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Only he who, himself enlightened, is not afraid of shadows.

Immanuel Kant

Summary

It is difficult to instill beginners with experts’ habits of mind. Young children, for
example, frequently lack the content knowledge and practice skills required to
engage in scientific thinking (ST) processes. Furthermore, the cost of supplying
them with a laboratory to undertake scientific research could be prohibitive.
Linking ST to basic cognitive processes could be a solution, allowing us to
narrow down ST skillsets to more fundamental competencies that can be taught
to students. By merging relevant concepts from the literature with decades of
empirical data on science education, this chapter attempts to present a theoretical
framework to link scientific thinking to everyday thinking. The chapter proposes
a call for action to emphasize ST education for both the students and the general
public. While non-scientists employ ST processes the same way as scientists do,
not everyone uses them as iteratively, regularly, or methodologically as
scientists. With the myths around scientific thinking cleared away, we should
feel confident and empowered to tackle unfounded assumptions and taboos that
have haunted us for generations.
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Graphical Abstract/Art Performance

Scientific thinking: a mindset for everyone.
The calligraphy of a poem by Rumi 1207–1273.
It includes a distich:
Say not all are fighting; what use is my lone call for peace?
You're not one, but thousands; light your beacon.
It expresses how a mindset can be powerful in thinking.
(Adapted with permission from the Association of Science and Art (ASA),

Universal Scientific Education and Research Network (USERN); Made by
Reihaneh Khalilianfard).
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QR Code

Scanning the QR code directs you to the word cloud of the chapter that is made
up of the words we discussed throughout the whole book in relation to the chapter’s
keyword, which is intentionally not included in the word cloud. Find the keyword
and put it in place in the puzzle according to the clues provided in Chap. 26. The
mystery hidden in the puzzle is the quote of Integrated Education and Learning.

1 Introduction

There are two major myths about science education. One is that scientific thinking
(ST) is a linear process, which has been perpetuated to this day by textbooks and
instructional resources. This linear process starts with making observations,
building a hypothesis, making predictions, and conducting experiments to test the
validity of the hypothesis [1]. The other myth is that scientific thinking is a special
state of mind that only scientists get to have, use, and enjoy. However special the
scientific mindset might be, understanding the mind of a scientist is key to science
education because learning theories claim that students would learn science better if
they did it in a way to emulate how scientists think and work. Such understanding
could even have implications beyond science education because many believe that
the ST skillset may be narrowed down to fundamental cognitive competencies that
are no different from those of ordinary thinking. If that is true, then we can teach
scientific thinking to everyone.

Even though learning theories and educational frameworks recommend that we
teach kids essential scientific thinking skills [2], constructivist science activities
have yet to be fully integrated into the relevant grade-level curriculum. It is difficult
to instill beginners with experts’ mental habits. Young children, for example, fre-
quently lack the content knowledge and practice skills required to engage in sci-
entific thinking processes. Furthermore, the cost of supplying them with a
laboratory to undertake scientific research could be prohibitive. Therefore, linking
scientific thinking to basic cognitive processes could be a remedy, allowing us to
narrow down its skillset to more fundamental competencies that can be taught to
novices [3–5].
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This chapter attempts to link ST to fundamental cognitive processes by using a
computational model of the mind that is in line with the latest findings in several
disciplines. This model is based on the premise that a computational device may
generate cognition from information processing. It also assumes that the universal
characteristics of information may dictate how a computational device, be it elec-
tronic or biological, processes the incoming information. For example, as articu-
lated by Yaşar [6], a duality in distributive/associative characteristics of quantifiable
information, addition/subtraction modes of fundamental computation, and
scatter/gather aspect of information storage/retrieval by a distributed network of
neurons in the brain appear to lead to an inductive/deductive duality in fundamental
cognitive processing. Furthermore, theoretical considerations and empirical studies
from epistemology, neuroscience, educational psychology, and computing and
cognitive sciences indicate that these cognitive processes’ iterative and cyclical
dynamics are the essence of thinking and conceptual change. We all use them, but
not with the same consistency, frequency, or methodological rigor as scientists. The
following sections will introduce a brief history of scientific thinking, along with a
discussion of its cognitive essence and a way to promote it in science education.

