®

Check for
updates

Heterogeneous Graph Neural Network
for Multi-behavior Feature-Interaction
Recommendation

Li Ma, Zheng Chen, Yingxun Fu, and Yang Li®®

North China University of Technology, Shijingshan District, Beijing, China
liyangl7@mails.jlu.edu.cn

Abstract. Graph neural network has great advantage in learning vector represen-
tation of users and items for modern recommender systems. Modeling user-item
interaction bipartite graph is helpful for learning the collaborative signals between
users and items. However, this modeling scheme ignores the influence of the objec-
tively existing attribute information of item itself, and cannot well explain why
users focus on items.

A feature interaction-based graph convolutional collaborative filtering algo-
rithm, Attention Interaction Graph Collaborative Filtering (ATGCF) is proposed
to address the limitations of existing works in this paper. It can deeply explore
user preferences for multi-feature items. Firstly, we inject user and multi-feature
into a user-feature interaction layer composed of multi-head-attention and fully
connected layers to capture the user potential preference for multi-feature. Then
we build a user-features-item bipartite graph and design the corresponding graph
aggregation layer to obtain the high-order connectivity between the three. Exper-
iment results on three real-world datasets verify the effectiveness of our model in
exploiting multi-feature data, and ATGCF algorithm outperforms the other base-
lines in terms of recall, precision and NDCG evaluation metrics. Moreover, further
experiments demonstrate that our model can achieve better results with less data.

Keywords: Multi-head attention - Feature interaction - Collaborative filtering -
Heterogeneous graph networks - Recommendation system

1 Introduction

Personalized recommender system has been widely used to deal with the problem of
information overload [1]. Collaborative filtering (CF) [2], the most widely used recom-
mendation model can mine user preference and estimate preference based on existing
historical behavior data such as purchases and browsing. Traditional CF models [3] are
designed to directly model the relationship between users and items, which can directly
bring benefits to the platform, such as movie recommendations and music recommenda-
tions. However, in real-world applications, this may lead to serious data sparsity issue.
For example, in movie software, it is often difficult to achieve better results by building a
CF for recommendation only through user click behavior. In other words, recommender

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Pimenidis et al. (Eds.): ICANN 2022, LNCS 13532, pp. 101-112, 2022.
https://doi.org/10.1007/978-3-031-15937-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15937-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-15937-4_9

102 L. Maet al.

system should have the ability to utilize richer information, including interrelated movie
features. Learning different feature combinations can help our model to more accurately
predict the objects that users may interact with in the future.

Existing researches [4] has explored this task from two perspectives. The first cat-
egory tries to mine information in the form of matrix factorization. [5] models the
relationship between users and items directly through the historical interaction matrix
and embedding the user vector and item vector through the dot product of the two
vectors. Neural Collaborative Filtering (NCF) [6] replaces the interaction function of
MF by introducing a deep learning method, so that the model can adaptively learn high-
order vector representations of users and items. The second category considers modeling
user historical behavior as a graph structure. [7] encodes the collaborative information
between the user and the item, so that the model can learn the collaborative informa-
tion hidden in the historical interaction among user and item to represent the behavioral
similarity between users and items. [8] captures user preferences for each interacted
item by adding node-level attention. However, these algorithms face the following two
problems. First, only modeling user-item interactions will lead to very sparse data and
seriously affect the recommendation effect. Especially for users with few interactive
items, the noisy data may prevent the model from learning effective information from
sparse historical behaviors. Second, only using user and item data will lose very rich
attributes information. The items that the user has interacted with may have a certain
similarity in features. For example, the user has watched more romantic anime movies
in the past period of time, indicating that the user has a preference for romantic anime
to a certain extent, so these multi-feature should be fully utilized.

