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Abstract. Feature Selection is one of the most relevant preprocessing
techniques in machine learning. Yet, it is usually only considered in the
context of classification tasks. Although many methods designed for clas-
sification can be carried over to regression tasks, they usually lack some of
the theoretical guarantees, that are provided for classification. In partic-
ular, reject-option and certainty measures or, more generally, operations
which depend on the posterior distribution rather than its expectation
only, are not supported. As machine learning is increasingly used in all
areas of the daily life including high risk areas like medicine, such tools
are essential. In this work, we focus on the problem how to extend fea-
ture selection techniques, such that certainty measures are taken into
consideration during the selection process. We show that every method
which is applicable in multi-value regression can be extended to take into
account the complete distribution by making use of higher moments. We
prove that the resulting method can be applied to preserve various cer-
tainty measures for regression tasks, including variance and confidence
intervals, and we demonstrate this in example applications.

Keywords: Feature selection · Feature relevance · Trustworthy
regression · Higher moments · Non-parametric methods

1 Introduction

As machine learning systems become more and more relevant in every day
life, including critical infrastructure, medical applications, autonomous driving,
etc., the demand for trustworthy AI becomes increasingly relevant [5,12,15].
Many existing approaches including feature selection technologies mainly focus
on improving model precision or efficiency and often ignore the model confi-
dence [11]. This is particularly problematic if critical decisions are based on
possibly insufficient predictions e.g. due to statistical fluctuations in the (train-
ing) data or a small sample size. Popular approaches that tackle such restrictions
per design include, e.g., reject-options [5,14,15], background classification [12],
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or confidence intervals [15]. These methods rely on quantities which are derived
from the conditional label distribution or posterior rather than the expected
prediction only.

Issues regarding trustworthiness or certainty can be amplified if relevant
information is removed during preprossessing steps or ignored by analysis tools.
Feature selection is a common preprocessing technique that has a high risk for
such mistakes, by removing features that are not relevant to model accuracy
but could be critical to trustworthiness. A simple example to show this point
is given by the regression task y = x1 + x2ε where ε is independent Gaussian
noise. In this case a simple feature selection that only pays attention to the mean
value would consider x2 to be irrelevant, although it is of high relevance for the
certainty of the prediction. Currently, many common feature selection methods
suffer from this problem.

In this contribution, we provide a theoretical framework that allows us to
understand the discrepancy between accuracy-based feature selection methods
and those that take the entire posterior, including model certainty, into account.
We relate this challenge to feature relevance theory. Thereon, we derive a simple
extension to standard feature selection methods and analysis techniques that
extends the selection objective to consider the entire posterior, thus including
all certainty related quantities. The model can efficiently be implemented based
on the higher moments of the label variable.

This paper is organized as follows: First, we recall common certainty mea-
sures for regression and discuss their strength and weaknesses (Sect. 2). Then,
we recall the definition of classical feature relevance (Sect. 3.1) and provide a
new definition that focuses on performance (Sect. 3.2). We recall several feature
selection methods from the literature and set them into the context of the theo-
retical framework provided before (Sect. 4) and compare the relevance notions on
a theoretical level (Sect. 5) and derive new approach to deal with them (Sect. 6).
We conclude our work by a numerical evaluation of our criterion (Sect. 7) and
summarize our findings (Sect. 8).

2 Trustworthy Regression

As it is a common assumption in classification that the classes are rather well
separated, a very common assumption in regression tasks is that the noise is
independent of the data (see Fig. 1a). Both assumptions can be violated in prac-
tical applications, leading to the need for confidence or certainty measures to
avoid misleading over-precise results.

In classification, one commonly used type are reject options: If a probabilistic
classification model predicts very comparable likelihoods for more than one most
likely class then the model refuses to perform the prediction [14]. This idea has
been extended by adding a “background class” that has a low uniform density
everywhere, which allows the model to identify regions where there is insufficient
data to make a trustworthy prediction [12].

Under the common assumption that the conditional label y | X follows an
unimodal distributed, e.g. normal distribution, we can extend the idea of reject
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Fig. 1. Regression examples with comparable MSE but different levels of trustworthy-
ness. Graphic shows data points (blue), regression line (blue), and 10%–90%-quantiles
(red). (Color figure online)

options to regression tasks by estimating not only the mean value but also a
confidence interval. Similar to reject options for classification, the model can
reject a sample if the confidence interval is too large [15] or present the interval
to the user to allow them to make an informed decision.