2 Brief Definition and History

The thought process in a scientist’s experimental, theoretical, and computational
study is now referred to as scientific thinking (ST), which was previously known as
the scientific method. A scientist’s skills during an investigation encompass a set of
processes that pervade the field of science as well as the content of sciences.
Problem-solving, development and testing of hypotheses, concepts, and models,
conceptual transformation, and a collection of reasoning skills (deductive, induc-
tive, abductive, causal, and analogical) are among the ST skills identified in the
present literature and briefly listed in Table 1 [3].

While scientists like Galileo and others laid the groundwork for scientific
knowledge through observations and experiments, philosophers debated for two
more centuries whether a scientist’s subjective perspective of the universe could be
deemed objective and real knowledge [7, 8]. Some of these thinkers (mostly the
empiricists) stated that the mind is a blank slate that learns through perceptions and
experiences as well as generalizations and conclusions derived from these experi-
ences in an associative (bottom-up) manner through inductive reasoning. Other

Table 1 Cognitive processes involved in scientific thinking [3]

1. Problem-solving 6. Reasoning 6a. Deductive Reasoning

2. Design and modeling 6b. Inductive Reasoning

3. Hypothesis testing 6c. Abductive Reasoning

4. Concept formation 6d. Causal Reasoning

5. Conceptual change 6e. Analogical Reasoning
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philosophers (such as the rationalists) thought that knowledge is first gained
through innate concepts, which then serve as a source of more information derived
from them in a distributive (top-down) manner through deductive reasoning.
Figure 1 represents a simple illustration of associative and distributive ways of
information processing.

Kant merged these competing views to suggest the scientific method’s cognitive
essence as a two-way process of inductive reasoning (synthesis) and deductive
reasoning (analysis) [7]. It has been through an iterative and cyclical process of
synthesis and analysis that science has progressed over the years at both the societal
and individual levels [4, 8]. The way science is done should shape how new
generations are educated, yet unfortunately, the scientific method is still being
taught as a one-way linear process of synthesis for many reasons. First and fore-
most, the way it is being taught ignores the top-down process, shown in Fig. 1, by
which theories get re-examined, broken down to smaller elements, and changed
over time. We dislike change on a cultural and psychological level because it
threatens our mental stability. Also, because of limited resources and the attention
needed to answer new questions, revisiting previously addressed inquiries or the-
ories has been a low-priority and slow process often spanning decades. Growing
resources and new technologies, however, have recently accelerated scientific
progress by encouraging us to revisit previously established conclusions at a much
faster rate. As such, we should then teach students not only the synthesis and
analysis parts of the scientific process but also their non-linear occurrence. Many
students have a tendency to cling to their preconceptions and misconceptions.
Teaching them deductive thinking (analytical) skills is as important as
facts-and-data driven inductive thinking (synthesis) skills. Furthermore, teaching
students (as well as teachers) a cognitive understanding of scientific thinking and
how such expert thinking relates to the everyday thinking of a non-scientist could
help eliminate the myths and stigma surrounding science education.

Fig. 1 Distributive and
associative way of
information storage and
retrieval (Adapted from [6],
copyright held by the author)
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While the scientific methodology was introduced several centuries ago [7], our
understanding of its cognitive essence has only been possible recently through the
use of new imaging technologies and computational modeling techniques. Cogni-
tive psychologists increasingly use imaging techniques to investigate how we all
see, remember, and think. They also explore what brain areas are involved in crucial
perceptual and cognitive processes during scientific inquiry and problem solving by
monitoring scientists’ brain functioning. At the same time, new techniques are
being used by neuroscientists to better understand the brain systems that are acti-
vated throughout the learning process. Development and education psychologists
use all these findings to construct human development theories and how they might
be applied to education. Other theoreticians, such as cognitive scientists, also create
mental models to investigate how the brain may be generating cognition through
information processing and computation [9].

