, whereas the ideal shells can do this freely. We solve this by
additionally letting the DReal spawn a corruption-clock (written FCorruptionClock)
which exactly allows the shells to access time. Importantly, this does not rein-
troduce a global synchrony assumption as our shells prevent the inner protocols
from communicating with the corruption clock. The corruption clock is therefore
only an artifact of our modeling and will not appear when actually running the
protocol.

Functionality FCorruptionClock

The functionality maintains a counter Time. Initially, Time := 0.

Time?: When receiving (Time?) from a party pi ∈ P it returns (Time, Time)
to pi.

Tick: It updates Time := Time + 1.

When describing DReal we will leave out calls to FCorruptionClock for brevity,
but these happens each time the shell uses any notion of time.

We amend the corruption aggregation ITI presented in [8] to also make infor-
mation about the precorruptions an adversary have used, available to the envi-
ronment (and similarly the ideal functionalities). This prevents a simulator from
using more precorruption tokens or corrupting faster than the real adversary.

Aside from ensuring the protocol corruption delays are respected the DIdeal
additionally propagates both precorruption and corruption-tokens to the “inner
functionality” (the functionality that the shell is a wrapper around). This is done
in order to ensure that the simulator appended to the ideal functionalities can
actually gain functionality-specific powers when performing a corruption. For
example it might be that a certain channel does not need to respect delivery
guarantees when the sender gets corrupted (for an example of this see Sect. 4.1).

Below we provide formal descriptions of both shells.

Function Dδ
Real(π)

The shell wraps each party pi ∈ P in a small wrapper that maintains a
variable PrecorruptionTimei. Initially, PrecorruptionTimei := ⊥. When
receiving precorruptions and corruptions the wrapper has the behavior
described below. The wrapper also filters out any communication with
FCorruptionClock and on all other inputs it simply forwards the inputs/out-
puts to/from the original protocol.
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Initialization: If pi receives (Initialize, τ) as the first message, then the
party updates PrecorruptionTimei := τ and if τ �= ⊥ then also notifies
the corruption-aggregation ITI.

Precorruption: If pi ∈ P receives Precorrupt at time τ , then the party first
notifies the corruption-aggregation ITI by sending (Precorrupt, pi) to this
machine. It then updates PrecorruptionTimei := τ .

Corruption: When pi receives Corrupt at time τ , then pi checks if
PrecorruptionTimei + δ ≤ τ . If that is not the case the request is
ignored. Otherwise the party first notifies the corruption-aggregation
ITI by sending (Corrupt, pi) to this machine and then it corrupts pi by
forwarding Corrupt to π. Each time pi is activated after this it sends its
entire local state of the inner protocol to the adversary and furthermore
forwards all messages m (assuming that m includes both content and
recipient) that are written on the backdoor tape of pi.

Whenever the shell of pi detects that the inner protocol sends a message to a
new sub-routine for the first time, it sends (Initialize, PrecorruptionTimei)
to the subroutine before forwarding the message of the inner protocol.
Furthermore, the shell starts a separate corruption aggregation ITI. It main-
tains two lists Precorrupted and Corrupted that initially are both empty.
The corruption aggregation ITI has the following behavior:

Precorruption Registration: When receiving a (Precorrupt, p) from a
party p it sets Precorrupted := p :: Precorrupted.

Corruption Registration: When receiving a (Corrupt, p) from a party p
it sets Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environ-
ment it queries all sub-functionalities of the protocol for their corruption
status and updates the Precorrupted and Corrupted-lists accordingly.
Finally, it sends (Precorrupted, Corrupted) back to the environment.

Function Dδ
Ideal(F)

The shell wraps the functionality in a wrapper which maintains two lists
Precorrupted and Corrupted that initially are both empty. Furthermore,
it has a map PrecorruptionTimeMap : P → Time and a counter to keep
track of time Time which initially is instantiated to be 0. When receiv-
ing precorruptions, corruptions and corruption-status requests it has the
following behavior and on all other inputs/outputs it forwards the inputs
to/from F .

Initialization: If the functionality receives (Initialize, τ) at the port belong-
ing to p as the first message for this party, then the party updates
PrecorruptionTimeMap[p] := τ . If τ �= ⊥ then it also updates
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Precorrupted := p :: Precorrupted, and forwards (Initialize, τ) to the
inner functionality.

Precorruption: When receiving (Precorrupt, p) and p is a valid PID
of a dummy party then it adds the current time, Time, to
PrecorruptionTimeMap[p] := Time and updates Precorrupted := p :
: Precorrupted. Furthermore, it propagates (Precorrupt, p) to F .

Corruption: When receiving (Corrupt, p) where p is a valid PID of a dummy
party then the functionality checks if PrecorruptionTimeMap[p] + δ ≤
Time. If that is the case it updates Corrupted := p :: Corrupted and
returns to the adversary all the values received from p and output to p so
far. From now on inputs from p are ignored but are instead given via the
backdoor tape by the adversary. Furthermore, it propagates (Corrupt, p)
to F .
If the request is send too early, it is ignored.

Inputs: If the functionality receives (Input, p, v) from the adversary and
p ∈ Corrupted, then v is forwarded to F as if it was directly input by p
to F .

Corruption Status: When receiving CorruptionStatus from the environ-
ment it sends (Precorrupted, Corrupted) back to the environment.

Tick: The functionality updates Time := Time + 1.

The additional (Input, p, v) command accepted by the ideal shell allows an
adversary to input a message v on behalf of party p if p is corrupted. This
follows how standard byzantine corruptions are treated and modelled in the UC
framework.

We next formally define what it means for a protocol to securely implement a
functionality against a δ-delayed adversary, see also Fig. 1 for a graphical depic-
tion.

Definition 1 (UC-security against delayed adversaries). Let δ ∈ N. We
say that a protocol π securely implements an ideal functionality F against a δ-
delayed adversary when Dδ

Real(π) securely implements Dδ
Ideal(F) in the usual UC

sense [8], i.e., if

∀A ∃S ∀Z, EXEC(Z, A, Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F))

where EXEC(Z, ·, ·) denotes the random variable describing the binary output of
the environment Z, and ≈ means that the statistical distance is negligible in
the security parameter.

Note that security against a delayed adversary is defined both for func-
tionalities that have special behavior defined for receiving precorruptions and
functionalities that do not have any such behavior defined, as the default for
protocols/functionalities is to ignore any unrecognized inputs.
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The Hybrid World The Ideal World

Fig. 1. A depiction of the security statement for a protocol that implements an ideal
functionality F using the functionality G against a δ-delayed adversary.

3.2 Relating Corruption Models

In this section we relate the notion of a 0-delayed adversary to the standard
notion of an adaptive adversary in UC. We further show that any protocol that
is secure against a fast adversary is also secure against a slower adversary. These
results allow us to reuse cryptographic constructions which are already proven
secure modularly when implementing larger constructions.

Byzantine Corruptions and 0-Delayed Corruptions. To showcase the generality
of the δ-delayed corruption model, we relate this model to the standard model of
adaptive Byzantine corruptions as defined in UC. To be able to precisely quantify
how these notions relate, we introduce two Byzantine shells similar to the delay
shells. The byzantine-shells are meant to precisely encapsulate the corruption
model as presented in [8]. We believe that these are of independent interest
as by using these it can be avoided to clutter the protocol and functionality
description with a specific corruption model.

Function BReal(π)

The shell adds the following behavior to each party pi ∈ P. If any other
inputs are received than the ones below, it is the original code of the party
that is executed.

Corruption: If pi ∈ P receives Corrupt then the party first notifies the
corruption-aggregation ITI by sending (Corrupt, pi) to this machine.
Each time pi is activated after this it sends its entire local state of the
inner protocol to the adversary and furthermore forwards all messages m
(assuming that m includes both content and recipient) that are written
on the backdoor tape of pi.
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Furthermore the shell runs a separate corruption-aggregation ITI. It main-
tains a list Corrupted which initially is set to be the empty list and has
the following behavior:

Registration: When receiving a (Corrupt, p) from a party p it sets
Corrupted := p :: Corrupted.

Corruption Status: When receiving CorruptionStatus from the environ-
ment it queries all sub-functionalities of the protocol for their corrup-
tion status and updates the Corrupted-list accordingly. Finally, it sends
Corrupted back to the environment.

Function BIdeal(F)

The functionality maintains a list of corrupted parties, Corrupted, which
initially is set to be the empty list. Upon receiving the following

Corruption: If the functionality receives (Corrupt, p) from the adversary
and p is a valid PID of the dummy parties, it updates Corrupted := p ::
Corrupted and returns to the adversary all the values received from p
and output to p so far. From now on inputs from p are ignored but are
instead given via the backdoor tape by the adversary. Furthermore it
propagates (Corrupt, p) to F .

Inputs: If the functionality receives (Input, p, v) from the adversary and
p ∈ Corrupted then v is forwarded to F as if it was directly input by p
to F .

Corruption Status: When receiving CorruptionStatus from the environ-
ment it sends Corrupted back to the environment.

Security against 0-delayed adversary implies security in the standard model
and vice versa if the functionality that is implemented ignores precorruption and
initialization tokens. We encapsulate this intuition in the theorem below.
Theorem 1. Let π be a protocol and F an ideal functionality that ignores pre-
corruptions and initializations. BReal(π) securely implements BIdeal(F) if and only
if D0

Real(π) securely implements D0
Ideal(F).

Formally,

∀A ∃S ∀Z, EXEC(Z, A, BReal(π)) ≈ EXEC(Z, S, BIdeal(F))
⇐⇒ ∀A′ ∃S ′∀Z ′, EXEC(Z ′, A′, D0

Real(π)) ≈ EXEC(Z ′, S ′, D0
Ideal(F)).

(1)

Proof (Proof Sketch). We prove the two directions of the implication individu-
ally.
“=⇒”: We let A′ be any adversary and construct an adversary A by wrap-

ping A′ with a shell that forwards all inputs/outputs except precorruptions
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to/from A′. Whenever A receives a Precorrupt directed to pi from A′ it forwards
(Precorrupt, pi) to the environment instead. We now use the LHS of Eq. (1) to
obtain a simulator S s.t.

∀Z, EXEC(Z, A, BReal(π)) ≈ EXEC(Z, S, BIdeal(F)). (2)

Given S we construct S ′ by running S inside S ′. Each time S outputs
(Precorrupt, pi) to the environment then S ′ outputs (Precorrupt, pi) to D0

Ideal(F).
All other inputs and outputs are forwarded to and from S directly. Note that
precorruptions are ignored by F and therefore F does not change its behavior
based upon these.
Let us now for the sake of contradiction assume that there exists some envi-
ronment Z ′ that can distinguish against A′ and S ′, i.e.,

EXEC(Z ′, A′, D0
Real(π)) �≈ EXEC(Z ′, S ′, D0

Ideal(F)) (3)

Let us now show how to construct an environment, Z, that can distinguish
for the byzantine setting and thereby contradict Eq. (2).
We build Z by running Z ′ inside, and forward all inputs and outputs to Z ′.
Z only deviates from Z ′ in the two cases below:

– Whenever a CorruptionStatus command is issued by Z ′ to the corruption
aggregation ITI, we amend the answer with an additional list of precor-
ruptions which we have received from A so far.

– Whenever a (Initialize, τ) command is send to some party it is not for-
warded by Z but instead recorded as a precorruption of this party. This
does not change the behavior of the protocol nor the ideal functionality
as these are ignored.

In particular, Z simply forwards the guess on which world it is placed in from
Z ′.
We observe that

EXEC(Z, S, BIdeal(F)) ≈ EXEC(Z ′, S ′, D0
Ideal(F)), (4)

and
EXEC(Z, A, BReal(π)) ≈ EXEC(Z ′, A′, D0

Real(π)). (5)

Together with Eq. (3) this contradicts Eq. (2) and thus concludes the case.
“⇐=”: The proof of this case mirrors the other case. We are now given A

and construct A′ by sending Precorrupt-tokens just before Corrupt-tokens. From
the RHS of Theorem 1 we get a simulator S ′ which we use to construct S
by forwarding everything except Precorrupt-tokens. Finally, we assume for the
sake of contradiction that there exists a Z that is able to distinguish, build
an environment Z ′ using this (removing Precorrupt-tokens and initializations),
and derive a contradiction similarly to the other case. �
Note that the above theorem allows reusing constructions that are proven

secure against a standard adaptive adversary when building complex systems
that are to be secure against a 0-delayed adversary.
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Lifting Security to Weaker Adversaries. If protocols that are proven secure
within different corruption models are composed, it gets hard to identify the final
security guarantee that is provided by the composed construction. Intuitively,
one would presume that a protocol that is proven secure against an adversary
able to do “fast” corruptions is also secure against an adversary only able to do
“slow” corruptions. Using precise shells to quantify corruption-speed allows us
to capture this intuition in the lemma below.

Theorem 2 (Lifting Security to Slower Corruptions). Let δ, δ′ ∈ N, s.t.
δ ≤ δ′, let π be a protocol, and let F be an ideal functionality. If Dδ

Real(π) securely
implements Dδ

Ideal(F), then Dδ′
Real(π) securely implements Dδ′

Ideal(F).
Formally,

∀A, ∃S, ∀Z, EXEC(Z, A, Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F))

=⇒ ∀A′, ∃S ′, ∀Z ′, EXEC(Z ′, A′, Dδ′
Real(π)) ≈ EXEC(Z ′, S ′, Dδ′

Ideal(F)).
(6)

Proof. Let H be the hypothesis (LHS of the implication), and let A′ be an
adversary. We define Filter(A, δ) to be a wrapper around an adversary that
simply filters out corruption request that are to early w.r.t. δ.

Using H we know that there exists a simulator S s.t.

∀Z, EXEC(Z,Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z, S, Dδ

Ideal(F)). (7)

Let us now show,

∀Z, EXEC(Z,Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z, S, Dδ′

Ideal(F)). (8)

Assume for the sake of contradiction that there exists an environment Z that
is able to distinguish in Eq. (8). We use this to build an environment Z ′ which
is able to distinguish in Eq. (7) with at least as big an advantage. Z ′ works by
forwarding everything to and from Z. Except if at any point in time there is
a Precorrupt-token followed by a Corrupt send with strictly less than δ′ between
them, then Z ′ immediately guesses that it is in the ideal case.

As every time that this happens the environment is correct, and every time
this does not happen the execution is exactly similar to that of Eq. (7) this
implies Eq. (8).

We now define S ′ � S and let Z ′ be any environment. We specialize Eq. (8)
with Z ′ and obtain

EXEC(Z ′,Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z ′, S, Dδ′

Ideal(F)). (9)

Furthermore,

EXEC(Z ′,Filter(A′, δ′), Dδ
Real(π)) ≈ EXEC(Z ′,Filter(A′, δ′), Dδ′

Real(π)) (10)

≈ EXEC(Z ′, A′, Dδ′
Real(π)). (11)

Equation (10) holds as if early corruptions are ignored, then Dδ
Real(π) and

Dδ′
Real(π) are identically distributed. Equation (11) holds as it is not observable

by the environment if the corruption is ignored by the filter or the shell. Together
Eqs. (9) and (11) finishes the proof. �
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Note that if one considered a simpler model with just one corruption token
and a subsequent automatic effectuation of the corruption a certain time after
such the token was input (instead of a model like ours with separate tokens for
precorruptions and corruptions), then Theorem 2 would not hold. The reason is
that in such a model a fast adversary would not have the ability to imitate a
slow adversary. Hence, in such a model a fast adversary would not be strictly
“stronger” than a slow adversary.

Theorems 1 and 2 together imply that any protocol that is secure against a
standard adaptive adversary in UC, is also secure against any δ-delayed adver-
sary.

4 Functionalities
In this section we define a time-bounded channel between parties as well as a
flooding functionality. The functionalities that we present are:
MessageTransfer: A functionality that allows one party to send messages to

another party. This is modeling a point-to-point channel.
Flood: A functionality that allows all honest parties to disseminate to all other

parties.

Conventions for Ideal Functionalities. Our functionalities needs to maintain
a counter which is incremented each time a tick happens (similarly to what
DIdeal does). For clarity of presentation, we describe our functionalities without
explicitly mentioning this, but instead describe them as having direct access to
time. Furthermore, we define the functionalities without specifying the corrup-
tion model as we will make use of the shells described in Sect. 3 to make the
corruption-model explicit when implementing the functionalities.

Additionally, the behavior of both our functionalities depend on which parties
are precorrupted and which parties are corrupted. Therefore they both maintain
two sets: Precorrupted and Corrupted which are initially empty. These are
updated by the following activation rules which we do not make explicit in the
functionalities below for clarity of presentation.
Precorrupt: Upon receiving (Precorrupt, pi) or an initialization that changes

party pi’s status to precorrupted, it sets Precorrupted := Precorrupted ∪
{pi}.

Corrupt: Upon receiving (Corrupt, pi) it sets Corrupted := Corrupted ∪ {pi}.

Furthermore, both of our ideal functionalities are parameterized by a type of
messages that can be propagated which we denote Messages.

4.1 MessageTransfer
In this section we present a basic functionality that allows a party to send mes-
sages to other parties. This is similar to the point-to-point channel presented in
[4], but instead of hardcoding whether we assume AMS (as done in [4]) or not,
we introduce an additional parameter which is the time an honest party needs
to stay honest for ensuring delivery of the message.
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Functionality Fσ,Δ
MessageTransfer(ps, pr)

The functionality is parameterized by two parties ps (the sender) and pr

(the receiver), and a time σ which parties needs to stay honest for the
delivery guarantee Δ to apply. It maintains a mailbox for pr, Mailbox :
Messages.

Initialize: Initially, Mailbox := ∅.
Send: After receiving (Send, m) from ps it leaks (Leak, ps, m) to the adver-

sary.
Get Messages: After receiving (GetMessages) from pr it outputs Mailbox

to party pr.
Set Message: After receiving (SetMessage, m) from the adversary, the func-

tionality sets Mailbox := Mailbox ∪ {m}.

At any time the functionality automatically enforces the following property:

1. Let m be a message that is input for the first time by an honest party
ps �∈ Corrupted at some time τ . If ps �∈ Corrupted at time τ + σ, then
by time τ + Δ it is ensured that m ∈ Mailbox.

The property is ensured by the functionality automatically making the
minimal possible additional calls with SetMessage.

Note that building a construction using F0,Δ
MessageTransfer exactly corresponds to

assuming AMS whereas assuming Fσ,Δ
MessageTransfer against a δ-delayed adversary

with δ < σ corresponds to not assuming AMS.

4.2 Flood
The ideal functionality that we present here provides the guarantees of flooding
network, i.e., that all information some honest party knows is disseminated to
all other parties within a bounded time.

Functionality FΔ
Flood

The functionality is parameterized by a set of parties P, and a delivery
guarantee Δ.

Furthermore, it keeps track of a set of messages for each party Mailbox :
P → Messages. These sets contain the messages that each party will
receive after fetching.
Initialize: Initially, Corrupted := ∅ and Mailbox[pi] := ∅ for all pi ∈ P.
Send: After receiving (Send, m) from pi it leaks (Leak, pi, m) to the adver-

sary.
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Get Messages: After receiving (GetMessages) from pi it outputs Mailbox[pi]
to party pi.

Set Message: After receiving (SetMessage, m, pi) from the adversary, the
functionality sets Mailbox[pi] := Mailbox[pi] ∪ {m}.

At any time after all parties have been initialized the functionality auto-
matically enforces the following two properties:

1. Let m be a message that is input for the first time to an honest party
pi �∈ Precorrupted ∪ Corrupted at some time τ . By time τ + Δ it
is ensured that ∀pj ∈ P \ (Corrupted ∪ Precorrupted) it holds that
m ∈ Mailbox[pj ].

2. Let m be a message at some time τ is in the mailbox of an honest
party pi �∈ Precorrupted ∪ Corrupted i.e., m ∈ Mailbox[pi]. By time
τ + Δ it is distributed to all honest mailboxes, i.e., for any party pj ∈
P \ (Corrupted ∪ Precorrupted) it holds that m ∈ Mailbox[pj ].

The properties are ensured by the functionality automatically making the
minimal possible additional calls with SetMessage.

5 Implementations of Flood

In this section we will present the following protocols that implement Flood:

πNaiveFlood: Everybody simply sends to everybody.
πERFlood: Everybody sends to each other party with some fixed probability ρ.

We provide two types of implementations for Flood. A naive approach where
everybody sends to everybody and a more efficient one where each party sends to
their neighbors with probability ρ. The latter construction allows us to reuse the
theoretic foundation of Erdős-Rényi graphs in the distributed systems setting
and achieve a variety of properties.

5.1 Naive Flood

We present here a protocol that implements Flood with a message complexity
that is quadratic in the number of messages that is input to the system.

The protocol πNaiveFlood works straightforwardly by a peer sending and relay-
ing any non-relayed message to all other parties. As everybody sends to every-
body the protocol achieves a very small diameter and resilience against fairly
fast adaptive adversaries at the cost of a large communication overhead and
neighborhood.
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Protocol πNaiveFlood

Each pair of parties pi, pj ∈ P has access to a channel Fσ,Δ
MessageTransfer(pi, pj).

Each party pi ∈ P keeps track of a set of relayed messages Relayedi.

Initialize: Initially, all parties initialize their channel between them and
set Relayedi := ∅.

Send: When pi receives (Send, m) they now forward inputs (Send, m) to
Fσ,Δ

MessageTransfer(pi, pj) for all pj ∈ P and set Relayedi := Relayedi ∪{m}.
Get Messages: When pi receives (GetMessages) they let M be the union of

the messages they achieve by calling (GetMessages) to Fσ,Δ
MessageTransfer(pi, pj)

for all pj ∈ P, and outputs M .

Furthermore, once in every activation each honest pi let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,Δ

MessageTransfer(pi, pj).
For any m ∈ M \ Relayedi, pi inputs (Send, m) to Fσ,Δ

MessageTransfer(pi, pj) for
all pj ∈ P, and sets Relayedi := Relayedi ∪ {m}.

An obvious attack on this protocol an adversary might try to perform is to
try to corrupt the sender between the time τ that a message is sent and time
τ +σ where the delivery guarantee from the underlying Fσ,Δ

MessageTransfer applies. An
adversary that succeeds with this can violate both Properties 1 and 2 of FΔ

Flood.
However, σ-delayed adversaries do not have sufficient time to succeed with this
as the properties only needs to be upheld for parties that are neither corrupted
nor precorrupted when they try to send the message. Below we explicitly1 prove
that against such adversaries the naive protocol actually realizes FΔ

Flood.

Lemma 1. Let σ, Δ ∈ N. The protocol πNaiveFlood perfectly realizes FΔ
Flood in the

Fσ,Δ
MessageTransfer-hybrid model against a σ-delayed adversary.

Proof. We construct a simulator S.

1. S simulates all parties pi ∈ P inside it self.
2. When receiving (Leak, pi, m) from FΔ

Flood the simulator inputs (Send, m) to pi

(running inside S).
3. When receiving (SetMessage, m) from the adversary on the port belonging to

functionality Fσ,Δ
MessageTransfer(pi, pj), S forwards (SetMessage, m, pj) to FΔ

Flood.
4. Whenever A corrupts some pi ∈ P, S corrupts pi and sends the simulated

internal state to A. From then on the simulated pi (inside S) follows A’s
instructions.

1 In [36, Chapter 3, p. 111], it is shown that it is enough to argue correct realization to
achieve secure realization for any protocol which leaks all I/O behavior to the adver-
sary. One may be lead to believe that this result directly applies to πNaiveFlood, but as
(GetMessages) inputs (and corresponding outputs) are hidden from the adversary this
is not the case.
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5. Whenever the ḠTicker notifies S about the passing of time, S ensures to acti-
vate FΔ

Flood.
As protocol, functionality, and simulator are all deterministic it is enough to
argue that the I/O behavior of A interacting with πNaiveFlood is equal to the I/O
behavior of S interacting with FΔ

Flood to argue perfect indistinguishability. The
send command is invoked at the exact same times in the real execution and
in the execution inside S this produces the exact same behavior. Furthermore,
for any send command that is invoked at time τ by an honest party (neither
precorrupted nor corrupted) there will be a set-message command within τ + Δ
for all honest parties in the real protocol as a σ-delayed adversary does not have
time to violate the delivery property of the underlying Fσ,Δ

MessageTransfer(pi, pj),
and therefore Property 1 is upheld. Similarly, the relaying of messages in the
real protocol ensure that messages will be delivered by the adversary according
to the properties of FΔ

Flood in the real protocol (inside S and therefore also in the
ideal) which ensures Property 2. �

5.2 Efficient Flood
We now present a more efficient version of Flood. The idea is simple: Instead of
relaying messages to all parties, each party flips a coin for each neighbor that
decides if a particular message should be relayed to this party. Compared to
the naive implementation of Flood presented in previous section the protocol
presented here will have significantly smaller neighborhoods at the cost of larger
diameter in the communication graph (the parameter Δ of Flood). Furthermore,
the construction is only able to tolerate adversaries that are slightly more delayed
than those the naive protocol can tolerate.

The protocol πERFlood works by letting all parties relay and send messages to
a different random subset of parties for each message that is to be sent/relayed.
By letting the random subset be large enough we ensure that we establish a con-
nected graph with low diameter for all messages. As the subset of parties each
party chooses to send to is random, the protocol achieves quite some robust-
ness against adaptive adversaries, as a slightly delayed adversary cannot predict
whom to corrupt in order to eclipse some specific parties.

Protocol πERFlood(ρ)

Each pair of parties pi, pj ∈ P has access to a channel Fσ,Δ
MessageTransfer(pi, pj).

Each party pi ∈ P keeps track of a set of relayed messages Relayedi :
Messages.
Initialize: Initially, all parties initialize their channel between them and

set Relayedi := ∅.
Send: When pi receives (Send, m), they input (Send, m) to

Fσ,Δ
MessageTransfer(pi, pj) with probability ρ for each party pj ∈ P.

Finally they set Relayedi := Relayedi ∪ {m}.
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Get Messages: When pi receives (GetMessages) they let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,Δ

MessageTransfer(pi, pj)
for all pj ∈ P, and outputs M .

Furthermore, once in each activation each honest pi let M be the union of
the messages they achieve by calling (GetMessages) to Fσ,Δ

MessageTransfer(pi, pj)
for all pj ∈ P. For any m ∈ M \ Relayedi, pi inputs (Send, m) to
Fσ,Δ

MessageTransfer(pi, pj) with probability ρ for all pj ∈ P, and sets Relayedi :=
Relayedi ∪ {m}.

Depending on the parameter ρ the protocol πERFlood can achieve a variety
of properties. We provide two different instantiations that uses the channel
Fσ,Δ

MessageTransfer and all works against a (σ + Δ)-delayed adversary. Before going
into detail with the actual proof, we provide some intuition for why the protocol
is secure against exactly a (σ + Δ)-delayed adversary. The main intuition is that
such an adversary cannot influence how the communication graph between the
parties that are honest are created. If a party decides to send a message at some
time τ then the set of parties that receives this message will have completed
forwarding the message at time τ + σ + Δ, which is the earliest point on this
party can be corrupted based upon this party’s role in the specific communica-
tion graph. Therefore an adversary cannot make use of the adaptive corruptions
to disrupt the propagation of a message.

Each of the instantiations that are presented below provides a trade-off
between the diameter of the graph, the average size of the neighborhood and the
probability that the graph in fact has these properties. Instantiation 1 ensures a
diameter of 2 with a neighborhood of just Ω (

√
nκ) and Instantiation 2 ensures

a logarithmic diameter with a neighborhood of average size Ω (κ).

Theorem 3. Let Δ ∈ N be any delay, let σ ∈ N, let t < n be the maximum num-
ber of parties an adversary can corrupt, and let κ ∈ R be the security parameter.
The protocol πERFlood(ρ) securely implements FΔ′

Flood against a (σ + Δ)-delayed
adversary using Fσ,Δ

MessageTransfer. More precisely when r is an upper bound on the
number of different messages input (either via Send or via SetMessage), the sta-
tistical distance between the real and ideal executions is bounded by the probabil-
ity pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let Δ′ := 2Δ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (12)

2. Let α ∈ R, γ, δ1, δ2 ∈ [0, 1], and ρ := κ
h . Furthermore, let t0 :=

log
(

γn
(1−δ1)κ

)

log((1−δ2)α) +1
and Δ′ := Δ · (t0 + 1). If

e−κγ + γα

1 − γ
≤ 1,

γn

(1 − δ1)κ > 1, and (1 − δ2) · α > 1, (13)
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then

pbad ≤ r · (t + 1) ·
(

n ·
(

e− δ21κ

2 + t0e− δ22α(1−δ1)κ

2

)
+ e−h·(κγ2−2)

)
. (14)

Proof Sketch. For an adversary we construct a simulator similar to how it is done
in the proof of Lemma 1. The only times this is not a perfect simulation is when
one of the properties of FΔ′

Flood are violated in πERFlood which will never happen
when the environment interacts with FΔ′

Flood. The main idea of the proof is to
argue about the probability that a message m, that is input via either Send or
SetMessage, is not propagated to all parties within Δ′ time. We will argue about
this via 7 random experiments:

FloodToER1: An experiment where an adversary interacts with an oracle to learn
edges in a directed graph. Only nodes that have an edge to them can have their
edges revealed to the adversary but the adversary can inject additional edges
in order to be able to reveal more nodes. The adversary has the possibility to
remove up to t nodes, but at the point of removal the adversary cannot have
learned any edges connecting to the removed node. If at any point there is a
cut in the graph the adversary can stop the game.

FloodToER2: An experiment similar to FloodToER1 except now the edges are
undirected.

FloodToER3: An experiment similar to FloodToER2 except the adversary cannot
stop the game before all parties have been revealed.

FloodToER4: An experiment similar to FloodToER3 except the adversary cannot
inject edges between parties.

FloodToER5: An experiment similar to FloodToER4 except that the oracle
secretly and uniformly predetermines the size of the returned graph, s ∈
{h, . . . , n}. The adversary can however still decide whether or not to remove
a particular node given that it does not violate the size that the oracle has
determined.

FloodToER6: An experiment similar to FloodToER5 except now the oracle also
predetermines a Erdős-Rényi graph of the predetermined size and embeds
this into the final graph that is returned.

Erdős-Rényi: An experiment that chooses a graph of a certain size and includes
each edge independently with probability ρ.

Let d := Δ′
Δ . We now argue via the following steps:

1. If there is an adversary that prevents timely delivery of m in the real
world with some probability, then there exists an adversary that can make
FloodToER1 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.

2. If any adversary can make FloodToER1 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER2 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.
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3. If any adversary can make FloodToER2 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER3 return a graph where the distance from the sender to some node
is larger than d with at least as high a probability.

4. If any adversary can make FloodToER3 return a graph with a diameter larger
than d with probability p, then there exists some adversary that can make
FloodToER4 return a graph with a diameter larger than d with at least as
high a probability.

5. If any adversary can make the FloodToER4 game return a graph with a diam-
eter larger than d with probability p, then the same adversary can make
FloodToER5 return a graph with a diameter larger than d with probability at
least p · (t + 1).

6. The experiments FloodToER5 and FloodToER6 are distributed identically.
7. The probability that FloodToER6 returns a graph with larger diameter than

d must be less than the probability that an Erdős-Rényi graph with the worst
size has a larger diameter than d.

8. We can now use the Erdős-Rényi graph results to bound the probability that
an adversary can prevent the delivery of m in the real world.

We finally do a union bound over the number of different messages that is input
to the functionality. The detailed proof can be found in the full version [33]. �

As the results in Theorem 3 are hard to interpret we additionally provide the
following corollary which instantiates some of the many constants and makes
some simplifying but non-optimal estimates. We emphasize that if one wants
to optimize for a particular use-case (i.e., small diameter or very small failure
probability) then Theorem 3 can be used to obtain tighter bounds.

Corollary 1. Let Δ ∈ N be any delay, let σ ∈ N, let t < n be the maxi-
mum number of parties an adversary can corrupt, and let κ ∈ R be the security
parameter. The protocol πERFlood(ρ) securely implements FΔ′

Flood against a (σ+Δ)-
delayed adversary using Fσ,Δ

MessageTransfer. More precisely when r is an upper bound
on the number of different messages input (either via Send or via SetMessage),
the statistical distance between the real and ideal executions is bounded by the
probability pbad for either of the following instantiations:

1. Let ρ :=
√

κ
h and let Δ′ := 2Δ then

pbad ≤ r · (t + 1) · n2 · e−κ· (h−2)
h . (15)

2. Let ρ := κ
h , and Δ′ := Δ · (5 log

(
n
2κ

)
+ 2), if n

2κ > 1 then

pbad ≤ r · (t + 1) ·
(

7n log
( n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
. (16)

Proof. Instantiation 1 immediately follows from Theorem 3 (Instantiation 1). To
derive instantiation Instantiation 2 we again use Theorem 3 (Instantiation 2) and
select

δ1 := δ2 := γ := 1
3 and α := 7

4 .
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With these parameters we see that Eq. (13) is fulfilled when κ ≥ 1. Furthermore,
we see that

pbad ≤ r · (t + 1) ·
(

n ·
(

e− κ
18 +

(
5 log

( n

2κ

)
+ 1

)
e− 7κ

108

)
+ e− h(κ−18)

9

)

≤ r · (t + 1) ·
(

7n log
( n

2κ

)
e− κ

18 + e− h(κ−18)
9

)
.

(17)

�
The number of neighbors any party will need to send to when they send/relay

a message in πERFlood(ρ) concentrates around n ·ρ (this follows from the Chernoff
bound and the union bound). Concretely, for Instantiation 1 we get that the
number of neighbors is upper-bounded by O (

√
κn) except with a negligible

probability, and for Instantiation 2 we get that the number of neighbors is upper-
bounded by O (κ) except with a negligible probability.

A Note on Changing from TCP to UDP. Results about Erdős-Rényi graphs can
be transferred to a setting without reliable message-transmission. Let us, instead
of reliable transmission assume that there is an independent failure probability
β for each message that is send via FMessageTransfer and ρ is an instantiation of
πERFlood(ρ) that ensures a certain diameter assuming reliable transfer. If we let
ρ′ := ρ

1−β then πERFlood(ρ′) with unreliable transfer is ensured to have the same
diameter as πERFlood(ρ) with reliable transfer. This is because that the probability
for a successful propagation from party pi to pj will then be ρ′ · (1 − β) = ρ,
which ensures that we in this more difficult setting inherent the original results
for πERFlood(ρ).

6 Conclusion and Future Work

We have formally defined the model of δ-delayed adversaries within the UC
framework. This has allowed us to precisely characterize and prove the security
guarantees of the flooding protocol, πERFlood. Thereby, we have taken a first step
at putting the widely assumed flooding functionalities on firm ground.

Several interesting directions for future work remain. In this work, we have
explored a particular type of flooding protocol based upon Erdős-Rényi graphs.
However, as discussed earlier, there exist several more complex constructions for
different gossip networks in the literature. Analyzing such protocols against δ-
delayed corruptions could potentially yield protocols that are even more efficient
than what is presented here while also providing a well-understood security guar-
antee. Another direction could be to optimize for security instead of efficiency.
The flooding protocol that we have presented is only secure against adversaries
that are delayed by at least (σ+Δ). An interesting question that arises is whether
this is inherent for flooding networks, or whether it is possible to implement a
flooding network that is secure against a 0-delayed adversary.

Furthermore, this work has considered adaptive but not mobile adversaries,
which can again uncorrupt parties. For some notion of mobility, it seems that
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πERFlood could be secure even in the presence of such mobile adversaries. Extend-
ing the model of δ-delayed adversaries to include some notion of mobility would
be useful in order to better understand guarantees of blockchain protocols that
are supposed to run for a very long time.

Acknowledgements. We thank Ran Canetti for explaining a subtle detail of the UC
framework, Sabine Oechsner for discussions in the initial phase of the project, and the
anonymous reviewers of Eurocrypt and Crypto for their feedback.
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Abstract. Non-interactive batch arguments for NP provide a way to
amortize the cost of NP verification across multiple instances. They
enable a prover to convince a verifier of multiple NP statements with
communication much smaller than the total witness length and verifica-
tion time much smaller than individually checking each instance.

In this work, we give the first construction of a non-interactive
batch argument for NP from standard assumptions on groups with bilin-
ear maps (specifically, from either the subgroup decision assumption in
composite-order groups or from the k-Lin assumption in prime-order
groups for any k ≥ 1). Previously, batch arguments for NP were only
known from LWE, or a combination of multiple assumptions, or from non-
standard/non-falsifiable assumptions. Moreover, our work introduces
a new direct approach for batch verification and avoids heavy tools
like correlation-intractable hash functions or probabilistically-checkable
proofs common to previous approaches.

As corollaries to our main construction, we obtain the first publicly-
verifiable non-interactive delegation scheme for RAM programs (i.e., a
succinct non-interactive argument (SNARG) for P) with a CRS of sub-
linear size (in the running time of the RAM program), as well as the
first aggregate signature scheme (supporting bounded aggregation) from
standard assumptions on bilinear maps.

1 Introduction

Consider the following scenario: a prover has a batch of m NP statements
x1, . . . ,xm and seeks to convince the verifier that all of these statements are
true (i.e., convince the verifier that xi ∈ L for all i ∈ [m], where L is the associ-
ated NP language). A naïve solution is for the prover to provide the m witnesses
w1, . . . ,wm to the verifier and have the verifier check the NP relation on each
pair (xi,wi). A natural question is whether we could do this more efficiently.
Namely, can the prover convince the verifier that x1, . . . ,xm ∈ L with a proof
of size o(m)—that is, can the size of the proof grow sublinearly with the number
of instances?

Batch Arguments. The focus of this work is on constructing non-interactive batch
arguments (BARGs) for NP languages in the common reference string (CRS)
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13508, pp. 433–463, 2022.
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model. In this model, a (trusted) setup algorithm samples a common reference
string crs that is used to construct and verify proofs. The goal of a BARG is
to amortize the cost of NP verification across multiple instances. Specifically,
a BARG for NP allows a prover to construct a proof π of m NP statements
x1, . . . ,xm ∈ {0, 1}n where the size of the proof π scales sublinearly with m. We
focus on the setting where the proof is non-interactive and publicly verifiable. The
soundness requirement is that no computationally-bounded prover can convince
the verifier of a tuple (x1, . . . ,xm) that contains a false instance xi /∈ L; namely,
we focus on batch argument systems.

Constructing non-interactive batch arguments for NP is challenging, and until
very recently, constructions have either relied on idealized models [Mic95,Gro16,
BBHR18,COS20,CHM+20,Set20] or on non-standard [KPY19], and often-
times, non-falsifiable cryptographic assumptions [Gro10,BCCT12,DFH12,Lip13,
PHGR13,GGPR13,BCI+13,BCPR14,BISW17,BCC+17] (see also Sect. 1.3 for
more detail). This state of affairs changed in two very recent and exciting works
by Choudhuri et al. In the first work [CJJ21a], they show how to construct a
BARG assuming both subexponential hardness of DDH in pairing-free groups
and polynomial hardness of QR. Subsequently, they construct a BARG from poly-
nomial hardness of LWE [CJJ21b]. Both works leverage correlation-intractable
hash functions [CGH98,CCH+19,PS19,JJ21] to provably instantiate the Fiat-
Shamir heuristic [FS86].

In this work, we take a direct approach for constructing BARGs from bilinear
maps, and provide a new instantiation from either polynomial hardness of the
k-Lin assumption on prime-order bilinear groups, or from polynomial hardness of
the subgroup decision assumption on composite-order bilinear groups. This is the
first BARG for NP under standard assumptions over bilinear groups. Moreover,
our construction is direct and avoids powerful tools like correlation-intractable
hash functions or probabilistically-checkable proofs used in many previous con-
structions.

Delegation for RAM Programs. A closely related problem is delegation for RAM
programs (also known as a succinct non-interactive argument (SNARG) for the
class P of polynomial-time deterministic computations). In a delegation scheme
for RAM programs, the prover has a RAM program P, an input x, and output y,
and its goal is to convince the verifier that y = P(x). The efficiency requirement
is that the length of the proof and the verification time should be sublinear
(ideally, polylogarithmic) in the running time of the RAM program. There is a
close connection between batch arguments for NP and delegation schemes for
RAM programs [BHK17,KPY19,KVZ21,CJJ21b], and several of these works
show how to construct a delegation scheme for RAM programs using a batch
argument for NP. As a corollary to our main construction, we use our BARG to
obtain a non-interactive delegation scheme for RAM programs under the SXDH
assumption in asymmetric bilinear groups. The CRS size of our construction is
short (i.e., sublinear in the running time of the RAM computation).

Previously, Kalai et al. [KPY19] constructed a delegation scheme for RAM
programs with a short CRS from a non-standard, but falsifiable, q-type assump-



Batch Arguments for NP 435

tion on bilinear groups, and more recently, González and Zacharakis [GZ21]
showed how to construct a delegation scheme with a long CRS for arithmetic
circuits from a bilateral k-Lin assumption in asymmetric bilinear groups.1 Choud-
huri et al. [CJJ21b] showed how to construct a delegation scheme for RAM
programs from LWE, and previously, Jawale et al. [JKKZ21] constructed a dele-
gation scheme for bounded-depth circuits also from LWE; both of these schemes
also have a short CRS. Recently, Hulett et al. [HJKS22] showed how to construct
a SNARG for P from sub-exponential DDH (in pairing-free groups) in conjunc-
tion with the QR assumption. In the designated-verifier model where a secret
key is needed to check proofs, Kalai et al. [BHK17] showed how to construct a
delegation scheme from any computational private information retrieval scheme.

1.1 Our Contributions

In this work, we introduce a simpler and more direct approach for constructing
BARGs using bilinear maps. Our main result is a BARG for NP assuming either
the polynomial hardness of k-Lin in asymmetric prime-order pairing groups (for
any k ≥ 1)2, or alternatively, the subgroup decision assumption in composite-
order pairing groups. We capture this in the informal theorem statement below:

Theorem 1.1 (Informal). Take any constant ε > 0. Under the k-Lin assump-
tion (for any k ≥ 1) in a prime-order pairing group (alternatively, the subgroup
decision assumption in a composite-order pairing group), there exists a publicly-
verifiable non-interactive BARG for Boolean circuit satisfiability with proof size
poly(λ, |C|), verification complexity poly(λ,m, n) + poly(λ, |C|), and CRS size
mε · poly(λ), where λ is a security parameter, C : {0, 1}n × {0, 1}h → {0, 1} is
the Boolean circuit, n is the statement size, and m is the number of instances.
The BARG satisfies semi-adaptive soundness (Definition 2.5).

A New Approach for Batch Verification. In contrast to many recent
works (see also Sect. 1.3) on constructing succinct arguments that rely
on probabilistically-checkable proofs (PCPs) [KRR13,KRR14,BHK17,CJJ21b,
KVZ21] or correlation-intractable hash functions [JKKZ21,CJJ21a,CJJ21b,
HJKS22], we take a direct “low-tech” approach in our construction. Our con-
struction follows a “commit-and-prove” strategy and is reminiscent of the classic
pairing-based non-interactive proof systems by Groth et al. [GOS06] and Groth
and Sahai [GS08]. Essentially, the prover starts by providing a (succinct) commit-
ment to the values associated with each wire in the circuit. The prover commits
to m bits for each wire, one for each instance, and we require that the size
of the commitment be sublinear in m. Then, for each gate in the circuit, the
prover provides a short proof that the committed wire values are consistent with
1 In the bilateral version of the k-Lin assumption, the challenge is encoded in both

groups rather than one of the groups.
2 Recall that the case k = 1 corresponds to the DDH assumption holding in each base

group (i.e., SXDH). The case k = 2 corresponds to the DLIN assumption [BBS04,
HK07,Sha07].



436 B. Waters and D. J. Wu

the gate operation. The succinct commitment scheme to the wire labels can be
viewed as a non-hiding version of the vector commitment scheme of Catalano and
Fiore [CF13]. The key challenge in the construction is proving consistency of the
gate computations given only the succinct commitments to the input and output
wires of each gate. We give a technical overview of our approach in Sect. 1.2 and
the formal description in Sects. 3 and 4.

Application to Delegating RAM Programs. The proof size in Theorem 1.1 is
independent of the number of instances m, but the verification time contains
a component poly(λ,m, n) that scales with m. For general NP languages, some
type of linear dependence on the number of instances is inherent since the ver-
ification algorithm must at least read the input (of size m · n). However, when
the statements have a “succinct description,” (e.g., they are simply the indices
1, . . . , m), and it is unnecessary for the verifier to read the full input, we can
reduce the the verification cost down to poly(λ, logm, |C|). This setting is useful
for applications to delegation [CJJ21b,KVZ21]. Our main constructions directly
support this setting. Indeed, combining our new pairing-based BARGs with the
compiler from Choudhuri et al. [CJJ21b], we also obtain a delegation scheme for
RAM programs from the SXDH assumption over pairing groups.

We note here that invoking the compiler from [CJJ21a] additionally requires a
“somewhere extractable commitment” scheme (that supports succinct local open-
ings). The pairing-based techniques underlying our BARG construction naturally
give rise to a somewhere extractable commitment (in conjunction with a some-
where extractable hash function [HW15,OPWW15]). This is the first construc-
tion of a somewhere extractable commitment that supports succinct local open-
ings from standard assumptions over bilinear groups and may be of independent
interest. We describe the construction in the full version of this paper [WW22].
We summarize our result on delegation in the following informal theorem:

Theorem 1.2 (Informal). Take any constant ε > 0. Under the SXDH assump
tion in a prime-order pairing group, for every polynomial T = T (λ), there exists a
publicly-verifiable non-interactive delegation scheme for RAM programs with proof
size poly(λ, log T ), verification complexity poly(λ, log T ), a verification key of size
poly(λ, log T ), and a proving key of size T ε ·poly(λ). Here, λ is the security parame-
ter and T is the running time of the RAM program. The delegation scheme is adap-
tively sound.

Theorem 1.2 gives the first RAM delegation scheme from standard assump-
tions over bilinear maps with a CRS whose size is sublinear in the running time
of the computation. Previously constructions of RAM delegation based on pair-
ings either relied on non-standard q-type assumptions [KPY19] or a CRS of size
super-linear in the running time of the RAM computation [GZ21].

Application to Aggregate Signatures. As a final application, we use our BARG
for NP to obtain the first aggregate signature scheme that supports bounded
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aggregation from standard assumptions over bilinear maps. In an aggregate sig-
nature scheme, there is a public algorithm that takes a collection of message-
signature pairs (μ1, σ1), . . . , (μm, σm) under (possibly distinct) verification keys
vk1, . . . , vkm, respectively, and outputs a new signature σagg on (μ1, . . . , μm)
under the joint verification key (vk1, . . . , vkm). The requirement is that the size of
σagg scales sublinearly with m. A BARG for circuit satisfiability directly yields
an aggregate signature scheme via the following straightforward construction.
Define the circuit C(vk,m, σ) that takes as input the verification key vk, mes-
sage μ, and signature σ, and outputs 1 if σ is a valid signature on μ under vk.
An aggregate signature on (μ1, σ1, vk1), . . . , (μm, σm, vkm) is a BARG proof that
C(vki, μi, σi) = 1 for all i ∈ [m]. Succinctness of the BARG ensures that the size
of the aggregate signature is sublinear in the number of signatures m. Realizing
the above blueprint requires that the underlying BARG satisfy a (weak) form of
extractability; the BARGs we construct in this work satisfy this property, and
we refer to the full version of this paper [WW22] for the details. We obtain the
first aggregate signature scheme supporting (bounded) aggregation from stan-
dard pairing assumptions. We summarize the instantiation here and compare
with previous approaches in Sect. 1.3:

Corollary 1.3 (Informal). Under the k-Lin assumption (for any k ≥ 1)
in a prime-order pairing group (alternatively, the subgroup decision assump-
tion in a composite-order pairing group), there exists an aggregate signature
scheme that supports bounded aggregation. In particular, for any a priori bounded
polynomial m = m(λ), aggregating up to T ≤ m message-signature pairs
(μ1, σ1), . . . , (μT , σT ) under verification keys vk1, . . . , vkT yields an aggregate sig-
nature σagg of size poly(λ).

1.2 Technical Overview

In this work, we focus on constructing BARGs for the language of Boolean circuit
satisfiability. Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. A
tuple (C,x1, . . . ,xm) is true if for all i ∈ [m], there exists a witness wi such that
C(xi,wi) = 1.

General Blueprint. Our BARG for circuit satisfiability follows a “commit-and-
prove” paradigm. To construct a proof π of a statement (C,x1, . . . ,xm) with
associated witnesses (w1, . . . ,wm), the prover proceeds as follows:

– Wire commitments: The prover starts by evaluating C(xi,wi) for each
i ∈ [m]. Let t be the number of wires in circuit C. For each instance i ∈ [m]
and wire k ∈ [t], we write wi,k ∈ {0, 1} to denote the value of wire k in instance
i. Then (w1,k, . . . , wm,k) ∈ {0, 1}m is the vector of assignments to wire k
across all m instances. The prover starts by constructing a vector commitment
Uk to each vector (w1,k, . . . , wm,k). Here, we require the commitment to be
succinct: namely, |Uk| = poly(λ, logm), where λ is a security parameter. The
prover additionally constructs a proof Vk that Uk is a commitment to a 0/1
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vector (i.e., wi,k ∈ {0, 1} for all i ∈ [m]).3 We similarly require that |Vk| =
poly(λ, logm). Both the commitments to the wire assignments U1, . . . , Uk and
the proofs of valid assignment V1, . . . , Vk are included in the BARG proof.

– Gate satisfiability: We consider Boolean circuits with fan-in two. Namely,
each gate G� in C can be described by a tuple of (k1, k2, k3) ∈ [t]3, where
k1, k2 are the indices for the input wires and k3 is the index for the out-
put wire. Since NAND gates are universal, we will assume that all of the
gates in C are NAND gates.4 Let s be the number of gates (i.e., the size)
of the circuit. For each gate � ∈ [s], the prover constructs a proof W� that
the committed assignments Uk3 to the output wire are consistent with the
committed assignments Uk1 , Uk2 to the input wires. For example, if G� is a
NAND gate, Uk1 is a commitment to (w1,k1 , . . . , wm,k1), Uk2 is a commitment
to (w1,k2 , . . . , wm,k2), then the prover needs to demonstrate that Uk3 is a com-
mitment to (NAND(w1,k1 , w1,k2), . . . ,NAND(wm,k1 , wm,k2)). The size of each
proof W� must also be succinct: |W�| = poly(λ, logm). The prover includes a
proof of gate satisfiability W� for each gate � ∈ [s].

The overall proof is π =
({(Uk, Vk)}k∈[t], {W�}�∈[s]

)
, and the proof size is |C| ·

poly(λ, logm), which satisfies the efficiency requirements on the BARG. To verify
the proof, the verifier checks the following:

– Input validity: Without loss of generality, we associate wires 1, . . . , n with
the bits of the statement. The verifier checks that U1, . . . , Un are commitments
to the bits of x1, . . . ,xm ∈ {0, 1}n. In our construction, each commitment
is a deterministic function of the input vector, so the verifier can compute
U1, . . . , Un directly from x1, . . . ,xm.

– Wire validity: For each k ∈ [t], the verifier checks that Uk is a commitment
to a 0/1 vector using Vk.

– Gate consistency: For each gate G� = (k1, k2, k3), the verifier uses W�

to check that Uk1 , Uk2 , and Uk3 are commitments to a set of valid wire
assignments consistent with the gate operation G�.

– Output satisfiability: Let t be the index of the output wire in C. The
verifier checks that the commitment to the output wire Ut is a commitment
to the all-ones vector (indicating that all m instances accept).

Since the verifier needs to read the statement, the statement validity check runs
in time poly(λ, n,m). The remaining checks run in time |C|·poly(λ), which yields
the desired verification complexity.

1.2.1 Construction from Composite-Order Pairing Groups

To illustrate the main ideas underlying our construction, we first describe it using
symmetric composite-order groups and argue soundness under the subgroup
3 Technically, this is only required for the input wires corresponding to the witness.
4 Our techniques extend naturally to support binary-valued gates that can com-

pute arbitrary quadratic functions of their inputs; see the full version of this
paper [WW22].
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decision assumption [BGN05]. We believe this construction is conceptually sim-
ple and best illustrates the core ideas behind the construction. The approach
described here translates to the setting of asymmetric prime-order pairing groups
to yield a construction from the k-Lin assumption.

Composite-Order Pairing Groups. A symmetric composite-order pairing group
consists of two cyclic groups G and GT of order N = pq, where p, q are prime.
Let g be a generator of G. By the Chinese Remainder Theorem, we can write
G ∼= Gp × Gq, where Gp is a subgroup of order p (generated by gp = gq) and
Gq is a subgroup of order q (generated by gq = gp). Additionally, there exists an
efficiently-computable, non-degenerate bilinear map e : G × G → GT called the
“pairing:” namely, for all a, b ∈ ZN , it holds that e(ga, gb) = e(g, g)ab. Finally,
the subgroups Gp and Gq are orthogonal: e(gp, gq) = 1, where 1 denotes the
identity element in GT . In our construction, the real scheme operates entirely in
the order-p subgroup Gp of G; the full group G only plays a role in the soundness
analysis.

Vector Commitments. The first ingredient we need to implement the above
blueprint is a vector commitment scheme for vectors of dimension m (m being
the number of instances). We start by constructing a common reference string
with m group elements (A1, . . . , Am) where each Ai = gαi

p for some αi
r← ZN . A

commitment to a vector (w1,k, . . . , wm,k) is a subset product of the associated

group elements Uk =
∏

i∈[m] A
wi,k

i = g
∑

i∈[m] αiwi,k

p ∈ Gp. We note that this is
essentially the vector commitment scheme of Catalano and Fiore [CF13] instan-
tiated in Gp, but without randomization (in our setting, we do not require a
hiding property on the commitments). With this instantiation, the commitment
to each wire has size poly(λ), and is independent of m.

Wire Validity Checks. The second ingredient we require is a way for the prover
to demonstrate that the committed values satisfy the wire validity and gate
consistency relations. We start by describing the wire validity checks. Consider a
vector of candidate wire assignments (w1, . . . , wm). The prover needs to convince
the verifier that wi ∈ {0, 1} for all i ∈ [m], or equivalently, that w2

i = wi. Now, a
correctly-generated commitment to (w1, . . . , wm) is an encoding of

∑
i∈[m] αiwi

(in the exponent). We can now write
⎛

⎝
∑

i∈[m]

αi

⎞

⎠

⎛

⎝
∑

i∈[m]

αiwi

⎞

⎠ =
∑

i∈[m]

α2
i wi +

∑

i�=j

αiαjwj

⎛

⎝
∑

i∈[m]

αiwi

⎞

⎠

2

=
∑

i∈[m]

α2
i w

2
i +

∑

i�=j

αiαjwiwj .

When w2
i = wi, the difference between these two expressions is

∑
i�=j αiαj(1 −

wi)wj . Notably, this difference is a linear combination of the products αiαj where
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i �= j; we refer to these terms as the cross terms. Conversely, if w2
i �= wi for

some i, then the difference between the two relations always depends on the
non-cross-term α2

i . This suggests the following strategy for proof generation
and verification: we publish encodings Bi,j := g

αiαj
p for i �= j in the CRS to

allow the prover to “cancel out” cross terms but not the non-cross terms. We
also include an encoding A :=

∏
i∈[m] Ai = g

∑
i∈[m] αi

p that will be used for
verification. Specifically, we define the CRS to be

crs =
(
{Ai := gαi

p }i∈[m] , A :=
∏

i∈[m]Ai = g
∑

i∈[m] αi

p , {Bi,j := gαiαj
p }i�=j

)
.

(1.1)
Then, the prover can compute the quantity V =

∏
i�=j B

(1−wi)wj

i,j =

g
∑

i�=j αiαj(1−wi)wj

p . By the above relations, we see that if U = g
∑

i∈[m] αiwi

p , then

e(A,U) = e(U,U)e(gp, V ). (1.2)

The analysis above shows that if U is a valid commitment to a binary vector,
then the prover can always compute V that satisfies the verification relation.
When U is not a commitment to a binary vector, we need to argue that the
prover cannot craft a proof V that satisfies Eq. (1.2). The intuition is that
there will be “non-cross-terms” that cannot be cancelled using the components
available to the prover. Formalizing this intuition requires some care and we
provide additional details below. We also note here that the size of the CRS (Eq.
(1.1)) in our construction scales quadratically with the number of instances m.
In the following, we will describe a bootstrapping technique to reduce the CRS
size to scale with mε for any constant ε > 0.

Gate Consistency Checks. The approach we take for wire validity checks readily
extends to enable gate consistency checks. We describe our approach for verifying
a single NAND gate. To simplify the description, suppose U1 and U2 are vector
commitments to the input wires (w1,1, . . . , wm,1) and (w1,2, . . . , wm,2), and U3 is
a vector commitment to the output wire (w1,3, . . . , wm,3). The prover wants to
show that wi,3 = NAND(wi,1, wi,2) for all i ∈ [m]. This is equivalent to checking
satisfiability of the quadratic relation wi,3+wi,1wi,2 = 1. In this case, the prover
computes the element W ∈ Gp such that

e(A,U3)e(U1, U2)
e(A,A)

= e(gp,W ). (1.3)

Suppose U1, U2, U3 are properly-generated commitments. Then, if we consider
the exponents for the left-hand side of the verification relation, we have

∑

i∈[m]

α2
i wi,3 +

∑

i�=j

αiαjwj,3

︸ ︷︷ ︸
e(A,U3)

+
∑

i∈[m]

α2
i wi,1wi,2 +

∑

i�=j

αiαjwi,1wj,2

︸ ︷︷ ︸
e(U1,U2)

−
∑

i∈[m]

α2
i −

∑

i�=j

αiαj

︸ ︷︷ ︸
e(A,A)

.

If wi,3 +wi,1wi,2 = 1, then all of the non-cross terms vanish, and we are left with
∑

i�=j αiαj(wj,3+wi,1wj,2−1). The prover can thus set W =
∏

i�=j B
wj,3+wi,1wj,2−1
i,j
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to satisfy the above verification relation. Similar to the case with wire consistency
checks, we now have to show that if there exists an i ∈ [m]where wi,3+wi,1wi,2 �= 1,
then the prover is unable to compute a W that satisfies Eq. (1.3).

Proving Soundness. To argue soundness of our argument system, we take the
dual-mode approach from [CJJ21a,CJJ21b].5 Specifically in this setting, there
are two computationally indistinguishable ways to sample the CRS: (1) the nor-
mal mode described above; and (2) a trapdoor mode that takes as input an
instance index i∗ ∈ [m] and outputs a trapdoor CRS crs∗. The requirement is
that in trapdoor mode, the scheme is statistically sound for instance i∗. Namely,
with overwhelming probability over the choice of crs∗, there does not exist any
proof π for (x1, . . . ,xm) that convinces the verifier when xi∗ is false. However,
it is still possible that there exists valid proofs of tuples where xi∗ is true but
xi is false for some i �= i∗. By a standard hybrid argument, it is easy to see that
a BARG with this dual-mode “somewhere statistical soundness” property also
satisfies non-adaptive soundness (i.e., soundness for statements that are indepen-
dent of the CRS).6 Achieving the stronger notion of adaptive soundness where
security holds for statements that depend on the CRS seems challenging and in
certain settings, will either require non-black-box techniques or basing security
on non-falsifiable assumptions [GW11,BHK17].

Somewhere Statistical Soundness. To argue that our construction above satis-
fies somewhere statistical soundness, we start by describing the trapdoor CRS.
To ensure statistical soundness for index i∗ ∈ [m], we replace the encoding
Ai∗ = gαi∗

p associated with instance i∗ with Ai∗ ← gαi∗ ∈ G. Critically, Ai∗ is
now in the full group rather than the order-p subgroup Gp. The encodings Ai

associated with instances i �= i∗ are still sampled from Gp. We can construct
the cross terms Bi,j in a similar manner as before: the components for i, j �= i∗

are unaffected and we set Bi∗,j = Bj,i∗ = A
αj

i∗ ∈ G. The trapdoor CRS is com-
putationally indistinguishable from the normal CRS by the subgroup decision
assumption [BGN05]. Consider the wire consistency checks and gate consistency
checks:

– Wire consistency checks. Let U ∈ G be a commitment to a tuple of wire
values and V ∈ G be the wire consistency proof. We can decompose U as U =
g

βp
p g

βq
q for some βp ∈ Zp, βq ∈ Zq. Moreover, by construction, the verification

component A is defined to be A =
∏

i∈[m] Ai = g
∑

i∈[m] αi

p gαi∗
q . Consider now

the verification relation from Eq. (1.2). If this relation holds in GT , it must

5 This is different from the notion of “dual-mode” proof system often encountered in the
setting of non-interactive zero-knowledge (NIZK) [GOS06,PS19,LPWW20]. There,
the CRS can be sampled in two computationally indistinguishable modes: one mode
ensures statistical soundness and the other ensures statistical zero knowledge.

6 Our construction satisfies the stronger notion of semi-adaptive somewhere sound-
ness [CJJ21b], where the adversary first commits to an index i∗, but is allowed to
choose the statements (x1, . . . ,xm) after seeing the CRS. The adversary wins if the
proof is valid but xi∗ is false. This notion is needed for the implications to delegation.
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in particular hold in the order-q subgroup of GT . The key observation is that
projecting the relation into the order-q subgroup of GT isolates instance i∗

(since only the encoding Ai∗ contains components in the order-q subgroup).
Moreover, the pairing e(gp, V ) vanishes in the order-q subgroup, so the prover
has no control over the validity check in the order-q subgroup. Now, for Eq.
(1.2) to be satisfied, it must be the case that αi∗βq = β2

q mod q. Thus, either
βq = 0 or βq = αi∗ and so the wire checks ensure that Uk = g

βp
p gξkαi∗

q where
ξk ∈ {0, 1} for all k ∈ [m].

– Gate consistency checks. Now, consider the gate consistency checks. We
again consider the projection of the pairing check into the order-q subgroup.
If we project Eq. (1.3) in the order-q subgroup and using the above relations
for Uk and A, we obtain the relation

ξk3α
2
i∗ + ξk1ξk2α

2
i∗ − α2

i∗ = 0 mod q.

If αi∗ �= 0 mod q, then ξk3 + ξk1ξk2 − 1 = 0 mod q. Since ξk1 , ξk2 , ξk3 ∈ {0, 1},
this means that ξk3 = NAND(ξk1 , ξk2).

The above relations show that (ξ1, . . . , ξt) ∈ {0, 1}t constitutes a valid assignment
to the wires of C((ξ1, . . . , ξn),w∗) where w∗ = (ξn+1, . . . , ξn+h). Again consider-
ing the verification relations in the order-q subgroup, the input validity checks
ensure that xi∗ = (ξ1, . . . , ξn) and the output satisfiability check ensures that
C(xi∗ ,w∗) = ξt = 1. The above argument shows that if all of the validity checks
pass, then we can extract a witness for instance i∗. Thus, statistical soundness
for instance xi∗ holds. In fact, this extraction procedure can be made efficient
given a trapdoor (i.e., the factorization of N). We provide the full construction
and security analysis in Sect. 3.

1.2.2 The Prime-Order Instantiation, Bootstrapping, and Applica-
tions

The BARG construction from symmetric composite-order groups is conceptually
simple to describe and illustrates the main ideas behind our construction. We
now describe several extensions and generalizations of these ideas.

Instantiation from k-Lin. The ideas underlying the composite-order construction
(Sect. 1.2.1 and 3) naturally extend to the setting of asymmetric prime-order
groups. Recall that an asymmetric prime-order group consists of two base groups
G1 and G2, a target group GT , all of prime order p, and an efficiently-computable,
non-degenerate pairing e : G1 × G2 → GT . In this setting, we can base security
on the standard k-Lin assumption for any k ≥ 1. Recall that the case k = 1
corresponds to the SXDH assumption (i.e., DDH in G1 and G2) and the case k = 2
corresponds to the DLIN assumption [BBS04,HK07,Sha07]. The key property
we relied on in the soundness analysis of the composite-order construction is the
ability to isolate a single instance by projecting the verification relations into a
suitable subgroup. In the prime-order setting, we can simulate this projection
property by considering subspaces of vector spaces [GS08,Fre10]. We refer to
Sect. 4 for the full description and security analysis.
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Bootstrapping to Reduce CRS Size. The size of the CRS in the above construction
scales quadratically with the number of instances m (due to the cross terms).
However, we can adapt the bootstrapping approach from Kalai et al. [KPY19]
reduce the size of the CRS to grow with mε (for any constant ε > 0). Soundness
of the bootstrapping construction critically relies on the ability to extract the
witness for one of the instances in the BARG.

The construction is simple. To verify statements x1, . . . ,xm, we consider
a two-tiered construction where we group the statements into m/B batches
of statements, each containing exactly B statements. We use a BARG (on B
instances) to prove that all of the statements in each batch (xB(i−1)+1, . . . ,xiB)
are true. Let πi be the BARG proof for the ith batch. The prover then shows
that it knows accepting proofs π1, . . . , πm/B of each of the m/B batches of
statements. Here, it will be critical that the size of the BARG verification circuit
for checking πi be sublinear in the batch size B. This is not possible in general
since the verification circuit has to read the statement which already has length
B. However, when the underlying BARG satisfies a “split verification” property
(Definition 2.9), where the verification algorithm decomposes into (1) a circuit-
independent preprocessing step that reads the statement and outputs a succinct
verification key vk; and (2) a fast “online” verification step whose running time is
polylogarithmic in the number of instances, it suffices to use the BARG to only
check the online verification step.

Now, if we set B =
√

m in this framework, both the BARG for checking each
batch of B statements as well as the BARG for verifying the m/B =

√
m batches

are BARGs on
√

m instances. Thus, we can use a BARG on
√

m instances to
construct a BARG on m instances. If we start with a BARG with CRS size md,
then the two-tiered construction reduces the CRS size to roughly md/2. We can
apply this approach recursively (with a constant number of iterations) to reduce
the CRS size from poly(λ,m) to mε · poly(λ) for any constant ε > 0. We refer to
the full version of this paper [WW22] for the full details.

Application to Delegation. Choudhuri et al. [CJJ21b] showed how to combine a
“BARG for index languages” with a somewhere extractable commitment scheme
to obtain a delegation scheme for RAM programs. In a BARG for index languages,
the statements to the m instances are always fixed to be the binary representation
of the integers 1, . . . , m. In this setting, the prover and the verifier do not need
to read the statement anymore, and correspondingly, the verification algorithm is
required to run in time poly(λ, logm, |C|) when checking a circuit C.

Our BARG construction extends naturally to this setting. In the construction
described in Sect. 1.2.1 (see also Sect. 3), the verifier starts by computing the com-
mitments U1, . . . , Un to the bits of the statement. This takes time poly(λ, n,m)
since the verifier has to minimally read the statement (of length mn). However
in the case of an index BARG, the statements are known in advance, so the
encodings Ui can be computed in advance and included as part of a verification
key vk = (U1, . . . Un) that the verifier uses for verification. Given vk, the state-
ment validity checks can be implemented by simply comparing the precomputed
commitments with those provided by the adversary; notably this check is now
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independent of the number of instances. Using the precomputed commitments,
we can bring the overall verification cost down to |C|·poly(λ, logm), which meets
the efficiency requirements for an index BARG.

The second ingredient we require to instantiate the Choudhuri et al. [CJJ21b]
compiler is a somewhere extractable commitment scheme. Our techniques for con-
structing BARGs can also be used to directly construct a somewhere extractable
commitment scheme (when combined with a somewhere statistically binding
hash function [HW15,OPWW15]). We can thus appeal to the compiler of
Choudhuri et al. to obtain a delegation scheme for RAM programs from the
SXDH assumption in bilinear groups.7 Similar to the case with BARGs, we first
describe a construction with a long CRS where the length of the CRS grows
quadratically with the length of the committed message. We then describe a
similar kind of bootstrapping technique to obtain a somewhere extractable com-
mitment scheme with a CRS of size sublinear in the message size. We refer to
the full version of this paper [WW22] for the full details.

Application to Aggregate Signatures. As described in Sect. 1.1, our BARG con-
struction directly implies an aggregate signature scheme supporting bounded
aggregation. We describe this construction in the full version of this
paper [WW22].

Generalized BARGs. As previously noted for the case of BARGs for index lan-
guages, when the statements are fixed in advance, we can precompute commit-
ments to them during setup and include the honestly-generated commitments
to their values as part of a verification key. In this case, the verifier can use the
precomputed encodings during verification and no longer needs to perform the
statement validity checks. In the full version of this paper [WW22], we describe
a more generalized view where some of the statement wires are fixed while oth-
ers can be chosen by the prover. This generalization captures both the standard
setting (where all of the statement wires can be chosen by the prover) and the
BARG for index languages setting (where all of the statement wires are fixed
ahead of time) as special cases.

1.3 Related Work

SNARGs. Batch arguments for NP can be constructed from any succinct
non-interactive argument (SNARG) for NP. Existing constructions of SNARGs
have either relied on random oracles [Mic95,BBHR18,COS20,CHM+20,Set20],
the generic group model [Gro16], or strong non-falsifiable assumpt-
ions [Gro10,BCCT12,DFH12,Lip13,PHGR13,GGPR13,BCI+13,BCPR14,

7 While our BARG scheme can be based on the k-Lin assumption over bilinear groups
for any k ≥ 1, existing constructions of somewhere statistically binding hash func-
tions [OPWW15] rely on the DDH assumption. As such, our current instantiation is
based on SXDH. It seems plausible that the DDH-based construction of somewhere
statistically binding hash functions can be extended to achieve hardness under the
k-Lin assumption, but this is orthogonal to the primary focus of our work.
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BISW17,BCC+17]. Indeed, Gentry and Wichs [GW11] showed that no construc-
tion of an (adaptively-sound) SNARG for NP can be proven secure via a black-
box reduction to a falsifiable assumption [Nao03]. This separation also extends
to adaptively-sound BARGs of knowledge (i.e., “BARKs”) for NP [BHK17]. The
only construction of non-adaptively sound SNARGs from falsifiable assumptions
is the construction based on indistinguishability obfuscation [SW14]. We note that
Lipmaa and Pavlyk [LP21] recently proposed a candidate SNARG from a non-
standard, but falsifiable, q-type assumption on bilinear groups. However, we were
recently informed [Wic22] that the proof of security was fundamentally flawed and
later confirmed this with the authors of [LP21].

Batch Arguments for NP. If we focus specifically on constructions of BARGs
for NP, Kalai et al. [KPY19] showed how to construct a BARG for NP from
a non-standard, but falsifiable, q-type assumption on bilinear groups. More
recently, Choudhuri et al. gave constructions from subexponentially-hard DDH
in pairing-free groups in conjunction with polynomial hardness of the QR
assumption [CJJ21a], as well as from polynomial hardness of the LWE assump-
tion [CJJ21b]. Both of these constructions leverage correlation-intractable hash
functions. The size of the proof in the DDH+ QR construction grows with

√
m,

where m is the number of instances, while that in the LWE construction scales
polylogarithmically with the number of instances. Our work provides the first
BARG for NP from standard assumptions on bilinear groups (with proof size
that is independent of the number of instances).

Interactive Schemes. Batch arguments for NP have also been considered in the
interactive setting. First, the classic IP = PSPACE theorem [LFKN90,Sha90]
implies a interactive proof for batch NP verification, albeit with an inefficient
prover. For interactive proofs with an efficient prover, batch verification is known
for the class UP of NP languages with unique witnesses [RRR16,RRR18,RR20].
If we relax to interactive arguments, Brakerski et al. [BHK17] constructed 2-
message BARGs for NP from any computational private information retrieval
(PIR) scheme.

Delegation Schemes. Many works have focused on constructing delegation
schemes for deterministic computations. In the interactive setting, we have suc-
cinct proofs for both bounded-depth computations [GKR08] and bounded-space
computations [RRR16]. In the non-interactive setting, Kalai et al. [KPY19]
gave the first construction from a falsifiable (but non-standard) assumption
on bilinear groups. Using correlation-intractable hash functions based on LWE,
Jawale et al. [JKKZ21] and Choudhuri et al. [CJJ21b] constructed delegation
schemes for bounded-depth computations and general polynomial-time compu-
tations, respectively. Recently, González and Zacharakis [GZ21] constructed a
delegation scheme for arithmetic circuits with a long CRS from a bilateral (or
“split”) k-Lin assumption in asymmetric groups. The size of the CRS in their
construction is quadratic in the circuit size. Our scheme is based on the vanilla
SXDH assumption in asymmetric groups and has a CRS whose size is sublinear
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in the running time of the RAM computation (specifically, T ε for any constant
ε > 0, where T is the running time of the RAM computation).

Aggregate Signatures. Aggregate signatures were introduced by Boneh et al.
[BGLS03] who also gave an efficient construction using bilinear maps in the
random oracle model. In the standard model, constructions of aggregate signa-
tures have typically considered restricted settings such as sequential aggrega-
tion [LMRS04,LOS+06] where the aggregate signature is constructed by having
each signer sequentially “add” its signature to an aggregated signature, or syn-
chronized aggregation [GR06,AGH10,HW18], which assumes that signers have a
synchronized clock and aggregation is only allowed on signatures from the same
time period (with exactly 1 signature from each signer per time period). Other
(standard model) constructions have relied on heavy tools such as multilinear
maps [RS09,FHPS13] or indistinguishability obfuscation [HKW15]. Aggregate sig-
natures can also be constructed generically from adaptively-sound succinct argu-
ments of knowledge (SNARKs), which are only known from non-falsifiable assump-
tions or idealized models. In the case of bounded aggregation (where there is an a
priori bound on the number of signatures that can be aggregated), the somewhere
extractable BARG by Choudhuri et al. [CJJ21b] can be used to obtain a construc-
tion from LWE. Our work provides the first instantiation of an aggregate signature
supporting bounded aggregation from standard assumptions over bilinear groups
in the plain model.

2 Preliminaries

For a positive integer n, we write [n] to denote the set {1, . . . , n}. For a positive
integer p ∈ N, we write Zp to denote the ring of integers modulo p. We use bold-
face uppercase letters (e.g., A, B to denote matrices) and bold-face lowercase
letters (e.g., x, w) to denote vectors. For a finite set S, we write x

r← S to
indicate that x is sampled uniformly at random from S. We use non-bold-face
letters to denote their components (e.g., x = (x1, . . . , xn)). We write poly(λ) to
denote a function that is O(λc) for some c ∈ N and negl(λ) to denote a function
that is o(λ−c) for all c ∈ N. We say an event E occurs with overwhelming
probability if its complement occurs with negligible probability. An algorithm
is efficient if it runs in probabilistic polynomial time in its input length. We
say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are
computationally indistinguishable if no efficient algorithm can distinguish them
with non-negligible probability. We say they are statistically indistinguishable if
the statistical distance between them is bounded by a negligible function.

2.1 Non-Interactive Batch Arguments for NP

In this work, we consider the NP-complete language of Boolean circuit satisfiabil-
ity. For ease of exposition, we focus on Boolean circuits comprised exclusively of
NAND gates in our main construction. In the full version of this paper [WW22],
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we describe how to generalize the construction to support gates that compute
arbitrary quadratic relations over their inputs. This allows us to support both
general gates (e.g., AND, OR, XOR) as well as gates with more than two inputs.

For a Boolean circuit C : {0, 1}n ×{0, 1}h → {0, 1} with t wires, we associate
wires 1, . . . , n with the bits of the statement x1, . . . , xn, and wires n+1, . . . , n+h
with the bits of the witness w1, . . . , wh, respectively. We associate wire t with the
output wire. We measure the size s of C by the number of NAND gates it has.
By construction, t ≤ n + h + s. We now define the (batch) circuit satisfiability
language we consider in this work:

Definition 2.1 (Circuit Satisfiability). We define LCSAT = {(C,x) | ∃w ∈
{0, 1}h : C(x,w) = 1} to be the language of Boolean circuit satisfiability, where
C : {0, 1}n ×{0, 1}h → {0, 1} is a Boolean circuit and x ∈ {0, 1}n is a statement.
For a positive integer m ∈ N, we define the batch circuit satisfiability language
LBatchCSAT,m as follows:

LBatchCSAT,m = {(C,x1, . . . ,xm) | ∀i ∈ [m] : ∃wi ∈ {0, 1}h : C(xi,wi) = 1},

where C : {0, 1}n×{0, 1}h → {0, 1} is a Boolean circuit and x1, . . . ,xm ∈ {0, 1}n

are the instances.

Definition 2.2 (Batch Argument for Circuit Satisfiability). A non-
interactive batch argument (BARG) for circuit satisfiability is a tuple of three
efficient algorithms ΠBARG = (Setup,Prove,Verify) with the following properties:

– Setup(1λ, 1m, 1s) → crs: On input the security parameter λ ∈ N, the number
of instances m ∈ N, and a bound on the circuit size s ∈ N, the setup algorithm
outputs a common reference string crs.

– Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm)) → π: On input the common refer-
ence string crs, a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements
x1, . . . ,xm ∈ {0, 1}n, and witnesses w1, . . . ,wm ∈ {0, 1}h, the prove algo-
rithm outputs a proof π.

– Verify(crs, C, (x1, . . . ,xm), π) → b: On input the common reference string crs,
the Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . ,xm ∈
{0, 1}n and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

Definition 2.3 (Completeness). A BARG ΠBARG = (Setup,Prove,Verify) is
complete if for all λ,m, s ∈ N, all Boolean circuits C : {0, 1}n × {0, 1}h → {0, 1}
of size at most s, all statements x1, . . . ,xm ∈ {0, 1}n, and all witnesses
w1, . . . ,wm ∈ {0, 1}h where C(xi,wi) = 1 for all i ∈ [m],

Pr

[

Verify(crs, C, (x1, . . . ,xm), π) = 1 :
crs ← Setup(1λ, 1m, 1s);

π ← Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm))

]

= 1.

Definition 2.4 (Soundness). Let ΠBARG = (Setup,Prove,Verify) be a BARG.
We consider two notions of soundness:
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– Non-adaptive soundness: We say that ΠBARG satisfies non-adaptive sound-
ness if for all polynomials m = m(λ), s = s(λ), and efficient adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, and every
statement (C,x1, . . . ,xm) /∈ LBatchCSAT,m, where C : {0, 1}n×{0, 1}h → {0, 1}
is a Boolean circuit of size at most s(λ) and x1, . . . ,xn ∈ {0, 1}n,

Pr

[
Verify(crs, C, (x1, . . . ,xm), π) = 1 :

crs ← Setup(1λ, 1m, 1s);

π ← A(1λ, crs, C, (x1, . . . ,xm))

]
= negl(λ).

– Adaptive soundness: We say that ΠBARG is adaptively sound if for every
efficient adversary A and every polynomial m = m(λ), s = s(λ), there exists
a negligible function of negl(·) such that for all λ ∈ N,

Pr

⎡

⎢⎣
Verify(crs, C, (x1, . . . ,xm), π) = 1

and
(C,x1, . . . ,xm) /∈ LBatchCSAT,m

:
crs ← Setup(1λ, 1m, 1s);

(C,x1, . . . ,xm, π) ← A(1λ, crs)

⎤

⎥⎦ = negl(λ).

Definition 2.5 (Semi-Adaptive Somewhere Soundness [CJJ21b]). A
BARG ΠBARG = (Setup,Prove,Verify) satisfies semi-adaptive somewhere sound-
ness if there exists an efficient algorithm TrapSetup with the following properties:

– TrapSetup(1λ, 1m, 1s, i∗) → crs∗: On input the security parameter λ ∈ N, the
number of instances m ∈ N, the size of the circuit s ∈ N, and an index
i∗ ∈ [m], the trapdoor setup algorithm outputs a (trapdoor) common reference
string crs∗.

We require TrapSetup satisfy the following two properties:

– CRS indistinguishability: For integers m ∈ N, s ∈ N, a bit b ∈
{0, 1}, and an adversary A, define the CRS indistinguishability experiment
ExptCRSA(λ,m, s, b) as follows:
1. Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
2. If b = 0, the challenger gives crs ← Setup(1λ, 1m, 1s) to A. If b = 1, the

challenger gives crs∗ ← TrapSetup(1λ, 1m, 1s, i∗) to A.
3. Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-

ment.
Then, ΠBARG satisfies CRS indistinguishability if for every efficient adversary
A, every polynomial m = m(λ), s = s(λ), there exists a negligible function
negl(·) such that for all λ ∈ N,

|Pr[ExptCRSA(λ,m, s, 0) = 1] − Pr[ExptCRSA(λ,m, s, 1) = 1]| = negl(λ).

– Somewhere soundness in trapdoor mode: Define the somewhere sound-
ness security game between an adversary A and a challenger as follows:

• Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
• The challenger samples crs∗ ← TrapSetup(1λ, 1m, 1s, i∗) and gives crs∗ to

A.
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• Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} of
size at most s, statements x1, . . . ,xm ∈ {0, 1}n, and a proof π. The output
of the game is b = 1 if Verify(crs∗, C, (x1, . . . ,xm), π) = 1 and (C,xi∗) /∈
LCSAT. Otherwise, the output is b = 0.

Then, ΠBARG satisfies somewhere soundness in trapdoor mode if for every
adversary A, and every polynomial m = m(λ), s = s(λ), there exists a neg-
ligible function negl(·) such that for all λ ∈ N, Pr[b = 1] = negl(λ) in the
somewhere soundness security game.

Definition 2.6 (Somewhere Argument of Knowledge [CJJ21b]). A
BARG ΠBARG = (Setup,Prove,Verify) is a somewhere argument of knowledge
if there exists a pair of efficient algorithms (TrapSetup,Extract) with the follow-
ing properties:

– TrapSetup(1λ, 1m, 1s, i∗) → (crs∗, td): On input the security parameter λ ∈ N,
the number of instances m ∈ N, the size of the circuit s ∈ N, and an index
i∗ ∈ [m], the trapdoor setup algorithm outputs a common reference string crs∗

and an extraction trapdoor td.
– Extract(td, C, (x1, . . . ,xm), π) → w∗ On input the trapdoor td, statements
x1, . . . ,xm, and a proof π, the extraction algorithm outputs a witness w∗ ∈
{0, 1}h. The extraction algorithm is deterministic.

We require (TrapSetup,Extract) to satisfy the following two properties:

– CRS indistinguishability: Same as in Definition 2.5.
– Somewhere extractable in trapdoor mode: Define the somewhere

extractable security game between an adversary A and a challenger as fol-
lows:

• Algorithm A(1λ, 1m, 1s) outputs an index i∗ ∈ [m].
• The challenger samples (crs∗, td) ← TrapSetup(1λ, 1m, 1s, i∗) and gives

crs∗ to A.
• Algorithm A outputs a Boolean circuit C : {0, 1}n × {0, 1}h → {0, 1} of

size at most s, statements x1, . . . ,xm ∈ {0, 1}n, and a proof π. Let w∗ ←
Extract(td, C, (x1, . . . ,wm), π).

• The output of the game is b = 1 if Verify(crs∗, C, (x1, . . . ,xm), π) = 1 and
C(xi∗ ,w∗) �= 1. Otherwise, the output is b = 0.

Then ΠBARG is somewhere extractable in trapdoor mode if for every adversary
A and every polynomial m = m(λ), s = s(λ), there exists a negligible function
negl(·) such that Pr[b = 1] = negl(λ) in the somewhere extractable game.

Remark 2.7 (Soundness Notions). The notion of semi-adaptive somewhere
soundness from Defintion 2.5 is stronger than and implies non-adaptive sound-
ness. Somewhere extractability (Defintion 2.6) is a further strengthening of semi-
adaptive somewhere soundness.

Definition 2.8 (Succinctness). A BARG ΠBARG = (Setup,Prove,Verify) is
succinct if there exists a fixed polynomial poly(·, ·, ·) such that for all λ,m, s ∈ N,
all crs in the support of Setup(1λ, 1m, 1s), and all Boolean circuits C : {0, 1}n ×
{0, 1}h → {0, 1} of size at most s, the following properties hold:
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– Succinct proofs: The proof π output by Prove(crs, C, ·, ·) satisfies |π| ≤
poly(λ, logm, s).

– Succinct CRS: |crs| ≤ poly(λ,m, n) + poly(λ, logm, s).
– Succinct verification: The verification algorithm runs in time

poly(λ,m, n) + poly(λ, logm, s).

BARGs with Split Verification. Our bootstrapping construction in the full ver-
sion of this paper [WW22] (for reducing the size of the CRS) will rely on a BARG
with a split verification property where the verification algorithm can be decom-
posed into a input-dependent algorithm that pre-processes the statements into a
short verification key together with a fast online verification algorithm that takes
the precomputed verification key and checks the proof. A similar property was
also considered by Choudhuri et al. [CJJ21b] to realize their RAM delegation
construction.

Definition 2.9 (BARG with Split Verification). A BARG ΠBARG =
(Setup,Prove,Verify) supports split verification if there exists a pair of efficient
and deterministic algorithms (GenVK,OnlineVerify) with the following properties:

– GenVK(crs, (x1, . . . ,xm)) → vk: On input the common reference string crs and
statements x1, . . . ,xm ∈ {0, 1}n, the verification key generation algorithm
outputs a verification key vk.

– OnlineVerify(vk, C, π) → b: On input a verification key vk, a Boolean circuit
C : {0, 1}n ×{0, 1}h → {0, 1} and a proof π, the verification algorithm outputs
a bit b ∈ {0, 1}.

Then, we say ΠBARG supports split verification if Verify(crs, C, (x1, . . . ,xm), π)
outputs

OnlineVerify(GenVK(crs, (x1, . . . ,xm)), C, π).

We additionally require that there exists a fixed polynomial poly(·, ·, ·) such that
for all λ,m, s ∈ N, all crs in the support of Setup(1λ, 1m, 1s), and all Boolean
circuits C : {0, 1}n × {0, 1}h → {0, 1} of size at most s, the following efficiency
properties hold (in addition to the properties in Defintion 2.8):

– Succinct verification key: The verification key generation algorithm
GenVK runs in time poly(λ,m, n), and the size of the vk output by GenVK
satisfies |vk| ≤ poly(λ, logm,n).

– Succinct online verification: The algorithm OnlineVerify(vk, C, π) runs in
time poly(λ, logm, s).

Remark 2.10 (BARGs for Index Languages [CJJ21b]). BARGs for index lan-
guages [CJJ21b] (“index BARGs”) are a useful building block for constructing
delegation schemes for RAM programs. In an index BARG with m instances, the
statement to the ith instance is the binary representation of the index i. Since
the statements are fixed in an index BARG, they are not included in the input to
the Prove and Verify algorithms. Moreover, the running time of the verification
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algorithm Verify on input a verification key vk,8 a circuit C, and a proof π is
required to be poly(λ, logm, |C|). It is easy to see that any BARG with a split ver-
ification procedure can also be used to build an index BARG. Specifically, after
the Setup algorithm samples the common reference string crs, it precomputes
the (short) verification key vk ← GenVK(crs, (1, 2, . . . ,m)). The verification algo-
rithm Verify then takes as input the precomputed verification key vk, the circuit
C, and the proof π, and outputs OnlineVerify(vk, C, π). The succinctness require-
ments on the split verification procedure implies the succinctness requirement
on the index BARG.

3 BARG for NP from Subgroup Decision in Bilinear
Groups

In this section, we show how to construct a BARGs from the subgroup decision
assumption over symmetric composite-order groups. We refer to Sect. 1.2.1 for
a general overview of this construction. We start by recalling the definition of a
composite-order pairing group [BGN05] and the subgroup decision assumption.
Definition 3.1 (Composite-Order Bilinear Groups [BGN05]). A (sym-
metric) composite-order bilinear group generator is an efficient algorithm
CompGroupGen that takes as input the security parameter λ and outputs a
description G = (G,GT , p, q, g, e) of a bilinear group where p, q are distinct
primes, G and GT are cyclic groups of order N = pq, and e : G × G → GT is
a non-degenerate bilinear map (called the “pairing”). We require that the group
operation in G and GT as well as the pairing operation to be efficiently com-
putable.

Definition 3.2 (Subgroup Decision [BGN05]). The subgroup decision
assumption holds with respect to a composite-order bilinear group generator
CompGroupGen if for every efficient adversary A, there exists a negligible func-
tion negl(·) such that for every λ ∈ N,
∣
∣Pr[A((G,GT , N, gp, e), gr) = 1] − Pr[A((G,GT , N, gp, e), gr

p) = 1]
∣
∣ = negl(λ),

where (G,GT , p, q, g, e) ← CompGroupGen(1λ), N ← pq, gp ← gq, and r
r← ZN .

Construction 3.3 (BARG for NPfrom Subgroup Decision). Take any
integer m ∈ N. We construct a BARG with split verification for the language of
circuit satisfiability as follows:

– Setup(1λ, 1m, 1s): On input the security parameter λ, the number of instances
m, and the bound on the circuit size s, the setup algorithm does the following:

• Run (G,GT , p, q, g, e) ← GroupGen(1λ) and let N = pq, gp ← gq. In par-
ticular, gp generates a subgroup of order p in G. Let G = (G,GT , N, gp, e).

8 Here, we allow the verification algorithm to take in a separate verification key vk,
which may be shorter than the full common reference string crs. Note that the vk is
assumed to be public (i.e., the CRS contains vk and possibly additional components
used to construct proofs).
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• For each i ∈ [m], sample αi
r← ZN . For each i ∈ [m], let Ai ← gαi

p . Let
A ← ∏

i∈[m] Ai.
• For each i, j ∈ [m] where i �= j, compute Bi,j ← g

αiαj
p .

• Output the common reference string crs =
(G, A, {Ai}i∈[m], {Bi,j}i�=j

)
.

– Prove(crs, C, (x1, . . . ,xm), (w1, . . . ,wm)): On input the common reference
string crs = (G, A, {Ai}i∈[m], {Bi,j}i�=j), the circuit C : {0, 1}n × {0, 1}h →
{0, 1}, instances x1, . . . ,xm ∈ {0, 1}n, and witnesses w1, . . . ,wm ∈ {0, 1}h,
define t to be the number of wires in C and s to be the number of gates in
C. Then, for i ∈ [m] and j ∈ [t], let wi,j ∈ {0, 1} be the value of wire j in
C(xi,wi). The prover proceeds as follows:

• Encoding wire values: For each k ∈ [t], let Uk =
∏

i∈[m] A
wi,k

i .
• Validity of wire assignments: For each k ∈ [t], let Vk =

∏
i�=j B

(1−wi,k)wj,k

i,j .
• Validity of gate computation: For each NAND gate G� = (k1, k2, k3) ∈

[t]3 (where � ∈ [s]), compute W� =
∏

i�=j B
1−wi,k1wj,k2−wj,k3
i,j

Finally, output the proof π =
({Uk, Vk}k∈[t], {W�}�∈[s]

)
.

– Verify(crs, C, (x1, . . . ,xm), π): We decompose the verification algorithm into
(GenVK,OnlineVerify):

• GenVK(crs, (x1, . . . ,xm)): On input the common reference string crs =
(G, A, {Ai}i∈[m], {Bi,j}i�=j), instances x1, . . . ,xm ∈ {0, 1}n, the verifica-
tion key generation algorithm computes U∗

k =
∏

i∈[m] A
xi,k

i for each
k ∈ [n], and outputs the verification key vk = (U∗

1 , . . . , U∗
n).

• OnlineVerify(vk, C, π): On input the verification key vk = (U∗
1 , . . . , U∗

n),
a circuit C : {0, 1}n × {0, 1}h → {0, 1} and the proof π =
({Uk, Vk}k∈[t], {W�}�∈[s]), the verification algorithm checks the following:

* Validity of statement: For each input wire k ∈ [n], Uk = U∗
k .

* Validity of wire assignments: For each k ∈ [t],

e(A,Uk) = e(gp, Vk)e(Uk, Uk). (3.1)

Validity of gate computation: For each gate G� = (k1, k2, k3) ∈
[t]3,

e(A,A) = e(Uk1 , Uk2)e(A,Uk3)e(gp,W�). (3.2)

Output satisfiability: The output encoding Ut satisfies Ut = A.
The algorithm outputs 1 if all checks pass, and outputs 0 otherwise.

The verification algorithm outputs OnlineVerify(GenVK(crs, (x1, . . . ,
xm)), C, π).

Theorem 3.4 (Completeness). Construction 3.3 is complete.

Proof Take any circuit C : {0, 1}n × {0, 1}h → {0, 1}, instances x1, . . . ,xm ∈
{0, 1}n and witnesses w1, . . . ,wm ∈ {0, 1}h such that C(xi,wi) = 1 for all i ∈
[m]. Let crs ← Setup(1λ, 1m, 1s) and π ← Prove(crs, (x1, . . . ,xm), (w1, . . . ,wm)).
We show that Verify(crs, C, (x1, . . . ,xm), π) outputs 1. Consider each of the ver-
ification relations:
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– Validity of statement: By construction of GenVK, U∗
k =

∏
i∈[m] A

xi,k

i for
each k ∈ [n]. By construction of Prove, Uk =

∏
i∈[m] A

wi,k

i . By definition, the
first n wires in C coincide with the wires to the statement, so wi,k = xi,k for
k ∈ [n], and Uk = U∗

k for all k ∈ [n].
– Validity of wire assignments: Take any k ∈ [t]. Then Uk =

∏
i∈[m] A

wi,k

i =

g
∑

i∈[m] αiwi,k

p . Now,
⎛

⎝
∑

i∈[m]

αi

⎞

⎠

⎛

⎝
∑

j∈[m]

αjwj,k

⎞

⎠ =
∑

i∈[m]

α2
i wi,k +

∑

i�=j

αiαjwj,k,

and
⎛

⎝
∑

i∈[m]

αiwi,k

⎞

⎠

⎛

⎝
∑

j∈[m]

αjwj,k

⎞

⎠ =
∑

i∈[m]

α2
i wi,k +

∑

i�=j

αiαjwi,kwj,k,

using the fact that wi,k ∈ {0, 1} so w2
i,k = wi,k. Finally Vk =

∏
i�=j B

(1−wi,k)wj,k

i,j = g
∑

i�=j αiαj(1−wi,k)wj,k

p . Thus, we can write

e(gp, Vk)e(Uk, Uk) = e(gp, gp)
∑

i�=j αiαj(1−wi,k)wj,k+
∑

i∈[m] α2
i wi,k+

∑
i�=j αiαjwi,kwj,k

= e(gp, gp)
∑

i∈[m] α2
i wi,k+

∑
i�=j αiαjwj,k

= e(A, Uk).

– Validity of gate computation: Take any gate G� = (k1, k2, k3) ∈ [t]3.
Consider first the exponents for the terms e(Uk1 , Uk2), e(A,Uk3), and e(A,A):
⎛

⎝
∑

i∈[m]

αiwi,k1

⎞

⎠

⎛

⎝
∑

j∈[m]

αjwj,k2

⎞

⎠ =
∑

i∈[m]

α2
i wi,k1wi,k2 +

∑

i�=j

αiαjwi,k1wj,k2

⎛

⎝
∑

i∈[m]

αi

⎞

⎠

⎛

⎝
∑

j∈[m]

αjwj,k3

⎞

⎠ =
∑

i∈[m]

α2
i wi,k3 +

∑

i�=j

αiαjwj,k3

⎛

⎝
∑

i∈[m]

αi

⎞

⎠

⎛

⎝
∑

j∈[m]

αj

⎞

⎠ =
∑

i∈[m]

α2
i +

∑

i�=j

αiαj .

By definition wi,k3 = NAND(wi,k1 , wi,k2). This means that for each i ∈ [m],
either (wi,k1wi,k2 = 1 and wi,k3 = 0) or (wi,k1wi,k2 = 0 and wi,k3 = 1). This
means that ∑

i∈[m]

α2
i (wi,k1wi,k2 + wi,k3) =

∑

i∈[m]

α2
i .
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Combining the above relations in the exponent, we have that

e(A,A)
e(Uk1 , Uk2)e(A,Uk3)

=
e(gp, gp)

∑
i∈[m] α2

i+
∑

i�=j αiαj

e(gp, gp)
∑

i∈[m] α2
i+

∑
i�=j αiαj(wi,k1wj,k2+wj,k3 )

=
∏

i�=j

e(gp, Bi,j)1−wi,k1wj,k2−wj,k3

= e(gp,W�).

– Output satisfiability: Since C(xi,wi) = 1, it follows that wi,t = 1 for all
i ∈ [m]. By definition, Ut =

∏
i∈[m] A

wi,t

i =
∏

i∈[m] Ai = A. �

Theorem 3.5 (Somewhere Argument of Knowledge). Suppose the sub-
group decision assumption holds with respect to CompGroupGen. Then, Construc-
tion 3.3 is a somewhere argument of knowledge.

Proof We start by defining the trapdoor setup and extraction algorithms:

– TrapSetup(1λ, 1m, 1s, i∗) : The trapdoor algorithm uses the following proce-
dure (we highlight in green the differences in the common reference string
components between TrapSetup and Setup):
1. Run (G,GT , p, q, g, e) ← GroupGen(1λ) and let N = pq, gp ← gq. Let

G = (G,GT , N, gp, e).
2. For each i ∈ [m], sample αi

r← ZN . For each i �= i∗, let Ai ← gαi
p . Let

Ai∗ ← gαi∗ . Let A ← Ai∗
∏

i�=i∗ Ai.
3. For each i, j ∈ [m] where i �= j and i, j �= i∗, compute Bi,j ← g

αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j �= i∗.

4. Output the common reference string crs∗ =
(G, A, {Ai}i∈[m], {Bi,j}i�=j

)

and the trapdoor td = gq ← gp.
– Extract(td, C, (x1, . . . ,xm), π): On input the trapdoor td = gq, the Boolean

circuit C : {0, 1}n × {0, 1}h → {0, 1}, statements x1, . . . ,xm ∈ {0, 1}n, and
the proof π =

({Uk, Vk}k∈[t], {W�}�∈[s]

)
, the extraction algorithm sets w∗

k = 0
if e(gq, Uk) = 1 and w∗

k = 1 otherwise for each k = n+1, . . . , n+h. It outputs
w∗ = (w∗

n+1, . . . , w
∗
n+h).

We now show the CRS indistinguishability and somewhere extractable in trap-
door mode properties.

Lemma 3.6 (CRS Indistinguishability). If the subgroup decision assump-
tion holds with respect to CompGroupGen, then Construction 3.3 satisfies CRS
indistinguishability.

Proof Take any polynomial m = m(λ), s = s(λ). We proceed via a hybrid argu-
ment:

– Hyb0: This is the real distribution. At the beginning of the security game,
the adversary chooses an index i∗ ∈ [m]. The challenger then constructs the
common reference string by running Setup(1λ, 1m, 1s):
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• Run (G,GT , p, q, g, e) ← GroupGen(1λ) and let N = pq, gp ← gq. Let
G = (G,GT , N, gp, e).

• For each i ∈ [m], sample αi
r← ZN . For each i ∈ [m], let Ai ← gαi

p . Let
A ← ∏

i∈[m] Ai.
• For each i, j ∈ [m] where i �= j, compute Bi,j ← g

αiαj
p .

• Output the common reference string crs =
(G, A, {Ai}i∈[m], {Bi,j}i�=j

)
.

The challenger gives crs to A and A outputs a bit b′ ∈ {0, 1}, which is the
output of the experiment.

– Hyb1: Same as Hyb0 except the challenger constructs A and Bi,j using the
procedure from TrapSetup:

• For each i ∈ [m], sample αi
r← ZN . For each i ∈ [m], let Ai ← gαi

p . Let
A ← Ai∗

∏
i�=i∗ Ai.

• For each i, j ∈ [m] where i �= j and i, j �= i∗, compute Bi,j ← g
αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j �= i∗.

– Hyb2: Same as Hyb1 except the challenger samples Ai∗ ← gαi∗ :
• For each i ∈ [m], sample αi

r← ZN . For each i �= i∗, let Ai ← gαi
p . Let

Ai∗ ← gαi∗ . Let A ← Ai∗
∏

i�=i∗ Ai.
• For each i, j ∈ [m] where i �= j and i, j �= i∗, compute Bi,j ← g

αiαj
p .

Compute Bi∗,j ← A
αj

i∗ and Bi,i∗ ← Aαi
i∗ for all i, j �= i∗.

In this experiment, crs is distributed according to TrapSetup(1λ, 1m, 1s, i∗).

For an index i, we write Hybi(A) to denote the output of experiment Hybi

with algorithm A. We show that the output distributions each adjacent pair of
experiments are computationally indistinguishable (or identical).

Claim 3.7 For all adversaries A, Pr[Hyb0(A) = 1] = Pr[Hyb1(A) = 1].

Proof The difference between Hyb0 and Hyb1 is purely syntactic. In Hyb1, Ai =
Ai∗

∏
i�=i Ai =

∏
i∈[m] Ai, which matches the distribution in Hyb0. Similarly, in

Hyb1,
Bi∗,j = A

αj

i∗ = gαi∗ αj and Bi,i∗ = Aαi
i∗ = gαi∗ αi ,

which is precisely the distribution of Bi∗,j and Bi,i∗ in Hyb0 for all i, j �= i∗.
Finally Bi,j for i �= j and i, j �= i∗ are identically distributed in the two experi-
ments.

Claim 3.8 Suppose the subgroup decision assumption holds with respect to
GroupGen. Then, for all efficient adversaries A, there exists a negligible function
negl(·) such that for all λ ∈ N, |Pr[Hyb1(A) = 1] − Pr[Hyb2(A) = 1]| = negl(λ).

Proof Suppose there exists an efficient adversary A that distinguishes Hyb1 and
Hyb2 with non-negligible advantage ε We use A to construct an adversary B for
the subgroup decision problem:

1. At the beginning of the game, algorithm B receives the group description
G = (G,GT , N, gp, e) and the challenge Z ∈ G from the subgroup decision
challenger.
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2. For i �= i∗, algorithm B samples αi
r← ZN and sets Ai ← gαi

p . It sets Ai∗ ← Z
to be the challenge value. Next, it computes A ← Z

∏
i�=i∗ Ai. For i �= j and

i, j �= i∗, algorithm B computes Bi,j ← g
αiαj
p . For i, j �= i∗, it computes

Bi∗,j ← Zαj and Bi,i∗ ← Zαi .
3. Algorithm B gives crs =

(G, A, {Ai}i∈[m], {Bi,j}i�=j

)
to A and outputs what-

ever A outputs.

Consider now the two possibilities:

– Suppose Z = gr
p in the subgroup decision game. Then, Ai∗ = gr

p and algo-
rithm B perfectly simulates the distribution in Hyb1. In this case, algorithm
B outputs 1 with probability Pr[Hyb1(A) = 1].

– Suppose Z = gr in the subgroup decision game. Then, Ai∗ = gr and algo-
rithm B perfectly simulates the distribution in Hyb2. In this case, algorithm
B outputs 1 with probability Pr[Hyb2(A) = 1].

The advantage of B in the subgroup decision game is thus ε.

Combining Claims 3.7 and 3.8, CRS indistinguishability holds.

Lemma 3.9 (Somewhere Extractable in Trapdoor Mode). Construction
3.3 is somewhere extractable in trapdoor mode.

Proof Fix polynomials m = m(λ) and s = s(λ). Let i∗ ← A(1λ, 1m, 1s) and
(crs∗, td) ← TrapSetup(1λ, 1m, 1s, i∗). By construction,

crs∗ = (G, A, {Ai}i∈[m], {Bi,j}i�=j) and td = gq,

where G = (G,GT , N, gp, e). Let N = pq and g be the generator of G (i.e.,
gp := gq and gq := gp). Let Gp = 〈gp〉 be the order-p subgroup of G generated
by gp. Correspondingly, let Gq = 〈gq〉 be the order-q subgroup of G generated
by gq. By the Chinese Remainder Theorem, G ∼= Gp × Gq.

Let C : {0, 1}n×{0, 1}h → {0, 1} be the Boolean circuit, x1, . . . ,xm ∈ {0, 1}n

be the statements, and π =
({Uk, Vk}k∈[t], {W�}�∈[s]

)
be the proof the adversary

outputs. Suppose Verify(crs∗, (x1, . . . ,xm), π) = 1. By construction of TrapSetup,
we can write Ai∗ = gαi∗ = g

αi∗,p
p g

αi∗,q
q for some αi∗,p ∈ Zp and αi∗,q ∈ Zq.

Suppose that αi∗,q �= 0. This holds with overwhelming probability since αi∗
r←

ZN . Now the following properties hold:

– For all k ∈ [t], either Uk ∈ Gp or Uk/g
αi∗,q
q ∈ Gp. This follows from the

wire validity checks. Specifically, suppose Uk = g
βp
p g

βq
q . We can also write

A = g
∑

i∈[m] αi

p g
αi∗,q
q . Since verification succeeds, it must be the case that

e(A,Uk) = e(gp, Vk)e(Uk, Uk).

Consider the projection in the order-q subgroup of GT . This relation requires
that αi∗,q · βq = β2

q . This means that either βq = 0 (in which case Uk ∈ Gp)
or βq = αi∗,q (in which case Uk/g

αi∗,q
q ∈ Gp).
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– For each k ∈ [t], if Uk ∈ Gp, then set ξk = 0. If Uk/g
αi∗,q
q ∈ Gp, then

set ξk = 1. Then, for all gates G� = (k1, k2, k3) ∈ [t]3 in the circuit,
ξk3 = NAND(ξk1 , ξk2). This follows from the gate validity checks. In par-
ticular, if verification succeeds, then Eq. (3.2) holds. From the above analysis,
we can write Uk = g

βk,p
p g

ξkαi∗,q
q for all k ∈ [t] and some βk,p ∈ Zp. Consider

the projection of Eq. (3.2) into the order-q subgroup of GT . This yields the
relation

α2
i∗,q = (ξk1αi∗,q)(ξk2αi∗,q) + αi∗,q(ξk3αi∗,q) = α2

i∗,q(ξk1ξk2 + ξk3).

Since αi∗,q �= 0, this means that 1 = ξk1ξk2 + ξk3 , or equivalently, ξk3 =
1 − ξk1ξk2 = NAND(ξk1 , ξk2).

– Let xi∗ = (xi∗,1, . . . , xi∗,n). For k ∈ [n], ξk = xi∗,k.

This follows from the statement validity check. Namely, for k ∈ [n], the verifier
checks that Uk = A

xi∗,k

i∗
∏

i�=i∗ A
xi,k

i . Since Ai ∈ Gp for i �= i∗, it follows that
if xi∗,k = 0, then Uk ∈ Gp (and ξk = 0 = xi∗,k). Otherwise, if xi∗,k = 1, then
the component of Uk in Gq is exactly g

αi∗,q
q , in which case ξk = 1 = xi∗,k.

– Finally ξt = 1. This follows from the output satisfiability check. Namely, the
verifier checks that Ut = A = g

∑
i∈[m] αi

p g
αi∗,q
q . If the verifier accepts, then this

relation holds and ξt = 1.

The above properties show that ξ1, . . . , ξt is a valid assignment to the wires of
C on input xi∗ and witness ξ = (ξn+1, . . . , ξn+h). Moreover, C(xi∗ , ξ) = ξt = 1.

To complete the proof, let w∗ ← Extract(td, C, (x1, . . . ,xm), π). We claim
that w∗ = ξ. In particular, for k ∈ [h], if Un+k ∈ Gp, then e(gq, Uk) = 1
and w∗

k = 0 = ξn+k. Alternatively, if Un+k/g
αi∗,q
p ∈ Gp, then e(gq, Uk) =

e(gq, gq)αi∗,q �= 1, so w∗
k = 1 = ξn+k. Thus, with probability 1 − negl(λ), either

Verify(crs∗, C, (x1, . . . ,xm), π) = 0 or C(x,w∗) = 1.

By Lemmas 3.6 and 3.9, Construciton 3.3 is a somewhere argument of knowledge.

Theorem 3.10 (Succinctness). Construciton 3.3 is succinct and satisfies
split verification (Definition 2.9).

Proof Take any λ,m, s ∈ N and consider a Boolean circuit C : {0, 1}n×{0, 1}h →
{0, 1} of size at most s. Let t = poly(s) be the number of wires in C. We check
each property:

– Proof size: A proof π consists of 2t + s elements in G, each of which can
be represented in poly(λ) bits. Thus, the proof size satisfies |π| = (2t + s) ·
poly(λ) = poly(λ, s)

– CRS size: The common reference string crs consists of the group description
G, and m + 1 + m(m − 1)/2 elements in G. Thus, |crs| = m2 · poly(λ).

– Verification key size: The size of the verification key vk output by GenVK
consists of n group elements. Thus, |vk| = n · poly(λ).

– Verification key generation time: The algorithm GenVK performs nm
group operations. This takes time poly(λ,m, n).
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– Online verification time: The running time of the online verification algo-
rithm OnlineVerify is

n · poly(λ)
︸ ︷︷ ︸

statement validity

+ t · poly(λ)
︸ ︷︷ ︸
wire validity

+ s · poly(λ)
︸ ︷︷ ︸
gate validity

+ poly(λ)
︸ ︷︷ ︸

output validity

= poly(λ, s),

since n, t = poly(s). �
Remark 3.11 (Variable Number of Instances). As currently described, the
prover and verifier algorithms in Construciton 3.3 takes exactly m instances as
input. However, the same scheme can also be used to prove any T ≤ m instances
(by ignoring components in the CRS). In this case, the proof size is unchanged,
and the verification running time (assuming random read access to the CRS) is
poly(λ, n, T ) + poly(λ, s).

4 BARG for NP from k-Lin in Bilinear Groups

Due to space limitations, we defer our BARG construction from asymmetric
prime-order pairing groups (where the k-Lin assumption holds) to the full version
of this paper [WW22]. In this setting, the pairing e : G1 × G2 → GT is an
efficiently-computable bilinear map from the base groups G1 and G2 to the
target group GT . The construction relies on a similar underlying principle as the
construction from symmetric composite-order groups (Construciton 3.3). Here,
we summarize the key differences and refer readers to the full version for the
complete description and analysis:

– Randomizing cross-terms in the CRS. In the symmetric setting, we
associated a single encoding Ai with each instance. In the asymmetric setting,
we need to encode the instance in both G1 and G2 in order to apply the pairing
consistency checks. Thus, the prover now generates two commitments to the
wire labels for each wire, one in G1 and the other in G2. This introduces
a new challenge when it comes to constructing the cross-terms Bi,j , as it
depends on the exponents associated with the encodings in both G1 and G2.
Proving security would seemingly need to rely on a “bilateral” assumption
over pairing groups where the assumption gives out elements with correlated
exponents in both G1 and G2. To avoid this and base security on the vanilla
k-Lin assumption, we split the cross-terms into two shares, with one share in
G1 and the other in G2. The extra randomness in the cross terms allows for
a simple simulation strategy in the security analysis (see the full version of
this paper [WW22]).

– Simulating projective pairing using outer products. The key property
we relied on in the soundness analysis of the composite-order construction is
that the pairing is projecting. Namely, there exists a projection map on G

and GT that map into the subgroup of order-q in each respective group; more-
over, this projection map commutes with the pairing. Then, if a relation like
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Eq. (3.1) or Eq. (3.2) holds in the target group, the projected relation formed
by projecting the left-hand and right-hand sides into the order-q subgroup
also holds. As argued in Lemma 3.9, projecting into the order-q subgroup
allows us to isolate a single instance i∗, in which case the verification checks
ensure statistically soundness for instance i∗. To obtain an analog of projec-
tive pairings in the prime order setting, we can replace the subgroups with
subspaces of a vector space and define the pairing operation to be an outer
(tensor) product of vectors [GS08,Fre10]. As we show in the full version of
this paper [WW22], this enables a similar strategy to prove soundness.

5 Extensions and Applications

Bootstrapping to Reduce CRS Size. As mentioned in Sect. 1.2.2, we can leverage
a similar type of bootstrapping from the work of Kalai et al. [KPY19] to reduce
the size of the CRS in our BARG constructions to grow with mε for any ε > 0
and where m is the number of instances. We refer to Sect. 1.2.2 for the overview
of this approach and to the full version of this paper [WW22] for the full details.

Application to Delegation. In the full version of this paper [WW22], we show
how to use our BARG for NP to obtain a delegation scheme for RAM pro-
grams (equivalently, a SNARG for P). Our construction follows the approach
from Choudhuri et al. [CJJ21b] of combining a BARG for “index languages” (or
more generally, any BARG with the split verification property (Defintion 2.9))
with a somewhere extractable commitment scheme. The BARGs we construct
in this work

both satisfy the required split verification property. In the full version of
this paper [WW22], we also show how to use our techniques in conjunction
with somewhere statistically binding hash functions [HW15] to obtain a some-
where extractable commitment scheme. This suffices to obtain a RAM delegation
scheme from the SXDH assumption in asymmetric pairing groups.

Application to Aggregate Signatures. In the full version of this paper [WW22], we
describe a simple approach of constructing aggregate signatures that supports
bounded aggregation from a BARG for NP. Together with our BARG for NP
(from either subgroup decision or k-Lin), we obtain an aggregate signature scheme
from the same assumption.
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Abstract. This work introduces new key recovery attacks against the
Rainbow signature scheme, which is one of the three finalist signature
schemes still in the NIST Post-Quantum Cryptography standardization
project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for
the SL 1 parameters. Concretely, given a Rainbow public key for the SL 1
parameters of the second-round submission, our attack returns the corre-
sponding secret key after on average 53 h (one weekend) of computation
time on a standard laptop.

1 Introduction

The Rainbow signature scheme [7], proposed by Ding and Schmidt in 2005,
is one of the oldest and most studied signature schemes in multivariate cryp-
tography. Rainbow is based on the (unbalanced) Oil and Vinegar signature
scheme [10,15], which, for properly chosen parameters, has withstood all crypt-
analysis since 1999. In the last decade, there has been a renewed interest in
multivariate cryptography, because it is believed to resist attacks from quantum
adversaries. The goal of this paper is to improve the cryptanalysis of Rainbow,
which is an important objective because Rainbow is currently one of three final-
ist signature schemes in the NIST Post-Quantum Cryptography standardization
project.

