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Abstract. Heterogeneous supercomputers are widespread over HPC
systems and programming efficient applications on these architectures
is a challenge. Task-based programming models are a promising way to
tackle this challenge. Since OpenMP 4.0 and 4.5, the target directives
enable to offload pieces of code to GPUs and to express it as tasks with
dependencies. Therefore, heterogeneous machines can be programmed
using MPI+OpenMP (task-+target) to exhibit a very high level of con-
current asynchronous operations for which data transfers, kernel execu-
tions, communications and CPU computations can be overlapped. Hence,
it is possible to suspend tasks performing these asynchronous operations
on the CPUs and to overlap their completion with another task exe-
cution. Suspended tasks can resume once the associated asynchronous
event is completed in an opportunistic way at every scheduling point. We
have integrated this feature into the MPC framework and validated it
on a AXPY microbenchmark and evaluated on a MPI+OpenMP (tasks)
implementation of the LULESH proxy applications. The results show
that we are able to improve asynchronism and the overall HPC perfor-
mance, allowing applications to benefit from asynchronous execution on
heterogeneous machines.
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1 Introduction

Supercomputers race to the Exascale by significantly increasing the number of
computing units per node and diversifying the types of computing resources with
accelerators (e.g., GPU). Numerical simulation applications need to handle com-
putational complexity to remain efficient, but it is burdensome. Thus, parallel pro-
gramming models require some evolutions to follow this trend. They attempt to
leverage these hardware features in an almost transparent way while minimizing
the stress put on application developers. Fine-grain parallelism with synchroniza-
tion reductions is a solution to take advantage of many-core compute nodes.

The task programming model is thus an excellent alternative to the fork-
join model. A task represents a piece of code and dependencies can be applied
between tasks to represent partial order execution. Hence, a Task Dependency
Graph (TDG) depicts the parallel section. Once a task is created, it can be
executed instantly or deferred: programming makes asynchronous execution eas-
ier. Asynchronism is essential for the performance of applications designed for
supercomputers in order to maintain a high level of parallelism and not to lose
efficiency. A task-based programming model with dependencies has been added
in OpenMP 4.0 [7] and has continued to grow in importance since then. In addi-
tion, supercomputers are composed of many compute nodes linked through a
high-speed network. When coupling with MPI, the de facto standard used for
distributed environment, the task programming model favors asynchronism to
overlap communication with computation in distributed software [20-22].

OpenMP 4.0 introduces the target directives [18] to offload pieces of code to
computing accelerators like GPUs. Since the advent of OpenMP 4.5 [19], target
directives are explicit tasks with dependencies. This addition allows develop-
ers to write their entire application with a task-based approach homogeneously
for heterogeneous architectures. Task representation may help overlapping data
transfers with computation and then favor asynchronous execution between the
host and the device.

Programming efficient codes exploiting all the parallelism provided by hetero-
geneous supercomputers remains challenging. While MPI4+-OpenMP program-
ming model with tasks appears to be a good candidate for composing such
applications, it still requires some effort at the runtime level to be efficient. Run-
time stacking remains challenging, and the close collaboration between all the
components is not granted. MPC [5] is a parallel framework that proposes an
OpenMP implementation relying on a user-level thread scheduler. Recent work
demonstrates that MPC can take advantage of interoperability between MPI
and OpenMP (tasks) runtimes to enhance overall application performances [20].
In this paper, we propose the addition of GPU task support with the target
directives in MPI+OpenMP(tasks) applications to enhance asynchronous exe-
cutions thanks to user-space mechanisms. We have implemented this approach
in the MPC framework and evaluated it on the LULESH mini application [12].

The contributions of this paper are the followings:

— integration of target directives in the MPC-OpenMP task based program-
ming model,



GPU Support in MPI+OpenMP (tasks) Applications 5

— addition of user-space scheduling mechanisms to enhance asynchronous GPU
executions,

— porting and evaluating MPI+OpenMP (tasks) LULESH mini application for
heterogeneous architectures.

The paper is organized as follows. Section 2 presents related work in task-
based programming models for distributed heterogeneous applications. Section 3
details the port of OpenMP target directives and its integration into the MPC
framework to enhance asynchronism thanks to the GPU task suspension support.
Section4 sketches the porting of MPI+OpenMP (tasks) with GPU support for
some applications. Section 4.2 presents the performance evaluation of our work.
Finally, Sect.5 concludes this work and depicts future work.

