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Preface

The OpenMP API is a widely used application programming interface (API) for high-
level parallel programming in Fortran, C, andC++. TheOpenMPAPI has been supported
in most high-performance compilers and by hardware vendors since it was introduced
in 1997. Under the guidance of the OpenMP Architecture Review Board (ARB) and
the diligent work of the OpenMP Language Committee, the OpenMP specification has
evolved to version 5.2, which was released in November 2021. It supports parallelism
at several levels: offloading in heterogeneous systems, task-based processing across
processors, and vectorization in SIMD units. It also goes beyond parallel computing by
supporting processor affinity and through policies and mechanisms for using memory
and for matching directives and functions to computing environments.

Many of these advances were realized through major new features in version 5.0:
context selectors and the declare variant construct and metadirectives that use them; the
requires directive; memory allocators and support for deep copy of pointer-based data
structures; acquire and release semantics; task (memory) affinity; the descriptive loop
construct; reverse offloading; affinity display; and first- and third-party tools interfaces.
OpenMP version 5.0 also significantly enhanced many existing features, such as implicit
declare target semantics, support for task reductions, discontiguous array shaping in
target updates, and imperfectly nested loop collapsing. Versions 5.1 and 5.2 refined
these capabilities and augmented them for increased expressiveness and improved ease
of use.

With version 5.2 of the OpenMP API specification, the OpenMP ARB undertook a
great effort to regularizeOpenMPdirective syntax.While this effort involved deprecation
of existing syntax, it makes the OpenMPAPI easier to understand and to apply. The new
features that OpenMP API version 5.2 introduced include the ompx/omx sentinel and
API prefix for OpenMP extensions; extensions to metadirectives for Fortran programs;
improvements to memory allocators; and additions to the OpenMP tools interface.

While these changes are small advancements, work is already well advanced for
the definition of the OpenMP API specification version 6.0. Larger changes that we
anticipate for that version include the ability for threads to create tasks to be executed by
threads in a different parallel team and to enable free-agent threads to execute tasks in
addition to the threads explicitly created for that team. For heterogeneous programming,
the OpenMP Language Committee is exploring worksharing across target devices. This
volume includes a paper on this topic. Other features under consideration include support
for scoping memory consistency and cross-device atomic operations; descriptive array
language offload support in Fortran; and extensions of deep-copy features.

The OpenMP API remains important both as a stand-alone parallel programming
model and as part of a hybrid programming model for massively parallel, distributed
memory systems that consist of homogeneous manycore nodes and heterogeneous node
architectures, as found in leading supercomputers. As much of the increased parallelism
in the next exascale systems is expected to be within a node, OpenMP will become even
more widely used in top-end systems. Importantly, the features in OpenMP versions
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5.0 through 5.2 support applications on such systems in addition to facilitating portable
exploitation of specific system attributes.

The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA. Since then,
meetings have been held each year, in Reims, France; Beijing, China; West Lafayette,
USA; Dresden, Germany; Tsukuba, Japan; Chicago, USA; Rome, Italy; Canberra, Aus-
tralia; Salvador, Brazil; Aachen, Germany; Nara, Japan; Stony Brook, USA; Barcelona,
Spain, and Auckland, New Zealand. In 2020 and 2021, IWOMP continued the series
with technical papers and tutorials presented in a virtual conference setting, due to the
SARS-CoV-2 pandemic. Each workshop draws participants from research and devel-
opment groups and industry throughout the world. We are delighted to continue the
IWOMP series with a hybrid event hosted by University of Tennessee at Chattanooga,
TN, USA. We are grateful for the generous support of sponsors that help make these
meeting successful, they are cited on the conference pages (present and archived) at the
IWOMP website.

The evolution of the specification would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. The many additions in
the OpenMP versions 5.0 through 5.2 reflect the contribution by a vibrant and dedi-
cated user, research, and implementation community that is committed to supporting the
OpenMP API. As we move beyond the present needs, and adapt and evolve OpenMP to
the expanding parallelism in new architectures, the OpenMP research community will
continue to play a vital role. The papers in this volume demonstrate the use and eval-
uation of new features found in the OpenMP API. These papers also demonstrate the
forward thinking of the research community, and highlight potential OpenMP directions
and further improvements for systems on the horizon.

The IWOMP website (www.iwomp.org) has the latest workshop information, as
well as links to archived events. This publication contains the proceedings of the 18th
International Workshop on OpenMP, IWOMP 2022. The workshop program included
eleven technical papers, six vendor updates, two keynote talks, and two tutorials related
to the OpenMP API. All technical papers were peer reviewed by at least four different
members of the Program Committee. The work evidenced by these authors and the
committee demonstrates that the OpenMP API will remain a key technology well into
the future.

September 2022 Michael Klemm
Bronis R. de Supinski

Jannis Klinkenberg
Brandon Neth

https://www.iwomp.org/
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Enhancing MPI+OpenMP Task Based
Applications for Heterogeneous
Architectures with GPU Support
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Abstract. Heterogeneous supercomputers are widespread over HPC
systems and programming efficient applications on these architectures
is a challenge. Task-based programming models are a promising way to
tackle this challenge. Since OpenMP 4.0 and 4.5, the target directives
enable to offload pieces of code to GPUs and to express it as tasks with
dependencies. Therefore, heterogeneous machines can be programmed
using MPI+OpenMP(task+target) to exhibit a very high level of con-
current asynchronous operations for which data transfers, kernel execu-
tions, communications and CPU computations can be overlapped. Hence,
it is possible to suspend tasks performing these asynchronous operations
on the CPUs and to overlap their completion with another task exe-
cution. Suspended tasks can resume once the associated asynchronous
event is completed in an opportunistic way at every scheduling point. We
have integrated this feature into the MPC framework and validated it
on a AXPY microbenchmark and evaluated on a MPI+OpenMP(tasks)
implementation of the LULESH proxy applications. The results show
that we are able to improve asynchronism and the overall HPC perfor-
mance, allowing applications to benefit from asynchronous execution on
heterogeneous machines.

Keywords: OpenMP · GPU Computing · Distributed Application ·
Task programming

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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1 Introduction

Supercomputers race to the Exascale by significantly increasing the number of
computing units per node and diversifying the types of computing resources with
accelerators (e.g., GPU). Numerical simulation applications need to handle com-
putational complexity to remain efficient, but it is burdensome. Thus, parallel pro-
gramming models require some evolutions to follow this trend. They attempt to
leverage these hardware features in an almost transparent way while minimizing
the stress put on application developers. Fine-grain parallelism with synchroniza-
tion reductions is a solution to take advantage of many-core compute nodes.

The task programming model is thus an excellent alternative to the fork-
join model. A task represents a piece of code and dependencies can be applied
between tasks to represent partial order execution. Hence, a Task Dependency
Graph (TDG) depicts the parallel section. Once a task is created, it can be
executed instantly or deferred: programming makes asynchronous execution eas-
ier. Asynchronism is essential for the performance of applications designed for
supercomputers in order to maintain a high level of parallelism and not to lose
efficiency. A task-based programming model with dependencies has been added
in OpenMP 4.0 [7] and has continued to grow in importance since then. In addi-
tion, supercomputers are composed of many compute nodes linked through a
high-speed network. When coupling with MPI, the de facto standard used for
distributed environment, the task programming model favors asynchronism to
overlap communication with computation in distributed software [20–22].

OpenMP 4.0 introduces the target directives [18] to offload pieces of code to
computing accelerators like GPUs. Since the advent of OpenMP 4.5 [19], target
directives are explicit tasks with dependencies. This addition allows develop-
ers to write their entire application with a task-based approach homogeneously
for heterogeneous architectures. Task representation may help overlapping data
transfers with computation and then favor asynchronous execution between the
host and the device.

Programming efficient codes exploiting all the parallelism provided by hetero-
geneous supercomputers remains challenging. While MPI+OpenMP program-
ming model with tasks appears to be a good candidate for composing such
applications, it still requires some effort at the runtime level to be efficient. Run-
time stacking remains challenging, and the close collaboration between all the
components is not granted. MPC [5] is a parallel framework that proposes an
OpenMP implementation relying on a user-level thread scheduler. Recent work
demonstrates that MPC can take advantage of interoperability between MPI
and OpenMP(tasks) runtimes to enhance overall application performances [20].
In this paper, we propose the addition of GPU task support with the target
directives in MPI+OpenMP(tasks) applications to enhance asynchronous exe-
cutions thanks to user-space mechanisms. We have implemented this approach
in the MPC framework and evaluated it on the LULESH mini application [12].

The contributions of this paper are the followings:
– integration of target directives in the MPC-OpenMP task based program-

ming model,
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– addition of user-space scheduling mechanisms to enhance asynchronous GPU
executions,

– porting and evaluating MPI+OpenMP(tasks) LULESH mini application for
heterogeneous architectures.

