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Abstract. The purpose of this paper is to compare different learnable
frontends in medical acoustics tasks. A framework has been implemented
to classify human respiratory sounds and heartbeats in two categories, i.e.
healthy or affected by pathologies. After obtaining two suitable datasets,
we proceeded to classify the sounds using two learnable state-of-art fron-
tends – LEAF and nnAudio – plus a non-learnable baseline frontend, i.e.
Mel-filterbanks. The computed features are then fed into two different
CNN models, namely VGG16 and EfficientNet. The frontends are care-
fully benchmarked in terms of the number of parameters, computational
resources, and effectiveness.

This work demonstrates how the integration of learnable frontends in
neuralaudio classification systems may improve performance, especially
in the field of medical acoustics. However, the usage of such frameworks
makes the needed amount of data even larger. Consequently, they are
useful if the amount of data available for training is adequately large to
assist the feature learning process.

1 Introduction

Cardiovascular and respiratory diseases are the leading cause of mortality world-
wide; it is estimated that in 2019 17.9 million people died due to cardiovascular
diseases, representing the first and second cause of death worldwide (32 % of
all deaths worldwide), followed by respiratory disease [23,24]. Therefore, consid-
erable efforts have been devoted to research for the improvement of the early
diagnosis and routine monitoring of patients with cardiovascular and respira-
tory diseases. A large portion of the research has focused on the auscultation
of respiratory sounds and heart tones. Indeed, these diseases, such as asthma,
COPD, pneumonia, heart murmurs, heart valve abnormalities, and arrhythmia,
are associated with distinct sound patterns. Such abnormal breathing sounds
in the lungs are called adventitious sounds [24]. A similar phenomenon can be
observed relatively to abnormal blood flows in the heart, which can also cause
characteristics noises.

To the purpose of screening these cardiovascular and respiratory diseases,
cardiac auscultation by phonocardiograms (PCG) and pulmonary auscultation
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are among the most important tools. The auscultation happens via an electronic
stethoscope capable of digitally recording PCGs and respiratory sounds. How-
ever, this process is based on the availability of an expert as well as on his degree
of competence. Thus, the need to automate the diagnosis process has arisen in
recent years, bringing the development of algorithms able of classifying heart or
pulmonary sounds. Such algorithms are usually based on Machine Learning tech-
nologies with the aim of assisting physicians in the diagnosis of health diseases,
as well as providing patients with effective auto-diagnosis tools where physicians
are not available [15,16].

Artificial Neural Networks (ANN) comprise the most used approach for the
classification of heart and pulmonary sounds [5]. ANNs require discriminating
features of the signal as input; usually such features are time-frequency rep-
resentations of an audio signal, such as spectrograms, Mel spectrograms and
Mel-frequency cepstral coefficient (MFCC) [1,9,13]. Recent studies, regarding
sound classification in general, show that using Log-Mel spectrograms has sig-
nificant improvements on the efficiency of the neural network [7,18]. Some studies
also adopted Wavelet-based representations, but such features were only little
explored compared to FFT-based ones [6].

The goal of this work is the comparison of various frontends, i.e. feature-
extraction methods. Indeed, various frontends for neural features extraction
were recently proposed in the field of audio signal processing. Specifically, two
learnable frontends for audio processing received a large attention – LEAF and
nnAudio [4,25]. Both the two frontends allow to compute time-frequency rep-
resentations specifically crafted for the learning problem. This study aims at
assessing if the learned features can improve the efficiency of ANN for Medical
Acoustics and therefore we compare them to a standard representation method
based on Log-Mel-spectrograms.

The contributions of this work are:

– a binary classification method for respiratory and heartbeat sounds;
– comparison of LEAF and nnAudio frameworks with traditional hand-crafted

features for audio processing;
– efficiency and effectiveness benchmarks of different feature extraction strate-

gies using different types of Neural Networks;

To the sake of reproducibility, the source-code used for this work is fully
available online1.