To address them, we propose to construct a unified heterogeneous graph based on
multi-features interaction. Firstly, we use users, items, features represented as nodes, and
different types of behaviors represented as multiple types of edges of the graph to model
user-feature and user-item-feature relationships, respectively. Secondly, we design a new
user-item-features message passing graph recommendation model, Attention Interaction
Graph Collaborative Filtering (ATGCF), which takes into account the historical inter-
action between users and items, also models the historical behavior response of user to
the item feature preferences. To be more specific, we design a user and multi-feature
interaction layer by utilizing user and features information to capture the preference
information between user and features. Finally, we design user-item-features propaga-
tion layers, which helps to capture different CF semantics of item and multi-features
similarity for user and enhance the learning for node embeddings. To summarize, our
work makes the following contributions:

— We model the user-item-feature heterogeneous bipartite graph from the real scene and
mine user preferences for multi-feature.

— We propose the Attention Interaction Graph Collaborative Filtering (ATGCF) model
which can capture the internal associations between user and item features more
accurately.

— We conduct experimental analysis on three public large-scale datasets. The perfor-
mance of our proposed model is significantly improved compared to the other baselines
in terms of accuracy, recall, and NDCG.

Heterogeneous Graph Neural Network 103

2 Methodology

2.1 Heterogeneous Bipartite Graph

. O ®
i O
QO
@y O = -
@ O« ® -®
o O @®

User-Item-Feature Heterogeneous bipartite graph Embed aggregation siep for ul

Fig. 1. Representation of the user-item-feature heterogeneous bipartite graph, and how users
obtain information of all types of nodes as the network aggregates.

The heterogeneous bipartite graph shows the heterogeneity of the user next-hop node,
and we describe the specific method of generating the graph in Fig. 1. First, we can obtain
the user-item pair (U, I) through the historical interaction information. Meanwhile, we
generate the item-feature pair (/, F') according to the attribute column of the item, and
then the user-feature pair (U, F') can be obtained through the item as an intermediary.
On the basis of obtaining the above information, the matrix R can be generated. Finally,
the adjacency matrix A of our generated graph.

A:[ﬁTﬂ 1)

The concatenation matrix representation of the adjacency matrix A obtained should
satisfy A = AT. That is to say, it satisfies A = D? AD_%, i.e. the graph volume operator
in ATGCEF satisfies the definition of Laplacian operator in GCN [9]. We refer to the
mainstream recommendation model [10] to map users, items, features node into a vector.
The final preference of each user for an item is predicted by finally learning embedding
representation vector.

2.2 User-Features Interaction

In recommendation scenarios, such as movie recommendation and product recommen-
dation. It is difficult for us to obtain the contextual information of the user, but the
contextual information of the item can be obtained effectively. Our goal is to model the
user’s own preference for such items. First, we define the context of the item as where n
represents the number of contextual features, and d represents the dimension of contex-
tual features. However, in the absence of clear user features and item features, the user
embedding will be inconsistent with the item embedding, which will make the model
unable to train normally. Therefore, we obtain the user feature initialization by averaging

104 L. Maet al.

the sum of all the features of the items that the user has interacted with according to the
historical interaction information between user and item. Expressed as:

1
Fy = m(z Fy))

i€R,;

where R,; represents the interaction set between user and item history, sum() represents
the total number, and F; represents the feature of item. Then, we define the feature
embedding matrix e; € R to obtain the embedding representation of the feature.
We map different features to the same low-dimensional space for convenience, and then
combine different forms of features to represent the user’s preference for different feature
combinations and extract the semantic information of different feature combinations.
We construct the user’s preference for different types of items through the multi-head
attention model [11]. Specifically, we use multi-head attention to analyze which items are
more in line with the user preference. We map the embedded representations of users
and features and user features to a low-dimensional space of the same dimension so
that we can model higher-order interaction representations between users and different
features. Next, we will elaborate on how we define it. First, we define the representation
of different item feature combinations, the specific definitions are as follows:

S exp(y W (Fi, FM)

