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Abstract. Moiré often appears when photographing textured objects,
which can seriously degrade the quality of the captured photos. Due to the
wide distribution of moiré and the dynamic nature of the moiré textures,
it is difficult to effectively remove the moiré patterns. In this paper, we
propose a multi-spectral dynamic feature encoding (MSDFE) network for
image demoiréing. To solve the issue of moiré with distributed frequency
spectrum, we design a multi-spectral dynamic feature encoding module to
dynamically encode moiré textures. To remedy the issue of moiré textures
with dynamic nature, we utilize a multi-scale network structure to pro-
cess moiré images at different spatial resolutions. Extensive experimental
results indicate that our proposed MSDFE outperforms the state-of-the-
art in terms of fidelity and perceptual on benchmarks.

Keywords: Image demoiréing · Moiré pattern · Multi-spectral
dynamic feature encoding

1 Introduction

Moiré usually appears in the form of colored stripes, ripples, or curves and is
sensitive to shooting distance and camera orientation, which seriously degrades
the visual quality of captured images. A common example of causing moiré is
to shoot digital screens with a smartphone. More specially, digital screens are
composed of liquid crystal display (LCD), which has a similar texture structure
to the color filter array (CFA) of the digital camera’s sensor. As a result, the
imperfect alignment between them causes moiré.

Unlike other image restoration problems, such as denoising [22], super-
resolution [5,15], and deblurring [12,14], a moiré pattern on images is dynamic
and has a broad frequency distribution, which covers both the low-frequency part
and the high-frequency parts. As a result, the broad frequency spectrum and the
dynamic texture of moiré are the two main challenges in image demoiréing [3].
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Recently, many methods based on convolutional neural network (CNN)
[2,3,6,7,19] have been proposed to remove moiré patterns of different frequency
bands. A multi-scale network architecture was typically used in these demoiréing
methods to obtain dynamic representations of moiré patterns, which facilitates
the modeling of moiré patterns with different spatial frequencies and different
resolutions. We also utilize a multi-scale design with three branches in our pro-
posed model, which learns the parameters of each branch and aggregates the
results at different branches to produce the final output. Furthermore, a pro-
gressive upsampling strategy was employed in our model to smoothly increase
the resolution.

However, existing methods cannot handle the dynamic nature of moiré tex-
tures, and none of them tried to model moiré patterns explicitly. In this paper,
we propose a multi-spectral dynamic feature encoding (MSDFE) network for
image demoiréing. In our model, we leverage a multi-spectral dynamic feature
encoding module to encode moiré patterns, which helps the model learn the
frequency prior to moiré patterns and restore moiré images clearly.

2 Proposed Method

2.1 Overall Network Architecture

As shown in Fig. 1, we construct a three-branch convolutional network to dispose
of demoiréing tasks. On Branch 1, we first utilize three learnable convolutional
layers to downsample and encode original moiré images, which can be described
as:

D1 = �(I) = W3(W2(δpW1(I))), (1)

where � denotes the downsampling block, D1 is the output of the first down-
sampling block, Wi means the parameters of the i-th convolution layers in the
downsampling block, δp is the activation function of parametric rectified linear
units (PReLU) [8], and I is the input image.

Branch 1 makes use of 2 residual blocks and increases channel attention. In
addition, the resolution of Branch 1 is half of the original input image. The whole
process of Branch 1 can be described as follows:

F1 = �(MD2(MD1(D1)) + D1), (2)

where F1 is the output of Branch 1, � denotes the upsampling block with
subpixel convolution [18], and MDi means the i-th dynamic feature encoding
residual block with multi-spectral channel attention, whose structure is shown
in Fig. 4. We will explain the operation of multi-spectral channel attention in
Sect. 2.3.

Both Branches 2 and 3 have a similar structure as Branch 1 except the
number of residual blocks. The calculation processes of Branches 2 and 3 can be
expressed as follows:

Fi = �(NL(MDk · · · (MD1(Di−1))) + Di−1), (3)
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Fig. 1. Overall architecture of our proposed MSDFE.

where Fi means the output of the i-th branch, k is the number of multi-spectral
dynamic feature encoding residual blocks, NL(·) denotes the region-level non-
local operation [4] at the end of the current branch, which could help the model
learn self-similarity; Di−1 is the downsampled feature maps from the i − 1-th
branch, whose resolution is higher.

2.2 DCT and Channel Attention

In this section, we describe DCT and channel attention.

