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Abstract. Learning-based models have demonstrated the superiority of
extracting and aggregating saliency features. However, we observe that
most off-the-shelf methods mainly focus on the calibration of decoder fea-
tures while ignore the recalibration of vital encoder features. Moreover,
the fusion between encoder features and decoder features, and the trans-
fer between boundary features and saliency features deserve further study.
To address the above issues, we propose a feature recalibration network
(FRCNet) which consists of a consistency recalibration module (CRC) and
a multi-source feature recalibration module (MSFRC). Specifically, inter-
section and union mechanisms in CRC are embedded after the decoder
unit to recalibrate the consistency of encoder and decoder features. By
the aid of the special designed mechanisms, CRC can suppress the useless
external superfluous information and enhance the useful internal saliency
information. MSFRC is designed to aggregate multi-source features and
reduce parameter imbalance between saliency features and boundary fea-
tures. Compared with previous methods, more layers are applied to gen-
erate boundary features, which sufficiently leverage the complementary
features between edges and saliency. Besides, it is difficult to predict the
pixels around the boundary because of the unbalanced distribution of
edges. Consequently, we propose an edge recalibration loss (ERC) to fur-
ther recalibrate the equivocal boundary features by paying more attention
to salient edges. In addition, we also explore a compact network (cFRC-
Net) that improves the performance without extra parameters. Experi-
mental results on five widely used datasets show that the FRCNet achieves
consistently superior performances under various evaluation metrics. Fur-
thermore, FRCNet runs at the speed of around 30 fps on a single GPU.

Keywords: Salient object detection - Feature recalibration - Edge
recalibration loss

1 Introduction

Salient Object Detection (SOD) aims at locating the most attractive regions of
images or videos and is used as the pre-processing procedure for downstream
vision tasks [1,2]. Earlier SOD algorithms mainly rely on hand-crafted features
such as background prior, color contrast and contextual cue to extract salient
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Fig. 1. Feature fusion and loss difference. (a) (i): images, (b) (j): ground truths, (c)
(k): encoder features, (d) (1): decoder features, (e) (m): fusion features, (f) (n): edges
directly from fusion features, (g) (0): generated edges from network, (h) (p): error maps

of (f) (g) and (n) (o).

objects. However, these unsupervised stimuli-driven algorithms hardly capture
high-level semantic features and are not robust to detect salient object in chal-
lenging complex background. In recent years, convolutional neural networks have
been introduced to SOD and achieve best results on many benchmark datasets
[5,8,10-13,15,18]. One representative network is U-net-like [9] structure, which
significantly improves the resulting saliency maps. More recently, boundary fea-
tures are integrated to convolutional features to predict more reliable saliency
structure [19].

There are still three main challenges in SOD. Firstly, most of the previous
works mainly focus on the construction of decoder features and various effective
connection. However, the reconstruction of important encoder features and the
fusion between encoder and decoder features remain scarce. As shown in Fig. 1
(¢) (k), the raw encoder features are coarse and blur, which may mislead the
subsequent feature transfer. Secondly, the aggregation of boundary features and
saliency features has not been comprehensively studied. In fact, the correlation
and difference between edges and saliency directly determine the performance
of the generated saliency maps. Moreover, because the boundary features are
less than the saliency features, conventional feature fusion methods may lead
to parameter imbalance [19]. Finally, at present, boundary features are applied
to refine the saliency features. Most of the existing methods generate boundary
features from several convolutional layers after saliency features [19,21]. Nev-
ertheless, the boundary features from the previous saliency convolutional layer
may be changed during the process of feature transfer (see Fig. 1 (h) (p)). There-
fore, when the saliency feature is supervised, the boundary features extracted
from the saliency features should be supervised simultaneously, aiming at recal-
ibrating the structure of saliency maps.

