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Abstract. Online knowledge distillation conducts knowledge transfer
among all student models to alleviate the reliance on pre-trained mod-
els. However, existing online methods rely heavily on the prediction dis-
tributions and neglect the further exploration of the representational
knowledge. In this paper, we propose a novel Multi-scale Feature Extrac-
tion and Fusion method (MFEF) for online knowledge distillation, which
comprises three key components: Multi-scale Feature Extraction, Dual-
attention and Feature Fusion, towards generating more informative fea-
ture maps for distillation. The multi-scale feature extraction exploiting
divide-and-concatenate in channel dimension is proposed to improve the
multi-scale representation ability of feature maps. To obtain more accu-
rate information, we design a dual-attention to strengthen the important
channel and spatial regions adaptively. Moreover, we aggregate and fuse
the former processed feature maps via feature fusion to assist the training
of student models. Extensive experiments on CIFAR-10, CIFAR-100, and
CINIC-10 show that MFEF transfers more beneficial representational
knowledge for distillation and outperforms alternative methods among
various network architectures.
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1 Introduction

Driven by the advances in algorithms, computing power, and big data, deep
learning has achieved remarkable breakthroughs in various vision tasks [11,
12,15]. Increasing the network depth or width is often the key point to fur-
ther improve the performance of deep neural networks. However, these models
with millions of parameters demand high computational costs and huge stor-
age requirements, making it challenging to deploy them in resource-limited or
low latency scenarios. For instance, mobile phones and Internet of Things (IoT)
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devices. To address this problem, extensive research has been carried out to
develop a lightweight model while simultaneously keeping negligible model accu-
racy degradation in performance. These efforts can typically be classified into
network pruning, parameter quantization, low-rank approximation, and knowl-
edge distillation.

Knowledge distillation (KD) has been demonstrated as an effective technique
for model compression. The vanilla KD [8] method adopts a two-stage train-
ing strategy, where knowledge is transferred from the pre-trained high-capacity
teacher model to a compact student model via aligning prediction distributions
or feature representations [16], also known as the offline distillation. Drawbacks
of these methods include the fact that the high-capacity teacher is not always
available, even if they are, higher computational cost and training time of the
complex teacher also cannot be avoided. In addition, KD suffers from model
capacity gap when the size difference is large between the student and teacher
model [13].

Online knowledge distillation (OKD) [6,9,23,24] has been developed to allevi-
ate the above issue. This paradigm is more attractive for the reason that instead
of using a pre-trained high-performance teacher, it breaks the presupposed spe-
cific strong-weak relationship and simplifies the training process to an end-to-end
one-stage fashion. All models are trained simultaneously by learning from each
other across the training process. In the other words, knowledge is distilled and
shared among all networks. Compared to the offline KD, the online KD achieves
superior performance while keeping a more straightforward structure. However,
popular methods concentrate on transferring logit information as soft targets in
common. Although the soft targets carry richer information than one-hot labels,
it is relatively unitary to make use of only the logit. Since feature maps can
provide rich information about the perception, channel and spatial correlations,
simply aligning or fusing cannot take full advantage of the meaningful feature
representation.

In this paper, to alleviate the aforementioned limitation, we propose a novel
Multi-scale Feature Extraction and Fusion method (MFEF) for online knowledge
distillation, including three key components, i.e., multi-scale feature extraction,
dual-attention, and feature fusion. In order to obtain more beneficial represen-
tational knowledge for distillation, we first get multi-scale features which can
focus on both local details and global regions by multiple divide and concate-
nate operations. Then, students are guided to learn more accurate features by
introducing dual-attention which boosts the representation power of important
channel and spatial regions while suppressing unnecessary regions. Finally, we
utilize feature fusion to integrate the acquired feature maps and feed them into
a fusion classifier to assist the learning of student models.

