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Abstract. Clustering complexity increases with the number of cate-
gories and sub-categories and with data dimensionality. In this case,
the distance metrics lose discrimination power with the growth of
such dimensionality. Thus, we propose a multiple-module soft sub-
space clustering algorithm called Subspace Clustering Multi-Module Self-
Organizing Maps (SC-MuSOM) that produces a map for each category.
Moreover, SC-MuSOM learns a relevance coefficient for each dimension of
each cluster handling the dimensionality curse. This fast-training model
has a second learning stage in which the cluster prototypes are finely
tuned considering the spatial resemblance between cluster centers. We
validated the model with data mining sets from UCI Repository and
computer vision data. Our experiments suggest that SC-MuSOM is com-
petitive with other state-of-the-art models for the tested problems.

Keywords: Subspace clustering · High-dimensional data ·
Self-organizing maps · Multiple-model clustering · Fine-tuning stage

1 Introduction

High-dimensional data originating from images, videos, and texts have been
increasingly used in machine learning. With the increasing availability of cheap
storage and the rising use of sensor data, we notice substantial data growth in
both volume and dimensionality. Data sets with many attributes are referred
to as high dimensional. Their complexity turn them hard to handle, therefore,
suitable computational tools are needed to process such type of data [1].

An important difficulty in the categorization of high-dimensional data is
the progressive reduction of the discriminant capacity of dissimilarity distances
caused by the growth of dimensionality [2], therefore data can be miscatego-
rized. Thus, previous works accomplished dimensionality reduction by creating
new dimensions through combinations of the original attributes. Such a dimen-
sionality decrease provokes loss of information, even yet preserving information
about irrelevant dimensions [3,4].
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We propose a simple solution, called Subspace Clustering Multi-Module Self-
Organizing Maps (SC-MuSOM), that can effectively cluster high-dimensional
data reducing the curse dimensionality problem through decomposition of the
learning process and use of dimension relevance for identifying the more signifi-
cant attributes for each cluster. Moreover, such a model has a significantly lower
computational cost when compared with state-of-art models.

Our model is made up of Self-organizing Maps (SOM) modules. The model
design entails a multi-module architecture in which each module is trained only
with instances of the same category. In spite of having a number of modules,
this is not an assembly model, hence, the most active unit of all modules deter-
mines the category of an input pattern. In the training stage, a relevance vector
associated with each node is updated at the end of each epoch. Such relevancies
weigh the importance of each dimension as a discriminant attribute for a cluster.
Therefore, the most discriminating features for each category count more on the
distance metrics than on the less relevant attributes. Furthermore, SC-MuSOM
has a second learning stage that aims to reduce the miscategorization of some
patterns due to spatial proximity between prototypes of different categories. A
mutual moving-away movement of close prototypes typifying different clusters
is carried out to reduce the odds of errors.

In sum, the proposed model differs from the original SOM mainly in:

– Use of multiple modules to reduce the losses of the curse of dimensionality;
– Use of relevance to weigh each attribute in the distance calculation;
– Use of a refinement stage moving apart prototypes of different categories;
– Definition of a second learning stage for refinement of the clustering method.

In Sect. 2, the subspace clustering and learning refinement are defined and
some papers on them are briefly discussed. Section 3 presents SC-MuSOM. In
Sect. 4, we show the experimental results and their analysis. Finally, Sect. 5 con-
cludes the paper and makes some suggestions for future research.

2 Self-organizing Maps and High-Dimensional Data
Clustering

This section briefly discusses clustering for high-dimensional data, algorithms
based on SOM for categorization of that type of data, and, subspace clustering
and methods for learning refinement.

2.1 Clustering of High-Dimensional Data

Clustering consists of the process of partitioning unlabeled datasets into groups
of similar elements. Each cluster comprises patterns more similar to one another
according to a given measure than patterns belonging to other groups [2]. Data
clustering is a technique useful in many types of problems such as data mining
in which solid knowledge can be extracted from apparently unstructured data.
When analyzing data with high-dimensionality, data having a few dozens to



Subspace Clustering Multi-module SOMs with Two-Stage Learning 287

many thousands of dimensions, the ordinary distance measures often lose their
discriminative capacity, thus, clustering performance is negatively impacted by
that. As a consequence, clustering methods based on traditional distance mea-
sures often fail to achieve acceptable performance since many feature dimensions
may be irrelevant or redundant to certain clusters [2].

