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Abstract. In artificial neural networks, understanding the contribu-
tions of input features on the prediction fosters model explainability and
delivers relevant information about the dataset. While typical setups
for feature importance ranking assess input features individually, in this
study, we go one step further and rank the importance of groups of fea-
tures, denoted as feature-blocks. A feature-block can contain features of
a specific type or features derived from a particular source, which are
presented to the neural network in separate input branches (multiblock
ANNs). This work presents three methods pursuing distinct strategies
to rank feature-blocks in multiblock ANNs by their importance: (1) a
composite strategy building on individual feature importance rankings,
(2) a knock-in, and (3) a knock-out strategy. While the composite strat-
egy builds on state-of-the-art feature importance rankings, knock-in and
knock-out strategies evaluate the block as a whole via a mutual informa-
tion criterion. Our experiments consist of a simulation study validating
all three approaches, followed by a case study on two distinct real-world
datasets to compare the strategies. We conclude that each strategy has
its merits for specific application scenarios.

Keywords: Feature-block importance · Importance ranking ·
Multiblock neural network · Explainability · Mutual information

1 Introduction

In machine learning, datasets with an intrinsic block-wise input structure are
common; blocks may represent distinct data sources or features of different types
and are frequently present in datasets from industry [7], biology [3], or healthcare
[5]. For example, in healthcare, heterogeneous data blocks like patient histology,
genetics, clinical data, and image data are combined in outcome prediction mod-
els. However, good prediction models do not necessarily depend equally on each
block. Instead, some blocks may be redundant or non-informative. Identifying
the key data sources in multi-source treatment outcome models promises to
deliver new insights into the behavior of black-box models like ANNs. In partic-
ular, potential benefits include improving model explainability, reducing costly
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data acquisitions that do not contribute to the model prediction, and allowing
domain experts to explore latent relations in the data. Thus, there is a need to
measure the importances of feature-blocks, denoted as feature-block importance
ranking (BIR).

Fig. 1. M-ANN architecture.

In order to exploit the internal
structure of the block-wise data in
neural networks, a multiblock ANN
(M-ANN) architecture is used. As
depicted in Fig. 1, the M-ANN con-
sists of a separate input branch for
each block, a concatenation layer to
merge information from all branches,
and a blender network to map the
information to the model output. The
architecture allows for any type of
network layer, depth, activation, or
other network parameters, including
the special case where the concatena-
tion layer equals the input layer (block
branches of depth 0).

Ranking individual features by
their importances (feature importance ranking, FIR) has been studied for differ-
ent types of ANNs [8,14,15]. An extensive evaluation [9] showed that versions of
the variational gradient method (VarGrad) [1,2] outperformed competitors such
as guided backprop and integrated gradients. For BIR, however, a combination
of features in one block may accumulate a larger amount of information than
each feature separately due to informative non-linear relations between features.
Hence, using FIR might oversimplify the problem of measuring block importance
since interactions between features of the same block are disregarded. Neverthe-
less, the strategy of reducing BIR to a simple summary metric (sum, mean, max)
over FIR scores is considered in our evaluation.

A related problem to FIR is feature selection, where the input dimensionality
is reduced to the most influential features as part of the preprocessing. Feature
selection is widely studied in ANNs. Furthermore, specialized feature selectors
can account for block structures like UBayFS [11] or groupLasso [16]. Concep-
tually, these feature selectors aim to improve model performance and classify
an entire block as important/unimportant in a binary way before model train-
ing. In contrast, our BIR problem is considered a post-processing procedure,
focusing on analyzing the model after training without influence on the model
performance.1

This study presents and discusses three distinct approaches to quantify the
importance of feature-blocks in M-ANNs. While exploiting the flexibility of
ANNs and their capacities to learn complex underlying patterns in the data, the

1 BIR may be used for block feature selection if deployed as filter method—however,
this aspect is beyond the scope of the present work.
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discussed methods aim to deliver insights into the trained network’s dependence
structure on the distinct input blocks and thereby foster model explainability.
We propose three paradigms for BIR: a block is considered as important if

1. it consists of features with high FIR scores (composition strategy), or
2. it explains a large part of the network output (knock-in strategy), or
3. its removal significantly changes the network output (knock-out strategy).