To address the above challenges, we propose a feature recalibration network
(FRCNet) for accurate and fast SOD. In a specific, for the first issue, we pro-
pose a consistency recalibration module (CRC). CRC adopts an intersection
and union mechanism, in which intersection mechanism is used to filter noise



66 Z. Tan and X. Gu

information and union mechanism is used to enhance saliency information. With
the help of CRC, the noises are removed and the coarse edges are refined. In addi-
tion, after CRC, top-down feature refinement is adopted to aggregate multi-level
features. Different from previous top-down connection mechanism, we reduce the
spatial resolution to decrease the memory computation. For the second issue, we
introduce a multi-source feature recalibration module (MSFRC) to aggregate
multiple features and reduce parameter imbalance between edges and saliency.
Considering the complementarity between edge information and salient informa-
tion, MSFRC is designed to progressively learn the correlation and recalibrate
the difference between boundary features and saliency features. In addition, more
boundary feature layers help balance the parameters between edges and saliency.
For the final issue, we propose an edge recalibration loss (ERC) to further recal-
ibrate the boundary features directly from the saliency features. Because the
pixels around the edges are hard to predict and discriminate, paying more atten-
tion to these edge pixels can refine the resulting saliency maps. In ERC, the edge
pixels are given the maximum attention, then the saliency maps, and finally the
background. The specially designed loss can lead the network to focus on the
edges and further enhance the detection of saliency structure.

Experimental results on five popular datasets show that the proposed FRC-
Net achieves consistently superior performance in comparison with other state-
of-the-arts. The visual assessment verifies the results. Besides, the ablation stud-
ies demonstrate the effectiveness of each proposed module. FRCNet runs at
around 30 fps on a single NVIDIA 2080Ti GPU. The codes will be released. In
a word, the main contributions can be highlighted as follows.

— We propose a consistency recalibration module to recalibrate the encoder
features and the decoder features, which is able to refine the coarse encoder
features and selectively aggregate encoder features and decoder features.

— We propose a multi-source feature recalibration module to aggregate multi-
source features and reduce parameter imbalance, which progressively learns
the correlation and recalibrates the difference between edges and saliency.

— A novel edge recalibration loss is designed to guide the network to focus on
the edge information and refine the coarse edges.

— Visual and objective assessments on five datasets show that the proposed
FRCNet can achieve consistently superior performance, which verifies the
superiority of the proposed model.

2 Proposed Method

As illustrated in Fig. 2, we propose a consistency recalibration module to aggre-
gate encoder features and decoder features, which can suppress the useless infor-
mation and enhance useful information. To progressively couple the complemen-
tarity and reduce parameter imbalance, we propose a multi-source feature recal-
ibration module to aggregate multi-source features. To recalibrate the saliency
edges, we design a novel edge recalibration loss to focus on the refinement of the
edges.
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Fig. 2. Overall architecture. Baseline includes an encoder network and a decoder net-
work. ResNet-50 is adopted as the encoder network and a U-net-like structure is used as
the decoder network. CRC: Consistency recalibration module. MSFRC: Multi-source
feature recalibration module.

2.1 Consistency Recalibration Module

At first, inspired by U-net-like [9] structure, a typical encoder-decoder network is
adopted in this paper to generate the baseline features. Then, we propose consis-
tency recalibration module (CRC) to refine both encoder features f, € R#*Wx¢
and decoder features f; € RT*W*C  As shown in Fig.1, f. contains lots of
details such as textures and edges, while lacks enough semantic information. On
the contrary, f; extracts rich semantic features with coarse edges. The possible
reason is that f. is close to the input and the receptive fields are small. While
fa has relatively large receptive fields but goes through too many downpoolings
and upsamplings, which leads to the loss or the extra of information.

