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Abstract. Exploring search spaces is one of the most unpredictable
challenges that has attracted the interest of researchers for decades. One
way to handle unpredictability is to characterise the search spaces and
take actions accordingly. A well-characterised search space can assist in
mapping the problem states to a set of operators for generating new
problem states. In this paper, a landscape analysis-based set of features
has been analysed using the most renown machine learning approaches
to determine the optimal feature set. However, in order to deal with
problem complexity and induce commonality for transferring experience
across domains, the selection of the most representative features remains
crucial. The proposed approach analyses the predictivity of a set of fea-
tures in order to determine the best categorization.

Keywords: Feature analysis · Search space characterisation ·
Supervised machine learning

1 Introduction

Optimisation is the process of searching for the best fitting solution within a
solution space. Search process uses instruments to achieve moving between the
neighbouring solutions by the means of neighbourhood functions, also know as
operators. Operators produce new solutions, but the replacement of the pro-
duced solutions or promoting them into the recognised population of solutions
retains substantial challenges. Various metaheuristic approaches instrumentalise
different approaches to promote the produced solutions [19]. Many studies drive
focus on the characteristics of search space and the fitness landscape with which
more information extracted through can be used for better promotion rules and
higher success rate [8].
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Adaptive operator selection appears to be another useful avenue to main-
tain diversity and richness in the search process in order to avoid potential local
optima points [7]. This approach is usually applied with population-based meta-
heuristics, i.e., evolutionary algorithms [20] and swarm intelligence algorithms
[3]. The compelling challenge always enforces to pay more attention in the way
how to build the adaptive selection scheme and which kind of information to use
in opting the most suitable operators.

Fitness landscape studies have been attractive for a long time with which
more auxiliary information can be extracted and used for identification of the
search and the characterisation of the search space. More details can be found
in one of latest reviews [8]. Such auxiliary information can be utilised to harvest
for representative and discriminating features to characterise the search circum-
stances, while, previously, the problem state has been used to help characterise
the search circumstances [3,4], but, the approach was not scalable for differ-
ent size of problem instances due to strong dependency to the problem size.
This study is expected to support to hypothesise a scalable approach through a
bespoke set of features.

The aim of this study is to pave an avenue to identify the best set of predictive
features in characterising the search space and fitness landscape so as to make the
most efficient decision in selecting the relevant actions such as activating the best
fitting/productive neighbourhood function. Predictive analysis is expected to let
us dive-down in the causal effects the behaviours of neighbourhood functions in
producing the neighbouring solutions. Details of predictive analysis have been
introduced in [14].

The rest of this paper is organised as follows; Sect. 2 provides the relevant
background and related work, while Sect. 3 introduces the details of fitness
landscape information items used previously, and selected for use in this study
including population-based and individual-based measures. Section 4 includes
experimental details of the relevant discussions, and Sect. 5 concludes and out-
lines future work.

2 Related Work

Data-driven and bottom-up approaches – using data analysis – in characterisa-
tion of unknown problems have been eased and facilitated with the introduction
of big-data, which escalated to dealing with huge number of data instances and
features. The search spaces in optimisation domain is known as an-predictable
and dynamic processes, where the search space size increases exponentially as the
number of dimensions grows. Attempts to characterise such search spaces faces
increasing the computational complexity of most learning algorithms - for which
the number of input features and sample size are critical parameters. In order
to reduce the space and computational complexities, the number of features of
a given problem should be reduced [5]. Many predictors benefit from the feature
selection process since it reduces overfitting and improves accuracy, among other
things [2]. In the literature [12,23], fitness landscape analysis has been shown to
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be an effective technique for analysing the hardness of an optimization problem
by extracting its features. Here, we review some existing approaches that are
most closely related to the work proposed in this paper.

In [23], the notion of population evolvability is introduced as an extension
of dynamic fitness landscape analysis. The authors assumes a population-based
algorithm for sampling, two metrics are then defined for a population of solutions
and a set of neighbours from one iteration of the algorithm. Because of the explo-
ration process that occurs during each generation, population evolvability can
be a very expensive operation. To avoid a computationally intensive operation,
the work suggests that the number of sampled generations must be carefully
defined. In [12], a very similar approach has been proposed to apply population
evolvability in a hyper-heuristic, named Dynamic Population-Evolvability based
Multi-objective Hyper-heuristic. In [21], the authors proposed a differential evo-
lution (DE) with an adaptive mutation operator based on fitness landscape,
where a random forest based on fitness landscape is implemented for an adap-
tive mutation operator that selects DE’s mutation strategy online. Similarly, in
both [17] and [18], DE embedded with an adaptive operator selection (AOS)
mechanism based on landscape analysis for continues functional optimisation
problems.