We evaluate and discuss the proposed paradigms in a simulation study and
present two case studies on real-world datasets, where the behaviors of the pro-
posed ranking strategies become apparent.

In the following, bold letters denote vectors and matrices; non-bold let-
ters denote scalars, functions or sets. Square brackets denote index sets [n] =
{1, . . . , n}.

2 Block Importance Ranking Methods

We assume data input x from some feature space D ⊂ R
N , N ∈ N, following

a probability distribution X ∼ PX , and a univariate target variable y ∈ T ⊂
R following a probability distribution Y ∼ PY . Given training data (x, y) ∈
Dtrain × Ttrain ⊂ D × T , model parameters w ∈ W ⊂ R

M , M ∈ N, are trained
with respect to some loss term e : D × T → R

+,

w� = min
w∈W

e (fw (x), y) ,

where the ANN is a function fw : D → T given weights w.
In an M-ANN architecture, see Fig. 1, the block structure of the model input

is represented by a direct sum of subspaces D =
B⊕

b=1

Db, each corresponding to

one block b ∈ [B] with dimension Nb = dim(Db), N =
B∑

b=1

Nb. Each block enters

a distinct branch of the network that processes the block input. Afterwards,
the outputs of all branches are merged in a concatenation layer, which consists
of nb nodes associated with each block b, respectively. A so-called blender net-
work fblender

w connects the concatenation layer to the network output. Network
training is performed using backpropagation, where all block branches and the
blender network are trained simultaneously in an end-to-end manner.

2.1 Composite Strategy

Our first paradigm composes block importance measures from FIR in a direct
way. As a prototype of state-of-the-art FIR methods, we use VarGrad [2]. Var-
Grad builds on the idea that variations of an important feature provoke mea-
surable variations in the output. Under the assumption that features are on
a common scale, we estimate the gradient of the function fw with respect to
each feature by adding small random perturbations in the input layer. A large
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variance in the gradient indicates that the network output depends strongly on
a feature, i.e., the feature is important. We denote the importance of feature
n ∈ [N ] as quantified by VarGrad, by αn ∈ R

+.
To translate the feature-wise importance measure to feature-blocks in M-

ANNs, we deploy a summary metric ϕ over all single-feature importances in a
block b ∈ [B]. Thus, block importances γ

(b)
ϕ are defined as

γ(b)
ϕ = ϕ(α(b)

1 , . . . , α
(b)
Nb

), (1)

where α
(b)
n denotes the nth feature associated with the bth block. Intuitive choices

for ϕ are either the sum, mean, or maximum operator, denoted as ϕsum, ϕmean,
or ϕmax, respectively. Rankings based on mean and sum are equal, if all blocks
contain the same number of features. Operators ϕsum and ϕmean accumulate the
individual feature importances: a block with multiple features of high average
importances is preferred over blocks with few top features and numerous unim-
portant features. In contrast, ϕmax compares the top-performing features out
of each block, while neglecting all other’s contributions. Statistical properties
of block importance quantifiers implementing the composite strategy are trans-
mitted from (i) the feature importance ranking method and (ii) the summary
metric. Since this approach cannot capture between-feature relations, potentially
impacting the importance of a block, we suggest two other paradigms.

2.2 Knock-In Strategy

The knock-in strategy is inspired by work on the information bottleneck [4],
demonstrating that node activations can be exploited for model interpretation in
ANNs. In the concatenation layer of the M-ANN (Fig. 1), where information from
the blocks enters the blender network, activations are of particular importance
since they represent an encoding of the block information. When passing model
input x through the network, we denote the activation of the nth node associated
with block b ∈ [B] in the concatenation layer by cb,n(x), n ∈ [nb]. The average
activation of the nth node in block b ∈ [B] across all training data x ∈ Dtrain is
denoted by c̄b,n.