We illustrate the idea of confidence bounds in Fig. 1. Although, the MSE is
comparable in all three cases, only in the case of Fig. 1a it is also a valid measure
for the model certainty. In case of Fig. 1b, the variance drastically increases to
the right, so that the model certainty heavily depends on the considered point.
In case of Fig. 1c, the estimation of the mean value is very precise, however, as
the distribution is not unimodal, the conditional mean itself is misleading. In all
three cases the 10%–90%-quantile area provides a good insight into the specific
certainty issue.

(Conditional) Variance (and Higher Moments): A common way to quantify the
certainty of a measurement is offered by its (conditional) variance. In the case of
normal distributed noise, the variance fully represents the uncertainty. However,
in cases where the uncertainty depends on the input value, it might be more
reasonable to consider conditional variance Var(y | X) = E[(y − E[y | X])2 | X].
It has been successfully used in the context of regression with reject option [15],
for example. Notice that conditional variance can easily be estimated using a
second model to estimate E[y2 | X] based on a mean squared error loss.

Albeit the variance offers a suitable certainty measure under the assumption
of normal distributed noise, higher moments like skewness or kurtosis can help
to understand the peculiarities of more general distributions. For example, if
overestimating the true value is less problematic than underestimating it, skew-
ness can offer important information. As another example if an estimation error
is critical in extreme cases only, it might be sufficient to take care of the tail
distribution – such information is provided by the kurtosis of the distribution.

Quantiles: One drawback of moment-based confidence measures is that they are
sometimes hard to interpret in a specific setup. Quantiles provide an alternative
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in such cases: since they are the level points of the cumulative distribution func-
tion (cdf), their interpretation is straight forward. As in the case of moments,
several estimation methods exist. However, as those are based on a different loss
function [9] not every model can be used in a straight forward fashion. Another
drawback of quantiles in comparison to moments is that they provide informa-
tion of a single point of the distribution only. In particular, they do not take
information regarding the tail distribution into account.

3 Feature Relevance

We will now recall the notion of feature relevance. We consider classification
and regression over R

d to {c1, . . . , cm} and R, respectively, with pairs of random
variables (X, Y ), corresponding to data and label. We refer to the i-th feature
of X as Xi. For a set R = {r1, . . . , rn} ⊆ {1, . . . , d}, we denote the sub-vector
containing all features in R as XR = (Xr1 , . . . , Xrn). We also make use of the
shorthand notation Ci = {i}C and XCi

for the subset and sub-vector of all
features except i. In the next two section we will first recall the notion of feature
relevance from the literature and then extend it as needed.

3.1 Feature Relevance for Classification

We recall the notion of relevance of a feature to the label variable Y as given
by [7]. Roughly speaking, a feature Xi is relevant, if it provides information
regarding Y . More formally, feature relevance is defined as follows:

Definition 1. A feature Xi is relevant to Y if and only if there exists a set
R ⊆ Ci such that Xi and Y are not independent given XR, i.e.

Y��⊥⊥Xi | XR.

A relevant feature is called strongly relevant, if and only if we may choose
R = Ci, otherwise it is called weakly relevant. A feature that is not relevant is
called irrelevant.

Some authors prefer a slightly different but equivalent definition of strong
and weak relevance:

Corollary 1. A feature Xi is strong relevant if and only if Y is not conditionally
independent of Xi given the remaining features, i.e. Y��⊥⊥Xi | XCi

. It is weakly
relevant if and only if it can be made relevant by restricting the feature set, i.e.
there exists a proper subset of features R � Ci for which Xi is strong relevant.

As pointed out in [4], the distinction between strong and weak relevance is
inspired by the observation that some features may carry redundant information
regarding Y . As an example, consider the case where two features are identical
copies of each other, i.e. X = (X1,X2,X2). Supposing that Y can be predicted
using X1 +X2, then the first feature is clearly relevant. The other features carry
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relevant information but they are redundant and only one of those is required.
In the framework of Definition 1, the first feature is strongly relevant, while
features two and three are weakly relevant.

In the context of feature relevance, two problems are of particular interest:
the minimal-optimal problem and the all-relevant problem.