The paper is organized as follows. Section 2 presents related work in task-
based programming models for distributed heterogeneous applications. Section 3
details the port of OpenMP target directives and its integration into the MPC
framework to enhance asynchronism thanks to the GPU task suspension support.
Section 4 sketches the porting of MPI+OpenMP(tasks) with GPU support for
some applications. Section 4.2 presents the performance evaluation of our work.
Finally, Sect. 5 concludes this work and depicts future work.

2 Related Work

Heterogeneous programming gained importance as GPU computing accelerators
are widespread in HPC systems. Tasked-based runtime systems have shown that
task programming is well designed for the composition of heterogeneous applica-
tions. StarPU [1], X-Kaapi [8] and OmpSs [2] enable developers to compose an
application with various types of tasks that can be performed both on the GPU
and the CPU. These runtime systems can overlap data transfers with computa-
tion through data prefetching techniques thanks to CUDA streams. Legion [3,9]
is also a task-based runtime designed for distributed machines with heteroge-
neous nodes. More recently, CudaGraph [14] enables developers to write or cap-
ture GPU operations only and organizes them into graphs to reduce kernel launch
overheads of CUDA. OpenMP [4,18] target constructs have been introduced in
the specification version 4.0. OpenMP 4.5 [19] defines target constructions as
tasks, and task programming seems to be growing for the future OpenMP 6.0.
OpenMP standard guarantees the perpetuation of simulation codes by integrat-
ing heterogeneous task programming [24].

Offloading data and kernels on GPU are blocking operations by default
but can be transformed into asynchronous ones to gain parallel efficiency.
In the same way that MPI communications can block the execution of the
tasks [23], synchronous GPU operations may degrade the performances. In 2015,
MPI+ULT (User Level Thread, Argobots) [16] proposed to run MPI code within
a user-level thread and make it yield whenever an MPI communication blocks.
MPI Detach [21] advocates programming through continuations. It enables the
addition of asynchronous callbacks on communication completion but implies
heavy code restructuration. TAMPI [22] and MPC [20] propose to transform
synchronous to asynchronous MPI calls finely nested into OpenMP tasks. These
works tackle the interoperability issue between MPI and OpenMP tasks but do
not consider heterogeneous applications. As OpenMP target constructs are now
explicit tasks, these approaches may be applied to GPU task programming.

In [25], several approaches are presented to overlap GPU operations with
computations thanks to OpenMP target constructions. They proposed to run
asynchronous target tasks within dedicated threads, which are preempted by
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blocking operations. These threads are called Hidden Helper Threads (HTT)
and are implemented as kernel threads, hence delegating scheduling decisions to
the operating system. Standardization of this approach was suggested in [15].
This paper presents a different design for asynchronous GPU calls overlap-
ping through user-space cooperative scheduling. This approach targets efficient
MPI+OpenMP(tasks) applications for heterogeneous supercomputers.

3 Targets with Asynchronous Tasks

The main goal of asynchronous offloading is to overlap accelerator operations
with useful work on the CPUs. With the task programming model, this is
achieved through task switching during asynchronous operation progression.

3.1 Cooperative Target Task Design

The general idea of the Cooperative Target Task Design is to have the target
tasks make asynchronous calls and explicitly preempt right before synchroniza-
tion points without the operating system scheduler intervening. Polling functions
ensure asynchronous events progression. On completion, the preempted task is
unblocked and may resume. This design strictly distinguishes threads and tasks
as depicted in the Fig. 1.

Fig. 1. Fiber task design : from physical core to user-space tasks

Threads are standard OpenMP threads represented as pthreads and mapped
1:1 with kernel threads and physical cores. They have their own user and kernel
space execution context made of a stack and registers copy. They also have their
own signal handlers, file descriptor table, and Thread Local Storage (TLS).

Tasks are standard OpenMP tasks made of a function, some data, and prop-
erties. In addition, they may also have their own user-space execution context
known as a fiber [13]. A task can run on top of a thread on its own fiber if it has
one or directly on the thread fiber otherwise. With the fiber capability, a task
can pause itself explicitly at any time of its execution and may resume on any
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threads (if untied) once it unblocks. Yet, asynchronous events still have to be
polled at some point. In our approach, this is done opportunistically on every
scheduling point defined in the OpenMP Specification.

3.2 OpenMP Target in MPC

Multi Processor Computing (MPC) [5] implements its own OpenMP runtime
through LLVM and GCC Application Binary Interface (ABI). It also improves
standard OpenMP task capabilities with fibers through Linux <ucontext.h>
interface for cooperative scheduling. Previous work has been done to finely
nest MPI communications into OpenMP(task) [20]. This suspend/resume task
mechanism allows generating asynchronism that can be usefully exploited by an
application to overlap MPI communications with computations. Implementing
OpenMP targets with the introduced design now only becomes a question of
Application Binary Interface (ABI) support and tasks cooperativity.

Implementation. To add target directive support to MPC, we chose to use
the LLVM libomptarget library because it is built as a sub-module of the LLVM
OpenMP project. The OpenMP Target part is slightly coupled with the rest of
the project, which will ease its integration with another OpenMP implementation
such as MPC-OpenMP.

MPC implements the LLVM ABI which makes possible to compile with clang
and to link with both the MPC-OpenMP runtime and the LLVM libomptarget
library. To make this combination functional, we had to modify several entry
points in the MPC-OpenMP runtime. First, when starting a program using
LLVM’s libomptarget, even before the main execution, the libomptarget
library is initialized through __kmpc_get_target_offload ABI which was
implemented in the MPC-OpenMP runtime. It reads the OMP_TARGET_OFFLOAD
environment variable from the OpenMP runtime and passes it to libomptarget.
Then, the device’s specific libraries are loaded. We also had to implement the sup-
port of the omp_get_default_device and omp_is_initial_device OpenMP
API in MPC-OpenMP.

Finally, to enable the expression of target directives as tasks with dependen-
cies, we added the support of the __kmpc_omp_target_task_alloc ABI. This
creates a task that encapsulates the incoming target region, generating a stan-
dard and opaque task for the OpenMP runtime. The internal task function points
to an entry point in the libomptarget responsible of starting and completing
the asynchronous GPU operation. The completion of GPU operations implies
synchronizations that end up blocking threads. Hence, the LLVM OpenMP run-
time executes asynchronous target tasks on dedicated Hidden Helper Threads
(HHT) [25] implemented as kernel threads. Thus, the operating system can pre-
empt threads blocking on GPU operations, and Standard OpenMP threads can
be rescheduled onto physical cores to progress other tasks in parallel.

In MPC-OpenMP, we decided to implement the Cooperative Target Task
design instead of the HHT design for its user-space scheduling flexibility. Still,
the target tasks end up synchronizing at some points blocking threads and cores.
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Enabling Asynchronism Through Cooperativity. In practice, synchro-
nizations happens at the end of target execution with a CUDA stream syn-
chronization within the libomptarget. Without cooperativity, the target tasks
ends up retaining the physical core. To tackle this issue, we patched the LLVM
libomptarget CUDA Runtime Library (RTL)1 to modify the implementation of
DeviceRTLTy.synchronize. It now inserts a CUDA Stream progression polling
function into MPC relying on cudaStreamQuery and explicitly yields until the
progression is completed. Moreover, programmers can also decide whether tar-
get tasks should have their own fibers and mark them as untied, so that they
may resume on any thread at any scheduling point. Hence, MPC threads will
not block cores and the thread will overlap the stream progression with useful
computation through pure user-space task switches. This approach enables fully
asynchronous support of OpenMP targets in MPC-OpenMP.

3.3 State-of-the-Art Comparison

Microbenchmark. In order to compare our approach with existing solu-
tions, we extended the microbenchmarks from [25]. The Listing 1.2 depicts our
microbenchmark B5. The x and y vectors are of size n.T with (n, T ) ∈ N

2. A
single thread produces T ∈ N host-to-device data transfers (line 5), computa-
tion kernels (line 7) and device-to-host data transfers (line 10). These opera-
tions are not grouped in one construction to ensure the most asynchronism. The
target tasks triplets are ordered with dependencies, and up to T triplets can
be consumed concurrently by any threads. Each data transfers complexity is
O(n) bytes while computation kernels time complexity is O(n2) as shown in the
Listing 1.1 and 1.2.