For BIR, we compute a pseudo-output by passing data of only one block b
through the network. For this purpose, we introduce a pseudo-input v(b)(x) as

v
(b)
b′,n(x) =

{
cb′,n(x) if b′ = b
c̄b′,n otherwise, (2)

where b′ ∈ [B], and n ∈ [nb]. By propagating pseudo-input v(b)(x) through
the blender network, we obtain the pseudo-output fblender

w (v(b)(x)). The main
assumption behind the knock-in strategy is that high agreement between output
fw (x) and pseudo-output fblender

w (v(b)(x)) indicates a high importance of block
b, since information from b is sufficient to recover most of the model output. In
contrast, a large discrepancy between the two quantities indicates low explana-
tory power of the block b, and thus, a lower block importance. The concept to
generate knock-in pseudo-outputs is illustrated in Fig. 2.
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Fig. 2. Knock-in strat-
egy: Pseudo-outputs for
feature-block b = 1 are
generated by activating
block b, while imputing
averaged activations for
all other blocks.

We implement the knock-in concept via the mutual
information (MI) [6], an information-theoretic mea-
sure to quantify the level of joint information between
two discrete random variables Z and Z ′, defined as

MI(Z,Z ′) =
∑

z

∑

z′
pZ,Z′(z, z′) log2

(
pZ,Z′(z, z′)

pZ(z)pZ′(z′)

)

.

If Z and Z ′ are independent, MI(Z,Z ′) is 0. Other-
wise, MI(Z,Z ′) is positive, where a high value indi-
cates a large overlap in information. To quantify the
joint and marginal distributions of continuous vari-
ables Z and Z ′, two-dimensional and one-dimensional
histograms can be used as non-parametric estimators
for pZ,Z′ , pZ , and pZ′ , respectively. We denote the
number of equidistant histogram bins along each axis
by � ∈ N. It follows from the properties of entropy [6]
that an upper bound to MI(Z,Z ′) is given by log2(�).

As shown in Fig. 2, the random variable of (full)
model output, Y F = fw (X), and the random vari-
able of the pseudo-output with respect to block b,
Y (b) = fblender

w (v(b)(X)), where X follows the input
distribution PX , are used to measure knock-in (KI)
block importance as

γ
(b)
KI =

MI(Y F, Y (b))
log2(�)

. (3)

2.3 Knock-Out Strategy

The knock-out paradigm is an ablation procedure where one block at a time is
removed from the model in order to measure the impact of the remaining blocks.
We pursue a similar approach as in the knock-in paradigm and specify knock-out
pseudo-inputs v(−b)(x) as

v
(−b)
b′,n (x) =

{
c̄b′,n if b′ = b
cb′,n(x) otherwise, (4)

for an arbitrary block b ∈ [B]. Thus, the definition in Eq. 4 represents an opposite
behavior of Eq. 2 in the knock-in case. In analogy to the knock-in notation, we
denote the random variable of pseudo-outputs with respect to v(−b) as Y (−b) =
fblender

w (v(−b)(X)). The knock-out concept is illustrated in Fig. 3. In contrast
to knock-in, we assume that leaving out block b having a relevant impact on
the final output delivers a more dissimilar pseudo-output to the full output
since relevant information is lost. Removing an unimportant block preserves the
relevant information and delivers a pseudo-output similar to the full output.
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Fig. 3. Knock-out strat-
egy: Pseudo-outputs are
generated by activating
all but one blocks.

Finally, we define the importance of block b ∈ [B]
with respect to the knock-out strategy (KO) as

γ
(b)
KO =

log2(�) − MI(Y F, Y (−b))
log2(�)

. (5)

For both, KI and KO, importance scores γ
(b)
KI and γ

(b)
KO

are bounded between 0 (unimportant block) and 1
(important block).