Sl e (W OF]L F)
where i and m represent the currently calculated user features, /i represents

the set number of heads, and M represents the total number of item features.
YO (FLFmy = <WF W E> is the size of the correlation coefficient between cur-

Rl

3)

rent user feature i and user feature m. Wéh) and Wk(h) are weights. The final correlation
coefficient between user feature i and user feature m on each head % is normalized by
(3) and then expressed as af’m. The feature-interaction is expressed as:

H M
(h h)
=22 oy Wy er) @
h=1 k=1

where W‘(,h) is weight, e represents the interactive embedding representation of user
feature i and user feature m. Then we can define a user preference for different user
feature interaction embedding. Its definition is shown as following:

n_x o ep(V (e)
>

b L e (v P (ew €f))

where y (eu, e{?) represents the user preference for each interaction feature, / repre-
sents the number of heads, and m represents the total number of feature combinations.
The finally learned result represents the user preference for the current combined feature.
It is expressed as:

®)

h M
er,=ReLU (thl Zl:l am® (W‘(,h)e;"(h))) (6)

Heterogeneous Graph Neural Network 105

m(h) m(h)

where ReLU () represents the nonlinear activation function, o, ~ and e,

the preference coefficient and preference vector on each head.

represent

2.3 Graph Neural Network Aggregation Layer

The historical interaction information between users and items is a reliable source of
user preference information, and we refer to the method of [6] to model the user’s higher-
order preference for items and item features by considering the features of the items.
The specific graph convolution operation is shown as follows:

1
k) _ (k) (k—1) (k) (k 1y k) o (k=1) (k—1) (k—1)
m .= W e. +W, T+ W (e- D ep.)(j)e 7
U<—i /—|Nu||N,|(1 i F, 3 (i F; u)) ()
1
(k) _ (k) ,(k—1) (k) (k—1) k) (k—1) (k—1) (k—1)
m. =——-—(W;"¢ + W, e + W (6» ® ep,)@e
i<u /—|Nu||Nz|(1 u 2 “F, 3 (i F; u))

®)

where ef,, er, denote the item and feature embedding of the user, Wy, W», W3 denote the
coefficient matrix of the science department, e; denotes the embedding representation
of the item, and k denotes the current number of layers. Through the stacking of multi-
layer networks, the model can learn the influence of multi-hop neighbors on current
node. Meanwhile, the model updates the state representation of current node according
to the state of multi-hop neighbors at last. After passing through the stacking of K layers,
vector representation of users and items can be displayed as:

el = ReLU | m®, + 3" m® |, e = ReLu | m{, + 3" m® | ©9)

U<—u u<—1i 1<—u
ieN, ieN,

where the final learned user vector is denoted as e, and the item embedding is denoted
as e;. It should be noted that after combining item features and item features indirectly
represented by item features, the dimensions of user embedding e, and item embedding
e; are updated from the original R"*? set to R"*%¢.

2.4 Prediction Layer

After the above propagation, we learn the user preference for each item. This is very
meaningful. We can clearly understand why users choose this item and also learn that
items with this attribute are of interest to users. Then, we express the user preference for
items of each attribute by making points between the user embedded representation and
the embedded representation of items with different attributes.

yarer(u, i, f) = el e; (10)

The user preference for different types of items can be expressed in a variety of ways.
For example, calculating the distance between each embedding is used to represent the
user’s preference for different kinds of items. In this paper, we use the dot product [9]
which was often used in existing researches.

