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Abstract. Compatibility Matrix plays a very important role in Fully-
connected pairwise Conditional Random Field (full-CRF). However, for-
mer studies often fix it on any dataset or make too strong assumptions,
which may cause abnormal object co-occurrence in image segmentation.
The reason lies on the fixed compatibility matrix will give both nor-
mal objects co-occurrence and abnormal objects co-occurrence the same
penalty. In this paper, we propose an adaptive compatibility matrix to
replace the fixed compatibility matrix in full-CRF. Based on a weaker
assumption of local independence, we propose the algorithm for adaptive
compatibility matrix to learn from the dataset. In order to decrease the
high computational complexity of full-CRF and maintain the accuracy
at the same time, we build superpixel-CRF with adaptive compatibility
matrix and propose the corresponding method to solve it. Our experi-
ments demonstrate that the adaptive compatibility matrix improves the
accuracy of full-CRF. The expansion in superpixel-CRF not only reduces
the complexity but also performs well on the results.

Keywords: CRF · Image segmentation · Adaptive compatibility
matrix

1 Introduction

The goal of multi-class image segmentation is to classify each pixel in an image
to a label and split the image into different semantic patches, which is one of the
most challenging problems in computer vision. Multi-class image segmentation is
widely used in many applications such as video surveillance [4], object recognition
[6], autopilot [5], etc.

A commonly used approach to solve segmentation problem is modelling each
pixel as a node and an image as a graph. The segmentation problem is con-
verted to a maximum a posteriori (MAP) inference defined over pixels or image
patches [9,11,14,18,20]. The potentials in CRF incorporate pairwise potentials
that model contextual relationships between object classes. However, former
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studies [3,13] often fixed the compatibility matrix in pairwise potentials, where
the penalties between normal co-occurrence objects and abnormal co-occurrence
objects are equal. That will cause some abnormal objects to appear together
(Fig. 1). In order to solve that problem, we propose an adaptive compatibility
matrix learned from the dataset to substitute the fixed compatibility matrix. In
[8,20] people build local connected CRF, however it can not model long-range
connections. For modeling long-range connections, [13] first builds the full-CRF.
For solving CRF, traditional discrete optimization methods such as graph cut:
α-expansion [3] or tree reweighted message passing(TRW) [12] work well for
local connected CRF, but are too expensive for full-CRF. In [13], they develop
an approximate optimization algorithm that is sublinear in the number of pair-
wise potentials. It is based on mean field inference, which is a local technique
and the solution can be arbitrarily far from the optimum [10]. As a result, in
[22] they develop an efficient graph cut optimization for full-CRF, assuming
that image pixels have been tessellated into superpixels, and the weight of an
edge between two pixels depends only on the superpixels these pixels belong to.
The new superpixel-CRF decreases the computational complexity greatly and
guarantees that the result will have the approximation factor of two, however
it still suffers from the abnormal objects co-occurrence problem. In order to
solve that problem, we fuse adaptive compatibility matrix into superpixel-CRF.
Our contributions lie on 2 aspects: 1. We propose an adaptive compatibility
matrix that is learned from the dataset by variational method based on local-
independence, which can relieve the abnormal object co-occurrence problem in
pixel-CRF. 2. We introduce the adaptive compatibility matrix into superpixel-
CRF, which decreases the computation time greatly than pixel-CRF and relieve
the abnormal object co-occurrence problem of the original superpixel-CRF.

Fig. 1. Examples of abnormal objects co-occurrence. (a, c) is the original image, (b, d)
is the corresponding segmentation result of potts model. (b) is the segmentation result
of (a), black represents the background, red represents aeroplane, blue represents boat.
(d) is the segmentation result of (c), green represents grass, dark blue represents cow,
light blue represents sheep, orange represents face. (Color figure online)
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2 Related Work

2.1 CRF and Superpixel-CRF

CRF is a kind of statistical modeling methods often applied in pattern recogni-
tion and machine learning. CRF models are composed of unary potentials and
pairwise potentials on pixels or superpixels. There are many methods for solving
sparsely connected CRF, such as iterative conditional modes(ICM) [21], TRW
[12] and graph cut(expansion move, swap move) [3]. For densely connected CRF,
mean field inference in [13] can solve it with fast speed; However, the result can
be far from global minimum. [10] points that discrete optimization methods
based on graph-cut can work better. To decrease computational complexity, in
[2,17,23], they transform from pixel level to superpixel level. In [22], they con-
sider that the weight of an edge between two pixels depends only on the super-
pixels they belong to, but the use of potts model [3] as compatibility function
will cause the abnormal objects co-occurrence problem.