Listing 1.1. daxpy-like function
1 # define daxpy(A, X, Y, I0, IF) \
2 for (uint64_t I = I0 ; I < IF ; ++I) \
3 for (uint64_t J = 0 ; J <= I ; ++J) \
4 Y[I] = Y[I] + A * X[J];

Listing 1.2. Target microbenchmark B5
1 void B5(double a, double * x, double * y, int T, int n) {
2 # pragma omp parallel
3 # pragma omp single
4 for (int t = 0 ; t < T ; ++t) {
5 # pragma omp target update to(y[t*n:n]) nowait depend(inout:

y[t*n])
6
7 # pragma omp target teams distribute parallel for nowait

depend(inout: y[t*n])
8 daxpy(a, x, y, t*n, n);
9

10 # pragma omp target update from(y[t*n:n]) nowait depend(inout:
y[t*n])

11 }
12 }

1 https://gitlab.inria.fr/ropereir/iwomp2022.

https://gitlab.inria.fr/ropereir/iwomp2022
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Environment. Our experiments run onto nodes made of two AMD EPYC 7H12
64-core processors. Each processor has 4 NUMA domains with 32 GB memory
and 16 cores. Moreover, each processor has 2 Nvidia A100 GPUs connected to
their NUMA domain 0 and 2. We use a compact threads pinning on NUMA
domains 0 or 2 and we only use one GPU at a time. We set T = 64 and vary
n in {24, 25, ..., 216}. Each point is the median of 5 runs, and the error bars
represent extremums. We used LLVM release 14.x suite, Nvidia/PGI 22.2 suite
and MPC-OpenMP runtime with LLVM release 14.x compiler and the patched
libomptarget. Every software was compiled with O3 optimizations enabled.

Results. Each run was wrapped into NVIDIA Nsight Systems tracing and each
runtime showed a similar execution time on the compute kernel and the two data
transfers, which means that the observed performance differences mostly come
from task scheduling. Figure 2 depicts the performances varying the number
of threads. For each runtime, the number of threads corresponds to the paral-
lel region, but for LLVM, it also corresponds to the number of Hidden Helper
Threads (HHT) using LIBOMP_NUM_HIDDEN_HELPER_THREADS environment vari-
able. The performances are represented as the speedup relative to LLVM with 8
OpenMP threads and 8 HHT. The best performance reaches about 625 GFlop/s
for n = 216 with both LLVM using 16 threads and MPC using 4 threads.

Fig. 2. OpenMP runtimes speedup relative to LLVM with 8 hidden helper threads

LLVM. We observe that the number of HHT can significantly impact perfor-
mances regarding the state of art performances. While the 8-threads default
configuration seems a reasonable compromise on average. We still observed up
to 1.14 speedup on fine-grain using 4 threads and 1.3 speedup using 16 threads
on medium grain.

Nvidia/PGI. Our installation is low-performing on fine-grain offloading (1% to
5% of LLVM performances). For coarser grains, performances improve but are
still about 8% slower. We also observe that the number of threads does not
impact performances. CUDA driver calls are only performed on a single thread,
making the GPU underloaded on the fine-grain configurations.
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MPC. Cooperative task scheduling on target tasks significantly improve per-
formances on fine-grain offloading. The performances are converging to LLVM-
OpenMP for coarser grains, likely because the GPU cores are becoming over-
loaded. Another benefit of the user-space scheduling approach is the small per-
formance variation with the number of threads. As LLVM results show, perfor-
mances vary by a factor up to 6 depending on the number of threads, on n = 210

between 2 and 16 threads. With MPC, this variation is maximum between 2 and
16 threads on n = 29 with a factor of 1.2.

Conclusion. This microbenchmark shows that our cooperative target tasks
approach efficiently schedules asynchronous GPU operations. Moreover, it
relieves the burden of hidden helper thread configuration from users - which
can significantly impact performances on LLVM - by delegating the scheduling
decisions from the operating system to the OpenMP task scheduler. Now comes
the question of performance on real-world applications.

4 Heterogeneous and Hybrid Task-Based LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH)
is a proxy application representing the core of hydrodynamics in real-world appli-
cations. It has been widely studied under different programming models but not
under fully asynchronous, hybrid, and heterogeneous task programming. Hence,
we decided to port this application to MPI+OpenMP(tasks+target) standards
and evaluate our scheduling approach.

4.1 Porting

Tasking. Original application parallel for loops were transformed to tasks
generating loops with dependencies in a single-producer/multi-consumer scheme.
Thus, we defined the parameter -te as the number of tasks decomposing a loop.

Heterogeneity. We separate computation offloading through the target construct
from data transfers between host to device with the target enter/exit data
directives. Order of execution is guaranteed through data dependencies which
allows independant operations to operate concurrently. In practice, we offloaded
the first loop of IntegrateStressForElems and the CalcKinematicsForElems
loops because they depend on host-to-device data transfers that can be over-
lapped with other CPU computation such as CalcAccelerationForNodes loops
for instance. Moreover, we also switch the standard malloc memory allocator
to cudaMallocHost to allocate pinned memory. Otherwise, the device to host
memory transfers cannot be overlapped with computation on the CPUs.2 To
adjust GPU tasks granularity, GPU tasks were made “super-tasks” merging sev-
eral original CPU tasks. The -st parameter controls the number of original CPU
tasks composing a single GPU super-task.
2 https://docs.nvidia.com/cuda/cuda-driver-api/api-sync-behavior.html.

https://docs.nvidia.com/cuda/cuda-driver-api/api-sync-behavior.html
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Hybridation. MPI communications were finely nested within OpenMP tasks and
ordered with dependencies to support distributed computing. We are using the
MPC-OpenMP interoperability layer presented in [20] to automatically overlap
blocking calls through user-space task switches. Hence, tasks with MPI calls can
be inserted into the Task Dependency Graph (TDG), just like regular tasks.

Optimizations. We backported the global allocation of temporary work arrays
optimization proposed in [10] in the baseline version and our task-based version.
This optimization consists of preallocating reusable memory buffers instead of
reallocating them on every iteration in the original code.

Representativity, Correctness, Standard. Original authors provide guidelines on
porting to keep the code representative of ALE3D. Moreover, authors also pro-
vide minimal cases results to ensure the correctness of various studies [11,12]
When porting the application, we fully respected those guidelines and ensure
the correctness of our approach. Moreover, the source code of the application
and our MPC-OpenMP runtime are available online.3 Note that our version is
not fully standard compliant. In particular, we are using some specific MPC-
OpenMP runtime call to bypass restrictions on depobj and iterators, and the
lack of support for the inoutset dependency type by compilers.

4.2 Evaluation

The upcoming experiments aims to demonstrate that the hybrid and hetero-
geneous task-based version of LULESH manage to overlap GPU/MPI asyn-
chronous operations with computation within a unified OpenMP task scheduler.

Experimental Setup. In this section, we always run 5 times the applica-
tion and presents the median and extremum values. We are using the same
AMD+A100 nodes positioning MPI ranks per 16-core NUMA domain with 1
GPU. We run our experiments with the same software stack presented in the
Sect. 3.3. The tasks versions always run with MPC-OpenMP and the patched
libomptarget presented in the Sect. 3.2. The problem dimension was set to
-s=264 which fills 80% of the NUMA domain memory capacity and 20% of the
GPU memory capacity. The parameters -te and -st represents the loop cutting
into tasks and must be evaluated for fine tuning.

Loop Cutting into Tasks. Our first experiment consisted in determining the
best value for -te on the given problem dimension. We fixed -st=1 and disable
GPU offloading, so that every tasks run onto CPUs. We varied the parameter
-te in [8, 2048] on single rank runs and -i=32 iterations. This parameter changes
both the parallelism and the tasks grain: the more tasks, the more parallelism,

3 https://gitlab.inria.fr/ropereir/iwomp2022.

https://gitlab.inria.fr/ropereir/iwomp2022
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but the finer the grain. The best performances were found for -te=1280 so this
is the value we used in next experiments.

In a second phase, we enabled GPU offloading and varied -st in [1, 1280].
We compared the performance results obtained for each task cutting with the
OpenMP parallel-for baseline version and our task-based version disabling
GPU offloading. The results are depicted in the Fig. 3 and show that the lowest
execution time for -st=4 and -st=8. The right side is a zoom of the left side
to see the lowest execution time better. First, we observe that the task version

Fig. 3. Task merging into super-tasks study

significantly improves performances over the reference parallel-for version. After
investigating with perf [6], we found out that this important performance gain
comes from the data cache reuse. We are using a LIFO scheduling strategy that
favors the execution of the tasks direct successors. This strategy ends up follow-
ing the data movements, which significantly reduce cache misses and the process
pipeline stalls, improving the number of instructions per cycle from 0.52 to 0.90.
This phenomenon is called work time inflation and was already shown in [17].
Regarding the GPU offloading, we measured the best performances with -st=4.
We do not observe a significant performance gain with the GPU offloading and
tasks fibers enabled even with this finely tuned parameter. We have looked at
some possible explanations.