To summarize, the main contributions of this paper are:

– We propose a novel Multi-scale Feature Extraction and Fusion method
(MFEF) for online knowledge distillation, which integrates the feature repre-
sentation with soft targets for distillation.
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– We first introduce multi-scale feature extraction to improve the multi-scale
representation ability of the features and provide richer information apart
from simply alignment. Then the dual-attention is proposed to generate more
accurate features. Furthermore, we use feature fusion to fuse the enhanced
knowledge, which can improve the generalization ability for distillation.

– Extensive experiments on CIFAR-10/100 [10] and CINIC-10 [3] verify that
the proposed MFEF can effectively enhance the multi-scale representation
power of features and generate more informative knowledge for distillation.

2 Related Work

Many efforts have been conducted with regard to knowledge distillation and
vision tasks. In this section, we will give a comprehensive description of the
related literature.

2.1 Traditional Knowledge Distillation

The idea of transferring the knowledge from a cumbersome model to a smaller
model without a significant drop in accuracy is derived from [1]. Traditional
KD works in a two-stage fashion which needs a pre-trained teacher. [16] first
introduces intermediate features from hidden layers, the main idea is to match
the feature activations of the student and teacher model. [25] combines attention
with distillation to further exploit more accurate information. [19] explores the
relationships between layers by mimicking the teacher’s flow matrices using the
inner product. In [17], the adversarial training scheme is utilized to enable the
student and teacher networks to learn the true data distribution. [13] introduces
a teacher assistant to mitigate the capacity gap between the teacher model and
student model. In [7], it proposes to use the activation boundaries formed by
hidden neurons for distillation.

2.2 Online Knowledge Distillation

Online knowledge distillation has emerged to further improve the performance
of the student model and eliminate the dependency on high-capacity teacher
models which are time-consuming and costly. In this paradigm, student models
learn mutually by sharing the predictions throughout the training process. [23]
is a representative method in which multiple networks work in a collaborative
way. Each network imitates the peer network’s class probabilities using Kullback-
Leibler divergence. [6] further extends DML to construct an ensemble logit as
the teacher by averaging a group of students’ predictions to improve generaliza-
tion ability. A fusion module is introduced to train a fusion classifier to guide
the training of sub-networks in [9]. [26] adds a gate module to generate the
importance score for each branch and build a stronger teacher. [2] proposes two-
level distillation between multiple auxiliary peers and a group leader to enhance
diversity among student models. In terms of architecture designing, [18] forms
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Fig. 1. An overview of Multi-scale Feature Extraction and Fusion (MFEF) for Online
knowledge distillation. The output of high-level layer is sent to three key components
(i) Multi-scale Feature Extraction: Enhance the multi-scale representation ability of
feature maps. (ii) Dual-attention: Use channel and spatial attention to strengthen
informative regions. (iii) Feature Fusion: Integrate knowledge among stuent models
and futher improve the generalization ability.

the student model via replacing the standard convolution with cheap convolution
operations. Student and teacher models share the same networks in [22], where
knowledge is distilled within the network itself and knowledge from the deeper
portions of the network is distilled into shallow ones.

2.3 Multi-scale Feature

Multi-scale feature representations are of critical importance to many vision
tasks. Some concurrent works focus on promoting the capability of models by
utilizing multi-scale features. [5] constructs hierarchical residual-like connections
within a residual block to represent multi-scale features at a granular level. [4]
uses pyramidal convolution including four levels of different kernel sizes to gener-
ate multi-scale features. Similarly, [21] integrates information at different scales
via pyramidal convolution structure for the channel-wise feature maps. A flex-
ible and efficient hierarchical-split block is used in [20] to capture multi-scale
features. [14] adopts atrous spatial pyramid pooling to probes convolutional fea-
tures on multiple scales for semantic image segmentation.