106 L. Maet al.

2.5 Model Training

The overall model process is shown in Fig. 2. We use the BPR [12] loss to train the
model. For each user, we calculate the preference for positive and negative samples, and
then update the learnable parameters according to the difference between positive and
negative samples. The overall loss is calculated as follows:

Loss=) —Ino(yui —yy) +1lO] (1)
(u,i,j))€0

where O = {(u,1,j)|(u,i) € R", (u,j) € R} represents the paired training samples,
and (u, i) represents the set of positive samples and (u, j) represents the set of negative
samples. o () represents the activation function, and ® represents the trainable parameters
in the model and \ controls the L, regularization strength to prevent overfitting. The
optimizer chooses Adam [13] in our proposed algorithm.

o L8000 Multi-head £g

Uy | ||| U, OGN ||y Attegﬂon %5

u, viee DNN E §

?‘ P @ ® . 3 s U-Vector

Bl | | F2 O @ Y + = U-Vector

R, "o o] U@~ L 2

v 'Ui‘ & F, - F-Vector ‘ X =Yg (U, 1, F)
U, =y, “ U.: :‘ ‘ + ™| LVector

u Noeoe | “eo F Ivector O

Input Node Embedding Graph Network

Fig. 2. An illustration of ATGCF model architecture

2.6 Complexity Analysis

In terms of complexity, the ATGCF model is simpler than the traditional CF model.
Assuming our input matrix dimension is R¢*¢, the number of layers is L, and the
number of nodes is n. Compared to MF which is the most concise embedding based
on the recommendation model, our ATGCF only uses d12 level parameters in the graph
convolution layer. The overall complexity is O(nzd + ddl,l). The additional cost of
such model parameters is almost zero and negligible, considering that L is usually a
number less than or equal to 3, and d; is typically set as the embedding size, which is
much smaller than the number of users and items.

3 Experiment

3.1 Dataset Description

To evaluate the effectiveness of ATGCF, we conduct experiments on three benchmark
datasets: Amine, MovieLens-1m, and Amazon-book, which are publicly accessible and
vary in terms of domain, size, and sparsity. We summarize the statistics of three datasets
in Table 1.

Heterogeneous Graph Neural Network 107

Amine: This is a dataset from Kaggle website for anime recommendation. For each
user we keep at least 20 more interactions.

MovieLens-1m: A public movie recommendation dataset for scientific research [14].

Amazon-Book: This is a widely used product recommendation dataset [15]. Similarly,
it is also guaranteed that each user interacts with at least 20 items.

Table 1. Statistics of the datasets.

Dataset #Users |#Items | #Interactions
Amine 15506 | 34325 2601998
MovieLens-1m 6040 5953 | 1000209
Amazon-Book | 51639 | 84355 | 2648963

We consider each interaction directly observed in the training set to be recorded as
a positive instance and randomly sample as a negative sample from the set of items that
user has never interacted with.

3.2 Experimental Settings

Evaluation Metrics. For each method the output the user’s preference scores over
all the items. To evaluate the effectiveness of top-K recommendation and preference
ranking, we adopt three widely-used evaluation protocols: recall @K, precision@K and
ndcg @K. We evaluate the results of our model under different K values. We demonstrate
the average metrics for all users in datasets.

To demonstrate the effectiveness, we compare our proposed NGCF with the
following baselines:

e ItemCF: The algorithm learns item representations based on the historical interaction
records of user items, considers that similar item vector representations are close, and
finally recommends items based on similarity.

e MF: This is matrix factorization optimized by the Bayesian personalized ranking
(BPR) loss, which exploits the user-item direct interactions only as the target value
of interaction function.

e NeuMF: The method is a state-of-the-art neural CF model which uses multiple hidden
layers above the element-wise and concatenation of user and item embeddings to
capture their non-linear feature interactions.

e NGCF: NGCEF is the state-of-the-art graph neural network model which has some
special design to fit graph neural network into recommender system. Here only target
behavior is used to build the user-item bipartite graph.

e PUP [8]: The state-of-the-art graph neural network model which has some special
design to fit sensitivity of a user on item price. Effectively establish the potential
relationship between user to commodity and commodity to price.

