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Abstract. 3D face reconstruction technology aims to generate a face
stereo model naturally and realistically. Previous deep face reconstruc-
tion approaches are typically designed to generate convincing textures
and cannot generalize well to multiple occluded scenarios simultaneously.
By introducing bump mapping, we successfully added mid-level details
to coarse 3D faces. More innovatively, our method takes into account
occlusion scenarios. Thus on top of common 3D face reconstruction
approaches, we in this paper propose a unified framework to handle mul-
tiple types of obstruction simultaneously (e.g., hair, palms and glasses
et al.). Extensive experiments and comparisons demonstrate that our
method can generate high-quality reconstruction results with geometry
details from captured facial images under occluded scenes.
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1 Introduction

High-quality 3D face reconstruction is a fundamental problem in computer
graphics [31] that is related to various applications such as digital animation [32],
video editing [32] and face recognition [40,41]. Since Vetoer’s first 3D face [35], 3D
reconstruction methods have rapidly advanced enabling applications. However,
these methods all perform poorly in terms of face geometry details. To make the
problem tractable, most proposed methods introduce existing statistical models
or prior knowledge. These models are unable to reconstruct expression-dependent
wrinkles, which are essential for analyzing human expression.

Several methods recover detailed facial geometry that lacks robustness to
occlusions [1,9]. We introduce a novel face geometry detail generation method,
which learns bump maps (simulate geometry changes) from in-the-wild face
images with occlusion. In contrast to prior work (estimating mid-level fea-
tures often breaks down), our method generates bump maps from a low-
dimensional representation containing subject-specific detail parameters and
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expression parameters. Our detailed model builds upon this separation design.
This design is fundamental, as it allows estimating a robust global shape, even
under occluded scenes.

The main contributions are summarized as follows:

• We propose a novel Face Image Synthesis Network, a simple yet effective
diversity promoting face image regeneration approach. The regenerated eye-
glasses removal face without glasses will guide the generation of a 3D model.

• We have improved the loss function of our 3D reconstruction system for
occluded scenes with eyeglasses. Our results are more accurate than other
approaches. As a result of our method, we are able to obtain state-of-the-art
qualitative performance in real-world images.

2 Related Work

2.1 Single Image 3D Face Reconstruction

Since the first 3DMM model was proposed by Blanz and Vetter [2], single image
based 3D face reconstruction has become a hot research topic and consider-
able progress have been made in the field. Richardson et al. [25] presented a
method based on CNN that can reconstruct 3D face based on synthetic data.
As training deep neural networks usually demand a large amount of data to
get acceptable results, Deng et al. [5] proposed an approach that can achieve
accurate 3D face reconstruction with weakly supervised learning based on less
training data. Kemelmacher-Shlizerman and Basri [11] recovered 3D faces by
exploiting the similarity of faces based on a single 3D reference model of a differ-
ent person. Liu et al. [19] built a 3D face model that can exploit both faces with
fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images. Lee
et al. [16] employed an uncertainty-aware encoder and a fully nonlinear decoder
model for realistic 3D face reconstruction. Cheng et al. [3] solved the 3D face
reconstruction problem based on graph convolutional networks obtaining good
results without scarifying speed. Shang et al. [30] proposed a self-supervised
training architecture that is accurate and robust, even under large variations of
expressions, poses, and illumination conditions. Li et al. [17] publicized an end-
to-end framework and designed an efficient network model that can apparently
increase the accuracy of face alignment and 3D face reconstruction. Li et al. [18]
presented a multi-attribute regression reconstruction network that can work well
in complex cases when provided with 2D images including severe poses, extreme
expressions, and partial occlusions.