The minimal-optimal problem refers to the problem of finding a smallest set
of features, that are relevant to the Bayesian classifier and contain all impor-
tant information. Hence adding further features does not improve the prediction
accuracy for Y . It can be shown that there exists exactly one such minimal set
for strictly positive distributions [10], which is equivalent to the set of strongly
relevant features. When it comes to feature selection, one is usually interested
in a minimal feature set.

The all-relevant problem refers to the problem of identifying all features rel-
evant to Y . It was shown that this problem needs exhaustive search for general
distributions [10]. Under assumptions on the distribution exact but computa-
tional expensive algorithms exist. Due to this restriction, other model based
approaches were designed to find approximate solutions [4,8,13].

3.2 Feature Relevance for (MSE-)Regression

Although the definition of relevance given above can be applied to regression
tasks, and is often referred to in the literature [3,8,13], it is usually approximated
by a simpler form in practical applications, at least for regression tasks. The term
of statistical independence is empirically tested only by considering a “decrease
of the loss of the model”, i.e. a feature Xi is relevant if it contains information
that may help to predict Y . For universal MSE-regression models, this can be
formalized as follows:

Definition 2. A feature Xi is E-relevant to Y if and only if there exists a set
R ⊆ Ci, such that the conditioning of Y on Xi and Xi,XR differ, i.e.

E[Y | Xi,XR] �= E[Y | XR].

A E-relevant feature is called strongly E-relevant if and only if we may choose
R = Ci, otherwise it is called weakly E-relevant. A feature that is not E-relevant
is called E-irrelevant.

Notice that the first formulation of weak and strong relevance (Corollary 1)
carries over to weak and strong E-relevance.

A key observation in this context is that (conditional) variance and bias are
decreasing if the set of considered features is increased. As a consequence we
observe that for the optimal model f∗

X(x) = E[Y | X = x] it holds

MSE(f∗
Xi,XR

) ≤ MSE(f∗
XR

)

and equality holds for all R if and only if Xi is E-irrelevant. However, one can
easily construct an example of a strongly-relevant but E-irrelevant feature:
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Fig. 2. Example distributions. Axis are x1 and y, α-channel is x2 (if present).

Example 1. Let X = (X1,X2) be a R
2-valued random variable, ε ∼ N (0, 1) an

independent standard normal distributed random variable, f : R → R be some
function. If we set Y = f(X1)+X2ε, then it holds E[Y | X] = f(X1)+X2E[ε] =
f(X1). So X2 is E-irrelevant, but since Var(Y | X) = X2

2 , X2 is strong relevant.

We illustrate the distribution in this example in Fig. 2a. Notice that this
example shows that E-relevance is not sufficient for trustworthy regression, as
only the first feature is relevant for the prediction, the second feature, however, is
very important to estimate the certainty of the prediction. This gives rise to the
question under which circumstances we lose information regarding the certainty
of a model if we apply feature selection based on the notion of E-relevance. As
it turns out, this is a problem which is specific to regression tasks.

Furthermore, the question occurs, how the properties of relevance and E-
relevance are related in general. We will consider this question in Sect. 5.

4 Feature Selection Methods

In the following, we will discuss some classical feature selection methods from
the literature and consider them in the context of the definition of relevance and
E-relevance and all-relevant and minimal-optimal problem, respectively. Notice
that we will concentrate on wrapper methods which derive a relevance measure
from an underlying model, as our approach is based on a transformation of the
labels for the prediction task at hand, to select the features.

Recursive Feature Elimination (RFE) [3] is based on models that assign impor-
tances to features. This can be the feature weight, as in the case of linear models,
or an implicit quantity, such as feature importance in case of decision trees or
random forests. The algorithm proceeds in a recursive fashion: starting with
all features, the model is trained and the feature with the smallest importance
value is remove. This procedure is repeated until a certain number of features is
obtained. Thereby, the desired number of features can either be predefined by
the user or determined by cross-validation.

As RFE does not directly consider the features but only importances assigned
by the model its relation to relevance or E-relevance is unclear. However, if it
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is used together with models that rely on an optimization of the MSE, only E-
relevance is considered. This model dependence also makes it hard to determine
precisely the set of features RFE aims for, as not all models can process all
information equivalently well. Furthermore, it also depends on whether the model
is sparse, in which case we will obtain a model dependent analog to the minimal-
optimal set, or not, in which case we are closer to the all-relevant set.