Since the inner workings of our brains appear to resemble, to some extent, those
of the electronic computers, having such tools in the hands of scientists in the past
several decades has generated some evidence as to how a scientist’s own thinking
resonates with certain uses of such tools. One of the insightful uses of electronic
computers in scientific research and engineering design has obviously been mod-
eling and simulation [10]. Electronic computers have recently proven to be par-
ticularly useful since they speed up the model construction and testing of many
scenarios, allowing researchers and engineers to enhance their initial models
quickly. Computational modeling and simulation technology (CMST) has been
very effective in scientific and industrial research. In high-stakes scenarios, CMST’s
forecasts of natural phenomena (e.g., weather, storms) and product performance and
safety (e.g., engines, planes) accurately match the behaviors of real-life physical
models. When a study is impractical to conduct experimentally because of its size
(too large such as the cosmos, or too small such as subatomic systems), ambient
conditions (too hot or dangerous), or expense, CMST appears to be all we have as a
methodology to tackle the problem at hand. The bottom line is that computation is
indeed a major pillar of scientific study, besides theory and experiment [10]. Having
used computational modeling and simulations to solve challenging science and
engineering problems at a national laboratory for many years [11] and also having
worked as a computational science educator later in higher education and K-12 for
more than two decades [5, 6, 12–17], I here present a view on cognitive essence of
scientific thinking as a follow up to earlier work [6] on cognitive processes involved
in everyday use of information storage, retrieval, and processing by our brains.

3 The Essence of Scientific Thinking

While imaging techniques help neuroscientists and cognitive psychologists locate
the brain parts where cognitive functions are occurring [3, 4, 18], understanding
how cognition is generated from the electrical activities of neurons is still limited
due to the complexities of the brain and the lack of direct access to it. As a remedy,
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we use models of the mind to relate cognition to information processing, storage,
and retrieval. Thanks to Alan Turing [19], his electronic imitation of the brain has
grown to display many structural and operational similarities with the brain in a
way to help us form a relationship between computation and cognition. Thanks also
to Donald Hebb [20], a neuropsychologist, we now know that the brain, just like
today’s electronic computers, uses distributed hardware (i.e., neurons) for infor-
mation storage, retrieval, and analysis. That is, information is retained in memory as
a distributed pattern and pathways of neurons, with retrieval requiring an asso-
ciative reassembly of the original pattern. This reassembly is regarded by some
neuroscientists as an act of re-imagination, which either adds some holes or extra
bits to the original pattern. In many ways, storing and retrieving information appear
to be similar to the act of thinking [21].

A consolidated view of information storage/retrieval and thinking supports an
argument that the associative and distributive nature of quantifiable information, as
shown in Fig. 1, determine how information would be handled optimally by any
device that operates on it [6, 12]. As such, our brain’s current structural and
operational state may just be an evolutionary response to thousands of years of
optimizing how better to handle distributive and associative operations of sensory
information. We have seen a similar evolution with electronic computing devices
since their first design by Alan Turing eighty years ago. For example, not only data
and instruction are now being handled the same way, but also centralized hardware
designs of the old days have evolved into distributed structures to optimize storage,
retrieval, and processing of information.

Even so, we stop short of equating mental representations with information
processing since it ignores the significance of mental experiences [9]. Furthermore,
the efficiency with which the human mind operates is still unrivaled. We appear to
have two competing brains: one that tries to simplify things, while another that
wants to dig deeper—a dual operation that mirrors the natural flow of information
processing in Fig. 1. Neuropsychologists and evolutionary biologists believe the
main cause is a structural tendency by an autopilot limbic system to bypass, sim-
plify, or minimize more complex cognitive tasks of a developed neocortex [22].
Cognitive scientists such as Montague [9] rather point to some non-structural
tendencies (e.g., concern for efficiency/survival) which drive the mind to attach
value, cost, and goals to our thoughts via computations, modeling, and simulations
of various scenarios.

