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Abstract. Most recent efforts made in knowledge distillation (KD) can
be credited to filling the representation gap between the cumbersome
teacher and its light student. In general, the soft targets, the intermedi-
ate feature representation in hidden layers, or a couple of them from the
teacher serve as the supervisory signal to educate the student. However,
previous works aligned hidden layers one on one and cannot make full use
of rich context knowledge. To this end, we propose a Feature Fusion Mod-
ule (FFM) to concatenate diverse feature maps from different layers to
aggregate knowledge as the to-be-distilled dark knowledge. Moreover, to
hedge the adverse effects of the fused feature maps, we devise an Asym-
metric Switch Function (ASF) to make the transfer process more reliable.
The combination of FFM and ASF is termed Feature Fusion Distillation
(FFD). Experiments of image classification, object detection, and seman-
tic segmentation on individual benchmarks show FFD jointly assist the
student in achieving encouraging performance. It is worth mentioning that
when the teacher is ResNet34, the ultimately educated student ResNet18
achieves 71.40% top-1 accuracy on ImageNet-1K.

Keywords: Neural network compression · Knowledge distillation ·
Knowledge transfer

1 Introduction

Hinton et al. [13] introduced the concept of knowledge distillation (KD) and
explored the teacher-student paradigm for network compression. Following this
novel idea, KD based approaches directly train a light network (student), which
mimics its original cumbersome network (teacher). However, only transferring
soft targets as [13] would limit the performance of output distillation. To make
full use of teacher’s knowledge, as shown in Fig. 1(a), several approaches [23,32]
transfer teacher knowledge by using hidden layers knowledge. So, this framework
is used as the basic framework in this paper. Moreover, KD is widely used for
specific applications. For example, prior research has been conducted on face
recognition [8,29], image retrieval [17], cross-modal task [9,31], neural machine
translation [26] and speech recognition [1,3].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Pimenidis et al. (Eds.): ICANN 2022, LNCS 13532, pp. 51–63, 2022.
https://doi.org/10.1007/978-3-031-15937-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15937-4_5&domain=pdf
http://orcid.org/0000-0003-4519-6804
http://orcid.org/0000-0003-3745-7541
https://doi.org/10.1007/978-3-031-15937-4_5


52 C. Tan and J. Liu

However, as shown in Fig. 1(a), teacher transfers its knowledge one on one in
most of the previous approaches. As demonstrated in [34], the projections from
each level (low/mid/high) show the hierarchical nature of the features in the
network. For example, low-level features show the corners and other edge/color
conjunctions, while high-level features are more related to entire objects with
significant pose. So, traditional transfer pattern limited the interactivity between
different levels.

This drawback motivates us to collect both diverse intermediate features in
hidden layers from the teacher as dark knowledge via a Feature Fusion Module
(FFD). For clarity, FFD is shown in Fig. 1(b), where its way to extract the to-be-
distilled dark knowledge is very different from the traditional method. Though
more knowledge of the teacher is utilized via the FFD, the empirical analysis
shows that the student not only needs to learn negative values of feature maps
but also needs to avoid the adverse effects from the negative values of the teacher.
So, an Asymmetric Switch Function (ASF) is developed to reduce the side effect
of dark knowledge due to the large negative activations. The combination of
FFM and ASF is termed Feature Fusion Distillation (FFD).

Fig. 1. (a) The general knowledge transfer architecture. (b) The proposed knowledge
transfer architecture. Different colors mean the feature maps distilled from different
layers.