Overlapping and Scheduling. The Fig. 4 depicts the Gantt chart on an instance
of execution for the same problem size. The highlighted task is a GPU kernel
from the CalcKinematicsForElem loop. As you can see, the target task starts

Fig. 4. LULESH CalcKinematicsForElem offloading overlap
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and blocks on thread 0 to resume later on thread 1. Thread 0 overlaps the kernel
execution by switching to a CalcMonotonicQGradientsForElems task. While
the overlapping mechanism is working as expected, we found a few cases where
the threads have no more ready tasks on the CPU-side to overlap asynchronous
operations leading to short idle periods. Yet, we measured less than 1% of idle
time overall, which removes this hypothesis to explain the small performance
gain.

Workload, Arithmetic Intensity, Data Transfers. Using MPC tracing, we mea-
sured that the offloaded loops represent 15% of the overall work when running
on CPUs. This limits the amount of work available to the GPU, which ends
up being underused. Using NVIDIA Nsight System tracing, we measured 0.7 s.
Spent by the GPU in the computation kernels and 18.9 s. Spent on the data
transfers. This also shows the short arithmetic intensity of the offloaded kernel.
This may perturbate the task execution on CPUs leading to work time inflation.
Still, the host and device memory transfers are mostly overlapped, as depicted
in the Fig. 4 so we would have expected higher performances.

Work Time Inflation. NVIDIA tools reported 512,000 data transfers of 0.38 MB
on average that our OpenMP runtime blindly schedules as normal tasks. We
decided to measure the impact of those many data transfers on CPU perfor-
mances, by running the task with GPU offloading under perf. We measured
that the offloading version has 14% fewer instructions than the pure-CPU ver-
sion - which corresponds to the 15% CPU work offloaded to GPU we measured
previously with MPC. But more importantly, perf shows that the instruction/-
cycle drops from 0.90 to 0.62 and MPC shows a +12% work time inflation on the
CPU tasks when enabling the offloading. In other words, the same tasks running
on CPUs take 12% more time when we offload some work to the GPU. We do
not yet have an exact explanation for this.

Conclusion. To conclude this preliminary experiments, setting -te=1280 and
-st=4 enables efficient loop cutting into tasks for the given problem size. Asyn-
chronous tasks execution between host and device increases the performance of
the LULESH application. However, this gain is compensated by the work time
inflation on CPU tasks and would need more investigation.

Weak-Scaling. This last experiment is a weak-scaling from 1 to 27 processes
distributed over 7 nodes. We are running the same problem but increasing the
number of iterations from 32 to 128. We used Open MPI 4.0.5 with MPC-
OpenMP interoperability library. Every version of the application scales very
well to 27 MPI ranks. Compared to the baseline version, both task versions
show a significant speedup, which comes from better cache reuse, as shown
in the previous experiment. We also observe a slight performance gain when
offloading work to the GPU. This result shows that (almost) standard OpenMP
asynchronous hybrid and heterogeneous task-based programming model enables
scalable applications (Fig. 5).
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Fig. 5. LULESH weak-scaling from 1 to 27 GPUs

5 Conclusion and Perspectives

Heterogeneous supercomputers achieve high performance but add a new level of
asynchronicity. It makes the programming of efficient HPC applications challeng-
ing. OpenMP task-based programming is promising to compose every parallelism
level. However, the overlapping of data transfers and GPU offloading with com-
putations on CPUs are only possible if task suspension is efficiently supported.
In this paper, we propose a user-space cooperative target task design to enable
the execution of asynchronous and heterogeneous applications on distributed
machines.

We have integrated this mechanism into the MPC framework and the LLVM
libomptarget for the GPU offloading support. We show that the Cooperative
Target Task design offers more flexibility to the task scheduler than the Hidden
Helper Threads (HHT) state-of-art design which delegates scheduling decisions
to the operating system. We also have ported the LULESH proxy applications
to the MPI+OpenMP(tasks) programming standards for heterogeneous and dis-
tributed architectures. The results show that performances can benefit from
asynchronous executions. However, the gains observed are hidden by work time
inflation of CPU tasks, and, in future works, it requires more investigation to
understand this behavior.

Currently, we only support the asynchronous target task execution on
NVIDIA GPUs. As a perspective, we plan to add support for other GPU ven-
dors (AMD, Intel). It will likely be through patching other libomptarget RTL
plugin implementations to support asynchronous offloading in a portable way.
In this paper, the asynchronous target task design relies on a few non-standard
runtime capabilities. In particular, MPC-OpenMP tasks can run onto their own
fiber, block/unblock explicitly and resume on any threads. The current standard
taskyield directive and untied clause does not give such guarantees to the
programmer.
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Abstract. On modern heterogeneous HPC systems, the most popular
way to realize distributed computation is the hybrid programming model
of MPI+X (X being OpenMP/CUDA/etc.), as it has been proven to
perform well with various scientific applications. However, application
developers prefer to use a single coherent programming model over a
hybrid model, as maintainability and portability decrease per additional
model. Recent work [14] has shown that the OpenMP device offloading
model could be used to program distributed accelerator-based HPC sys-
tems with minimal changes to the application.

In this paper, we improve the performance of OpenMP remote offload-
ing through various runtime optimizations, guided by a detailed overhead
analysis. Evaluation of our work is conducted using an industrial-level
seismic modeling code, Minimod, as well as two proxy-apps, XSBench
and RSBench. Results show that, compared to the baseline version,
our optimizations can reduce offloading latencies by up to 92%, and
raise application parallel efficiency by at least 25.2% when running with
16 GPUs. We then point out why strong scaling is still difficult with
OpenMP remote offloading, and propose further improvements to the
runtime to increase scalability.

Keywords: OpenMP · GPGPU · distributed computing

1 Introduction

As we move towards extreme heterogeneity, it is increasingly important to uti-
lize HPC accelerators like GPUs efficiently in the distributed setting. Also, the
great variety in accelerator software/hardware makes the portability and main-
tainability of applications as important as reducing the time to solution.
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As many of the distributed programming models were designed with only the
CPUs as their primary processing elements, users often have to add additional
layers of domain decomposition and use vendor-specific APIs to take advantage
of the accelerators. For code initially written in intra-node programming models,
they often require even more effort to port to a hybrid programming model that
can run across multiple nodes. This increases the development burden and poses
great portability challenges.

OpenMP [13] is the de facto HPC programming model for shared-memory
parallelism. Version 4.0 of OpenMP introduced device offloading to execute code
on accelerators, without the user having to write device kernels in vendor-specific
APIs. Recent work by Patel and Doerfert [14] has shown that through exten-
sions in the LLVM/OpenMP runtime system, specification-conforming OpenMP
offloading applications can seamlessly utilize accelerators attached to remote
compute nodes. This shows the potential for transforming OpenMP to an all-
encompassing programming model for writing performance portable and main-
tainable scientific application in the era of heterogeneous supercomputing, as an
alternative to hybrid programming models like MPI+X.

In this paper, we optimize the previous work and push OpenMP remote
offloading performance further. We then point out limitations that are deeply
rooted in the design of the LLVM/OpenMP runtime, in the hope to stir up
discussions about remote offloading in the OpenMP community, and inspire
future OpenMP runtime designs. Our main contributions are the following:

– A detailed overhead analysis of the OpenMP remote offloading plugin.
– A series of runtime optimizations that significantly reduce the overhead of

the remote offloading process.
– An evaluation of the optimized plugin using proxy-apps of real-world HPC

applications.
– A discussion of the limitations of the plugin, as well as proposals for further

improvements.

The paper is organized as follows: Sect. 2 describes LLVM/OpenMP remote
offloading and the related work, Sect. 3 identifies performance issues and present
the corresponding optimizations, evaluation of our work is described in Sect. 4,
and finally Sect. 5 concludes the work and talk about future directions.

2 Background

In this section, we describe the details of how OpenMP remote offloading works
in LLVM, as well as related work about the technologies and cases used later in
the experimental section.

2.1 OpenMP Offloading in LLVM/OpenMP

An OpenMP application’s offloading directives are lowered to functions calls into
the Host Runtime (libomptarget.so), which is the entry point of all offloading
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Fig. 1. LLVM/OpenMP device offloading workflow for CUDA devices

operations in the LLVM/OpenMP offloading workflow shown in Fig. 1. The Host
Runtime is target-agnostic, and it loads the Device Runtime plugin according
to the type of device code embedded in the fat application binary. For example,
it can load the CUDA plugin libomptarget.rtl.cuda.so, which makes CUDA
calls to transfer data and launch kernels.