Therefore, intersection and union mechanisms are applied in CRC to fil-
ter the noises and enhance the semantic features. Intersection mechanism picks
up the most confident pixels and suppresses the noise pixels. However, some
salient pixels especially around the edges may be corroded as well. Consequently,
union mechanism is designed to enhance the internal saliency features. The union
mechanism enhances the confident pixels in both encoder and decoder features,
meanwhile, the indefinite pixels are enhanced as well. Based on the intersection
and union mechanisms, the background noises are suppressed and the foreground
information are strengthened. Therefore, the intersection and union are designed
to refine the features instead of conventional encoder features and decoder
features.
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Specifically, as illustrated in Fig. 2, CRC contains three steps to obtain clear
and complete saliency features. Firstly, the two features f. and f; are applied
to generate the intersection features f;. Then, the same two features f. and fy
are used for generating the union features fy. Here, f. and fy are reused twice
because CRC optimizes these two features from suppression and enhancement.
Finally, fr and fy are concatenated to preserve their own features. The whole
progress can be concluded as follows.

foren, = concat(fi( ) fi £\ £2). (1)

where, fé’RCi" is the input features of CRC?, i € {1,2,3,4,5} is the layer num-
ber, and concat(-) is the operation of concatenation. As shown in Eq. (1), CRC
has no convolution calculation, therefore, CRC refines the results without any
parameter increasement. In addition, top-down mechanism is adopted to refine
the saliency maps. In consideration of the different receptive fields in different
layers, cross layer connection can directly transfer the semantic features to other
layers, enriching and integrating the salient features of each layer. Therefore, the
final CRC features can be denoted as follows.

| down(finc,.). i=1
fore,., = § down(fipe,,) + fere,,» i =2 (2)
down(féRCm) + up(f@RCm), i = other

where, f& RC,,, 1S the output features of CRC®, down(-) denotes the bilinear
downsampling operation and up(-) denotes the bilinear upsampling operation.
Finally, fé RC,,, 18 supervised by saliency ground truth after a 1 X 1 channel
adjustment layer.

2.2 Multi-source Feature Recalibration Module

Multi-source feature recalibration (MSFRC) is divided into two steps. The
first step is to progressively learn the correlation and recalibrate the difference
between edges and saliency, and the second step is to integrate boundary features
and saliency features. As illustrated in Fig. 2, there are three feature changes in
the first step of MSFRC, which brings more correlation information and differ-
ence information. In addition, previous methods [19] introduce boundary fea-
tures as auxiliary supervision, however, they only use one of the convolutional
blocks to generate boundary features, which may lead to parameter imbalance.
The larger the saliency parameter is, the more attention the network pays to
saliency, while the boundary features with less parameters are easily ignored.
Note that the boundary features should not be larger than the saliency features,
which may lead to put the cart before the horse.

For the first step, the 1-th block, the 3-th block and the 5-th block are
supervised by saliency, which generate the saliency features. The 2-th block
and the 4-th block are supervised by edges, which generate the boundary fea-
tures. Because of back propagation, each layer has potential feature transfer
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even though there is no direct layer-to-layer connection. Therefore, the bound-
ary features are generated between every saliency layer, which force the network
to learn the correlation and recalibrate the diversity. Besides, the saliency lay-
ers are more than the edge layers, which ensures the advantage of saliency. For
the second step, different layers are aggregated to a whole layer by addition.
Two boundary feature layers in MSFRC increase the proportion of edges, which
reduces the parameter imbalance.

Specifically, the features f reo,,, irom CRC are transferred to MSFRC, and
each f% RC,,, 8oes through three convolutional layers with batch normalization
and ReLU activation function. Then, the five feature maps in MSFRC are added
to aggregate multi-level features. The resolution and the channel are unchanged
during the process. The whole process can be denoted as follows.

5
fMsrre = F;(Z Ff(flCRcmé 9;13)% 93)7 (3)

i=1

where, F} and F3 are the combination of three convolution, batch normalization
and ReLU. 63 and 63 are the parameters of F? and F3. Finally, if i = 1,3,5,
fi/srre 18 supervised by saliency ground truth after a 1 x 1 channel adjustment
layer. If i = 2,4, fi,5rrc 1 supervised by edge ground truth after a 1x 1 channel
adjustment layer.

