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Abstract. With the recent development of deep learning technology,
researchers have achieved significant results in small-scale image inpaint-
ing. However, when the missing area is large, undesirable artifacts and
noise are introduced into the inpainting area. Hence, we present a
multi-stage progressive image inpainting framework based on the well-
known generative adversarial network(GAN) to solve this problem. In
our MOPR-GAN method, generator uses a progressive inpainting mod-
ule(PIM) and an image optimization module(IOM), while discriminator
combines a patchGAN with an attention mechanism and a globalGAN.
The PIM can gradually repair the image loss area and generate an atten-
tion map simultaneously. The IOM optimizes the details of the generated
image based on the information provided by the attention map. The dis-
criminator can capture the local continuity and universal global features
of the image better. When comparing the test results with the latest
research, the model showed a significant effect in both qualitative and
quantitative analyses.
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1 Introduction

Image inpainting aims to fill in the missing areas of damaged images to achieve
the maximum possible authenticity. These algorithms are usually used for pic-
ture editing tasks, such as filtering unwanted objects [2,16] or repairing old
pictures [22]. When the missing area of the image is large, less information can
be obtained; thus, increasing the available information of the image is critical
to the restoration task. Moreover, the generated portion of the image may not
have the same style as the real image; consequently, restorations tasks require
both partial continuity and overall similarity.

Most traditional image inpainting methods diffuse the background data to
the missing area using a differential operator [4]. Subsequently, with the explosive
growth in data volume, patch-based inpainting methods were introduced, where
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CelebA Paris StreetView Place365

Fig. 1. Some inpainting results using the proposed framework on different datasets.
Among them, (Up) Input image with missing areas. The missing areas are shown in
white. (Down) Repaired picture using MOPR-GAN(ours).

the algorithm identifies patches in several source pictures to fill in the missing
areas, to obtain the maximum similarity [10]. However, these methods perform
poorly when restoring a complex detailed texture in a missing area.

Recently, with the rapid development of deep learning technologies, deep
convolutional networks have begun to demonstrate extraordinary capabilities
in the field of image inpainting. These methods replace the missing parts of the
content through continuous learning of existing data, thereby generating a coher-
ent structure in the missing area, which is difficult to achieve using traditional
methods. However, images generated by these method are often blurred or have
artifacts, which are dissatisfying in terms of visual performance.

To solve this challenging problem, in 2014, Goodfellow et al. proposed a gen-
erative adversarial network (GAN) [9], which is a network model composed of
two deep convolutional networks called generator and discriminator. The gen-
erator uses data to generate images to deceive the discriminator, whereas the
discriminator learns the difference between the real and generated images to effi-
ciently identify the generated image, and returns an adversarial loss to improve
the generator. Subsequently, several GAN-based models [7,17] have been devel-
oped, many of which use encoder-decoder architectures as their generator.

Researchers began to make bolder attempts. They identified that global
inpainting does not directly conform to the way in which the human brain thinks;
therefore, they developed several model frameworks for multi-stage inpainting
[14,20]. For example, the EdgeConnect framework, which was proposed by Kam-
yar et al. [14], divides the task into two stages: edge prediction and edge-based
repair. Although using the edge as the pre-information for repairing the image
has a good effect, obtaining a good edge is a difficult task. Almost all these
algorithms have similar shortcomings.

In this paper, we propose an image inpainting network called Multi-Stage
Optimized Progressive Restoration with GAN (MOPR-GAN). The framework
follows the basic principles of GAN, and is divided into generators and discrimi-
nators. The generator consists of two parts: (1) a Progressive Inpainting Module
(PIM) and (2) an Image Optimization Module (IOM). The PIM is responsible for
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progressively repairing the missing area and generating an attention map. The
IOM refers to the attention map to optimize the details of the initial repaired
image, so that it can generate high-quality images. The discriminator is a hybrid
of a local discriminator (patchGAN) and a global discriminator (globalGAN).
In contrast to the discriminator model proposed by Iizuka et al. [17], we added
the attention map generated by the PIM and the IOM; consequently, the dis-
criminator can identify the repaired area more efficiently.

We verified the performance of our model using three standard datasets
CelebA [21], Paris Street View [5], and Place365 [3] (certain results are shown in
Fig. 1), and compared our method with some of the most advanced frameworks.
The primary contributions of this paper are as follows:

• We propose an Image Optimization Module (IOM), that uses a form of com-
petition within the region to extract the best matching distribution of the
real image.

