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Abstract. Accurate short-term traffic flow prediction is critical to improving the
reliability and efficiency of intelligent transportation systems. However, the com-
plex spatio-temporal characteristics of traffic flow pose a great challenge. The
latest methods usually use a multi-sensor data fusion approach to learn the spatio-
temporal information. First, it represents the traffic flow data collected from dif-
ferent sensors as a single-channel data structure. Then, the single-channel data
structure combined with the multi-branch feature fusion strategy is used to learn
the periodic dependencies (recent, daily, and weekly). However, these branches
add amassive usage of parameters, which tends to overparameterize the prediction
model, resulting in model overfitting and performance degeneration. To address
these issues, a novel deep learning-based prediction model is proposed, which
consists of three components. First, a new multi-channel data structure is pro-
posed to efficiently reconstruct periodic dependencies of traffic data. Then, a new
mixed-pointwise convolution method is proposed to extract spatio-temporal cor-
relations and periodic dependencies of traffic data without over-parameterization
and information loss. Last, an improved channel attentionmechanism is employed
to quantify the contributions of different channels. Extensive experiments are con-
ducted on two real-world traffic datasets. The results demonstrate the proposed
method consistently outperforms other baselinemethods and has strong robustness
in different settings.

Keywords: Traffic flow prediction · Multi-channel data structure · 3D
convolution · Pointwise convolution · Channel attention

1 Introduction

Short-term traffic flow prediction aims to predict the traffic flow for the next five to
30 min based on the historical traffic data. And it’s of great significance to build the
Intelligent Transportation Systems (ITS). Traditional prediction methods such as His-
torical Average (HA) [17], Auto-Regressive IntegratedMoving Average (ARIMA) [17],
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and Support Vector Regression (SVR) [18], only consider the intra-dependencies (i.e.,
temporal correlation across a single sequence), but ignoring the inter-information (i.e.,
spatio-temporal correlations across multiple sequences).

Recently, a modern solution that adopts the multi-sensor data fusion method has
arisen. First, it converts traffic data collected from multiple sensors into different data
formats that can represent spatial dependency. Then, deep learning-based methods are
used to capture the spatio-temporal correlations, which include two types of methods:
Convolutional Neural Network (CNN)-based methods and Recurrent Neural Network
(RNN)-based methods. RNN-based methods [6] are good at capturing temporal depen-
dencies but fail to consider spatial dependency without additional help, and usually
suffered from low parallel efficiency and vanishing gradient due to recursive design.
CNN-based methods, on the other hand, can capture the spatio-temporal correlations [2,
4, 15, 19] with high parallel efficiency and no vanishing gradient. In our previous work,
CNN is used for its superior ability in capturing spatio-temporal correlations [20].

Traditional CNN-based methods reconstruct the traffic data into a two-dimensional
matrix and apply a 2D-CNN for feature extraction [15]. This matrix stacks multiple one-
dimensional sequences vertically, making spatial information very ambiguous because it
can’t represent the real geographic distribution of different sections. Further researches
improve it by using a three-dimensional tensor, each two-dimensional matrix is a snap-
shot of the transportation network. And they further enhance temporal correlation by
using three parallel tensors with three parallel branches, corresponding with three types
of periodic dependency: recent, daily, and weekly (hereinafter referred it as multi-branch
feature fusion strategy). In the beginning, a Spatio-Temporal Residual Network (ST-
ResNet) [19] based on 2D convolution is proposed. But due to the limitations of 2D
convolution, the temporal information will lose after the first layer. To improve that,
a multiple local 3D CNN Spatio-Temporal Residual Network (LMST3D-ResNet) [4]
is proposed by replacing the 2D convolution with 3D convolution. Compared with 2D
convolution, 3D convolution can preserve more temporal information.

However, the aforementioned methods still have a huge research gap. First of all,
the multi-branch feature fusion strategy is highly inefficient. It’s not worth tripling the
parameters or even more just to account for periodic dependencies, which is likely to
cause over-parameterization. Second, they all suffered from information loss to some
extent, due to the usage of max pooling layers or 2D convolution. Third, they all ignored
the channel inter-dependencies, which are useful in terms of CNN-based methods.