Montague claims that the human brain employs modeling and simulation (M&S)
not just to represent external objects mentally but also to wrap up and compare its
own computations before making a decision. Then, those who use electronic
devices in the same fashion should greatly enhance their cognitive functions.
Rightly so, empirical evidence supports the effectiveness of M&S in scientific
inquiry by experts [10, 11] and in learning by novices [14–16, 23]. One of the
benefits of modeling is that it simplifies reality by removing details and directing
the focus on what is being studied/learned. Before delving into the underlying
specifics, modeling allows the researcher/learner to comprehend significant facts
surrounding a topic. As such, the process of modeling and simulation mirrors the
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scientific method described by Kant [14–16]. That is, a prior concept/theory (a
model) is first deductively analyzed and broken down into its sub-models for testing
and analysis. The sub-models are then updated, if necessary, and put back together
inductively (i.e., synthesis) to create a new or a modified version of the previous
model/theory.

Table 2 illustrates a commonly used terminology that describes various cognitive
processes involved in scientific thinking. Words in each column have the same
connotation, while words in each row describe poles of a dichotomy. At the core of
our simplistic ST framework (Fig. 2) lies the root cause for such dichotomy:
associative and distributive ways of information storage, retrieval, and processing
[5, 6]. While we are all capable of computationally generating cognition from the
two fundamental modes of information storage, retrieval, and processing [4, 9], not
everyone utilizes them in the same way that scientists and engineers do–i.e.,
iteratively, cyclically, consistently, regularly, and methodologically. For example,
while people casually form an idea, a concept, a model, or a design in their lives as
a form of associative (inductive) processing, when such a thing is methodologically
formed and examined by scientists, it is known to have led to major theories,
including the discovery of a specific bacterium as the cause of many ulcers and the
discovery of planet orbits as the representation of astronomical observations [4].
Furthermore, when associative processing of information is automated beyond the
capacity of scientists, it then is known, in the form of inductive algorithms in
data mining, to have generated in a few days what research programs took decades
[4, 24].

We all use inductive and abductive reasoning in our everyday lives. This type of
associative information processing is utilized to filter out details and concentrate on
the larger patterns, assigning priority and relevance to freshly acquired data. It aids
our brain by reducing, categorizing, and registering crucial facts and knowledge for
faster retrieval and processing, especially in its early phases. It is astonishing how

Table 2 A common terminology to describe ST dichotomy

Actions Addition Subtraction

Associative processing Distributive processing

Synthesis Analysis

Inductive/abductive reasoning Deductive reasoning

Packing Unpacking

Abstraction Decomposition

Uniting Breaking down

Gather Scatter

Outcomes Whole Parts

Model Submodels

Generalized information Details

Hypothesis Observations/facts

Concept Observations/facts

44 O. Yaşar



humans use these reasoning skills to build powerful generalizations from confusing
and scarce facts. Abductive reasoning is a watered-down version of inductive
reasoning, especially when there is not sufficient data to draw concrete conclusions
[3]. Scientists use abductive reasoning to make estimates or generate assumptions
until further data is available to turn the data into a hypothesis. Engineers use it
more heavily because incomplete data set and uncertainty motivate them to find an
optimum solution from limited and feasible options [25].

Inductive/abductive thinking, also known as abstraction, can be thought of as the
wrapping (modeling) of objects. If so, then unwrapping, examining, and updating
the contents of such a model or construct against changed conditions at a later time
is needed for its evolution. As a result, it is just as vital to decompose (analyze) a
concept, a package, or a model in a distributive manner as it is to construct it in an
associative manner. Decomposition (a form of deductive reasoning) goes hand in
hand with abstraction. Where there is an abstraction, there is decomposition before
or after it because a breakdown often follows the unification of quantifiable things.