3 Proposed Method

In this section, we describe the framework and loss function in detail. An
overview of MFEF is illustrated in Fig. 1. Different from the existing KD meth-
ods, MFEF digs deeper into the information provided by feature maps including
multi-scale representation ability and the channel and spatial attention.
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Fig. 2. The structure of key components: (a) Multi-scale feature extraction. (b) Dual-
attention. (c) Feature Fusion

3.1 Problem Definition

The key idea of knowledge distillation is that soft targets contain the dark knowl-
edge which can be used as a supervisor to transfer knowledge to the student
model. Given a labeled dataset D{xi, yi}Ni=1, with N samples, xi is the ith input
sample and yi ∈ {1, 2, ...,M} is the corresponding ground-truth label. M is the
total number of classes in the dataset. Consider n student models {Sj}nj=1, the
logit produced by the last fully connected layer of the student Sj is denoted as
zj = {z1j , z

2
j , ..., z

M
j }. Then the probability of the jth student for the sample xi

over the mth class pmj (xi) can be estimated by a softmax function,

pmj (xi) =
exp(zmj /T )

∑M
m=1 exp(z

m
j /T )

, (1)

where T is the temperature which produces a more softened probability distribu-
tion as it increases. Specifically, when T = 1, it is defined as the original softmax
output, we consider writing it as pmj (xi); otherwise it is rewritten as p̃mj (xi).
For multi-class classification, the objective is to minimize the cross-entropy loss
between the softmax outputs and the ground-truth labels,

LCE
j = −

N∑

i=1

M∑

m=1

li log(pmj (xi)), (2)

where li = 1 if yi = m, and 0 otherwise. Knowledge transfer is facilitated by
matching the softened probability of the student model p̃mj (xi) and the teacher
model p̃mt (xi). We introduce the distillation loss of j − th student model in the
form of Kullback-Leibler Divergence

LD
j =

N∑

i=1

M∑

j=1

p̃mt (xi) log
p̃mt (xi)
p̃mj (xi)

. (3)

3.2 MFEF Framework

From a global perspective, the main idea of MFEF is to enhance the multi-scale
representation power of feature maps and generate more informative knowledge
for distillation. The details of each key component are explained in the following.
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Multi-scale Feature Extraction. Aligning the soft targets of teacher and
student models enhances the model generalization, but it ignores the feature
maps which contain rich information. In addition to the soft targets, inspired
by [20], we introduce multi-scale feature extraction to generate multi-scale fea-
tures which are of significant importance for vision tasks. As shown in Fig. 2(a),
the extraction includes multiple divide and concatenate operations in the chan-
nel dimension to enhance the information flow between different groups. We use
the feature maps of the last layer as the input for the reason it has high-level
semantic information which is richer and specific. For the convenience of nota-
tion, we name the feature map of the jth student model as Fj and the extraction
as E. D and C represent the divide and concatenate operations, respectively.
First, Fj is divided into p groups {Fj1, Fj2, ..., Fjp}. The first group Fj1 is output
straightforward and the second part is sent to a convolution operation and then
is divided into two sub-groups D21 and D22. One of them is exported to the
output and the other is concatenated with the next part. The rest other than
the last group follows the concatenate-convolution-export-divide procedure. The
last part does not need the divide operation. We define the output as

E(Fj) = C(Fj1,D22,D32, ..., Conv(C(Fjp,Dp−1,1)). (4)

The multi-scale feature extraction can generate feature maps that contain
multiple scales of receptive fields. The more features are concatenated, the larger
the receptive field is. Larger receptive fields can capture global information while
the smaller ones can focus on details. Such a combination can generate more
meaningful feature maps to improve the performance of distillation.

Dual-Attention. After the extraction, we utilize dual-attention to dig deeper
into the feature maps (see Fig. 2(b)). Channel and spatial attention focus on
“what” and “where” are important, and we apply them in a sequential manner.
We denote the multi-scale feature map E(Fj) ∈ R

C×H×W as the input, where C,
H, W represent its channel numbers, height, and width, respectively. Average-
pooling and max-pooling are used in combination to obtain finer attention.