To tackle these challenges, a novel multi-channel data structure integrated with
mixed-pointwise convolution and channel attention mechanism (CAMPConv-MC) is
proposed. The main contributions of this article are summarized as follows:

1. A new multi-channel data structure is proposed by reconstructing traffic data into
a four-dimensional tensor. This data structure can make full use of the channel
parallelism in CNN while representing the periodic dependencies of traffic data.

2. A new mixed-pointwise convolution method is proposed that integrates 3D convo-
lution, 2D convolution, and their variants pointwise convolution to extract spatio-
temporal correlations. Nomax pooling layer or 2D convolution is used in themiddle,
thus alleviating the information loss. And it removes the multi-branch feature fusion
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strategy and fully connected (FC) layers, hence over-parameterization is avoided as
well.

3. A channel attention mechanism is adapted from the squeeze and excitation (SE) unit
[8] and employed to learn the channel inter-dependencies of 3D convolution with a
mild parameter usage.

2 Related Work

2.1 Traditional Traffic Prediction Methods

Traditional traffic prediction methods include parametric methods and non-parametric
methods. Some typical examples of parametricmethods are HA andARIMA [17]. These
methods achieve satisfactory performance on short series that are stational and univariate.
But the strong assumptions about data are not suitable for non-linear traffic data. These
limitations have been improved by non-parametric methods. A typical example is SVR
[18]. SVR uses a kernel function to project the traffic data to high dimensional space.
This reconstruction makes non-linear traffic data linearly separable with hyperplanes.
Othermethods such as BayesianNetwork [12] andK-Nearest Neighbor [12] all achieved
a better forecast error by considering spatial dependency. However, these non-parametric
methods still require some human intervention like feature engineering. In comparison
with them, deep learning-based methods learn the features on their own with no human
help required.

2.2 Deep Learning-Based Traffic Prediction Methods

In the age of big data, deep learning-based methods like Deep Belief Networks (DBF)
[9], Stacked Auto Encoder (SAE) [14], Gated Recurrent Unit (GRU) [6], and Long
Short-Term Memory (LSTM) [6] have been proposed for traffic data prediction. DBF
and SAE focus on spatial dependency but ignore the long-term patterns while GRU
and LSTM are the opposite. In addition, RNN-based methods (i.e., LSTM and GRU)
have poor parallel efficiency and vanishing gradient problems as they are trained [2].
Subsequent methods have overcome these shortcomings with CNN-based models and
multi-sensor data fusion to reconstruct and capture the spatio-temporal correlations. At
an early stage, Ma et al. [15] proposed a traditional 2D-CNN with two-dimensional
matrix. Later, Zhang et al. [19] extended it into three-dimensional tensor and proposed
the ST-ResNet. However, 2D convolution used in ST-ResNet can’t preserve temporal
information after the first layer. To improve it, Chen et al. [4] proposed an LMST3D-
ResNet by replacing the 2D convolution with 3D convolution and introducing the 3D
max pooling layers and FC layers. In addition, ST-ResNet and LMST3D-ResNet adopt a
multi-branch feature fusion strategy to enhance themodeling of temporal correlation.But
this strategy andFC layers use a huge number of parameters,which is likely to cause over-
parameterization that triggers overfitting and performance degeneration. What’s more,
these CNN-based methods with max pooling layers condense too much information
when extracting features, resulting in information loss. Moreover, they all neglect the
importance of channel inter-dependencies, which is crucial in CNN-based methods.
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2.3 Pointwise Convolution and Channel Attention Mechanism

Pointwise convolution was proposed in fully convolutional methods like the Xception
network [5]. Pointwise convolution refers to convolution with a kernel size of one.
It’s used to reduce channels before expensive filters while learning the channel inter-
dependencies. Meanwhile, a channel attention mechanism was proposed to refine infor-
mative filter output. Chen et al. [3] used global mean pooling with softmax function and
FC layers to find the informative channels. Liu et al. [13] applied it in traffic data pre-
diction using multiple two-dimensional matrixes. However, apart from the drawbacks
of the two-dimensional matrix, the FC layers are very computational expensive as the
channels increase. SE unit [8] improved it with more flexible squeeze and excitation
operations. Inspired by them, a mixed-pointwise convolution integrated with a channel
attention mechanism is proposed to reduce computations and boost performance.