2.2 Compatibility Function

As an import part of overall potential, pairwise potential models relationship
between two nodes. Pairwise potential consists of two parts: weight between two
nodes and compatibility function μ(a, b) between two labels classified to these
two nodes. In [15,20], they use potts model as compatibility matrix which is
very simple: μ(a, b) = 1 if a �= b else 0. In [21], they use truncated distance as
compatibility value between two labels. No matter the potts model or truncated
distance, they are all fixed values with no difference between different datasets.
[13] makes an assumption that all nodes are independent and get their compati-
bility function, which is too strong because the pixels in an image are connected
with each other and can not simply considered as independent. All the above
compatibility function will cause the abnormal objects to appear. To be more
precise, only two pixels are considered independent during the process of itera-
tion in our study which maintain the connections between other pixels. In this
article, we map compatibility function to a matrix M called compatibility matrix
with μ(a, b) mapped to Mab. With the compatibility matrix, the equations and
the optimization problem will become more concise.

3 Preliminary

Consider an image I which is defined over all its pixels {I1, I2, ...IN}, and a
random field X which is defined over all its labels {X1,X2, ...,XN}, where N is
the number of pixels. Ii means the image vector of pixel i in I, and Xi means
the corresponding label of pixel i in X. Based on the graph G constructed, the
probability of X given I can be computed [16]:

PG(X|I) = 1
Z(I)

· exp(−E(X|I)) (1)



202 B. Zhou and C. Li

To simplify the notation, the subscript G and the condition I are omitted:
P (X) = 1

Z · exp(−E(X)). The E(X) in P means the overall potentials:

E(X) =
∑

i

fu(xi) +
∑

i,j

fp(xi, xj) (2)

fu(xi) means the unary potential of pixel i, which is computed from an indepen-
dent classifier. fp(xi, xj) means the pairwise potential between pixel i and pixel
j, which is defined as [13]

fp(xi = a, xj = b) = wij · μ(a, b) (3)

where the wij means the weight between pixel i and pixel j, which is defined as

wij = λ1 · exp
(

−||pi − pj ||2
2θ21

)
+ λ2 · exp

(
−||Ii − Ij ||2

2θ22

)
(4)

where pi means the position of pixel i, and Ii means the image vector or pixel i.
μ(a, b) is the compatibility function that measures the penalty between any two
pixels i and j classified as label a and b. In the potts model, if a �= b, μ(a, b) = 1
else 0.

4 Adaptive Compatibility Matrix

We substitute the compatibility function with compatibility matrix M for two
reasons: one is the simplicity in notation, the other is that any value in the matrix
is the penalty that two pixels classified to the two labels represented by the row
and column of the value and you can observe the penalty visually in the heatmap
of M. Former studies often use the fixed compatibility matrix such as potts model
[22]. However, using the fixed compatibility matrix will cause abnormal objects
co-occurrence problem as Fig. 1 shows. In Fig. 1(a), some parts of aeroplane
are classified as boat and in Fig. 1(d), some parts of cow are classified as sheep
and face. The reason lies on two aspects. The first aspect is the unary classifier,
which will give these places classified as boat low unary potentials. The second
aspect is the compatibility matrix M of potts model, which considers the penalty
that aeroplane-background co-occurrence and boat-background co-occurrence is
the same, and the aeroplane-aeroplane co-occurrence is only tiny smaller than
aeroplane-boat co-occurrence. As a result, some pixels will be classified as boats.

If the compatibility matrix is learned from the dataset, we will know which
objects are less likely to appear together and give them bigger penalties. Then
the abnormal objects co-occurrence problem can be get rid of. In order to learn
the matrix, the following optimization problem needs to be focused on:

argmax
M

K∏

i=1

P (T(i)|I(i),M) (5)
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where K is the size of our train dataset, T(i) is the true label of image I(i). After
some transformations, we can get the loss L(M) =

∑K
i=1 −log(P (T(i)|I(i),M))

and the optimization problem becomes:

argmin
M

L(M) (6)

However, it is impossible to get the analytic solution of M(as it’s a tran-
scendental equation). We need use stochastic gradient descent to optimize it
gradually. For the sake of simplicity, we consider the loss on one image I and
compute the partial derivative for Mab:

∂L
∂Mab

=
∑

i,j

wij ·
[
1ti=a · 1tj=b−

∑

X

P (X)1xi=a · 1xj=b

]
(7)

where 1xi=a means if xi = a it equals 1 otherwise 0.
However, the complexity of computing the