3 Experiments

As a proof of concept, we conduct two experiments
to assess BIR in M-ANNs. The first experiment
involves six simulated, non-linear regression problems,
where our simulation setup delivers information on
the ground truth block importances. This experiment
verifies that our suggested measures can identify the
ground truth block rankings, defined by their corre-
sponding paradigms. Real-world datasets are evalu-
ated in two case studies in experiment 2, where no
exact ground truth block ranking is available. Instead,
we compare BIR strategies to each other.

3.1 Simulation Experiment

We simulate a synthetic datasets along with six distinct target functions, denoted
as setups S1a–S1c and S2a–S2c. The dataset consists of N = 256 features,
divided randomly into B = 8 blocks (B1–B8) à Nb = 32 features. The sam-
ple size is set to |Dtrain| = 10 000 and |Dtest| = 10 000. All features are simulated
from a multivariate normal distribution with mean vector μ = 0 and a random-
ized covariance matrix Σ; hence a non-trivial correlation structure is imposed.2

Setups S1a–S1c and S2a–S2c differ in the parameters used to compute the
non-linear target variable y, which is simulated via a noisy linear combination
of the squared features with coefficient matrix β(b) ∈ R

Nb×Nb , given as

y =
8∑

b=1

xT β(b)x

︸ ︷︷ ︸
g(x)

+εnoise, where

εnoise ∼
i.i.d.

N (
0, σ2

noise

)
, and

β(b) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βimp 0 ...
0 0 ...

0
βint βimp 0 0 0

· · · . . .
βint βint βimp 0 0
0 0 0 0 0

· · · . . .
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(6)
2 Code and details on simulation and network architecture are available at https://

github.com/annajenul/Block Importance Quantification.

https://github.com/annajenul/Block_Importance_Quantification
https://github.com/annajenul/Block_Importance_Quantification
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Table 1. Specifications for matrix β(b): block importance is steered via count Nimp,
coefficient βimp, and interaction βint of the important features.

Setup Block

B1 B2 . . . B7 B8

Nimp βimp βint Nimp βimp βint . . . Nimp βimp βint Nimp βimp βint

S1a 2 7 0 2 6 0 . . . 2 1 0 0 0 0

S1b 7 2 0 6 2 0 . . . 1 2 0 0 0 0

S1c 1 7 0 2 6 0 . . . 7 1 0 0 0 0

S2a 2 7 1 2 6 1 . . . 2 1 1 0 0 1

S2b 7 2 1 6 2 1 . . . 1 2 1 0 0 1

S2c 1 7 1 2 6 1 . . . 7 1 1 0 0 1

The matrix β(b) ∈ R
Nb×Nb contains an Nimp × Nimp quadratic sub-matrix

consisting of coefficients βimp of important features, i.e. features with relevant
contribution to the target, and interactions βint. The noise parameter σnoise is
set to 10% of the standard deviation of the linear combination g(x) across the
generated samples x. As shown in Table 1, block importances are varied between
the setups and as follows

– S1a: varying coefficients of important features, but constant counts;
– S1b: varying counts of important features, but constant coefficients;
– S1c: varying counts and coefficients of important features;
– S2a–S2c: same as S1a–S1c, but with interaction terms between features.

Due to the randomized correlation matrix of the feature generation, unimportant
features may be correlated with important features, as well as with the target y.

For each setup, we trained the described M-ANN model in 30 independent
runs with distinct weight initializations after data standardization. Since BIR
methods are deployed post-hoc and assume a model with appropriate perfor-
mance, runs with poor performances (R2 < 0.8) were excluded from the analysis
after outlier removal. Hence, the number of model runs in the analysis was 20
(S1a, S1b, S2a, S2b), 18 (S1c), and 19 (S2c), respectively. The remaining models
achieved an average performance of ≥0.9 (R2 score) and ≤0.2 (RMSEIQR: root
mean squared error scaled by inter-quartile range) on the test set.