• An attention mechanism, called Global Adaptive Attention (GAA), is devel-
oped, which acts on the entire network. Under the joint constraints of struc-
ture and texture, it gradually updates the attention score following the
progress of the network to obtain finer details, thereby enhancing the poten-
tial and efficiency of the network.

• We propose a Multi-Stage Optimized Progressive Restoration GAN (MOPR-
GAN) framework, which can generate images with better results in terms
of details and overall performance; the framework has achieved good perfor-
mance in both qualitative and quantitative analysis.

Moreover, we performed certain ablation experiments to verify the accuracy of
the contributions.

2 Method

In this section, we first introduce the structure of each part of the proposed
network framework. And then, we introduce the GAA scheme based on a multi-
stage network. Finally, we explain the loss function. The pipeline of our network
model is shown in Fig. 2.

2.1 Generator

The generator comprises two modules: 1) PIM, which is used for preliminary
image restoration, and 2) IOM, which is used for updating image details. Mean-
while, the generator of the entire network is divided into two forms in the two
phases: (1) contains only PIM modules; (2) contains PIM and IOM modules.
We will introduce specific training strategy in Sect. 3.1. Here, we explain the
two modules in detail.
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Fig. 2. The overall architecture of the proposed network model is divided into two
phases, which we use the red line to represent the first stage and the green line to
represent the second one in the diagram(the specific process is described in Sect. 3.1).
And then, the network inputs are images and masks, Progressive Inpainting Module
(PIM) is used to generate pre-inpainting images recursively, the Image Optimization
Module (IOM) optimizes details, and the global and local discriminator (Up is local,
Down is global) enhances the network repair potential. (Color figure online)

PIM. The design idea for PIM is derived from RFR [13], which using recursive
reasoning to achieve a gradual inpainting process from the edge to the center
of the missing area. The difference is that we modified the reasoning network
structure and used our own attention mechanism. The details of this part are as
follows:

Referring to the network architecture proposed by Johnson et al. [11], we
built an encoding-decoding network for the reasoning network. The encoder is
composed of three convolutions. The decoder is composed of three deconvolutions
with strides of 1/2, 1/2, and 1. Three residual blocks, a GAA and a convolution
were added to the middle. The residual blocks are used to avoid the disappear-
ance of the gradient, and the GAA is used to calculate the current attention
score and update the feature map. The GAA calculation process is described in
Sect. 2.3. Furthermore, the role of the convolutional layer is concatenating the
reconstructed feature map with the input one in order to get the final feature.

In general, the PIM iterates multiple times until the feature map is completely
filled. Thus, a good pre-inpainting image can be generated.

IOM. Because of the limitation of the repair method based on the partial pro-
gressive algorithm, it is inevitable that the output of the preliminary repair image
will have a certain degree of local artifacts or chromatic aberration especially the
center of the missing area, even though we adaptively mix the previous attention
score when computing the new one. Therefore, we launched the IOM to resolve
this problem effectively, and generate images with good performance in terms of
both details and overall.

Inspired by the multi-scale convolutional fusion block proposed by Yu et al.
[19], the IOM of this paper is divided into three parts.
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Fig. 3. The main part of the IOM. It can improve the image details in the feature
space.

The first stage is the initial extraction of the image which comes from PIM.
Through three convolutional layers, it can learn the basic feature information.
We retained this current feature map for later use.

The second stage comprises four MIE blocks. The MIE block is shown in
Fig 3, whose main body is a multi-scale competitive convolution with a scale of
3. Multi-scale convolution allows the convolution calculations to have a wider
field of view, and can capture longer dependencies so that we can improve the
network capability. Meanwhile, using Maxout prevents overfitting and provides
a lightweight constraint, as well as selects the best feature value of the current
position in multiple feature regions. Subsequently, we added a GAA and con-
catenate the resulting feature map with the input one through a convolution.
The role of GAA is the same as in PIM, responsible for calculating the attention
score and updating the feature map. The GAA calculation process is described
in Sect. 2.3.

Finally, we skip concatenating the feature maps after multiple multi-scale
convolutions with the retained feature map in the first stage, which can
strengthen the consistency of the image structure and prevent the gradient from
disappearing after optimization.