∑
XP (X)1xi=a ·1xj=b is huge. If

there are a total of B categories of labels, the time complexity will be O(BN ).
As a result, some approximations need to be considered to P (X) and the com-
putation need to be simplified. We can write

∑
XP (X)1xi=a·1xj=b as this form:∑

XP (x1, ...xi = a, ..., xj = b, ..., xN ), and then P (xi = a, xj = b).
The overall energy E(X) can be written as:

E(X) = E(xi, xj) + Ei,j
o.t(X) (8)

where E(xi, xj)= fu(xi)+fu(xj)+fp(xi, xj), and Ei,j
o.t(X) are all other terms in

E(X) except E(xi, xj). Then we can get :

p(xi = a, xj = b) =
exp[−E(xi = a, xj = b)] · ∑

X−xi−xj
exp[−Ei,j

o.t(X)]

Z
(9)

In [13], they use mean field which considers that the classifications of all pix-
els are independent, and then they get the compatibility matrix. Obviously this
assumption is too strong because in the real world, the classification is not inde-
pendent at all. Instead we make a weaker assumption that the classifications of
pixel i and j are independent, then P (xi = a, xj = b) = P (xi = a)·P (xj = b). We
consider the approximation distribution as Q(xi, xj). In order to get Q(xi, xj),
we minimize the KL divergence DKL(Q||P ). Let

∑
X−xi−xj

exp[−Ei,j
o.t(X)] be

h(xi = a, xj = b). For solving this variational problem, we will get:

L(Qi, Qj) =
∑

xi,xj

Q(xi, xj)[E(xi, xj) − lnh(xi, xj)]

+
M∑

xi=1

[Qi(xi) − λi] lnQi(xi)+
M∑

xj=1

[Qj(xj) − λj ] lnQj(xj)
(10)

Using Euler-Lagrange equation we will have:

∂L

∂Qi
= lnQi(xi) + 1 − λi +

∑

xj

Qj(xj)[E(xi, xj) − lnh(xi, xj)] (11)
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Then Qi(xi) can be computed:

Qi(xi) =
1
Z

· exp[−
∑

xj

Qj(xj)E(xi, xj)] · exp[
∑

xj

Qj(xj) lnh(xi, xj)] (12)

For any label a, compared with the other terms in h(xi = a, xj), the
∑

n fp(xi =
a, xn) is much smaller for one order of magnitude. As a result, we can omit it.
Then for any xi, exp[

∑
xj

Qj(xj) lnh(xi, xj)] will be the same. Finally we will
get:

Qi(xi) =
1
Z

· exp[−
∑

xj

Qj(xj)E(xi, xj)] (13)

where Zi is the normalization factor. Then it needs to be solved iteratively. After
getting the approximation distribution Q, we can compute the partial derivative
with respect to Mab. The details can be seen in Algorithm 1. Then the adaptive
compatibility matrix M can be updated iteratively. It is easy to prove that the
pairwise potential with M satisfies semi-metric [3], then we can use α-expansion
to solve the CRF.

Algorithm 1 Variational Method: Calculate ∂L
∂M

1: for each i ∈ [1, N ] do
2: initialize Qnew

i (xi) =
exp[−fu(xi)]

Zi

3: end for
4: for each a ∈ [1, B] do
5: for each b ∈ [a + 1, B] do
6: for each i, j ∈ [1, N ] do
7: Qold

i = 0;
8: while max |Qnew

i − Qold
i | > ε do

9: Qold
i = Qnew

i

10: for each xi ∈ [1, B] do
11: Qnew

i (xi)

12: =
exp

[
−fu(xi)−

∑
j;j>i

∑
xj

fp(xi,xj)Q
old
j (xj)

]

Zi

13: end for
14: end while
15: end for
16: ∂L

∂Mab
=

∑
i,j wij

[
1a=Ti

· 1b=Tj
− Qi(a) · Qj(b)

]

17: end for
18: end for

5 Apply Adaptive Compatibility Matrix to Superpixel
CRF

Solving full-CRF via graph-cut is very expensive especially when the resolu-
tion of the image is high. However, compared with mean field, graph cut works
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significantly better on the quality of solution [10]. In [22], they first try the
superpixel-CRF, and use graph cut to solve it which decreases the computation
time greatly. However, the accuracy also declines and it still suffers from the
abnormal object co-occurrence problem. In order to relieve that problem, we
introduce the adaptive compatibility matrix to superpixel-CRF. The pixels in
the superpixel are similar to each other, as a result,the weights between any two
pixels in one superpixel can be considered as the same which are called inner
weights. Also, the weights between any pixel in one superpixel s and any pixel in
another superpixel t can be considered as the same too, which are called outer
weights. For two pixels i and j in the same superpixel, the inner weight is defined
as

wij = λ1 exp(− σ2
i

2β2
1

)

where the σ2
i is the intensity variance of the superpixel that i belongs to. For

two pixels i and j that belong to two different superpixels S(i) and S(j), the
outer weight is defined as

wij = λ1 exp(−|di − dj |2
2β2

2

) + λ2 exp(−|μi − μj |2
2β2

3

)

where di and μi are the center and the intensity mean of the superpixel S(i).
We consider the binary class first, and then expand it to multi-class.