Deductive reasoning analyzes previously established theories and concepts to
discover new situations that these theories might be tested on. Re-examination of
theories under changing conditions and observations is part of how science
advances [8]. Deductive reasoning uses distributive processing and is similar to

Fig. 2 The essence of scientific thinking in terms of our typical cognitive processes (Adapted
from [6], copyright held by the author)
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dismantling or separating a generalization (a whole) into its constituents (parts) for
further investigation. In our daily lives, we all use deductive reasoning. It aids in
analyzing complex circumstances by breaking them down into smaller, more
manageable chunks (scatter). Then, we attack each item one by one until we arrive
at a total solution (gather). The famous “divide and conquer” statement, attributed
to Napoleon, demonstrates how important such thinking is to the general public.
Deductive reasoning is utilized more frequently in engineering than inductive and
abductive reasoning. It looks at how well-known scientific concepts and engi-
neering designs can be applied to various situations and issues [25].

As illustrated in Fig. 1, iterative and cyclical use of inductive and deductive
reasoning becomes the fundamental essence of conceptual change that we all use
for learning [26]. Conceptual change is the process of iteratively forming, testing,
and modifying a theory, design, or model in science and engineering. The process
of modeling and simulation is an important mechanism by which conceptual
change occurs, both electronically and biologically, though more expeditiously with
electronic computers than with the human mind.

Prior to synthesizing new concepts or analyzing existing ones for additional
testing under new circumstances, it is important to connect all relevant pieces of
information via searching and sorting. Both causal reasoning (to build cause and
effect relationships) and analogical reasoning (the formation of analogies between
different variables) are intertwined with and dependent on searching, sorting, and
other aspects of scientific thought that we have examined thus far [3]. For example,
causal reasoning is crucial in connecting unexpected or accidentally discovered
findings. Many scientific discoveries have actually been of an unexpected nature,
thereby requiring scientists to utilize causal model-building, analogical reasoning,
and problem-solving to identify and prove the relationships [4]. Engineers use
analogical reasoning very often, as they tend to defend their choices of optimal
design solutions by citing precedents, or they start with a design that has already
been employed in another application [25].

In the literature, problem-solving is defined as a search within two connected
spaces: hypothesis (conceptual) and experiment (empirical). Each space contains all
of the potential states of its kind, as well as all of the procedures a problem solver
can use to move from one state to the next. Researchers Klahr and Dunbar [18]
found that each space-constrained search in the other during problem-solving, and
participants moved between hypothesis and experiment spaces, similar again to the
dynamics in Fig. 1.

According to Paul Thagard [4], scientific thought processes are no different from
those used by non-scientists in everyday life. What he meant is that their essence is
the same and that the difference comes from how they are used. The utilization of
information processing, storage, and retrieval would vary for each person. While
the underlying brain hardware and the quality and quantity of sensory input we each
receive from our environment determine how each of us utilizes our brain’s com-
putational capacity, we are all naturally inclined to employ both associative- and
distributive-aspects of information processing and the inductive/deductive reason-
ing that they support. However, not all of us are equally aware of the value and
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significance of these reasoning skills, nor do we all completely exercise and utilize
them. By judging from success stories of scientists or scientific discoveries in the
past [3], we expect an ideal scientist to be a person who uses the mind’s capacity for
associative/distributive processing of information in an iterative, cyclical, consis-
tent, and methodological way in order to acquire a habit of conceptual change. Of
course, in reality not all scientists think and work the same way. All in all, how
these processes are used distinguishes scientific thinking from ordinary thinking.
The good news is that, with training, knowledge, and experience, such capacity can
be developed beyond what is inherited. And, this is what often motivates educators
like us to demonstrate that there exist some tools, such as modeling and simulation,
to facilitate scientific thinking.

