®

Check for
updates

Extending OpenMP to Support
Automated Function Specialization
Across Translation Units

Giorgis Georgakoudis®)@®, Thomas R. W. Scogland®, Chunhua Liao®,
and Bronis R. de Supinski

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
{georgakoudisl,scoglandl,liao6,desupinskil}@1l1lnl.gov

Abstract. OpenMP’s variant directives support specialization at com-
pilation time using OpenMP context for portability or performance. This
specialization is confined either to variants explicitly written by the code
author, which can cross translation units, or to implicit context passed
by the compiler. The implicit context allows a metadirective direc-
tive to choose a directive variant based on context or the compiler to
optimize out runtime interactions. However, that implicit context only
exists in a single translation unit (TU), either in a single compilation or
with link-time optimization linking the set of TUs. In order to enable
more optimization opportunities, we propose the metavariant directive,
a new variant directive to define possible function specializations over
a set of specified OpenMP contexts that are available across different
translation units. The compiler lowers the definition of a metavariant-
annotated function to different instances for each specified context. Calls
of the function in different translation units use local OpenMP context
for specialization, relying on the fact that the compiler will have gen-
erated appropriately mangled symbol names for those instances. Using
a prototype source-to-source tool and a set of use cases, we evaluate
our approach to observe a speedup of up to 30x with inter-procedural
specialization versus no specialization, while simplifying and enhancing
modular adaptation with modest user effort.

Keywords: OpenMP - Function Specialization + Translation Units

1 Introduction

Recent versions of OpenMP have added several directives that enable the appli-
cation programmer to specify context-specific optimization hints and specializa-
tions as well as application-specific requirements. However, these mechanisms
currently provide limited support across translation units and often include
restrictions that the programmer must ensure that they are used consistently
across them. Mechanisms to extend optimization opportunities across transla-
tion units and to enforce requirements across them would enable greater modu-
larity in application source code while also preserving and, perhaps, simplifying
implementation-specific optimizations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Klemm et al. (Eds.): IWOMP 2022, LNCS 13527, pp. 159-173, 2022.
https://doi.org/10.1007/978-3-031-15922-0_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15922-0_11&domain=pdf
http://orcid.org/0000-0001-6542-3555
http://orcid.org/0000-0001-7234-5743
http://orcid.org/0000-0001-6477-0547
http://orcid.org/0000-0002-0339-1006
https://doi.org/10.1007/978-3-031-15922-0_11

160 G. Georgakoudis et al.

For example, the metadirectives and declare variant directives allow the appli-
cation programmer to specify context-specific specialization. The use of OpenMP
contexts allows these mechanisms to incorporate aspects of the OpenMP (and,
through the user selector, application-specific) context. These contexts may
arise in a different translation unit. However, metadirectives do not provide any
mechanism for the application programmer to specify that the context-specific
specialization is available to the calling context. Alternatively, declare variant
directives allow specialized functions to be called, possibly from a different trans-
lation unit, based on the calling context. However, the programmer must fully
specify the specialized function and the OpenMP implementation is not expected
to exploit the information about the calling context that the directive provides.

Application programmers would benefit from OpenMP extensions that better
support optimization and specialization across translation units. In this paper,
we define the metavariant directive, a mechanism that enables the program-
mer to specify that the implementation should generate function variants that
can be safely called from a specific context. When combined with the use of
metadirectives and declare variant directives, the programmer can ensure that
the function conforms to any requirements of the calling context and that it
provides information about assumptions that may hold in it.

We evaluate the metavariant directive using a prototype source-to-source
translation tool. We explore potential use cases of the directive that illustrate
the benefits that it can provide in terms of programmability and in making opti-
mization hints more useful across translation units. Our preliminary experiments
demonstrate that it can yield substantial performance benefits.