The contributions in this paper can be summarized as follows:

1. A novel feature fusion module is introduced to make the best use of the
teacher’s hidden layers knowledge;

2. An asymmetric switch function is proposed to eliminate the harmful knowl-
edge from the teacher;

3. Experiments of image classification on both CIFAR-100 [16] and ImageNet-
1K [24], object detection on VOC 2007 [7], and semantic segmentation on
VOC 2012 Aug [6] demonstrate the efficacy of FFD.
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2 Related Work

Hinton et al. [13] introduced the concept of KD for model compression and
acceleration, where soft targets of the teacher network are used to educate the
student network. Compared with hard targets, soft targets contain the informa-
tion about inter-class correlations. Consequently, the student network can get
relatively better performance. Henceforth, KD becomes an important branch of
model compression and acceleration, then amounts of efforts have been made.
The differences of such methods primarily lie in two aspects: knowledge repre-
sentation and transfer skill.

For knowledge representation, the core is to aggregate feature representa-
tion from the teacher network as dark knowledge to educate the student. Build
off [13], Romero et al. [23] utilized intermediate representation in hidden layers
of the teacher to make the student better mimic. Yim et al. [32] intended to
leverage the flow of solution procedure (FSP) matrix between the layers from
the teacher as knowledge representation. To educate the student effectively, Kim
et al. [15] exploited convolutional operations to paraphrase teacher knowledge.
Afterwards, Huang et al. [14] compared the distributions of neuron selectivity
patterns between teacher and student. In [20,22,28], they investigated the cor-
relation between multiple instances as the interaction way between teacher and
student. Tian et al. [27] used contrastive learning to help the student capture
the teacher’s knowledge.

For transfer skill, the involved techniques primarily consider how to help the
student absorb the teacher’s knowledge to the utmost. In general, the basic skill
is to employ the squared loss to evaluate the feature similarity between teacher
and student. Heo et al. [12]. proposed a knowledge transfer method by transfer-
ring activation boundaries of hidden neurons. Afterwards, Heo et al. [11] moved
the distillation position to the front of the ReLU layer and minimized a new
distance function, called partial L2 distance, to realize knowledge transfer. Yue
et al. [33] tried to match the teacher’s channels with student’s without convolu-
tional operation. Afterwards, Passalis et al. [21] and Chen et al. [4] automatically
assigned proper target layers of the teacher model for each student layer.

3 Method

3.1 Feature Fusion Module

Zagoruyko and Komodakis [34] pointed out the projections from each level
(low/mid/high) show the hierarchical nature of the features in the network. For
example, low-level features show the corners and other edge/color conjunctions.
Besides, high-level features are more related to entire objects with significant
pose. Specifically, we show the Grad-cam++ [2] visualization. As Grad-cam++
visualizes the regions where the network has considered important, in Fig. 2, we
compare the results of a model on different levels. It can be observed that low-
/mid-level feature maps pay much more attention on the edge of objects. While
high-level maps concentrate more on entire objects. Based on this, feature maps
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on different levels can be mutually complementary. However, previous works just
aligned hidden layers one on one and cannot make full use of rich context knowl-
edge. By this insight, we devise FFM to extract diverse intermediate features
as rich knowledge in a simple concatenation manner, which is a necessity for a
qualified teacher. In this way, context knowledge can be leveraged.

Fig. 2. The Grad-cam++ visualization on different levels.

Following [11], the intermediate features are acquired before ReLU. This
distillation position enables the student to touch the preserved knowledge of the
teacher before it passes through ReLU. The selected hidden layer in the teacher
network outputs the corresponding feature map matrix F ∈ Rh×w×c, where h,
w and c represent the height, width and the number of channels, respectively.
Using the given notations, FFM can be described as:

F′
1 = ψ {η (F1)} ,

F′
2 = ψ {η (F1) , η (F2)} ,

. . . ,

F′
l = ψ {η (F1) , η (F2) , · · · , η (Fl)} .