2.2 Discriminator

Iizuka et al. [17] proposed a multi-scale discriminator architecture including a
local discriminator and global discriminator, which can enhance the detailed per-
formance of the repaired area and improve the global consistency of the image.
Therefore, the discriminator of our network also uses this scheme. The local dis-
criminator uses four convolutional layers and one fully connected layer, whereas
the global discriminator uses five convolutional layers and one fully connected
layer. Spectral normalization and LeakyReLU [1] with a slope of 0.2 were added
to each layer of the two discriminators. In addition, we also added the attention
mechanism to the discriminator, which is mainly manifested in the loss function
as shown in Sect. 2.4.
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2.3 GAA

The attention mechanism can fill the missing area by determining the similarity
in the background texture. However, the traditional attention mechanism only
calculates the attention score of the feature map, and lacks direct supervision
of the attention; therefore, the information learned is unreliable. Conversely, the
self-attention method proposed by Peng et al. [15] specified this, but ignored the
rich texture information. To solve this problem, we propose the GAA module,
which first calculates the structural and texture attention scores, makes them
constrain each other, and then performs adaptive accumulation.

Our attention mechanism is divided into two parts: attention calculation and
attention transfer. First, in the attention calculation step, we calculate the trun-
cated distance similarity [18] of structure attention with 3 × 3 patches in the input
structure feature (d̄s) and the cosine similarity of texture attention (d̄i).

d̄s(x,y,x′,y′) = tanh(−(
ds(x,y,x′,y′) − v

σ
)), (1)

where ds(x,y,x′,y′) is the Euclidean distance between the patches at (x, y) and
(x′, y′); v and σ are the mean value and standard deviation of ds(x,y,x′,y′), respec-
tively.

d̄i(n,m,n′,m′) =

∑
i,j∈(−k,...,k) di(n+i,m+j,n′,m′)

k2
(2)

where di(n,m,n′,m′) is the cosine similarity of each part of the feature pixels
between (n,m) and (n′,m′).

Then, we used the softmax function to generate structure and texture atten-
tion score maps respectively, which are referred to as scores and scorei.

scores(x,y,x′,y′) = softmax(λd̄s(x,y,x′,y′)) (3)

scorei(n,m,n′,m′) = softmax(λd̄i(n,m,n′,m′)) (4)

where λ is set to 50. After that, we used scores as a constraint to adjust the
value of scorei. The calculation process is as follows:

score′
(n,m,n′,m′) = softmax(2scorei(n,m,n′,m′)score

s
(x,y,x′,y′)) (5)

where pixel(n,m) ∈ patch(x, y), pixel(n′,m′) ∈ patch(x′, y′). At this point, we
can calculate the final attention map. If ¯scorei−1

(n,m,n′,m′) represents the attention
score computed at the previous iteration, λ is a learnable parameter, so the final
attention map score(n,m,n′,m′) is:

score(n,m,n′,m′) =

{
λscore′

(n,m,n′,m′) + (1 − λ) ¯scorei−1
(n,m,n′,m′) if ∃ ¯scorei−1

score′
(n,m,n′,m′), otherwise

(6)
In particular, ¯scorei−1

(n,m,n′,m′) in the first MIE submodule equals to the attention
scores generated by the last iteration of PIM.
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The next step is attention transfer. We used the score map to reconstruct the
feature map. If f represents the input feature and f ′ represents the reconstructed
feature, the formula is

f ′
(n,m) =

∑

n′∈1,...Wm′∈1,...H

score(n,m,n′,m′)f(n′,m′) (7)

Finally, we reserve the attention score calculated for the next iteration.

2.4 Loss Function

Because our network is a GAN-based model, the loss function is divided into two
parts: the loss of the discriminator and the generator. The first we calculated
is the loss of the discriminator. Because the attention mechanism is added to
it to increase the accuracy when identifying the authenticity of the image, this
part is composed of adversarial and attention losses. If D is the discriminator,
G is the generator, A is the attention map, IR represents the real image, and
IG represents the generated image, then its loss function(LD) is calculated as
follows:

Lattention = LMSE(D(IR), 0) + LMSE(D(IG), A); (8)

LD = −log(D(IR)) − log(1 − D(IG)) + λattLattention, (9)

where λatt = 0.2 in our experiments. Meanwhile, the attention map A will be
explained in Sect. 3.1.