2.3 Loss Function

In mathematical optimization, loss function represents the degree of inconsis-
tency between the predicted value and the ground truth value. In this paper,
loss function is divided into saliency loss function and edge loss function.

Saliency Loss Function. Currently, most of the methods adopt edge super-
vision to refine the salient edges. However, the boundary features are usually
generated after multiple convolutional layers, which may lead to the feature
inconsistency between edge and saliency. Even though in MSFRC, the feature
inconsistency is applied to correct the possible errors occurred in previous lay-
ers, the salient edges directly from saliency feature layers still need to refine.
Therefore, we propose an edge recalibration loss function (ERC) as follows.

~ % [ MGlogP),
(m,n)
if M=1,G=1
—(Z)[(l—v)(l—M)GlogP],
(s) 7 if M=0,G=1
Lere =3 = 8 yM( - Gyiog(1 = P, )
(mon)
if M=1,G=0
—(Z)[(l—v)(l—M)(l—G)log(l—P)L
’ if M=0,G=0
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where, Lg}%o is the loss of s-th layer. M, GG, P represent the abbreviations
M(m,n), G(m,n), P(m,n), respectively. M(m,n) € {0,1} is the edge ground
truth of the pixels (m,n), v is a hyper parameter which controls the edge supe-
riority and we set  to 0.75 in this paper. G(m,n) € {0, 1} is the saliency ground
truth and P(m,n) is the predicted saliency probability. Equation4 means the
saliency features are constrained directly by the edge ground truth. Considering
the sparsity of edge, we expand the edges in a 3 x 3 neighborhood. Consequently,
Eq. 4 can be concluded as Eq. 5.

Lhe=— Y (M@ B)+ (1 -1~ (Ma B))) 5
(m,n) 5
(GlogP + (1 — G)(1 — logP))],

where, B is a 3x3 matrix with all 1, and M®B = {m,n|B,, [\ M # &} denotes
the morphological dilation. For all pixels, ERC first pays more attention to the
salient edges, then the saliency and finally the background. ERC has two superi-
orities. On the one hand, ERC is used for recalibrating the salient edges directly
from salient features, which helps the network detect the edges of saliency fea-
tures. On the other hand, the saliency features and the boundary features of
them are optimized simultaneously, which means ERC can balance the two to
some extent. Equation 5 means ERC loss mainly focuses on the saliency struc-
ture. Therefore, the optimization based on foreground and background should
be considered as well. We adopt BCE loss and Dice loss [6] to further optimize
the network.

LSy =Y [GlogP + (1 - G)(1 - logP)], (6)
(m7n)
GP
L( ) Z(m’n) (7)

Dice Z(m,n) [G + P]

Edge Loss Function. The edges generated in MSFRC are supervised by
weighted BCE loss. Different from BCE loss, weighted BCE loss considers the
sparsity difference between foreground pixels and background pixels. Weighted
BCE loss is shown in Eq.8.

Lo =— Y [wGlogP + (1 - G)(1 - logP)], (8)

(m,n)

where, LSIECE is the loss of e-th layer. w is the abbreviation w(m,n) and we set

w(m,n) = g%zz]}’, in which #0{m,n} (or $1{m,n}) is the number of 0 (or 1).
Compared with the background, the sparse edge foreground are assigned higher

weights by w. The hybrid loss can be denoted as follows.

s
L= Z[L(E‘SBQC+L(S)E+LD106 +ZLwBCE7 (9)
s=1
where, S and F represent the layer number and are set as 9 and 2, respectively.
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Table 1. Comparison with state-of-the-art methods. max F-measure (Fas, larger is
better), max E-measure (Ea, larger is better) and S-measure (Sy,, larger is better) are
applied to evaluate the performance. Values with bold fonts indicate the best perfor-
mance of all results.