Related Work. The cryptanalysis of Rainbow and its predecessors was an
active area of research for some years in the early 2000s. Attacks from this era
include the MinRank attack, HighRank attack, the Billet-Gilbert attack, UOV
reconciliation attack, and the Rainbow Band Separation Attack [4,8,9,11,18].
After 2008 the cryptanalysis seemed to have stabilized, until the participation
of Rainbow in the NIST PQC project motivated more cryptanalysis. During the
second round of the NIST project, Bardet et al. proposed a new algorithm for
solving the MinRank problem [2]. This drastically improved the efficiency of the
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MinRank attack, although not enough to threaten the parameters submitted
to NIST. A more memory-friendly version of this algorithm was proposed by
Baena et al. [1]. Perlner and Smith-Tone tightened the analysis of the Rainbow
Band Separation attack, showing that the attack was more efficient than previ-
ously assumed [16]. This prompted the Rainbow team to increase the parameters
slightly for the third round. During the third round, Beullens introduced new
attacks [3] which reduced the security level of Rainbow by a factor of 220 for the
SL 1 parameters. The Rainbow team argued that despite the new attacks, the
Rainbow parameters still meet the NIST requirements [17].

Contributions. This paper introduces two new (partial) key-recovery attacks.
Recall that if P : Fn

q → F
m
q is a Rainbow public key, then the corresponding

secret key contains, among some other information, a subspace O2 ⊂ F
n
q , such

that P(O2) = 0.
Our attacks are based on the simple observation that for a randomly chosen

x ∈ F
n
q , the differential

Dx : Fn
q → F

m
q : y �→ P(x + y) − P(x) − P(y)

(which is a linear map) has a kernel vector in O2 with probability ≈ 1/q. Given
this observation, we first propose the following simple strategy to find a vector
in O2: Guess a vector x, and try to solve for a vector o such that{

Dxo = 0
P(o) = 0

. (1)

If we find such a solution o, then with high probability it is in O2. If no solution
exists, we try again with a different guess for x. In fields of odd characteristic,
we find that the quadratic system (1) behaves exactly like a random system. In
fields of characteristic 2 (which includes all the parameters submitted to NIST
in the second and third rounds), the system has some structure that can be
exploited to solve it slightly more efficiently. When a vector in O2 is found, we
can remove the outer layer of the Rainbow public key, which reduces it to a UOV
public key with parameters that are too small to be secure. This simple attack
is efficient enough to do a key recovery attack in practice for the SL1 parameter
set from the second-round submission to the NIST PQC project. For a single
guess of x, it takes only 3 h and 32 min to solve system (1), and a guess is good
with a probability of approximately 1/15.06, so on average, a full attack takes
15.06 · 3.53 ≈ 53 h. We estimate that a key recovery for the SL 1 parameter set
of the third-round submission requires only a factor 28 more effort (see Table 1).

For the parameter sets targeting NIST security levels 3 and 5, we find that
the attack can be improved by combining the new technique with the rectangular
MinRank attack of Beullens [3]. The combined attack chooses a random x and
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essentially restricts P to the kernel of Dx and runs the rectangular MinRank on
this smaller system, which will succeed with a probability of approximately 1/q.
Estimates of the complexities of the simple and combined attacks against the
Rainbow parameter sets submitted to NIST are given in Table 1.

Table 1. An overview of the cost of our attacks versus known attacks for the six
Rainbow parameter sets submitted to the second round and the finals of the NIST PQC
standardization project. Complexities are given as log2 of the estimated gate count.
The complexities of the known attacks are taken from [3]. For the SL I parameters we
have a key-recovery attack (marked by ∗), the other attacks are forgery attacks.

Parameter set (q, n,m, o2) Simple attack Combined
attack

Known
attacks

Second
SL 1 (16, 96, 64, 32) 61∗ 93∗ 123∗

round
SL 3 (256, 140, 72, 36) 186 131 151

SL 5 (256, 188, 96, 48) 246 164 191

SL 1 (16, 100, 64, 32) 69∗ 99∗ 127∗

Finals SL 3 (256, 148, 80, 48) 160 157 177

SL 5 (256, 196, 100, 64) 257 206 226

2 Preliminaries

Notation. Let Fq be the finite field with q elements, and let P = {pi}mi=1

be a sequence of m multivariate quadratic polynomials in n variables over Fq.
We identify P with the function P : Fn

q → F
m
q defined as P(x) = {pi(x)}mi=1.

We define the differential P ′(x,y) (sometimes called the polar form of P) as
P ′(x,y) := P(x+ y) − P(x) − P(y) + P(0). It is easily checked that P ′(x,y) is
symmetric and bilinear.

Solving Multivariate Systems. Our attacks use (in a black-box way) a sub-
routine that given a homogeneous multivariate quadratic map P : Fn

q → F
m
q ,

finds a non-zero solution x such that P(x) = 0, if such a solution exists. We
instantiate this subroutine with the block Wiedemann XL algorithm [5,6,13,14].
This algorithm constructs a large but very sparse system of linear equations and
solves it with the block Wiedemann algorithm to take advantage of the sparsity.
For the experimental validation of our attacks we used the optimized implemen-
tation of Block Wiedemann XL by Cheng, Chou, Niederhagen, and Yang [5]. The
cost of this algorithm on an instance with m random homogeneous equations in
n variables can be estimated as the cost of

3
(

n − 1 + D

D

)2(
n + 1

2

)
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field multiplications, where D is the operating degree of XL, which is chosen to
be the smallest integer such that the coefficient of the tD term in the power
series expansion of

(1 − t2)m

(1 − t)n

is non-positive.

Example 1. Suppose we want to find a solution to a system of 63 homogeneous
quadratic equations in 31 variables. We have

(1 − t2)63

(1 − t)31
= 1 + 31t + 433t2 + 3503t3 + 17081t4 + 41447t5 − 44919t6 + O(t7) ,

so we can run XL at degree D = 6, with an estimated cost of

3
(

31 − 1 + 6
6

)2(31 + 1
2

)
≈ 252.3

field multiplications.

Solving MinRank Problems. Our attacks will also make use of an algorithm
to solve the MinRank problem. An instance of this problem is a list of matrices
L1, . . . , Lk ∈ F

n×m
q , and a target rank r. The task is to find a non-zero linear

combination of the matrices whose rank is at most r. This NP-hard problem
often appears in the cryptanalysis of multivariate and rank metric code-based
cryptosystems [8,12], and has therefore been studied relatively well.

Our attacks use the support-minors algorithm of Bardet, Bros, Cabarcas,
Gaborit, Perlner, Smith-Tone, Tillich, and Verbel [2]. This algorithm translates
the rank condition to a large sparse system of bilinear equations and solves this
system using linearization and sparse linear algebra methods. The cost of this
algorithm can be estimated as

3(k − 1)(r + 1)
(

m

r

)2(
k + b − 2

b

)2

field multiplications, where b is the operating degree of the algorithm, which is
chosen to be the smallest positive integer such that

(
m

r

)(
K + b − 2

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
m

r + i

)(
n + i − 1

i

)(
K + b − i − 2

b − i

)
. (2)

It is sometimes beneficial to ignore some columns of the Li matrices; one
can choose to truncate the Li matrices to their first m′ ≤ m columns, for some
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optimal value of m′ in the range [r +1,m]. It might seem wasteful to not use all
the columns, but current MinRank algorithms can unfortunately not always use
all the columns efficiently. (Similar to how LWE solving algorithms often cannot
make good use of all their LWE samples.)

Example 2. Suppose we are given k = 92 matrices with n = 187 rows and
m = 96 columns each, and we know there is a non-zero linear combination of
the matrices with rank r = 48, which we want to find. Plugging our parameters
into inequality (2), we find that can work at degree b = 1 as longs as we keep at
least 72 columns, we can work at b = 2 if we keep at least 68 columns, at b = 3 if
we keep 65 columns and at b = 4 if we keep 63 columns etc. It turns out that we
get the most efficient algorithm if we keep m′ = 65 columns and work at degree
b = 3. The estimated cost of the algorithm is then

3(92 − 1)(48 + 1)
(

65
48

)2(92 + 3 − 2
3

)2

≈ 2149.1

field multiplications.

The Rainbow Trapdoor. We present the Rainbow trapdoor as described by
Beullens [3]. A Rainbow instance is parameterized by four parameters:

– q, the size of the finite field,
– n, the number of variables,
– m, the number of equations in the public key, and
– o2, the dimension of the subspaces O2 ⊂ F

n
q and W ⊂ F

m
q .

The public key is then a multivariate quadratic map P : Fn
q → F

m
q , and the

secret key consists of three linear subspaces O1, O2,W , such that (see Fig. 1):

1. O2 ⊂ O1 ⊂ F
n
q , and W ⊂ F

m
q ,

2. dim(O2) = dim(W ) = o2, and dim(O1) = m,
3. for all o2 ∈ O2 and x ∈ F

n
q we have P(o2) = 0 and P ′(x,o2) ∈ W , and

4. for all o1 ∈ O1, we have P(o1) ∈ W .

The key generation algorithm chooses the subspaces O2 ⊂ O1 ⊂ F
n
q and W ⊂

F
m
q of the correct dimension, and produces a public key P that is distributed

uniformly among all the P that behave properly on O2, O1,W . How to do key
generation efficiently, and how to use the trapdoor structure to sample preimages
for P is irrelevant for our attacks, so we refer to [3] for the details. Note that
traditionally the Rainbow trapdoor is explained in terms of a central multivariate
quadratic map F : F

n
q → F

m
q (sampled from some family of maps for which
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it is easy to sample preimages), and two random linear maps S ∈ GL(Fn
q ),

T ∈ GL(Fm
q ). The public key is then P(x) = T ◦ F ◦ S(x), where the intuition

is that the linear maps hide the structure of the system F . Both views are
equivalent (see [3]), although arguably the description in terms of the subspaces
O1, O2 and W conveys the structure of the Rainbow trapdoor better.

F
n
q O1 O2

F
m
q W {0}

P P P (x,·) P

Fig. 1. The structure of a Rainbow public key. The differential P ′(x, ·) maps O2 to W
for every x ∈ F

n
q .

3 Simple Attack

Let (pk = P, sk = (O2, O1,W )) be a Rainbow key pair. For any vector x ∈ F
n
q ,

and any vector o2 ∈ O2, we have by construction (see Sect. 2) that P ′(x,o2) ∈
W . So for any x we can consider the differential

Dx : Fn
q → F

m
q : y �→ P ′(x,y),

which is a linear map from F
n
q to F

m
q , that moreover sends O2 to W . For any fixed

non-zero x the differential Dx|O2 restricted to O2 is a uniformly random linear
map from O2 to W (over the random bits of the key generation algorithm). Note
that dim(O2) = dim(W ) = o2, so the probability that Dx has a kernel vector in
O2 is exactly the probability that a random o2-by-o2 matrix over Fq is singular.
A matrix is non-singular if the first row is non-zero, and for each i < o2, the
i+1-th row is not in the span of the first i rows (which happens with probability
qi−1−o2), so the probability of being singular is

1 −
o2−1∏
i=0

(
1 − qi−o2

)
,

which is close to 1/q for sufficiently large q, regardless of o2. For example, with
q = 16, o2 = 32, the probability is approximately 1/15.06.
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Our attack is now to simply pick a random (non-zero) x, hope that the
kernel of Dx intersects O2 non-trivially, and then try to solve for a vector o in
this intersection. Since P(o) = 0 for all o ∈ O2, we propose to do this by solving
the following system {

Dx o = 0
P(o) = 0

This system consists of m homogeneous linear equations, and m homogeneous
quadratic equations in the n variables of o. If we use the m linear equations
to eliminate m of the variables from the quadratic equations, we end up with
a system of m homogeneous equations in n − m variables. Concretely, let B ∈
F
n×(n−m)
q be a matrix whose columns form a basis for ker(Dx), then we are

looking for a solution y ∈ F
n−m
q to P̃(y) = 0, where P̃(y) := P(By).

Attack in Fields of Odd Characteristic. Our experiments (see AppendixA)
show that when q is odd, P̃ behaves like a random system of m homogeneous
quadratic equation in n−m variables in the XL algorithm. The ranks of the XL
systems exactly match the ranks of XL systems of systems or random quadratic
equations at each operation degree D. In particular, if a solution to P̃(y) = 0
exists we can find it with an estimated cost of

3
(

n − m − 1 + D

D

)2(
n − m + 1

2

)

field multiplications, where D is the smallest positive integer such that the tD

coefficient of the power series expansion of (1 − t2)m/(1 − t)m−n (see Sect. 2.)

Attack in Fields of Even Characteristic. Our experiments show that for
even q, the rank of the XL systems does not match that of random systems, and
just applying the XL as in the case of odd characteristic sometimes fails. The
reason is that P ′(x,x) = 2P(x) vanishes in characteristic 2, so x ∈ ker(Dx).
This means there is a ỹ ∈ F

n−m
q , known to the attacker, such that Bỹ = x,

(recall that the columns of B form a basis for ker(Dx). For this ỹ we have that
P̃(ỹ + y) = P̃(ỹ) + P̃(y) for all y ∈ F

n−m
q , which is not something that usually

happens for random P̃.
Luckily for us, this is not a problem for the attack, in fact we can even exploit

this property to make the attack slightly more efficient: Recall that we want to
find y such that P̃(y) = 0. Let Y ⊂ F

n−m
q be any subspace of dimension n−m−1

that does not contain ỹ, such that 〈ỹ〉+Y = F
n−m
q . Then it suffices to find y′ ∈ Y

such that P̃(y′) = αP̃(ỹ) for some α ∈ Fq, because then y =
√

αỹ + y′ is a
solution to P̃(y) = 0, (recall that every element has a square root in fields of
characteristic 2, so

√
α exists), because

P̃(
√

αỹ + y′) = αP̃(ỹ) + P̃(y′) = 0.
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To find this y′ ∈ Y , we restrict P̃ to Y , and look for a solution to the m − 1
homogeneous quadratic equations

P̂ := {p̃1ai − p̃ia1}mi=2 ,

where a = P̃(ỹ), and we assume with loss of generality that a1 �= 0.
By restricting to Y , we remove the problematic vector ỹ, so it should not be

a surprise that our rank experiments show that the new system P̂ behaves like a
system of m−1 random homogeneous quadratic equations in n−m−1 variables
(see the rank experiments in AppendixA). Therefore, if a solution exists, we can
find it with an estimated cost of

3
(

n − m − 2 + D

D

)2(
n − m

2

)

field multiplications, where D is the smallest positive integer such that the tD

coefficient of the power series expansion of (1 − t2)m−1/(1 − t)m−n−1.

Completing the Attack. Once a vector in O2 is found, the second layer of
Rainbow can be removed, and the security of Rainbow is reduced to the security
of a smaller UOV system with m′ = m − o2 equations in n′ = n − o2 variables.
See e.g., Section 5.3 of [3]. Given a single vector o ∈ O2, one can first compute

〈P ′(o, e1), . . . ,P ′(o, en)〉 ⊂ W,

which will with overwhelming probability be an equality. Let V be a change of
variables that sends W to the last o2 coordinates of Fm

q , and split up V ◦ P as

V ◦ P(x) =

{
P1(x)
P2(x)

where P1 : Fn
q → F

m−o2
q consists of the first m − o2 coordinates of V ◦ P and

P2 : Fn
q → F

o2
q the remaining o2 coordinates. Then O2 can be found as the kernel

of the linear map

o �→
⎛
⎝P ′

1(e1,o)
· · ·

P ′
1(en,o)

⎞
⎠ .

The space O2 sits in this kernel because P ′(x,o) ∈ W for all x ∈ F
n
q , and with

overwhelming probability, the kernel is exactly equal to O2.
Now, let U be a change of variables that sends the last o2 coordinates of Fn

q

to O2, and let

V ◦ P ◦ U(x) = F(x) =

{
F1(x)
F2(x),



472 W. Beullens

where again, F1 consists of the first m − o2, and F2 of the remaining o2 coor-
dinates of V ◦ P ◦ U . Then F1 only depends on the first n − o2 entries of x:
Let y be a vector whose first n − o2 entries are zero, then U(y) ∈ O2, so
F1(x+y) = F1(x)+P ′

1(U(x), U(y))+P(U(y)) = F1(x). Moreover, F1 vanishes
on U−1O1, because P(O1) ∈ W . So, ignoring the last o2 coordinates, F1 has the
structure of a UOV public key with n′ = n − o2 variables and an oil space of
dimension m′ = m − o2.

Finding preimages for P is equivalent to finding preimages for F , since they
differ by a change of variables known to the attacker. We now show that finding
preimages for F reduces to finding preimages for F1: Suppose we are given
t = (t1, t2) and we want to find x such that F1(x) = t1 and F2(x) = t2. We
proceed as follows:

1. Find x such that F1(x) = t1 with some attack on UOV with parameters
(n′,m′) = (n − o2,m − o2),

2. Solve for o ∈ F
n
q whose first n− o2 entries are zero, such that F2(x+o) = t2.

This is a system of o2 linear equations in o2 variables, because F2(x + o) =
F2(x) + F ′

2(x,o) is linear in o, so this o can be found efficiently.
3. Output x + o. Note that F1(x + o) = F1(x) = t1 because F1 only depends

on the first n − o2 variables. So x + o is really a solution.

Remark 1. This is exactly how the real signing algorithm works, except that a
genuine signer has knowledge of O1, which allows him to do step 1 efficiency.

For the SL 1 parameter sets of the second-round and third-round NIST sub-
missions, F1 is a UOV map whose parameters are (n′,m′) = (64, 32) and (68, 32)
respectively. In these cases the Kipnis-Shamir attack [11], which runs in time
qn

′−2m′ · poly(n′), can recover O1 very efficiently, so we have a full key recovery
attack. For the SL 3 and 5 parameter set, the UOV instances can resist known
key-recovery attacks, so a full key-recovery attack seems out of reach. However,
since m′ = m − o2 is relatively small, we can still solve F1(x) = t1 directly, so
we can forge signatures without recovering O1. For the parameters submitted
to NIST the cost of solving F1(x) = t1 with the Wiedemann XL algorithm is
lower than the complexity of finding O2 and W , so the complexity of the forgery
attack is dominated by the cost of finding O2 and W .

Example 3. The SL1 parameter set of the second-round NIST submission is
q = 16, n = 96,m = 64, o2 = 32. To find O2 and W for this parameter set
we need to solve systems of m − 1 = 63 homogeneous quadratic equations in
n − m − 1 = 31 variables, so the estimated cost of solving each system is 252.3

multiplications (see Example 1). On average we need to try 15.06 systems. If
the cost of one F16-multiplication is 36 gates, then we can estimate that the
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total average gate cost of finding O2 and W is 252.3 · 15.06 · 36 ≈ 261.4. After we
found O2 and W , we are left with a UOV public key with m′ = 32 equations
and n′ = 64 variables. So O1 can be found in polynomial time with the Kipnis-
Shamir attack [11]. The complexity of the attack is dominated by the first step,
which has a complexity of ≈ 261.4, as reported in Table 1.

4 Combination with Rectangular MinRank Attack

Even though the simple attack from the previous section is very efficient for
the NIST SL 1 parameter sets of Rainbow (because n − m is small), we see
in Table 1 that for the SL 3 and SL 5 parameter sets, the new attack does
not always outperform the rectangular MinRank attack of Beullens [3]. In this
section, we first summarize how the rectangular MinRank attack works, and then
we show that it can be made more efficient by combining it with our “guess-Dx”
technique.

Rectangular MinRank Attack. Let e1, · · · , en be a basis for F
n
q , and let P

be a Rainbow public key. Then we define n rectangular matrices Li ∈ F
n×m
q as

Li :=

⎛
⎝P ′(e1, ei)

. . .
P ′(en, ei)

⎞
⎠ ,

for all i from 1 to n. Let o ∈ F
n
q be a vector, then since P ′ is bilinear, we have

that
n∑

i=1

oiLi =

⎛
⎝ P ′(e1,o)

. . .
P ′(en,o),

⎞
⎠

which has rank at most dim(W ) = o2 if o ∈ O2, because all the rows of the
matrix are in W .

We have n public matrices of dimensions n-by-m, and we know there exist lin-
ear combinations of these matrices that have exceptionally low rank ≤ dim(W ),
so we have an instance of the MinRank problem. We can now use generic Min-
Rank solvers, such as the algorithms by Bardet et al. [2], to find a linear com-
bination o ∈ F

n
q , such that

∑
oiLi has rank at most o2. If o is such a solution,

then with overwhelming probability o ∈ O2.
Note that every o ∈ O2 is a solution to the MinRank problem. Therefore,

we can discard o2 − 1 of the matrices, and the span of the remaining n − o2 + 1
matrices will still contain a non-zero matrix of low rank. This is useful because
reducing the number of matrices in the MinRank problem reduces the cost of
finding a solution.
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Once a solution o ∈ O2 is found, the security of Rainbow is reduced to the
security of a small UOV public key, as explained at the end of section Sect. 3.

Remark 2. We have extra information about the solution o to the MinRank
problem, namely that P(o) = 0. Beullens [3] shows that the MinRank solving
algorithm of Bardet et al. [2] can be adapted to take advantage of this extra
information. This reduces the cost of the attack by a small factor between 22

and 29 for the Rainbow parameters submitted to NIST.

Combined Attack. The combined attack is straightforward. We choose a ran-
dom x ∈ F

n
q , and then we solve for a vector o ∈ ker(Dx), such that

∑
oiLi has

rank at most o2. We can use the Dxo = 0 equations to reduce the number of
matrices in the MinRank problem by m. Concretely, let b1, . . . ,bn−m be a basis
for ker(Dx), then we consider the n − m matrices

L̃i :=
n∑

j=1

bijLj =

⎛
⎝P ′(e1,bi)

. . .
P ′(en,bi)

⎞
⎠ ,

for all i from 1 to n−m. Now o =
∑

xibi ∈ ker(Dx) is a solution to the original
MinRank problem if and only if x is a solution to the new MinRank problem
with n − m matrices L̃1, . . . , L̃n−m.

The advantage of this approach is that we now have a MinRank problem with
only n − m matrices, which makes finding the solution much easier compared
to the original rectangular MinRank attack, where we had n − o2 + 1 matrices.
This comes at the cost of having to repeat the attack on average approximately
q times, until ker(Dx) ∩ O2 �= {0}.

Experiments (see Appendix A) reveal that the MinRank instance
L̃1, . . . , L̃n−m does not behave like a random MinRank instance. Upon inspection
we see that this is because for all L̃i, we have

xL̃i = P ′(x,bi) = Dxbi = 0.

That is, there is a common linear dependency shared by all the L̃i matrices. This
means that one of the rows is not contributing any information to the MinRank
problem. For example, if x1 �= 0, then the first row of

∑
oiL̃i is just a linear

combination of the other rows, which means we can safely delete this first row
without affecting the rank of

∑
oiL̃i. After deleting a row from the L̃i we get a

MinRank problem with n−m matrices of size (n−1)-by-m, and for which there
exists a solution of rank o2 if the guess of Dx was good. Our rank experiments
show that this system behaves exactly like a random MinRank instance in fields
of odd characteristic. In fields of characteristic two, we occasionally observe some
rank defects (see AppendixA). Since the observed defects are small, we believe



Breaking Rainbow Takes a Weekend on a Laptop 475

that the complexity of solving random MinRank instances is a good estimate for
the complexity of solving the MinRank instances coming from a Rainbow public
key. We leave the investigation of the rank defects and quantifying how much is
gained by adding the P(o) = 0 equations for future work.

Example 4. We estimate the cost of the combined attack against the SL 5
parameter set from the second-round submission to NIST. This parameter set
is q = 256, n = 188,m = 96, o2 = 48. This means that after guessing a good Dx

(which happens with probability of approximately 1/255), we get a MinRank
instance of n − m = 92 matrices with n − 1 = 187 rows and m = 96 columns,
whose span contains a non-zero matrix of rank o2 = 48. Solving this MinRank
instance with the algorithm of Bardet et al. costs 2149.1 field multiplications
(see Example 2). If the gate cost of a F256-multiplication is 128, then the total
expected gate cost of finding O2 and W is 2149.1 · 128 · 255 ≈ 2164.1. Once O2

and W are known, the security is reduced to the security of a UOV public key
F1 with m′ = 48 equations and n′ = 140 variables. A system F1(x) = t1 can
be solved directly with the Wiedemann XL algorithm with an estimated gate
cost of 2158.6, so the total cost of the forgery attack is 2158.6 + 2164.1 ≈ 2164.1,
as reported in Table 1. This is an improvement by a factor 227 over previously
known attacks.

5 Experimental Results and Conclusion

To validate our attack and showcase that the attack is efficient enough to be
performed in practice, we implemented a Sage script that generates a Rainbow
public key, guesses a vector x ∈ F

n
q , and constructs (in fields of odd character-

istic) the system P̃ as described in Sect. 3, and writes it to a file in the format
readable by the optimized implementation of the block Wiedemann XL algo-
rithm by Cheng, Chou, Niederhagen, and Yang [5]. In fields of characteristic
two, the script instead constructs and stores the slightly smaller P̂ system. We
then run the block Wiedemann XL algorithm on the stored systems, and find
that it indeed finds solutions to P̃(x) = 0 (resp. P̂(x) = 0) if the solutions exist.

The SL 1 parameter set of the second-round Rainbow submission is (q =
16, n = 96,m = 64, o2 = 32). For these parameters solving P̂(x) = 0 takes
three hours and 32 min on a laptop using the 8 cores of an Intel i9-10885H CPU,
running at 2.5 GHz. The block Wiedemann XL implementation reports on the
rate at which it does F16-multiplications, which fluctuates between 130 and 200
multiplications per cycle. This is consistent with the estimate that solving the
system takes 252.3 multiplications (Example 1). Solving the system only uses 1.1
GB of memory. Since each guess x leads to a key recovery with a probability of
1/15.06, the total expected running time of the attack is 15.06 · 3.53 ≈ 53 h.
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We can use the knowledge of the secret key to determine if a guess for x is
good (i.e., if ker(Dx) ∩ O2 �= {0}) without doing the expensive system-solving
computation. This allows us to try a large number of guesses and count how
often a guess is good. We made 4000 guesses and found that 242 of them are
good, which is consistent with the null hypothesis of 1/15.06 (with a one-sided
p-value of 0.085).

We implemented the full attack in a Sage script that makes calls to the opti-
mized system-solving implementation of [5]. This includes a naive Sage imple-
mentation of the Kipnis-Shamir attack to break the UOV instance obtained by
removing the outer layer of the Rainbow public key. We ran the key recovery
attack for the SL1 parameters from the second-round NIST submission. We were
somewhat unlucky and it took 20 attempts before we had a success. (The prob-
ability of not succeeding in the first 19 attempts is (14/15)19 = 0.27.) After the
first successful WXL step, our script was able to recover the full secret key after
22 s, which is negligible compared to the cost of solving the 20 systems. The sage
implementation of our attack and scripts for reproducing the rank experiments
of AppendixA are available at

https://github.com/WardBeullens/BreakingRainbow

We can conclude that the cost and success probability of the attack in practice
agree very well with what the theory predicts. Moreover, we demonstrated that
a key-recovery against the SL 1 parameter set of the second-round submission
of Rainbow can be performed in practice by anyone with a decent laptop and
some patience (or luck). A key-recovery attack against the SL 1 parameter set
of the third-round Rainbow submission is expected to be more costly by only a
factor 28, so this should be feasible for an attacker with a moderate amount of
resources.

In principle, it would be possible to move to larger parameters to protect
against the attacks presented in this paper, at the cost of larger key sizes and
signature sizes. E.g., the SL 3 parameters of the third-round submission seem
to provide enough security for SL 1, but those parameters have signatures and
public keys that are larger by a factor 2.5 and 4.4 respectively compared to the
SL 1 parameters. However, there seems to be some room for improvement for the
attacks in Sect. 4, so more cryptanalysis would be required before we can have
confidence in the security of Rainbow. Moreover, the resulting Rainbow signature
scheme would be less efficient than the Oil and Vinegar scheme. So there is
seemingly no reason to prefer Rainbow over the Oil and Vinegar scheme [15], on
which Rainbow is based, and which is older, simpler, and has a strictly smaller
attack surface in comparison to Rainbow. (E.g., none of the attacks in this paper
seem to apply to the Oil and Vinegar scheme).

https://github.com/WardBeullens/BreakingRainbow
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A Rank Experiments

Simple Attack. For some rainbow parameter sets over F31 we construct some
P̃(x) = 0 systems as in our simple attack, and compute the ranks of Macaulay
matrices of these systems at various degrees. These ranks are displayed in Table 2.
Similarly, for some rainbow parameters over F16, we construct some P̂(x) = 0
systems, and we displayed the ranks of their Macaulay matrices in Table 3. We
observe in both cases that the ranks are identical to the ranks of systems of
uniformly random quadratic equations with the same dimensions. I.e., if P̃(x)
(or P̂(x)) has m equations and n variables, then the rank of its Macaulay matrix
at degree D is equal to the coefficient of tD in the power series expansion of

(1 − t)n(1 − (1 − t2)m),

if this coefficient is positive. Otherwise, the system has a kernel of dimension 1,
which corresponds to the 1-dimensional space of solutions. This is evidence that
the P̃(x) = 0 and P̂(x) = 0 systems do not have special properties that make
them easier or harder to solve in comparison with random systems.

Combined Attack. Table 4 reports on some of our rank experiments for the
combined attack. For some small Rainbow parameter sets, we executed the com-
bined attack from Sect. 4 to derive a MinRank instance with n−m matrices with
n − 1 rows and m columns (of which we keep m′). Then we constructed the lin-
earized systems as they appear in the MinRank solving algorithm of Bardet et
al. at several bi-degrees (b, 1), and we compute their ranks. We found that in
odd characteristic, the rank of the Macaulay matrices always matches those of
random MinRank instances with the same parameters. In contrast, we some-
times observe a small rank defect in characteristic two (they are underlined in
the Table 4).

Table 2. The rank and the number of columns of the Macaulay matrices for the
P̃(x) = 0 system of equations of simple attack over F31. Ranks of the Macaulay matrix
of degree D is given in boldface if the system can be solved at that degree.

Rainbow P̃ Rank of Macaulay

parameters size matrix at degree D

n m o2 m n D = 2 D = 3 D = 4

30 20 10 20 10 rank 20 200 714
columns 55 220 715

45 30 15 30 15 rank 30 450 3059
columns 120 680 3060

60 40 20 40 20 rank 40 800 7620

columns 210 1540 8855
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Table 3. The rank and the number of columns of the Macaulay matrices for the
P̂(x) = 0 system of equations of simple attack over F16. Ranks of the Macaulay matrix
of degree D is given in boldface if the system can be solved at that degree.

Rainbow P̂ Rank of Macaulay

parameters size matrix at degree D

n m o2 m n D = 2 D = 3 D = 4

30 20 10 19 9 rank 19 164
columns 45 165

36 24 12 23 11 rank 23 253 1000
columns 66 286 1001

42 28 14 27 13 rank 27 351 1819
columns 91 455 1820

Table 4. The rank and the number of columns of the Macaulay matrices for the
MinRank problems from the combined attack over F31 and F16. Ranks of the Macaulay
matrix at bi-degree (b, 1) is given in boldface if the system can be solved at that bi-
degree.

Rainbow MinRank Rank of Macaulay

parameters parameters matrix at bi-degree (b, 1)

n m o2 k m′ b = 1 b = 2 b = 3

rank in F31 279
15 10 5 5 8 rank in F16 279

columns 280

rank in F31 98 314
15 10 5 5 7 rank in F16 98 314

columns 105 315

rank in F31 78 533 1799
14 6 4 8 6 rank in F16 78 527 1799

columns 120 540 1800
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Abstract. In this article, we generalize the works of Pan et al. (Euro-
crypt’21) and Porter et al. (ArXiv’21) and provide a simple condition
under which an ideal lattice defines an easy instance of the shortest vec-
tor problem. Namely, we show that the more automorphisms stabilize
the ideal, the easier it is to find a short vector in it. This observation
was already made for prime ideals in Galois fields, and we generalize it
to any ideal (whose prime factors are not ramified) of any number field.

We then provide a cryptographic application of this result by showing
that particular instances of the partial Vandermonde knapsack problem,
also known as partial Fourier recovery problem, can be solved classically
in polynomial time. As a proof of concept, we implemented our attack
and managed to solve those particular instances for concrete parameter
settings proposed in the literature. For random instances, we can halve
the lattice dimension with non-negligible probability.

1 Introduction

Euclidean lattices are mathematical objects that play an important role in many
areas of mathematics and computer science. There are several computational
problems related to lattices that are proven to be NP-hard, for instance, the
problem of finding a shortest vector (SVP) or a set of shortest independent
vectors (SIVP) in a given lattice. A standard relaxation consists in solving them
only up to some approximation factor γ ≥ 1, denoted γ-S(I)VP. It is commonly
conjectured that the problems remain hard to solve for approximation factors
that are polynomial in the lattice rank. Their presumed intractability provides a
fundamental starting point for the construction of provably secure cryptographic
schemes, shown in the seminal works of Ajtai [Ajt96] and Regev [Reg05].

Unfortunately, all cryptographic schemes relying on the hardness of those lat-
tice problems inherently suffer from large keys and slow computation times, being
quadratic in the security parameter. In order to improve efficiency, problems
on structured lattices have been introduced, e.g., [Mic02,LM06,PR06,SSTX09,
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LPR10,LS15]. The most popular setting is to consider OK-modules of rank r,
where OK is the ring of integers of some number field K of degree d. By apply-
ing the d different field embeddings from K to C, any OK-module of rank r
is mapped to a lattice of rank d · r. Those lattices inherit the module structure
(i.e., closed with respect to scalar multiplication by ring elements) and are called
module lattices. If the module rank equals 1, they are called ideal lattices.

Many structured lattice assumptions, such as Ring-LWE [SSTX09,LPR10],
NTRU [HPS98] or Module-LWE [LS15] can be solved with an SVP solver in
module lattices of small rank (≥ 2). This motivates the study of the hardness
of SVP in module lattices. To start tackling this problem, many algorithms
have focused on the special case of solving SVP in rank-1 modules, that is in
ideals. This restricted problem is denoted by Id-SVP. While solving Id-SVP
is not known to break any of the three lattice assumptions mentioned above,
studying this (potentially easier) problem can be seen as a first step to better
understand the hardness behind algebraically structured lattices. Another moti-
vation for studying Id-SVP comes from the fact that the first hardness result
for Ring-LWE was a reduction from worst-case Id-SVP [SSTX09,LPR10]. This
reduction only provides a lower bound on the hardness of Ring-LWE, and we
have today a stronger reduction, from worst-case SVP in modules of rank ≥ 2,
for some more restricted regime of parameters of Ring-LWE [AD17]. Still, even if
an efficient algorithm for Id-SVP would not have a direct impact on the security
of Ring-LWE, it would make the reduction from Id-SVP vacuous, and hence let
some interesting regime of Ring-LWE without lower bound security guarantees.

Even though most of the lattice-based cryptographic schemes are not known
to reduce to SVP in ideal lattices (but in module lattices of rank ≥ 2), there
are a few counter-examples. They can be found among the first constructions
of FHE schemes by Gentry [Gen09] or, as we will see below, in the constructions
based on the partial Vandermonde knapsack problem [HPS+14] (also known as
the partial Fourier recovery problem).

Hardness of Id-SVP. The hardness of Id-SVP has attracted a lot of work in
recent years. On the one hand, some works have proven worst-case to average-
case reductions for problems in ideal lattices [Gen09,dBDPW20]. They proved
that there exist distributions over the set of ideal lattices such that an ideal
chosen from this distribution is “as hard as possible”. More formally, if one can
solve Id-SVP for such random lattices with non-negligible probability, then one
can solve Id-SVP in any ideal lattice.

On the other hand, several works have shown weaknesses of Id-SVP for spe-
cific choices of ideals or parameters. Cramer et al. [CDPR16] showed that Id-SVP
can be solved in quantum polynomial time for principal ideals (i.e., ideals gener-
ated by a single ring element) of cyclotomic fields, when the generator is sampled
from a Gaussian distribution. It is also known that the relaxed variant of Id-SVP
with a large approximation factor ≈ 2

√
d can be solved in quantum polynomial

time in cyclotomic fields of degree d [CDW21]. In 2021, Pan et al. [PXWC21]
showed that, for some prime ideals with a lot of symmetries (in Galois number
fields), the Id-SVP problem can be solved classically in polynomial time, with a
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polynomial approximation factor. This was extended by Porter et al. [PML21,
Theorem 3] to a larger class of ideals, whose characterization is harder to state
and relies on factoring properties of the ideal, as well as its algebraic norm.

Finally, there is a line of work targeting Id-SVP for all ideals of all number
fields, for various approximation factors [PHS19,BR20,BLNR21]. However, the
algorithms require an exponential-time pre-processing, and are at the moment
no better than lattice reduction algorithms that work on unstructured lattices
(e.g. BKZ).

Partial Vandermonde Knapsack. In the late 90’s, Hoffman et al. [HKJL+00]
patented a method for user identification and digital signatures based on the dif-
ficulty of recovering a constrained polynomial from partial information. After-
wards, the partial information was specified as a partial list of the polynomial’s
Fourier transform resulting in a signature scheme called PASS Sign [HPS+14].
The constraint regarding the polynomial was to choose its coefficients uniformly
at random over a bounded set. Lu et al. [LZA18] moved from the Fourier trans-
form (evaluation at all roots of unity) over cyclic rings to the Vandermonde
transform (evaluation only at the primitive roots of unity) over cyclotomic rings.

The hardness assumption that underlies PASS Sign, as given in [LZA18], is
the following. Let q be a prime and let m be an integer such that there exists
a primitive m-th root of unity in the quotient ring Zq := Z/qZ. In this case,
there exist exactly d = φ(m) such primitive roots {ωj}1≤j≤d, where φ is Euler’s
totient function. Further, let g(X) be a polynomial of degree less than d hav-
ing small integer coefficients. Its Vandermonde transform V(g) ∈ Z

d
q is defined

as g(ωj)1≤j≤d mod q. For a subset Ω ⊆ {1, . . . , d} of size t, its partial Vander-
monde transform VΩ(g) ∈ Z

t
q is given by g(ωj)j∈Ω . The partial Vandermonde

knapsack problem (PV-Knap) asks, given VΩ(g), to recover g(X).1

As observed by Boudgoust et al. [BSS22,Bou21], recovering a short poly-
nomial while having access only to a partial list of its Vandermonde trans-
form can be seen as a problem over an ideal lattice. More precisely, in the
mathematical setting above, we know that the ideal generated by q in the m-
th cyclotomic ring OK = Z[X]/Φm(X) completely splits into d prime ide-
als, where Φm(X) denotes the m-th cyclotomic polynomial.2 More precisely,
it yields qOK =

∏d
j=1 pj , where pj = qOK + (X − ωj)OK . Providing the evalu-

ations g(ωj)j∈Ω corresponds to specifying the coset h := g mod IΩ with respect
to the ideal IΩ :=

∏
j∈Ω pj . Hence, PV-Knap essentially requires to recover g

(with small coefficients) given h, which yields a problem over ideal lattices.

Contributions. The results of this work can be divided into three different
parts. First, we show in Sect. 3 that Id-SVP can be solved efficiently for ideal
lattices with a lot of symmetries, generalizing the results of [PXWC21,PML21].

1 In this paper, we only consider regimes where the solution to this problem is unique.
2 For the sake of simplicity, we focus on cyclotomic fields in the introduction but stress

that PV-Knap can be defined over any number field.
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We then show in Sect. 4 that there exist bad instances of PV-Knap, that are easy
to solve using the algorithm above. Last, we present the results of our imple-
mented attacks against different parameter sets and design choices for PV-Knap
proposed in the literature (Sect. 5).

Contribution 1. In [PXWC21], the authors identified a class of “bad ideal lat-
tices”, i.e., ideal lattices in which Id-SVP can be solved efficiently with a polyno-
mial approximation factor: prime ideals in Galois number fields that are above a
prime of Q splitting into many prime factors. This result was later extended to
a larger class of ideals (not necessarily prime) in [PML21, Theorem 3]. However,
the characterization of the bad ideal lattices of [PML21] is significantly more
complex than the one in [PXWC21], and depends on the algebraic norm of the
ideal, as well as some hard to compute quantities, related to the ideal’s prime
decomposition. In this work, we improve upon those results in two ways:

1. we obtain a very simple sufficient condition for an ideal to be a bad ideal;
2. the class of bad ideals that we obtain from this simple condition contains the

ones of [PXWC21] and [PML21], while being strictly larger.

We observe that the condition “a prime ideal is above a prime of Q splitting
into many prime factors” from [PXWC21] can be rephrased more simply as a
condition on the prime ideal having many symmetries (this observation was also
made in [PML21]). By symmetry we mean here that the prime ideal is fixed (as
a set) when applying an automorphism of the number field K in which the ideal
lives. With this, we are able to generalize the result of [PXWC21] to any ideal
(modulo a small condition on their algebraic norm) in any number field (not
necessarily Galois).

Overall, we obtain the following result (informally stated here, see Theo-
rem 3.1 for a formal statement): one can solve Id-SVP in an ideal lattice I in
time roughly exp(d/nI), where d is the degree of the number field K and nI is the
number of automorphisms of K that fix I as a set (this is an integer between 1
and d). If I has no symmetries, then nI = 1 (I is always fixed by the identity),
and we recover the run times of standard lattice reduction algorithms. This
result can also be extended to approximation variants of Id-SVP, leading to an
algorithm with approximation factor γ ≥ 1 and time roughly exp(d/(nI ·log(γ))).

Testing whether an ideal I is fixed by an automorphism τ of K can be done
efficiently if we have a description of τ and a basis of I. Contrary to previous
works, this does not require any knowledge about the factorization of the ideal I.
Hence, our characterization of bad ideals can be easily checked and may be useful
to cryptographers introducing new assumptions related to ideal lattices.

We note that [PML21] also provides at the bottom of p.14 a simplified con-
dition for their result, which does not require the knowledge of the factorization
of I, but still depends on its algebraic norm. This simplified condition however
is quite loose, and our simple condition above captures more ideals. This is for
instance the case for ideals I of norm ≥ 2d which have many symmetries but
whose prime factors have individually very few symmetries: our condition shows
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that these ideals are bad, whereas the condition of [PML21] does not capture
them. Looking ahead, this special family of ideals is exactly the one arising when
we transform a PV-Knap instance into an Id-SVP instance.

The fact that Id-SVP is easier to solve in lattices fixed by automorphisms
of K is not very surprising. Indeed, we know that an element of K fixed by some
automorphisms is actually an element from a subfield of K of smaller dimension.
The same holds for ideals: an ideal I fixed by nI automorphisms can be seen as an
ideal in a subfield L of K (this formulation requires some care, it is made formal
in Lemma 3.3, which is the main new technical material of this contribution),
whose degree is exactly d/nI (the more automorphisms, the smaller the degree
of L). When looking for a short vector in I, one can consider I as an ideal of L
instead of K, i.e., a lattice of smaller dimension d/nI .

Finally, we remark that the results of [PXWC21,PML21] in all Galois fields
are only mathematical results characterizing bad ideals and not algorithms. Both
works then used this mathematical result to provide an Id-SVP algorithm, but
they did so only in cyclotomic number fields. Generalizing the algorithm to
other number fields was left as an open problem in [PXWC21, Remark 1]. In this
work, we provide both the mathematical result (Theorem 3.2) and the algorithm
(Theorem 3.1) for all number fields.

We would like to stress again that our algorithm only solves specific instances
of Id-SVP. Hence, it does not have any implications to the hardness of structured
problems such as Ring-SIS or Ring-LWE, as their hardness is based on the worst-
case hardness of Id-SVP, and the reductions are only one-way.

Contribution 2. We now explain how the algorithm above can be used to solve
some particular instances of PV-Knap in polynomial time. Recall that PV-Knap
asks to recover g ∈ OK of small coefficients given g mod IΩ for the ideal IΩ .
Note that it is easy to find a g′ ∈ OK of unbounded coefficients such that g′ =
g mod IΩ . Thus, solving PV-Knap essentially requires to find the (unique) ele-
ment h′ ∈ IΩ that is “close” to g′, that is g′ − h′ = g. When interpreting the
ideal IΩ as an ideal lattice, this yields an instance of the bounded distance
decoding problem (BDD), as we show in Sect. 4.1. We then argue in Sect. 4.2
that BDD in any ideal I reduces to SVP in its inverse ideal I−1. To do so, we
first use Babai’s rounding algorithm to reduce BDD in I to SIVP in its dual I∨.
Then, we use that for ideal lattices SIVP reduces to SVP and that we can go
from the dual I∨ to the inverse I−1. All lattice problems are considered with
respect to an approximation factor that we specify for general number fields
in Lemma 4.1. We provide simplified parameter conditions for power-of-two and
prime cyclotomics (Corollary 4.2 and 4.3). We conclude this part by providing in
Sect. 4.3 concrete choices of Ω for which we obtain a polynomial time algorithm
that solves PV-Knap in IΩ (using the results from Sect. 3).

Contribution 3. As a third contribution, we implemented the algorithm of Sect. 3
in SageMath and used the observations of Sect. 4 to solve PV-Knap over cyclo-
tomic fields for different choices of Ω. Globally, we tested our attack for two
different strategies on how to select Ω. In the first scenario, the set Ω is chosen
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in an advantageous way (for the attacker) to make the related PV-Knap problem
easy. More concretely, we choose Ω so that IΩ is stable by many automorphisms
of the underlying number field K. Our experimental results confirm our asymp-
totic results from Sect. 4. Applied to different parameter sets that were proposed
in the literature [HPS+14,LZA18], we can solve PV-Knap in few minutes or
even in few seconds. In the second scenario, we study the case where Ω is chosen
at random. For random Ω, the ideal IΩ is with overwhelming probability not
stable by any non-trivial subgroup of the Galois group of K. Thus, one might
think that our algorithm won’t improve the cryptanalysis of PV-Knap in this
case. Perhaps surprisingly, we can still use our algorithm to distinguish PV-Knap
instances from random instances with non-negligible probability. The main idea
is to forget some of the i’s in the set Ω. In general, reducing the size of Ω makes
the problem harder, since our target BDD instance lies now in a denser lattice.
However, by carefully discarding some elements of Ω, we may hope to obtain
a subset Ω′ such that IΩ′ is stable by some non-trivial automorphism, hence
reducing the dimension of the ideals by some (small) factor. Overall, we observe
that for all sets of parameters that we considered, there is a non-negligible prob-
ability to sample a random Ω for which one can reduce the dimension of the
lattice problem by a factor 2. Finally, we run a full distinguishing attack on the
smaller parameter set of [LZA18], which was supposed to provide 128 bits of
security. Using the model of [MW18] for bit-security, we show that this set of
parameters actually provides at most 87 bits of security against distinguishing
attackers. We describe all results of our experiments in more details in Sect. 5.

Implications to Cryptography
Id-SVP Algorithm. As explained above, our Id-SVP algorithm only provides
improvement compared to standard lattice reduction algorithms if the ideal I is
fixed by at least one non-trivial automorphism of K. This is a strong require-
ment on the ideal, and we expect that random ideals do not usually satisfy this
condition (for most of the natural distributions on ideals, such as uniform ideals
of norm bounded by some bound B). We note however that choosing ideal lat-
tices with a lot of symmetries may be tempting for cryptographic constructions,
as this may lead to faster algorithms. We see our results as a warning to cryp-
tographers: one should not use ideal lattices with symmetries. The exhibition of
bad instances of PV-Knap is an illustration of such misuse of ideal lattices.

Summing up, we believe that cryptographers willing to introduce new
assumptions based on Id-SVP should follow the following guidelines:

1. check if the scheme can be modified such that the underlying rank increases
from 1 to 2 in order to rely on Mod-SVP instead of Id-SVP;

2. if not possible, use random ideals sampled from one of the distributions for
which we have a worst-case to average-case reduction [Gen09,dBDPW20];

3. if also not possible, then avoid the known bad ideals: ideals generated by
an element sampled from a Gaussian distribution in a cyclotomic number
field [CDPR16,CDW21] or ideals fixed by some non-trivial automorphism of
the number field (this work);
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4. in both cases, do not rely on the hardness of Id-SVP for approximation fac-
tors larger than 2

√
d in cyclotomic fields, with d the degree of the number

field [CDW21].

PV-Knap Attacks. As described above, PV-Knap was first studied in the context
of the signature scheme PASS Sign [HPS+14,LZA18]. Its key generation algo-
rithm constructs an instance of PV-Knap (over either cyclic or cyclotomic rings),
where the secret key is a ternary polynomial and the public key is given by a
partial list of its Fourier/Vandermonde coefficients. Hence, solving the search
variant of such PV-Knap instances translates to secret key recovery attacks
against PASS Sign. In 2015, Hoffstein and Silverman [HS15] designed a pub-
lic key encryption scheme called PASS Encrypt whose mathematical building
blocks resemble those of PASS Sign. Later, the scheme was slightly modified in
order to provide a proof of security with respect to concretely defined hardness
assumptions by Boudgoust et al. [BSS22], accessible via one of the author’s thesis
manuscript [Bou21, Ch. 5+7]. In both variants, the key generation algorithms are
the same as for PASS Sign, and thus, solving PV-Knap similarly leads to a secret
key recovery attack against PASS Encrypt. Doröz et al. [DHSS20] used PASS Sign
to design a signature scheme offering public aggregation of signatures indepen-
dently issued from different users on different messages, called MMSA(TK). An
attacker who is able to recover the secret key of a given “challenge” public key
clearly violates the security notion used for aggregate signatures.

We would like to highlight again that our attacks on PV-Knap only impact
some specific choices of the set Ω, or decrease the lattice dimension by a fac-
tor 2 when Ω is randomly chosen. Hence, they can be prevented by choosing Ω
carefully (for instance randomly) and possibly increasing the dimension slightly.

2 Preliminaries

Vectors and matrices are written respectively in bold small letters and bold
capital letters. Given a vector v in R

n or in C
n, we denote ‖v‖ its Euclidean

norm (or Hermitian norm if v has complex coordinates) and ‖v‖∞ its infinity
norm. For a matrix M, we write MT for its transposed matrix. By default, we
consider matrices with column vectors.

2.1 Number Fields

In this section we recall some definitions and properties about number fields
and Galois theory that are used in the article. More information can be found
in [Mar77, Chapters 2-4 and Appendix B].

A number field K is a field of the form K = Q[X]/f(X), where f(X) is
irreducible over Q. The degree of K is its dimension as a Q-vector space, which
is equal to the degree of f (hence, it is always finite). In this article, K and L
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always refer to number fields, with K of degree d. When L ⊆ K, we say that K
is a field extension of L and write K/L. We let [K : L] denote the degree of
the extension, that is the dimension of K as an L-vector space. The degree of a
tower of extensions K/L/M is multiplicative, i.e., [K : M ] = [K : L] · [L : M ].

Canonical Embedding. For a number field K of degree d, we let σ1, · · · , σd

denote the embeddings of K in C. Using those, we define the canonical
embedding of K as ΣK : K → C

d, where x �→ (σ1(x), · · · , σd(x))T . The
trace TrK : K → Q is defined as the sum of the embeddings, i.e., for any x ∈ K,
we have TrK(x) =

∑d
j=1 σj(x). Note that if K/L/Q is a tower of number fields,

then any element x of L is also an element of K, and we can consider both ΣK(x)
and ΣL(x). These two vectors are related, since we know (see for instance [Mar77,
Theorem 50]) that every complex embedding of L extends to exactly [K : L] com-
plex embeddings of K. Hence, the coordinates of ΣK(x) are the same as the ones
of ΣL(x), repeated [K : L] times each. From this, we see that

‖ΣK(x)‖ =
√

[K : L] · ‖ΣL(v)‖. (2.1)

Galois Theory. The automorphism group of a field extension K/L, denoted
by AutL(K), is the set of all K-automorphisms τ such that τ(x) = x for all x ∈ L.
The number of such automorphisms is always at most the degree of the field
extension, that is |AutL(K)| ≤ [K : L].

Definition 2.1 (Fixed fields). Given a field extension K/L and a subgroup H
of AutL(K), the fixed field of H is the subfield KH of K defined by KH = {x ∈
K | τ(x) = x , ∀τ ∈ H}. This fields contains L (i.e., we have K/KH/L).

The extension K/L is said to be Galois if and only if |AutL(K)| = [K : L].3

In this case, we can also use the notation Gal(K/L) to refer to the automor-
phism group AutL(K), and we call it the Galois group of the extension. When
the extension K/L is Galois, Galois theory tells us that there is a one to one
correspondence between subgroups of the Galois group Gal(K/L) and subfields
of K containing L (see [Mar77, Theorem 55]). This correspondence is given by
the maps H ⊆ Gal(K/L) �→ KH and L ⊂ K ′ ⊆ K �→ AutK′(K).

Lemma 2.2 ([Lan02, Theorem 1.8, Chapter 6]). Let K/L be an extension
(not necessarily Galois). Then, for any subgroup H of AutL(K), the exten-
sion K/KH is Galois and Gal(K/KH) = H.

Ring of Integers and Discriminant. For a number field K = Q[X]/f(X),
we write OK its ring of integer, that is the subset of elements of K that are
roots of a monic integer polynomial. It can be shown that OK is a free Z-
module of rank d, where d is the degree of the number field. In other words,

3 This is not the standard definition, see for instance [Mar77, Theorem 52] for a proof
that this is an equivalent definition.
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there exists a basis r1, . . . , rd ∈ OK such that every element in OK can be
uniquely represented as an integer linear combination of those vectors. Often,
we assume the knowledge of a short basis r1, . . . , rd of OK , where the shortness
is measured with respect to the canonical embedding ΣK . To ease notations,
we define the constant C∞

K = maxj ‖ΣK(rj)‖∞, which is used in Sect. 4. It
always holds Z[X]/f(X) ⊆ OK and for some number fields it also holds OK ⊆
Z[X]/f(X) (e.g. for cyclotomic fields, see below). Note that being an integer is
a property of the element, that does not depends on the number field. Hence,
if K and L are two number fields with L ⊆ K, then we have that OL = OK ∩L.

The (absolute value of the) discriminant of a number field K is defined
as ΔK = |det(σi(rj))i,j |2, where (rj) is any basis of OK . Given a tower of
number fields K/L/Q, it holds that ΔK ≥ Δ

[K:L]
L (cf. [Mar77, Exercise 23]).

Product of Sets. Let X and Y be two subsets of the same field K (so that we
can add and multiply their elements). We define the product of X and Y by

X · Y = {
r∑

i=1

xiyi | r ≥ 0, xi ∈ X, yi ∈ Y }.

Note that this product is well defined for any sets X and Y , and not only ideals.
This is useful when we consider ideals of subfields, which are not necessarily ideals
in the larger field. The product of two sets enjoys commutative and associative
properties: X · Y = Y · X and (X · Y ) · Z = X · (Y · Z).

Ideals. An integral ideal I of a number field K is a subgroup of OK such
that I · OK = I. A fractional ideal J ⊂ OK is a set of the form J = 1/D · I,
where D ∈ Z>0 and I is an integral ideal. By default, we use the word “ideal”
to refer to fractional ideals, and we specify “integral ideal” when we restrict
ourselves to ideals contained in OK . For α ∈ K, we denote by α·OK = {α·x |x ∈
OK} the ideal generated by α.

The product of two ideals (using the product of sets defined above) is also
an ideal. The set of all non zero ideals forms a group with this product, i.e., for
any non-zero ideal I, there exists an ideal I−1 such that I ·I−1 = OK . The norm
over K of an integral ideal I is defined as NK(I) = |OK/I|, and the norm of a
fractional ideal J = 1/D · I (with I integral) is defined as NK(J) = 1/Dd ·N (I).
The norm function is multiplicative, that is NK(I ·J) = NK(I) ·NK(J) for every
integral ideals I and J of K.

We say that an integral ideal I divides another integral ideal J , denoted
by I|J , if there exists some integral ideal I ′ such that J = I ·I ′. This is equivalent
to J ⊆ I (see [Mar77, Corollary 3, Theorem 15]).

Proposition 2.3. Given a tower of number fields K/L/Q, the following holds:

(1) If I is an integral ideal of K, then I ∩ OL = I ∩ L is an integral ideal of L.
(2) If J is an integral ideal of L, then J · OK is an integral ideal of K.
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(3) If J1, J2 are integral ideals of L, then (J1 · OK) · (J2 · OK) = (J1 · J2) · OK .
(4) If J is an integral ideal of L, then NK(J · OK) = NL(J)[K:L].

We define the dual of an ideal I by I∨ = {x ∈ K : TrK(xy) ∈ Z , ∀y ∈ I}.
For any ideal I, its dual and inverse ideal are related to each other via the dual
of the corresponding ring of integers, i.e., I∨ = I−1O∨

K (see for instance [Con]).
In the case where the ring of integers OK is of the form OK = Z[X]/f(X) for
some irreducible polynomial f , we have O∨

K = f ′(X)−1 · OK .
The following definition introduces the notion of decomposition group and

decomposition field of an ideal. These notions are usually only defined for prime
ideals (see for instance [Mar77, Chapter 4]), but we generalize the terminology
to any ideal, since this is needed for the rest of the article.

Definition 2.4. Let K be a number field and I be an ideal of K. The decom-
position group of I is the subgroup HI of AutQ(K) defined by HI = {τ ∈
AutQ(K) | τ(I) = I}.4 The decomposition field of I, denoted by KI , if the fixed
field of HI (cf. Definition 2.1).

Prime Ideals. A non-zero integral ideal p of a number field K is said to be
prime if it is maximal, i.e., it is different from OK and the only ideals that contain
it are itself and OK . Any non-zero integral ideal I in a number field K admits a
unique decomposition into prime ideals I =

∏
p prime pαp , where αp ≥ 0.

In this article, we are interested in moving prime ideals from a field to a
subfield and vice versa. This relates to the terminology of primes lying above or
below another prime, as defined in the following lemma.

Lemma 2.5 ([Mar77, Theorem 19]). Let K/L/Q be a tower of number fields.
Let p be a prime ideal of K and q be a prime ideal of L. The following conditions
are equivalent:

(1) p ∩ L = q and (2) p|(q · OK).

When these conditions hold, we say that p lies above q, or that q lies below p.

Lemma 2.6 ([Mar77, Theorem 20]). Every prime ideal p of K lies above
exactly one prime ideal of L. Every prime ideal q of L lies below at least one
prime ideal of K.

If L = Q, this lemma implies that any prime ideal p of K lies over exactly
one rational prime q ∈ Z. It then holds that NK(p) = qr for some r ∈ {1, · · · , d}.

Let p be a prime of K and let q be the unique prime of L below p. We say
that p is ramified in K/L if pα|(q ·OK) for some exponent α ≥ 2 (by Lemma 2.5,
we know that α ≥ 1). The largest integer α such that pα|(q · OK) is called the
ramification index of p in K/L. In this article, we are mostly interested in prime
ideals that are not ramified. This is the most frequent case, since only a finite
number of prime ideals are ramified in K/L (cf. [Mar77, Cor. 3 after Thm. 24]).

4 Note that the equality τ(I) = I means that the two sets are equal, but it does not
mean that all the elements of I are fixed by τ .
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Lemma 2.7. If a prime ideal p of K is unramified in K/Q, then it is also
unramified in K/L for all subfields L of K containing Q.

A proof of this lemma is available in the full version [BGP22]. This obser-
vation enables us to discard all possible ramified ideals in any subfield of K,
by discarding the ones that are ramified in K/Q. Moreover, we know that if a
prime p is ramified in K/Q, then it is above some q ∈ Q that divides ΔK .

Lemma 2.8 ([Mar77, Thm. 23]). Let K/L be Galois. If p is a prime ideal
of K over a prime ideal q of L, then for any τ ∈ Gal(K/L), the ideal τ(p) is also
a prime ideal of K over q. Conversely, for any two prime ideals p and p′ of K
over the same prime q of L, there exists a τ ∈ Gal(K/L) such that τ(p) = p′.

Cyclotomic Fields. Cyclotomic fields form a special class of number fields.
For some integer m ≥ 2, the m-th cyclotomic field can be described as K =
Q[X]/Φm(X), where its defining polynomial Φm(X) is the m-th cyclotomic poly-
nomial. Its degree equals deg(Φm(X)) = φ(m), where φ(·) is Euler’s totient func-
tion. If K = Q[X]/Φm(X) is a cyclotomic field, then (1,X, . . . ,Xφ(m)−1) forms
a basis of OK , also called the power basis (cf. [Was82, Theorem 2.6]). In other
words, OK = Z[X]/Φm(X) and we can set the constant C∞

K from above as 1.
All cyclotomic fields are Galois and their Galois group is abelian (cf. [Mar77,

Corollary 2, Theorem 3]). The following lemma holds for any finite abelian group.
We instantiate it directly with Gal(K/Q).

Lemma 2.9. Let K be the m-th cyclotomic number field. For every r|φ(m),
there is a subgroup H of AutQ(K) of cardinality r.

A proof is available in the full version [BGP22]. The discriminant of the m-th
cyclotomic field K is ΔK = mφ(m)

∏
p|m pφ(m)/(p−1) ≤ mφ(m) (cf. [Was82, Prop. 2.7]).

For m a power of 2, it simplifies to ΔK = φ(m)φ(m).

2.2 Lattices

For a lattice L, we denote λ1(L) its first minimum, i.e., λ1(L) = minv∈L\{0} ‖v‖.
The determinant of L is given by det(L) =

√|det(BT · B)| where B is any basis
of L. Minkowski’s theorem states that for any lattice L of rank n, it holds
that λ1(L) ≤ √

n · det(L)1/n. We use the notation Span
R
(L) to refer to the real

vector space spanned by the vectors of L. Further, we define the dual lattice
of L as L∨ = {x ∈ Span

R
(L) : 〈x, y〉 ∈ Z ∀ y ∈ L}. If B is a basis of L,

then B∨ = (BT )−1 is a basis of L∨. This implies that det(L∨) = 1/det(L).

Ideal Lattices. When we embed an ideal I of K into C
d using the canonical

embedding, the resulting set ΣK(I) is a lattice of rank d, called an ideal lattice.
The determinant of the ideal lattice ΣK(I) is det(ΣK(I)) = NK(I) · √

ΔK .
The duality notions of ideals and lattices are closely related. Indeed, it holds
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that ΣK(I)∨ = ΣK(I∨), where · denotes the complex conjugation and L :=
{x |x ∈ L} for any lattice L ⊂ C

d. From this, we see that

det(ΣK(I−1)) = det(ΣK(I)∨) · ΔK = det(ΣK(I∨)) · ΔK . (2.2)

In the case of ideal lattices, the minimum of a lattice is closely related to the
normalized algebraic norm of the ideal

√
d · NK(I)1/d ≤ λ1(ΣK(I)) ≤ Δ

1/(2d)
K ·

√
d · NK(I)1/d, (2.3)

where the first inequality comes from the arithmetic-geometric means inequality
applied to a shortest vector of ΣK(I) and the second is Minkowski’s theorem.

Algorithmic Problems over Ideal Lattices. In this work, we are interested
in three algorithmic problems that we state over ideal lattices: the shortest vec-
tor problem (SVP), the shortest independent vector problem (SIVP) and the
bounded distance decoding (BDD) problem, all three in their so-called Hermite
variant. Whereas in the original formulation those problems are defined with
respect to the minimum λ1 of a lattice L, their Hermite variant phrases them
with respect to the determinant det(L) of the lattice. As we explained above,
for ideal lattices both quantities are closely related and only differ by a fac-
tor Δ

1/(2d)
K (Eq. 2.3). One of the advantages when working with the Hermite

variant is that the quantity det(L) is easier to compute than the quantity λ1(L).
The three problems are defined as follows.

Definition 2.10 (γ-Id-HSVPK). Let γ ≥ 1 and K be a number field of degree d
with ring of integers OK . The γ-Id-HSVPK problem asks, given as input an
ideal I of OK , to find a non-zero element v ∈ I such that

‖ΣK(v)‖ ≤ γ · det(ΣK(I))1/d.

This problem always has a solution as long as γ ≥ √
d. There exist in the

literature different algorithms for solving Id-HSVPK . One is the BKZ algo-
rithm [SE94], which works for all lattices. The run time of (a variant of) this
algorithm was formally studied in [HPS11], achieving the following complexity.

Lemma 2.11 ([HPS11, Theorem 1]). There is a classical probabilistic algo-
rithm that takes as input a basis BL ∈ Q

n of a lattice L of rank n, a
parameter γ ∈ [

√
n, 2n], and solves γ-HSVP in L in time poly(n, size(BL)) ·

2O(n log(n)/ log(γ)).

There exist also special algorithms for Id-HSVP, relying on the algebraic prop-
erties of the ideals to find short vectors more efficiently. More details about these
algorithms may be found in the full version [BGP22] (we don’t use them in this
article).

Definition 2.12 (γ-Id-HSIVPK). Let γ ≥ 1 and K be a number field of
degree d with ring of integers OK . The γ-Id-HSIVPK problem asks, given as input
an ideal I of OK , to output d linearly independent vectors b1, . . . ,bd ∈ ΣK(I)
such that maxj ‖bj‖ ≤ γ · det(ΣK(I))1/d.
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The Hermite variant of the BDD problem over ideal lattices has no official
name in the literature yet, we simply call it Hermite Ideal BDD (or Id-HBDD).

Definition 2.13 (worst-case γ-Id-HBDDK). For γ > 2Δ
1/2d
K /

√
d, K a num-

ber field of degree d with ring of integers OK and I an ideal of OK , the worst-
case γ-Id-HBDDK is the following. Given as input any t ∈ Span

R
(ΣK(I)) with

the promise that t = v + e with v ∈ ΣK(I) and ‖e‖ ≤ 1/γ · det(ΣK(I))1/d, the
problem asks to output v.

Note that the constraint γ > 2Δ
1/2d
K /

√
d ensures that there is a unique v ∈

ΣK(I) with ‖v − t‖ ≤ 1/γ · det(ΣK(I))1/d ≤ 1/2 · λ1(ΣK(I)), using Eq. 2.3.
Hence, the Id-HBDD problem is well defined.5 The terminology “worst-case”
means that we ask an algorithm to be able to solve the problem for all choices
of input t that satisfy the promise.

2.3 Representation and Size of Algebraic Objects

Given a rational number z = x/y ∈ Q with x and y coprime integers, we denote
by size(z) the quantity log2 |x| + log2 |y|. Up to a bit of sign, this corresponds
to the bit-length needed to represent z. For a matrix M = (zij)i,j over Q,
its size(M) corresponds to the sum of size(zij) over all its entries zij .

Given a number field K of degree d, we often need to assume the knowledge
of a basis matrix BK of its ring of integers OK . This basis consists of all the
(floating points approximations of the) complex vectors ΣK(ri), where (ri)i ∈
Od

K forms a Z-basis of OK . We use the notation size(BK) = maxi,j(log |(BK)i,j |),
where (BK)i,j are the coefficients of BK .

Once the ri’s are fixed, every element x of K can be represented as a rational
vector (x1, · · · , xd), such that x =

∑
i xiri. This gives us an exact representation

for the elements of K, in the basis (ri)i. Note that an element x is in OK if and
only if the vector (x1, · · · , xd) is in Z

d. For x ∈ K, we let size(x) denote the size
of the vector (x1, · · · , xd) ∈ Q

d, as defined above (note that this depends on the
choice of the ri’s, which are assumed to be fixed once and for all).

An ideal I of K is represent by a Z-basis (b1, · · · , bd) ∈ Kd (i.e., I =
{∑

i xibi |xi ∈ Z}). Every element bi ∈ K in the basis is represented by a vector
in Q

d, as explained in the previous paragraph. We call basis of I the matrix BI

whose columns are the vectors corresponding to the bi’s. This is a matrix in Q
d×d

(and in Z
d×d if I is integral), and we use the notation size(BI) as defined above.

An automorphism τ ∈ AutQ(K) is represented by a d × d matrix Mτ whose
coefficients are such that τ(rj) =

∑
i(Mτ )i,jri (i.e., the j-th column of Mτ

corresponds to the coordinates of τ(rj) in the basis (ri)i). Since τ(x) is an
algebraic integer if x is, then Mτ has integer coefficients. We let size(τ) denote
the size of the integral d × d matrix Mτ , as defined above.

5 For arbitrary Euclidean lattices, it is much harder to give concrete conditions which
ensure a unique solution for HBDD. This is why we think the definition of this
problem only makes sense in the ideal setting.
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2.4 The Partial Vandermonde Knapsack Problem

The partial Vandermonde knapsack problem (PV-Knap) was first introduced by
Hoffstein et al. [HPS+14]6 and later reformulated over number fields by Lu et
al. [LZA18]. As observed by Boudgoust [Bou21, Sec. 5.2], the problem can be
phrased as a problem over ideal lattices. We use this formulation in the following.
For completeness, we provide an explanation why both, the original and the ideal
formulation, are equivalent in the full version [BGP22].

Let K be a number field of degree d with ring of integers OK . Further, let q
be an integer such that the ideal generated by q splits in exactly d different prime
ideals, i.e., qOK =

∏d
j=1 pj , where pj is a prime ideal of norm q. For t ≤ d, we

define Pt = {Ω ⊆ {1, . . . , d} : |Ω| = t}. For any Ω ∈ Pt, we set IΩ :=
∏

j∈Ω pj ,
yielding an ideal of norm qt.

Definition 2.14 (PV-Knap). Let K,OK , d, q and t be as above. Fix Ω ∈ Pt

and let ψ be a distribution over OK such that maxa←ψ ||ΣK(a)|| ≤ B for some
positive real B fulfilling 2B <

√
d · qt/d. Sample a ← ψ. Given b = a mod IΩ,

the partial Vandermonde knapsack problem PV-KnapΩ,ψ asks to find a.

The constraint 2B <
√

d ·qt/d ensures that there is a unique a in the support
of ψ such that b = a mod IΩ . By Eq. 2.3, we know that the minimum of ΣK(IΩ)
with respect to the Euclidean norm is bounded from below by

√
d · N (IΩ)1/d =√

d · qt/d. If there were two solutions a �= a′ ∈ OK such that a = a′ mod IΩ , then
the element a − a′ would lie in IΩ and its Euclidean norm with respect to the
canonical embedding would be bounded above by 2B <

√
d ·qt/d ≤ λ1(ΣK(IΩ)),

leading to a contradiction. Hence, the PV-Knap problem is well defined.
We can also define a decision variant of PV-Knap in the natural way. Given Ω

and b+IΩ, one has to decide whether b was defined as in the problem’s definition
above or if it was sampled uniformly at random.

Whereas in the above definition PV-Knap is defined over OK , the prob-
lem is in some works (e.g. [HPS+14,HS15,DHSS20]) defined over the cyclic
ring Z[X]/(XN − 1) for some prime integer N . We recall its concrete formula-
tion in the full version [BGP22]. Note that those rings are closely connected to
prime cyclotomic number fields as the polynomial XN −1 factors into two partic-
ular irreducible polynomials. More precisely, it yields XN −1 = (X −1) ·ΦN (X)
and thus Z[X]/(XN − 1) ∼= Z[X]/(X − 1) × Z[X]/ΦN (X). Thus, an instance
of PV-Knap over the cyclic ring can be formulated as an instance of PV-Knap
over the ring of integers of a cyclotomic number field (where the last coefficient
of the solution over the cyclic ring can be guessed). Hence, even though the
results of Sect. 4 are formulated for number fields, they also apply to the original
parameter setting of [HPS+14].

In our definition, the bound B is with respect to the canonical embedding ΣK ,
whereas in the former works, it was with respect to the coefficient embedding. In
most of the number fields used in lattice-based cryptography, we know how to go
from one embedding to another. For instance, for the m-th cyclotomic field we
6 Even though they originally called it the partial Fourier recovery problem.
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obtain a bound B in the canonical embedding by multiplying a bound B′ in the
coefficient embedding by the factor

√
m. A prominent choice in [LZA18,HPS+14]

is B′ = 1, which yields B =
√

m. In the case of power-of-two cyclotomics this
bound can be tightened to B =

√
d where d = m/2.

The definition we present doesn’t specify how to choose Ω, which we exploit
in Sect. 4 when finding bad choices of Ω. This follows the same design choice
as [HPS+14,HS15,DHSS20]. Other works [LZA18,BSS22,Bou21] decided to
sample Ω uniformly at random over the set Pt, which has an important effect
on the performance of our attacks as we elaborate later in Sect. 5.

3 Easy Instances of Ideal-SVP

The objective of this section is to prove the following theorem, which gives a
simple and sufficient condition under which the Id-HSVPK problem is easy in
an ideal lattice. The condition requires the ideal I to have no ramified prime
factors. By Lemma 2.7, this is the case if the ideal’s algebraic norm is coprime
with the discriminant of K. Hence, the condition can be verified easily, without
computing the prime factorization of the ideal.

Theorem 3.1. Let K be a number field of degree d and I be an integral ideal
of K whose prime factors are not ramified in K/Q. There is an algorithm that
takes as input a basis BK of OK , a representation G of AutQ(K), a basis BI

of I and a parameter γ ≥ 2
√

d and solves γ-Id-HSVPK in I in classical time

exp
(
O

( d · log(d)
nI · log(γ/

√
nI)

))
· poly(size(BI), size(BK), size(G)),

where nI := |HI | is the number of K-automorphisms that fix I as a set.

3.1 Reducing the Ideal in a Subfield

In this section, we ignore the representation of the mathematical objects, and
concentrate on the following mathematical result. It states that if an ideal is
fixed by a sufficiently large group of automorphisms, then one can find a short
vector of it by looking for short vectors of its intersection with a subfield of
smaller dimension. Hence, we can reduce the dimension of the problem.

Theorem 3.2. Let K be a number field and I be an integral ideal of K whose
prime factors are not ramified in K/Q. Let KI ⊆ K be the decomposition field
of I (see Definition 2.4). We write d = [K : Q] and dI = [KI : Q], and we
let γ ≥ 1.

Then, any v ∈ I ∩ KI which is a solution to γ-Id-HSVPKI
in I ∩ KI is also

a solution to γ′-Id-HSVPK in I, where

γ′ = γ ·
√

d/dI .
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This generalizes Theorem 4 of [PXWC21] to non-prime ideals I, and to num-
ber fields that are not necessarily Galois. The latter is easily obtained from
the observation that the extension K/KI is always Galois, even if K/Q is not
(Lemma 2.2). The generalization to non-prime ideals requires more work. The
main difficulty of this generalization lies in proving the following lemma.

Lemma 3.3. Let K/L be a Galois extension of number fields. Let I be an inte-
gral ideal of K whose prime factors are not ramified in K/L. If σ(I) = I for
all σ ∈ Gal(K/L), then it holds that

I = (I ∩ OL) · OK .

Intuitively, this lemma means that when intersecting the ideal I with the
subfield L, one loses no information on I, since it can be recovered simply by
multiplying by OK again. This conveys the intuition that the short vectors of I
should also be contained into the intersection I ∩ OL.

Proof. Note that the inclusion I ⊇ (I ∩ OL) · OK always holds, even if I is
divisible by ramified primes, or if σ(I) �= I for some σ ∈ Gal(K/L). However, in
the general case, this inclusion is usually not an equality: the set (I ∩ OL) · OK

can be much sparser than I, hence losing information about I. In the rest of this
proof, we focus on proving the reverse inclusion I ⊆ (I ∩ OL) · OK .

First, we group the prime factors of I into groups of primes that are all
above the same prime in OL. In other words, we write I =

∏
q prime of OL

Iq,
where Iq =

∏
pi prime of OKabove q p

αi
i .

Let us fix a prime ideal q in OL, which does not ramify in OK (recall that we
required that the prime factors of I are not ramified in K/L). Since q does not
ramify, we know that q · OK = p1 · · · pr for some distinct prime ideals pi of OK .

Next, since K/L is Galois, we know that Gal(K/L) acts transitively on the pi,
i.e., for every indices i, j, there is some σ ∈ Gal(K/L) such that σ(pi) = pj . Using
that σ(I) = I for all σ ∈ Gal(K/L) and that the prime decomposition of an ideal
is unique, we conclude that all the pi appear with the same exponent in the prime
decomposition of I. Hence, Iq =

∏r
i=1 p

αq

i = (qOK)αq , for some αq ≥ 0.
Summing up, we can write I as a product I =

∏
i(qi · OK)αi , for some

prime ideals qi of OL and αi ≥ 1. We see here that the condition σ(I) = I for
all σ ∈ Gal(K/L) (and the fact that I is not divisible by any ramified prime)
implies the natural intuition that I is an ideal of OL, lifted in OK .

Using this equation, let us now prove that I ∩ OL =
∏

i q
αi
i . The inclu-

sion
∏

i q
αi
i ⊆ I ∩ OL follows from

∏

i

qαi
i =

∏

i

(qi · OL)αi ⊆
∏

i

(qi · OK)αi = I.

Since I∩OL is an ideal of OL and we have seen that
∏

i q
αi
i ⊆ I∩OL, i.e., (I∩

OL)|∏i q
αi
i , we know that (I ∩ OL) =

∏
i q

βi

i for some βi ≤ αi. Multiplying this
equation by OK we obtain

(I ∩ OL) · OK = (
∏

i

qβi

i ) · OK =
∏

i

(qi · OK)βi .



496 K. Boudgoust et al.

We have already seen that (I ∩ OL) · OK ⊆ I. Hence we obtain
∏

i(qi · OK)βi ⊆∏
i(qi · OK)αi , which holds only if βi = αi (since βi ≤ αi). We then conclude

that (I ∩ OL) =
∏

i q
αi
i as desired.

Finally, multiplying this equation by OK , we obtain

(I ∩ OL) · OK = (
∏

i

qαi
i ) · OK =

∏

i

(qi · OK)αi = I,

as desired. ��
With this lemma at hand, the proof of Theorem 3.2 follows almost directly

the one of Theorem 4 of [PXWC21]. It is available in the full version [BGP22].

3.2 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. The algorithm to solve Id-HSVPK

in I is described in Algorithm 3.1. It computes the intersection of I with KI , in
order to reduce the dimension of the lattice, solves Id-HSVPKI

in this lattice of
smaller dimension, and then uses Theorem 3.2 to claim that the vector it founds
is indeed a solution to Id-HSVPK in I. The proof below shows its correctness,
specifies its run time and the size of the objects that are manipulated.

Algorithm 3.1. Solving Id-HSVPK in an easy ideal I

Input: A basis of OK , the group of endomorphisms AutQ(K), an ideal I without
ramified prime factors, a parameter γ ≥ √

d
Output: A solution to γ-Id-HSVPK in I
1: HI = {}
2: for τ ∈ AutQ(K) do
3: Compute a basis of τ(I).
4: if τ(I) = I then
5: Add τ to HI .
6: end if
7: end for
8: Compute a basis of KI , the subfield of K fixed by HI .
9: Compute a basis of J = I ∩ KI

10: Solve γ′-Id-HSVPKI in J with γ′ = γ/
√|HI |, to obtain an element x ∈ J

11: return x

Proof (Proof of Theorem 3.1).

Correctness. Since I has no ramified prime factors, we know from Theorem 3.2
that the element x obtained by solving γ′-Id-HSVPKI

in I ∩KI is also a solution
to (γ′ ·√d/dI)-Id-HSVPK in I. Using the fact that K/KI is a Galois extension,
we know that |HI | = |Gal(K/KI)| = [K : KI ] = d/dI . Hence, by choice of γ′,
we obtain that γ′ · √

d/dI = γ. We conclude that x is indeed a solution to γ-
Id-HSVPK in I as desired.
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Run Time. Observe that the for loop of the algorithm runs at most |AutQ(K)| ≤
[K : Q] = d times. At each iteration of the loop, we need to compute a basis
of τ(I). Recall that we know a basis (x1, · · · , xd) of I, where the elements xi

are represented by their integral vector in the known basis BK = (r1, · · · , rd)
of OK . Recall that the automorphisms τ of AutQ(K) are linear transforms that
are represented by a integral matrices. Hence, to compute a basis of τ(I), it is
sufficient to multiply the matrix corresponding to τ with the basis matrix of I.
This is a multiplication of two integral matrices of dimension d, which can be
performed in time polynomial in d and in the bit-size of the entry of the two
bases. Testing the equality τ(I) = I can be done by testing whether each vector
of the basis of τ(I) is in the integer span of the basis of I and conversely. This
is again polynomial in d and the bit-size of the entries of the two bases.

Let us now consider the computation of a basis of KI . This is a real subspace
of K of dimension dI = d/|HI |. This subspace is defined by a collection of linear
equations τ(x) = x for all τ ∈ HI . Hence, one can compute a basis of this
subspace by computing the kernel (over Q) of a matrix with dimension |HI | × d
and whose coefficients are integers of bit-size polynomial in the input bit size.
This can be done in time polynomial in d and in the bit-size of the coefficients
of the matrices corresponding to the automorphisms τ .

Finally, the intersection of a lattice with a rational vector space can be per-
formed in polynomial time (cf. Lemma A.1 in the full version [BGP22]), and so
the basis of J = I ∩ KI can be computed efficiently.

Once J is computed, we run an Id-HSVPKI
solver on it. To do so, we

use the BKZ algorithm for which we have concrete run time bounds (cf.
Lemma 2.11). This algorithm forgets about the ideal structure of the lat-
tice and simply requires as input a basis of the lattice ΣKI

(J). In order to
obtain such a basis, we can multiply the basis of J (over (r1, · · · , rd)) by the
matrix BK formed by the (known) embeddings ΣK(r1), · · · , ΣK(rd). This gives
us a basis of ΣK(J). In order to obtain a basis of ΣKI

(J), we then simply remove
the multiple coordinates that appear in ΣK(J). These operations can be per-
formed in polynomial time. The BKZ algorithm with parameter γ′ then runs in
time poly(input size) · 2O(dI log(dI)/ log(γ′)), since the lattice ΣKI

(J) has rank dI .
Note that we used the fact that γ ≥ √

d, so that γ′ ≥ √
dI and hence we can

indeed apply Lemma 2.11 with parameter γ′. Note also that since γ ≥ 2
√

d, we
have γ′ = γ/

√|HI | ≥ 2, hence log(γ′) is not zero and we can indeed divide by
it. ��

4 Easy Instances of Partial Vandermonde Knapsack

In this section, we explain how one can reduce the problem of recovering the
secret element of a PV-Knap instance to the problem of finding a short vector
in the ideal lattice I−1

Ω , depending on Ω. We conclude the section by remarking
that, for some choices of the set Ω, the ideal I−1

Ω is stabilized by a large subgroup
of the automorphism group of K, leading to an efficient SVP solver in I−1

Ω , and
hence to an efficient attack against PV-Knap (for these specific choices of Ω).
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4.1 PV-Knap as an Instance of Ideal Hermite BDD

Recall the definition of the partial Vandermonde knapsack problem (PV-Knap)
as introduced in Sect. 2.4 and the definitions of some algorithmic problems over
ideal lattices (Id-HSVP, Id-HSIVP, Id-HBDD) as introduced in Sect. 2.2. Let ψ
denote a B-bounded distribution over the ring of integers OK with respect to
the canonical embedding and the Euclidean norm, i.e., maxa←ψ ||ΣK(a)|| ≤ B.
Further, let b = a mod IΩ be an instance of PV-KnapΩ,ψ. Recall that IΩ =∏

j∈Ω pj where the pj come from the prime ideal factorization of the ideal qOK

and Ω ⊆ {1, . . . , d} with |Ω| = t. It follows from the definition that this is exactly
an instance of γ1-Id-HBDDK for the ideal lattice IΩ , with

γ1 =
det(ΣK(IΩ))1/d

B
=

qt/d · Δ
1/(2d)
K

B
.

4.2 Reduction from Ideal Hermite BDD to Ideal Hermite SVP
in the Inverse Ideal

We now show a sequence of reductions that overall reduce Id-HBDD for an
ideal I to Id-HSVP in its inverse ideal I−1.

Lemma 4.1. Let K = Q[x]/f(X) be a number field of degree d and discrimi-
nant ΔK with f(X) its defining polynomial and let (r1, . . . , rd) be a known basis
of OK . Let γ1, γ4 > 0 be such that

γ1 > γ4 · 2Δ
1/d
K · C∞

K ,

where C∞
K = maxj ‖ΣK(rj)‖∞. For any fractional ideal I in K, there is a (deter-

ministic) polynomial-time reduction from γ1-Id-HBDDK in I to γ4-Id-HSVPK

in I−1.
If in addition OK = Z[X]/f(X), then the γ1 can even be as small as

γ1 > γ4 · 2Δ
1/d
K · ‖ΣK(1/f ′(X))‖∞ · C∞

K .

(Note that this improves upon the previous bound only if ‖ΣK(1/f ′(X))‖∞ < 1.)

In the case of power-of-two and prime cyclotomics, the parameter conditions
simplify to the following.

Corollary 4.2. Let K be the m-th cyclotomic number field, where m is a power
of two, of degree d = m/2. There is an efficient reduction from γ1-Id-HBDDK

in I to γ4-Id-HSVPK in I−1, as long as

γ1 > 2γ4.

Proof. Using the power basis implies C∞
K = 1 for all cyclotomic fields and

for power-of-two cyclotomics it yields Δ
1/d
K = d. Further, OK = Z[X]/f(X)

with f(X) = Xd − 1 and thus f ′(X) = d · Xd−1, completing the proof. ��
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Corollary 4.3. Let K be the m-th cyclotomic number field, where m ≥ 2 is a
prime, of degree d = m − 1. There is an efficient reduction from γ1-Id-HBDDK

in I to γ4-Id-HSVPK in I−1, as long as

γ1 > 4γ4.

Proof. Again, the power basis leads to C∞
K = 1 and for prime cyclotomics it

yields
√

m ≤ Δ
1/d
K ≤ m. Furthermore, OK = Z[X]/f(X) with f(X) = Xm−1

X−1

and thus f ′(X) = mXm−1·(X−1)−(Xm−1)
(X−1)2 = mXm−1

X−1 (since Xm = 1 by definition),
leading to ‖ΣK(1/f ′(X))‖∞ ≤ 2

m and thus completing the proof. ��
We prove Lemma 4.1 in the following three steps.

Step 1: From Id-HBDD in I to Id-HSIVP in I∨. This reduction is well-
known for BDD and SIVP in their standard formulation and works for any
lattice, not only for ideal lattices. It corresponds to solving BDD in a lattice L
by using the so-called Babai’s rounding algorithm [Bab86], whose performance
can be assessed by looking at the size of the vectors of the dual basis of L∨

(see for instance [CDPR16, Claim 2.1]). For completeness, we detail out how
to proceed for the Hermite variant, and quantify the loss in the approximation
factor for this variant in the full version [BGP22].

Lemma 4.4 (Id-HBDD to Id-HSIVP). Let I be a fractional ideal of a number
field K of degree d. There is a (deterministic) polynomial-time reduction from γ1-
Id-HBDDK in I to γ2-Id-HSIVPK in I∨, for any 2γ2 < γ1.

Step 2: From Id-HSIVP in I∨ to Id-HSVP in I∨. This reduction step is
special to ideal lattices, as it uses the fact that in the ideal case one short vector
is enough to generate a set of linearly independent short vectors.

Lemma 4.5 (Id-HSIVP to Id-HSVP). Let I be a fractional ideal of a number
field K of degree d. Furthermore, let r1, . . . , rd ∈ OK be a known basis of OK .
There is a (deterministic) polynomial-time reduction from γ2-Id-HSIVPK in I∨

to γ3-Id-HSVPK in I∨, where γ2 = C∞
K · γ3 and C∞

K = maxj ‖ΣK(rj)‖∞.

Proof. Assume that we are able to solve γ3-Id-HSVPK for the ideal I∨, i.e., we
obtain an element x ∈ I∨ of norm ‖ΣK(x)‖ ≤ γ3 · det(ΣK(I∨))1/d. Since I∨

is an ideal and since we know a basis (ri)i of OK , we can transform this single
short element into d linearly independent ones: ri · x ∈ I∨, for i = 1 to d. These
elements satisfy

‖ΣK(ri · x)‖ ≤ ‖ΣK(ri)‖∞ · ‖ΣK(x)‖ ≤ C∞
K · γ3 · det(ΣK(I∨))1/d.

This solves γ2-HSIVP in I∨. ��
For a given number field K, the constant C∞

K is determined by the quality of
a short basis for the ring of integers OK with respect to the infinity norm that
we are able to compute. Note that for cyclotomic fields, we know how to find a
basis of infinity norm 1 (the power basis) and thus in this case γ2 = γ3.



500 K. Boudgoust et al.

Step 3: From Id-HSVP in I∨ to Id-HSVP in I−1. In the last step, we go
from the dual to the inverse ideal. This step is motivated from the fact that the
shape of IΩ coming from an instance of PV-Knap is very similar to the shape
of its inverse I−1

Ω = 1
q IΩc .

Lemma 4.6 (Id-HSVP in I∨ to Id-HSVP in I−1). Let I be a fractional ideal
of a number field K = Q[x]/f(X) of degree d and discriminant ΔK with f(X) its
defining polynomial. There is an efficient reduction from γ3-Id-HSIVPK in I∨

to γ4-Id-HSVPK in I−1, for any γ3, γ4 > 0 such that γ3 = γ4 · Δ
1/d
K .

Furthermore, if OK = Z[X]/f(X), the reduction also holds for any γ3, γ4 > 0
such that γ3 = γ4 · Δ

1/d
K · ‖ΣK(1/f ′(X))‖∞.

Proof. Assume that we are able to solve γ4-Id-HSVPK for the ideal I−1, i.e., we
obtain an element x ∈ I−1 of norm ‖ΣK(x)‖ ≤ γ4 · det(ΣK(I−1))1/d. By the
definition of the inverse and dual of I, it yields that I−1 ⊆ I∨ and thus the short
vector ΣK(x) is already an element of the ideal lattice ∈ ΣK(I∨). As it yields
that det(I−1) = ΔK · det(I∨) (Eq. 2.2), this vector solves γ4 · ΔK-Id-HSVPK

in I∨, which proves the first part of the lemma.
Assume now that OK = Z[X]/f(X) for some irreducible polynomial f(X).

In this specific case, it holds that I∨ = I−1 · O∨
K with O∨

K = 1/f ′(X) · OK .
Thus, we can multiply x by the element 1/f ′(X) and still obtain an element
in I∨. Overall, we obtain a vector ΣK(x · 1/f ′(X)) whose norm is bounded
above by γ4 · Δ1/d

K · ‖ΣK(1/f ′(ζ))‖∞ · det(ΣK(I∨))1/d, which proves the second
part of the lemma. ��

4.3 Bad Choices of Ω

We now elaborate on how the above results lead to polynomial-time attacks
against PV-Knap for some special choices of Ω. In the following, we restrict
ourselves to number fields K that are cyclotomic with a conductor m which is
either a power of two or a prime integer. These are the number fields used in
the literature on PV-Knap, and restricting to these number fields simplifies our
attack. Recall that we write d = φ(m) for the degree of K.

Let q, t, B and Ω ∈ Pt be PV-Knap parameters satisfying qt/d ≥ 8 · B (note
that this condition is slightly stronger than the condition required in Defini-
tion 2.14 of PV-Knap for the problem to be well defined).

Combining Theorem 3.1 and Corollaries 4.2 and 4.3, we obtain a solver
for PV-Knap that runs in classical time

exp

(

O

(
d log(d)

|HI−1
Ω

| log(γ4/|HI−1
Ω

|)

))

· poly (d, log q) , (4.1)

where

γ4 =
qt/d

√
d

4B
≥ 2

√
d.



Some Easy Instances of Ideal-SVP and Implications 501

The last inequality comes from our lower bound on qt/d and is required to apply
Theorem 3.1. Recall that for an ideal I the integer |HI | denotes the number of K-
automorphisms that fix I as a set. By definition all ideals IΩ are unramified.

In the rest of this section, we show that if t ≥ d/2, then there are choices of Ω
that make |HI−1

Ω
| linear in the degree d of the number field, hence leading to

polynomial-time attacks against PV-Knap for this choice of Ω. We also explain
how the result degrades for smaller choices of t.

Special Structure of IΩ. First of all, we observe that an automorphism τ ∈
AutQ(K) fixes a fractional ideal I if and only if it fixes its inverse I−1. Hence, we
only focus here on the group of automorphisms HIΩ

fixing IΩ , instead of HI−1
Ω

.
Recall that IΩ has a special structure, it is equal to

∏
i∈Ω pi, where the pi’s

are all distinct prime ideals above some fully splitting prime q. Recall also that
cyclotomic fields are Galois, hence we can apply Lemma 2.8, which implies that

{pi | 1 ≤ i ≤ d} = {τ(p1) | τ ∈ AutQ(K)},

where p1 is any of the prime ideals above q. Let us fix such a prime ideal p1.
From the equation above, we know that for any subgroup H ⊆ AutQ(K), there
exists a set ΩH ⊂ {1, . . . , d} with |ΩH | = |H| such that

{τ(p1) | τ ∈ H} = {pi | i ∈ ΩH}.

Note that the set ΩH also depends on the choice of p1, but this choice has no
impact on our attack, hence we do not mention it in the notation.

By definition of ΩH , it holds that IΩH
=

∏
i∈ΩH

pi =
∏

τ∈H τ(p1) is fixed
by H. The same equation also shows that IΩH

is not fixed by any strictly larger
group of automorphisms containing H.

To conclude, we have a way, given any subgroup H of AutQ(K), to construct
a subset ΩH ∈ {1, · · · , d} such that |ΩH | = |H| and HIΩH

= H.

Subgroups of AutQ(K) of the Desired Size. Recall that the set Ω of the PV-Knap
instance has to have size t. If there exists a subgroup H of AutQ(K) with
size t, then the previous paragraph shows that one can find bad sets Ω of size t
with |HIΩ

| = t. This leads to an attack against PV-Knap for those bad sets Ω
whose run time is exp

(
O

(
d
t

)) · poly (d, log q). It is polynomial if t = Ω(d), as is
usually the case in PV-Knap parameter sets (see for instance Sect. 5).

If there is no subgroup H of AutQ(K) of size t, one can choose a subgroup H
of maximal cardinality, subject to |H| ≤ t. This provides a set Ω′ = ΩH of
cardinality |H| ≤ t such that IΩ′ is fixed by H. This set Ω′ does not have the
desired size. However, we observe that one can always transform a PV-Knap
instance with respect to Ω into a PV-Knap instance with respect to Ω′ for
any Ω′ ⊆ Ω. This is done by “forgetting” the value of a mod pi for the i’s
in Ω \ Ω′. Another way to phrase this is to observe that if Ω′ ⊂ Ω, then IΩ

is a sublattice of IΩ′ . Hence, we can view any BDD instance in IΩ as a BDD
instance in IΩ′ , provided that the volume of ideal IΩ′ is not too small (so that
the BDD instance is still close to a unique point of the ideal IΩ′).
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This shows that, even when there are no subgroups H of AutQ(K) with
size t, one can find bad sets Ω of size t containing a subset Ω′ fixed by some
subgroup H ⊆ AutQ(K) of cardinality

t0 = max(|H| : H subgroup of AutQ(K) and |H| ≤ t).

If qt0/d ≥ 8·B, we can solve PV-Knap for Ω in time exp
(
O

(
d
t0

))
·poly (d, log q).

Finally, let us estimate the quantity t0. We know from Lemma 2.9
that AutQ(K) contains subgroups of any order dividing φ(m). Hence, one can
take

t0 = max(r : r|φ(m) and r ≤ t}.

In the case of power-of-two cyclotomic fields, this means that we always
have t0 ≥ t/2. Hence, if t = Ω(d), there always exist bad sets Ω for which the
attack runs in polynomial time (provided that qt/(2d) ≥ 8 · B).

In the case of prime conductors m, we know that φ(m) = d is odd, hence
if t ≥ d/2, then we have t0 ≥ d/2 and there also exist bad sets Ω for which the
attack runs in polynomial time.

5 Experimental Results

We implemented the attack described in Sect. 4 in SageMath [The20] to solve
easy instances of PV-Knap over cyclotomic fields. The code is available at
https://github.com/apelletm/easy-PV-knap.

We tested our attack in two significantly different scenarios. In the first one,
the set Ω of the PV-Knap instance is fixed to make the problem easy (i.e., by
choosing Ω such that IΩ is stable by a lot of automorphisms of K, cf. Sect. 4.3).
In the second scenario, we consider randomly chosen sets Ω.

Our results show that the easy cases are indeed easy: if Ω is badly chosen,
one can solve PV-Knap (in both its search and decision versions) in a few sec-
onds. Perhaps surprisingly, we observe that our attack can also be beneficial for
randomly chosen sets Ω, for the decision variant of PV-Knap.

Generation of PV-Knap Instances. We decided to generate PV-Knap instances
whose parameters are as suggested in [HPS+14] and [LZA18]. These parameters
are summarized in Table 1 below. All number fields are cyclotomic, m is the
conductor of the cyclotomic field K, d is the degree of K, t = |Ω| is the size of Ω
and q is a rational prime that fully splits in K. The last line of the table contains
the security estimates provided in [HPS+14,LZA18] for these parameters.

As explained above, we consider two types of PV-Knap instances. The first
type is what we call worst-case instances, where we choose the set Ω so that the
ideal IΩ is stable by many automorphisms of the number field K. For this case,
the user can choose the size of the subgroup of AutQ(K) fixing IΩ .

The second type of instances we generate are what we call random instances.
In this case, the set Ω is sampled uniformly at random among all the subsets
of {1, . . . , d} of size t.

https://github.com/apelletm/easy-PV-knap
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Table 1. Parameter sets used for the attack

LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

m 1024 2048 433 577 769 1153

d 512 1024 432 576 768 1152

t 256 512 200 280 386 600

q 65537 65537 775937 743177 1047379 968521

estimated 128 128 � 62 � 80 < 100 ≤ 130

bit security

Regarding historical choices, [LZA18] suggested taking the set Ω uniformly
at random, while [HPS+14] seems to assume that Ω can be chosen arbitrarily
(and fixed once and for all). Here, we consider all sets of parameters in both
regimes where Ω is arbitrary or uniformly chosen.

In both cases, the secret element a and public element b were computed
in the same way: we sample a ∈ OK uniformly with coefficients in {−1, 0, 1}
(note that we consider the coefficient embedding of a here, to be consistent
with the way PV-Knap instances are described in [HPS+14,LZA18]). We then
set b = a mod IΩ.7

Worst-Case Instances of Ω. In these experiments, we choose Ω so that IΩ is
stabilized by a large subset of AutQ(K), as explained in Sect. 4.3. Note that
for the HPSSW parameter sets, we do not have subgroups of AutQ(K) of size
exactly t. Hence, we use the technique described above: we take t0 = max(r :
r|φ(m) and r ≤ t}, a bad set Ω′ fixed by a subgroup of order t0, and run the
attack with this set Ω′.

In Table 2 below, we summarize some of the parameters related to the attack.
Note that the quantity t0 is always equal to either d/2 or d/3, hence we are in
a regime where the lattice reduction step can be performed in dimension 2 or 3.
Recall that the quantity B is an upper bound on the size of ‖ΣK(a)‖. In our
case, since a has ternary coefficients, this is upper bounded by

√
d.

Recall that our attack from Sect. 4.3 was proven to work when qt0/d ≥ 8B.
This condition is not always satisfied for our parameter sets, however, we
observed that in practice, the attack works for all parameter sets, even when
the condition was not satisfied. This is not so surprising since the condition is a
sufficient condition for the attack to provably work, but not a necessary one.

For each set of parameters described in Table 1, we performed 20 tests of our
search and decision attacks, for an optimal set Ω (optimal for the attack, i.e.,
containing a subset Ω′ fixed by a group of automorphisms of size t0). The search

7 For the case of HPSSW parameters, the generation of a is slightly different, in
order to be consistent with the specifications of [HPS+14]. They consider PV-Knap
instances over the cyclic ring Z[X]/(Xm −1) instead of OK . For this specific case, we
generate a with ternary coefficients in the ring Z[X]/(Xm − 1), and then reduce it
modulo Φm(X) in order to map it to OK and continue the attack in OK , cf. Sect. 2.4.
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Table 2. Some quantities related to the attack

LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

t 256 512 200 280 386 600

t0 256 512 144 192 384 576

qt0/d 256.0 256.0 91.9 90.6 1023.4 984.1

8 · B 181.0 256 166.3 192.2 221.8 271.6

and decision attacks both succeeded with probability 1 on all cases. They took
between 5 s for the smallest sets of parameters and 2 min for the largest ones,
on a personal laptop (the timings are for performing the 20 tests, but the short
vector in I−1

Ω is computed only once).
For the large sets of parameters LZA 2 and HPSSW 4, we also tried the

attack with not so optimal sets Ω: we chose Ω so that IΩ was stable by a sub-
set of AutQ(K) of size 16, instead of the optimal subsets of size 512 and 576
respectively.8 This means that the SVP instance we had to solve was in dimen-
sion 64 and 72 respectively (instead of dimension 2). Even in this less favorable
scenario, the search attack succeeded with probability 1 over the 20 tests, and
it ran in 2 min and 4 min respectively. Note that recovering the secret a already
solves the decision variant of PV-Knap as well.

Our conclusion is that the easy instances of PV-Knap that we identified are
really easy (solved in less than a few minutes on a personal laptop), even for
number fields of large degree and concrete parameter sets, and even when the
condition qt0/d ≥ 8B · d3/2 is not satisfied. Hence, the choice of the set Ω should
absolutely not be given to the attacker.

This worst-case attack can be considered to break (at least partially) the
PV-Knap settings suggested in [HPS+14], since it wasn’t specified how the set Ω
should be chosen. For [LZA18], the authors require Ω to be uniformly sampled,
hence the worst-case attack cannot be considered to break their settings.

Random Choices of Ω: Estimating the Cost of Lattice Attacks. We now consider
the cases where the set Ω is chosen uniformly at random among all sets of
size t. In this situation, it is very unlikely that the ideal IΩ is stable by any
non trivial subgroup of the Galois group. Even for a subgroup of order 2, the
probability that IΩ is stable by this subgroup is roughly equal to 1/2t. Indeed,
let τ ∈ AutQ(K) be an element of order 2 (i.e., τ(τ(x)) = x for all x). The
ideal IΩ is stable by τ if and only if, for every i ∈ Ω, we have j ∈ Ω where j
is such that pj = τ(pi). Since Ω is chosen uniformly at random, the probability
that j ∈ Ω is roughly 1/2.

Even though IΩ is very unlikely to be stabilized by a non trivial subgroup
of AutQ(K), we can still try to apply our attack here. The idea is always the

8 Note that here, we do not reduce the size of Ω below t0: we take Ω as the union
of multiple sets Ω′, each one of size 16 such that IΩ′ is fixed by a subgroup H
of AutQ(K) of size 16 (the same H for all the Ω′).
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same: we can forget some of the i’s in Ω. As we have already seen, reducing the
size of Ω by forgetting some of the i’s makes the problem harder, since our target
is a BDD instance in a denser lattice, and at some point the solution will not
even be unique anymore. On the other hand, by discarding some of the elements
of Ω in a carefully chosen way, we may hope to obtain a subset Ω′ such that IΩ′

is stable by some non trivial subgroup of AutQ(K).
Our objective is then to reduce Ω to some subset Ω′ sufficiently large such

that b is still a BDD instance in IΩ′ , but with IΩ′ stabilized by a subgroup
of AutQ(K) as large as possible. The objective of our experiments in this para-
graph was to estimate by how much one can hope to reduce the lattice dimension
by using this technique. In other words, what is the largest subset of AutQ(K)
that stabilizes a sufficiently large subset Ω′ of Ω (so that the problem is still
well defined with Ω′)?

To estimate this quantity, we proceed in two steps. We first estimate the
minimal size of Ω′ that we can allow for the distinguishing attack to succeed.
This is done experimentally, by estimating the size B of a shortest vector in qI−1

Ω′

for Ω′ of a given length (note that the volume of qI−1
Ω′ is equal to qd−|Ω′| · Δ1/2

K ,
which only depends on the size of Ω′ and not the actual choice of Ω′). We then
compute a short element v of length B and experimentally try to distinguish
between v ·a mod q with a uniformly distributed modulo q and v ·a mod q with a
randomly chosen with ternary coefficients (if v is sufficiently small, we expect
that v · a mod q has more coefficients < q/4 when a is ternary than when a is
uniform). This gives us an (experimental) lower bound on the size of Ω′ we can
take in order to distinguish PV-Knap instances from random elements, with a
not too small advantage.

Once this lower bound t0 on the size of Ω′ is computed, we compute the
largest subset of AutQ(K) stabilizing a subset Ω′ of Ω of size at least t0. We
do that for different random choices of Ω, and compute the probability (over
the choice of Ω) that there exists a subset Ω′ of Ω of size at least t0 and such
that IΩ′ is stabilized by a subgroup of AutQ(K) of order 1, 2, 3, . . . .

We observe that, most of the time, there does not exist a subset Ω′ with
sufficiently large size and stabilized by a non-trivial subgroup of AutQ(K). In
these cases, we cannot use our attack to lower the dimension of the lattices.
However, in some cases, we were able to find a sufficiently large set Ω′ stabilized
by a subgroup of AutQ(K) of order 2. In this case, one can reduce the dimension
of the lattice in which to solve SVP by a factor 2. In Table 3 below, we show
the empirical probability that Ω contains a large enough subset Ω′ stabilized by
a subgroup of order k of AutQ(K), for k = 1 and k = 2 (we never observed a
larger k experimentally).

We can see that for all parameter sets, there is a non-negligible probability
to sample a random Ω that contains a good subset Ω′ allowing to reduce the
dimension of the lattice problem by a factor 2. Hence, by sampling many ran-
dom PV-Knap instance, one can hope to obtain an easier than expected instance
in a few trials (between 3 and 2500 trials depending on the parameter sets).
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Table 3. Probability to find a good subset Ω′ in a random Ω

LZA 1 LZA 2 HPSSW 1 HPSSW 2 HPSSW 3 HPSSW 4

Subgroup of AutQ(K)

of size 1

0.86 0.9996 0.98 0.94 0.55 0.65

Subgroup of AutQ(K)
of size 2

0.14 0.0004 0.02 0.06 0.45 0.35

The fact that the probability to find a good subset Ω′ increases when the
dimension increases in the HPSSW parameter sets might seem surprising at first.
We believe that the explanation comes from the choice of t, which is < d/2 for
HPSSW 1 and HPSSW 2 and is > d/2 for HPSSW 3 and HPSSW 4. The larger t,
the easier it is to find a not too small subset that has some nice stabilizing
properties. We also note that the probability to find a good set Ω seems to
vary significantly with the choice of t, and with our estimate of t0 (the minimal
size of Ω′ that we can allow). Running the same computation with a different
random seed might produce significantly different probabilities. For this reason,
the numbers in Table 3 are to be taken as order of magnitudes, and not precise
estimates of the success probability.

We conclude that, even when the set Ω is chosen uniformly at random, there
is some non-negligible probability that one can reduce the dimension of the
lattice in which to solve SVP by a factor 2. This might significantly improve the
run time of the attack, since the cost of SVP increases exponentially with the
dimension of the lattice. Hence, one should be careful when choosing parameter
sets for the PV-Knap problem.

Random Choices of Ω: Full Distinguishing Attack. Finally, we also ran the full
distinguishing attack on the parameter set LZA 1, which was supposed to pro-
vide 128 bits of security.

We implemented the strategy described above: we sampled 3000 random
PV-Knap instances, and kept the one whose set Ω contained the largest sub-
set Ω′ stabilized by a subgroup of AutQ(K) of order 2. We then ran BKZ with
block size ≤ 50 in the lattice qI−1

Ω′ to obtain a sufficiently short element v. This
took time roughly 11 h on a personal laptop. We then estimated empirically the
probability success of our distinguishing attack given this short element v and
random BDD targets b.

We concluded that our short vector v allows us to distinguish uniform tar-
gets b from PV-Knap ones with advantage at least 0.0005. We computed this
advantage using 106 samples, to make sure that the advantage gap we com-
puted was significant (Hoeffding’s bound guarantees that our advantage is at
least 0.0005, expect with probability at most 0.01). Overall, taking into account
the fact that our attack chooses the best Ω among 3000 choices, this means
that our distinguishing advantage is at least 3000−1 · 0.0005 ≥ 2−23, for a run
time of less than 12 h on a personal laptop with a 1.8 GHz processor, hence
amounting to ≤ 247 bit-operations. It was suggested in [MW18] to define the
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bit-security of a distinguishing problem as log2(T/ε2), where ε is the distin-
guishing advantage of the attacker and T is its time (or, in our case, its number
of bit-operations). Our attack hence shows that the parameter set LZA 1 enjoys
at most 47 + 2 · 23 = 93 bits of security, which is significantly smaller than the
expected 128 bits of security. We note however that this does not fully invalidate
the claim made in [LZA18], since the 128 bit-security is claimed against search
attackers, and not distinguishing attackers.

We could also increase the advantage of our attack a bit more, by spending
more time on the lattice reduction phase, in order to obtain an even shorter
element v. We did so with BKZ with block-size 55 and obtained an attack with
advantage roughly 3000−1 · 0.0044 ≥ 2−20, for a total time ≤20 h. This reduces
the security of the parameter set LZA 1 even further to ≤ 87 bits of security
(against distinguishing attackers).

This attack shows that the security estimate provided in [LZA18] for the
first set of parameters is overestimated for distinguishing attackers, even when
the set Ω is chosen uniformly at random. We expect that the other estimates
provided in [LZA18] and [HPS+14] might also be overestimated, even though it
might not be possible to actually run the full attack in a few hours on a laptop.
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Abstract. It is a long standing open problem to find search to deci-
sion reductions for structured versions of the decoding problem of linear
codes. Such results in the lattice-based setting have been carried out
using number fields: Polynomial–LWE, Ring–LWE, Module–LWE and
so on. We propose a function field version of the LWE problem. This
new framework leads to another point of view on structured codes, e.g.
quasi-cyclic codes, strengthening the connection between lattice-based
and code-based cryptography. In particular, we obtain the first search to
decision reduction for structured codes. Following the historical construc-
tions in lattice–based cryptography, we instantiate our construction with
function fields analogues of cyclotomic fields, namely Carlitz extensions,
leading to search to decision reductions on various versions of Ring-LPN,
which have applications to secure multiparty computation and to an
authentication protocol.

Keywords: Code-based cryptography · Search to decision reductions ·
LWE · Function fields · Carlitz modules

1 Introduction

Code-Based Cryptography. Error correcting codes are well known to pro-
vide quantum resistant cryptographic primitives such as authentication protocols
[18,35], signatures [10,13] or encryption schemes such as McEliece [24]. These
code-based cryptosystems were built to rely on the following hard problem: find-
ing a close (or far away) codeword to a given word, a task called decoding. In the
case of random linear codes of length n, which is the standard case, this problem
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can be expressed as follows. First, we are given a vector space C (i.e. the code)
of F

n
q generated by the rows of some random matrix G ∈ F

k×n
q , namely:

C
def= {mG | m ∈ F

k
q}. (1)

The decoding problem corresponds, given G (in other words C) and some noisy
codeword mG + e where the number of non-zero coordinates of e is equal to
t (its Hamming weight is |e| = t), to find the error e or what amounts to the
same, the original codeword mG.

Usually this decoding problem is considered in the regime where the code
rate R

def= k
n is fixed, but there are also other interesting parameters for cryp-

tographic applications. For instance, the Learning Parity with Noise problem
(LPN) corresponds to the decoding problem where n is the number of samples,
k the length of the secret while the error is sampled according to a Bernoulli
distribution of fixed rate t/n. As the number of samples in LPN is unlimited,
this problem actually corresponds to decoding a random code of rate arbitrarily
close to 0.

Despite the promising approach of McEliece, there are two drawbacks if one
follows it to design a cryptosystem. First, the public data in McEliece is a rep-
resentation of a code which has to look like random. Assuming this pseudo-
randomness property, the security relies on the hardness of the decoding prob-
lem. In that case one needs to publish Ω(n2) bits but at the same time, best
generic decoding algorithms have a complexity exponential in the number t of
errors to correct. Therefore, to reach a security level of 2λ, the public data are
of order Θ(λ2) if t = Θ(n) or even worse of the order Θ(λ4) if t = Θ (

√
n).

On the other hand, in McEliece-like cryptosystems, the owner of the secret key
has to know an efficient decoding algorithm for the public code. It turns out
that codes for which we know an efficient decoding algorithm are obtained via
polynomial evaluations (e.g. Goppa codes) or short vectors (e.g. MDPC codes).
Thus, the owner of the secret key has to hide the peculiar description of the
code he publishes. It leads to the fact that in McEliece-like cryptosystems, the
security also relies on the difficulty to distinguish the code that is made public
from a random one. This is a second assumption to make in addition to the
hardness of the decoding problem.

Alekhnovich Cryptosystem. In 2003, Alekhnovich [5] introduced a new app-
roach to design an encryption scheme based on error correcting codes. Unlike
McEliece cryptosystem, Alekhnovich truly relies on the hardness of decoding
random codes. It starts from a random code C and proceeds as follows:

– Key Generation. Let esk ∈ F
n
2 of small Hamming weight. The public key is

(C, c+ esk) where c ∈ C and the secret key is esk.
– Encryption. To encrypt one bit β ∈ {0, 1} set:

• Enc(1) def= u where u ∈ F
n
2 is a uniformly random vector.

• Enc(0) def= c∗ + e where e is of small Hamming weight and c∗ lies in the
dual of the code Cpub spanned by C and c+ esk.
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– Decryption. The decryption of Enc(β) is 〈Enc(β), esk〉, where 〈·, ·〉 is the usual
inner product on F

n
2 .

The correction of this procedure relies on the fact that

〈Enc(0), esk〉 = 〈c∗ + e, esk〉 = 〈e, esk〉,

where we used that esk ∈ Cpub while c∗ lies in its dual. Now, this inner product
is equal to 0 with overwhelming probability as esk and e are of small Hamming
weight. On the other hand, 〈Enc(1), esk〉 is a uniformly random bit.