DCT. Usually, DCT is used for data or image compression. DCT can con-
vert the signal in the spatial domain to the frequency domain due to its strong
energy concentration property. Specially, we utilize the two-dimensional DCT
(2D-DCT) [1]. For an image I ∈ R

H×W with a height of H and a width of W ,
2D-DCT can be described as:

Ψ(h,w) = 2DDCTh,w(I) =
H−1∑

u=0

W−1∑

v=0

Iu,vβu,v(h,w),

h ∈ {0, 1, · · · ,H − 1}, w ∈ {0, 1, · · · ,W − 1},

(4)

where Ψ(h,w) denotes the 2D-DCT frequency spectrum at (h,w), 2DDCTh,w is
the 2D-DCT function, Iu,v is the pixel of image I at (u, v), h ∈ {0, 1, · · · ,H−1},
w ∈ {0, 1, · · · ,W − 1}, and the basis function βu,v(h,w) has the form

βu,v(h, w) = cos

(
πh

H

(
u +

1

2

))
cos

(
πw

W

(
v +

1

2

))
(5)
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Fig. 2. Channel attention (CA).

Channel Attention. As shown in Fig. 2, the channel attention mechanism [16]
uses a scalar to represent and evaluate the importance of each channel.

Let X ∈ R
H×W×C be the 2D feature maps in the network, where C means

the number of channels, H and W denote the height and the width of feature
maps. Qin et al. [16] found that the scalar representation in channel attention
could be treated as a compression problem because it has to represent the whole
channel while only one scalar can be used. From this perspective, the channel
attention can be expressed as:

γ = sigmoid(fc(Γcompress(X))), (6)

where γ ∈ R
C denotes the channel attention vector, sigmoid means the Sigmoid

function, fc represents a mapping function, such as a fully connected layer or a
1D convolution, and Γcompress : RH×W×C → R

C is a compression method.
After obtaining the attention vector of all C channels, the attention value

will scale the corresponding input X. This process could be calculated as:

X
′
c = γcX

′
c, c ∈ {0, 1, · · · C − 1}, (7)

where X
′
c denotes the output of attention mechanism, γc represents the c-th

element of attention vector, and X ′
c means the c-th channel of the input X.

2.3 Multi-spectral Channel Attention (MSCA)

Fig. 3. Multi-spectral channel attention (MSCA [16]).

Given the input X ∈ R
H×W×C , it will be divided into n parts:

[X0,X1, · · · ,Xn−1] along the channel dimension, where Xj ∈ R
H×W×C

′
, C

′
=
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C
n . For each part, a corresponding 2D-DCT frequency component is assigned.
This can be formulated as:

Freqj = Γcompress(2DDCThj ,wj
(Xj)), (8)

where [hj , wj ] are the frequency component 2D indices corresponding to Xj ,
Freqj ∈ R

C′
is the C

′
dimensional vector after the compression. More especially,

the compression vector could be acquired by concatenating all the dimensional
vectors, which can be calculated as:

Freq = concat([Freq0, F req1, · · · , F reqn−1]), (9)

where Freq ∈ R
C denotes the multi-spectral vector. In fact, the MSCA can be

described as [16]:
MSCA = sigmoid(fc(Freq)), (10)

The channel information after compression is effectively enriched for repre-
sentation, and the overall illustration of the MSCA is shown in Fig. 3.

2.4 Multi-spectral Dynamic Feature Encoding (MSDFE)

We encode image feature maps at different spatial resolutions using three
branches with various scales. We also add MSCA [16] and adaptive instance
normalization (AdaIN) [10] in each branch. In addition, the residual block [9]
is used to model the difference between clean and moiré images at each feature
level and frequency band.

Afterwards, we calculate the mean value and the variance of the obtained
MSCA feature maps in the i-th encoding layer as:

μ̂i =
1

HW

H∑

u=1

W∑

v=1

Xi
uv, (11)

and

σ̂2
i =

1
HW

H∑

u=1

W∑

v=1

(Xi
uv − μi)2, (12)

where H and W denote the height and width of the MSCA feature map, μ̂i

and σ̂2
i are the mean value and the variance of the MSCA feature map from

the i-th encoding layer in the multi-spectral dynamic feature encoding branch,
respectively.