2 The Considered Frontends

As mentioned above, the purpose of this paper is to compare two learnable fron-
tends, LEAF and nnAudio. LEAF and nnAudio are features extractors that,
unlike Mel-filterbank, are completely trainable during the neural network train-
ing process. Interestingly, all audio features extraction operations, such as filter-
ing, pooling, compression and normalization are learnable.
1 https://github.com/LIMUNIMI/Feature-Learning-Medical-Acoustics.

https://github.com/LIMUNIMI/Feature-Learning-Medical-Acoustics
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Fig. 1. Breakdown of Mel-filterbanks, LEAF and nnAudio frontends. Orange boxes are
fixed, while computations in blue boxes are learnable. Grey boxes represent activation
functions. (Color figure online)

Log-Mel spectrograms are the most used time-frequency representation for
neural classification tasks in the field of medical acoustics [1,11,12,14,21]; it is
for this reason that they have been chosen as a baseline for comparing represen-
tations produced by learnable frontends.

The three frontends are depicted in Fig. 1.

2.1 Mel-filterbanks

Mel-filterbank is a fixed frontend that receives waveforms as an input, and pro-
duces Log-Mel spectrograms as output. It is fixed because the parameters that
control it are non-learnable, that is, they do not change during the training of
the network.

A Mel-filterbank is applied to an audio excerpt to obtain the Log-Mel spectro-
grams. More specifically, we first compute the spectrogram of the audio excerpt
using the squared modulus of the short-term Fourier transform (STFT). Then,
the spectrogram is passed through a bank of triangular bandpass filters, spaced
logarithmically according to the Mel scale. The Mel scale is designed to replicate
the non-linearity of human pitch perception. Finally, to reflect the non-linearity
of the human loudness sensitivity, the resulting coefficients are passed through
a logarithmic compression.

Log-Mel spectrograms have various parameters that should be finely tuned,
adding a large number of hyper-parameters to the resulting pipeline and making
the designing of Machine Learning methods more complex.

2.2 LEAF

LEAF (LEarnable Audio Frontend) [25] is a neural network-based frontend to
extract features such as Mel spectrograms. Being a neural network, it can be
trained inside any neural architecture to discover task-specific features, adding
only a few parameters to the model. This frontend learns all operations of audio
features extraction, from filtering to pooling, compression and normalization.
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In the first stage of filtering the sound wave passed through a bank of Gabor
bandpass filters followed by a non-linearity. Then, the temporal resolution of the
signal is reduced in the “pooling” phase. Finally, the dynamic range is optimized
with a compression and/or normalization stage.

2.3 nnAudio

nnAudio (neural network Audio) [4] is a neural network based frontend able to
extract Mel spectrograms as features. nnAudio uses convolutional neural net-
works to perform the conversion from time domain to frequency domain, and it
can be trained together with any classifier.

As input, nnAudio receives a waveform from which it extracts the Mel-
spectrogram via a learnable process. The frontend first computes the STFT
using a Convolutional Neural Network, and then applies a bank of Mel filters.
The values of the Mel filter bank are used to initialize the weights of a single-
layer fully-connected neural network. Each time step of the STFT is sent in this
fully-connected layer initialized with Mel weights. The Mel filter bank therefore
must only be created during the initialization of the neural network. All of these
weights are trainable.

3 Models

To test the frontends under different conditions, two different well-known CNNs
were chosen for the classification phase: EfficientNet-B0 and VGG16 [19,20].

3.1 EfficientNet

The EfficientNet models are a family of artificial neural networks where the basic
building block is the Mobile Inverted Bottleneck Conv Block (MBConv). The
Efficient-Net family includes 8 models (from B0 to B7): as the number increases,
the complexity of the network increases. The main idea of EfficientNet is to start
from one simple, compact and computationally efficient structure, and gradually
increasing its complexity. Unlike other CNN models, EfficientNet uses a new
activation feature known as Swish, rather than the classic ReLU function. The
“lightweight” version of EfficientNet (EfficientNetB0, with ∼4M parameters) has
been adopted as first classifier.

3.2 VGG

The VGG16 version of VGG was adopted as another classifier. VGG stands for
Visual Geometry Group; It is a standard multi-level CNN architecture. Accord-
ing to the number of layers, the various versions of VGG are named, for example
VGG11 has 11 layers, VGG16 has 16 layers, VGG19 has 19 layers and so on.