2 Related Work

Heterogeneous programming gained importance as GPU computing accelerators
are widespread in HPC systems. Tasked-based runtime systems have shown that
task programming is well designed for the composition of heterogeneous applica-
tions. StarPU [1], X-Kaapi [8] and OmpSs [2] enable developers to compose an
application with various types of tasks that can be performed both on the GPU
and the CPU. These runtime systems can overlap data transfers with computa-
tion through data prefetching techniques thanks to CUDA streams. Legion [3,9]
is also a task-based runtime designed for distributed machines with heteroge-
neous nodes. More recently, CudaGraph [14] enables developers to write or cap-
ture GPU operations only and organizes them into graphs to reduce kernel launch
overheads of CUDA. OpenMP [4,18] target constructs have been introduced in
the specification version 4.0. OpenMP 4.5 [19] defines target constructions as
tasks, and task programming seems to be growing for the future OpenMP 6.0.
OpenMP standard guarantees the perpetuation of simulation codes by integrat-
ing heterogeneous task programming [24].

Offloading data and kernels on GPU are blocking operations by default
but can be transformed into asynchronous ones to gain parallel efficiency.
In the same way that MPI communications can block the execution of the
tasks [23], synchronous GPU operations may degrade the performances. In 2015,
MPI+ULT (User Level Thread, Argobots) [16] proposed to run MPI code within
a user-level thread and make it yield whenever an MPI communication blocks.
MPI Detach [21] advocates programming through continuations. It enables the
addition of asynchronous callbacks on communication completion but implies
heavy code restructuration. TAMPI [22] and MPC [20] propose to transform
synchronous to asynchronous MPIT calls finely nested into OpenMP tasks. These
works tackle the interoperability issue between MPI and OpenMP tasks but do
not consider heterogeneous applications. As OpenMP target constructs are now
explicit tasks, these approaches may be applied to GPU task programming.

In [25], several approaches are presented to overlap GPU operations with
computations thanks to OpenMP target constructions. They proposed to run
asynchronous target tasks within dedicated threads, which are preempted by
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blocking operations. These threads are called Hidden Helper Threads (HTT)
and are implemented as kernel threads, hence delegating scheduling decisions to
the operating system. Standardization of this approach was suggested in [15].
This paper presents a different design for asynchronous GPU calls overlap-
ping through user-space cooperative scheduling. This approach targets efficient
MPI+OpenMP (tasks) applications for heterogeneous supercomputers.

3 Targets with Asynchronous Tasks

The main goal of asynchronous offloading is to overlap accelerator operations
with useful work on the CPUs. With the task programming model, this is
achieved through task switching during asynchronous operation progression.

3.1 Cooperative Target Task Design

The general idea of the Cooperative Target Task Design is to have the target
tasks make asynchronous calls and explicitly preempt right before synchroniza-
tion points without the operating system scheduler intervening. Polling functions
ensure asynchronous events progression. On completion, the preempted task is
unblocked and may resume. This design strictly distinguishes threads and tasks
as depicted in the Fig. 1.
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Fig. 1. Fiber task design : from physical core to user-space tasks
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Threads are standard OpenMP threads represented as pthreads and mapped
1:1 with kernel threads and physical cores. They have their own user and kernel
space execution contexrt made of a stack and registers copy. They also have their
own signal handlers, file descriptor table, and Thread Local Storage (TLS).

Tasks are standard OpenMP tasks made of a function, some data, and prop-
erties. In addition, they may also have their own user-space execution context
known as a fiber [13]. A task can run on top of a thread on its own fiber if it has
one or directly on the thread fiber otherwise. With the fiber capability, a task
can pause itself explicitly at any time of its execution and may resume on any
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threads (if untied) once it unblocks. Yet, asynchronous events still have to be
polled at some point. In our approach, this is done opportunistically on every
scheduling point defined in the OpenMP Specification.

3.2 OpenMP Target in MPC

Multi Processor Computing (MPC) [5] implements its own OpenMP runtime
through LLVM and GCC Application Binary Interface (ABI). It also improves
standard OpenMP task capabilities with fibers through Linux <ucontext.h>
interface for cooperative scheduling. Previous work has been done to finely
nest MPI communications into OpenMP (task) [20]. This suspend/resume task
mechanism allows generating asynchronism that can be usefully exploited by an
application to overlap MPI communications with computations. Implementing
OpenMP targets with the introduced design now only becomes a question of
Application Binary Interface (ABI) support and tasks cooperativity.