We utilize statistical values that we calculate from moiré patterns to dynami-
cally adjust the statistical characteristics (i.e. mean and variance) of each branch
via AdaIN as following:

Xi+1 =
Xi − μi√

σ2
i + ε

√
σ̂2
i + μ̂i, (13)

where Xi denotes the feature maps from the i-th residual block in each branch, μi

and σ2
i mean the statistical information from the multi-spectral dynamic feature

encoding branch.
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Fig. 4. Multi-spectral channel attention dynamic feature encoding residual block,
where MSCA denotes the multi-spectral channel attention.

2.5 Loss Function

In terms of the loss function, Lai et al. [13] found that using the general L2

loss in image restoration would make the image over smooth. To make demoiréd
images more visually pleasing, we refer to the Charbonnier loss proposed by Lai
et al., which can be calculated as the following:

Losschar =
1
B

B∑

i=1

√
(Ii − Îi)2 + ε2, (14)

where B denotes the batch size of the input, ε is a parameter in the Charbonnier
penalty and is empirically set to 0.001, and Ii and Îi are the ground truth and
generated demoiréd image, respectively.

Besides, we also utilize the L1 wavelet loss proposed by Cheng et al. [3] to
address moiré patterns with different spatial frequencies, which has the form:

Losswav =
1
B

B∑

i=1

√(
Γwav(Îi) − Γwav(Ii)

)2

+ ξ2, (15)

where ξ is a positive parameter, which is set to 10−6 in our experiments; Γwav

is the wavelet decomposition function with four decomposed bands.
In the end, we calculate the total loss as follows:

Losstotal = Losschar + αLosswav (16)

in which 0 < α ≤ 1 is a trade-off factor. In experiments, we set α = 0.6 referring
to Ref. [3].
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3 Experiments

3.1 Datasets and Training Details

We have conducted extensive experiments on two public datasets: the LCD-
Moiré dataset [20] and the Sun [19] moiré dataset. Moreover, MSDFE is built
by using PyTorch1.9 with CUDA11.0 and accelerated by applying two NVIDIA
TITAN RTX GPUs with data-parallel. Specially, the Adam optimizer is used
to minimize the loss function to train the model, and the learning rate with an
initial value of 10−4 is reduced by 10 times for every 30 epochs. The network is
fully trained for 60 epochs.

3.2 Comparison with State-of-the-Arts

To evaluate the gap between generated moiré-free images and ground truths, we
use the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as
the performance indicators.

We compare our proposed MSDFE with recent deep-learning-based
demoiréing methods, including Islab [21], DMCNN [19], MSFE [6], MopNet [7],
MDDM [2] and MDDM+ [3]. Besides, we take VDSR [11], DnCNN [22] and
UNet [17] into our benchmark test.

Table 1 lists the demoiréing results on the LCDMoiré dataset, where the best
and second-best values are in bold and underlined types, respectively. It can
be seen on the LCDMoiré dataset, our MSDFE can achieve the best PSNR
and SSIM among compared methods. The best PSNR is 44.10 dB obtained
by MSDFE, which is 0.66 dB higher than the second-best value. The SSIM of
MSDFE is slightly higher than that of MDDM+. Table 2 shows the demoiréing
results on the Sun moiré dataset. The results on the Sun moiré dataset indicate
that our MSDFE can achieve 30.14 dB in PSNR and 0.897 in SSIM that are
significantly better than and compared to the state-of-the-arts, respectively.

Table 1. Comparison of PSNR and SSIM among DnCNN [22], VDSR [11], UNet [17],
MSFE [6], DMCNN [19], MDDM [2], Islab [21], MDDM+ [3] and MSDFE on LCDMoiré
dataset.

DnCNN VDSR UNET MSFE DMCNN MDDM Islab MDDM+ MSDFE

PSNR (dB) 29.08 32.36 34.84 36.66 37.41 42.49 42.90 43.44 44.10

SSIM 0.906 0.964 0.971 0.981 0.982 0.994 0.995 0.996 0.997

3.3 Visual Results

The visual results of our proposed MSDFE are compared with the recently pro-
posed methods, including DnCNN [22], MSFE [6], DMCNN [19], and MDDM+
[3]. The visual results on some images from the LCDMoiré and Sun datasets are
shown in Fig. 5 and Fig. 6, respectively.
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Table 2. Comparison of PSNR and SSIM among DnCNN [22], VDSR [11], UNet [17],
MSFE [6], DMCNN [19], MopNet [7], MDDM [2], MDDM+ [3] and MSDFE on Sun
dataset.