For channel attention, we denote ac,mc ∈ R
C×1×1 as the vectors after

average-pooling and max-pooling. The weight wc ∈ R
C×1×1 of channel is

wc = σ(W (ac))) + (W (mc))), (5)

where the symbol σ denotes the Sigmoid function, W is the weight of a multi-
layer perceptron (MLP). The channel attention output AT c

j is

AT c
j = wc ⊗ FM , (6)

where ⊗ refers to element-wise multiplication. Similarly, we denote the average-
pooling and max-pooling vector as,ms ∈ R

1×H×W , ws ∈ R
1×H×W is

ws = σ(conv(as;ms)), (7)
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where conv represents a convolution operation. The output AT s
j is

AT s
j = ws ⊗ AT c

j , (8)

Dual-attention can strengthen the informative channel and spatial regions
while suppressing the less important ones and thus generate more informative
outputs which can focus on useful regions within a context adaptively.

Feature Fusion. We propose feature fusion to aggregate and maximize the
usage of the student models’ information. The structure of it is illustrated in
Fig. 2(c). Specifically, we first concatenate the meaningful feature maps of stu-
dents that have been processed previously, i.e., {AT s

1 , AT s
2 , ..., AT s

j }. If the res-
olutions of the feature maps are different, we apply a convolutional regressor
to make them identical. Then we concatenate them and sent the results to the
transfer layers which consist of a sequence of depthwise and pointwise convo-
lution operations. Finally, we fuse the student models’ feature information and
feed it into a fusion classifier which is supervised by ground truth labels.

3.3 Loss Function

The cross-entropy loss of the jth student and the fused classifier is LCE
j and

LCE
f , respectively, as described in Eq. (2). We further define the aggregated

logit of students as zma = 1
n

∑n
j=1 zmj and probability as pma . The fusion classifier

is trained with KL divergence

LD
a = LKL

a (p̃ma , p̃mf ), (9)

This loss is used to transfer the knowledge of the student models to the fusion
classifier. Then the fusion classifier facilitate the knowledge which contains infor-
mative feature representations transferring back to the student models via min-
imizing the distillation loss

LD
f =

n∑

j=1

LKL
f (p̃mf , p̃mj ), (10)

Finally, we derive the total training objective as

Ltotal = LCE + T 2LD. (11)

where LCE is the sum of cross-entropy of students and fused classifier. LD refers
to the sum of LD

a and LD
f . Because the gradients produced by the soft targets

are scaled by 1/T 2, thus LD is multiplied with T 2 to keep the contributions of
LCE and LD roughly balanced.
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4 Experiment

In this section, we conduct comprehensive experiments to evaluate the perfor-
mance of MFEF on three datasets and various widely-used neural networks. We
choose various related methods under different settings for comparison and show
the results to demonstrate that MFEF generalizes well among different numbers
and types of models. Finally, evaluation of each component are carried out.

Table 1. Comparisons with closely related methods on CIFAR 10 and CIFAR-100 with
seven different networks. Top-1 error rates (%) are reported. Two same student models
are used for each method. FFL-S and MFEF-S refer to the results of the student model,
and FFL and MFEF refer the results of fused classifiers.

Dataset Network Baseline KD DML FFL-S FFL MFEF-S MFEF

CIFAR-10 ResNet-20 7.32 7.18 6.63 6.49 6.22 6.38 6.08
ResNet-32 6.77 6.69 6.52 6.06 5.78 5.59 5.41
ResNet-56 6.30 6.14 5.82 5.46 5.26 5.28 4.82
ResNet-110 5.64 5.47 5.21 5.18 4.83 4.81 4.52
WRN-16-2 6.78 6.40 5.49 6.09 5.97 5.33 4.99
WRN-40-2 5.34 5.24 4.72 4.75 4.60 4.51 4.02
DenseNet40-12 6.87 6.81 6.50 6.72 6.24 5.79 5.30

CIFAR-100 ResNet-20 31.08 29.94 29.61 28.56 26.87 28.46 26.30
ResNet-32 30.34 29.82 26.89 27.06 25.56 26.36 24.84
ResNet-56 29.31 28.61 25.51 24.85 23.53 24.22 23.15
ResNet-110 26.30 25.67 24.49 23.95 22.79 23.37 22.16
WRN-16-2 27.74 26.78 26.16 25.72 24.74 24.66 22.93
WRN-40-2 25.13 24.43 22.77 22.06 21.05 21.76 20.60
DenseNet40-12 28.97 28.74 26.94 27.21 24.76 26.81 24.27