Refer to the idea in [14], our generator is trained using a joint loss comprising
l1, adversarial, perceptual, and style losses. The l1 loss is normalized by the
mask size, while the adversarial loss is provided by the mapping output of the
generated image in the discriminator, which is a part of LD, as

Ladv = log(1 − D(IG)). (10)

The perceptual loss Lper and style loss Lstyle are two loss functions that were
proposed by Johnson et al. [11]. Finally, the overall loss function of our generator
is

LG = λl1Ll1 + λadvLadv + λperLper + λstyleLstyle. (11)

We finally set λl1 = 1, λadv = 0.01, λper = 0.2, and λstyle = 200. The generator’s
loss function combination in our model is similar to [14] and has been shown to
be effective.

3 Experiments

In this section, we elaborately explain certain related settings and strategies to
facilitate the reproduction of the network.
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3.1 Training Setting and Strategy

We trained our model with a batch size of six. As this is a GAN-based archi-
tecture, there is a generator and discriminator that must be updated; therefore,
we used the Adam optimizer. The entire network design strategy is divided into
two steps: (1)We only use PIM as the generator Until PIM converges. In this
case, the attention map in the discriminator loss function is the one generated
by the last iteration of the PIM. (2)We join IOM and make PIM and IOM work
together as generator. At this time, the attention map becomes the one gener-
ated by IOM’s last MIE. During each step, we both used learning rates of 2e−4

and 2e−5 to train the generator and discriminator, respectively. Then, we used
5e−5 to fine-tune the generator, while the discriminator used 5e−6. During the
fine-tuning, we did not want to relearn all other network parameters; therefore,
we froze all the batch normalization layers of our generator. It is worth noting
that we don’t unfreeze PIM’s batch normalization layers during the second step.
All experiments were performed using Python 3.7 on an Ubuntu 20.04 system,
with an 11 G NVIDIA GeForce RTX 2080 GPU and Intel Xeon E5-1650 v4
3.60 GHz CPU.

3.2 Datasets

We used datasets CelebA [21], Paris StreetView [5] and Place365 [3] to verify our
model. Meanwhile, the irregular masks are automatically generated by scripts.

3.3 Comparison Models

We compared our experimental results with those of certain state-of-the-art
methods, both qualitatively and quantitatively. These methods include CA [12],
GLCIC [17], PIC [6], EC(EdgeConnect) [14], FE [8], and RFR [13].

4 Results

We conducted experiments on the three datasets, and compared the results with
the methods mentioned in the previous section both qualitatively and quanti-
tatively. Moreover, we conducted ablation tests to verify the necessity of the
proposed module.
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4.1 Qualitative Comparison

Figure 4, 5, and 6 show the visualization of our approach when compared to the
four state-of-the-art methods on the three datasets. In comparison, our model
showed excellent visual effects, and when the missing area became larger, the
effect was more apparent. This shows the superiority of our Network.

Masked Gate PIC FE EC MOPR(ours)

Fig. 4. Results on Place365 [3]

Masked CA PIC EC RFR MOPR(ours)

Fig. 5. Results on CelebA [21]

Masked PIC EC FE RFR MOPR(ours)

Fig. 6. Results on Paris StreetView [5]
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Table 1. Quantitative results over three standard datasets with six models: Contex-
tual Attention(CA) [12], Globally and Locally Consistent Image Completion(GLCIC)
[17], Pluralistic Image Completion(PIC) [6], EdgeConnect(EC) [14], Recurrent Feature
Reasoning(RFR) [13], MOPR-GAN(Ours). The best result of each group is bolded.
�Higher is better. †Lower is better.

Dataset Place365 CelebA Paris Street View

Mask ratio 10%-20% 30%-40% 50%-60% 10%-20% 30%-40% 50%-60% 10%-20% 30%-40% 50%-60%

