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Abstract. In this paper, we propose a robust sensor array optimization
method based on sparse learning for multi-feature fusion data classifi-
cation. The proposed approach contains three key characteristics. First,
it considers the intrinsic group structure among features by combining
an �F,1 norm regularizer design and least squares regression framework.
Second, in sensor selection, insignificant feature groups can be eliminated
by grouped row sparse coefficients generated by the model, while the ε-
dragging trick is introduced to improve the classification ability. Third,
an efficient alternating iteration algorithm is presented to optimize the
convex objective function. The results compared with the other classical
methods on gas sensor array data sets demonstrate that the proposed
method can effectively reduce the number of sensors with higher classi-
fication accuracy.

Keywords: Sensor array optimization · Sparse learning · Multiple
feature fusion

1 Introduction

Gas sensor array is an important part of classical electronic nose systems, which
converts different gases into different electrical signals thus enabling pattern
recognition [5]. The time series signals of the sensor response are usually repre-
sented in a low-dimensional way by feature extraction [13]. However, in practice,
some sensors in the array are useless for gas detection because they do not
respond to the target gas or are heavily disturbed by noise, then the corre-
sponding extracted features will be redundant for pattern recognition task. The
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optimization of the sensor array, i.e., the selection of the optimal sensor combi-
nation, will improve the accuracy of pattern recognition [8]. In addition, it will
also reduce the complexity and cost of the subsequent system design.

Sensor array optimization is usually performed by combining feature selec-
tion methods due to their similar purpose [7,9,11]. In [7], three types of feature
selection methods, t-statistics, Fisher’s criterion and minimum redundancy max-
imum relevance, were used to select the most informative features, experimental
results show that performance of electronic nose system was improved by 6–10%.
In [9], five methods were used to optimize sensor array, then linear discriminant
analysis (LDA) achieved the best experimental results, with a 9.6% increase in
recognition rate while reducing the number of sensors by 10. Most of the above
methods obtain the sensor importance ranking by evaluating the importance of
individual features, but the best combination of features is not necessarily com-
posed of the best features. In many scenarios, especially where multiple features
are extracted for each sensor, considering the correlation among features is more
valuable for selecting the optimal feature set.

Recently, sparse learning based feature selection methods have received con-
siderable attention due to its good performance and interpretability [2–4]. In
these methods, the �p norm or �p,q norm regularization terms is often used, which
forces important features to have large coefficients and unimportant features to
have small or zero coefficients, thus completing the selection of important fea-
tures. Specially, in [4], the joint �2,1 norms minimization was designed for multi-
class classification problems, it selects features across all data points with joint
sparsity. In [3], sparse group LASSO was used to select most informative features
and thus improve the accuracy of the binary classification problem. The group
structure between features is considered in group LASSO-based approaches, but
the �1 norm in them is commonly used to constrain variables in vector form.
The �2,1 norm-based methods eliminate unimportant features by generating row
sparse solutions, but does not consider the correlation between features.

Motivated by the previous works, in this paper, we propose a robust sensor
array optimization method (RSAO) for multi-feature fusion data classification by
combining the least squares regression framework and an �F,1 norm regularizer
design. When each sensor is characterized by multiple features, there are clear
group structures divided by sensor category among the features. Therefore, the
�F,1 norm regularizer is designed to enforce unimportant feature groups to have
small or zero coefficients, and then the corresponding sensors can be removed.
Compared with traditional methods, the proposed method takes into account the
intrinsic relevance of features and selects important sensors by directly scoring
the feature groups. Besides, to improve the discriminative ability of the model,
we further introduce the ε-dragging technique proposed in [12] to increase the
inter-class distance. Meanwhile, an efficient alternating iteration algorithm is
presented to solve the convex optimization problem. Experimental results on the
gas sensor data sets show that the sensor combinations selected by the proposed
method have better classification accuracy than the other conventional methods.
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The rest of the paper is organized as follows. In Sect. 2, we present the pro-
posed method and its optimization algorithm. In Sect. 3, we report experimental
results. Finally, conclusions are offered in Sect. 4.

2 The Proposed Method

In this section, we propose a robust sensor array optimization method by com-
bining an �F,1 norm regularizer design and least squares regression framework.
Meanwhile, an efficient iterative algorithm is presented to optimize the convex
objective function.