(1)

where l represents the number of those selected hidden layers and could vary
from different visual tasks. In our empirical studies, l = 3 is suited for image
classification on CIFAR-10 [16] and CIFAR-100 [16], while l = 4 is better on
ImageNet [24]. η(·) means the adaptive function of each distilled feature map
before they are combined. To fuse the feature maps with different dimensions
more simply and efficiently, the AdaptiveAvgPool2d function is used to resize
them to the same size. Afterwards, the concatenation acts as ψ(·) to aggregate
different layer-wise feature maps altogether. The element-wise summation as
another generic alternative to fusing layer-wise features is not considered here.
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This is because it requires layer-wise feature maps to be the same channels, which
might not be best. As in Eq. (1), F′

l is the fused feature map, which corresponds
to the l-th layer feature maps of the student.

3.2 Asymmetric Switch Function

As there is some harmful knowledge lurked in feature maps, especially in fea-
ture maps before ReLU, none of the transformations over the teacher’s feature
maps might hurt the KD process. So, we investigate ASF used to transform the
teacher’s feature maps to further improve the efficacy of FFM. As FFM transfer
the knowledge before ReLU, the switch function should be changed considering
ReLU. In the feature maps of the teacher, the positive values are actually used
for the network which implies that the positive responses of the teacher should
be transferred by their exact values. However, since the negative values are fil-
tered out by ReLU, learning from all the negative values could not always be
helpful for the student. However, negative values are not. For these values in
the teacher are negative, if the student’s value is higher than the target value,
it should be reduced, but if the student’s value is lower than the target value,
it does not need to be increased since negatives are equally blocked by ReLU
regardless of their values. Furthermore, as mentioned in [12], to transfer the acti-
vation boundary accurately, it is required to amplify the negligible values near
the activation boundary. So, we propose a switch function to suspend negative
values and transfer the activation boundary accurately. The concrete form of
ASF is

δ(x) =
{

n x < 0
max(x,m) x ≥ 0,

(2)

where m is a positive value and n is a negative one. In Fig. 3(a), the activation
boundaries are determined by the lines y = 1 and y = −1. However, the teacher’s
knowledge can not be well represented in this rigid setting. In Fig. 3(b), only a
negative boundary is fixed [12]. In principle, the positive part also needs the
counterpart for activation boundaries. As in Fig. 3(c), ASF shares the merits
of the previous two switch functions, thus it not only magnifies the tiny values
around zero to transfer activation boundaries but also suspends the adverse
values. Note that the predefined parameters m and n are defined as the channel-
by-channel expectation of the positive and negative values, respectively. Given
that the c-th channel of the teacher’s fused feature map is F c

l
′, the mc and nc of

a channel can be calculated from the expectation values of all the training data
as follows.

mc = E
[
F c

l
′|F c

l
′ ≥ 0

]
,

nc = E
[
F c

l
′|F c

l
′ < 0

]
.

(3)

The expectation values can be calculated via the parameters of the batch
normalization layer before the distillation position. Appendix A contains the
process of calculation. ASF obtains channel-wise margin value without sampling
and averaging on training process. As a result, ASF δ(·) generates the target
value as the ultimate knowledge representation to educate the student network.
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Fig. 3. (a) Switch function of [12]. (b) Switch function of [11]. (c) ASF.

3.3 Total Loss Function

Since the distillation position is before ReLU, the ReLU should be taken into
account in designing FFD. For the target value, the positive part should be
transferred to the student in an exact way. However, the negative part is not
done. If the source value of the student is greater than the negative target value,
it should be diminished to amplify the negligible values. But if the source value is
less than or equal to the negative target value, it does not need to be added since
the negative source value is blocked by the ReLU. Suppose that both source value
and target value are T and S ∈ Rh×w×c, respectively, then the i -th component
of T and S are Ti and Si, respectively, and the distance function d is defined as
follows.

d =
h×w×c∑

i

{
0 if Si ≤ Ti = n,

(Ti − Si)
2 otherwise.