Therefore, contrary to McEliece cryptosystem, the security of Alekhnovich
scheme does not depend on hiding the description of a code:

• Key security. Recovering the private key from public data amounts to decod-
ing the random code C.

• Message security. Recovering the plaintext from the ciphertext is tantamount
to distinguishing a noisy codeword from a uniformly random vector.

The message security relies on the decision version of the decoding problem.
Search and decision versions of the decoding problem are known to be compu-
tationally equivalent using Goldreich-Levin theorem [14]. However, Alekhnovich
cryptosystem suffers from major drawbacks:

1. Encrypting one bit amounts to sending n bits;
2. The public key size is quadratic in the length of ciphertexts.

While the first issue can easily be addressed, the second flaw needs more work,
and as is, Alekhnovich cryptosystem is not practical. However, the approach
itself was a major breakthrough in code-based cryptography. It was inspired
by the work of Ajtai and Dwork [3] whose cryptosystem is based on solving
hard lattice problems. The latter reference from Ajtai and Dwork is also the
inspiration of Regev famous Learning With Errors (LWE) problem [30], which
is at the origin of an impressive line of work. As Alekhnovich cryptosystem, the
original LWE cryptosystem was not practical either and, to address this issue,
structured versions were proposed, for instance Polynomial-LWE [34], Ring-LWE
[23], Module-LWE [20].

Structured Decoding Problem. In the same fashion, for code–based public
key encryptions, it has been proposed to restrict to codes that can be represented
more compactly to reduce the key sizes. In McEliece setting, the story begins in
2005 with the results of [15] that suggest to use �–quasi-cyclic codes, i.e. codes
that are generated by a matrix G formed out of � blocks:

G =
(
rot

(
a(1)

) · · · rot (
a(�)

))
, (2)
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each block being a circulant matrix, i.e. of the form

rot(a) def=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 . . . . . . ak−1

ak−1 a0 . . . . . . ak−2

...
. . . . . .

...
...

. . . . . .
...

a1 a2 . . . ak−1 a0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with a ∈ F
k
q .

The key point is that such codes have a large automorphism group G, and
instead of publishing a whole basis, one can only publish a generating set for the
Fq[G]–module structure of the code. That is to say, a family of vectors whose
orbit under the action of G spans the code. For instance, in the case of quasi-
cyclic codes (2), one can publish only the first row of the �-circulant generator
matrix. It can be argued that the quasi–cyclicity could be used to improve the
speed-up of generic decoding, but the best known approach in the generic case
uses DOOM [33] which allows to divide the complexity of decoding by

√
#G,

the latter complexity remaining exponential with the same exponent. Hence, one
can keep the same security parameter, while the size of the public key can be
divided by a factor O(#G).

This idea leads to very efficient encryption schemes such as Bike [1], in the
McEliece fashion, or HQC [2] which is closer to Ring-LWE. Both proposals use
2-quasi-cyclic codes and have been selected to the third round of NIST competi-
tion as alternate candidates. Other structured variants of the decoding problem
(referred to as Ring-LPN) were also proposed with applications to authentication
[18] or secure MPC [7].

In other words, the security of those cryptosystems now rely on some struc-
tured variant of the decoding problem.

A Polynomial Representation. It turns out that a convenient way of seeing
�-quasi-cyclic codes, is to represent blocks of their generator matrix as elements
of the quotient ring Fq[X]/(Xn − 1), via the Fq–isomorphism:

⎧
⎪⎨

⎪⎩

F
n
q −→ Fq[X]/(Xn − 1)

a def= (a0, . . . , an−1) �−→ a(X) def=
n−1∑

i=0

aiX
i.

A simple computation shows that the product of two elements of Fq[X]/(Xn − 1)
can be represented with the operator rot(·):

u(X)v(X) mod (Xn−1) = u·rot(v) = v·rot(u) = v(X)u(X) mod (Xn−1).

From now on, u can denote either a vector of F
n
q or a polynomial in

Fq[X]/(Xn − 1), and the product of two elements uv is defined as above.
Consider an �-quasi-cyclic code with a generator matrix G in �-circulant

form. Let s ∈ F
n
q be a secret word of the ambient space and let e ∈ F

�n
q be an
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error vector. Under the above map, the noisy codeword sG+e is represented by
� samples of the form sa(j) + e(j) ∈ Fq[X]/(Xn − 1) and the decoding problem
of �-circulant codes corresponds to recovering the secret s given � samples. This
can be seen as a code analogue of the Ring-LWE problem, with access to a fixed
number of samples �. The rate of the code is 1

� , so increasing the number of
samples corresponds to decode a code whose rate goes to 0.

A natural generalization would be to consider multiple rows of circulant
blocks. In this situation, the generator matrix G is of the form

G =

⎛

⎜
⎝

rot(a(1,1)) · · · rot(a(1,�))
...

...
rot(a(m,1)) · · · rot(a(m,�))

⎞

⎟
⎠

and a noisy codeword sG+ e is now represented by � samples of the form

m∑

i=1

sia(i,j) + ej ∈ Fq[X]/(Xn − 1)

where s can be considered as a collection of m secrets s1, . . . , sm. This would
be the code analogue of Module-LWE, with a rank m module and � samples,
introduced in [20].

Contrary to structured lattice cryptosystems, up to now, no reduction from
the search to the decision version of the structured decoding problem was known.
This was pointed out by NIST [4], and was one of the reasons for those code-
based cryptosystems to only be considered as alternate candidates for the third
round. Actually even before NIST standardization process, this lack of search
to decision reduction was already pointed out by the authors of the Ring-LPN
based authentication scheme Lapin [18].

Our Contribution. To handle this lack of search to decision reduction in the
code setting, we propose in this article a new generic problem called FF-DP,
for Function Field Decoding Problem, in the Ring-LWE fashion. One of the key
ideas consists in using function fields instead of number fields, the latter being
used in the lattice case. This framework enables us to adapt directly the search
to decision reduction of [23] in the case of codes. Frequently in the literature
on Ring-LWE, the search to decision reduction is instantiated with cyclotomic
number fields. In the same spirit we present an instantiation with function fields
analogues of cyclotomic fields, namely the so-called Carlitz extensions. As we
show, this framework is for instance enough to provide a search to decision
reduction useful in the context of Lapin [18] or for a q–ary analogue of Ring-
LPN used for secure multiparty computation [7]. If our reduction does not work
for every schemes based on structured codes such as HQC, we believe that our
work paves the way towards a full reduction.

Remark 1. Note that the use of function fields in coding theory is far from
being new. Since the early 80’s and the seminal work of Goppa [16], it is well–
known that codes called Algebraic Geometry (AG) codes can be constructed



518 M. Bombar et al.

from algebraic curves or equivalently from function fields and that some of these
codes have better asymptotic parameters than random ones [37]. However, the
way they are used in the present work is completely different. Indeed, AG codes
are a natural generalization of Reed–Solomon codes and, in particular, are codes
benefiting from efficient decoding algorithms (see for instance surveys [6,11,19]).
In the present article, the approach is somehow orthogonal to the AG codes
setting since we use function fields in order to introduce generic problems related
to structured codes for which the decoding problem is supposed to be hard.

A Function Field Approach. Lattice-based cryptography has a long standing
history of using number fields and their rings of integers to add some structure
and reduce the key sizes. Recall that number fields are algebraic extensions of
Q of the form

K
def= Q[X]/(f(X)),

where f is an irreducible polynomial, and the ring of integers OK is the integral
closure of Z in K, i.e. it is the subring of K composed of elements which are roots
of monic polynomials with coefficients in Z. For instance, cyclotomic extensions
are of the form K = Q(ζm) = Q[X]/(Φm(X)) where ζm is a primitive m-th
root of unity and Φm is the m-th cyclotomic polynomial. The ring of cyclotomic
integers has a very specific form, namely OK = Z[ζm]. One of the most used case
is when m is a power of 2. In this case, setting m = 2n, we have Φm = Φ2n =
Xn + 1 and OK = Z[X]/(Xn + 1). Such rings have been widely used since they
benefit from a very fast arithmetic thanks to the fast Fourier transform. In the
Ring–LWE setting, one reduces all the samples modulo a large prime element
q ∈ Z called the modulus and hence considers the ring (Z/qZ)[X]/(Xn + 1).

When moving from structured lattices to structured codes, it would be tan-
talizing to consider the ring Fq[X]/(Xn − 1) as the analogue of Z[X]/(Xn + 1).
However, if the two rings have a similar expression they have a fundamental
difference. Note for instance that the former is finite while the latter is infi-
nite. From a more algebraic point of view, Fq[X]/(Xn − 1) is said to have Krull
dimension 0 while Z[X]/(Xn + 1) has Krull dimension 1. In particular, the for-
mer has only a finite number of ideals while the latter has infinitely many prime
ideals. The main idea of the present article is to lift the decoding problem and to
see Fq[X]/(Xn − 1) as a quotient R/I of some ring R of Krull dimension 1. The
ideal I will be the analogue of the modulus. This setting can be achieved using
so-called function fields. It could be argued that the results of this article could
have been obtained without introducing function fields. However, we claim that
function fields are crucial for at least three reasons:

1. Introducing function fields permits to establish a strong connection between
cryptography based on structured lattices involving number fields on the one
hand and cryptography based on structured codes on the other hand.

2. Number theory has a rich history with almost one hundred years of develop-
ment of the theory of function fields. We expect that, as number fields did for
structured lattices, function fields will yield a remarkable toolbox to study
structured codes and cryptographic questions related to them.
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3. A third and more technical evidence is that a crucial part of the search to
decision reduction involves some Galois action. We claim that, even if for a
specific instantiation, this group action could have been described in a pedes-
trian way on the finite ring Fq[X]/(Xn − 1), without knowing the context
of function fields, such a group action would really look like “a rabbit pulled
out of a hat”. In short, this group action, which is crucial to conclude the
search to decision reduction, cannot appear to be something natural without
considering function fields.

It is well–known for a long time that there is a noticeable analogy between
the theory of number fields and that of function fields. Starting from the ground,
the rings Z and Fq[T ] share a lot of common features. For instance, they both
have an Euclidean division. Now if one considers their respective fraction fields
Q and Fq(T ), finite extensions of Q yield the number fields while finite separable
extensions of Fq(T ) are called function fields because they are also the fields
of rational functions on curves over finite fields. Now, a similar arithmetic the-
ory can be developed for both with rings of integers, orders, places and so on.
Both rings of integers are Dedekind domains. In particular, every ideal factorizes
uniquely into a product of prime ideals, and the quotient by any non-zero ideal
is always finite. A dictionary summarizing this analogy between number fields
and function fields is represented in Table 1. Note that actually, many properties
that are known for function fields are only conjectures for number fields. The
best example is probably the Riemann hypothesis which has been proved by
Weil in the early 1940s in the function field case.

Table 1. A Number-Function fields analogy

Number fields Function fields

Q Fq(T )

Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

K = Q[X]/(f(X)) K = Fq(T )[X]/(f(T, X))

OK

= Integral closure of Z

Dedekind domain

OK

= Integral closure of Fq[T ]

Dedekind domain

characteristic 0 characteristic > 0

With this analogy in hand, the idea is to find a nice function field K with
ring of integers OK and an irreducible polynomial Q ∈ Fq[T ], called the modulus,
such that OK/QOK = Fq[X]/(Xn − 1). Following the path of [23], we are able
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to provide a search to decision reduction for our generic problem FF-DP when
two conditions hold:

1. The function field K is Galois.
2. The modulus Q does not ramify in OK , meaning that the ideal QOK factorizes

in product of distinct prime ideals.
3. The distribution of errors is invariant under the action of the Galois group.

This framework is enough to provide a search to decision reduction useful in
the context of Lapin [18] or for a q–ary analogue of Ring–LPN used for secure
MPC [7]. It should be emphasized that, in the case of Lapin, the search to
decision reduction requires to adapt the definition of the noise which will remain
built by applying independent Bernouilli random variables but with a peculiar
choice of F2–basis of the underlying ring F2[X]/(f(X)). The chosen basis is a
normal basis, i.e. is globally invariant with respect to the Galois action. This
change of basis is very similar to the one performed in lattice based cryptography
when, instead of considering the monomial basis 1,X, . . . ,Xn−1 in an order
Z[X]/(f(X)), one considers the canonical basis after applying the Minkowski
embedding. Indeed, the latter is Galois invariant. We emphasize that, here again,
the function field point of view brings in a Galois action which cannot appear
when only considering a ring such as F2[X]/(f(X)). This is another evidence of
the need for introducing function fields.

Outline of the Article. The present article is organised as follows. Section 2
recalls the necessary background about function fields (definitions and impor-
tant properties). In Sect. 3 we present the FF-DP problem (search and decision
versions) as well as our main theorem (Theorem 1) which states the search to
decision reduction in the function field setting. In Sect. 4 we give a self contain
presentation of Carlitz extensions. They will be used to instantiate our search
to decision reduction in Sect. 5, which provides our applications.

2 Prerequisites on Function Fields

In this section, we list the minimal basic notions on the arithmetic of function
fields that are needed in the sequel. A dictionary drawing the analogies has been
given in Table 1. For further references on the arithmetic of function fields, we
refer the reader to [32,36].

Starting from a finite field Fq, a function field is a finite extension K of Fq(T )
of degree n > 0 of the form

K = Fq(T )[X]/(P (T,X))

where P (T,X) ∈ Fq(T )[X] is irreducible of degree n. The field K ∩Fq is referred
to as the field of constants or constant field of K, where Fq is the algebraic closure
of Fq. In the sequel, we will assume that Fq is the full field of constants of K,
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which is equivalent for P (T,X) to be irreducible even regarded as an element of
Fq(T )[X] ([36, Cor. 3.6.8]).

Similarly to the number field case, one can define the ring of integers OK

as the ring of elements of K which are the roots of a monic polynomial in
Fq[T ][X]. This ring is a Dedekind domain. In particular, any ideal P has a
unique decomposition Pe1

1 · · ·Per
r where the Pi’s are prime ideals.

In the sequel, we frequently focus on the following setting represented in the
diagram below: starting from a prime ideal p of Fq[T ] (which is nothing but the
ideal generated by an irreducible polynomial Q(T ) of Fq[T ]), we consider the
ideal P def= pOK and its decomposition:

P = Pe1
1 · · ·Per

r .

P ⊂ OK K

p ⊂ Fq[T ] Fq(T )

The prime ideals Pi’s are said to lie above p. The exponents ei are referred to as
the ramification indexes, and the extension is said to be unramified at P when all
the ei’s are equal to 1. Another important constant related to a Pi is its inertia
degree, which is defined as the extension degree fi

def= [OK/Pi : Fq[T ]/p] (one can
prove that OK/Pi and Fq[T ]/p are both finite fields). The Chinese Remainder
Theorem (CRT) induces a ring isomorphism between OK/P and

∏r
i=1 OK/Pei

i .
In particular, when the extension is unramified at P, the quotient OK/P is a
product of finite fields. Finally, a well-known result asserts that

n = [K : Fq(T )] =
r∑

i=1

eifi. (3)

Finite Galois Extensions. Consider K/Fq(T ) a Galois function field (i.e. a
function field K which is a Galois extension of Fq(T )), with Galois group G

def=
Gal(K/Fq(T )). Then, G keeps OK globally invariant. Furthermore, given p a
prime ideal of Fq[T ], the group G acts transitively on the set {P1, . . . ,Pr} of
prime ideals of OK lying above p: for any i 
= j there exists σ ∈ Gal(K/Fq(T ))
such that σ(Pi) = Pj . In particular, all the ramification indexes ei (resp. the
inertia degrees fi) are equal and denoted by e (resp. f) so that P

def= pOK =
(P1 . . .Pr)e and (3) becomes n = efr. Another consequence which will be crucial
for the applications, is that the action of G on OK is well–defined on OK/P and
simply permutes the factors OK/Pe

i . The decomposition group of Pi over p is

DPi/p
def= {σ ∈ G | σ (Pi) = Pi}.

It has cardinality e × f . In particular, when K is unramified at P, the ring
OK/Pi is the finite field Fqf and the action of DPi/p on it is the Frobenius
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automorphism: the reduction modulo Pi yields an isomorphism

DPi/p � Gal(Fqf /Fq). (4)

Finally, all the decomposition groups of primes above p are conjugate: for any
i 
= j there exists σ ∈ G such that DPi/p = σDPj/pσ

−1.

3 A Function Field Approach for Search to Decision
Reductions

Search and Decision Problems. In this section, we introduce a new generic
problem that we call FF-DP, which is the analogue of Ring–LWE in the context
of function fields. Then, we give our main theorem which states the search-to-
decision reduction of FF-DP. Since function fields and number fields share many
properties, the present search to decision reduction, will work similarly as in [23].

Consider a function field K/Fq(T ) with constant field Fq and ring of integers
OK and let Q(T ) ∈ Fq[T ]. Let P

def= QOK be the ideal of OK generated by
Q. Recall that OK/P is a finite set. FF-DP is parameterized by an element
s ∈ OK/P called the secret and ψ be a probability distribution over OK/P
called the error distribution.

Definition 1 (FF-DP Distribution). A sample (a,b) ∈ OK/P × OK/P is
distributed according to the FF-DP distribution modulo P with secret s and error
distribution ψ if

• a is uniformly distributed over OK/P,
• b = as+ e ∈ OK/P where e is distributed according to ψ.

A sample drawn according to this distribution will be denoted by (a,b) ← Fs,ψ.

The aim of the search version of the FF-DP problem is to recover the secret s
given samples drawn from Fs,ψ. This is formalized in the following problem.

Definition 2 (FF-DP, Search version). Let s ∈ OK/P, and let ψ be a proba-
bility distribution over OK/P. An instance of FF-DP problem consists in an ora-
cle giving access to independent samples (a,b) ← Fs,ψ. The goal is to recover s.

Remark 2. This problem should be related to structured versions of the decoding
problem. Indeed, recall from the discussion in the introduction that, using the
polynomial representation, the decoding problem of random quasi-cyclic codes
corresponds to recovering a secret polynomial s(X) ∈ Fq[X]/(Xn − 1) given
access to samples of the form as + e ∈ Fq[X]/(Xn − 1) where a is uniformly
distributed in Fq[X]/(Xn − 1). This can be rephrased within the FF-DP frame-
work as follows. Consider the polynomial f(T,X) def= Xn + T − 1 ∈ Fq(T )[X].
When n is not divisible by the characteristic of Fq, f is a separable polynomial.
Moreover, by Eisenstein criterion f is irreducible. Define the function field K
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generated by f , namely the extension K
def= Fq(T )[X]/(f(T,X)). One can prove

that OK is exactly Fq[T ][X]/(f(T,X)). Now, let p be the ideal of Fq[T ] defined
by the irreducible polynomial T , and let P def= pOK = TOK be the corresponding
ideal of OK . Then the following isomorphisms hold

OK/P � Fq[T,X]/(T,Xn + T − 1) � Fq[X]/(Xn − 1).

With this particular instantiation, OK/P is exactly the ambient space from
which the samples are defined in the structured versions of the decoding prob-
lem. As a consequence, FF-DP is a generalization of structured versions of the
decoding problem, when considering arbitrary function fields and ideals.

For cryptographic applications, we are also interested in the decision version
of this problem. The goal is now to distinguish between the FF-DP distribution
and the uniform distribution over OK/P × OK/P.

Definition 3 (FF-DP, Decision version). Let s be drawn uniformly at ran-
dom in OK/P and let ψ be a probability distribution over OK/P. Define D0

to be the uniform distribution over OK/P × OK/P, and D1 to be the FF-DP
distribution with secret s and error distribution ψ. Furthermore, let b be a uni-
form element of {0, 1}. Given access to an oracle Ob providing samples from
distribution Db, the goal of the decision FF-DP is to recover b.

Remark 3. For some applications, for instance to MPC, it is more convenient
to have the secret s drawn from the error distribution ψ instead of the uniform
distribution over OK/P. In the lattice-based setting, this version is sometimes
called LWE with short secret or LWE in Hermite normal form. However, both
decision problems are easily proved to be computationally equivalent, see [22,
Lemma 3]. The proof applies directly to FF-DP.

A distinguisher between two distributions D0 and D1 is a probabilistic poly-
nomial time (PPT) algorithm A that takes as input an oracle Ob corresponding
to a distribution Db with b ∈ {0, 1} and outputs an element A(Ob) ∈ {0, 1}.

Search to Decision Reduction. We are now ready to present our main the-
orem.

Theorem 1 (Search to decision reduction for FF-DP). Let K/Fq(T ) be a
Galois function field of degree n with field of constants Fq, and denote by OK

its ring of integers. Let Q(T ) ∈ Fq[T ] be an irreducible polynomial. Consider the

ideal P def
= QOK . Assume that P does not ramify in OK , and denote by f its

inertia degree. Let ψ be a probability distribution over OK/P, closed under the
action of Gal(K/Fq(T )), meaning that if e ← ψ, then for any σ ∈ Gal(K/Fq(T )),
we have σ(e) ← ψ. Let s ∈ OK/P.

Suppose that we have an access to Fs,ψ and there exists a distinguisher between
the uniform distribution over OK/P and the FF-DP distribution with uniform
secret and error distribution ψ, running in time t and having an advantage
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ε. Then there exists an algorithm that recovers s ∈ OK/P (with an overwhelm-
ing probability in n) in time

O

(
n4

f3
× 1

ε2
× qf deg(Q) × t

)
.

Remark 4. We have assumed implicitly in the statement of the theorem that we
have an efficient access to the Galois group of K/Fq(T ) and its action can be
computed in polynomial time.

Remark 5. There are many degrees of freedom in the previous statement: choice
of the function field K (and on the degree n), choice of the polynomial Q (and on
f and deg(Q)). For our instantiations, we will often choose the “modulus” Q to
be a linear polynomial (deg(Q) = 1) and K will be a (subfield of) a cyclotomic
function field.

Remark 6. Due to the continuity of error distributions used in lattice-based
cryptography, a technical tool called the smoothing parameter was introduced
by Micciancio and Regev in [25]. It characterizes how a Gaussian distribution is
close to uniform, both modulo the lattice, and is ubiquitously used in reductions.
However, in the function field setting, we do not need to introduce such a tool
because the error distribution is discrete and already defined on the quotient
OK/P.

Remark 7 (MFF-DP). Instead of considering one secret s ∈ OK/P, we could use
multiple secrets (s1, . . . , sd) ∈ (OK/P)d. The goal is now to recover the secrets
from samples (a,b) with a = (a1, . . . ,ad) uniformly distributed over (OK/P)d

and b = 〈a, s〉 + e =
∑d

i=1 aisi + e with e ← ψ. This generalization has been
considered in lattice-based cryptography under the terminology Module-LWE
[20], because the secret can be thought as an element of Od

K which is a free
OK-module or rank d, before a reduction modulo P on each component.

Following [20, Sect. 4.3], it is possible to adapt Theorem 1; the search to
decision reduction only yielding an overhead of d (the number of secrets). The
running time would now be

O

(
d × n4

f3
× 1

ε2
× qf deg(Q) × t

)
.

Sketch of Proof of Theorem 1. The proof of this Theorem is very similar to the
one for Ring–LWE and lattices [23]. It uses four steps that we quickly describe.
Let P = P1 . . .Pr, where r = n/f , be the factorisation of P in prime ideals.

Step 1. Worst to Average Case. In the definition of Problem 3 the secret s
is supposed to be uniformly distributed over OK/P, while in the search version
the secret is fixed. This can easily be addressed, for any sample (a,b) ← Fs,ψ

with fixed secret s, it is enough to pick s′ ← OK/P and output (a,b+ as′).
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Step 2. Hybrid Argument. Sample (a,b) is said to be distributed accord-
ing to the hybrid distribution Hi if it is of the form (a′,b′ + h) where
(a′,b′) ← Fs,ψ and h ∈ OK/P is uniformly distributed modulo Pj for j � i
and 0 modulo the other factors. Such an h can easily be constructed using the
Chinese Remainder Theorem. In particular, for i = 0, h is 0 modulo all the
factors of P, therefore h = 0 and H0 = Fs,ψ. On the other hand, when i = r,
the element h is uniformly distributed over OK/P, therefore Hr is exactly the
uniform distribution over OK/P.
By a hybrid argument, we can turn a distinguisher A for FF-DP with advan-
tage ε, into a distinguisher between (Hi0 ,Hi0+1) for some i0 with advantage
� ε/r. Everything is analysed as if we knew this index i0. In practice we can
run A concurrently with all the r instances.

Step 3. Guess and Search. The idea is to perform an exhaustive search
in OK/Pi0+1 and to use A to recover ŝ def= s mod Pi0+1. Let gi0+1

?= ŝ be
our guess and set g ≡ gi0+1 mod Pi0+1 and 0 otherwise. For each sample
(a,b) we compute a′ def= a + v and b′ def= b + h + vg = a′s + e + h′ where
h′ = h + v(g − s) with v ≡ vi0+1 uniform modulo Pi0+1, and h uniform
modulo the Pj for j � i0 + 1 and 0 otherwise. One can verify that,

⎧
⎨

⎩

h′ ≡ hj mod Pj for j � i0
h′ ≡ (gi0+1 − ŝ)vi0+1 mod Pi0+1

h′ ≡ 0 mod Pj for j > i0 + 1.

If the guess gi0+1 is correct, (a′,b′) is distributed according to Hi0 . Otherwise,
it is distributed according to Hi0+1 because vi0+1 is uniformly distributed over
OK/Pi0+1 which is a field. The distinguisher will succeed with probability
1/2 + ε/r > 1/2. It suffices to repeat the procedure Θ((r/ε)2) times, and do a
majority voting to know whether the guess gi0+1 is correct or not. We do that
for all the qf deg(Q) possible guesses.

Step 4. Galois Action. Since K/Fq(T ) is Galois, for any j 
= i0 we take σ ∈
Gal(K/Fq(T )) such that σ(Pj) = Pi0 . Now, (σ(a), σ(a)σ(s)+σ(e)) ← Fσ(s),ψ
because ψ is Galois invariant. The above procedure enables to recover σ(s)
mod Pi0 . Applying σ−1 yields s mod Pj . Therefore, we are able to recover s
mod Pj for any j. To compute the full secret s it remains to use the CRT. ��

4 Cyclotomic Function Fields and the Carlitz Module

In Sect. 3, we introduced the generic problem FF-DP and noticed that our search
to decision reduction needed Galois function fields. In [23], it was proposed to use
cyclotomic number fields to instantiate the Ring–LWE problem. Here, we propose
to instantiate FF-DP with the function field analogue, namely Carlitz extensions.
We give a self contained presentation of the theory of Carlitz extensions. The
interested reader can refer to [32, ch. 12], [26] and the excellent survey [9] for
further reference.
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Carlitz extensions are function fields analogues of the cyclotomic extensions of
Q. A dictionary summarizing the similarities is given in Table 2. These extensions
were discovered by Carlitz in the late 1930s but the analogy was not well known
until the work of his student Hayes who studied them in [17] to give an explicit
construction of the abelian extensions of the rational function field Fq(T ) and
prove an analogue of the usual Kronecker-Webber theorem which states that any
abelian extension of Q is a subfield of cyclotomic number fields. This result was
generalized in the following years with the work of Drinfeld and Goss to yield
a complete solution to Hilbert twelfth problem in the function field setting. In
the number field setting, such an explicit construction is only known for abelian
extensions of Q (cyclotomic extensions) and imaginary quadratic number fields
(via the theory of elliptic curves with complex multiplication).

The first idea that comes to mind when one wants to build cyclotomic func-
tion fields is to adjoin roots of unity to the field Fq(T ). However, roots of unity
are already algebraic over Fq. In other words, adding them only yields so–called
extensions of constants.

Example 1. Let ζn be an n–th root of unity in Fq(T ). Note that it belongs to
some finite extension of Fq. Let Fqm be the extension of Fq of minimal degree
such that ζn ∈ Fqm (it can be Fq itself). Then

Fq(T )[ζn] = Fqm(T ),

and the field of constants of Fq(T )[ζn] is Fqm .

However, in our reduction setting, such extensions will only increase the size
of the search space in Step 3. More precisely, if K is an algebraic extension of
Fq(T ), the constant field of K is always a subfield of OK/P for any prime ideal
P of OK . But recall that in our search to decision reduction, we need to do an
exhaustive search in this quotient OK/P, so we need it to be as small as possible.
Henceforth, we cannot afford constant field extensions. For Carlitz extensions,
this will be ensured by Theorem 6.

4.1 Roots of Unity and Torsion

As mentioned in the beginning of this section, it is not sufficient to add roots of
unity. One has to go deeper into the algebraic structure that is adjoined to Q.
Indeed, the set of all m–th roots of unity, denoted by μm ⊂ C, turns out to be
an abelian group under multiplication. Moreover, μm is in fact cyclic, generated
by any primitive root of unity.

In commutative algebra, abelian groups are Z-modules. Here the action of Z

is given by exponentiation: n ∈ Z acts on ζ ∈ μm by n · ζ def= ζn. This action of Z

can in fact be extended to all Q
×

. When working with modules over a ring, it is
very natural to consider the torsion elements, i.e. elements of the module that
are annihilated by an element of the ring. The torsion elements in the Z–module
Q

×
are the ζ ∈ Q

×
such that ζm = 1 for some m > 0; these are precisely the
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roots of unity. In other words, the cyclotomic number fields are obtained by
adjoining to Q torsions elements of the Z–module Q

×
.

Under the analogy summed up in Table 1, replacing Z by Fq[T ] and Q by
Fq(T ), we would like to consider some Fq[T ]–module and adjoin to Fq(T ) the
torsion elements. Note that Fq[T ]–modules are in particular Fq–vector spaces,
hence the action of Fq[T ] should be linear. This new module structure can be
defined using so called Carlitz polynomials: for each polynomial M ∈ Fq[T ],
we define its Carlitz polynomial [M ](X) as a polynomial in X with coefficients
in Fq[T ], and M ∈ Fq[T ] will act on α ∈ Fq(T ) by M · α

def= [M ](α) with
[M ](α + β) = [M ](α) + [M ](β). In other words, [M ](X) should be an additive
polynomial. In positive characteristic this can easily be achieved by considering
q–polynomials, i.e. polynomials whose monomials are only q–th powers of X,
namely of the form

P (X) = p0X + p1X
q + · · · + prX

qr

.

4.2 Carlitz Polynomials

The definition of Carlitz polynomial will proceed by induction and linearity.
Define [1](X) def= X and [T ](X) def= Xq + TX. For n � 2, define

[Tn](X) def= [T ]([Tn−1](X)) = [Tn−1](X)q + T [Tn−1](X).

Then, for a polynomial M =
∑n

i=0 aiT
i ∈ Fq[T ], define [M ](X) by forcing Fq–

linearity:

[M ](X) def=
n∑

i=0

ai[T i](X).

Example 2. We have,

• [T 2](X) = [T ](Xq + TX) = Xq2
+ (T q + T )Xq + T 2X

• [T 2+T +1](X) = [T 2](X)+[T ](X)+[1](X) = Xq2
+(T q +T +1)Xq +(T 2+

T + 1)X.

By construction, Carlitz polynomials are additive polynomials, and Fq–linear.
Furthermore, for two polynomials M,N ∈ Fq[T ], [MN ](X) = [M ]([N ](X)) =
[N ]([M ](X)). In particular, Carlitz polynomials commute with each other under
composition law, which is not the case in general for q–polynomials.

4.3 Carlitz Module

Endowed with this Fq[T ]–module structure, Fq(T ) is called the Carlitz module.

Definition 4. For M ∈ Fq[T ], M 
= 0, let ΛM
def
= {λ ∈ Fq(T ) | [M ](λ) = 0}.

This is the module of M–torsion of the Carlitz module.
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Example 3. ΛT = {λ ∈ Fq(T ) | λq + Tλ = 0} = {0} ∪ {λ | λq−1 = −T}.

In the same way that μm is an abelian group (i.e. a Z–module), note that
ΛM is also a submodule of the Carlitz module: for λ ∈ ΛM and A ∈ Fq[T ],
[A](λ) ∈ ΛM . In particular, ΛM is an Fq–vector space.

Example 4. The module ΛT defined in Example 3 is an Fq–vector space of dimen-
sion 1. In particular, for λ ∈ ΛT , and A ∈ Fq[T ], [A](λ) must be a multiple of λ.
In fact the Carlitz action of A on λ is through the constant term of A: writing
A = TB + A(0) we have

[A](λ) = [TB + A(0)](λ) = [B]([T ](λ)
︸ ︷︷ ︸

=0

) + A(0)[1](λ) = A(0)λ.

More generally, even if in general ΛM is not of dimension 1 over Fq, it is
always a cyclic Fq[T ]–module: as an Fq[T ]–module it can be generated by only
one element. This is specified in the following theorem.

Theorem 2 ([26, Lemma 3.2.2]). There exists λ0 ∈ ΛM such that ΛM =
{[A](λ0) | A ∈ Fq[T ]/(M)} and the generators of ΛM are the [A](λ0) for all
A prime to M . The choice of a generator yields a non canonical isomorphism
ΛM � Fq[T ]/(M) as Fq[T ]–modules.

Remark 8. The previous theorem needs to be related to the cyclotomic case:
given the choice of a primitive m–th root of unity, there is a group isomorphism
between μm and Z/mZ. Moreover all the m–th roots of unity are of the form ζk

for k ∈ �0,m − 1� and the generators of μm are the ζk for k prime to m.

4.4 Carlitz Extensions

Recall that the cyclotomic number fields are obtained as extensions of Q gener-
ated by the elements of μm. In the similar fashion, for a polynomial M ∈ Fq[T ],
let

KM
def= Fq(T )(ΛM ) = Fq(T )(λM ),

where λM is a generator of ΛM . One of the most important facts about the
cyclotomic number field Q(ζm) is that it is a finite Galois extension of Q, with
Galois group isomorphic to (Z/mZ)×. There is an analogue statement for the
Carlitz extensions.

Theorem 3 ([26, Th. 3.2.6]). Let M ∈ Fq[T ], M 
= 0. Then KM is a finite
Galois extension of Fq(T ), with Galois group isomorphic to (Fq[T ]/(M))×. The
isomorphism is given by

{
(Fq[T ]/(M))× −→ Gal(KM/Fq(T ))

A �−→ σA,

where σA is completely determined by σA(λM ) = [A](λM ).
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Remark 9. In particular, Carlitz extensions are abelian.

Another important fact about cyclotomic extensions is the simple descrip-
tion of their ring of integers. Namely, for K = Q(ζm), we have OK = Z[ζm] =
Z[X]/(Φm(X)) where Φm denotes the m–th cyclotomic polynomial. This prop-
erty also holds for Carlitz extensions.

Theorem 4 ([32, Th. 2.9]). Let OM be the integral closure of Fq[T ] in KM .
Then OM = Fq[T ][λM ]. In particular, let P (T,X) ∈ Fq[T ][X] be the minimal
polynomial of λM . Then,

KM = Fq(T )[X]/(P (T,X)) and OM = Fq[T ][X]/(P (T,X)).

Example 5. Reconsider Example 3 and the module ΛT = {0}∪{λ | λq−1 = −T}.
The polynomial Xq−1+T is Eisenstein in (T ) and therefore is irreducible. Hence,

KT = Fq(T )[X]/(Xq−1 + T ).

Moreover it is Galois, with Galois group (Fq[T ]/(T ))× � F
×
q . A non-zero element

a ∈ F
×
q will act on f(T,X) ∈ KT by

a · f(T,X) def= f(T, [a](X)) = f(T, aX).

The integral closure of Fq[T ] in KT is

OT
def= Fq[T ][X]/(Xq−1 + T )

and

OT/((T + 1)OT ) = Fq[T ][X]/(T + 1,Xq−1 + T ) = Fq[X]/(Xq−1 − 1). (5)

Finally, the following theorem characterizes the splitting behaviour of primes
in Carlitz extensions. A very similar result holds for cyclotomic extensions.

Theorem 5 ([32, Th. 12.10]). Let M ∈ Fq[T ], M 
= 0, and let Q ∈ Fq[T ] be a
monic, irreducible polynomial. Consider the Carlitz extension KM and let OM

denote its ring of integers. Then,

• If Q divides M , then QOM is totally ramified.
• Otherwise, let f be the smallest integer f such that Qf ≡ 1 mod M . Then

QOM is unramified and has inertia degree f . In particular, Q splits completely
if and only if Q ≡ 1 mod M .

Note that in Ring–LWE, the prime modulus q is often chosen such that q ≡ 1
mod m so that it splits completely in the cyclotomic extension Q(ζm).

Example 6. In the previous example, T + 1 ≡ 1 mod T and therefore (T + 1)
splits completely in OT . Indeed,

OT/((T + 1)OT ) = Fq[X]/(Xq−1 − 1) =
∏

α∈F
×
q

Fq[X]/(X − α)

is a product of q − 1 copies of Fq.
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It is crucial for the applications that the constant field of K be not too big
because, in the search to decision reduction, it determines the search space in
Step 3 of the proof of Theorem 1. The following non-trivial theorem gives the
field of constants of Carlitz extensions.

Theorem 6 ([32, Cor. of Th. 12.14]). Let M ∈ Fq[T ], M 
= 0. Then Fq is
the full constant field of KM .

The similarities between Carlitz function fields and cyclotomic number fields
are summarized in Table 2.

Table 2. Analogies between cyclotomic and Carlitz

Q Fq(T )

Z Fq[T ]

Prime numbers q ∈ Z Irreducible polynomials Q ∈ Fq[T ]

μm = 〈ζ〉 � Z/mZ (groups) ΛM = 〈λ〉 � Fq[T ]/(M) (modules)

d | m ⇔ μd ⊂ μm (subgroups) D | M ⇔ ΛD ⊂ ΛM (submodules)

a ≡ b mod m ⇒ ζa = ζb A ≡ B mod M ⇒ [A](λ) = [B](λ)

K = Q[ζ] K = Fq(T )[λ]

OK = Z[ζ] OK = Fq[T ][λ]

Gal(K/Q) � (Z/mZ)× Gal(K/Fq(T )) � (Fq[T ]/(M))×

Cyclotomic Carlitz

5 Applications

In the current section, we present two applications of our proof techniques. It pro-
vides search to decision reductions to generic problems whose hardness assump-
tion has been used to assess the security of some cryptographic designs. The
first application concerns Oblivious Linear Evaluation (OLE) which is a crucial
primitive for secure multi-party computation. The second one is an authentica-
tion protocol called Lapin. Both designs rely on the hardness of variants of the
so-called Learning Parity with Noise (LPN) problem.

5.1 LPN and its Structured Variants

Let us start this subsection by the definitions of the distribution that is involved
in the LPN problem.
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Definition 5 (Learning Parity with Noise (LPN) distribution). Let k be
a positive integer, s ∈ F

k
q be a uniformly distributed vector and p ∈ [0, 1

2 ). A
sample (a, b) ∈ F

k
q × Fq is distributed according to the LPN distribution with

secret s if

• a is uniformly distributed over F
k
q ,

• b
def
= 〈a, s〉+e where 〈· , ·〉 denotes the canonical inner product over F

k
q and e is

a q–ary Bernouilli random variable with parameter p, namely P(e = 0) = 1−p
and P(e = a) = p

q−1 for a ∈ F
×
q .

A sample drawn according to this distribution will be denoted (a, 〈a, s〉 + e) ←
DLPN

s,p .

Remark 10. This definition is a generalization of the usual LPN distribution
defined over F2. In this situation, the error distribution is a usual Bernouilli:
P(e = 0) = 1 − p and P(e = 1) = p.

Similarly to the LWE problem, structured versions of LPN have been defined
([7,12,18]).

Definition 6 (Ring–LPN distribution). Fix a positive integer r, a public
polynomial f(X) ∈ Fq[X] of degree r and s ∈ Fq[X]/(f(X)) be a uniformly
distributed polynomial. A sample (a,b) is distributed according to the RLPN dis-
tribution with secret s if

• a is drawn uniformly at random over Fq[X]/(f(X));

• b
def
= as + e where e

def
= e0 + e1X + · · · + er−1X

r−1 ∈ Fq[X]/(f(X)) has
coefficients ei’s which are independent q–ary Bernouilli random variables with
parameter p.

A sample drawn according to this distribution will be denoted (a,as + e) ←
DRLPN

s,p .

Note that the map
{

Fq[X]/(f(X)) −→ Fq[X]/(f(X))
m(X) �−→ a(X)m(X) mod f(X)

can be represented in the canonical basis by an r × r binary matrix A. Using
this point of view, one sample of RLPN can be regarded as r specific samples of
LPN.

Search to Decision. Here we present search to decision reductions in two
different settings corresponding to two choices of the modulus f(X) in the Ring–
LPN problem. Both have been used in the literature for specific applications that
are quickly recalled.
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A q–ary Version of Ring–LPN with a Totally Split Modulus f . In [7],
the authors introduce Ring–LPN over the finite field Fq and with a modulus f
which is totally split, i.e. has distinct roots, all living in the ground field Fq.

Motivation: Oblivious Linear Evaluations for secure Multiparty Com-
putation (MPC). A crucial objective in modern secure MPC is to be able to
generate efficiently many random pairs (u, r), (v, s) where u, r, v, s are uniformly
distributed over Fq with the correlation uv = r + s.

In [7], the authors propose a construction of such pairs (u, r), (v, s) of ele-
ments in a ring R, where R = Fq[X]/(f(X)) such that f is split with simple
roots in Fq. Using the Chinese remainder Theorem, one deduces deg f pairs
(ui, ri), (vi, si) with ui, vi, ri, si ∈ Fq. The pseudo-randomness of u,v rests on
the hardness of the Ring–LPN assumption.

Search to Decision Reduction in the [7]-Case. Consider the case of Ring–
LPN over R = Fq[X]/(f(X)), where

f(X) def=
∏

a∈F
×
q

(X − a) = Xq−1 − 1.

Let us re-introduce the Carlitz function field of Examples 3 and 5, namely

KT = Fq(T )[X]/(Xq−1 + T ).

According to Eq. (5) in Example 5, we have

OT/(T + 1)OT � Fq[X]/(Xq−1 − 1),

which is precisely the ring we consider for the Ring–LPN version of [7]. Therefore,
instantiating our FF-DP problem with this function field, modulus T + 1, ideal
P

def= (T +1)OK and applying Theorem 1, we directly obtain the following search
to decision reduction.

Theorem 7 (Search to decision reduction for totally-split Ring–LPN).
Let KT be the Carlitz extension of T–torsion over Fq, and denote by OT its ring

of integers. Consider the ideal P def
= (T + 1)OKT

. Then P splits completely in
q − 1 factors P1 . . .Pq−1 and

OK/P �
q−1∏

i=1

OK/Pi � Fq × · · · × Fq.

Let ψ denote the uniform distribution over polynomials in Fq[X]/(Xq−1 −
1) of fixed Hamming weight, or the q–ary Bernouilli distribution. Let s ∈
Fq[X]/(Xq−1 − 1). Suppose that we have access to Fs,ψ and that there exists
a distinguisher between the uniform distribution over Fq[X]/(Xq−1 − 1) and
Fs,ψ with uniform secret and error distribution ψ, running in time t and having
advantage ε.
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Then there exists an algorithm that recovers s with overwhelming probability
(in q) in time

O

(
q5 × 1

ε2
× t

)
.

Proof. The only thing that remains to be proved is that the error distribution
is Galois invariant. According to Theorem 3 and Example 5, the Galois group
of KT /Fq(T ) is isomorphic to (Fq[T ]/(T ))× � F

×
q . Furthermore, we proved that

an element b ∈ F
×
q acts on f(T,X) ∈ KT by

b · f(T,X) = f(T, [b](X)) = f(T, bX).

The Galois action on KT and OT induces an action of F
×
q on

OT/(T + 1)OT � Fq[X]/(Xq−1 − 1)

by b · m(X) def= m(bX). Note that, this operation has no incidence on the Ham-
ming weight of m: it actually does not change its Hamming support. Therefore,
we easily see here that Galois action keeps the noise distribution invariant. ��
Remark 11. Note that our search to decision reduction could have been per-
formed here without introducing the function field and only considering the
ring Fq[X]/(Xq−1 − 1). Recall that the first ingredient of the reduction is to
decompose this ring by the Chinese Remainder Theorem. Here it would give
the product

∏
a∈F

×
q

Fq[X]/(X − a). The final step of the reduction requires the
introduction of a group action which induces a permutation of the factors in∏

a∈F
×
q

Fq[X]/(X − a). It is precisely what the group action b · m(X) = m(bX)
does: it sends the factor Fq[X]/(X − a) onto Fq[X]/(X − b−1a). However, intro-
ducing this action on the level of Fq[X]/(Xq−1−1) does not look very natural. It
turns out that the introduction of function fields permits to interpret this action
in terms of a Galois one.

Remark 12. If we replace the Carlitz extension K by some subfield of invariants
under the action of a given subgroup of the Galois group, it is possible to extend
the result to the case where f(X) =

∏
a∈H(X − a) where H is some subgroup

of F
×
q . It is even possible to treat the case where the roots of f form a coset of

a given subgroup of F
×
q .

Ring–LPN with a Modulus f Splitting in Irreducible Polynomials of
the Same Degree. Another cryptographic design whose security rests on the
Ring–LPN assumption is an authentication protocol named Lapin [18]. In the
conclusion of their article, the authors mention that

“it would be particularly interesting to find out whether there exists an
equivalence between the decision and the search versions of the problem
similar to the reductions that exist for LPN and Ring–LWE”.
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For this protocol, the problem is instantiated with the binary field F2 and with
a modulus polynomial f which splits as a product of m distinct irreducible
polynomials

f(X) = f1(X) · · · fm(X).

In this setting and using our techniques, we can provide a search to decision
reduction when the fi’s have all the same degree d. Furthermore, for the reduc-
tion to run in polynomial time, we need to have d = O(log(deg f)). Note that the
explicit parameters proposed as an example in [18] do not satisfy these assump-
tions but it would be easy to propose alternative parameters fulfilling them.

In this setting, the Chinese Reminder Theorem entails that

F2[X]/(f(X)) �
m∏

i=1

F2[X]/(fi(X)),

and the right–hand side is a product of m copies of F2d . Such a product can be
realised as follows. Consider a function field K which is a Galois extension of
F2(T ) with Galois group G and denote by OK the integral closure of F2[T ] in
K. Suppose that the ideal (T ) of F2[T ] is unramified in OK with inertia degree
d. Then TOK splits into a product of prime ideals:

TOK = P1 · · ·Pm and OK/TOK �
m∏

i=1

OK/Pi,

where, here again, the right–hand side is a product of m copies of F2d .
Next, the idea is now to apply Theorem 1 in this setting. However, there

is here a difficulty since for our search to decision reduction to hold, the noise
should arise from a Galois invariant distribution. Thus, if we want the noise
distribution to be Galois invariant we need to have a Galois invariant F2–basis
of the algebra OK/TOK . The first question should be whether such a basis exists.
The existence of such a basis can be deduced from deep results of number theory
due to Noether [8,27] and asserting the existence of local normal integral bases
at non ramified places. Here we give a pedestrian proof resting only on basic
facts of number theory.

Proposition 1. Let K/Fq(T ) be a finite Galois extension of Galois group G
and OK be the integral closure of Fq[T ] in K. Let Q ∈ Fq[T ] be an irreducible
polynomial such that the corresponding prime ideal is unramified and has inertia
degree d. Denote by P1 · · ·Pm the decomposition of the ideal QOK . Then, G
acts on the finite dimensional algebra OK/QOK and there exists x ∈ OK/QOK

such that (σ(x))σ∈G is an Fq–basis of OK/QOK .

Proof. Consider the decomposition group DP1/Q. As explained Sect. 2 and in
particular in Eq. (4), since QOK is unramified, this decomposition group is
isomorphic to Gal(OK/QOK , Fq) = Gal(Fqd , Fq). This entails in particular that
#DP1/Q = d.
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According to the Chinese Remainder Theorem,

OK/QOK � OK/P1 × · · · × OK/Pm.

Next, from the Normal basis Theorem (see for instance [21, Thm. 2.35]), there
exists a ∈ OK/P1 such that (σ(a))σ∈DP1/Q

is an Fq–basis of OK/P1. Now, let

b def= (a, 0, . . . , 0) ∈
m∏

i=1

OK/Pi � OK/QOK .

We claim that (σ(b))σ∈G is an Fq–basis of OK/QOK . Indeed, denote by V the
Fq–span of {σ(b) | σ ∈ G} and suppose that V is a proper subspace of OK/QOK .
Then, there exists i ∈ �1,m� such that

V ∩ OK/Pi � OK/Pi,

where we denote by OK/Pi the subspace {0}×· · ·×{0}×OK/Pi×{0}×· · ·×{0}
of

∏
i OK/Pi.

Since G acts transitively on the Pi’s, there exists σ0 ∈ G such that σ0(P1) =
Pi. Then, σ0(b) ∈ V ∩ OK/Pi and so does σσ0(b) for any σ ∈ DPi/P . Since
V ∩OK/Pi � OK/Pi, then dimFq

V < d while #DPi/Q = d. Hence, there exist
nonzero elements (λσ)σ∈DPi/Q

∈ F
d
q such that

∑

σ∈DPi/Q

λσσσ0(b) = 0. (6)

Applying σ−1
0 to (6), we get

∑

σ∈DPi/Q

λσσ−1
0 σσ0(b) = 0.

As mentioned in Sect. 2, we have σ−1
0 DPi/Qσ0 = DP1/Q and we deduce that the

above sum is in OK/P1 and, since a is a generator of a normal basis of Fq, we
deduce that the λσ’s are all zero. A contradiction. ��

The previous proposition asserts the existence of a normal Fq–basis of the
space OK/QOK , i.e. a Galois invariant basis. For any such basis, (bσ)σ∈G

one can define a Galois noise distribution by sampling linear combinations
of elements of this basis whose coefficients are independent Bernouilli ran-
dom variables. Our Ring–LPN distribution is hence defined as pairs (a,b) ∈
OK/QOK ×OK/QOK such that a is drawn uniformly at random and b = as+e
where e is a noise term drawn from the previously described distribution.

Definition 7 (Galois modulus). Let r and d be positive integers. A polyno-
mial f(X) ∈ Fq[X] of degree r is called a Galois modulus of inertia d if there
exists a Galois function field K/Fq(T ) and a polynomial Q(T ) ∈ Fq[T ] of degree
one such that Fq[X]/(f(X)) � OK/QOK and the ideal QOK has inertia degree
d and does not ramify.
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This definition entails that for a polynomial f(X) ∈ Fq[X] to be a Galois
modulus, it needs to factorize in Fq[X] as a product of distinct irreducible poly-
nomials of same degree d.

Carlitz extensions permit to easily exhibit many Galois moduli of given iner-
tia d. Indeed, let M(T ) ∈ Fq[T ] be any divisor of T d − 1 which vanishes at least
at one primitive d–th root of unity. Set

r
def=

#
(

Fq[X]/(M(X))
)×

d
·

Then, any polynomial f(X) ∈ Fq[X] which is a product of r distinct irreducible
polynomials of degree d is a Galois modulus. Indeed, Fq[X]/(f(X)) is isomorphic
to a product of r copies of F2d and, since the multiplicative order of T modulo
M(T ) is d, from Theorem 5 so does OM/TOM .

Example 7. The polynomial f(X) def= X63+X7+1 ∈ F2[X] is a Galois modulus
of inertia 9. Indeed, let M(T ) def= T 6 + T 3 + 1 and consider KM the Carlitz
extension of M–torsion. Denote by OM the integral closure of F2[T ] in OM .
Then T 9 ≡ 1 mod M and 9 is the smallest integer that has this property. By
Theorem 5, the ideal TOM splits into 7 ideals P1, . . . ,P7 and has inertia 9, and
one can prove that OM/(TOM ) � F2[X]/(f(X)).

Remark 13. The polynomial f(X) of Example 7 is also lightness-preserving in
the sense of [12, Def 2.22] which can be used to instantiate Ring-LPN.

We are now ready to define a new noise distribution which is Galois invariant
for Ring–LPN. We propose to consider it in Lapin as it enables to apply our
search to decision reduction. In the following definition, B denotes a normal basis
whose existence is ensured by Proposition 1. Note that B need not be exactly
the normal basis constructed in the proof of Proposition 1. This is discussed
further, after the statement of Theorem 8.

Definition 8 (Normal Ring–LPN distribution). Let r, d be positive integers,
p ∈ [0, 1

2 ) and let f(X) ∈ Fq[X] be a Galois modulus of degree r with inertia d.

Denote by B
def
= (σ(c)(X))σ∈Gf

the normal basis of Fq[X]/(f(X)) where Gf is
the Galois group of the related function field.

A sample (a,b) is distributed according to the Normal RLPN distribution
relatively to basis B, with secret s if

• a is drawn uniformly at random over Fq[X]/(f(X));

• b
def
= as + e, where e(X)

def
=

∑
σ∈Gf

eσσ(c)(X) ∈ Fq[X]/(f(X)) has coef-
ficients ei’s which are independent q–ary Bernouilli random variables with
parameter p.

Theorem 8. The decision Ring–LPN is equivalent to its search version for the
normal Ring–LPN distribution.
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Let us discuss further the choice of the noise distribution and hence that of
a Galois-invariant basis. In [18], the authors discuss the case of Ring–LPN when
the modulus f splits and mention that in this situation, the Ring–LPN problem
reduces to a smaller one by projecting the samples onto a factor Fq[X]/(fi(X))
of the algebra Fq[X]/(f(X)). The projection onto such a factor, reduces the size
of the inputs but increases the rate of the noise.

It should be emphasized that the Galois invariant basis constructed in the
proof of Proposition 1 yields a noise which is partially cancelled when applying
the projection OK/QOK → OK/Pi, hence, this choice of normal basis might be
inaccurate. On the other hand, Proposition 1 is only an existence result and it
turns out actually that a random element of OK/QOK generates a normal basis
with a high probability. Indeed, the existence of such a normal basis can be
reformulated as OK/QOK is a free Fq[G]–module of rank 1 and a generator a ∈
OK/QOK is an Fq[G]–basis of OK/QOK . Now, any other element of Fq[G]×a is
also a generator of a normal basis. Consequently, the probability that a uniformly
random element of OK/QOK is a generator of a normal basis is

#Fq[G]×

#Fq[G]
·

If for instance, G is cyclic of order N prime to q. Then XN − 1 splits into a
product of distinct irreducible factors u1 · · · ur and Fq[G] � Fq[X]/(XN − 1) �∏

i Fq[X]/(ui(X)). In this context, the probability that a uniformly random ele-
ment of OK/QOK generates a normal basis is

∏r
i=1(q

deg ui − 1)
qN

·

Conclusion

We introduced a new formalism to study generic problems useful in cryptography
based on structured codes. This formalism rests on the introduction of function
fields as counterparts of the number fields appearing in cryptography based on
structured lattices. Thanks to this new point of view, we succeeded in producing
the first search to decision reduction in the spirit of Lyubashevsky, Peikert and
Regev’s one for Ring-LWE. We emphasize that such reductions were completely
absent in cryptography based on structured codes and we expect them to be a
first step towards further search to decision reductions.

If one puts into perspective our current assessment with lattice-based cryptog-
raphy, [23] focuses on cyclotomic number fields, and defines the error distribution
to be a Gaussian over R

n through the Minkowski embedding. Furthermore, the
modulus q is chosen to split completely. Then, following this result, [20] uses a
“switching modulus” technique in order to relax the arithmetic assumption on the
prime modulus, so that it can be arbitrarily chosen. Finally, the search to deci-
sion reduction is proved in [31] to hold even when the extension is not Galois,
using the Oracle with Hidden Center Problem (OHCP) technique from [28].
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Note that this powerful technique has been used recently to provide a search to
decision reduction in the context of NTRU [29]. Even though our work does not
reflect these recent progresses, we believe, as it was shown by our instantiations,
that the introduction of the function field framework paves the way for using these
techniques in the code setting in order to get a full reduction applying to cryptosys-
tems such as HQC or Bike.
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Rive Gauche, Ouragan, Paris, France

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
joux@cispa.de

Abstract. Zero-knowledge proofs of knowledge are useful tools to
design signature schemes. The ongoing effort to build a quantum com-
puter urges the cryptography community to develop new secure crypto-
graphic protocols based on quantum-hard cryptographic problems. One
of the few directions is code-based cryptography for which the strongest
problem is the syndrome decoding (SD) for random linear codes. This
problem is known to be NP-hard and the cryptanalysis state of the art
has been stable for many years. A zero-knowledge protocol for this prob-
lem was pioneered by Stern in 1993. Since its publication, many articles
proposed optimizations, implementation, or variants.

In this paper, we introduce a new zero-knowledge proof for the syn-
drome decoding problem on random linear codes. Instead of using per-
mutations like most of the existing protocols, we rely on the MPC-in-the-
head paradigm in which we reduce the task of proving the low Hamming
weight of the SD solution to proving some relations between specific
polynomials. Specifically, we propose a 5-round zero-knowledge protocol
that proves the knowledge of a vector x such that y = Hx and wt(x) ≤ w
and which achieves a soundness error closed to 1/N for an arbitrary N .

While turning this protocol into a signature scheme, we achieve a sig-
nature size of 11–12 KB for 128-bit security when relying on the hardness
of the SD problem on binary fields. Using larger fields (like F28), we can
produce fast signatures of around 8 KB. This allows us to outperform
Picnic3 and to be competitive with SPHINCS+, both post-quantum sig-
nature candidates in the ongoing NIST standardization effort. Moreover,
our scheme outperforms all the existing code-based signature schemes for
the common “signature size + public key size” metric.

1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols
and applications. Such proofs enable a prover to prove a statement by interacting
with a verifier without revealing anything more than the statement itself. Zero-
knowledge proofs find application in many contexts. Thanks to the Fiat-Shamir
c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13508, pp. 541–572, 2022.
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transform [FS87], we can convert such proofs into signature schemes. In this article,
we aim to build an efficient code-based signature scheme using this methodology.
To do so, we will focus on the generic decoding problem, a.k.a. the (computational)
syndrome decoding (SD) problem: given a matrix H ∈ F

(m−k)×m
q and a vector

y ∈ F
m−k
q , recover a small-weight vector x ∈ F

m
q such that Hx = y. For random

linear codes –i.e. for a random matrix H– this problem is known to be NP-hard
and widely believed to be robust for practical sets of parameters.

In a pioneering work from three decades ago, Stern proposed a zero-
knowledge protocol to prove the knowledge of a syndrome decoding solu-
tion [Ste94]. This protocol achieves a soundness error of 2/3 which means that
a malicious prover can fool the verifier with a 2/3 probability. Although an arbi-
trary security of (2/3)τ can be achieved by repeating the protocol τ times, the
induced communication cost for standard security levels (e.g. 128 bits) becomes
significant, which is partly due to this high soundness error. Since the work of
Stern, a few papers have proposed optimizations and implementations of this
protocol (see for instance [Vér96,GG07,AGS11,ACBH13]) but the communica-
tion cost was still heavy for random linear codes with standard security levels.

In 2007, Ishai, Kushilevitz, Ostrovsky and Sahai proposed a new technique to
build zero-knowledge proofs from secure multi-party computation (MPC) pro-
tocols, which is known as the MPC-in-the-Head (MPCitH) paradigm [IKOS07].
While this construction was mainly considered of theoretical interest at first,
it has been increasingly applied to build practical schemes over the last years.
In particular, the Picnic post-quantum signature scheme [CDG+20], which is a
third-round alternate candidate of the ongoing NIST standardization effort, is
based on the MPCitH principle. Recently, new zero-knowledge protocols for the
SD problem have been inspired by this principle [GPS22,FJR21,BGKM22]. In
particular, these protocols achieve an arbitrary soundness error 1/N instead of
the 2/3 (or 1/2) of Stern protocol and variants. These protocols result in smaller
proof/signature sizes at the cost of computational overheads.

Our Contribution. In this article, we build a new zero-knowledge protocol to prove
the knowledge of a syndrome decoding solution using the MPCitH paradigm. We
further turn this protocol into an efficient code-based signature scheme.

While proving that y = Hx is communication-free in this paradigm, the
hard part consists in proving that x is a small-weight vector. We propose here
an efficient way to prove that wt(x) ≤ w through a multi-party computation
which is simulated by the prover (“in her head”). The key idea is to prove the
equality x ◦ v = 0 where ◦ is the component-wise multiplication and where
the coefficients of the vector v are the evaluations of a polynomial Q of degree
w. By definition, v has at most w zero coordinates, so the relation x ◦ v = 0
proves that x has at most w non-zero coordinates (i.e. wt(x) ≤ w). The roots
of the polynomial Q encode the non-zero positions of the vector x. In order
to prove the relation x ◦ v = 0, we use techniques borrowed from the Banquet
signature scheme [BdK+21b] with further adaptations. To check that all xj · vj

are equal to zero, we arrange the input x into a polynomial S, provide a product
polynomial F · P as part of the witness, and check that (F · P )(·) indeed equals
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the product of S(·) and Q(·). This can be done efficiently by only verifying a
few products of these polynomials evaluated at some random points. However,
instead of revealing the multiplication operands like in [BdK+21b], we rely on
the product checking protocol proposed in [LN17,BN20] and its batch version
recently introduced in [KZ21].

Let us note that the idea of encoding the non-zero positions in a polynomial
to prove a Hamming weight inequality was already used in [DLO+18]. However,
the proposed zero-knowledge protocol relies on a linearly homomorphic com-
mitment scheme, and such schemes do not exist yet for post-quantum hardness
assumptions.

Thanks to the Fiat-Shamir transform [FS87], we convert our protocol into
a signature scheme. Our scheme outperforms all the existing code-based signa-
tures for the “signature size + public key size” metric. When relying on the
hardness of the syndrome decoding problem over F256, our scheme is below
10 KB for this metric, which makes it competitive with Picnic3 [KZ20b] and
SPHINCS+ [BHK+19]. Compared to other code-based signature schemes (such
as Wave [DST19] and Durandal [ABG+19]), our scheme has the significant
advantage of relying on a non-structured NP-hard decoding problem which has
been widely studied over the last decades.

To provide more flexibility, we introduce a parameter d in the definition of the
syndrome decoding problem. The idea is, instead of having a constraint for the
global weight of the secret vector x, to split x into d chunks x := (x1 | . . . | xd)
and to have a constraint on the weight of each chunk. By taking d = 1, this
d-split version is equivalent to the standard syndrome decoding problem. We
provide a security reduction from this variant to the standard problem which
allows us to compensate the security loss by a slight increase of the parameters.
This so-called d-split syndrome decoding problem offers us more flexibility to find
better size-performance trade-offs for our signature scheme.

Paper Organization. The paper is organized as follows: In Sect. 2, we introduce
the necessary background on the syndrome decoding problem, zero-knowledge
proofs, and the MPC-in-the-Head paradigm. We present our protocol in Sect. 3
and the signature scheme obtained through the Fiat-Shamir transform in Sect. 4.
To conclude, we provide implementation results and compare our construction
with other signature schemes from the state of the art in Sect. 5.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any vector x ∈ F
m, the

Hamming weight of x, denoted wt(x), is the number of non-zero coordinates
of x. For two vectors x1 ∈ F

m1 and x2 ∈ F
m2 , we denote (x1 | x2) ∈ F

m1+m2

their concatenation. We denote ◦ the component-wise multiplication between
two vectors. For any m ∈ N

∗, the integer set {1, . . . , m} is denoted [m]. For a
probability distribution D, the notation s ← D means that s is sampled from
D. For a finite set S, the notation s ← S means that s is uniformly sampled
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at random from S. When the set S is clear from the context, we sometimes
denote s ← $ for a uniform random sampling of s from S. For an algorithm
A, out ← A(in) further means that out is obtained by a call to A on input
in (using uniform random coins whenever A is probabilistic). Along the paper,
probabilistic polynomial time is abbreviated PPT.

A function μ : N → R is said negligible if, for every positive polynomial p(·),
there exists an integer Np > 0 such that for every λ > Np, we have |μ(λ)| <
1/p(λ). When not made explicit, a negligible function in λ is denoted negl(λ)
while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are
(t, ε)-indistinguishable (where t and ε are N → R functions) if, for any algorithm
A running in time at most t(λ), we have

∣
∣ Pr[A(x) = 1 | x ← Dλ] − Pr[A(x) = 1 | x ← Eλ]

∣
∣ ≤ ε(λ).

The two distributions are said

– computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);
– statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;
– perfectly indistinguishable if ε = 0 for every (unbounded) t.

In this paper, we shall use the standard cryptographic notions of secure
pseudo-random generator (PRG), tree PRG, collision-resistant hash function,
and (hiding and binding) commitment scheme. Those notions are formally
defined in the full version [FJR22].

2.1 Syndrome Decoding Problems

Definition 1 (Syndrome Decoding Problem). Let F be a finite field. Let
m, k and w be positive integers such that m > k and m > w. The syndrome
decoding problem with parameters (F,m, k, w) is the following problem:

Let H, x and y be such that:
1. H is uniformly sampled from F

(m−k)×m,
2. x is uniformly sampled from {x ∈ F

m : wt(x) = w},
3. y is defined as y := Hx.

From (H, y), find x.

In the following, a pair (H, y) generated as in the above definition is called
an instance of the syndrome decoding problem for parameters (F,m, k, w). The
syndrome decoding problem is known to be NP-hard. For a weight parameter w
lower than the Gilbert-Varshamov radius τGV(m, k), which is defined as:

w < τGV(m, k) ⇔
w−1∑

j=0

(
m

j

)

(q − 1)j < qm−k with q = |F|,
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we know that there exists a unique solution x such that y = Hx with overwhelm-
ing probability. Otherwise, an instance has several solutions on average.

There exists two main families of algorithms to solve the syndrome decoding
problem: the information set decoding (ISD) algorithms and generalized birthday
algorithms (GBA) [TS16,BBC+19]. To obtain a λ-bit security, the parameters
of the syndrome decoding problem are hence chosen in a way to ensure that both
kind of algorithms run in time greater than 2λ.

Instead of working on the standard syndrome decoding problem, we will
consider an alternative version that we shall call the d-split syndrome decoding
problem, where the secret x is split into d chunks of same Hamming weights.

Definition 2 (d-Split Syndrome Decoding Problem). Let F be a finite
field. Let m, k, w be positive integers such that m > k, m > w, d | w and
d | m. The d-split syndrome decoding problem with parameters (F,m, k, w) is the
following problem:

Let H, x and y be such that:
1. H is uniformly sampled from F

(m−k)×m,
2. x is uniformly sampled from

{

(x1 | . . . | xd) ∈ F
m : ∀i ∈ [d], xi ∈ F

m/d, wt(xi) =
w

d

}

,

3. y is defined as y := Hx.
From (H, y), find x.

By taking d = 1, we get the standard syndrome decoding problem. The
following theorem gives a way to estimate the difficulty to solve the d-split syn-
drome decoding problem.

Theorem 1. Let F be a finite field. Let m, k, w be positive integers such that
m > k, m > w, d | w and d | m. Let Ad be an algorithm which solves a
random (F,m, k, w)-instance of the d-split syndrome decoding problem in time
t with success probability εd. Then there exists an algorithm A1 which solves a
random (F,m, k, w)-instance of the standard syndrome decoding problem in time
t with probability ε1, where

ε1 ≥
(
m/d
w/d

)d

(
m
w

) · εd.

Informally, an instance of the standard syndrome decoding problem is an
instance of the d-split syndrome decoding problem with probability

(
m/d
w/d

)d
/
(
m
w

)

.
Moreover, a standard syndrome decoding instance can be “randomized” and
input to the d-split adversary as much as desired. A formal proof of the above
theorem is provided in the full version [FJR22].

Let us note that the d-split syndrome decoding problem can be seen as a
generalization of the regular syndrome decoding problem introduced by [AFS03],
for which the ratio w/d is equal to 1.
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2.2 Zero-Knowledge Proofs of Knowledge

We will focus on a special kind of two-party protocol called an interactive proof
which involves a prover P and a verifier V. In such a protocol, P tries to prove
a statement to V. The first message sent by P is called a commitment, denoted
Com. From this commitment V produces a first challenge Ch1 to which P
answers with a response Rsp1, followed by a next challenge Ch2 from V, and so
on. After receiving the last response Rspn, V produces a binary output: either
1, meaning that she was convinced by P, or 0 otherwise.

The sequence of exchanged messages is called the transcript of the execution,
which is denoted

View(〈P(inP),V(inV)〉) := (Com,Ch1,Rsp1, . . . ,Chn,Rspn)

where inP and inV respectively denote the prover and verifier inputs. An exe-
cution producing an output out is further denoted

〈P(inP),V(inV)〉 → out.

Definition 3 (Proof of Knowledge). Let x be a statement of language L in
NP, and W (x) the set of witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈ W (x)}.

A proof of knowledge for relation R with soundness error ε is a two-party protocol
between a prover P and a verifier V with the following two properties:

– (Perfect) Completeness: If (x,w) ∈ R, then a prover P who knows a witness
w for x succeeds in convincing the verifier V of his knowledge. More formally:

Pr[〈P(x,w),V(x)〉 → 1] = 1,

i.e. given the interaction between the prover P and the verifier V, the proba-
bility that the verifier is convinced is 1.

– Soundness: If there exists a PPT prover P̃ such that

ε̃ := Pr[〈P̃(x),V(x)〉 → 1] > ε,

then there exists an algorithm E (called an extractor) which, given rewindable
black-box access to P̃, outputs a witness w′ for x in time poly(λ, (ε̃ − ε)−1)
with probability at least 1/2.

Informally, a proof of knowledge has soundness error ε if a prover P̃ without
knowledge of the witness cannot convince the verifier with probability greater
than ε assuming that the underlying problem (recovering a witness for the input
statement) is hard. Indeed, if a prover P̃ can succeed with a probability greater
than ε, then the existence of the extractor (algorithm E) implies that P̃ can be
used to compute a witness w′ ∈ W (x).
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Remark 1. In the present article, we focus on proof of knowledge for a syndrome
decoding instance defined by a matrix H and a vector y. The problem parameters
m, k and w will be considered to be defined by the security parameter λ. In this
context, the syndrome decoding instance (H, y) is the statement. A witness for
this statement is a small-weight vector x such that y = Hx.

We now recall the notion of honest-verifier zero-knowledge proof:

Definition 4 (Honest-Verifier Zero-Knowledge Proof). A proof of knowl-
edge is {computationally, statistically, perfectly} honest-verifier zero-knowledge
(HVZK) if there exists a PPT algorithm S (called simulator) whose output dis-
tribution is {computationally, statistically, perfectly} indistinguishable from the
distribution View(〈P(x,w),V(x)〉) obtained with an honest V.

Informally, the previous definition says a genuine execution of the protocol
can be simulated without any knowledge of the witness. In other words, the
transcript of an execution between the prover and an honest verifier does not
reveal any information about the witness.

2.3 Sharings and Multi-party Computation

In the scope of this article, all the sharings are additive. Specifically, an N -
sharing of an element x ∈ F

m is an N -tuple

�x� =
(

�x�1, . . . , �x�N

) ∈ (Fm)N such that x =
N∑

i=1

�x�i.

Each �x�i is called a share of x. For a polynomial P ∈ F[X] of degree at most
d, we define its sharing �P � as a N -tuple of (F[X])N such that P =

∑N
i=1�P �i,

where each �P �i is of degree at most d. In particular, a sharing of a degree-d
polynomial can be seen as the sharing of the d-tuple of its coefficients.

In the context of multi-party computation (MPC), an N -sharing is usually
distributed to N parties, meaning that each party gets one of the N shares.
From those shares, the parties can perform distributed computation. Let assume
that each party i ∈ [N ] receives the shares �x�i, �y�i and �P �i corresponding to
shared values x, y ∈ F and polynomial P ∈ F[X]. They can perform the following
operations:

– Addition: the parties locally compute �x + y� by adding their respective
shares:

∀i, �x + y�i := �x�i + �y�i.

This process is denoted �x + y� = �x� + �y�.
– Addition with a constant: for a given constant α, the parties locally com-

pute �x + α� by doing:
{

�x + α�1 := �x�1 + α
�x + α�i := �x�i for i �= 1

This process is denoted �x + α� = �x� + α.
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– Multiplication by a constant: for a given constant α, the parties locally
compute �α · x� by multiplying their respective shares:

∀i, �α · x�i := α · �x�i.

This process is denoted �α · x� = α · �x�.
– Polynomial evaluation: for a given r, the parties can locally compute

�P (r)� by:

∀i, �P (r)�i := �P �i(r) =
d∑

j=0

�Pj�i · rj ,

where {�Pj�i}j denotes the coefficients of �P �i. This process is denoted
�P (r)� = �P �(r).

2.4 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm introduced in [IKOS07] offers a way
to build zero-knowledge proofs from secure multi-party computation (MPC) pro-
tocols. Let us assume we have an MPC protocol in which N parties P1, . . . ,PN

securely and correctly evaluate a function f on a secret input x with the following
properties:

– the secret x is encoded as a sharing �x� and each Pi takes a share �x�i as
input;

– the function f outputs Accept or Reject;
– the views of t parties leak no information about the secret x.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of
an x for which f(x) evaluates to Accept. The prover proceeds as follows:

– she builds a random sharing �x� of x;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends commitments to each party’s view, i.e. party’s input share, secret

random tape and sent and received messages, to the verifier;
– she sends the output shares �f(x)� of the parties, which should correspond

to Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their
views. After receiving them, the verifier checks that they are consistent with an
honest execution of the MPC protocol and with the commitments. Since only t
parties are opened, revealed views leak no information about the secret x, while
the random choice of the opened parties makes the cheating probability upper
bounded by (N −t)/N , thus ensuring the soundness of the zero-knowledge proof.

In this article, we shall only consider the case t = N −1, i.e. when the verifier
asks to open all the parties except one. We shall further consider that the function
f computed by the MPC protocol might be non-deterministic. Specifically, if the
protocol takes what we shall call a good witness x as input then the protocol
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returns Accept with probability 1. Otherwise, the protocol shall reject most
of the time but might still accept with some false positive probability p. To
summarize, we consider a setting in which the output of the protocol has a
probability distribution of the form described in Table 1.

Table 1. Probability distribution of the output of the MPC protocol

Output off
Accept Reject

x is a good witness 1 0

x is not a good witness p 1 − p

While moving to the MPCitH setting, the randomness for f is then provided
by the verifier and the “pre-randomness” view of each party (input share, random
tape, initial message) must be committed before receiving the randomness from
the verifier. If the prover is honest (i.e. knows a “good witness” x), it will always
convince the verifier. On the other hand, a malicious prover might successfully
cheat with probability 1/N (by corrupting the computation of one party) or
make the MPC protocol produce a false positive with probability p. Thus, the
resulting zero-knowledge protocol has a soundness error of

1 −
(

1 − 1
N

)

(1 − p) =
1
N

+ p − 1
N

· p.

2.5 Multi-party Product Verification

A triple of sharings (�a�, �b�, �c�) of three elements a, b, c ∈ F is called a multi-
plication triple (or Beaver triples [Bea92]) if the shared values satisfy a · b = c.
The ability to check the correctness of a multiplication triple is instrumental in
many MPC (in the Head) protocols.

The authors of [LN17,BN20] propose an MPC protocol to verify the correct-
ness of a multiplication triple by “sacrificing” another one. Specifically, given a
random triple (�a�, �b�, �c�), the protocol simultaneously verifies the correctness
of (�x�, �y�, �z�) and (�a�, �b�, �c�), i.e. verifies that c = a ·b and z = x ·y, without
revealing any information on (x, y, z) in the following way:

1. The parties get a random ε ∈ F (from the verifier in the MPCitH paradigm),
2. The parties locally set �α� = ε�x� + �a� and �β� = �y� + �b�.
3. The parties broadcast �α� and �β� to obtain α and β.
4. The parties locally set �v� = ε�z� − �c� + α · �b� + β · �a� − α · β.
5. The parties broadcast �v� to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.



550 T. Feneuil et al.

Observe that if both triples are correct multiplication triples (i.e., z = xy
and c = ab) then the parties will always accept since

v = ε · z − c + α · b + β · a − α · β

= ε · x · y − a · b + (ε · x + a) · b + (y + b) · a − (ε · x + a) · (y + b) = 0

In contrast, if one or both triples are incorrect, then the parties will accept with
probability at most 1/|F| as shown in Lemma 1.

Lemma 1 ([BN20]). If (�a�, �b�, �c�) or (�x�, �y�, �z�) is an incorrect multiplica-
tion triple then the parties output Accept in the sub-protocol above with prob-
ability 1

|F| .

The authors of [KZ21] propose a variant of the above protocol to batch
the verification of the d multiplication triples (�xj�, �yj�, �zj�) by sacrificing a
random dot-product tuple ((�aj�, �bj�)j∈[d], �c�) verifying c = 〈a, b〉.
1. The parties gets a random ε ∈ F

d (from the verifier in the MPCitH paradigm),
2. The parties locally set �α� = ε ◦ �x� + �a� and �β� = �y� + �b�.
3. The parties broadcast �α� and �β� to obtain α and β.
4. The parties locally set �v� = −�c� + 〈ε, �z�〉 + 〈α, �b�〉 + 〈β, �a�〉 − 〈α, β〉.
5. The parties broadcast �v� to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.

Lemma 2 ([KZ21]). If (�xj�, �yj�, �zj�)j∈[d] contains an incorrect multiplication
triple or if ((�aj�, �bj�)j∈[d], �c�) form an incorrect dot product, then the parties
output Accept in the sub-protocol above with probability at most 1

|F| .

This variant requires less communication for c and v, compared to the case
where we repeat d times the original protocol. But depending on the context,
repeating d times the original protocol might be preferred to lower the false
positive probability (i.e. 1/|F|d against 1/|F|).

3 A Zero-Knowledge Protocol for Syndrome Decoding

Let us consider an instance (H, y) of the (d-split) syndrome decoding problem,
and let us denote x a solution of this instance. We denote FSD the field on which
the instance is defined.

Without loss of generality, we assume that H is in the standard form, i.e. that
H = (H ′|Im−k) for some H ′ ∈ F

(m−k)×k
SD . Thus the solution x can be written as

(xA|xB) such that we have the linear relation

y = H ′xA + xB . (1)

This implies that one simply needs to send xA (k · log |FSD| bits) to reveal the
solution of the instance (H, y).
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In the following sections, we first build an MPC protocol that takes a sharing
of �xA�, builds the corresponding �x� thanks to Eq. (1), and checks that �x�
corresponds to a vector with a Hamming weight of at most w/d on each chunk.
Since �x� would verify y = Hx by construction, this MPC protocol verifies that
�xA� corresponds to a solution of the syndrome decoding instance (H, y). Then,
in Sect. 3.3, we transform it into a zero-knowledge protocol which proves the
knowledge of a solution of the syndrome decoding instance (H, y) thanks to the
MPC-in-the-Head paradigm (described in Sect. 2.4).

3.1 Standard Case (d = 1)

We first focus on the case where (H, y) is an instance of the standard syndrome
decoding problem (i.e. we have d = 1). We will then show how to extend the
protocol to the general case of any d. We consider a field extension Fpoly ⊇ FSD

such that |Fpoly| ≥ m (we recall that m is the length of the secret x, i.e. x ∈ F
m
SD).

We denote φ : FSD → Fpoly the canonical inclusion of FSD into Fpoly. Let us take
a bijection γ between {1, . . . , |Fpoly|} and Fpoly. Then, to ease the notation, we
denote γi for γ(i).

The protocol must check that y = Hx and wt(x) ≤ w. As explained in the
introduction of the section, the input for the MPC protocol will be �xA�, then
it will build the sharing �x� using the linear relation (1). Then we directly have
that y = Hx. It remains to check that wt(x) ≤ w.

To prove that wt(x) ≤ w, the prover build the three following polynomials:

– The polynomial S ∈ Fpoly[X] satisfying

∀i ∈ [m], S(γi) = φ(xi),

as well as deg S ≤ m − 1. This S is unique and can be computed by interpo-
lation.

– The polynomial Q ∈ Fpoly[X] defined as

Q(X) :=
∏

i∈E

(X − γi)

for some E ⊂ [m] such that |E| = w and {i ∈ [m] : xi �= 0} ⊂ E, implying
deg Q = w.

– The polynomial P ∈ Fpoly[X] defined as

P := (Q · S)/F with F (X) :=
m∏

i=1

(X − γi).

We stress some useful properties of these polynomials:

– The polynomial Q is a monic polynomial of degree w. Moreover, for every
i ∈ [m], we have

xi �= 0 ⇒ i ∈ E ⇒ Q(γi) = 0.
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– The polynomial F divides Q · S. Indeed, for every i ∈ [m], we have

(Q · S)(γi) = 0

since S(γi) �= 0 ⇒ xi �= 0 ⇒ Q(γi) = 0. The polynomial P is hence well
defined.

– The polynomial P has degree deg P ≤ w − 1.

If the prover convinces the verifier that there exists two polynomials P (with
deg P ≤ w − 1) and Q (with deg Q = w) such that Q · S − P · F = 0 where S
and F are built as described above, then the verifier can deduce the following:

∀i ∈ [m], (Q · S)(γi) = P (γi) · F (γi) = 0
⇒ ∀i ∈ [m], Q(γi) = 0 or S(γi) = φ(xi) = 0

Since Q has at most w roots, the verifier concludes that φ(xi) �= 0 in at most w
positions. Thus wt(x) ≤ w.

We now explain how to prove this statement in the MPCitH paradigm. For
this purpose, we describe an MPC protocol, which on input x, P and Q outputs
Accept if the above condition is verified and Reject otherwise, except with
a small false positive probability. The parties’ inputs are defined as the shares
of �xA�, �Q� and �P �. Let us recall that a sharing of a polynomial is naturally
defined as a sharing of its coefficients (see Sect. 2.3). However, for the sharing of
Q, we share all of its coefficients except the leading one. Indeed since Q is monic,
its leading coefficient is publicly known and is equal to 1. Moreover, it enables
to convince the verifier that Q is of degree exactly w, which is important since
otherwise, a malicious prover could take Q as the zero polynomial.

From its inputs, the MPC protocol first builds the polynomial S from xA.
Then, to verify Q · S = P · F , it evaluates the two sides of the relation on t
random points r1, ..., rt (sampled by the verifier in the MPCitH setting). If the
relation is not verified, the probability to observe Q(rj) · S(rj) = P (rj) · F (rj)
for all j ∈ [t] will be low, which stems from the Schwartz-Zippel Lemma (see
the full version [FJR22]). The larger the set from which the evaluation points rj

are sampled, the smaller the false positive probability p. For this reason, we take
these evaluation points in a field extension Fpoints of Fpoly. Such a field extension
allows us to have more points and so to detect more efficiently when Q·S �= P ·F .
In practice, given an evaluation point rj , the parties of the MPC protocol verify
the relations Q(rj) · S(rj) = (P · F )(rj) by sacrificing multiplication triples as
described in Sect. 2.5. To proceed, the prover must previously build t multipli-
cation triples (�aj�, �bj�, �cj�) for random elements aj , bj , cj ∈ Fpoints satisfying
aj · bj = cj for j ∈ [t] and include them to the parties’ inputs (each party getting
its corresponding share from �aj�, �bj� and �cj�).

The MPC protocol runs as follows:

1. The parties sample t random points r1, . . . , rt of Fpoints.



Syndrome Decoding in the Head: Shorter Signatures from ZK Proofs 553

2. The parties locally compute �x� from �xA� using Eq. (1).
3. The parties locally compute �S(rj)�, �Q(rj)� and �(F · P )(rj)� for all j ∈ [t].

Let us remark that �S(rj)� can be computed from �x� by the parties without
any interaction thanks to the linearity of Lagrange interpolation formula:

�S(rj)� =
∑

i∈[m]

�xi�
∏

�∈[m],� �=i

rj − γ�

γi − γ�
.

On the other hand �(F · P )(rj)� is computed as F (rj) · �P (rj)� since F is
publicly known.

4. For every j ∈ [t], the parties run an MPC verification of the multiplication
triple

(

�S(rj)�, �Q(rj)�, �(F ·P )(rj)�
)

by sacrificing the triple (�aj�, �bj�, �cj�):
– The parties sample a random εj ∈ Fpoints.
– The parties locally set

�αj� = εj · �Q(rj)� + �aj� and �βj� = �S(rj)� + �bj�.

– The parties broadcast �αj� and �βj� to obtain αj and βj .
– The parties locally set

�vj� = εj · �(F · P )(rj)� − �cj� + αj · �bj� + βj · �aj� − αj · βj .

– The parties broadcast �vj� to obtain vj .
5. The parties output Accept if v = 0 and Reject otherwise.

Note that we do not need to specify how the random values rj ’s and εj ’s are
sampled by the parties since they will be provided as challenges from the verifier
while turning to the zero-knowledge setting.

The above MPC protocol computes a non-deterministic function f which
takes x, Q and P (and t multiplication triples) as input and which outputs
Accept or Reject. The randomness of this function comes from the random
evaluations points r1, . . . , rt and from the random challenges ε1, . . . , εt used by
the product checking protocol. Whenever x indeed satisfies wt(x) ≤ w and the
polynomials P and Q are genuinely computed as described above, the protocol
outputs Accept with probability one. Whenever the protocol input is not of
this form, the protocol shall output Reject except with a small false positive
probability p. In other words, the output of the above protocol follows the dis-
tribution depicted in Table 1 where a good witness here means an x of weight at
most w and polynomials P and Q which are correctly built.

Let us make explicit the false positive probability p. We shall denote Δ :=
|Fpoints|. Whenever the protocol input is not a good witness, i.e. wt(x) > w, P
or Q are not correctly built, we have Q · S �= F · P . In the above protocol, both
sides of the relation are evaluated in t random points. The probability to have
the equality for i evaluation points among the t points is at most

max�≤m+w−1

{(
�
i

)(
Δ−�
t−i

)}

(
Δ
t

)
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since Q · S − F · P is a polynomial of degree at most m + w − 1. This holds from
a simple extension of the Schwartz-Zippel Lemma that we provide in the full
version [FJR22]. When this event occurs, the probability to obtain Accept as
output is

(
1
Δ

)t−i

,

which corresponds to the probability to get the t − i false positives in the verifi-
cation of multiplication triples (for the t − i remaining evaluation points rj for
which Q(rj) · S(rj) �= F (rj) · P (rj)). Thus, the global false positive probability
p satisfies

p ≤
t∑

i=0

max�≤m+w−1

{(
�
i

)(
Δ−�
t−i

)}

(
Δ
t

)

(
1
Δ

)t−i

. (2)

3.2 General Case (any d)

Let us now assume that (H, y) is an instance of a d-split syndrome decoding
problem for some d ≥ 1. We can easily adapt our protocol in that case. Instead of
having a unique polynomial Q of degree w, we will have d polynomials Q1, . . . , Qd

of degree exactly w/d to prove the weight bound wt(xj) ≤ w/d for each chunk
xj of the SD solution. We then have d polynomials Sj (of degree m/d − 1) and
d polynomials Pj (of degree w/d − 1) satisfying the d relations Qj · Sj = F · Pj

with F :=
∏m/d

j=1 (X − γj). To prove those d relations we evaluate each of them
on t random points r1, . . . , rt. We stress that the same t random points can be
used for each chunk, i.e. for every j ∈ [d].

A malicious prover might try to cheat on a single relation (i.e. on a single
chunk of the SD solution), in such a way that there exists j0 ∈ [d] with

{
Qj0 · Sj0 �= F · Pj0 ,
∀j �= j0, Qj · Sj = F · Pj .

So for a given point r, we use the dot-product checking of [KZ21] (described in
Sect. 2.5) to check all the equalities Qj(r) ·Sj(r)=F (r) ·Pj(r) at once. This saves
communication without impacting the soundness error compared to independent
checks of the d relations.

Whenever the input x, {Pj}, {Qj} is not a good witness (i.e. whenever one xj

has a weight greater than w/d or one polynomial Pj or Qj is not correctly built),
at least one of the relations Qj ·Sj = F ·Pj is not verified. Since Qj ·Sj −F ·Pj is a
polynomial of degree at most (m+w)/d−1, the global false positive probability
for the d-split variant becomes

p ≤
t∑

i=0

max�≤(m+w)/d−1

{(
�
i

)(
Δ−�)
t−i

)}

(
Δ
t

)

(
1
Δ

)t−i

(3)

with Δ := |Fpoints|. (This upper bound is equivalent to (2) where the max degree
m + w − 1 is replaced by (m + w)/d − 1).
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The constraint on the size of Fpoly now becomes

|Fpoly| ≥ m

d

since we only need w/d points for the interpolation of the polynomials S1, . . . Sd.
Thus using the d-split version allows us to use smaller fields for Fpoly and Fpoints.

Let us note that in practice the new communication is not smaller than
before, but rather equivalent or higher, since we need to use bigger syndrome
decoding instances to compensate the security loss of the d-split version. The
main benefit to introduce the d-split version is to work on polynomials of smaller
degree and/or on specific fields which provides better performance trade-offs (see
Sect. 4.5).

3.3 Description of the Protocol

We now give the formal description of our zero-knowledge protocol (general case)
in Protocol 1. For the sake of clarity in the protocol description, we denote Q the
tuple of polynomials (Q1, . . . , Qd). Same for the polynomials P and S. The addi-
tions, substractions and polynomial evaluations of these tuples are component-
wise defined. For example, for a point r ∈ Fpoints, Q(r) means (Q1(r), . . . , Qd(r)).
We also use this bold notation for aj , bj , αj , βj and εj which shall represent vec-
tors of Fd

points. Let us recall that ◦ denotes the component-wise multiplication. In

the scope of this protocol, the polynomial F is defined as F (X) :=
∏m/d

i=1 (X−γi)
with Fpoly = {γ1, γ2, . . .}.

3.4 Security Proofs

The following theorems state the completeness, zero-knowledge and soundness
of Protocol 1. The proofs of Theorems 3 and 4 are provided in the full version
[FJR22].

Theorem 2 (Completeness). Protocol 1 is perfectly complete, i.e. a prover
P who knows a solution x to the syndrome decoding instance (H, y) and who
follows the steps of the protocol always succeeds in convincing the verifier V.

Proof. For any sampling of the random coins of P and V, if the computation
described in Protocol 1 is genuinely performed then all the checks of V pass. ��
Theorem 3 (Honest-Verifier Zero-Knowledge). Let the PRG used in Pro-
tocol 1 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding.
There exists an efficient simulator S which, given random challenge i∗ outputs
a transcript which is (t, εPRG + εCom)-indistinguishable from a real transcript of
Protocol 1.

Theorem 4 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (H, y), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃,V〉(H, y) → 1] > ε
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Inputs: Both parties have H = (H′|Im−k) ∈ F
(m−k)×m
SD and y ∈ F

m−k
SD , the prover also holds

x := (x1 | x2 | . . . | xd) ∈ F
m
SD such that y = Hx and wt(xj) ≤ w for j ∈ [d].

Round 1: The prover computes the proof witness: for all chunk j ∈ [d],

1. Choose a set Ej ⊂ [ m
d ] s.t. |Ej | = w

d and {� : (xj)� �= 0} ⊂ Ej .

2. Compute Qj(X) =
∏

�∈Ej
(X − γ�) ∈ Fpoly[X].

3. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. deg Sj ≤ m
d − 1 and ∀� ∈ [ m

d ], Sj(γ�) = (xj)�.

4. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Then, the prover prepares the inputs for the multi-party computation as follows:

1. Sample a root seed: seed
$←− {0, 1}λ.

2. Compute parties’ seeds and commitment randomness (seedi, ρi)i∈[N] with TreePRG(seed).

3. For each party i ∈ {1, . . . , N},

– �aj�i, �bj�i ← PRG(seedi), for each j ∈ [t]

– If i �= N ,

• {�cj�i}j∈[t], �xA�i, �Q�i, �P �i ← PRG(seedi)

• statei = seedi

– Else,

• �xA�N = xA − ∑
� �=N �xA��

• �Q�N = Q − ∑
� �=N �Q��.

• �P �N = P − ∑
� �=N �P ��.

• �cj�N = 〈aj , bj〉 − ∑
� �=N �cj��, for each j ∈ [t]

• aux = (�xA�N , �Q�N , �P �N , {�cj�N }j∈[t])

• stateN = seedN || aux

– Commit the party’s state: comi = Com(statei; ρi).

The prover builds h = Hash(com1, . . . , comN ) and sends it to the verifier.

Round 2: The verifier uniformly samples, for each j ∈ [t], an evaluation point rj ← Fpoints and a

vector εj ← F
d
points, and sends them to the prover.

Round 3: The prover simulates the MPC protocol:

1. The parties locally set �xB� = y − H′�xA�.

2. The parties locally compute �S� by interpolation using �x� := (�xA� | �xB�).

3. Then for all j ∈ [t],

– The parties locally compute �S (rj)�, �Q(rj)� and �P (rj)�.

– They locally set �αj� = εj ◦ �Q(rj)� + �aj�.

– They locally set �βj� = �S(rj)� + �bj�.

– The parties open �αj� and �βj� to get αj and βj .

– The parties locally set

�vj� = −�cj� + 〈εj , F (rj) · �P (rj)�〉 + 〈αj , �bj�〉 + 〈βj , �aj�〉 − 〈αj , βj〉 .

The prover builds h′ = Hash(�α1�, �β1�, �v1�, . . . , �αt�, �βt�, �vt�) and sends it to the verifier.

Round 4: The verifier uniformly samples i∗ ← [N ] and sends it to the prover.

Round 5: The prover sends (statei, ρi)i�=i∗ , comi∗ , {�αj�i∗ }j∈[t] and {�βj�i∗ }j∈[t].

Verification: The verifier accepts iff all the following checks succeed:

1. For each i �= i∗, she computes all the commitments to the parties’ states: comi = Com(statei; ρi).

Then she checks that h
?
= Hash(com1, . . . , comN ).

2. Using {statei}i�=i∗ , she simulates all the parties except for i∗. From the recomputed shares, she

checks that h′ ?
= Hash(�α1�, �β1�, �v1�, . . . , �αt�, �βt�, �vt�) where �vj�i∗ := − ∑

i�=i∗ �vj�i.

Protocol 1: Zero-knowledge proof for syndrome decoding.
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where the soundness error ε is equal to

p +
1
N

− p · 1
N

with p defined in Eq. (3). Then, there exists an efficient probabilistic extraction
algorithm E that, given rewindable black-box access to P̃, produces with either
a witness x such that y = Hx and wt(x) ≤ w, or a commitment collision, by
making an average number of calls to P̃ which is upper bounded by

4
ε̃ − ε

·
(

1 + ε̃ · 2 · ln(2)
ε̃ − ε

)

.

By adapting the parameters t and Δ, we can produce a protocol with sound-
ness error arbitrarily close to 1/N .

3.5 Performance

In the following analysis, we exclude the challenges from the communication cost
since they are of very moderate impact (and do not count whenever making the
protocol non-interactive). The communication then consists into

– Com := h,
– Res1 := h′ and
– Res2 :=

(

(statei, ρi)i�=i∗ , comi∗ , {�αj�i∗}j∈[t], {�βj�i∗}j∈[t]

)

.

For i �= N , statei simply consists in a seed of λ bits. For i = N , statei contains

– a seed of λ bits,
– the share �xA�N of a plaintext,
– the shares �Q�N and �P �N which are 2 · d polynomials of degree w/d − 1,
– and the shares {�cj�N}j∈[t] of t points of Fpoints.

Let us recall that seeds are sampled using a tree PRG. Instead of sending the N−
1 seeds and commitment randomness of (statei, ρi)i�=i∗ , we can instead send the
sibling path from (statei∗ , ρi∗) to the tree root, it costs at most λ·log2(N) bits (we
need to reveal log2(N) nodes of the tree). Moreover comi∗ is a commitment of 2λ
bits, and {�αj�i∗}j∈[t], {�βj�i∗}j∈[t] are elements of Fpoints. The communication
cost (in bits) of the protocol is then

Size = 4λ + k · log2 |FSD|
︸ ︷︷ ︸

�xA�N

+ (2 · w) · log2 |Fpoly|
︸ ︷︷ ︸

�Q�N ,�P �N

+ (2 · d + 1) · t · log2 |Fpoints|
︸ ︷︷ ︸

{�αj�i∗ ,�βj�i∗ ,�cj�N }j∈[t]

+λ · log2(N)
︸ ︷︷ ︸

(seedi)i�=i∗

+ 2λ
︸︷︷︸

comi∗

As usual, to achieve a targeted soundness error 2−λ, we can perform τ parallel
repetitions of the protocol such that ετ ≤ 2−λ. And instead of sending τ values
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for h and h′, we can merge them together to send a single h and a single h′. The
communication cost (in bits) of the protocol with τ repetitions is

Size = 4λ + τ ·
(

k · log2 |FSD| + (2 · w) · log2 |Fpoly|

+ (2 · d + 1) · t · log2 |Fpoints| + λ · log2(N) + 2λ
)

and the obtained soundness error is
(

p +
1
n

− p · 1
n

)τ

.

3.6 Comparison

We compare our new protocol with existing zero-knowledge protocols for syn-
drome decoding (or equivalently for message decoding). We compare these pro-
tocols on two SD instances of 128-bit security:

– Instance 1 [FJR21]: Syndrome Decoding on F2 with parameters

(m, k,w) = (1280, 640, 132);

– Instance 2 [CVE11]: Syndrome Decoding on F28 with parameters

(m, k,w) = (208, 104, 78).

The comparison for a soundness error of 2−128 is given in the Table 2. For our
protocol, we provide two instantiations for each syndrome decoding instance to
give the reader an idea of the obtained performance while changing the number
of parties. The first instantiation called “short” corresponds to an instantiation
which provides small communication cost. The second one called “fast” corre-
sponds to an instantiation with faster computation but higher communication
cost. The used parameters (N, τ, |Fpoly|, |Fpoints|, t) for our scheme are

– Instance 1:
Short: (256, 16, 211, 222, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 211, 222, 1) ⇒ ετ = 2−129.6

– Instance 2:
Short: (256, 16, 28, 224, 2) ⇒ ετ = 2−128.0

Fast: (32, 26, 28, 224, 1) ⇒ ετ = 2−130.0

We can remark that all the previous protocols prove an equality for the
Hamming weight by relying on isometries (i.e. permutations if FSD = F2). On
our side, we only prove the inequality wt(w) ≤ w. We stress that both ver-
sions (equality or inequality) can be merely equivalent for some SD parameters.
Indeed, if w is chosen sufficiently below the Gilbert-Varshamov bound and if
we know there exists an SD solution x of Hamming weight w, then proving the
knowledge of a solution x′ with wt(x′) ≤ w amounts to proving the knowledge
of x with overwhelming probability.
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Table 2. Comparison of our protocol with state-of-the-art zero-knowledge protocols
for syndrome decoding. The formulae for the communication costs of the different
protocols and the used parameters are detailed in the full version [FJR22].

Name Protocol Year Instance 1 Instance 2 Proved statement

[Ste94] 1993 37.4 KB 46.1 KB y = Hx, wt(x) = w

[Vér96] 1997 31.7 KB 38.7 KB message decoding

[CVE11] 2010 - 37.4 KB y = Hx, wt(x) = w

[AGS11] 2011 24.8 KB - y = Hx, wt(x) = w

[GPS22] (short) 2021 - 15.2 KB y = Hx, wt(x) = w

[GPS22] (fast) 2021 - 19.9 KB y = Hx, wt(x) = w

[FJR21] (short) 2021 12.9 KB 15.6 KB y = Hx, wt(x) = w

[FJR21] (fast) 2021 20.0 KB 24.7 KB y = Hx, wt(x) = w

Our scheme (short) 2022 9.7 KB 6.9 KB y = Hx, wt(x) ≤ w

Our scheme (fast) 2022 14.4 KB 9.7 KB y = Hx, wt(x) ≤ w

4 The Signature Scheme

A signature scheme is a triplet of PPT algorithms (KeyGen,Sign,Verif). On input
1λ for security level λ, KeyGen outputs a pair (pk, sk) where pk ∈ {0, 1}poly(λ)

is a public key and sk ∈ {0, 1}poly(λ) is a private key (a.k.a. secret key). On
input a secret key sk and a message m ∈ {0, 1}∗, Sign produces a signature
s ∈ {0, 1}poly(λ). Verif is a deterministic algorithm which, on input a public
key pk, a signature s and a message m, outputs 1 if s is a valid signature
for m under pk (meaning that it is a possible output s ← Sign(sk,m) for the
corresponding sk) and it outputs 0 otherwise. The standard security property
for a signature scheme is the existential unforgeability against chosen message
attacks: an adversary A given pk and a oracle access to Sign(sk, ·) should not
be able to produce a pair (s,m) satisfying Verif(pk, s,m) = 1 (for a message m
which was not queried to the signing oracle).

In this section, we show how to turn our 5-round HVZK protocol into a signa-
ture scheme using the Fiat-Shamir transform [FS87,AABN02]. After explaining
the transformation, we give the description of the signature scheme and then
provide a security proof in the random oracle model (ROM).

4.1 Transformation into a Non-interactive Scheme

To transform our protocol into a non-interactive scheme, we apply the
multi-round variant of the Fiat-Shamir transform [FS87] (see e.g. [EDV+12,
CHR+16]). Concretely, we compute the challenge Ch1 and Ch2 as

h1 = Hash1(m, salt, h)
Ch1 ← PRG(h1)

and
h2 = Hash2(m, salt, h, h′)
Ch2 ← PRG(h2)
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where m is the input message, where Hash1 and Hash2 are some hash functions
(that shall be modeled as random oracles) and where h and h′ are the Round
1 and Round 3 hash commitments merged for the τ repetitions. We introduce
a value salt called salt which is sampled from {0, 1}2λ at the beginning of the
signing process. This value is then used for each commitment to the parties’
states. Without it, the security of the signature would be at most 2λ/2 because
of the seed collisions between several signatures. Moreover, since the signature
security relies on the random oracle model, we can safely replace the commitment
scheme Com of the Protocol 1 by a single hash function Hash0.

The security of the obtained scheme is lower than the soundness error of
Protocol 1. Indeed, in [KZ20a], Kales and Zaverucha describe a forgery attack
against signature schemes obtained by applying the Fiat-Shamir transform to
5-round protocols. Adapting this attack to our context yields a forgery cost of

costforge := min
τ1,τ2:τ1+τ2=τ

{

1
∑τ

i=τ1

(
τ
i

)

pi(1 − p)τ−i
+ Nτ2

}

(4)

with p defined in Eq. (3). This is substantially lower than the target forgery
cost of 1/ε, for ε being the soundness error of Protocol 1 (see Theorem 4). We
therefore need to adapt the parameters to fill this gap.

4.2 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syn-
drome decoding instance (H, y) of the syndrome decoding problem with solution
x (i.e. y = Hx) with security parameter λ. In order to make the key pair com-
pact, the matrix H is pseudorandomly generated from a λ-bit seed. Specifically,
a call to the KeyGen algorithm outputs a pair (pk, sk) :=

(

(seedH , y),mseed
)

generated as follows:

1. mseed ← {0, 1}λ

2. (seedH , x) ← PRG(mseed) where x is sampled in {x ∈ F
m
2 | wt(x) = w}

3. H ← PRG(seedH)
4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the
seeds in the algorithms below and assume pk = (H, y) and sk = (H, y, x).

Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the algorithm
Sign proceeds as described in Fig. 1. And given a public key pk = (H, y), a
signature σ and a message m ∈ {0, 1}∗, the algorithm Verif proceeds as described
in Fig. 2. For the sake of clarity, as for the protocol description in Sect. 3.3, we
use the bold notation to represent a tuple of d polynomials or of d points.

4.3 Signature Properties

We now state the security of our signature scheme in the following theorem. The
proof is provided in the full version [FJR22].
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Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.

Sample a random salt salt ← {0, 1}2λ.

Phase 1.0: Building of the proof witness. For all chunk j ∈ [d],

1. Compute Qj(X) = ∈Ej
(X − γ ) ∈ Fpoly[X] where Ej = { : (xj) = 0}.

2. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. deg Sj ≤ m
d − 1 and ∀ ∈ [m

d ], Sj(γ ) = (xj) .

3. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Phase 1.1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [τ ],

1. Sample a root seed: seed[e]
$←− {0, 1}λ.

2. Compute parties’ seeds seed
[e]
1 , . . . , seed

[e]
N with TreePRG(salt, seed).

3. For each party i ∈ {1, . . . , N},
– a

[e]
j i, b

[e]
j i ← PRG(salt, seed

[e]
i ), for each j ∈ [t]

– If i = N ,

• { c
[e]
j i}j∈[t], x

[e]
A i, Q[e]

i, P [e]
i ← PRG(salt, seed

[e]
i )

• state
[e]
i = seed

[e]
i

– Else,

• x
[e]
A N = xA − j=N x

[e]
A j

• Q[e]
N = Q − =N Q[e] .

• P [e]
N = P − =N P [e] .

• c
[e]
j N = a

[e]
j , b

[e]
j =N c

[e]
j , for each j ∈ [t]

• aux[e] = ( x
[e]
A N , Q[e]

N , P [e]
N , { c

[e]
j N }j∈[t])

• state
[e]
N = seed

[e]
N || aux[e]

– Compute com
[e]
i = Hash0(salt, e, i, state

[e]
i ).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N ).

2. Extend hash {r
[e]
j , ε

[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ F
d
points.

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [τ ],

1. The parties locally set x
[e]
B = y − H x

[e]
A .

2. Then for all j ∈ [t],

– The parties locally compute S[e] by interpolation using x[e] := ( x
[e]
A | x

[e]
B ).

– They locally compute S[e](r
[e]
j ) , Q[e](r

[e]
j ) and P [e](r

[e]
j ) .

– They locally set α
[e]
j = ε

[e]
j ◦ Q[e](r

[e]
j ) + a

[e]
j .

– They locally set β
[e]
j = S[e](r

[e]
j ) + b

[e]
j .

– The parties open α
[e]
j and β

[e]
j to get α

[e]
j and β

[e]
j .

– The parties locally set

v
[e]
j = − c

[e]
j + ε

[e]
j , F (r

[e]
j ) · P

[e]
(r

[e]
j ) + α

[e]
j , b

[e]
j + β

[e]
j , a

[e]
j α

[e]
j , β

[e]
j .

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(m, salt, h1, { α
[e]
j , β

[e]
j , v

[e]
j }j∈[t],e∈[τ]).

2. Expand hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N ].

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 | (state
[e]
i )

i=i∗[e] | com[e]

i∗[e] | { α
[e]
j i∗[e]}j∈[t] | { β

[e]
j i∗[e]}j∈[t]

e∈[τ]
.

Fig. 1. Code-based signature scheme - Signing algorithm.
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Inputs: A public key pk = (H, y), a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 | (state
[e]
i )

i=i∗[e] | com[e]

i∗[e] | { α
[e]

j i∗[e]}j∈[t] | { β
[e]

j i∗[e]}j∈[t]
e∈[τ]

.

2. Extend hash {r
[e]
j , ε

[e]
j }e∈[τ],j∈[t] ← PRG(h1) where r

[e]
j ∈ Fpoints and εj

[e] ∈ F
d
points.

3. Extend hash {i∗[e]}e∈[τ] ← PRG(h2) where i∗[e] ∈ [N ].

4. For each iteration e ∈ [τ ],

– For each i = i∗[e], computes com
[e]
i = Hash0(salt, e, i, state

[e]
i ).

– Using {state[e]i }
i=i∗[e] , simulate all the parties except for i∗[e] as in the Phase 3 of the

signing algorithm and get α1 , . . . , αt , β1 , . . . , βt , v for all parties except for i∗[e].

– Compute v
[e]
j i∗[e] := −

i=i∗[e] v
[e]
j i for all j ∈ [t].

5. Compute h1 = Hash1(m, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N−1, com

[τ]
N ).

6. Compute h2 = Hash2(m, { α
[e]
j , β

[e]
j , v

[e]
j }j∈[t],e∈[τ]).

7. Output Accept h1
?
= h1 and h2

?
= h2.

Fig. 2. Code-based signature scheme - Verification algorithm.

Theorem 5. Suppose the PRG used is (t, εPRG)-secure and any adversary run-
ning in time t has at most an advantage εSD against the underlying d-split
syndrome decoding problem. Model Hash0, Hash1 and Hash2 as random oracles
where Hash0, Hash1 and Hash2 have 2λ-bit output length. Then chosen-message
adversary against the signature scheme depicted in Fig. 1, running in time t,
making qs signing queries, and making q0, q1, q2 queries, respectively, to the
random oracles, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τNqs)2

2 · 22λ
+

qs(qs + q0 + q1 + q2)
22λ

+ qs · τ · εPRG + εSD + q2 · ετ ,

where ε = p + 1
N − p · 1

N and p defined in Eq. (3).

4.4 Parameters

In what follows, we propose three parameter sets which achieve a security level
of 128 bits for the signature:

– the first one shall rely on the hardness to solve the SD problem on F2;
– the second one shall also rely on the hardness to solve the SD problem on
F2, but we shall use a d-split version to get polynomials over a chosen field,
concretely F256;

– the last one shall rely on the hardness to solve the SD problem on F256.

Choice of the SD Parameters. Let us first describe how we estimate the security
level of a syndrome decoding instance for a random linear code over F2. The
best practical attack for our parameters is the algorithm of May, Meurer and
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Thomae [MMT11]. As argued in [FJR21], we can lower bound the cost of this
attack by only considering the cost of its topmost recursion step:

(
m
w

)

(
k+�

p

)(
m−k−�

w−p

) ·
(

L +
L2

2�−p

)

with L :=

(
k+�
p/2

)

2p
.

As usual in ISD algorithm we need to optimize for the parameters � (a number
of rows) and p (a partial Hamming weight). Since we only account for the cost of
the topmost level in the algorithm, this yields a slightly conservative estimate for
the security level. We use this estimate to choose the parameters of our scheme.

Given these considerations, we suggest the following concrete parameters:

– Variant 1: standard binary syndrome decoding problem. We propose the
parameters

(q,m, k, w, d) = (2, 1280, 640, 132, 1)

which achieve a security level of 128 bits according to the above formula.
– Variant 2: d-split binary syndrome syndrome decoding problem, where d is

taken to have m/d ≤ 256 so that Fpoly = F256. We propose the parameters

(q,m, k, w, d) = (2, 1536, 888, 120, 6)

which achieve a security of 129 bits. Indeed, the standard SD problem with the
same parameters (but d = 1) has a security of 145 bits and we know, thanks to
the Theorem 2, that there is a security loss of at most 16 bits while switching
to d = 6. Let us stress that this choice is conservative since the current state
of the art does not contain attacks filling the gap of this reduction. Our aim
here was to build a practical signature scheme with conservative security, but
searching for more aggressive parameters for the d-split syndrome decoding
problem would be an interesting direction for future research.

– Variant 3: syndrome decoding instance defined over F256. The cryptanalysis
of the syndrome decoding problem on a field which is larger than F2 has been
less studied. Previous articles [CVE11,GPS22] propose parameters sets for
syndrome decoding instances over F28 where the code length m is between
200 and 210. In our case, we choose m = 256 in such a way that the polynomial
degree is equal to the field size. Besides being more conservative, this choice
has the advantage of easing the use of a Fast Fourier Transform. We propose
the following parameters1 for this variant:

(q,m, k, w, d) = (256, 256, 128, 80, 1) .

Choice of the MPC Parameters. For each variant, we suggest in Table 3 a param-
eter set for the MPC protocol.

1 More cryptanalysis of the SD problem over F256 would be welcome to get more
confidence in the choice of the parameters. Such research is out of the scope of
present article.
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Table 3. SD and MPC parameters.

Scheme SD Parameters MPC Parameters

q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

To have a short signature, we take the smallest possible field Fpoly since a
signature transcript includes polynomials on that field. As explained in Sect. 3,
Fpoly must be a field extension of FSD which verifies the relation |Fpoly| ≥ m/d.
Then, it remains to choose |Fpoints| and t. These parameters are chosen to make
the false positive probability p is negligible compared to 1/N such that the
optimal forgery strategy of an attacker is to take τ1 = 1 in the Eq. (4). As a
result, we just need to increase the number of iterations τ by one compared to
the interactive protocol.

4.5 Implementation and Performances

For each repetition in the computation of each party, d polynomial interpolations
are involved. Indeed, from �x�, the parties must compute

�S��(X) =
m/d
∑

i=1

�xm
d �+i� ·

m/d
∏

j=1,j �=i

X − wj

wi − wj

for all � ∈ [d]. Then, the parties must evaluate �S�� in t random evaluation
points sampled by the verifier, for all � ∈ [d]. The natural way to implement that
is to compute the coefficients of all the polynomials {�S��}� from �x�, then to
evaluate these polynomials t times. However this implies that the signer must
realize τ · N · d interpolations. Instead, the signer can compute the vector u(r)
defined as

u(r) =

⎛

⎝

m/d
∏

j=1,j �=i

r − wj

wi − wj

⎞

⎠

1≤i≤ m
d

for each evaluation point r, and then use these vectors in the computation of all
the parties as

�S�(r)� = 〈�x��, u(r)〉
where �x�� is the �th chunk of �x�. By proceeding this way, the number of (trans-
posed) interpolations done by the signer is of τ · t.

To reduce the computational cost of the interpolations, we can make use
of a Fast Fourier Transform (FFT). We are working on field extensions of
F2, so we can use the Additive FFT independently introduced by Wang-Zhu
in 1988 [WZ88] and by Cantor in 1989 [Can89], which was further improved
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in [vzGG03,GM10]. Although such additive FFT exists for any extension of F2,
the algorithms are simpler for a field of size 2(2i) for some i, which is why we
define Fpoly as F256. On such a field F, we indeed have an efficient additive FFT
using 1

2 |F| log2 |F| multiplications to evaluate a polynomial (of degree lower than
|F|) in |F| points.