5.1 Binary Class

In this section, the energy function is assumed to contain two classes L = {0, 1}.
For the notation simplicity, we put the unary potentialfu(xi = 1) = fu(xi =
1)− fu(xi = 0), and fu(xi = 0) = 0 which is equivalent to the original problem.

The compatibility matrix for the binary class is:
[

0 M01

M01 0

]

Consider the superpixel s and t, we assume that pixel p, q ∈ Ps, a ∈ Pt, where
Ps, Pt is the pixel set of superpixel s and t. Assume that ns is the number of
pixels in Ps, ys is the number of pixels that are assigned as 1 in Ps. Then the
inner weight inside Ps is M01wpq(ns − ys), the outer weight between Ps and
Pt is M01wpa[ys(nt − yt) + yt(ns − ys)]. Let gs(ys) be the unary potential of
superpixel s which contains the unary potentials of all the pixels and all the
pairwise potentials in s, o(p) as the ranking of pixel p’s original unary potential
in the superpixel that it belongs to (if p has the least unary energy in the
superpixel, then o(p) = 1), then:

gs(ys) = M01wpqys(ns − ys) +
∑

p∈Ps,o(p)≤ys

fu(xp = 1) (14)

The pairwise potential Vst between superpixel s and t which contains all the
pairwise potentials between any pixels in s and t is:
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Vst = M01wpq[ys(nt − yt) + yt(ns − ys)] (15)

After M01wpq(ysnt − y2
s) transferred into gs(ys) and M01wpq(ytns − y2

t ) trans-
ferred into gt(yt), Vst equals M01wpq(ys − yt)2 which satisfies semi-metric. Then
the overall potential will be:

g(y) =
∑

s∈S

gs(ys) +
∑

s,t∈S

Vst(ys, yt) (16)

which can be solved easily via α-expansion.

5.2 Multi-class

Multi-class problem is our ultimate task and the knowledge in binary-class can be
expanded to Multi-class. In each iteration, we only consider one label α. Assume
that the result of the last iteration is Xold, the pixels can be split into two parts:
xold

i �= α and xold
i = α. For each pixel i, we define a binary-class classification

zi. The result after this iteration is defined as X and the relationship between
Z and X is:

{
zi = 0, if xi = xold

i

zi = 1, if xi = α
(17)

Then the new unary potential hu of Z will be defined as: hu(zi = 0) =
fu(xi = xold

i ), hu(zi = 1) = fu(xi = α). The new pairwise potential will be:

hp(zi = 1, zj = 1) = 0 (18)

hp(zi = 0, zj = 0) =

{
0, if xold

i = xold
j

wij · Mxold
i xold

j
, if xold

i �= xold
j

(19)

hp(zi = 0, zj = 1) = wij · Mxold
i α (20)

However, when zi=0, zj =0 and xold
i �= xold

j , the pairwise potential is not 0,
which does not satisfy the requirement of semi-metric. As a result, we need to
do some transformations. After some terms are transferred from pairwise terms
to unary terms, we get the new unary potential and new pairwise potential.

hu(zi = 0) = fu(xi = xold
i ) +

1
2

∑

j;xold
i �=xold

j

wij · (Mxold
i xold

j
− 2Mxold

j α) (21)

hu(zi = 1) = fu(xi = α) (22)

hp(zi, zj |zi = zj) = 0 (23)
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h(zi, zj |zi �= zj) =

{
wij · Mxold

i α, xold
i = xold

j
1
2wij · [2Mxold

i α + 2Mxold
j α − Mxold

i xold
j

], xold
i �= xold

j

(24)
After that, the new potentials are equivalent to the original ones and the

current pairwise potentials satisfy semi-metric. Then the method in binary class
can be used to transform the CRF from pixel level to superpixel level and the
multi-class problem can be solved iteratively.

Fig. 2. Visualization of three compatibility matrices from VOC. (a) is the adaptive
compatibility matrix using out method. (b) is the compatibility matrix using mean
field. (c) is the compatibility matrix of potts model.