4.1 Experiment Settings

Datasets and Architecture. We incorporate three image classification
datasets in the following evaluations. (1) CIFAR-10 which contains 60000 colored
natural images (50000 training samples and 10000 test samples) over 10 classes.
(2) CIFAR-100 consists of 60000 images (50000 training samples and 10000 test
samples) drawn from 100 classes. (3) CINIC-10 consists of images from both
CIFAR and ImageNet. It is more challenging than CIFAR-10. It contains 90000
train samples and 90000 test samples. For CIFAR-10/100, there are seven popu-
lar networks used, namely ResNet-20, ResNet-32, ResNet-56, ResNet-110, WRN-
16-2, WRN-40-2, and DenseNet-40-12. For CINIC-10, we use MobileNetV2 and
ResNet-18 following the settings in [3].

Settings. We apply horizontal flips and random crop from an image padded by
4 pixels for data augmentation in training. We use SGD as the optimizer with
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Nesterov momentum 0.9, weight decay of 1e–4 for student models and 1e–5 for
fusion and mini-batch size of 128. The models are trained for 300 epochs for
all datasets. We set the initial learning rate to 0.1 and is multiplied by 0.1 at
150, 225 epochs. We set the temperature T to 3 empirically and α = 80 for
ramp-up weighting. For the case of student models have same architecture, the
low-level layers are shared following [2]. When output channels of the feature
maps are different, the feature fusion is designed to match the smaller one. For
fair comparison, we set the number of student models to two. The top-1 error
rate (%) of the best student over 3 runs is reported.

4.2 Experiment Results

Results on CIFAR-10/100. As shown in Table 1, we evaluate the effectiveness
of MFEF on CIFAR-10 and CIFAR-100 based on several popular networks. Since
our goal is to distill more powerful feature representations for online distillation,
we compare MFEF with the offline KD, logit-only online method DML, and
fusion-only method FFL. For the offline KD, it employs a pre-trained ResNet-
110 as the teacher model. For DML, we report the top-1 error rate of the best
student. FFL-S and MFEF-S represent the results of the best student and FFL
and MFEF indicate the results of the fused classifier.

The results clearly show the performance advantages of our MFEF. Specifi-
cally, MFEF improves by approximately 1% and 2% of the backbone networks.
MFEF also achieves the best top-1 error rate compared with the closely related
online distillation methods. For instance, on CIFAR-10, MFEF-S achieves lower
error rates than FFL-S by approximately 0.5%, 0.8%, and 1% on ResNet-32,
WRN-16-2, and DensNet-40-12, respectively. MFEF improves FFL by about
1% on WRN-16-2 and DensNet-40-12; While on CIFAR-100, MFEF achieves
0.6%, 0.7%, and 1% increase on ResNet-56, ResNet -32, and WRN-16-2, respec-
tively. MFEF is higher by about 1.8% on WRN-16-2 compared with FFL. These
improvements attribute to the integration of the multi-scale feature extraction
and the attention mechanism and the feature fusion of student models.

Table 2. Top-1 error rate (%) comparison with FFL on CINIC-10.

Network Baseline FFL-S FFL MFEF-S MFEF

MobileNetV2 18.07 17.85 16.10 17.56 15.66
ResNet-18 13.94 13.33 12.67 13.22 12.39

Results on CINIC-10. In this section, we compare the top-1 error rate of
MFEF with FFL based on MobileNetV2 and ResNet-18. As shown in Table 2,
FFL and MFEF both reduces the error rate of the baseline and MFEF shows
higher improvement of performance in both student models and fused classi-
fier. In case of MobileNetV2, MFEF improves by around 0.5%, 0.3%, and 0.4%
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Fig. 3. Evaluating the impact of expansion of student models on CIFAR-100 using
ResNet-56.

compared to the baseline and FFL for student model and fused classifier. Based
on these experiments, we could confirm that thanks to the enhancement of the
multi-scale representation power, higher-quality knowledge is transferred among
all student models and consequently achieves a lower error rate than others.