2 Background

Variant directives, including metadirectives and declare variant directives,
are major new features introduced in OpenMP 5.0 [3] to improve performance
portability by enabling adaptation of OpenMP pragmas and user code at com-
pile time. The basic idea of variant directives is to allow programmers to sug-
gest a suitable code variant for a given OpenMP context, which includes traits
that describe active OpenMP constructs, execution devices, functionality of an
implementation, and user-defined conditions. While OpenMP 5.0 supported only
matching compile-time conditions on traits, OpenMP 5.1 [4] extended that to
include user-defined conditions resolved at runtime. A metadirective is a declar-
ative directive that conditionally resolves to another executable or declarative
directive by selecting from multiple directive variants based on traits that define
an OpenMP context. The declare variant directive has similar functionality as
the metadirective but selects a function variant at the call site based on context
or user-defined conditions.

However, a major limitation of the current variant directives is that program-
mers need to specify both context and variant information (i.e., the mapping of
context and variants) within the same translation unit. Currently, OpenMP does
not include any direct language support to propagate context-variant mapping



Metavariant Function Specialization 161

information easily across multiple translation units for either specialization or
facilitating compiler optimizations. Existing context-aware directives, such as
declare simd and declare target have a narrow definition of context and
provide limited specialization across translation units. The declare variant
directive supports OpenMP traits for expanding the possible context specifi-
cation but requires explicit user specification of the correspondence of variant
function symbols to the matching context that specializes the base function
symbol. Further, this correspondence is visible to callers of declare variant
functions, to specialize their call sites, while function variants themselves are
not required to include a notion of their corresponding context, thus lacking in
using and propagating context in their definitions.

The following code snippet shows an example use of metadirective. An
OpenMP compiler can readily generate two specializations (or variants) of the
for loop based on the context-variant mapping information explicitly specified
by the metadirective.

void foo (int* v1, int* v2, int*v3, size_t N)
{
#pragma omp metadirective \
when (target_device={arch(nuptz)}: \
target teams distribute parallel for \
map (to:v1[0:N],v2[0:N]) map (from:v3[0:N]) ) \
otherwise(parallel for)
for (int i= 0; i< N; i++)
v3[i] = v1[i] * v2[il;

The function foo() may be defined in one source file while many of its call
sites are located in other source files. A compiler may better optimize the function
(such as generating more or less specializations) if it knows all possible contexts
within which the function will be called, when compiling the source file with the
function definition. Similarly, a compiler may invoke the right function variant
at each call site, if it knows all available variants of the function definition when
compiling a source file containing the call site.

For example, if a compiler knows that all call sites of foo() will be within a
parallel region, it may specialize the function definition to implement only omp
for and to avoid generating code for nested parallelism. A CPU implementation
involves relatively little difference between these choices other than the fork
and join overhead. However, the difference on a GPU though can be between
running the entire region directly on the native parallel threads, and being forced
to use a heavy-weight concurrent state machine to implement varying levels of
parallelism as the kernel progresses. The difference in performance between the
“lightweight” native runtime and the state-machine can be orders of magnitude
in some cases, even for otherwise identical code.

While in some cases, the compiler can perform LTO (Link-Time-Optimization)
to propagate the OpenMP context and code variant information across



162 G. Georgakoudis et al.

translation units, LTO for most heterogeneous platforms is currently pro-
hibitively expensive. Enabling LTO may entirely serialize the process of com-
pilation of large-scale code bases. This cost is too high in practice as many
large scientific applications already take hours to build while being compiled in
parallel. Another limitation of compiler-based solutions is that statically com-
puting the caller-callee relationship (such as the one used by Interprocedural
Optimization or IPO) is still a challenging problem when facing complex uses of
function pointers and dynamic dispatch. Yet another approach is to detect acti-
vated context at runtime and to trigger runtime code specialization. However,
this approach requires the implementation to generate code variants at runtime,
with potentially significant runtime overhead.

Therefore, OpenMP needs to allow programmers to communicate the
context-variant mapping information across multiple translation units explicitly.
An implementation could then automatically exploit such semantics to optimize
code generation at compile time, without relying on sophisticated program anal-
yses or incurring runtime overhead. While we could introduce such functionality
through significant re-definition of the semantics and specification of declare
variant, we choose to introduce a new directive, named metavariant, both
for exposition and because it is cleaner and more concise than retrofitting it to
declare variant.