108 L. Maet al.

Parameters Settings. Our ATGCF is implemented in Pytorch. The embedding size is
fixed to 64 for all models. We optimize all models with Adam optimizer, and the batch
size is 4096. In terms of hyperparameters, we apply a grid search for hyperparameters:
the learning rate is tuned amongst [0.0001, 0.0005, 0.001, 0.005], and for baseline models
we randomly select 80% of historical interactions of each user to constitute the training
set, and treat the remaining as the test set. When training ATGCF, we found that only
10% of the data is needed to achieve the best results. It demonstrates that our model has
good performance in the face of small samples. L, normalization coefficient is tuned in
[1e7, 1e6, 1e5, 1e4, 1€3].

3.3 Overall Performance

We compare the performance of our proposed algorithm ATGCF with all other baselines.
The results on three datasets are reported on Table 2, Table 3 and Table 4. From the results,
we have the following observations.

Model Effectiveness. Based on these tables, we find that our ATGCF overperforms all
baselines substantially on all Recall @K, Precision @K and NDCG @K metrics. The aver-
age improvement of our model to the best baseline is 5.62%, 3.95% and 5.20% for Recall,
Precision and NDCG on the Amine dataset; 3.60%,5.95% and 6.00% on MovielLens-
Im dataset; 4.07%, 6.80% and 4.30% on Amazon-Book dataset, which justifies the
effectiveness of our model.

Table 2. Comparisons on Amine and improvement comparing with the best baseline.

Method | Recall@20 | Recall@30 | Recall@40 | Recall@50 | Precisio@10 | Precisio@20 | Ndcg@20
ItemCF | 0.0286 0.0304 0.0401 0.0412 0.0260 0.0201 0.0115
MF 0.0354 0.0446 0.0524 0.0644 0.0311 0.0231 0.0214
NCF 0.0402 0.0542 0.0644 0.0685 0.0342 0.0256 0.0256
NGCF 0.0434 0.0580 0.0669 0.0772 0.0358 0.0294 0.0294
PUP 0.0482 0.0574 0.0684 0.0784 0.0336 0.0296 0.0304
ATGCF | 0.0535 0.0616 0.0702 0.0806 0.0372 0.0308 0.0320
Improve | 10.9% 6.2% 2.6% 2.8% 3.9% 4.0% 5.2%

Heterogeneous Graph Neural Network 109

Table 3. Comparisons on MovieLens-1m and improvement comparing with the best baseline.

Method | Recall@20 | Recall@30 | Recall@40 | Recall@50 | Precisio@10 | Precisio@20 | Ndcg@20
ItemCF | 0.0214 0.0238 0.0446 0.0512 0.0332 0.0327 0.0396
MF 0.0384 0.0425 0.0584 0.0748 0.0559 0.0445 0.0425
NCF 0.0401 0.0554 0.0644 0.0864 0.0532 0.0496 0.0489
NGCF | 0.0443 0.0647 0.0839 0.1026 0.0604 0.0584 0.0504
PUP 0.0455 0.0665 0.0856 0.1048 0.0588 0.0596 0.0548
ATGCF | 0.0482 0.0689 0.0884 0.1070 0.0645 0.0627 0.0581
Improve | 5.9% 3.6% 3.2% 2.0% 6.7% 52% 6.0%

Table 4. Comparisons on Amazon-Book and improvement comparing with the best baseline.

Method | Recall@20 | Recall@30 | Recall@40 | Recall@50 | Precisio@10 | Precisio@20 | Ndcg@20
ItemCF | 0.0184 0.0196 0.0312 0.0452 0.0186 0.0195 0.0356
MF 0.0250 0.0267 0.0524 0.0624 0.0254 0.0201 0.0518
NCF 0.0265 0.0288 0.0644 0.0665 0.0262 0.0225 0.0542
NGCF |0.0348 0.0387 0.0669 0.0731 0.0328 0.0257 0.0630
PUP 0.0382 0.0415 0.0684 0.0754 0.0316 0.0285 0.0624
ATGCF | 0.0408 0.0426 0.0713 0.0775 0.0358 0.0298 0.0651
Improve | 6.8% 2.6% 4.2% 2.7% 9.1% 4.5% 4.3%

Multi-features Models Work Well. In the comparison of MF, NCF, and NGCF, we
can find that adding item features information into predicting (PUP and ATGCF) can
improve the performance. And through the results, we find that ATGCF outperforms PUP
on average by 10.9% on Recall@20, 4% on Precision@20, and 5.2% on NDCG @20,
which also shows that multi-feature fusion will be better than single-feature fusion.