Table 3. Top-1 error rate (%) comparisons with other online distillation methods for
training three students model on CIFAR-100. ONE and ONE-E refer to the results of
the student models and the gated ensemble teacher.

Method ResNet-32 ResNet-56

ONE 26.64 24.63
FFL-S 26.30 24.51
MFEF-S 26.04 24.12
ONE-E 24.75 23.27
FFL 24.31 23.20
MFEF 24.03 22.51

Expansion of Student Models. The impact of increasing the number of stu-
dent models is illustrated in Fig. 3. We conduct experiments on ResNet-56. Not
surprisingly, the performance of both students and the fusion classifier improves
as the number of student models increases. When the student models expanded
to 3, MFEF still performs competitively against ONE and FFL, as shown in
Table 3. We can see that MFEF-S achieves an approximately 0.3% and 0.6% per-
formance improvement on ResNet-32 compared to FFL-S and ONE-S, respec-
tively. The fusion classifier yields an about 0.7% and 0.8% improvement on
ResNet-56 superior to ONE and FFL.
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Table 4. Top-1 error rate (%) comparisons with other online distillation methods for
different architectures of student models on CIFAR-100.

Net1 Net2 Net1 Net2
ResNet-32 WRN-16-2 ResNet-56 WRN-40-2

DML 28.31 26.45 26.75 23.33
FFL 27.06 25.93 26.23 23.06
MFEF 26.38 25.16 25.7 22.39

Different Architecture. To verify the generalization of MFEF on different
model architectures, we conduct experiments on ResNet and WRN in Table 4.
We set ResNet as Net1 and WRN as Net2. MFEF shows better performance than
DML and FFL in both Net1 and Net2. An interesting observation is that when
MFEF is applied, the smaller network (Net1) improves significantly compared
to the larger one. For example, when compared with DML, MFEF is higher
by about 2% and 1.3% on ResNet-32 and WRN-16-2. This is because MFEF
can aggregate and fuse all networks’ feature maps and transfer the informative
knowledge of the larger network to the smaller one better.

Table 5. Evaluating the effectiveness of each component on CIFAR-100 using ResNet-
110.

Case Component Student Fused

A Backbone 26.30 –
B Backbone+MSFE 24.35 –
C Backbone+OKD 24.79 –
D Backbone+MSFE+OKD 23.54 22.54
E Backbone+MSFE+DA+OKD 23.37 22.16

Component Effectiveness Evaluation. To further validate the benefit of
each component, we conduct various ablation studies on CIFAR-100 on ResNet-
110. Specifically, we perform experiments in five cases of ablations. As shown in
Table 5, Case A refers to the model trained from scratch. Case B and C refer to
the network where only the multi-scale feature extraction (MSFE) and OKD are
included. And they improved by around 2% and 1.5% compared to the backbone.
When both MSFE and OKD are applied in Case D, the student model achieves
a higher accuracy by around 2.8% compared to Case A. When we get rid of
MSFE from Case D (Case C), the performance decrease sharply by about 1.3%,
which confirms the usefulness of the MSFE. Dual-attention (DA) is added in
Case E based on Case D. This increases the performance by around 0.2% and
0.4% of the student models and the fused classifier, respectively, and it has more
influence on the fused classifier. The improvements manifest that MSFE has a
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more significant impact on the model performance, which is mainly attributed
to the enhancement of the multi-scale representation ability.

5 Conclusion

We present a novel Multi-scale Feature Extraction and Fusion method (MFEF)
for online knowledge distillation. It integrates multi-scale extraction and atten-
tion mechanism into a unified feature fusion framework. Different from existing
online knowledge distillation methods, we enhance the multi-scale representation
ability of the feature maps and then fuse them from student models to assist the
training process by transferring more informative knowledge. Extensive exper-
iments based on three datasets show the superiority of our method compared
to prior works. Results on various networks also demonstrate that the proposed
method can be broadly applied to a variety of architectures from a very small
scale to a large one.
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