3 The metavariant Directive

We introduce a new directive, the metavariant directive, to enable compile-
time function specializations across translation units, by matching the OpenMP
context that propagates at call sites of those functions. For the translation
unit that contains the definition of a metavariant-annotated function, com-
pilers generate OpenMP context specializations of the function by special-
izing metadirective directives in the function’s body, assuming a specific
OpenMP context is matched. Correspondingly, at the translation units contain-
ing metavariant function callers, OpenMP compilation tracks the OpenMP con-
text at call sites of the metavariant function to call the function specialization
that matches the context, if any, otherwise falling back to the function special-
ization that does not assume a specific context. Since the metavariant function
and its caller functions may be in different translation units, we propose seman-
tic function symbol naming to encode the different function specializations, so
that OpenMP compilation infers the function specialization symbol to call at
call sites by using the OpenMP context and the original function symbol.
In more detail, the syntax of the metavariant directive is:

#pragma omp metavariant [clause,[[,] clause]...] new-line
function definition or declaration

where clause is the following:



Metavariant Function Specialization 163

#pragma omp metavartant \
match(construct={parallel})
void foo(int* v1, int *v2, int* v3, size_t N)
{
#pragma omp metadirective \
when (construct={parallel}: taskloop) \
otherwise(parallel for)
for (int i= 0; i< N; i++)
v3[i] = vi[i] * v2[il;

Fig. 1. An example translation unit with the definition of a metavariant function

match(context-selector-specification)

Semantically, a metavariant-annotated base function has one specialization
associated with each match clause and this specialization assumes the context
specified in the clause is in effect. Thus, the specified context of this specializa-
tion will forward to metadirective directives in the function definition or calls
to other metavariant functions, which will be specialized by this propagating
context. Also, the base function without specialization remains available with-
out assuming any specific OpenMP context. The symbol name of each function
specialization is determined from base language rules extended by a string deter-
mined by the effective context selector of its associated match clause. The symbol
name of the function without specialization is determined from base language
rules without any string extension.

The function specialization variant is determined at the call site depending
on its OpenMP context. If the OpenMP context at the call site matches the
context of a specialization, the call is replaced with a call to the function variant
of this specialization. Otherwise the call is not replaced, thus resolving to the
original function, which is the no-specialization variant.

To make use of a metavariant function across translation units, a func-
tion prototype with its corresponding metavariant directive can be put into a
header file, which is then included by other translation units. Symbol names of
specializations provide the ABI contract that supports this functionality.

In summary, on a metavariant function definition, metavariant-enabled
OpenMP compilation generates different functions for the different context spec-
ification in each match clause, specializing any metadirectives, calls declare vari-
ant functions, or to other metavariant functions in the function body by forward-
ing the matching context. Each different function variant follows an ABI con-
vention that encodes context-awareness across translation units. On metavariant
function declarations, metavariant-enabled OpenMP compilation generates the
variant function declarations following the same ABI convention and transforms
call sites of the metavariant function to use the function variant that matches
the context at the call site.



164 G. Georgakoudis et al.

// Variant matching execution in a parallel context.
void foo_construct_parallel(int* v1, int *v2, int* v3, size_t N)
{
#pragma omp taskloop
for (int i= 0; i< N; i++)
v3[i]l = vi[i]l = v2[i];
}
// Variant matching ezecution in sequential context.
void foo(int* vi1, int *v2, int* v3, size_t N)
{
#pragma omp parallel for
for (int i= 0; i< N; i++)
v3[i] = vi[i] * v2[il;

Fig. 2. Lowering of the translation unit with the metavariant function definition

Figure 1 illustrates the definition of a metavariant function named foo, per-
forming a simple vector addition that specializes the execution of its loop depend-
ing on whether it is called within a parallel or a sequential context. Specifically,
foo uses a metadirective to use a taskloop construct for parallel execution
of the loop when it is called from a parallel context, whereas the metadirec-
tive specifies parallel for for parallel work-sharing execution when it is called
from a sequential context. Figure 2 presents a source-to-source lowering of the
metavariant function, using symbol naming that uniquely identifies different spe-
cializations corresponding to different metavariant contexts, including flattening
of metadirectives in the function’s body.