We implemented the signature scheme in C. In our implementation, the
pseudo-randomness is generated using AES in counter mode and the hash func-
tion is instantiated with SHAKE. We benchmarked our scheme on a 3.8 GHz
Intel Core i7 CPU with support of AVX2 and AES instructions. All the reported
timings were measured on this CPU while disabling Intel Turbo Boost.

Remark 2. Another motivation for using Fpoly = F256 is that some Intel proces-
sors have dedicated instructions for F256 arithmetic. We therefore expect sub-
stantial speed-ups for the instances of our signature scheme using Fpoly = F256

on these processors. Optimizing and benchmarking such implementations is left
for future research.

We instantiate two trade-offs per variant: the first one lowering communica-
tion cost to produce short signatures, and the second one lowering computational
cost to get a fast signature computation. We obtain the parameters and sizes
described in Table 4. We provide the measured computational performances of
our signature implementation in Table 5.

Table 4. Parameters (N, τ) with the achieved communication costs (in bytes).

λ Scheme Aim Parameters |pk| |sk| Signature

N τ |sgn| (max) |sgn| (avg, std)

128
Variant 1

Fast 32 27 96 16 16 422 16 006, 446

128 Short 256 17 96 16 11 193 11 160, 127

128
Variant 2

Fast 32 27 97 16 17 866 17 406, 494

128 Short 256 17 97 16 12 102 12 066, 141

128
Variant 3

Fast 32 27 144 16 12 115 11 835, 302

128 Short 256 17 144 16 8 481 8 459, 86

Future Investigations. We tried to optimize the implementation using some algo-
rithmetic tricks, but we did not yet investigate the possible software optimiza-
tions like vectorialization or bitslicing. Although the variants 1 and 2 are more
conservative because they rely on the hardness of the binary syndrome decoding
problem, variant 3 is more promising in terms of signature size and computation
time. While we have investigated parameter sets where FSD is a field exten-
sion of F2, more cryptanalysis for the SD problem on those fields as well as on
non-binary fields would be welcome. An interesting idea would be to instantiate
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Table 5. Benchmarks of our signature implementation. Timings are averaged over
10 000 measurements. The CPU clock cycles have been measured using SUPERCOP
(https://bench.cr.yp.to/supercop.html).

λ Variant Aim Keygen Sign Verify

128
Variant 1

Fast
n/a†

128 Short

128

Variant 2

Fast
0.03 ms 13.4 ms 12.7 ms

114 162 cycles 52 463 114 cycles 50 306 845 cycles

128 Short
0.03 ms 64.2 ms 60.7 ms

113 852 cycles 251 099 099 cycles 243 055 474 cycles

128

Variant 3

Fast
0.01 ms 6.4 ms 5.9 ms

49 181 cycles 25 253 580 cycles 23 816 143 cycles

128 Short
0.01 ms 29.5 ms 27.1 ms

49 057 cycles 114 226 505 cycles 108 541 768 cycles
† We only have a proof of concept implementation with irrelevant timings.

our scheme with a prime field FSD for which the Number-Theoretic Transform
(NTT) is defined. If FSD is large enough, we could then take the same field for
Fpoly than FSD and we would have fast polynomial interpolations and simpler
multiplication operations.

5 Comparison

In this section, we compare our scheme to different code-based and post-quantum
signature schemes from the literature.

5.1 Comparison with Other Code-Based Signature Schemes

In the state of the art, there exist two approaches to build signatures. On one
hand, there is the hash-and-sign paradigm which relies on the existence of a (code-
based) trapdoor permutation. Wave [DST19] is a code-based signature scheme in
this paradigm. Such schemes are often more vulnerable to structural attacks. On
the other hand, further signature schemes are constructed by applying the Fiat-
Shamir transform to (zero-knowledge) identification schemes, which can rely on
weaker assumptions (and typically the SD for random linear codes). Historically
such schemes, like the famous Stern protocol, give rise to large signatures because
of the high soundness error of the underlying identification scheme (2/3 or 1/2).
To avoid this issue, a solution consists in relying on different code-based problems.
For instance, LESS is a recent scheme which security relies on the hardness of the
Linear Code Equivalence problem [BMPS20,BBPS21]. Another direction is to find
a way to adapt the Schnorr-Lyubashevsky approach to code-based cryptography.
Durandal is a recent scheme following this approach [ABG+19]. More recently,
some works [GPS22,FJR21,BGKM22] have obtained better soundness by relying
on the MPC-in-the-Head principle. The proposed schemes achieve small signature

https://bench.cr.yp.to/supercop.html
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sizes at the cost of slower computation. Depending on the setting, they can produce
signatures with different trade-offs between the signature size and the computa-
tional cost. The current work follows this approach while achieving better trade-
offs than any of these previous works.

Table 6. Comparison of our scheme with signatures from the literature (128-bit secu-
rity). The sizes are in bytes and the timings are in milliseconds. Reported timings
are from the original publications: Wave has been benchmarked on a 3.5 Ghz Intel
Xeon E3-1240 v5, Durandal on a 2.8 Ghz Intel Core i5-7440HQ, while [FJR21] and our
scheme on a 3.8 GHz Intel Core i7.

Scheme Name Year |sgn| |pk| tsgn tverif Assumption

Wave 2019 2.07 K 3.2 M 300 - SD over F3 (large weight)
(U, U + V )-codes indisting.

Durandal - I 2018 3.97 K 14.9 K 4 5 Rank SD over F2m

Durandal - II 2018 4.90 K 18.2 K 5 6 Rank SD over F2m

LESS-FM - I 2020 15.2 K 9.77 K - - Linear Code Equivalence

LESS-FM - II 2020 5.25 K 206K - - Perm. Code Equivalence

LESS-FM - III 2020 10.39 K 11.57 K - - Perm. Code Equivalence

[GPS22]-256 2021 24.0 K 0.11 K - - SD over F256

[GPS22]-1024 2021 19.8 K 0.12 K - - SD over F1024

[FJR21] (fast) 2021 22.6 K 0.09 K 13 12 SD over F2

[FJR21] (short) 2021 16.0 K 0.09 K 62 57 SD over F2

[BGKM22] - Sig1 2022 23.7 K 0.1 K - - SD over F2

[BGKM22] - Sig2 2022 20.6 K 0.2 K - - (QC)SD over F2

Our scheme - Var1f 2022 15.6 K 0.09 K - - SD over F2

Our scheme - Var1s 2022 10.9 K 0.09 K - - SD over F2

Our scheme - Var2f 2022 17.0 K 0.09 K 13 13 SD over F2

Our scheme - Var2s 2022 11.8 K 0.09 K 64 61 SD over F2

Our scheme - Var3f 2022 11.5 K 0.14 K 6 6 SD over F256

Our scheme - Var3s 2022 8.26 K 0.14 K 30 27 SD over F256

Table 6 compares the performances of our scheme with the current code-
based signature state of the art, for the 128-bit security level.2 We observe that
our scheme outperforms all the existing code-based signatures for the |sgn|+ |pk|
metric. Depending on the parameters, it can even produce signatures such that
|sgn|+ |pk| is below the symbolic cap of 10 KB. Regardless of the key size, Wave
still achieves the shortest signatures. In terms of security, our scheme has the
advantage of relying on the hardness of one of the oldest problems of the code-
based cryptography, namely the syndrome decoding for random linear codes in
Hamming weight metric.
2 We did not include “Sig 3” from [BGKM22] since it is similar to [FJR21] with slight

differences (message decoding setting) which do not improve the scheme.
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5.2 Comparison with Other Post-Quantum Signature Schemes

Finally, we compare in Table 7 our construction with other signature schemes
aiming at post-quantum security. First of all, let us note that the lattice-based
signature schemes (such as Dilithium [BDK+21a] and Falcon [FHK+20]) are
currently the most efficient post-quantum signature schemes. They achieve small
signature size and efficient running time. However, the goal of our construction
is to propose a signature scheme based on an alternative problem for the sake of
diversity of security assumptions. All the others schemes have very short public
keys and secret keys (less than 150 bytes for 128-bit security), which is hence not
a point for comparison. Depending on the chosen parameters, our scheme can be
competitive with Picnic3 [KZ20b] and the recently proposed “Picnic4” [KZ21]
which also rely on the MPC-in-the-Head paradigm. Like Picnic4, it can produce
signatures with a size of around 8 KB. However, our scheme is arguably more
conservative in terms of security since Picnic is based on the hardness of invert-
ing LowMC [ARS+15], a cipher with unconventional design choices, while our
scheme is based on the hardness of the syndrome decoding problem on linear
codes, which has a long cryptanalysis history and is believed to be very robust.
Banquet [BdK+21b] is a signature scheme for which the security is based on the

Table 7. Comparison of our scheme with signatures from the literature. The sizes are
in bytes and the timings are in milliseconds. Reported timings for Falcon have been
benchmarked on a 2.3 Ghz Intel Core i5-8259U in [FHK+20], and timings for Dilithium
and our scheme have been benchmarked on a 3.8 Ghz Intel Core i7. The benchmarks
of the other schemes have been realized on a Intel Xeon W-2133 CPU at 3.60 GHz, the
values for SPHINCS+ and Banquet have been extracted from [BdK+21b] while the
values for Picnic3 have been extracted from its original publication [KZ20b].

Scheme Name |sgn| |pk| tsgn tverif

Dilithium2 2.4 K 1.3 K 0.065 0.024

Falcon-512 0.65 K 0.88 K 0.168 0.036

SPHINCS+-128f 16.7 K 0.03 K 14 1.7

SPHINCS+-128s 7.7 K 0.03 K 239 0.7

Picnic3 12.3 K 0.03 K 5.2 4.0

Picnic4 7.8 K 0.03 K ≈ 20 ≈ 20

Banquet (fast) 19.3 K 0.03 K 6 5

Banquet (short) 13.0 K 0.03 K 44 40

Our scheme - Var1f 15.6 K 0.09 K - -

Our scheme - Var1s 10.9 K 0.09 K - -

Our scheme - Var2f 17.0 K 0.09 K 13 13

Our scheme - Var2s 11.8 K 0.09 K 64 61

Our scheme - Var3f 11.5 K 0.14 K 6 6

Our scheme - Var3s 8.3 K 0.14 K 30 27
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hardness of inverting AES (instead of LowMC), which can also be argued to be
a conservative choice. Our scheme over F2 is competitive with Banquet: slightly
shorter and slightly slower (but the timing could be optimized). On the other
hand, our scheme on F256 clearly outperforms Banquet. Our scheme can also
be competitive with SPHINCS+ [BHK+19] depending on the exact criteria. For
similar signature sizes, our signature computation is significantly faster while
our signature verification is significantly slower than those of SPHINCS+.

Acknowledgements. This work has been supported by the European Union’s H2020
Programme under grant agreement number ERC-669891.
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Abstract. A wiretap coding scheme (Wyner, Bell Syst. Tech. J. 1975)
enables Alice to reliably communicate a message m to an honest Bob by
sending an encoding c over a noisy channel ChB, while at the same time
hiding m from Eve who receives c over another noisy channel ChE.

Wiretap coding is clearly impossible when ChB is a degraded version of
ChE, in the sense that the output of ChB can be simulated using only the
output of ChE. A classic work of Csiszár and Korner (IEEE Trans. Inf.
Theory, 1978) shows that the converse does not hold. This follows from
their full characterization of the channel pairs (ChB,ChE) that enable
information-theoretic wiretap coding.

In this work, we show that in fact the converse does hold when consid-
ering computational security; that is, wiretap coding against a computa-
tionally bounded Eve is possible if and only if ChB is not a degraded ver-
sion of ChE. Our construction assumes the existence of virtual black-box
(VBB) obfuscation of specific classes of “evasive” functions that gener-
alize fuzzy point functions, and can be heuristically instantiated using
indistinguishability obfuscation. Finally, our solution has the appealing
feature of being universal in the sense that Alice’s algorithm depends
only on ChB and not on ChE.

1 Introduction

The wiretap channel, first introduced by Wyner [26], captures a unidirectional
communication setting in which Alice transmits an encoding of a message
across two discrete memoryless channels: a main channel (Bob’s channel) for
the intended receiver Bob and an eavesdropping channel (Eve’s channel) for an
adversarial receiver Eve. Two conditions are desired: correctness and security.
Informally, correctness guarantees that Bob can decode the message with over-
whelming probability, and security requires that Eve learn essentially nothing
about the message. The wiretap coding problem is then to find a (randomized)
encoding algorithm that satisfies both conditions. The wiretap coding question
represents a basic and fundamental question regarding secure transmission over
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noisy channels, and indeed Wyner’s work has been incredibly influential: Google
Scholar reports that the literature citing [26] surpasses 7000 papers, and Wyner’s
work is considered the foundational work on using noisy channels for cryptogra-
phy. Much of the interest in this question comes from its relevance to physical
layer security, a large area of research that exploits physical properties of commu-
nication channels to enhance communication security through coding and signal
processing. See, e.g., [24] for a survey.

The classic work of Csiszár and Korner [10] completely characterized the
pairs of channels for which wiretap coding is possible information theoretically.
Roughly speaking, their work defined a notion of one channel being less noisy
than the other (see Definition 8), and they proved that wiretap coding is possible
information theoretically if and only if Eve’s channel is not less noisy than Bob’s
channel.

To illustrate this, let’s consider a specific case: suppose that Bob’s channel is
a binary symmetric channel, flipping each bit that Alice sends with probability
p = 0.1; at the same time, suppose Eve’s channel is a binary erasure channel,
erasing each bit that Alice sends (i.e., replacing it with ⊥) with probability ε.
Then, it turns out [23] that Eve’s channel is not less noisy than Bob’s channel if
and only if ε > 0.36 = 4p(1− p), and thus by [10], information-theoretic wiretap
coding is only possible under this condition.

A New Feasibility Result for Wiretap Coding. In cryptography, we often
take for granted that assuming adversaries to be computationally bounded
should lead to improved feasibility results. Indeed, we have seen this many times
especially in the early history of cryptography: from re-usable secret keys for
encryption [6,27] to the feasibility of secure multi-party computation with a
dishonest majority [14]. However, despite the popularity of Wyner’s work, no
improvement over [10] in terms of feasibility against computationally bounded
adversaries has been obtained in over 40 years.

Nevertheless, in this work, we ask: is it possible to obtain new feasibility
results for wiretap coding for computationally bounded eavesdroppers?

Taking a fresh look at this scenario, we observe that if ε ≤ 0.2 = 2p, then
wiretap coding is completely impossible: If ε ≤ 0.2 = 2p, then Eve can simulate
Bob’s channel. For example, if ε = 0.2 = 2p, then Eve can assign each ⊥ that
she receives a uniform value in {0, 1}, and this would exactly yield a binary
symmetric channel with flip probability p = 0.1, thus exactly simulating the
distribution received by Bob. Since wiretap coding is non-interactive, if Bob can
recover the message with high probability, then so can Eve, violating security.
Indeed, whenever Eve can efficiently simulate Bob’s channel, we say that Bob’s
channel is a degraded version of Eve’s channel [9]. When this is true, wiretap
coding is clearly impossible, even for efficient eavesdroppers Eve.

In our main result, we show that assuming secure program obfuscation for
simple specific classes of functionalities (as we describe in more detail below),
the above limitation presents the only obstacle to feasibility of wiretap coding
against computationally bounded eavesdroppers. In particular, for the scenario
described above, we show that wiretap coding is possible whenever ε > 0.2 =
2p, even though [10,23] showed that information-theoretic wiretap coding is
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impossible for ε < 0.36 = 4p(1 − p). More generally, we show that wiretap
coding is possible whenever Bob’s channel is not a degraded version of Eve’s
channel. We now describe our results in more detail.

1.1 Our Contributions

Let ChB represent Bob’s channel, and let ChE represent Eve’s channel. Observe
that the input alphabets for the channels ChB and ChE must be identical; we will
denote this input alphabet by X , and consider 1-bit messages for simplicity.1

We first consider an oracle-based model in which a wiretap coding scheme
consists of two algorithms:

– Enc(1λ,m): The (randomized) encoder takes as input a security parameter
λ and a message bit m ∈ {0, 1}. The output of Enc consists of: (1) a string
c ∈ X ∗, and (2) a circuit describing a function f . The string c is transmitted
over channels ChB and ChE to Bob and Eve respectively. However, both Bob
and Eve are granted oracle access to f .

– Decf (y): The deterministic decoder is a polynomial-time oracle algorithm
with oracle access to f . Decf takes as input the string y received by Bob over
his channel.

We obtain our main result in two steps. In our first and primary step, we prove:

Theorem 1 (Informal). For any pair of discrete memoryless channels
(ChB,ChE) where ChB is not a degraded version of ChE, there exist PPT encod-
ing and decoding algorithms (Enc,Dec(·)) which achieve:

– Correctness: For all messages m ∈ {0, 1},

Pr[Decf (1λ,ChB(c)) = m | (f, c) ← Enc(1λ,m)] ≥ 1 − negl(λ)

– Security: For all computationally unbounded adversaries A(·) that are
allowed to make polynomially many queries to their oracle,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb) ← Enc(1λ, b)] ≤ 1
2

+ negl(λ)

where b is uniformly distributed over {0, 1}.
Theorem 1 can be viewed as an unconditional construction using an ideal

obfuscation of the oracle f . Our use of obfuscation in this context was inspired
by the recent work of Agrawal et al. [1], which used ideal obfuscation to obtain a
new feasibility result for secure computation using unidirectional communication
over noisy channels (see Sect. 1.2 for comparison and more related work).

1 In the computational setting, any wiretap coding scheme for 1-bit messages can be
bootstrapped into one that encodes long messages with rate achieving the capacity
of ChB via the use of a standard hybrid encryption technique (see the full version
for more details).
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In our second step, we show how to bootstrap from Theorem 1 to obtain wire-
tap coding in the plain model secure against computationally bounded adver-
saries, via a suitable form of cryptographic program obfuscation.

More concretely, we use the notion of virtual black-box (VBB) obfuscation for
evasive circuits [3], for a specific class of evasive circuits that we call generalized
fuzzy point functions, and with a very simple kind of auxiliary information that
corresponds to the message that Eve receives when Alice transmits a uniformly
random message across Eve’s channel (see Sect. 7 for details). Using this kind of
obfuscation, we obtain the following result in the plain model:

Theorem 2 (Informal). Assume that O is a secure evasive function obfus-
cation scheme for the class of generalized fuzzy point functions. Then, for any
pair of discrete memoryless channels (ChB,ChE) where ChB is not a degraded
version of ChE, there exist PPT encoding and decoding algorithms (Enc,Dec)
which achieve:

– Correctness: For all messages m ∈ {0, 1},
Pr[Dec(1λ,O(f),ChB(c)) = m | (f, c) ← Enc(1λ,m)] ≥ 1 − negl(λ)

– Security: For all computationally bounded adversaries A,

Pr[A(1λ,O(fb),ChE(cb)) = b | (fb, cb) ← Enc(1λ, b)] ≤ 1
2

+ negl(λ)

where b is uniformly distributed over {0, 1}.
Note that since O(f) can be made public to both Bob and Eve, it can be

communicated by using a standard encoding scheme for ChB, with no security
requirements.

On Instantiating Obfuscation. We conjecture that indistinguishability obfusca-
tion (iO) provides a secure realization of the obfuscation needed in our wire-
tap coding scheme. The recent work of [18] provides a construction of iO from
well-studied hardness assumptions, and thus gives a conservative and explicit
candidate realization. We provide several arguments in favor of our conjecture
(see Sect. 7 for details regarding all the points below):

– First, we stress that VBB obfuscation for evasive circuit families is not
known to be subject to any impossibility results, under any hardness assump-
tions, even wildly speculative ones. This is because the notion of evasiveness
that we consider is statistical in the following sense: even a computationally
unbounded Eve, that can make any polynomially bounded number of queries
to our oracle, cannot find an input z to the oracle f such that f(z) = 1. This
property rules out all known techniques for proving impossibility of obfusca-
tion that we are aware of (c.f. [4,15]). But in fact, our situation is even further
away from impossibility results because we obfuscate simple distributions of
evasive functions that generalize random fuzzy point functions and only need
to leak simple auxiliary information about the obfuscated function.



Beyond the Csiszár-Korner Bound 577

– Furthermore, in fact, the work of [2] gives a construction of VBB obfuscation
for evasive circuits from multilinear maps, which is designed to be immune
to all known attacks on multilinear map candidates, and has never been
successfully attacked.

– Finally, indistinguishability obfuscation is a “best-possible obfuscation” [17],
and therefore, roughly speaking, if any way exists to securely realize the ideal
oracle in our construction to achieve wiretap coding, then using iO must also
yield secure wiretap coding.

Optimal-Rate Wiretap Coding. We stress that the problem of achieving asymp-
totically optimal rate follows almost immediately from our solution to the fea-
sibility question above. This is because the feasibility solution can be used to
transmit a secret key, and then the encrypted message can be transmitted using
any reliable coding scheme to Bob. The security of encryption will ensure that
even if Eve learns the ciphertext, because she is guaranteed not to learn the
encryption key due to our solution to the feasibility problem above, the (compu-
tationally bounded) Eve cannot learn anything about the message. Using stan-
dard Rate 1 symmetric key encryption, therefore, we achieve asymptotic wiretap
coding rate equal to the capacity of Bob’s channel, regardless of the quality of
Eve’s channel.

Universal Wiretap Coding. An appealing feature of our solution to the wiretap
problem is that it gives a universal encoding, meaning that (Enc,Dec) depend
only on the main channel ChB and not on the eavesdropper’s channel ChE. This
is not possible in the information-theoretic regime.

1.2 Related Works

Our work was inspired by the recent work of Agrawal et al. [1], who proposed a
similar obfuscation-based approach for establishing a feasibility result for secure
computation over unidirectional noisy channels. In contrast to our work, the use
of ideal obfuscation in [1] applies to more complex functions that are not even
“evasive” in the standard sense. We stress that beyond inspiration and a common
use of obfuscation, there is no other technical overlap between [1] and our work.

Another closely related line of work studies the notion of fuzzy extractors,
introduced by Dodis et al. [11]. A fuzzy extractor can be used to encode a
message m in a way that: (1) any message m′ which is “close” to m (with respect
to some metric) can be used to decode m, and (2) if m has sufficiently high
min-entropy, its encoding hides m. The possibility of constructing strong forms
of computational fuzzy extractors from strong forms of fuzzy point function
obfuscation was discussed by Canetti et al. [7] and Fuller et al. [12]. The wiretap
coding problem can be loosely cast as a variant of fuzzy extractors where the
metric is induced by the main channel ChB and security should hold with respect
to a specific entropic source defined by the eavesdropper’s channel ChE. The
latter relaxation makes the notion of obfuscation we need qualitatively weaker.

Various extensions to the wiretap setting have been studied in the informa-
tion theoretic setting, and we discuss a very limited subset here that relate most
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closely to our work. Further generalizations were made by Liang et al.’s [21]
introduction of the compound wiretap channel, in which there are finitely many
honest receiver and finitely many eavesdroppers, modeling a transmitter’s uncer-
tainty about the receiver’s channel and the eavesdropper’s channel. The upper
and lower bounds on secrecy capacity of the compound wiretap channel suggest
the impossibility of positive rate universal encodings. Maurer [22] showed that
a public channel and interaction between the transmitter and honest receiver
circumvent the necessity of ChE being not less noisy than ChB for security. We
stress that the focus of our paper is the non-interactive case, without any feed-
back channels. Nair [23] studied information-theoretic relationships between BSC
and BEC channels.

Bellare et al. [5] introduced stronger security notions for wiretap coding than
the notions that existed within the information theoretic community. In par-
ticular, they introduced an information theoretic notion of semantic security,
which we also achieve in our work. They also provided an efficient information-
theoretic encoding and decoding scheme for many channels that achieves correct-
ness, semantic security, and rate achieving the Csiszár-Korner bound. Previously,
most works on wiretap coding had only proven the existence of wiretap encoding
and decoding schemes, and not provided explicit constructions.

Finally, the wiretap problem we study is also related to other fuzzy cryp-
tographic primitives, including fuzzy vaults [19] and fuzzy commitments [20].
However, our work is technically incomparable because they use different defini-
tions of noise and study security in different regimes. In both cases, the achieved
parameters are not optimal (certainly not in a computational setting), whereas
our construction achieves the best possible parameters.

2 Technical Overview

In the wiretap setting, we consider two discrete memoryless channels (DMCs):
ChB : X → Y from Alice to the intended receiver Bob, and ChE : X → Z
from Alice to an eavesdropper Eve. Alice’s goal is to transmit an encoding of a
message m ∈ M = {0, 1} across both channels so that Bob can decode m with
high probability and Eve learns negligible information about m. Our goal is to
build an encoder and a decoder that satisfies these requirements.

Definition 1 (Discrete Memoryless Channel (DMC)). We define a dis-
crete memoryless channel (DMC) ChW : X → Y to be a randomized function
from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix PW = [pW (y|x)]x∈X ,y∈Y .

Warmup: The BSC0.1-BEC0.3 Wiretap Setting. We first consider a simple exam-
ple. Consider a wiretap setting in which Alice has a BSC0.1 between her and Bob
and a BEC0.3 between her and Eve. Alice wishes to send m ∈ {0, 1} to Bob, but
not to Eve. First observe that on a uniform random input distribution, Eve’s
information about the input is greater than Bob’s information. Indeed, Eve’s
BEC0.3 channel has greater capacity than Bob’s BSC0.1 channel. In fact, it can
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be proven [10,23] that in the information theoretic setting with these channel
parameters, then there does not exist any encoding scheme that Alice can use
to encode her message so that Bob can decode with high probability but Eve
cannot.

Acknowledging this obstacle, how can we favor Bob’s decoding probability
and disadvantage Eve in the computational setting? A simple observation is that
on a uniform random input r ∈ {0, 1}n to the channels, then Bob’s output dis-
tribution is different from Eve’s output distribution. Indeed, for large enough n,
Bob’s BSC0.1’s output rB should contain approximately 10% bit flips relative to
r, whereas Eve’s BEC0.3 output rE should contain approximately 30% erasures.

Now, suppose Bob and Eve both had access to an oracle that outputs m on
binary inputs containing approximately 10% bit flips relative to r and outputs
⊥ on all other inputs. Then, Bob can decode m by simply sending his received
output rB to the oracle. However, in order to learn m, Eve must be able to guess
a r̂B that has 10% bit flips relative to r. It is simple to observe that Eve’s best
strategy for guessing such an r̂B is to generate it from her channel output rE

by replacing each erasure in rE with a uniformly random bit. But observe that
with high probability this r̂B will contain roughly 15% bit flips relatives to r.
Thus, with high probability, Eve cannot generate a r̂B with only 10% bit flips,
so she cannot learn m.

This motivates our use of the ideal obfuscation model in which Alice, in
addition to specifying a string r to send across both channels can also specify an
oracle f which is perfectly transmitted to Bob and Eve who get bounded access
to the oracle. In this model, we can achieve secure wiretap coding schemes. To
encode m ∈ {0, 1}, Alice picks a random string r that will be sent across both
channels and specifies the oracle mentioned above which is perfectly transmitted
to Bob and Eve. By the above argument, this encoding satisfies both correctness
and security.

Handling all Non-degraded Channels. Now, consider the case where Bob’s chan-
nel ChB : X → Y and Eve’s channel ChE : X → Z are arbitrary channels with
the same input domain X with the sole restriction that ChB is not a degradation
of ChE. We first build intuition about channel degradation.

Definition 2 (Channel Degradation). We say that channel ChB is a degra-
dation of channel ChE if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Observe that if ChB is a degradation of ChE, then secure wiretap coding schemes
are impossible even in the computational setting since then there exists a ChS
such that ChB = ChS ◦ ChE, which means Eve can simulate Bob’s output by
running her channel output through ChS and thus learn as much information as
Bob learns.
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On the other hand, if ChB is not a degradation of ChE, then this means that
for every channel ChS, there exists an x∗ ∈ X and y∗ ∈ Y such that

|pB(y∗ | x∗) − pE·S(y∗ | x∗)| > 0

where pB(y∗ | x∗) = Pr[ChB(x∗) = y∗] and pE·S(y∗ | x∗) = Pr[ChS(ChE(x∗)) =
y∗]. In fact, by using properties of continuity and compactness, we can prove
that there is a constant d > 0 such that for every ChS, there exists an x∗ ∈ X
and y∗ ∈ Y such that

|pB(y∗ | x∗) − pE·S(y∗ | x∗)| ≥ d

Now, define the following notation.

Definition 3. Let X and Y be any two discrete finite sets and let n ∈ N. For
r ∈ X n and s ∈ Yn and for any x ∈ X and y ∈ Y, we define the fraction of x’s
in r that are y’s in s to be

Ratiox→y(r, s) =
|{i ∈ [n] : ri = x, si = y}|

|{i ∈ [n] : ri = x}| .

If |i ∈ [n] : ri = x| = 0, then we define Ratiox→y(r, s) = 0.

Fix any ChS : Z → Y and let x∗ and y∗ be defined as above. Consider sending a
uniform random string r ∈ X n through ChB and ChS◦ChE. By a Chernoff bound,
we expect that with high probability, Ratiox∗→y∗(r,ChB(r)) should be close
to pB(y∗ | x∗) and Ratiox∗→y∗(r,ChS(ChE(r))) should be close to pE·S(y∗ |
x∗). But since pE·S(y∗ | x∗) and pB(y∗ | x∗) differ by a constant, we expect
Ratiox∗→y∗(r,ChS(ChE(r))) to differ by a constant from pB(y∗ | x∗) with high
probability.

Thus, Ratiox∗→y∗ forms a distinguisher between ChB and ChS◦ChE. There-
fore, we can define the following function which outputs m with high probability
on an input sampled from ChB(r) and outputs m with negligible probability on
an input sampled from ChS(ChE(r)) for any channel ChS.2

hm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB) − pB(y | x)| ≤ n− 1
3 , output

m.
Else, output ⊥.

In fact, since we are considering the ratios of all pairs (x, y) ∈ X × Y, the
same observation holds for the following function that considers only one-sided
bounds.

2 A slight caveat is that this holds only when r contains sufficiently many of each
x ∈ X , but this occurs with overwhelming probability over the choice of r.
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fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x) + n− 1
3 , output

m.
Else, output ⊥.

Construction Overview. We now describe our coding scheme for wiretap channel
(ChB,ChE). Our encoder EncChB takes a security parameter 1λ and a message
m ∈ M and outputs a description of a circuit computing some function f and
a string r ∈ X n. Our decoder Dec(·) takes as input a security parameter 1λ and
a string rB ∈ Yn and outputs some message in M. The string r is sent across
both channels, and both Bob and Eve obtain bounded oracle access to f .

EncChB(1λ,m):

1. Let n = λ
2. Sample r ← X n.
3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):
If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x)+n− 1

3 ,
output m.
Here, pB(y | x) = Pr[ChB(x) = y].
Else, output ⊥.

4. Output (fm,r,ChB,n, r).

Decf
ChB(1λ, rB):

1. Output f(rB).

For convenience, we define R to be a uniform random input over X n, RE =
ChE(R), and RB = ChB(R).

Correctness holds since Bob can decode with high probability since fm,r,ChB,n

on ChB(r) will output m with high probability.

Security Overview. Now consider security. Intuitively, since r is independent of
the message bit b, then Eve should only be able to learn b if she can generate
a guess r̂B such that fb,r,ChB,n(r̂B) = b. Consider a strategy g that given input
rE ← ChE(r) from Eve’s channel seeks to produce an output r̂B that maximizes
the probability that fb,r,ChB,n(r̂B) = fb,r,ChB,n(g(rE)) = b. We say that g wins if
this occurs and b is output.

If strategy g is to send Eve’s channel output rE through some discrete mem-
oryless channel ChS (i.e. g(rE) = ChS(rE)), then by our previous discussion on
non-degraded channels, there exists some x∗ ∈ X and y∗ ∈ Y such that with
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high probability, Ratiox∗→y∗(r, g(ChE(r))) differs from pB(y∗ | x∗) by at least
a constant. Thus, such a g would only win with negligible probability.

However, Eve can choose any arbitrary strategy g. Nevertheless, we can still
prove that any strategy g has only a negligible chance of winning. To do so, we
show through a series of hybrids that any strategy g is only polynomially better
than a strategy Eve3, where Eve3’s strategy is to apply a DMC independently
to each symbol of rE . Then, we can use the non-degraded condition to show
that Eve3’s probability of success on a single query to the oracle is negligible,
and thus that any g’s probability of success on a single query to the oracle is
negligible. This hybrid argument is the main technical argument in our work,
and it is summarized below.

The Hybrid Argument: Proving g has a Negligible Chance of Winning. We first
observe that an arbitrary strategy g cannot perform better than an optimal
strategy g∗ defined as follows:

Definition 4. For any m, we say that a strategy g∗ : Zn → Yn for guessing r̂B

is optimal if

g∗ = arg max
g

(

Pr
R,ChE

[fm,R,ChB,n(g(RE)) = m]
)

.

Now, consider any deterministic optimal strategy. (Observe that there always
exists an optimal g∗ that is deterministic since g∗ can arbitrarily break ties in
the maximum).

Our first step is to simplify our function g∗ by a symmetrization argument.
We observe that our definition of evaluation function fm,r,ChB,n on input r̂B

considers only the mapping ratios Ratiox→y(r, r̂B) for all x ∈ X , y ∈ Y from r
to r̂B . An immediate consequence of this recollection is that the probability of
success for Eve when the input string is r and the guessed string is r̂B = g∗(rE)
is permutation-invariant. That is, for every permutation π ∈ Sn, the probability
of succeeding on r̂B when the input string is r is equivalent to the probability
of succeeding on π(r̂B) when the input string is π(r) because

Ratiox→y(r, r̂B) = Ratiox→y(π(r), π(r̂B)).

Thus, since r is uniformly random, then we have Pr[R = π(r)] = Pr[R = r], so
morally an optimal g∗’s success probability on rE and π(rE) should be the same.
This is formally seen by a symmetrization argument regarding the equivalence
relation we define below.

Definition 5. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|} and Nzi
(rE) = |i ∈ [n] | rEi = zi|. We define an equiv-

alence relation Eqwt on Zn × Zn by

Eqwt = {(rE , rE
′) ∈ Zn × Zn | wt(rE) = wt(rE

′)}
= {(rE , rE

′) ∈ Zn × Zn | ∃π ∈ Sn, rE = π(rE
′)}.
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Let rEw,0 denote the lexicographically first vector in the equivalence class {rE ∈
Zn | wt(rE) = w}.

Then since g∗ performs equally well on all permutations of rE , we can create a
new optimal deterministic strategy Eve0 which behaves in a structured manner
on all strings rE from the same equivalence class. Importantly, Eve0 has the
nice property that for any permutation π, then π(Eve0(rE)) = Eve0(π(rE)).

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn of
weight w.

2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .
3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Now, consider a probabilistic Eve1 that on input rE ∈ Zn deviates slightly
from the deterministic Eve0. For any z ∈ Z, y ∈ Y, and input rE ∈ Zn, observe
that Eve0 will map some deterministically chosen subset of size kz,y of the y’s
in rE to be a z in r̂B . Instead, we will have Eve1 map a random subset of size
kz,y of the y’s in rE to be a z in r̂B . By a similar symmetrization argument and
the construction of Eve0, then Eve1’s probability of success is equal to that of
Eve0.

Eve1(rE):

1. For each y ∈ Y and z ∈ Z, compute kz,y = Nz(rE) ·
Ratioz→y(rE ,Eve0(rE)).

2. Start with S = [n].
For each y ∈ Y and z ∈ Z
(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| =

kz,y.
(b) Set r̂B,i = y for all i ∈ Sz,y.
(c) Set S = S\Sz,y.

3. Output r̂B .

Now, we relax the necessity of requiring that exactly kz,y of the z’s in rE map
to y’s in r̂B . This relaxation is done by defining a set of stochastic matrices that
model a DMC. In particular, we use the probabilistic strategy of Eve1 to define
a set of DMCs ChrE

where prE
(z | y) = Ratioz→y(rE ,Eve1(rE)) (which is also

equal to Ratioz→y(rEw,0,Eve0(rEw,0)) by definition of Eve1). We then define
a new strategy Eve2 which on input rE applies the corresponding channel ChrE

on each symbol of rE to get r̂B . Then Eve2 acts identically to Eve1 whenever
each of the ratios Ratioz→y(rE ,Eve2(rE)) hit their expected value. We prove
that this happens with probability at least 1

poly(n) , so therefore, Eve2 wins at
least inverse polynomially as often as Eve1.
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Eve2(rE):

1. Define a channel ChrE
from Z to Y by stochastic matrix

PrE
= [prE

(y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE
(rEi).

3. Output r̂B .

Although Eve2’s strategy is to apply a channel ChrE
to each symbol of

her input rE , the choice of channel she applies is dependent on which rE she
received. However, it turns out that there are only polynomially many possi-
ble channels that Eve2 may construct. In particular, the set of channels that
Eve2 can construct is in bijective correspondence with the equivalence classes
Eqwt. To see this, observe that for any permutation π, ChrE

= Chπ(rE) because
Eve0(π(rE)) = π(Eve0(rE)). Thus, the total number of possible channels that
Eve2 may apply to rE is bounded by the number of equivalence classes of Eqwt,
which is polynomial in size. We define Chw to be equal to ChrE

for any rE of
weight w.

Thus, instead of having Eve2 choose a channel based on rE ’s weight, we
define a new strategy that randomly selects the channel before seeing rE . In
particular, we construct an Eve3 which in addition to getting input rE also gets
an independently chosen random input w that defines which channel Chw that
Eve3 should apply to rE .

Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector in Zn of weight w.
2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pw(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).
4. Output r̂B .

Now, if the randomly chosen w equals wt(rE), then Eve3 acts identically to
Eve2. But since there are only polynomially many weight vectors, an inde-
pendently chosen random w equals wt(rE) with probability 1

poly(n) . Thus, the
probability that Eve3 succeeds given a random w is only polynomially worse
than the probability that Eve2 succeeds.

However, for any weight w, it is now the case that Eve3 applies an input-
independent channel to each symbol of rE . Thus, we can now apply the non-
degraded condition to prove that Eve3’s probability of success is negligible for
any input weight w. This then implies that any arbitrary strategy g has a neg-
ligible probability of winning.
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3 Preliminaries

Throughout, we will use λ to denote a security parameter.

Notation

– We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote
it by f(λ) = negl(λ).

– We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed
polynomial p, and we denote it by g(λ) = poly(λ).

– For n ∈ N, we use [n] to denote {1, . . . , n}.
– If R is a random variable, then r ← R denotes sampling r from R. If T is a

set, then i ← T denotes sampling i uniformly at random from T .
– Let Sn denote the symmetric group on n letters.

Definition 6 (Max Norm of a Matrix). Let A by any n × m matrix. We
define the max norm to be the maximal magnitude of any entry and denote it
with

‖A‖max = max
i,j

|Ai,j | .

Remark 1. As a reminder, computationally bounded adversaries are described
as non-uniform polynomial-time throughout the paper but can be equivalently
given as a family of polynomial-size circuits.

Definition 7 (Discrete Memoryless Channel (DMC)). We define a dis-
crete memoryless channel (DMC) ChW : X → Y to be a randomized function
from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix

PW = [pW (y|x)]x∈X ,y∈Y

For x ∈ X , we use ChW(x) to denote a random variable over Y such that for
y ∈ Y,

Pr[ChW(x) = y] = pW (y|x)

For n ∈ N and r = (r1, . . . , rn) ∈ X n, we define

ChW(r) = ChW(r1) . . .ChW(rn)

Whenever we discuss channels in the context of efficient algorithms, we assume
all channels have finite description size with constant alphabet size and rational
probabilities.

Notation. If ChE is a channel, we may use PrChE to denote the probability over
the randomness of ChE. Similarly, if f is a randomized function, we may use Prf

to denote the probability over the randomness of f .
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Less Noisy and Channel Degradation

Definition 8 (Less Noisy, [10]). Channel ChE is less noisy than channel ChB
if for every Markov chain V → X → Y Z such that pY |X(y|x) corresponds to
ChB and pZ|X(z|x) correspond to ChE then

I(V ;Z) ≥ I(V ;Y ).

Definition 9 (Channel Degradation, [9]). We say that channel ChB is a
degradation of channel ChE if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Definition 10 (Channel Degradation Equivalent Definition). Equiva-
lently, we say that channel ChB : X → Y is a degradation of channel ChE :
X → Z if there exists a stochastic matrix PS = [pS(y | z)]z∈Z,y∈Y such that

PB = PE · PS

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z |
x)]x∈X ,z∈Z is the stochastic matrix of ChE.

Remark 2 (Notions of Degradation). The notion of degradation defined above is
sometimes referred to as stochastic degradation. There is also a notion of physical
degradation. (See [25] for further discussion.) However, the difference between
these notions is irrelevant in the current context.

Provided in the full version, we obtain the following Lemma:

Lemma 1. If channel ChB is not a degradation of channel ChE, then there exists
a constant d > 0 such that for all stochastic matrices PS = [pS(y | z)]z∈Z,y∈Y ,

‖PB − PE · PS‖max ≥ d

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z |
x)]x∈X ,z∈Z is the stochastic matrix of ChE.

Proof. We defer the proof to the full version.

4 Wiretap Channels

A wiretap channel [10,26] is defined by two discrete memoryless channels
(ChB,ChE) with the same input domain X where ChB : X → Y is the main
channel and ChE : X → Z is the eavesdropper channel. We characterize ChB by
its stochastic matrix PB = [pB(y | x)]x∈X ,y∈Y and ChE by its stochastic matrix
PE = [pE(z | x)]x∈X ,z∈Z . Throughout, we will use X ,Y,Z to denote respectively
the input alphabet of ChB and ChE, the output alphabet of ChB, and the output
alphabet of ChE. We use M to denote the message space.
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Definition 11 (Wiretap Coding Scheme: Syntax). A wiretap coding
scheme Π for wiretap channel (ChB,ChE) and message space M is a pair of
algorithms (Enc,Dec). Enc is a randomized encoding algorithm that takes as
input a security parameter 1λ, a message m ∈ M, and outputs a finite length
encoding in X n where n = n(λ). Dec is a deterministic decoding algorithm that
takes as input a security parameter 1λ, and a string from Yn and outputs a
message in M.

A wiretap coding scheme satisfies correctness if Bob can decode the output
of ChB on an encoding of a message. Security holds if Eve when given the output
of ChE on the encoding of the message cannot learn the message. Similarly to
[5]3, we use the standard notion of semantic security [16]. For simplicity, we
only consider the case when M = {0, 1}. However, we can easily generalize our
definition to consider larger families of message spaces. (See the full version).

Definition 12 (Statistically Secure Wiretap Coding Scheme). A wire-
tap coding scheme Π = (Enc,Dec) is a statistically secure wiretap coding scheme
for wiretap channel (ChB,ChE) and message space M = {0, 1} if there exist neg-
ligible functions ε(λ), μ(λ) such that

– Correctness: For all messages m ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1 − ε(λ)

– Security: For all adversaries A,

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1
2

+ μ(λ)

where b is uniformly distributed over {0, 1}.
We may similarly refer to a finite scheme Π0 (with a fixed λ) as being ε0-correct
and μ0-secure.

3 Our security definition corresponds to requiring the distinguishing advantage Advds

of [5] to be negligible. [5] define a separate notion for semantic security, but prove
that the two definitions are equivalent.
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Definition 13 (Computationally Secure Wiretap Coding Scheme).
Π = (Enc,Dec) is a computationally secure wiretap coding scheme if Enc and
Dec are PPT algorithms, and if it satisfies the above definition except that we
only require security against non-uniform polynomial-time adversaries A.

Notation. We say that a wiretap channel (ChB,ChE) admits a statistically
(resp. computationally) secure wiretap coding scheme if there exists a statisti-
cally (resp. computationally) secure wiretap coding scheme for (ChB,ChE).

4.1 Ideal Obfuscation Model

Similarly to the recent use of obfuscation in [1], it is convenient to describe and
analyze our constructions in an ideal obfuscation model in which the sender can
give a receiver (either Bob or Eve) bounded query access to an oracle. In this
model, the encoding function outputs both an encoding of m and a description
f̂ of a circuit computing a deterministic function f . (We will typically abuse
notation by using f to denote both the function and its description). The receiver
Bob and the adversary Eve are both given oracle access to f . In addition, though
we require Eve to only make polynomially many queries to the oracle f , we
allow Eve to be otherwise unbounded by default (see Remark 3 below for a
relaxed definition variant). We will later consider the question of instantiating
the ideal obfuscation primitive in the plain model under concrete cryptographic
assumptions (see Sect. 7).

Definition 14 (Wiretap Coding Scheme in the Ideal Obfuscation
Model: Syntax). A wiretap coding scheme Π for wiretap channel (ChB,ChE)
and message space M in the ideal obfuscation model is a pair of algorithms
(Enc,Dec(·)). Enc is a randomized encoding algorithm that takes as input a secu-
rity parameter 1λ and a message m ∈ M, and outputs a finite length encoding in
X n where n = n(λ) and a description f̂ of a circuit computing some determin-
istic function f . Dec(·) is a deterministic decoding algorithm with polynomially
bounded access to an oracle. It takes as input a security parameter 1λ, a string
from Yn, and outputs a message in M.

Definition 15 (Bounded Query Secure Wiretap Coding Scheme in the
Ideal Obfuscation Model). A wiretap coding scheme Π = (Enc,Dec(·)) is a
bounded query secure wiretap coding scheme in the ideal obfuscation model for
wiretap channel (ChB,ChE) and message space M = {0, 1} if Enc and Dec(·)

are PPT algorithms which satisfy

– Correctness: For all messages m ∈ {0, 1},
Pr[Decf (1λ,ChB(c)) = m | (f, c) ← Enc(1λ, m)] ≥ 1 − negl(λ)

– Security: For every polynomial query bound q(λ) and (computationally
unbounded) adversary A(·) that makes at most q(λ) queries to its oracle f ,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb) ← Enc(1λ, b)] ≤ 1
2

+ negl(λ)
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where b is uniformly distributed over {0, 1}.
We will prove the following characterization of the wiretap feasibility region

in the information theoretic setting:

Theorem 3. ChE is not less noisy than ChB if and only if there exists a statis-
tically secure wiretap coding scheme for (ChB,ChE).4

Proof. We defer the proof to the full version.

Remark 3 (Computationally bounded adversaries). Definition 15 only bounds
the number of queries made by A but does not otherwise bound its computa-
tional complexity. This makes our main feasibility results stronger. One may
also consider a relaxed variant of the definition in which A is computationally
bounded, as in Definition 13.

5 Constructing Bounded Query Secure Wiretap Coding
Schemes in the Ideal Obfuscation Model

We consider the setting of a (ChB,ChE) wiretap channel where the main channel
ChB : X → Y is not a degradation of the eavesdropping channel ChE : X → Z.
For the entirety of this section, we will characterize ChB by its stochastic matrix
PB = [pB(y | x)]x∈X ,y∈Y and channel ChE by its stochastic matrix PE = [pE(z |
x)]x∈X ,z∈Z . We let M = {0, 1}.

Let λ be a security parameter, and let n = λ. Our encoding of a message m ∈
M will specify a codeword and an oracle. The codeword will be a random string
r ∈ X n which will be sent across the two channels. We define R to be a uniform
random variable over X n, RB := ChB(R), and RE := ChE(R). The oracle, which
is transmitted perfectly to both parties, will output the message m if it receives
an input which is “typical” for RB conditioned on R = r (notationally RB |R=r)
and will output ⊥ otherwise. We will define typicality in terms of the expected
number of x’s in r that should turn into y’s in RB |R=r for each pair (x, y) ∈ X ×Y
as specified by Bob’s channel probability matrix PB. The receiver Bob should be
able to recover m simply by sending his received value of RB to the oracle. Thus,
the decoder will simply output the value of the oracle on its input. Security holds
if the eavesdropper Eve cannot create a “typical” channel value for RB |R=r given
only RE |R=r. To specify this more formally, we first define the following:

Definition 16. Let X be any discrete finite set and n ∈ N. For any r ∈ X n and
x ∈ X , we define the number of x’s in r to be

Nx(r) = |{i ∈ [n] : ri = x}|

4 This is also true with respect to statistically secure wiretap coding schemes over
larger message spaces (see the full version).
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Definition 17. Let X and Y be any two discrete finite sets and n ∈ N. For
r ∈ X n and s ∈ Yn and for any x ∈ X and y ∈ Y, we define the fraction of x’s
in r that are y’s in s to be

Ratiox→y(r, s) =
|{i ∈ [n] : ri = x, si = y}|

Nx(r)
.

If Nx(r) = 0, then we define Ratiox→y(r, s) = 0.

We now describe our wiretap encoder-decoder pair (EncChB,DecChB) for main
channel ChB.

EncChB(1λ,m):

1. Let n = λ
2. Sample r ← X n.
3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):
If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x)+n− 1

3 ,
output m.
Else, output ⊥.

4. Output (fm,r,ChB,n, r).

Decf
ChB(1λ, rB):

1. Output f(rB).

We then prove that our coding scheme gives us both correctness and security.

Theorem 4. If (ChB,ChE) is a wiretap channel where ChB is not a degradation
of ChE, then (EncChB,Dec(·)ChB) achieves

– Correctness: For all messages m ∈ {0, 1},

Pr[Dec
fm,r,ChB,n

ChB (1λ,ChB(r)) = m | (fm,r,ChB,n, r) ← EncChB(1λ, m)] ≥ 1 − negl(λ)

– Security: For every polynomial query bound q(λ) and (computationally
unbounded) adversary A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r) ← EncChB(1λ, b)] ≤ 1
2

+ negl(λ)

where b is uniformly distributed over {0, 1}.
Proof. Correctness follows by a simple Chernoff bound which we defer to the
full version. Security follows by Theorem 7 which are proven below.
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Since EncChB and Dec(·)ChB are PPT, we get the following corollary.

Corollary 1. If (ChB,ChE) is a wiretap channel where ChB is not a degradation
of ChE, then (EncChB,Dec(·)ChB) is a bounded query secure wiretap coding scheme
in the ideal obfuscation model.

Remark 4. Theorem 4 and Corollary 1 hold even if we modify fm,r,ChB,n to
have binary output domain by outputting 0 in place of ⊥. Correctness still
holds since the probability that the decoder using the original function outputs
⊥ is negligible, so changing ⊥ to 0 results in at most a negligible change in
correctness. For security, observe that by outputting 0 instead of ⊥, Eve gets
strictly less information as she cannot tell whether an observed 0 from the oracle
is an indicator of failure to receive the message bit or is the message bit itself.

5.1 Security

Overview. In our security game, the adversary receives RE = ChE(R) and
oracle access to fb,R,ChB,n for a random b ∈ {0, 1} and tries to guess b. Intuitively,
since R is independent of b, if for all b ∈ {0, 1}, an adversary is unable to generate
an input r̂B such that fb,r,ChB,n(r̂B) = ⊥, then the adversary should be unable
to learn anything about b. Thus, we will first attempt to show this.

To simplify our proof, we define the following function hr,ChB,n which on
input rB outputs 1 if all of the ratios Ratiox→y(r, rB) are sufficiently close to
the channel probabilities pB(y | x) and 0 otherwise.

Definition 18. Let r ∈ X n and rB ∈ Yn. Define hr,ChB,n : Yn → {0, 1} as

hr,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB) − pB(y | x)| ≤ |Y| · n− 1
3 ,

output 1.
Else, output 0.

We will first show that for any arbitrary strategy g that an adversary applies to
RE ,

Pr[hR,ChB,n(g(RE)) = 1] ≤ negl(λ).

We will then prove that this implies that for any arbitrary strategy g that an
adversary applies to RE ,

Pr[fm,R,ChB,n(g(RE)) = ⊥] ≤ negl(λ).

Then we will prove that this implies security.
To prove the first step, we will need to rely on the fact that ChB is not a

degradation of ChE. This means that for all channels ChS, then ChB = ChS◦ChE.
Thus, if Eve’s strategy g was to apply a DMC channel ChS to each symbol
of RE , then the distribution of g(RE) = ChS(ChE(R)) should differ from the
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distribution of ChB(R), and therefore result in hR,ChB,n(g(RE)) = 0 with high
probability.

However, Eve may instead choose any arbitrary strategy g. Thus, to prove
our result, we will show through a series of hybrids g,Eve0,Eve1,Eve2,Eve3
that strategy g is only polynomially better that strategy Eve3, where Eve3’s
strategy is to apply a DMC independently to each symbol of RE . Then, we can
use the not-degraded condition to show that Eve3’s probability of success is
negligible. We refer further intuition to the Technical Overview.

We will first assume that Eve’s arbitrary strategy g is optimal, defined below:

Definition 19. We say that a strategy g∗ : Zn → Yn for guessing r̂B is optimal
if

g∗ = arg max
g

(

Pr
R,ChE

[hR,ChB,n(g(RE)) = 1]
)

.

Remark 5. By definition, for any optimal strategy g∗,

g∗(rE) = max
r̂B

(

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ]
)

Observe that there may be multiple possible optimal strategies g∗ which achieve
the same maximal probability of success. Furthermore, since g∗ may arbitrarily
break ties for the maximum, then there always exists an optimal strategy which
is deterministic.

We also define a notion of weight.

Definition 20. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|}. We define an equivalence relation Eqwt on Zn × Zn

by

Eqwt = {(rE , rE
′) ∈ Zn × Zn | wt(rE) = wt(rE

′)}
= {(rE , rE

′) ∈ Zn × Zn | ∃π ∈ Sn, rE = π(rE
′)}.

We define the lexicographically first element in the equivalence class to be the
canonical representative of the class.

Definition 21. Let rEw,0 denote the lexicographically first vector in the equiv-
alence class {rE ∈ Zn | wt(rE) = w}.

Applying Symmetry. Let g∗ be any optimal deterministic strategy. We will
first construct a new optimal strategy Eve0 that has the property that for all
rE ∈ Zn and all permutations π, Eve0(π(rE)) = π(Eve0(rE)).

First, we prove a fact about symmetry.
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Lemma 2. For all r̂B ∈ Yn, rE ∈ Zn, π ∈ Sn,

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]

Proof. We defer the proof to the full version.

Now, we can prove that any optimal deterministic strategy g∗ : X n → Yn

does equally well on all permutations of received string rE .

Lemma 3. For all rE ∈ Zn, π ∈ Sn, and for any optimal deterministic strategy
g∗ : X n → Yn,

Pr
R,ChE

[hR,ChB,n(g∗(RE)) | RE = rE ] = Pr
R,ChE

[hR,ChB,n(g∗(RE)) | RE = π(rE)]

Proof. We defer the proof to the full version.

Although g∗ has the same probability of success on all permutations of a given
string rE , g∗ may still behave rather differently on each permutation. To deal
with this, we construct a new optimal strategy Eve0 that acts in a structured
manner on each permutation of rE so that Eve0(π(rE)) = π(Eve0(rE)) for all
π ∈ Sn.

We define Eve0 from g∗ as follows:

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn of
weight w.

2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .
3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Remark 6. For any weight w and any permutation τ ∈ Sn, Eve0(τ(rEw,0)) =
τ(g∗(rEw,0)) In particular, Eve0(rEw,0) = g∗(rEw,0).

Lemma 4. If g∗ : Zn → Yn is an optimal deterministic strategy, then Eve0 :
Zn → Yn is an optimal strategy. Moreover, for any rE ∈ Zn and π ∈ Sn,
Eve0(π(rE)) = π(Eve0(rE)).

Proof. We defer the proof to the full version.

Randomized Locations. Consider a probabilistic Eve1 that on input rE ∈ Zn

deviates slightly from the deterministic Eve0. For any z ∈ Z, y ∈ Y, and input
rE ∈ Zn, Eve0 maps some deterministically chosen subset of size kz,y of the y’s
in rE to be a z in r̂B . Instead, Eve1, will map a random subset of size kz,y of
the y’s in rE to be a z in r̂B .

More formally, we define Eve1 as follows.
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Eve1(rE):

1. ∀y ∈ Y, z ∈ Z, compute kz,y = Nz(rE) · Ratioz→y(rE ,Eve0(rE)).
2. Start with S = [n].

For each y ∈ Y and z ∈ Z
(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| =

kz,y.
(b) Set r̂B,i = y for all i ∈ Sz,y.
(c) Set S = S\Sz,y.

3. Output r̂B .

Remark 7. Observe that for any fixed randomness e of Eve1 and any rE ∈ Zn,
then there exists a permutation πe ∈ Sn such that Eve1(rE ; e) = πe(Eve0(rE))
where πe(rE) = rE .

We show that such a probabilistic Eve1 has the same success probability as
Eve0.

Lemma 5.

Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1] = Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]

Proof. We defer the proof to the full version.

Stochastic Matrix Strategy. Consider a probabilistic Eve2 that on input
rE ∈ Zn defines a new channel ChrE

from Z to Y such that prE
(z | y) =

Ratioz→y(rE ,Eve0(rE)) and applies this channel to each symbol of rE to get
r̂B .

Eve2(rE):

1. Define a channel ChrE
from Z to Y by stochastic matrix

PrE
= [prE

(y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE
(rEi).

3. Output r̂B .

We will now prove that Eve2 cannot perform much worse than Eve1. In par-
ticular, we will prove that for an overwhelming fraction of rE ∈ Zn, then with
probability at least 1

poly(n) , Eve2(rE) will produce an output that is distributed
identically to the distribution of Eve1(rE).

Definition 22.
Let GoodE = {rE ∈ Zn | ∀z ∈ Z, Nz(rE) ≥ n

2|X | · maxx∈X (pE(z|x))} ⊂ Zn.
Observe that for all rE ∈ GoodE and z ∈ Z, then Nz(rE) = Θ(n).
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Lemma 6. PrR,ChE[rE ∈ GoodE ] ≥ 1 − negl(λ)

Proof. We defer the proof to the full version.

Lemma 7. For all rE ∈ GoodE, there exists a polynomial p(n) = O
(

n|Z||Y|/2)

such that

Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ]

≥ 1
p(n)

· Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1 | RE = rE ]

Proof. We defer the proof to the full version.

Corollary 2. There exists a polynomial p(n) = O
(

n|Z||Y|/2) such that

p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + negl(λ) ≥ Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

Proof. We defer the proof to the full version.

Input-Independent Strategy. Now, although Eve2’s strategy is to apply a
channel ChrE

to each symbol of her input rE , the choice of channel she applies is
dependent on which rE she received. To remove this dependence, we construct
an Eve3 who in addition to getting input rE also gets an independent random
input w that defines which channel Chw that Eve3 should apply to rE . More
formally,

Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector of weight w.
2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pw(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).
4. Output r̂B .

Notation

– Let Wn = {w = (w1, . . . , w|Z|) | ∑|Z|
i=1(wi) = n} = {w ∈ N

n | w =
wt(rE) for some rE ∈ Zn} be the set of all weight vectors of Zn.

– Note that |Wn| =
(

n+|Z|−1
|Z|−1

)

= poly(n).
– Let W be a random variable uniformly distributed over Wn.

Now, we will show that Eve3(wt(rE), rE) has the same behavior as Eve2(rE).
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Lemma 8. For all weights w ∈ Wn and all rE ∈ Zn such that wt(rE) = w,
then Chw = ChrE

where Chw is defined as in Eve3 and ChrE
is defined as in

Eve2.

Proof. We defer the proof to the full version.

Corollary 3. For any rE ∈ Zn, the distribution of Eve3(wt(rE), rE) is the
same as the distribution of Eve2(rE).

Proof. This follows directly from Lemma 8 by definition of Eve2 and Eve3.

We claim that given a uniformly randomly chosen weight vector w, Eve3’s
probability of success is not much worse than Eve2’s probability of success. This
follows since there are only polynomially many possible weight vectors, so with
some inverse polynomially probability, the randomly chosen weight w for Eve3
will be equal to wt(rE) and thus Eve3 will act identically to Eve2.
Lemma 9.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W, RE)) = 1] ≥ 1

q(n)
· Pr

R,ChE,Eve2
[hR,ChB,n(Eve2(RE)) = 1]

where q(n) =
(

n+|Z|−1
|Z|−1

)

= |Wn| = poly(n).

Proof. We defer the proof to the full version.

Finally, we prove that Eve3 only succeeds with negligible probability. This
step crucially requires that the main channel ChB is not a degradation of Eve’s
channel ChE.

Lemma 10.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1] ≤ negl(λ)

Proof. We defer the proof to the full version.

Putting it Together

Theorem 5. For all randomized functions g : Zn → Yn,

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ negl(λ)

Proof. By Lemma 4, Eve0 is an optimal strategy so

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]
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Then, by Lemma 5, Corollary 2, Lemma 9, and Lemma 10 for some polynomials
p(n), q(n) = poly(n),

Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1] = Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

≤ p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + negl(λ)

≤ p(n) · q(n) · Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W, RE)) = 1]

+ negl(λ)

≤ p(n) · q(n) · negl(λ) + negl(λ)

≤ negl(λ)

We now show that this implies that any strategy g can only cause fm,R,ChB,n

to output m with negligible probability. This follows from the lemma below:

Lemma 11. For any r ∈ X n and r̂B ∈ Yn,

∀x ∈ X , y ∈ Y, Ratiox→y(r, r̂B) ≤ pB(y|x) + n− 1
3

implies

∀x ∈ X , y ∈ Y, |Ratiox→y(r, r̂B) − pB(y|x)| ≤ |Y| · n− 1
3

Proof. We defer the proof to the full version.

Therefore, we obtain

Theorem 6. For all randomized functions g : Zn → Yn and any message m ∈
{0, 1},

Pr
R,ChE,g

[fm,R,ChB,n(g(RE)) = ⊥] ≤ negl(λ)

Proof. We defer the proof to the full version.

We now prove full security.

Theorem 7. For every polynomial query bound q(λ) and (computationally
unbounded) adversary A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r) ← EncChB(1λ, b)] ≤ 1
2

+ negl(λ)

where b is uniformly distributed over {0, 1}.
Proof. We defer the proof to the full version.
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6 Universal Coding Schemes

A universal coding scheme for a main channel ChB is a wiretap coding scheme
that allows decoding for Bob but is secure against any eavesdropping channel
ChE from some set E .

Definition 23 (Secure (ChB, E)-universal coding scheme). A statistically
secure (resp. computationally secure, resp. bounded query secure in the ideal
obfuscation model) (ChB, E)-universal coding scheme for channel ChB, a class of
eavesdropping channels E, and message space M is a wiretap coding scheme
(Enc,Dec) that is a statistically secure (resp. computationally secure, resp.
bounded query secure in the ideal obfuscation model) wiretap coding scheme for
all wiretap channels in the set {(ChB,ChE) | ChE ∈ E} and for message space M.

We observe that for any channel ChB, our wiretap coding scheme
(EncChB,DecChB) in the ideal oracle model gives us a universal coding scheme
against all eavesdropping channels for which secure wiretap coding schemes are
possible. Recall, that if ChB is a degradation of ChE, then no secure wiretap
coding scheme is possible since the adversary can simulate anything that ChB
produces.

Theorem 8. Let ChB be any channel and let

Not-Degraded(ChB) = {ChE | ChB is not a degradation ofChE}.

Then, (EncChB,Dec(·)ChB) is a bounded query secure (ChB,Not-Degraded(ChB))
wiretap coding scheme in the ideal oracle model.

Proof. The proof follows by Corollary 1 and the observation that
(EncChB,Dec(·)ChB) only depend on ChB.

In contrast, in the information theoretic setting, there exist channels ChB for
which there is no positive rate universal coding schemes against all channels ChE
that are not less noisy than ChB.

We defer further discussion on this to the full version.

7 Instantiating the Oracle via Obfuscation

7.1 Obfuscation Definitions

We now give obfuscation definitions that suffice for building computationally
secure wiretap coding schemes. Crucially, we will use the fact that the func-
tion classes we are obfuscating are statistically evasive – that is, even given the
information that Eve receives over her channel, it is infeasible for (even a com-
putationally unbounded) Eve to find even one input that causes the function to
output anything but 0. We formalize this notion now.

Definition 24 (Statistically Evasive Circuit Collection with Auxiliary
Input). A statistically evasive circuit collection with auxiliary input (F ,G ) is
defined by
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– a collection F = {Cλ}λ∈N of circuits such that each C ∈ Cλ maps λ input bits
to a single output bit and has size poly(λ)

– a collection G of pairs (D,Aux) where D is a PPT sampler that takes as
input the security parameter 1λ and output circuits from Cλ, and Aux is a
PPT auxiliary input generator that takes as input the security parameter 1λ

and a circuit in Cλ and outputs an auxiliary input

such that for every computationally unbounded oracle machine A(·) that is limited
to polynomially many queries to the oracle, and for every (D,Aux) ∈ G , there
exists a negligible function μ such that for every λ ∈ N,

Pr
C←D(1λ)

[

C
(AC

(

1λ,Aux(1λ, C)
))

= 1
] ≤ μ(λ).

Obfuscation for evasive functions has been studied in several works, most
relevantly for us in [2,3]. We stress that while there are impossibility results for
several definitions of obfuscation, there are no impossibility results known for
obfuscation of statistically evasive circuits with auxiliary input. Indeed, this is for
good reason: all known impossibilities for obfuscating circuits involve either: (i)
providing (computationally hiding) obfuscations as auxiliary input [15], which is
ruled out in the statistically evasive case; or (ii) “feeding an obfuscated circuit
to itself” [4] which requires a non-evasive circuit family. Beyond merely avoiding
impossibilities, both the circuit families that we are obfuscating and the auxil-
iary inputs we are considering are quite natural, and there are multiple natural
avenues for instantiating our obfuscation using previous work.

In particular, we consider essentially Definition 2.3 from [2], which is itself
a generalization of the standard average-case VBB definition of obfuscation [4],
but extended to consider auxiliary input. The work of [2] gives a construction
achieving this definition for evasive functions based on multilinear map candi-
dates [8,13], that remain secure even in light of all known attacks on multilin-
ear map candidates (when instantiated with sufficiently large security parame-
ters). Below, we also comment that the recent construction of indistinguishability
obfuscation from well-studied assumptions [18] also gives a plausible candidate
for obfuscating our oracle.

Here, our definition slightly extends the average-case VBB definition given
in [2] only in that we consider security with respect to a class of possibly ran-
domized auxiliary input generators as opposed to a single deterministic auxiliary
input generator. The proof of security in [2] is oblivious to this change. We also
restrict our notion of obfuscation to statistically evasive circuits collections with
auxiliary input.

Definition 25 (Average-Case Virtual Black Box Obfuscation for Sta-
tistically Evasive Circuit Collections with Auxiliary Input). Con-
sider a statistically evasive circuit collection with auxiliary input, (F ,G ) where
F = {Cλ}λ∈N and G are defined as in Definition 24. A uniform PPT algorithm
Obf is an average-case virtual black box obfuscator for (F ,G ) if there exist neg-
ligible functions ε and μ such that
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– Correctness: For all λ ∈ N, every circuit C ∈ Cλ, and every input y to C,

Pr
[

Obf(1λ, C)(y) = C(y)
] ≤ ε(λ)

– G -VBB Security: For all non-uniform polynomial time adversaries A, there
exists a non-uniform polynomial time oracle algorithm Sim(·) such that for all
λ ∈ N and for every (D,Aux) ∈ G ,

∣

∣

∣ Pr
C←D(1λ)

[A(1λ,Obf(1λ, C),Aux(1λ, C)) = 1]

− Pr
C←D(1λ)

[SimC(1λ, 1|C|,Aux(1λ, C)) = 1]
∣

∣

∣ ≤ μ(λ)

7.2 Fuzzy Point Function Obfuscation for the BSC-BEC Case

As a warm-up we consider fuzzy point function obfuscation which suffices when
the main channel is a BSCp channel and Eve’s channel is a BECε channel such
that ε > 2p. Notably this fuzzy point function solution uses only Hamming
distance. Therefore this solution is based on a standard definition of fuzzy point
functions.

We defer this section to the full version.

7.3 Generalized Fuzzy Point Function Obfuscation

In general wiretap settings, a fuzzy point function obfuscation does not suffice
to produce secure wiretap coding schemes. Thus, we define a generalization of
fuzzy point functions that do suffice.

We defer this section to the full version.

7.4 Construction from iO
Finally, we remark that if there exists a uniformly bounded average case virtual
black box with auxiliary input obfuscator, then iO (indistinguishability obfusca-
tion) also implies secure wiretap coding schemes for (ChB,ChE) wiretap channels
where ChB is not a degradation of ChE. We use the definition of indistinguisha-
bility obfuscation (iO) defined in [18].

Following the discussion on iO in [1], we note that iO is a “best-possible”
obfuscation [17]. More specifically, if there exists some instantiation of the ideal
obfuscation that gives a secure computational wiretap coding scheme, then
replacing that instantiation with iO should preserve the security properties.
However, in our setting, the adversary is given additional auxiliary information
that may depend on the obfuscated circuit. Despite this auxiliary information,
we show in the full version that iO still behaves as a best possible obfuscation.
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Abstract. A pseudorandom correlation generator (PCG) is a recent
tool for securely generating useful sources of correlated randomness, such
as random oblivious transfers (OT) and vector oblivious linear evalua-
tions (VOLE), with low communication cost.

We introduce a simple new design for PCGs based on so-called expand-
accumulate codes, which first apply a sparse random expander graph to
replicate each message entry, and then accumulate the entries by com-
puting the sum of each prefix. Our design offers the following advantages
compared to state-of-the-art PCG constructions:

– Competitive concrete efficiency backed by provable security against
relevant classes of attacks;

– An offline-online mode that combines near-optimal cache-friendliness
with simple parallelization;

– Concretely efficient extensions to pseudorandom correlation func-
tions, which enable incremental generation of new correlation
instances on demand, and to new kinds of correlated randomness
that include circuit-dependent correlations.

To further improve the concrete computational cost, we propose a
method for speeding up a full-domain evaluation of a puncturable pseu-
dorandom function (PPRF). This is independently motivated by other
cryptographic applications of PPRFs.

1 Introduction

Correlated secret randomness is a powerful and ubiquitous resource for crypto-
graphic applications. In the context of secure multiparty computation (MPC)
with a dishonest majority, simple sources of correlated randomness can serve as
a “one-time pad” for lightweight, concretely efficient protocols [Bea91]. As a clas-
sical example, consider the case of a random oblivious transfer (OT) correlation,
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in which Alice and Bob receive (s0, s1) and (b, sb) respectively, where s0, s1, b
are random bits. Given 2n independent instances of this simple OT correlation,
Alice and Bob can evaluate any Boolean circuit with n gates (excluding XOR
and NOT gates) on their inputs, with perfect semi-honest security, by each send-
ing 2 bits and performing a small constant number of Boolean operations per
gate.

The usefulness of correlated randomness for MPC gave rise to the following
popular two-phase approach. First, the parties run an input-independent prepro-
cessing protocol for secure distributed generation of correlated randomness. This
correlated randomness is then consumed by an online protocol that performs a
secure computation on the inputs. Traditional approaches for implementing the
preprocessing protocol (e.g., [IKNP03,DPSZ12,KPR18]) have an Ω(n) communi-
cation cost that usually forms the main efficiency bottleneck of the entire protocol.

This situation changed in a recent line of work, initiated in [BCG+17,
BCGI18,BCG+19b], that suggested a new approach. At the heart of the new
approach is the following simple observation: by settling for generating a pseudo-
random correlation, which is indistinguishable from the ideal target correlation
even from the point of view of insiders, the offline communication can be sub-
linear in n while retaining the asymptotic and concrete efficiency advantages of
the online protocol.

This approach was implemented through the notion of a pseudorandom cor-
relation generator (PCG) [BCGI18,BCG+19b]. A PCG enables two or more
parties to locally stretch short correlated seeds into long pseudorandom strings
that emulate a specified ideal target correlation, such as n instances of the OT
correlation. This was recently extended to the notion of a pseudorandom corre-
lation function (PCF) [BCG+20b], which essentially emulates random access to
exponentially many PCG outputs, analogously to the way a standard pseudo-
random function (PRF) extends a standard pseudorandom generator (PRG).

Generating Pseudorandom Correlations: A Template. To construct these prim-
itives, a general template was put forth in [BCGI18], and further refined in
subsequent works. At a high level, the template combines two key ingredients:
a method to generate a sparse version of the target correlation, and a carefully
chosen linear code where the syndrome decoding problem is conjectured to be
intractable. To give a concrete example, let us focus on the vector oblivious linear
evaluation (VOLE) correlation, which is in a sense a minimal step above simple
linear correlations. The correlation distributes (�u,�v) to Alice and (Δ, �w) to Bob;
here, �u,�v, �w are length-n vectors over a finite field F and Δ ∈ F is a scalar, all
chosen at random subject to satisfying the correlation �w = Δ · �u + �v. Among
other applications [DIO20,BMRS21,YSWW21,RS21b], VOLE is an appealing
target correlation because (a simple variant of) VOLE can be locally converted
into n pseudorandom instances of OT correlation using a suitable hash func-
tion [IKNP03,BCG+19b].

For the first ingredient, there is a simple construction that allows generating
(from short seeds) pairs (�u,�v) and (Δ, �w) as above, but where �u is a random
unit vector. This uses a puncturable pseudorandom function (PPRF), a type of
PRF where some keys can be restricted to hide the PRF value at a fixed point.
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A bit more concretely, �v and �w will be generated by evaluating the PRF on its
entire domain; the missing value will be at the only position i where ui �= 0,
and the party with the punctured key will fill it using a share of PRFK(i) +
Δ · ui. Such a PPRF can be efficiently constructed from any length-doubling
PRG [GGM86,KPTZ13,BW13,BGI14]. With a t-fold repetition of this process
(keeping Δ the same across all instances), after locally summing their expanded
vectors, the parties obtain the target correlation, where �u is t-sparse. As long as
t remains small, the seed size is small as well.

The aim of the second ingredient is to transform this sparse correlation into
a pseudorandom correlation. To this end, the parties multiply their vectors with
a public compressing matrix H, obtaining (H ·�u,H ·�v) and (Δ,H · �w). When H
is random, H ·�u is pseudorandom: this is exactly the dual variant of the learning
parity with noise (LPN) assumption [BFKL94,IPS09]. However, computing H ·�v
(or H · �w) takes time Ω(n2). When n is in the millions, as in typical MPC
applications, this is clearly infeasible. A better approach is to sample H from a
distribution such that (1) H · �u is still plausibly pseudorandom, and yet (2) the
mapping �v �→ H · �v can be computed efficiently, ideally in time Õ(n) or even
O(n).

The Quest for the Right Code. In essence, all previous works in this
area [BCGI18,BCG+19b,BCG+19a,SGRR19,BCG+20b,YWL+20,BCG+20a,
CRR21] have built upon this template, sometimes for more general classes
of correlations [BCG+20b], sometimes to achieve the more flexible notion of
PCF [BCG+20a], or trying to strike the best balance between security and effi-
ciency [BCGI18,BCG+19a,CRR21]. At the heart of all these works is, every
time, a careful choice of which linear code to use. In [BCGI18,BCG+19a], it
is suggested that relying on LDPC codes or on quasi-cyclic codes provides a
reasonable balance between security (since the underlying LPN assumptions are
well studied [Ale03,ABB+20]) and efficiency. In contrast, [CRR21] advocates a
more aggressive choice, building a new concrete linear code, highly optimized for
correlated randomness generation, guided by heuristic considerations and exten-
sive computer simulations. Taking a different route, [BCG+20a] shows how a
newly defined family of variable density linear codes allows generating a virtu-
ally unbounded amount of correlated randomness on demand, and [BCG+20b]
generates more general correlations using an LPN variant over polynomial rings.

These works demonstrate that with a careful choice of code, silent prepro-
cessing can have an extremely high throughput [CRR21] (as fast as generating
tens of millions of pseudorandom oblivious transfers per second on one core of a
standard laptop with low communication costs), broad expressiveness [BCG+20b]
(handling richer correlations which are crucial in some advanced MPC proto-
cols [ANO+21,RS21a]), and advantageous flexibility [BCG+20a] (generating any
amount of correlated randomness on demand). Nonetheless, on most aspects, this
area of research is in its infancy. Some important correlations remain frustrat-
ingly out of reach, such as circuit-dependent correlations (used e.g. in [DNNR17,
HOSS18,WRK17b,Cou19,BGI19]), or authenticated multiplication triples over
F2 (used in [HSS17,WRK17a]). The current fastest construction [CRR21] lacks
any clear theoretical security analysis, but constructions built on firmer grounds
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are an order of magnitude slower. Finally, the PCFs of [BCG+20a] are only real-
istically usable in a regime of parameters where they lack any security analysis.

The quest for constructions with clear, rigorous security arguments and very
high concrete efficiency remains largely open; its fulfilment, we believe, is a
promising path towards making MPC truly efficient on a large scale.

1.1 Our Contributions

In this work, we push forward the study of efficient generation of correlated
randomness, significantly improving over the state of the art on several fronts.
Our main contributions are threefold.

Expand-Accumulate Codes. We put forth a new simple family of linear codes,
called expand-accumulate codes (EA codes), which are related to the well-studied
class of repeat-accumulate codes [DJM98]. To encode a message with an EA code,
a sparse degree-� expander is first applied to the input, effectively replicating
each message entry a small number of times; the result is then accumulated by
computing the sum of all prefixes. We demonstrate that such an EA code is a
particularly appealing choice of linear code in the context of generating corre-
lated pseudorandomness, which uniquely combines multiple attractive features:
firm security foundations, extremely high concrete efficiency, and a high level of
parallelization and cache-friendliness. Furthermore, the special structure of EA
codes allows us to obtain several advanced constructions, including PCFs (with
better efficiency and security foundations compared to [BCG+20a]), and the first
practical PCGs for useful correlations such as circuit-dependent correlations. In
more detail:

1. We formally prove that the (dual-)LPN assumption for EA codes, denoted
EA-LPN, cannot be broken by a large class of attacks, which captures in par-
ticular all relevant known attacks on LPN. Our analysis comes with concrete,
usable security bounds for realistic parameters. In contrast, previous works
either only achieved provable bounds in a purely asymptotic sense [BCG+20a]
(with poor concrete efficiency), or heuristically extrapolated plausible param-
eters through computer simulations on small instances [CRR21].

2. We also derive sets of more aggressive parameters through heuristics and
simulations to obtain apple-to-apple efficiency comparisons with the work
of [CRR21]. We show that EA codes are highly competitive with the code
of [CRR21], while having a much simpler structure (hence simpler to imple-
ment and more amenable to analysis).

3. When implemented in an “offline-online” mode, PCGs built from EA-LPN are
highly parallelizable, allowing for simultaneously achieving low latency and high
throughput. This stands in stark contrast with essentially all previous con-
structions, including the recent high-throughput construction from [CRR21].1

1 A notable exception is the “primal” PCG construction of [BCGI18], which is also par-
allelizable. However, this PCG is limited to quadratic stretch; in practice, this makes
it less efficient than other alternatives, even when using the bootstrapping approach
from [YWL+20].
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Hence, over multicore architectures, we expect our new PCG to outperform all
alternatives by a large margin.

4. We obtain the first practical PCG constructions for different kinds of
useful correlations including circuit-dependent correlations (which show
up in communication-efficient MPC protocols [DNNR17,HOSS18,WRK17b,
Cou19,BGI19] and in constant-round MPC protocols based on garbled cir-
cuits [WRK17b]). Generating n bits of correlations with our construction
requires O(n log2 n) work. In contrast, the only known previous approaches
either use LPN but incur a prohibitive Ω(n2) cost [BCG+19b] or require
expensive high-end cryptographic primitives, such as multi-key threshold
FHE [DHRW16,BCG+19b].

5. Finally, we construct a pseudorandom correlation function from the EA-LPN
assumption, the first such construction to be both concretely efficient and
standing on firm security arguments. The only other practically feasible con-
structions of PCFs are the variable-density construction of [BCG+20a] (which
is much slower, even for aggressive parameters, and only has asymptotic secu-
rity guarantees) and the recent construction of [OSY21] (which relies on the
standard DCR assumption, but is also slower, is restricted to OT and VOLE
correlations – our construction can handle other useful correlations – and is
not post-quantum – our construction plausibly is).

Offline-Online Pseudorandom Correlation Generators. PCGs allow one to
expand, in a “silent” fashion (i.e. without any communication), short seeds into
long sources of correlated pseudorandomness. This silent expansion largely dom-
inates the overall computational cost of the entire protocol: in the online phase,
the computation amounts to a few cheap xor operations per gate, and the lim-
iting factor is communication. Even with a very high bandwidth, the latency
of multi-round protocols can form a bottleneck. This implies that, in many set-
tings, some idle computation time is wasted during the online phase. We put
forth a new notion of PCG, called offline-online PCG, which seeks to push the
vast majority of the offline work back to the online phase, but in an incremental
fashion that minimizes latency.

In more detail, most of the computational slowdown in the silent expansion
of modern PCGs is incurred by cache misses. Indeed, most of the efficiency
improvements of the PCG of [CRR21] come precisely from heuristically building
a cache-friendly linear code. However, constructing such cache-friendly codes
with firm security foundations remains elusive. Moreover, the cache-friendliness
of the construction from [CRR21] comes at the expense of a fully sequential
silent expansion. Instead, we suggest a new approach: using EA codes, cache
misses are bound to occur because of their expander-based structure; however,
it is relatively easy to push all these cache misses to the online phase, where they
will happen during idle moments (caused by bandwidth limitations or latency).
Concretely, EA codes achieve the following:

– In the offline phase, the sparse version of the correlation is generated using
a PPRF; this amounts to computing a few hundred binary trees of hashes (a
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la GGM), which is highly parallelizable and cache-friendly. In the literature,
this is typically referred to as the full evaluation part, because it amounts to
evaluating several PRRFs on their entire domain.

– Still in the offline phase, an accumulation step is performed, which converts a
vector (x1, x2, · · · , xN ) in an accumulated vector (x1, x1 ⊕ x2, · · · ,

⊕N
i=1 xi).

This can be done with N − 1 xors of short strings in one pass, which is
extremely fast and cache-friendly; furthermore, this accumulation is easy
to parallelize with a simple two-pass algorithm while still retaining cache-
friendliness.

– At the end of the offline phase, a length-N vector �y of short strings is stored,
where N is a small constant factor times the target amount n of correla-
tions (concretely, N ≈ 5 · n in our instantiations). Eventually, to generate an
instance of the target correlation, one must retrieve � random entries of �y, and
xor them, where the output locality parameter � corresponds to the degree
of the graph defining the EA code. This is where cache misses can occur;
however, this step is still highly parallelizable, and these random accesses
can easily be arranged to fill exactly the idle computation time of the online
phase. Concretely, for conservative parameters fully within the bound of our
theoretical analysis, � can be set to about 40 when producing n ≥ 220 cor-
relations; using more aggressive parameters, setting � as low as 7 seems to
nonetheless provide a sufficient security level according to our experiments.

Our estimates suggest that relying on offline-online PCGs instead of standard
PCGs will likely lead to significant improvements in MPC protocols. The offline
part of our EA-based offline-online PCGs is insanely fast – we estimate of the
order of 100ms to generate the offline material for 10 million random OTs on a
single core of a standard laptop, a runtime which can be sped up by almost a
factor of k when k processors are available, even with a few dozen processors.

Further Speedups in the Offline Phase. Up to this point, we discussed the appli-
cation of a new family of linear codes to speed up PCGs and achieve new
advanced constructions. We now turn our attention to the other main com-
ponent of a PCG: the full evaluation procedure, which boils down to eval-
uating several PPRFs on their entire domain. Concretely, using the GGM
PPRF [GGM86,KPTZ13,BW13,BGI14], generating a length-N vector with this
procedure requires 2N calls to a hash function along the leaves of a full binary
tree. We obtain new PPRF constructions that aim to reduce the total num-
ber of calls to the underlying hash function. Our main construction reduces the
number of calls to 1.5N ; we prove its security in the random oracle model. We
also put forth a candidate construction with the same 1.5N cost in the ideal
cipher model (supporting an implementation based on standard block ciphers
such as AES), but leave its security analysis open. We describe several additional
optimizations; in particular:

– We show that, by “flattening the GGM tree,” the number of calls can be
further reduced, at the cost of sightly increasing the seed size (and seed dis-
tribution cost). Concretely, we can reduce the total number of calls to 1.17N ,
only increasing the seed size and seed distribution time by a factor of 1.5
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(this is a desirable tradeoff, since these costs vanish when N increases, and
are typically marginal with standard parameters).

– We show that, in the specific context of generating OT correlations, the cost
can be further reduced to N (without the flattening optimization) or 0.67N
(with flattening) calls to the hash function.

We note that these contributions are of a very different nature compared
to our previous constructions, and add to the growing body of work on
the analysis in idealized models of symmetric primitives for MPC applica-
tions [GKWY20,CT21]. Since full evaluations of PPRFs have many applications
beyond PCGs, to problems such as zero-knowledge proofs [KKW18,CDG+20,
KZ20,FS21], circuit garbling [HK21], secure shuffling [CGP20] and private infor-
mation retrieval [MZR+13], these results are also of independent interest.

1.2 Technical Overview

We now survey the technical tools that we use to achieve our results.

EA Codes. A generator matrix H for an EA code is of the form H = BA, where
B ∈ F

n×N
2 is a matrix with sparse rows, and A ∈ F

N×N
2 is the accumulator

matrix, that is, �xᵀA = (x1, x1+x2, . . . , x1+ · · ·+xN ). We propose the EA-LPN-
assumption which states that samples of the form H�e, where �e ∈ F

N
2 is a random

sparse vector, are computationally indistinguishable from uniform.
In order to provide evidence for the EA-LPN-assumption, we show that it is

not susceptible to linear tests. While this class of tests is very large, they all boil
down to the same general strategy: given the vector �b (which is either uniformly
random or H�e with �e sparse), one looks at the matrix H, chooses some nonzero
vector �x ∈ F

n
2 , and then checks if the dot product �xᵀ ·�b is biased towards 0. If

�xᵀH and �e are both sufficiently dense then we can rule out the possibility that
�xᵀ · (H�e) = (�xᵀH) ·�e has noticeable bias. As we would like to keep �e as sparse as
possible, we need to show that for every nonzero vector �x ∈ F

n
2 , �xᵀH has large

weight. In other words, we need to show that the code generated by H has good
minimum distance.

We now briefly outline how we show that a random EA code has good mini-
mum distance. It is convenient for us to assume that the coordinates of B are all
sampled independently as Bernoulli random variables with probability p. Writ-
ing (y1, . . . , yN ) := �xᵀH = �xᵀ(BA) we can view the sequence of y1, . . . , yN as an
N -step random walk (over the randomness of B) on a Markov chain with state
space {0, 1}, where the transition probabilities are governed by the Hamming
weight HW(�x). Furthermore the spectral gap of this Markov chain is easily com-
putable, allowing us to apply an expander Hoeffding bound which tells us that
the random walk y1, . . . , yN is unlikely to spend too much time on the 0 state;
equivalently, it is unlikely that HW(�yᵀ) = HW(�xᵀH) is too small. By taking a
union bound over all nonzero vectors �x ∈ F

n
2 and doing a case-analysis based on

HW(�x), we can show that so long as p = Ω(logN/N), except with probability
1 − 1/poly(N) the code has minimum distance Ω(N). If one desires negligible
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in N failure probability this can also be obtained by slightly increasing p: e.g.,
p = Ω(log2 N/N) suffices to guarantee n−O(log N) failure probability. Further,
we can show that this analysis is (asymptotically) tight.

Offline-Online PCGs from EA Codes. We introduce the notion of offline-online
PCGs, where an offline and online key are generated. Each party σ uses its offline
key to generate a local offline string Yσ from which it can later use its online key
to generate a (vector of) samples from the target correlation. We call the length
of Yσ the storage cost, and the number of entries that must be read from Yσ to
generate a single sample the output locality.

Recall that the goal of VOLE is to obtain correlations ((�u,�v), (Δ, �w)), where
�u,�v, �w are length-n vectors over a finite field F and Δ ∈ F is a scalar, all chosen
at random subject to satisfying the correlation �w = Δ · �u + �v. Using PPRFs,
during the offline phase the parties expand their keys to obtain strings �w′, �u′, �v′ ∈
F

N , where �u′ is a sparse, EA-LPN noise vector and �w′, �v′ are pseudorandom
conditioned on satisfying �w′ = Δ · �u′ + �v′. Further, the parties already perform
the accumulation step and output �uoff = A · �u′ and �voff = A · �v′, and �wout =
A · �w′ and Δ, respectively. In the online phase, the parties can then recover
a tuple ((ui, vi), (Δ,wi)) by checking only an expected number of p · N of the
offline strings, resulting in an online locality of p · N . We can thereby obtain
offline-online PCGs with highly parallelizable and cache-friendly offline phase,
and online phase with low locality (recall that we can choose p as low as p =
c · logN/N , thereby resulting in � = c · logN).

PCFs from EA Codes. We have already described a general recipe for using com-
pressing matrices H for which the LPN assumption plausibly holds to construct
PCGs; indeed, we even sketched an offline-online PCG. However, in order to
use EA codes to obtain PCFs, more care is required. Recall that a PCF must
behave in an incremental fashion, using the short correlated seeds to provide as
many pseudorandom instances of the target correlation as required. The main
challenge is that to obtain a PCF we need to set N to be superpolynomial
in the security parameter, and thus computing matrix-vector products of the
form A · �e is too expensive. Fortunately, we can avoid the need to explicitly
compute A · �e by appealing to distributed comparison functions (DCFs). DCFs,
which can be constructed with PRGs as is the case for distributed point func-
tions [BGI16,BCG+21], allow one to efficiently share a comparison function
fβ

<α : [N ] → F which maps every x < α to β and every x ≥ α to 0. When
the noise �e has a regular structure (i.e., it consists of N/t unit vectors concate-
nated together) one can naturally view A · �e (after permuting the coordinates)
as a concatenation of comparison functions. We furthermore observe that for
constructing PCFs for VOLE and OT we can use a relaxed version of a DCF,
denoted RDCF, as we only require α to be hidden from one of the two parties.

In the following we give a high-level overview of our RDCF construction.
For simplicity we assume we want to share a comparison function with range
({0, 1}λ,⊕), although our construction generalizes to arbitrary abelian groups
(G,+). Our construction follows the spirit of the DCF construction of [BCG+21],
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C(·) G0(·) G1(·)

Fig. 1. Pictorial representation of our relaxed DCF construction. In our example the
path α = 10 ∈ {0, 1}2 is marked in blue, the box marked in red corresponds to box
where β is added, and the boxes filled in gray correspond to the key of P0 (in knowledge
of α) and P1, respectively. (Color figure online)

but one party knowing α allows for significant savings. We build on PRGs
G0, G1, C : {0, 1}λ → {0, 1}λ such that the concatenation of the three is a secure
PRG. In Fig. 1 we give a pictorial representation of the relaxed DCF construc-
tion, which we explain in the following.

To evaluate the RDCF on an input x, one traverses the tree and adds up all
“C” values on the path from the root to the corresponding leaf and finally adds
the “G” value of this leaf. The idea is that P0 will add β (blinded by a “C” value)
to the output, if and only if it leaves the path defined by α to the left (which
happens if and only if x < α). For concreteness, say one wants to evaluate the
RDCF in Fig. 1 on input x = 00. Then, both parties add the first box on the
second level (the first “C” value, marked in red), the first box on the third level
(the second “C” value) and the second box on the third level (the “G” value
of the leaf), which P1 can both derive from its key. The corresponding output
shares add up to β as required, since β is added to the first “C” value held by
P0. Further, β remains hidden from P0 by the pseudorandomness of the PRG C.

One of our improvements compared to the DCF construction of [BCG+21]
is that we observe that we only need “C” values on the left children, since only
there the β value has to be hidden potentially. This leads to shorter keys and
savings on the number of PRG evaluations.

Overall, comparing with the standard DCF construction of [BCG+21] where
each key is of size 2 logN(λ + log |F|), in our RDCF one of the party’s keys is
only of size λ, and the other is roughly half the size of [BCG+21]. Further, our
construction reduces the number of calls to AES (when using this to implement
a PRG) by 25% on average.

Additionally, we show that in the setting where a full evaluation is feasible
(i.e., where one is interested in an iterative PCG rather than a full-fledged PCF),
the keys of our RDCF can be distributed in 2-PC with a simple, 2-round protocol
based on 2-round OT following the techniques of [Ds17,BCG+19a], whereas the
corresponding distributed setup protocol for the DCF construction of [BCG+21]
would require logN rounds.
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PCF Constructions. Given our relaxed DCF, we readily obtain a PCF for the
subfield VOLE correlation, which also implies a PCF for oblivious transfer when
combined with a suitable hash function [BCG+20a]. We also show how to build a
PCF for general degree-2 correlations: in particular, we get a two-party PCF for
authenticated multiplication triples over any ring R, and can also support gen-
eral, circuit-dependent correlations. For this, instead of comparison functions,
we need a way to secret share the product of comparison functions. Fortunately,
this can be done using function secret sharing for 2-dimensional interval func-
tions [BGI16], based on any PRG.

We show that our EA-LPN-based PCFs can obtain good concrete efficiency.
With conservative parameter choices, which our simulated experiments show
resist linear attacks, our PCF for VOLE has comparable key size to the most
aggressive variant of the PCF from [BCG+20a] (which did not have any provable
security analysis), while we need around an order of magnitude less computation.
For our degree-2 PCFs, to get good concrete efficiency we need to rely on more
aggressive EA-LPN parameters with a lower noise weight. With this, our PCFs
for VOLE/OT have key sizes of under 1MB, and takes only a few thousand PRG
evaluations to compute each output. Our PCF for general degree-2 correlations
(including multiplication triples, matrix triples and circuit-dependent correla-
tions) has key sizes of around 200MB, and requires 2–3M PRG evaluations per
output. The degree-2 PCF from [BCG+20a] does not come close to this level of
efficiency, since it is not compatible with the most efficient variant of LPN they
use.

Speeding Up the Offline Phase. The final task that we set for ourselves is to
improve the runtime of the offline phase for PCGs, where the offline phase
requires evaluating several punctured PRFs (PPRFs) on their entire domain,
a functionality called FullEval. As alluded to earlier we apply the GGM con-
struction to obtain a PPRF from a hash function. The standard way to do this
is as follows: given hash functions H0, H1 (which can be modeled as random
oracles (RO)) one generates the GGM tree corresponding to secret key k, that
is, the depth m binary tree where the root is labeled by k and the left and right
child of a node labeled by x are labeled by H0(x) and H1(x), respectively. To
puncture a key at a point α ∈ {0, 1}m one gives the values of the nodes of the
co-path, i.e., the siblings of each node appearing on the path indexed by α.

To save on the calls to the hash function we consider the following definition:
given an RO H we define H0(x) = H(x) and H1(x) = H(x) ⊕ x. Note that this
clearly fails to give a PPRF, as given H(x) and H(x) ⊕ x one can recover x and
thereby distinguish the value at the punctured point from random. Nonetheless,
we can show that the resulting construction yields a weaker primitive that we
call a strong unpredictable punctured function (strong UPF), which informally
means that given a key punctured at a point α one essentially cannot predict the
value at α any better than by randomly guessing. While this primitive is weaker,
we note that it already suffices for some applications (such as PCGs for OT),
reducing the number of necessary calls to the random oracle for a full evaluation
by half. If one subsequently hashes the right child at the leaves, we can further
show that this does yield a genuine PPRF. In this way, we require only 1.5N
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calls to the hash function for a FullEval, whereas the standard GGM approach
requires 2N calls, providing us with a 25% cost reduction.

To prove the construction yields a strong UPF, we observe that the punctured
key can be equivalently sampled by choosing random values for the co-path and
then programming the random oracle so as to be consistent with these choices.
Assuming there are no collisions, such a punctured key is then independent of
the value of the function at α, so the only way for an adversary to learn the
value at α is if it happens to query H at one of m values on the path that it does
not see.

To increase our savings, we consider k-ary trees for k > 2, which informally
corresponds to “flattening” the GGM tree. This does incur a (k − 1) log2 k factor
increase in the size of the punctured key; however, with the standard GGM
construction of a PPRF the number of calls to the hash function in an invocation
of FullEval now drops to (1 + 1/(k − 1))N . By combining this with the first
optimization, when k = 3 we can decrease the number of calls to H to 1.33N ,
and when k = 4 to 1.17N .

Lastly, given the current hardware support of AES, we also put forward a
candidate construction of a weaker notion of UPF given an ideal invertible per-
mutation. Recall that the standard strategy to construct a hard-to-invert func-
tion from an invertible permutation is via the Davies-Meyer construction, where
H is defined as H(k) := P (k)⊕k for an invertible permutation P . Unfortunately,
instantiating H this way clearly breaks down with our previous construction, as
H1(k) would become equal to P (k), and hence be invertible. Instead, the idea
of the construction is to set H0(k) := H(k) ⊕ k and H1(k) := H(k) + k mod 2λ.
While on first glance one might seem easy to predict given the other, we show
that this is not the case, thereby giving some evidence that the correspond-
ing candidate indeed achieves unpredictability. We cannot hope to achieve the
same strong notion of unpredictability as we do with our random oracle con-
struction though, since H(k) ⊕ k does in general leak some information about
H1(k) := H(k) + k mod 2λ. Still, by subsequently hashing the right child at
all leaves standard unpredictability would be sufficient to obtain a true PPRF,
thereby yielding a 25% cost reduction for PPRF constructions implemented with
fixed-key AES. We leave the full analysis of the construction to future work.

1.3 Roadmap

We start by giving preliminaries in Sect. 2. In Sect. 3 we present EA codes and
provide a security analysis of EA-LPN. In Sect. 4 we provide new constructions
of PCFs based on the EA-LPN assumption. Finally, in Sect. 5, we give a brief
overview of optimizations for the offline costs of PCG constructions. For a formal
definition of offline-online PCGs and a construction of offline-online PCGs for
subfield VOLE from EA codes, we refer to the full version of this paper.

2 Preliminaries

For preliminaries on bias and Markov chains we refer to the full version of this
paper.
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2.1 Learning Parity with Noise and LPN-Friendly Codes

We define the LPN assumption over a ring R with dimension n, number of
samples N , w.r.t. a code generation algorithm C, and a noise distribution D:

Definition 1 (Dual LPN). Let D(R) = {Dn,N (R)}n,N∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any n,N ∈ N,
Im(Dn,N (R)) ⊆ RN . Let C be a probabilistic code generation algorithm such
that C(n,N,R) outputs a matrix H ∈ Rn×N . For dimension n = n(λ), num-
ber of samples (or block length) N = N(λ), and ring R = R(λ), the (dual)
(D,C,R)-LPN(n,N) assumption states that

{(H,�b) | H
$← C(n,N,R), �e $← Dn,N (R),�b ← H · �s}
c≈ {(H,�b) | H

$← C(n,N,R),�b $← RN}.

Note that the generator matrix H sampled from C is used in the reverse
direction compared to encoding: a codeword is a vector �x · H, where �x ∈ R1×n,
while the assumption is about vectors of the form H · �e for �e ∈ RN . The dual
LPN assumption is also called the syndrome decoding assumption in the code-
based cryptography literature; in this case, H is typically seen as the parity-check
matrix of a code generated by a matrix G such that H · G = 0. The dual LPN
assumption as written above is equivalent to the (perhaps more common) primal
LPN assumption with respect to G (a matrix G ∈ RN×N−n such that H ·G = 0),
which states that G · �s + �e is indistinguishable from random, where �s

$← RN−n

and �e
$← Dn,N (R); the equivalence follows from the fact that H ·(G·�s+�e) = H ·�e.

We say that a family of codes sampled by a code generation algorithm C is
LPN-friendly when instantiating the general LPN assumption with these codes
leads to a secure flavor of the assumption for standard noise distributions. Of
course, when we call a code “LPN-friendly”, this implicitly means “plausibly
LPN-friendly in light of known cryptanalysis of LPN”.

Examples of Noise Distributions. Several choices of noise distribution are
common in the literature. Fix for example R = F2 (all the distributions below
generalize to other structures) and a parameter t which governs the average
density of nonzero entry in a random noise vector. Then the following choices
are standard:

– Bernoulli noise: the noise vector �e is sampled from BerNt/N (F2). This is the
most common choice in theory papers.

– Exact noise: the noise vector �e is a uniformly random weight-t vector from
F

N
2 ; let us denote HWN

t (F2) this distribution. This is the most common choice
in concrete LPN-based constructions.

– Regular noise: the noise vector �e is a concatenation of t random unit vectors
from F

N/t
2 ; let us denote RegN

t (F2) this distribution. This is a very natural
choice in the construction of pseudorandom correlation generators as it signif-
icantly improves efficiency [BCGI18,BCG+19b,BCG+19a] without harming
security.
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Examples of LPN-Friendly Codes. Over the years, many codes have been
conjectured to be LPN friendly. Common choices include setting H to be a uni-
formly random matrix over F2 (this is the standard LPN assumption), the gen-
erating matrix of an LDPC code [Ale03] (often called the “Alekhnovich assump-
tion”), a quasi-cyclic code (used in several recent submissions to the NIST post-
quantum competition [ABB+17,AMBD+18,MAB+18] and in previous works
on pseudorandom correlation generators, such as [BCG+19a]), Toeplitz matri-
ces [GRS08,LM13] and many more. All these variants of LPN generalize natu-
rally to larger fields (and LPN is typically believed to be at least as hard, if not
harder, over larger fields).

When designing new LPN-based primitives, different choices of code lead to
different performance profiles. Established codes, such as those listed above, have
the advantage of having been analyzed by experts for years or decades; however,
it might happen in some applications that all established codes lead to poor
performance. Plausibly secure but yet-unstudied codes could yield considerable
performance improvements. In light of this, we require a heuristic to select plau-
sibly LPN-friendly codes. Such a heuristic has been implicit in the literature for
some time, and was put forth explicitly in recent works [BCG+20a,CRR21].

From Large Minimum Distance to LPN-Friendliness. The core obser-
vation is that essentially all known attacks (attacks based on Gaussian elim-
ination and the BKW algorithm [BKW00,Lyu05,LF06,EKM17] and vari-
ants based on covering codes [ZJW16,BV16,BTV16,GJL20], information set
decoding attacks [Pra62,Ste88,FS09,BLP11,MMT11,BJMM12,MO15,EKM17,
BM18], statistical decoding attacks [AJ01,FKI06,Ove06,DAT17], generalized
birthday attacks [Wag02,Kir11], linearization attacks [BM97,Saa07], attacks
based on finding low weight code vectors [Zic17], or on finding correlations with
low-degree polynomials [ABG+14,BR17]) fit in a common framework of linear
tests which corresponds, roughly, to attacks where an adversary tries to detect a
bias in the LPN samples by computing a linear function of these samples. (The
choice of the linear function itself can depend arbitrarily on the code matrix.)
Then, it is relatively easy to show that for any noise distribution D whose nonzero
entries “hit any large subset” with high enough probability, the LPN assumption
with respect to a code generator C and D provably resists (exponentially) all
linear tests as long as a random code from C has high minimum distance with
good probability. This is formalized below.

Definition 2 (Security against Linear Tests). Let R be a ring, and
let D = {Dn,N}n,N∈N denote a family of noise distributions over RN . Let
C be a probabilistic code generation algorithm such that C(n,N) outputs a
matrix H ∈ Rn×N . Let ε, η : N �→ [0, 1] be two functions. We say that the
(D,C,R)-LPN(n,N) is (ε, η)-secure against linear tests if for any (possibly inef-
ficient) adversary A which, on input H outputs a nonzero �v ∈ Rn, it holds that

Pr[H $← C(n,N), �v $← A(H) : bias�v(DH) ≥ ε(λ)] ≤ η(λ),
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where DH denotes the distribution induced by sampling �e ← Dn,N , and outputting
the LPN samples H · �e.

The minimum distance of a matrix H, denoted d(H), is the minimum weight
of a vector in its row-span. Then, we have the following straightforward lemma:

Lemma 3. Let D = {Dn,N}n,N∈N denote a family of noise distributions over
RN . Let C be a probabilistic code generation algorithm. Then for any d ∈ N, the
(D,C,R)-LPN(n,N) assumption is (εd, ηd)-secure against linear tests, where

εd = max
HW(�v)>d

bias�v(Dn,N ), and ηd = Pr
H

$←C(n,N)

[d(H) ≥ d].

For example, using a Bernoulli noise distribution of error rate t/N , for any �v
of weight at least d, it holds that bias�v(Bernt/N (F2)) = (1− 2t/N)d/2 < e−2td/N ;
that is, if the relative distance d/N of the code is a constant (i.e. the code is a
good code), the bias will decrease exponentially with t. Similar calculations show
that for any �v of weight at least d, bias�v(RegN

t ) ≤ (1−2(d/t)/(N/t))t < e−2td/N .

When the Minimum Distance Heuristic Fails. From the above, one can be
tempted to conjecture that any good code, say, together with Bernoulli noise, is
LPN-friendly. However, this is known to fail in at least three situations:

1. When the code is strongly algebraic. For example, Reed-Solomon codes, which
have a strong algebraic structure, have high minimum distance, but can be
decoded efficiently with the Berlekamp-Massey algorithm, hence they do not
lead to a secure LPN instance (and indeed, Berlekamp-Massey does not fit in
the linear test framework).

2. When the noise is structured (which is the case e.g. for regular noise) and the
adversary can see enough samples. This opens the door to algebraic attacks
such as the Arora-Ge attack [AG11]. However, this typically requires a large
number of samples: for example, using regular noise, one needs N = Ω((N −
n)2) for the attack to apply. In contrast, all our instances will have N =
O(N − n).

3. When R has a subring, one can always project onto the subring before per-
forming a linear attack; this technically does not directly fit in the linear test
framework. When analyzing security against linear test, one must therefore
account for all subrings the attacker could first project the problem onto. In
polynomial rings, the reducible case of cyclotomics is discussed in [BCG+20b].
In integer rings like Z2k , one weakness is that projecting onto Z2 can make
error values become zero with probability 1/2 [LWYY22], reducing the effec-
tive noise rate. To fix this, [LWYY22] propose an alternative noise distribution
that is provably as secure as LPN over F2, but with k times the noise rate.
Alternatively, a plausible fix without increasing the noise rate is to choose
error values to be invertible, which ensures they are non-zero in all subrings.
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The above three scenarios are the only exceptions we are aware of. Hence the
following natural rule of thumb: if a code is combinatorial in nature (it is not a
strongly algebraic code, such as Reed-Solomon or Reed-Müller), and if the code
rate is not too close to 1 (e.g. code rate 1/2, i.e. n = N/2), then being a good
code makes it a plausible LPN-friendly candidate.

2.2 Puncturable Pseudorandom Functions

Pseudorandom functions (PRF), introduced in [GGM86], are keyed functions
which are indistinguishable from truly random functions. A puncturable pseudo-
random function (PPRF) is a PRF F such that given an input x, and a PRF
key k, one can generate a punctured key, denoted k{x}, which allows evaluating
F at every point except for x, and does not reveal any information about the
value F.Eval(k, x). PPRFs have been introduced in [KPTZ13,BW13,BGI14].

Definition 4 (t-Puncturable Pseudorandom Function). A puncturable
pseudorandom function (PPRF) with key space K, domain X , and range
Y, is a pseudorandom function F with an additional punctured key space
Kp and three probabilistic polynomial-time algorithms (F.KeyGen, F.Puncture,
F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K, {S}), on input a ley K ∈ K, and a subset S ⊂ X of size t,

outputs a punctured key K{S} ∈ Kp,
– F.Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a

point x, outputs F (K,x) if x /∈ S, and ⊥ otherwise,

The security requirement is that for any set S, given a punctured key K{S}, the
values (F (K,x))x∈S are pseudorandom.

In the full version of this paper, we recall the PPRF construction based on any
length-doubling pseudorandom generator from [KPTZ13,BW13,BGI14].

2.3 Pseudorandom Correlation Generators and Functions

For a full definition of pseudorandom correlation generators and function, we
refer to [BCG+19b] and [BCG+20a], or to the full version of this paper. In the
following we only provide a sketch of the definitions.

Correlation. We say a PPT algorithm Y is a correlation, if Y on input 1λ outputs
a pair of strings (y0, y1) ∈ {0, 1}τ0 ×{0, 1}τ1 where τ0(λ), τ1(λ) ∈ poly(λ) describe
the output lengths.

The security definition of PCGs requires the target correlation to satisfy
a technical requirement, which roughly says that it is possible to efficiently
sample from the conditional distribution of y0 given y1 and vice versa. More
precisely, we require the existence of a PPT algorithm RSample that on input
(σ, yσ) outputs y1−σ, such that the distributions {(yσ, y1−σ) | (y0, y1) ←
Y(1λ)} and {(yσ, y′

1−σ) | (y0, y1) ← Y(1λ), y′
1−σ ← RSample(σ, yσ)} are sta-

tistically close. We call such a correlation generator reverse-sampleable.



618 E. Boyle et al.

By Yn we define the algorithm outputting n instance according to Y. We
refer to such an algorithm also as correlation generator. Further, we extend
RSample to input vectors Rσ of the form Rσ = (y1

σ, . . . , yn
σ ) by applying RSample

componentwise.

Pseudorandom Correlation Generator. If Y is a reverse-sampleable correlation
generator, then a pseudorandom correlation generator (PCG) for Y with stretch
n is a tuple of PPT algorithms (PCG.Gen,PCG.Expand), such that the following
holds

– PCG.Gen(1λ) outputs a pair of seeds (k0, k1);
– PCG.Expand(σ, kσ) on input of σ ∈ {0, 1} and a seed kσ, deterministically

outputs a bit string Rσ ∈ ({0, 1}τσ )n.
– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), (Rσ ← PCG.Expand(σ, kσ))σ=0,1}

is computationally indistinguishable from Yn(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1) $← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Examples of Correlations. A random OT correlation is a pair (y0, y1) ∈ {0, 1}2×
{0, 1}2, where y0 = (u, v) for two random bits u, v, and y1 = (b, u · b ⊕ v) for
a random bit b. OT correlations is perhaps the most common and fundamental
type of correlation in secure computation (though many others – such as Beaver
triples, authenticated Beaver triples, or function-dependent correlations – are
also standard).

It is known that, to generate n pseudorandom OT correlations, it suffices to
generate the following simpler correlation: Alice gets a (pseudo)random pair of
length-n vectors (�u,�v), where �u

$← F
n
2 and �v ∈ F

n
2λ , and Bob gets x

$← F2λ and
�w ← x · �u + �v. This correlation (known as the subfield vector-OLE correlation)
can be locally converted by Alice and Bob into n pseudorandom OT correlations
using a correlation-robust hash function; see [BCG+19b] for details.

For a general template to construct PCGs for VOLE from PPRFs and LPN-
friendly codes, we refer to [BCG+19b], or the full version of this paper.

Pseudorandom Correlation Function. If Y is a reverse-sampleable correlation
generator, then a pseudorandom correlation function (PCF) for Y with input
length ν = ν(λ) ∈ N is a tuple of PPT algorithms (PCF.Gen,PCF.Eval) with the
following syntax:
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– PCF.Gen(1λ) outputs a pair of keys (k0, k1);
– PCF.Eval(σ, kσ, x) on input of σ ∈ {0, 1}, a key kσ and an input x ∈ {0, 1}ν ,

deterministically outputs a tuple (y0, y1) ∈ {0, 1}τ0 × {0, 1}τ1 .

Correctness and security are defined similarly to a PCG, except that instead of
obtaining the complete (potentially exponential-sized) output the adversary gets
to query the output string an arbitary polynomial number of times, to obtain
a tuple (x,Eval(σ, kσ, x)) (or the according reverse-sampled correlation) for x
sampled uniformly at random.

3 Expand-Accumulate Codes

In this section we introduce expand-accumulate codes, which are defined by
the product H = BA for a sparse expanding matrix B and the accumulator
matrix A. We conjecture that the LPN problem is hard to solve for this matrix
ensemble and provide theoretical evidence for this conjecture by demonstrating
that it resists linear attacks.

3.1 Expand-Accumulate Codes, and the EA-LPN Assumption

First, we formally define the accumulator matrix.

Definition 5 (Accumulator Matrix). For a positive integer N and ring R,
the accumulator matrix A ∈ RN×N is the matrix with 1’s on and below the main
diagonal, and 0’s elsewhere.

In particular, if A�x = �y with �x, �y ∈ RN , we have the following relations:

yi =
i∑

j=1

xj ∀i ∈ [N ] yi := xi + yi−1 ∀2 ≤ i ≤ N . (1)

Note in particular that (1) guarantees that the vector-matrix product A�x
can be computed with only N − 1 (sequential) ring addition operations. In par-
ticular, when R is the binary field F2, this requires just N − 1 xor operations.
Furthermore, this can be computed even more efficiently in parallel, which is a
major benefit of our construction; please see the full version for more details.
We now formally introduce expand-accumulate (EA) codes, which underline our
main constructions of offline-online PCGs.2

Definition 6 (Expand-Accumulate (EA) codes). Let n,N ∈ N with n ≤ N
and let R be a ring. For a desired density p ∈ (0, 1), a generator matrix for an
expand-accumulate (EA) code is sampled as follows:

2 These codes are heavily inspired by repeat-accumulate codes; the full version elabo-
rates further on this point.
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– Sample row vectors �rᵀ
1 , �rᵀ

2 , . . . , �rᵀ
n

$← BerNp (R) independently and put

B =

⎡

⎢
⎢
⎢
⎣

�rᵀ
1

�rᵀ
2

...
...

...
�rᵀ

n

⎤

⎥
⎥
⎥
⎦

.

– Output the matrix-matrix product BA, where A ∈ RN×N is the accumulator
matrix.

We use EA(n,N, p,R) to denote a code sampled from this distribution,
and the sampling of the corresponding generator matrix is denoted H

$←
EAGen(n,N, p,R). When the ring R is omitted it is assumed R = F2.

Remark 7. While it is more standard in the coding-theoretic literature to use G
for a generator matrix of a code, as we are interested in the dual LPN assumption
connected to a code, we actually view H as the parity-check matrix for the code
for which the EA code is the dual. Thus, as H is the standard notation for a
parity-check matrix, we have chosen to use this notation for the generator matrix
of an EA code.