SSIM� CA 0.893 0.739 0.502 0.888 0.750 0.614 0.905 0.766 0.625

GLCIC 0.862 0.686 0.535 0.865 0.689 0.560 0.878 0.724 0.588

PIC 0.932 0.786 0.494 0.965 0.881 0.672 0.930 0.785 0.519

EC 0.933 0.802 0.553 0.975 0.915 0.759 0.950 0.849 0.646

RFR 0.939 0.819 0.596 0.981 0.934 0.819 0.954 0.862 0.681

MOPR(Ours) 0.941 0.825 0.744 0.988 0.942 0.862 0.966 0.901 0.732

PSNR� CA 24.36 19.13 16.56 25.32 19.94 17.18 26.09 20.74 18.17

GLCIC 23.49 18.50 16.06 24.09 18.50 16.24 25.72 21.02 18.71

PIC 27.14 21.72 17.17 30.67 24.74 19.29 29.35 23.97 19.52

EC 27.17 22.18 18.35 32.48 26.62 21.49 31.19 26.04 21.89

RFR 27.75 22.63 18.92 33.56 27.76 22.88 31.71 26.44 22.40

MOPR(Ours) 29.15 24.60 20.77 34.81 27.75 24.79 31.54 26.67 23.44

Mean l1† CA 0.0241 0.0615 0.0991 0.0248 0.0564 0.0921 0.0210 0.0553 0.0906

GLCIC 0.0266 0.0678 0.1096 0.0253 0.0695 0.1121 0.0220 0.0558 0.0902

PIC 0.0161 0.0441 0.0944 0.0111 0.0314 0.0749 0.0140 0.0379 0.0799

EC 0.0157 0.0408 0.0821 0.0088 0.0247 0.0572 0.0110 0.0286 0.0582

RFR 0.0142 0.0381 0.0761 0.0075 0.0212 0.0470 0.0110 0.0275 0.0546

MOPR(Ours) 0.0129 0.0359 0.0736 0.0082 0.0150 0.0383 0.0113 0.0269 0.0503

4.2 Quantitative Comparisons

We also performed quantitative comparisons from three aspects: 1) structural
similarity index (SSIM), 2) peak signal-to-noise ratio (PSNR), and 3) mean l1
loss, to evaluate our model and compare the results with other methods. Table 1
lists the results of the six methods for different irregular mask ratios for the three
standard datasets. It can be observed from the table that our method shows
superior results under different irregular mask ratios on the Places2, CelebA,
and Paris StreetView datasets in most cases, particularly for large holes. The
data of CA [12] and RFR [13] in the table were obtained from their papers, and
the remaining data were obtained using the pre-model provided by their author.

4.3 Ablation Studies

The preceding content illustrates the effectiveness of the overall architecture of
our model. In this section, we present a verification of the validity of our proposed
contributions. Here, we describe the proposed IOM and GAA.
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Masked Image Without IOM With IOM

Fig. 7. Qualitative comparison of the two methods on the Paris Streetview dataset:
1)without IOM, 2)with IOM.

Table 2. Quantitative comparison of the two methods on the Paris Streetview dataset
with different irregular mask ratios: 1)without IOM, 2)with IOM.

Dataset Without IOM With IOM

Mask ratio 20%–30% 40%–50% 20%–30% 40%–50%

SSIM 0.910 0.799 0.917 0.839

PNSR 28.14 23.80 28.30 24.72

Mean l1 0.0254 0.0375 0.0246 0.0332

Capabilities of the IOM. To demonstrate the function of the IOM, we com-
pared the network repair effects of using and deprecating this module. It can be
observed from Fig. 7 that it is lacking in details, although an almost complete
image can be repaired without the IOM. The addition of the IOM can signif-
icantly improve the local performance of the image. From the perspective of a
quantitative comparison, as shown in Table 2, we tested two cases with differ-
ent sizes of irregular masks, and identified that IOM can improve the network
performance significantly. Furthermore, the missing area is larger, the more pro-
nounced the effect.

(1) (2) (3) (4)

Fig. 8. The comparison results with different attention. (1) Masked Image; (2) Tradi-
tional Attention; (3) Existing Progressive Attention; (4)GAA(ours)

Capabilities of the GAA. As mentioned in Sect. 2.3, our GAA module is a
progressive attention mechanism with equal emphasis on the structure and tex-
ture. We compared it with other existing attention mechanisms, and the results
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are shown in Fig. 8. From this, we can determine that the progressive accumula-
tion of the attention mechanism is more suitable with global consistency, which
can make it more deceiving to the eye, particularly for large holes. Further,
allowing the structure to constrain the details (shown in Eq. 5) can effectively
prevent local artifacts and generate a more realistic image.

5 Conclusion

In this paper, we built a new GAN-based image inpainting framework (MOPR-
GAN), which first repairs the missing areas from the outside to the inside step
by step, and then, uses the proposed IOM to correct the details of the gener-
ated pre-repair images to obtain more accurate results. Moreover, we proposed
a GAA module that acts on the entire network. Through qualitative and quan-
titative analyses on three standard datasets, plus several ablation experiments,
the superiority of our network was proved.
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