Pioneer methods reduce the data dimensionality or use a parsimonious Gaus-
sian mixture model (GMM) to overcome the curse of dimensionality. Very often,
the reduction of dimensionality is followed by a classical clustering method.
Dimension reduction techniques typically employ feature extraction and feature
selection for generate new variables preserving most of the global information.
The parsimonious models require the estimation of some parameters. Such mod-
els allow clustering methods based on the expectation-maximization.

Subspace Clustering (SC) algorithms identify different subspaces to deter-
mine distinct clusters. Their two main types are Hard Subspace Clustering (HSC)
and Soft Subspace Clustering (SSC) [5]. HSC algorithms, identify the exact sub-
spaces for different clusters and assign 1 or zero to each relevance. In turn, SSC
algorithms perform clustering by assigning a real-valued weight to each feature
(attribute) of each cluster to weigh its importance to that particular cluster [2].
Such algorithms are classified as conventional SSC (CSSC), independent SSC
(ISSC), and extended SSC (XSSC). In CSSC, all clusters share the same sub-
space and a common weight vector. The weight vectors in ISSC are determined
independently for each cluster. XSSC was developed by extending CSSC or ISSC
algorithms for some specific purposes or introducing new mechanisms to enhance
clustering performance [5].

2.2 Self-organizing Maps for Subspace Clustering

The SOM and LVQ are prototype-based neural network models. They use a dis-
tance measure to select the cluster prototypes to be updated. Euclidean distance
tends to lose its discriminating power as the number of attributes increases. So,
there are LVQ and SOM-based models that assign a weight, the relevance [6], to
each attribute differentiating the importance of each dimension for each cluster.
The proposed algorithms obtain relevance attributes in the learning process.

Some recent LVQ models were recently proposed for subspace clustering.
GMLVQ and GLVQ had their activation function step modified for improving
the categorization process [7]. Intuitive indications of feature relevancies for a
given model’s decision can be provided by metric-learning approaches, such as
GRLVQ [6] that adapts a diagonal matrix, scaling the relevance of the input
features. Generalizations that use a full matrix, such as in GMLVQ [8] exist,
however, a single global quadratic matrix remains the most common choice. A
few approaches extend this setting to non-global matrices, such as LGRLVQ [9]
and LGMLVQ [8]. However, they allow only one matrix per prototype, which cor-
responds to one metric per Voronoi cell in the input space. The mentioned LVQ-
based methods are up-to-date alternatives that assign relevance to attributes to
make the distance metrics more discriminating.
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Also, some SOM-based approaches were proposed, we can mention Dimension
Selective Self-organizing Map (DSSOM) [10], Local Adaptive Receptive Field
Dimension Selective Self-organizing Map (LARFDSSOM) [11], Local Adaptive
Receptive Field Dimension Selective Self-organizing Map 2 (LARFDSSOM2) [4],
and Soft Subspace Neural Gas for Data Stream Clustering (S2G-Stream) [12].
DSSOM can find clusters and identify their relevant dimensions, simultaneously
with the self-organizing process. The next models are time-varying structure
SOM, TVS-SOM [13]. LARFSSOM is characterized by a structure of nodes that
change according to the defined level of resemblance between a pattern and the
prototype of the category it belongs to. LARFSSOM2 is a version that improves
learning capacity by refining the relevance accuracy. S2G-Stream algorithm is
based on growing neural gas. The authors proposed two models of feature and
block weighting (global and local), a method for SSC on an evolving data stream.
We returned to the original SOM with a fixed structure as a simple solver for
the same class of problems.