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) was first proposed by Goodfellow et al.
to study the generative model. Classical GANs consist of a generator and a dis-
criminator. The aim of the generator is to generate data samples that can confuse
the discriminator. The generator and the discriminator must improve themselves
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to win the ‘game’ until a Nash equilibrium is achieved; then generator success-
fully learns the distribution of the real dataset. GANs have been applied in many
fields, including face image synthesis. Zhan et al. [39] proposed Spatial Fusion
GAN (SF-GAN), which can obtain better results in both geometry and appear-
ance spaces utilizing a geometry synthesizer and an appearance synthesizer. A
triple-translation GAN (TTGAN) is proposed for face image synthesis by Ye et
al. [38]. TTGAN adopts a triple translation consistency loss to translate from
a rendered original input image to the desired output image. Sangloy et al. [28]
proposed an adversarial image synthesis architecture that can extract informa-
tion from sketched boundaries and parse color strokes and output realistic face
images.

2.3 Face Image Synthesis

Deep pixel-level face generating has been studied for several years. Many meth-
ods achieve remarkable results. Context encoder [23] is the first deep learning
network designed for image inpainting with encoder-decoder architecture. Nev-
ertheless, the networks do a poor job in dealing with human faces. Following
this work, Yang et al. used a modified VGG network to improve the result of
the context-encoder, by minimizing the feature difference of photo background.
Dolhansky et al. demonstrated the significance of exemplar data for inpainting.
However, this method only focuses on filling in missing eye regions of the frontal
face, so it does not generalize well. EdgeConnect [21] shows impressive proceeds
which disentangling generation into two stages: edge generator and image com-
pletion network. Contextual Attention takes a similar two-step approach. First,
it produces a base estimate of the invisible region. Next, the refinement block
sharpens the photo by background patch sets. The typical limitations of current
face image generate schemes are the necessity of manipulation, the complexity
of fundamental architectures, the degradation in accuracy, and the inability of
restricting modification to local region.

3 Proposed Approach

We propose a detailed 3D face reconstruction method (as shown in Fig. 1) based
on a single photo that consists of two steps:

• in response to the occlusion area, synthesizing the 2D face with complete
facial features.

• detailed 3D shape reconstruction module based on unobstructed frontal
images.

3.1 Face Parsing Map Generation

Our goal is to realize detailed 3D face shape reconstruction under occluded scenes
using our method. Pixel-level recognition of eyeglasses areas serves as a key
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Fig. 1. Method overview. At first, as input for our face image synthesis network, we
need the target image Iin and map Mfin. We utilize the face parsing map generation
module and edge lines map generation module to obtain the map Mfa and Medge.
Then we obtain the final face parsing map Mfin following Zhao et al.’s Algorithm [42].
After obtaining the face image Iout with eyeglasses removed, in step two, we leverage
ResNet-50 and texture refinement network to reconstruct the final 3D model.

Fig. 2. The overview of the proposed face parsing network.

step for our framework to ensure accuracy. Face parsing is a fundamental facial
analysis task. Recently, methods based on Fully Convolutional Networks have
achieved remarkable results on this task [8,20,36]. As shown in Fig. 2, given a
squarely resized face image Iin ∈ R

H×W×3, we aim to apply a modified encoder-
decoder network Nfa as the backbone frame for face parsing. We take Nfa to
extract features at different levels for multi-scale illustration. In the structure
of Nfa, high-level features contain semantic information while low-level features
show local details, both of which are essential for face parsing. We feed the fea-
ture map with multi-scale information into the Edge Aware Graph Reasoning
module, targeting to learn fundamental graph illustration for the characteriza-
tion of the relations between vertices. The reasoning module consists of three
components: graph projection operation, graph reasoning operation and graph
reprojection operation. Let us make it clear. The graph projection operation
projects the initial information onto vertices. The graph reasoning operation
reasons the relational expression between regions over the graph and projects
the acquired graph interpretation back to previous pixel grids. The graph repro-
jection operation leads to an optimized feature map with the same dimension
and size. We implemented the reasoning module following the method of Gusi et
al. [31]. Let us explain the last step of the network. We transmit the optimized
features into a decoder to estimate the final pixel labels. In our network, two
different level feature maps are concatenated into the decoder. The two feature
maps are concatenated by the 1×1 convolution layer. The specific fusion method
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is through upsampling. That is, the high-level feature map is upsampled to the
same dimension as the low-level feature map. Finally, we obtain the face parsing
map Mfa ∈ R

H×W×1.