3 Methodology

3.1 Multi-channel Data Structure

In this article, a transportation network is defined as regular raster data [1] to fuse the
spatio-temporal information collected from multiple traffic sensors. Apart from spatio-
temporal correlations, the proposed method adds periodic dependencies into account.

Definition 1: Rasterization. The transportation network is partitioned into I × J grids
based on latitude and longitude. Each sensor records at time point t are assigned to the
closest grid (i, j) and averaged into a scalar denoted as xi,jt .

Definition 2: Spatio-Temporal Raster Data. First, a two-dimensional matrix denoted
as St ∈ R

I×J is used to represent the spatial information at time point t, as defined in
Eq. (1):

St = {xi,jt |i ∈ I , j ∈ J } (1)

Then, the temporal information is represented by Tp ∈ R
d×I×J as defined in Eq. (2)

where d refers to subsequence length and p is sampling period.

Tp = {St−d×p, St−(d−1)×p, ..., St} (2)

Definition 3: Multi-Channel Data Structure. The multi-channel data structure is
denoted as XC ∈ R

C×d×I×J , composed of C types of periodic dependency: recent,
daily, and weekly. XC can be rewritten as XC = {Tr,Td ,Tw}. For each tensor T, d is set
to the same, and p is set to five minutes, 24 h, and one week respectively.

Definition 4: Traffic Flow Prediction. As defined in Eq. (3). Given XC , the goal is to
predict the value at the time point t + �t denoted as X

∧

t+�t , where �t is the forecast
time interval, and θ is the trainable parameters of the proposed CAMPConv.

X
∧

t+�t = fθ (XC) (3)
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3.2 Mixed-Pointwise Convolution Integrated with Channel AttentionMechanism

In this section, a novel CAMPConv is proposed which contains two components: con-
volutional unit, and SE unit as shown in Fig. 1(b) and Fig. 1(c). Figure 1(a) is the overall
structure of the proposed CAMPConv-MC. First, the input unit uses a 3D pointwise
convolutional unit with 64 filters is used to project the proposed multi-channel data
structure XC to a high-dimensional channel space. Then, the backbone uses multiple
3D convolutional units (same padding) with 64 filters and SE units are employed to
extract the spatio-temporal correlations. After this, the output unit uses a 3D pointwise
convolutional unit with one filter implemented to compress the channel space into one.
At last, the 3D channel axis is removed so that a 2D pointwise convolutional unit can be
employed to extract temporal information of the same region and make predictions.

Fig. 1. Network structure and the details of the proposed CAMPConv-MC. (3D Conv Unit: 3D
Convolutional Unit; 3D Point Conv Unit: 3D Pointwise Convolutional Unit; 2D Point Conv Unit:
2D Pointwise Convolutional Unit; SE Unit: Squeeze and Excitation Unit)

Mixed-Pointwise Convolution. Mixed-pointwise convolution is a hybrid method that
adopts 3D convolution, 2D convolution, and their variants pointwise convolution. They
are denoted as convolutional units as demonstrated in Fig. 1(b). First, a convolutional
layer is used to extract spatio-temporal correlations. Then, a batch normalization [10]
layer is implemented to avoid internal covariate shift. Finally, a relu function is used to
add nonlinearity. As defined in Eq. (4), X (l−1)

C ∈ R
Cl−1×d×I×J denotes the input of the

lth 3D convolutional layer, which is the output of the upper layer with Cl−1 channels.
W (l) and b(l) are the weights and bias of the lth 3D convolutional layer, and * denotes
the operation of 3D convolution. BN denotes the batch normalization operation and δ
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denotes the relu function. This design preserves the temporal information by keeping
the sequence length d unchanged during 3D convolution.

X (l)
C =δ(BN (W (l) ∗ X (l−1)

C + b(l))) (4)

After 3D convolution, 2D pointwise convolution is used to extract temporal informa-
tion for prediction. As defined in Eq. (5), L refers to the last 3D pointwise convolutional
units as shown in Fig. 1(a).W and b refer to the weights and bias of the 2D convolutional
layer, � denotes the 2D convolutional operation.