Sequential Feature Selection (SFS) [2] works similar to RFE in the sense that it
either removes (“backward”) or adds (“forward”) features in a recursive fashion.
However, instead of relying on the model to obtain the feature importance, cross-
validation is used. It can be shown that “backward” and “forward” procedure
do not lead to the same results, in general.

As in the case of RFE, it is neither clear whether relevant or E-relevant
features are found. However, in case of “backward” direction, features that are
not necessarily relevant for the model are assigned a small value. Hence one can
consider SFS as a minimal-optimal search strategy.

Boruta [8] uses the feature importance assigned by a learning model, most
commonly a random forest. However, in contrast to RFE it adds a randomly
permuted versions of the features, dubbed as “shadow-features”. These are irrel-
evant for the prediction of the label by design. As a consequence, any feature
that is ranked less important than a shadow feature cannot be relevant. A rel-
evance ranking is then obtained by repeating the steps several time and then
performing a statistical analysis.

Boruta is presented as an all-relevant search by the authors. Since it relies
on the model error, it aims for E-relevant features in the sense of Definition 2.

5 On the Relation of Relevance Notions

As already shown in Example 1, the notions of relevance and E-relevance are
not equivalent. Indeed, as suggested above the notion of relevance is stronger,
in the sense that E-relevance implies relevance. However, it is also true that
under certain circumstances, e.g. in case of binary classification, both notions
are equivalent. This justifies the usage of methods that aim for E-relevance from
a theoretical point of view in the case of classification problems. Furthermore, it
also shows that in the case of classification, standard feature selection methods
do not deteriorate trustworthiness of a model.

Theorem 1. Let X and Y be random variables. If Xi is (weakly/strongly) E-
relevant, then it is (weakly/strongly) relevant. Conversely if Xi is irrelevant, then
it is E-irrelevant.

Furthermore, if Y | XR is Bernoulli distributed (or more general the set of
all distributions can be parametrized by their mean value) for all R, then the
notions of (weak/strong) relevance and (weak/strong) E-relevant coincide.
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Proof. It suffices to show the first statement in the case where Xi is strongly
E-relevant. In case of weak E-relevance, we reduce to the set R for which i is
strongly E-relevant (Corollary 1), the converse statement for irrelevance follows
directly from the definition. Let Xi be strongly E-relevant and assume that
it is not strongly relevant. By the rules of conditional expectation regarding
independence it then holds E[Y | Xi,XCi

] = E[Y | XCi
] which is a contradiction.

For the second statement, it again suffices to show that strong relevance
implies strong E-relevance. Let Xi be strongly relevant and assume that it is
not strongly E-relevant. Then E[Y | Xi,XCi

] = E[Y | XCi
], but since expec-

tation is (by assumption) the only parameter of PY |XR
for all R, this implies

that PY |Xi,XCi
= PY |XCi

which is equivalent to conditional independence and
therefore a contradiction.

Considering Theorem 1, one might ask for which type of distribution the
notion of relevance and E-relevance coincide. However, as shown by Example 1
this does not hold even for very simple distributions. Indeed, equality basically
only holds in the described case. In particular, for the simplest regression task
the notion actually do coincide:

Corollary 2. If there exists a function f such that Y | X = f(X)+ε, where ε ∼
N (0, σ) is independent, normal distributed noise, the notions of (weakly/strong)
relevance and (weakly/strong) E-relevant coincide.

However, in this case the certainty is independent of X and thus of no interest.
For every set that contains more than two points there exists a distribution for
which equality no longer holds:

Example 2. Let X = (X1) ∼ U([−1, 1]) a uniformly distributed random variable
and σ be an independent Bernoulli distributed random variable with mean value
1/2. Set Y = 2σ − 1 if X1 > 0 and Y = 0 otherwise. Then Y is supported on
three points only. Furthermore, since E[Y | X] = 0 = E[Y ] it follows that X1

is not E-relevant, but the value of the conditional variance implies that X1 is
relevant.

We illustrate this example in Fig. 2b. As restricting the considered distribu-
tions yields only trivial solutions, we are looking for a way that allows us to
relate relevance and E-relevance. Considering Example 1 and 2, the size of the
variance may provide a sufficient criterion. However, it is easy to construct an
example where this is no longer the case:

Example 3. Consider the same setup as in Example 2 and let ε be an independent
standard normal distributed random variable. Set Y ′ = ε(1 − |Y |) + Y . Clearly
E[Y ′ | X] = E[Y ′] = 0, furthermore Var(Y ′ | X) = 1.