The Host Runtime talks to the Device Runtime through the Device Plugin
Interface, which is a small set of target-agnostic C functions, to perform offload-
ing operations (e.g. __tgt_rtl_data_alloc()). All Device Runtime plugins must
implement this interface, hiding low-level details from the Host Runtime.

2.2 The Remote Offloading Plugin

Fig. 2. LLVM/OpenMP remote offloading workflow for CUDA devices

The idea of the remote offloading plugin is to use remote procedure calls (RPC)
to relay the plugin interface calls to remote processes, so the application can
access devices on other machines transparently. This plugin implements the core
set of the Device Plugin Interface to talk to the Host Runtime. OpenMP appli-
cation are compiled as usual and no code modification is required except for
doing multi-device offloading using the device(n) clause. The plugin is also
compatible with OpenMP asynchronous offloading (e.g. the nowait clause),
thanks to the orthogonal design of the concurrent offloading mechanism in
LLVM/OpenMP [24].

In Fig. 2, the Client stands for the OpenMP application, while the Server is
a binary provided by the remote offloading plugin. The user runs one instance of
the Client, and one instance of the Server per GPU node. Once connected, the
Client can offload to all the GPUs managed by all the Servers. Both the Host
Runtime and the Device Runtime plugin are working as they normally would,
unaware of the Client-Server pair in the middle.

For each plugin interface call, the Client serializes the function arguments
and sends one blocking RPC request to the Server. The server will deserialize
incoming requests and execute the corresponding device operation, then reply to
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the Client, so it can proceed. For a map(to/from) operation, the buffer must also
be serialized. The Server uses a task queue and a pool of threads to handle the
RPC requests, so that offloading activities on one GPU does not block activities
on other GPUs managed by the same Server.

Originally, the remote offloading plugin uses gRPC [5] as its RPC backend,
since it is the natural choice. Then an UCX [22] backend was added since it can
utilize high-performance interconnects like Infiniband, thus bringing the poten-
tial to improve the offloading application’s performance to a level comparable to
that of its MPI+X equivalent.

2.3 Related Work

OpenMP single-node multi-GPU offloading has been previously explored [7,28],
but standard OpenMP does not go beyond the node boundary and the most pop-
ular approach to program distributed-memory GPUs is still the hybrid model of
MPI+X, X being a local GPU programming model such as CUDA or OpenMP.
An alternative that has received some attention is to replace MPI with a task-
based programming model that also interoperates with CUDA; among them are
Charm++ [1], UPC++ [2], Legion [3], and Chapel [4]. NVSHMEM [6] enables
remote communication directly from the CUDA kernels. Intel Cluster OpenMP
uses a Distributed Shared Memory runtime system to run OpenMP CPU par-
allel regions across nodes [23]. Kokkos Remote Spaces [8] is an extension to the
Kokkos programming model [27] to support distributed shared memory for pro-
gramming GPUs and other devices. rCUDA [19] is a framework for remote GPU
virtualization, in which a set of GPUs can be shared and remotely accessed by
several clients simultaneously.

Minimod [10] is one of the applications used in this study. Implementations of
Minimod have been evaluated with OpenMP tasks [18], and in distributed setups
using the Legion programming model targeting CPUs [17] and GPUs [16,21].
The present paper evaluates a version of Minimod using OpenMP target regions
wrapped in tasks to make use of multiple GPUs simultaneously.

3 Performance Analysis and Optimizations

This work focuses on the UCX backend of the remote offloading plugin for its per-
formance potentials. Additionally, the devices are running the exact same kernel,
so scalability issues mostly arise from runtime and communication overheads.

3.1 Runtime Optimizations

To identify the performance issues of the remote offloading process, we profiled a
microbenchmark that only does host-device transfers of fixed-size buffers, using
the map clause. The selected results of running on a single remote GPU are shown
in Fig. 3. Clearly, the remote offloading plugin’s internal overhead dominates the
communication latency for all message sizes. This is a direct result of the RPC
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Fig. 3. Breakdown of remote map(from) latency

mechanism: the layers of abstractions to handle different offloading operations
and communication backends, communication progression/completion tracking,
data (de)serialization, and other bookkeeping operations. Since the plugin uses
blocking RPCs, all these overheads are translated to map latencies, which lead
to longer idle periods on the device.

Fig. 4. Breakdown of remote map(from) latency, with runtime optimizations

UCX provides active messages for inter-node RPC, but its API is too primi-
tive to relay the plugin interface functions. The original remote offloading plugin
implemented its own RPC mechanism based on UCX’s message passing API.
We first improve the plugin from a software engineering point of view: use suit-
able C++ features to reduce the overhead of the serializer and other internal
abstractions, speedup UCX communication progression to reduce send-receive
latency, etc. The latency breakdown after applying our runtime optimizations is
shown in Fig. 4. Although we have achieved around 6% overhead reduction for
small buffers, the optimizations’ effectiveness drops for larger ones.

3.2 CUDA-Aware Communication

The plugin’s RPC serializer is a major source of overhead. Similar to MPI, UCX
is mostly designed to send contiguous chunks of data between buffers on different
processes. To perform RPC, which is a high-level operation, the Client must
serialize function arguments and all the buffers involved before passing them to
UCX, and the Server must do the reverse. Additionally, for map(to/from) the
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Server needs a staging buffer to store a temporary copy of the mapped buffer,
to pass the mapped data between the serializer and the device API.

To map a host buffer to the device using the __tgt_rtl_datasubmit plugin
interface, a regular device plugins does a device allocation, an HtoD memcpy and
a device synchronization call. But for the remote offloading plugin, the RPC
serializer does multiple extra memory allocations and memcpy’s. These overheads
are repeated on both the Client and the Server and grows linearly with the
size of the buffer, which is why the runtime overhead accounts for such a large
percentage of the total latency.

To further reduce the overhead, we utilize the UCX’s CUDA support to
send and receive data directly from the GPU, eliminating the need for a stag-
ing buffer on the Server and other serializer overhead. When this mechanism
is active, a map(to/from) operation will be broken into two steps: an RPC
request that only sends the metadata (device buffer address, buffer size, etc.),
and a second UCX send/receive request that transfers data directly between the
Client’s host memory and the Server’s device memory. The two-step approach
has its own associated overhead: if the mapped buffer is too small, then it may
be faster to serialize everything and use a single RPC request. Therefore, we
introduce an environment variable to specify the smallest buffer size to activate
the CUDA-aware UCX mechanism (SPLIT_THRESH). This threshold is affected
by many factors and should be experimentally determined for different software
and hardware combinations.

3.3 Thread Contention and NUMA-GPU Affinity

Fig. 5. Breakdown of remote map(from) latency, with all optimizations applied

There are several other factors that affect map latency. In UCX, the Worker object
provides independent progression and completion of communication operations.
This means that even if all traffic goes through the same network card, parallel
injection from multiple Workers can still improve message throughput through
overlapping send-receive operations in the higher levels of the runtime system,
especially when the combined message flow is not large enough to saturate the
hardware bandwidth. Originally, the Server uses a single Worker to serve all the
GPUs it has access to. This means the Worker must use locks to prevent data
races caused by concurrent access from different threads, essentially serializing
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many overlappable operations and reducing the injection rate [9]. In this work,
we use one Server (Worker) per GPU, to reduce thread contention.

Also, it is important to make sure that the Server is running in the NUMA
node that is the closest to the GPU it is offloading to. Modern heterogeneous
systems tend to have more than one GPU per compute node, and different GPUs
are local to different CPU sockets, if there is more than one socket. Additionally,
HPC systems like ORNL Summit and LLNL Sierra split the PCIe lanes of the
Infiniband network card evenly between the two sockets [29]. This means the
application must drive communication from both NUMA nodes in a balanced
fashion, to maximize communication performance. In our experiments, host-
device transfers that cross the NUMA boundary can have up to 23% higher
latencies than that of the transfers within the same NUMA node. In all our
experiments, we pin the Server process to the NUMA node that the GPU is
connected to, and UCX will pick up the closest network port.

Figure 5 shows the latency breakdown after applying the all optimizations
mentioned in this section, with SPLIT_THRESH set to 222 bytes. The results show
that we have achieved at least 11% reduction in overheads when compared to
the results of the original plugin in Fig. 3, for all buffer sizes. Now, the plugin
internal overhead is always below 70% of the remote data mapping latency. Note
that the RPC overhead is a constant (5.328µs), but its percentage in the total
latency becomes over 20% for the smaller buffers, as a result of significantly
reduced absolute latency.