X̂t+�t=δ(BN (W � X (L)
C + b)) (5)

Squeeze and Excitation Unit. This article extends the traditional SE unit to meet the
requirements of traffic prediction, as shown in Fig. 1(c). Unlike image data, spatio-
temporal traffic raster data often contains many empty regions due to the sparsity of
the transportation network. The global mean pooling used in traditional SE units will
introduce too much noise. In this article, a simple adaption to 3D max pooling is used
to pick out the most informative region in the spatio-temporal domain.

In the notion that follows, Fsq denotes squeeze operation and Fex denotes excitation

operation. X (l)
C ∈ R

Cl×d×I×J is the output of the lth 3D convolutional unit, which can

be rewritten as X (l)
C = {x(l)

1 , x(l)
2 , ..., x(l)

Cl
}where x(l)

c refers to the output of the cth filter in

lth layer. The global spatio-temporal information is squeezed out using 3Dmax pooling,
denotes as MAX. The element zc of statistic z ∈ R

Cl is calculated by Eq. (6):

zc = Fsq(x
(l)
c ) = MAX (x(l)

c ) c = 1, 2, ...Cl (6)

After squeezing out the global spatio-temporal information, the excitation operation
uses two FC layers to learn the non-linear interaction. To control network complexity,
the first FC layer encodes z into a smaller space and the next FC layer decodes it back
to the original space. The reduction ratio is denoted as r, and the weights of these FC

layers are denoted asW1 ∈ R

Cl
r ×Cl ,W2 ∈ R

Cl×Cl
r . σ denotes the sigmoid function and

δ denotes the relu function. After excitation operation, a vector s ∈ R
Cl is calculated as:

s = Fex(z,W ) = σ(W2δ(W1z)) (7)

In the end, as defined in Eq. (8), channel-wise multiplication and residual link [7]
are conducted between s and X (l)

C to get the refined feature maps denoted as X̃ (l)
C ∈

R
Cl×d×I×J . It can be rewritten as X̃ (l)

C = {x̃(l)
1 , x̃(l)

2 , ..., x̃(l)
Cl

}, where ◦ is the element-wise

multiplication and x̃(l)
c refers to the refined output of the cth filter in the lth layer.

x̃(l)
c = sc ◦ x(l)

c + x(l)
c c = 1, 2, ...Cl (8)

4 Experiments

4.1 Computing Environment and Datasets

In terms of the computing environment, the following experiments were conducted
on a server with 16 physical cores (Intel Xeon Silver 4110 @ 2.10 GHz) and two
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GPUs (RTX 2080Ti). The software environment uses python 3.8.5 with pytorch 1.7.1,
pytorch-lightning 1.1.8, and statsmodels 0.12.2 with Windows10 20H1 to build models.

This article uses two high way traffic datasets collected by the Caltrans Performance
Measurement System (PeMS). PeMS collects real-time data samples every 30-s and
aggregated them into 5-min time interval. Table 1 shows the details of these datasets.
The raster sizes are set to (42, 34) and (20, 36) so that each grid is 5 km × 5 km. At
first, detectors with any empty records are eliminated from the dataset. After converting
the traffic data into spatio-temporal traffic raster data, min-max normalization is adopted
to scale the value between zero to one. Then, the raster data is converted to the multi-
channel data structure. Finally, the dataset is divided into training data and testing data
under the ratio of 8:2, then 20% of the training data is cut out as validation data.

Table 1. Descriptions of the two high way traffic datasets

Dataset PeMSD4 PeMSD7

Location San Francisco Bay Area District 7 of California

Number of detectors 3796 4817

Time span 1st Jun 2017–30th Jun 2017 1st Jun 2017–30th Jun 2017

Time interval 5-min 5-min

Raster size (42, 34) (20, 36)

Available time points 8640 8640

4.2 Baselines and Benchmarks

The proposed method is compared with the following six baseline methods:

– HA: The predicted values are estimated with four historical time points.
– ARIMA: A classic statical model for time series prediction. It uses the order of (0, 1,
1) according to the previous study [17].

– CNN: CNN uses two 2D convolutional layers (valid padding) with a kernel size of
three, a filer num of 128 and 64, and a stride of one; two max pooling layers are used
with a kernel size of two and a stride of two; and one FC layer with serval neurons.

– ConvLSTM: Convolutional LSTM is a variation of LSTMwhich is good at capturing
spatio-temporal correlations [16]. It uses three layers (same padding) with a filter num
of six, a kernel size of three, and a stride of two.