3.2 Face Edge Lines Map Generation

Fig. 3. The overview of the proposed face edge lines map generation approach.

In order to generate an accurate face parsing map, our method uses face edge
lines to guide the reconstruction of the face parsing map. Face edge lines is closely
related to the facial landmark. The reason why we choose face edge lines instead
of landmarks is that landmarks have difficulties in presenting the accurate facial
features structure [37]. In this section, we describe the proposed face edge lines
map generation framework in detail. As shown in Fig. 3 (a) and (b), the proposed
framework consists of two parts: (a) face edge lines generation module; (b) face
edge lines effectiveness discriminator.

As shown in Fig. 3 (a), stacked U-Nets is the core part of the face edge lines
generation module. More than piecemeal landmarks, face edge lines can well
describe the geometry structure of a face. Most of the previous convolutional
networks only use the convolutional features of the last layer. Image information
at other scales will be lost. Unlike the previous network, the main contribution of
the stacked U-Nets unit [22,26] is to use multi-scale features to represent image
information. We Leverage the mean squared error (MSE) between the estimated
Face edge lines map and the ground-truth map. The presence of obstructions
(this paper focuses on eyeglasses) will significantly affect the accuracy of edge
lines generation. In order to relieve the loss of image information due to eye-
glasses, we introduce message passing layers to pass information between face
edge lines. It is proposed in this implementation that the feature map at the end
of each stack should be divided into M (the number) areas. We implemented the
message passing approach following the method of Chu et al. [4]. This process
is visualized in Fig. 3.

Intra-level Message Passing Layer. Among the steps involved in dealing
with the problem of occlusion of eyeglasses, the intra-level message passing plays
a crucial role. A layer such as this one is used at the end of each U-Nets stack
in order to transmit information between visible edge lines and eyeglasses areas.
Consequently, in the process of designing eyeglasses, the prediction of the eye-
glasses areas can be improved through the visible edge lines data.

Inter-level Message Passing Layer. It is true that there are various U-Nets
stacks that focus on different dimensions of facial information, but in the case
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of multiple stacks, the facial information is transferred in the different stacks
by performing communication between the former stacks and the latter stacks.
When stacking more hourglass subnets, inter-level message passing is adopted
to ensure that the face edge lines map maintains the quality when messages are
passed from the lower stacks to the higher stacks.

Adversarial Learning for Edge Lines Effectiveness. Poor face edge lines
map will adversely affect the accuracy of the 3D face model. When training, we
use adversarial learning between the estimated edge lines map and the ground-
truth map in order to guarantee the effectiveness of the edge lines map obtained
in the generation stage. Using the Face edge lines map generator, the edge lines
map Medge ∈ R

H×W×1 is generated with the coordinate set Scoor; the map-
ping between the generated coordinate set and the ground-truth distance matrix
MAgt. In order to determine whether a generated edge line map is fake or not,
the ground truth dgt can be calculated as:

dgt(Medge, Scoor) =

{
0, Ests∈Scoor

(dgt < θ) < δ

1, other cases
(1)

where Est denotes the probability value calculation function, θ denotes the dis-
tance threshold to ground truth edge lines, δ denotes the probability threshold.