Our Model is the Best Model that can Mine Users’ Potential Preferences for Items
with Multi-features. Comparing with the graph neural network models that can extract
user potential preferences such as NGCF and PUP, our ATGCF performs the best. That
can be explained in two folds. In terms of item preference, neither NGCF nor PUP has
uncovered the user deep preference for interacted items, which may lead to the loss of
some information in original data. In terms of feature processing, PUP only considers
the impact of a single feature (price) on user selection and does not comprehensively
consider the situation of multi-features. Fortunately, our ATGCF fully considers the
influence of multiple features on user selection, and can dig out the user preference for
different mixed features.

110 L. Maet al.

3.4 Model Analysis

As the feature interaction propagation layer plays a pivotal role in ATGCF, we investigate
its impact on the performance. We first explore the impact of different feature embed-
ding methods on the model, and then study the performance of ATGCF with different
proportions of training data.

ATGCEF-F. Learning by directly adding the features of items and then integrating them
into the network. The method neither understands user preferences for different features
nor the impact of different feature combinations.

ATGCEF-IF. Learning the user’s preference for each item feature by using the self-
attention mechanism. On the basis of considering features, the user’s preferences for
different features are considered.

ATGCF. Modeling user preferences for different interaction features based on con-
sideration of different feature preferences. The user preference for different feature
combination items is learned through the multi-head attention mechanism plus MLP.

ATGCFF —— recal 1220
0.05 - ATGOF-IF - Frequency
- ATGCF

0.04

Recal 1820
=
2

0.02

MovieLens=1m Amine Amazon-Book Novies Amine Amazon

(a) (b)

Fig. 3. (a) The influence of different feature extraction components on ATGCEF, (b) The sensitivity
analysis of ATGCF to user’s feature preference under different interaction frequencies.

In order to analyze the necessity of each feature selection method, we use the three
methods (ATGCF-F, ATGCF-IF and ATGCF) to extract the user preferences for different
item features. The results are shown in Fig. 3(a), the effect of learning interaction features
from the results is significantly better than that of using the attention mechanism to learn
the users preference for item features. Meanwhile, using the attention mechanism to learn
the user’s preference for different items also achieve better performance than simply
adding item features. Therefore, the mechanism we design to learn user preferences
for items with different combinations of features is necessary and can obtain better
performance.

Meanwhile, we analyze the sensitivity of ATGCF to features. We use the total number
of interactions in the dataset divided by the number of users in the dataset (emphasizing
the role of features) define the user interaction frequency, and obtain the interaction
frequency size of MovieLens-1m 165, Amine 167 and Amazon-Book 51, separately. As

Heterogeneous Graph Neural Network 111

long as the interaction frequency is high, it means that we can extract more user’s selection
history of items. Moreover, we can more accurately extract the user’s preference for item
features. The experimental results are shown in Fig. 3(b). The higher the interaction
frequency of the dataset, the better the effect of the ATGCF model. It also demonstrates
the sensitivity of our model to item features and the rationality of our model design.

1N AT TN
N H /\/ N ;'\

—mear| Eogl — Arecron

ATGCF-0.6 f — ATGCFO6 — ATGCF06

|
H
|

@ s 8 100 120 140 0 20 40 6 80 100 120 1a
epoch

© 0]

Fig. 4. Analysis of the recall and accuracy results of ATGCF with different training ratios in
MovieLens-1m.