VGG16 is a deep 16-layer neural network; this means that it is quite large,
and has a total of about 138 million parameters. However, its architecture is
relatively simple and straightforward.
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Table 1. Statistics on the datasets used

Respiratory sound
database [2]

Heartbeat physio-net
database [3]

Normal samples Train set 2732 20461

Validation set 546 4092

Test set 364 2728

Total 3642 27281

Abnormal Samples Train set 2442 5284

Validation set 488 1057

Test set 326 704

Total 3256 7045

Total 6898 34326

4 Datasets

In order to compare the proposed frontends, tests were performed for two dif-
ferent medical acoustics tasks: anomaly detection in respiratory sounds and in
heartbeat recordings. The datasets differ in content and quantity of elements, so
that frontends can be tested under different conditions.

Table 1 shows summary statistics about the used datasets.

4.1 Respiratory Dataset

The first database is the Respiratory Sound database [2], created to support
the scientific challenge organized at the International Conference on Biomedical
Health Informatics - ICBHI 2017 [8].

The database consists of a total of 5.5 h of records containing 6898 respiratory
cycles, of which 1864 contain crackles, 886 contain wheezes and 506 contain both
crackles and wheezes.

The total number of audio samples was 920, obtained from 126 participants.
The recordings were collected using heterogeneous equipment and their duration
ranged from 10 to 90 s. For each audio recording, the time-mark list of start and
end time of each respiratory cycle is provided. The sampling frequency of the
recordings varies, with values of 4 kHz, 10 kHz or 44.1 kHz; in the preprocessing
phase they are resampled at 4 kHz. It is currently the largest publicly available
respiratory sound database.

The level of noises – cough, speech, heartbeat, etc. – in some breathing cycles
is relatively high representing real-life conditions very well. Respiratory cycles
were noted by experts, dividing them into four categories: crackles, wheezes, a
combination of them, or no adventitious sounds.

In this work we have chosen to use only two labels: normal and abnormal. The
normal class covers sounds categorized as non-adventitious, while the abnormal
class includes sounds containing crackles, wheezes, or a combination of them. In
this way, the two resulting classes are more balanced, accounting 3642 normal
sounds and 3256 abnormal cycles.
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Fig. 2. General scheme of the neural network architecture.

4.2 Heartbeat Dataset

The second database is the Heartbeat Physio-Net Database [3], created specifi-
cally for the 2016 PhysioNet Computing in Cardiology (CinC) Challenge [17].

This database contains a total of 3153 heart sound recordings from 764
healthy and pathological patients. The recordings have a duration from 5 to
120 s, obtaining about 25 h of sound material. All audio samples were recorded
with a sampling rate of 2 kHz or resampled to the same rate. In the database
there are recordings labeled as unsure, i.e. with a very low signal quality. These
audio samples were omitted from the test, leaving a total of 2872 recordings
for the training, validation and testing phases. All phonocardiograms in the
database are categorized into two types: normal and abnormal. Recordings with
the normal label come from healthy patients, while those with the abnormal
label come from patients with pathologies such as coronary artery disease and
heart valve defects (mitral valve prolapse syndrome, mitral regurgitation, aortic
regurgitation, aortic stenosis and valve surgery).

As in the Respiratory Database, the data includes not only “clean” heart
sounds, but also very noisy recordings, providing an accurate representation of
real life conditions.

5 Experiments

This section describes the experiments performed to compare the various fron-
tends and models described in Sects. 2 and 3. The generic workflow is shown in
Fig. 2.

5.1 Pre-processing

Pre-processing included segmentation, filtering, resampling, and padding.
For the respiratory database, the samples were segmented following the time-

marks annotations indicating each respiratory cycle – see Sect. 4.1. For instance,
the audio file 107 2b5 Pr mc AKGC417L.wav is 8.97 s long; it has been segmented
according to the indicated time-marks thus producing 4 audio files: file 1.wav
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Fig. 3. Features learned on a sample from the Respiratory Sound Database [2] by
LEAF and nnAudio compared with classical Mel-spectrograms.