4 Evaluation

We evaluate our optimizations using microbenchmarks and proxy-apps on the
Cypress computing system at TotalEnergies R&T in Houston. Each Cypress
node contains one AMD EPYC 7F52 16-core CPU, one Mellanox ConnectX-6
200 Gb/s Infiniband network card, and four NVIDIA A100 GPUs. The sys-
tem runs CentOS 8 with Linux kernel 4.18.0, CUDA 11.5.119 and MOFED-5.1-
2.5.8.0. We use UCX commit 5879c44 of the v1.13x branch, with the GPUDirect
RDMA [12] and GDRCopy [11] transports enabled.

As the baseline, we use commit 6120be4 of the original remote offloading plu-
gin, which is based on commit 67ab4c0 of the LLVM trunk. The remote offload-
ing plugin with only runtime optimizations is referred to as Opt1; while plugin
version Opt2 has all optimizations applied. Since we can eliminate unnecessary
overhead by allowing the Client to offload to its local GPUs directly (instead of
go through the remote plugin), we have included results that enabled Client-side
offloading, which we refer to as Opt2L. All three proxy-apps are tested in small
and large problem sizes.

4.1 Microbenchmarks

Figure 6 shows the remote GPU to/from mapping latencies of different buffer
sizes. Compared to the baseline, the Opt2 version of the plugin reduces the
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Fig. 6. Remote GPU map(to/from) latency

message latency by ∼72% for small buffers, and ∼90% for large ones. With
Opt2’s lower device buffer mapping latencies, the OpenMP application can
launch target regions faster, thus obtaining better scalability.

Opt1 and Opt2 show little to no speedup for buffer size around 219 bytes. This
is caused by the compound effects of UCX switching its internal communication
protocol and our SPLIT_THRESH setting for enabling CUDA-aware communica-
tion, since we used the same setting for all buffer sizes instead of the best settings
for each size. For real applications, the user should adjust the SPLIT_THRESH,
as well as UCX’s protocol switching thresholds (zero-copy, rendezvous, etc.), so
that the latencies of the most frequently mapped buffer sizes are optimal.

4.2 Weak Scaling - RSBench and XSBench

XSBench [26] and RSBench [25] are proxy-apps that capture the core computa-
tion of the Monte Carlo neutron transport code OpenMC [20], while XSBench is
memory-bound and RSBench is compute-bound. We use the OpenMP offloading
version of both proxy-apps, with the same modifications used in [14] to enable
multi-device offloading. We run the proxy-apps on 4 to 16 GPUs, and normalized
the run times with respect to the run time of using 4 local GPUs without the
remote offloading plugin. We keep the amount of work and data transferred per
GPU constant to evaluate the weak scalability of the plugin.

Kernels execution time, total host-device transfer size per kernel, and the
total number of host-device transfers per kernel are listed in Table 1. The number
of transfers per kernel launch is important since it is proportional to the number
of RPC requests for device buffer allocation/free, and the actual data transfer.
So XSBench has 19 × 3 + 1 = 58 RPC requests per kernel launch, while the
number is 27 × 3 + 1 = 82 for RSBench.
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Table 1. XSBench/RSBench kernel durations and per-kernel launch data transfers

Kernel-Small Kernel-Large Transfer-Small Transfer-Large No. Transfers

XSBench 56.38 ms 271.6 ms 240.4 MB 5648 MB 19
RSBench 231.4 ms 1371 ms 5.325 MB 28.92 MB 27

Fig. 7. Weak scaling results of XSBench

XSBench results are presented in Fig. 7. For the horizontal axis, N(n, 4n)
stands for running the benchmark on n nodes and using all 4n GPUs. The
baseline version running the large setup crashes since it exhausts all available
host memory. Again, our optimized implementations are significantly faster than
the baseline. For 16 GPUs, Opt2L increases the parallel efficiency by 25.2%.
While we can achieve a 56% parallel efficiency on 16 GPUs for the small setup,
only 6% was obtained on 16 GPUs for the large setup. This is because the
XSBench-large transfers 5.5 GB of data per kernel launch, and all of them must
go through the Client’s network card without effective overlap. XSBench-large
is therefore severely communication-bound and does not scale well.

RSBench results in Fig. 8 shows the effectiveness of our optimizations for
compute-bound applications with longer kernel execution times and smaller data
transfers. On 16 GPUs, all three optimized versions obtained at least 66% parallel
efficiency, while the baseline version goes as low as 34%.

4.3 Strong Scaling - Minimod

Minimod [10] is a proxy application that simulates the propagation of waves
through subsurface models, by solving a finite difference discretized form of the
wave equation. In this work, we use one of the kernels contained in Minimod:
the acoustic isotropic propagator in a constant-density domain [15].
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Fig. 8. Weak scaling results of RSBench

Table 2. Minimod total kernel durations and data transfers (per iteration)

Kernel-Small Kernel-Large Transfer-Small Transfer-Large No. Transfers

171.9 µs 6733 µs 182.2 KB 4032 KB 2

Fig. 9. Simplified Minimod multi-GPU offloading and halo exchange workflow

Minimod natively supports multi-device OpenMP offloading using target
regions wrapped in OpenMP tasks (see Fig. 9), and is strong-scaling in
nature [18]. The 3D grid used in Minimod is partitioned along the X-axis (i.e.
sliced parallel to the Y Z-plane), regardless of the number of devices it is running
on. Therefore, the amount of halo data exchanged between the devices is only
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related to the size of the grid, since the area of the cross-section of the grid is
always dimY × dimZ. However, since the offloading Servers are only connected
to the Client, not to each other, the halo data must all be relayed by the Client,
creating a central communication bottleneck. Minimod’s kernel durations and
data transfer sizes for running on two devices are listed in Table 2.

Fig. 10. Strong scaling results of Minimod

Figure 10 shows Minimod strong scaling results. Again, Opt2 and Opt2L
outperforms other versions of the plugin significantly, showing the effectiveness
of our optimizations. However, for all configurations, the run time increases
as we use more GPUs. The reason is: as the number of device increases, the
(already short) execution time of the kernel decreases linearly, but the halo
exchange overhead grows linearly. Additionally, all halo exchange traffic must
go through the Client, which leads to high communication contention. Since the
communication overhead dominates the execution time, we see no performance
improvement for all configurations.

4.4 Discussions

Our work has reduced the overhead of the LLVM/OpenMP remote offloading
plugin by a large margin, and is especially effective for weak scaling of compute-
bound applications. But as shown in Fig. 5, plugin overhead still accounts for
more than 60% of the communication latency, which is a road blocker for higher
strong scalability. One solution is to implement the asynchronous Device Plugin
Interface functions in the remote plugin, using UCX asynchronous communi-
cation APIs. We will need to replicate CUDA Stream functionalities to keep
track of asynchronous events and handle dependencies, but this will hide and/or
reduce the aforementioned runtime overheads. We could also implement message



28 W. Lu et al.

aggregation to reduce the total number of RPC requests, as many transfers listed
in Table 1 are only sending a single scalar.

OpenMP’s flat device model can be extended to expose the device topology to
the users, so they can do hierarchical computation decomposition. Similar to an
MPI shared-memory communicator, an OpenMP node construct can enumerate
the legion of devices attached to the same machine. We could also do implicit
hierarchical offloading by presenting all GPUs attached to the same NUMA node
as a single device, and map buffers to CUDA Managed Memory.

The current design of the LLVM/OpenMP runtime can also be extended
to push the scalability further. Currently, the Device Plugins know very little
about the big picture and rely on the Host Runtime’s prescriptive offloading
instructions, creating the central bottleneck. We could increase the autonomy of
the Device Plugins and give descriptive orders whenever possible. A partitioned
global address space model can also be introduced to support direct inter-node
device-to-device transfers.

Lastly, the single-Client multi-Server architecture must be replaced with
a more SPMD-like one, for the remote offloading plugin to work for a wider
spectrum of applications. Then current centralized approach not only creates
a communication bottleneck, but also limits the amount of host memory avail-
able to the application to be the amount of memory installed on the Client’s
node. One specification-breaking solution is to encourage the users to allocate
all host buffers that will be interacting with the device i inside a target data
device(i) construct. Then in run-time we “offload” the entire target data
region to device i’s node, so that the host code inside that region also runs on
the remote node and can utilize its main memory. Alternatively, we could use
a page migration-based mechanism to transparently extend the amount of host
memory, similar to Intel Cluster OpenMP [23].

5 Conclusions and Future Work

Remote OpenMP device offloading is a promising alternative to MPI+X, as
it improves the portability and maintainability of the application by covering
both inter-node and intra-node computation in a single programming model.
In this work, we analyzed the performance bottlenecks of the LLVM/OpenMP
remote offloading plugin, and have identified the RPC serializer and the buffered
communication mechanism as two major sources of overhead. We then applied
optimizations that reduce the plugin’s internal overhead, and enabled CUDA-
aware UCX communications to accelerate the transportation of large buffers.
Evaluation using microbenchmarks shows that our optimizations have reduced
map latencies by up to 92%. With lower data transfer latencies, we have achieved
a minimum of 25.2% increase of parallel efficiency in proxy-apps running on 16
GPUs. Our optimizations are especially effective for weak scaling proxy-apps
that have relatively long-running kernels and small data transfers.