3.2 The EA-LPN Assumption and Security Analysis

In this work, we provide a new (dual) LPN-type assumption connected to EA
codes which we term EA-LPN. It is obtained by specializing Definition 1 to
the case where the code generation algorithm samples H

$← EAGen. For the
noise distribution D(R), we can consider Bernoulli noise BerNt/N (R), exact noise
HWN

t (R), and regular noise RegN
t (R).

Definition 8 (EA-LPN Assumption). Let D(R) = {DN (R)}N∈N denote
a family of efficiently sampleable distributions over R, such that for any
N ∈ N, Im(DN (R)) ⊆ RN . For a dimension n = n(λ), number of sam-
ples N = N(λ), ring R = R(λ) and parameter p = p(λ) ∈ (0, 1) the
(D,R)-EA-LPN(n(λ), N(λ), p(λ)) assumption states that

{(H,�b) | H
$← EAGen(n,N, p,R), �e $← DN (R),�b ← H · �e}

c≈ {(H,�b) | H
$← EAGen(n,N, p,R),�b $← RN}.

In order to provide evidence for the EA-LPN-assumption, we will show that
it is secure against linear tests (Definition 2), at least when R = F2. To do this,
recalling Lemma 3, it suffices to show that d(H) is large (with high probability).
The technical core of our proof is the following bound on the probability that a
message vector �x ∈ F

n
2 of weight r is mapped to a codeword of weight ≤ δN .

Lemma 9. Let n,N ∈ N with n ≤ N and put R = n
N . Fix p ∈ (0, 1/2) and

δ > 0, and put β = 1/2 − δ. Let r ∈ N and let �x ∈ F
n
2 be a vector of weight r.

Define ξr = (1 − 2p)r. Then,

Pr
[
HW(�xᵀH) ≤ δN | H

$← EAGen(n,N, p)
]

≤ 2 exp
(

−2
1 − ξr

1 + ξr
Nβ2

)

.
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To prove this lemma, we imagine revealing the coordinates of the random
vector �xᵀH one at a time, and observe that this can be viewed as a random
walk on a Markov chain with state space {0, 1} and second eigenvalue ξr. We
can then apply an Expander Hoeffding bound to guarantee that such a random
walk is unlikely to spend too much time on the 0 state, which is equivalent to
saying that the random vector �xᵀH does not have too small weight. For space
reasons, the proof is deferred to the full version of this paper.

We now state the main theorem of this section.

Theorem 10. Let n,N ∈ N with n ≤ N and put R = n
N , which we assume to

be a constant. Let C > 0 and set p = C lnN
N ∈ (0, 1/2). Fix δ ∈ (0, 1/2) and put

β = 1/2 − δ. Assume the following relation holds:

R < min
{

2
ln 2

· 1 − e−1

1 + e−1
· β2,

2
e

}

(2)

Then, assuming N is sufficiently large we have

Pr
[
d(H) ≥ δN | H

$← EAGen(n,N, p)
]

≥ 1 − 2
n∑

r=1

(
n

r

)

exp
(

−2
1 − ξr

1 + ξr
Nβ2

)

(3)

≥ 1 − 2RN−2β2C+2.

Informally, the conclusion is that when p = Θ(logN/N) a constant rate EA
code will have distance Ω(N) with probability 1−1/poly(N). If one would like the
failure probability to be negligible in N this can still be achieved by increasing
p: for example, if p = Θ(log2 N/N) the failure probability is N−O(log N). The
proof is again deferred to the full version.

3.3 Discussion

In our investigation of EA codes we considered many variants and studied plau-
sibly secure concrete parameter choices. For space reasons, many of these details
are necessarily deferred to the full version. In this section, we summarize our
main findings.

Different Expanding Matrices. Rather than sampling each row of B accord-
ing to the Bernoulli distribution, one could naturally try the exact distribution
HWN

	 (F2), or even the regular distribution RegN
	 (F2). Unfortunately, these matri-

ces are not as amenable to analysis. Nonetheless, after running some computer
simulations we are willing to conjecture that they should behave relatively simi-
larly: once � = Ω(logN) we can hope to have constant rate and relative distance.



622 E. Boyle et al.

Arbitrary Rings. We also consider the minimum distance of EA codes over
arbitrary rings. Guided by computer simulations, we are willing to conjecture
that the minimum distance should only increase as the ring size increases, thereby
implying that its resilience to linear attacks only increases. However, we caution
that for rings like F2k “modular reduction/projection” attacks allow one to work
modulo 2 and, e.g., recover the coordinates bit-by-bit (this attack is outside
the scope of the linear tests framework). Thus, the general conclusion is that
the security one obtains for the EA-LPN assumption should only increase as the
characteristic of the ring increases.

Pseudodistance. By showing that H has large distance, we can rule out any
linear test. However, we are only concerned with efficient linear tests, i.e., tests
that can efficiently find the attack vector from the matrix H. So long as δ and
R satisfy δ < (1 − R)/2 (this rules out the standard information set decoding
attack) we conjecture that it is infeasible to find �x for which HW(�xᵀH) ≤ δN
when p = Ω(logN/N) is sufficiently large.

Rejection Sampling. Our analysis suggests that when an EA code fails to
have good minimum distance it is often for the simple reason that the generator
matrix H already has a low weight row. Thus, we propose testing the matrix
after it is sampled to verify that indeed all the rows have large weight, and we
heuristically argue that this leads to significant savings in the failure probability.

Density of B . From a theoretical standpoint, we can unfortunately show that
the condition that p = Ω(logN/N) is necessary. However, from a concrete stand-
point we believe it is reasonable to choose the density of B much smaller. We
elaborate upon this further in the following section.

3.4 Concrete Parameter Choices

Conservative Parameters. In this section, we consider relatively conservative
parameter choices, and compute the failure probability as given by (3). That is,
instead of computing the probability that d(H) ≤ δN for H ← EA(n,N, p) as
2RN−2Cβ2+2 (where, as in the theorem statement, β = 1/2 − δ, R = n/N and
p = C lnN

N ) we endeavour to numerically compute the bound

2
n∑

r=1

(
n

r

)

exp
(

−2
1 − ξr

1 + ξr
Nβ2

)

,

where as before ξr = (1 − 2p)r. For our applications we would like n = 220, 225
and 230. It is reasonable to choose R = 0.2, implying N = 5 · n. Our results are
summarized in Fig. 2.

For context, we recall Lemma 3 which translates minimum distance into
security against linear tests. It says that if H

$← EAGen(n,N, p) has minimum
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C = 3 C = 2.5 C = 2.3

δ
n

220 225 230 220 225 230 220 225 230

0.005 0.000317 0.0000686 0.0000148 0.0133 0.00645 0.00312 0.0599 0.0401 0.0268
0.02 0.00120 0.000347 0.000100 0.0410 0.0253 0.0156 0.174 0.147 0.124
0.05 0.0157 0.00794 0.00402

Fig. 2. In this table, we list the (extrapolated) analytical upper bounds on the failure
probabilities for various parameter choices. The rate is set to 1/5, i.e., N = 5n. If the
cell is empty it is because the extrapolated value exceeds 1.

distance δN with probability at least η(λ) and the error vector �e ∈ F
N
2 has

(expected) weight t (e.g., �e
$← BerNt/N (F2), HWN

t/N (F2) or RegN
t (F2)), then if

we want (2−λ, η(λ))-security against linear tests we require e−2tδ ≤ 2−λ, i.e.,
t ≥ (ln 2)·λ

2δ .
Looking at Fig. 2, for n = 230 and N = 5n, if t = 664 then we have t >

(ln 2)·98
2·0.05 , which implies that H

$← EAGen
(
n,N, 3 lnN

N

)
is (2−98−log2 5, 0.00402)-

secure3 against linear tests. Decreasing C, if H
$← EAGen

(
n,N, 2.3 lnN

N

)
then so

long as t ≥ 1658 it is (2−98−log2 5, 0.124)-secure against linear tests.
For all of the extrapolated values in Fig. 2, we provide the necessary number

of noisy coordinates for 128 bits of security against linear tests.

Density of B, Concretely. However, when it comes to concrete parameter choices,
it is reasonable to be more aggressive. Our intuition, which is guided by the proof
of Theorem 10, tells us that if there is to be a low-weight vector in an EA code,
then it is likely obtained as the encoding of a low-weight message. In particular, if
an EA code has distance d it is probably because H

$← EAGen has a row of weight
d. Furthermore, while there could very well be lower weight vectors in the EA
codes, we do not see an easy means to find these vectors. Recalling the discussion
of the notion of pseudodistance, this already implies that the construction could
be secure against efficient linear attacks.

Being aggressive, we consider � = 7, 9, 11, and then empirically estimate the
minimum (relative) weight of a row of an EA matrix H

$← EAGenReg(n, 5 ·n, �)4

for n = 220, 225, 230. For � = 7, 9, 11, we endeavour to empirically estimate the
minimum row weight of a matrix H

$← EAGenReg(n, 5 · n, �) (see Footnote 4).
These experiments embolden us to make the following sort of conjecture:

given a matrix H
$← EAGenReg(230, 5 · 230, 7), we expect it to be hard to find

a vector in the row-span of H with relative weight less than 0.02, even though

3 Note that as computing a dot-product requires 5 · 230 time, this is sufficient for 128
bits of security.

4 The regular distribution appears to us to be the most reasonable in practice; however,
other distributions appear to behave similarly.
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�����δ
n

220 225 230

0.005 7326 6979 6632
0.02 1832 1745 1658
0.05 732 698 664

(a) Value of t required for 128− log2 N -
bit security against linear tests. The fail-
ure probability for different values of C
is found in Fig. 2.

�����n
� 7 9 11

220 0.0613 0.0923 0.121
225 0.0370 0.0624 0.0879
230 0.0223 0.0422 0.06391

(b) The (extrapolated, empirical)
average minimum row-weight for H
sampled as H ← EAGenReg(n, 5n, �).

we expect there to exist (many) such vectors. We leave testing of the validity of
this assumption as an interesting challenge for future work.

Relation to Silver. [CRR21] also introduced a new code family, called Silver. How-
ever, their security analysis is purely based on computer simulation. Concretely,
the authors of [CRR21] sampled random choices of code parameters, and sam-
pled many instances of the code for small value of n. Then, they approximated
the minimum distance for each sample by encoding low-weight vectors, and esti-
mated the variance from the distance distribution. From that, they extrapolated
a lower bound on the minimum distance for multiple small values of n, which
they further extrapolated, from the curve of these lower bounds, to larger values
of n. In the end, they picked the parameters that led to the best extrapolations.

We applied a relatively similar heuristic, by using computer simulations to
approximate the minimum distance of our code for small values of n, and extrap-
olating its behavior for large values of n, with the purpose of enabling an apple-
to-apple comparison with Silver. We observed that, already when setting the
number of ones per row of B to only 7 and using t ≈ 5000 noisy coordinates,
we achieve heuristic security guarantees roughly on par with Silver. Note that
the choice of increasing t to lower the row-weight of B is well motivated, since
it vanishes when n grows and only influences the seed size, which is Ω(tλ log n).

4 Pseudorandom Correlated Functions from Expand-
Accumulate Codes

In this section, we give a high-level summary of the ideas behind the PCF for
subfield-VOLE. For more details on how to obtain PCFs for subfield VOLE, OT
and general degree-two correlations over a ring under (variants of) the EA-LPN
assumption, we refer to the full version of this paper.

Fix an extension field F of F2; we target PCF for the (subfield) VOLE correla-
tion over F. That is, PCF.Gen outputs a pair (k0, k1) of correlated keys such that
for any input x, writing (u, v) ← PCF.Eval(0, k0, x) and w ← PCF.Eval(1, k1, x),
it always holds that w = Δ · u + v, where Δ ∈ F is the same accross all evalua-
tions, (v, w) ∈ F

2, and u ∈ F2. We refer to the full version for a reminder of the
formal definition of the security properties of a PCF. As for PCGs, one can use a
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correlation-robust hash function to turn a PCF for subfield-VOLE over F = F2λ

(where λ is a security parameter) into a PCF for the (one out of two) oblivious
transfer correlation over F.

The main difference between an offline-online PCG and a PCF is that the
latter must operate in a fully incremental fashion: given the short correlated
keys, the parties should be able to obtain pseudorandom instances of the tar-
get correlation on demand, without having to stretch the entire pseudorandom
correlation. At a high level, our PCF construction proceeds as follows: given the
two keys k0, k1, the parties will be able to locally retrieve (in time logarithmic
in N) additive shares (over F) of any given position in the vector Δ ·A ·�e, where
Δ ∈ F is a scalar known to P1, �e is a sparse noise vector (over F2) known to P0,
and A is the accumulator matrix of Definition 5.

Suppose we manage to achieve the above. Then, a random input x to the
PCF is parsed by both players as defining a random row Bx of the sparse matrix
B; that is, x is the randomness used to sample a row Bx from BerNp (F2). Let � be
the number of ones in the sampled row; with the parameters of our analysis, � =
O(logN) with overwhelming probability. Let �e′ = A · �e denote the accumulated
noise vector. To evaluate PCF.Eval on x, the parties compute shares of Δ · e′

i for
all � positions i corresponding to non-zero entries in Bx, and locally sum their
shares. This procedure takes total time O(� logN) = O(log2 N), polylogarithmic
in N : we can therefore set N to be exponential in the security parameter λ to
allow for an exponential stretch. Defining ui ← B · e′

i and (−vi, wi) to be the
shares computed this way, it is easy to check that the relation Δ · ui + vi = wi

holds, and that ui is indeed pseudorandom under the EA-LPN assumption.
It remains to find a way to locally construct these shares of Δ · e′

i. Here,
observe that we cannot use anymore a puncturable pseudorandom function as
in our construction of offline-online PCG: the accumulation step, while very
efficient and parallelizable, runs in time linear in N . For a PCF, however, N is
necessarily superpolynomial, since a PCF allows to stretch (on demand) an arbi-
trary polynomial amount of correlated pseudorandomness. Fortunately, we can
sidestep this unaffordable accumulation step by relying on a primitive known
as a distributed comparison function (DCF), of which very efficient instantia-
tions (from any one-way function) were recently proposed in [BGI19,BCG+21].
For subfield VOLE, it’s enough to use a weaker form of distributed comparison
function, where one party knows part of the function, which we show can be
constructed more efficiently.

5 Optimizing Offline Cost

Up to now, focus has been placed on optimizing the online portion of the offline-
online PCG constructions, corresponding to the choice and analysis of advan-
tageous linear codes. In this section, we turn attention to the offline portion of
our construction, consisting of two primary components:

1. Evaluating several punctured PRFs (PPRFs) on their entire domain (a func-
tionality called FullEval), and
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2. Performing an accumulation step, which converts a vector (x1, · · · , xN ) to an
accumulated vector (x1, x1 ⊕ x2, · · · ,

⊕N
i=1 xi).

Recall that with respect to the general template of PCG construction, the com-
bination of the accumulation step and the online process in our construction
jointly play the role of applying a compressing linear map �x �→ H · �x as dictated
by the selected linear code.

We remark that all previous works in this line (of constructing PCGs from the
linear code plus PPRF template) focused almost exclusively on optimizing this
�x �→ H ·�x step, which was for a long time the dominant cost of the construction.
We now instead focus on reducing the cost of the FullEval (and accumulation)
component. Our motivations are threefold:

1. First, in the recent work of [CRR21], the cost of the mapping is reduced
so significantly that, according to their evaluation, the cost of FullEval now
accounts for about half of the total computation. Reducing the cost of FullEval
has therefore an important impact on the total runtime.

2. Second, using our new notion of offline-online PCGs and instantiating them
with expand-accumulate codes, the offline part boils down solely to a FullEval
computation and an accumulation. The cost of accumulate is exceptionally
small, and dominated by the cost of FullEval (by several orders of magnitude).
Hence, reducing the cost of FullEval directly translate to reducing the cost of
the offline PCG expansion, by the same factor.

3. Eventually, PCGs are not the sole target: other cryptographic primitives also
sometimes rely on the FullEval algorithm of a PPRF. Reducing the cost of
FullEval directly translates to improvements for these primitives.

The high-level intuition of our main results in this section correspond to the
observation that for PCG construction, in fact a PPRF is a stronger tool than
necessary. In doing so, we put forth and explore a weaker notion with the aim
of improved efficiency.

In the following we give an overview of our results. For details, we refer to
the full version of this paper.

Overview of the Results. First, we give high-level optimizations for the offline
operations. This includes procedures for parallelizing the accumulation step, as
well as methods for improving the computation cost of FullEval for GGM-type
constructions such as PPRF in exchange for increased key size, by “flattening”
the depth of the GGM tree.

Next, we introduce a relaxed version of PPRF, a (strong) unpredictable punc-
tured function (UPF). We provide constructions of (strong) UPFs in the random
oracle (RO) model (ROM) that require half the number of RO calls for FullEval
as compared with the standard RO-based PPRF construction. Given the current
existence of hardware support for AES, we additionally provide a conjectured
construction given access to the Random Invertible Permutation Model (RIPM).

We further explore conversions from UPF to the (stronger) standard notion
of PPRF in the random oracle model, beginning with a generic compiler that
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simply applies the random oracle to each UPF output. For our specific RO-based
UPF construction of the previous subsection, we show that this same goal can
be achieved by applying the RO to only half of the UPF outputs. In turn, this
provides a construction of standard PPRF in the RO model in which FullEval
on a domain of size N requires only 1.5N calls to the random oracle.

Finally, we prove that for some PCG constructions, strong UPFs already
suffice in the place of PPRFs. In particular, this holds for the PCG constructions
of subfield VOLE and Silent OT. In these applications, we can thus replace the
PPRF by our RO-based strong UPF, in which FullEval on a domain of size N
requires only N calls to the random oracle, in comparison to 2N when based on
PPRF.

Applications and Bottom Line. Using the baseline GGM PPRF with domain size
N , the cost of FullEval (i.e., evaluating the entire binary tree with N leaves) boils
down to 2N calls to the underlying primitives (in concrete instantiations, this can
translate to 2N evaluations of fixed-key AES). To reduce this cost, we suggest to
replace the GGM PPRF by our proposed PPRF construction. Concretely, com-
puting all leaves of the UPF requires exactly N calls to the underlying primitive
(modeled either as a random oracle or as a random invertible permutation) in
each of our two constructions. Converting the UPF to a PPRF requires further
hashing half of the leaves, leading to a total cost of 1.5N calls to the underlying
primitive. This is a 25% cost reduction compared to the GGM PPRF approach.

The “tree-flattening” optimizations translate to a 41.5% reduction of the
FullEval time, hence of the entire offline time of our offline-online PCG construc-
tion. Since FullEval also amounts to roughly 50% of the cost of the full PCG
expansion in [CRR21], plugging our new constructions should directly translate
to a reduction of the total cost by about 20% (which is quite significant given
how fast the construction already is).

As mentioned, for certain PCG constructions, such as Silent OT, these num-
bers jump already to 50% cost reduction of FullEval, corresponding to roughly
25% reduction in the overall cost of full PCG expansion.

These results also have further implications beyond PCGs. The FullEval algo-
rithm of PPRFs and related primitives is also used in some zero-knowledge appli-
cations, typically in the MPC-in-the-head paradigm. Some examples include Pic-
nic [KKW18,CDG+20] and its variants [KZ20], the signature schemes of [Beu20],
or the zero-knowledge proof of [FS21]. FullEval is also used in some constructions
of private information retrieval, such as [MZR+13]; the list is not exhaustive. In
all these applications, replacing FullEval by our improved variant leads to com-
putational savings (the amount of which depends on how dominant the cost of
FullEval is in each application).
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Abstract. A software watermarking scheme can embed a message into
a program while preserving its functionality. The embedded message can
be extracted later by an extraction algorithm, and no one could remove it
without significantly changing the functionality of the program. A water-
marking scheme is public key if neither the marking procedure nor the
extraction procedure needs a watermarking secret key. Prior construc-
tions of watermarking schemes mainly focus on watermarking pseudoran-
dom functions (PRFs), and the major open problem in this direction is
to construct a public-key watermarkable PRF.

In this work, we solve the open problem via constructing public-key
watermarkable PRFs with different trade-offs from various assumptions,
ranging from standard lattice assumptions to the existence of indistin-
guishability obfuscation. To achieve the results, we first construct water-
marking schemes in a weaker model, where the extraction algorithm is
provided with a “hint” about the watermarked PRF key. Then we upgrade
the constructions to standard watermarking schemes using a robust unob-
fuscatable PRF. We also provide the first construction of robust unobfus-
catable PRF in this work, which is of independent interest.

1 Introduction

A software watermarking scheme allows one to embed a message into a program
without significantly changing its functionality. Moreover, any attempt to remove
the embedded message would destroy the functionality of the watermarked pro-
gram. Watermarking schemes have many real-world applications, including own-
ership protection, traitor tracing, etc., and recently, it is also applied in new
applications such as quantum copy-protection [ALL+21,KNY21].

The theoretical study of software watermarking is initiated by Barak et al.
[BGI+01] and Hopper et al. [HMW07], where formal definitions are presented.
They also explore the (im)possibility to achieve certain definitions of watermark-
ing and study connections between different definitions. However, neither of them
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provides a concrete construction. It is notoriously hard to construct watermark-
ing schemes with provable security, and early constructions [NSS99,YF11,Nis13]
are only proven secure against restricted adversaries, which are not allowed to
change the format of the watermarked object.

Cohen et al. [CHN+16] propose the first watermarking scheme with provable
security against arbitrary removal strategies. They also show that it is impossible
to watermark learnable functions. A natural class of non-learnable functions
are the cryptographic ones, such as pseudorandom function (PRF). Therefore,
Cohen et al. and subsequent works mainly study watermarking for cryptographic
functionalities, with a primary focus on watermarkable PRFs, which can be
applied to construct watermarking schemes for various primitives in minicrypt
and has many real-world applications as discussed in [CHN+16]. In this work,
we also consider watermarking schemes for PRFs.

Watermarking PRFs. A watermarkable PRF is a PRF family F with two addi-
tional algorithms, namely, the marking algorithm and the extraction algorithm.
The marking algorithm takes as input the mark key, a message, and a PRF key
k, and outputs a watermarked circuit, which approximately evaluates Fk(·). The
extraction algorithm extracts the embedded message from a watermarked cir-
cuit with an extraction key. Its main security property is unremovability, which
requires that given a watermarked circuit C∗ for a random PRF key (namely,
the challenge key), the adversary is not able to produce a circuit that agrees
with C∗ on almost all inputs, yet the extraction algorithm fails to extract the
original message from it. The mark key and the extraction key are generated
when setting up the scheme, and a watermarking scheme is public key if both
the mark key and the extraction key can be made public. Also, a secret-key
watermarking scheme has public extraction (resp. public marking) if it is secure
against an adversary with the extraction key (resp. mark key).

The first construction of watermarkable PRF is presented by Cohen et al.
in [CHN+16]. The construction is based on an indistinguishability obfuscation
(iO) and has public extraction. Then in [YAL+19], Yang et al. improve Cohen et
al.’s scheme to further achieve collusion resistant security, where the adversary
is allowed to view multiple watermarked circuits for the challenge key. However,
in both constructions, the mark key should be kept private.

In another line of work, Boneh et al. [BLW17] propose a new approach that
builds watermarkable PRF from variants of constrained PRFs [BW13,KPTZ13,
BGI14]. The scheme in [BLW17] is still instantiated from iO. Then in [KW17],
Kim and Wu present the first watermarkable PRF from standard assumptions.
Later, in [PS18,PS20], Peikert and Shiehian also instantiate the construction
in [BLW17] from standard lattice assumptions. However, these schemes need a
secret key in both the marking algorithm and the extraction algorithm.

Subsequent works explore how to construct watermarkable PRF with stronger
security from standard assumptions. In [QWZ18,KW19], watermarkable PRFs
that have public marking are constructed. The schemes also achieve security with
extraction queries, where the adversary can learn extraction results of its gener-
ated circuits. However, they do not have standard pseudorandomness against an
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adversary with the extraction key. Recently, in [YAYX20], Yang et al. upgrade pre-
vious watermarkable PRFs from standard assumptions to further achieve collusion
resistance. Nonetheless, none of these schemes support public extraction.
Motivation. There are no candidate constructions of public-key watermarkable
PRFs in the literature. Even worse, in previous secret-key watermarkable PRFs,
the watermarking authority, who holds the secret key, can remove the watermark
embedded in any watermarked circuit. This is a severe threat to all users. In
contrast, in a public-key watermarking scheme, no one has this privilege since
the scheme does not have such secret key. Therefore, no trust assumption is
needed in a public-key watermarking scheme and it can provide a much better
security guarantee in practice. This raises the following natural question:

Can we construct public-key watermarkable PRFs?

There are a few technical barriers towards this goal. First, existing approaches
for achieving public marking [QWZ18,KW19] will lead to a watermarkable PRF
that is only pseudorandom against adversaries without the extraction key of
the scheme, and one can compromise its pseudorandomness using the extraction
key. This relaxed pseudorandomness is acceptable in the secret extraction setting
since the extraction key is held by an authority. However, there is no authority
for a public-key watermarking scheme. Thus, if we combine previous ideas for
obtaining public marking and that for obtaining public extraction, we will get a
public-key watermarkable “PRF” without pseudorandomness.

Moreover, known techniques for constructing watermarkable PRFs with pub-
lic extraction rely on iO. Despite recent breakthrough [JLS21] that constructs
indistinguishability obfuscations from well-founded assumptions, the construc-
tion is not post-quantum secure. Thus, new ideas that construct watermarkable
PRFs with public extraction from standard lattice assumptions are desired.

Our Results. In this work, we affirmatively answer the above question and
present constructions of public-key watermarking schemes for PRFs. To over-
come the technical issues, we introduce a new framework that constructs water-
markable PRFs from an unobfuscatable PRF [BGI+01] with robust learnability
[BP13] and a new primitive called hinting watermarkable PRF, which relaxes a
standard watermarking scheme by allowing its extraction algorithm to use an
extra “hint” about the watermarked PRF key. We remark that via our frame-
work, we can obtain (public-key) watermarkable PRFs with standard pseudo-
randomness from (public-key) hinting watermarkable PRFs with relaxed pseu-
dorandomness, and this solves the first technical issue described above. We then
construct public-key hinting watermarkable PRFs from either standard lattice
assumptions or iO, with different trade-offs that will be discussed below. To
obtain the lattice based constructions, we introduce some new techniques for
achieving public extraction from standard lattice assumptions. Besides, we con-
struct the first unobfuscatable PRF with robust learnability in this work. The
new framework, notion and constructions may find further applications.1

1 For example, we can apply our new framework to upgrade the watermarking schemes
in [QWZ18,KW19] to achieve full pseudorandomness, by viewing them as (secret-
key) hinting watermarkable PRFs. This solves an open problem in these two works.
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Table 1. Properties achieved by existing watermarkable PRFs. For the parameter
ε, the term “≈ 1

2
” denotes that ε = 1

2
− 1

poly
, the term “negl” denotes that ε can

be any negligible function, the term “1/exp” denotes that ε is equal to a concrete
value that is exponentially-small, and the term “≈ 1

6
” denotes that ε = 1

6
− 1

poly
. We

use “CR” to denote collusion resistant unremovability. We consider pseudorandomness
against an adversary with the mark key and the extraction key (even for a secret-key
watermarking scheme). We use “UK” to denote pseudorandomness of PRF evaluations
using unmarked keys and use “MK” to denote pseudorandomness of PRF evaluations
using marked keys.

Message Public Public Unremovability Pseudorandomness
Assumptions

Embedding Marking Extraction ε CR UK MK

[CHN+16] ✓ ✗ ✓ ≈ 1
2

✗ ✓ ✗ Lattice+iO
[BLW17] ✓ ✗ ✗ negl ✗ ✓ ✗ Lattice+iO

[YAL+19] ✓ ✗ ✓ negl ✓ ✓ ✗ Lattice+iO

[KW17] ✓ ✗ ✗ negl ✗ ✓ ✗ Lattice
[QWZ18] ✓ ✓ ✗ ≈ 1

2
✗ ✗ ✗ Lattice

[KW19] ✓ ✓ ✗ ≈ 1
2

✗ ✓‡ ✗ Lattice
✓ ✗ ✗ negl ✓ ✓ ✗ Lattice

[YAYX20]
✓ ✓ ✗ ≈ 1

2
✓ ✓‡ ✗ Lattice

✗ ✓ ✓ negl - ✓ ✓ Lattice
✓ ✓ ✓ 1/exp ✓ ✓ ✓ Lattice
✗ ✓ ✓ ≈ 1

6
- ✓ ✓ Lattice+FHE

✓ ✓ ✓ negl ✗ ✓ ✓ Lattice+iO

This Work

✓ ✓ ✓ ≈ 1
6

✗ ✓ ✓ Lattice+FHE+iO

‡: A weaker T -restricted pseudorandomness (see [KW19]) is achieved.

By instantiating our constructions, we obtain public-key watermarkable PRFs
from different assumptions. We consider three types of assumptions in this work,
namely, standard lattice assumptions, the assumption that the GSW encryption
scheme [GSW13] is circular secure2, and the existence of iO.The three assumptions
are denoted as “Lattice”, “FHE”, and “iO” respectively. Also, we consider construc-
tions in either the mark-embedding setting, where a program is either marked or
unmarked, or the message-embedding setting, where a marked program is embed-
ded with a message. Besides, we use ε to denote the fraction of inputs of the water-
marked circuits that can be modified by the adversary when defining unremovabil-
ity. More precisely, let λ be the security parameter, we have:

• From Lattice, we construct a public-key watermarkable PRF in the mark-
embedding setting, where ε = negl(λ), i.e., the scheme guarantees that an
adversary cannot remove the mark in a watermarked circuit if it modifies the
circuit on a negligible fraction of inputs.

• From Lattice, we construct a public-key watermarkable PRF in the message-
embedding setting. The scheme also has collusion resistant security. A caveat
of this construction is that it only has exponentially-small ε, i.e., the adversary
can modify the watermarked circuit on at most M = 2n/2poly(λ) inputs, where
n is the input length. Nonetheless, we still have M = 2poly(λ).

2 Formal definition for this assumption can be found in the full version.
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Fig. 1. The roadmap for constructing public-key watermarkable PRFs from concrete
assumptions. The dotted lines denote results from previous work.

• From Lattice and FHE, we construct a public-key mark-embedding water-
markable PRF with ε = 1/6 − 1/poly(λ).

• From Lattice and iO, we construct a public-key message-embedding water-
markable PRF with ε = negl(λ).

• From Lattice, FHE and iO, we construct a public-key message-embedding
watermarkable PRF with ε = 1/6 − 1/poly(λ).

Features of our constructions, together with comparison with previous water-
markable PRFs are presented in Table 1. Also, we illustrate how to instantiate
our public-key watermarkable PRFs from concrete assumptions in Fig. 1.

We stress that all public-key watermarkable PRFs constructed in this work
have pseudorandomness for marked keys, i.e., no one could distinguish outputs
of a watermarked PRF key and outputs of a random function. This property
is not achieved in previous watermarkable PRFs with public extraction. This is
because in these constructions, an adversary with an extraction key can extract
meaningful information via oracle access to the marked key. In our construction,
we circumvent this barrier by using a white-box extraction algorithm, where the
algorithm must view the code of the marked key. We refer the reader to [Zha21]
for a more detailed discussion on the notion of white-box tracing/extraction.

Open Problems. We initiate the study of public-key watermarkable PRFs in
this work. We give mark-embedding constructions from lattice and message-
embedding constructions from iO. We also construct a lattice based message-
embedding scheme, but it restricts the parameter ε = 1/2poly(λ). This is smaller
than the parameter ε in previous works, which is either a constant number
or restricted by any (rather than a concrete) negligible function. The main
open problem is therefore to construct a message-embedding public-key water-
markable PRF with larger ε from standard lattice assumptions. Besides, in our
mark-embedding constructions and iO based constructions, we need additionally
assume circular security of the GSW scheme to achieve a constant ε. It will be
interesting to obtain constant ε without such additional assumptions.
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Another important security property that is not discussed in this paper is
unforgeability, which requires that no one could watermark a new program without
a mark key. This property is useful for certifying the watermarked objects in the
ownership protection scenario. It was believed that watermarking schemes with
public marking contradicts with unforgeability, since there is no secret mark key
in the scheme. However, as shown in [YAYX20], the conflict can be overcome via
defining security in a hybrid model, where the unremovability and pseudorandom-
ness are defined against an adversary with the mark key (i.e., the mark key can
be made public when considering these two security properties), and the unforge-
ability is defined against an adversary without the mark key. They also construct
watermarkable PRFs secure in this hybrid model, but their techniques cannot be
applied to our constructions here. It is an interesting open problem to construct a
public-key watermarkable PRF with unforgeability in the hybrid model.

2 Technical Overview

In this section, we provide a technical overview of our constructions of public-
key watermarkable PRFs. We first consider a relaxed notion of watermarking,
where each PRF key is associated with a “hint” that can be used to help extract
messages. We call it hinting watermarking and in Sect. 2.1, we explain our main
ideas for constructing public-key hinting watermarkable PRFs. Then in Sect. 2.2,
we show how to upgrade a public-key hinting watermarkable PRF to a standard
public-key watermarkable PRF by using an unobfuscatable PRF with “robust
learnability”. Existing constructions of unobfuscatable PRFs [BGI+01] do not
have robust learnability and in Sect. 2.3, we describe how to achieve it.

2.1 Constructing Public-Key Hinting Watermarkable PRFs

The syntax of a hinting watermarkable PRF is identical to a standard water-
markable PRF except that each of its PRF keys is associated with a hint and the
hint is used in the extraction algorithm to help extract messages. We assume
that the extraction algorithm always uses the correct hint when defining the
security of a hinting watermarking scheme, i.e., given a (modified) watermarked
PRF key, the hint associated with the PRF key will be employed in the extrac-
tion algorithm. Besides, we require its security to hold against an adversary that
has the hint associated with the challenge key, yet we only need its pseudoran-
domness to hold against an adversary without the hint. Next, we describe how
to construct public-key hinting watermarkable PRFs.

Construction from Indistinguishability Obfuscation. We first present a
general construction of public-key hinting watermarkable PRF from a water-
markable PRF F with secret marking and public extraction. Our main strategy
is to generate a fresh mark key/extraction key pair for each PRF key. In this
way, there are no global mark keys that should be kept secret. In addition, we
set the hint for a PRF key as its extraction key and this allows the extraction
key to be used in the extraction algorithm.
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In more detail, the PRF key of the public-key hinting watermarkable PRF
is K = (mk, k) and the associated hint is hint = ek, where (mk, ek) is a
mark key/extraction key pair of F and k is a PRF key of F. Given the PRF
key K = (mk, k) and an input x, the evaluation algorithm of the new scheme
runs the evaluation algorithm of F on input (k, x), and given K = (mk, k) and
a message msg, the marking algorithm of the new scheme runs the marking
algorithm of F on input (mk, k,msg). Besides, given a circuit C and a hint
hint = ek, the extraction algorithm runs the extraction algorithm of F on input
(ek, C). Security of the constructed public-key hinting watermarkable PRF comes
from the assumption that the correct hint is always used and the fact that F is
unremovable even if ek is public.

Now, if we instantiate this general construction from previous watermarkable
PRFs with public extraction [CHN+16], we obtain public-key hinting water-
markable PRFs from iO. Next, we propose constructions from cryptographic
primitives that can be instantiated from standard lattice assumptions, including
puncturable PRF, functional encryption, etc.

Mark-Embedding Public-Key Hinting Watermarking from Lattices.
First, we consider mark-embedding public-key hinting watermarkable PRFs.

The Starting Point. The starting point of our construction is a watermarking
scheme with public marking and secret extraction presented in [QWZ18]. The
scheme is built on a puncturable PRF [SW14] and a public key encryption
(PKE). A puncturable PRF F is a family of PRF that allows one to derive
a punctured key kx∗ from a PRF key k, where Fkx∗ (·) and Fk(·) evaluate iden-
tically on almost all inputs except at the “punctured” point x∗. Its security
requires that given the punctured key kx∗ , Fk(x∗) is still pseudorandom.

Here, we slightly modify the scheme and describe it as a hinting watermarking
scheme. Its extraction key is a secret key of the PKE scheme. Also, the PRF
key K = k is a key of the puncturable PRF F, and the hint is hint = (x∗, ct∗),
where x∗ is a random input of F and ct∗ is an encryption of y∗ = Fk(x∗). Given
a PRF key K = k and an input x, the evaluation algorithm outputs Fk(x).
Also, on input a PRF key K = k, the marking algorithm punctures k on x∗ and
generates a circuit C s.t. C(x) = Fkx∗ (x). To test if a circuit C is watermarked, the
extraction algorithm first recovers y∗ by decrypting ct∗ in the hint and outputs
“marked” iff C is punctured (i.e., C(x∗) �= y∗).

By security of the puncturable PRF and the PKE scheme, y∗ is hidden from
an adversary given a watermarked circuit and the hint. Thus, the adversary
cannot create a circuit that outputs y∗ on input x∗ and security of the scheme
follows. However, when the extraction key, which is the secret key of the under-
lying PKE scheme, is made public, the adversary will be able to recover y∗ from
ct∗ and thus compromise security of the scheme.

On Achieving Public Extraction. We solve the problem by designing an extrac-
tion algorithm that tests if output of a circuit equals to a given value without
knowing the target value. This is achieved by using an injective one way function
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f . More precisely, in our new scheme, there are no extraction keys and the cipher-
text ct∗ in the hint is replaced with z∗ = f(y∗) (i.e., hint = (x∗, z∗)), where
y∗ = Fk(x∗). For a PRF key K = k, the evaluation algorithm still outputs Fk(x)
on input x and the marked version of K is still a circuit C s.t. C(x) = Fkx∗ (x).
Besides, to test if a circuit C is watermarked, the extraction algorithm outputs
“marked” iff z∗ �= f(C(x∗)).

The new extraction algorithm actually tests if C(x∗) is not equal to y∗. Also,
security of the one way function plus security of the puncturable PRF guarantee
that the adversary cannot learn y∗ from a watermarked circuit and the hint.
Thus, it is not able to produce a circuit that outputs y∗ on input x∗. Therefore,
our new construction achieves security in the public extraction setting and thus
is a secure public-key hinting watermarkable PRF.

Message-Embedding Public-Key Hinting Watermarking from Lat-
tices. Next, we show how to construct public-key hinting watermarkable PRFs
with message embedding from lattices. The construction relies on a functional
encryption (FE) scheme [BSW11,O’N10] and is inspired by the construction
of watermarkable PKE scheme presented in [GKM+19]. In a nutshell, an FE
scheme is a PKE scheme that associates each secret key skf with a function f ,
where the secret keys can be derived from a master secret key. Besides, by using
the secret key skf to decrypt a ciphertext that encrypts a plaintext m, one can
obtain f(m), but nothing else.

From FE to Publicly Verifiable Puncturing. We can use the FE scheme to realize
a puncturable “PRF” that supports public verifiability of punctured keys. More
precisely, we set the normal PRF key as a secret key skfε

of FE, where fε(t‖μ) =
μ. Also, we puncture the key on (inputs that encrypts) plaintexts with prefix t∗

by generating a key skft∗ , where ft∗(t‖μ) = μ if t �= t∗ and ft∗(t‖μ) = 0 if t = t∗.
To evaluate the PRF (with either a normal PRF key or a punctured key), the
evaluation algorithm just decrypts the input with the secret key. Note that the
normal PRF key and the punctured key function identically on an input if it
encrypts a plaintext with prefix t �= t∗. In addition, given a punctured key, one
could not learn any information about μ from punctured inputs that encrypt
t∗‖μ, due to security of the FE scheme. Finally, given the master public key, one
can publicly check if a key is punctured on plaintexts with prefix t∗ by sampling
a random μ, encrypting t∗‖μ, and checking if its decryption is not equal to μ.

From Publicly Verifiable Puncturing to Public-Key Hinting Watermarking. The
FE-based puncturable “PRF” with public verifiability implies a public-key hint-
ing watermarkable “PRF” with mark embedding immediately. In particular, the
PRF key of the scheme is K = (msk, skfε

), where msk is a master secret key
of FE and skfε

is a secret key derived from msk. The hint for K is the master
public key mpk for msk. Given an input x, the evaluation algorithm decrypts x
with skfε

and outputs the decryption result. The marking algorithm punctures
skfε

on a public random string t∗ and outputs a circuit that decrypts inputs with
the punctured key. Given a circuit C, the extraction algorithm outputs “marked”
iff the circuit is punctured on plaintexts with prefix t∗. The extraction algorithm
can be run publicly with the hint mpk since the underlying puncturable PRF
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is publicly verifiable. Also, security of the hinting watermarking scheme follows
from security of the puncturable PRF directly.

On Supporting Message Embedding. Based on this, we construct hinting water-
marking scheme with message embedding by employing the message embed-
ding technique introduced in [GKM+19,YAL+19]. To support this, we define
gε(ind‖t‖μ) = μ and define

gmsg,t∗(ind‖t‖μ) =

{
0 If t = t∗ ∧ ind ≥ msg

μ Otherwise

In the message-embedding construction, the PRF key is K = (msk, skgε
) and

the hint is still the corresponding master public key. The evaluation algorithm
decrypts the input with skgε

, and to embed a message msg into a PRF key,
the marking algorithm generates a circuit that decrypts with the secret key
skgmsg,t∗ . Then, to extract the embedded message from a circuit C, the extraction
algorithm will test if the circuit is punctured on prefix ind‖t∗ for all possible3 ind
and output msg if it is not punctured on prefix (msg − 1)‖t∗, but is punctured
on prefix msg‖t∗.

Now, given a watermarked circuit embedded with a message msg∗, the adver-
sary cannot modify the embedded message since by security of the FE scheme:

1. The adversary cannot distinguish a ciphertext encrypting ind‖t∗‖μ from a
ciphertext that encrypts a random plaintext if ind < msg∗. As the adversary
is not allowed to change the functionality of the watermarked circuit too
much, it cannot puncture on these ciphertexts.

2. The adversary cannot learn μ from a ciphertext encrypting ind‖t∗‖μ if
ind ≥ msg∗, thus it cannot “unpuncture” the watermarked circuit on these
punctured points.

Similarly, we can show that the construction is collusion resistant if the under-
lying FE is collusion resistant.

On Achieving Pseudorandomness. The above construction actually does not have
pseudorandomness. We solve the problem by using a PKE scheme with pseudoran-
dom ciphertexts and a PRF F. In more detail, we add a secret key k of F in both
the normal PRF key and the marked keys. Then the evaluation algorithm (resp.
the marked circuit) will encrypt the output of the evaluation algorithm (resp. the
marked circuit) of previous construction with the PKE scheme, where the encryp-
tion randomness is Fk(x). Note that we can put the secret key of the PKE scheme
into the hint and thus the extraction algorithm can still test if a given circuit is
punctured on plaintexts with a specific prefix. Thus, security of the scheme still
holds. In addition, its pseudorandomness is guaranteed by the (ciphertext) pseu-
dorandomness of the underlying PRF and PKE scheme.

On Instantiating the FE Scheme. In above discussion, we implicitly assume that
all ciphertexts in the ciphertext space of the FE scheme (i.e., the input space of
3 Here, we assume that the message space of the hinting watermarking scheme is

of polynomial-size, and this restriction can be removed if we use the jump finding
technique introduced in [BCP14,NWZ16].
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the hinting watermarkable PRF) can be output by the encryption algorithm.
However, to the best of our knowledge, existing FE schemes from standard
assumptions [GVW12,GKP+13,AR17,AV19] do not satisfy this property. Even
worse, in all of these schemes, the ratio between the number of honestly encrypted
ciphertexts and the size of the ciphertext space is exponentially-small. Thus, we
have to carefully deal with those “invalid” ciphertexts, which are not output by
the encryption algorithm, in the ciphertext space.

First, to ensure that the functionality of a PRF key will not change significantly
after watermarking, we need to guarantee that both the normal PRF key and the
watermarked PRF key, which use different secret keys of the FE scheme, evalu-
ate identically on input an invalid ciphertext. We achieve this by requiring the FE
scheme to have a special correctness, namely, given any secret key and any invalid
ciphertext, the decryption result is always a decryption failure symbol ⊥. We con-
struct FE scheme with this correctness property from any FE scheme with perfect
correctness and statistically sound non-interactive zero-knowledge (NIZK) proofs.

Besides, since the ratio ρ between the number of valid ciphertexts and the
number of all possible ciphertexts is exponentially-small, the adversary can dam-
age the evaluation on all valid ciphertexts and thus remove the embedded mes-
sage even if it can only modify the watermarked circuit on a negligible fraction of
inputs. We circumvent this problem by requiring that the adversary has to sub-
mit a circuit that agrees with the watermarked circuit on a (1−ρ·(1−1/poly(λ)))
fraction of inputs. Note that even with this restriction, the adversary can still
modify the watermarked circuit on exponentially-many inputs.

Remark 2.1. Our FE based construction only allows the adversary to modify
the watermarked circuit on an exponentially-small fraction of inputs. Actually,
a simple construction from any PRF also satisfies this weak security requirement.
In particular, the marking algorithm replaces the PRF outputs with the embed-
ded message if the input has prefix 0λ, and the extraction algorithm runs the
watermarked circuit on random inputs with prefix 0λ and outputs the majority
of the evaluation results. In this construction, the marking algorithm changes
the PRF on 1/2λ fraction of inputs, and an adversary can remove the watermark
only if it changes the watermarked circuit on about 1/2λ+1 fraction of inputs.
However, the scheme is less preferable for the following two reasons:

• In this construction, the adversary can remove the watermark by merely
changing the circuit on half of the points modified by the marking algorithm.
In contrast, the marking algorithm in our construction only changes the out-
put on a negligible fraction of valid ciphertext, and the adversary has to
change the outputs on nearly all valid ciphertexts to remove the watermark.

• Our construction will have a good parameter if we use an FE scheme with
dense valid ciphertexts in its ciphertext space, but it seems impossible to
improve the parameter of the simple construction described above.

We also would like to stress that our goal is to explore the possibility of building
full-fledged public-key watermarkable PRFs from standard assumptions rather
than constructing a watermarking scheme with weak security guarantee. We
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demonstrate that the goal is achievable, but our solution has some restrictions.
The restrictions can be removed via either using a better FE scheme or improving
the proposed construction. We believe our result would inspire future works that
completely solve the problem.

2.2 From Public-Key Hinting Watermarkable PRFs to Public-Key
Watermarkable PRFs

Next, we discuss how to transform a public-key hinting watermarkable PRF to
a public-key watermarkable PRF. Note that a hinting watermarking scheme is
already a standard watermarking scheme except that its extraction algorithm
needs the correct hint for the given watermarked key. Thus, the main problem
here is how to send the correct hint to the extraction algorithm.

To complete this task, we use an unobfuscatable PRF with robust learnabil-
ity. In a nutshell, in an unobfuscatable PRF UF, each secret key uks is embedded
with a secret information s. The function UFuks

(·) is still pseudorandom if the
adversary is only given oracle accesses to it. In addition, one can learn the secret
information s given any circuit that implements the function. An unobfuscatable
PRF has robust learnability if the secret information s can be learned from any
circuit that approximately implements UFuks

(·), i.e., the circuit may differ from
the function on a small fraction of inputs.

Given a public-key hinting watermarkable PRF HF and an unobfuscatable
PRF UF, we can construct a public-key watermarkable PRF as follows. The PRF
key of the new scheme includes the PRF key k of HF and the PRF key ukhint of
UF, where hint is the hint for k and is embedded into ukhint as the secret informa-
tion. Given an input x, the evaluation algorithm outputs (HFk(x),UFukhint(x)).
To embed a message msg into the PRF key, the marking algorithm first gen-
erates kmsg by embedding msg to k and then outputs a circuit C s.t. C(x) =
(HFkmsg

(x),UFukhint(x)). Finally, given a circuit C, the extraction algorithm first
recovers hint from the second part of the circuit and then extracts the message
from the first part of the circuit with hint.

Robust learnability of UF ensures that the extracted hint is correct, thus,
security of the new scheme comes from the security of the underlying hinting
watermarking scheme directly. The above construction also has pseudorandom-
ness for unmarked keys due to the pseudorandomness of the underlying schemes,
but it would not have pseudorandomness for marked keys if the underlying hint-
ing watermarkable PRF does not have this property (recall that we do not require
it when defining hinting watermarkable PRFs).

On Achieving Pseudorandomness for Marked Keys. We solve this issue by addi-
tionally using a PRF F to mask outputs of HF in both the evaluation algorithm
and the marked circuit. The key k′ of F is also embedded into the PRF key of
UF and this allows the extraction algorithm to obtain k′ and use it to unmask
outputs of HF. In this way, security of the scheme is preserved. Besides, pseu-
dorandomness of UF guarantees that k′ is hidden to an adversary that can only
access the marked key in a black-box manner. Then by the pseudorandomness
of F and UF, the outputs of the marked key are also pseudorandom.
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2.3 Constructing Robust Unobfuscatable PRFs

It remains to show how to construct an unobfuscatable PRF with robust learn-
ability, which is a PRF family UF that allows one to learn the secret information
s embedded in a PRF key ks from any circuit that agrees with UFks

(·) on a
large fraction of inputs. We first review existing constructions of unobfuscatable
functions and explain why they do not lead to a robust unobfuscatable PRF.

The first constructions of unobfuscatable (pseudorandom) functions are pre-
sented by Barak et al. in [BGI+01]. Their unobfuscatable PRF also supports
learnability from a circuit that approximates the PRF, but it does not allow the
circuit to modify the PRF evaluation on particular inputs with a high proba-
bility. In contrast, we require that the secret information can be learned from a
circuit that may modify the PRF evaluation on any input with probability 1 as
long as the fraction of modified inputs is small. Then, in [BP13], Bitansky and
Paneth construct an unobfuscatable function with robust learnability. However,
the extraction algorithm of the scheme needs a verification key and it should
be included in all outputs of the function. Therefore, the scheme cannot be
pseudorandom. Recently, Zhandry [Zha21] constructs a robust unobfuscatable
function for decryption functionality from an unobfuscatable function without
robust learnability and a public-key traitor tracing scheme. It seems that the
idea also works for the PRF setting, but this needs a public-key watermarkable
PRF, which does not have a candidate construction yet4.

Next, we describe our constructions of unobfuscatable PRFs with robust learn-
ability. The constructions are inspired by techniques provided in [BGI+01,BP13].
In particular, both our construction and the construction of robust unobfuscat-
able function given in [BP13] can be viewed as random-self-reducible versions of
the non-robust unobfuscatable functions constructed in [BGI+01]. However, as
discussed above, the main techniques in [BP13] contradict the requirement of pseu-
dorandomness, and we introduce some new ideas to overcome the difficulties.

Construction from Fully Homomorphic Encryption. The construction
needs two PRFs F and F′. Besides, it relies on a special fully homomorphic
encryption (FHE) scheme with the following properties5:

1. One can homomorphically evaluate a circuit over a ciphertext and rerandom-
ize a ciphertext, without using the public key of the FHE scheme.

2. The ciphertext of the FHE scheme should be pseudorandom.
3. Even given the secret key of the FHE scheme, no one could distinguish a

rerandomized ciphertext that encrypts a random plaintext from a random
string in the ciphertext space.

The PRF key of the constructed robust unobfuscatable PRF UF is K =
(α, β, k, k′, pk, sk, s), where α, β are random strings, k and k′ are PRF keys of F
and F′ respectively, (pk, sk) is a key pair of the FHE scheme, and s is the secret

4 Recall that the main goal of this work is to construct the first public-key watermark-
able PRF.

5 We show how to construct the desired FHE scheme later in this section.
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information. Then, given an input X = (ind, x, ct), the PRF is defined as follows:

UFK(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Enc(pk, α;F′

k′(X)) If ind = 0;
Fk(x‖ct) If ind = 1;
Fk(x ⊕ α‖ct) ⊕ β If ind = 2;
Fk(x ⊕ Dec(sk, ct) ⊕ β‖ct) ⊕ s If ind = 3.

where Enc and Dec are the encryption algorithm and the decryption algorithm
of the underlying FHE scheme respectively.

Robust Learnability of the Construction. We first explain why the above con-
struction has robust learnability. For simplicity, we assume that the extractor is
given a circuit C that agrees with UFK(·) on all but negligible fraction of inputs.

The extractor first gets an encryption of α via computing ct∗α = C(0‖x1‖ct1),
where x1 and ct1 are random strings. As C and UFK(·) agree on all but negligible
fraction of inputs, we have ct∗α = UFK(0‖x1‖ct1) = Enc(pk, α;F′

k′(0‖x1‖ct1))
with all but negligible probability, i.e., ct∗α should be an encryption of α.

Then, the extractor obtains an encryption of β as follows. It first computes
y2 = C(1‖x2‖ct2), where x2 and ct2 are random strings. Similar, we have y2 =
Fk(x2‖ct2) with all but negligible probability. Next, it runs a circuit P(·) on ct∗α
to obtain ct∗β , where for any string a, P(a) = C(2‖x2 ⊕ a‖ct2) ⊕ y2. Again, with
all but negligible probability, we have C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2) =
Fk(x2‖ct2) ⊕ β, which implies P(α) = β, i.e., ct∗β is an encryption of β.

Now, with ct∗α and ct∗β , the extractor is ready to learn the secret information.
It first samples a random γ and computes ct∗3 as a rerandomized encryption of β ⊕
γ. Then it computes y3 = C(3‖x3‖ct∗3), where x3 is a random string. Note that ct∗3
is also random due to Property 3 of the special FHE scheme and the fact that γ is
a random string. Thus we have y3 = UFK(3‖x3‖ct∗3) = Fk(x3 ⊕ γ‖ct∗3) ⊕ s with
all but negligible probability. Next, the extractor computes y′

3 = C(1‖x3 ⊕ γ‖ct∗3)
and recovers s̄ = y3 ⊕ y′

3. As x3 is a random string, γ is still hidden given
x3 ⊕ γ, thus x3 ⊕ γ‖ct∗3 is indistinguishable from a random string and with all
but negligible probability, we have y′

3 = UFK(1‖x3 ⊕ γ‖ct∗3) = Fk(x3 ⊕ γ‖ct∗3),
which implies that s̄ = s. Therefore, the extractor can succeed in recovering s
from the circuit C with all but negligible probability.

Remark 2.2. The above construction also supports learnability from a circuit
that deviates from UFK(·) on a constant fraction of inputs. To achieve this,
the extractor needs to produce multiple test points in each step and choose the
majorities. In more detail, let N be a suitable polynomial. The extractor first
produces N ciphertexts ct∗α via running the circuit C on N independent inputs
(x1, ct1). Then for each ct∗α, it produces N ciphertexts ct∗β and for each pair
(ct∗α, ct∗β), it computes N results s̄. The extractor sets the extraction outputs as
the majority-of-majorities-of-majorities. More precisely, for each pair (ct∗α, ct∗β),
it chooses the extracted result for this pair as the majority of all N results
s̄ produced for this pair. It also chooses the extracted result for each ct∗α as
the majority of all N results for the N pairs (ct∗α, ct∗β). Finally, it outputs the
majority of all N results for the N ciphertexts ct∗α.
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In above extraction procedure, inputs (excluding the index ind) to the circuit
C are all random since they are composed of either random strings or rerandom-
ized ciphertexts encrypting random plaintexts, which are random due to Prop-
erty 3 of the special FHE scheme. Thus, if the fraction of inputs that C differs
with UFK(·) is a small constant δ, the majority result at each step should be the
correct secret information. In particular, the extraction result will be correct if

Pr[C(0‖x1‖ct1) = UFK(0‖x1‖ct1)] > 1/2

Pr[C(1‖x2‖ct2) = UFK(1‖x2‖ct2) ∧ C(2‖x2 ⊕ α‖ct2) = UFK(2‖x2 ⊕ α‖ct2)] > 1/2

Pr[C(1‖x3 ⊕ γ‖ct∗
3) = UFK(1‖x3 ⊕ γ‖ct∗

3) ∧ C(3‖x3‖ct∗
3) = UFK(3‖x3‖ct∗

3)] > 1/2

for random x1‖ct1, x2‖ct2, and x3‖ct∗
3, and all three inequalities can be satisfied if

δ < 1/8. Besides, the constant δ can be improved to be about 1
6

if we slightly modify
the above construction. Please see the full version for more details.

Pseudorandomness of the Construction. Next, we explain why UF is pseudoran-
dom. We assume w.l.o.g. that all queries submitted by the adversary are distinct.

First, suppose that there are no collisions in the inputs to Fk(·) when answering
queries from the adversary, then outputs of Fk(·) would be indistinguishable from
strings sampled uniformly and independently from its output space, i.e., outputs
of UFK(ind‖x‖ct) will be pseudorandom if ind ∈ {1, 2, 3}. This also implies that
the adversary cannot learn any information about sk. Then by ciphertext pseu-
dorandomness of the FHE scheme, outputs of UFK(ind‖x‖ct) will also be pseu-
dorandom if ind = 0. To summarize, the adversary cannot distinguish UF from a
random function if there are no collisions in the inputs to Fk(·).

Next, we show why the collisions do not occur. In a nutshell, this is because to
make a collision, the adversary must have the knowledge of α, β, or encryption
of β, and none of them can be obtained via black-box accesses to UFK(·). In
more detail, assume that there are no collisions in the first q queries to the
oracle, then responses of these q queries would be indistinguishable from random
strings, which contain no information. Thus, the adversary also cannot make a
collision in the (q +1)-th query. There is no collision if the adversary only makes
one oracle query, then by the above statement, the adversary cannot make any
collision when querying UFK(·). Therefore, the pseudorandomness follows.

Construction from One Way Function. Next, we show how to construct
robust unobfuscatable PRFs without using FHE. More precisely, the new con-
struction only relies on a standard secret-key encryption scheme with some spe-
cific properties, which can be instantiated from any one way function.

Following [BGI+01,BP13], we remove the dependency on homomorphic
encryption via performing the homomorphic operations by UFK(·). In partic-
ular, given an input X = (ind, x, ct), the new PRF proceeds identically as in the
construction from FHE if ind ∈ {0, 1, 2, 3}. In addition, if ind = 4, it decrypts the
ciphertext ct, performs the specified homomorphic operation over the decrypted
bits and outputs an encryption of the evaluation result, where the randomness
is derived from F′

k′(X).
The extractor can use this additional functionality of UF to evaluate P gate

by gate. Thus, it can still succeed in extracting the secret information from a
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circuit C that approximates UFK(·) even if the underlying encryption scheme
does not support homomorphic evaluation over encrypted data.6

Constructing Special Fully Homomorphic Encryption. We finally show
how to construct the special FHE needed. Our starting point is the GSW homo-
morphic encryption scheme presented in [GSW13]. In a nutshell, the secret key
of the scheme is a random vector s ∈ Z

n
q . Its public key contains a matrix

A =
(

B
sᵀB + eᵀ

)
mod q

and a ciphertext ct∗sk, where B is a random matrix in Z
n×m
q , e is a “short”

vector in Z
m and ct∗sk is an encryption of the secret key s. The ciphertext that

encrypts a bit μ is defined as7

C = μ · G + A · R mod q

where R is a random binary matrix and G is the standard powers-of-two gadget
matrix [MP12]. Besides, to rerandomize a ciphertext C, the rerandomization
algorithm adds the ciphertext with an encryption of 0. Next, we describe how
to adapt the construction to achieve the three properties needed.

Achieving Property 1 and Property 2. In the evaluation algorithm of the GSW
scheme, the ciphertext ct∗sk should be used to perform the bootstrapping proce-
dure. Also, the rerandomization algorithm needs the matrix A to generate an
encryption of 0. Both variables are contained in the public key and thus the first
property, which requires that the evaluation algorithm and the rerandomization
algorithm can be performed without using the public key, is not satisfied.

We solve the problem by putting randomized versions of both variables into
the ciphertext of the scheme. In particular, the new ciphertext is (ctμ, ctsk, ct0),
where ctμ is an encryption of the message, ctsk is generated by reramdomizing
ct∗sk and ct0 is a fresh encryption of 0. Then we can use ctsk and ct0 instead
of ct∗sk and A when running the evaluation algorithm and the rerandomization
algorithm, and Property 1 follows. In addition, as the new ciphertext consists
of ciphertexts of the original scheme, the ciphertext pseudorandomness of the
modified scheme (i.e., Property 2) comes from that of the original scheme, which
can be guaranteed by the circular-secure learning with errors (LWE) assumption.

There is one subtle issue when employing this scheme in the construction of
unobfuscatable PRF. That is the extractor can obtain ct0 only from output of
the circuit, which may deviate the PRF evaluation on a 1/6 fraction of inputs,
and the obtained ct0 may not be pseudorandom (e.g., the circuit could rejects
to output ct0 if its first 3 bits are 000). As a result, the output distribution
of the rerandomization algorithm may also be changed. We fix the issue by

6 We notice that however, the trick presented in Remark 2.2 does not work in this
setting as it will require the extractor to produce NO(|C|) test points, which is expo-
nential in the size of the circuit C. Thus, the construction only supports learnability
from a circuit that deviates from UFK(·) on a negligible fraction of inputs.

7 Here, we change the format of the ciphertext of the original GSW scheme slightly.
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including multiple ct0 in each ciphertext and use a random subset sum of them
in the rerandomization algorithm. The selection of the subset provides additional
entropy and we can show that the result is pseudorandom by using the leftover
hash lemma and the fact that A is pseudorandom.

Achieving Property 3. The third property of the special FHE scheme requires
that a rerandomized ciphertext of a random plaintext should look uniform even
given the secret key of the FHE scheme. Here we relax this property and only
require that one can transform a rerandomized ciphertext of the FHE scheme
into a ciphertext with this strong uniformity. The transformed ciphertext is still
decryptable, but does not have to support homomorphic evaluation over it. Note
that this relaxed property is sufficient in our construction of unobfuscatable PRF.

Given a ciphertext CT = (C, ctsk, ct0), where C encrypts a bit μ, we first
transform it as:

c =
(

0
μ · q+1

2

)
+ Ar mod q

where r is a short vector in Z
m
q . We can obtain c via summing some columns of

C. In addition, to decrypt the ciphertext, one can first compute

(−sᵀ, 1) · c = μ · q + 1
2

+ eᵀ · r mod q (1)

where e is the short error term in A. Then the decryption result will be 1 if Eq.
(1) is close to q+1

2 and it will be 0 if Eq. (1) is close to 0.
However, the above transformed ciphertext can be distinguished from a ran-

dom vector given s due to the following decryption attack. Given a ciphertext c,
which is either a transformed ciphertext or a random vector, the distinguisher
with the secret key s first computes Eq. (1). It will get a number that is close
to q+1

2 or 0 if c is a transformed ciphertext and it will get a random number in
Zq if c is a random vector. Thus, it could distinguish these two cases.

We prevent the attack via adding a number z
$← [0, q−1

2 ] to the last element
of the transformed ciphertext and require that q is much larger than the error
term eᵀ ·r. One will get μ· q+1

2 +eᵀ ·r+z via computing Eq. (1) on a transformed
ciphertext that encrypts μ, and this will be a random number in [μ· q+1

2 , μ· q+1
2 +

q−1
2 ] due to the smudging lemma [AJLA+12], which states that a small error

(i.e., eᵀ ·r) can be smudged out by a large error (i.e., z). The encrypted message
can still be recovered from c via computing Eq. (1) and checking if the result
exceeds q−1

2 . Besides, if c is a transformed ciphertext that encrypts a random
bit, then Eq. (1) would also be a random number in Zq and thus the distinguisher
cannot distinguish it from a random vector.

3 Notations

We write negl(·) to denote a negligible function and write poly(·) to denote a
polynomial. For integers a ≤ b, we write [a, b] to denote all integers from a to
b. Let s be a string, we use |s| to denote the length of s. For integers a ≤ |s|,
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s[a] denotes the a-th character of s and for integers a ≤ b ≤ |s|, s[a : b] denotes
the substring (s[a], s[a + 1], . . . , s[b]). Let S be a finite set, we use |S| to denote

the size of S, and use s
$← S to denote sampling an element s uniformly from

set S. Let D be a distribution, we use d ← D to denote sampling d according
to D. Following the syntax in [BLW17], for a circuit family C indexed by a
few, say m, constants, we write C[c1, . . . , cm] to denote a circuit with constants
c1, . . . , cm. We use � to denote the NAND gate and suppose that all circuits
are composed exclusively by NAND gates unless otherwise specified. We provide
more background knowledge and recall definitions of cryptographic primitives
employed in this work in the full version.

4 Definition of Public-Key Watermarkable PRFs

In this section, we provide the definition of public-key watermarkable PRFs,
which is adapted from definitions of watermarkable PRFs in previous works
[CHN+16,BLW17,KW17,QWZ18,KW19,YAL+19,YAYX20]. More precisely, a
public-key watermarkable PRF with key space K, input space X , output space
Y, and message space M consists of the following algorithms:

• Setup(1λ) → PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP ) → k : On input the public parameter PP , the key generation
algorithm outputs a PRF key k ∈ K.

• Eval(PP, k, x) → y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the circuit is unmarked.

Correctness. The correctness of a watermarking scheme includes three prop-
erties. The functionality preserving property requires that the watermarked key
can roughly preserve the functionality of the original key.

Definition 4.1 (Functionality Preserving). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP ), C ← Mark(PP, k,msg), x

$← X , then we have
Pr[C(x) �= Eval(PP, k, x)] ≤ negl(λ).

The extraction correctness requires that the extraction algorithm can extract
the correct message from an honestly-watermarked key and will obtain the
“unmarked” symbol when extracting an unmarked key.

Definition 4.2 (Extraction Correctness). For any msg ∈ M, let PP ←
Setup(1λ), k ← KeyGen(PP ), and C ← Mark(PP, k,msg), then we have

Pr[Extract(PP, C) �= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·)) �=⊥] ≤ negl(λ)
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The meaningfulness property requires that most circuits are unmarked, which
rules out the trivial construction that regards all circuits as marked.

Definition 4.3 (Watermarking Meaningfulness). For any circuit C : X →
Y, let PP ← Setup(1λ), then we have Pr[Extract(PP, C) �=⊥] ≤ negl(λ).

Pseudorandomness. Our definition of pseudorandomness is twofold, including
pseudorandomness for unmarked keys and that for marked keys. The properties
require that given oracle access to an unmarked PRF key (or a marked key), the
adversary cannot distinguish it from a random function.

Definition 4.4 (Pseudorandomness for Unmarked Keys). Let PP ←
Setup(1λ), k ← KeyGen(PP ), and f be a random function from X to Y. Also, let
O0(·) be an oracle that takes as input a string x ∈ X and returns Eval(PP, k, x),
and let O1(·) be an oracle that takes as input a string x ∈ X and returns f(x).
Then for all probabilistic polynomial-time (PPT) adversary A, we have:

| Pr[AO0(·)(PP ) = 1] − Pr[AO1(·)(PP ) = 1] |≤ negl(λ)

Definition 4.5 (Pseudorandomness forMarkedKeys).For anyPPTadver-
sary A = (A1,A2), let PP ← Setup(1λ) and k ← KeyGen(PP ). Also, let
(msg, state) ← A1(PP ), C ← Mark(PP, k,msg), and f be a random function
from X to Y. Let O0(·) be an oracle that takes as input a string x ∈ X and returns
C(x), and let O1(·) be an oracle that takes as input a string x ∈ X and returns f(x).
Then we have:

| Pr[AO0(·)
2 (state) = 1] − Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)
Unremovability. This is the main security requirement for a watermarking
scheme, which requires that the adversary cannot remove or modify the messages
embedded in a random PRF key without significantly changing its functionality.
Definition 4.6 (Q-Bounded ε-Unremovability). A watermarkable PRF is
Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible adver-
saries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the experi-
ment ExptUR as follows:

1. The challenger samples PP ← Setup(1λ) and k∗ ← KeyGen(PP ).
2. Then, it returns PP to A and answers A’s challenge oracle queries. Here, A

is only allowed to query the challenge oracle for at most Q times.
• Challenge Oracle. On input a message msg ∈ M, the challenge oracle

returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.
3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff

Extract(PP, C̃) �∈ Q∗. Here, we use Q∗ to denote all messages submitted
to the challenge oracle and use R∗ to denote all circuits returned by the chal-
lenge oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) �= C̃(x)}| ≤ ε · |X |.
Remark 4.1. We can also define negl(λ)-unremovability for a watermarkable
PRF, which is identical to the definition of ε-unremovability for concrete ε,
except that A should be negl(λ)-unremoving-admissible, i.e., there exists cir-
cuit C∗ ∈ R∗ that |{x ∈ X : C∗(x) �= C̃(x)}| ≤ negl(λ) · |X |.
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5 Public-Key Hinting Watermarkable PRFs

We define and construct public-key hinting watermarkable PRFs in this section.
We provide its formal definition in Sect. 5.1. Then in Sect. 5.2, we construct it
from functional encryption schemes. We provide more constructions with differ-
ent properties in the full version.

5.1 The Definition

The definition of public-key hinting watermarkable PRF is similar to the defi-
nition of standard public-key watermarkable PRFs given in Sect. 4 except that
its key generation algorithm will generate a “hint” together with the PRF key,
which can be used later in the extraction algorithm. More precisely, a public-key
hinting watermarkable PRF with key space K, input space X , output space Y,
and message space M consists of the following algorithms:

• Setup(1λ) → PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP ) → (k, hint) : On input the public parameter PP , the key gen-
eration algorithm outputs a PRF key k ∈ K and a hint hint.

• Eval(PP, k, x) → y : On input the public parameter PP , a PRF key k ∈ K,
and an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Mark(PP, k,msg) → C : On input the public parameter PP , a PRF key
k ∈ K, and a message msg ∈ M, the marking algorithm outputs a marked
circuit C : X → Y.

• Extract(PP, C, hint) → msg : On input the public parameter PP , a circuit C,
and a hint hint, the extraction algorithm outputs a message msg ∈ M ∪ {⊥},
where ⊥ denotes that the circuit is unmarked.

Correctness. The correctness of a public-key hinting watermarkable PRF also
requires the following three properties. Here for the extraction correctness, we
require that the correct hint is used.

• Functionality Preserving. For any msg ∈ M, let PP ← Setup(1λ),

(k, hint) ← KeyGen(PP ), C ← Mark(PP, k,msg), x
$← X , then we have

Pr[C(x) �= Eval(PP, k, x)] ≤ negl(λ).
• Extraction Correctness. For any msg ∈ M, let PP ← Setup(1λ),

(k, hint) ← KeyGen(PP ), and C ← Mark(PP, k,msg), then we have

Pr[Extract(PP, C, hint) �= msg] ≤ negl(λ)

Pr[Extract(PP, Eval(PP, k, ·), hint) �=⊥] ≤ negl(λ)

• Watermarking Meaningfulness. For any circuit C : X → Y and any hint,
let PP ← Setup(1λ), then we have Pr[Extract(PP, C, hint) �=⊥] ≤ negl(λ).

Pseudorandomness. The pseudorandomness property requires that the eval-
uation of the PRF with an unmarked key should be pseudorandom. Here, the
adversary is not allowed to access the hint associated with the PRF key.
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Definition 5.1 (Pseudorandomness). Let PP ← Setup(1λ), (k, hint) ←
KeyGen(PP ), and f be a random function from X to Y. Also, let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP, k, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). Then for
all PPT adversary A, we have:

| Pr[AO0(·)(PP ) = 1] − Pr[AO1(·)(PP ) = 1] |≤ negl(λ)

Unremovability. The unremovability property also requires that an adversary
cannot remove or modify the message embedded in a watermarked PRF key
while keeping its functionality. Here, we allow the adversary to learn the hint
associated with the PRF key. Also, we require that the correct hint should be
used when extracting the circuit submitted by the adversary.

Definition 5.2 (Q-Bounded ε-Unremovability). A hinting watermarkable
PRF is Q-bounded ε-unremovable if for all PPT and ε-unremoving-admissible
adversaries A, we have Pr[ExptURA,Q(λ) = 1] ≤ negl(λ), where we define the
experiment ExptUR as follows:

1. The challenger samples PP ← Setup(1λ) and (k∗, hint∗) ← KeyGen(PP ).
2. Then, it returns (PP, hint∗) to A and answers A’s challenge oracle queries.

Here, A is only allowed to query the challenge oracle for at most Q times.
• Challenge Oracle. On input a message msg ∈ M, the challenge oracle

returns a circuit C∗ ← Mark(PP, k∗,msg) to the adversary.
3. Finally, A submits a circuit C̃ and the experiment outputs 1 iff

Extract(PP, C̃, hint∗) �∈ Q∗. Here, we use Q∗ to denote all messages sub-
mitted to the challenge oracle and use R∗ to denote all circuits returned by
the challenge oracle.

We say that an adversary A is ε-unremoving-admissible if there exists circuit
C∗ ∈ R∗ that |{x ∈ X : C∗(x) �= C̃(x)}| ≤ ε · |X |.8

5.2 The Construction

Let λ be the security parameter. Let n,m, κ,Q be positive integers that are
polynomial in λ. Let ρ, θ be real values in (0, 1) s.t. 1/θ is polynomial in λ. Let
ϕ = θ/(5 + (κ − 1)Q). Let T = λ/ϕ2. Let ε = ρ · (1 − θ).

Also, for any (msg, t∗) ∈ [0, 2κ−1]×{0, 1}λ, we define the following functions
from [0, 2κ − 1] × {0, 1}λ × {0, 1}λ to {0, 1}λ:

f⊥(ind‖t‖μ) = μ

fmsg,t∗(ind‖t‖μ) =

{
0λ If t = t∗ ∧ ind ≥ msg

μ Otherwise

Our construction is built on the following building blocks:
8 Similar to a standard watermarkable PRF, we can define negl(λ)-unremovability,

which requires that ∃C∗ ∈ R∗ s.t. |{x ∈ X : C∗(x) �= C̃(x)}| ≤ negl(λ) · |X |.
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• An FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) with message
space {0, 1}κ+2λ, ciphertext space {0, 1}n and density ρ.9 In addition, we
assume w.l.o.g. that FE.Dec is a deterministic algorithm.

• A PKE scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) with message space
{0, 1}λ and ciphertext space {0, 1}m. Also, we use RPKE.Enc to denote the
randomness space for the algorithm PKE.Enc.

• A PRF F = (F.KeyGen,F.Eval) with input space {0, 1}n and output space
RPKE.Enc.

We construct the public-key hinting watermarkable PRF HWF =
(Setup, KeyGen, Eval, Mark, Extract), which has input space {0, 1}n, output
space {0, 1}m and message space {0, 1}κ\{0κ} = [1, 2κ − 1] as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples
w

$← {0, 1}λ, t∗ $← {0, 1}λ, and outputs the public parameter PP = (w, t∗).
• KeyGen. On input the public parameter PP = (w, t∗), the key generation

algorithm computes
1. (mpk,msk) ← FE.Setup(1λ).
2. (pk, sk) ← PKE.KeyGen(1λ).
3. k ← F.KeyGen(1λ).
4. fsk ← FE.KeyGen(mpk,msk, f⊥).

and outputs the PRF key K = (mpk,msk, pk, k, fsk) and the hint hint =
(mpk, sk, w).

• Eval. On input the public parameter PP = (w, t∗), the PRF key K =
(mpk,msk, pk, k, fsk), and an input x ∈ {0, 1}n, the evaluation algorithm
outputs M[mpk, fsk, pk, k](x), where M is defined in Fig. 2.

• Mark. On input the public parameter PP = (w, t∗), the PRF key K =
(mpk,msk, pk, k, fsk), and a message msg ∈ [1, 2κ − 1], the marking algo-
rithm computes fskmsg ← FE.KeyGen(mpk,msk, fmsg,t∗) and outputs the cir-
cuit M[mpk, fskmsg, pk, k], where M is defined in Fig. 2.

• Extract. On input the public parameter PP = (w, t∗), a circuit C, and a
hint hint = (mpk, sk, w̄), the extraction algorithm output ⊥ if w̄ �= w.
Otherwise, it runs the jump finding algorithm Trace (described in Fig. 3) to
extract messages from C, where the Test algorithm is also defined in Fig. 3.
More precisely, it proceeds as follow:
1. Set the constant for the algorithm Test as (C,mpk, sk, t∗).
2. p0 = Test(0).
3. p2κ−1 = Test(2κ − 1).
4. M ← Trace(0, 2κ−1, p0, p2κ−1). Here, the extraction algorithm will abort

and output ⊥ if the Test algorithm has been invoked for more than
Q · (κ + 1) times in the Trace algorithm.

5. If M = ∅, output ⊥.
6. msg

$← M.
7. Output msg.

9 We use density to denote the fraction of honestly generated ciphertexts in the cipher-
text space. Its formal definition is given in the full version.
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M

Constant: mpk, fsk , pk, k

Input: x

1. μ = FE. Dec(mpk, fsk , x).

2. If μ =⊥, set μ = 0λ.

3. Output y = PKE. Enc(pk, μ;F. Eval(k, x)).

Fig. 2. The circuit M.

Trace

Input: ind1, ind2, p1, p2

1. Δ = |p1 − p2|.
2. If Δ ≤ ϕ:

Return ∅.
3. If ind2 − ind1 = 1:

Return {ind2}.
4. ind3 = � ind1+ind2

2 �.
5. p3 = Test(ind3).
6. Return Trace(ind1, ind3, p1, p3)∪

Trace(ind3, ind2, p3, p2).

Test

Constant: E, mpk, sk, t∗

Input: ind
1. Acc = 0
2. For i ∈ [1, T ]:

(a) Sample μ
$← {0, 1}λ.

(b) x ← FE. Enc(mpk, ind‖t∗‖μ).
(c) y = E(x).
(d) μ̄ = PKE. Dec(sk, y).
(e) If μ = μ̄: Acc = Acc + 1.

3. Return Acc
T

.

Fig. 3. The algorithms Trace and Test.

Theorem 5.1. If FE is a secure functional encryption scheme with Q-adaptive
indistinguishability and strong correctness10, PKE is a secure PKE scheme with
ciphertext pseudorandomness, and F is a secure PRF, then HWF is a secure
public-key hinting watermarkable PRF with Q-bounded ε-unremovability.

We present proof of Theorem 5.1 in the full version.

6 Robust Unobfuscatable PRFs

In this section, we define and construct robust unobfuscatable PRFs. We first
give its formal definition in Sect. 6.1. Then in Sect. 6.2, we construct it from one
way function. We provide the construction from FHE in the full version.

6.1 The Definition

We give definition of robust unobfuscatable PRFs in this section, which follows
definitions in previous works [BGI+01,BP13,Zha21] with slight modifications.
More precisely, an unobfuscatable PRF with input space X , output space Y,
and message space M consists of the following algorithms:
10 The strong correctness requires that the decryption will always output ⊥ given an

invalid ciphertext and will always output the correct result given a valid ciphertext.
Please see the full version for a formal definition.
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• Setup(1λ) → PP : On input the security parameter 1λ, the setup algorithm
outputs the public parameter PP .

• KeyGen(PP,msg) → K : On input the public parameter PP and a message
msg ∈ M, the key generation algorithm outputs a PRF key K.

• Eval(PP,K, x) → y : On input the public parameter PP , a PRF key K, and
an input x ∈ X , the evaluation algorithm outputs an output y ∈ Y.

• Extract(PP, C) → msg : On input the public parameter PP and a circuit
C, the extraction algorithm outputs a message msg ∈ M ∪ {⊥}, where ⊥
denotes that the extraction fails.

Correctness. Its correctness requires that the extraction algorithms can always
output the correct message given an honestly generated secret key.

Definition 6.1 (Correctness). For any msg ∈ M, let PP ← Setup(1λ)
and K ← KeyGen(PP,msg), then we have Pr[Extract(PP, Eval(PP,K, ·)) �=
msg] = 0.

Pseudorandomness. Its black-box pseudorandomness requires that outputs of
the evaluation algorithm are indistinguishable from outputs of a random function
if the adversary is only given oracle access to the evaluation algorithm.

Definition 6.2 (Black-Box Pseudorandomness). For any PPT adversary
A = (A1,A2), let PP ← Setup(1λ). Also, let (msg, state) ← A1(PP ), K ←
KeyGen(PP,msg), and f be a random function from X to Y. Let O0(·) be an
oracle that takes as input a string x ∈ X and returns Eval(PP,K, x), and let
O1(·) be an oracle that takes as input a string x ∈ X and returns f(x). We have

| Pr[AO0(·)
2 (state) = 1] − Pr[AO1(·)

2 (state) = 1] |≤ negl(λ)

Learnability. Its robust non-black-box learnability requires that one can learn
the message from a circuit that approximately evaluates the PRF. In particular,
for any function ε ∈ [0, 1], we define ε-robust learnability as follows.

Definition 6.3 (ε-Robust Learnability). For all PPT and ε-admissible
adversaries A = (A1,A2), we have

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

PP ← Setup(1λ);
(msg, state) ← A1(PP );
K ← KeyGen(PP,msg);
C ← A2(K, state);
msg ← Extract(PP, C);

: msg �= msg

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ)

Here, we say that an adversary A is ε-admissible if |{x ∈ X : C(x) �= Eval(PP,
K, x)}| ≤ ε · |X |.11
11 Similar to a (hinting) watermarkable PRF, we can define negl(λ)-robust learnability,

which requires that |{x ∈ X : C(x) �= Eval(PP, K, x)}| ≤ negl(λ) · |X |.
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6.2 The Construction

Let λ be the security parameter. Let n0 = 3, n1 = (λ + 2) · λ, n2 = 2(λ + 1),
n3 = λ + 1, n4 = λ, n5 = λ · (λ + 1). Let n = n0 + n1 + n2 + n3 + n4 + n5. Let
m be a positive integer that is polynomial in λ s.t. m ≥ λ · (λ + 1).

Our construction is built on the following building blocks, all of which can
be constructed from one way functions:

• A PRF Fenc = (Fenc.KeyGen,Fenc.Eval) with input space {0, 1}λ and output
space {0, 1}.

• An invoker randomizable PRF FIR = (FIR.KeyGen,FIR.Eval) with input
space {0, 1}n−n1 × {0, 1}n1 and output space {0, 1}n1 .

• A PRF Fmask = (Fmask.KeyGen,Fmask.Eval) with input space {0, 1}n−n0 and
output space {0, 1}m.

• A PRF Fpad = (Fpad.KeyGen,Fpad.Eval) with input space {0, 1}n and output
space {0, 1}m.

We construct the robust unobfuscatable PRF UOF = (Setup, KeyGen, Eval,
Extract), which has input space {0, 1}n, output space {0, 1}m, and message
space {0, 1}m as follows:

• Setup. There is no need to set the public parameter in this construction and
the setup algorithm outputs PP = 1λ on input the security parameter 1λ.

• KeyGen. On input the security parameter 1λ and the message msg, the
key generation algorithm samples α

$← {0, 1}λ and β
$← {0, 1}λ. Then

it generates PRF keys kenc ← Fenc.KeyGen(1λ), kIR ← FIR.KeyGen(1λ),
kmask ← Fmask.KeyGen(1λ), and kpad ← Fpad.KeyGen(1λ). Finally, it outputs
the PRF key

K = (α, β, kenc, kIR, kmask, kpad,msg)

• Eval. On input the secret key K = (α, β, kenc, kIR, kmask, kpad,msg)
and an input x ∈ {0, 1}n, the evaluation algorithm first parses
x = (u0, u1, u2, u3, u4, u5) ∈ {0, 1}n0 × {0, 1}n1 × {0, 1}n2 × {0, 1}n3 ×
{0, 1}n4 × {0, 1}n5 . Then it sets w = (u0, u2, u3, u4, u5) and computes
(r1, r2, . . . , rλ+2) = FIR.Eval(kIR, w, u1), where ri ∈ {0, 1}λ for i ∈ [1, λ + 2].
Next, it deals with the following cases:

– If u0 = 0:
1. For i ∈ [1, λ]:

(a) cti = ri‖Fenc.Eval(kenc, ri) ⊕ α[i].
2. ypad = Fpad.Eval(kpad, x)[1 : m − λ · (λ + 1)].
3. Output ct1‖ . . . ‖ctλ‖ypad.

– If u0 = 1:
1. Parse u2 = (r̄1, c̄1, r̄2, c̄2) ∈ {0, 1}λ × {0, 1} × {0, 1}λ × {0, 1}.
2. μ1 = Fenc.Eval(kenc, r̄1) ⊕ c̄1.
3. μ2 = Fenc.Eval(kenc, r̄2) ⊕ c̄2.
4. μ = μ1 � μ2.
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5. ct = rλ+1‖Fenc.Eval(kenc, rλ+1) ⊕ μ.
6. ypad = Fpad.Eval(kpad, x)[1 : m − (λ + 1)].
7. Output ct‖ypad.

– If u0 = 2:
1. Parse u3 = (r̄, c̄) ∈ {0, 1}λ × {0, 1}.
2. μ = Fenc.Eval(kenc, r̄) ⊕ c̄.
3. ct = rλ+2‖Fenc.Eval(kenc, rλ+2) ⊕ μ.
4. ypad = Fpad.Eval(kpad, x)[1 : m − (λ + 1)].
5. Output ct‖ypad.

– If u0 = 3:
1. z = (u1, u2, u3, u4, u5).
2. ymask = Fmask.Eval(kmask, z).
3. Output ymask.

– If u0 = 4:
1. u′

4 = u4 ⊕ α.
2. z = (u1, u2, u3, u

′
4, u5).

3. ymask = Fmask.Eval(kmask, z).
4. Output (β‖0m−λ) ⊕ ymask.

– If u0 = 5:
1. Parse u5 = (r̄i, c̄i)i∈[1,λ] ∈ ({0, 1}λ × {0, 1})λ.
2. For i ∈ [1, λ]:

(a) μi = Fenc.Eval(kenc, r̄i) ⊕ c̄i.
3. ν = μ1‖ . . . ‖μλ.
4. u′

4 = u4 ⊕ ν ⊕ β.
5. z = (u1, u2, u3, u

′
4, u5).

6. ymask = Fmask.Eval(kmask, z).
7. Output msg ⊕ ymask.

– If u0 = 6 or u0 = 7:
1. ypad = Fpad.Eval(kpad, x).
2. Output ypad.

• Extract. On input a circuit C, the extraction algorithm first obtains
ct1, . . . , ctλ as follows:

x′
0

$← {0, 1}n−n0 , x0 = 000‖x′
0, y0 = C(x0)

(ct1, . . . , ctλ) = y0[1 : λ · (λ + 1)]

Then it computes:

x′
1

$← {0, 1}n−n0 , x1 = 011‖x′
1, y1 = C(x1)

and samples γ
$← {0, 1}λ. Let P = P̄[x′

1, C, y1, γ], where P̄ is defined in Fig. 4.
Let |P| be the number of wires for the circuit P and label each wire of P with
a number in [1, |P|], where each wire has a larger label than its children. We
can label the input wires as 1, . . . , λ. Also, we can label the output wires as
|P| − λ + 1, . . . , |P|, where the i-th output wire is labeled with |P| − λ + i.
Next, the extraction algorithm proceeds as follows for j ∈ [λ + 1, |P|], where
jL and jR are the labels of the children of the wire labelled with j:
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1. u
(j)
1

$← {0, 1}n1 .

2. (u(j)
3 , u

(j)
4 , u

(j)
5 ) $← {0, 1}n3 × {0, 1}n4 × {0, 1}n5 .

3. If jL �= jR:
(a) u

(j)
2 = (ctjL

, ctjR
).

4. If jL = jR:
(a) (ū(j)

1 , ū
(j)
2 ) $← {0, 1}n1 × {0, 1}n2 .

(b) (ū(j)
4 , ū

(j)
5 ) $← {0, 1}n4 × {0, 1}n5 .

(c) ū
(j)
3 = ctjL

.
(d) ū

(j)
0 = 010.

(e) x̄2,j = ū
(j)
0 ‖ū

(j)
1 ‖ū

(j)
2 ‖ū

(j)
3 ‖ū

(j)
4 ‖ū

(j)
5 .

(f) ȳ2,j = C(x̄2,j).
(g) c̄tjL

= ȳ2,j [1 : λ + 1].
(h) u

(j)
2 = (ctjL

, c̄tjL
).

5. u
(j)
0 = 001.

6. x2,j = u
(j)
0 ‖u

(j)
1 ‖u

(j)
2 ‖u

(j)
3 ‖u

(j)
4 ‖u

(j)
5 .

7. y2,j = C(x2,j).
8. ctj = y2,j [1 : λ + 1].

After obtaining ct|P|−λ+1, . . . , ct|P|, the extraction algorithm finally extracts
the message as follows:
1. (u1, u2, u3, u4)

$← {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}n4 .
2. u5 = (ct|P|−λ+1, . . . , ct|P|).
3. u0 = 101.
4. x3 = u0‖u1‖u2‖u3‖u4‖u5.
5. y3 = C(x3).
6. ũ0 = 011.
7. ũ4 = u4 ⊕ γ.
8. x̃3 = ũ0‖u1‖u2‖u3‖ũ4‖u5.
9. ỹ3 = C(x̃3).

10. msg = ỹ3 ⊕ y3.
Finally, it outputs msg.

Theorem 6.1. If Fenc,Fmask,Fpad are secure PRFs and FIR is a secure invoker
randomizable PRF, then UOF is a secure robust unobfuscatable PRF family with
negl(λ)-robust learnability.

We present proof of Theorem 6.1 in the full version.

7 Construction of Public-Key Watermarkable PRFs

Now, we present the general construction of public-key watermarkable PRFs
from public-key hinting watermarkable PRFs and robust unobfuscatable PRFs.
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P̄

Constant: x′
1, C, y1, γ

Input: a

1. Parse x′
1 = (u1, u2, u3, u4, u5) ∈ {0, 1}n1 ×{0, 1}n2 ×{0, 1}n3 ×{0, 1}n4 ×{0, 1}n5 .

2. ũ0 = 100.

3. ũ4 = u4 ⊕ a.

4. x̃1 = ũ0‖u1‖u2‖u3‖ũ4‖u5.

5. ỹ1 = C(x̃1).

6. b = (ỹ1 ⊕ y1)[1 : λ].

7. Output b ⊕ γ.

Fig. 4. The circuit P̄.

Let λ be the security parameter. Let n,m,m1,m2, κ, l, l1, l2, Q be positive
integers that are polynomial in λ and satisfy m = m1 + m2 and l = l1 + l2. Let
ε1, ε2, ε be real values in (0, 1) s.t. ε = min(ε1, ε2).12

Our construction is built on the following building blocks:

• A public-key hinting watermarkable PRF HWF = (HWF.Setup,
HWF.KeyGen,HWF.Eval,HWF.Mark,HWF.Extract) with input space
{0, 1}n, output space {0, 1}m1 , and message space {0, 1}κ. Also, we use l1
to denote the length of the hint of HWF (i.e., each hint can be represented
by a string in {0, 1}l1).

• A robust unobfuscatable PRF UOF = (UOF.Setup,UOF.KeyGen,
UOF.Eval,UOF.Extract) with input space {0, 1}n, output space {0, 1}m2 ,
and message space {0, 1}l.

• A PRF F = (F.KeyGen,F.Eval) with key space {0, 1}l2 , input space {0, 1}n

and output space {0, 1}m1 .

We construct the public-key watermarkable PRF WPRF = (Setup, KeyGen,
Eval, Mark, Extract), which has input space {0, 1}n, output space {0, 1}m and
message space {0, 1}κ as follows:

• Setup. On input the security parameter 1λ, the setup algorithm samples
pphw ← HWF.Setup(1λ) and ppuo ← UOF.Setup(1λ). Then it outputs the
public parameter PP = (pphw, ppuo).

• KeyGen. On input the public parameter PP = (pphw, ppuo), the key gen-
eration algorithm first generates (khw, hint) ← HWF.KeyGen(pphw), kf ←
F.KeyGen(1λ), and kuo ← UOF.KeyGen(ppuo, hint‖kf). Then, it outputs the
PRF key K = (khw, kf, kuo).

• Eval. On input the public parameter PP = (pphw, ppuo), the PRF key K =
(khw, kf, kuo), and an input x ∈ {0, 1}n, the evaluation algorithm proceeds as
follows:
1. yhw = HWF.Eval(pphw, khw, x).
2. yf = F.Eval(kf, x).

12 Here, ε1, ε2, ε can be the negligible function negl(λ) instead of a concrete value.
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3. yuo = UOF.Eval(ppuo, kuo, x).
4. Outputs y = (yhw ⊕ yf, yuo).

• Mark. On input the public parameter PP = (pphw, ppuo), the PRF key K =
(khw, kf, kuo), and a message msg ∈ {0, 1}κ, the marking algorithm computes
Chw ← HWF.Mark(pphw, khw,msg). Then it outputs a circuit C : {0, 1}n →
{0, 1}m s.t. for any x ∈ {0, 1}n:

C(x) = (Chw(x) ⊕ F.Eval(kf, x),UOF.Eval(ppuo, kuo, x))

• Extract. On input the public parameter PP = (pphw, ppuo), and a circuit C,
the extraction algorithm proceeds as follow:
1. Set Cuo as a circuit that for any x ∈ {0, 1}n, Cuo(x) = C(x)[m1 + 1 : m].
2. (hint, kf) ← UOF.Extract(ppuo, Cuo).
3. If (hint, kf) =⊥: output ⊥.
4. Set Chw as a circuit that for any x ∈ {0, 1}n, Chw(x) = C(x)[1 : m1] ⊕

F.Eval(kf, x).
5. Output msg ← HWF.Extract(pphw, Chw, hint).

Theorem 7.1. If HWF is a secure public-key hinting watermarkable PRF with
Q-bounded ε1-unremovability, UOF is a secure robust unobfuscatable PRF with
ε2-robust learnability, and F is a secure PRF, then WPRF is a secure public-key
watermarkable PRF with Q-bounded ε-unremovability.

We present proof of Theorem 7.1 in the full version.
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Abstract. Recent advances in password-based authenticated key ex-
change (PAKE) protocols can offer stronger security guarantees for glob-
ally deployed security protocols. Notably, the OPAQUE protocol [Euro-
crypt2018] realizes Strong Asymmetric PAKE (saPAKE), strengthening
the protection offered by aPAKE to compromised servers: after compro-
mising an saPAKE server, the adversary still has to perform a full brute-
force search to recover any passwords or impersonate users. However,
(s)aPAKEs do not protect client storage, and can only be applied in the
so-called asymmetric setting, in which some parties, such as servers, do
not communicate with each other using the protocol.

Nonetheless, passwords are also widely used in symmetric settings,
where a group of parties share a password and can all communicate (e.g.,
Wi-Fi with client devices, routers, and mesh nodes; or industrial IoT sce-
narios). In these settings, the (s)aPAKE techniques cannot be applied, and
the state-of-the-art still involves handling plaintext passwords.

In this work, we propose the notions of (strong) identity-binding PAKEs
that improve this situation: they protect against compromise of any party,
and can also be applied in the symmetric setting. We propose counter-
parts to state-of-the-art security notions from the asymmetric setting in
the UC model, and construct protocols that provably realize them. Our
constructions bind the local storage of all parties to abstract identities,
building on ideas from identity-based key exchange, but without requir-
ing a third party.

Our first protocol, CHIP, generalizes the security of aPAKE protocols
to all parties, forcing the adversary to perform a brute-force search to
recover passwords or impersonate others. Our second protocol, CRISP,
additionally renders any adversarial pre-computation useless, thereby
offering saPAKE-like guarantees for all parties, instead of only the server.

We evaluate prototype implementations of our protocols and show that
even though they offer stronger security for real-world use cases, their per-
formance is in line with, or even better than, state-of-the-art protocols.
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1 Introduction

Passwords are arguably the most widely deployed authentication method today,
and are used in a vast range of applications from authentication on the inter-
net (e.g., email and bank servers), wireless network encryption (e.g., Wi-Fi,
Smart Homes, Industry 4.0), and enterprise network authentication (e.g., Ker-
beros [27], EAP-pwd [21]). Early password-based protocols allowed adversaries
to verify password guesses offline against observed network traffic. To remedy
this, Password Authenticated Key Exchange (PAKE) protocols were proposed,
as first studied by Bellovin and Merritt [3]. PAKEs allow parties to negotiate a
strong secret key based only on a shared and possibly low-entropy password, do
not leak any information about the password to passive adversaries, and allow
only an inevitable online password guess attack.

The traditional PAKE threat model does not include compromise of the local
storage – notably, most PAKEs work in a way that requires the plaintext password
to be available at both parties, including SPAKE-2 and WPA3’s DragonFly/SAE.
This implies that non-interactive parties such as servers, IoT devices, and wireless
access points, need to store the password in plaintext. Compromising the database
of these parties directly reveals the password. In the client-servermodel, thismeans
that a server compromise allows the adversary to impersonate as the client or server
towards either, or perform a MiTM attack. Moreover, because clients often re-use
passwords across services, this enables credential stuffing.

To partially mitigate this threat, Bellovin and Merritt [4] proposed so-called
asymmetric PAKEs (also known as aPAKEs, Augmented PAKEs, or V(erifier)-
PAKEs) that make this much harder: the clients still need to provide the password
in plaintext, but the verifying servers now only need to provide, and thus store,
information that (a) is derived from the password using a one-way function, yet
(b) allows establishing a shared key with a party that knows the password. Thus,
compromising an aPAKE server does not allow the adversary to impersonate the
client, and forces it to perform a brute-force attempt to extract the password.

1.1 Identity-Binding PAKEs (iPAKE)

aPAKE protocols still have substantial limitations: they only protect the server,
and perhaps more importantly, cannot be applied to settings that do not fall
into the client-server model, e.g., where a password can be shared among group
members that can communicate with all other members. Prime examples of such
symmetric settings are found in wireless networking and IoT settings. For exam-
ple, the globally deployed IEEE 802.11 Wi-Fi standard includes the WPA pro-
tocol, which uses network passwords to enable devices to automatically connect
to routers, extenders, and mesh network nodes; crucially, all parties can auto-
matically communicate with each other using the network password without any
user input. This led the Wi-Fi alliance to base their latest WPA3 protocol [31]
on a symmetric PAKE for mesh networks called Simultaneous Authentication of
Equals (SAE) [20].

In such settings, asymmetric PAKEs cannot be applied, because protecting
two parties using known aPAKE-server methods stops them from being able
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to communicate with each other: by construction, aPAKE’s servers can only
authenticate themselves to clients, not to other servers. Furthermore, because par-
ties in common symmetric group settings operate without user input, they need
to store the password in plaintext. E.g., Wi-Fi passwords are stored in plaintext
on users’ devices.

Hence, despite the many advances made over the years, all state-of-the-art
PAKEs in the symmetric setting offer substantially weaker protection and no
containment: compromising any party allows impersonation of any other party
in the group, thus compromising the entire group.

In this work we address this gap by initiating the study and construction of
so-called identity-binding PAKEs (iPAKE). We provide a UC-security definition
that is the symmetric counterpart to aPAKE. We instantiate iPAKE with CHIP, a
novel compiler from any PAKE to iPAKE. We leverage ideas from Identity-Based
Key-Exchange to introduce abstract identities for each party, and effectively bind
the locally stored password-derived data to these identities, while retaining the
required key agreement functionality. Unlike Identity-Based Key-Exchange, we
do not require a third party: instead, each party locally simulates the Key Dis-
tribution Center during the password file generation. Identities can be arbitrary
bit strings, and could also encode functions or roles instead of the party’s name,
e.g., “server”, “router”, or “fire brigade chief”, “Elon’s third iPhone”. Binding the
locally stored password-derived data to identities is useful for many purposes, such
as preventing reflection attacks, revocation of compromised or disposed of devices,
network segmentation (i.e., which nodes may interact), permissions (e.g., prevent
guest devices from configuring an access point), and authentic audit logs that allow
anomaly detection and reliable retroactive damage assessment.

1.2 Strong Identity-Binding PAKEs (siPAKE)

In 2018, Jarecki, Krawczyk, and Xu [23] strengthened the aPAKE notion by addi-
tionally requiring that an adversary gains no benefits from any pre-computations
performed before a server compromise, thereby forcing it to do a full brute-force
attack after the compromise. They named this notion strong asymmetric PAKE
(saPAKE), and proposed the OPAQUE protocol to meet it. This has been widely
regarded as a major step forward, and has led the Internet Engineering Task
Force (IETF) to work towards standardizing OPAQUE and its use for TLS 1.3’s
password-based logins [7].

To provide similar protection against pre-computations, we strengthen
iPAKE to strong identity-binding PAKEs (siPAKE), and provide a UC-security
definition that is the symmetric counterpart to saPAKE. We instantiate siPAKE
with CRISP, a novel compiler from any PAKE to siPAKE, that extends the pro-
tection provided by state-of-the-art saPAKE protocols [9,23] to all parties.

We prove the correctness of both of our constructions, provide open source pro-
totype implementations, and evaluate their efficiency.
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1.3 Contributions

1. We initiate the study of identity-binding PAKEs, which offer additional secu-
rity guarantees compared to their corresponding state-of-the-art aPAKE rel-
atives. In particular:

– Identity-binding PAKEs offer containment against compromise of any
party, instead of only a specific subset such as servers.

– Unlike aPAKEs, iPAKEs are symmetric and allow all parties to commu-
nicate with each other, and can therefore also be applied to settings such
as IEEE 802.11’s WPA (Wi-Fi).

2. We define the ideal functionality FiPAKE for identity-binding PAKE
(iPAKE) in the UC model, and construct the CHIP compiler that turns
any symmetric PAKE into an iPAKE. CHIP offers aPAKE-like guarantees
for all parties: the compromise of any party does not allow the adversary to
impersonate another unless they perform a brute-force attack. We prove that
CHIP is secure in the Programmable Random Oracle Model (ROM) under
the Strong Diffie-Hellman assumption.

3. We define the ideal functionality FsiPAKE for strong identity-binding
PAKE (siPAKE) in the UC model, and construct the CRISP com-
piler that turns any symmetric PAKE into an siPAKE. CRISP offers
saPAKE/OPAQUE-like guarantees for all parties: to impersonate any other
party after a compromise, the adversary’s brute-force attack additionally can-
not utilize any pre-computation in a useful manner. CRISP is based on a
bilinear group with pairing and “Hash-to-Group”, and we prove it secure in
the Generic Group with Random Oracle Model (GGM+ROM).

4. We implemented prototypes of both our protocols. While our protocols offer
substantial security benefits over existing state-of-the-art PAKEs for the sym-
metric setting, a performance benchmark (Sect. 8.4) that shows their perfor-
mance is in line with, or even better than, state-of-the-art protocols.

Table 1 summarizes the different security notions and example protocols.

Prototype Implementations. We provide open source implementations of
both protocols at https://github.com/shapaz/CRISP.

1.4 Structure of the Paper

We give background on the formalization of PAKEs in Sect. 2. We discuss various
methods for compromise resilience in Sect. 3. In Sect. 4 we describe the notation
and UC building blocks we use. We present our new ideal functionalities for
iPAKE and siPAKE in Sect. 5. We introduce the CHIP compiler in Sect. 6 and
the CRISP compiler in Sect. 7. In Sect. 8 we analyze the computational cost of
running our protocols and the cost of the inevitable brute-force attack. We also
propose several optimization to the protocol as well as performance benchmarks.
We conclude and present open problems in Sect. 9.

We provide full proofs and more in the full version of our paper [15].

https://github.com/shapaz/CRISP
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Table 1. PAKE notions, example protocols, and security guarantees. � denotes the
property is not provided; �� denotes that the property only holds for servers, and can
only be applied to the asymmetric setting; and � denotes that it is provided for all
parties.

Security notion Example protocol
Post-compromise Secure against

impersonation resistance pre-computation

PAKE [13] CPace [19] � �
aPAKE [17] AuCPace [19] �� �
iPAKE (Section 4) CHIP (Section 6) � �
saPAKE [23] OPAQUE [23] �� ��
siPAKE (Section 4) CRISP (Section 7) � �

2 Related Work on Formalizing PAKE

Bellare, Pointcheval, and Rogaway [2] were the first to formalize the notion of
PAKE. Canetti, Halevi, Katz, Lindell, and MacKenzie [13] formalized PAKE
in the Universal Composability (UC) framework [11]. Their ideal functionality
FPAKE (originally denoted FpwKE) trades each party’s password with a randomly
chosen key for the session, only allowing the adversary an online attack where a
single guess may be made to some party’s password.

Asymmetric PAKE (aPAKE) protocols (a.k.a. Augmented PAKEs or Verifier
PAKEs) were formalized by Boyko, MacKenzie, and Patel [8]. They address the
problem of password compromise from long term storage by introducing asymme-
try, separating parties into “clients” and “servers”. While clients supply their pass-
words on every session, servers use a “password file” generated in a setup phase. To
prevent servers from impersonating clients, it should be “hard” to directly extract
the password from such a file. However, since we assume that the password domain
is small, an attacker can run an offline dictionary attack, testing every possible
password against the file until one is accepted. The best one can hope for is that
password extraction time will be linear in the dictionary’s size. Gentry, MacKenzie,
and Ramzan [17] formalized an ideal functionality FaPAKE in the UC framework,
and presented a generic compiler from FPAKE to FaPAKE.

The notion of Strong Asymmetric PAKE FsaPAKE by Jarecki, Krawczyk,
and Xu [23] addresses an issue with the original FaPAKE, that allowed a pre-
computation attack: password guesses could have been submitted before a server
compromise. Most of the computational work could have been done prior to
the actual compromise of the password file, allowing “instantaneous” password
recovery upon compromise. For example, the attacker can pre-compute the hash
value for all passwords in a given dictionary in advance. When a server is compro-
mised at a later point, the adversary can find the pre-image for the compromised
hash value, retrieving the password immediately.
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In summary, while (s)aPAKE protect against server compromise in the asym-
metric setting, prior works did not address party compromise in the symmetric
setting or client compromise (in the asymmetric setting).

3 Methods and Limitations for Compromise Resilience

In compromise resilience of PAKE protocols, we consider two main parameters:

1. The computational cost of a brute-force attack to recover the original pass-
word, using the information stored on the device in the offline phase (i.e., in
the password file).

2. The possibility of performing a trade-off between the pre-computation cost
(performed before the compromise of the device) and the computation cost
(performed after the compromise).

We assume the adversary holds a password dictionary that contains the right
password, and a brute-force attack’s computational cost is proportional to the
size of that dictionary. Being a “machine-in-the-middle”, our adversary may alter
messages and exploit information sent in the online phase of the protocol, and
might target multiple passwords used by different users.

We note that in practice, passwords are used across many types of devices.
Some of these devices are directly controlled by (human) users, such as phones or
laptops, which either don’t store the password (e.g., user remembers) or store it
protected by another interactive security mechanism (e.g., biometrics, password,
PIN), thereby making the compromise of the password file harder. However, a
large proportion of devices that share the same password have no such user inter-
action, such as internet routers, TVs, IoT devices, and drones; and compromising
them thus can lead to revealing the unprotected password file.

We survey known methods for achieving various levels of compromise
resilience and also give examples for systems using them:

1. Plaintext password: The password is stored as-is in the password file. No
computation is required for password recovery. This is the case for the WPA3
protocol in Wi-Fi [31], and the client-side for aPAKEs.

2. Hashed password: A one-way function of the password is stored in the pass-
word file. This option is only beneficial when using a high entropy password
chosen from a password space that is too large to pre-compute. Otherwise, an
adversary might hash every possible password and prepare a reverse lookup
table from hash value to plain password, allowing password recovery in O(1)
time. This can be done once, amortizing the cost of the pre-computation over
multiple password recoveries.

3. Hashed password with public identifiers: A one-way function of the
password and some public identifiers of the connection is computed and stored
in the password file. For example, the public identifiers can be derived from the
SSID (network name) in Wi-Fi or a combination of the server and user names.
In this case, pre-computation is still possible, but amortization is prevented,
since the pre-computation does not apply for different public identifiers. This
protection is offered by some aPAKE protocols [19] and by our novel iPAKE
protocol.
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4. Hashed password with public “salt”: A one-way function of the password
and a randomly generated value (“salt”) is computed and stored in the pass-
word file. The “salt” is sent in the clear, as part of the PAKE protocol. As in the
previous case, pre-computation before a compromise is possible, but only after
the adversary eavesdrops to a PAKE protocol of the target device and learns
the “salt”. This is the case for the server side in some aPAKE protocols [19,32].

5. Hashed passwordwith secret “salt”: In this case, the random “salt” is kept
secret, which requires more intricate mechanisms than with the public salt,
since it is no longer possible to send the salt in the clear. This approach pre-
vents any pre-computation, and yields a level of protection that is offered by
saPAKE for the servers in the asymmetric setting, and by our novel siPAKE
protocol for all parties in any setting. The only remaining attack left for the
adversary is a brute-force post-compromise attack, which is inevitable, as we
show below.

Inevitable Generic Post-compromise Brute-Force Attack

Post-compromise brute-force dictionary attacks are inevitable for any PAKE
protocol. In the following attack, we assume that the correct password is in the
dictionary and exploit the property that PAKE protocols fail to agree on a key
when the participants have different passwords. The attack works by simulating
a normal protocol run, where one party uses the compromised data, and the
peer uses the password guess:

1. Retrieve a password file file from a compromised device.
2. For every password guess π′ in the dictionary:

(a) Derive password file file
′ according to the protocol specification’s setup

phase for the peer, using π′.
(b) Use file and file

′ to simulate both parties in a normal run of the PAKE
protocol.

(c) If the simulated parties negotiate the same key, π′ is the correct password
for the compromised device.

The cost of each password guess in the black-box attack is the cost of deriving
the password file from a password and running the protocol for both parties. This
generic attack provides an upper bound to the cost of the brute-force attack on
any PAKE protocol. To increase the cost of the generic attack, we must also
increase the computational cost of either password file derivation or running the
online phase of the protocol. Note that the password file derivation can be done
in pre-computation.

4 Notation and UC Building Blocks

In this section, we first introduce some notational convention and recall the
symmetric PAKE functionality. We then introduce modelling of the random
oracle model and the generic group model.

Notation and Conventions. Our notational conventions inherit from the
PAKE and UC settings:
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π a password
id some party’s abstract identifier
P a party interacting in either real or ideal world
κ a security parameter
q a large prime number q ≥ 2κ

Zq the field of integers modulo q, Z�
q = Zq\{0}

x an element of Zq

F a polynomial in Zq[X]
X a formal variable in a polynomial (indeterminate)
G a cyclic group of order q
[x]G a member of group G, identified by the exponent x of some

public generator g∈G: [x]G = gx

{0, 1}n the set of binary strings of length n
{0, 1}� the set of binary strings of any length
x

R←S sampling x from uniform distribution over set S
x∈S restriction: x must be an element of S
H a hash function
Ĥ a hash-to-group function

Similar to existing asymmetric PAKE constructions analyzed in the UC
framework, we use two levels of sessions:

sid identifies a static session, e.g., a group of parties communicating
using the same shared password. (E.g., when instantiated in the
Wi-Fi setting, this could be the Wi-Fi network identifier)

ssid identifies a particular online exchange, i.e., a sub-session.

Symmetric PAKE Functionality. In Fig. 1 we restate the symmetric PAKE
functionality FPAKE from Canetti et al. [13] (denoted FpwKE there), incorporat-
ing the fix recommended by Abdalla et al. [1]. In our presentation of FPAKE,
we explicitly record keys handed to parties in fresh sessions using 〈key, . . . 〉
records, which we will later use in our protocol proofs.

Whenever an ideal functionality is required to retrieve some record (“Retrieve
〈record, . . .〉”) but it cannot be found, the functionality is said to implicitly
ignore the query.

4.1 UC Modelling of Random Oracle and Generic Group

The necessity of non-black-box assumptions for proving compromise resilience in
the UC framework has been previously observed (see [17,23] and [9]). Hesse [22]
proved that UC-realization of aPAKE is impossible under non-programmable
ROM. In this work we rely on programmable ROM for proving CHIP and on
Generic Group Model for CRISP.

We model ROM in UC by allowing parties in the real world to access an
ideal functionality FRO, depicted in Fig. 2. Invocations of hash functions in the
protocol are modelled as queries to FRO. The functionality acts as an oracle,
answering fresh queries with independent random values, but consistent results
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Functionality FPAKE, with security parameter κ, interacting with parties {Pi}n
i=1 and

an adversary S.

Upon (NewSession, sid, Pj , πi) from Pi:
◦ Send (NewSession, sid, Pi, Pj) to S
◦ If there is no record 〈session, Pi, Pj , ·, ·〉:

� record 〈session, Pi, Pj , πi〉 and mark it fresh

Upon (TestPwd, sid, Pi, π
′) from S:

◦ Retrieve 〈session, Pi, Pj , πi〉 marked fresh
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon NewKey, sid, Pi, K
′
∈{0,1}κ

)
from S:

◦ Retrieve 〈session, Pi, Pj , πi〉 not marked completed
◦ If it is marked compromised: Ki←K′

◦ else if it is marked fresh and there is a record 〈key, Pj , πj , Kj〉 with πi=πj :
Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key, Pi, πi, Ki〉
◦ Mark the session completed and send 〈sid, Ki〉 to Pi

Fig. 1. Symmetric PAKE functionality FPAKE from [13] with the fix recommended by
[1] and minor presentational modifications to simplify comparison.

Functionality FRO, parametrized by domain D and range E, interacting with parties
{Pi}n

i=1 and adversary S.
Upon (Hash, sid, s∈D) from P ∈ {Pi}n

i=1 ∪ {S}:
◦ If there is no record 〈hash, s, h〉:

� Pick h
R← E and record 〈hash, s, h〉

◦ Return h to P.

Fig. 2. Random Oracle functionality FRO

to repeated queries. The model is programmable, meaning that the simulator is
able to view hash queries and program their results. The model is also local,
meaning that every session has a separate independent FRO machine. However,
every Hash query is parametrized by a unique sid, effectively separating the hash
domain. Consequently, a single global random oracle in the real world suffices to
handle queries from multiple sessions.