Implementation. To add target directive support to MPC, we chose to use
the LLVM libomptarget library because it is built as a sub-module of the LLVM
OpenMP project. The OpenMP Target part is slightly coupled with the rest of
the project, which will ease its integration with another OpenMP implementation
such as MPC-OpenMP.

MPC implements the LLVM ABI which makes possible to compile with clang
and to link with both the MPC-OpenMP runtime and the LLVM libomptarget
library. To make this combination functional, we had to modify several entry
points in the MPC-OpenMP runtime. First, when starting a program using
LLVM’s libomptarget, even before the main execution, the libomptarget
library is initialized through __kmpc_get_target_offload ABI which was
implemented in the MPC-OpenMP runtime. It reads the OMP_TARGET_OFFLOAD
environment variable from the OpenMP runtime and passes it to 1ibomptarget.
Then, the device’s specific libraries are loaded. We also had to implement the sup-
port of the omp_get_default_device and omp_is_initial_device OpenMP
API in MPC-OpenMP.

Finally, to enable the expression of target directives as tasks with dependen-
cies, we added the support of the __kmpc_omp_target_task_alloc ABI. This
creates a task that encapsulates the incoming target region, generating a stan-
dard and opaque task for the OpenMP runtime. The internal task function points
to an entry point in the libomptarget responsible of starting and completing
the asynchronous GPU operation. The completion of GPU operations implies
synchronizations that end up blocking threads. Hence, the LLVM OpenMP run-
time executes asynchronous target tasks on dedicated Hidden Helper Threads
(HHT) [25] implemented as kernel threads. Thus, the operating system can pre-
empt threads blocking on GPU operations, and Standard OpenMP threads can
be rescheduled onto physical cores to progress other tasks in parallel.

In MPC-OpenMP, we decided to implement the Cooperative Target Task
design instead of the HHT design for its user-space scheduling flexibility. Still,
the target tasks end up synchronizing at some points blocking threads and cores.
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Enabling Asynchronism Through Cooperativity. In practice, synchro-
nizations happens at the end of target execution with a CUDA stream syn-
chronization within the 1ibomptarget. Without cooperativity, the target tasks
ends up retaining the physical core. To tackle this issue, we patched the LLVM
libomptarget CUDA Runtime Library (RTL)! to modify the implementation of
DeviceRTLTy.synchronize. It now inserts a CUDA Stream progression polling
function into MPC relying on cudaStreamQuery and explicitly yields until the
progression is completed. Moreover, programmers can also decide whether tar-
get tasks should have their own fibers and mark them as untied, so that they
may resume on any thread at any scheduling point. Hence, MPC threads will
not block cores and the thread will overlap the stream progression with useful
computation through pure user-space task switches. This approach enables fully
asynchronous support of OpenMP targets in MPC-OpenMP.

3.3 State-of-the-Art Comparison

Microbenchmark. In order to compare our approach with existing solu-
tions, we extended the microbenchmarks from [25]. The Listing 1.2 depicts our
microbenchmark B5. The x and y vectors are of size n.T with (n,T) € N2, A
single thread produces T € N host-to-device data transfers (line 5), computa-
tion kernels (line 7) and device-to-host data transfers (line 10). These opera-
tions are not grouped in one construction to ensure the most asynchronism. The
target tasks triplets are ordered with dependencies, and up to T triplets can
be consumed concurrently by any threads. Each data transfers complexity is
O(n) bytes while computation kernels time complexity is O(n?) as shown in the
Listing 1.1 and 1.2.

Listing 1.1. daxpy-like function

1 |# define daxpy(A, X, Y, IO, IF) \

2 for (uint64_t I = I0 ; I < IF ; ++I) \

3 for (uint64_t J = 0 ; J <=1 ; ++J) \

4 Y[I] = Y[I] + A * X[J];

Listing 1.2. Target microbenchmark B5

1 |void B5(double a, double * x, double * y, int T, int n) {

2 # pragma omp parallel

3 # pragma omp single

4 for (int t = 0 ; t < T ; ++t) {

5 # pragma omp target update to(y[t*n:n]) nowait depend(inout:
y[t*nl)

6

7 # pragma omp target teams distribute parallel for nowait
depend (inout: y[t#*nl)

8 daxpy(a, x, y, t*n, n);

9

10 # pragma omp target update from(y[t*n:n]) nowait depend(inout:
y[t*nl)