2.3 Learning Enhancement

Several adaptations were proposed to the original SOM to ameliorate categoriza-
tion. Some of them were accuracy-oriented for high-dimensional data such as a
type of assembly of SOMs [14]. The method connects the output of a SOM to
the input of the next SOM. It also utilizes the characteristic of high-dimensional
data insensitivity to update the values of dimensions. Another approach is a
hierarchical categorization in which patterns that have imprecise categorization
can undergo further training with different data composition from initial training
to refine a solution [15]. SOM-based model performance can be improved with a
second process of weight adjustment. Bi-organization local refinement [16] orga-
nizes the data by defining an appropriate representation and metric such that
they respect the smoothness and structure underlying the data.

Many changes were proposed to the original SOM to ameliorate categoriza-
tion. Some of them were accuracy-oriented for high-dimensional data such as a
type of assembly of SOMs [14]. In this approach, each SOM is trained with some
different criteria and after training all expert SOMs, the output is determined by
a criterion considering the specialists. Cascaded SOM is an extension of classical
SOM [14] in which multiple SOMs are connected in series, the so-called cascaded
structure. The method connects the output of a SOM to the input of the next
SOM. It also utilizes the characteristic of high-dimensional data insensitivity to
update the values of dimensions.

Another approach is hierarchical categorization, in which patterns that have
imprecise categorization can undergo further training with different data com-
positions from initial training to refine a solution. Hierarchical sparse subspace
clustering (HESSC) [15] deals with high-dimensional and highly mixed data
robustly and quickly. The algorithm performs a hierarchical subspace clustering
and it determines the number of clusters.

SOM-based model performance can be improved with a second process of
weight adjustment. Bi-organization local refinement [16] organizes the data by
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defining an appropriate representation and metric such that they respect the
smoothness and structure underlying the data. They also aim to generalize the
joint clustering of observations and features, in the case the data does not fall into
clear disjoint groups. The process consists of an iterative refinement procedure
that exploits the co-dependencies between features and observations.

The learning process of SC-MuSOM is fully based on SOM. Thus, we train
each SOM module with patterns belonging to a particular category. Moreover,
the learning process has two stages: the first training stage is based on the
original SOM and the second stage modifies locally the Voronoi regions.

3 Subspace Clustering Multi-module Self-organizing
Maps (SC-MuSOM)

LVQ and SOM are prototype-based competitive algorithms with supervised and
unsupervised learning. Both algorithms typically compress any-dimensional data
into a two-dimensional grid, however, only SOM takes taking into account data
topology. LVQ employs labels in the training stage, the weights update can
approximate or distance a prototype from an input pattern depending on if
the categorization is correct or not [17]. SOM determines clusters based on
the instances similarities and dissimilarities. Some previous studies suggest that
supervised learning achieves superior performance than unsupervised learning
for small training sets.

The proposed model is composed of multiple modules, each one consisting of
a self-organizing map (SOM) trained for data clustering of a particular category,
thus, there are as many SOM modules as the number of categories. Each SOM
undergoes unsupervised training with samples belonging to a single category.
Any node of each SOM module learns a prototype vector and a relevance vector
associated with it. A second learning stage, the refinement phase, consists of
mutual repelling of very close pairs of nodes belonging to different categories,
closeness determined by distances below a threshold. Such distancing aims to
increase the spatial separations of the different categories. After the two-stage
training, each input pattern is presented to all SOM modules. The module with
the winning node determines the category of the input instance.

After the two-stage learning process, each input pattern is presented to all
SOM modules. The module with the winning node determines the category of
the input instance.