Figure 3 also shows how the metavariant function is declared and called in
a different translation unit. The source code must include the prototype of the
metavariant-annotated function declaration to declare its possible specializa-
tions. The caller function bar calls the metavariant function using its declaration
symbol (foo). OpenMP compilation replaces this symbol at each call site with
the symbol name that corresponds to the metavariant function specialization
that matches the enclosing OpenMP context of the call site. Figure4 shows a
source-to-source lowering of the translation of a caller to a metavariant function.
The metavariant function declaration resolves to two function declarations, one
matches the parallel context specialization assuming the same function symbol in
the callee’s translation unit in Fig. 2, the other matches the non-parallel context
specialization with the function symbol unchanged.

3.1 Discussion

In this section we discuss several aspects of metavariant-enabled compilation and
its relation to other compilation and specialization approaches.

JIT/LTO Context Propagation and Specialization. Using LTO for context
propagation across translation units is an interesting proposition assuming some



Metavariant Function Specialization 165

#pragma omp metavartant \
match(construct={parallel})
void foo(int* vl, int *v2, int* v3, size_t N);

void bar(int* vi1, int *v2, int* v3, size_t N)
{
// Calling foo() in a parallel context.
#pragma omp parallel
{
// do other parallel work.
// Call foo() by main thread.
if (omp_get_thread_num() == 0)
foo(vl, v2, v3, N);
}

// Calling foo() in a sequential context.
foo(vl, v2, v3, N);
}

Fig. 3. An example translation unit with a call site of a metavariant function

mechanism conveys context information from existing context-aware directives,
such as declare variant, to both callers and callees. This alternative requires that
LTO completely re-constructs the call graph to couple it with context informa-
tion. However, this alternative can be problematic since LTO compilation is time
consuming and also necessitates shared libraries to be amenable to it. Context-
aware JI'T compilation is also a possibility, however the cost of runtime compilation
and tracking context may be prohibitive. The metavariant approach avoids those
issues by providing an elegant way to specify and to propagate context at compile
time, to generate specializations through automatic code generation, and propos-
ing a context-dependent ABI convention for cross-translation unit specialization.
It does so without relying on LTO or JIT compilation, which may be unavailable
or undesirable due to their limitations.

Consumers of Context for Specialization. In this formulation of the
metavariant directive possible consumers of context for specialization include
metadirectives and calls to declare variant or other metavariant functions, prop-
agating context, in the metavariant function’s definition. While this approach
gives explicit control to the user, a specification-based rule set for automatic
transformations of OpenMP directives can avoid pathological use-cases, such as
nesting parallel regions shown in the example of Fig. 3. Such rule sets can also
be used for error checking to emit warning/errors when incompatibilities or per-
formance degradation occurs between the caller and the assumed callee context
of a metavariant function. We leave that as interesting future work.

Differences with declare variant Specialization. The declare variant
directive explicitly specifies the symbol of function variant specializations of a



166 G. Georgakoudis et al.

void foo_construct_parallel(int* v1, int *v2, int* v3, size_t N);
void foo(int* vl, int *v2, int* v3, size_t N);

void bar(int* vi1, int *v2, int* v3, size_t N)
{
// Calling foo() in a parallel context.
#pragma omp parallel
{
// do other parallel work.
// Call the parallel context specialization of foo().
if (omp_get_thread_num() == 0)
foo_construct_parallel(vl, v2, v3, N);
}
// Call the mon-parallel spectalization of foo().
foo(vl, v2, v3, N);

Fig. 4. Lowering of the translation unit with a call site of a metavariant function

base function that correspond to different matching contexts. Calls to the base
function symbol are specialized to the function variant that matches the caller’s
context. By the specification, context cannot be not assumed to propagate to the
function variant. Thus, the user must explicitly implement any specialization in
the definition of the function variant symbol without assuming any context is
propagated during compilation for compiler-based specialization, e.g., through
metadirectives. By contrast, metavariant function variants are context-aware,
auto-generated during compilation using compiler-based code generation for spe-
cialization by propagating context to existing variant directives (metadirectives,
declare variant) or to other metavariant functions called by the variant. The base
function definition of a metavariant function is a fallback that does not assume
any OpenMP context. We purposefully avoid providing user-visible naming of
function variants in the metavariant directive, relying instead on an ABI conven-
tion. The functionality of calling a function variant without requiring explicitly
naming the function symbol is possible through a metadirective, using a when
clause with the matching context. Also, exposing function variants to users is
error prone, since users could call them within incompatible caller contexts.