In order to combine the edge lines effectiveness discriminator D and the face
edge lines map estimator G, we apply the concept of adversarial learning. The
loss function of the discriminator D can be calculated as:

LD = E[log(1 − |D(G(Iin)) − dgt|)] − E[logD(Mgt)] (2)

where Mgt denotes the ground truth face edge lines map. A discriminator is
trained to predict an edge lines map on the ground truth as well as predict the
generated edge lines map according to dgt . With effectiveness discriminator, the
adversarial loss can be calculated as:

Ladv−loss = E [log(1 − D(G(Iin))] (3)

3.3 Recovering 3D Face Geometric Details

We obtain the final face parsing map Mfin following Zhao et al.’s Algorithm [42].
We synthesize the face photo Iout by existing methods [15]. Given Iout, we used
the ResNet to regress the corresponding coefficient y. Due to the collection of
large scale high-resolution 3D texture datasets is still very costly and scarce, the
ResNet was trained under weakly supervised. The corresponding loss function
consists of four parts [2,5]:

Lshape = λfeatLfeat + λreguLregu + λphotLphot + λlandLland (4)

Here we set λfeat= 0.2,λregu = 3.6e−4,λphot = 1.4, λland = 1.6e−3 respectively
in all our experiments.
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The addition of human face geometric details is the core of our method. We
choose to add a bump map on the base shape Sbasi. Inspired by the method
of image-to-image translation method, we define the displacements of the depth
map as the distances through the pixels of Iout to the 3D face surface. Generally,
we define the bump map Φ(b) as:

Φ(b)=

{
φ(0) othercases
φ(d′(b) − d(b)) face projects to b

(5)

where φ(·) denotes an encoding function that converts the depth value to the lin-
ear range [0, . . . , 255], b denotes the pixel coordinate [x, y] in Iout, d′(b) denotes
the depth, which is the distance from the surface of the detailed face shape to b
along the line of sight, d(b) denotes the depth of the basic shape.

Thus, Given a bump map Φ and the depth of the basic shape,we can compute
the detailed depth follows d′(b)=d(b)+φ−1(Φ(b)). In order to increase geometric
details and to suppress noise, we define the loss function as follows:

Lgeo =
∥∥∥Φ̃ − Φ

∥∥∥ +

∥∥∥∥∥∂Φ̃

∂x
− ∂Φ

∂x

∥∥∥∥∥ +

∥∥∥∥∥∂Φ̃

∂y
− ∂Φ

∂y

∥∥∥∥∥ (6)

where ‖·‖ denotes the L1 norm, Φ̃ denotes the ground truth and ∂Φ̃
∂x , ∂Φ̃

∂y denotes
the 2D gradient of the bump map. After the 3D face is reconstructed, it can be
projected onto the image plane with the perspective projection:

V2d (P) = f ∗ Pr ∗ R ∗ Smod + t2d (7)

where V2d (P) denotes the projection function that turned the 3D model into
2D face positions, f denotes the scale factor, Pr denotes the projection matrix,
R ∈ SO(3) denotes the rotation matrix and t2d ∈ R

3 denotes the translation
vector.

Therefore, we approximated the scene illumination with Spherical Harmonics
(SH) [24] parameterized by coefficient vector γ ∈ R

9. In summary, the unknown
parameters to be learned can be denoted by a vector y = (αid,βexp,βt,γ,p) ∈
R

239, where p ∈ R
6 = {pitch,yaw, roll, f, t2D} denotes face poses. In this work,

we used a fixed ResNet-50 network to regress these coefficients.
We found that by adding these last two terms of loss function and we reduce

bump map noise by favoring smoother surfaces. At the same time, the final effect
shows that high-frequency details are preserved.

4 Implementation Details

All the networks were trained using the Adam solver [12]. To train our face pars-
ing map generation network, we collected two sources dataset: Helen dataset [14]
and CelebAMask-HQ dataset [15]. The Helen dataset contains 2330 images
with 11 categories: background, skin, paired lips, paired eyes, paired brows,
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paired mouth and hair. The CelebAMask-HQ dataset is a large-scale face pars-
ing datasets which includes 30000 high-resolution portrait images. The dataset
contains 19 categories. In addition to the facial unit, the components such as
eyeglass, earring, necklace, neck, and cloth are also annotated.