(from 0.077 to 1.411 of the original file), file 2.wav (from 1.411 to 3.863),
file 3.wav (from 3.863 to 6.601) and file 4.wav (from 6.601 to 8.97).

For the heartbeat database, instead, the individual audio files of variable
length (from 6 to 120 s) were segmented into 2-s files. For instance, a file initially
lasting 10 s is split into 5 files of 2 s each. In this way, the total number of samples
becomes 34326.

Subsequently, the audio files obtained from the segmentation phase are fil-
tered through a 12th order Butterworth band-pass filter, with cut-off frequencies
[120–1800] Hz for the respiratory database, and [25, 400] Hz for the heartbeat
database. This eliminates the components of sound caused by coughing, intesti-
nal noises, stethoscope movement and speech.

All audio files were then resampled at 4 KHz (only in the Respiratory dataset,
the Heartbeat dataset was already sampled at 4 kHz) and truncated or zero-
padded so that they lasted exactly 2 s.

5.2 System Parameterization

To better compare the frontends considered, the same hyper-parameters were
used in the tests.

In all three frontends, after various experiments, it was decided to use a
window length of 30 ms, with a window stride of 10 ms. The frequency range of
the Mel filters was set at [100, 2000] Hz in the tests with respiratory dataset, and
[25, 1000] Hz in the tests with heratbeat dataset. 128 Mel-filters were used. Only
in the LEAF frontend some parameters have been changed in respect to their
factory defaut values; specifically, in the PCEN compression layer, the alpha and
root parameters that control the amount of compression applied, respectively
alpha = 2, root = 4.

In the VGG16 classifier, two dropout layers with a value of 0.5 have been
added between the last two fully connected layers. The dropout layer prevents the
co-adaptation of a neural network, disabling some nodes of the network during
the training phase with a specific probability (0.5 in this case). In EfficientNetB0
the drop connect rate parameter has also been changed, setting it to 0.5.

The training was carried out considering a period of 300 epochs for the heart-
beat test, and 200 epochs for the respiratory test. The batch size was set at 64,
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Fig. 4. Features learned on a sample from the heartbeat physio-net database [3] by
LEAF and nnAudio compared with classical Mel-spectrograms.

while the learning rate as set at 1e−5, and ADAM was chosen as weight-update
algorithm.

We empirically found an optimal split size using 75% of the dataset for the
train set, 15% for the validation set, and 10% for the test set.

Examples of features learned on the two datasets are shown in Figs. 3 and 4.

6 Results

In order to compare the proposed frontends, two tests with two different datasets
were formulated: “Test 1 - Respiratory” and “Test 2 - Heartbeat”. The datasets
differ in content and quantity of elements, so the frontends can be tested under
different conditions.

The evaluation metrics used in this study are balanced accuracy, True Posi-
tive Rate (TPR) and True Negative Rate (TNR):

BalancedAccuracy =
TPR + TNR

2

TPR =
TruePositive

TruePositive + FalseNegative

TNR =
TrueNegative

TrueNegative + FalsePositive

(1)

Table 2. McNemar p-values corrected with Bonferroni-Holm method.

Mel-LEAF Mel-nnAudio LEAF-nnAudio

Resp. Eff. 0.2010 0.0500 0.5263

Resp. VGG 0.3998 0.0366 0.3998

Heart. Eff. 9.8515e–07 0.4194 2.6648e–05

Heart. VGG 1.1219e–03 9.1734e–09 7.1666e–03
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6.1 Test 1 - Respiratory

As shown in Tables 3 and 4, VGG16 always achieves better results than Effi-
cientNet. However, using VGG16, the differences between the three frontends
are larger, acheiving 6% of difference in accuracy between nnAudio and Mel-
filterbank.

Surprisingly, we found that with VGG16 the baseline method outperforms
the learnable frontends, proving the well-design of old Log-Mel spectrograms
compared to newer neural network frameworks.

When EfficientNet is used, instead, a small difference emerges that awards
the learnable frontends, especially nnAudio; however, McNemar test with
Bonferroni-Holm correction finds no statistically significant difference among
the three.