– ST-Resnet: A fully convolutional method uses 12 residual units; each contains a 2D
convolutional layer (same padding) with a filter num of 64, a kernel size of three, and
a stride of one. And a multi-branch feature fusion strategy is also used.

– LMST3D-ResNet: An improved version of ST-Resnet. It uses three residual units,
each contains a 3D convolutional layer (same padding) with a filter num of 64, a
kernel size of three, and a stride of one; and a 3D max pooling layer uses a kernel size
of (2, 3, 3), the stride of one, and a padding size of (0, 1, 1). Two FC layers are used
in the last. A dropout rate of 20% is used to avoid overfitting.
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For fairness, all methods use the same computing environment with four historical
time points to make future predictions. All deep learning-based methods share the same
hyperparameter setting with a learning rate of 1e-4 and a batch size of 64. They are
trained for 200 epochs by Adam optimizer [11] with l1 loss as defined in Eq. (9), where
I and J are the width and height of the grid map, x̂i,jt+�t refers to predicted value and

xi,jt+�t is ground truth. The model with a minimal loss value is kept as final model.

Loss = 1

I × J

J∑

j=1

I∑

i=1

∣
∣
∣x

i,j
t+�t − x̂i,jt+�t

∣
∣
∣ (9)

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are used to
measure the forecast performance. As defined in Eq. (10) and Eq. (11), n is the number
of ground truths at time point t + �t, x̂it+�t and xit+�t are the rescaled predicted value
and the corresponding ground truth.

RMSE =
√
√
√
√1

n

n∑

i=1

(xit+�t − x̂it+�t)
2 (10)

MAE = 1

n

n∑

i=1

∣
∣
∣xit+�t − x̂it+�t

∣
∣
∣ (11)

5 Results and Analysis

This section shows the results in predicting the traffic flow in the next 15-min with the
grid size of 5 km × 5 km. The proposed CAMPConv-MC uses three 3D convolutional
units and three SE units. All convolutional layers (same padding) use 64 filters, a kernel
size of three, and a stride of one. The reduction ratio r for SE units is four.

5.1 Experimental Results on PeMSD4

Comparison with Baseline Methods. The results on the PeMSD4 dataset are listed in
Table 2, where the proposed CAMPConv-MC beats all other methods. The worst are
HA and ARIMA due to the neglect of spatial dependencies. Despite CNN and ConvL-
STM considering spatial dependencies, they have a significant drawback as they only
consider spatial dependencies of nearby regions. On the contrary, ST-Resnet consid-
ers the long-distance spatial dependency using residual units. But 2D convolution fails
to preserve temporal information for it treats the temporal axis as multiple channels.
LMST3D-ResNet replaces 2D convolution with 3D convolution to preserve more tem-
poral information. However, LMST3D-ResNet suffered from over-parameterization and
information loss due to the multi-branch feature fusion strategy and massive usage of
max pooling layers, even regularization techniques like dropout can’t fundamentally
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Table 2. Performance comparison on PeMSD4 (The best values are marked in bold)

Methods MAE RMSE

HA 21.425 28.406

ARIMA 20.221 27.410

CNN 15.540 21.027

ConvLSTM 18.689 25.047

ST-Resnet 14.822 20.399

LMST3D-Resnet 13.948 19.798

CAMPConv-MC 13.464 18.832

solve it. The proposed CAMPConv-MC capture the correlations between different peri-
odic dependencies and the channel inter-dependencies. It achieves the best performance
without any max pooling layers or a massive usage of parameters. To investigate the
effectiveness of each part, an ablation study is conducted in next section.

Ablation Study of CAMPConv-MC. This section tests a few variants of the
CAMPConv-MC with a new metric called Time, which refers to the training time. A
fully convolutional network made up of multiple 3D convolutional units (M3D) trained
on a single-channel data structure is used as a baseline. M3D-CA denotes baseline plus
SE unit, M3D-MP denotes baseline plus mixed-pointwise convolution, and M3D-MC
denotes baseline plus multi-channel data structure. Expect for M3D-MP, all models use
the kernel of size (2, 3, 3) and the padding of size (0, 1, 1) to compress temporal channels
into one. Table 3 proves that every part of the proposed model is effective compared with
M3D. When compared to M3D, M3D-MC has superior MAE and RMSE with nearly
equal training times while not using any branch, demonstrating the high efficiency of
the proposed data structure. M3D-MC has a larger RMSE but a substantially lower
MAE when compared to M3D-MP. This showed that the spatio-temporal correlations
can improve forecast performance in extreme conditions thus increasing the robust-
ness. Additionally, M3D-CA outperforms M3D proves the necessity of considering the
channel inter-dependencies and the validity of the improved SE units.