A survey by Malan [13] summarises recent advances in landscape analysis,
including a variety of novel landscape analysis approaches and studies on sam-
pling and measure robustness. it drives attention on landscape analysis applica-
tions for complex problems and explaining algorithm behaviour, as well as algo-
rithm performance prediction and automated algorithm configuration and selec-
tion. In [22], the authors propose a continuous state Markov Decision Process
(MDP) model to select crossover operators based on the states during evolution-
ary search. For AOS, they propose employing a self-organizing neural network.
Unlike the Reinforcement Learning technique, which models AOS as a discrete
state MDP, their neural network approach is better suited to models of AOS
that have continuous states and discrete actions. However, usually MDP based
model computationally expensive due to the state space explosion problem.

The majority of these studies have considered population-based landscape
metrics to characterise the situation, while some have considered individual-
based measures. In this study, we attempt to use both population and individual-
based metrics side-by-side and to evaluate the impact of each upon the prediction
results in order to consider a wide-range of information aspects in characteri-
sation of search space. In addition, the state-of-the-art literature implemented
approaches to solve functional optimisation problems, which are significantly
different from combinatorial problems with respect to predictability and charac-
terisation of fitness landscape. We attempt to solve two combinatorial problems
(binary in this case), which can be seen more un-predictable in this respect.

3 Landscape Features

Fitness landscape analysis provides representative information, which can be
used in characterisation of the search space and the position of the problem
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state in hand. A vast literature has been developed over last few decades that
can be utilised in selecting the most representative information. The relevant
literature can be found in [8,15,16].

Diversity is one of very important aspects of swarms to help characterise the
states [6], while Wang et al. [23] discuss evolvability of populations with dynamic
landscape structure.

A number of features can be retrieved from state of art literature as listed
in tables below Table 1 and Table 2. The population-based metrics – consid-
ered as feature– are listed in Table 1 with corresponding calculation details.
The first 5 metrics, {psd, pfd, pnb, pic, pai}, have been collected from [22] and
implemented for (i.e. adjusted to) artificial bee colony algorithm (ABC), which is
one of very recently developed highly reputed swarm intelligence algorithm [10].
The metrics calculated based on distance measure have been binarised using
Hamming distance as in [6] in order to adjust them to binary problem solv-
ing. The metrics, {pcv, pcr, eap, app}, are introduced and proposed in [23] with
sound demonstration, while atn is obtained from the trail index used in ABC
and utilised to measure/observe the iteration-wise hardness in problem solving.
In addition, pdd is picked up from [1] to calculate the distance between two
farthest individuals with in a population/swarm.

The literature includes more metrics calculated through local search proce-
dures. However, these kind of features, i.e. metrics, have been left out due to the
scope of the study. In fact, it is known that access to preliminary information on
search is not easy, hence, we encompass the change in instant search in formation
online decision making.

The base notation of population-based features is as follows. Let P = {pi|i =
0, 1, ..., N} be the set of parent solutions and C = {ci|i = 0, 1, ..., N} be the set
of children solutions reproduced from P , where each solution has D dimensions.
Also, let F p = {fp

i |i = 0, 1, ..., N} be the set of parent fitness values and F c =
{fc

i |i = 0, 1, ..., N} be set of children fitness values. gbest represents the best
solution has found by so far and pbest represents the best solution in the current
population.

On the other hand, a number of metrics – features – can be obtained from
the auxiliary information of individual solution, which seem to serve efficiently
in individual-specific aspects with which the operators can act upon significantly
on case basis. The individual-related features are tabulated in Table 2, which
are mostly proposed by [22] except itn, which is introduced in this study first
time. Among these features, the success rate for operator i is calculated with
osri = sci

tci
, where sr is success counter and tc is total usage counter.

4 Experimental Results

This experimental results have been collected over multiple runs of an Artifi-
cial Bee Colony algorithm bespoke in earlier studies embedded with a pool of
operators selected each time a new solution is generated randomly selecting the
operators to execute. Each successful move achieved whilst the execution of the
algorithm has been picked up as a successful case and labelled accordingly.
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Table 1. Population-based features

Feature Formula

Population solution diversity psd =
∑n−1

i=0
∑n

j=i+1 ‖pi−pj‖
D

n(n−1)
2

Population fitness deviation pfd =
∑n−1

i=0
∑n

j=i+1 ‖f
p
i −f

p
j ‖

n(n−1)
2

Population of new best children pnb =
|ci|fc

i >f
p
i |

N

Proportion of new improving children pic =
|ci|fc

i >gbest|
N

Proportion of amount of improvements pai =
(fc

i −f
p
i )/fc

i |fc
i >f

p
i

N

Proportion of convergence velocity pcv = E[max(F c)−max(Fp)]
max(Fp)

Proportion of convergence reliability pcr =
E[‖x∗−xt‖−‖x∗−xt+1‖]