In the face parsing map generation stage, our backbone is a modified version
of the trained parsing model [31]. We made the parsing model exclude the average
pooling layer. For the pyramid pooling module, we follow the implementation of
the method of Te et al. [31] with exploiting global contextual information. We
leveraged the fixed parsing model to generate Mfa. In the face edge lines map
generation stage, all training images are cropped and resized to 512 × 512. We
obtained Medge according the lines map generation network. We implemented
message passing module following naturally obtains face features in different
sizes. In the above two stages, we train our network on four datasets including
300W (3148 sample images) [27] and AFLW (24386 sample images) [13].

5 Experimental Results

In this work, we aim to generate a wide range of diverse and yet realistic 3D
detailed reconstructions from occluded face images. Our approach should be
characterized by the following three qualities: 1) the reconstructed geometry
should fit as convincingly as possible to the visible regions, 2) the reconstructed
model texture should not include eyeglasses, which is the essential requirement
for the accuracy of the reconstruction.

5.1 Qualitative Comparisons with Recent Art

Figure 4 shows our results compared with the other arts. The last columns show
our results. The remaining columns demonstrate the results of Sela et al. [29],
PRNet [6] and 3DDFA [7]. Our results show that our results have better han-
dled the occlusion area than other methods. Figure 4 shows that our method
can reconstruct a complete face shape with geometry details under occlusion
scenes such as glasses, food and fingers. The approach of 3DDFA was aimed at
extremely large poses. Therefore, it cannot reconstruct a detailed face model
under occluded scenes. Its shape lacks details. Other methods focused on gen-
erating high-resolution face textures instead of geometry details. At the same
time, it must also be pointed out, the other methods cannot effectively deal with
occluded scenes.

5.2 Quantitative Comparison with Recent Art

Our choice of using the ResNet-50 to regress the shape coefficients is motivated
by the unique robustness to extreme viewing conditions in the paper of Deng
et al. [5]. To fully support the application of our method to occluded face images,
we test our system on the Labeled Faces in the Wild datasets (LFW) [10]. We
used the same face test system from Anh et al. [34], and we refer to that paper
for more details.
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Fig. 4. Comparison of qualitative results. Baseline methods from left to right: Sela et
al., PRNet, 3DDFA and our method.

Figure 5 (left) shows the sensitivity of the method of Sela et al. [29]. Their
result clearly shows the outline of the eyeglasses. Their failure may be due to
more focus on local details, which weakly regularizes the global shape. However,
our method recognizes and regenerates the occluded area. Our method much
robust provides a natural face shape under eyeglasses scenes. Though 3DMM
also limits the details of shape, we use it only as a foundation and add refined
texture separately.

We further quantitatively verify the robustness of our method to eyeglasses.
Table 1 (top) reports verification results on the LFW benchmark with and with-
out eyeglasses (see also ROC in Fig. 5-right). Though eyeglasses clearly impact
recognition, this drop of the curve is limited, demonstrating the robustness of
our method.

Fig. 5. Reconstructions with eyeglasses. Left: qualitative results of Sela et al. [29] and
our shape. Right: LFW verification ROC for the shapes, with and without eyeglasses.
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Table 1. Quantitative evaluations on LFW.

Method 100%-EER Accuracy nAUC

Tran et al. [33] 89.40± 1.52 89.36± 1.25 95.90± 0.95

Ours (w/ Gla) 84.37± 1.44 85.79± 0.42 92.87± 1.09

Ours (w/o Gla) 87.69± 1.01 89.02± 0.89 95.37± 0.65

6 Conclusions

In this work, we describe a 3D face detailed reconstruction framework that
can run efficiently under occluded scenes. Our method enables unobstructed
face image synthesis by concatenating the original face parsing map with the
face edge lines map which both are extracted from the input face image in the
encoder-decoder network. The experiments on 3D face reconstruction using var-
ious datasets have shown that our method can effectively remove eyeglasses with
equivalent quality and better accuracy control than the existing methods.
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