11 }

12 |}

! https://gitlab.inria.fr/ropereir /iwomp2022.
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Environment. Our experiments run onto nodes made of two AMD EPYC 7TH12
64-core processors. Each processor has 4 NUMA domains with 32 GB memory
and 16 cores. Moreover, each processor has 2 Nvidia A100 GPUs connected to
their NUMA domain 0 and 2. We use a compact threads pinning on NUMA
domains 0 or 2 and we only use one GPU at a time. We set T' = 64 and vary
n in {24,25 ...,216}. Each point is the median of 5 runs, and the error bars
represent extremums. We used LLVM release 14.x suite, Nvidia/PGI 22.2 suite
and MPC-OpenMP runtime with LLVM release 14.x compiler and the patched
libomptarget. Every software was compiled with O3 optimizations enabled.

Results. Each run was wrapped into NVIDIA Nsight Systems tracing and each
runtime showed a similar execution time on the compute kernel and the two data
transfers, which means that the observed performance differences mostly come
from task scheduling. Figure?2 depicts the performances varying the number
of threads. For each runtime, the number of threads corresponds to the paral-
lel region, but for LLVM, it also corresponds to the number of Hidden Helper
Threads (HHT) using LIBOMP_NUM_HIDDEN_HELPER_THREADS environment vari-
able. The performances are represented as the speedup relative to LLVM with 8
OpenMP threads and 8 HHT. The best performance reaches about 625 GFlop/s
for n = 2'6 with both LLVM using 16 threads and MPC using 4 threads.

B5 main-llvm B5 main-nv B5 main-mpc

—4— 2 threads —#— 2threads —#— 2threads
35 4 threads 35 4 threads 35 4 threads

—- 8 threads —t- 8 threads * —t- 8 threads
30 W 16 threads 3.0 M- 16 threads 3.0 4 W 16 threads

P R ISR TS FY I PR FL Je 25 25 37 26 25 20 o 2h ob ol ok o B e S I % FYL R PR e
N N N

Fig. 2. OpenMP runtimes speedup relative to LLVM with 8 hidden helper threads

LLVM. We observe that the number of HHT can significantly impact perfor-
mances regarding the state of art performances. While the 8-threads default
configuration seems a reasonable compromise on average. We still observed up
to 1.14 speedup on fine-grain using 4 threads and 1.3 speedup using 16 threads
on medium grain.

Nvidia/PGI. Our installation is low-performing on fine-grain offloading (1% to
5% of LLVM performances). For coarser grains, performances improve but are
still about 8% slower. We also observe that the number of threads does not
impact performances. CUDA driver calls are only performed on a single thread,
making the GPU underloaded on the fine-grain configurations.
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MPC. Cooperative task scheduling on target tasks significantly improve per-
formances on fine-grain offloading. The performances are converging to LLVM-
OpenMP for coarser grains, likely because the GPU cores are becoming over-
loaded. Another benefit of the user-space scheduling approach is the small per-
formance variation with the number of threads. As LLVM results show, perfor-
mances vary by a factor up to 6 depending on the number of threads, on n = 219
between 2 and 16 threads. With MPC, this variation is maximum between 2 and
16 threads on n = 29 with a factor of 1.2.

Conclusion. This microbenchmark shows that our cooperative target tasks
approach efficiently schedules asynchronous GPU operations. Moreover, it
relieves the burden of hidden helper thread configuration from users - which
can significantly impact performances on LLVM - by delegating the scheduling
decisions from the operating system to the OpenMP task scheduler. Now comes
the question of performance on real-world applications.

4 Heterogeneous and Hybrid Task-Based LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH)
is a proxy application representing the core of hydrodynamics in real-world appli-
cations. It has been widely studied under different programming models but not
under fully asynchronous, hybrid, and heterogeneous task programming. Hence,
we decided to port this application to MPI+OpenMP (tasks-target) standards
and evaluate our scheduling approach.

4.1 Porting

Tasking. Original application parallel for loops were transformed to tasks
generating loops with dependencies in a single-producer /multi-consumer scheme.
Thus, we defined the parameter -te as the number of tasks decomposing a loop.

Heterogeneity. We separate computation offloading through the target construct
from data transfers between host to device with the target enter/exit data
directives. Order of execution is guaranteed through data dependencies which
allows independant operations to operate concurrently. In practice, we offloaded
the first loop of IntegrateStressForElems and the CalcKinematicsForElems
loops because they depend on host-to-device data transfers that can be over-
lapped with other CPU computation such as CalcAccelerationForNodes loops
for instance. Moreover, we also switch the standard malloc memory allocator
to cudaMallocHost to allocate pinned memory. Otherwise, the device to host
memory transfers cannot be overlapped with computation on the CPUs.?2 To
adjust GPU tasks granularity, GPU tasks were made “super-tasks” merging sev-
eral original CPU tasks. The -st parameter controls the number of original CPU
tasks composing a single GPU super-task.