(4)

In terms of FFD, η(·) and ψ(·) are used as the adaptive function and FFM.
ASF is δ(·) is. A regressor γ(·) comprising a convolutional layer and a batch nor-
malization layer to align the student’s feature maps with the teacher’s. Besides,
d(·) is the distance function to evaluate the learning effect. Then, the calculating
flow of distillation loss is

Ldistill = d (δ (ψ (η (FT ))) , γ (FS)) , (5)

where FT and FS are input feature maps of the teacher and student network,
respectively. Yet, several points of the distillation loss are non-differentiable. The
non-differentiable points of the function will never appear in practice [36]. Ltask

is task-specific. Consequently, the total loss function can be described as

Ltotal = Ltask + λLdistill. (6)

4 Experiments

4.1 Image Classification (CIFAR-100)

CIFAR-100 contains 50K training images and 10K test images, both of which
have 100 classes. In recent distillation literature, CIFAR-100 is a widely used
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benchmark for classification performance evaluation. To make the results con-
vincing, FFD should work well with different network architectures. For training
convergence and efficiency, different types of ResNet [10] and WideResNet [35]
are chosen in this section. Each experiment is trained around 200 epochs with an
initial learning rate of 0.1, which is divided by 10 at epoch 100 and epoch 150,
respectively. The hyperparameter λ in Eq. (6) is set to 6e−4. The top-1 accuracy
acts as the evaluation metric. The hyperparameters of the other methods can be
referred to [27].

Table 1 report the results of different methods. The results of the KD model
with FFD substantially surpass the state-of-the-art counterparts. The margins
range from 0.10% to 3.17%, then the average value is 1.39%. Compared with the
student’s ‘Baseline’, the average increase reaches 2.94%. Particularly, when both
the teacher and the student are built off ResNet110 and ResNet32, respectively,
training the student network with FFD can excel the teacher network in many
cases. Notably, in two cases the student even outperforms the teacher network.
Therefore, FFD can work well to distill either the same architecture network or
the different structure network with some expected performance gain.

Table 1. Top-1 accuracy (%) of the student and the corresponding teacher exploited
by different KD methods on CIFAR-100 dataset. Of them, ‘Baseline’ represents the
result without distillation.

Teacher WRN40-2 WRN40-2 WRN22-4 WRN22-4 ResNet56 ResNet110 ResNet110

Baseline 75.91 75.91 77.56 77.56 72.98 73.79 73.79

Student WRN16-2 WRN40-1 WRN10-4 WRN22-2 ResNet20 ResNet20 ResNet32

Baseline 73.26 71.68 71.41 73.92 68.76 68.76 70.79

KD [13] 74.81 73.06 73.52 76.35 71.19 70.56 72.79

FitNet [23] 73.50 72.17 72.93 74.12 69.89 69.50 71.19

AT [34] 73.33 72.23 73.20 74.78 70.30 70.08 72.06

FSP [32] 73.54 n/a 72.87 n/a 69.94 70.08 71.39

CC [22] 73.31 71.98 72.93 74.65 69.98 69.90 71.86

SP [28] 73.69 71.91 72.93 74.87 70.00 69.88 71.65

CO [11] 75.23 73.75 73.97 76.77 70.06 70.33 73.28

CRD [27] 75.56 73.95 74.28 76.97 71.06 70.92 73.62

SSKD [30] 75.80 74.12 74.20 77.02 71.11 71.24 73.85

FFD 75.91 74.45 74.59 77.34 71.29 71.65 73.95

4.2 Image Classification (ImageNet-1K)

To convince the ones of the efficacy of FFD, we further conduct our experiments
on ImageNet-1K, which is a larger dataset made up of 1.2M training images and
50K test images. ResNet34 is selected as the teacher network and ResNet18 is
the student. The parameters ratio of the student to the teacher is 53.63%. For
a fair comparison, we directly use the off-shelf pre-trained model as the teacher
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network. The experiment performs 100 epochs in total with an initial learning
rate of 0.1, which is gradually reduced by dividing itself by 10 at epoch 30,
epoch 60 and epoch 90 in order. The hyperparameter λ is set to 6e−5. Both
top-1 and top-5 accuracy are viewed as the evaluation metrics. The settings of
the compared other methods are suggested from [27].