Fig. 3. The left 3 images are from VOC and the right 3 images are from MSRC-21.
(a) Original images. (b) Ground truth. (c)–(e) Segmentation from fixed compatibil-
ity matrix, compatibility matrix computed by mean field and adaptive compatibility
matrix of full-CRF. (f)–(g) Segmentation from fixed compatibility matrix and adaptive
compatibility matrix of superpixel-CRF.



208 B. Zhou and C. Li

6 Experiments

We conduct many experiments on two standard benchmarks to see the improve-
ment of the segmentation result. The first is PASCAL VOC 2012 (VOC) [7] which
contains 1928 color images. The images in VOC are approximately 500 × 300
and there are 21 object class labels. The second is the MSRC-21 dataset [19],
which consists of 591 color images of size 320 × 213 with corresponding ground
truth labelings of 21 object classes. The experiment environment is person com-
puter with Intel-i5 processor and 8G memory. The unary terms of VOC come
from a pre-trained CNN classifier from [1] and the unary terms of MSRC-21
come from textonBoost [20]. We use SLIC [2] to compute superpixels, approxi-
mately 1000 per image for VOC and 800 per image for MSRC-21. To evaluate
the performance, we compute the mean IOU for VOC and the pixel accuracy
for MSRC-21.

First we learn the adaptive compatibility matrix of VOC and MSRC-21
respectively, using Algorithm 1. The heatmap of the three compatibility matri-
ces from VOC using different methods can be seen in Fig. 2. The larger the
penalty between the two labels is, the darker the square will be. In Fig. 2(a),
it can be seen that the penalty of aeroplane-boat occurrence becomes more
prominent than 1 which will solve the aeroplane-boat occurrence problem. Other
than aeroplane-boat, the penalty of many abnormal objects co-occurrence also
increase. Compared to our adaptive compatibility matrix, the matrix learned by
mean field can not learn much useful information from the dataset. For many
pairs of abnormal objects such as aeroplane-bicycle, boat-horse and bus-dining
table, our adaptive compatibility matrix will give them large penalties while the
matrix learned by mean field can not perform that well.

Then we substitute the fixed compatibility matrix with the learned matrix
in full-CRF and superpixel-CRF with the use of α-expansion to get the segmen-
tation result. In Table 1 and Table 2, potts model means using full-CRF with
fixed compatibility matrix in [3], mean field means using full-CRF with com-
patibility matrix learned by mean field in [13], adaptive means using full-CRF
with our adaptive compatibility matrix, sp+origin means using superpixel-CRF
with fixed compatibility matrix in [22], sp+adaptive means using superpixel-
CRF with our adaptive compatibility matrix. From Table 1 and Table 2, we can
see that the adaptive compatibility matrix increases the mean IOU of VOC by
2 points and the pixel accuracy of MSRC-21 by 2 points than the fixed compat-
ibility matrix in full-CRF. Moreover, the computation time of superpixel-CRF
decreases greatly than full-CRF and superpixel-CRF with our adaptive compat-
ibility matrix obtain good performance close to full-CRF. The visual result of
three methods on full-CRF can be seen in Fig. 3(c, d, e) and two methods on
superpixel-CRF can be seen in Fig. 3(f, g).
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Table 1. The comparisons of mIoU and computation time of 5 methods on PASCAL
VOC 2012.

mIoU Computation time
Potts model 71 4.1 min
Mean field 72 4.2 min
Adaptive 73 4.8 min
sp+origin 69 3.1 s
sp+adaptive 71 3.9 s

Table 2. The comparisons of pixel accuracy and computation time of 5 methods on
MSRC-21.

Pixel accuracy Computation
Potts model 80 3.8 min
Mean field 81 3.9 min
Adaptive 82 4.6 min
sp+origin 77 2.8 s
sp+adaptive 80 3.7 s

7 Conclusions

In this paper, we propose the adaptive compatibility matrix of pairwise poten-
tial based on local-independence assumption and the corresponding algorithm
to learn it from dataset. By introducing the adaptive compatibility matrix to
full-CRF, we relieve the abnormal objects co-occurrence problem. However, the
computation speed of solving full-CRF is too slow. Superpixel-CRF can be solved
efficiently but due to the use of fixed compatibility matrix, it still suffers from the
abnormal objects co-occurrence problem. As a result,we introduce the adaptive
compatibility matrix to superpixel-CRF, and propose the corresponding method
to solve it. The experiments show that superpixel-CRF with adaptive compati-
bility matrix not only decreases the computation time greatly but also alleviates
the abnormal object co-occurrence problem and improves the performance.
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