D

Evolutionary ability of population eap =
∑

i∈N∗
σ(P )|f∗(P )−f(Cfi)

N

Evolvability of population evp = eap × pic

Proportion of average trial number atn =
∑n

i tni

N

The diameter of population pdd = maxi,j∈{P,C}‖pi − ci‖

Table 2. Individual solution-based features

Feature Formula

Distance between gbest and parent solutions idg = ‖x∗−pi‖
D

Distance between parent and child solutions idp = ‖pi−ci‖
D

Fitness gap between gbest and child solutions ifg = (fx∗ − fc
i )/fx∗

Fitness gap between the parent and the offspring ifp = (fc
i − fp

i )/fc
i

Distance between pbest and parent solutions idb = ‖pbest−pi‖
D

Distance between pworst and parent solutions idw = ‖pworst−pi‖
D

Proportion of trial number itn = triali
trialmax

Two well-known combinatorial optimisation problems have been considered
as test-bed; One-Max [9] as unimodal and Set Union Knapsack (SUKP) [11] as
multi-model problems. The size of benchmark problems taken under considera-
tion for One-Max and SUKP are 1000 and 500, respectively, while the maximum
number of iterations are 150 and 500, respectively.

The preliminary experimentation demonstrated that the level of hardness
and complexity very much depends on the progress of search process, hence, the
whole search period is divided into three phases since it is expected that the
behaviour of the operators would vary significantly over the time and stage of
iterations, relevant analysis is provided in upcoming subsection.
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4.1 Feature Exploratory Analysis

A set of exploratory analyses are conducted to explore both the relevance of input
features as well as their relative importance to the task of operator selection—
the latter is discussed further in Sect. 4.2. The tests are evaluated for each phase
of the search process, separately. That is, given the set of all input features, A,
the aim is to examine if a subset A′ ∈ A is associated with the target success
operators, corresponding to each search phase. The assumption made here is
based on whether feature membership for A′ is consistent, which in turn can be
used to indicate the features most prevalent at predicting success operators, per
search phase, and if comparable across the two different optimisation problems.

The first test evaluated the strength of linear relationship between input
features relative to each search phase, as shown in Fig. 1 for One-Max problem
and in Fig. 2 for SUKP.

Fig. 1. Pearson correlation coefficient matrix for the features applied to One-Max prob-
lem. The matrices are ordered top-down per search phase; 1 top and 3 down.

There is clearly apparent linearity – as additionally expected, both positive
as well as negative– among different groups of features in both optimisation
problems. The strength of relationship furthermore exhibits variability across
the different search phases. Generally, whilst relative strength of association
can be indicative for feature selection processes, further evaluation of feature
importance relative to operator selection is essential, nonetheless. In particular,
where membership in A′ can be relatively stable across the two optimisation
problems, we examine if the selected subset of features can learn the target
variables, i.e. success operators, associated with each problem, correctly.

Accordingly, for both the One-Max and SUKP problems, the Chi-square
(χ2) test – a test on whether two variables are related or independent from
one another– is conducted to examine the dependency of the response variable
(success operator) on the set of input features. χ2 statistic, computed for each
feature-class pair, provides a score on the relative dependency between the values



Analysing the Predictivity of Features to Characterise the Search Space 7

Fig. 2. Pearson correlation coefficient matrix for the features applied to SUKP problem.
The matrices are ordered top-down per search phase

of each attribute and the different target classes. The attributes of higher values
for the χ2 statistic can be said to have more importance at the task of predicting
the target class, i.e. search operator, and usually as a result are selected as the
input features in classification tasks.

The resulted ranking of input features relative to both optimisation prob-
lems is shown in Fig. 3. Whilst these seem to exhibit differences in importance
across the two problems; namely there appears to be a higher number of rele-
vant features in SUKP compared to those in One-Max, there is nonetheless an
interesting overlap between both regarding a subset of (dominant) input fea-
tures {idp, ifp, osr}, as well as an agreement on the relative irrelevance of
further features to search operators. This additionally persists across the three
search phases corresponding to both examined problems. Although such finding
can result primitive – not the least conclusive given the nature of the exam-
ined problems –, the resulted similarity can nonetheless be critical to examining
potential prospects leading to learning a solution path (or important features)
from one problem to another.

4.2 Operator Classification

To assess the possible transferability of selected features from one search domain
to another, the prediction of the different success operators at each search phase
corresponding to the two different optimisation problems is subsequently eval-
uated. The success of operators relative to each search problem and phase are
shown in Table 3. This provides the setting for a supervised classification task
in which problem features are the independent variables and the corresponding
success operators are the target class.
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(a) One-Max

(b) SUKP

Fig. 3. Chi-square statistic rank for input features on successful search operators.
Again, in both (a) and (b), ranking is ordered top-down per search phase.

Table 3. Success of operators for One-Max and SUKP search problems.