2.1 �F,1 Norm Regularization Term

Here we first summarize the common norms for vectors and matrices. For any
vector x = [x1, x2, . . . , xn]T , its �1 norm and �2 norm are

‖x‖1 =
n∑

i=1

|xi| (1)

‖x‖2 =
√

x2
1 + x2

2 + · · · + x2
n. (2)

For any matrix X ∈ R
n×d, its i-th row and j-th column element is denoted as

Xij , then its Frobenius norm and �2,1 norm can be calculated by

‖X‖F = (
n∑

i=1

d∑

j=1

X2
ij)

1/2 (3)

‖X‖2,1 =
n∑

i=1

√√√√
d∑

j=1

X2
ij . (4)

Models based on �1 norm regularizer can usually generate sparse solutions, and
based on similar principles, row sparse solutions can also be generated for models
based on �2,1 norm regularizer. To enable a model to produce grouped row sparse
solutions, we design the �F,1 norm as follows.

Suppose X ∈ R
n×d is the feature fusion matrix extracted from the sen-

sor array response values, and d features can be divided into m groups by
sensor category, that is, X is divided into m block matrices by column X =
[X1,X2, . . . ,Xm], where n and m are the number of samples and sensors, respec-
tively. Correspondingly, the transformation matrix W can also be divided into
m block matrices by row W = [WT

1 ,WT
2 , . . . ,WT

m]T , and then we define �F,1

norm of matrix as

‖W‖F,1 =
m∑

s=1

‖Ws‖F (5)

Obviously, ‖ · ‖F,1 is a norm due to satisfying the positive definiteness, absolute
homogeneity and triangle inequality.
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2.2 Sensor Selection Model

For binary classification problems, the �1 norm-based models are often used to
select important features, such as LASSO model

min
w

‖Xw+ 1b − y‖22 + λ‖w‖1 (6)

where 1 is a vector with all elements one. In multi-class classification problems,
class label vector yi is usually transformed into matrix consisting of “0/1” element
by one-hot coding. At this point, feature selection can be accomplished by using
�2,1 norm-based models, such as

min
W

‖XW+ 1bT − Y‖2F + λ‖W‖2,1. (7)

Usually, traditional feature selection methods obtain the importance rank-
ing of sensors by scoring individual features, in which the intrinsic structure
between features is not considered. However, in many sensor array optimization
tasks, each sensor is represented by multiple features, it is valuable to consider
the group structure among features divided by sensor type. Therefore, following
the least squares regression framework, we propose a novel sensor array opti-
mization method for multi-feature fusion data classification by using the �F,1

norm regularizer as follows:

min
W

‖XW+ 1bT − Y‖2F + λ‖W‖F,1. (8)

In Eq. (8), the intrinsic group structure of the features is considered and the
unimportant feature groups are forced to have small or zero coefficients, so that
the corresponding sensors are removed. In addition, to increase the robustness of
the model, the Frobenius norm is replaced by the �2,1 norm, while the ε-dragging
trick is introduced to improve the discriminative performance of the model, and
finally we obtain a robust sensor array optimization method (RSAO) as follows:

min
M,W,b

‖XW+ 1bT − Y − E � M‖2,1 + λ‖W‖F,1 (9)

where symbol � represents Hadamard product of matrix, matrix M consists of
positive elements, λ is a positive regularized parameter, and matrix E is defined
as

Eij =

{
+1, if Yij =1
−1, if Yij =0.

(10)

In sensor selection process, the proposed method uses ‖Wi‖F as a score for the
feature subset Xi to obtain the importance ranking of the sensors, which is more
efficient and has better interpretability.
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2.3 Model Optimization

Clearly, there are three unknown variables to learn in Eq. (9), so we present an
alternating iteration algorithm to solve it. First, given M, let Ỹ = Y+E � M,
we will solve the following problem

min
W,b

‖XW+ 1bT − Ỹ‖2,1 + λ‖W‖F,1. (11)

Since problem (11) has no analytical solution, we present an efficient iterative
algorithm to solve for W and b.