4 Conclusion

There are a lot of similarities between electronic and biological computing devices
as to how they store, retrieve, and process information. This is arguably due to an
invariant (associative and distributive) nature of information that optimally res-
onates with any computing device which handles it in such a manner. The root of
associative and distributive nature of information is no different than that of the
granular matter itself. They both involve ontological constructs that behave com-
putationally–either by uniting associatively to form larger constructs or by breaking
down distributively to form smaller constructs. And, the entire dynamics of all
quantifiable objects has been shaped by an iterative and cyclical process of this
behavior [13]. It has certainly been employed by the universe in its evolution for
billions of years. We humans also use it because we have a computational mind
which operates on quantifiable information. Any mind that uses it consistently,
frequently, and methodologically–like that of scientists and engineers–should
evolve to become smarter, more knowledgeable, and freer of misconceptions and
preconceptions.

Many core elements of ordinary (and expert) thinking can then be viewed as
forms of associative and distributive processing, scatter and gather way of infor-
mation storage and retrieval, as well as searching and sorting in conceptual and
empirical spaces; all of which are prompted by sensory input or result from
inter-neuron communication. Such a simple cognitive framework could help us
narrow down scientific thinking skills to more basic competence that even novices
can learn. The good news is that such skills can be improved, through education
and experience, beyond what we inherit. Slow or fast, our minds will one day gain a
more universal awareness that would free us of unfounded assumptions that have
haunted us for generations. Yet, we can set the pace of this progress to save time
and to minimize loss.

3 Scientific Thinking: A Mindset for Everyone 47



The history of science education suggests that the way science is done impacts
how new generations are educated. Science done computationally in the past
several decades has been well recognized and even received several Nobel prizes.
The cognitive benefits of a cyclical/iterative deductive and inductive approach to
the scientific method and the use of electronic devices to expedite such an approach
via modeling and simulation are well recognized now. Its impact on education has
been the introduction of many undergraduate and graduate courses and degree
programs in computational science and teacher education [14–17]. The author has
been at the forefront of this computational revolution from the beginning through
his efforts of establishing the first undergraduate degree and teacher education
programs in computational science and of his advocacy of such programs through
his testimonies before the U.S. Congress and funding agencies. Thanks to funding
and encouragement from the U.S. National Science Foundation, relevant profes-
sional societies, and the State governments, computational thinking is now being
taught in a growing number of K-12 schools. The computational thinking reform
has now taken on a worldwide global character as many other countries are starting
similar initiatives. The author believes that scientific thinking education also needs
to ramp up its own efforts as the time has come now to expand the ongoing
computational reform to pre-college education of our students as well as general
education of the public itself. After all, scientific thinking is a mindset for everyone,
not just the scientists.

Core Messages

• We can teach everyone how to think like a scientist.
• The two core elements of scientific thinking are deductive thinking

(analysis) and inductive thinking (synthesis).
• The scientific method that is currently being taught in schools does not

reflect how science is done these days.

Acknowledgements The author acknowledges support from the U.S. National Science Foun-
dation. His views are not necessarily those of his employer or the U.S. federal government.

References

1. Bauer HH (1992) Scientific literacy and the myth of the scientific method. University of
Illinois Press, Chicago, IL

2. National research council report (2012) A framework for K-12 science education: practices,
crosscutting concepts, and core ideas. National Academies Press, Washington, DC

3. Dunbar KN, Klahr D (2012) Scientific thinking and reasoning. In: Holyoak KJ, Morrison RG
(eds) The oxford handbook of thinking and reasoning. Oxford University Press, London,
pp 701–718

48 O. Yaşar



4. Thagard P (2012) The cognitive science of science. The MIT Press, Cambridge, MA
5. Yaşar O, Maliekal J, Veronesi P, Little L (2017) The essence of scientific and engineering

thinking and tools to promote it. In: Proceedings of the American society for engineering
education annual conference. Paper ID: 18172

6. Yaşar O (2018) A new perspective on computational thinking. Comm ACM 61(7):31–37
7. Kant I (1787) The critique of pure reason. (Meiklejohn JMD, Translated). eBook@Adelaide.