2 https://docs.nvidia.com/cuda/cuda-driver-api/api-sync-behavior.html.
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Hybridation. MPI communications were finely nested within OpenMP tasks and
ordered with dependencies to support distributed computing. We are using the
MPC-OpenMP interoperability layer presented in [20] to automatically overlap
blocking calls through user-space task switches. Hence, tasks with MPI calls can
be inserted into the Task Dependency Graph (TDG), just like regular tasks.

Optimizations. We backported the global allocation of temporary work arrays
optimization proposed in [10] in the baseline version and our task-based version.
This optimization consists of preallocating reusable memory buffers instead of
reallocating them on every iteration in the original code.

Representativity, Correctness, Standard. Original authors provide guidelines on
porting to keep the code representative of ALE3D. Moreover, authors also pro-
vide minimal cases results to ensure the correctness of various studies [11,12]
When porting the application, we fully respected those guidelines and ensure
the correctness of our approach. Moreover, the source code of the application
and our MPC-OpenMP runtime are available online.? Note that our version is
not fully standard compliant. In particular, we are using some specific MPC-
OpenMP runtime call to bypass restrictions on depobj and iterators, and the
lack of support for the inoutset dependency type by compilers.

4.2 Evaluation

The upcoming experiments aims to demonstrate that the hybrid and hetero-
geneous task-based version of LULESH manage to overlap GPU/MPI asyn-
chronous operations with computation within a unified OpenMP task scheduler.

Experimental Setup. In this section, we always run 5 times the applica-
tion and presents the median and extremum values. We are using the same
AMD-+A100 nodes positioning MPI ranks per 16-core NUMA domain with 1
GPU. We run our experiments with the same software stack presented in the
Sect. 3.3. The tasks versions always run with MPC-OpenMP and the patched
libomptarget presented in the Sect.3.2. The problem dimension was set to
-s=264 which fills 80% of the NUMA domain memory capacity and 20% of the
GPU memory capacity. The parameters -te and -st represents the loop cutting
into tasks and must be evaluated for fine tuning.

Loop Cutting into Tasks. Our first experiment consisted in determining the
best value for -te on the given problem dimension. We fixed -st=1 and disable
GPU offloading, so that every tasks run onto CPUs. We varied the parameter
-te in [8,2048] on single rank runs and -i=32 iterations. This parameter changes
both the parallelism and the tasks grain: the more tasks, the more parallelism,

3 https://gitlab.inria.fr /ropereir /iwomp2022.
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but the finer the grain. The best performances were found for -te=1280 so this
is the value we used in next experiments.

In a second phase, we enabled GPU offloading and varied -st in [1,1280].
We compared the performance results obtained for each task cutting with the
OpenMP parallel-for baseline version and our task-based version disabling
GPU offloading. The results are depicted in the Fig. 3 and show that the lowest
execution time for -st=4 and -st=8. The right side is a zoom of the left side
to see the lowest execution time better. First, we observe that the task version

140 84
120

1001

80 4 . ——r

Time (ins.)
Time (ins.)

60 1

40 4
—-~ parallel-for

204 ——- task-based (no offload)
--=- task-based (with offload)

T T T T T T T T T T
21 23 25 27 29 21 23 25 27 20
-st -st

Fig. 3. Task merging into super-tasks study

significantly improves performances over the reference parallel-for version. After
investigating with perf [6], we found out that this important performance gain
comes from the data cache reuse. We are using a LIFO scheduling strategy that
favors the execution of the tasks direct successors. This strategy ends up follow-
ing the data movements, which significantly reduce cache misses and the process
pipeline stalls, improving the number of instructions per cycle from 0.52 to 0.90.
This phenomenon is called work time inflation and was already shown in [17].
Regarding the GPU offloading, we measured the best performances with -st=4.
We do not observe a significant performance gain with the GPU offloading and
tasks fibers enabled even with this finely tuned parameter. We have looked at
some possible explanations.