Methods | ECSSD DUT-OMRON PASCAL-S DUTS-Test HKU-IS

Fv Ev Sw |FM Eym Sm |[Fu Em Swm |Fv Em Sw | Fu Eym S,
HRSOD |.932 .925 .887 |.743 .796 .761 |.846 .858 .815 |.835 .878 .823 |.910 .932 .877
EGNet 947 954 .924 | .815 .863 .838 |.865 .886 .851 |.889 .922 .885 |.935 .957 917
SCRN 950 955 .926 |.811 .875 .836 |.877 .904 .868|.888 .925 .885 |.934 .955 .916
AFNet 935 946 .913 |.797 .856 .825 |.858 .890 .847 |.863 .908 .866 |.923 .948 .905
MLMS 928 916 .911 |.774 .839 .809 |.864 .847 .845 |.852 .863 .862 |.920 .938 .907
BASNet |.942 .950 .915 |.805 .871 .836 |.854 .881 .837 |.859 .902 .866 |.928 .951 .909
CPD 939 950 .917 |.797 .868 .825 |.859 .885 .847 |.865 .914 .869 |.925 .950 .905
GateNet |.945 .951 .919 |.818 .872 .837 |.869 .898 .857 |.888 .926 .885 |.933 .954 .914
F3Net 945 953 .923 | .813 .867 .838 |.872 .897 .860 |.891 .926 .888 |.937 .957 .917
ITSD 947 957 .924 | .821 .878 .840 |.870 .901 .858 |.883 .929 .885 |.934 .959 .917
MINet 947 956 .924 | .810 .865 .832 |.867 .897 .855 |.884 .926 .884 |.935 .959 .919
cFRCNet | .944 .953 .924 |.821 .879 .841 | .872 .900 .861 |.887 .929 .886 |.933 .954 .912
FRCNet |.951 .958 .928  .828 .885 .849 .879 .905 .865 | .893 .932 .890 .938 .960 .920

3 Experiments

3.1 Datasets and Evaluation Metrics

The performance of FRCNet is evaluated on five benchmark datasets: DUT-
OMRON with 5168 difficult images, DUTS-test with 5019 complex images,
PASCAL-S with 850 images, ECSSD with 1000 images and HKU-IS with 4447
images. Same as the current methods, DUTS-train is used as the training dataset.

Three widely used metrics are applied to evaluate the performance of FRC-
Net and other state-of-the-art methods. The first one is maximal F-measure,
which has been adopted in most of SOD methods. E-measure [4] and structural
similarity measure [3] are widely used metrics in recent years.

3.2 Implementation Details

We train FRCNet on DUTS-train dataset following previous works. For a fair
comparison, ResNet-50 and U-net-like structure [9] are used as the encoder net-
work and the decoder network, respectively. The whole framework is imple-
mented in PyTorch on an NVIDIA 2080Ti GPU and FRCNet is trained end-
to-end. We utilize stochastic gradient descent (SGD) optimizer and the hyper
parameters are set as follows: maximum learning rate = 0.005, weight decay =
0.0005, momentum = 0.9. In addition, the learning rate is adjusted by warm-up
and linear decay strategies. We train FRCNet for 100 epochs with a batchsize of
32. We do not use any pre-processing or post-processing techniques. The source
code will be released.
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3.3 Comparison with the State-of-the-Art

Quantitative Comparison. We compare the proposed FRCNet against 12
state-of-the-art SOD methods, including HRSOD [18], AFNet [5], MLMSNet
[15], BASNet [8], SCRN [17], EGNet [19], CPD [16], GateNet [20], F3Net [14],
ITSD [21], MINet [7]. For a fair comparison, the saliency maps of the above meth-
ods are provided by the authors. As illustrated in Table 1, FRCNet outperforms
other methods across five datasets, especially with respect to MaxF metrics.
Besides, we also remove all the parameters of MSFRC (cFRCNet). Therefore,
the model size is the baseline size. We can observe that cFRCNet also achieves
competitive results. This verifies that our CRC and MSFRC are effective.

Image GT FRCNet BASNet CPD EGNet F3Net GateNet ITSD LDF MINet

Fig. 3. Visual comparison with state-of-the-art methods.