Let J(W,b) be objective function of problem (11), taking the derivative of
the function J(W,b) with respect to W and b, we have

∂J(W,b)
∂W

= XTU1(XW+ 1bT − Y) + λU2W (12)

∂J(W,b)
∂bT

= 1TU1(XW+ 1bT − Y) (13)

where U1 and U2 are diagonal matrix, and their diagonal elements are

U tt
1 =

1
‖et‖2 , t = 1, 2 . . . , n (14)

U ii
2 =

1
‖Wj‖F ,wi ∈ Wj , j = 1, 2 . . . ,m (15)

where et is t-th row of matrix XW+ 1bT − Ỹ and wi is i-th row of matrix W.
Setting Eq. (13) equal to zero, we can get

bT = c1TU1(Y − XW) (16)

where c is equal to (1TU11)−1. Then setting Eq. (12) equal to zero and using
Eq. (16), we can obtain

W = (XTLX+ λU2)−1XTLY (17)

where L = U1 − cU111TU1. Note that the computation of U1 and U2 depends
on W and b, so W and b can be iteratively updated by using U1 and U2 from
the previous step.

Second, we perform the optimization of M. Given W and b, let T = XW+
1bT − Y, then we need to solve the following problem

min
M

‖T − E � M‖2,1 (18)

this problem can be decomposed into subproblems by row

min
mi

‖ti − ei � mi‖2, i = 1, 2 · · · , n (19)

where ti, ei, and mi, are i-th row of the matrix T, E, and M, respectively.
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Let J(mi) be objective function of problem (19), taking the derivative of
J(mi) with respect to Mij , we have

∂J(mi)
∂Mij

=
EijTij − Mij

‖ti − ei � mi‖2 (20)

and set it equal to zero, we obtain

Mij = max{0, EijTij} (21)

where Mij , Eij , and Tij are i-th row and j-th column of the matrix M, E, and
T, respectively. So the solution of problem (18) can be write as

M = max{0,E � T} (22)

In short, we present an alternating iterative method to solve problem (9),
and it mainly includes two steps. First, optimize vector b and matrix W with
fixed matrix M according to Eq. (16) and Eq. (17); Second, optimize matrix M
with fixed vector b and matrix W according to Eq. (22). The proposed iterative
algorithm is summarized as Algorithm 1.

Algorithm 1. RSS for Sensor Selection
Input: feature matrix X ∈ R

n×d with divided into m groups by column, label matrix
Y ∈ R

n×k, parameters λ.
Output: indices of the first s sensors
1: initialize M, W and b for solving Eq. (9)
2: while not converged do
3: Ỹ = Y+E � M
4: while not converged do
5: calculate U1 and U2 according to Eq. (14) and (15)
6: calculate bT = c1TU1(Y − XW)
7: calculate W = (XTLX+ λU2)

−1XTLY
8: end while
9: T = XW+ 1bT − Y

10: M = max{0,E � T}
11: end while
12: calculate ‖Wi‖F as an importance score of the i-th sensor
13: sort the scores in descending order and output the first s indices

2.4 Complexity Analysis

The computational cost of Algorithm 1 is mainly concentrated in three parts
due to matrix inverse and matrix product calculation. In step 6, the complexity
of calculating b is O(n2k + ndk), where n and k are the number of samples and
classes, d is the dimension of features. In step 7, the complexity of calculating
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W is O(n2d + nd2 + ndk + d3 + d2k). The sum of the complexity of computing
W and b is O(n2d + nd2 + ndk + d3 + d2k + n2k). In step 9, the complexity
of calculating XW is O(ndk). Since the number of classes is much smaller than
the number of samples and the feature dimension, neglecting the lower order
quantities, the total computational complexity of algorithm 1 is O(τ(n2d + d3),
where τ is the number of iterations.

3 Experiment

In this section, we evaluate the proposed method on gas sensor array data sets
while comparing other classical methods.

3.1 Data Sets

We provide a brief description of all the data sets used in the experiments as
follows. Note that three data sets are from the UCI Machine Learning Repository
and the corresponding papers are cited.

Gas sensor array under flow modulation data set (GSAFM) [15]: this data
set was collected from an array of 16 metal-oxide gas sensors under gas flow
modulation conditions. It contains four categories and a total of 58 samples. Each
sample included 16 time series (one time series per sensor),and then 27 features
contain one maximum features, 13 high-frequency features and 13 low-frequency
features extracted from each time series as corresponding sensor features, so each
sample has 432 features.