For evaluation, importance scores across all model runs were tested for signif-
icant differences using a pairwise Wilcoxon-test with Bonferroni correction. If the
p-value in a comparison between two blocks was above a significance level of 0.01,
both were counted as tie. Figure 4 illustrates the distributions of BIR scores after
min-max-normalization by setup and method, along with rankings (colors) based
on significant group differences. All methods discovered the intrinsic ranking in
dataset S1a. In dataset S1b, knock-in, knock-out, and VarGrad-mean identified
the ranking by underlying important feature counts Nimp, while VarGrad-max
failed to deliver a significant distinction between blocks with higher counts of
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Fig. 4. Distributions of the normalized BIR scores across model runs. Rankings are
indicated by colors and refer to significant group differences based on a pairwise
Wilcoxon-test (significance level 0.01).
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Table 2. Averaged Spearman’s rank correlation coefficients comparing each ranking
to the ground truth BIR for each paradigm across model runs. Standard deviations
were ≤0.03 for S1a, S1b, S2a and S2b, and ≤0.06 for S1c and S2c.

Paradigm Dataset

S1a S1b S1c S2a S2b S2c

Composite (VarGrad-max) 0.97 0.58 0.93 0.98 0.58 0.91

Composite (VarGrad-mean) 0.98 0.95 0.96 0.97 0.95 −0.40

Knock-in 0.99 0.98 0.85 0.97 0.99 0.89

Knock-out 0.99 0.98 0.81 0.99 0.99 0.89

important features. For dataset S1c, VarGrad-max mostly ranked by underlying
βimp and ignored Nimp, while knock-in, knock-out and VarGrad-mean delivered
trade-offs between counts Nimp and coefficients βimp of important features. In
setups S2a, S2b, and S2c with between-feature interactions, the same rankings as
in S1a, S1b, and S1c could be obtained by all methods with negligible deviations.
Hence, we conclude that all metrics remain stable in more complex scenarios.

We further validated the paradigms by comparing the results to their cor-
responding ground truth block importances, determined by the real coefficients
in the simulation setup. For the composite max and mean paradigms, the cor-
responding maxima and means over β(b), were used as references. Ground truth
importances for knock-in (KI), and knock-out (KO) were based on the explained
variances of the single block b in the underlying linear combination, given as

KIb = E

(

y −
(
x(b)

)T

β(b)x(b)

)

, and KOb = E

⎛

⎜
⎜
⎝y −

8∑

b′=1
b′ �=b

(
x(b′)

)T

β(b′)x(b′)

⎞

⎟
⎟
⎠ ,

where x(b) denotes projection of input x on the subspace of block b, Db. The
comparison between the rankings based on (average) predicted importance scores
and ground truth rankings was made using Spearman’s correlation coefficient,
see Table 2. With two exceptions, all correlation values were at a high level,
indicating that our methods accurately predicted the ground truth. Spearman’s
correlation coefficient is not representative in S1b, and S2b with respect to the
maximum metric since the ground truth ranking is equal for blocks B1–B7. In
S2c VarGrad-mean is distracted by decreasing βimp and an increasing number
of interaction terms, although underlying block importances are in increasing
order with respect to the mean metric.

3.2 Real-World Experiment

Since verification on simulated data showed that the presented approaches match
the ground truth according to their paradigms, we deployed the methods on two
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real-world datasets, where underlying block importance is unknown. Prior to
analysis, both datasets were standardized on the trained data. Again, we trained
30 independent model runs.

(a) Breast Cancer Wisconsin dataset.

(b) Servo dataset.

Fig. 5. Distributions of normalized BIR scores in experiment 2 across model runs.