Visual Comparison. As illustrated in Fig. 3, we visualize some results of FRC-
Net and 9 typical methods for saving room. The resulting saliency maps of
FRCNet achieve superior performance, which are closer to the ground truth
in visual. Specifically, with the help of CRC, our model not only enhances the
salient regions, but also suppresses the background noises (see Fig.3 row 1, 2
and 3). By the aid of the complementarity of saliency features and boundary
features in MSFRC, FRCNet is able to generate more accurate and complete
saliency maps even though in the complex background (see Fig.3 row 4, 5 and
6). Furthermore, FRCNet achieves these results without any pre-processing or
post-processing.

3.4 Ablation Studies

In this paper, there is one hyper parameter (i.e., 7) to be determined. v is used
in ERC loss function to adjust the weights of boundary features. Obviously, ~y
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Table 2. Ablation study on different modules optimized by BCE loss. Baseline: the
baseline network.

Baseline CRC MSFRC | ECSSD DUT-OMRON | PASCAL-S

Fv Eyvm Sm |FM Ev Sm |Fu Evm Sm
v 914 921 .897 |.763 .805 .789 | .816 .829 .803
v v 921 .928 904 |.774 .818 .802 |.825 .844 .812
v v 931 .937 .910 |.790 .837 .812 |.839 .861 .823
v v v .938 .943 .918 | .803 .845 .823 .852 .875 .835

Table 3. Ablation study on different losses.

wBCE BCE Dice ERC | ECSSD DUT-OMRON | PASCAL-S

Fv Ev Sm |[Fu Eym Swm (Fv Enm Sm
v v 942 945 .920 | .807 .856 .831 |.857 .879 .840
v v 933 938 .912 |.791 .847 .820 | .842 .864 .826
v v 944 951 .922 | .811 .860 .835 |.861 .886 .846
v v v 946 .949 .925 | .818 .869 .839 |.862 .892 .851
v v v 947 951 .927 | .822 .873 .841 |.866 .896 .854
v v v 948 954 .926 | .824 .878 .844 |.871 .900 .860
v v v v .951 .958 .928|.828 .885 .849 .879 .905 .865

should be larger than 0.5, which assigns higher weights to the edges. When v = 1,
ERC will only optimize the edges without the saliency features. As mentioned
above, ERC should detect the edges and saliency simultaneously. Therefore, the
value of + should be between 0.5 and 1. If v is close to 0.5, ERC prefers to
detect the saliency. In contrast, if + is close to 1, ERC prefers to detect the
edges. Therefore, we set v to 0.75, which balances the assigned weights between
boundary features and saliency features.

To validate the effectiveness of each key module, a series of detailed analy-
sis is conducted on DUT-OMRON dataset under various metrics. As shown in
Table 2 and Table 3, the ablation study is divided into loss function part and
module part. For module ablation, we observe that both CRC and MSFRC can
refine the results. Furthermore, the combination of CRC and MSFRC achieves
superior qualitative results. For loss ablation, the hybrid loss achieves the best
performance. Besides, the single ERC loss performs better than the single BCE
loss and Dice loss. The results in Table 2 and Table 3 verify the effectiveness of
the proposed modules and losses.

4 Conclusion

In this paper, a novel model FRCNet is proposed for accurate and fast SOD.
Firstly, to suppress the external noises and enhance the internal salient object,
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we introduce the intersection and union mechanisms to CRC to recalibrate the
consistency of encoder and decoder features. Secondly, to learn the correlation
and recalibrate the difference between boundary features and saliency features,
MSFRC is proposed to sufficiently couple the complementary features between
edges and saliency by alternate feature transfer. Besides, MSFRC can reduce
parameter imbalance and effectively aggregate different source features to refine
the resulting saliency maps. Finally, to further guide the network to focus on
the edges, we propose an ERC loss to recalibrate the equivocal edge pixels.
Experimental results on five datasets demonstrate that the proposed FRCNet
can achieve consistently superior performance under various metrics.
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