Instead of considering only the first two moments, i.e. mean and variance,
we can also consider the higher moments which solves the problem:

Theorem 2. Let Y be a real-valued random variable. Assume Y is compactly
supported or fulfills Carleman’s condition [1]. If Xi is (weakly/strongly) relevant
to Y then there exists a k such that Xi is (weakly/strongly) E-relevant to Y k.
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Proof. It is again suffices to show the case where Xi is strongly relevant (see
the proof of Theorem 1). As Xi is strongly relevant it holds Y��⊥⊥Xi | XCi

which is equivalent to PY |Xi,XCi
�= PY |XCi

, i.e. there exists a set C such that
PY |Xi,XCi

(C) �= PY |XCi
(C) as L1-functions. Denote the conditionals (with and

without Xi) difference by f(xi, xr) = PY |Xi=xi,XCi
=xr

(C) − PY |XCi
=xr

(C).
As f �= 0, we may find a set A × B ⊂ R × R

d−1 on which f has positive
expectation, i.e. E[f,A × B] > 0, using a monotonous class argument. As
E[f | XCi

] = 0, it follows that E[f,A × B] = −E[f,AC × B] and thus
PY |Xi∈A,XCi

∈B �= PY |Xi∈AC ,XCi
∈B. If Y is compactly supported, the statement

follows by applying Weierstrass’s approximation theorem. To use Carleman’s
condition observe that either PY |Xi∈A,XCi

∈BC = PY |Xi∈AC ,XCi
∈BC , in which

case we may replace B by R
d−1, or it does not hold, so that we end up with two

pairs of distributions, each with a global split along Xi. As Carleman’s condition
holds globally for Y , it follows by Jensen’s inequality that it holds for at least one
of the two/four distributions, which is then uniquely determined by its moments.
Notice that this suffices to show the statement since the partner distributions
either fulfills the condition, too, in which case the uniqueness applies, or it does
not, in which case the moments have to be different.

Notice that Theorem 2 allows us to connect relevance and E-relevance of a
higher dimensional problem, using a transformation of the labels. We will derive
an algorithmic solution from this observation in the next section.

6 Application: Moment Feature Relevance

By applying Theorem 2 we connect the task to determine relevant and E-relevant
features. For this purpose, we perform relevance analysis for the regression task
with respect to the label vector (Y, Y 2, . . . , Y d) rather than Y [6]. One can
also use a different transformation, e.g. based on the Legendre polynomials or
a Fourier transformation, which can be beneficial in practice. Indeed, if Y is
compactly supported, any function basis can be used. We refer to this method
as Moment Feature Relevance.

Although we have to take d → ∞ to monitor relevance, considering the first
d moments is usually sufficient in practice due to noise and estimation errors.
Indeed, we can quantify the error by following corollary of [6, Theorem 2] which
shows that for large d only features with small impact on the label are missed:

Corollary 3. Let Y be a [−1, 1]-valued random variable and assume that E[Y k |
X] = E[Y k | XCi

] for all k ≤ d. Then it holds

∫ 1

0

∣∣∣F−1
Y |XCi

(q) − F−1
Y |X(q)

∣∣∣ dq =
∫ ∞

−∞

∣∣∣FY |XCi
(y) − FY |X(y)

∣∣∣ dy ≤
√

16
2d − 1

,

where FY |X, F−1
Y |X, FY |XCi

, and F−1
Y |XCi

denote the cdf and quantile function
(i.e. inverse cdf) of PY |X and PY |XCi

, respectively.
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(a) Line (b) SinSin (c) Diabetes

Fig. 3. Mean probability to select a feature (1–5/1–10) for used datatasets, selection
methods, and transformations. Block order: Boruta (blue), REF (orange), SFS (green).
In block order (dark to light): Fourier, Legendre, Moment, Raw. (Color figure online)

Notice that this result connects the two confidence measures considered in
Sect. 2. In particular, when computing the feature relevances using the moment
technique, we also take care of the quantiles. Furthermore, notice that though
Corollary 3 formally require Y to take values in [−1, 1], the statement can also
be applied in the case where Y takes on any values in R using a suitable prepro-
cessing function like tanh.