To compare with FFD, we select four other counterparts, which have shown
sound performance in Sect. 4.1. According to Table 2, the ‘Baseline’ gap between
the teacher and student network is 3.55%, in terms of the top-1 accuracy. FFD
can reduce this gap by 1.64%, which is obviously superior to the other methods.
So is the top-5 accuracy of FFD.

Table 2. Top-1 and top-5 accuracy (%) of the student network ResNet18 on ImageNet
dataset. ‘Baseline’ stands for the results without distillation.

ResNet34
Baseline

ResNet18
Baseline

KD [13] CC [22] SP [28] CO [11] SSKD [30] FFD

Top-1 73.31 69.76 70.70 70.61 70.64 70.96 71.27 71.40

Top-5 91.42 89.08 89.85 89.59 89.70 90.05 90.22 90.42

4.3 Object Detection

In this section, another computer vision task, object detection, is used to further
verify the effectiveness of our work. We distill a high-speed detector termed
Single Shot Detector (SSD) [18] with FFD. PASCAL VOC 2007 trainval and
test dataset are used to train and evaluate the smaller SSD. The backbone of
SSD in this section is pre-trained by ImageNet-1K. The starting learning rate is
set to 1e−3 then divided by 0.1 at 80K iterations and 100K iterations, a total of
120K iterations with a batch size of 16. We assign 3e−5 to the hyperparameter λ.

Table 3 shows the mAP of FFD. ResNet is widely used as the backbone of
SSD. The teacher network is based on ResNet50. There are two student networks
which are based on ResNet34 and ResNet18. The parameters ratios are 38.21%
and 63.76%, respectively. In the case of ResNet34, the mAP of FFD is greater
than the ‘Baseline’ and [5] by 2.91% and 0.60%. Particularly, it is even greater
than the teacher’s mAP. As for the ResNet18, the mAP increases by 1.45% and
0.51%. Regardless of the compression ratio, the student networks in experiments
are enhanced. Obviously, when the student’s capacity is closer to the teacher’s,
performance improvement tends to be more significant.

4.4 Semantic Segmentation

Similar to the goal of the above object detection experiments, semantic segmen-
tation is another visual task. We select DeepLabV3+ [7] as our model archi-
tecture. For the teacher network, we choose ResNet101 as the backbone. And
ResNet50 and MobileNetV2 [25] are used as the student network, respectively.
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Table 3. Object detection results of SSD300 on PASCAL VOC 2007 dataset. The
mean average precision (mAP) serves to stand for the results. ‘Baseline’ represents the
result without distillation.

Networks Methods mAP (%)

Teacher ResNet50-SSD Baseline 79.52

Student ResNet34-SSD Baseline 76.93

[5] 79.24

FFD 79.84

ResNet18-SSD Baseline 70.10

[5] 71.04

FFD 71.55

All these backbones are pre-trained on ImageNet. FFD is based on the PAS-
CAL VOC 2012 Aug dataset. Each image is cropped to the same size 513× 513,
which are largest in any other tasks and more challenging. The learning rate
decreases in a polynomial curve. All the compared models are trained around
30K iterations with a batch size of 16. The hyperparameter λ is set to 1e−6.

Results are displayed in Table 4. The performance is measured in terms
of pixel intersection-over-union averaged with 21 classes (mIOU). No matter
whether the student share has the same architectural style as the teacher or not,
FFD remarkably enhances the performance of the student. Without surprise, the
same network architecture can induce better results. No matter in which cases
FFD is a generic approach for improving other KD models.

Table 4. Semantic segmentation results of DeepLabV3+ in PASCAL VOC 2012 Aug
dataset. The performance is measured in terms of pixel intersection-over-union averaged
(mIOU). ‘Baseline’ represents the result without distillation.