3.1 The Description of SC-MuSOM

SC-MuSOM is formed by multiple modules of one-dimensional SOMs, each one
defines a subcluster of a given category. For each SOM module, the weight vec-
tors associated with each node are initialized as the arithmetic average of the
instances of that category added to a random noise ranging within the interval
[−0.01+0.01] for each attribute. The relevance vector of each node is initialized
as the complement of the variance vector (Eq. 1) of all instances of a considered
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category. The calculation of the relevancies is an interactive process that takes
into consideration this instantaneous term of relevance (a function of the vari-
ance) to update the current relevance of each dimension. The relevance value
of each attribute weighs its distance component. Thus, dimensions with lower
variance tend to be more relevant to determine the distance between an input
vector and the subcluster centers (Eq. 2). Relevancies contribute to the calcula-
tion of distance so that certain attributes have greater importance without loss
of information in a process of dimensionality reduction.

rk = (1 − variance(xk)) (1)

dr(xt, ck) =
√∑

rk (̇xin − ck)2 (2)

A SOM module groups any input pattern into a subcluster of a determined
category. In any module, the winner node (w) is determined by the smallest
Euclidean distance between an input pattern (xin) and each weight vector ck in
cluster C (Eq. 3). In the training stage, the winner is searched among the nodes
of the SOM module for each category. After the learning stage, any winner is the
most active node of all categories. Algorithm 1 shows the first training stage.

‖xin − cw‖ = min
k∈C

dr(xin, ck) (3)

The weight updating runs separately for each module, one by one, i.e., only
the module of the input pattern category is updated. For all input vectors closest
to cw, a weight vector is adjusted with learning rate η(t) and neighborhood
function hw(t) as shown in Eqs. 4, 5, and 6. The excitation equation employs
the relevance diagonal matrix Rk, the relevancies form the main diagonal, in the
update process.

ck(n + 1) = ck(n) + η(n) · hw(n) · Rk [xin − ck(n)] (4)

η = η(0) · e
− n

τη (5)

hw(n) = h
− ‖ck−cw‖2

σ2(n)
0 (6)

The neighborhood function, hw decreases when the distance between ck and
cw increases. We employed a Gaussian function to describe a topological neigh-
borhood that shrinks with time due to the time varying dispersion term (σ(n))
defined by Eqs. 7.

σ(n) = σ0 · e− n
τ (7)

For each epoch, all patterns are presented in random order, for each SOM
module. At the end of each epoch, the values of all relevancies are updated. For
relevance calculation, initially, all training patterns referring to each SOM are
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evaluated and the node closest to each pattern is determined by Eq. 2. The new
relevance (at time instant n + 1) associated with a node is calculated as a func-
tion of an instantaneous relevance (Eq. 1) that considers all patterns belonging
to a subcluster. Each pair, weight vector and relevance vector, is associated with
a subcluster, represented by a node. The weights are updated with each presen-
tation of a new pattern whereas the relevancies are only updated at the end of
each epoch.

The refinement procedure increases the distance between the closest proto-
types of subcategories belonging to different categories. In this stage, the algo-
rithm does not change the relevance vector since it is not affected by this slight
movement. The relocation process runs for all nodes that have a distance below
a threshold.

Algorithm 2 shows the refinement process, the second stage of learning. Ini-
tially, the cosines of the angles of all pairs of weight vectors belonging to different
categories are calculated. Then, the pairs of nodes that are close enough and
belong to different categories are selected for the separation process. The chosen
distance metric is the cosine similarity metric [18]. Oppositely to the Euclidean
distance, in the cosine similarity, the furthermost vectors have a value nearby
zero whereas the closest vectors have cosine neighboring 1. For a pair of vectors
ck and cm, ck is moved away from cm (Eq. 8), movement determined by the
minus sign in it. An analogous movement of cm with respect to ck is carried out
swapping the roles of each vector in Eq. 8. The learning rate α is smaller than
the rate η at the end of the first learning stage of learning. Equation 8 continues
to use relevance in the weight refinement process, as in the Eq. 4.

ck(n + 1) = ck(n) + α(n) · Rk [cm − ck(n)] (8)

α = α(0) · e− n
τα (9)

The categorization of an input vector is determined by the most active node
in all SOM modules. This node determines the subcategory, therefore the cat-
egory, to which the input belongs to. Clustering accuracy is calculated by the
percentage of samples correctly categorized.

3.2 The Pseudo-code

The SC-MuSOM pseudo-code has two stages. The first stage, Algorithm 1, con-
sists of module-by-module training. The updating of the relevance only occurs
after all weights adjustment of an epoch.