Problem Operator Phase 1 Phase 2 Phase 3 Mean

One Max OP 0 306 375 357 346.00

OP 1 234 218 235 229.00

OP 2 304 405 456 388.33

OP 3 323 328 316 322.33

SUKP OP 0 104 200 245 183.00

OP 1 494 150 89 244.33

OP 2 1397 1368 1487 1,417.33

OP 3 916 777 649 780.67

Three classifiers are applied to predict the success operators; a multilayer per-
ceptron (MLP) with one hidden layer (feedforward ANN with ‘adam’ solver),
Support Vector Machine (SVM) classifier with radial basis function (rbf) ker-
nel and a Random Forest classifiers of size 200. All models have been used in
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classification tasks very widely for decades, and the particular choice for RF
and SVM was additionally due to their ability to provide explicit feature impor-
tance ranking alongside their prediction, which we aim to utilise in the proposed
hypothesis. We report the accuracy score as the prediction measure of accuracy
in Table 4.

Table 4. The accuracy results for both problem types achieved by machine learning
approaches across 3 phases

One Max SUKP

RF SVM MLP RF SVM MLP

Phase 1 0.79 0.52 0.70 0.71 0.62 0.68

Phase 2 0.85 0.63 0.73 0.79 0.72 0.75

Phase 3 0.84 0.65 0.71 0.83 0.77 0.80

Mean 0.83 0.60 0.71 0.77 0.71 0.74

Interestingly, the performance of the classifiers on both optimisation problems
is relatively comparable. With the exception of SVM on One-Max which seems to
be underperforming that on SUKP, the predictability of success operators from
both individual as well as population domain features is consistent. It should be
noted that the reported performance of the three classifiers can be tuned for further
optimisation, which we aim at providing in a further study. In this study, however,
the aim is to examine whether predictability of success operators can be achieved
with a subset of input features learnt in different search problem(s). In such a way
the relative importance of input features for the classification tasks are computed
and compared; the weighted coefficients of feature vectors in the SVM classifier
as well as the importance of features from the resulted Random Forest classifier,
normalised across the 200 Decision Trees between 0 and 1. The results are shown
in Fig. 4 for the One-Max problem and Fig. 5 for SUKP.

Once again the results show promising findings as a subset of features can be
seen to have similar relative importance across both search problems. In fact this
emphasises the suggestion, as observed earlier in the Chi-sqaure test results, that
there seems to be a subset of effective features, like A′, to the task of operator selec-
tion that can be transferable from one problem to another. Worth mentioning that
in both Fig. 4 and Fig. 5, the relative feature importance is computed for the whole
set of features, as the SVM considers weighing all input attributes, and the RF cal-
culates class impurity – relative Shannon entropy– weighted by the probability of
reaching the target class (success operator) corresponding to all features as these
are re-sampled across 200 trees, and subsequently their scores normalised. That is
to say that in selecting the subset of effective features, their relative importance
should be considered rather than the values assigned to them.
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(a) Feature importance calculated with Random Forest

(b) Features coefficients calculated with SVM

Fig. 4. Feature importance ranking for One-Max problem.

The assessment on what specific features are most prevalent to the success
operator selection, and why can be ‘overenthusiastic’ at this stage, especially so
as this would require extensive characterisation of both search problems, which
will be evaluated further in a later study. Here, however, the argument on finding
a transferable A′ from one search problem to another seems plausible. For this,
the extent of predictability (solution quality) and robustness as features are
reduced and transferred across different search domains should be examined
further.
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(a) Features importance calculated with Random Forest

(b) Feature coefficients calculated with SVM

Fig. 5. Feature importance ranking for SUKP problem.

5 Conclusions and Future Work

This paper presents an exploratory and a predictive analysis in order to reveal
the impacts and domination of a set of features considered for characterisation
of search spaces in optimisation domain. The idea is to identify the set of the
most impactful and prominent features that best represent a problem state and
its standing within its neighbourhood so that the best fitting neighbourhood
function among many alternatives can be selected to generate the next prob-
lem state avoiding local optima for higher efficiency in search process. A swarm
intelligence algorithm – artificial bee colony – has been used with a pool of neigh-
bourhood functions, i.e. operators, to solve two different types of combinatorial
optimisation problems utilising an adaptive operator selection scheme. The set of
most prominent features are elicited through a rank of weights using statistical
and machine learning methods. The analysis demonstrated that a set of features
mostly including individual features are found to be more discriminative than
those of population-based metrics.

The interesting preliminary outcome of the study is that the most effective
features have been mostly the same even if the problem domain has changed.
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This can suggest that the information can be transferable between different
problem domains. For the next step of this work, the success of transfer learning
through the problems needs to be examined in terms of robustness and solution
quality. The set features will be considered in active and reinforcement learning
for dynamic and more realistic problems.
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