Specific p-values are shown in Table 2.

6.2 Test 2 - Heartbeat

Even in this scenario VGG16 was better than EfficientNet in all the tests. Nev-
ertheless and contrarily to the respiratory task, the Mel-filterbank was surpassed
by both nnAudio and LEAF.

Tables 5 and 6 show that LEAF achieves the better accuracy using both
VGG16 and EfficientNet. However, when using EfficientNet, the best TNR was
achieved by nnAudio. Note that TNR is particularly important in first-screening
diagnosis, because low TNR is associated with a high false negative rate, meaning
that false negatives are common. When a false negative prediction happens, the
therapeutic intervention may be delayed with catastrophic consequences.

Specific p-values are shown in Table 2.

6.3 Overall

Comparing the results obtained from the two tests Test 1 and Test 2, we note that
the best scores were achieved in Test 2 (Heartbeat), with the LEAF frontend.
We theorize that LEAF performed better in Test 2 than Test 1 due to the size of
the phonocardiogram database, which is much larger than the respiratory sound
database.

Table 3. Comparison results using VGG16 as classifier on the ICBHI dataset [2]. Only
Mel-filterbank and nnAudio accuracies show a statistical significance (p ∼ 0.04 using
McNemar with Bonferroni-Holm correction).

% Balanced accuracy TPR TNR

Mel-filterbank 80.21 81.42 79.01

LEAF 77.47 80.87 74.07

nnAudio 74.12 77.86 70.37
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Table 4. Comparison results using EfficientNet-B0 as classifier on the ICBHI
dataset [2]. Only Mel-filterbank and nnAudio accuracies show a small significance
(p ∼ 0.05 using McNemar with Bonferroni-Holm correction).

% Balanced accuracy TPR TNR

Mel-filterbank 61.05 62.84 59.26

LEAF 61.40 66.94 55.86

nnAudio 61.74 68.85 54.63

Table 5. Comparison results using VGG16 as classifier on the heart beats dataset [3].
All p-values between accuracies are <<0.05 (McNemar with Bonferroni-Holm correc-
tion)

% Balanced accuracy TPR TNR

Mel-filterbank 90.71 96.22 85.20

LEAF 92.29 95.29 89.30

nnAudio 91.41 93.64 89.16

Moreover, the different balancing of the two databases is probably the reason
why TPR and TNR are more distant in Test 2 than in Test 1. Indeed, the
Respiratory database has the most balanced classes compared to the Heartbeat
database – see Table 1.

In general, the 3 frontends learn different features, as shown in Figs. 3 and 4.
Namely, nnAudio learns more sparse representations that focus on low frequen-
cies. On the contrary, LEAF learns representations less sparse and well dis-
tributed across the frequency space. Compared with classical Mel-filterbanks,
both of them seems to learn specific characteristics that are relevant for the
classification. We theorize that LEAF learned features work by extracting dis-
criminative local descriptors in the time-frequency space similarly to audio fin-
gerprint algorithms [10,22]. nnAudio, instead, extracts blurred regions that are
likely less characteristics of the single excerpt. Moreover, LEAF manages to han-
dle both positive and negative values, while nnAudio’s activation functions only
return non-negative values, thus deleting possibly useful information.

Table 6. Comparison results using EfficientNet-B0 as classifier on the heart beats
dataset [3]. All comparisons of accuracies revealed stastical significance except between
Mel-filterbank and nnAudio (McNemar test with Bonferroni-Holm correction).

% Balanced accuracy TPR TNR

Mel-filterbank 81.12 90.92 71.33

LEAF 84.36 95.40 73.31

nnAudio 83.51 92.52 74.50
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7 Conclusion

This work has shown how the integration of learnable frontends in classification
systems with convolutional neural networks can improve results in the field of
medical acoustics. The tests carried out show that learnable frontends are par-
ticularly useful when there is a sufficient amount of available data (Test 2), while
using small data-sets (Test 1) prevent them from learning accurate features to
surpass the classic hand-crafted methods.

The proposed method therefore stands as a valid alternative to traditional
feature extraction methods as long as they are used in contexts with a large
amount of data available.
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