The Generic Group Model (GGM), introduced by [30], allows proving prop-
erties of algorithms, assuming the only permitted operations on group elements
are the group operation and comparison. Hence a “generic group element” has
no meaningful representation. Algorithms in GGM operate on encodings of ele-
ments, and may consult a group oracle which computes the group operation
for two valid encodings, returning the encoded result. The group oracle declines
queries for encodings not returned by some previous query.
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Functionality FGG, parametrized by group order q, encoding set E (|E|≥q) and
generator g∈E, interacting with parties {Pi}n

i=1 and adversary S.
Initially, S={1}, [1]G=g and [x]G is undefined for any other x∈Zq. Whenever FGG

references an undefined [x]G, set [x]G
R← E\S and insert [x]G to S.

Upon MulDiv, sid, [x1]G, [x2]G, s∈{0,1}
)
from P ∈ {Pi}n

i=1 ∪ {S}:
◦ x ← x1 + (−1)sx2 mod q
◦ Return [x]G to P

Fig. 3. Generic Group functionality FGG

Any cyclic group G of prime-order q with generator g can be viewed as
{[x]G |x∈Zq} with group operations [x]G � [y]G = [x + y]G and [x]G � [y]G =
[x−y]G, unit element [0]G and generator [1]G, using some encoding function [·]G:
x 	→ gx. In GGM we consider encoding functions carrying no further information
about the group, e.g., encodings using random bit-strings or numbers in the
range {0, . . . , q−1}. This is in contrast to concrete groups which might have a
meaningful encoding.

In order to prove CRISP’s security under Universal Composition, we need
to formalize GGM in terms of an ideal functionality FGG. Figure 3 shows the
basic GGM functionality FGG, which answers group operation queries (mul-
tiply/divide) on encoded elements. As with FRO, functionality FGG is both
programmable and local. Unlike ROM, where local independent oracles can be
created from a single global one, the same is not trivial with generic groups. The
full version [15] deals with group reuse across instances of CRISP.

For simplicity one can think of the set of encoding E=Zq, so each expo-
nent x∈Zq is encoded as [x]G = ξ∈Zq, resulting in the encoding function being
a random permutation over Zq, ensuring no information about oracle usage is
disclosed between parties.

Note that although the group order q might be (exponentially) large, FGG

maps at most one new element per query. Also note the mapping is injective.
A bilinear group is a triplet of cyclic groups G1,G2,GT of prime order q, with

an efficiently computable bilinear map ê:G1 × G2→GT satisfying the following
requirements:

– Bilinearity: ê(gx
1 , gy

2 ) = ê(g1, g2)xy for all x, y ∈Zq.
– Non-degeneracy: ê(g1, g2) �= 1T .

where g1, g2 are generators for G1,G2 respectively. We also consider an efficiently
computable isomorphism ψ:G2→G1 satisfying ψ(g2)= g1.

A hash to group, also referred to as Hash2Curve, is an efficiently computable
hash function, modelled as random oracle, whose range is a group. For the bilin-
ear setting, we consider the range G2.

In order to represent groups with pairing and hash into group, we suggest a
modified functionality FGGP, depicted in Fig. 4, similar to the extension of GGM
to bilinear groups by [6]. FGGP can be queried MulDiv for each of G1, G2 and
GT , and maintains separate encoding maps for each group. It introduces three
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Functionality FGGP, parametrized by group order q, encoding sets E1, E2, ET (|Ej |≥q
for j∈{1, 2, T}) and generators g1∈E1, g2∈E2, interacting with parties {Pi}n

i=1 and
adversary S. Let P = {Pi}n

i=1 ∪ {S}.
Initially, S1=S2={1}, ST =∅, [1]G1=g1, [1]G2=g2 and [x]Gj is undefined for any other

x∈Zq j∈{1, 2, T}. Whenever FGGP references an undefined [x]Gj , set [x]Gj

R← E\Sj

and insert [x]Gj to Sj .

Upon MulDiv, sid, j∈{1,2,T}, [x1]Gj , [x2]Gj , s∈{0,1}
)
from P ∈ P:

◦ Return [x ← x1 + (−1)sx2 mod q]Gj to P
Upon (Pairing, sid, [x1]G1 , [x2]G2) from P ∈ P:

◦ Return [xT ← x1 · x2 mod q]GT to P
Upon Isomorphism, sid, j∈{1,2}, [x]Gj

)
from S:

◦ Return [x]G3−j to P
Upon (Hash, sid, s) from P ∈ P:

◦ If there is no record 〈hash, s, [x]G2〉:
� pick x

R← Z
�
q and record 〈hash, s, [x]G2〉

◦ Return [x]G2 to P

Fig. 4. Generic Group with Pairing and Hash-to-Group functionality FGGP

new queries: (a) Pairing to compute the bilinear pairing ê: ([x1]G1 , [x2]G2) 	→
[x1·x2]GT

; (b) Isomorphism to compute an isomorphism ψ,ψ−1 between G2

and G1: [x]G1 	→[x]G1 , [x]G1 	→[x]G2 ; and (c) Hash which is a random oracle into
G2: for each freshly queried string s∈{0, 1}� it picks a random exponent x

R←Z
�
q ,

then returns its encoding [x]G2 .
We note that there are groups for which only ψ is efficiently computable but

ψ−1 is not, or even ψ itself is inefficient. However, CRISP does not require these
Isomorphism queries and they can be omitted for such groups. We state that
equipping the adversary with Isomorphism queries guarantees security even
when such isomorphism is found.

5 (Strong) Identity-Binding PAKE Functionality

In Fig. 5 we present the Identity-binding PAKE functionality FiPAKE and the
Strong Identity-binding PAKE functionality FsiPAKE. Essentially, they preserve
the symmetry of FPAKE while adopting the notion of password files and party
compromise from the Asymmetric PAKE functionality FaPAKE of [17] and Strong
Asymmetric PAKE functionality FsaPAKE of [23] (found in the full version [15].

Informally speaking, our threat model includes the online adversary from
traditional PAKEs. Additionally, we consider adversaries that may compromise
parties in order to impersonate as other parties, e.g., compromise an IoT device
to impersonate as the router or server. The strong form additionally considers
adversaries that can perform large amounts of precomputation.

Compared to the asymmetric functionalities, our main addition is the notion
of abstract identities (idi) assigned by the environment to parties, and reported
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Functionalities FiPAKE and FsiPAKE, with security parameter κ, interacting with
parties {Pi}n

i=1 and adversary S.

Upon (StorePwdFile, sid, idi, πi) from Pi:
◦ If there is no record 〈file, Pi, ·, ·〉:

� record 〈file, Pi, idi, πi〉 and mark it uncompromised

Upon (StealPwdFile, sid, Pi) from S:
◦ If there is a record 〈file, Pi, idi, πi〉:

� π ←
{

πi if there is a record 〈offline, Pi, πi〉
⊥ otherwise

� mark the file compromised and return “password file stolen”, idi , π
)

to S
◦ otherwise: return “no password file” to S

Upon (OfflineTestPwd, sid, Pi, π
′) from S:

◦ Retrieve 〈file, Pi, idi, πi〉
◦ If it is marked compromised:

� return “correct guess” to S if πi = π′, and “wrong guess” otherwise
◦ otherwise: Record 〈offline, Pi, π

′〉
Upon (OfflineComparePwd, sid, Pi, Pj) from S:

◦ Retrieve 〈file, Pi, idi, πi〉 and 〈file, Pj , idj , πj〉 both marked compromised
◦ Return “passwords match” to S if πi = πj , and “passwords differ” otherwise

Upon (NewSession, sid, ssid, Pj) from Pi:
◦ Retrieve 〈file, Pi, idi, πi〉 and send (NewSession, ssid, Pi, Pj , idi) to S
◦ If there is no record 〈session, ssid, Pi, Pj , ·〉:

� record 〈session, ssid, Pi, Pj , πi〉 and mark it fresh

Upon (OnlineTestPwd, sid, ssid, Pi, π
′) from S:

◦ Retrieve 〈session, ssid, Pi, Pj , πi〉 marked fresh or compromised
◦ If πi = π′: record 〈imp, ssid, Pi, �〉
◦ If πi = π′: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon (Impersonate, sid, ssid, Pi, Pk) from S:
◦ Retrieve 〈session, ssid, Pi, Pj , πi〉 marked fresh or compromised
◦ Retrieve 〈file, Pk, idk, πk〉 marked compromised
◦ If πi = πk: record 〈imp, ssid, Pi, idk〉
◦ If πi = πk: mark the session compromised and return “correct guess” to S
◦ otherwise: mark the session interrupted and return “wrong guess” to S

Upon NewKey, sid, ssid, Pi, id′, K′
∈{0,1}κ

)
from S:

◦ Retrieve 〈session, ssid, Pi, Pj , πi〉 not marked completed and 〈file, Pj , idj , πj〉
◦ Ignore the query if either the session is marked fresh and id′ 
=idj , or it is

compromised and 〈imp, ssid, Pi, id〉 is not recorded for both id∈{id′, �}
◦ If the session is marked compromised: Ki←K′

◦ else if it is marked fresh and there is a record 〈key, ssid, Pj , πj , Kj〉 with πi=πj :
Ki←Kj

◦ otherwise: pick Ki
R← {0, 1}κ

◦ If the session is marked fresh: record 〈key, ssid, Pi, πi, Ki〉
◦ Mark the session completed and send 〈ssid, id′, Ki〉 to Pi

Fig. 5. Functionality FiPAKE is defined by the full text (including grey text), and
FsiPAKE is defined by the text excluding grey text .
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to participating parties as output alongside the session key. Without them, a
single party compromise would allow the adversary to compromise any sub-
session by impersonating any other party or perform a MiTM attack. Having
the functionality inform a party of its peer identity prevents such attacks.

For symmetry, we restored the notation of parties as {Pi}n
i=1: All parties

invoke StorePwdFile before starting a session and all use the password file
instead of providing a password when starting a session; UsrSession query was
eliminated, and SvrSession was renamed NewSession as in FPAKE. We also
parametrized queries on Pi and Pj where FaPAKE and FsaPAKE omitted them,
since in the symmetric setting those queries may be applied to several parties,
e.g., StealPwdFile applying to any party. On the other hand, we omit Pj

from StorePwdFile; in our setting a password file is derived for each party
independently, and is not bound to specific peers.

Our functionalities introduce a new query OfflineComparePwd, allowing
the adversary to test whether two stolen password files correspond to the same
password. In the real world, such attack is always possible by an adversary
simulating the protocol for those parties, and comparing the resulting keys. We
argue that in most real-world settings, all parties of the same session use the
same password (e.g., devices connecting to the same Wi-Fi network), and hence
such a query is both inevitable and non-beneficial for the adversary.

Notice the four types of records used by the functionalities:

1. 〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉〈file,Pi, idi, πi〉 records represent password files created for each party Pi,
and are derived from its password πi and identity idi. Similar type of records
exist in FPAKE and FsaPAKE (without identities) only for the server.

2. 〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉〈session, ssid,Pi,Pj , idi, πi〉 records represent party Pi’s view of a sub-
session with identifier ssid between Pi and Pj . Similar type of records exist
in FaPAKE and FsaPAKE, without identities.

3. 〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉〈key, ssid,Pi, πi,Ki〉 records represent sub-session keys Ki created for party
Pi participating in sub-session ssid with password πi, and whose session was
not compromised or interrupted. These records were implicitly required in
prior UC PAKE works [13,17,23], and appear here explicitly for clarity.

4. 〈imp, ssid,Pi, id
′〉〈imp, ssid,Pi, id
′〉〈imp, ssid,Pi, id
′〉 records represent “permissions” for the adversary to set the

peer identity observed by party Pi in sub-session ssid to id′. They are created
when the adversary invokes one of the online attack queries OnlineTest-

Pwd or Impersonate. The functionalities reject NewKey queries with non-
permitted id′. When id′ = � this record acts as a “wild card”, permitting the
adversary to select any identity.
Additionally, FiPAKE inherits from FaPAKE the following record type:

5. 〈offline,Pi, π
′〉〈offline,Pi, π
′〉〈offline,Pi, π
′〉 records represent an offline-guess π′ for party Pi’s password,

submitted by S before compromising Pi. If Pi is later compromised, S will
instantly learn if the guess was successful, i.e., π′ = πi.

Identity verification is implicit. When no attack is carried out by the adver-
sary, both parties report each other’s real identities. However, when the adver-
sary succeeds in an online attack, it is allowed to change the reported identities.
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A successful OnlineTestPwd query allows the adversary to specify any iden-
tity, while a successful Impersonate query limits the choice to the impersonated
party’s real identity only. If any of the attacks fails, we still allow the adversary
to control the reported identity, at the cost of causing each party to output an
independent random key. Therefore, in the absence of a successful online attack,
matching session keys indicate the reported identities are correct.

To simplify our UC simulator, we additionally allow both OnlineTestPwd

and Impersonate queries against the same session, as long as they succeed1.
This is achieved by accepting them on compromised sessions, not only fresh.
Note that this permits at most one failed attempt per session, which has no
impact on security.

The FiPAKE functionality is weaker than FsiPAKE in the sense that it permits
pre-computation of OfflineTestPwd queries prior to party compromise. It is
therefore only of interest when permitting more efficient constructions than its
strong counterpart. Indeed, we present the more efficient CHIP protocol (Sect. 6)
realizing FiPAKE in ROM using any cyclic group, while CRISP (Sect. 7) requires
bilinear groups for realizing FsiPAKE in GGM.

Comparison to (s)aPAKE. The symmetric functionalities FiPAKE and
FsiPAKE offer security guarantees beyond their asymmetric counterparts: given
a FiPAKE (respectively, FsiPAKE) functionality, it is trivial to realize the FaPAKE

(respectively, FsaPAKE) functionality. The client party U will be assigned identity
“client” and will simply compute its password file on each session, when receiving
UsrSession query from the environment. The server party S will be identified
as “server” and will have to verify its peer identity is “client”. Nevertheless, we
are not aware of any direct extension of FaPAKE/FsaPAKE to FiPAKE/FsiPAKE.

Sessions and Identifiers. The distinction between a “static” session (identi-
fied by sid) and an “online” sub-session (identified by ssid) was inherited from
FaPAKE and FsaPAKE.

A static session represents a set of parties which are expected to communicate
with each other, such as devices connected to the same Wi-Fi network (sid can
be the network name). Normally, all such parties are configured with the same
password. Otherwise, only parties with matching passwords will be able to derive
a shared key. Since sid is selected locally, it is possible to have two unrelated
networks configured with the same identifier (e.g., two home networks named
“Miller”). As long as their passwords differ, there will not be any real impact on
security; password files created for one network are unusable for the other.

An online sub-session is a specific run of the protocol between two parties
of a static session. ssid is given as external input to the protocol in order to
uniquely identify message flows within a sub-session among parties of the same
static session. In many cases the transport layer’s communication identifiers (e.g.,

1 In fact, our relaxed functionality now allows for a stronger adversary that can submit
as many such queries as it chooses. However, the first failed query interrupts the
session, thus preventing subsequent queries. On the other hand, after a successful
attack, the adversary has already compromised the session.
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TCP/IP 5-tuple) suffice. If necessary, an additional communication round can
be used to negotiate unique ssid (as in [19]).

6 The CHIP iPAKE Protocol

6.1 Design Motivation

When extending the protection of traditional PAKE to consider party compro-
mise attacks, one might think of a trivial solution: simply store the hash of the
password, and use this hash value in the PAKE, instead of the plain password.
While this solves the problem of leaking the password upon party compromise,
it does not protect from impersonation. Since hash values are not bound to any
identity, a hash value stolen from a compromised party Pi can be used to imper-
sonate any non-compromised party Pj towards anyone. This is known as a Key
Compromise Impersonation (KCI) attack.

To protect against KCI attacks we need to bind those hash values to iden-
tities. However, KCI resistance is not trivial to achieve. For instance, if parties
were to concatenate their identity to the password as input to a hash function:
hi ← H(idi, π), there would be no simple means for party Pi knowing hi (but
no longer π) to derive a shared key with another party Pj that only holds hj .

One family of protocols that provides KCI resistance by design is Identity-
Based Key-Exchange (IB-KE), introduced by Günther [18]. Unfortunately, IB-
KE protocols require a trusted third party called Key Distribution Centre
(KDC). The KDC is responsible for delivering identity-bound key material to
other parties in a setup phase. In our setting, there is no trusted third party, only
a password that is shared between the parties. To remove the KDC requirement,
we modify the IB-KE protocol by allowing each party to locally simulate the
operation of the KDC. To achieve this, we use the password hash as the KDC’s
secret data. This ensures that all parties with the same password are simulating
“the same” KDC, i.e., using the same KDC secrets to derive password files.

Unfortunately, this construction might still be vulnerable to offline password
guessing. Since an IB-KE protocol assumes the KDC secret to have high entropy,
IB-KE protocols might send information that is dependent on this value. For
instance, a certificate signed by the KDC secret key might be sent in the clear.
With the KDC secrets being derived deterministically from a low entropy pass-
word, a passive eavesdropper might capture such a message then start an offline
brute-force attack to find the correct password.

We solve this by considering IB-KE protocols with message flows independent
from the KDC secrets. Specifically, we chose the Identity-Based Key-Agreement
(IB-KA) protocol by Fiore and Gennaro [16]. IB-KA requires a single simultane-
ous communication round, is proven secure in the Canetti-Krawczyk model [12]
under the strong Diffie-Hellman assumption, and provides weak Forward Secrecy
(wFS) and KCI resistance.

A final issue with the construction is that the output key of IB-KA depends
on the KDC secret. Recall that Forward Secrecy (ephemeral key secrecy after
long-term keys are compromised) in IB-KA is not perfect but weak (i.e., only
holds against passive adversaries), therefore an active adversary can modify the
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Public Parameters: Cyclic group G of prime order q≥2κ with generator g∈G, a
PAKE protocol realizing FPAKE, hash functions H1, H2: {0, 1}�→Z

�
q , and κ a

security parameter. Note that here sid is explicitly concatenated to the input of
H1, H2 invocations for domain separation.

Password File Generation:

Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random xi
R← Z

�
q Pick random xj

R← Z
�
q

yi ← H1(sid, πi) yj ← H1(sid, πj)
Xi←gxi , Yi←gyi Xj←gxj , Yj←gyj

hi ← H2(sid, idi, Xi) hj ← H2(sid, idj , Xj)
x̂i ← xi + yi·hi x̂j ← xj + yj ·hj

Record file[sid] = 〈idi, Xi, Yi, x̂i〉 Record file[sid] = 〈idj , Xj , Yj , x̂j〉
Key Exchange:

Pi upon (NewSession, sid, ssid, Pj): Pj upon (NewSession, sid, ssid, Pi):

Retrieve file[sid] = 〈idi, Xi, Yi, x̂i〉 Retrieve file[sid] = 〈idj , Xj , Yj , x̂j〉
Pick ri

R← Z
�
q Pick rj

R← Z
�
q

Ri←gri Rj←grjfi = (ssid, idi, Xi, Ri)

fj = (ssid, idj , Xj , Rj)

hj ← H2(sid, idj , Xj) hi ← H2(sid, idi, Xi)
αi ← Rj

ri αj ← Ri
rj

βi ← RjXjYi
hj

)ri+x̂i βj ← RiXiYj
hi

)rj+x̂j

tri ← 〈min(fi, fj), max(fi, fj)〉 trj ← 〈min(fj , fi), max(fj , fi)〉
Si ← 〈αi, βi, tri〉 Sj ← 〈αj , βj , trj〉

sid, ssid, Si sid, ssid, Sj

PAKE

Ki Kj

Output (sid, ssid, idj , Ki) Output (sid, ssid, idi, Kj)

Fig. 6. CHIP protocol

incoming flow to party Pi, then offline derive the resulting key from every possible
password guess π′. Any subsequent usage of the key, e.g. for data authentica-
tion, would allow the adversary to test the password guesses and extract the
correct session key. We resolve this by using the IB-KA output key as input to
a symmetric PAKE, along with the transcript of the IB-KA.

Figure 6 depicts CHIP, which transforms any PAKE into an iPAKE using
the modified IB-KA protocol [16], with the following changes:

– KDC Simulation: Instead of using a real KDC, each party Pi simulates the
KDC’s setup phase during its password file generation. This is achieved by
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replacing the KDC’s randomly generated private value yi with the hash of
Pi’s password H1(sid, πi).

– PAKE Integration: We use the output of IB-KA (αi, βi) alongside the IB-
KA transcript (tri) as input to a PAKE instance. The output from this PAKE,
Ki, is the resulting session key.

6.2 Correctness

The correctness of CHIP follows from the correctness of IB-KA. Parties Pi, Pj

compute the secret values Si, Sj respectively, where Si = 〈αi, βi, tri〉. Si, Sj are
converted to keys Ki,Kj by inputting them to the PAKE. For honest parties:

αi = (gri)rj = (grj )ri = αj

tri = 〈min(fi, fj),max(fj , fi)〉 = 〈min(fj , fi),max(fi, fj)〉 = trj

Therefore, assuming H1(sid, ·) is injective on the password domain we get:

βi = (RjXjY
hj

i )ri+x̂i = g(rj+xj+yi·hj)·(ri+xi+yi·hi)

βj = (RiXiY
hi
j )rj+x̂j = g(ri+xi+yj ·hi)·(rj+xj+yj ·hj)

Ki = Kj ⇐⇒ Si = Sj ⇐⇒ βi = βj ⇐⇒ yi = yj ⇐⇒ H1(sid, πi) =
H1(sid, πj) ⇐⇒ πi = πj

6.3 CHIP Realizes FiPAKE

The IB-KA protocol, which CHIP is based upon, is proven secure in [16] under
the strong DH assumption:

Definition 1 (SDH). Let G be a group and DDH(X,Y,Z) an oracle returning
1 if Z = DH(X,Y ) and 0 otherwise. The Strong Diffie-Hellman (SDH) assump-
tion is said to hold in G if every PPT adversary A with oracle access DDH
has only negligible probability to compute the Diffie-Hellman result DH(X,Y )
for given inputs X,Y

R← G.

The following theorem (proven in full version of the paper [15] states the
security of CHIP as an iPAKE protocol in the UC framework.

Theorem 1. If the SDH assumption holds in G, then the CHIP protocol in
Fig. 6 UC-realizes FiPAKE in the (FPAKE,FRO)-hybrid world.

Proof Technique Intuition

To prove that CHIP UC-realizes FiPAKE we need to show how CHIP can be
simulated using FiPAKE. Here we provide some intuition for key aspects of our
simulation and proof.

Simulation of Message Flows. One of the properties of IB-KA is that its
flows are independent of the KDC secrets, which in our setting translates to
being independent of the passwords. This has the side-effect of allowing us to
easily simulate message flows.
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Simulating Password Files. When a password hash is requested we employ the
programmability of our ROM to set the hash value in correspondence with previ-
ously stolen password files. We use OfflineComparePwd to ensure consistency
of generated hash values across parties with the same password. If a party is com-
promised after the hash is computed, we take advantage of OfflineTestPwd

executed during Hash simulation to reveal the correct password of the party to be
compromised, then simulate a password file with the known hash.

Simulating TestPwd. To extract a password guess from the environment’s
TestPwd inputwe consider all possible password hash values: If a previousH1(π′)
query outputs a value satisfyingZ’s input, wemount anOnlineTestPwd against
FiPAKE with π′; If a previously compromised password file contained a hash value
satisfying the input, then we Impersonate that compromised party. It is possible
that Z’s guess was incorrect, in which case our attacks will also fail.

Preserving KCI-Resistance. We state that despite simulating the KDC using
a hash of a password, we preserve the KCI resistance property of IB-KE, as long
as the password remains secret. That is, modelling the hash function applied to
the password as a random oracle, the adversary has no access to the random
value H(π) until it queries the oracle with the correct password. Thus, the local
generation of a password file under our modification is equivalent to a KDC
generating key files, while H(π) is not queried by the adversary.

6.4 The Cost of Brute-Force Attack on CHIP

We note that in our proof, H1 corresponds to OfflineTestPwd or the cost of
a single password guess. Therefore, to increase the cost of a brute-force attack,
it is advised to choose a computationally costly hash function (see Sect. 8.1).

CHIP is vulnerable to pre-computation. CHIP’s password files include the
(unsalted) hash value Y = gy = gH1(sid,π). While extracting the password
from a compromised file requires a brute-force attack, this property enables
pre-computation: if the adversary prepares a mapping Yπ′ 	→ π′ for each pass-
word guess π′ in advance for a specific sid, it can discover the correct password
immediately after compromising a party. Our next protocol mitigates this.

7 The CRISP siPAKE Protocol

7.1 Protocol Description

CRISP is a compiler that transforms any PAKE into a compromise resilient,
identity-binding, and symmetric PAKE. CRISP (defined in Fig. 7) is composed
of the following phases:

1. Public Parameters Generation: In this phase, public parameters common
to all parties are generated from a security parameter κ. These parameters
include the bilinear groups G1, G2, GT with hash to group functions Ĥ1, Ĥ2,
and the PAKE protocol to be used.

2. Password File Derivation: In this phase, the user enters a password πi and
an identifier idi for a party Pi (e.g., some device such as a personal computer,
smartphone, server or access point). The party selects an independent and
uniform random salt, and then derives and stores the password file.
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Public Parameters: Cyclic groups G1, G2, GT of prime order q≥2κ with generator
g2∈G2, bilinear pairing ê:G1×G2→GT , a PAKE protocol realizing FPAKE, hash
functions Ĥ1, Ĥ2: {0, 1}�→G2 and κ a security parameter. Note that here sid is
explicitly concatenated to the input of Ĥ1, Ĥ2 invocations for domain separation.

Password File Derivation (offline)

Pi upon (StorePwdFile, sid, idi, πi): Pj upon (StorePwdFile, sid, idj , πj):

Pick random salt xi
R←Z

�
q Pick random salt xj

R←Z
�
q

Ai←gxi
1 Aj←g

xj

1

Bi←Ĥ1(sid, πi)
xi , Ci←Ĥ2(sid, idi)

xi Bj←Ĥ1(sid, πj)
xj , Cj←Ĥ2(sid, idj)

xj

Record file[sid] = 〈idi, Ai, Bi, Ci〉 Record file[sid] = 〈idj , Aj , Bj , Cj〉
Key Exchange

Pi upon (NewSession, sid, ssid, Pj): Pj upon (NewSession, sid, ssid, Pi):

Retrieve file[sid] = 〈idi, Ai, Bi, Ci〉 Retrieve file[sid] = 〈idj , Aj , Bj , Cj〉
Pick random exponent ri

R←Z
�
q Pick random exponent rj

R←Z
�
q

Ãi←Ari
i , B̃i←Bri

i , C̃i←Cri
i Ãj←A

rj

j , B̃j←B
rj

j , C̃j←C
rj

j(ssid, idi, Ãi, C̃i)

(ssid, idj , Ãj , C̃j)

Ignore if Ãj=1G1 or Ãj /∈G1 Ignore if Ãi=1G1 or Ãi /∈G1

or ê(g1, C̃j) 
= ê(Ãj , Ĥ2(sid, idj)) or ê(g1, C̃i) 
= ê(Ãi), Ĥ2(sid, idi)

Si ← ê(Ãj , B̃i) Sj ← ê(Ãi, B̃j)

sid, ssid, Si sid, ssid, Sj

PAKE

Ki Kj

Output (sid, ssid, idj , Ki) Output (sid, ssid, idi, Kj)

Fig. 7. CRISP protocol

3. Key Exchange: In this phase, two parties, Pi and Pj engage in a sub-session
to derive a shared key. This phase consists of three stages:
(a) Blinding. Values from the password file are raised to the power of a ran-

domly selected exponent. This stage can be performed once and re-used
across sub-sessions (see Sect. 8.3).

(b) Secret Exchange. Using a single communication round (two messages),
each party computes a secret value. These values depend on the generating
party’s password, and both parties’ salt and blinding exponents.

(c) PAKE. Both parties engage in a PAKE where they input their secret
values as passwords to receive secure cryptographic keys.

The hash-to-group functions (Ĥ1 and Ĥ2) can be realized by FGGP’s Hash

queries using domain separation with different prefixes: Ĥ1(sid, π) will query
Hash using s = 1||π, and Ĥ2(sid, id) will use s = 2||id.
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We provide intuition by explaining the necessity of several components.

Bilinear Pairing. To protect against pre-computation attacks the password file
cannot contain neither the plain password, nor its unsalted hash. Nevertheless,
the classical salted hash method (e.g., H(π, x) for a random salt x) guarantees
pre-computation resistance, but cannot be used to derive a shared key across
parties with independent salts, because the hashes have no structure to link
them with each other, in the absence of the password during the online key
exchange. Storing 〈x, Y 〉 for a random x and Y = gH(π)·x is also vulnerable
to pre-computation of a map M : gH(π′) 	→ π′, then finding the password π
immediately with M [Y 1/x].

In search of a construct that is both resilient to pre-computation and has some
algebraic structure we considered 〈X,Y 〉 for X = gx

1 , Y = g
H(π)·x
2 and ran-

dom x. This utilizes the oracle hashing scheme [10] 〈X,XH(v)〉, which implies pre-
computation resistance. The parties can then compute a shared value using bilin-
ear pairing:

ê(Xi, Yj) = ê(gxi
1 , g

H(π)·xj

2 ) = ê(g1, g2)H(π)·xi·xj = ê(gxj

1 , g
H(π)·xi

2 ) = ê(Xj , Yi)

Hash-to-Group. Although the 〈X,Y 〉 construct from last paragraph satisfies
pre-computation resistance, it has inherent asymmetry in the computation cost:
while honest parties are required to run bilinear pairing to derive a shared key, an
adversary that has stolen a password file can test passwords offline with a cost of
one exponentiation per password guess. This is accomplished by pre-computing
h[π′] = H(π′), then after compromising a party testing whether Xh[π′] ?= ψ(Y )
for each password guess π′.2

The similar approach selected for CRISP is 〈X,Y 〉 for X = gx
1 , Y = Ĥ(π)x

and x generated at random, using a hash-to-group function Ĥ. This ensures
that the exponent e for ge

2 = Ĥ(π) is kept hidden, even from those who possess
the password. Thus, the adversary is required to compute a bilinear pairing per
password guess post compromise.

Blinding. The blinding stage perfectly hides the salt xi (information theoret-
ically) in the first message transmitted from Pi, since 〈Ãi, C̃i〉 = 〈gx̃i

1 , Ĥ2(sid,
idi)x̃i〉 for x̃i = xiri which is a random element of Z

�
q . Blinding is required

because transmitting the raw Ai value allows A to mount a pre-computation
attack. A may compute the inverse map Bπ′ 	→π′ for any password guess π′:

Bπ′ = ê(Ai, Ĥ1(sid, π′)) = ê(g1, Ĥ1(sid, π′))xi

Then after compromising Pi, use the map to lookup:

ê(g1, Bi) = ê(g1, Ĥ1(sid, πi)xi) = ê(g1, Ĥ1(sid, πi))xi ,

finding the correct π′ = πi instantly. A similar attack would have also been
possible if the values B̃i = Bri

i or ri were disclosed to A upon compromise.
2 Even without ψ, A can compute XT = ê(X, g2) and YT = ê(g1, Y ) with just two

pairings, then test each password guess π′ using a single exponentiation: X
h[π′]
T

?
= YT .
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Symmetric PAKE. The final key Ki should be derived from the secret Si

using a PAKE and not some deterministic key derivation function. The reason
is the lack of perfect forward secrecy in the first message exchange, as explained
for CHIP in Sect. 6.1. Concretely, consider the following attack:

Adversary A modifies the flow from Pj to Pi into Ã′
j = g

x′
j

1 , C̃ ′
j =

Ĥ2(sid, idj)x′
j using some arbirarily chosen exponent x′

j . A can now use Ãi (sent
by an honest party Pi) to compute the value S[π′] = ê(Ãi, Ĥ1(sid, π′)x′

j ) for
any password guess π′. A can now derive a guess for the resulting key K ′ and
test this key against encrypted messages sent by Pi. A correct key implies the
password guess was right. This can be repeated for multiple guesses without
engaging in additional online exchanges.

Generic Group Model. As discussed in Sect. 4.1 we require a non-black-box
assumption to prove pre-computation resilience, and “count” the number of oper-
ations required for an offline brute-force attack. Similarly to [9], we use GGM
to bind each offline guess to a group operation. In our case, we bind it to the
computationally expensive operation of pairing. This is explained in more detail
in Sect. 7.4. CRISP is proven in local GGM. The full version [15] discuss how
we can modify the functionality to allow the reuse of a single generic group for
all CRISP instances. It also discusses the limitation on composing CRISP with
other protocols sharing the same group (e.g., same bilinear curve).

7.2 Correctness

Honest parties Pi, Pj compute the secrets Si, Sj respectively, which are used as
inputs to FPAKE to get Ki, Kj . Assuming Ĥ1(sid, ·) is injective on the password
domain we get:

Si = ê(Ãj , B̃i) = ê(gxjrj

1 , Ĥ1(sid, πi)xiri) = ê(g1, Ĥ1(sid, πi))xiri·xjrj

Sj = ê(Ãi, B̃j) = ê(gxiri
1 , Ĥ1(sid, πj)xjrj ) = ê(g1, Ĥ1(sid, πj))xjrj ·xiri

Ki = Kj ⇐⇒ Si = Sj ⇐⇒ Ĥ1(sid, πi) = Ĥ1(sid, πj) ⇐⇒ πi = πj

7.3 CRISP Realizes FsiPAKE

Theorem 2. Protocol CRISP as depicted in Fig. 7 UC-realizes FsiPAKE in the
(FPAKE, FGGP)-hybrid world.

We give the full proof in the full version [15] and describe the high-level strategy
below. In the UC proof, we omit sid from Ĥ1 and Ĥ2 for the sake of brevity.

We prove CRISP’s UC-security by providing an ideal-world adversary S, that
simulates a real-world adversary A against CRISP, while only having access to
the ideal functionality FsiPAKE. We show the real and ideal worlds in Fig. 8.

The main challenge for S is the unknown passwords assigned to parties by
Z. To overcome this, S simulates the real-world Ĥ1(πi) = [yπi

]G2 using a formal
variable (indeterminate) Zi in the ideal-world: Ĥ�

1 (πi) = [Zi]G2 . Wherever the
real world uses group encodings of exponents, S simulates them using encodings
of polynomials with these formal variables: [F ]Gj

for polynomial F .
This simulation technique, using formal variables for unknown values, is very

common in GGM proofs. It “works” because Z is only able to detect equality
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APi Pj

Z

FPAKE FGGP

SPi Pj

Z

FsiPAKE

(a) real world (b) simulated world

Fig. 8. Depiction of real world running protocol CRISP with adversary A versus sim-
ulated world running the ideal protocol for FsiPAKE with adversary S.

of group elements, and group operations produce only linear combinations of
the exponents. Two formally distinct polynomials F1 �= F2 in the ideal world
would only represent the same value in the real world in the case of a collision
on some unknown value: F1(x) = F2(x). Since these unknown values are uni-
formly selected over a large domain and the polynomials have low degrees, the
probability of collisions is negligible.

To simulate several unknown values, we use these variables:

1. Xi represents party Pi’s salt xi.
2. Yπ represents the unknown exponent yπ s.t. Ĥ1(π) = gyπ

2 , for any password π.
3. Iid represents the unknown exponent ιid s.t. Ĥ2(id) = gιid

2 .
4. Ri,ssid represents party Pi’s blinding value ri in sub-session ssid.
5. Zi is an alias for Yπi

, where πi is party Pi’s password.

Note that some variables are created “on the fly” during the simulation. For
example, upon every fresh Ĥ1(π) query S creates a new variable Yπ.

Using these variables, S simulates the following:

– Hash queries: Ĥ1(π) = [Yπ]G2 and Ĥ2(id) = [Iid]G2 .
– Group operations: [F1]Gj

� [F2]Gj
= [F1+F2]Gj

, [F1]Gj
� [F2]Gj

=
[F1−F2]Gj

, ê([F1]G1 , [F2]G2) = [F1·F2]GT
, ψ([F ]G2) = [F ]G1 and ψ−1([F ]G1) =

[F ]G2 .
– Pi’s password file: 〈idi, [Xi]G1 , [XiZi]G2 , [XiIidi

]G2〉.
– First message from Pi: (ssid, idi, [XiRi,ssid]G1 , [XiRi,ssidIidi

]G2).

Variable Aliasing. Note that S uses both Yπ and Zi variables: Yπ are used for
simulating an evaluation of Ĥ1(π), while Zi are used for simulating Pi’s password
file. Since Yπi

and Zi are distinct variables that might represent the same value
in the real world, the simulation seems flawed. For instance, Z might ask A
to compromise a party Pi and then evaluate ê(g1, Bi) = ê(g1, Ĥ1(πi)xi) and
ê(Ai, Ĥ1(π′)) = ê(gxi

1 , Ĥ1(π′)). With overwhelming probability, these encodings
will be equal if and only if Z chose πi = π′, since collisions in Ĥ1 only occur
with negligible probability. Yet because of using the alias Zi, S would generate
ê(g1, Bi) = ê([1]G1 , [XiZi]) = [XiZi]GT

and ê(Ai, Ĥ1(π′)) = ê([Xi]G1 , [Yπ′ ]G2) =
[XiYπ′ ]GT

which are always different encodings.
Nevertheless, S is able to detect possible aliasing collisions: when two distinct

polynomials, whose group encodings were sent to the environment Z, become
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1: function InsertRow(v)
2: for all row w with pivot column j in M do
3: v ← v − v[j]·w
4: j ← SelectPivot(v)
5: if v =

#»
0 then return

6: v ← v/v[j]
7: for all row w in M do
8: w ← w − w[j]·v
9: Insert row v with pivot column j to M

10: function SelectPivot(v)
11: sent ← false

12: for all compromised party Pi with identifier idi do
13: for all passwords π′ that were queried by Ĥ1(π

′) do
14: j1 ← index of monomial XiYπ′

15: j2 ← index of monomial XiYπ′Iidi

16: if v[j1] �= 0 or v[j2] �= 0 then
17: Send (OfflineTestPwd, sid, Pi, π

′) to FsiPAKE

18: sent ← true

19: if FsiPAKE returned “wrong guess” then

20: return

{
j1 if v[j1] �=0

j2 otherwise

21: Substitute variable Zi with Yπ′ in all polynomials
22: Merge corresponding columns of M , v

23: if some party Pi has been compromised and sent = false then
24: Send (OfflineTestPwd, sid, Pi, ⊥) to FsiPAKE

25: if v �= #»
0 then return arbitrary column j having v[j] �= 0

Algorithm 1: S’s row reduction algorithm, using OfflineTestPwd queries

equal under substitution of Zi with Yπ′ (for some previously evaluated Ĥ1(π′)),
S knows there will be a collision if πi = π′. This condition can be tested by S
using OfflineTestPwd queries, for a compromised party Pi. When FsiPAKE

replies “correct guess” to such query, S substitutes Yπ′ for Zi in all its data sets.
While we could have identified collisions across all FGGP queries, we chose

to limit OfflineTestPwd to only pairing evaluations (Pairing simulation),
for better modelling of pre-computation resilience (see Sect. 7.4). This implies
that S needs to predict possible future collisions when simulating a pairing. This
prediction is achieved by the polynomial matrix explained below.

Polynomial Matrix. Throughout the simulation S maintains a matrix M whose
rows correspond to polynomials in GT , and its columns to possible terms. A poly-
nomial is represented in M by its coefficients stored in the appropriate columns.
For example, if columns 1 to 3 correspond to terms Xi, XiZi and XiYπ′ respectively,
then polynomial F = 2XiZi − 3XiYπ′ will be represented in M by a row (0, 2,−3).
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Matrix M is extended during the simulation: when a new variable is introduced
(e.g., when A issues a Hash query) new columns are added; and when a new poly-
nomial is created inGT by aPairing query, another row is added to M , but using a
row-reduction algorithm (see Algorithm 1) so the matrix is always kept in reduced
row-echelon form. Note that when polynomials are created due toMulDiv opera-
tions inGT ,S does not extend the table, as the created polynomial is by definition a
linear combination of others, so itwould have been eliminated by the row-reduction
algorithm. It is therefore clear that all polynomials created by S in GT are linear
combinations of the matrix rows seen as polynomials.

When invoked by A to compute a pairing ê([F1]G1 , [F2]G2), S first computes the
product polynomial FT = F1·F2, converts it to a coefficient vector V then applies
the first step of row-reduction; that is, a linear combination of M ’s rows is added
to V so to zero V ’s entries already selected as pivots for these rows. S then scans V
for a non-zero entry corresponding to a term XiYπ′ (or XiIidi

Yπ′) for some compro-
mised party Pi and a password guess π′, where password guesses are taken from
A’s Ĥ1(π′) queries. If such non-zero entry exists in V , S sends OfflineTestPwd

query to FsiPAKE testing whether party Pi was assigned password π′ (i.e., πi=π′).
If the guess failed, S chooses this as the pivot entry. Otherwise, S merges the vari-
able Zi with Yπ′ , and repeats the process until some test fails or no more entries
of the specified form are non-zero in V . If V �=0 and no pivot is selected, arbitrary
non-zero entry is selected. S then applies the second step of row-reduction; that is
S uses V to zero the entries of the selected pivot entry in other rows, and insert V
as a new row to M . Finally, S proceeds as usual for group operations, choosing the
encoding [FT ]GT

using the original FT , possibly merging some variables.
This completes the proof sketch; for further details we refer the full version [15].

7.4 Cost of Offline Brute-Force Attack on CRISP

In the full version of the paper [15] we provide a lower bound for the cost of
offline brute-force attack. This is usually achieved by binding the offline tests
OfflineTestPwd with some real-world work. For instance, [23] requires OPRF
query for each tested password, while [9] shows linear relation between the num-
ber of offline tests and Generic Group operations. We bind each ideal-world
OfflineTestPwd query with a bilinear pairing computed (after a compro-
mise). In Sect. 8.2 we explain why binding to bilinear pairing is favorable com-
pare to other group operations.

7.5 Primum Non Nocere - Breakdown Resilience of CRISP

Our CRISP compiler is based on pairing-friendly group and UC-realizes FsiPAKE

assuming the Generic Group Model with pairing. However, we can show that
CRISP preserves several important properties even when the pairing-friendly
group’s security is completely broken (e.g., discrete log is easy).

Unconditional PAKE Security. First we consider the underlying symmetric
PAKE’s original properties. To show this, we are only concerned with the addi-
tional actions added before invoking the PAKE. Recall that the message added
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Table 2. Comparison of costly operations in CRISP and CHIP

CHIP CRISP

Password file derivation 2H + 2E 2Ĥ + 3E

Key exchange: Blinding 1E 3E

Identity check 0 1Ĥ + 2P

Key generation 1H + 3E + PAKE 1P + PAKE

by CRISP for party Pi is:

idi, Ãi, C̃i = idi, (gxi
1 )ri , (Ĥ2(sid, idi)xi)ri ,

where ri and xi are random values. This message is thus completely independent
of the password and does not leak any information about it. Also, we recall from
Sect. 7.2 that the inputs to FPAKE Si, Sj are equal if and only if the passwords
are equal (only assuming Ĥ1 is injective on the password domain). Thus, unless a
party is compromised, the underlying PAKE properties (leaking no information
of the password and allowing a single online guess) are preserved by CRISP.

GGM-Free Password File Security. Recall that CRISP’s password file for
party Pi takes the following form: 〈file, idi, Ai, Bi, Ci, 〉 where only Bi is derived
from the password πi as Bi = Ĥ1(πi)xi with a random salt xi. Hash-to-Group
functions usually consist of a composition of a “conventional” hash function H
with a Map-to-Group function F : Ĥi(s) ← F (Hi(s)). Therefore, the password
file is derived from a “conventionally hashed” password H1(πi) rather than the
plain password. Thus, modelling H1 as RO, to mount a brute-force attack against
a compromised password file, the adversary has to evaluate H1 on the each guess
π′, regardless of group properties.

For example, with discrete log capabilities, the adversary can extract the salt
xi from Ai=gxi

1 . Assuming F−1 is efficiently computable, they can extract:

F−1(B1/xi

i ) = F−1(Ĥ1(πi)xi/xi) = F−1(F (H1(πi))) = H1(πi)

However, a conventional hash computation is still required to test each pass-
word guess: H1(π′) ?= H1(πi). Note that hash evaluation of guesses can be pre-
computed. GGM is only used to prove that some work per guess (specifically,
bilinear pairing) is required from the attacker post-compromise.

8 Computational Cost

The computational costs for CHIP and CRISP are summarized in Table 2 in
terms of costly operations. In the table, we use H, Ĥ, E, and P to denote Hash,
Hash-to-Group, Exponentiation, and Pairing costs, respectively, and PAKE
denotes the additional cost of the underlying PAKE used. We ignore the cost of
group multiplications.
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8.1 Password Hardening for Pre-compromise

Common password hardening techniques (e.g., PBKDF2 [26], Argon2 [5], and
scrypt [28]) are used in the process of deriving a key from a password to increase
the cost of brute-force attacks. As mentioned in Sect. 3 both CHIP and CRISP
protocols can use those techniques to increase the cost of the pre-compromise
computation phase of the attack (pre-computation). In CHIP, we can use any
of those hardening techniques to implement the hash function denoted as H1.
Similarly, in CRISP, we can use those techniques as the first step in implementing
the Hash-to-Group function denoted as Ĥ1. As those functions are only called
once in the password file derivation phase, we can increase their cost without
increasing the cost of the online phase of the protocol.

8.2 Password Hardening for Post-compromise

In addition to the cost of the pre-compromise phase, the CRISP protocol also
requires the attacker to perform a post-compromise phase. The offline test post-
compromise cost mentioned above is taken from the lower bound proved in
Sect. 7.4. This is also an upper bound for CRISP, since having compromised
a password file, an adversary can check for any password guess π′ if:

ê(g1, Bi)
?= ê(Ai, Ĥ1(sid, π′))

The left-hand side can be computed once and re-used for different guesses. The
right-hand side must be computed per-password, but the invocation of Ĥ1 can
be done prior to the compromise.

We stress that a pairing operation is preferred over exponentiation when
considering the cost of an offline test. While the latter can be significantly amor-
tized (e.g., by using a window implementation), to the best of our knowledge,
only 37% speed-up can be achieved for pairing with a fixed point [14]. Moreover,
pairing requires more memory than a simple point multiplication and is harder
to accelerate using GPUs [29].

In OPAQUE [23], the difficulty of offline tests was increased by iterative hash-
ing (password hardening). CRISP cannot benefit from this approach for post-
compromise hardening, because the design does not allow the salt inside the hash.
However, by using larger group sizes, we can increase the cost of each pairing
and slow down offline tests. Although coarse-grained, this allows some trade-off
between compromise resilience and computational complexity of CRISP.

8.3 CRISP Optimization

We can optimize the CRISP protocol in several ways to reduce the added com-
putational cost and latency.

Identity Verification. A substantial part of the added computational cost of
the protocol is the identity verification that requires two pairing operations. We
propose two options to optimize this cost:

1. Reducing latency – The verification does not affect the derived key or the sub-
sequent messages. This implies we can continue with the protocol by sending
the next message and postpone the verification for later, while we wait for



694 C. Cremers et al.

Table 3. Online performance comparison and proven security notions for PAKEs.

CPace SAE CHIP OPAQUE CRISP

CPU time (ms) 0.2 >1.3 0.6 0.6 4.1

Communication rounds 1 2 2 2 2

Security notion PAKE none iPAKE saPAKE siPAKE

the other party to respond. The total computational cost remains the same,
but the latency (or running time) of the protocol is reduced.

2. Verification delegation – Any party that receives the protocol messages, can
verify the identity appearing in it (verification is only based on the identity
and blinded values). We consider the following scenario, where we have a
broadcast network with many low-end devices, such as IoT devices, and one
or more high-end devices, such as a controller or bridge. The bridge can
perform the identity verification for all protocols in the network, and alert
the user if any verification fails.

Number of Messages. CRISP requires two additional messages compared to
the underlying PAKE. We can trivially reduce this to one additional message.
The first message remains the same, but after receiving it, the other party can
already derive the shared secret Si and prepare the first PAKE message. Conse-
quently, CRISP’s second message can be combined with the first PAKE message,
resulting in a single additional message, and again reducing the total latency of
the protocol. As any PAKE protocol requires at least two simultaneous mes-
sages [25], we can implement CRISP using only three sequential messages. The
same optimization applies to CHIP.

8.4 Performance Benchmark

We provide open source implementations for CHIP and CRISP. In both we rely
on CPace [19] as the underlying symmetric PAKE. CHIP was implemented on
top of Ristretto255 curve from the libsodium library (v1.0.18). CRISP uses the
pairing friendly curve BLS12-381 from the MCL library (v1.22). Both curves are
assumed to provide 128-bit of security strength. The source code is available at
https://github.com/shapaz/CRISP.

In Table 3 we compare the online performance of CHIP and CRISP with
those of other popular PAKE protocols, running on an i7-4790 processor. CPace
and OPAQUE [23] were chosen by IETF CFRG as symmetric and asymmetric
PAKEs (respectively) for usage with TLS 1.3, and are considered to be very
efficient. SAE [20] is the underlying symmetric PAKE of Wi-Fi’s WPA-3 and is
designed to be supported by low-resource embedded devices. For measurements,
our code implements both CPace and OPAQUE over Ristretto255. For SAE we
used the official hostapd/wpa supplicant. Note that although Wi-Fi’s SAE was
designed to be a PAKE, its security was never proven.

https://github.com/shapaz/CRISP
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9 Conclusions and Discussion

In this paper, we formalized the novel notions of iPAKE and siPAKE, that
bring compromise resilience to all parties, and can also be applied in the sym-
metric setting. We presented CHIP, which we proved to UC-realize FiPAKE

under ROM. We also introduced CRISP, which we proved to realize FsiPAKE

under GGM+ROM. Moreover, we have shown that each offline password guess
for CRISP requires a computational cost equivalent to one pairing operation.
Finally, we showed our protocols are practical and efficient.

Deploying (s)iPAKE. Deploying (s)iPAKEs in practice could be done by,
e.g., using CRISP or CHIP inside a Wi-Fi handshake, and choosing roles and
device names (“Phone: Elon’s third iPhone”) as the identities, and requiring
consistency between the reported identity and the identity in the handshake. A
compromise of the phone would afterwards only allow the adversary to imper-
sonate as this device identity, which would enable manual detection (e.g., a lost
phone appearing as an access point) and facilitate allow/deny listing. Other
application examples include IoT settings, where one could link role identities
to capabilities, e.g., the window cannot instruct the garage door to open.

Comparison of CRISP and CHIP. CHIP and CRISP both provide Password
Authenticated Key Exchange with compromise resilience, and allow fine-grained
password hardening by selecting computationally hard hash functions (Sect. 8.1).
Parties running CHIP or CRISP only evaluate those hash functions once in the
offline setup phase, which means that computationally costly variants can be
chosen.

However, while CHIP realizes FiPAKE providing “Hashed password with pub-
lic identifiers” level of compromise resilience (Sect. 3), CRISP realizes FsiPAKE,
providing the more secure “Hashed password with secret salt” level. Thus,
CRISP requires the adversary to pay an additional coarse-grained cost after
party compromise (Sect. 8.2). CRISP’s pre-computation resistance comes at a
cost: CHIP is faster, requires standard assumptions, and can be implemented
with simple group operations; CRISP, on the other hand, requires bilinear pair-
ing and local GGM, and cannot be trivially composed with other protocols that
share the same group.

Going forward with the concept of identity-binding PAKEs, we identify sev-
eral remaining open problems:

Two Message Protocol. In Sect. 8.3, we showed how our protocols require
only three messages. As shown in [25], PAKE can be realized with only two
messages. It is an open problem to either prove a lower bound of three messages
or to implement a two message iPAKE or siPAKE protocol. To the best of
our knowledge, there are no two message (s)aPAKE protocols. Jutla and Roy
[24] propose a one-round aPAKE, but it seems that they require an additional
message from the server before the protocol [23].

Optimal Bound on the Cost of Brute-Force Attack. In Sect. 3 we showed
a black-box post-compromise brute-force attack on any PAKE protocol. The
computational cost of the attack is two runs (i.e., for both parties) of the PAKE
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protocol for each offline password guess. However, to the best of our knowl-
edge, brute-forcing current PAKE implementations requires a computational
cost equivalent to only one run of the protocol. It remains an open problem to
find a more efficient black-box attack or to implement a more resilient PAKE.

Fine-Grained Password Hardening. While both CHIP and CRISP allow for
fine-grained password hardening, CRISP additionally provides coarse-grained
post-compromise password hardening by enlarging the group (e.g., curves of
larger size). Allowing fine-grained hardening (e.g., iterative hashing) while pre-
serving pre-computation resistance for all parties remains an open problem.

Acknowledgement. We thank Nir Bitansky, Ran Canetti, Ben Fisch, Hugo
Krawczyk, and Eylon Yogev for many helpful discussions and insightful ideas.

The second author is supported in part by grants from the Israel Science Foun-
dation (no. 2686/20) and by the Simons Foundation Collaboration on the Theory of
Algorithmic Fairness. Incumbent of the Judith Kleeman Professorial Chair. The fourth
author is supported in part by Len Blavatnik and the Blavatnik Family foundation,
the Blavatnik ICRC, and Robert Bosch Technologies Israel Ltd. Member of the Check
Point Institute for Information Security.

References

1. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 711–741. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 24

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

3. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Security and Privacy
(1992)

4. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
CCS (1993)

5. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: new generation of memory-hard
functions for password hashing and other applications. In: EuroS&P. IEEE (2016)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

7. Bourdrez, D., Krawczyk, H., Lewi, K., Wood, C.A.: The OPAQUE asymmet-
ric PAKE protocol. Internet-Draft draft-irtf-cfrg-opaque-08, Internet Engineer-
ing Task Force, March 2022. https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-
opaque-08

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-540-24676-3_4
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-opaque-08
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12


CHIP and CRISP 697

9. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 798–825. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 26

10. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

14. Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto,
P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 92–108. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14712-8 6

15. Cremers, C., Naor, M., Paz, S., Ronen, E.: CHIP and CRISP: protecting all parties
against compromise through identity-binding PAKEs. Cryptology ePrint Archive
(2020). https://eprint.iacr.org/2020/529

16. Fiore, D., Gennaro, R.: Identity-based key exchange protocols without pairings.
Trans. Comput. Sci. 10, 42–77 (2010)

17. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

18. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

19. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR Trans. Cryptogr. Hardw. Embed. Syst. (2019)

20. Harkins, D.: Simultaneous authentication of equals: a secure, password-based key
exchange for mesh networks. In: 2008 Second International Conference on Sensor
Technologies and Applications (2008)

21. Harkins, D., Zorn, G.: Extensible authentication protocol (EAP) Authentication
using only a password. RFC 5931, August 2010

22. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
579–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 29

23. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

24. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 235–262. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 9

https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-642-14712-8_6
https://eprint.iacr.org/2020/529
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-030-03807-6_9


698 C. Cremers et al.

25. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

26. Moriarty, K., Kaliski, B., Rusch, A.: PKCS #5: password-based cryptography spec-
ification version 2.1. RFC 8018, January 2017

27. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The kerberos network authentica-
tion service (V5). RFC 4120, July 2005

28. Percival, C., Josefsson, S.: The scrypt password-based key derivation function. RFC
7914, August 2016

29. Pu, S., Liu, J.-C.: EAGL: an elliptic curve arithmetic GPU-based library for bilin-
ear pairing. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 1–19.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 1

30. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

31. Wi-Fi Alliance. WPA3 specification version 1.0, April 2018. https://www.wi-fi.
org/file/wpa3-specification-v10. Accessed 6 Apr 2019

32. Wu, T.D.: The secure remote password protocol. In: NDSS. The Internet Society
(1998)

https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-319-04873-4_1
https://doi.org/10.1007/3-540-69053-0_18
https://www.wi-fi.org/file/wpa3-specification-v10
https://www.wi-fi.org/file/wpa3-specification-v10


Password-Authenticated Key Exchange
from Group Actions

Michel Abdalla1,2 , Thorsten Eisenhofer3, Eike Kiltz3 ,
Sabrina Kunzweiler3 , and Doreen Riepel3(B)

1 DFINITY, Zürich, Switzerland
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

michel.abdalla@ens.fr
3 Ruhr-Universität Bochum, Bochum, Germany

{thorsten.eisenhofer,eike.kiltz,sabrina.kunzweiler,doreen.riepel}@rub.de

Abstract. We present two provably secure password-authenticated key
exchange (PAKE) protocols based on a commutative group action. To
date the most important instantiation of isogeny-based group actions is
given by CSIDH. To model the properties more accurately, we extend the
framework of cryptographic group actions (Alamati et al., ASIACRYPT
2020) by the ability of computing the quadratic twist of an elliptic curve.
This property is always present in the CSIDH setting and turns out to
be crucial in the security analysis of our PAKE protocols.

Despite the resemblance, the translation of Diffie-Hellman based
PAKE protocols to group actions either does not work with known
techniques or is insecure (“How not to create an isogeny-based PAKE”,
Azarderakhsh et al., ACNS 2020). We overcome the difficulties mentioned
in previous work by using a “bit-by-bit” approach, where each password
bit is considered separately.

Our first protocol X-GA-PAKE� can be executed in a single round.
Both parties need to send two set elements for each password bit
in order to prevent offline dictionary attacks. The second protocol
Com-GA-PAKE� requires only one set element per password bit, but one
party has to send a commitment on its message first. We also discuss
different optimizations that can be used to reduce the computational
cost. We provide comprehensive security proofs for our base protocols
and deduce security for the optimized versions.

Keywords: Password-authenticated key exchange · group actions ·
CSIDH

1 Introduction

Password-authenticated key exchange (PAKE) enables two parties to securely
establish a joint session key assuming that they only share a low-entropy secret
known as the password. This reflects that passwords are often represented in
short human-readable formats and are chosen from a small set of possible values,
often referred to as dictionary.
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Since the introduction of PAKE by Bellovin and Merritt [8], many PAKE
protocols have been proposed, including SPEKE [20], SPAKE2 [4], J-PAKE [19]
and CPace [18]. In particular over the last few years, the design and construc-
tion of PAKE protocols has attracted increasing attention, as the Crypto Forum
Research Group (CFRG) which is part of the Internet Research Task Force
(IETF) started a selection process to decide which PAKE protocols should be
used in IETF protocols. Recently, CPace was selected as the recommended pro-
tocol for symmetric PAKE, where both parties share the same password.

Different models have been used to formally prove security of PAKE proto-
cols, like indistinguishability-based models or the universal composability frame-
work. In general, a PAKE protocol should resist offline and online dictionary
attacks. On the one hand an adversary should not be able to perform an exhaus-
tive search of the password offline. On the other hand, an active adversary should
only be able to try a small number of passwords in one protocol execution. Fur-
thermore, forward security ensures that session keys are still secure, even if the
password is leaked at a later point in time. The same should hold if session keys
are disclosed, which should not affect security of other session keys.

CSIDH and Group Actions. The PAKE protocols mentioned above are
mostly based on a Diffie-Hellman key exchange in a prime order group. A
promising post-quantum replacement is isogeny-based key exchange. The dif-
ferent isogeny-based protocols can be divided into two groups. On the one hand
there are constructions based on commutative group actions on a set of ellip-
tic curves. The first proposals by Couveignes [12], and Stolbunov and Rostovt-
sev [27] suggested to use the action of the class group cl(O) on the set of Fq-
isomorphism classes of ordinary elliptic curves with endomorphism ring O. In
2018, Castryck et al. showed that this idea can also be adapted to the class
group action on the set of Fp-isomorphism classes of supersingular elliptic curves
[11]. The resulting scheme is called CSIDH and constitutes the first practical key
exchange scheme based on class group actions.

In [12], Couveignes introduces hard homogeneous spaces - an abstract frame-
work for group actions that models isogeny-based assumptions. This framework
has been further refined by Alamati et al. in [5]. Using the abstract setting
of cryptographic group actions the authors develop several new cryptographic
primitives that can be instantiated with CSIDH. On the other hand there is
the Supersingular Isogeny Diffie-Hellman (SIDH) protocol suggested by Jao and
De Feo in 2011 [21]. Here, the set of Fp2 -isomorphism classes of supersingular
elliptic curves is considered. The endomorphism ring of a supersingular elliptic
curve over Fp2 is non-commutative, hence protocols based on SIDH do not fall
into the group action framework.

We now recall the framework of (restricted) effective group actions introduced
in [5]. Throughout, G denotes a finite commutative group and X a set. We assume
that G acts regularly on X via the operator � : G×X → X . Regularity guarantees
that for any x, y ∈ X there exists precisely one group element g ∈ G satisfying
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y = g �x. Broadly speaking, we are interested in group actions, where evaluation
is easy, but the “discrete logarithm problem” is hard. Expressed differently:

– Given x ∈ X and g ∈ G, one can efficiently compute the set element y = g �x.
– Given x, y ∈ X , it is hard to find the element g ∈ G satisfying y = g � x.

These properties facilitate the definition of a Diffie-Hellman key exchange. Let
x be some fixed set element. Alice chooses a secret gA ∈ G and publishes
yA = gA � x. Similarly Bob chooses gB ∈ G and publishes yB = gB � x. They can
both compute the shared secret yAB = gA �yB = gB �yA. The group action com-
putational Diffie-Hellman problem (GA-CDH) then states that given yA and yB ,
it is hard to compute yAB . We refer to Sect. 3 for more precise definitions.

Contributions and Technical Details. Our main contributions are the two
PAKE protocols X-GA-PAKE� and Com-GA-PAKE� based on commutative group
actions. These are the first two provably secure PAKE protocols that are directly
constructed from isogenies.

Group Actions with Twists. To date the most important instantiation of
isogeny-based group actions is given by CSIDH. To model this situation more
accurately, we suggest an enhancement of the framework which includes the
ability of computing the quadratic twist of an elliptic curve efficiently. This
property is inherent to CSIDH (cf. [11]) and it turns out to be crucial in the
security analysis of our PAKE protocols. On the one hand, twisting allows us to
construct an offline dictionary attack against our first natural PAKE attempt
GA-PAKE�. Notably, this first protocol is secure for group actions where twisting
is not possible efficiently. On the other hand, twists play an important role in
various security reductions applied to prove the security of our new protocols
X-GA-PAKE� and Com-GA-PAKE�. Interestingly, this is also the case when twists
are not part of any of the two problems involved in the reduction.

First attempt: GA-PAKE�. Our two secure PAKE protocols are modifications
of GA-PAKE�. In order to illustrate the main idea behind the protocols, we
describe GA-PAKE� in more detail here. The protocol (Fig. 1) can be seen as
an adaption of the simple password exponential key exchange protocol SPEKE
[20] to the group action setting. In SPEKE the password is used to hash to a
generator of the group. Then the user and the server establish a session key
following the Diffie-Hellman key exchange. Directly translating this protocol to
the group action setting requires to hash the password to a random set element
x ∈ X . For isogeny-based group actions, this is still an open problem, hence (at
the moment) a straight-forward translation of SPEKE is not possible (see also [6,
§4.1]). In GA-PAKE� we map the password to an �-tuple of elements in X instead
of hashing to one element. More precisely, two elements crs = (x0, x1) ∈ X 2 are
fixed by a trusted party and a password pw = (b1, . . . , b�) ∈ {0, 1}� is mapped to
the tuple (xb1 , · · · , xb�

) ∈ X �. Then a Diffie-Hellman key exchange is performed
with basis xbi

for each i ∈ [�]. This means the user generates � random group
elements u1, . . . , u� and computes the elements xU

1 = u1 � xb1 , . . . , x
U
� = u� � xb�

which it sends to the server. Similarly, the server generates � random group
elements s1, . . . , s� and computes xS

1 = s1 � xb1 , . . . , x
S
� = s� � xb�

which it sends
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Fig. 1. First Attempt: Protocol GA-PAKE�.

to the user. Note that the messages may be sent simultaneously in one round.
Then both parties compute zi = ui � xS

i = si � xU
i for each i ∈ [�]. Finally

the session key K is computed as K = H(U,S, xU
1 , ..., xU

� , xS
1, ..., x

S
� , pw, z1, ..., z�),

where H : {0, 1}∗ → K is a hash function into the key space K.
In Sect. 5, we present an offline dictionary attack against GA-PAKE� for

group actions with twists. This attack is not captured by the abstract group
action framework defined in [5] which underlines the necessity of our suggested
enhancement of the framework. Roughly speaking, the attack uses the fact that
an attacker can choose its message in dependence on the other party’s message.
Using twists, it can then achieve that certain terms in the key derivation cancel
out and the session key no longer depends on the other party’s input.

Secure PAKE: X-GA-PAKE� and Com-GA-PAKE�. The protocol X-GA-PAKE�

is a modified version of GA-PAKE�. Here security is achieved by doubling the
message length in the first round of the protocol and tripling it in the key
derivation. Intuitively the additional parts of the message can be viewed as
an additional challenge for the key derivation that inhibits an attacker from
choosing its message depending on the other party’s message. The security of
the protocol relies on a new computational assumption, SqInv-GA-StCDH, in
which the adversary needs to compute the square and the inverse of its input at
the same time (cf. Definition 7, Theorem 1).

The protocol Com-GA-PAKE� is a modification of GA-PAKE� as well. In order
to achieve security against offline dictionary attacks, the protocol requires that
the server sends a commitment before receiving the first message from the user.
This prevents that any party chooses its message depending on the other party’s
message. We reduce the security of the protocol to the hardness of standard
security assumptions in the isogeny-based setting (Theorem 2). An overview of
our results is provided in Fig. 2.

Optimizations. Both X-GA-PAKE� and Com-GA-PAKE� require to com-
pute multiple group action evaluations. In the last section, we discuss two
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Fig. 2. Overview of our security implications between assumptions (round boxes) and
schemes (square boxes). Note that there exists an attack against protocol GA-PAKE�

using twists which makes it insecure for CSIDH. Our two main protocols X-GA-PAKE�

and Com-GA-PAKE� are proven secure under protocol-specific assumptions, but we
also give reductions to simpler assumptions making use of the twisting property. Solid
arrows denote tight reductions, dashed arrows non-tight reductions.

optimizations that can be used to reduce the number of evaluations and show
that these do not affect the security of the protocols. The first makes a tradeoff
between the size of the public parameters (the common reference string crs) and
the number of elements that have to be sent as well as the group actions that
have to be performed. The second optimization relies on the possibility to com-
pute twists efficiently, which is yet another advantage of adding this property to
the framework and which allows to decrease the size of the public parameters by
a factor of 2. We denote the final optimizations by Com-GA-PAKEt

�,N and X-GA-
PAKEt

�,N , where N is a parameter for the crs size. If N equals 1, we omit it. An
overview and example of the parameter choice is provided in Table 1.

Difficulties in Constructing PAKE from Isogenies. Terada and Yoneyama
[30] proposed isogeny-based PAKE based on the EKE approach. The basic idea
is that the parties perform an SIDH or CSIDH key exchange where the messages
are encrypted with the password. However, as shown in [6], these protocols are
not only vulnerable to offline dictionary attacks, but a modified version is even
vulnerable to man-in-the-middle attacks. The main reason for the insecurity
is that the elliptic curves used in the key exchange and encrypted with the
password are distinguishable from random bitstrings. An exhaustive search over
all passwords just requires to check if the decrypted message is a valid curve.

Another proposal based on SIDH was made by Taraskin et al. [29]. In this pro-
tocol the password is used to obfuscate the auxiliary points that are exchanged
during an SIDH key exchange. While their obfuscation method prevents a cer-
tain type of offline dictionary attack, the authors were not able to provide a
security proof for their protocol. The same is true for a symmetric variant of
the protocol proposed by Soukharev and Hess [28]. Until now these are the only
PAKE protocol based on isogenies which are not broken.

As noted in [6], other popular Diffie-Hellman constructions may also not be
directly translated into the isogeny setting. The main reason is that hashing into
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Table 1. Overview of our two optimized protocols Com-GA-PAKEt
�,N and X-GA-

PAKEt
�,N and comparison to the only other CSIDH-based constructions. All protocols

use a bit-wise approach, i.e., passwords are treated as bitstrings of length �. Sample
values for � = 128 are marked in gray. “Elements” refers to the number of set elements
(+ strings or symmetric ciphertexts) that each party has to send. “Evaluations” refers
to the number of group action evaluations that each party has to perform. “Rew.” indi-
cates that rewinding is used to reduce to the assumption indicated in the table and
GA-DDH refers to the group action decisional Diffie-Hellman problem.

Protocol |crs| Elements Evaluations Rounds Assumption Rew. ROM

X-GA-PAKEt�,N 2N−1 2�/N 5�/N
1 SqInv-GA-StCDH no yes

↪→ (�, N) = (128, 8) 128 32 80

Com-GA-PAKEt�,N 2N−1 �/N (+1) 2�/N
3 Sq-GA-GapCDH yes yes

↪→ (�, N) = (128, 8) 128 16 (+1) 32

OT-based� [10,24] 1 3� (+6�) 11�
4 GA-CDH yes yes

↪→ � = 128 1 384 (+768) 1408

OT-based� [5,10,25] 4 > �2 > �2
3 GA-DDH + CCA PKE no no

↪→ � = 128 4 > 16, 000 > 16, 000

the set of supersingular elliptic curves is still an open problem. This approach is
for example used in SPEKE. (However, we show how to non-trivially translate
the idea.) Also the approach of J-PAKE seems difficult as in this scheme different
public keys are combined to obtain certain “mixed” public keys. In isogeny-based
protocols, the public keys are elliptic curves and there is no natural ring structure
on the set of elliptic curves that would allow to combine two elliptic curves.

In the following, we elaborate known generic constructions of PAKE from
hash proof systems (HPS) and oblivious transfer (OT). We explain that the
only known isogeny-based HPS is not suitable for generic constructions. On the
other hand, the isogeny-based OT protocols from the literature are suited for
generic constructions. However, we show that the resulting PAKE protocols are
less efficient than our new proposals.

Using the framework of cryptographic group actions, Alamati et al. construct
a universal hash proof system [5, §4.1]. In general, it is known how to build CCA-
secure encryption [13] and also PAKE from hash proof systems [17]. However, the
details here are less clear. The hashing key consists of multiple elements linear
in the size of the universality parameter. The reason being that we can only
make use of one group operation provided by the group action. This also needs
to be considered when constructing an encryption scheme. In order to construct
PAKE, the framework by Gennaro and Lindell and follow-up works require a
hash proof system for the language of ciphertexts of a public-key encryption
scheme, which seems to be hard to construct given only the operation of the
group action. The HPS in [5] is only based on a DDH-like assumption.

It is well known that PAKE can also be generically constructed from OT [10].
One construction uses a UC-secure OT protocol and the other one a statistically
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receiver-private OT protocol. In both, the password is interpreted as a bit string
and for each bit, the user and server run the oblivious transfer protocol for
randomly chosen messages which will be used to derive the session key. In the
following, we apply the construction to two existing OT protocols.

– Alamati et al. propose a two-message statistically sender -private OT, however
we can construct a similar receiver-private OT protocol based on their dual-
mode public-key encryption scheme and the transformation given in [25]. The
resulting OT protocol already uses a “bit-by-bit” approach, hence the resulting
PAKE will have communication and computation complexity quadratic in the
parameter �.

– Recently, Lai et al. proposed a new very efficient CSIDH-based OT protocol
using twists and the random oracle model [24]. However, in order to achieve
active security the protocol needs four rounds.1 Additionally applying the
generic PAKE compiler results in a protocol with complexity linear in �.

The efficiency of the generic constructions is compared to our new protocols in
Table 1. While the computational cost of our protocols Com-GA-PAKE�,N and
X-GA-PAKE�,N is also linear in �, the cost is considerably lower for concrete
instantiations. Moreover, our scheme X-GA-PAKE�,N is the only one-round pro-
tocol, where both parties send simultaneous flows.

Open Problems and Future Work. Until now, protocols based on CSIDH or
group actions that use search problems together with the random oracle model
do not consider quantum access to the ROM [16,22–24,31]. Since PAKE proofs
are already complex, we also did not prove security in the QROM. Although
no reprogramming of the random oracle is necessary, the main difficulty in the
QROM is to simulate the real session keys using the decision oracle. We leave
this as future work. We believe that we can easily allow quantum access to
the additional random oracle that is used in Com-GA-PAKE� to commit on the
message. In this case, the output is transferred classically in the first message
flow such that extraction is possible using recently developed techniques [15].

As [24], we use rewinding to reduce the interactive assumption underly-
ing Com-GA-PAKE� to a standard assumption. An interesting open question is
whether current techniques enabling quantum rewinding are applicable here.

Outline. Section 3 sets the framework for our paper. We introduce (restricted)
effective group actions with twists and define the computational assumptions
underlying the security of our protocols. In Sect. 4, we give some background on
the security model that is used in the subsequent sections. In Sect. 5 we present
our first attempt for a PAKE protocol, GA-PAKE�, and explain its security gap.
Section 6 contains a thorough analysis of our new secure protocol X-GA-PAKE�.
In Sect. 7 we present the protocol Com-GA-PAKE� and sketch the security proof.
Finally, we discuss possible optimizations of the protocols in Sect. 8.
1 The original (three-round) version of this protocol was later found to have a (fix-

able) bug, cf. https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/
20/slides.pdf.

https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf
https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slides.pdf
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2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ..., n}. For
m = 1, we simply write [n]. For a set S, s $← S denotes that s is sampled
uniformly and independently at random from S. y ← A(x1, x2, ...) denotes that
on input x1, x2, ... the probabilistic algorithm A returns y. AO denotes that
algorithm A has access to oracle O. An adversary is a probabilistic algorithm.
We will use code-based games, where Pr[G ⇒ 1] denotes the probability that
the final output of game G is 1.

3 (Restricted) Effective Group Actions (with Twists)

In this section we recall the definition of (restricted) effective group actions
from [5], which provides an abstract framework to build cryptographic primitives
relying on isogeny-based assumptions such as CSIDH. Moreover, we suggest
an enhancement of this framework, by introducing (restricted) effective group
actions with twists. This addition is essential for the security analysis of our new
PAKE protocols.

Definition 1 (Group Action). Let (G, ·) be a group with identity element
id ∈ G, and X a set. A map

� : G × X → X
is a group action if it satisfies the following properties:

1. Identity: id �x = x for all x ∈ X .
2. Compatibility: (g · h) � x = g � (h � x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is
commutative. Moreover we assume that the group action is regular. This means
that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g � x.

Definition 2 (Effective Group Action). Let (G,X , �) be a group action
satisfying the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for member-
ship and equality testing, (random) sampling, group operation and inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to com-

pute g � x given g and x.

Then we call x̃ ∈ X the origin and (G,X , �, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong.
Therefore we will consider the weaker notion of restricted effective group actions.
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Definition 3 (Restricted Effective Group Action). Let (G,X , �) be a
group action and let g = (g1, ..., gn) be a generating set for G. Assume that
the following properties are satisfied:
1. The group G is finite and n = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi �x

and g−1
i � x.

Then we call (G,X , �, x̃) a restricted effective group action (REGA).

3.1 Isogeny-Based REGAs

An important instantiation of REGAs is provided by isogeny-based group actions.
We will focus on the CSIDH setting and present a refined definition of REGAs
tailored to this situation.

Let p be a large prime of the form p = 4 · �1 · · · �n − 1, where the �i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve
E0 is supersingular and its Fp-rational endomorphism ring is O = Z[π], where π
is the Frobenius endomorphism. Let E��p(O) be the set of elliptic curves defined
over Fp, with endomorphism ring O. The ideal class group cl(O) acts on the set
E��p(O), i.e., there is a map

� : cl(O) × E��p(O) → E��p(O)
([a], E) �→ [a] � E,

satisfying the properties from Definition 1 [11, Theorem 7]. Moreover the analysis
in [11] readily shows that (cl(O), E��p(O), �,E0 ) is indeed a REGA.

Elliptic curves in E��p(O) admit equations of the form EA : y2 = x3+Ax2+x,
which allows to represent them by their Montgomery coefficient A ∈ Fp. An
intrinsic property of the CSIDH group action which is not covered by Definition
3, is the following. For any curve EA = [a] � E0 ∈ E��p(O), its quadratic twist is
easily computed as (EA)t = E−A and satisfies the property (EA)t = [a]−1 � E0.

Definition 4 ((Restricted) Effective Group Action with Twists). We
say that a (R)EGA (G,X , �, x̃) is a (Restricted) Effective Group Action with
Twists ((R)EGAT) if there exists an efficient algorithm that given x = g � x̃ ∈ X
computes xt = g−1 � x̃.

As noted in [11, §10], this property contrasts with the classical group-based
setting. It has already been used for the design of new cryptographic primitives
based on CSIDH such as the signature scheme CSIFiSh [9] and the OT protocol
in [24]. Moreover, it is important to consider twists in the security analysis of
schemes based on group actions. In Sect. 5 we use twists to construct an attack
on the protocol GA-PAKE� showing that it cannot be securely instantiated with
the CSIDH group action. On the other hand, we prove that GA-PAKE� is secure
when instantiated with a group action without efficient twisting. The proof for
that is given in the full version [1, Appendix C].
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3.2 Computational Assumptions

For cryptographic applications, we are interested in (restricted) effective group
actions that are equipped with the following hardness properties:

– Given (x, y) ∈ X 2, it is hard to find g ∈ G such that y = g � x.
– Given (x, y0, y1) ∈ X 3, it is hard to find z = (g0 · g1) � x, where g0, g1 ∈ G are

such that y0 = g0 � x and y1 = g1 � x.

In [5] such group actions are called cryptographic group actions, and in [12] they
are called hard homogeneous spaces.

The two hardness assumptions are the natural generalizations of the dis-
crete logarithm assumption and the Diffie-Hellman assumption in the traditional
group based setting. In analogy to this setting, we introduce the notation

GA-CDHx(y0, y1) = g0 � y1, where g0 ∈ G such that y0 = g0 � x

and define the decision oracle

GA-DDHx(y0, y1, z) =

{
1 if GA-CDHx(y0, y1) = z,

0 otherwise.

For both, GA-CDH and GA-DDH, we omit the index x if x = x̃, i. e., we set
GA-CDHx̃(y0, y1) = GA-CDH(y0, y1) and equivalently for GA-DDHx̃(y0, y1, z).

We now introduce three computational problems GA-StCDH, GA-GapCDH,
SqInv-GA-StCDH (Definitions 5 to 7). The security of our PAKE protocols relies
on the hardness of these problems.

The first two problems are variants of the standard Diffie-Hellman problem,
where an adversary is either given access to some fixed-basis decision oracles
(indicated by the prefix strong) or to a general decision oracle (indicated by the
prefix gap). Note that these problems were already defined and used in previous
work [16,22,23,31]. Since the problem from Definition 7 has not been studied in
any previous work, we provide evidence for its hardness in Remark 3.

Definition 5 (Group Action Strong Computational Diffie-Hellman
Problem (GA-StCDH)). On input (g � x̃, h � x̃) ∈ X 2, the GA-StCDH prob-
lem requires to compute the set element (g · h) � x̃. To an effective group action
XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-StCDH
XXX (A) := Pr[AGA-DDH(g�x̃,·,·)(g � x̃, h � x̃) ⇒ (g · h) � x̃],

where (g, h) $← G2 and A has access to decision oracle GA-DDH(g � x̃, ·, ·).

Definition 6 (Group Action Gap Computational Diffie-Hellman Prob-
lem (GA-GapCDH)). On input (g � x̃, h � x̃) ∈ X 2, the GA-GapCDH problem
requires to compute the set element (g · h) � x̃. To an effective group action
XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function of an
adversary A as

AdvGA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g � x̃, h � x̃) ⇒ (g · h) � x̃],

where (g, h) $← G2 and A has access to a general decision oracle GA-DDH∗.



Password-Authenticated Key Exchange from Group Actions 709

Remark 2. A group action where the group action computational Diffie-Hellman
problem (without any decision oracle) is hard, is the same as a weak unpre-
dictable group action as defined by Alamati et al. [5]. Further details are given
in the full version [1, Appendix A]. Also note that the ability to compute the
twist of a set element does not help in solving these problems. Hence, all results
based on these problems remain true for (R)EGAT.

Definition 7 (Square-Inverse GA-StCDH (SqInv-GA-StCDH)). On input
x = g � x̃, the SqInv-GA-StCDH problem requires to find a tuple (y, y0, y1) ∈
X 3 such that y0 = g2 � y and y1 = g−1 � y. For a group action XXX ∈
{EGA,REGA,EGAT,REGAT}, we define the advantage function of A as

AdvSqInv-GA-StCDH
XXX (A) := Pr

⎡
⎣y0 = GA-CDHxt(x, y)

y1 = GA-CDH(xt, y)

∣∣∣∣∣∣
g $← G

x = g � x̃
(y, y0, y1) ← AO(x)

⎤
⎦ ,

where O = {GA-DDHxt(x, ·, ·),GA-DDH(x, ·, ·)}.
Remark 3. Intuitively SqInv-GA-StCDH is hard if we assume that the adversary
can only use the group and twist operation. To go into more detail, A can choose
y only based on known elements, that is either based on x̃, its input x or xt.

If A chooses y = α�x̃ for some α ∈ G, then it can easily compute y1 = α�xt,
but not y0 = αg2 � x̃. If A chooses y = α�x, then computing y1 = α�x̃ is trivial,
but computing y0 = αg3 � x̃ is hard. If A chooses y = α � xt, then computing
y0 = α � x is trivial, but computing y1 = αg−2 � x̃ is hard.

4 Password Authenticated Key Exchange

Password-authenticated key exchange (PAKE) allows two parties, typically
referred to as the user and the server, to establish a shared session key with
the help of a short secret, known as a password, which can be drawn from a
small set of possible values. To prove security of a PAKE protocol, we use the
indistinguishability-based model by Bellare, Pointcheval and Rogaway [7] and
its extension to multiple test queries by Abdalla, Fouque and Pointcheval [2].

The name spaces for users U and servers S are assumed to be disjoint. Each
pair of user and server (U,S) ∈ U × S holds a shared password pwUS. A party P
denotes either a user or server. Each party P has multiple instances πi

P and each
instance has its own state. We denote the session key space by K. Passwords are
bit strings of length � and we define the password space as PW � {0, 1}�.

Instance State. The state of an instance πi
P is a tuple (e, tr,K, acc) where

– e stores the (secret) ephemeral values chosen by the party in that instance.
– tr stores the trace of that instance, i.e., the user and server name involved in

the protocol execution and the messages sent and received by that instance.
– K is the accepted session key.
– acc is a Boolean flag that indicates whether the instance has accepted the

session key. As long as the instance did not receive the last message, acc = ⊥.

To access individual components of the state, we write πt
P.{e, tr,K, acc}.
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Partnering. Partnering is defined via matching conversations. In particular, a
user instance πt0

U and a server instance πt1
S are partnered iff

πt0
U .acc = πt1

S .acc = true and πt0
U .tr = πt1

S .tr.

Two user instances are never partnered, neither are two server instances. We
define a partner predicate Partner(πt0

P0
, πt1

P1
) which outputs 1 if the two instances

πt0
P0

and πt1
P1

are partnered and 0 otherwise.

Security Experiment. The security experiment is played between a challenger
and an adversary A. The challenger draws a random challenge bit β and creates
the public parameters. Then it outputs the public parameters to A. Now A has
access to the following oracles:

– Execute(U, t0,S, t1): one complete protocol execution between user instance
πt0
U and server instance πt1

S . This query models security against passive adver-
saries.

– SendInit, SendResp, SendTermInit, SendTermResp: send oracles to
model security against active adversaries. SendTermResp is only available
for three-message protocols.

– Corrupt(U,S): outputs the shared password pwUS of U and S.
– Reveal(P, t): outputs the session key of instance πt

P.
– Test(P, t): challenge query. Depending on the challenge bit β, the experiment

outputs either the session key of instance πt
P or a uniformly random key. By

πt
P.test = true, we mark an instance as tested.

We denote the experiment by ExpPAKE. The pseudocode is given in G0 in Fig. 5,
instantiated with our first PAKE protocol.

Freshness. During the game, we register if a query is allowed to prevent trivial
wins. Therefore, we define a freshness predicate Fresh(P, i). An instance πt

P is
fresh iff

1. πt
P accepted.

2. πt
P was not queried to Test or Reveal before.

3. At least one of the following conditions holds:
3.1 πt

P accepted during a query to Execute.
3.2 There exists more than one partner instance.
3.3 A unique fresh partner instance exists.
3.4 No partner exists and Corrupt was not queried.

Definition 8 (Security of PAKE). We define the security experiment, part-
nering and freshness conditions as above. The advantage of an adversary A
against a password authenticated key exchange protocol PAKE in ExpPAKE is
defined as

AdvPAKE(A) :=
∣∣∣∣Pr[ExpPAKE ⇒ 1] − 1

2

∣∣∣∣ .
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A PAKE is considered secure if the best the adversary can do is to perform
an online dictionary attack. More concretely, this means that the advantage of
the adversary should be negligibly close to qs/|PW| when passwords are drawn
uniformly and independently from PW, where qs is the number of send queries
made by the adversary.

Note that this definition captures weak forward secrecy. In the full version of
our paper, we give an extended security definition capturing also perfect forward
secrecy, as well as proofs for our protocols [1, Appendix F].

5 First Attempt: Protocol GA-PAKE�

The GA-PAKE� protocol was already introduced in the introduction (Sect. 1).
We refer to Fig. 1 for a description of the protocol. In contrast to the two PAKE
protocols from Sects. 6 and 7, GA-PAKE� is not secure for EGATs, i.e., if it is
possible to compute twists of set elements efficiently. In particular it should
not be instantiated with the CSIDH-group action. However, it is instructive to
examine its security and it serves as a good motivation for the design of the two
secure PAKE protocols X-GA-PAKE� and Com-GA-PAKE�.

In this section we present an offline dictionary attack against GA-PAKE� for
(R)EGAT. However, if twisting is hard, then we can prove security of GA-PAKE�

based on a hardness assumption that is similar to the simultaneous Diffie-
Hellman problem which was introduced to prove the security of TBPEKE and
CPace [3,26]. The proof for GA-PAKE� is given in the full version [1, Appendix
C].

Proposition 1. For EGATs, the protocol GA-PAKE� is vulnerable to offline dic-
tionary attacks.

Proof. We construct an adversary A that takes the role of the server. The attack
is summarized in Fig. 3. After receiving xU, the adversary computes

xS
i = s̃i � (xU

i )
t = s̃i � (ui � xbi

)t = (s̃i · u−1
i ) � xt

bi
= (s̃i · u−1

i · g−1
bi

) � x̃

for each i ∈ [�] and sends xS
1, . . . , x

S
� to the user. Then the user computes zi =

ui � xS
i = (s̃i · g−1

bi
) � x̃ = s̃i � xt

bi
. For each i ∈ [�], the adversary A can now

compute zi for both possibilities bi = 0 and bi = 1. This allows him to compute
K for all possible passwords pw ∈ PW � {0, 1}� (being offline). �	
This offline attack can easily be used to win the security experiment with high
probability. A only needs to issue two send queries. It chooses any user U, initiates
a session and computes its message xS

1, ..., x
S
� as described in Fig. 3. It reveals

the corresponding session key and starts its offline attack by brute forcing all
pw ∈ PW until it finds a match for a candidate pw∗. Now A issues its second
send query. This time it computes the message following the protocol using pw∗

and derives a key K∗. It issues a test query and gets Kβ . If K∗ = Kβ , then
it outputs 0, otherwise it outputs 1. In case there is more than one password
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Fig. 3. Attack against GA-PAKE� using twists.

candidate, i.e., two inputs to H lead to the same K∗, then A can issue another
send and reveal query to rule out false positives. In the end, it can still happen
that β = 1 and K∗ = K, but this event only occurs with probability 1/|K|.
Corollary 1. For any adversary A against GA-PAKE� instantiated with an
EGAT, we have Pr[ExpGA-PAKE�

⇒ 1] = 1 − 1
|K| .

6 X-GA-PAKE�: One-Round PAKE from Group Actions

In the previous section we showed that GA-PAKE� is insecure when instantiated
with an EGAT. Here, we present the modification X-GA-PAKE�, which impedes
the offline dictionary attack presented in that section. Broadly speaking, the idea
is to double the message size of both parties in the first flow. In the second flow
it is then necessary to compute certain “cross products” which is only possible if
the previous message has been honestly generated. The letter X in X-GA-PAKE�

stands for cross product.
By means of these modifications, the protocol X-GA-PAKE� is provably secure

for EGATs. We show that its security can be reduced to the hardness of the
computational problems GA-StCDH and SqInv-GA-StCDH (Theorem 1).

The setup for X-GA-PAKE� is the same as for GA-PAKE�. The crs = (x0, x1)
comprises two elements of the set X , and the shared password is a bit string
(b1, . . . , b�) of length �. In the first flow of the protocol the user generates 2·� ran-
dom group elements, u1, . . . , u� and û1, . . . , û�. Using these elements it computes
the set elements xU

i = ui � xbi
and x̂U

i = ûi � xbi
for each i ∈ [�] and sends these

to the server. Simultaneously, the server generates the random group elements
s1, . . . , s� and ŝ1, . . . , ŝ�, which it uses to compute the set elements xS

i = si � xbi

and x̂S
i = ŝi � xbi

for each i ∈ [�] and sends these to the user. Upon receiving the
set elements from the other party, both the server and the user compute

zi,1 = ui � xS
i = si � xU

i , zi,2 = ûi � xS
i = si � x̂U

i , zi,3 = ui � x̂S
i = ŝi � xU

i ,
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Fig. 4. PAKE protocol X-GA-PAKE� from group actions.

for each i ∈ [�]. Finally, these elements are used to compute the session key K.
The protocol is sketched in Fig. 4.

We now prove the security of X-GA-PAKE� for EGATs.

Theorem 1 (Security of X-GA-PAKE�). For any adversary A against X-GA-
PAKE� that issues at most qe execute queries and qs send queries and where H
is modeled as a random oracle, there exist an adversary B1 against GA-StCDH
and an adversary B2 against SqInv-GA-StCDH such that

AdvX-GA-PAKE�
(A) ≤ AdvGA-StCDH

EGAT (B1) + AdvSqInv-GA-StCDH
EGAT (B2) +

qs

|PW| +
(qs + qe)2

|G|2�
.

Before proving Theorem 1, we will introduce a new computational assumption
which is tailored to the protocol.

Definition 9 (Double Simultaneous GA-StCDH (DSim-GA-StCDH)). On
input (x0, x1, w0, w1) = (g0 � x̃, g1 � x̃, h0 � x̃, h1 � x̃) ∈ X 4, the DSim-GA-StCDH
problem requires to find a tuple (y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
0 · h0 � y, g−1

0 · h1 � y, g−1
1 · h0 � y, g−1

1 · h1 � y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage
function of an adversary A as

AdvDSim-GA-StCDH
XXX (A) := Pr

⎡
⎢⎢⎣

y0 = GA-CDHx0 (w0, y)
y1 = GA-CDHx0 (w1, y)
y2 = GA-CDHx1 (w0, y)
y3 = GA-CDHx1 (w1, y)

∣∣∣∣∣∣∣∣

(g0, g1, h0, h1)
$← G4

(x0, x1) = (g0 � x̃, g1 � x̃)
(w0, w1) = (h0 � x̃, h1 � x̃)

(y, y0, y1, y2, y3) ← AO(x0, x1, w0, w1)

⎤
⎥⎥⎦ ,

where O = {GA-DDHxj
(wi, ·, ·)}i,j∈{0,1}.

Remark 4. Note that DSim-GA-StCDH may be viewed as the doubled version of
the Sim-GA-StCDH problem defined in the full version of the paper [1, Definition
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12]. The latter is an assumption underlying the security of GA-PAKE� and (in the
notation of the above problem) it only requires to find the tuple (y, y0, y2). For a
group action with twists, this admits the trivial solution (y, y0, y2) = (wt

0, x
t
0, x

t
1).

Such a trivial solution is inhibited by requiring to find y1 and y3 as well.

The DSim-GA-StCDH problem is implied by SqInv-GA-StCDH, more precisely

AdvDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B). (1)

A proof of this implication is given in the full version [1, Lemma 1].

Proof (of Theorem 1). Let A be an adversary against X-GA-PAKE�. Consider the
games in Figs. 5, 7, 8.

Game G0. This is the original game, hence

AdvX-GA-PAKE�
(A) ≤ |Pr[G0 ⇒ 1] − 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance com-
putes the same trace as any other accepted instance (line 69) or a user instance
computes the same trace as any other accepted user instance (line 84). In this
case, SendResp or SendTermInit return ⊥. We do the same if a trace that
is computed in an Execute query collides with one of a previously accepted
instance (line 28). Due to the difference lemma,

|Pr[G1 ⇒ 1] − Pr[G0 ⇒ 1]| ≤ Pr[badcoll].

Note that when badcoll is not raised, each instance is unique and has at most one
partner. In order to bound badcoll, recall that the trace of an oracle πt

P consists
of (U,S, xU = (xU

1 , ..., xU
� ), x̂

U = (x̂U
1 , ...x̂U

� ), x
S = (xS

1, ..., x
S
� ), x̂

S = (x̂S
1, ..., x̂

S
� )),

where at least one of the message pairs (xU, x̂U) or (xS, x̂S) was chosen by the
game. Thus, badcoll can only happen if all those 2 ·� set elements collide with all
2 · � set elements of another instance. The probability that this happens for two
(fixed) sessions is |G|−2�, hence the union bound over qe and qs sessions yields

|Pr[G1 ⇒ 1] − Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(

qe + qs

2

)
· 1
|G|2�

≤ (qe + qs)2

|G|2�
.

Game G2. In game G2, we make the freshness explicit. To each oracle πt
P, we

assign an additional variable πt
P.fr which is updated during the game. In partic-

ular, all instances used in execute queries are marked as fresh (line 34).
An instance is fresh if the password was not corrupted yet (lines 72, 89).

Otherwise, it is not fresh (lines 74, 91). For user instances we also check if there
exists a fresh partner (line 87). If A issues a Corrupt query later, the freshness
variable will also be updated (line 103). When the session key of an instance is
revealed, this instance and its potential partner instance are marked as not fresh
(line 41). On a query to test, the game then only checks the freshness variable
(line 44). These are only a conceptual changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1].
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GAMES G0-G4

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T ) := (∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return �β = β′�

Execute(U, t0, S, t1)

09 if πt0
U �= ⊥ or πt1

S �= ⊥
10 return ⊥
11 (b1, ..., b�) := pwUS �G0-G3

12 u := (u1, ..., u�)
$← G�

13 û := (û1, ..., û�)
$← G�

14 s := (s1, ..., s�)
$← G�

15 ŝ := (ŝ1, ..., ŝ�)
$← G�

16 xU := (xU
1 , ..., xU

� ) := (u1 � xb1 , ..., u� � xb�) �G0-G3

17 x̂U := (x̂U
1 , ..., x̂U

� ) := (û1 � xb1 , ..., û� � xb�) �G0-G3

18 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�) �G0-G3

19 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�) �G0-G0

20 for i ∈ [�] : �G0-G3

21 zi := (zi,1, zi,2, zi,3) := (ui � xS
i , ûi � xS

i , ui � x̂S
i ) �G0-G3

22 z := (z1, . . . , z�) �G0-G3

23 xU := (xU
1 , ..., xU

� ) := (u1 � x̃, ..., u� � x̃) �G4

24 x̂U := (x̂U
1 , ..., x̂U

� ) := (û1 � x̃, ..., û� � x̃) �G4

25 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃) �G4

26 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃) �G4

27 if ∃P ∈ U ∪S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

28 badcoll := true �G1-G4

29 return ⊥ �G1-G4

30 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z) �G0-G2

31 K $← K �G3-G4

32 πt0
U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)

33 πt1
S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)

34 (πt0
U .fr, πt1

S .fr) := (true, true) �G2-G4

35 return (U, xU, x̂U, S, xS, x̂S)

Reveal(P, t)

36 if πt
P.acc �= true or πt

P.test = true
37 return ⊥
38 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, πt′
P′) = 1

and πt′
P′ .test = true

39 return ⊥
40 ∀(P′, t′) s. t. πt′

P′ .tr = πt
P.tr �G2-G4

41 πt′
P′ .fr := false �G2-G4

42 return πt
P.K

Test(P, t)

43 if Fresh(πt
P) = false return ⊥ �G0-G1

44 if πt
P.fr = false return ⊥ �G2-G4

45 K∗
0 := Reveal(P, t)

46 if K∗
0 = ⊥ return ⊥

47 K∗
1

$← K
48 πt

P.test := true
49 return K∗

β

H(U, S, xU, x̂U, xS, x̂S, pw, z)

50 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
51 return K
52 T [U, S, xU, x̂U, xS, x̂S, pw, Z] $← K
53 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendInit(U, t, S)
54 if πt

U �= ⊥ return ⊥
55 (b1, ..., b�) := pwUS

56 u := (u1, ..., u�)
$← G�

57 û := (û1, ..., û�)
$← G�

58 xU := (xU
1 , ..., xU

� ) := (u1 � xb1 , ..., u� � xb�)
59 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � xb1 , ..., û� � xb�)

60 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

61 πt
U.fr := false �G2-G4

62 return (U, xU, x̂U)

SendResp(S, t,U, xU, x̂U)

63 if πt
S �= ⊥ return ⊥

64 (b1, ..., b�) := pwUS

65 (s1, ..., s�)
$← G�

66 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�)

67 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�)

68 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

69 badcoll := true �G1-G4

70 return ⊥ �G1-G4

71 if (U, S) /∈ C �G2-G4

72 πt
S.fr := true �G2-G4

73 else �G2-G4

74 πt
S.fr := false �G2-G4

75 for i ∈ [�] :
76 zi := (zi,1, zi,2, zi,3) := (si � xU

i , s � x̂U
i , ŝi � xU

i )
77 z := (z1, ..., z�)
78 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
79 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
80 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

81 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

82 return ⊥
83 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4

84 badcoll := true �G1-G4

85 return ⊥ �G1-G4

86 if ∃t′ s. t. πt′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true �G2-G4

87 πt
U.fr := true �G2-G4

88 else if (U, S) /∈ C �G2-G4

89 πt
U.fr := true �G2-G4

90 else �G2-G4

91 πt
U.fr := false �G2-G4

92 for i ∈ [�] :
93 zi := (zi,1, zi,2, zi,3) := (ui � xS

i , ûi � xS
i , ui � x̂S

i )
94 z := (z1, ..., z�)
95 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
96 πt

U := ((u, û), (U, S, xU, x̂UxS, x̂S), K, true)
97 return true

Corrupt(U, S)
98 if (U, S) ∈ C return ⊥
99 for P ∈ {U, S}

100 if ∃t s. t. πt
P.test = true

and �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1
101 return ⊥
102 ∀πt

P : if �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1 �G2-G4

103 πt
P.fr = false �G2-G4

104 C := C ∪ {(U, S)}
105 return pwUS

Fig. 5. Games G0-G4 for the proof of Theorem 1. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}.
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BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Te) := (∅, ∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 Stop.

H(U, S, xU, xS, pw, z)
09 if ∃(u, û, s, ŝ)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, u, û, s, ŝ) ∈ Te

10 (b1, ..., b�) := pw
11 for i ∈ [�]
12 (zi,1, zi,2, zi,3) := zi

13 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,1) = 1

14 Stop with (u−1
i · s−1

i · gbi) � zi,1

15 if GA-DDH(x, xS
i , (û

−1
i · gbi) � zi,2) = 1

16 Stop with (û−1
i · s−1

i · gbi) � zi,2

17 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,3) = 1

18 Stop with (u−1
i · ŝ−1

i · gbi) � zi,3

19 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
20 return K
21 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
22 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

Execute(U, t0, S, t1)

23 if πt0
U �= ⊥ or πt1

S �= ⊥
24 return ⊥
25 (b1, ..., b�) := pwUS

26 u := (u1, ..., u�)
$← G�

27 û := (û1, ..., û�)
$← G�

28 s := (s1, ..., s�)
$← G�

29 ŝ := (ŝ1, ..., ŝ�)
$← G�

30 xU := (xU
1 , ..., xU

� ) := (u1 � x, ..., u� � x)
31 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � x, ..., û� � x)

32 xS := (xS
1, ..., x

S
�) := (s1 � y, ..., s� � y)

33 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � y, ..., ŝ� � y)

34 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

35 badcoll := true
36 return ⊥
37 ∀z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
38 for i ∈ [�]
39 (zi,1, zi,2, zi,3) := zi

40 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,1) = 1

41 Stop with (u−1
i · s−1

i · gbi) � zi,1

42 if GA-DDH(x, xS
i , (û

−1
i · gbi) � zi,2) = 1

43 Stop with (û−1
i · s−1

i · gbi) � zi,2

44 if GA-DDH(x, xS
i , (u

−1
i · gbi) � zi,3) = 1

45 Stop with (u−1
i · ŝ−1

i · gbi) � zi,3

46 Te := Te ∪ {U, S, xU, x̂U, xS, x̂S, pwUS, u, û, s, ŝ}
47 K $← K
48 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
49 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
50 (πt0

U .fr, πt1
S .fr) := (true, true)

51 return (U, xU, x̂U, S, xS, x̂S)

Fig. 6. Adversary B1 against GA-StCDH for the proof of Theorem 1. A has access to
oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,
Test,H}. Oracles SendInit, SendResp, SendTermInit, Reveal, Corrupt and
Test are defined as in G2. Lines written in blue show how B1 simulates the game.
(Color figure online)

Game G3. In game G3, we choose random keys for instances queried to Execute.
We construct adversary B1 against GA-StCDH in Fig. 6 and show that

|Pr[G3 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1).

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g � x̃, h � x̃) and has access
to a decision oracle GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1)
as in game G3 and then runs adversary A. Queries to Execute are simulated
as follows: It chooses random group elements ui, ûi and si, ŝi for user and server
instances and i ∈ [�], but instead of using (x0, x1) to compute the set elements,
B1 uses x for the user instance and y for the server instance, independent of the
password bits bi (lines 30 to 33). We can rewrite this as

xU
i = ui � x = (ui · g) � x̃ = (ui · g · gbi

· g−1
bi

) � x̃ = (ui · g · g−1
bi

)︸ ︷︷ ︸
u′

i

�xbi
,

where u′
i is the group element that the user actually needs in order to compute

the session key. In the same way, û′
i = ûi ·g·g−1

bi
, s′

i = si ·h·g−1
bi

and ŝ′
i = ŝi ·h·g−1

bi
.
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Note that zi = (zi,1, zi,2, zi,3) is implicitly set to

zi,1 = (u′
i · s′

i) � xbi
= ui · g · si · h · g−1

bi
� x̃,

zi,2 = (û′
i · s′

i) � xbi
= ûi · g · si · h · g−1

bi
� x̃,

zi,3 = (u′
i · ŝ′

i) � xbi
= ui · g · ŝi · h · g−1

bi
� x̃.

Before choosing a random session key, we check if there has been a query to the
random oracle H that matches the session key (line 37–45). We iterate over the
entries in T , where U, S, xU, x̂U, xS, x̂S and pwUS match, and check if one of the
entries in z is correct. Note that we can use the following equivalences:

GA-CDHxbi
(xU

i , xS
i ) = zi,1 ⇔ GA-CDH(x, xS

i ) = (u−1
i · gbi

) � zi,1,

GA-CDHxbi
(x̂U

i , xS
i ) = zi,2 ⇔ GA-CDH(x, xS

i ) = (û−1
i · gbi

) � zi,2,

GA-CDHxbi
(xU

i , x̂S
i ) = zi,3 ⇔ GA-CDH(x, x̂S

i ) = (u−1
i · gbi

) � zi,3,

which allows us to use the restricted decision oracle GA-DDH(x, ·, ·). If one of
zi,1, zi,2, zi,3 is correct, B1 aborts and outputs the solution (g · h) � x̃ which is
respectively given by (u−1

i ·s−1
i ·gbi

)�zi,1, (û−1
i ·s−1

i ·gbi
)�zi,2 or (u−1

i ·ŝ−1
i ·gbi

)�zi,3.
Otherwise, we store the values ui, ûi and si, ŝi in list Te together with the

trace and the password (line 46) and choose a session key uniformly at random.
We need list Te to identify relevant queries to H. In particular, if the trace and
password appear in a query, we retrieve the values ui, ûi and si, ŝi to check
whether the provided zi are correct. We do this in the same way as described
above using the decision oracle (lines 09–18). If the oracle returns 1 for any zi,j ,
B1 aborts and outputs the solution for (g · h) � x̃ which is respectively given by
(u−1

i · s−1
i · gbi

) � zi,1, (û−1
i · s−1

i · gbi
) � zi,2 or (u−1

i · ŝ−1
i · gbi

) � zi,3.

Game G4. In game G4, we remove the password from execute queries. In partic-
ular, we do not compute xU, x̂U, xS, x̂S to the basis xbi

, but simply use x̃. Note
that the values have the same distribution as in the previous game. Also, the
group elements u, û, s and ŝ are not used to derive the key. Hence, this change
is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1].

Game G5. G5 is given in Fig. 7. In this game we want to replace the session keys
by random for all fresh instances in oracles SendResp and SendTermInit
(lines 62, 83). Therefore, we introduce an additional independent random oracle
Ts which maps only the trace of an instance to a key (lines 63, 84). We keep
partner instances consistent, i.e., in case the adversary queries SendTermInit
for a user instance and there exists a fresh partner instance, then we retrieve the
corresponding key from Ts and also assign it to this instance (line 78). For all
instances that are not fresh, we simply compute the correct key using random
oracle H (lines 66–69, 87–90). If a session is fresh and there is an inconsistency
between T and Ts, we raise flag bad. This happens in the following cases:
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– a server instance is about to compute the session key, the password was not
corrupted, but there already exists an entry in T with the correct password
and z (lines 60–61).

– a user instance is about to compute the session key, there exists no partner
instance and the password was not corrupted, but there already exists an
entry in T with the correct password and z (lines 81–82).

– the random oracle is queried on some trace that appears in Ts together with
the correct password and z (lines 36–47). At this point, we also check if
the password was corrupted in the meantime and if this is the case and the
adversary issues the correct query, we output the key stored in Ts (line 46)
as this instance cannot be tested. This case corresponds to perfect forward
secrecy which we cover in the full version of the paper [1, Appendix E].

When bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad].

Game G6. G6 is given in Fig. 8. In this game we remove the password from
send queries and generate passwords as late as possible, that is either when the
adversary issues a corrupt query (line 21) or after it has stopped with output β′

(line 07). In SendInit and SendResp we still choose group elements ui, ûi, si

and ŝi uniformly at random, but now compute xU
i , x̂U

i , xS
i and x̂S

i using the origin
element (lines 26, 27, 51 and 52). Thus, depending on which password is chosen
afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0 ) � x0 = (ui · g−1
1 ) � x1

and analogously for x̂U
i , xS

i and x̂S
i . For all instances that are not fresh, we have

to compute the real session key using zi = (si ·g−1
bi

�xU
i , si ·g−1

bi
� x̂U

i , ŝi ·g−1
bi

�xU
i )

(line 70) or zi = (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i ) (line 97). Note that the

password is already defined for these instances.
Recall that event bad in game G5 is raised whenever there is an inconsistency

in the random oracle queries and the keys of fresh instances. In this game, we
split event bad into two different events:

– badpw captures the event that there exists more than one valid entry in T
for the same trace of a fresh instance, but different passwords.

– badguess happens only if badpw does not happen and is raised if there exists
a valid entry in T for the trace of a fresh instance and the correct password,
where the password was not corrupted when the query to H was made.

To identify the different events, we introduce a new set Tbad. For all fresh
instances in SendResp and SendTermInit, we now iterate over all entries
in T that contain the corresponding trace. We check if the given password and
z are valid for this trace by computing the real values z′ in the same way as for
non-fresh instances. If z = z′, we add this entry to the set Tbad (lines 57–63, 84–
90). We essentially do the same when the random oracle H is queried on a trace
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GAME G5

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Ts) := (∅, ∅, ∅)
03 bad := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return �β = β′�

Execute(U, t0, S, t1)

09 if πt0
U �= ⊥ or πt1

S �= ⊥: return ⊥
10 u := (u1, ..., u�)

$← G�

11 û := (û1, ..., û�)
$← G�

12 s := (s1, ..., s�)
$← G�

13 ŝ := (ŝ1, ..., ŝ�)
$← G�

14 xU := (xU
1 , ..., xU

� ) := (u1 � x̃, ..., u� � x̃)
15 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � x̃, ..., û� � x̃)

16 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃)

17 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃)

18 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

19 return ⊥
20 K $← K
21 πt0

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
22 πt1

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
23 (πt0

U .fr, πt1
S .fr) := (true, true)

24 return (U, xU, x̂U, S, xS, x̂S)

SendInit(U, t, S)
25 if πt

U �= ⊥ return ⊥
26 (b1, ..., b�) := pwUS

27 u := (u1, ..., u�)
$← G�

28 û := (û1, ..., û�)
$← G�

29 xU := (xU
1 , ..., xU

� ) := (u1 � xb1 , ..., u� � xb�)
30 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � xb1 , ..., û� � xb�)

31 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

32 πt
U.fr := false

33 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

34 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
35 return K
36 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts and pw = pwUS

37 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
38 for i ∈ [�]
39 z′

i := (ui � xS
i , ûi � xS

i , ui � x̂S
i )

40 z′ := (z′
1, ..., z

′
�)

41 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
42 for i ∈ [�]
43 z′

i := (si � xU
i , si � x̂U

i , ŝi � xU
i )

44 z′ := (z′
1, ..., z

′
�)

45 if z = z′

46 if (U, S) ∈ C: return K
47 if (U, S) /∈ C: bad := true
48 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
49 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)

50 if πt
S �= ⊥ return ⊥

51 (b1, ..., b�) := pwUS

52 s := (s1, ..., s�)
$← G�

53 ŝ := (ŝ1, ..., ŝ�)
$← G�

54 xS := (xS
1, ..., x

S
�) := (s1 � xb1 , ..., s� � xb�)

55 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � xb1 , ..., ŝ� � xb�)

56 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

57 return ⊥
58 if (U, S) /∈ C
59 πt

S.fr := true
60 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (si � xU
i , si � x̂U

i , ŝi � xU
i ) ∀i ∈ [�]

61 bad := true
62 K $← K
63 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
64 else
65 πt

S.fr := false
66 for i ∈ [�]
67 zi := (si � xU

i , si � x̂U
i , ŝi � xU

i )
68 z := (z1, ..., z�)
69 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
70 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

72 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

73 return ⊥
74 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
75 return ⊥
76 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true

77 πt
U.fr := true

78 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
79 else if (U, S) /∈ C
80 πt

U.fr := true
81 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (ui � xS
i , ûi � xS

i , ui � x̂S
i ) ∀i ∈ [�]

82 bad := true
83 K $← K
84 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
85 else
86 πt

U.fr := false
87 for i ∈ [�]
88 zi := (ui � xS

i , ûi � xS
i , ui � x̂S

i )
89 z := (z1, ..., z�)
90 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
91 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
92 return true

Fig. 7. Game G5 for the proof of Theorem 1. A has access to oracles O := {Execute,
SendInit, SendResp, SendTermInit, Reveal, Corrupt, Test, H}. Reveal, Test
and Corrupt are defined as in Figure 5. Differences to G4 are highlighted in blue.
(Color figure online)

that appears in Ts. Here, the adversary specifies the password and we check if z
is valid for that password using the ui, ûi stored in Ts for user instances and si, ŝi

for server instances. If z is valid and the instance is still fresh, we add the query
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GAME G6

00 (g0, g1)
$← G2

01 (x0, x1) := (g0 � x̃, g1 � x̃)
02 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
03 (badguess,badpw) := (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad

and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, x̂U, xS, x̂S, z

s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ Tbad

12 badguess := true
13 return �β = β′�

Corrupt(U, S)
14 if (U, S) ∈ C return ⊥
15 for P ∈ {U, S}
16 if ∃t s. t. πt

P.test = true
and �P′ ∈ U ∪ S, t′ s. t. Partner(πt

P, πt′
P′) = 1

17 return ⊥
18 ∀πt

P : if �P′ ∈ U ∪ S, t′ s. t. Partner(πt
P, πt′

P′) = 1
19 πt

P.fr = false
20 C := C ∪ {(U, S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)
23 if πt

U �= ⊥ return ⊥
24 u := (u1, ..., u�)

$← G�

25 û := (û1, ..., û�)
$← G�

26 xU := (xU
1 , ..., xU

� ) := (u1 � x̃, ..., u� � x̃)
27 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � x̃, ..., û� � x̃)

28 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

29 πt
U.fr := ⊥

30 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

31 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
32 return K
33 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts

34 (b1, ..., b�) := pw
35 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
36 for i ∈ [�]
37 z′

i := (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i )

38 z′ := (z′
1, ..., z

′
�)

39 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
40 for i ∈ [�]
41 z′

i := (si · g−1
bi

� xU
i , si · g−1

bi
� x̂U

i , ŝi · g−1
bi

� xU
i )

42 z′ := (z′
1, ..., z

′
�)

43 if z = z′

44 if (U, S) ∈ C and pw = pwUS: return K
45 if (U, S) /∈ C: Tbad := Tbad ∪ {U, S, xU, x̂U, xS, x̂S, pw, z}
46 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
47 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)

48 if πt
S �= ⊥ return ⊥

49 s := (s1, ..., s�)
$← G�

50 ŝ := (ŝ1, ..., ŝ�)
$← G�

51 xS := (xS
1, ..., x

S
�) := (s1 � x̃, ..., s� � x̃)

52 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � x̃, ..., ŝ� � x̃)

53 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

54 return ⊥
55 if (U, S) /∈ C
56 πt

S.fr := true
57 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
58 (b1, ..., b�) := pw
59 for i ∈ [�]
60 z′

i := (si · g−1
bi

� xU
i , si · g−1

bi
� x̂U

i , ŝi · g−1
bi

� xU
i )

61 z′ := (z′
1, ..., z

′
�)

62 if z = z′

63 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
64 K $← K
65 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
66 else
67 πt

S.fr := false
68 (b1, ..., b�) := pwUS

69 for i ∈ [�]
70 zi := (si · g−1

bi
� xU

i , si · g−1
bi

� x̂U
i , ŝi · g−1

bi
� xU

i )
71 z := (z1, ..., z�)
72 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
73 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
74 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

75 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

76 return ⊥
77 if ∃P ∈ U , t′ s. t. πt′

P .tr = (U, S, xU, x̂U, xS, x̂S)
78 return ⊥
79 if ∃t′ s. t. πt′

S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt′
S .fr = true

80 πt
U.fr := true

81 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
82 else if (U, S) /∈ C
83 πt

U.fr := true
84 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
85 (b1, ..., b�) := pw
86 for i ∈ [�]
87 z′

i := (ui · g−1
bi

� xS
i , ûi · g−1

bi
� xS

i , ui · g−1
bi

� x̂S
i )

88 z′ := (z′
1, ..., z

′
�)

89 if z = z′

90 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
91 K $← K
92 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
93 else
94 πt

U.fr := false
95 (b1, ..., b�) := pwUS

96 for i ∈ [�]
97 zi := (ui · g−1

bi
� xS

i , ûi · g−1
bi

� xS
i , ui · g−1

bi
� x̂S

i )
98 z := (z1, ..., z�)
99 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)

100 πt
U := ((u1, ..., u�), (U, S, xU, x̂U, xS, x̂S), K, true)

101 return true

Fig. 8. Game G6 for the proof of Theorem 1. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
H}. Oracles Reveal and Test are defined as in game G4 in Figure 5. Oracle Execute
is defined as in Figure 7. Differences to G5 are highlighted in blue. (Color figure online)

to Tbad (lines 33–45). In case the password was corrupted in the meantime, we
output the key stored in Ts as introduced in the previous game.