DnCNN VDSR UNET MSFE DMCNN MopNet MDDM MDDM+ MSDFE

PSNR (dB) 24.14 24.68 26.49 25.31 26.77 27.75 28.11 30.03 30.14

SSIM 0.834 0.837 0.864 0.837 0.871 0.895 0.895 0.897 0.897

Each row in Fig. 5 shows the moire image, demoiréing results obtained by five
methods, and the ground truth from left to right, where the area in a red square
is taken as the zoom-in part such that we can compare the details of results.
It can be easily found that our proposed MSDFE can restore moiré details and
provide the clearest results, and the compared methods have a bad performance
for generating blocking artifacts and incorrect color tunes. Furthermore, these
methods are ineffective in removing low-frequency moiré patterns.

In Fig. 6, the three images from the Sun dataset are photos taken from real-
world objects. Thus, the demoiréing task on the Sun dataset is more difficult
than that on the LCDMoiré dataset consisting of computer-rendered images.

We can easily find that our MSDFE recovers correct color tunes, while other
methods fail to do although they remove most of the moiré patterns. The above
visual results on LCDMoiré and Sun datasets indicate that our proposed MSDFE
outperforms the state-of-the-art methods.

Fig. 5. Visual comparison on the LCDMoiré dataset.
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Fig. 6. Visual comparison on the Sun dataset.

3.4 Model Parameters

In this part, we compare our MSDFE with seven demoiréing methods on the
model performance and the model parameters. Parameters are an indicator to
measure the size of a model, an efficient network would have an impressive
performance with a relatively small number of parameters. Figure 7 shows the
performance vs. the number of parameters of compared methods on the LCD-
Moiré dataset. From Fig. 7, we can see that MSDFE (red dot) can achieve the
best results only with a relatively small number of parameters.

Fig. 7. PSNR vs. parameter number for
eight methods on LCDMoiré dataset
(Color figure online)

Fig. 8. Weight of branches.
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4 Ablation Study

4.1 Network Branches

First, we study the impact of network branches on the performance of our net-
work. In fact, different branches encode image representations at different fre-
quencies and address image features at different resolutions; thus, the branch
number in the network greatly influences its performance and size. Table 3 lists
the network performance and size on the LCDMoiré dataset, where the size of
network is measured by parameter number.

From Table 3, we can know that the network performance gradually improves
as the number of branches grows until it reaches 3. After that, the network per-
formance starts decreasing because too many branches cause the loss of detailed
information in images. As a result, the network with 3 branches is the optimal
choice.

In addition, the weight of each branch can be automatically learned by the
scaling module in our network, which can be seen as the indicator of the impor-
tance of branches for the final reconstruction of demoiréing image. The weight of
each branch is shown in Fig. 8. We can find that Branch 1 is the most important;
thus, a branch with higher resolution is of greater importance.

Table 3. Network performance and parameters of MSDFE with different branches.

Branch PSNR (dB) Parameter (M)

1 36.04 1.14

2 38.96 2.45

3 44.10 3.91

4 43.71 5.51

5 43.55 7.27

4.2 Multi-spectral Dynamic Feature Encoding

Next, we study the network performance and complexity with and without our
proposed multi-spectral dynamic feature encoding. This encoding way is lever-
aged to encode the dynamic properties of moiré. Experimental results are shown
in Table 4. It can be easily found that the PSNR score of the network output
is improved from 40.93 dB to 44.10 dB on the LCDMoiré dataset after adding
the encoding module. The network parameters also can be found in Table 4. The
results indicate that our proposed MSDFE is a lightweight module. MSDFE has
a great performance improvement but a small parameter number increase, say
0.55 M.
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Table 4. Network performance and parameters of baseline and MSDFE.

Structure PSNR (dB) Parameter (M)

Baseline 40.93 3.36

MSDFE 44.10 3.91

5 Conclusion

Demoiréing is more challenging than other image restoration tasks because
of its variability and dynamics. In this paper, we propose MSDFE for image
demoiréing. The multi-scale network structure of MSDFE can help our model
remove moiré in different frequency bands and retain more image details. Besides,
we leverage a multi-spectral dynamic feature encoding module to encode moiré
patterns dynamically, which makes the model adapt to the transient nature of
the moiré patterns. Experimental results indicate that the model achieves 3.17
dB higher in PSNR after adding the multi-spectral dynamic feature encoding
module. In addition, our proposed MSDFE significantly outperforms state-of-
the-art methods and can remove moiré patterns effectively.
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