Tracking Context. The example specialization of Fig.1 uses taskloop for
parallelizing loop execution when called within a parallel context instead of a
work-sharing construct. This choice is necessary to avoid possibly incompati-
ble nesting of work-sharing constructs. Implementors of metavariant functions
should be aware of such limitations to implement compatible specializations or
context specification should be enhanced to include extended traits, such as
work-sharing execution. The metavariant directive proposal opens up this dis-
cussion, which we leave as future work.



Metavariant Function Specialization 167

4 FEvaluation

4.1 Experimentation Setup

We experimented on a computing node of the Lassen cluster at Lawrence Liver-
more National Laboratory. The node is equipped with IBM Power9 processors
(2 sockets x 20 user-level usable cores), 256 GB of main memory, and four
NVIDIA Tesla V100 GPUs with 16 GB of device memory each. We build a
source-to-source transformation tool in Python that parses metavariant anno-
tations and lowers metavariant function definitions, declarations and call sites,
tracking the OpenMP context, similarly to the way presented in the examples
of the previous section. The compiler used for generating executables from the
lowered sources is Clang/LLVM version 13.0.1.

Our experimentation includes three use cases: (1) a use case that avoids
nested parallelism; (2) a use case that specializes a metavariant function for
concurrent parallel host execution and offloading execution; and (3) a use case
that avoids nesting target regions with unspecified behavior.

The example programs with which we experiment invoke a reasonably opti-
mized blocked GEMM kernel in single precision, using square matrix inputs. The
kernel is implemented as a metavariant function, specialized depending on the
propagated caller’s OpenMP context. For each experiment we perform 10 trials
of each configuration to present the mean execution time. Any confidence inter-
vals shown correspond to 95% confidence level. We also ensure that experiments
run on an exclusively allocated node, using threads pinned to the physical cores
of the machine to reduce variability.

4.2 Using Metavariant to Avoid Nested Parallelism

Figure 5 presents this use case in pseudo-code. The main function in the driver
translation unit (Fig.5a) is the caller of the gemm function, which implements
the matrix multiplication in another translation unit. The driver emulates calling
gemm within a parallel context, masked to execute by the main thread. There are
three versions of the gemm function: (1) gemm is a metavariant function (Fig. 5b)
that specializes at compile time to taskloop execution, when called in a parallel
context, or to a parallel for work-sharing construct when called in a sequen-
tial context; (2) gemm is specialized at runtime (Fig. 5¢) to use either taskloop or
parallel for depending on the result of the runtime call omp_in_parallel()
which dynamically detects a parallel context; (3) gemm is not specialized (Fig. 5d),
nesting instead a parallel region within masked execution that results in sequen-
tial execution within the main thread. We omit the metavariant function declara-
tion in the driver (when applicable) since the function prototype is the same as in
the metavariant function definition. The runtime mode replicates the functional-
ity of the metavariant mode using a dynamic context selector in a metadirective
by checking the result of omp_in_parallel. However, this specialization is lim-
ited to the context information available through runtime calls, in contrast to
the much more widely available context specification available through OpenMP



168 G. Georgakoudis et al.

#pragma omp metavariant \
int main() { match(construct={parallell})
// Init void gemm(---) {
#pragma omp parallel #pragma omp metadirective \
when (construct={parallel} : \
#pragma omp masked taskloop collapse(2)) \
gemm(- - -) otherwise (parallel for collapse(2))
3 for(--) {3}
} }
(a) Caller (b) Metavariant
void gemm(---) {
if (omp_in_parallel())
#pragma omp taskloop \
collapse(2)
for(---) {} void gemm(---) {
else #pragma omp parallel for \
#pragma omp parallel for \ collapse(2)
collapse(2) for(---) {}
for(---) {} X
}
(d) Nested parallel region (no special-
(¢) Runtime specialization ization)

Fig. 5. A use case that avoids nested parallelism

traits. Further, dynamic context selectors require extra conditionals generated
at compile time to select the specialization variant, which add to the overhead of
the runtime call. Metavariant avoids those overheads while also providing a more
powerful specialization mechanism through context forwarding that propagates
context to both metadirectives and calls to other metavariant functions.