Password-Authenticated Key Exchange from Group Actions 721

After the adversary terminates, we check Tbad whether event badpw (line 09)
or event badguess (line 12) occurred. We will bound these events below. First
note that whenever bad is raised in G5, then either flag badguess or badpw is
raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess].

Finally, we bound the probabilities of the two events. We start with badpw. In
Fig. 9, we construct adversary B2 against DSim-GA-StCDH that simulates G6.

We show that when badpw occurs, then B2 can solve DSim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvDSim-GA-StCDH
EGA (B2).

Adversary B2 inputs (x0, x1, w0, w1), where x0 = g0 � x̃, x1 = g1 � x̃, w0 = h0 � x̃
and w1 = h1�x̃ for group elements g0, g1, h0, h1 ∈ G chosen uniformly at random.
Adversary B2 also has access to decision oracles GA-DDHxj

(wi, ·, ·) for (i, j) ∈
{0, 1}2. It runs adversary A on (x0, x1). Queries to SendInit are simulated as
follows: B2 chooses group elements ui and ûi uniformly at random and sets

xU
i = ui � w0 = (ui · h0 · g−1

0 ) � x0 = (ui · h0 · g−1
1 ) � x1,

x̂U
i = ûi � w1 = (ûi · h1 · g−1

0 ) � x0 = (ûi · h1 · g−1
1 ) � x1.

The simulation of xS
i and x̂S

i in SendResp is done in the same way, choosing
random si and ŝi. In case the server instance is fresh, we must check if there
already exists an entry in T that causes an inconsistency. As in G6, we iterate
over all pw, z, in T that contain the trace of this instance. In particular, we must
check whether

zi,1 = GA-CDHxbi
(xU

i , xS
i ) ⇔ GA-CDHxbi

(w0, x
U
i ) = s−1

i � zi,1,

zi,2 = GA-CDHxbi
(x̂U

i , xS
i ) ⇔ GA-CDHxbi

(w0, x̂
U
i ) = s−1

i � zi,2,

zi,3 = GA-CDHxbi
(xU

i , x̂S
i ) ⇔ GA-CDHxbi

(w1, x
U
i ) = ŝ−1

i � zi,3,

which can be done with the decision oracles GA-DDHxbi
(wj , ·, ·). If all zi are

valid, then we add this entry to Tbad (lines 56–59).
If the instance is not fresh, then we have to compute the correct key. We

check list T for a valid entry z as explained above and if it exists, we assign this
value to the session key (line 66). Otherwise, we choose a random key and add
a special entry to T , which instead of z contains the secret group elements si

and ŝi (line 69) so that we can patch the random oracle later. SendTermInit
is simulated analogously, using the secret group elements ui and ûi.

Now we look at the random oracle queries. If the trace is contained in set
Ts which means the corresponding instance was fresh when the send query was
issued, we check if z is valid using the GA-DDH oracle. We do this as described
above, depending on whether it is a user or a server instance (lines 25, 31). In
case z is valid, we first check if the instance is still fresh (i.e., the password was
not corrupted in the meantime) and if this is the case, we add the query to Tbad
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B{GA-DDHxj
(wi,·,·)}i,j∈{0,1}

2 (x0, x1, w0, w1)
00 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad

and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

06 (b1, ..., b�) := pw
07 (b′

1, ..., b
′
�) := pw′

08 Find first index i such that bi �= b′
i

09 W.l.o.g. let bi = 0, b′
i = 1

10 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
11 Stop with (xS

i , u
−1
i � zi,1, û

−1
i � zi,2, u

−1
i � z′

i,1, û
−1
i � z′

i,2)
12 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
13 Stop with (xU

i , s−1
i � zi,1, ŝ

−1
i � zi,3, s

−1
i � z′

i,1, ŝ
−1
i � z′

i,3)

SendInit(U, t, S)
14 if πt

U �= ⊥ return ⊥
15 u := u1, ..., u�)

$← G�

16 û := (û1, ..., û�)
$← G�

17 xU := (xU
1 , ..., xU

� ) := (u1 � w0, ..., u� � w0)
18 x̂U := (x̂U

1 , ..., x̂U
� ) := (û1 � w1, ..., û� � w1)

19 πt
U := ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥)

20 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)

21 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K �= ⊥
22 return K
23 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts

24 (b1, ..., b�) := pw
25 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û), K)
26 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

27 if (U, S) /∈ C
28 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
29 if (U, S) ∈ C and pw = pwUS

30 return K
31 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ), K)
32 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]
33 if (U, S) /∈ C
34 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
35 if (U, S) ∈ C and pw = pwUS

36 return K
37 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
38 (b1, ..., b�) := pw
39 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

40 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
41 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ) ∈ T
42 (b1, ..., b�) := pw
43 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

44 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
45 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
46 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU)

47 if πt
S �= ⊥ return ⊥

48 s := (s1, ..., s�)
$← G�

49 ŝ := (ŝ1, ..., ŝ�)
$← G�

50 xS := (xS
1, ..., x

S
�) := (s1 � w0, ..., s� � w0)

51 x̂S := (x̂S
1, ..., x̂

S
�) := (ŝ1 � w1, ..., ŝ� � w1)

52 if ∃P ∈ U ∪ S, t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S)

53 return ⊥
54 if (U, S) /∈ C
55 πt

S.fr := true
56 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
57 (b1, ..., b�) := pw
58 if GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

59 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
60 K $← K
61 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ), K)
62 else
63 πt

S.fr := false
64 (b1, ..., b�) := pwUS

65 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
and GA-DDHxbi

(w0, x
U
i , s−1

i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

U
i , s−1

i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

U
i , ŝ−1

i � zi,3) = 1 ∀i ∈ [�]

66 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
67 else
68 K $← K
69 T [U, S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
70 πt

S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S), K, true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)

72 if πt
U �= ((u, û), (U, S, xU, x̂U, ⊥, ⊥), ⊥, ⊥) return ⊥

73 if ∃P ∈ U , t′ s. t. πt′
P .tr = (U, S, xU, x̂U, xS, x̂S) return ⊥

74 if ∃t′ s. t. πt′
S .tr = (U, S, xU, x̂U, xS, x̂S) and πt′

S .fr = true
75 πt

U.fr := true
76 (S, (s, ŝ), K) := Ts[U, S, xU, x̂U, xS, x̂S]
77 else if (U, S) /∈ C
78 πt

U.fr := true
79 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
80 (b1, ..., b�) := pw
81 if GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

82 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
83 K $← K
84 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û), K)
85 else
86 πt

S.fr := false
87 (b1, ..., b�) := pwUS

88 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
and GA-DDHxbi

(w0, x
S
i , u

−1
i � zi,1) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w1, x

S
i , û

−1
i � zi,2) = 1 ∀i ∈ [�]

and GA-DDHxbi
(w0, x̂

S
i , u

−1
i � zi,3) = 1 ∀i ∈ [�]

89 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
90 else
91 K $← K
92 T [U, S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
93 πt

U := ((u, û), (U, S, xU, x̂U, xS, x̂S), K, true)
94 return true

Fig. 9. Adversary B2 against DSim-GA-StCDH for the proof of Theorem 1. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal, Corrupt and Test are defined as
in G6. Lines written in blue show how B2 simulates the game. (Color figure online)

(lines 28, 34). Otherwise, if the password was corrupted and is specified in the
query, we return the session key stored in Ts (lines 30, 36).
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Next, we check if the query matches a special entry in T that was added in
SendResp or SendTermInit for a non-fresh instance, which means we have to
output the same key that was chosen before. Again, we can use the GA-DDH
oracle and differentiate between user and server instances (lines 37–44).

After A terminates with output β′, B2 chooses the passwords which have not
been generated in a Corrupt query yet. If badpw occurred (lines 05–13), then
there must be two entries in Tbad for the same trace and different passwords
pw �= pw′ along with values z and z′. Let i be the first index where the two
passwords differ, i.e., bi �= b′

i. Without loss of generality assume that bi = 0 and
b′
i = 1, otherwise swap pw, z and pw′, z′. If the entries in Tbad are those of a user

instance, we retrieve the secret group elements u,ûi from Ts.
Recall that the DSim-GA-StCDH problem requires to compute y0 =

GA-CDHx0(w0, y), y1 = GA-CDHx0(w1, y), y2 = GA-CDHx1(w0, y) and y3 =
GA-CDHx1(w1, y), where y can be chosen by the adversary. B2 sets y = xS

i , and
outputs y and

y0 = u−1
i � zi,1 = GA-CDHx0(u

−1
i � xU

i , xS
i ) = GA-CDHx0(w0, x

S
i ),

y1 = û−1
i � zi,2 = GA-CDHx0(û

−1
i � x̂U

i , xS
i ) = GA-CDHx0(w1, x

S
i ),

y2 = u−1
i � z′

i,1 = GA-CDHx1(u
−1
i � xU

i , xS
i ) = GA-CDHx1(w0, x

S
i ),

y3 = û−1
i � z′

i,2 = GA-CDHx1(û
−1
i � x̂U

i , xS
i ) = GA-CDHx1(w1, x

S
i ).

If the instance is a server instance, B2 outputs (y, y0, y1, y2, y3) = (xU
i , s−1

i �
zi,1, ŝ

−1
i � zi,3, s

−1
i � z′

i,1, ŝ
−1
i � z′

i,3). This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw

does not happen. Hence, for each instance there is at most one entry in Tbad and
the size of Tbad is at most qs. As all entries were added before the corresponding
password was sampled, the probability is bounded by

Pr[G6 ⇒ badguess] ≤ qs

|PW| .

Finally, note that if none of the bad events happens in G6, all session keys
output by Test are uniformly random and the adversary can only guess β.
Hence, Pr[G6 ⇒ 1] = 1

2 . Collecting the probabilities and using Eq. 1 yields the
bound in Theorem 1. �	

7 Com-GA-PAKE�: Three-Round PAKE from Group
Actions

In this section we present a second modification of GA-PAKE�, which can
be securely instantiated with an EGAT. The protocol Com-GA-PAKE� extends
GA-PAKE� by a commitment that has to be sent before sending the actual mes-
sages. This ensures that the server cannot choose the set elements depending on
the message it receives from the user which was the crucial step in the attack
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against GA-PAKE�. In the second round, the user sends its message to the server
and only after receiving that message, the server sends its message to the user.
The protocol is sketched in Fig. 10 and its security is established in Theorem 2.
While this protocol adds two rounds to the original protocol, the total compu-
tational cost is lower than for X-GA-PAKE�.

Fig. 10. PAKE protocol Com-GA-PAKE� from group actions.

Theorem 2 (Security of Com-GA-PAKE�). For any adversary A against
Com-GA-PAKE� that issues at most qe execute queries, qs send queries and at
most qG and qH queries to random oracles G and H, there exist an adversary B1

against GA-StCDH and an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE�
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs� ·
√
AdvGA-GapCDH

EGAT (B2) +
(qs + qe)2

|G|�

+
qGqs

|G|� +
2 · (qG + qs + qe)2

2λ
+

qs

|PW| ,

where λ is the output length of G in bits.

The proof is similar to the one of Theorem 1 so we will only sketch it here. The
full proof is given in the long version of the paper [1, Appendix E].

Proof (Sketch). After ensuring that all traces are unique, we need to deal with
the commitment and in particular collisions. First, we require that there are
never two inputs to the random oracle G that return the same commitment.
This is to ensure that the adversary cannot open a commitment to a different
value, which might depend on previous messages.

Second, we need to ensure that after the adversary has seen a commitment, it
does not query G on the input, which is the hiding property of the commitment.
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What we actually do here is that we choose a random commitment in the first
round. Only later we choose the input and patch the random oracle accordingly.

Now we can replace the session keys of instances which are used in exe-
cute queries. Here, the freshness condition allows the adversary to corrupt the
password. However, as both xS and xU are generated by the experiment, the
only chance to notice this change is to solve the GA-StCDH problem, where the
decision oracle is required to simulate instances correctly.

In order to replace the session keys of fresh instances which are used in send
queries, we make the key independent of the password. The session key of a fresh
instance is now defined by the trace of that instance. The only issue that may
arise here is an inconsistency between the session key that is derived using the
trace and the session key that is derived using the random oracle H. Whenever
such an inconsistency occurs, we differentiate between two cases:

– There exists more than one valid entry in TH for the same trace of a fresh
instance, but different passwords.

– There exists a valid entry in TH for the trace of a fresh instance and the
correct password, where the password was not corrupted when the query to
H was made.

Finally, we bound the probabilities of the two cases. Similar to Theorem 1, we
will define a new computational problem that reflects exactly the interaction in
the protocol. We show that this problem is implied by GA-GapCDH using the
reset lemma. The general idea is that the adversary can always compute the
session key for one password guess, but not for a second one. After excluding
this, we choose the actual password, which is possible because session keys are
computed independently of the password. Thus, looking at one fixed instance,
the probability that the adversary guessed the password correctly is 1/|PW|. �	

8 Variants of the PAKE Protocols

Both protocols X-GA-PAKE� and Com-GA-PAKE� require that the user and the
server generate multiple random group elements and evaluate their action on
certain set elements. In this section we present two optimizations that allow us
to reduce the number of random group elements and the number of evaluations.

8.1 Increasing the Number of Public Parameters

In X-GA-PAKE� and Com-GA-PAKE� the common reference string is set to crs :=
(x0, x1) ∈ X 2. Increasing the number of public parameters allows to reduce the
number of group action evaluations in the execution of the protocol. The idea is
similar to the optimizations deployed to speed up the CSIDH-based signatures
schemes SeaSign [14] and CSI-FiSh [9]. We refer to Table 1 in the introduction
for an overview and example of the parameter choice.

We explain the changes on the basis of protocol X-GA-PAKE�. The variant
of Com-GA-PAKE� is similar and is provided in the full version of the paper
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[1, Appendix E], together with a security analysis for both variants. For some
positive integer N dividing �, we set

crs := (x0, . . . , x2N −1) ∈ X 2N

and pw = (b1, ..., b�/N ) ∈ {0, ..., 2N − 1}�/N .

Note that as before, the password is a bitstring of length �, but it is divided into
�/N blocks of length N . In particular xbi

refers to one of the 2N different set
elements in the crs. The general outline of the protocol does not change. The
only difference is that in the first step both the server and the user only generate
2 ·�/N random group elements (instead of 2 ·�). Hence they only need to perform
2 · �/N group action evaluations in the first round and 3 · �/N evaluations in the
session key derivation. We write X-GA-PAKE�,N for this variant of the protocol.

8.2 Using Twists in the Setup

Both X-GA-PAKE� and Com-GA-PAKE� require that some trusted party gener-
ates two random set elements crs = (x0, x1). Here, we shortly discuss the setup
where x1 is replaced by the twist of x0, i.e. crs := (x0, x

t
0).

This simplification is particularly helpful when applied to one of the variants
from the previous subsection. These modified versions require to generate 2N

random set elements for the crs. Using twists it suffices to generate 2N−1 elements
(x0, . . . , x2N−1−1) ∈ X 2N−1

and setting xi+2N−1 = xt
i for each i ∈ [0, 2N−1 − 1].

The security of X-GA-PAKEt
� and Com-GA-PAKEt

� (the twisted versions of the
protocols) is discussed in the full version [1, Appendices D, E].
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Abstract. Commit-and-open Σ-protocols are a popular class of pro-
tocols for constructing non-interactive zero-knowledge arguments and
digital-signature schemes via the Fiat-Shamir transformation. Instan-
tiated with hash-based commitments, the resulting non-interactive
schemes enjoy tight online-extractability in the random oracle model.
Online extractability improves the tightness of security proofs for
the resulting digital-signature schemes by avoiding lossy rewinding or
forking-lemma based extraction.

In this work, we prove tight online extractability in the quantum
random oracle model (QROM), showing that the construction supports
post-quantum security. First, we consider the default case where com-
mitting is done by element-wise hashing. In a second part, we extend
our result to Merkle-tree based commitments. Our results yield a signif-
icant improvement of the provable post-quantum security of the digital-
signature scheme Picnic.

Our analysis makes use of a recent framework by Chung et
al. [CFHL21] for analysing quantum algorithms in the QROM using
purely classical reasoning. Therefore, our results can to a large extent
be understood and verified without prior knowledge of quantum infor-
mation science.

1 Introduction

Some interactive proofs come with amazing properties like zero-knowledge which
intuitively allows a prover to convince a verifier that she knows the witness to an
NP-statement without giving away information about this witness. Such zero-
knowledge proofs of knowledge are some of the most fascinating objects in cryp-
tography, and possibly in all of theoretical computer science. One might suspect
that their “magic” is due to the prover and verifier running an interactive proto-
col with each other, and that this interaction causes the verifier to be convinced.
Surprisingly, if the interactive proof is of suitable form, e.g. a Σ-protocol (i.e. a
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3-round public-coin protocol), the Fiat-Shamir transformation [FS87] provides
a natural way to remove the interaction from such protocols while preserving
(most of) the security properties, resulting in non-interactive zero-knowledge
proofs (NIZKs). The idea is to compute the challenge c as a hash c = H(a) of the
first message, rather than letting the verifier choose c. If the original Σ-protocol
has additional soundness properties, the resulting NIZK after the Fiat-Shamir
transformation is ideally suited to construct a digital-signature scheme, simply
by hashing the message m to be signed together with the first message a in
order to obtain the challenge c. The candidates Picnic [CDG+17] and Dilithium
[DKL+18] in the ongoing NIST post-quantum cryptography competition follow
this design paradigm.

This intuitive preservation of security properties under the Fiat-Shamir trans-
formation can be formalized in the random-oracle model (ROM), where the hash
function H is treated as a uniformly random function, and the security reduction
gets enhanced access to anybody who queries the random oracle, by seeing which
values are queried, and by possibly returning (random-looking) outputs. While
this situation is conveniently easy to handle in a non-quantum world, complica-
tions arise in the context of post-quantum security. When studying the security
of these non-quantum protocols against attackers equipped with large-enough
quantum computers, it is natural to assume that such attackers have access to
the public description of the employed hash function, and can therefore com-
pute it in superposition on their quantum computers. Therefore, the proper
notion of post-quantum security for random oracles is the quantum-accessible
random-oracle model (QROM) as introduced in [BDF+11]. Due to the difficulty
of recording adversarial random-oracle queries in superposition (also referred to
as the recording barrier), establishing post-quantum security in the QROM has
turned out to be quite a bit more difficult compared to the regular ROM.

Previous results in [DFMS19] (and concurrently in [LZ19b]) establish that for
any interactive Σ-protocol Π that is a proof of knowledge, the non-interactive
FS[Π] is a proof of knowledge in the QROM. [DFM20] simplified the techni-
cal proof and extended these results to multi-round interactive proofs. However,
the most desirable property from such a proof of knowledge is online extract-
ability Indeed, online extractability avoids rewinding, which typically causes a
significant loss in the security reduction and has other disadvantages (see later
for a comparison). Thus, online extractability allows for the tightest security
reductions.

Chailloux was the first to aim for showing online extractability of the Fiat-
Shamir transformation in the QROM when considering the relevant class of
commit-and-open (C&O) Σ-protocols and modelling the hash function used
for the commitments (and for computing the challenge) as a random oracle.
Indeed, the Fiat-Shamir transformation of such C&O Σ-protocols are known to
be online extractable in the classical ROM (see e.g. discussion in [Fis05]). In a
first attempt [Cha19], Chailloux tried to lift the argument to the quantum set-
ting by means of Zhandry’s compressed-oracle technique [Zha19], which offers
a powerful approach for re-establishing ROM results in the QROM, that has
been successful in many instances. Unfortunately, this first attempt contained a
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subtle flaw, which turned out to be unfixable, and despite changing the technical
approach, the latest version of this work still contains an open gap in the proof,
which is put as an assumption in [Cha21].1

In a recent article [DFMS21], online extractability of interactive C&O Σ-
protocols Π in the QROM is established ; the result applies as soon as Π
stisfies some liberal notion of special soundness, which is typically satisfied
. As pointed out in Appendix E of [DFMS21], one can use previous results
from [DFMS19,LZ19b,DFM20] to reduce the extractability of the resulting non-
interactive protocol FS[Π] to the extractability of the interactive protocol Π.
However, the resulting extraction error scales as O(ε/q2) which results in a pro-
hibitive loss for digital-signature schemes (see Table 1), leaving open the main
question originally posed by Chailloux:

How to establish tight security reductions of the Fiat-Shamir transformation
for commit-and-open Σ-protocols in the QROM?

As the technical quantum details of Zhandry’s compressed-oracle technique
are rather complicated and only accessible for experts, a recent article by Chung,
Fehr, Huang and Liao [CFHL21] establish a framework that allows researchers
without extensive quantum knowledge to still deploy the compressed-oracle tech-
nique (in certain cases), basically by reasoning about classical quantities only.
In short, the punchline of [CFHL21] is that, if applicable, one can prove quan-
tum query complexity lower bounds (think of collision finding, for instance) by
means of the following recipe, which is an abstraction of the technique devel-
oped in a line of works started by Zhandry [Zha19,LZ19a,CGLQ20,HM21]. First,
one considers the corresponding classical query complexity problem, analyzing
it by simulating the random oracle using lazy sampling and showing that the
database, which keeps track of the oracle queries and the responses, is unlikely
to satisfy a certain property (e.g. to contain a collision) after a bounded num-
ber of queries. Then, one lifts the analysis to the quantum setting by plugging
key observations from the classical analysis into generic theorems provided by
the [CFHL21] framework. A similar framework, using slightly different language
(and limited to sequential queries) was given in [CMS19].

1.1 Our Contributions

In this work, we slightly extend the framework from [CFHL21], and use it
to establish strong and tight security statements for a large, popular class of

1 Informally, quoting from [Cha21], the considered Assumption 2 is that the random
oracle can be replaced with a random function of a particular form “without harming
too much the studied scheme”. More formally, the security loss caused by the consid-
ered replacement is assumed to remain bounded by a given function of the number of
oracle queries. This assumption is rather ad-hoc and non-standard in that it is very
much tailored to the scheme and its proof. Furthermore, even though Assumption 2
is an assumption that could potentially be proven in future work , it is hard to judge
whether proving the assumption is actually any easier than proving the security of
the considered scheme directly, avoiding Assumption 2—as a matter of fact, in this
work we show that the latter is feasible, while Assumption 2 remains open.



732 J. Don et al.

non-interactive zero-knowledge proofs and digital signature schemes. In broad
strokes, our contributions are threefold.

Online Extractability for a Class of NIZKs in the QROM. We prove
online extractability of the Fiat-Shamir transformation in the QROM for (a large
class of) C&O Σ-protocols. This solves the problem considered and attacked by
Chailloux. In more detail, we prove that if the considered C&O Σ-protocol sat-
isfies some very liberal notion of special soundness , then the resulting NIZK is a
proof of knowledge with online extractability in the QROM, i.e., when the hash
function used for the commitments and the FS transformation is modeled as a
quantum-accessible random oracle. Our security reduction is tight: Whenever a
prover outputs a valid proof, the online-extractor succeeds, except with a small
probability accounting for collision and preimage attacks on the involved hash
functions. For previous reductions, the guaranteed extraction success probability
was at least by a factor of q2 smaller than the succes probability of the prover
subjected to extraction (see Table 1). This is our main technical contribution,
see Theorem 4.2. Our result also applies to a variant of the Fiat-Shamir transfor-
mation where a digital signature scheme (DSS) is constructed. It thereby, for the
first time, enables a multiplicatively tight security reduction for, e.g., DSS based
on the MPC-in-the-head paradigm [IKOS07], like Picnic [CDG+17], Banquet
[BdSGK+21] and Rainier [DKR+21], in the QROM.

A More Efficient Unruh Transformation. When a Σ-protocol does not
have the mentioned C&O structure, a non-interactive proof of knowledge with
online extractability in the QROM can be obtained using the Unruh transforma-
tion [Unr15]. For technical reasons, the original Unruh transformation requires
the hash function to be length preserving, which may result in large commit-
ments, and thus large NIZKs and digital signature schemes. In the full version,
we revisit this transformation and show, by a rather direct application of our
main result above, that the online extractability of the Unruh transform still
holds when using a compressing hash function. The crucial observation is that
the Unruh transformation can be viewed as the composition of a “pre-Unruh”
transformation, which makes use of hash-based commitments and results in a
C&O protocol, and the Fiat-Shamir transformation. By applying our security
reduction, we then obtain the tight online extractability without requiring the
hash function to be length preserving.

More Efficient NIZKs via Merkle Tree Based Commitments. In real-
world constructions based on C&O protocols, like e.g., the Picnic digital signa-
ture scheme, commitments and their openings are responsible for a significant
fraction of the signature/proof size. For certain parameters, this cost can be
reduced by using a collective commitment mechanism based on Merkle trees.
This was observed in passing, e.g. in [Fis05], and is exploited in the most recent
versions of Picnic. We formalize Merkle-tree-based C&O protocols and extend
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our main result to NIZKs constructed from them (see Theorem 5.2). Applications
include a security reduction of Picnic 3, the newest version of the Picnic digital
signature scheme, that is significantly tighter than existing ones: An adversary
against the Picnic 3 signature scheme in the QROM with success probability ε
can now be used to break the underlying hard problem with probability ε, up
to some additive error terms, while previous reductions yielded at most ε5/q10,
where q is the number of random oracle queries. We outline this reduction in
Sect. 5.3.

We compare our reductions in detail to existing techniques in Table 1.

Table 1. Comparison of the losses of different reductions for the construction of a
NIZK proof of knowledge (NIZK-PoK) from a special-sound (Merkle tree based) C&O
protocol with constant challenge space size C using r-fold parallel repetition and the
Fiat-Shamir transformation. “OE” stands for online extraction, 2-s for special sound-
ness, UF-NMA for plain unforgeability and DSS for digital signature scheme. If the
content of a cell in row “security property A ⇒ security property B” is f(ε), this means
that an adversary breaking property B with probability ε yields an adversary break-
ing property A with probabilty f(ε). Grey text indicates results that do not apply
to Merkle-tree-based C&O protocols like the one used to construct the digital signa-
ture schemes Picnic 2 [KZ20] and Picnic 3 [CDG+19b]. The additive error terms are
g(q, r, n) = C−r + O(rq2−n/2) + O(q32−n) and h(q, r, n) = O(q32−n) + O(q2C−r),
where n is the output length of the random oracles, and q is the number of adversarial
(quantum) queries to the random oracle. Finally, we note that the constants hidden by
the big-O in h(q, r, n) are reasonable, see Theorems 4.2 and 5.2.

2-s⇒PoK PoKFS⇒NIZK-PoK,

PoKFS⇒UF-NMA DSS

2-sFS⇒NIZK-PoK,

2-sFS⇒UF-NMA DSS

Unruh rewinding [Unr12]
+ generic FS [DFMS19] O(ε3) O(ε/q2) O(ε3/q6)

Σ-protocol OE [DFMS21]
+ generic FS [DFMS19] ε − g(q, r, n) O(ε/q2) O(ε/q2) − g(q, r, n)

this work:
NIZK OE – – ε − h(q, r, n)

1.2 Technical Overview

Our starting point is the fact that the compressed-oracle technique can be seen
as a variant of the classical lazy-sampling technique that is applicable in the
QROM. Namely, to some extent and informally described here, the compressed-
oracle technique gives access to a database that contains the hash values that
the adversary A, who has interacted with the random oracle (RO), may know.
In particular, up to a small error, for any claimed-to-be hash value y output
by A, one can find its preimage x by inspecting the database (and one can
safely conclude that A does not know a preimage of y if there is none in the
database). Recalling that a C&O Σ-protocol Π is an interactive proof where the
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first message consists of hash-based commitments, and exploiting that typically
some sort of special soundness property ensures that knowing sufficiently many
preimages of these commitments/hashes allows one to efficiently compute a wit-
ness, constructing an online extractor for the Fiat-Shamir transformation FS[Π]
then appears straightforward: The extractor E simply runs the (possibly dishon-
est) prover P ∗, answering RO queries using the compressed oracle. Once P ∗ has
finished and outputs a proof, E measures the compressed-oracle database and
classically reads off any preimages of the commitments in the proof. Finally, E
run the special soundness extractor that computes a witness from the obtained
preimages . It is, however, not obvious that the database contains the preimages
of the commitments that are not opened in the proof, or that these preimages
are correctly formed. Intuitively this should be the case: the RO used for the
Fiat-Shamir transformation replaces interaction in that it forces the prover to
chose a full set of commitments before knowing which ones need to be opened.
The crux lies in replacing this intuition by a rigorous proof .

The main insight leading to our proof is that the event that needs to be
controlled, namely that the prover succeeds yet the extractor fails, can be trans-
lated into a property SUC (as in “adversarial SUCcess”) of the compressed-
oracle database, which needs to be satisfied for the event to hold. It is some-
what of a peculiar property though. The database properties that have led to
query complexity lower bounds in prior work, e.g. for (multi-)collision finding
[LZ19a,HM21,CFHL21] and similar problems [Zha19,CGLQ20,BLZ21], require
the database to contain some particular input-output pairs (e.g. pairs that col-
lide), while the database property SUC additionally forbids certain input-output
pairs to be contained.

Indeed, the framework from [CFHL21] is almost expressive enough to treat
our problem. So, after a mild extension, we can apply it to prove that it is
hard for any query algorithm to cause the compressed-oracle database to have
property SUC. Analyzing the relevant classical statistical properties of SUC is
somewhat tedious but can be done (see the proof of Lemma 5.1). The resulting
bound on the probability for the database to satisfy SUC then gives us a bound
on the probability of the event that the prover succeeds in producing a valid
proof while at the same time fooling the extractor.

Whenever it is advantageous for communication complexity, a Merkle tree can
be used to collectively commit to all required messages in a C&O protocol. This
collective commitment is one of the optimizations that improve the performance
of, e.g. Picnic 2 [KZ20] over Picnic [CDG+17]. As the above-described argument
for the extractability of C&O protocols already analyses iterated hashing (the
hash-based commitments are hashed to compute the challenge), it generalizes
to Merkle-tree-based C&O protocols without too much effort. We present this
generalization in Sect. 5, and obtain similar bounds (see Theorem 5.2).

1.3 Additional Related Work

Besides the already mentioned work above, we note that Chiesa, Manohar and
Spooner [CMS19] consider and prove security of various SNARG constructions,
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while we consider the Fiat-Shamir transformation of C&O protocols with a form
of special soundness. Similar in to [CFHL21], they also provide some tools for
deducing security of certain oracle games against quantum attacks by bounding
a natural classical variant of the game.

2 Preliminaries

Our main technical proofs reliy on the recently introduced framework by Chung,
Fehr, Huang, and Liao [CFHL21] for proving query complexity bounds in the
QROM. This framework exploits Zhandry’s compressed-oracle technique but
abstracts away all the quantum aspects, so that the reasoning becomes purely
classical. We give here an introduction to a simplified, and slightly adjusted ver-
sion that does not consider parallel queries. We start with recalling (a particular
view on) the compressed oracle. Along the way, we also give an improved version
of Zhandry’s central lemma for the compressed oracle.

Before getting into this, we fix the following standard notation. For any
positive integer � > 0, we set [�] := {1, 2, . . . , �}, and we let 2[�] denote the power
set of [�], i.e., the set of all subsets of [�].

Finally, for any finite non-empty set Z, C[Z] denotes the Hilbert space C|Z|

together with a basis {|z〉} labeled by the elements z ∈ Z.

2.1 The Compressed Oracle— Seen as Quantum Lazy Sampling

With the goal to analyze oracle algorithms that interact with a RO H : X → Y,
consider the set D of all functions D : X → Y∪{⊥}, where ⊥ is a special symbol.
Such a function is referred to as a database. Later, we will fix X = {0, 1}≤B and
Y = {0, 1}n. For D ∈ D, x ∈ X and y ∈ Y ∪{⊥}, D[x �→y] denotes the database
that maps x to y and otherwise coincides with D, i.e., D[x �→ y](x) = y and
D[x �→y](x̄) = D(x̄) for all x̄ ∈ X \ {x}.

Following the exposition of [CFHL21], the compressed-oracle technique is
a quantum analogue of the classical lazy-sampling technique, commonly used
to analyze algorithms in the classical ROM. In the classical lazy-sampling
technique, the (simulated) RO starts off with the empty database, i.e., with
D0 = ⊥, which maps any x ∈ X to ⊥. Then, recursively, upon a query x,
the current database Di is updated to Di+1 := Di if Di(x) �= ⊥, and to
Di+1 := Di[x �→ y] for a randomly chosen y ∈ Y otherwise. This construc-
tion ensures that |{x |Di(x) �= ⊥}| ≤ i; after i queries thus, using standard
sparse-encoding techniques, the database Di can be efficiently represented and
updated.

In the compressed-oracle quantum analogue of this lazy-sampling technique,
the (simulated) RO also starts off with the empty database, but now considered
as a quantum state |⊥〉 in the |D|-dimensional state space C[D], and after i
queries the state of the compressed oracle is then supported by databases |Di〉
for which |{x |Di(x)=⊥}| ≤ i.2 Here, the update is given by a unitary operator
2 This means that the density operator that describes the state of the compressed

oracle has its support contained in the span of these |Di〉.
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cO acting on C[X ]⊗C[Y]⊗C[D], i.e., on the query register, the response register,
and the state of the compressed oracle. With respect to the computational basis
{|x〉} of C[X ] and the Fourier basis {|ŷ〉} of C[Y], cO is a control unitary, i.e., of
the form cO =

∑
x,ŷ |x〉〈x|⊗|ŷ〉〈ŷ|⊗cOx,ŷ, where cOx,ŷ is a unitary on C[Y∪{⊥}],

which in the above expression is understood to act on the register that carries
the value of the database at the point x. More formally, cOx,ŷ acts on register
Rx when identifying C[D] with

⊗
x∈X C[Y ∪ {⊥}] by means of the isomorphism

|D〉 �→
⊗

x∈X |D(x)〉Rx
. We refer to Lemma 4.3 in the full version of [CFHL21]

for the full specification of cOx,ŷ.
The compressed oracle is tightly related to the purified oracle, which initiates

its internal state with a uniform superposition
∑

h |H〉 ∈ C[D] of all functions
H : X → Y, and then answers queries “in superposition”. Indeed, at any point
in time during the interaction with an oracle quantum algorithm A, the joint
state of A and the compressed oracle coincides with the joint state of A and the
purified oracle after “compressing” the latter.3 Formally, identifying C[D] with⊗

x∈X C[Y ∪{⊥}] again, the compression of the state of the purified oracle works
by applying the unitary Comp to each register Rx, where

Comp : |y〉 �→ (|y〉 + (|⊥〉 − |0̂〉)/
√

|Y|

for any y ∈ Y, and Comp : |⊥〉 �→ |0̂〉. Here, |0̂〉 is the 0̂-vector from the Fourier
basis {|ŷ〉} of C[Y].

Similarly to the classical case, by exploiting a quantum version of the sparse-
encoding technique, both the internal state of the compressed oracle and the
evolution cO can be efficiently computed. Furthermore, for any classical func-
tion f : D → T that can be efficiently computed when given the sparse rep-
resentation of D ∈ D, the corresponding quantum measurement given by the
projections Pt =

∑
D:f(D)=t |D〉〈D| can be efficiently performed when given the

sparse representation of the internal state of the compressed oracle. In partic-
ular, in Lemma 2.1 below, the condition y = D(x) for given x and y can be
efficiently checked by a measurement. See Appendix A in (the full version of)
[CFHL21], or Appendix B in [DFMS21] for more details on this technique.

In the classical lazy-sampling technique, if at the end of the execution of
an oracle algorithm A, having made q queries to the (lazy-sampled) RO, the
database Dq is such that, say, Dq(x) �= 0 for any x ∈ X , then A’s output
is unlikely to be a 0-preimage, i.e., an x that is hashed to 0 upon one more
query. A’s best chance is to output an x that he has not queried yet, and thus
Dq(x) = ⊥, and then he has a 1/|Y|-chance that Dq+1(x) := Dq[x �→y](x) = 0,
given that y is randomly chosen. Something similar holds in the quantum setting,
with some adjustments. The general statement is given by the following result
by Zhandry.

Lemma 2.1 (Lemma 5 in [Zha19]). Let R ⊆ X � × Y� × Z be a relation, and
let A be an oracle quantum algorithm that outputs x ∈ X �, y ∈ Y� and z ∈ Z.
3 The terminology is somewhat misleading here; the actual compression takes place

when invoking the sparse encoding (see below).
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Furthermore, let

p = p(A) := Pr[y=H(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the standard RO, ini-
tialized with a uniformly random function H, and let

p′ = p′(A) := Pr[y=D(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the compressed ora-
cle instead and D is obtained by measuring its internal state (in the basis
{|D〉}D∈D). Then √

p ≤
√

p′ +
√

�/|Y| .

In Sect. 2.3 we give an alternative (and in typical cases tighter) such relation
between the success probability of an algorithm interacting with the actual RO,
and probabilities obtained by inspecting the compressed oracle instead.

2.2 The Quantum Transition Capacity and Its Relevance

The above discussion shows that, in order to bound the success probability p
of an oracle algorithm A, it is sufficient to bound p′′, the probability of the
database D, obtained by measuring the internal state of the compressed oracle
after the interaction with A, satisfying a certain property (e.g., the property of
there existing an x such that D(x) = 0).

To facilitate that latter, Chung et al. [CFHL21] introduced a framework
that, in certain cases, allows to bound this alternative figure of merit by means
of purely classical reasoning. We briefly recall here some of the core elements
of this framework, which are relevant to us. Note that [CFHL21] considers the
parallel-query model, where in each of the q (sequential) interactions with the
RO, a q-query oracle algorithm A can make k queries simultaneously in parallel.
Here, we consider the (more) standard model of one query per interaction, i.e.,
setting k = 1. On the other hand, we state and prove a slight generalization of
Theorem 5.16 in [CFHL21] (when restricted to k = 1).

A subset P ⊆ D is called a database property. We say that D ∈ D satisfies P
if D ∈ P, and the complement of P is denoted ¬P = D \ P. For such a database
property P, [CFHL21] defines

�⊥ q
=⇒ P

�
as the square-root of the maximal

probability of D satisfying P when D is obtained by measuring the internal
state of the compressed oracle after the interaction with A, maximized over all
oracle quantum algorithms A with query complexity q, i.e., in short

�⊥ q
=⇒ P

�
:= max

A

√
Pr[D ∈ P] . (1)

In the context of Lemma 2.1 for the case Z = ∅, we can define the database
property PR := {D∈D | ∃x∈X � : (x,D(x))∈R} induced by R, and thus bound

p′(A) ≤ Pr[(x,D(x))∈R] ≤ Pr[D ∈ PR] ≤
�⊥ q

=⇒ PR
�2 (2)
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for any oracle quantum algorithm A with query complexity q.
Furthermore, Lemma 5.6 in [CFHL21] shows that for any target database

property P and for any sequence P0,P1, . . . ,Pq with ¬P0 = {⊥} and Pq = P,

�⊥ q
=⇒ P

�
≤

q∑

s=1

�
¬Ps−1 → Ps

�
, (3)

where, for any database properties P and P′, the definition of the quantum tran-
sition capacity

�
P → P′� is recalled in the full version.

The nice aspect of the framework of [CFHL21] is that it provides means to
manipulate and bound quantum transition capacities using purely classical rea-
soning, i.e., without the need to understand and work with the definition. Indeed,
for instance Theorem 2.2 below, which is a variant of Theorem 5.17 in (the full
version of) [CFHL21], shows how to bound

�
P → P′� by means of a certain

classical probability; furthermore, to facilitate the application of such theorems,
[CFHL21] showed that the quantum transition capacity satisfies several natural
manipulation rules, like

�
P → P′� =

�
P′ → P

�
(i.e., it is symmetric), and

�
P ∩ Q → P′� ≤ min

{�
P → P′�,

�
Q → P′�}

and

min
{�

P → P′�,
�
P → Q′�}

≤
�
P → P′ ∪ Q′� ≤

�
P → P′� +

�
P → Q′� ,

(4)

which allow to decompose complicated capacities into simpler ones. Therefore, by
means of the above series of inequalities with p from Lemma 2.1 on the left hand
side, it is possible (in certain cases) to bound the success probability of any oracle
quantum algorithm A in the QROM by means of the following recipe: (1) Choose
suitable transitions Ps−1 → Ps, (2) decompose the capacities

�
¬Ps−1 → Ps

�
into

simpler ones using manipulation rules as above, and (3) bound the simplified
capacities by certain classical probabilities, exploiting results like Theorem 2.2.

In order to state and later use Theorem 2.2, we need to introduce the following
additional concepts. As explained above, there is no need to actually spell out
the definition of the quantum transition capacity in order to use Theorem 2.2;
for completeness, and since it is needed for the proof of Theorem 2.2, we provide
it in the full version (where we also give the proof of Theorem 2.2).

For any database D ∈ D and any x ∈ X , D|x := {D[x �→ y] | y ∈ Y ∪ {⊥}}
denotes the set of all databases that coincide with D outside of x. Furthermore,
for a database property P,

P|D|x := {y ∈ Y ∪ {⊥} | D[x �→y] ∈ P} ⊆ Y ∪ {⊥}

denotes the set of values y for which D[x �→y] satisfies P.
The following is a variation of Theorem 5.17 in (the full version of) [CFHL21],

obtained by restricting k to 1. On the other hand, we exploit and include some
symmetry that is not explicit in the original statement. The proof, given in the
full version, is a small adjustment to the original proof.
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Theorem 2.2. Let P and P′ be database properties with trivial intersection, i.e.,
P ∩ P′ = ∅, and for every D ∈ D and x ∈ X let

Lx,D :=
{

P|D|x if ⊥ ∈ P′|D|x
P′|D|x if ⊥ ∈ P|D|x ,

with Lx,D being either of the two if ⊥ �∈ P|D|x ∪ P′|D|x .4 Then

�
P → P′� ≤ max

x,D

√
10P

[
U ∈Lx,D

]
,

where U is uniform over Y, and the maximization can be restricted to D ∈ D
and x ∈ X for which both P|D|x and P′|D|x are non-empty.

Remark 2.3. Both, P|D|x and P′|D|x , and thus also Lx,D, do not depend on the
value of D(x), only on the values of D outside of x.

2.3 An Improved Variant of Zhandry’s Lemma

We show here an alternative to Zhandry’s lemma (Lemma 2.1), which offers
a better bound in typical applications. To start with, note that Lemma 2.1
considers an algorithm A that not only outputs x = (x1, . . . , x�) but also y =
(y1, . . . , y�), where the latter is supposed to be the point-wise hash of x; indeed,
this is what is being checked in the definition of the probability p, along with
(x,y, z) ∈ R. This requirement is somewhat unnatural, in that an algorithm A
for, say, finding a collision, i.e., x1 �= x2 with H(x1) = H(x2), does not necessarily
output the (supposed to be equal) hashes y1 = H(x1) and y2 = H(x2). Of course,
this is no problem since one can easily transform such an algorithm A that does
not output the hashes into one that does, simply by making a few more (classical)
queries to the RO at the end of the execution, and then one can apply Lemma 2.1
to this tweaked algorithm Ã.

We show below that if we anyway consider this tweaked algorithm Ã, which
is promised to query the RO to obtain and then output the hashes of x =
(x1, . . . , x�), then we can actually improve the bound and avoid the square-roots
in Lemma 2.1. On top, the proof is much simpler than Zhandry’s proof for his
lemma. At the core is the following lemma; Coroallary 2.5 then puts it in a form
that is comparable to Lemma 2.1 and shows the improvement.

Lemma 2.4. Let A be an oracle quantum algorithm that outputs x =
(x1, ..., x�) ∈ X � and z ∈ Z. Let Ã be the oracle quantum algorithm that runs
A, makes � classical queries on the outputs xi to obtain y = H(x), and then
outputs (x,y, z). When Ã interacts with the compressed oracle instead, and at
the end D is obtained by measuring the internal state of the compressed oracle,
then, conditioned on Ã’s output (x,y, z),

Pr[y=D(x)|(x,y, z)] ≥ 1 − 2�

|Y| .

4 By the disjointness requirement, ⊥ cannot be contained in both.
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Proof. Consider first Ã interacting with the purified (yet uncompressed) oracle.
Conditioned on Ã’s output (x,y, z), the state of the oracle is then supported by
|H〉 with H(xi) = yi for all i ∈ {1, . . . , �}, i.e., the registers labeled by x1, ..., x�

are in state |y1〉 · · · |y�〉. Given that the compressed oracle is obtained by applying
Comp to all the registers, we thus have that

Pr[yi =y′
i|(x,y, z)] =

∣
∣〈yi|Comp|yi〉

∣
∣2 =

∣
∣
∣〈yi|

(
|yi〉 + 1√

|Y| (|⊥〉 − |0̂〉)
)∣
∣
∣
2

=
∣
∣
∣1 − 1√

|Y| 〈yi|0̂〉
∣
∣
∣
2

=
∣
∣
∣1 − 1

|Y|
∣
∣
∣
2

≥ 1 − 2
|Y| .

Applying union bound concludes the claim. ��

The following corollary of Lemma 2.4 is put in a form that can be nicely com-
pared with Lemma 2.1, understanding that typically Lemma 2.1 is applied to Ã.

Corollary 2.5. Let R ⊆ X � ×Y� ×Z be a relation. Let A be an oracle quantum
algorithm that outputs x ∈ X � and z ∈ Z, and let Ã be as in Lemma 2.4. Let

p◦(A) := Pr[(x,H(x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore,
let p(Ã) and p′(Ã) be defined as in Lemma 2.1 (but now for Ã). Then

p◦(A) = p(Ã) ≤ p′(Ã) +
2�

|Y| .

In the full version, we show yet another corollary of Lemma 2.4, where Ã
may make a more involved computation on x, possibly calling H adaptively.

3 Some Background on (Non-)Interactive Proofs

Throughout this and later sections, we consider a hash function H : X → Y, to
be modeled as a RO then. For concreteness and simplicity, we assume that all
relevant variables are encoded as bit strings, and that we can therefore choose
H : {0, 1}≤B → {0, 1}n for sufficiently large B and n.5

Let {Iλ}λ∈N and {Wλ}λ∈N be two families of sets, with the members being
labeled by the security parameter λ ∈ N. Let Rλ ⊆ Iλ × Wλ be a relation that
is polynomial-time computable in λ. w ∈ Wλ is called a witness for inst ∈ Iλ if
Rλ(inst, w), and Lλ is the language Lλ = {inst ∈ Iλ | ∃w ∈ Wλ : Rλ(inst, w)}.

Below, we recall some concepts in the context of interactive and non-
interactive proofs for such families {Rλ}λ∈N of relations. We start by discussing
the aspired security definition for non-interactive proofs.

5 B and n may depend on the security parameter λ ∈ N. We will then assume that B
and n can be computed from λ in polynomial time (in λ).
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3.1 Non-interactive Proofs and Online Extractability

An non-interactive proof in the random-oracle model for a family {Rλ}λ∈N of
relations consists of a pair (P,V) of oracle algorithms, referred to as prover and
verifier, both making queries to the RO H : X → Y. The prover P takes as
input λ ∈ N and an instance inst ∈ Lλ and outputs a proof π ∈ Πλ, and V takes
as input λ ∈ N and a pair (inst, π) ∈ Iλ × Πλ and outputs a Boolean value, 0 or
1, or accept or reject. The verifier V is required to run in time polynomial in
λ, while, per-se, P may have unbounded running time.6

By default, we require correctness and soundness, i.e., that for any λ ∈ N and
any inst ∈ Lλ the probability Pr

[
VH(λ, inst, π) : π ← PH(λ, inst)

]
is close to 1,

while for any λ ∈ N and any oracle quantum algorithm P∗ with bounded query
complexity the probability Pr

[
inst �∈ Lλ ∧ VH(λ, inst, π) : (inst, π) ← P∗H(λ)

]

is close to vanishing. The fact that the instance inst, for which P∗ tries to forge
a proof, is not given as input to P∗ but is instead chosen by P∗ is referred to as
P∗ being adaptive.

We now move towards defining online extractability (for adaptive P∗). For
that purpose, let P∗ be a dishonest prover as above, except that it potentially
outputs some additional auxiliary (possibly quantum) output Z next to (inst, π).
We then consider an interactive algorithm E , called online extractor, which takes
λ ∈ N as input and simulates the answers to the oracle queries in the execution
of VH ◦ P∗H(λ), which we define to run (inst, π, Z) ← P∗H(λ) followed by
v ← VH(λ, inst, π); furthermore, at the end, E outputs w ∈ Wλ. We denote the
execution of VH ◦ P∗H(λ) with the calls to H simulated by E , and considering
E ’s final output w as well, as (inst, π, Z; v;w) ← VE ◦ P∗E(λ).

Definition 3.1. A non-interactive proof in the (quantum-accessible) RO model
(QROM) for {Rλ}λ∈N is a proof of knowledge with online extractability (PoK-
OE) against adaptive adversaries if there exists an online extractor E, and func-
tions εsim (the simulation error) and εex (the extraction error), with the following
properties. For any λ ∈ N and for any dishonest prover P∗ with query complex-
ity q,

δ
(
[(inst, π, Z, v)]VH◦P∗H(λ), [(inst, π, Z, v)]VE◦P∗E(λ)

)
≤ εsim(λ, q, n) and

Pr
[
v = accept ∧ (inst, w) �∈ R : (inst, π, Z; v;w) ← VE ◦ P∗E(λ)

]
≤ εex(λ, q, n).

Furthermore, the runtime of E is polynomial in λ + q + n, and εsim(λ, q, n) and
εex(λ, q, n) are negligible in λ whenever q and n are polynomial in λ.

Remark 3.2. In the classical definition of a proof of knowledge, the extractor E
interacts with P∗ only, and the verifier V is not explicitly involved, but would
typically be run by E . Here, in the context of online extractability, it is neces-
sary to explicitly go through the verification procedure, which also makes oracle
queries, to determine whether a proof is valid, i.e., for the event v = accept to
be well defined.
6 Alternatively, one may consider a witness w for inst to be given as additional input

to P, and then ask P to be polynomial-time as well.
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3.2 (Commit-and-Open) Σ-Protocols

A Σ-protocol is a 3-round public-coin interactive proof (P,V) for a relation
Rλ ⊆ Iλ × Wλ, indexed by the security parameter. From now on, we leave any
dependencies on the security parameter implicit. We therefore simply write R
etc. By definition, a Σ-protocol has the following communication pattern. In the
first round, P sends a first message a; in the second round, V sends a random
challenge c ∈ C; and in the third round, P sends a response z. By a slight abuse
of notation, we sometimes write V(inst, a, c, z) for the predicate that determines
whether V accepts the transcript (a, c, z) on input inst.

For the purpose of this work, a commit-and-open Σ-protocol, or C&O Σ-
protocol or C&O protocol for short, is a Σ-protocol Π = (P,V) of a special
form, involving a hash function H that is modeled as a RO.7 Concretely, in a
C&O protocol, the transcript (a, c, z) is of the following form. The first message
a consists of commitments y1, . . . , y�, computed as yi = H(mi) for messages
m1, . . . , m� ∈ M, and possibly an additional string a◦8. The challenge c is picked
uniformly at random from the challenge space C ⊆ 2[�], which is set to be a subset
of 2[�]. Finally, the response z is given by mc = (mi)i∈c. Eventually, V accepts if
and only if H(mi) = yi for all i ∈ c and some given predicate V (inst, c,mc, a◦)
is satisfied.

For the above to be meaningful, we obviously need that M ⊆ X , i.e., the bit
size of the possible mi’s are upper bounded by B. Furthermore, the parameter n
determines the hardness of finding a collision in H (in the random oracle model),
and thus the level of binding the commitments provide.

Remark 3.3. Looking ahead, we may also consider a generalization of the above
notion of a C&O protocol, where the first message is parsed as a single commit-
ment y of the � messages m1, . . . , m� and where this commitment is computed by
means of an arbitrary “multi-message” commitment scheme involving H, which
has the property that any subset of m1, . . . , m� can be opened without revealing
the remaining mi’s. The above component-wise hashing is then one particular
instantiation, but alternatively one can for instance also compute y by means of
a Merkle tree (see Sect. 5.1), and then open individual mi’s by revealing the cor-
responding authentication paths. We stress that the concepts discussed below:
the notions of S-soundness and S-soundness∗ and the probability pStriv, do not
depend on the choice of commitment scheme, and thus remain unaffected when
considering such a Merkle-tree-based C&O protocol. To emphasize the default
choice of the commitment scheme, which is element-wise hashing, we sometimes
also speak of an ordinary C&O protocol.

7 One could also refer to Σ-protocols that use non-hash-based commitments, and/or
are analyzed in the standard model, as C&O protocols, but this is not the scope here.

8 Note that mi ∈ M may consist of the actual “message” (computed by the prover
using the witness w), possibly concatenated with randomness.
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3.3 S-soundness of C&O Σ-Protocols

We briefly recall the notion of S-soundness and S-soundness∗ for C&O pro-
tocols, as considered in [DFMS21], which offers a convenient general notion of
special soundness, or more generally k-soundness for C&O protocols. A similar
notion of S-soundness naturally exists for plain Σ-protocols, i.e., Σ-protocols in
the plain model. For completeness, we formalize the latter in the full version.

Here and below, given a C&O protocol Π with challenge space C ⊆ 2[�], we
let S ⊆ 2C be an arbitrary non-empty, monotone increasing set of subsets S ⊆ C,
where the monotonicity means that S ∈ S ∧ S ⊆ S′ ⇒ S′ ∈ S. We then also
set Smin := {S ∈ S | S◦ � S ⇒ S◦ �∈ S} to be the minimal sets in S.

For simplicity, the reader can consider S = Tk := {S ⊆ C | |S| ≥ k} for some
threshold k, and thus Smin = {S ⊆ C | |S| = k}. This then corresponds to the
notion of k-soundness for C&O protocols, which in turn means that the witness
can be computed from valid responses to k (or more) distinct challenges for a
given first message y1, . . . , y�, assuming the messages m1, . . . , m� to be uniquely
determined by their commitments.

Definition 3.4 ([DFMS21] Def. 5.1). A C&O protocol Π is S-sound if there
exists an efficient deterministic algorithm ES(inst,m1, . . . , m�, a◦, S) that takes
as input an instance inst ∈ I, messages m1, . . . , m� ∈ M∪{⊥}, a string a◦, and
a set S ∈ Smin, and outputs a witness for inst if V (inst, c,mc, a◦) for all c ∈ S.9

A slightly stronger condition than S-soundness is the following variant, which
differs in that the extractor needs to work as soon as there exists a set S as
specified, without the extractor being given S as input. We refer to [DFMS21]
for a more detailed discussion of this aspect. As explained there, whether S is
given or not often makes no (big) difference.

For instance, when Smin consists of a polynomial number of sets S then the
extractor can do a brute-force search to find S, and so S-soundness∗ is then
implied by S-soundness. Also, the r-fold parallel repetition of a S-sound proto-
col, which by default is a S∨r-sound protocol (see [DFMS21]), is automatically
S∨-sound∗ if Smin is polynomial in size: the extractor can then do a brute-force
search in every repeated instance.

Definition 3.5 ([DFMS21] Def. 5.2). A C&O protocol Π is S-sound∗ if there
exists an efficient deterministic algorithm E∗

S(inst,m1, . . . , m�, a◦) that takes as
input an instance inst ∈ I and strings m1, . . . , m� ∈ M ∪ {⊥} and a◦, and it
outputs a witness for inst if there exists S ∈ S such that V (inst, c,mc, a◦) for all
c ∈ S.

As in [DFMS21], we define

pStriv :=
1
|C| max

Ŝ 	∈S
|Ŝ| , (5)

9 The restriction for S to be in Smin, rather than in S, is to avoid an exponentially
sized input while asking ES to be efficient.
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capturing the “trivial” attack of picking a set Ŝ = {ĉ1, . . . , ĉm} �∈ S of chal-
lenges ĉi ∈ C and then prepare m̂ = (m̂1, . . . , m̂�) and a◦ in such a way that
V (inst, c, m̂c, a◦) holds if c ∈ Ŝ. After committing to m̂1, . . . , m̂�, the prover can
successfully answer to challenges c ∈ Ŝ.

3.4 The Fiat-Shamir Transformation of (C&O) Σ-Protocols

The Fiat-Shamir (FS) transformation [FS87] turns arbitrary Σ-protocols into
non-interactive proofs in the random oracle model by setting the challenge c ∈ C
to be the hash of the instance and the first message a. For this transformation to
work smoothly, it is typically assumed that |C| is a power of 2 and its elements
are represented as bit strings of size log |C|, so that one can indeed set c to be
(the first log |C| bits of) the hash H(inst, a). The assumption on |C| is essentially
without loss of generality (WLOG), since one can always reduce the size of |C|
to the next lower power of 2, at the cost of losing at most 1 bit of security.
However, for a C&O Σ-protocol, where a challenge space C is a (typically strict)
subset of 2[�], there is not necessarily a natural way to represent c ∈ C as a
bitstring of size log |C|. Therefore, we will make it explicit that the challenge-set
c ∈ C ⊂ 2[�] is computed from the “raw randomness” H(inst, y1, . . . , y�, a◦) in a
deterministic way as c = γ ◦ H(inst, y1, . . . , y�, a◦) for an appropriate function
γ : Y → C, mapping a uniformly random hash in Y to a random challenge-set
in C. Obviously, for H(inst, y1, . . . , y�, a◦) to be defined, in addition to M ⊆ X
we also need that I × Y� ⊆ X , which again just means that B needs to be large
enough. We write FS[Π] for the FS transformation of a (C&O) Σ-protocol Π.

Remark 3.6. Additionally, we need that n is sufficiently large, so that there is
a sufficient amount of randomness in the hash value H(inst, y1, . . . , y�) in order
to be mapped to a random c ∈ C. The canonical choice for γ is then the func-
tion that the interactive verifier applies to his local randomness to compute the
random challenge c ∈ C. To simplify the exposition, we assume that n is indeed
sufficiently large. Otherwise, one can simply set Y := {0, 1}n′

instead, for suffi-
ciently large n′, and then let yi be H(mi) truncated to the original number n of
bits again. This truncation has no effect on our results.

Remark 3.7. We assume WLOG that the two kinds of inputs to H, i.e., mi

and (inst, y1, . . . , y�, a◦), are differently formatted, e.g., bit strings of different
respective sizes or prefixes (this is referred to as domain separation). In other
words, we assume that M and I × Y� are disjoint.

Remark 3.8. When considering the adaptive security of a FS transformation
FS[Π] of a C&O protocol Π for a relation R, the additional string a◦, which
may be part of the first message a of the original protocol Π, may WLOG be
considered to be part of the instance inst instead.

Indeed, any dishonest prover P∗ against FS[Π], which (by Definition 3.1)
outputs an instance inst and a proof π = (a◦, y1, . . . y�), can alternatively be
parsed as a dishonest prover that outputs an instance inst′ = (inst, a◦) and a
proof π′ = (y1, . . . y�). Thus, P∗ can be parsed as a dishonest prover against
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FS[Π ′], where the C&O protocol Π ′ works as Π, except that a◦ is considered as
part of the instance, rather than as part of the first message, and thus Π ′ is a
C&O protocol for the relation ((inst, a◦), w) ∈ R′ :⇔ (inst, w) ∈ R.10 Therefore,
security (in the sense of Definition 3.1) for FS[Π ′] implies that of FS[Π].

4 Online Extractability of the FS-Transformation: The
Case of Ordinary C&O Protocols

We now consider the FS transformation FS[Π] of an ordinary C&O protocol
Π. Our goal is to show that FS[Π] admits online extraction. We note that by
exploiting Remark 3.8, we may assume WLOG that the first message of Π
consists of the commitments y1, . . . , y� only, and no additional string a◦. In
Sect. 5, we then consider the case of Merkle-tree-based C&O protocols.

Our analysis of FS[Π] uses the framework of Chung et al. [CFHL21], discussed
and outlined in Sect. 2. Thus, at the core of our analysis is a bound on a certain
quantum transition capacity. This is treated in the upcoming subsection.

4.1 Technical Preface

We first introduce a couple of elementary database properties (related to CoL-
lisions and the SiZe of the database) that will be useful for us:

CL := {D | ∃x �=x′ : D(x)=D(x′) �=⊥} and SZ≤s := {D |#{z|D(z) �=⊥} ≤ s}.

Next, for an instance inst ∈ I, we want to specify the database property that
captures a cheating prover that succeeds in producing an accepting proof while
fooling the extractor. For the purpose of specifying this database property, we
introduce the following notation. For a given database D ∈ D and for a com-
mitment y ∈ Y, we define D−1(y) to be the smallest x ∈ X with D(x) = y, with
the convention that D−1(y) := ⊥ if there is no such x, as well as D−1(⊥) := ⊥.
By removing collisions, we ensure that there is at most one such x; thus, tak-
ing the smallest one in case of multiple choices is not important but only for
well-definedness. The database property of interest can now be defined as

SUC :=
{

D

∣
∣
∣
∣

∃y ∈ Y� and inst ∈ I so that m := D−1(y) satisfies
V (inst, c,mc) for c := γ ◦ D(inst,y) and

(
inst, E∗(inst,m)

)
�∈ R

}

.

(6)
Informally, assuming no collisions (i.e., restricting to D �∈ CL), the database

property SUC captures whether a database D admits a valid proof π = (y,mc)
for an instance inst for which the (canonical) extractor, which first computes m
by inverting D and then runs E∗, fails to produce a witness.

10 We do not specify the local computation of the honest prover P ′ in Π ′ = (P ′, V ′),
i.e., how to act when a◦ is part of the input, and in general it might not be efficient,
but this is fine since we are interested in the security against dishonest provers.
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Our (first) goal is to show that
�
⊥ q

=⇒ SUC ∪ CL
�

is small, capturing that
it is unlikely that after q queries the compressed database contains collisions
or admits a valid proof upon which the extractor fails. Indeed, we show the
following, where pStriv is the trivial cheating probability of Π as defined in (5).

Lemma 4.1.
�
⊥ q

=⇒ SUC ∪ CL
�

≤ 2eq3/22−n/2 + q
√

10max
(
q� · 2−n, pStriv

)
.

We begin with an outline of the proof. In a first step, by using (3) and union-
bound-like properties of the transition capacity, and additionally exploiting a
bound from [CFHL21] to control the transition capacity of CL, we reduce the
problem to bounding the quantum transition capacity

�
SZ≤s\SUC → SUC

�
for

s < q. Informally, this capacity is a measure of the “likelihood” — but then in a
quantum-sense — that a database D ∈ D that is bounded in size and not in SUC
turns into a database D′ that is in SUC, when D is updated to D′ = D[x �→U ]
with U uniformly random in Y, for any fixed x.

We emphasize that the state of the compressed oracle at any point is a
superposition of databases, and a query is made up of a superposition of inputs;
nevertheless, due to Theorem 2.2, the above classical intuition is actually very
close to what needs to be shown to rigorously bound the considered quantum
transition capacity. Formally, as will become clear in the proof below, we need to
show that for any database D ∈ SZ≤s\SUC and for any x ∈ X with D(x) = ⊥,
the probability that D[x �→U ] ∈ SUC is small. Below, this probability is bounded
in the Case 2 and Case 3 parts of the proof, where the two cases distinguish
between x being a “commit query” or a “challenge query”.

Informally, for D with D(x) = ⊥, if x is a “commit query” then assigning a
value to D(x) can only turn D �∈ SUC into D[x �→u] ∈ SUC, if u is a coordinate of
some y ∈ Y� for which D(inst,y) �= ⊥ for some inst. Indeed, otherwise, D[x �→u]
does not contribute to a valid proof π that did not exist before. Thus, given the
bound s < q on the size of D, this happens with probability at most q�/2n for
a random u. Similarly, if x is a “challenge query”, i.e. of the form x = (inst,y),
then assigning a value u to D(x) can only make a difference if V (inst, c,mc) is
satisfied for c = γ(u) and m = D−1(y), while E∗(inst,m) is not a witness for
inst. However, for a random u, this is bounded by pStriv.

But then, on top of the above, due to the quantum nature of the quantum
transition capacity,11 Theorem 2.2 requires to also show the “reverse”, i.e., that
for any D ∈ SUC and for any x ∈ X with D(x) �= ⊥, the probability that
D[x �→U ] ∈ SZ≤s\SUC is small; this is analyzed in Case 1 below.

Thus, by exploiting the framework of [CFHL21], the core of the reasoning
is purely classical, very closely mimicking how one would have to reason the
classical setting with a classical RO. Due to the rather complex definition of
SUC, the formal argument in each case is still somewhat cumbersome.

11 At the core, this is related to the reversibility of quantum computing and the resulting
ability to “uncompute” a query.
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Proof. We first observe that, by (3) (which is Lemma 5.6 in [CFHL21]) and basic
properties of the quantum transition capacity as in (4),

�
⊥ q

=⇒ SUC ∪ CL
�

≤
q−1∑

s=0

�
SZ≤s\SUC\CL → SUC ∪ CL ∪ ¬SZ≤s+1

�

≤
q−1∑

s=0

(�
SZ≤s → ¬SZ≤s+1

�
+

�
SZ≤s\CL → CL

�
+

�
SZ≤s\SUC → SUC

�)
. (7)

The first term,
�
SZ≤s → ¬SZ≤s+1

�
, vanishes, while the second term was shown

to be bounded as
�
SZ≤s\CL → CL

�
≤ 2e

√
(s + 1)/|Y| ≤ 2e

√
q/2n (8)

in Example 5.28 in [CFHL21]. Thus, it remains to control the third term, which
we will do by means of Theorem 2.2 with P := SZ≤s \ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 2.3, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.
Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′

D|x . So, Theorem 2.2
instructs us to set L := PD|x , where we leave the dependency of L on D and
x implicit to simplify notation. Given that D ∈ SUC, we can consider inst and
y as promised by the definition of SUC in (6), i.e., such that V (inst, c,mc) and(
inst, E∗(inst,m)

)
�∈ R for

c := γ ◦ D(inst,y) and mi := D−1(yi) ,

where it is understood that m = (m1, . . . , m�). Recall that D(x) = ⊥; thus,
by definition of the mi’s, it must be that x �= mi for all i, and the fact that
V (inst, c,mc) is satisfied for c as defined implies that x �= (inst,y). Furthermore,

u ∈ L ⇐⇒ D[x �→u] ∈ P =⇒ D[x �→u] �∈ SUC =⇒ u ∈ {y1, . . . , y�} ,

where the last implication is easiest seen by contraposition: Assume that u �∈
{y1, . . . , y�}. Then, also recalling that x �= mi, we have that mi = D−1(yi) =
D[x �→ u]−1(yi). But also c = γ ◦ D(inst,y) = γ ◦ D[x �→ u](inst,y). Together,
this implies that the defining property of SUC is also satisfied for D[x �→u], i.e.,
D[x �→u] ∈ SUC, as was to be shown. Thus, we can bound

P [U ∈L] ≤ P [U ∈{y1, . . . , y�}] ≤ �

|Y| . (9)

Case 2: D �∈ SUC, and x is a “commit query”, i.e., x = m ∈ M. In particular,
⊥ �∈ P′|D|x (by the assumption that D(x) = ⊥) and so in light of Theorem 2.2
we may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x �→u] ∈ P′ = SUC =⇒ ∃ inst,y, i : D(inst,y) �= ⊥ ∧ u = yi . (10)
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The last implication can be seen as follows. By definition of SUC, the assump-
tion D[x �→ u] ∈ SUC implies the existence of inst and y = (y1, . . . , y�) with
V (inst, c,mc) and

(
inst, E∗(inst,m)

)
�∈ R for

c := γ ◦ D[x �→u](inst,y) = γ ◦ D(inst,y) and mi := D[x �→u]−1(yi) ,

where the equality in the definition of c exploits that x is not a “challenge”
query. With the goal to reach a contradiction, assume that u �= yi for all i. This
assumption implies that D[x �→ u](x) = u �= yi. But also D(x) = ⊥ �= yi, and
hence for all ξ ∈ X and i ∈ {1, . . . , �}: D(ξ) = yi ⇔ D[x �→u](ξ) = yi. Therefore,
mi = D[x �→ u]−1(yi) = D−1(yi) for all i, and the above then implies that
D ∈ SUC, a contradiction. Thus, there exists i for which u = yi; furthermore,
D(inst,y) �= ⊥ given that V (inst, u,mc) is satisfied for c = γ ◦ D(inst,y). This
shows the claimed implication. Thus, we can bound

P [U ∈L] ≤ P [∃ inst,y, i : D(inst,y) �= ⊥ ∧ u = yi] ≤ s�/|Y| ≤ q�/|Y| . (11)

Case 3: D �∈ SUC, and x is a “challenge query”, i.e., x = (inst,y) ∈ I × Y�. Set
m = (m1, . . . , m�) for mi := D−1(yi). Again, we have that ⊥ �∈ SUC|D|x = P′

D|x ,
and so by Theorem 2.2 we may set L := P′

D|x . Here, we can argue that

u ∈ L ⇐⇒ D[x �→u] ∈ P′ = SUC =⇒ V (inst, u,mγ(u))∧
(
inst, E∗(inst,m)

)
�∈ R ,

where the final implication can be seen as follows. By definition of SUC, the
assumption D[x �→ u] ∈ SUC implies the existence of inst′ and y′ = (y′

1, . . . , y
′
�)

with V (inst′, u,m′
c) and E∗(inst′,m′) �= w for

c := γ ◦ D[x �→u](inst′,y′) and m′
i := D[x �→u]−1(y′

i) = D−1(y′
i) ,

where the very last equality exploits that x is not a “commit” query. With the
goal to come to a contradiction, assume that (inst′,y′) �= (inst,y) = x. Then,
c = γ ◦ D[x �→ u](inst′,y′) = γ ◦ D(inst′,y′), and the above then implies that
D ∈ SUC, a contradiction. Thus, (inst′,y′) = (inst,y) = x. In particular, m′ = m
and c = γ ◦ D[x �→ u](inst′,y′) = γ ◦ D[x �→ u](x) = γ(u). Hence, the claimed
implication holds.

Thus, we can bound

P [U ∈L] ≤ P [V (inst, γ(U),mγ(U)) ∧ E∗(inst,m) �= w]
≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} �∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} �∈ S] ≤ max
S 	∈S

P [γ(U) ∈ S] ≤ pStriv . (12)

By Theorem 2.2, we now get
�
SZ≤s\SUC\CL → SUC

�
≤ max

x,D

√
10P

[
U ∈Lx,D

]

≤
√

10
√

max
(
�/|Y|, q�/|Y|, pStriv

)
≤

√
10

√
max

(
q� · 2−n, pStriv

)
,

where we have used Eqs. (9), (11) and (12) in the second inequality. Combining
with Eqs. (8) and (7) yields the desired bound. ��
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4.2 Online Extractability of the Fiat-Shamir Transformation

We are now ready to state and proof the claimed online-extractability result for
the FS transformation of (ordinary) C&O protocols.

Theorem 4.2. Let Π be a S-sound∗ ordinary C&O protocol with challenge
space Cλ and � = �(λ) commitments, and set κ = κ(λ) := maxc∈Cλ

|c|. Then,
FS[Π] is a PoK-OE in the QROM (as in Definition 3.1), with εsim(λ, q, n) = 0
and

εex(λ, q, n) ≤ 2(κ + 1) · 2−n +
(

2eq3/22−n/2 + q
√

10max
(
q� · 2−n, pStriv

)
)2

≤ (22� + 60)q32−n + 20q2pStriv .

The runtime of the extractor is dominated by running the compressed oracle,
which has complexity O(q2) · poly(n,B), and running E∗.

We note that the above bound on εex is asymptotically tight, except for the
factor �. Indeed, the binding property of the hash-based commitment can be
invalidated by means of a collision finding attack, which succeeds with probabil-
ity Ω(q3/2n). Furthermore the trivial soundness attack, which potentially applies
to a S-sound∗ C&O protocol Π, can be complemented with a Grover search,
yielding an attack against FS[Π] that succeeds with probability Ω(q2pStriv). The
non-tightness by a factor of � is very mild in most cases. In particular, the num-
ber of commitments � is polynomial in λ and thus in n. For the most common
case of a parallel repetition of a protocol with a constant number of commit-
ments, using a hash function with output length linear in λ (e.g. n = 3λ) results
in � = O(n) = O(λ).

Proof. We consider an arbitrary but fixed λ ∈ N. For simplicity, we assume that
|c| is the same for all c ∈ Cλ, and thus equal to κ = κ(λ). If it is not, we could
always make the prover output a couple of dummy outputs mi to match the
upper bound on |c|. Let P∗ be a dishonest prover that, after making q queries to
a RO H, outputs (inst, π) = (inst,y,m◦) plus some (possibly quantum) auxiliary
output Z. In the experiment VE ◦P∗E(λ), our extractor E works as follows while
simulating all queries to H (by P∗ and V) with the compressed oracle:

1. Run P∗(λ) to obtain (inst, π, Z) where π = (y,m◦) with m◦ = (m1, . . . , mκ).
2. Run V(λ, inst, π) to obtain v. In detail: obtain h0 := H(inst,y) and hj :=

H(mj) for j ∈ {1, . . . , κ}, and set v := accept if and only if the pair consisting
of x =

(
(inst,y),m1, . . . , mκ

)
and h = (h0, h1, . . . , hκ) satisfies the relation

R̃, defined to hold if and only if

(h1, . . . , hκ) = yc ∧ V (inst, c,m◦) where c := γ(h0) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗(inst,m) on input inst and m := D−1(y) to obtain w.
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Note that in the views of both P∗ and V, the interaction with H and the interac-
tion with E differ only in that their oracle queries are answered by a compressed
oracle instead of a real random-oracle in the latter case. This simulation is perfect
and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Lemma 2.4, the additional classical
oracle queries that V performs in V ◦ P∗ then match up with the algorithm Ã,
with h0, . . . , hκ here playing the role of y1, . . . , y� in Lemma 2.4. Thus,

Pr
[
h �= D(x)

]
≤ 2(κ(λ) + 1) · 2−n .

Therefore, we can bound the figure of merit εex as

εex(λ, q, n) = Pr
[
v = accept ∧ (inst, w) /∈ R

]

= Pr
[
(x,h) ∈ R̃ ∧ (inst, w) /∈ R

]

≤ Pr
[(
x,D(x)

)
∈ R̃ ∧ (inst, w) /∈ R

]
+ 2(κ(λ) + 1) · 2−n

≤ Pr[
(
x,D(x)

)
∈ R̃ ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL]

+ Pr[D ∈ SUC ∪ CL] + 2(κ(λ) + 1) · 2−n .

Using the definition of R̃, understanding that c := γ ◦ D(inst,y), we can write
the first term as

Pr
[
D(m◦) = yc ∧ V (λ, inst, c,m◦) ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL

]

≤ Pr
[
V (λ, inst, c,mc) for m := D−1(y) ∧ (inst, w) /∈ R |D �∈ SUC ∪ CL

]

≤ Pr
[
D ∈ SUC |D �∈ SUC ∪ CL

]
= 0 ,

where the first equality exploits that D(m) = y iff m = D−1(y) for D �∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ (2κ(λ) + 1) · 2−n + Pr
[
D ∈ SUC ∪ CL

]

≤ (2κ(λ) + 1) · 2−n +
�
⊥ q

=⇒ SUC ∪ CL
�2

,

using Eq. (1) in the last inequality. The bound now follows from Lemma 4.1. ��

5 Online Extractability of the FS-Transformation: The
Case of Merkle-tree-based C&O Protocols

For an ordinary C&O protocol with reasonable concrete security (e.g., 128 bits),
the number of commitments � might be considerable. In this case, the communi-
cation complexity of the protocol (and thus the size of the non-interactive proof
system, or digital-signature scheme, obtained via the FS transformation) can be
reduced by using a Merkle tree to collectively commit to the � strings mi. Such
a construction is mentioned in [Fis05], and it is used in the construction of the
digital-signature schemes Picnic2 and Picnic3 [KKW18,KZ20,CDG+19a]. The
Merkle-tree-based C&O mechanism shrinks the commitment information from
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� · n to n, at the expense of increasing the cost of opening |c| values mi by an
additive term of about � |c| · n · log �.

The cost of opening can, in fact, be slightly reduced again, by streamlining
the opening information. When opening several leaves of a Merkle tree, the
authentication paths overlap, so opening requires a number of hash values less
than h per leaf, where h is the height of the tree. This overlap was observed
and exploited in the octopus authentication algorithm which constitutes one of
the optimizations of the stateless hash-based signature scheme gravity-SPHINCS
[AE18], as well as in Picnic2 and Picnic3 [KZ20]. In the following section, we
formalize tree-based collective commitment schemes with “octopus” opening.

5.1 Merkle-Tree-Based C&O Protocols

In line with Remark 3.3, we can consider C&O protocols with a different choice of
commitment scheme, compared to the default choice of committing by element-
wise hashing. Here, we discuss a particular choice of an alternative commitment
scheme, which gives rise to more efficient C&O protocols in certain cases when �
is large. Informally, we consider C&O protocols where m1, . . . , m� is committed
to by using a Merkle tree, and individual mi’s are opened by announcing the
corresponding authentication paths.

To make this more formal, we introduce the following notation (see the full
version for a formal discussion, and see Fig. 1 for an example). For simplicity,
we assume that � is a power of 2. We write MTreeH(m) for the Merkle tree of
messages m = (m1, . . . , m�) computed using hash function H; more formally, the
(labels of the) vertices in the Merkle tree are recursively computed as lv(m) :=
H

(
lv‖0(m)‖lv‖1(m)

)
, with the leaves being the hashes of the mi’s. MRootH(m)

then denotes the root of the Merkle tree. Furthermore, for c ⊆ [�], we write
MAuthH(c,m) for the union of the authentication paths for all messages mi with
i ∈ c, and the octopus MOctoH(c,m) denotes all the vertices needed to compute
all the authentication paths in MAuthH(c,m), but excluding the hashes of the
actual messages mi with i ∈ c (see Fig. 1).

A Merkle-tree-based C&O protocol is now defined to be a variation of a C&O
protocol, as hinted at in Remark 3.3, where the first message of the protocol,
i.e., the commitment of m = (m1, . . . , m�), is computed as y = MRootH(m), and
the response z for challenge-set c then consists of the messages mc = (mi)i∈c

together with O = MOctoH(c,m). The verifier V then accepts if and only if
mc and O “hash down to” y and the predicate V (λ, inst, c,mc, a) is satisfied.
More formally, the former means that V computes MAuthH(c,m) from O ∪
{(lf(i),H(mi)) | i ∈ c} in the obvious way, and then checks whether l∅(m) = y.
This verification is denoted by OctoVerifyH(c, y,mc, O).

Looking ahead, we may also consider a variation where the verifier resamples
the challenge c if the resulting octopus is bigger than a given bound. Formally,
this means that the challenge space of the Merkle-tree-based C&O protocol is
restricted to those challenges c ∈ [�] for which Octo(c) is not too large.



752 J. Don et al.

y

H(m2) H(m3)H(m1) H(m4) H(m5) H(m6) H(m7) H(m8)

Fig. 1. The Merkle tree MTreeH(m) for m = (m1, . . . , m8) with MRootH(m) = y. The
yellow vertices mark the octopus MOctoH({1},m), which is revealed (along with m1)
when opening the commitment y to m1. (Color figure online)

5.2 Online Extractability of the Fiat-Shamir Transformation

The analysis in Sect. 4 can be generalized to the case of FS-transformed Merkle-
tree-based C&O protocols. To that end, we generalize the notation from that
section as follows. Let Π be a Merkle-tree-based C&O protocol with number
of messages to be committed equal to � = 2h where h is the height of the
commitment Merkle tree.12

For a given database D ∈ D, recall from Sect. 4 the definition of D−1; applied
to a tuple y = (y1, . . . , y�) ∈ Y� of commitments, D−1 attempts to recover
the corresponding committed messages m1, . . . , m�. Here, in a similar spirit but
now considering the Merkle-tree commitment, MRoot−1

D attempts to recover the
committed messages from the root label of the Merkle tree.

In more detail, for a commitment y ∈ Y = {0, 1}n we reverse engineer the
Merkle tree in the obvious way; namely, accepting a small clash in notation with
the labeling function lv(m) defined for a tuple m ∈ M�, we set the root label
l∅(y) := y, and recursively define

(
lv‖0(y), lv‖1(y)

)
:= split ◦ D−1

(
lv(y)

)
∈ Y × Y

for ∅ �= v ∈ {0, 1}≤h, where split maps any 2n-bit string, parsed as y1‖y2 with
y1, y2 ∈ {0, 1}n, to the pair (y1, y2) of n-bit strings, while it maps anything else
to (⊥,⊥). Then, accepting a small clash in notation again, we set

MTreeD(y) := {lv(y) | v ∈ {0, 1}≤h} ,

and finally, with lf(i) denoting the i-th leaf in the tree,

MRoot−1
D (y) :=

(
D−1

(
llf(1)(y)

)
, . . . , D−1

(
llf(�)(y)

))
.

12 As in the previous section we assume that � is a power of 2 for ease of exposition.
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Following the strategy we used in Sect. 4, we define the database property

SUC :=
{

D

∣
∣
∣
∣

∃ y ∈ Y and inst ∈ I so that m := MRoot−1
D (y) satisfies

V (inst, c,mc) for c := γ ◦ D(inst, y) and
(
inst, E∗(inst,m)

)
�∈ R

}

,

and our first goal is to show that
�
⊥ q

=⇒ SUC ∪ CL
�

is small.

Lemma 5.1.
�
⊥ q

=⇒ SUC∪CL
�

≤ 2eq3/22−n/2 + q
√

10max
(
q� · 2−n+1, pStriv

)
.

The proof works exactly as the proof of Lemma 4.1, accounting for some
syntactic differences due to the Merkle tree commitment. In particular, where in
Case 1 and 2 of the proof of Lemma 4.1 we have to exclude U from falling on one
of the hash values y1, . . . , y� in order to keep the m that was constructed from
the database intact, we now have a similar restriction for U , but with respect to
the whole tree MTreeD(y). The full proof can be found in the full version.

Similarly to Theorem 4.2, we now obtain the following.

Theorem 5.2. Let Π be an S-sound∗ Merkle-tree-based C&O protocol with
challenge space Cλ. Then FS[Π] is a PoK-OE in the QROM (as in Definition
3.1), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ log � + 1) · 2−n+
(
2eq3/22−n/2+ q

√
10 max

(
q� · 2−n+1, pS

triv

))2

≤ (22� log � + 60) q32−n + 20q2pS
triv

where κ = κ(λ) := maxc∈Cλ
|c| and � is the number of leaves of the Merkle-tree-

based commitment. The running time of the extractor is dominated by running
the compressed oracle, which has complexity O(q2)·poly(n,B), and by computing
MRoot−1

D (y) and running E∗.

Here again the proof follows exactly the outline of its counterpart from Sect. 4.2,
with some minor alterations to cope with the formalism of a Merkle-tree based
C&O Σ-protocol. The difference in the bound is simply due to the difference
between Lemmas 4.1 and 5.1. We refer to the full version for the full proof.

5.3 Discussion: Application to Picnic, and Limiting the Proof Size

Application to Picnic. A prominent use case of C&O protocols is the con-
struction of digital signature schemes via the FS transformation. An impor-
tant example is Picnic [CDG+17] currently under consideration as an alternate
candidate in the NIST standardization process for post-quantum cryptographic
schemes [NIS]. On a high level, the design of Picnic can be described as fol-
lows. A C&O Σ-protocol is constructed using the MPC-in-the-head paradigm
[IKOS07]. Then, the FS transformation is applied in the usual way to obtain a
digital signature scheme. There are three evolutions of Picnic: Picnic-FS, Picnic
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2 and Picnic 3.13 Picnic-FS uses plain hash-based commitments, while Picnic 2
and Picnic 3 use a Merkle-tree-based collective commitment.

All three evolutions enjoy provable post-quantum security when the hash
function used for the FS transformation is modeled as a (quantum-accessible)
RO. The best reduction applying to all of them proceeds as follows. First,
Unruh’s rewinding lemma [Unr12] is used to construct a knowledge extractor for
the underlying Σ-protocol based on an appropriate S-soundness notion. Then,
the generic QROM reduction for the FS transformation from [DFMS19] is used
to construct a knowledge extractor for the signature scheme in the QROM from
the extractor for the Σ-protocol. Finally, the technique from [GHHM21] is used
for simulating the chosen-message oracle to reduce breaking NMA (no-message
attack) security to breaking CMA (chosen-message attack) security. This final
step connects to the previous one because for the signature scheme the witness
extracted from an NMA attacker is the secret key.

The first two steps, i.e. Unruh’s rewinding and [DFMS19], are not tight: The
former loses at least a fifth power in the Picnic case, and the latter a factor of q2,
where q is the number of RO queries. This means that an NMA attacker with
success probability ε can be used to break the underlying hard problem with
probability Ω(ε5/q10) (or worse, depending on the Picnic variant).

For Picnic-FS (only), when in addition modeling the hash function used for
the commitments as a RO, Unruh’s rewinding can be replaced with tight online
extraction from [DFMS21]. The remaining loss due to the FS reduction is of
order ε/q2, up to some additive terms accounting for search and collision finding
in the RO, a sizable improvement over the above but still not tight.

By analyzing the FS transformation of a C&O protocol (with or without
Merkle tree commitments) directly, our results provide a tight alternative to the
above lossy reductions. Using Theorems 4.2 (for Picnic-FS) and 5.2 (for Picnic
2 and Picnic 3) we can avoid all multiplicative/power losses in the reduction for
NMA security. An NMA attacker with success probability ε can thus be used
to break the underlying hard problem with probability Ω(ε), up to unavoidable
additive terms due to search and collision finding in the RO.

An Observation About Octopus Opening Sizes. Depending on the param-
eters of the C&O protocol, the octopus opening information, MOcto(c,m) can
be much smaller than the concatenation of the individual authentication paths.
On the other hand, it is also variable in size (namely dependent on the choice of
the challenge c), and the variance can be significant (see e.g. the computations
for gravity SPHINCS in [AE18]). In the context of a digital signature scheme
constructed via the FS transformation of a Merkle-tree-based C&O protocol,
like, e.g., Picnic 2 and Picnic 3, this leads to the undesirable property of a vari-
able signature size, where signatures can be quite a bit larger in the worst case
than on average. This might, e.g., lead to problems when looking for a drop-in
replacement for quantum-broken digital signature schemes for use in a larger
protocol, where signatures need to be stored in a data field of fixed size.
13 There is also a version using the Unruh transformation.
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One option to mitigate this situation is to cut off the tail of the octopus size
distribution, i.e. to restrict the challenge space of the Merkle-tree-based C&O
protocol to challenges whose octopus is not larger than some bound. This can
be done before applying the FS transformation, e.g. using rejection sampling.
In that way, one obtains a digital signature scheme with significantly reduced
worst case signature size, at the expense of a tiny security loss.
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Abstract. Aggregate signatures (Boneh, Gentry, Lynn, Shacham, Euro-
crypt 2003) enable compressing a set of N signatures on N different
messages into a short aggregate signature. This reduces the space com-
plexity of storing the signatures from linear in N to a fixed constant
(that depends only on the security parameter). However, verifying the
aggregate signature requires access to all N messages, resulting in the
complexity of verification being at least Ω(N).

In this work, we introduce the notion of locally verifiable aggregate
signatures that enable efficient verification: given a short aggregate sig-
nature σ (corresponding to a set M of N messages), the verifier can check
whether a particular message m is in the set, in time independent of N .
Verification does not require knowledge of the entire set M. We demon-
strate many natural applications of locally verifiable aggregate signature
schemes: in the context of certificate transparency logs; in blockchains;
and for redacting signatures, even when all the original signatures are
produced by a single user.

We provide two constructions of single-signer locally verifiable aggre-
gate signatures, the first based on the RSA assumption and the second
on the bilinear Diffie-Hellman inversion assumption, both in the random
oracle model.

As an additional contribution, we introduce the notion of compress-
ing cryptographic keys in identity-based encryption (IBE) schemes, show
applications of this notion, and construct an IBE scheme where the secret
keys for N identities can be compressed into a single aggregate key, which
can then be used to decrypt ciphertexts sent to any of the N identities.

1 Introduction

The notion of aggregate signatures, introduced by Boneh, Gentry, Lynn, and
Shacham [BGLS03a], enables the compression of several signatures σi of mes-
sages mi with respect to public keys vki, into a single, short signature σ̂ which
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authenticates the entire tuple of messages with respect to the tuple of public
keys. While the original motivation for aggregate signatures was the compres-
sion of certificate chains and the aggregation of signatures in secure BGP, the
notion has found a great deal of practical interest recently in the context of
blockchains [Gor18].

While the aggregate signatures are short, verifying them requires access to
all the messages. In many practical scenarios, as we describe below, the verifier
is merely interested in checking if σ̂ is an aggregated signature of some set that
contains a particular message m. It may be infeasible or undesirable to download
the entire list of messages, and perform a verification computation whose runtime
scales with the number of messages N . This leads us to the central question that
motivates this work: Can we construct locally verifiable aggregate signatures?

Locality in access and computation is a central theme in computer science, in
areas ranging from coding theory [Yek12] to proof systems [Sud09] to sub-linear
algorithms [Gol17]. Thus, the question of local verifiability is both practically
motivated, and also conceptually very natural.

1.1 Locally Verifiable Aggregate Signatures

Our first contribution is a definition of the notion of locally verifiable aggregate
signatures, which turns out to require some care.

A natural formalization asks for two algorithms: an aggregation algorithm
Aggregate, that takes a set of tuples {(mi, vki, σi)}N

i=1 and produces a short
aggregate signature σ̂ of size, say, poly(λ) bits and a local verification algo-
rithm LocalAggVerify, that takes the aggregate signature σ̂, a public key vk, and
a message m, and outputs accept or reject. It seems natural to require that
LocalAggVerify runs in time independent of N , and accepts (m, vk, σ̂) if and only
if (m, vk) ∈ {(mi, vki)}N

i=1.
It is not hard to see that this notion is impossible to achieve, even in the single-

signer setting where all signatures are produced w.r.t. a single public key vk, due
to a simple incompressibility argument. Indeed, such a pair of algorithms can
be used to recover all the messages given just the aggregate signature, violating
incompressibility. In more detail, assume that the messages are of the form (i, bi)
where bi ∈ {0, 1} is a bit. To recover all the bits bi given σ̂, one simply runs the
LocalAggVerify algorithm with both (i, 0) and (i, 1) for every i.

In this work, we define the notion of locally verifiable aggregate signatures,
overcoming the above incompressibility barrier. We focus on the single-signer
setting, and show several applications of our notion.

Our Definition. To circumvent the incompressibility barrier, we include a hint
generation algorithm LocalOpen that computes a short hint to aid local ver-
ification. Formally, in addition to the key generation, signing, and verification
algorithms, a locally verifiable aggregate signature scheme consists of three addi-
tional algorithms. For the sake of concreteness, the reader should imagine three
types of parties: signers who run KeyGen and Sign, storage servers (or aggre-
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gators) who run Aggregate and LocalOpen, and verifiers who run Verify and
LocalAggVerify.

Aggregate is the (single-signer) signature aggregation algorithm which takes as
input a sequence of pairs (mi, σi) under a public key vk and produces an
aggregate signature σ̂;

LocalOpen is the hint generator (also called the opening algorithm) that takes as
input the aggregate signature σ̂ and the set of messages m = {mi}N

i=1, and a
target message m ∈ m, and produces a short hint h;
(crucially, LocalOpen does not have access to the original signatures σi as they
have been forgotten at this point).

LocalAggVerify is the local verification algorithm that verifies the aggregate sig-
nature σ̂ and the short hint h for a message m.
(importantly, the run-time of LocalAggVerify is independent of N).

The first thing to note is that our formalization circumvents the incompressibility
barrier as local verification uses a message-dependent hint, and the hint gener-
ation depends on the set of all messages m (and not just the target message).
Secondly, we will shortly describe how our definition fits into several practical
applications of aggregate signatures.

For security, we propose an enhanced unforgeability property which protects
from both a malicious aggregator and a malicious hint generator. It is defined
against an adversary who obtains signatures for a set m and tries to produce a
“fake” aggregate signature and a “fake” hint that makes the aggregate verifier
accept a message m /∈ m. For more details, we refer the reader to Sect. 3.1.

How to Use Locally Verifiable Aggregate Signatures in Applications.
Local verifiability is an extremely desirable feature as it leads to many applica-
tions in certificate transparency logs and blockchains, generic implications to sig-
nature redactability, and provides a robust time-space tradeoff that can smoothly
interpolate between aggregate signatures and plain signatures.

Certificate Transparency Logs. Certificate transparency (CT) [BLK13] is
an internet security standard that creates public logs which record all certifi-
cates issued by certificate authorities (CAs). The log is audited periodically to
identify mistakenly or maliciously issued certificates. A user’s browser receives
a certificate σ from a website, say on the message (domain-name,IP), and
checks whether the entry exists in the CT log before proceeding to accept the
connection. (This simplified description is sufficient for our purposes; how-
ever, for more details on how CT logs work, we refer the reader to [CTg]).

Aggregate signatures can ease the burden of storage on the CT log. Without
aggregate signatures, the CT log has to store all the signatures (certificates)
explicitly. With aggregate signatures, the CT log can store a short aggregate
signature together with an arbitrary compressed data structure that compactly
stores the list of messages (namely, domain names and IP addresses). How-
ever, even if the user’s browser stores or downloads an aggregate signature, the
only way to verify whether a particular entry exists in the log is to download
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all entries. Locally verifiable aggregate signatures allow the CT log to com-
press the certificates into a short aggregate signature while allowing the user
to verify the existence of an entry by downloading just a few additional kilo-
bytes (in the form of a short hint) and performing a fast computation (using the
LocalAggVerify algorithm). Furthermore, our enhanced unforgeability property
guarantees that this is secure against even a malicious CT log who may try to
convince the user that a message m ∈ m when it isn’t.

We note that even single-signer locally verifiable aggregate signatures are a
meaningful solution in this scenario given that the certificate authorities num-
ber in the hundreds while the certificates generated number in the billions. The
hints need not be explicitly stored, and can be computed on-the-fly by the CT
log enabling natural forms of space-time tradeoffs and caching mechanisms (for
the hints) for frequently accessed websites. Jumping ahead, we note that one
of our constructions (in particular, the RSA-based construction) has the sur-
prising additional feature of being able to reconstruct the original signature of
any particular message m ∈ m given only the aggregate signature and the set
of messages m—this could come in handy during the auditing of the CT log.

Blockchains. Another application scenario arises in the context of blockchains
where a user or an organization wants to aggregate the signatures on the
set of all transactions originating from a single payer, and later wishes to
quickly and with little communication convince a third party (e.g. an audi-
tor) of the existence of a particular transaction. Again, the above problem
can be elegantly solved by using locally verifiable aggregate signatures as the
user/organization can compute the short hint to prove the existence of the
appropriate transaction.

We note that local verification implicitly provides a useful privacy fea-
ture. The user/organization can prove knowledge of a single transaction with-
out revealing the remaining transactions. This follows from the succinctness
requirements, as neither the aggregate signature nor the hint grow with the
number of transactions; thus, the signature and the hint jointly cannot leak
too much information about the other transactions. In addition, some of our
constructions satisfy properties such as dynamic aggregation which could be
very useful in this scenario.

Time-Space Tradeoffs from Local Verifiability. Consider a server that
stores a collection of N messages {mi}N

i=1 along with signatures {σi}N
i=1, and

several possible clients who wish to download single messages and check that
they indeed belong to the collection. While this can be solved by using vanilla
signatures, the server must dedicate large space for storing all N signatures.
Traditional aggregate signatures can handle the server space issue, but they
incur (huge) linear runtime cost for each individual client. As summarized
in Table 1, the run-time for individual clients can be lowered to O(1) by using
locally verifiable aggregate signatures.

We can also obtain a smooth time-space tradeoff that interpolates between
locally verifiable aggregate signatures and vanilla signatures. For example, the
server could split the collection of N messages into blocks of length L and
aggregate each block of L signatures, reducing the server run-time to O(L) at
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Table 1. Time-Space Tradeoffs with Locally Verifiable (L.V.) Aggregate Signatures.

Type of Signatures
Server space

(for signatures)
Server
time

Per-client space
(for signatures)

Per-client
time

Vanilla Signatures O(N) O(1) O(1) O(1)

Aggregate Signatures O(1) O(1) O(1) O(N)

L.V. Aggregate O(1) O(N) O(1) O(1)

Hybrid (with L2 batch
and L1L2 block size)

O

(
N

L1L2

)
O(L1) O(1) O(L2)

the cost of increasing the server storage to O(N/L). This mechanism can be
further generalized to obtain a three-way time-space tradeoff that interpolates
between vanilla signatures, aggregate signatures, and locally verifiable aggre-
gate signatures. In this hybrid mode of local verification, the signer signs
blocks of L2 messages by hashing the block first and then signing it. The
server stores N messages by splitting them into N/(L1L2) super-blocks, each
of which contains L1 blocks, where each block, in turn, contains L2 messages
(as above). The server aggregates the L1 (locally verifiable aggregate) sig-
natures in each super-block and stores them. The server thus stores N/L1L2

signatures. To access a message, the client retrieves an entire block containing
the message, spending O(L2) time. To answer the client query, the server runs
in time O(L1) to generate the hint corresponding to the hash of the block
queried by the client. In short, the new notion of local verification provides a
robust time-space tradeoff for the parties involved.

Given that most data in the real world is compressible, locally verifiable
aggregate signatures give the server the ability to fully leverage compression
and reduce the total storage (including the messages) and communication to
sublinear in N . This is possible neither with vanilla signatures (where one can-
not compress the signatures) nor with regular aggregate signatures (where a
client cannot avoid downloading all messages). Although the hint generation
is expensive, it is done once by the (potentially untrusted) server as opposed
to imposing a heavy verification cost per client as in regular aggregate signa-
tures. Furthermore, the hints for the most frequently accessed messages can
be cached for better performance. In a nutshell, locally verifiable aggregate
signatures open up a rich space of tradeoffs in storage, communication and
verification of signatures.

Redactable Signatures. Redactable signature schemes [JMSW02,SBZ01]
allow a signature holder to publicly censor parts of a signed document such
that the corresponding signature σ can be efficiently updated without the
secret signing key, and the updated signature can still be verified given only
the redacted document. These signatures have many real-world applications
in privacy-preserving authentication as they can be used to sanitize digital
signatures. (See [DPSS15,DKS16] for a detailed overview).

Locally verifiable aggregate signatures provide a fresh approach to
redactability and sanitization. Briefly, using a locally verifiable aggregate sig-
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nature, we can sign the large sensitive document in three steps: first, split the
document into small message blocks; second, sign the message blocks individ-
ually, together with their index; and third, aggregate these individual signa-
tures and output the aggregated signature as the final signature for the full
document. To verify the full (unredacted) document, one could use the regular
verification algorithm that takes the entire document as input. For redaction,
the redacting party can generate short hints for each of the unredacted por-
tions of the document, and include these as part of the redacted signature.
Note that the redacted signature can be verified by running local verification.
At a very informal level, since the redacted signature is shorter than the total
number of message blocks, this seems to guarantee some form of privacy.

While this general outline is problematic for several reasons: first, the
redacted signatures are long; and secondly, the above argument does not
guarantee true privacy, namely that the signature on the redacted document
does not reveal any information about the redacted messages. However, it
turns out that our RSA-based construction and a slight modification of our
pairing-based construction give a complete solution to the problem, ensuring
privacy of the original (unredacted) message, enabling multi-hop redaction
as well as constant-size redacted signatures, improving on the construction in
[JMSW02]. We refer the reader to Sect. 2 for more details.

1.2 Locally Verifiable Aggregate Signatures: Our Results

Our main result constructs a single-signer locally verifiable aggregate signature
scheme secure under the strong RSA assumption [BP97].

Theorem 1.1 (Informal). Assuming strong RSA, there is a locally verifiable
aggregate signature scheme. In the random oracle model, it is fully secure; and
in the standard model, it is statically secure.

Our second result shows a weaker scheme under the bilinear Diffie-Hellman
inversion (BDHI) assumption [MSK02,BB04a,BB04b]. The scheme requires a
long common reference string (CRS) of size equal to the number of aggregated
messages. The verifier, however, only needs access to a fixed constant size portion
of the CRS and is, therefore, still efficient.

Theorem 1.2 (Informal). Under the BDHI assumption, there is a locally ver-
ifiable aggregate signature scheme in the long CRS model. With random oracles,
the scheme is fully secure; and in the standard model, it is statically secure.

Finally, we show an initial feasibility result for a multi-signer locally verifi-
able aggregate signatures using the machinery of succinct non-interactive argu-
ments of knowledge (SNARKs). We note that single-signer aggregate signature
schemes, without locality, have several (folklore) instantiations based on the RSA
assumption, the SIS assumption, and so on. This is in contrast to the multi-signer
setting where bilinear maps seem to dominate. Our work generalizes single-signer
aggregate signatures in a different direction, requiring locality, and exposing a
new, challenging, and practically motivated facet of the problem.
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1.3 Compressing Cryptographic Keys

As an independently interesting contribution, we introduce a novel generaliza-
tion of signature aggregation to the setting of compressing the keys in identity-
based and, more generally, attribute-based encryption schemes (IBE, ABE). This
enables the decryption key holders to compress multiple keys into a short key
such that the aggregated key can be used to decrypt all ciphertexts that any
of individual (unaggregated) decryption keys are authorized to decrypt. Since
one of the main motivations behind designing advanced encryption systems is
to have the ability to generate separate keys for different users, thus it might
feel counterintuitive to study compression of keys. However, there are two main
reasons to study aggregation in encryption systems.

First, this immediately can be used to reduce storage space in many sim-
ple applications. For example, consider the classical application of using IBE to
delegate access over time. In particular, there is a user who has an IBE master
secret key msk, and generates temporary keys skdate for other devices (such as
mobile phones) that are more easily stolen. The messages encrypted are tagged
with different dates, so the temporary keys can decrypt only the corresponding
ciphertexts. Aggregatable IBE allows to compress any subset of these temporary
keys into one short key that can decrypt ciphertexts encrypted to any of under-
lying dates. While one could use heavyweight tools (such as ABE) to solve this
problem, our observation is that IBE constructions with such great aggregation
properties can lead to a simpler and relatively lightweight solution. This directly
leads to the second (and broader) reason for studying aggregatable encryption
systems which is that they can enable simpler solutions to problems that other-
wise needed more advanced objects. We also provide a simple construction for
an aggregatable IBE scheme from the BDHI assumption.

Theorem 1.3 (Informal). Under the BDHI assumption, there is an aggregat-
able IBE scheme in the random oracle model.

1.4 Other Related Work

The concept of aggregate signatures was first put forth by Boneh, Gentry, Lynn,
and Shacham [BGLS03a] to allow a third party to compress an arbitrary group of
signatures into a short aggregated signature that jointly authenticates all the com-
pressed signatures. Aggregate signatures are related to, but significantly differ-
ent from, multisignatures [IN83,Oka88,OO99,MOR01,Bol03] which were intro-
duced in 1983 [IN83], but received a formal treatment much later by Ohta and
Okamoto [Oka88,OO99] and Micali, Ohta, and Reyzin [MOR01]. They differ in
terms of functionality and applications since in multisignatures, a set of users all
sign the same message and the result is a single signature; while aggregate signa-
tures are used to compress a group of signatures, where each signature might be
signing a distinct message. In addition to the differing functionalities, multisig-
natures can have the group of signers or verifiers cooperate interactively, while
aggregate signatures are more commonly studied in non-interactive settings.
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Variants of aggregate signatures have been studied in the sequen-
tial [LMRS04] and synchronized [GR06] settings. In the sequential mode of
aggregation, the signers are required to interact either by signing in a sequential
chain; while in the synchronized setting, the signing algorithm takes as input a
(time) period t, and the security of the scheme is conditioned on a signer signing
at most once for each period t.

Numerous works have constructed (single- and multi-signer) aggregate sig-
natures from pairing based assumptions [BGLS03a,BGLS03b,Bol03,GR06,
LOS+06,BNN07,BGOY07,MT07,RS09,AGH10], factoring based assumptions
[LMRS04,BN07,Nev08,BJ10,FLS12,LLY13a,LLY13b,BGR14,BMP16,HW18],
and multilinear maps (and obfuscation) [FHPS13,HSW13,HKW15].

Another concept, loosely related to the notion of single-signer aggregate sig-
natures, is that of batch verification which has been very well studied since the
foundational work of Fiat [Fia89]. The main motivation behind batch verifi-
cation of signatures (generated by a single signer) is to improve the concrete
performance of the verifier checking a large sequence of messages. Thus, batch
verification of signatures is not designed to produce a shorter aggregated signa-
ture which is our main goal.

2 Technical Overview

In this technical overview, we describe our RSA-based construction of locally ver-
ifiable aggregate signature in detail (proving Theorem 1.1), and briefly describe
our pairing-based construction which uses similar high-level ideas but different
algebraic tricks. At the end of the technical overview, we also discuss a SNARK-
based construction of multi-signer locally verifiable aggregate signatures.

RSA-Based Locally Verifiable Aggregate Signature. Our starting point is
the classical RSA-based single-signer1 aggregate signature scheme where the sig-
nature of a message m with respect to an RSA public key (N, e) is σ = H(m)d

(mod N), where ed = 1 (mod ϕ(N)) and H is a hash function modeled as
a random oracle in the security analysis. Given L message-signature pairs
{(mi, σi)}L

i=1, the aggregate signature is simply their product σ̂ =
∏L

i=1 σi

(mod N). Verification proceeds by checking that

σ̂e =
L

∏

i=1

H(mi) (mod N).

Unfortunately, it is completely unclear how to “locally” verify a single message
mi given σ̂ and some hint hi related to the message vector m. Concretely, deduc-
ing how to even define the message-dependent hint is unclear. One may attempt

1 Incidentally, we mention that the problem of constructing a multi-signer aggregate
signature scheme from RSA has been a long-standing open problem, although con-
structions of relaxed variants such as sequential or synchronized (multi-signer) aggre-
gate signature schemes based on RSA exist [LMRS04,HW18].
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to define the hint hi to be the product of all hash values H(mj) for j �= i, and let
the local verifier check that σ̂e = hi ·H(mi). However, a malicious hint generator
can easily fool the verifier: the hint is adversarially generated and the verifier
has no mechanism to check that the hint is well-formed without recomputing
it which, in turn, seems to require the verifier to know all the underlying mes-
sages, in direct conflict with the requirement of local verification. In a nutshell,
the accumulator-style aggregation and the presence of a random oracle seems to
make local verification challenging.

To avoid this issue, we look at other RSA-based signature schemes [GMR88,
DN94,CD96,GHR99,CS00,Fis03] for adding local verifiability. While this seems
like a plausible approach, it quickly gets stuck at a much earlier point. Namely,
for all these schemes, the notion of single-signer aggregation has not even been
studied (to the best of our knowledge). A closer inspection shows that, unlike
the classical RSA-based signature scheme, most of these schemes do not support
aggregation. A notable exception is the Gennaro, Halevi, and Rabin [GHR99]
scheme which works as follows. Suppose H is a collision-resistant function that
maps messages into large (λ-bit) prime numbers. The signature of a message m
is σ = g1/H(m) (mod N) where g ∈ Z

∗
N is random and (N, g) is in the public

key. Letting emi
denote H(mi) and σi = g1/emi (mod N) denote the signature

of mi, the aggregation algorithm can simply compute σ̂ =
∏

i σi (mod N) as
the aggregated signature. Regular (non-local) verification can be performed by
the following equation:

(σ̂)
∏

i emi
?=

∏

i

g
∏

j �=i emj (mod N).

A correctly generated aggregate signature passes the check because

(σ̂)
∏

i emi =

(

∏

i

σi

)

∏
i emi

=
∏

i

g
∏

j �=i emj (mod N). (1)

We now show that the aggregate signatures σ̂ can also be locally verified w.r.t a
message mj ∈ m (the latter being the set of all messages whose signatures have
been aggregated into σ̂) without knowing m but given only a short verification
hint that depends on m and σ̂. Our first idea is to generate the following two
whole numbers as the hint:

em\mj
=

∏

i�=j

emi
, fj =

∑

i�=j

∏

k/∈{i,j}
emk

.

Our key observation is the following equation (which is exactly the same as Eq. 1
except it uses a different exponent for σ̂)

(σ̂)em\mj = gfj · gem\mj
/emj (mod N). (2)

This can be translated into the following verification equation:
(

(σ̂)em\mj /gfj
)emj ?= gem\mj (mod N). (3)
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Since emj
can be computed from just the target message mj , releasing em\mj

and fj as the hint enables local verification of the aggregate signature σ̂ via
the above equation. It can also be proven secure in the presence of malicious
hint generators as long as the local verification algorithm also checks that the
numbers em\mj

and emj
are co-prime (that is, gcd(em\mj

, emj
) = 1).)

At a first glance, the above scheme seems to solve the problem of locally
verifiable single-signer aggregate signatures from RSA; however, unfortunately,
this is not the case. The hints em\mj

and fj have to be computed modulo
φ(N), but the hint generator does not (and must not) know φ(N). The only
way out seems to be to compute them over the integers which again does not
work as they could be large O(L)-bit numbers, which is decidedly not short.
These together seem like an unfortunate limitation to obtaining local verifiability.
Luckily, this conundrum can be resolved in a rather simple, yet elegant, way using
the surprising power of Shamir’s trick [Sha84].

Our central observation is that the hint generator can completely re-compute
the (unique) signature of every message in the set, starting from just the aggre-
gate signature σ̂. In more detail, the hint generator first computes

zj := (σ̂)em\mj /gfj := gem\mj
/emj (mod N).

Note that em\mj
and emj

are co-prime, thus there exist efficiently computable
integers α and β such that α · em\mj

+ β · emj
= 1. The hint generator next

re-computes the signature g1/emj of mj as

g1/emj = g(α·em\mj
+β·emj

)/emj = (gem\mj
/emj )α · gβ = zα

j · gβ (mod N).

It then outputs g1/emj as the hint, and the local verification algorithm simply
checks it by running the plain (non-aggregated) verification algorithm interpret-
ing the hint as a signature on the message mj . (In fact, the local verification
algorithm is independent of the aggregated signature σ̂, and only needs the hint
for verification. A detailed discussion is provided in Sect. 4.2).

This summarizes our RSA-based locally verifiable aggregate signature
scheme, and the final remaining detail is to figure out how the function H is
selected. To that end, we present two choices—the first is to let H employ a
prime sequence generator based on a random oracle, which gives us a scheme
that is fully secure in the random oracle model; and the second is to employ
a technique similar to Micali, Rabin, and Vadhan [MRV99] (who used a t-wise
independent hash function, but we use PRFs; see Sect. 4.1 for more details) to
instantiate the scheme in the standard model. We point out that we could prove
our standard model instantiation to be statically secure (in the sense that the
adversary must query all messages before it sees the verification key). We leave
the problem of constructing a fully secure scheme without random oracles as an
interesting open problem.

In addition to the surprising (in our mind) property of allowing exact re-
computation of individual signatures from aggregate signatures, our RSA-based
scheme satisfies several additional properties such as support for multi-hop aggre-
gation as well as unordered sequential aggregation. We also point out that the
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aforementioned exact re-computation property of our aggregate signatures is
very useful for obtaining a redactable signature scheme which has constant-size
redacted as well as unredacted signatures. In a nutshell, the redaction algorithm
can first compute the individual signatures of all message blocks whose signature
it wants to release, and can aggregate them again to create a shorter signature.

Pairing-Based Locally Verifiable Aggregation. Our pairing-based signa-
ture scheme relies on similar core ideas, but very different details due to differing
algebraic structures.

Our starting point is to translate the above process of RSA-based signature
generation to bilinear maps as follows. Recall the signature of a message m is
computed as σ = g1/H(m), where H is a collision-resistant function that maps
messages into large prime numbers and the inverse in the exponent, 1/H(m),
is computed using the factorization of the RSA modulus. To port this over to
bilinear maps, we substitute H(m) with α + m, where α is a secret exponent
from the master key. Basically, the signature is set as σ = g1/(α+m), where g is
a random public source group generator. The signature verification performs a
bilinear pairing to check that e(σ, gαgm) = e(g, g), where gα is part of the public
key as well.