We evaluate the performance of our proposed algorithm with different training ratios
and find that ATGCEF requires less training data and achieve better performance. As
shown in Fig. 4, the ordinate represents the performance value achieved by each method.
The decimal at the end of each method in the lower right corner represents the ratio of
the training samples to the total dataset. We find that while the ratio of 0.5 performs the
best, ATGCF also achieves relatively good performance with a ratio of 0.1. The baseline
model achieves the best effectiveness at a ratio of 0.7-0.8 [8]. The results indicates
that even with little user interaction data, better recommendations can be made to users
on the premise of understanding user preferences for item features. However, as the
number of training increases, overfitting will occur, and we guess that the model fits
unrepresentative features due to too many training times.

4 Conclusion

In this work, we study the feature interaction graph neural network recommendation
model, and propose a graph neural network model ATGCF. We inject user and multi-
features into a user-features interaction layer composed of multi-head-attention and
fully connected layers to capture the user potential preference for multi-features. Then
we build a user-features-item bipartite graph and design the corresponding graph aggre-
gation layer to obtain the high-order connectivity among user, features and items. Ulti-
mately, experiments on three public datasets demonstrate that our model outperforms
the best baseline model in 4.43%, 5.56% and 5.16% for Recall, Precision and NDCG.

112 L. Maet al.

Acknowledgement. This work was supported by National Key R&D Program of China
(2018YFB1800302), Natural Science Foundation of China (62001007), Beijing Natural Science
Foundation (KZ201810009011, 4202020, 192021, 4212018), Re-search Start-up Fund of North
China University of Technology and Jilin Province Science and Technology Development Plan
Project (20190201180JC, 20200401076GX).

References

1. Wu, L., He, X., Wang, X., etal.: A survey on accuracy-oriented neural recommendation: from
collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng.
(2022)

2. Chen, C.M., Wang, C.J., Tsai, M.F,, Yang, Y.H.: Collaborative similarity embedding for
recommender systems. In: Proceedings of the 28th International Conference on World Wide
Web, pp. 2637-2643 (2019)

3. Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.
03130 (2017)

4. Jin, B., Gao, C., He, X., Jin, D., Li, Y.: Multi-behavior recommendation with graph con-
volutional networks. In: Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 659-668 (2020)

5. Qiu, J, et al.: GCC: graph contrastive coding for graph neural network pre-training. In:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1150-1160 (2020)

6. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In:
Proceedings of the 26th International Conference on World Wide Web, pp. 173-182 (2017)

7. He,R.,McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-
class collaborative filtering. In: Proceedings of the 25th International Conference on World
Wide Web, pp. 507-517 (2016)

8. Zheng, Y., Gao, C., He, X., Li, Y., Jin, D.: Price-aware recommendation with graph convolu-
tional networks. In: Proceedings of IEEE 36th International Conference on Data Engineering,
pp. 133-144 (2020)

9. Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263 (2017)

10. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.S.: Unifying knowledge graph learning and
recommendation: towards a better understanding of user preferences. In: Proceedings of the
28th International Conference on World Wide Web, pp. 151-161 (2019)

11. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems 30 (2017)

12. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized
ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.
6980 (2014)

14. Harper, FM., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact.
Intell. Syst. 5(4), 1-19 (2015)

15. Ricci, F,, Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci,
F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1-35.
Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_1

http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-0-387-85820-3_1

	Heterogeneous Graph Neural Network for Multi-behavior Feature-Interaction Recommendation
	1 Introduction
	2 Methodology
	2.1 Heterogeneous Bipartite Graph
	2.2 User-Features Interaction
	2.3 Graph Neural Network Aggregation Layer
	2.4 Prediction Layer
	2.5 Model Training
	2.6 Complexity Analysis

	3 Experiment
	3.1 Dataset Description
	3.2 Experimental Settings
	3.3 Overall Performance
	3.4 Model Analysis

	4 Conclusion
	References