Then, the pairs of nodes that have a cosine distance greater than a given
threshold are selected to be pushed away. This process of calculating distance
and moving away is repeated until the selected pairs are below the threshold
(Algorithm 2).
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Algorithm 1. SC-MuSOM-Stage1
1: Initialize all ckj(0) with mean and noise insertion of [-0.01 +0.01] and learning

parameters η(0), h0, σ0, τ , τη, T ;
2: for t = 0 to T do
3: for all xt patterns from the category training set do
4: Present pattern xt at time t.
5: Select the winning node for xt by Eq. 3.
6: Update the weights for all nodes by Eq. 4.
7: Set t = t + 1;
8: end for
9: Update the relevancies for all nodes by Eq. 1.

10: Update the learning rate, η(t), by Eq. 5.
11: Update the topological neighborhood, σ(t), by Eq. 7.
12: end for

Algorithm 2. SC-MuSOM-Stage2
1: Initialize α(0) and Th;
2: for t = 0 to T do
3: Calculate cosine distances from all nodes to all nodes.
4: Selects pairs of nodes of different categories that have a cosine distance above

a threshold Th.
5: Updating the pair or the pairs selects pushing each other away by 8.
6: Set t = t + 1;
7: end for

4 Experiments

SC-MuSOM was tested with data mining and high-dimensional computer vision
sets for performance assessment. We have run 10 rounds of tests with different
random initializations for which we present the average performances with their
standard deviations. We compared SC-MuSOM performance with those achieved
by previously published articles. For a fair comparison, the number of executions
for each algorithm follows that specified for published papers.

4.1 Datasets and Setups

The datasets Digits, Ionosphere, Iris, and Image Segmentation belong to the
UCI repository [19]. The computer vision datasets include USPS [20], Scenes-15
[21] and Caltech-101 [22]. Table 1 shows the number of patterns (np), attributes
(na), and categories (nc) of each dataset and the type of each dataset.

The four data mining sets have low or medium dimensionality, ranging from
4 to 64 attributes. Such sets vary from 150 to 2,306 patterns divided into 2 to 10
categories. The patterns in the tree remaining sets have 256 to 1,080 attributes.
Such high-dimensional data sets have 4,885 to 9,298 patterns that are categorized
into 10 to 101 groups.
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The digits data is composed of images. The Ionosphere set contains data
on electrons in the ionosphere. The Iris dataset describes 3 different types of
the plant Iris. The Image Segmentation dataset encodes several attributes of
image regions. The USPS dataset stores images of handwritten digits. The Scene-
15 dataset is formed by images for 15 outdoor scenes whereas the Caltech-101
dataset keeps images of objects belonging to 101 categories. For the Scenes-
15 and Caltech-101 databases, features were extracted using a deep learning
strategy through VGG-19 [24], a deep neural network. The output of the VGG-
19 is a vector of 4,096 attributes.

Table 1. Datasets

Dataset np na nc Type

Digits 1,797 64 10 Data mining

Ionosphere 351 34 2 Data mining

Iris 150 4 3 Data mining

Image segmentation 2,306 16 7 Data mining

USPS 9,298 256 10 Computer vision

Scenes-15 4,885 1,024 15 Computer vision

Caltech-101 8,677 1,080 101 Computer vision

4.2 Results

The performance of prototype-based models is shown in Table 2. SC-MuSOM
performance is compared with the LGMLVQ [8] and KNN methods for low or
medium-dimensional datasets. SC-MuSOM performance is also compared with
those of KNN, deep-learning, and SOM-based soft subspace clustering methods
(ETLMSC [23] and LARFDSSOM2 [4]) and the results are shown in Table 3. The
tables bring mean accuracy values and their standard deviation. The numbers
of the compared methods were collected in their original publications.

Table 2. Results for small and medium dimensional databases compared with KNN
and LGMLVQ.