Table 3. Effects of different components of the proposed method

Methods Time (Minutes) MAE RMSE

M3D 9.666 16.926 26.174

M3D-MC 9.672 14.789 24.034

M3D-CA 12.219 15.801 24.987

M3D-MP 22.858 15.173 20.876

CAMPConv-MC 27.146 13.464 18.832
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5.2 Experimental Results on PeMSD7

Comparison with Baseline Methods. The results of PeMSD7 are similar to PeMSD4.
As shown in Table 4, CAMPConv-MC consistently outperforms other baseline methods.
Because the raster size of PeMSD7 is smaller than PeMSD4, the forecast errors on
PeMSD7 are smaller than PeMSD4. The proposed CAMPConv-MC performs well on
both datasets, yielding strong robustness under different raster sizes. To further prove the
advantages of CAMPConv-MC, a scalability analysis is conducted in the next section.

Table 4. Performance comparison on PeMSD7

Methods MAE RMSE

HA 20.883 25.325

ARIMA 18.518 23.084

CNN 14.591 18.745

ConvLSTM 16.701 21.320

ST-Resnet 13.576 18.041

LMST3D-Resnet 13.497 17.752

CAMPConv-MC 12.408 16.126

Scalability Analysis. Table 5 and Table 6 show the results of RMSE under different
grid sizes and time intervals. For fairness, one setting is changed while the other is kept
unchanged. As shown in Table 5, forecast errors decrease as the grid size enlarges. This
is because, given a fixed transportation network, a smaller grid size can generate more
grids to be predicted. At the scale of 10 km × 10 km, ST-Resnet and LMST3D-Resnet
don’t vary a lot compared with CNN. This is due to the grid map becoming too small.
At this scale, even CNN can discern the long-distance spatial dependencies. As shown
in Table 6, forecast errors increase as time intervals enlarge. This is due to the fact that a
larger time interval will result in more temporal uncertainty. For instance, when the time
interval is 30-min, the increased temporal uncertainty narrowed the performance gap
between LMST3D-Resnet and ST-Resnet. However, the proposed methods consistently
outperform all other deep learning-based methods, displaying the highest robustness
regardless of grid size and time interval.
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Table 5. RMSE under different grid sizes (time interval of 15-min)

Methods 2.5 km ×
2.5 km

5 km ×
5 km

10 km ×
10 km

CNN 22.266 18.745 15.810

ConvLSTM 25.330 21.320 19.065

ST-Resnet 25.332 18.041 15.384

LMST3D-Resnet 19.931 17.752 15.556

CAMPConv-MC 18.524 16.126 15.242

Table 6. RMSE under different time intervals (grid size of 5 km × 5 km)

Methods 5-min 15-min 30-min

CNN 18.244 18.745 19.981

ConvLSTM 19.822 21.320 23.840

ST-Resnet 18.093 18.041 18.645

LMST3D-Resnet 17.818 17.752 18.440

CAMPConv-MC 17.030 16.126 17.069

6 Conclusions and Future Work

In this article, a novel CAMPConv-MC is proposed for short-term traffic flow prediction.
A novel multi-channel data structure is proposed to efficiently build periodic dependen-
cies of traffic data. Then, a new mixed-pointwise convolution is proposed to capture
the spatio-temporal correlations and periodic dependencies, and an improved channel
attention mechanism adapted from traditional SE unit is used to learn the channel inter-
dependencies. Extensive experiments on two real-world datasets show that the proposed
method exceeds the state-of-the-art methods in robustness and performance.

However, there are some limitations to this article. As grid size goes up, the sparsi-
fication of grid maps is a problem. Moreover, the effects of external features and results
on datasets from different countries are remains to be discussed in future work.
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