However, weak scaling with large data transfers and strong scaling still prove
to be challenging despite our optimizations. We propose a few runtime modi-
fications to further reduce the plugin’s latency and improve its scalability, but
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ultimately we believe extending the OpenMP runtime design is required to reach
performance comparable to MPI+X.

For future work, we can implement the asynchronous plugin interface to hide
plugin internal overhead, add an MPI backend to further improve the plugin’s
portability, and extend the offloading Server to support direct Server-to-Server
transfers.

Acknowledgements. We would like to thank TotalEnergies EP Research and Tech-
nologies for their support of this work. This research was supported in part by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Depart-
ment of Energy Office of Science and the National Nuclear Security Administration,
in particular its subproject on Scaling OpenMP with LLVM for Exascale performance
and portability (SOLLVE).

This research was also funded in part by the United States Department of Defense,
and was supported by resources at Los Alamos National Laboratory, operated by Triad
National Security, LLC under Contract No. 89233218CNA000001.

References

1. Acun, B., et al.: Parallel programming with migratable objects: Charm++ in prac-
tice. In: SC 2014: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 647–658 (2014). https://doi.
org/10.1109/SC.2014.58

2. Bachan, J., et al.: UPC++: a high-performance communication framework for
asynchronous computation. In: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 963–973 (2019). https://doi.org/10.1109/
IPDPS.2019.00104

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: SC 2012: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 1–11, November 2012. https://doi.org/10.1109/SC.2012.71

4. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007). https://doi.
org/10.1177/1094342007078442

5. gRPC community: grpc. https://grpc.io/about/
6. Hsu, C.H., Imam, N., Langer, A., Potluri, S., Newburn, C.J.: An initial assess-

ment of NVSHMEM for high performance computing. In: 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1–10
(2020). https://doi.org/10.1109/IPDPSW50202.2020.00104

7. Kale, V., Lu, W., Curtis, A., Malik, A.M., Chapman, B., Hernandez, O.: Toward
supporting multi-GPU Targets via taskloop and user-defined schedules. In: Milfeld,
K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS,
vol. 12295, pp. 295–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58144-2_19

8. Kokkos: kokkos remote spaces. https://github.com/kokkos/kokkos-remote-spaces
9. Lu, W., Curtis, T., Chapman, B.: Enabling low-overhead communication in multi-

threaded OpenSHMEM applications using contexts. In: 2019 IEEE/ACM Paral-
lel Applications Workshop, Alternatives To MPI (PAW-ATM), pp. 47–57 (2019).
https://doi.org/10.1109/PAW-ATM49560.2019.00010

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://grpc.io/about/
https://doi.org/10.1109/IPDPSW50202.2020.00104
https://doi.org/10.1007/978-3-030-58144-2_19
https://doi.org/10.1007/978-3-030-58144-2_19
https://github.com/kokkos/kokkos-remote-spaces
https://doi.org/10.1109/PAW-ATM49560.2019.00010


30 W. Lu et al.

10. Meng, J., Atle, A., Calandra, H., Araya-Polo, M.: Minimod: a finite difference
solver for seismic modeling (2020). https://arxiv.org/abs/2007.06048

11. NVIDIA: Gdrcopy. https://github.com/NVIDIA/gdrcopy
12. NVIDIA: Nvidia cuda gpudirect rdma. https://docs.nvidia.com/cuda/gpudirect-

rdma/index.html
13. OpenMP architecture review board: OpenMP application programming inter-

face, November 2018. https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-5.0.pdf, version 5.0

14. Patel, A., Doerfert, J.: Remote openmp offloading. In: Varbanescu, A.L., Bhatele,
A., Luszczek, P., Marc, B. (eds.) High Performance Computing. pp. 315–333.
Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-
031-07312-0_16

15. Qawasmeh, A., Hugues, M.R., Calandra, H., Chapman, B.M.: Performance porta-
bility in reverse time migration and seismic modelling via OpenACC. Int. J.
High Perform. Comput. Appl. 31(5), 422–440 (2017). https://doi.org/10.1177/
1094342016675678

16. Raut, E., Anderson, J., Araya-Polo, M., Meng, J.: Evaluation of distributed tasks in
stencil-based application on GPUs. In: 2021 IEEE/ACM 6th International Work-
shop on Extreme Scale Programming Models and Middleware (ESPM2), pp. 45–52
(2021). https://doi.org/10.1109/ESPM254806.2021.00011

17. Raut, E., Anderson, J., Araya-Polo, M., Meng, J.: Porting and evaluation of a dis-
tributed task-driven stencil-based application. In: Proceedings of the 12th Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores, pp. 21–30. PMAM 2021. Association for Computing Machinery, New
York (2021). https://doi.org/10.1145/3448290.3448559

18. Raut, E., Meng, J., Araya-Polo, M., Chapman, B.: Evaluating performance of
OpenMP tasks in a seismic stencil application. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp. 67–81.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2_5

19. Reaño, C., Silla, F., Shainer, G., Schultz, S.: Local and remote GPUs perform
similar with EDR 100g InfiniBand. In: Proceedings of the Industrial Track of the
16th International Middleware Conference. Middleware Industry 2015. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2830013.
2830015

20. Romano, P.K., Forget, B.: The OpenMC monte Carlo particle transport code. Ann.
Nucl. Energy 51, 274–281 (2013). https://doi.org/10.1016/j.anucene.2012.06.040

21. Sai, R., Mellor-Crummey, J., Meng, X., Araya-Polo, M., Meng, J.: Accelerating
high-order stencils on GPUs. In: 2020 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS), pp.
86–108 (2020). https://doi.org/10.1109/PMBS51919.2020.00014

22. Shamis, P., et al.: UCX: an open source framework for HPC network APIs and
beyond. In: 2015 IEEE 23rd Annual Symposium on High-Performance Intercon-
nects, pp. 40–43 (2015). https://doi.org/10.1109/HOTI.2015.13

23. Terboven, C., Mey, D., Schmidl, D., Wagner, M.: First experiences with intel cluster
OpenMP. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol.
5004, pp. 48–59. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
79561-2_5

24. Tian, S., Doerfert, J., Chapman, B.: Concurrent execution of deferred OpenMP
target tasks with hidden helper threads. In: Chapman, B., Moreira, J. (eds.) Lan-
guages and Compilers for Parallel Computing, pp. 41–56. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-95953-1_4

https://arxiv.org/abs/2007.06048
https://github.com/NVIDIA/gdrcopy
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-031-07312-0_16
https://doi.org/10.1007/978-3-031-07312-0_16
https://doi.org/10.1177/1094342016675678
https://doi.org/10.1177/1094342016675678
https://doi.org/10.1109/ESPM254806.2021.00011
https://doi.org/10.1145/3448290.3448559
https://doi.org/10.1007/978-3-030-58144-2_5
https://doi.org/10.1145/2830013.2830015
https://doi.org/10.1145/2830013.2830015
https://doi.org/10.1016/j.anucene.2012.06.040
https://doi.org/10.1109/PMBS51919.2020.00014
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1007/978-3-540-79561-2_5
https://doi.org/10.1007/978-3-540-79561-2_5
https://doi.org/10.1007/978-3-030-95953-1_4


Towards Efficient Remote OpenMP Offloading 31

25. Tramm, J.R., Siegel, A.R., Forget, B., Josey, C.: Performance analysis of a reduced
data movement algorithm for neutron cross section data in Monte Carlo simula-
tions. In: Markidis, S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 39–56.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15976-8_3

26. Tramm, J.R., Siegel, A.R., Islam, T., Schulz, M.: XSBench - the development
and verification of a performance abstraction for Monte Carlo reactor analysis. In:
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, Kyoto
(2014). https://www.mcs.anl.gov/papers/P5064-0114.pdf

27. Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale
Era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/
10.1109/TPDS.2021.3097283

28. Yan, Y., Lin, P.H., Liao, C., de Supinski, B.R., Quinlan, D.J.: Supporting mul-
tiple accelerators in high-level programming models. In: Proceedings of the Sixth
International Workshop on Programming Models and Applications for Multicores
and Manycores, pp. 170–180. PMAM 2015. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2712386.2712405

29. Zimmer, C., et al.: An evaluation of the coral interconnects. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. SC 2019. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3295500.3356166

https://doi.org/10.1007/978-3-319-15976-8_3
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/2712386.2712405
https://doi.org/10.1145/3295500.3356166