Coincidentally, this is exactly the weakly secure short signature scheme of
Boneh and Boyen (BB) [BB04b, §4.3], and can be visualized as a bilinear analog
of the RSA-based Gennaro-Halevi-Rabin scheme. Unfortunately, the BB scheme
is also not known to be aggregatable, and while there exist pairing-based (multi-
signer) aggregate signature schemes [BGLS03a], they are algebraically similar to
the classical RSA-based schemes, thus do not appear to support local verifiability.

Our first main observation is that the BB scheme can actually be shown to
be a single-signer aggregatable scheme. Although the signature aggregation is
not as simple as multiplying the signatures (as in the RSA setting), we observe
that, by Lagrange’s inverse polynomial interpolation technique, we can aggregate
a sequence of signatures σi = g1/(α+mi) into σ̂ = g

∏
i 1/(α+mi). Simply put,

Lagrange’s inverse polynomial interpolation allows the following computation
without the knowledge of the secret exponent α:

L
∏

i=1

1
α + mi

=
γ1

α + m1
+ · · · +

γL

α + mL
,

where the coefficients γi can be publicly computed given only the sequence of
messages {mi}L

i=1. Thus, the aggregate signature σ̂ can be computed as

σ̂ =
L

∏

i=1

σγi

i .

In a different context of attribute-based encryption (ABE), this idea was used by
Delerablée, Paillier, and Pointcheval [DPP07,DP08], except that they employed
Newton’s iterative algorithm instead of Lagrange’s technique. More details about
aggregating the group elements is provided in detail later in Sect. 5.
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Note that while the above allows aggregation of signatures, for regular (non-
local) verification, the verifier requires higher degree monomials of the secret
exponent α. Concretely, the aggregate verifier symbolically evaluates the poly-
nomial

∏L
i=1(X + mi) to simplify it as

∑L
i=0 δiX

i, and using bilinear maps it
can verify the aggregate signature as e(σ̂,

∏

i(g
αi

)δi) = e(g, g), but this needs the
monomials gαi

as part of the public key. This is precisely why our pairing-based
scheme requires a long CRS/public key.

Unlike the [BGLS03a] aggregate signature scheme, we can show that this
scheme is locally verifiable. Our main observation here is that the non-local
verification algorithm works in two phases. First, it pre-processes the public key,
given only the set of messages, to compute

∏

i(g
αi

)δi = g
∏

i(α+mi) in the source
group; second, it uses the bilinear map to pair this with the aggregate signature
σ̂ and compare with e(g, g). We note that the first step in the verification is
inefficient, but a hint generator can speed it up for any target message mj by
generating the following two group elements as part of the short hint:

h1 = g
∏

i�=j(α+mi), h2 = gα
∏

i�=j(α+mi) = hα
1 .

Note that both h1 and h2 can also be publicly computed given only the public
key, and set of messages contained in the aggregated signature. (This follows
from the same symbolic execution of appropriate polynomials).

And, given the hints h1, h2, a verifier can locally verify the aggregate signature
as

e(σ̂, h
mj

1 h2) = e(g, g).

However, the above verification check alone is insufficient as a malicious hint
generator can very easily fool the verifier. To address malicious hint generators,
we also include a simple well-formedness check of the hint as follows:

e(gα, h1) = e(g, h2).

Putting these ideas together, we construct the pairing-based locally verification
single-signer aggregate signature scheme in the long CRS setting. We prove this
to be statically secure in the standard model, and adaptively secure in the ran-
dom oracle model by replacing α + m terms with α + H(m). For more details,
see Sect. 5. We leave the problems of reducing the CRS size and removing the
random oracle an interesting open problems.

We also note that while the above construction needs a long CRS, it satisfies
a very interesting property, namely that the hint generation algorithm is fully
public, and does not even depend on the aggregate signature. Such fully public
hint generation will be useful in applications where the hint generator is unaware
of the underlying aggregate signature, or the user wants to generate the hint even
before the aggregate signature has been generated or made available.

Lastly, our aggregatable IBE scheme builds on the above ideas. For details,
we refer the reader to the full version of this paper [GV22].
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Multi-signer Scheme from SNARKs. In the “folklore” construction of aggregate
signatures from succinct non-interactive arguments of knowledge (SNARKs),
the aggregation algorithm simply proves, w.r.t. a sequence of verification key-
message pairs {(vki,mi)}i, that it knows a sequence of signatures (σ1, . . . , σN )
such that σi is an accepting signature for (vki,mi). This results in short (aggre-
gate) signatures and fast verification, while also ensuring that from an accepting
proof, the extractor can extract an accepting signature for every verification
key-message pair.

This outline can be extended in a simple way to give us a locally verifi-
able aggregate signature. To generate the short hint, the hint generator creates
another SNARK proof, w.r.t. a target key-message pair (vk,m), that proves
knowledge of a sequence of key-message pairs {(vki,mi)}i and an aggregate sig-
nature σ̂ such that (vk,m) is one of the tuples in the sequence, and σ̂ is an
accepting signature for that sequence of key-message pairs. Clearly, the hint
generator has the witness (i.e., sequence of key-message pairs and an accepting
aggregated signature) available, thus by correctness and efficiency of SNARKs
we get that the resulting proof is short and efficiently verifiable. The enhanced
local unforgeability of the resulting construction follows from the extractability
of SNARKs and the unforgeability of the underlying (plain) aggregate signature
scheme.

We note that the above sketch serves as a proof of concept of the feasibil-
ity of locally verifiable aggregate signatures in the multi-signer setting. How-
ever, a direct construction is more interesting and desirable for several reasons.
First, conceptually, SNARKs seem too big of a hammer to construct aggregate
signatures. Secondly, in practice, SNARKs have a high concrete performance
overhead, while direct constructions based on number theory are much more
efficient (this is akin to why number-theoretic accumulators and plain aggregate
signatures are used in practice as opposed to Merkle trees and SNARK-based
plain aggregate signatures). Finally, SNARKs suffer from impossibility results
in the plain model [GW11], and are often constructed in the random oracle
model or from knowledge-type assumptions, while locally verifiable aggregate
signatures can potentially be built from fully standard assumptions in the plain
model. Our single-signer constructions demonstrate this in the static security
model; we believe that adaptive security is achievable without random oracles,
but leave it as a fascinating open problem. Yet another fascinating open problem
is to construct a multi-signer locally verifiable aggregate signature scheme.

Notation. We will let PPT denote probabilistic polynomial-time. We denote the
set of all positive integers up to n as [n] := {1, . . . , n}. Also, we use [0, n] to denote
the set of all non-negative integers up to n, i.e. [0, n] := {0} ∪ [n]. Throughout
this paper, unless specified, all polynomials we consider are positive polynomials.
For any finite set S, x ← S denotes a uniformly random element x from the set
S. Similarly, for any distribution D, x ← D denotes an element x drawn from
distribution D. The distribution Dn is used to represent a distribution over
vectors of n components, where each component is drawn independently from
the distribution D.
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3 Aggregate Cryptosystems with Local Properties

In this section, we recall the notion of single-signer aggregate signatures, and
introduce the concept of local verification for aggregate signatures. Due to space
constraints, we defer the definitions of locally verifiable aggregate signatures in
the multi-signer setting and that of aggregate identity-based encryption to the
full version [GV22].

3.1 Aggregate Signatures

The notion of aggregate signatures as introduced by Boneh, Gentry, Lynn and
Shacham [BGLS03a] is simply a regular signature scheme that comes with two
poly-time algorithms Aggregate and AggVerify, where Aggregate is used to aggre-
gate an arbitrary polynomial number of message-signature pairs {(mi, σi)}i gen-
erated using verification keys {vki}i, into a shorter aggregate signature σ̂, and
AggVerify can be used to verify such aggregate signatures with respect to the
sequence of messages (m1, . . . ,m�) and the verification keys (vk1, . . . , vk�).

An aggregate signature scheme is said to be a single-signer aggregate signa-
ture scheme if the aggregation algorithm requires all the verification keys {vki}i

to be the same. Below we define it formally.

Syntax. A single-signer aggregate signature scheme S for message space M
consists of the following polynomial time algorithms:

Setup(1λ) → (vk, sk). The setup algorithm, on input the security parameter λ,
outputs a pair of signing and verification keys (vk, sk).

Sign(sk,m) → σ. The signing algorithm takes as input a signing key sk and a
message m ∈ M, and computes a signature σ.

Verify(vk,m, σ) → 0/1. The verification algorithm takes as input a verification
key vk, a message m ∈ M, and a signature σ. It outputs a bit to signal
whether the signature is valid or not.

Aggregate (vk, {(mi, σi)}i) → σ̂/⊥. The signature aggregation algorithm takes as
input a verification key vk, a sequence of tuples, each containing a message
mi and signature σi, and it outputs either an aggregated signature σ̂ or a
special abort symbol ⊥.

AggVerify (vk, {mi}i, σ̂) → 0/1. The aggregate verify algorithm takes as input a
verification key vk, a sequence of messages mi, and it outputs a bit to signal
whether the aggregated signature σ̂ is valid or not.

Correctness and Compactness. An aggregate signature scheme is said to be cor-
rect and compact if for all λ, 
 ∈ N, every verification-signing key pair (vk, sk) ←
Setup(1λ), messages mi for i ∈ [
], and every signature σi ← Sign(sk,mi) for
i ∈ [
], the following holds:

Correctness of signing. For all i ∈ [
], Verify(vk,mi, σi) = 1.
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Correctness of aggregation. If σ̂ = Aggregate (vk, {(mi, σi)}i), then

AggVerify (vk, {mi}i, σ̂) = 1.

Compactness of aggregation. |σ̂| ≤ poly(λ). That is, the size of an aggregated
signature is a fixed polynomial in the security parameter λ, independent of
the number of aggregations 
.

Security. Next, we recall the security notion for regular signatures as well as for
the setting of aggregate signatures.

Definition 3.1 (Unforgeability). A signature scheme (Setup,Sign,Verify) is
said to be a secure signature scheme if for every admissible PPT attacker A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr
[

Verify(vk,m∗, σ∗) = 1 :
(vk, sk) ← Setup(1λ)
(m∗, σ∗) ← ASign(sk,·)(1λ, vk)

]

≤ negl(λ),

and A is admissible as long as it did not query m∗ to the Sign oracle.

Definition 3.2 (Static Unforgeability). We say the signature scheme is
statically secure if the adversary in the above game is confined to make all of its
message queries {mi}i∈[q] and declare the challenge message m∗ at the beginning
of the game (defined in Definition 3.1) before it receives the verification key vk.

Definition 3.3 (Aggregated Unforgeability). A single-signer aggregate
signature scheme (Setup,Sign,Verify,Aggregate,AggVerify) is said to be a secure
aggregate signature scheme if for every admissible PPT attacker A, there exists
a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr
[

AggVerify
(

vk, {m∗
i }i∈[�], σ̂

∗) = 1 :
(vk, sk) ← Setup(1λ);

({m∗
i }i∈[�], σ̂

∗) ← ASign(sk,·)(1λ, vk)

]

≤ negl(λ),

where A is admissible if there exists i ∈ [
] such that m∗
i was not queried by A

to the Sign(sk, ·) oracle.

Definition 3.4 (Static Aggregated Unforgeability). We say the aggre-
gate signature scheme is statically secure if the adversary in the above game is
confined to make all of its message queries {mi}i∈[q] and declare the challenge
messages {m∗

i }i∈[�] at the beginning of the game (defined in Definition 3.3) before
it receives the verification key vk.

Our definition of static security is identical to the weak-CMA security for
plain signatures as defined by Boneh and Boyen [BB04b]. In addition to the
above security properties, there are a number of other interesting properties such
as unique signatures, multi-hop aggregation etc. that have been considered in the
literature; we defer their description to the full version [GV22]. Our aggregate
signature schemes satisfy most of these properties.
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Locally Verifiable Aggregate Signatures. In this work, we introduce the
notion of local openings for aggregate signatures that enable faster local verifica-
tion. As described above, in existing aggregate signatures the verification algo-
rithm for an aggregate signature takes as input the entire sequence of messages
(m1, . . . ,m�) aggregated inside signature σ̂. Thus, the run-time of verification
scales polynomially with the number of messages 
.

Aggregate signatures with local opening enable efficient verifiability, where
the local verification algorithm takes as input only the message m that has to
be verified against the claimed aggregated signature σ̂, instead of all 
 messages.
However, without any other modifications to the syntax of the aggregate signa-
tures, the notion of local verifiability is impossible to achieve (as discussed in the
introduction). In order to make the notion feasible, we introduce an auxiliary
local opening generator that generates some auxiliary information specific to the
message m being locally verified, and this algorithm does not require any of the
input signatures {σi}i that were aggregated, but the final aggregated signature
σ̂. Below we define the algorithms formally.

LocalOpen(σ̂, vk, {mi}i∈[�], j ∈ [
]) → auxj . The local opening algorithm takes as
input an aggregated signature σ̂, a verification key vk, a sequence of messages
mi for i ∈ [
], and an index j ∈ [
]. It outputs auxiliary information auxj

corresponding to the message mi.
LocalAggVerify(σ̂, vk,m, aux) → 0/1. The local aggregate verification algorithm

takes as input an aggregated signature σ̂, a verification key vk, a message m,
and auxiliary information aux. It outputs a bit to signal whether the aggregate
signature σ̂ contains a signature for message m under verification key vk, or
not.

Correctness and Compactness of Local Opening. An aggregate signature scheme
with local openings is said to be correct and compact if for all λ, 
 ∈ N, every
verification-signing key pair (vk, sk) ← Setup(1λ), messages mi for i ∈ [
], and
every signature σi ← Sign(sk,mi) for i ∈ [
], the following holds:

Correctness of local opening. For all k ∈ [
], we have

LocalAggVerify (σ̂, vk,mk, LocalOpen(σ̂, vk, {mi}i, k)) = 1.

Compactness of opening. |aux| ≤ poly(λ). That is, the size of the auxiliary
opening information is a fixed polynomial in the security parameter λ, inde-
pendent of the number of aggregations 
.

Security Against Adversarial Openings. Now we define the security notion for
aggregate signatures with local openings.

Definition 3.5 (Aggregated Unforgeability with Adversarial Opening).
A locally-verifiable aggregate signature scheme (Setup,Sign,Verify,Aggregate,

AggVerify, LocalOpen, LocalAggVerify) is said to be a secure aggregate signature
scheme against adversarial openings if for every admissible PPT attacker A,
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there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr
[

LocalAggVerify(σ̂∗, vk,m∗, aux∗) = 1 :
(vk, sk) ← Setup(1λ); (σ̂∗, aux∗,m∗) ← ASign(sk,·)(1λ, vk)

]

≤ negl(λ),

where A is admissible if m∗ was not queried by A to the Sign(sk, ·) oracle.

Definition 3.6 (Static Aggregate Unforgeability with Adversarial
Opening). We say the locally-verifiable aggregate signature scheme is stati-
cally secure against adversarial openings if the adversary in the above game is
confined to make all of its message queries {mi}i∈[q] and declare the challenge
message m∗ at the beginning of the game (defined in Definition 3.5) before it
receives the verification key vk.

Fully Public Openings for Aggregate Signatures. We additionally consider the
setting where the local opening algorithm does not need an aggregate signature
to provide an opening w.r.t., but only the sequence of messages.

Remark 3.1 (Fully Public Openings). An aggregate signature scheme is said
to have fully local public openings if the algorithm LocalOpen has the following
syntax—LocalOpen(vk, {mi}i∈[�], j ∈ [
]) → auxj . That is, LocalOpen is oblivious
to the aggregated signature.

Remark 3.2 (Optimal Compactness and Efficiency). In our definitions, we con-
sider the size of the aggregate signatures, auxiliary opening information, running
time of the local verifier to be independent of the number of aggregations. How-
ever, one could also consider schemes where the compactness and efficiency of
the scheme grows poly-logarithmically with the number of aggregations, as for
most applications poly-logarithmically dependence can be asymptotically cap-
tured within the polynomial dependence on the security parameter.

4 RSA-Based Locally Verifiable Aggregate Signatures

In this section, we provide a locally verifiable single-signer aggregate signature
scheme based on the hardness of RSA. Our scheme satisfies a number of inter-
esting properties, and relies on an efficient deterministic non-colliding prime
sequence enumeration.

4.1 Deterministic Prime Sequence Enumeration

Here we are interested in an efficient injective mapping from the message space
(Mλ = {0, 1}λ) to the set of (λ+1)-bit prime numbers. Such injective mappings
were constructed by Cachin, Micali, and Stadler [CMS99] by relying on 2λ2-wise
independent hash functions, (randomized) primality testing [SS77,Rab80], and
prime density theorems [DlVP97]. The idea is to enumerate over a fixed length
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(≈ 2λ2) sequence of (λ + 1)-bit numbers for each message in the message space,
and select the lexicographically first prime number in that sequence (where the
sequence is decided by the hash function). Since the hash function is pairwise
independent, by relying on prime number density theorems, one gets that with
all but negligible probability, such prime numbers for each message exist in the
2λ2 length sequence.

In this work, we rely on a similar prime sequence enumeration technique, but
we slightly adapt it as it leads to different security proofs of our aggregate signa-
ture construction. Concretely, we rely on deterministic primality testing [AKS04]
to avoid keeping random coins as part of the setup2, and also replace the hash
function with a PRF-based hash function in one instantiation (which results in
static security of our signature scheme), and with a Random Oracle [BR93] in
the second instantiation (which results in full security of our signature scheme).
Additionally, we make the sampling process to be expected polynomial time
instead as we consider exponential length sequences for the prime search. The
sampling time could be done in worst-case polynomial time by relying on well-
known prime gap conjectures.

Prime Sequence Enumerator via Pseudorandom Functions. Let PRF =
(PRF.Setup,PRF.Eval) be a secure PRF that outputs λ bits of output. Below, we
describe our prime sequence enumerator based on PRFs. A (fully secure) prime
sequence enumerator in the random oracle model (ROM) is described in the full
version [GV22].

PrimeSeqPRF(1λ) → samp. It samples a PRF key K ← PRF.Setup(1λ, 12λ), and
sets samp = K.

PrimeSampPRF(samp = K,m) → em. It proceeds as follows:
1. Set count := 0, flag := false.
2. While flag = false:

(a) Let y := PRF.Eval(K,m || count) where m || count is interpreted as a
2λ length bit string.

(b) Run PrimalityTest to check if 2λ + y is a prime. If it is a prime, set
flag := true and em := 2λ + y. Otherwise, set count := count + 1.

Output em.

Theorem 4.1 (Efficient and Statically Secure Enumeration via PRFs).
If PRF is a secure pseudorandom function, then (PrimeSeqPRF,PrimeSampPRF)
satisfies the following properties:

2 We point out that we use deterministic primality testing only for the ease of expo-
sition, and this is not necessary as our scheme is secure even if we rely on efficient
randomized primality testing. Such an approach was already outlined in [MRV99]
where the idea is to generate a sequence of random coins as part of the setup, and
use those random coins to run the randomized primality test deterministically on all
those random coins. The proof relies on the fact that, with all but negligible proba-
bility over the choice of random coins sampled during setup, randomized primality
test will fail on at least one random coins for a non-prime.
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Efficient Sampling. For every λ ∈ N, m ∈ {0, 1}λ, the prime sampling algo-
rithm PrimeSampPRF runs in expected polynomial time, where the probability
is taken over the coins of setup algorithm PrimeSeqPRF.

Statically Secure Non-Colliding Prime Enumeration. For any PPT
adversary A, there exists a negligible function negl(·), such that for all λ ∈ N,
we have that

Pr

⎡

⎣

∃ i �= j ∈ [Q] s.t.
ei = ej ∧ mi �= mj

:
{mi}i∈[Q] ← A(1λ)

samp ← PrimeSeqPRF(1λ)
{ei = PrimeSampPRF(samp,mi)}i

⎤

⎦ ≤ negl(λ).

Proof. The proof follows from [CMS99] which relied on 2λ2-wise independent
hash function instead of a PRF as we do above. Also, as in [MRV99], we force
the enumerator to output truly (λ + 1)-bit primes by fixing the leading bit to
be 1 (i.e., adding 2λ to the randomly sampled number). Now by relying on
the pseudorandomness property of the underlying PRFs, we get the desired
properties for a sequence of polynomial but “a-priori unbounded” number of
messages. Since PRFs are poly-wise independent functions by pseudorandomness
for any arbitrary polynomial poly, thus the theorem follows. Note that here the
PRF key is being released as part of the public sampling parameters, and despite
that fact we are relying on PRF security for security of our samplers. Briefly, this
is due to the fact that an attacker in the static non-colliding prime enumeration
is required to commit all its messages at the beginning of the game, and the
public sampling parameters (i.e., the PRF key) is sampled after the messages
are committed by the adversary. Therefore, we do not need to supply the attacker
the PRF key, and can simply check whether the non-colliding property failed by
querying the PRF oracle. �

Shamir’s Trick. Our construction makes use of the following classical lemma
due to Shamir [Sha83] whose proof is provided for completeness.

Lemma 4.1. Given x, y ∈ ZN together with a, b ∈ Z such that xa = yb (mod N)
and gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ ZN such that
za = y (mod N).

Proof. Let α, β ∈ Z be integers such that αa + βb = 1. Then, z = yαxβ is the
desired number as za = yαaxβa = yαayβb = yαa+βb = y (mod N). �

4.2 Construction

Below we provide our construction of single-signer aggregate signatures with
λ-bit messages.

Setup(1λ) → (vk, sk). The setup algorithm generates an RSA modulus N = pq,
where p, q are random primes of λ/2 bits each. Next, it chooses a random
element g ← Z

∗
N , and samples the public parameters for prime sequence enu-

meration as samp ← PrimeSeq(1λ). It sets the key pair as vk = (N, samp, g)
and sk = (p, q, samp, g).
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Sign(sk,m) → σ. It parses sk as above, and computes the prime number em =
PrimeSamp(samp,m). It computes the signature as ge−1

m (mod N) using p and
q from the secret key and computing e−1

m (mod φ(N)).
Verify(vk,m, σ). It parses vk as above, and computes the prime number em =

PrimeSamp(samp,m). It checks whether σem (mod N) = g. If the check suc-
ceeds, then it outputs 1 to signal that the signature is valid, otherwise it
outputs 0.

Aggregate (vk, {(mi, σi)}i) → σ̂/⊥. The signature aggregation algorithm first
verifies all the input signatures σi, and outputs ⊥ if any of these verifications
fail. Otherwise, it computes the aggregated signature as

σ̂ =
∏

i

σi (mod N).

AggVerify
(

vk, {mi}i∈[�], σ̂
)

. The signature verification algorithm parses the ver-
ification key as above, and computes the sequence of primes corresponding
to the messages as emi

= PrimeSamp(samp,mi) for all i ∈ [
] where 
 is the
number of aggregated messages. It then checks whether the following is true
or not:

σ̂
∏

i emi =
∏

i

g
∏

j �=i emj (mod N).

If the check succeeds, then it outputs 1 to signal that the aggregated signature
is valid, otherwise it outputs 0.

LocalOpen(σ̂, vk, {mi}i∈[�], j ∈ [
]) → auxj . It parses vk as above, and com-
putes the sequence of prime numbers corresponding to the messages as
emi

= PrimeSamp(samp,mi) for all i ∈ [
]. It then computes the following
terms:

em\mj
=

∏

i�=j

emi
, fj =

∑

i�=j

∏

k �={i,j}
emk

.

Note that since vk contains only N and not φ(N), thus the algorithm com-
putes the above as large integers without performing any modular reductions.
It then computes the following:

x = σ̂em\mj /gfj (mod N).

And, it checks that gcd(em\mj
, emj

) = 1. If the check fails, it outputs ⊥,
otherwise using Shamir’s trick (Lemma 4.1), it computes auxj as

auxj = Shamir(x, y = g, a = emj
, b = em\mj

).

LocalAggVerify(σ̂, vk,m, aux). The local verification algorithm simply runs the
unaggregated verification and outputs Verify(vk,m, σ = aux). That is, it inter-
prets aux as the original signature on m, ignores σ̂, and verifies aux as a sig-
nature for m.
Basically, the aggregate signature scheme has the special property that the
local opening algorithm is able to recover the signature for message under
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consideration from the aggregated signature, therefore the local opening for a
message is simply its signature. Hence, the above local verification algorithm
only needs to check that the opening information aux is a valid signature for
m, and no extra checks are needed for the aggregated signature σ̂.3

In addition to the above algorithms, we want to point out that the scheme
supports unordered sequential signing as well as multi-hop aggregation. Below
we describe our sequential signing and verification algorithms:

SeqAggSign (sk,m′, {mi}i, σ̂) → σ̂′. The sequential signing algorithm first verifies
the input aggregated signature σ̂, and outputs ⊥ if the verification fails.
Otherwise, it computes the prime em′ as em′ = PrimeSamp(samp,m′), and
computes the new aggregated signature as σ̂e−1

m′ (mod N) since it knows φ(N).
SeqAggVerify

(

vk, {mi}i∈[�], σ̂
)

. The sequential aggregated verification algorithm
parses the verification key as above, and computes the sequence of primes
corresponding to the messages as emi

= PrimeSamp(samp,mi) for all i ∈ [
]
where 
 is the number of aggregated messages. It then checks whether the
following is true or not:

σ̂
∏

i emi = g (mod N).

If the check succeeds, then it outputs 1 to signal that the aggregated signature
is valid, otherwise it outputs 0.

4.3 Correctness, Compactness, and More Properties

Correctness of Signing. This follows directly from the fact that PrimeSamp is a
deterministic prime number sampler, and that

(

ge−1
m

)em

= g (mod N) for every
m and em = PrimeSamp(samp,m).

Correctness of Aggregation. Consider any sequence of messages m1, . . . ,m�,
and corresponding signatures σi = ge−1

mi for i ∈ [
] where emi
=

PrimeSamp(samp,mi). We know that aggregating these signatures is done as
σ̂ =

∏

i σi (mod N). And, the aggregated verification checks the following:

σ̂
∏

i emi =
∏

i

g
∏

j �=i emj (mod N).

3 We point out that this does not contradict our unforgeability property with adversar-
ial openings. Since, irrespective of whether the adversary is maliciously aggregating
signature or generating hints in a malicious way, the adversary is never allowed to
make a sign query for the message associated with a forged signature. While it seems
like since local verifier is independent of the aggregate signature σ̂, thus a verifier
might supply any arbitrary string and still pass local verification. The point is in
order for the local verification to accept, it must be provided with a valid signature
(as a hint), thus an attacker can not forge by supplying only malformed aggregated
signatures σ̂.
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Now to verify that the above check succeeds for honestly computed and aggre-
gated signatures, let us simplify the left side term σ̂

∏
i emi .

σ̂
∏

i emi =

⎛

⎝

∏

j

σj

⎞

⎠

∏
i emi

=

⎛

⎝

∏

j

g
e−1

mj

⎞

⎠

∏
i emi

.

Now since we have that
(

g
e−1

mj

)

∏
i emi

= g
∏

j �=i emj (mod N), the correctness of
aggregated verification follows.

Compactness of Aggregation. The size of an aggregated signature is same as that
of an unaggregated signature, which simply is a number between 0 and N .

Unique Signatues. Note that the above signature scheme is a unique signature
scheme. This follows from the fact that the prime number enumeration samples
(λ + 1)-bit primes, and since all factors of φ(N) are primes less than λ/2-bits,
thus e−1

m (mod φ(N)) is uniquely and well defined. Thus, the inversion operation
ge−1

m (mod N) is an injective mapping.

Multi-hop, Unordered and Interleavable Aggregation. We would like to point
out that the above construction is a multi-hop aggregate signature scheme as
well as the sequential signing and non-sequential aggregation can be arbitrarily
interleaved. The multi-hop property follows directly from inspection since the
aggregation algorithm is an unordered product of the corresponding signatures.
And, since the product operation is independent of the sequence of multiplica-
tion, thus the aggregated verification does not depend on the order of aggrega-
tion, but only the needs the unordered sequence of aggregated messages. Lastly,
we could also interleave the sequential and non-sequential signature aggregation
algorithm, and the corresponding verification would need to be appropriately
modified and altered.

4.4 Security

Static (Aggregated) Unforgeability. We show that if we instantiate the prime
sequence enumeration based on PRFs in our above aggregate signature con-
struction, then the resulting scheme satisfies static unforgeability. Formally, we
prove the following.

Theorem 4.2 (Static Unforgeability). If the Strong RSA assumption holds,
and (PrimeSeq,PrimeSamp) is instantiated based on secure PRFs (as described
in Sect. 4.1), then the aggregate signature scheme described above satisfies static
unforgeability, static aggregated unforgeability, and static aggregated unforgeabil-
ity with adversarial openings (Definition 3.2, 3.4 and 3.6).
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Full (Aggregated) Unforgeability in ROM. Next, we show that if we instantiate
the prime sequence enumeration in the ROM, then the above aggregate signature
construction satisfies full unforgeability. Formally, we prove the following.

Theorem 4.3 (Full Unforgeability). If the RSA assumption with large
exponents holds, and (PrimeSeq,PrimeSamp) is instantiated in the ROM (as
described in Sect. 4.1), then the aggregate signature scheme described above satis-
fies (full) unforgeability, aggregated unforgeability, and aggregated unforgeability
with adversarial openings (Definition 3.1, 3.3 and 3.5).

Due to space constraints, the proofs are delegated to the full version [GV22].

5 Pairing-Based Locally Verifiable Aggregate Signatures

In this section, we provide a locally verifiable single-signer aggregate signature
scheme with fully public local openings based on the hardness of Diffie-Hellman
Inversion problem. Our scheme satisfies a number of interesting properties that
we discuss later, however it supports only bounded single-hop aggregation.

Injective Message Hashing. Similar to our RSA based construction, we are inter-
ested in an injective mapping from the message space (Mλ = {0, 1}λ) to the
prime field Zp for p > 2λ. We consider two simple such mappings (HGen,H) that
lead to static and full adaptive security for our final construction respectively.

Identity Map. The hash setup HGenI is simply the empty algorithm that
outputs hk = ε, and HI(ε,m) = m where output m is interpreted as a field
element of Zp.

RO Map. Let H = {Hλ}λ be a family of hash functions where each h ∈ Hλ

takes λ bits as input, and outputs λ-bits of output. The hash setup HGenH

simply samples a hash function h ∈ Hλ and outputs hk = h, and HH(hk =
h,m) = h(m) where output h(m) is interpreted as a field element of Zp.
Clearly, if h is modeled as a random oracle, then so is the resulting mapping.

Aggregating Inverse Exponents. Our aggregate signature scheme relies on the
“key accumulation” algorithm of Delerablée, Paillier, and Pointcheval [DPP07,
DP08]. We refer to the algorithm as the DPP algorithm which takes as input a
sequence of group elements {g

r
γ+xi , xi}i∈[�], and outputs g

r∏
i∈[�](γ+xi) . However,

as discussed in the introduction, we can rely on the alternate and more efficient
Lagrange’s inverse polynomial interpolation technique for a simpler aggrega-
tion algorithm. The idea behind our more efficient accumulation algorithm is
as follows. By Lagrange’s polynomial interpolation formula we know that for a
degree-
 polynomial passing through points (xi, yi) for i ∈ [
], the corresponding
polynomial p(x) can be written as follows

p(x) =
∑

j∈[�]

yjLj(x), where Lj(x) =

∏

i�=j(x − xi)
∏

i�=j(xj − xi)
.
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Now if we set yi = 1 for all i ∈ [
]. That is, p(xi) = 1 for all i. Then, by
inspection, we know that p(x) =

∏

i(x − xi) + 1 is an identity. Thus, by using
the above Lagrange’s polynomial interpolation equation, we get that

∏

i

(x − xi) + 1 =
∑

j∈[�]

∏

i�=j(x − xi)
∏

i�=j(xj − xi)
.

Dividing both sides by
∏

i(x − xi) we get that

1 +
1

∏

i(x − xi)
=

∑

i∈[�]

Δi

x − xi
, where Δi =

1
∏

j �=i(xi − xj)
.

Since Δi can be publicly computed given the list x1, . . . , x�, thus the aggregation
algorithm for group elements follows.

5.1 Construction

Below we provide our construction for single-signer aggregate signatures with
λ-bit messages. Since we are in the single-signer setting, thus we no longer need
to introduce the CRS algorithm as part of its description.

Setup(1λ, 1B) → (vk(local), vk, sk). The setup algorithm takes as input the secu-
rity parameter, λ, as well as the upper bound on number of aggregations, B.
It samples the bilinear group parameters Π = (p,G,GT , g, e(·, ·)) ← Gen(1λ),
and samples a random exponent α ← Z

∗
p. It also samples the public param-

eters for message hashing as hk ← HGen(1λ). It sets the key pair as
vk = (Π, hk, {gαi}i∈[B]) and sk = (Π, hk, α). It also sets the local verifica-
tion key vk(local) as vk(local) = (Π, hk, gα).
note. We would like to point out that the setup algorithm for aggregate sig-
natures typically outputs only a verification-signing key pair. However, here
also introduce a local verification key that is entirely contained inside the full
verification key, but it serves as a shorter key for the local verification algo-
rithm to use. Simply put, here we consider bounded aggregate signatures with
local verification, and to make the notion of local verification interesting in
the bounded aggregation setting, we introduce a local verification key whose
size is independent of the aggregation bound B thereby enabling the local
verification algorithm to be independent of the number of aggregations. One
could have instead defined local verification algorithm to have RAM access
over the full verification key, and require the worst case run-time of the local
verification to not grow with the number of underlying aggregations whenever
the local verification is modeled as a RAM.

Sign(sk,m) → σ. It parses sk as above, and hashes the message as hm = H(hk,m).
It computes the signature as g(α+hm)−1

which can be computed efficiently
since it knows α.4

4 For simplicity, we ignore the possibility that α + hm = 0 as that could be easily
handled as a special case by outputting the identity group element, but keeping it
as part of the scheme description makes it cumbersome.
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Verify(vk,m, σ). It parses vk as above, and computes the message hash as hm =
H(hk,m). It checks whether e(σ, gαghm) = e(g, g) where gα is taken from the
verification key vk.5 If the check succeeds, then it outputs 1 to signal that the
signature is valid, otherwise it outputs 0.

Aggregate (vk, {(mi, σi)}i) → σ̂/⊥. The signature aggregation algorithm first
verifies all the input signatures σi, and outputs ⊥ if any of these verifications
fail. Otherwise, it computes the aggregated signature as

σ̂ = DPP({σi, xi}i),

where xi = H(hk,mi).
AggVerify

(

vk, {mi}i∈[�], σ̂
)

. The signature verification algorithm parses the ver-
ification key as above, and computes the sequence of hashed messages as
xi = H(hk,mi) for all i ∈ [
] where 
 is the number of aggregated messages.
It then computes the following polynomial P symbolically to obtain the coef-
ficients {βi ∈ Zp}i∈[�]:

P{xi}i∈[�]
(y) =

∏

i∈[�]

(y + xi) =
�

∑

i=0

βiy
i (mod p). (4)

It then checks that 
 ≤ B and whether the following is true or not:

e(σ̂,

�
∏

i=0

(gαi

)βi) = e(g, g),

where gαi

are taken from the verification key vk. If the check succeeds, then it
outputs 1 to signal that the aggregated signature is valid, otherwise it outputs
0.

LocalOpen(vk, {mi}i∈[�], j ∈ [
]) → auxj . It parses vk as above, computes the
sequence of hash messages as xi = H(hk,mi) for all i ∈ [
]\{j}, and computes
the coefficients { ˜βi ∈ Zp}i∈[�−1], similar to that in Eq. (4) except it removes
(y + xj) from the list of monomials. Concretely, it computes

P{xi}i∈[�]\{j}(y) =
∏

i∈[�]\{j}
(y + xi) =

�−1
∑

i=0

˜βiy
i (mod p). (5)

It then outputs the auxiliary opening information auxj = (auxj,1, auxj,2)
where auxj,1, auxj,2 are computed as

auxj,1 =
�−1
∏

i=0

(gαi

)β̃i , auxj,2 =
�−1
∏

i=0

(gαi+1
)β̃i ,

where gαi

are taken from the verification key vk.
5 Note that the verification algorithm does not the entire verification key, but the local

portion of verification key would be sufficient.
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LocalAggVerify(σ̂, vk(local),m, aux). The local verification algorithm parses the
local verification key vk(local) as above, and auxiliary opening aux =
(aux1, aux2), and computes the message hash as hm = H(hk,m). It checks
the following two conditions:

e(σ̂, aux1
hmaux2) = e(g, g)

e(gα, aux1) = e(g, aux2)

where gα is taken from the local verification key vk. If both the check succeed,
then it outputs 1 to signal that the signature is valid, otherwise it outputs 0.
note. As we pointed out before, instead of defining the local verification key,
we could provide the local verifier RAM access to the full verification key,
and since it only needs to extract gα from the full verification key, thus the
verification will be efficient even with that formalization.

In addition to the above algorithms, we want to point out that the scheme
supports unordered sequential signing on top of single-hop aggregation. Below
we describe our sequential signing and verification algorithms:

SeqAggSign (sk,m′, {mi}i, σ̂) → σ̂′. The sequential signing algorithm first verifies
the input aggregated signature σ̂, and outputs ⊥ if the verification fails.
Otherwise, it hashes the message as hm′ = H(hk,m′), and computes the new
aggregated signature as σ̂(α+hm′ )−1

since it knows α.
SeqAggVerify

(

vk, {mi}i∈[�], σ̂
)

. The sequential verification algorithm runs the
(non-sequential) aggregated verification and outputs AggVerify(vk, {mi}i, σ̂).
That is, it interprets σ̂ as a non-sequential aggregated signature on {mi}i∈[�],
and verifies σ̂.

5.2 Correctness, Compactness, and More

Correctness of Signing. This follows from the fact that e(g(α+hm)−1
, gαghm) =

e(g, g) where hm = H(hk,m).

Correctness of Aggregation. Consider any sequence of messages m1, . . . ,m�, and
corresponding signatures σi = g(α+hmi

)−1
for i ∈ [
] where hmi

= H(hk,mi). We
know that aggregating these signatures is done as σ̂ = DPP({σi, hmi

}i). Now by
the correctness of the key accumulation algorithm of [DPP07,DP08], we have
that σ̂ = g

∏
i(α+hmi

)−1
. And, the aggregated verification checks the following:

e(σ̂,

�
∏

i=0

(gαi

)βi) = e(g, g),

where βi’s are such that
∑�

i=0 βiy
i =

∏

i∈[�](y + hmi
) (mod p). Thus, we have

that
�

∏

i=0

(gαi

)βi = g
∑�

i=0 αiβi = g
∏

i∈[�](α+hmi
).
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Therefore, for honestly computed and aggregated signatures, the above check
succeeds and correctness follows.

Compactness of Aggregation. The size of an aggregated signature is same as
that of an unaggregated signature, which simply is a source group element (i.e.,
σ̂ ∈ G).

Unique Signatures. Note that the above signature scheme is a unique signature
scheme. This follows from the fact that the message hashing is a deterministic
function, and if e(σ, gαghm) = e(g, g), then it must be that σ = g(α+hm)−1

which
can be uniquely computed since G is a prime order source group.

Single-Hop, Unordered Sequential Aggregation with Fully Public Local Openings.
We would like to point out that the above construction is a single-hop aggre-
gate signature scheme. And, since the product operation is independent of the
sequence of multiplication, thus the aggregated verification does not depend on
the order of aggregation, but only the needs the unordered sequence of aggre-
gated messages. Here the sequential signing can be performed arbitrarily on top
of an aggregated signature.

Lastly, an interesting feature of these signatures is that they provide fully
public local openings, and the LocalOpen algorithm does not need an aggregated
signature as an extra input.

5.3 Security

Static (Aggregated) Unforgeability. We show that if we instantiate the message
hashing as the identity map in our above aggregate signature construction, then
the resulting scheme satisfies static unforgeability. Formally, we prove the fol-
lowing.

Theorem 5.1 (Static Unforgeability). If the Diffie-Hellman inversion
assumption holds, and (HGen,H) is an identity hash, then the aggregate signa-
ture scheme described above satisfies static unforgeability, and static aggregated
unforgeability (Definition 3.2 and 3.4).

Also, if the bilinear Diffie-Hellman inversion assumption holds, and
(HGen,H) is an identity hash, then the aggregate signature scheme described
above also satisfies static aggregated unforgeability with adversarial openings
(Definition 3.6).

Full (Aggregated) Unforgeability in ROM. Next, we show that if we instantiate
the message hashing in the ROM, then the above aggregate signature construc-
tion satisfies full unforgeability. Formally, we prove the following.

Theorem 5.2 (Full Unforgeability). If the Diffie-Hellman inversion
assumption holds, and (HGen,H) is instantiated in the ROM, then the aggregate
signature scheme described above satisfies (full) unforgeability, and aggregated
unforgeability (Definition 3.1 and 3.3).
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Also, if the bilinear Diffie-Hellman Inversion assumption holds, and
(HGen,H) is instantiated in the ROM, then the aggregate signature scheme
described above also satisfies (full) aggregated unforgeability with adversarial
openings (Definition 3.5).

Due to space constraints, the proofs are deferred to the full version [GV22].
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Abstract. We introduce Multimodal Private Signature (MPS) - an
anonymous signature system that offers a novel accountability feature:
it allows a designated opening authority to learn some partial informa-
tion op about the signer’s identity id, and nothing beyond. Such partial
information can flexibly be defined as op = id (as in group signatures),
or as op = 0 (like in ring signatures), or more generally, as op = Gj(id),
where Gj(·) is a certain disclosing function. Importantly, the value of
op is known in advance by the signer, and hence, the latter can decide
whether she/he wants to disclose that piece of information. The con-
cept of MPS significantly generalizes the notion of tracing in traditional
anonymity-oriented signature primitives, and can enable various new and
appealing privacy-preserving applications.

We formalize the definitions and security requirements for MPS. We
next present a generic construction to demonstrate the feasibility of
designing MPS in a modular manner and from commonly used crypto-
graphic building blocks (ordinary signatures, public-key encryption and
NIZKs). We also provide an efficient construction in the standard model
based on pairings, and a lattice-based construction in the random oracle
model.

Keywords: new models · anonymous authentications ·
accountability · fine-grained information disclosure · modular
constructions · zero-knowledge · lattices · pairings

1 Introduction

Privacy is a fundamental human right and is an interdisciplinary area of study [53].
In the digital era, where most of our daily communications are done over computer
networks, the problem of privacy protection has become increasingly important
and challenging. On the other hand, the development of information technology
and cryptography also brings new technical solutions for privacy protection. Since
the 1980s [16], various privacy-preserving cryptographic protocols have been pro-
posed for this purpose. This essential area gets a lot of traction not only because of
growing practical demands, but also due to its great theoretical interests. Indeed,
designing these advanced systems is highly challenging, as they typically require
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not only basic algorithms but also non-trivial and specially-developed tools such
as ledge proofs [27] - a beautiful tool allowing to prove the truth of given state-
ments without revealing any additional information.

While privacy-sensitive users want to protect their anonymity as much as pos-
sible, excessive privacy could be abused for illegal or inappropriate activities.
Hence, from the system authorities’ viewpoint, all users who carry out problem-
atic activities should be kept accountable. Thus, there is an uneasy “privacy vs
accountability” tension corresponding to the incentives of users and authorities.
In privacy-preserving cryptosystems focusing on anonymity that had been pro-
posed before the year 2021, either the users are granted absolute anonymity and
can never be traced [3,44,50], or there exists an authority who can break users’
privacy without their consent [17,18,24,36]. In other words, these systems always
lean rigidly, either in favour of the users or of the authorities. A breakthrough in
tackling the “privacy vs accountability” tension was recently put forward in [42],
which introduced Bifurcated Anonymous Signatures (BiAS) - a novel primitive
in which whether the signer of a given signature can have absolute anonymity or
can be traced is made context-dependent and is known to the signer at the time
of signature generation. As a result, tracing can only be done with users’ consent
on the one hand, and no traceable signature can escape being traced on the other
hand. This primitive provides a reasonably fair setting for both authorities and
users and seems to have offered a satisfying resolution for the discussed tension.

However, a crucial disadvantage of BiAS and of previous proposals is that
accountability is realized via a total tracing procedure, during which all the per-
sonal identifying information of the traced users must be disclosed to the author-
ities. This level of accountability is indeed a serious violation of users’ privacy.
Note that, while privacy is a complicated notion that has differed throughout
history [53], in its purest sense, it can be defined as the right of an individual to
control which information about herself or himself can be disclosed [45]. Further-
more, in many real-life situations, it is not necessarily the authorities’ highest
priority to perform a total tracing. For instance, the authorities could only be
interested in learning whether an anonymous user is over 18 years old, or works
in a given organization, or lives in a particular area, or has been fully vaccinated
against COVID-19, or has an annual income exceeding certain threshold. In the
following, let us discuss several concrete examples.

Consider the scenario where an anonymous financial transaction (such as
the privacy-preserving cryptocurrency Monero [47]) with a hidden amount of
money is used to conduct online transactions. When an amount less than $100
is transferred, then the transaction will be anonymous to everyone, including the
authority. However, when an amount between $100 and $1,000 is transferred, the
authority will be able to evaluate partial information about the sender, namely
which country the sender originated from. When an amount between $1,000
and $10,000 is transferred, then the authority will be able to identify the coun-
try and the organization where the transfer originated from. When an amount
larger than $10,000 is transferred, then the identity of the individual from the
organization in that specific country will be identified. In other words, depending
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on the underlying transaction amounts, the authority can learn different pieces
of information about the sender. There are four different levels of information
disclosure in the above scenario.

A more simplistic scenario can be related to an IP address, which is of the
form of w.x.y.z. When a small transaction is issued, then the authority will not
be able to learn any information about the address. However, when a medium
range of transactions is issued, then the authority will be able to compute w.x.*.*,
which denote the range of IP addresses within an organization. Finally, then a
large transaction is issued, then the full IP address can be identified.

As another example, imagine the situation where a data broker company
quietly sells people’s personal information to others. While this activity is ille-
gitimate, especially with the introduction of GDPR (General Data Protection
Regulation), this kind of activity remains happening in the wild. Suppose a
whistleblower who works in the data broker company, wants to “leak” this infor-
mation to the authority. The purpose is to allow the authority to trace the
data broker company while protecting the whistleblower’s identity. Therefore, it
is essential that the whistleblower can still sell the data from the data broker
correctly. Those data eventually will trigger the authority to find some partial
identity information from the whistleblower, which points to the data broker
company.

Unfortunately, all existing cryptographic methods fail to offer such type of
balance between privacy and accountability, i.e., a setting in which authorities
can only learn the piece of partial information about the user that the latter
would like to disclose - and nothing else. Providing such fine-grained accountable
privacy is a highly important and desirable research goal, and addressing it would
likely require truly innovative technical ideas and approaches.

Our Contributions. We put forward the concept of “Multimodal Private
Signatures” (MPS), which provides a novel approach for private information
disclosure in anonymity-oriented authentication systems. In an MPS scheme,
registered users can generate signatures that remain anonymous to the public,
but can be opened by the authority to some partial information op on the identity
of the signer. Such partial information can flexibly be defined as op = id (as in
group signatures), or as op = 0 (like in ring signatures), or more generally, as
op = G(id), where G(·) is certain “disclosing function”. Importantly, the value of
op is known in advance by the signer, and hence, the latter can decide whether
she/he wants to disclose that piece of information.

In group signature, the disclosing function G(·) is basically the identity func-
tion, and in BiAS, G(·) is an all-or-nothing function. However, as mentioned in
the examples motivating MPS, a set of more flexible and fine-grained disclos-
ing functions are demanded to balance privacy and accountability in different
applications. In MPS, this is achieved via two steps: first, we introduce a signing
function F that determines whether a message M is valid (e.g., the transaction
amount is below the limit set by the monetary authority), and if so, the critical
level j of M ; secondly, we define a family of disclosing functions G = {Gj(·)}
that discloses the appropriate level of identity information (i.e., Gj(id)) to the
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opening authority based on the critical level of M . It is worth noting that, for
privacy purposes, we also want to hide the critical level j, meaning M could
be a transformation of the real “message”, which we call the witness w of M .
Looking ahead, in the pairing-based and lattice-based constructions presented
in this paper, we use M = COM(w) where COM(·) denotes a secure commitment
scheme. Clearly, the privacy against the opening authority in MPS is more intri-
cate than that in other traceable anonymous signatures. Specifically, we require
that the opening authority learns only Gj(id) from a valid signature but nothing
else.

More formally, an MPS system is associated with a collection of signing
functions F and a collection of disclosing functions {G1, . . . , GK}. When user
id would like to sign a message M with respect to signing function F ∈ F ,
it computes j = F (M,w, id) ∈ [0,K], where w is a “witness” - a context-
dependent piece of information available to the user (that intuitively explains
why F (M,w, id) = j). The value of j governs the signability of (M,w, id) as well
as the accountability of the resulting signature. Specifically, if j = 0, then id is
not allowed to sign. Otherwise, then id should be able to obtain a valid signature
that can be opened by the authority to the value Gj(id).

The concept of MPS could enable various appealing applications that previ-
ously have not been considered or realized. Apart from the examples we discussed
above, let us provide a few more illustrating scenarios.

In the context of anonymous surveys, one may implement an MPS system
allowing the survey conductor to learn some specific piece of information (e.g.,
age, gender, location) about participants who provided answers that meet certain
conditions (with the participant’s consensus). As for private access to buildings
or to online systems, the administrator may also use an MPS system so that to
gain certain statistics about the characteristics or activities of the anonymous
visitors. From another perspective, the signers may also use MPS to purposely
send some information to the authorities, e.g., for claiming the financial incen-
tives of releasing the signed messages.

Let us consider another hypothetical scenario concerning paper submissions
and reviews for a conference. An MPS system can help to keep both the authors
and the reviewers anonymous to the PC chair, yet allowing the latter to check
for CoI (Conflict of Interest). To this end, when submitting a paper, the author
signs the paper together with a commitment c to her identity id. The chair can
set up the system so that he can open the author’s affiliation z based on the
signature. If the paper is later accepted, the author can open c to reveal id and
claim authorship. Meanwhile, PC members can anonymously post comments
on the paper, yet disclose their affiliation z′ to the chair. The latter hence can
oversee if a CoI has occurred. Moreover, if a PC member would like to post a
negative comment on the paper, such as “I previously reviewed this paper and
the authors did not take my comments into account.”, then it should be backed
up with a legitimate witness w. Such a setting therefore can provide a much
higher level of privacy protection than contemporary conference management
systems.
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Having convinced ourselves that MPS is a highly interesting concept, we come
to the next steps: formal definitions and technical constructions for MPS.

Formalizations of MPS. To formalize MPS, we follow the setting of dynamic
group signatures [5,33], that was also employed in [42]. Namely, an MPS
scheme is a tuple of algorithms (Setup, 〈Join; Issue〉, Sign, Verify, Open).
The main differences here is that MPS additionally relies on signing functions
F ∈ F to control signability of (M,w, id) and disclosing functions G1, . . . , GK

to realize partial information disclosure. Correctness ensures that as long as
j = F (M,w, id) �= 0 where id is a joined user, then the resulting signature Σ
should be accepted by the verification algorithm and should be opened to Gj(id).
Regarding security, we demand two major requirements: privacy and unforge-
ability. For each of these notions, we consider two types of adversary.

Regarding privacy, the first type of adversary can corrupt everyone in the sys-
tem, except the opening authority. This adversary acts like the CCA2-anonymity
adversary in group signatures. It is given the secret key of the group manager
(GM) - who is in charge of user enrolments, as well as signing keys of all users. It
is not allowed to corrupt the opening authority (OA), but it can adaptively query
the opening oracle. Roughly speaking, we require that it should be infeasible for
this adversary to learn any information about the signer id beyond the fact that
M is signable for id. The second type of privacy adversary is even stronger, as it
is even allowed to corrupt the OA. For this adversary, we require that no addi-
tional information beyond Gj(id) can be learned. (Note that the OA can always
learn Gj(id)).

As for unforgeability, we would like to capture several requirements. First, it
should be infeasible for signer with identifier id to generate a valid signature Σ
associated with (M,F ) if F (M,w, id) = 0. Second, it should also be infeasible to
“mislead” the signature opening: if Open outputs op, then we expect that there
exists a registered id whose valid signing key was used by the signer as well as a
witness w such that op = GF (M,w,id)(id). Third, we demand that, no one, even a
coalition of a corrupted GM and a corrupted OA, can issue signatures on behalf
of honest user id. Note that the last two requirements resemble the notions of
full-traceability and non-frameability in dynamic group signatures [5,33].

However, formally defining unforgeability for MPS is a considerably non-
trivial task. The main reason is that the original algorithms in the system do
not provide a rigorous mechanism to determine whether a tuple (M�, F �, Σ�)
forms a valid forgery. In particular, invoking Open only provides us with a value
op, which does not allow us to answer crucial questions such as: (i) Is message
M� actually signable with respect to F � and some id? (ii) Is this the case that
op = GF (M�,w′,id′)(id

′) for some (id′, w′)? Therefore, for definitional purposes, we
would need to introduce certain auxiliary algorithms, namely, SimSetup and
Extract, that allow us to extract additional information, e.g., some identity id′

and some witness w′, so that we can meaningfully explain whether and how a
forgery has occurred. We note that, previous works such as [3,42] also had to
overcome similar situations.
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Generic Constructions. Next, to demonstrate the feasibility of building
MPS based on standard assumptions and in a modular manner, we provide
a generic construction. The construction makes use of common cryptographic
tools including ordinary signatures, public-key encryption, and non-interactive
zero-knowledge (NIZK) proofs/arguments with two (indistinguishable) modes:
a hiding mode with statistical zero-knowledge, and a binding mode with statis-
tical soundness and extractability. At a high level, the construction follows the
classical sign-then-encrypt-then-prove paradigm that is typically used for build-
ing group signatures [4,17]. The main difference here is that we do not encrypt
the signer’s identity id (as in group signatures) or “id or 0” (as in BiAS [42]).
Instead, we let the signer encrypt the function value op = Gj(id) and prove the
well-formedness of the resulting ciphertext - which includes proving knowledge of
(id, w) such that op = GF (M,w,id)(id) is contained in the ciphertext. While such
involved statements can be proved in zero-knowledge using well-known NIZK
systems for NP such as [29,49], the resulting proofs/arguments would likely have
sizes depending on the sizes of the circuits computing functions F,G1, . . . , GK .

Theoretically speaking, the dependency of the proof size (and hence, of the
signature size) can potentially be reduced by using advanced techniques such
as fully-homomorphic encryption (FHE) [25,42], for which the main idea is
to compute over encrypted data so that to (publicly) obtain a ciphertext that
will decrypt to GF (M,w,id)(id). Nevertheless, using FHEs in that manner would
require significant computation costs and/or a large number of initial ciphertexts,
and could end up being less efficient than the usual sign-then-encrypt-then-prove
approach. We also investigate the potential of efficiently constructing MPS based
on functional encryption (FE) [7], since the idea that decryption reveals a func-
tion of id is closely related to the spirit of FE. However, we have been unable to
progress in this direction: the main obstacle is to ensure that only Gj(id) can be
revealed via opening. For instance, giving the opening authority all the decryp-
tion keys corresponding to (G1, . . . , GK) would not work well, as the authority
may additionally learn the index j. We therefore stick with the usual design
approach, and leave efficient FHE-based and FE-based constructions of MPS as
appealing open questions.

Our sign-then-encrypt-then-prove construction can also have efficiency
advantage when we instantiate the system with concrete signing and disclos-
ing functions, the correct evaluations of which can be efficiently proved in zero-
knowledge. As illustrations, we provide a relatively efficient pairing-based con-
struction in the standard model, as well as a lattice-based scheme in the random
oracle model (ROM) that potentially enjoys post-quantum security. To be more
specific, in both instantiations, we consider G to be a family of linear transforma-
tion functions on id, which are sufficient for many of the motivating applications.

Pairing-Based Constructions in the Standard Model. We present an
instantiation of the generic construction under pairing groups. The core compo-
nents of the construction include the Groth-Sahai proof system [30], a structure-
preserving signature (SPS) scheme [35], the Boneh-Boyen (BB) signature [6] and
a tag-based PKE [34].
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We can apply the aforementioned tools to construct efficient group signatures
without random oracles, as shown in [28]. The main challenge to construct an
MPS is handling the disclosed identity information Gj(id). Different from group
signature, we need to ensure not only the encrypted Gj(id) matches the real id
but also the disclosing function Gj(·) is the correct function to be applied.

In our construction, we consider a message M ∈ G1 being signed to be a
Pedersen commitment [48] for some value v ∈ Zp. The disclosing function to be
applied when signing a message depends on the value of v. For simplicity, in our
instantiation, we consider 4 possible ranges [Aj−1, Aj) (1 ≤ j ≤ 4), and for each
range, we define a disclosing function Gj(id). When generating a signature on
M , the signer needs to compute a ciphertext ct of Gj(id) under the OA’s public
key opk and then prove that

M = COM(v) ∧ Aj−1 ≤ v < Aj ∧ ct = Enc(opk, Gj(id)).

To ensure the correct extraction of Gj(id), we need to extract the value v from
the NIZK proof. However, the Groth-Sahai proof does not support the extraction
of a random value in Zp. To address this issue, we convert the above statement
by utilizing the homomorphic property of the Pedersen commitment. Instead
of proving Aj ≤ v < Aj+1, we let the signer represent the value committed in
M/gAj , i.e., v −Aj , as a k-bit binary number, so that each bit can be extracted.
In addition, to extract the specific range, among all the possible ranges, the value
v actually falls in, we add two additional bits and express the proof statement
in the form of an OR-statement, where the additional bits point to the real
statement being proved.

Lattice-Based Constructions. While it is feasible to instantiate MPS in
the standard model via the lattice-based NIZK techniques of Peikert and
Shiehian [49], such a construction would expectedly be extremely inefficient. Here,
our goal is to build more efficient constructions in the ROM, where we can employ
concrete techniques for obtaining interactive ZK arguments for lattice-based rela-
tions, and then remove interaction via the Fiat-Shamir transformation [22].

Similar to our pairing-based construction, here we consider the setting with
1 signing function F and 4 disclosing functions. We also let message M be a
commitment to witness w and define j = F (M,w) ∈ [0, 4] based on integer
ranges. We consider 4 disclosing functions, and for each j ∈ [1, 4] define Gj

as a linear endomorphism over Z
k
2 . Specifically, let G1,G2,G3,G4 ∈ Z

k×k
2 be

public matrices, then let Gj(id) := Gj · id. This definition is quite general and
expressive, in the sense that it captures many natural ways to disclose partial
information about id. For instance, we can set G1 = 0k×k and G4 = Ik, so that
G1(id) = 0 (i.e., non-traceable case) and G4(id) = id (i.e., fully traceable case).
We can also easily define G2,G3 so that G2(id), G3(id) each reveals a specific
subset of coordinates of id.

Our construction is proven secure under the Learning With Errors (LWE)
and the Short Integer Solutions (SIS) assumptions. The construction employs
the following lattice-based building blocks: (i) the KTX SIS-based commitment
scheme [31]; (ii) the SIS-based signature scheme from [37], which admits efficient
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zero-knowledge arguments of knowledge of a valid message-signature pair; (iii)
an LWE-based CCA2-secure PKE scheme obtained from the GPV IBE [26]
and the CHK transformation [14]; (iv) a SIS-based one-way function [1]; and
(v) an interactive statistical ZK argument system that can handle relatively
sophisticated linear and quadratic relations with respect to two moduli (q1 = 2
and q2 > 2) and that is compatible with the signature scheme from [37]. Indeed,
we need to prove in ZK that a plaintext y, encrypted under the GPV IBE
scheme, is exactly the value Gj(id), which is the major technical difficulty in our
design process. To this end, we adapt the Stern-like [52] framework from [40] and
then, employ several dedicated techniques to capture the relation y = Gj(id) by
equations modulo 2, that are compatible with the framework. We note that,
there are more efficient systems, such as [9,20,21,55], however, they are not
known to be applicable to the two-moduli setting here.

Related Work. There has been a vast body of work on anonymity-oriented
signature systems. One of the most prominent examples is group signature [17],
in which registered users are allowed to anonymously sign any message, but are
fully traceable by the opening authority. Group signature thus can be viewed
as a special case of MPS with a single disclosing function G(id) = id. Ring sig-
nature [50], another well-known primitive, provides anonymity with no tracing,
yet can also be seen as an MPS system with G(id) = 0. Accountable ring signa-
ture [8,54] offers either the ring-signature functionality or the group-signature
functionality, but the two modes are separated and distinguishable. Bifurcated
anonymous signature (BiAS) [42], a recently proposed concept, simultaneously
provide both “ring-signature mode” and “group-signature mode”, as well as
indistinguishability between the two modes. BiAS is therefore a special case of
MPS, with two disclosing functions G1(id) = 0 and G2(id) = id (but no signing
functions).

There have also been various attempts to increase the privacy of signers
against the opening authorities in group signatures, such as traceable signa-
tures [32], group signatures with message-dependent opening [51], accountable
tracing signatures [36] or threshold group signatures [11]. In the reverse direc-
tion are proposals that aim to increase signers’ accountability, such as traceable
ring signatures [23], e-cash-related primitives [12,13] and traceable attribute-
based signatures [19]. However, in all these systems, the disclosing functions,
once activated, would reveal the full identity, i.e., G(id) = id.

Attribute-based signature [44] and predicate signature [2,46] provide fine-
grained controls on “who can sign”, while policy-based signature [3] and func-
tional signature [10] govern “which messages can be signed”. These controls of
signability can also be viewed as instances of MPS’s signing functions F (M,w, id)
(with restricted function range {0, 1}, rather than [0,K]).

As a summary, MPS does capture the appealing features of the primitives
listed above, and does further generalize and empower them in several dimen-
sions. In particular, the attractive generalization from all-or-nothing tracing of
signer’s identity to fine-grained disclosure of signer’s partial information could
have a great impact in this research area.
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At a high level, our conception of MPS based on group signature somewhat
resembles the revolutionizing conception of functional encryption [7] over ordi-
nary PKE, in the sense that the decrypting/opening procedure can only reveal
a function of the plaintext/identity, rather than the whole plaintext/identity.
However, from a more technical perspective, there could be some crucial differ-
ence: while it is known how to build group signatures from PKE in a modular
manner, the connection between MPS and functional encryption is still unclear.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
provide our definitions of MPS, describe its syntax and formalize the security
requirements. Then, in Sect. 3, we give a generic construction of MPS satisfying
our model, based on commonly used cryptographic primitives. A pairing-based
instantiation is then presented in Sect. 4. A lattice-based construction then fol-
lows in Sect. 5. We finally list several interesting open questions in Sect. 6.

Due to space restrictions, the reminders on the cryptographic building blocks
employed in our constructions and most of the security analyses have to be
deferred to the full version.

2 Multimodal Private Signatures

2.1 Syntax

Let λ ∈ N be a security parameter. Any Multimodal Private Signature system
is associated with natural numbers N,K ∈ poly(λ); a message space M; a wit-
ness space W; an identity space ID; an opening space OP; together with a
collection F of N signing functions and a collection of K disclosing functions
G = {G1, . . . , GK}, where

F : M × W × ID → [0,K], ∀F ∈ F ; Gj : ID → OP, ∀j ∈ [1,K].

The parties involving in an MPS system are similar to those of dynamic group
signatures [5,33], namely, a trusted authority (TA), a group manager (GM), an
opening authority (OA), signers and verifiers. The job of TA consists of setting
up the system, announcing the public parameters and providing a secret key for
each of GM and OA. Eligible signers are enrolled to the system via an interactive
protocol with GM - who records the registration information into a table. A
registered signer with personal identifiable information id ∈ ID can issue a
signature Σ on a message M ∈ M and with respect to function F ∈ F , if the
signer possesses a witness w ∈ W such that j = F (M,w, id) �= 0, i.e., j ∈ [1,K].
Here, the witness w is a context-dependent string that (intuitively) serves as
an evidence for the signability of id on M and w.r.t F , and how w comes into
the signer’s possession is outside of the model (see also discussions in [3,42]). A
legitimate signature Σ should be publicly verifiable by any verifier, and could
be opened by OA - who would then learn the value of Gj(id) ∈ OP.

Formally, an MPS scheme associated with (N,K, M,W, ID,OP,F ,G) is a
tupleofpolynomial-timealgorithms(Setup, 〈Join; Issue〉,Sign,Verify,Open),
defined as follows.
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Setup(λ) → (pp,msk, osk, reg). On input security parameter λ, this probabilis-
tic algorithm generates public parameters pp, a secret key msk for the Group
Manager (GM) and a secret key osk for the Opening Authority (OA). It also
initializes a registration table reg := ∅.

〈Join(pp); Issue(pp,msk, reg)〉. This is an interactive protocol run by a user who
wishes to become a group member and the GM. If it completes successfully,
then:

– Algorithm Join outputs user’s signing key skid = (id, secid, certid), where
id ∈ ID is a unique identifier, secid is a membership secret (that is known
only by the user), and certid is a membership certificate.

– Algorithm Issue stores the transcript of the protocol in the registration
table reg := reg ∪ transid.

Sign(pp, skid,M,w, F ) → Σ /⊥. Given pp, signing key skid = (id, secid, certid),
message M ∈ M, witness w ∈ W, and a signing function F ∈ F , this
probabilistic algorithm outputs a signature Σ or a symbol ⊥ indicating failure.

Verify(pp,M, F,Σ) → 1/0. This deterministic algorithm checks the validity of
the signature Σ on message M ∈ M with respect to signing function F ∈ F .
It outputs a bit indicating the validity or invalidity of Σ.

Open(pp, osk, Σ,M,F ) → op/⊥. This algorithm takes as inputs the public
parameters pp, the OA’s secret key osk, a signature Σ on message M ∈ M
with respect to signing function F ∈ F . It outputs either an opening result
op ∈ OP or symbol ⊥ to indicate failure.

2.2 Correctness and Security

The requirements that any Multimodal Private Signature system should satisfy
are correctness, privacy and unforgeability.
Correctness. Correctness of MPS guarantees that honest signers can join the
group, and when j = F (M,w, id) �= 0, signer id should be able to issue an
accepted signature Σ on message M and with respect to signing function F ,
and that Σ should be opened to the value Gj(id). More formally, correctness of
MPS is defined as follows.

Definition 1 (Correctness). An MPS system associated with (N,K, M,
W, ID,OP,F ,G), where G = {G1, . . . , GK}, is called correct, if for all λ ∈ N,
all (pp,msk, osk, reg) ← Setup(λ), the following conditions hold with overwhelm-
ing probability in λ.

1. If 〈Join(pp); Issue(pp,msk, reg)〉 is run by two honest parties, then it completes
successfully, and the signer obtains skid = (id, secid, certid).

2. If M ∈ M, F ∈ F , id ∈ ID, w ∈ W and if j = F (M,w, id) ∈ [1,K], then
algorithm Sign(pp, skid,M,w, F ) does not fail and
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Verify
(
pp,M, F,Sign(pp, skid,M,w, F )

)
= 1

Open
(
pp, osk,Sign(pp, skid,M,w, F ),M, F

)
= Gj(id).

Security. We require two main security properties for MPS, namely, privacy
and unforgeability. Informally, these properties capture the following intuitions.

Privacy roughly ensures that each party in the system can only learn the
piece of signer’s information which the signer intends to disclose. Given a valid
signature Σ ← Sign(pp, skid,M,w, F ), it should be infeasible for everyone -
excluding the OA - to learn anything about the signer’s private information,
apart from the fact that M is signable, i.e., j = F (M,w, id) �= 0. Furthermore,
even the OA should be able to additionally learn only the value Gj(id), and
should remain oblivious about j and id.

Unforgeability captures several requirements. First, it should be infeasible
for signer with identifier id to generate a valid signature Σ associated with (M,F )
if F (M,w, id) = 0. Second, it should also be infeasible to “mislead” the signature
opening: if Open(pp, osk, Σ,M,F ) outputs op ∈ OP, then we expect that there
exist a registered id whose valid signing key was used by the signer as well as a
witness w ∈ W such that op = GF (M,w,id)(id). Third, we demand that, without
the knowledge of membership secret secid, no one, even a coalition of corrupted
GM and OA, can issue signatures on behalf of honest user id. Note that the last
two requirements resemble the notions of full-traceability and non-frameability
in dynamic group signatures [5,33].

For each of the above security properties, we therefore will consider two types
of adversaries, whose goals and powers are related but different from each other.
For formalization, we will follow the definitional approach used by Libert et al.
[42], which was first put forward by Kiayias and Yung [33].

We will consider experiments in which the adversary interacts with a stateful
interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the adver-
sary invokes the various oracles available in the attack games. It is initialized
as stateI = (pp,msk, osk, reg), where reg is initially empty and later will
store all transcripts of 〈Join; Issue〉.

– SIGS: is a database of honestly generated signatures created by the signing
oracle. Each entry consists of a tuple (Σ, id,M,w, F ) indicating that signature
Σ was returned in response to a signing query involving identity id, message
M , witness w and signing function F .

– HUL: is an initially empty list of honest users introduced in the system by the
adversary acting as a dishonest GM. For these users, the adversary obtains
the transcript of 〈Join; Issue〉 but not the user’s membership secret.

– CUL: is an initially empty list of corrupted users that are introduced by the
adversary in the system in an execution of the join protocol.

In attack games, adversaries are granted access to the following oracles:

– OCU: allows the adversary to introduce users under its control in the group.
A 〈Join; Issue〉 protocol is run, in which the adversary plays the role of the
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prospective user. If the protocol successfully completes, a new user id is added
to CUL and the protocol transcript transid is added to reg.

– OHU: allows the adversary, acting as a corrupted GM, to introduce new honest
group members of its choice. A 〈Join; Issue〉 protocol is run, in which the
adversary plays the role of the GM. If the protocol successfully completes, a
new user id is added to HUL and protocol transcript transid is added to reg.
The interface stores the membership certificate certid and the membership
secret secid in a private part of stateI .

– Osig: given a tuple (M,w,F ) and an identifier id, the interface returns ⊥
if F (M,w, id) = 0 or if id �∈ HUL. Otherwise, the private area of stateI
must contain a certificate certid and a membership secret secid. The inter-
face outputs a signature Σ on behalf of user id and also updates SIGS ←
SIGS||(Σ, id,M,w, F ).

– Oopen: when this oracle is invoked on input of a valid triple (M,Σ,F ), the
interface runs algorithm Open using osk. When S is a set of tuples of the form
(M,Σ,F ), O¬S

open denotes a restricted oracle that only applies the opening
algorithm to tuples (M,Σ,F ) which are not in S.

– Oread and Owrite: are used by the adversary to read and write the content of
reg. At each invocation, Oread outputs the current records in reg. Meanwhile,
Owrite enables the adversary to modify reg as long as the table remains well-
formed.

Privacy. We say that an MPS scheme is private if it satisfies computational
privacy against Type-1-Adversary and computational/statistical privacy
against Type-2-Adversary.

Privacy Against Type-1 Adversary. This captures the power of the CCA2-
anonymity adversary in group signatures [4,5,33]. The adversary is allowed to
corrupt the GM, corrupt all users, and is allowed to make queries to various
oracles, including adaptive queries to the opening oracle.

In the challenge phase, adversary returns a function F � ∈ F , a message
M� ∈ M, together with two valid signing keys skid0 = (id0, secid0 , certid0), skid1 =
(id1, secid1 , certid1), as well as witnesses w0, w1 ∈ W. Here, by “valid signing keys”,
we mean that the keys have been formed correctly via certain legitimate execu-
tions of 〈Join; Issue〉, initiated by the adversary. Furthermore, for the challenge
to be meaningful, (M�, F �) should be signable by both id0 and id1, i.e.,

(
j0 = F �(M�, w0, id0) �= 0

)
∧

(
j1 = F �(M�, w1, id1) �= 0

)
.

Receiving a challenge signature Σ� ← Sign(pp, skidb
,M�, wb, F

�), where b
$←−

{0, 1}, the adversary can continue making non-trivial opening queries, i.e., those
that do not involve (M�, Σ�, F �). Eventually, it outputs a guess b′ ∈ {0, 1} and
wins if the guess is correct with non-negligible advantage.

Privacy Against Type-2 Adversary. This strong adversary can potentially
be computationally unbounded and can corrupt everyone in the system: GM,
all users and even OA. It is also allowed to make unrestricted queries to all
available oracles. Privacy against this adversary roughly demands that, apart
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from the opening result Gj(id) (and, obviously, the fact that the underlying
message-function pair is signable by id), the adversary can learn no additional
information about j or id.

In the challenge phase, when adversary returns (F �,M�, skid0 , w0, skid1 , w1),
we additionally require that Gj0(id0) = Gj1(id1), namely, the opening informa-
tion corresponding to both choices of the challenger must be the same. This
restriction is necessary (as the adversary knows osk) and also sufficient to cap-
ture the requirement that signature opening only reveals Gj(id).

1 (pp,msk, osk, reg = ∅) ← Setup(λ).

2 (F �, M�, skid0 , w0, skid1 , w1) ← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk).

3 (F �, M�, skid0 , w0, skid1 , w1) ← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk, osk).

4 If F � /∈ F , or M� /∈ M, or skid0 is not valid, or skid1 is not valid, return 0.

5 If j0 = F �(M�, w0, id0) = 0 or j1 = F �(M�, w1, id1) = 0, return 0.

6 If Gj0(id0) �= Gj1(id1), return 0.

7 b
$←− {0, 1}; Σ� ← Sign(pp, skidb , M�, wb, F

�).

8 b′ ← AOread,Owrite,OCU,OHU,Osig,O¬(M�,Σ�,F �)
open (Σ�).

9 b′ ← AOread,Owrite,OCU,OHU,Osig,Oopen(Σ�).

10 Return (b′ = b).

Fig. 1. Experiment Expprivacy−1
A (λ) (resp., Expprivacy−2

A (λ)) excluding the dotted (resp.,
solid) boxes.

The respective experiments, Expprivacy−1
A (λ) and Expprivacy−2

A (λ), are
described in Fig. 1. We hence come to the following formal definition of privacy
for MPS.

Definition 2 (Privacy). An MPS system associated with (N,K, M,W, ID,
OP,F ,G) is called private if the following conditions hold.

1. Computational privacy against Type-1 adversary: For any PPT adver-
sary A, one has

Advprivacy−1
A (λ) :=

∣
∣Pr[Expprivacy−1

A (λ) = 1] − 1/2
∣
∣ ∈ negl(λ).

2. Statistical (resp., computational) privacy against Type-2 adversary:
For any adversary A (resp., any PPT adversary A), one has

Advprivacy−2
A (λ) :=

∣
∣Pr[Expprivacy−2

A (λ) = 1] − 1/2
∣
∣ ∈ negl(λ).

Unforgeability. Defining unforgeability for MPS is a considerably non-trivial
task. The main reason is that the original algorithms in the system do not provide
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a rigorous mechanism to determine whether a tuple (M�, F �, Σ�) forms a valid
forgery. Therefore, for definitional purposes, we would need to introduce certain
auxiliary algorithms that allow us to extract additional information, e.g., some
identity id′ and some witness w′, so that we can meaningfully explain whether
and how a forgery has occurred.

To that end, we assume the existence of the following two auxiliary algo-
rithms, namely, SimSetup and Extract.

SimSetup(λ) Given the security parameter λ, this algorithm generates simu-
lated (pp,msk, osk, reg), together with an extraction trapdoor τext.

Extract
(
τext, (pp, Σ,M,F )

)
Given trapdoor τext, a valid signature Σ on mes-

sage M and with respect to signing function F , i.e., Verify(pp,M, F,Σ) = 1,
this extraction algorithm returns a pair ζ = (id′, w′) ∈ ID × W.

Naturally, we demand that the outputs of SimSetup and Setup are indis-
tinguishable to the adversary. Next, we require that (id′, w′) outputted by
Extract is compatible with the value op outputted by Open. Specifically, w′

should be a valid witness for the signability of identity id′ w.r.t. (M�, F �), i.e.,
j′ = F (M�, w′, id′) �= 0, and, furthermore, Gj′(id′) should coincide with op. For-
mally, we define extractability as a “supporting” security property for unforge-
ability. The definition uses experiment Expextract

A (λ) described in Fig. 2.

Definition 3 (Extractability). An MPS system with auxiliary algorithms
SimSetup, Extract is called extractable if the following conditions hold.

1. The distribution of simulated (pp,msk, osk, reg) ← SimSetup(λ) is compu-
tationally close to the distribution of a real output of Setup.

2. For any PPT adversary A involving in the experiment of Fig. 2, the advantage
Advextract

A (λ) := Pr
[
Expextract

A (λ) = 1
]
is negligible in λ.

1 (pp,msk, osk, reg = ∅), τext
) ← SimSetup(λ).

2 (F, M, Σ) ← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk, osk),

3 If F /∈ F , or M /∈ M, or Verify(pp, M, F, Σ) = 0, return 0.

4 (id′, w′) ← Extract(τext, (pp, Σ, M, F )); j′ = F (M, w′, id′);

5 If j′ = 0, return 1.
6 op ← Open(pp, osk, Σ, M, F );

7 If Gj′(id′) �= op, return 1.

8 Return 0.

Fig. 2. Experiment Expextract
A (λ).

Now, we are ready for the definitions of unforgeability. An MPS scheme is
said to satisfy unforgeability if it is extractable and has computational security
against Type-1-Forger and Type-2-Forger.
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1 ((pp,msk, osk, reg = ∅), τext) ← SimSetup(λ).

2 (M�, F �, Σ�) ← AOread,Owrite,OCU,OHU,Osig,Oopen(pp, osk).

3 (M�, F �, Σ�) ← AOread,Owrite,OCU,OHU,Osig,Oopen(pp, osk,msk).

4 If F � /∈ F , or M� /∈ M, or Verify(pp, M�, F �, Σ�) = 0, return 0.

5 (id′, ·) ← Extract(τext, (pp, Σ�, M�, F �)).

6 If (Σ�, id′, M�, ·, F �) ∈ SIGS, return 0.

7 If id′ /∈ CUL, return 1.

8 If id′ ∈ HUL, return 1.

9 Return 0.

Fig. 3. Experiment Expunforge−1
A (λ) (resp., Expunforge−2

A (λ)) excluding the dotted (resp.,
solid) boxes.

– Type-1-Forger roughly captures the traceability adversary in group signatures.
It can fully corrupt the OA, corrupt a number of users and can make various
oracle queries. Its goal is to output a valid forgery (Σ�,M�, F �) such that the
extraction points to some identity id′ which it has not previously corrupted.

– Type-2-Forger is similar to the non-frameability adversary in group signatures,
whose goal is to point the opening/extraction to an innocent user. The adver-
sary can corrupt everyone else in the system, i.e., GM, OA and all other users.
It succeeds if it can output a valid forgery that is extracted to some honest
identity id′.

In Fig. 3, we formalize the respective security experiments, i.e.,
Expunforge−1

A (λ) and Expunforge−2
A (λ)). The formal definition of unforgeability fol-

lows.

Definition 4 (Unforgeability). An MPS system associated is called unforge-
able if it satisfies extractability, and for any PPT adversary A, one has

Advunforge−1
A (λ) := Pr[Expunforge−1

A (λ) = 1] ∈ negl(λ);

Advunforge−2
A (λ) := Pr[Expunforge−2

A (λ) = 1] ∈ negl(λ).

3 Generic Constructions

In this section, we present a generic construction of MPS for arbitrary signing
functions F ’s and arbitrary disclosing functions G1, . . . , GK . The construction
satisfies the correctness and security properties defined in Sect. 2, and employs
cryptographic building blocks that are commonly used for designing advanced
privacy-preserving primitives: ordinary (one-time) signatures, public-key encryp-
tion and non-interactive zero-knowledge (NIZK) proofs/arguments for some
NP-relations. For the latter ingredient, we additionally require the dual-mode
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property, i.e., we will use a NIZK system that operates in two modes: hiding
mode (for the real scheme and simulation) and binding mode (for simulated
setup and extraction).

Our construction can serve as a proof of feasibility of designing MPS based on
standard assumptions and in a modular manner. In particular, it can be realized
in the standard model from pairings and from lattices, using the techniques
for obtaining NIZKs for NP by Groth-Ostrovsky-Sahai [29] and by Peikert-
Shiehian [49], respectively.

At a high level, the construction follows the classical sign-then-encrypt-then-
prove paradigm. The main difference here is that we do not encrypt the signer’s
identity id (as in group signatures) or “id or 0” (as in BiAS [42]). Instead, we let
the signer encrypt the function value op = Gj(id) and prove the well-formedness
of the resulting ciphertext - which includes proving knowledge of (id, w) such
that op = GF (M,w,id)(id) is contained in the ciphertext. While such involved
statements can be proved in zero-knowledge using well-known NIZK systems
for NP such as [29,49], the resulting proofs/arguments would likely have sizes
depending on the sizes of the circuits computing functions F,G1, . . . , GK .

Our construction can also have efficiency advantage when we instantiate the
system with concrete signing and disclosing functions, the correct evaluations of
which can be efficiently proved in zero-knowledge. As illustrations, we will later
present relatively efficient pairing-based and lattice-based constructions of MPS
for some specific functions F,G1, . . . , GK , in Sect. 4 and Sect. 5, respectively.

In the following, we will give a technical overview of our generic construction
in Sect. 3.1, then describe it in detail in Sect. 3.2 and provide its analyses in
Sect. 3.3.

3.1 Technical Overview

The construction employs the following technical building blocks.

– A secure digital signature scheme S = (S.Kg,S.Sign,S.Ver);
– A secure one-time signature scheme OT S = (O.Kg,O.Sign,O.Ver);
– A secure public-key encryption scheme E = (E.Kg,E.Enc,E.Dec);
– A dual-mode NIZK argument system NIZK = (ZK.Setup,ZK.ExtSetup,

ZK.Prove,ZK.Ver,ZK.Sim,ZK.Extr) for the NP-relation R defined below.

The main ideas underlying the construction are as follows. The GM is asso-
ciated with a signing-verification key-pair (msk,mpk) for S, while the OA is
associated with a decryption-encryption key-pair (osk, opk) for E . When joining,
a perspective user generates a signature key-pair (secid, upk), sends upk together
with its personal identifiable information id to GM. The latter certifies (id ‖ upk)
in the form of a signature certid. When signing, the signer first generates a
one-time signature key-pair (otk, ovk), uses its secret key secid to certify ovk as
signature s. Then it evaluates j = F (M,w, id) and encrypts Gj(id) under opk
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with randomness r, obtaining ciphertext c. The signer then generates a NIZK
argument π for the relation R defined as follows

R :=
{ (

mpk, opk, c,M, F, ovk
)
,
(
id, upk, certid, s, w, j, r

)
:

(S.Ver(upk, ovk, s) = 1) ∧ (S.Ver(mpk, (id ‖ upk), certid) = 1) ∧
(F (M,w, id) = j) ∧ (j ∈ [1,K]) ∧ (c = E.Enc(opk, Gj(id); r))

}
.

Next, the signer uses otk to one-time sign (M,F, c, π) as sig, and outputs the
final signature as Σ = (ovk, c, π, sig). Verification of Σ basically consists of
verifying sig and π. Meanwhile, opening of Σ is done via decrypting c with key
osk.

Roughly speaking, the correctness of the obtained MPS scheme is based
on the correctness/completeness of the underlying building blocks. Privacy is
achieved as long as E is IND-CCA2 secure and NIZK has the ZK property.
Meanwhile, unforgeability is based on the soundness of NIZK, the unforgeabil-
ity of S and the strong unforgeability of OT S.

3.2 Description

Let λ ∈ N be a security parameter. Our generic construction of an MPS system
associated with (N,K, M,W, ID,OP,F ,G) works as follows.

Setup(λ) → (pp,msk, osk, reg). On input security parameter λ, this probabilis-
tic algorithm performs the following steps:
1. Run S.Kg(λ) to obtain a signing-verification key-pair (msk,mpk).
2. Run E.Kg(λ) to obtain an decryption-encryption key-pair (osk, opk).
3. Run ZK.Setup(λ) to obtain a common reference string crs (and a simula-

tion trapdoor τsim - which is discarded) for the NIZK system.
Then, it sets pp := (crs,mpk, opk), GM’s secret key as msk and OA’s secret
key as osk, and initializes reg := ∅.

〈Join(pp); Issue(pp,msk, reg)〉. A user with personal identifiable informa-
tion id, who would like to join the group, interacts with the GM as follows.
1. User runs S.Kg(λ) to obtain a signing-verification key-pair (usk, upk).

Then it generates sigid ← S.Sign(usk, (id‖upk)), and sends (id, upk, sigid)
to GM.

2. GM verifies that S.Ver(upk, (id‖upk), sigid) = 1, and checks that id has
not been registered in table reg. If any of these conditions does not hold,
GM aborts. Otherwise, GM issues a signature σid ← S.Sign(msk, (id‖upk)),
sends σid to the user, sets transid := (id, upk, sigid, σid) and updates the
registration table reg := reg ∪ transid.

3. The user verifies that S.Ver(mpk, id‖upk, σid) = 1, and aborts if it is not
the case. Otherwise, user sets skid = (id, secid, certid), where secid = usk
and certid = (σid, upk).

Sign(pp, skid,M,w, F ) → Σ/⊥. Let skid = (id, secid, certid), where secid = usk
and certid = (σid, upk). The signing algorithm then proceeds as follows.
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1. Compute j = F (M,w, id) ∈ [0,K]. Return ⊥ if j = 0.
2. Generate a one-time signature key-pair (otk, ovk) ← O.Kg(λ).
3. Use usk to certify ovk as signature s ← S.Sign(usk, ovk).
4. Encrypt Gj(id) under public key opk as c = E.Enc(opk, Gj(id); r), where r

is the encryption randomness.
5. Generate an NIZK proof

π ← ZK.Prove
(
crs,

(
(mpk, opk, c,M, F, ovk), (id, upk, certid, s, w, j, r)

))

to prove that
(
(mpk, opk, c,M, F, ovk), (id, certid, s, w, j, r)

)
∈ R, where R

is the NP-relation defined above.
6. Use otk to issue a one-time signature sig ← O.Sign(otk, (M,F, c, π)).
7. Return the signature Σ := (ovk, c, π, sig).

Verify(pp,M, F,Σ) → 0/1. Given a purported signature Σ = (ovk, c, π, sig) on
message M and with respect to signing function F , the verification algorithm
proceeds as follows.
1. If O.Ver(ovk, (M,F, c, π), sig) = 0, then return 0.
2. If ZK.Ver

(
crs, (mpk, opk, c,M, F, ovk), π

)
= 0, then return 0.

3. Return 1.
Open(pp, osk, Σ,M,F ). Given Σ = (ovk, c, π, sig), the opening algorithm pro-

ceeds as follows.
1. Use osk to decrypt c and obtain z ← E.Dec(osk, c) ∈ OP ∪ {⊥}.
2. Return ⊥ if z = ⊥. Otherwise, return op = z ∈ OP.

Auxiliary Algorithms. Let us describe the auxiliary algorithms SimSetup
and Extract associated with the above MPS system, which are required by the
security model and are helpful for the security analyses.

SimSetup(λ). This algorithm is almost the same as the real setup algorithm
presented above. The only difference is that, at Step 3, instead of generating
crs ← ZK.Setup(λ), one runs ZK.ExtSetup(λ) to obtain a common reference
string crs together with an extraction trapdoor τext. The simulated public
parameters are then set as pp = (crs,mpk, opk).

Extract
(
τext, (pp, Σ,M,F )

)
. Given the extraction trapdoor τext, a valid sig-

nature Σ = (ovk, c, π, sig) on message M and with respect to signing
function F , this algorithm runs ZK.Extr(crs, τext, π) to obtain a witness
(id′, cert′id, s

′, w′, j′, r′) for the relation R. It then outputs ζ = (id′, w′).

3.3 Analyses

Theorem 1 states that the correctness and security properties of the presented
MPS system can be based on the completeness/correctness and security features
of the employed cryptographic building blocks.
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Theorem 1. Assume that S is an unforgeable signature scheme under adap-
tive chosen-message attacks, OT S is a strongly unforgeable one-time signature
scheme, E is an IND-CCA2-secure public-key encryption scheme and NIZK
is a dual-model non-interactive zero-knowledge argument system for relation R.
Then, the described MPS system satisfies correctness, privacy and unforgeability.

We prove Theorem 1 via Lemma 1–6. The proofs of Lemma 2–6 are provided
in the full version.

Lemma 1 (Correctness). If S, OT S and E are correct, and NIZK is com-
plete, then the presented MPS scheme satisfies correctness.

Proof. The proof is straightforward. It follows from the correctness of S that

S.Ver(upk, id,S.Sign(usk, id)) = 1, S.Ver(mpk, id,S.Sign(msk, id)) = 1.

Hence, an honest signer should be able to enrol in the group and obtain a legit-
imate signing key skid = (id, secid, certid).

Next, thanks to the correctness of S as well as the completeness of NIZK,
the signer should be able to obtain a valid witness (id, certid, s, w, j, r) for the
relation R, and proof π should be accepted by ZK.Ver. Furthermore, one-time
signature sig should pass the verification algorithm O.Ver. Therefore, as long as
j = F (M,w, id) �= 0, one should have Verify(pp,M, F,Σ) = 1.

Finally, the correctness of E guarantees that E.Dec(osk,E.Enc(opk, Gj(id), r)))
returns Gj(id), and so does Open(pp, osk, Σ,M,F ). ��

Lemma 2 (Type-1 Privacy). The described MPS system satisfies computa-
tional privacy against Type-1 adversary if (i) E has IND-CCA2 security; (ii)
NIZK has (computational/statistical) zero-knowledge property.

Lemma 3 (Type-2 Privacy). The described MPS system satisfies statistical
(resp. computational) privacy against Type-2 adversary if NIZK has statistical
(resp. computational) zero-knowledge property.

Lemma 4 (Extractability). The described MPS scheme is extractable if
NIZK has CRS indistinguishability and extractability in the binding mode, and
if E is correct.

Lemma 5 (Type-1 Unforgeability). The described MPS system satisfies
unforgeability against Type-1 forger if (i) the conditions of Lemma 4 hold; (ii) S
is unforgeable under chosen-message attacks; (iii) OT S is a strongly unforgeable
one-time signature; (iv) NIZK is computationally sound.

Lemma 6 (Type-2 Unforgeability). The described MPS system satisfies
unforgeability against Type-2 forger if (i) the conditions of Lemma 4 hold; (ii) S
is unforgeable under chosen-message attacks; (iii) OT S is a strongly unforgeable
one-time signature; (iv) NIZK is computationally sound.
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4 A Construction from Pairings

4.1 Notations and Parameters

Let (ê : G1 × G1 → GT ) denote a non-degenerate bilinear map over pairing
groups G1 and GT of prime order p and G

∗
1 := G1\{1}. Let g, h be random

generators of G1. Our construction assumes the following parameter spaces:

– an identity space ID = (G∗
1)

2 where each user identity is encoded as id =
(id1, id2) ∈ (G∗

1)
2;

– a user public key space UPK = G
∗
1;

– a message space M = G1 for the signers where each M ∈ M is a Pedersen
commitment for an integer value w1 ∈ Zp with randomness w2 ∈ Zp;

– a witness space W = Z
2
p where a witness w = (w1, w2) for M ∈ M consists

of the opening for M ;
– a function index space J = [1, 4];
– the valid ranges of w1, denoted by [Ai−1, Ai) for (1 ≤ i ≤ 4);
– a signing function F defined as

F (M,w = (w1, w2)) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 iff (M = gw1hw2 ∧ A0 ≤ w1 < A1)
2 iff (M = gw1hw2 ∧ A1 ≤ w1 < A2)
3 iff (M = gw1hw2 ∧ A2 ≤ w1 < A3)
4 iff (M = gw1hw2 ∧ A3 ≤ w1 < A4)
0 otherwise

– an opening space OP = G
2
1;

– a family of disclosing functions G = {Gj : (G∗
1)

2 → G
2
1} (j ∈ [1, 4]) such that

for an identity id = (id1, id2) ∈ (G∗
1)

2

G1(id) = (1G1 , 1G1 ), G2(id) = (1G1 , id2), G3(id) = (id1, 1G1 ), G4(id) = (id1, id2).

4.2 Technical Overview

In our pairing-based MPS, a message M ∈ G1 is in the form of a Pedersen
commitment [48], i.e., M = gvhr where v represents a value (e.g., a transaction
amount) and r is the randomness. The construction follows the same paradigm
as the generic construction, but we change/adapt some of the building blocks by
following the design of an efficient group signature scheme by Groth [28], which
makes the construction more efficient. Specifically, we apply the following tools
in our construction:

– The structure-preserving digital signature scheme by Kiltz et al. [35] SPS =
(SPS.Kg,SPS.Sign,SPS.Ver) with message space ID × UPK = (G∗

1)
3 and

signature space G
10
1 .
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– The (weak) Boneh-Boyen (BB) digital signature scheme [6] BBS = (BBS.Kg,
BBS.Sign,BBS.Ver) with public key space UPK = G

∗
1 and signature space

G
∗
1.

– The Pedersen commitment scheme [48] CM = (CM.Setup,CM.Cmt,CM.Open,
CM.Ver) with witness space W = Z

2
p and commitment space G1.

– The tag-based PKE by Kiltz [34] E = (E.Kg,E.Enc,E.Ver,E.Dec) with mes-
sage space G1 and ciphertext space G

5
1. Note that E.Ver allows public verifi-

cation of a ciphertext w.r.t. an encryption tag.
– The DLIN-based instantiation of the Groth-Sahai proof system [30]

GS = (GS.Setup,GS.Prove,GS.Ver,GS.SimSetup,GS.SimProve,GS.Extract)
which includes two DLIN-based commitment schemes GSCMi =
(GSCMi.Cmt,GSCMi. Open,GSCMi.Ver) i ∈ {1, 2} for committing elements
in G1 and Zp, respectively. Both commitments use crsGS ← GS.Setup(λ) as
the commitment key.

– A strongly unforgeable one-time digital signature scheme OT S =
(O.Kg,O.Sign, O.Ver).

In the center of our construction is the Groth-Sahai Proof system [30] that
enables efficient non-interactive proofs for statements expressed in the forms of
pairing product equations, multi-exponentiation equations and quadratic equa-
tions. To be compatible with Groth-Sahai proof, we adopt a Structure Preserv-
ing Signature [35] for the issuing of certid w.r.t. (id, upk) for a signer. To sign a
message, the signer randomly generates a one-time key pair (ovk, otk), certifies
ovk using usk, and employs the Groth-Sahai Proof system to prove that there
is a valid certification chain mpk → upk → ovk, without revealing id, upk or
certid. The one-time key is used to generate the final signature. However, since
the Groth-Sahai Proof system does not have NIZK for general pairing product
equations, we replace the NIZK proof by NIWI proof, as in [28].

Proving Gj(id). The main difference between our construction and [28] is in
dealing with the disclosed identity information Gj(id). In [28], the disclosing
function is the identity function, i.e., G(id) = id, so the opening authority OA’s
secret key is the same as the extraction key for the Groth-Sahai proof system
in the binding mode. In MPS, we need to separate OA’s secret key from the
extraction key as even the OA should not learn more than Gj(id). Moreover,
we need to ensure extractability, meaning that the correct identity information
Gj(id) is encrypted by the signer and j = F (M,w) ∈ [1, 4] is correctly computed
based on the witness w of the message M .

The Groth-Sahai Proof system allows perfect extraction of committed group
elements in G1, but not arbitrary elements in Zp. To achieve extractability in
MPS, we need to ensure the correct extraction of not only Gj(id) but also j =
F (M,w) where w ∈ Zp. Meanwhile, we observe that if a committed value in Zp

is a binary value, then we can also perfectly extract it from the commitment.
This motivates us to convert the witness w into binary form, and prove in zero-
knowledge that j = F (M,w).

To do so, we first observe that the Pedersen commitment is homomorphic.
Hence, to prove that the witness v of a message M = gvhr falls in a range,
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say [Ai, Ai+1) where Ai+1 − Ai = 2k, we only need to prove that M/gAi is
a correct commitment for v − Ai ∈ [0, 2k). To do so, we follow the standard
range proof approach by converting v−Ai into a k-bit binary string and proving
that each position has a binary value. We then employ additional bits (2 bits in
our concrete instantiation in this paper) to specify which range, among all the
possible ranges, the value v actually falls in. This is achieved by expressing the
proof statement in the form of an OR-proof, where the additional bits point to
the real statement being proved.

As a result, we convert the NIZK proof for Gj(id) into a collection of multi-
exponentiation equations in G1 and quadratic equations (for binary values) in
Zp, which can be proved using the Groth-Sahai Proof system while achieving
extractability.

It is worth noting that the above approach allows us to support a larger iden-
tity space, e.g., id ∈ (G∗

1)
n, accompanied with a variety of disclosing functions.

Due to the space limit, the details are presented in the full version.

5 A Construction from Lattices

In this section, we present a concrete construction of MPS which is proven secure
under lattice-based assumptions in the random oracle model (ROM).

Let integers n,m, q, k = 3n�log q�, L and 0 < A1 < A2 < A3 < 2L − 1 be the
system parameters. Let (C1,C2) ∈ Z

n×L
q × Z

n×m
q be a commitment key for the

KTX commitment scheme [31], which is statistically hiding and computationally
binding under the SIS assumption.

Similar to the pairing-based construction presented in Sect. 4, this lattice-
based scheme is also associated with N = 1 signing function F and K = 4 disclos-
ing functions G1, . . . , G4, and also consider the setting where m = com(w1,w2),
with m is a message to be signed, and w = (w1,w2) is a witness.

Let M = Z
n
q , W = {0, 1}L ×{0, 1}m, ID = OP = {0, 1}k. Define the signing

function F : M × W → [0, 4] as follows.

F (m,w) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if m �= C1 · w1 + C2 · w2 mod q, else
1 if (0 ≤ W1 < A1), else
2 if (A1 ≤ W1 < A2), else
3 if (A2 ≤ W1 < A3), else
4 if (A3 ≤ W1 ≤ 2L − 1),

where W1 = int(w1) - the integer in [0, 2L − 1] whose binary representation is
w1.

Disclosing Functions. For each j ∈ [1, 4] define Gj as a linear endomorphism
over Z

k
2 . Specifically, let G1,G2,G3,G4 ∈ Z

k×k
2 be public matrices, then let

Gj(id) = Gj · id.
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The definition is quite general and expressive, in the sense that it captures
many natural ways to disclose partial information about id. For instance, we can
set G1 = 0k×k and G4 = Ik, so that G1(id) = 0 (i.e., non-traceable case) and
G4(id) = id (i.e., fully traceable case). We can also easily define G2,G3 so that
G2(id), G3(id) each reveals a specific subset of coordinates of id.

5.1 Technical Overview

While it is feasible to instantiate MPS in the standard model via the lattice-
based NIZK techniques of Peikert and Shiehian [49], such a construction would
expectedly be extremely inefficient. Here, our goal is to build more efficient con-
structions in the ROM, where we can employ concrete techniques for obtaining
interactive ZK arguments for lattice-based relations, and then remove interaction
via the Fiat-Shamir transformation [22].

Regarding lattice-based building blocks, apart from the KTX SIS-based com-
mitment scheme [31] which we mentioned above, we employ the following ingre-
dients:

– The SIS-based signature scheme from [37], which admits efficient zero-
knowledge arguments of knowledge of a valid message-signature pair. This
signature scheme will be used by the GM to issue users’ certificates.

– An LWE-based CCA2-secure PKE scheme obtained from the GPV IBE [26]
and the CHK transformation [14]. This encryption scheme will be used to
encrypt Gj(id), and ciphertexts will be decryptable by the OA.

– A SIS-based one-way function [1]. In the ROM, since the NIZK argument π
included in Σ can be viewed as a signature of knowledge [15] of the signer’s
membership secret secid, we can slightly depart from the generic construction
of Sect. 3, by equipping users with a one-way function rather than an ordinary
signature scheme.

– We also need a statistical ZK argument system that can handle relatively
sophisticated linear and quadratic relations with respect to two moduli (q1 =
2 and q2 > 2) and that is compatible with the signature scheme from [37]. To
this end, we choose to employ the Stern-like [52] framework from [40].

Proving in ZK that y = Gj(id). The major technical difficulty that we have
to overcome is to prove in ZK that a plaintext y, encrypted under the GPV IBE
scheme, is exactly the value Gj(id). To this end, we first would need to show
that the index j = F (m,w) ∈ [1, 4] is computed correctly. Our techniques are
as follows.

We first “extract” the position of W1 = int(w1) ∈ [0, 2L − 1] relative to
A1, A2, A3 by defining bits b1, b2, b3 ∈ {0, 1} such that

0 ≤ W1 < A1 ⇐⇒ (b1, b2, b3) = (0, 0, 0) ⇐⇒ (1 − b1)(1 − b2)(1 − b3) = 1;

A1 ≤ W1 < A2 ⇐⇒ (b1, b2, b3) = (1, 0, 0) ⇐⇒ b1(1 − b2)(1 − b3) = 1;

A2 ≤ W1 < A3 ⇐⇒ (b1, b2, b3) = (1, 1, 0) ⇐⇒ b1b2(1 − b3) = 1;

A3 ≤ W1 < 2L − 1 ⇐⇒ (b1, b2, b3) = (1, 1, 1) ⇐⇒ b1b2b3 = 1.
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This can be realized by viewing inequalities under the lens of integer addi-
tions, in the following way. Suppose that there exist (non-negative) L-bit integers
Y0, Y1, Z0, Z1, T0, T1 and bits b1, b2, b3 such that:

W1 + (1 − b1) · Y1 + (1 − b1) = A1 + b1 · Y0,

W1 + (1 − b2) · Z1 + (1 − b2) = A2 + b2 · Z0, (1)
W1 + (1 − b3) · T1 + (1 − b3) = A3 + b3 · Y0.

Observe that, when b1 = 0, we have W1 + Y1 + 1 = A1, implying that
W1 < A1 since Y1 ≥ 0. On the other hand, if b1 = 1, we have W1 = A1 + Y0,
and as Y0 ≥ 0, we can deduce that W1 ≥ A1. In other words, b1 captures the
predicate (W1 ≥ A1). Similarly, we have b2 = (W1 ≥ A2) and b3 = (W1 ≥ A3).

Next, let us consider bits f0, f1 ∈ {0, 1} such that

y = Gj(id) = Gj · id = (1 − f0)(1 − f1) · G1 · id + (1 − f0)f1 · G2 · id
+ f0 · (1 − f1) · G3 · id + f0 · f1 · G4 · id mod 2. (2)

In other words, f0, f1 are such that j = 1, 2, 3, 4 if and only if (f0, f1) =
(0, 0), (0, 1), (1, 0), (1, 1), respectively.

Now, observe that f0, f1 and b1, b2, b3 are connected via the following equation:

(f0, f1) = (1 − b1)(1 − b2)(1 − b3) · (0, 0) + b1(1 − b2)(1 − b3) · (0, 1)
+ b1b2(1 − b3) · (1, 0) + b1b2b3 · (1, 1) mod 2. (3)

As a summary of the above ideas, we have reduced the problem of proving that
y = Gj(id) to the equivalent problem of proving knowledge of bits b1, b2, b3, f0, f1
and L-bit integers Y0, Y1, Z0, Z1, T0, T1 satisfying equations in (1), (2) and (3).

We note that equations in (1) can be proved in zero-knowledge using the
techniques from [41], which, in a nutshell, translate integer additions into binary
adders with carries, and hence obtain a system of equations modulo 2. Combining
with equations in (2) and (3), we can obtain an equation of the form

M2 · p2 = u2 mod 2, (4)

where matrix M2 and vector u2 are public, and p2 is a binary vector
that encodes all the information of vector id, bits b1, b2, b3, f0, f1 and integers
Y0, Y1, Z0, Z1, T0, T1.

The Main ZK Argument System. Our construction will make use of a ZK
argument system that allows to prove knowledge of a tuple

(
id, z,x, certid =

(τ,v, s),w = (w1,w2),y, (r, e1, e2)
)

satisfying the following conditions:

(i) (z,x) is a preimage-image pair of a SIS-based one-way function;
(ii) certid = (τ,v, s) is a signature on message (id‖x), with respect to the sig-

nature scheme from [37];
(iii) A GPV IBE ciphertext is a correct encryption of plaintext y, with random-

ness (r, e1, e2);
(iv) m is a KTX commitment of w1 with randomness w2;
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(v) y = Gj(id), where j = F (m,w) ∈ [1, 4].

Recall that item (v) can be handled using the ideas we discussed above.
As for (i), (ii), (iii), (iv) we can use the techniques from [37,43] to obtain a
vector p1 that has coordinates in {−1, 0, 1} and that encodes the information of
(z,x, τ,v, s, id, r, e1, e2,w1,w2), and that satisfies an equation of the form

M1 · p1 = u1 mod q, (5)

where matrix M1 and vector u1 are public.
Now, our task is to prove that Eqs. (4) and (5) hold for the constructed

vectors p1 and p2, both of which contain encoded information of id. To this end,
we can employ dedicated Stern-like permuting techniques [38,39] to reduce the
underlying relation to an instance of the abstract relation considered in [40]. (An
adaptation of [40], where there are two moduli q1 = q and q2 = 2, is presented in
detail in the full version.) As a result, we can obtain a statistical ZK argument
of knowledge for the considered relation.

5.2 Description of the Scheme

The scheme can be seen as an extension of the dynamic GS from [37]. The scheme
works with lattice parameter n ∈ O(λ), parameter � = O(log n), prime modulus
q = Õ(n4), dimensions m = 2n�log q�, k = 3n�log q�, L = O(n), Gaussian
parameter σ = Ω(

√
n log q log n) and infinity norm bounds β = σω(log m). Let

bin(·) be a function mapping vectors over Zq to their binary representations.
The main ZK protocol of the scheme is for the relation Rlmps, defined below.

Definition 5. Define

Rlmps =
{ ((

A, {Aj}�
j=0,D,D0,D1,u,F,C1,C2,m, {Gj}4j=1,B,G, c1, c2

)
,

(
id, z,x, certid = (τ,v, s),w = (w1,w2),y, (r, e1, e2)

))}

as a relation, where

– A,A0,A1, . . . ,A�,D,B,F,C2 ∈ Z
n×m
q , D0,D1 ∈ Z

2n×2m
q , C1 ∈ Z

n×L
q , G ∈

Z
n×k
q , u ∈ Z

n
q , c1 ∈ Z

m
q , c2 ∈ Z

k
q , G1, . . . ,G4 ∈ Z

k×k
2 .

– id,y ∈ {0, 1}k, z ∈ {0, 1}m, x ∈ {0, 1}n�log q�, τ ∈ {0, 1}�, v, s ∈ [−β, β]2m,
w1 ∈ {0, 1}L, w2 ∈ {0, 1}m, r ∈ [−B,B]n, e1 ∈ [−B,B]m, e2 ∈ [−B,B]k.

– x = bin(F · z mod q).
–

[
A | A0 +

∑�
j=1 τj · Aj

]
· v = u + D · bin(D0 · s + D1 · (id‖x)) mod q.

– c1 = B� · r + e1 mod q, c2 = G� · r + e2 + �q/2� · y mod q.
– m = C1 · w1 + C2 · w2 mod q.
– y = Gj(id).



Multimodal Private Signatures 817

Using the techniques discussed above, we can obtain a statistical ZK argu-
ment for Rlmps. The protocol, has soundness error 2/3. It is repeated κ = O(λ)
times in parallel to make the error negligibly small, and then made non-
interactive via the Fiat-Shamir heuristic. Our lattice-based MPS scheme works
as follows.

Setup(λ) → (pp,msk, osk, reg). This algorithm performs the following steps.
1. Generate verification key

(A,A0,A1, . . . ,A�,D,D0,D1,u) ∈ (Zn×m
q )�+3 × (Z2n×2m

q )2 × Z
n
q

and signing key TA for the signature scheme from [37].
2. Generate master public key B ∈ Z

n×m
q and master secret key TB for the

GPV IBE scheme [26].
3. Choose uniformly random matrices F ∈ Z

n×m
q , and C1 ∈ Z

n×�
q , C2 ∈

Z
n×m
q . Looking ahead, F will define a SIS-based one-way function, while

(C1,C2) will serve as a KTX commitment key for L-bit messages.
4. Let χ be a B-bounded distribution.
5. Choose a one-time signature scheme OT S = (O.Kg,O.Sign,O.Ver).
6. Choose hash functions HFS : {0, 1}∗ → {1, 2, 3}κ and HGPV : {0, 1}� →

Z
n×k
q that will be modeled as random oracles.

Output msk = TA, osk = TB, reg = ∅ and

pp = (A,A0,A1, . . . ,A�,D,D0,D1,u,B,F,C1,C2,F, χ,OT S,HFS ,HGPV ).

〈Join(pp); Issue(pp,msk = TA, reg)〉. A prospective user with identity id ∈ Z
k
q

interacts with the GM as follows.
1. User selects z $←− {0, 1}m, computes x = bin(F · z) ∈ {0, 1}n�log q�. User

then signs (id‖x) ∈ {0, 1}2m using an ordinary signature and sends (id‖x)
together with the signature sigid to the GM.

2. GM verifies sigid and then certifies (id‖x) using TA. The certificate has
the form certid = (τ,v, s) ∈ {0, 1}� × [−β, β]2m × [−β, β]2m, satisfying

[
A | A0 +

�∑

j=1

τj · Aj

]
· v = u + D · bin(D0 · s + D1 · (id‖x)) mod q. (6)

3. User id verifies the validity of certid and outputs skid = (id, secid, certid),
where secid = z.

4. GM computes transid = (id,x, sigid, certid) and updates the registration
table reg := reg ∪ transid.

Sign(pp, skid,m,w = (w1,w2), F ). Given pp, signing key skid = (id, secid, certid),
message m ∈ M, witness w ∈ W, and signing function F , this algorithm
performs the following steps.
1. Check that F (m,w, id) �= 0, i.e., w1 ∈ {0, 1}L, w2 ∈ {0, 1}m and m =

C1 · w1 + C2 · w2 mod q. Return ⊥ if this is not the case.
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2. Determine the value of j = F (m,w, id) ∈ [1, 4]. Let y = Gj(id) ∈ {0, 1}k.
3. Generate a key-pair (otk, ovk) ← O.Kg(λ) and encrypt y with respect to

“identity” ovk as follows. Let G = HGPV (ovk) ∈ Z
n×k
q . Sample r ← χn,

e1 ← χm, e2 ← χk, then compute the ciphertext
(
c1 = B� · r + e1, c2 = G� · r + e2 + �q/2� · y

)
∈ Z

m
q × Z

k
q .

4. Using witness
(
id, z,x, certid = (τ,v, s),w = (w1,w2),y, (r, e1, e2)

)
, gen-

erate a NIZKAoK π for the relation Rlmps (Definition 5). This is done by
repeating κ times an interactive ZK argument of knowledge for Rlmps, and
made non-interactive as a triple π =

(
{CMTj}j∈[κ],CH, {RSPj}j∈[κ]

)
,

where CH = HFS(m, ovk, c1, c2, {CMTj}j∈[κ]) ∈ {1, 2, 3}κ.
5. Compute a one-time signature sig ← O.Sign(otk, (m, F, c1, c2, π)).

Output the signature

Σ = (ovk, c1, c2, π, sig). (7)

Verify(pp,m, F,Σ). This algorithm parses Σ as in (7), and returns 1 if:
1. O.Ver(ovk, (m, F, c1, c2, π), sig) = 1;
2. π is a valid NIZKAoK for Rlmps.

Open(pp, osk = TB, Σ,m, F ). This algorithm proceeds as follows.
1. Compute G = HGPV (ovk) ∈ Z

n×k
q , then using TB to sample a small-

norm matrix Eovk such that B · Eovk = G mod q.
2. Using Eovk to decrypt (c1, c2) (by computing �(c2 − E�

ovk · c1)/(q/2)�),
so that to obtain y ∈ {0, 1}k. Output ⊥ if the decryption fails.

3. Output op = y.

5.3 Analyses of the Scheme

Efficiency. Let us analyze the asymptotic efficiency of the proposed scheme.
The size of pp is dominated by that of the verification key of the signature
scheme from [37] and has bit-size O(�mn log q) = Õ(λ2). A signing key skid
consists of a few small-norm vectors and has bit-size O(m log q log β) = Õ(λ).
The size of each signature Σ is dominated by that of the NIZKAoK π, which is
roughly κ = O(λ) times the bit-size of the underlying witness

(
id, z,x, certid =

(τ,v, s),w = (w1,w2),y, (r, e1, e2)
)
. Overall, Σ has bit-size Õ(λ2).

Correctness. The correctness of the described MPS scheme follows directly
from the correctness of the signature scheme from [37], the correctness of the
GPV IBE scheme [26] and the perfect completeness of the employed Stern-like
argument system [40,52].

Security. The security of the scheme can be proven in the ROM, under the
SIS and the LWE assumptions.

Theorem 2. In the random oracle model, the described MPS system satisfies
privacy and unforgeability if (i) the SIS and LWE assumptions hold; (ii) OT S is
a strongly unforgeable one-time signature; (iii) The employed argument system
is a statistically ZKAoK.

Due to space restriction, the proof of Theorem 2 is deferred to the full version.
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6 Open Questions

As the first work that proposes the brand-new concept of Multimodal Private
Signatures, we do not expect to provide a thorough study of this primitive. We
leave several fascinating open questions for future investigations:

1. Constructing practically usable MPS schemes with expressive signing and
disclosing functions;

2. Studying theoretical connections between MPS and other advanced primitives
like functional encryption and fully-homomorphic encryption;

3. Designing efficient MPS schemes with post-quantum security;
4. Equipping MPS with additional functionalities such as verifiable opening

and/or user revocation.
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