The University of Adelaide Library, Australia
8. Kuhn T (1962) The structure of scientific revolutions. The University of Chicago Press,

Chicago, IL
9. Montague R (2006) How we make decisions. Plume Books, New York, NY

10. National Science Foundation (NSF) Report (2006) Simulation-based engineering science:
revolutionizing engineering science through simulation. Washington, DC

11. Yaşar O (2001) A new ignition model for spark-ignited engine simulations. Parallel Comput
27(1):179–200

12. Yaşar O (2017) The essence of computational thinking. Comp Sci Eng 19(4):74–82
13. Yaşar O (2017) Modeling and simulation: how everything seems to form and grow. Comp Sci

Eng 19(1):74–77
14. Yaşar O (2016) Cognitive aspects of computational modeling and simulation. J Comput Sci

Educ 7(1):2–14
15. Yaşar O, Maliekal J, Veronesi P, Little L, Vattana S (2015) Computational pedagogical

content knowledge. In: Liu L, Gibson DC (eds) Research highlights in technology and teacher
education. Association for the advancement of computing in education, pp 79–87, ISBN:
978–1–939797–19–3

16. Yaşar O, Maliekal J (2014) Computational pedagogy. Comp Sci Eng 16(3):78–88
17. Yaşar O, Landau R (2003) Elements of computational science and engineering education.

SIAM Rev 45(4):787–805
18. Klahr D, Dunbar K (1988) Dual space search during scientific reasoning. Cogn Sci 12(1):1–

48
19. Turing AM (1936) On computable numbers, with an application to the entscheidungs-

problem. In: Proceedings of the London mathematical society, series 2, vol 42, pp 230–265
20. Hebb D (1949) The organization of behavior. Wiley, New York
21. Brown PC, Roediger HL, McDaniel MA (2014) Make it stick. The Belknap Press of Harvard

University Press, Cambridge, MA
22. Evans J, Frankish K (2009) In two minds: dual processes and beyond. Oxford University

Press, Oxford
23. Smetana LK, Bell RL (2012) Computer simulations to support science instruction and

learning: a critical review of the literature. Int J Sci Edu 34(9):1337–1370
24. King RD (2011) Rise of the robo scientists. Sci Am 54(1):73–77
25. Lucas B, Hanson J, Claxton G (2014) Thinking like an engineer. A report for the royal

academy of engineering. ISBN: 978-1-909327-09-2
26. Carey S (1985) Conceptual change in childhood, 1st edn. MIT Press, Cambridge, MA

3 Scientific Thinking: A Mindset for Everyone 49



Osman Yaşar has a broad education background (Ph.D. and BS
in engineering physics and MS degrees in computer science,
nuclear engineering, and physics) and has been at the forefront of
the computational revolution in industrial research, academia, and
public schools. He developed massively parallel codes to solve
grand challenge problems in science and engineering at Oak
Ridge National Laboratory, established the world’s first under-
graduate degree program (and department) in computational
science at the State University of New York (SUNY), and taught
computational thinking to more than 1,200 school teachers in
Upstate New York. He has been a Principal Investigator on many
projects supported by the U.S. National Science Foundation,
recognized as a national icon in his native country, and he has
testified before the U.S. Congress on the virtues of a computa-
tional approach to science, technology, engineering, and mathe-
matics (STEM) education and research. He currently holds a
SUNY Empire Innovation professorship at the College at
Brockport.

50 O. Yaşar


	3 Scientific Thinking: A Mindset for Everyone
	1 Introduction
	2 Brief Definition and History
	3 The Essence of Scientific Thinking
	4 Conclusion
	Acknowledgements
	References