Figure 6 shows the execution time of the GEMM kernel for different matrix
dimensions in the different modes of execution. The metavariant mode, denoted
as meta, and the runtime mode, denoted as runtime, both avoid the nested
parallel region. The serialized, nested parallel region execution mode, denoted as
nometa, is the slowest. The performance of meta and runtime is comparable, with
meta being slightly faster by avoiding the runtime call to omp_in parallel(),
around 5% on average.

4.3 Using Metavariant for Concurrent CPU or GPU Execution

Figure 7 shows the pseudo-code of the second case where the program performs a
batch of matrix multiplications of different sizes. The main program, in Fig. 7a,
processes the batch within a parallel work-sharing loop. Based on a threshold
of the matrix sizes, the loop issues a matrix multiplication to execute on the



Metavariant Function Specialization 169

16 1 mode
mEE meta
= 4+ mmm runtime
o B nometa
£E_ 14
+ N
§3
S 0.25
3
(9]
¢
X 0.0625-
0.015625 1

1000 2000 3000 4000
Matrix dimension

Fig. 6. Execution time for GEMM over various matrix dimensions using the metavari-
ant or runtime to avoid serialized nested parallel regions

CPU or to the GPU, through the metavariant function gemm specialization for
different contexts (shown in Fig. 7b) including a parallel context, a target con-
text, or defaulting to a parallel work-sharing construct (does not apply in this
use case). Adding a nowait clause to the target region of Fig. 7a could enable
more concurrency through asynchronous execution. However, we did not observe
a noticeable performance difference when we used it.

Besides concurrent execution on both CPU and GPU, we experiment with
executing on the GPU only, setting the threshold to 0, or the CPU only (by
setting the threshold above the largest dimension in the batch, i.e., 4000. Figure 8
shows the results. CPU-only execution is the slowest, as expected, since for
larger matrices the speedup from CPU parallelization reaches its limits. GPU-
only execution is much faster, about 5x. Concurrent CPU and GPU execution
performs even better, by about 3%, compared to GPU-only execution by utilizing
both processing elements.

4.4 Using Metavariant to Avoid Nested Target Regions

Figure 9 presents a use case in which the metavariant is used to avoid nesting tar-
get regions. Nesting a target construct within a target region, without providing
the ancestor modifier for reverse offloading to the host, results in unspecified
behavior [4]. The metavariant definition of gemm () avoids this issue, by specializ-
ing to use the distribute construct, within a target region, otherwise defaulting
to using a target construct for offloading.

We experiment by running the GEMM kernel for various matrix dimensions,
using either the target context specialization by executing within a target region,
or by using the default execution through a target construct. Figure 10 shows
the resulting execution times. Execution through the target context specializa-
tion is denoted as target, while execution outside a target region using a target
construct is denoted as default. Execution times are not significantly different.



170 G. Georgakoudis et al.

int main() {
int size[BATCH_SIZE] = {
100, 200, 400, 800,
1000, 2000, 3000, 4000 };
#pragma omp parallel for
for(i=0; i<BATCH_SIZE; ++i) {
int N = sizel[i]; #pragma omp metavariant \
if (N < /*THRESHOLD=*/1000) match(construct={parallel}) \
// CPU taskloop wvariant match(construct={target})
gemm(batch[i]) void gemm(---) {
else #pragma omp metadirective \
#pragma omp target teams \ when (construct={parallel}:\
map (to:A[<1][0:N*N]) \ taskloop collapse(2)) \
map (to:B[i] [0:N*N) \ when (construct={target}: \
map (tofrom:C[i] [0:N*N]) distribute collapse(2)) \
// GPU distribute variant otherwise (parallel for \
gemm(batch[i]); collapse(2))
} for(--) {3}
} }
(a) Caller (b) Metavariant

Fig. 7. A use case of concurrent CPU and GPU execution

However, the combined construct of default shows higher performance as the
matrix dimension grows, ranging between 10% to 18%, compared to the nested
distribute construct within the target context. Observing the generated LLVM
IR, we notice more aggressive optimization in the combined construct case. We
plan to investigate further compilation differences due to specialization and espe-
cially how to integrate context information in the metavariant specification for
additional inter-procedural optimization during compilation.