Gas sensor array drift data set (GSAD) [6,10]: this data set was collected
from an array of 16 chemical sensors exposed six gases. Its first batch contains
six classes and a total of 445 samples. Each sample contains 16 time series, four
steady-state features and four dynamic features are extracted from each time
series, thus each sample is characterized by 128 features.

Gas sensors for home activity monitoring data set (GSHAM) [1]: this data
set has recorded time series signals of eight gas sensors in response to wine,
banana and background activity. It contains three classes and a total of 100
samples. After the time series signals are filtered by FIR low-pass filter, each
sensor signal is represented by three features, minimum, average, and minimum
slope, i.e., each sample contains 24 features.

3.2 Experiments Settings

We will compare our method, RSAO, with the classical T-test [7], LDA [9], MI
[14] and ERFS [4]. All data are normalized by Z-score method. Classification
accuracy is used to evaluate the performance of the selected sensors. A linear
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SVM classifier is trained on the training set, and then its classification accuracy
on the test set is calculated by the function fitcsvm in Matlab. For all data sets,
ten times five-fold cross-validation is performed, i.e., 50 classification accuracies
are obtained, and finally we present the average accuracy and standard deviation
of the different methods to compare.

In ERFS and RSAO, the regularization parameter λ needs to be tuned.
In addition, the regularization parameter C in SVM needs to be tuned for
all methods. In each experiment, the optimal parameters are selected by the
grid search method with three-fold cross validation as the evaluation crite-
rion based on the training set. The candidate set for log value of parameter
λ is {−2,−1, 0, 1, 2, 3, 4} and the candidate set for log value of parameter C is
{−3,−2,−1, 0, 1, 2, 3}.

3.3 Comparison of Classification Accuracy

Figure 1 presents the relationship between the classification accuracy and the
number of sensors selected by the five methods. It can be seen that the proposed
method surpasses the other methods in most points. Table 1 presents the clas-
sification accuracies of the raw sensor array features and the optimized sensor
array features, as well as the corresponding number of selected sensors. It can be
seen that the classification accuracy has been significantly improved after sen-
sor array optimization, and the proposed method achieves better accuracy than
other methods while fewer sensors are selected. In addition, Fig. 2 presents the
variation of the values of the objective function (11) and the objective function
(9) with the number of iterations in the proposed optimization algorithm. It can
be seen that the objective function values are monotonically decreasing and are
convergent after fewer iteration steps.

Table 1. Optimal classification accuracy and corresponding number of selected sensors
after executing sensor array optimization.

Method Gas sensor array data sets
GSAFM GSAD GSHAM
Number of
sensor

Accuracy Number of
sensor

Accuracy Number of
sensor

Accuracy

Raw 16 0.8986 ± 0.0845 16 0.9755 ± 0.0130 8 0.7464 ± 0.0972
Ttest 13 0.9050 ± 0.0934 6 0.9744 ± 0.0174 7 0.7499 ± 0.0848
MI 9 0.9145 ± 0.0846 5 0.9746 ± 0.0184 6 0.7546 ± 0.0933
LDA 8 0.9209 ± 0.0693 7 0.9733 ± 0.0150 5 0.7646 ± 0.0842
ERFS 8 0.9221 ± 0.0821 7 0.9760 ± 0.0137 7 0.7479 ± 0.07781
RSAO 5 0.9300 ± 0.0675 5 0.9764 ± 0.0156 3 0.7650 ± 0.1000
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Fig. 1. Relationship between classification accuracy and the number of selected sensors
on the three gas sensor array data sets.
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Fig. 2. Relationship between the objective function value and the number of algorithm
iterations.

4 Conclusion and Future Work

In this paper, we propose a novel sensor array optimization method for multi-
feature fusion data classification. The intrinsic group structure of the sensor
features is considered by combining a least squares regression framework and an
�F,1 norm regularization design. Experimental results on the gas sensor array
data sets demonstrate that the proposed method can effectively improve the
classification accuracy while reducing the number of sensors compared to other
classical methods.

However, the work in this paper has a limitation that it is only evaluated
on gas sensor array data sets. In the future, the generalization of the proposed
method will be validated for more feature fusion tasks, such as EEG signals,
machine fault detection, radar array signals, etc.
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