Backbones Methods mIOU (%)

Teacher ResNet110 Baseline 78.33

Student ResNet50 Baseline 74.11

[19] 76.12

FFD 76.92

MobileNetV2 Baseline 71.13

[19] 72.61

FFD 73.24

5 Ablation Study

In this section, the ablation study is conducted to help further understand FFD.
The ablation study is conducted by in order adding the layer-wise feature maps
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gradually to observe how the aggregated context knowledge affects performance.
We select CIFAR-100 and ImageNet-1K for image classification tasks. Three
kinds of teacher-student networks are adopted, which are recorded in Table 5.
Implementation details and evaluation metrics are introduced in Sect. 4.1 and
Sect. 4.2.

Table 5. Experiments settings with several network architectures on CIFAR-100 and
ImageNet-1K.

Setup Dataset Teacher Student Teacher
params

Student
params

Parameters
ratio

(a) CIFAR-100 WRN22-4 WRN10-4 4.32M 1.22M 28.24%

(b) WRN22-4 WRN22-2 4.32M 1.09M 25.23%

(c) WRN22-4 ResNet20 4.32M 0.28M 6.48%

(d) ImageNet-1K ResNet34 ResNet18 21.80M 11.69M 53.62%

The results are shown in Table 6. The ‘Baseline’ is not trained as in [23]. It
can be observed that considering all the ablation components can improve the
performance of the fundamental KD model to different degrees. Thus, FFM and
ASF are indispensable roles for KD.

Table 6. Ablation study of FFD. The results are evaluated by the top-1 accuracy (%).
The values in bracket denote the improvement by adding a layer-wise feature maps of
FFD.

Setup Baseline Feature fusion module Asymmetric switch function

(a) 73.99 74.23(+0.24) 74.59(+0.36)

(b) 76.81 77.09(+0.28) 77.34(+0.25)

(c) 69.00 69.49(+0.49) 70.77(+1.38)

(d) 70.66 71.05(+0.39) 71.40(+0.35)

6 Conclusion

In this paper, we make an improvement for knowledge distillation (KD) by a
Feature Fusion Module (FFM) and an Asymmetric Switch Function (ASF) are
proposed. The combination of FFM and ASF is termed Feature Fusion Distilla-
tion (FFD). FFD is evaluated on three visual tasks including image classification,
object detection and semantic segmentation. In particular for image classifica-
tion, FFD shows its performance superior to the state-of-the-art methods and
even better than the teacher model on standard benchmark datasets. Particu-
larly, when the teacher is ResNet34, the top-1 accuracy of the student ResNet18
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is greater than that of baseline by 1.64% on ImageNet-1K. Meanwhile, in the
case of object detection and semantic segmentation, the efficacy of the educated
student significantly excels its baseline. These results imply that FFD including
knowledge representation and transfer skill can boost the KD model and also be
applied for many fields in practice.

Appendix

A Margin Value

When the feature maps are before ReLU, the batch-norm layer determine the
distribution of feature F c

l
′ in a batch. Batch norm layer normalizes the feature

for each channel to a gaussian distribution with a specific mean μ and variance
σ. In other words,

F c
l

′ ∼ N (μ, σ). (7)

The value of mean and variance (μ, σ) of each channel correspond to the
parameters (β, γ) of the batch-norm layer. So, it can be obtained by analyzing
the teacher network. Using the distribution of F c

l
′, we can directly calculate the

margin value.

m =
1
Z

∫ ∞

0

x√
2πσ

e− (x−μ)2

2σ2 dx. (8)

The expectation can be obtained from integration using pdf of gaussian dis-
tribution, where the range is smaller than zero. The result of the integration can
be expressed in simple form using the cdf function Φ(·) of normal distribution.

m =
σe−μ2/2σ2

√
2πΦ(−μ/σ)

. (9)

As m + n = μ, then, n can be calculated as follows.

n = μ − σe−μ2/2σ2

√
2πΦ(−μ/σ)

. (10)
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