5 Related Work

Many related research efforts extend OpenMP for better productivity, portabil-
ity, and performance, especially in the context of programming heterogeneous
architectures. We only name a few examples in this section.

A popular approach to achieving portable performance of OpenMP is through
autotuning. One early study [1] leveraged source code outlining to extract
OpenMP loops from large-scale scientific applications and subsequently enable the
tuning of different OpenMP execution parameters. Similarly, Sreenivasan et al. [7]
proposed a lightweight autotuner of OpenMP pragmas to optimize OpenMP exe-
cution parameters such as scheduling policies, chunk sizes, and thread counts.

To study the benefits of specialization mechanisms introduced in OpenMP
5.0, Pennycook et al. [6] used the miniMD benchmark from the Mantevo suite
to investigate how metadirective and declare variant may impact real-life



Metavariant Function Specialization 171

1.
0
)
-gg 0.5
c
o2
5=
o
]
x
w
0.25+
CPU GPU CPU+GPU
Fig. 8. Execution time of the matrix multiplication batch.
int main() { #pragma omp metavariant \
#pragma omp target teams \ match(construct={target})
map (to: A[O:N*NJ) \ void gemm(---) {
map (to: B[O:N*N) \ #pragma omp metadirective \
map (tofrom: C[O:N*NJ) when (construct={target} : \
gemm(- - ) ; distribute collapse(2)) \
} otherwise (target teams distribute \
collapse(2) map(tofrom: CL[O:M*N])) \
(a) Calling metavariant function | map(to: A[0:M*K], B[0:K+N])
within a target region for(--) {}
}

(b) Metavariant

Fig. 9. A use case for avoiding nested target regions

codes. They reported that these features allowed a more compact source code
form to express code variants, resulting in a performance portability of 59.35%
across CPU and GPU hardware. While metadirective allows user-guided run-
time adaptation as proposed by Yan et al. [8], having users define portable con-
ditions across different hardware platforms is impractical. To address this lim-
itation, Liao et al. [2] proposed a declare adaptation directive that enables
automatic model-driven runtime adaptation, by integrating machine learning
techniques into OpenMP compiler and runtime systems. The directive allows
programmers to express semantics related to the desired type of machine learn-
ing model, the input parameters to the model and the ranges of the parameters.

In order to avoid writing different directives for different devices, Ozen and
Wolfe [5] proposed a descriptive model with a new OpenMP loop directive to
demonstrate how a compiler implementation could automatically decide target-
specific parallelization for multiple devices based on a single directive. In their
work, they exploited the parallelism semantics associated with the loop construct



172 G. Georgakoudis et al.

0.125+ mode
B target
a 0.06251 mmm default
Q
E_ 0.031251
+ N
c D>
o9
£~ 0.015625
(9]
Q
x
Y 0.0078125-
0.00390625 -

1000 2000 3000 4000
Matrix dimension

Fig. 10. Executing on GPU directly or using target context specialization

and also used dependence analysis to discover more parallelism. Their evaluation
showed that 60% fewer directives were required for the SPEC ACCEL benchmark
suite while yielding competitive performance compared to other compilers.

While it is not a significant point in that paper, the solution proposed is heav-
ily influenced by OpenACC, which provides the acc routine directive to provide
context information on parallelism across translation units. That feature is highly
related to ours, but differs in that the acc routine directive states the levels of
parallelism that a function intends to consume where metavariant states the set
of possible contexts from which a function may be called and, thus, for which
it should be specialized. The context specification of metavariant is a super-
set of the acc routine parallelism-only context specification. Also, metavari-
ant supports specialization through metadirectives or calls to other metavariant
functions in the metavariant function’s body by propagating context, whereas
acc routine designates functions for device compilation using parallelism-level
information for error checking. Context matching is explicit in metavariant, by
contrast, acc routine defines an implicit rule set to determine whether paral-
lelism levels are composable. Interesting future work for the metavariant spec-
ification includes exploring specification-based implicit rule sets both for auto-
mated transformations and error checking.