Dataset KNN LGMLVQ SC-MuSOM
(1 stage)

SC-MuSOM
(2 stages)

Digits 94 (0.75) 87 (1.68) 97.09 (0.18) 97.09 (0.18)

Ionosphere 77 (4.68) 76 (3.75) 89.09 (4.12) 89.32 (5.67)

Iris 93 (3.40) 93 (2.98) 96.49 (2.56) 96.49 (2.53)

Image Seg. 93 (0.39) 94 (0.64) 90.43 (4.88) 91.90 (5.96)

USPS 94 (0.25) 95 (0.27) 94.07 (0.21) 94.17 (0.25)
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Table 3. Results for high-dimensional databases compared with KNN, ETLMSC, and
LARFDSSOM2.

Dataset KNN ETLMSC LARFDSSOM2 SC-MuSOM
(1 stage)

SC-MuSOM
(2 stages)

Scenes-15 76.75 (1.08) 87.80 (0.2) 89.07 (0.2) 89.32 (0.15) 89.34 (0.14)

Caltech-101 60.07 (1.98) 63.9 (0.4) 65.41 (0.89) 74.47 (0.2) 74.50 (0.2)

4.3 Comparisons

We have not implemented the comparison methods shown in Table 2 and Table 3,
therefore, the results in the tables are those reported in the literature.

SC-MuSOM reached the best performance for Digits, Ionosphere, Iris, Scenes-
15 and Caltech-101 datasets. The performance of SC-MuSOM for USPS dataset
was slightly below that of LGMLVQ. For the Image Segmentation dataset, SC-
MuSOM achieved a performance inferior to KNN and LGMLVQ. The Image
Segmentation dataset has a peculiar characteristic, its training data entails only
10% of the total set of patterns while the other sets have above 45% of the
total of patterns used for training. The SOM compared to the LVQ tends to lose
performance when the percentage of training data in relation to the total set of
patterns is reduced [17].

An extension of the original LVQ model, LGMLVQ employs a complete rele-
vance matrix in the similarity measure [8]. We consider a distance generalization
that can explain the correlations between the attributes. SC-MuSOM only uses
the calculation of feature vectors, being computationally less expensive in com-
parison with LGMLVQ.

The refinement stage of our algorithm marginally improves the performance
of some of the tested databases. We apply the Mann-Whitney statistical test
to verify whether the numerical differences are statistically significant. Such an
analysis indicated that for 4 out of the 7 datasets, stage 2 presented statistically
relevant improvements.

The promising results of the proposed method are due to the specialization
in multi-modules of the SOM networks together with the use of relevances to
make the distance metric discrimination more robust because of the curse of the
dimensionality. The second stage of learning also contributes to a little perfor-
mance improvement, this stage has a more significant impact on data mining
bases than computer vision. The refinement stage is a low computational cost
procedure that can marginally improve the results.

5 Discussion and Conclusion

Our proposed model, SC-MuSOM, has multiple SOM modules, one for each
category of datasets used in the experiments. The first learning stage determines
the clusters and their prototypes using the relevance vectors that assign different
importance to the attributes. In the second stage, nodes of different categories
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that are overlapped are moved away from each other. This second stage improves
slightly the model accuracy.

SC-MuSOM is a soft subspace clustering (SSC) method that determines con-
tinuous values for relevancies ranging from zero to one. SC-MuSOM performs
feature weighting to establish the relative prominence of each attribute regarding
each category: the higher the relevance, the more important the attribute.

The refinement stage is characterized by the modification of the weight vec-
tors by a low learning rate to separate further overlapping Voronoi regions
between nodes of different modules. In some data mining and computer vision
datasets, we notice a small improvement in accuracy compared to only the first
stage of learning.

The model has a number of nodes established by the designer, however, the
number of sub-categories may vary from category to category. This can make
some nodes unnecessary. These nodes do increase the cost of running the algo-
rithm. A potential improvement for this limitation is to employ a time-varying
topology to increase the number of subcategories (nodes) for each category only
if necessary. Something welcome to speed up the processing would be a massively
parallel implementation of SC-MuSOM with GPUs or multi-core CPUs, another
potential topic for future research.
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