7 Empirical Evaluation

We empirically evaluate our method. The method uses a label transformation fol-
lowed by a standard feature selection on the resulting (multi-)regression problem
(see Sect. 6 for details). We use two theoretical datasets with ground truth, i.e.
the relevant features are known. Further, we use one real world dataset. We use
the following feature selection methods: SFS (backward search, predefined num-
ber of features), RFE (using cross-validation to determine number of features),
and Boruta (default parameters). We use the following moment transformations:
Fourier (y 
→ (exp(kπiy))dk=−d), Legendre (y 
→ (Lk(y))dk=1, where Lk denotes
the Legendre polynomial of degree k), Moment: (y 
→ (yk)dk=1), and Raw (y 
→ y,
i.e. the base case without transformation). In all cases, we choose d = 5 as sug-
gested in [6] and random forests as base model. Before the transformation, Y is
normalized to the interval −1 and 1.

For the theoretical data, X follows a 5-dimensional uniform distribution. Y
is distributed according to

Line: Y = 8X1 − (36X2
2 − 36X2 + 1)ε

SinSin: Y = sin(2πX1 − π) + 3 sin(2πX2 − π) sin(2πX3 − π)ε,

whereby ε ∼ N (0, 1) is an independent standard normal distribution. As can be
seen X1 and X2 are relevant for Line, and X1,X2, and X3 relevant for SinSin.
In both cases only X1 is E-relevant. Notice that the all-relevant and minimal-
optimal feature sets coincide. To evaluate the method we compare the feature
set selected by the method and the set of relevant features. The results are pre-
sented in Fig. 3a, b, and in Table 1. The Fourier transformation works best over
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Table 1. Mean results over 300 runs. Table shows how many features are selected by
the method (all) and how many of them are relevant (rel., number in brackets indicates
number of truly relevant features), and precision (prc.), recall (rec.), and F1-score (F1)
comparing selected and relevant features.

Method Line SinSin

Trans. rel. (2) all prc rec F1 rel. (3) all prc rec F1

Boruta Fourier 2.0 2.2 0.9 1.0 1.0 2.2 2.4 0.9 0.7 0.8

Legendre 1.5 1.7 0.9 0.8 0.8 1.0 1.1 1.0 0.3 0.5

Moment 1.0 1.1 0.9 0.5 0.6 1.0 1.1 1.0 0.3 0.5

Raw 1.0 1.2 0.9 0.5 0.6 1.0 1.1 1.0 0.3 0.5

RFE Fourier 2.0 2.9 0.8 1.0 0.9 2.8 3.5 0.8 0.9 0.9

Legendre 2.0 3.2 0.7 1.0 0.8 2.7 4.3 0.7 0.9 0.7

Moment 1.5 3.7 0.5 0.8 0.5 2.4 4.0 0.6 0.8 0.7

Raw 1.5 3.6 0.5 0.8 0.6 2.1 3.5 0.7 0.7 0.6

SFS Fourier 2.0 2.0 1.0 1.0 1.0 2.8 3.0 0.9 0.9 0.9

Legendre 2.0 2.0 1.0 1.0 1.0 2.5 3.0 0.8 0.8 0.8

Moment 1.7 2.0 0.9 0.9 0.9 2.3 3.0 0.8 0.8 0.8

Raw 1.3 2.0 0.6 0.6 0.6 2.0 3.0 0.7 0.7 0.7

all selection methods, followed by the Legendre transformation, which however
seems to be less compatible with Boruta and RFE on SinSin. Simple moments
seem to work with SFS, only. Furthermore, without moments (Raw) all meth-
ods are only capable of identifying the E-relevant features, the probability of
detecting the other relevant features is random.

We also apply the method to the UCI benchmark diabetes. We evalu-
ate the method by splitting the dataset in two halves (50%), one for select-
ing the features and the remaining to score the selection using the test
error (5-fold, 2/3–1/3 train test split) of a quantile regression model (q =
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95) on the selected features only. The selection
probability for Boruta and REF are very comparable (see Fig. 3c). SFS considers
features 1, 2, 5, 6, and 8 less relevant. The scores of all methods are comparable
and well inside the range of statistical fluctuations.

8 Conclusion

In this paper, we considered the problem of feature selection for trustworthy
regression. We showed that feature relevance is a suitable relevance notion to
take confidence intervals into account. We established a formal framework that
allows us to connect feature selection via wrapper methods and feature relevance.
Using this, we showed that commonly used wrapper methods are not sufficient
for detecting all features that are needed if confidence is a target. We suggested
and evaluated an extension via a label transformation to solve this problem.
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