6 Conclusion

In this paper, we propose to extend OpenMP to support automated function
specialization across translation units by providing the metavariant directive.
The metavariant directive explicitly communicates information about calling
context and specializations between call sites and function definitions residing
in different source files. Using a source-to-source prototype tool and a set of use
cases, we have shown the feasibility and benefits of this extension.



Metavariant Function Specialization 173

In the future, we plan to extend other directives (such as assume and
requires directives) to support optimization across translation units further.
We will explore fully automated generation of function specialization without
relying on metadirective. We will also expand the evaluation by using a pro-
duction quality implementation based on LLVM and comparing it to alternative
approaches such as LTO and runtime specialization, combined with more use
cases running on more platforms. Further, we will propose this extension for
upcoming versions of the OpenMP specification by drafting a more rigorous
functional specification and expanding the use cases using our robust LLVM
implementation.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-837685), partially supported by the LLNL-LDRD Program
under Project No. 21-ERD-018 and by the U.S. Dept. of Energy, Office of Science,
Advanced Scientific Computing Program (ASCR SC-21).

References

1. Liao, C., Quinlan, D.J.; Vuduc, R., Panas, T.: Effective source-to-source outlining
to support whole program empirical optimization. In: Gao, G.R., Pollock, L.L.,
Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 308-322. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13374-9_21

2. Liao, C., et al.: Extending OpenMP for machine learning-driven adaptation. In:
Bhalachandra, S., Daley, C., Melesse Vergara, V. (eds.) WACCPD 2021. LNPSE,
vol. 13194, pp. 49-69. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
97759-7_3

3. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 5.0, November 2018. https://www.openmp.org/wp-content /uploads/OpenMP-
API-Specification-5.0.pdf

4. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 5.1, November 2020. https://www.openmp.org/wp-content /uploads/OpenMP-
API-Specification-5-1.pdf

5. Ozen, G., Wolfe, M.: Performant portable OpenMP. In: Proceedings of the 31st
ACM SIGPLAN International Conference on Compiler Construction, pp. 156—-168
(2022)

6. Pennycook, S.J., Sewall, J.D., Hammond, J.R.: Evaluating the impact of pro-
posed OpenMP 5.0 features on performance, portability and productivity. In: 2018
IEEE/ACM International Workshop on Performance, Portability and Productiv-
ity in HPC (P3HPC), pp. 37-46, November 2018. https://doi.org/10.1109/P3HPC.
2018.00007

7. Sreenivasan, V., Javali, R., Hall, M., Balaprakash, P., Scogland, T.R.W., de Supin-
ski, B.R.: A framework for enabling OpenMP autotuning. In: Fan, X., de Supinski,
B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp. 50-60.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8_4

8. Yan, Y., Wang, A., Liao, C., Scogland, T.R.W., de Supinski, B.R.: Extending
OpenMP Metadirective semantics for runtime adaptation. In: Fan, X., de Supin-
ski, B.R., Sinnen, O., Giacaman, N. (eds.) IWOMP 2019. LNCS, vol. 11718, pp.
201-214. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28596-8_14


https://doi.org/10.1007/978-3-642-13374-9_21
https://doi.org/10.1007/978-3-030-97759-7_3
https://doi.org/10.1007/978-3-030-97759-7_3
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1109/P3HPC.2018.00007
https://doi.org/10.1109/P3HPC.2018.00007
https://doi.org/10.1007/978-3-030-28596-8_4
https://doi.org/10.1007/978-3-030-28596-8_14

	Extending OpenMP to Support Automated Function Specialization Across Translation Units
	1 Introduction
	2 Background
	3 The metavariant Directive
	3.1 Discussion

	4 Evaluation
	4.1 Experimentation Setup
	4.2 Using Metavariant to Avoid Nested Parallelism
	4.3 Using Metavariant for Concurrent CPU or GPU Execution
	4.4 Using Metavariant to Avoid Nested Target Regions

	5 Related Work
	6 Conclusion
	References