Overlapping and Scheduling. The Fig. 4 depicts the Gantt chart on an instance
of execution for the same problem size. The highlighted task is a GPU kernel
from the CalcKinematicsForElem loop. As you can see, the target task starts

Fig. 4. LULESH CalcKinematicsForElem offloading overlap
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and blocks on thread 0 to resume later on thread 1. Thread 0 overlaps the kernel
execution by switching to a CalcMonotonicQGradientsForElems task. While
the overlapping mechanism is working as expected, we found a few cases where
the threads have no more ready tasks on the CPU-side to overlap asynchronous
operations leading to short idle periods. Yet, we measured less than 1% of idle
time overall, which removes this hypothesis to explain the small performance
gain.

Workload, Arithmetic Intensity, Data Transfers. Using MPC tracing, we mea-
sured that the offloaded loops represent 15% of the overall work when running
on CPUs. This limits the amount of work available to the GPU, which ends
up being underused. Using NVIDIA Nsight System tracing, we measured 0.7 s.
Spent by the GPU in the computation kernels and 18.9s. Spent on the data
transfers. This also shows the short arithmetic intensity of the offloaded kernel.
This may perturbate the task execution on CPUs leading to work time inflation.
Still, the host and device memory transfers are mostly overlapped, as depicted
in the Fig. 4 so we would have expected higher performances.

Work Time Inflation. NVIDIA tools reported 512,000 data transfers of 0.38 MB
on average that our OpenMP runtime blindly schedules as normal tasks. We
decided to measure the impact of those many data transfers on CPU perfor-
mances, by running the task with GPU offloading under perf. We measured
that the offloading version has 14% fewer instructions than the pure-CPU ver-
sion - which corresponds to the 15% CPU work offloaded to GPU we measured
previously with MPC. But more importantly, perf shows that the instruction/-
cycle drops from 0.90 to 0.62 and MPC shows a +12% work time inflation on the
CPU tasks when enabling the offloading. In other words, the same tasks running
on CPUs take 12% more time when we offload some work to the GPU. We do
not yet have an exact explanation for this.

Conclusion. To conclude this preliminary experiments, setting -te=1280 and
-st=4 enables efficient loop cutting into tasks for the given problem size. Asyn-
chronous tasks execution between host and device increases the performance of
the LULESH application. However, this gain is compensated by the work time
inflation on CPU tasks and would need more investigation.

Weak-Scaling. This last experiment is a weak-scaling from 1 to 27 processes
distributed over 7 nodes. We are running the same problem but increasing the
number of iterations from 32 to 128. We used Open MPI 4.0.5 with MPC-
OpenMP interoperability library. Every version of the application scales very
well to 27 MPI ranks. Compared to the baseline version, both task versions
show a significant speedup, which comes from better cache reuse, as shown
in the previous experiment. We also observe a slight performance gain when
offloading work to the GPU. This result shows that (almost) standard OpenMP
asynchronous hybrid and heterogeneous task-based programming model enables
scalable applications (Fig.5).
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Fig. 5. LULESH weak-scaling from 1 to 27 GPUs

5 Conclusion and Perspectives

Heterogeneous supercomputers achieve high performance but add a new level of
asynchronicity. It makes the programming of efficient HPC applications challeng-
ing. OpenMP task-based programming is promising to compose every parallelism
level. However, the overlapping of data transfers and GPU offloading with com-
putations on CPUs are only possible if task suspension is efficiently supported.
In this paper, we propose a user-space cooperative target task design to enable
the execution of asynchronous and heterogeneous applications on distributed
machines.

We have integrated this mechanism into the MPC framework and the LLVM
libomptarget for the GPU offloading support. We show that the Cooperative
Target Task design offers more flexibility to the task scheduler than the Hidden
Helper Threads (HHT) state-of-art design which delegates scheduling decisions
to the operating system. We also have ported the LULESH proxy applications
to the MPI+OpenMP (tasks) programming standards for heterogeneous and dis-
tributed architectures. The results show that performances can benefit from
asynchronous executions. However, the gains observed are hidden by work time
inflation of CPU tasks, and, in future works, it requires more investigation to
understand this behavior.

Currently, we only support the asynchronous target task execution on
NVIDIA GPUs. As a perspective, we plan to add support for other GPU ven-
dors (AMD, Intel). It will likely be through patching other libomptarget RTL
plugin implementations to support asynchronous offloading in a portable way.
In this paper, the asynchronous target task design relies on a few non-standard
runtime capabilities. In particular, MPC-OpenMP tasks can run onto their own
fiber, block /unblock explicitly and resume on any threads. The current standard
taskyield directive and untied clause does not give such guarantees to the
programmer.
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