The Breast Cancer Wisconsin dataset (BCW) [13] describes a binary classi-
fication problem (malignant or benign tumor) and consists of 569 samples (398
train, 171 test) and three blocks with ten features each, representing groups of
distinct feature characteristics (mean values, standard deviations, and extreme
values of measured parameters). The average performance was 0.95 (accuracy)
and 0.96 (F1 score) without outliers. The average scores and rankings delivered
by BIR methods are shown in Fig. 5a. All four paradigms discovered that block
3 is dominant, which agrees with previous research on the dataset [10]. However,
knock-in was the only method that distinguished between the importances of B1
and B2. According to [10], block B1 contains overlapping information with B3,
while B2 is rather non-informative. Thus, the experiment underlines a difference
between knock-in and knock-out rankings in the presence of redundancies.

Servo [12] is a dataset containing 167 samples (120 train, 47 test), a uni-
variate, numeric target variable, and four features, two of which are categorical
variables with four levels each, and two are numerical variables. Each feature
was assigned its own block. One-hot encoding was performed for the two blocks
containing categorical features, leading to two blocks (B1 and B2) of four binary
features, each. Blocks corresponding to numerical features (B3 and B4) contain
one feature each. In the 30 M-ANN model runs, an average performance of 0.21
(RMSEIQR) and 0.87 (R2) was obtained without outliers. Figure 5b shows that
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for all four paradigms, block B3 was most important. While VarGrad methods
delivered a binary ranking, knock-in and knock-out suggested a ranking with
3 and 4 distinct importance levels, respectively—thus, the level of detail was
higher in the MI-based rankings compared to VarGrad methods.

4 Discussion

Our experiments demonstrated several differences between the proposed strate-
gies. While the composite strategy evaluates features individually and depends
on two user-selected parameters (the feature-wise ranking scheme and the sum-
mary metric), the knock-in and knock-out strategies consider each block a closed
unit. They require no selection of a summary statistic. MI-based rankings deliver
a score in [0, 1], while VarGrad has no upper bound. However, the discretization
associated with the mutual information calculation may influence the impor-
tance scores and, thus, the rankings by knock-in and knock-out. All strategies are
applicable for multivariate target variables, as well. However, an MI-based com-
parison between outputs and pseudo-outputs is prone to suffer from the curse of
dimensionality since higher-dimensional probability distributions are compared
to each other. On the contrary, the vanishing gradient problem can influence
VarGrad in deep ANN architectures. All approaches delivered accurate experi-
mental results, but only knock-in and knock-out provided a consistent ranking of
blocks with minor importance in dominant blocks, such as for the servo dataset.

Even though knock-in and knock-out rely on the same concept of assessing
pseudo-outputs related to each block, their properties and interpretations differ.
The knock-in strategy determines whether a block can deliver a reasonable tar-
get description independently from the remaining blocks. This interpretation of
block importance evaluates the performance achieved if we reduce the model to
solely one block at a time. In contrast, knock-out quantifies whether the contri-
bution of a block can be compensated by any other block. If two blocks contain
redundant information about the target, knock-in delivers high values for both
blocks since each block individually has high explanatory power. In contrast,
knock-out penalizes redundant blocks since each of them can be removed with-
out loss of information. This property became evident in the BCW experiment,
where B3 was dominant but shared overlapping information with B1: knock-in
was the only approach that discovered the higher information content in B1
compared to the uninformative B2.

5 Conclusion

We have demonstrated three strategies to rank the importance of feature-blocks
as post-processing in ANNs with block-wise input structure. The composite
strategy, which is a direct generalization of feature-wise importance rankings,
provided promising results in most cases, but selecting the correct summary
statistic was crucial. Knock-in and knock-out strategies, implemented using
an information-theoretic measure on the model outputs, delivered a trade-off
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between the extremes of maximum and mean feature importance in the compos-
ite case. All methods uncovered the true block importance with high accuracy
and delivered new insights into the ANN’s behavior. Still, computing multiple
proposed metrics is advantageous for making informative block ranking deci-
sions.
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