Exploring New and Recent OpenMP
Extensions



Characterizing the Performance of Task
Reductions in OpenMP 5.X

Implementations

Jan Ciesko and Stephen L. Olivier(B)

Center for Computing Research, Sandia National Laboratories,
Albuquerque, NM 87123, USA
{jciesko,slolivi}@sandia.gov

Abstract. OpenMP 5.0 added support for reductions over explicit
tasks. This expands the previous reduction support that was limited pri-
marily to worksharing and parallel constructs. While the scope of a reduc-
tion operation in a worksharing construct is the scope of the construct
itself, the scope of a task reduction can vary. This difference requires syn-
tactical means to define the scope of reductions, e.g., the task_reduction
clause, and to associate participating tasks, e.g., the in_reduction clause.
Furthermore, the disassociation of the number of threads and the number
of tasks creates space for different implementations in the OpenMP run-
time. In this work, we provide insights into the behavior and performance
of task reduction implementations in GCC/g++ and LLVM/Clang. Our
results indicate that task reductions are well supported by both compil-
ers, but their performance differs in some cases and is often determined
by the efficiency of the underlying task management.
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included support for a defined set of reduction operations in worksharing and

This article has been authored by an employee of National Technology & Engineering
Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Depart-
ment of Energy (DOE). The employee owns all right, title and interest in and to
the article and is solely responsible for its contents. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this article or allow others to do so,
for United States Government purposes. The DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan
(https://www.energy.gov/downloads/doe-public-access-plan). Sandia National Labo-
ratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA-0003525.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Klemm et al. (Eds.): IWOMP 2022, LNCS 13527, pp. 35–49, 2022.
https://doi.org/10.1007/978-3-031-15922-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15922-0_3&domain=pdf
http://orcid.org/0000-0003-3148-4477
http://orcid.org/0000-0001-6247-8980
https://www.energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-031-15922-0_3


36 J. Ciesko and S. L. Olivier

parallel constructs. This support covers C/C++ for and Fortran do loops with a
defined iteration space, suitable for many iterative algorithms. OpenMP 3.0 intro-
duced support for explicit task parallelism in OpenMP, enabling more irregular
computations such as recursive algorithms and pointer chasing. That class of capa-
bilities was further developed in subsequent versions of the specification to include
the support of task dependencies in OpenMP 4.0 and the taskloop construct in
OpenMP 4.5.

OpenMP 4.0 also added support for user-defined reductions over non-trivial
data types and arbitrary operations. OpenMP 5.0 [8] finally brought support
for explicit tasks to contribute to reductions, adding the means to define both
the scope of such reductions and the tasks participating in them. As with many
OpenMP features, implementors required time to incorporate support of task
reductions, but both LLVM/Clang and GCC/g++ now include this feature.

This paper examines the current state of task reduction support in GCC/g++
and LLVM/Clang, including support of the language constructs as well as the
performance of their implementations. For this purpose, we have selected three
synthetic benchmarks that stress-test implementations and expose the cost of
reduction support as well as tasking overheads for each compiler.

The rest of the paper is structured as follows. Section 2 provides background
on reductions and currently supported syntax in OpenMP. Section 3 describes
the benchmarks used in the evaluation, and Sect. 4 provides details of the
experimental setup. Section 5 discusses performance results from the evaluation.
Section 6 provides insight into reduction support in GCC/g++ and LLVM/-
Clang and matches observed benchmark behavior with implementation choices.
Section 7 surveys related work. Lastly, Sect. 8 summarizes this work and gives
an outlook on further research directions.

2 Background

In this section we provide some context for our work. First, we consider general
implementation strategies for reduction operations. Second, we give an overview
of OpenMP task reductions.

2.1 Reductions and Their Common Implementation Strategies

In mathematical terms, a reduction algorithm is a numerical fold over a sequence
of numbers. As the name suggests, it implies an iterative update (accumulation)
of a result variable. For parallel formulations on parallel hardware in which the
sequence of numbers is traversed concurrently and where the result variable is
thus updated concurrently, data races can occur.

Two common strategies exist to avoid data races. One strategy makes memory
updates atomic. The other creates thread-private data copies for the duration
of the traversal of the sequence by each thread. In this strategy, a second step
is required, during which the privatized copies are combined.

Atomic updates depend on software or hardware support of atomic memory
updates and have implications for cache coherency traffic as a result of contention
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among threads to access the location of the reduction variable. Privatization
avoids concurrent accesses to a memory location at the cost of private memory
allocation, initialization, and the need for the final combination step. Which
particular implementation is preferable on a given architecture depends on the
size of the reduction variable and the access frequency.

OpenMP supports atomic memory accesses through the atomic construct
which can be used directly by the developer to implement reductions. Program-
ing model runtimes commonly rely on privatization for their internal implemen-
tation, which together with the possibility of using atomics, offers flexibility of
choice to the programmer depending on the use case. Alternatively, the devel-
oper can implement privatization using the threadprivate directive. In this
case, the developer is responsible for combining per-thread results as well.

From an OpenMP implementation perspective, privatization can be achieved
by privatizing per thread or by privatizing per task. Privatization per task can
incur significant overheads if the number of tasks is disproportionally larger than
the number of threads. Since large numbers of tasks are common, implementa-
tions rely on per thread privatization where each task acquires the thread-private
copy of the reduction variable at execution time.

Finally, the developer can avoid privatization or the need for atomic accesses
in recursive task parallel programs by passing the reduction variable to each
task as a function argument by value and returning the intermediate results as
a return value. Unfortunately, the use of stack for the purpose of privatization
is equivalent to per-task privatization and incurs the highest memory use and
overheads due to repetitive initialization of stack variables. We call this approach
stack in the evaluation section.

2.2 OpenMP Task Reduction Syntax and Semantics

The OpenMP specification admits the formulation of task reductions through
reduction scoping clauses and a reduction participating clauses. The former
“defines the region in which a reduction is computed”, while the latter “spec-
ifies a task (or SIMD lane) as a participant in a reduction defined by a reduction
scoping clause” [8].

The clauses are as follows, taking an operation op and reduction variable var.

– reduction(task, op: var): Scopes a task reduction for a parallel or workshar-
ing region

– reduction(op: var): Scopes a task reduction for a taskloop region and makes
the tasks created to execute the loop participants in the task reduction

– task_reduction(op: var): Scopes a task reduction for a taskgroup region
– in_reduction(op: var): Denotes participation of a task, target task, or

taskloop in a task reduction

In Listing 1.1, a task reduction is scoped using the task_reduction clause
on the taskgroup construct. Explicit tasks participating in the reduction use
the in_reduction clause on the task construct. In Listing 1.2, the task reduc-
tion is scoped using the reduction clause of the parallel construct with the
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task modifier. As before, tasks bearing the in_reduction clause participate in
the reduction. Finally, Listing 1.3 shows the use of the reduction clause on the
taskloop construct, which acts as both a reduction scoping and reduction par-
ticipating clause. References to the variable in the explicit tasks created by the
OpenMP implementation to execute the iteration of the loop will all contribute
to the reduction. Though not demonstrated here, the taskloop construct can
also take an in_reduction clause to participate in a reduction already scoped in
an enclosing region. The in_reduction clause can also be applied to a target
construct, allowing a potentially offloaded target task to contribute to a task
reduction.
1 #pragma omp parallel
2 #pragma omp single
3 #pragma omp taskgroup task_reduction (+: sum)
4 {
5 #pragma omp task in_reduction (+: sum)
6 sum += 1;
7 #pragma omp task in_reduction (+: sum)
8 sum += 2;
9 }

Listing 1.1. Simple Example of OpenMP Task Reduction

3 Benchmark Programs

To benchmark the implementations of OpenMP reductions, we consider a set
of programs with distinct properties. They demonstrate the use of all OpenMP
task reductions clauses and critically depend on an efficient implementation due
to their high access frequency to the reduction variable.

In real-word applications, this frequency relative to other computation is sig-
nificantly lower. This is the case where tasks are larger and spend more time in
unrelated code. Instead, these benchmark applications stress-test implementa-
tions and show the hypothetical limitations, similar to roofline analysis.

For completeness, we contrast the OpenMP reduction support against other
approaches to implement reductions such as atomics, user-managed thread-
private copies, and returning partial values through the call tree. Prior to the
availability of task reductions, these approaches would have been the only options
for users attempting to combine results from OpenMP tasks.

3.1 Fibonacci

Fibonacci is a recursive program to calculate the nth number in the Fibonacci
series. It represents a typical use case for task parallel programs where recursive
formulations result in compact code or where an unknown iteration space at a
given nesting level disallows the use of work sharing constructs.
1 int n, sum;
2
3 void fib (int n, int &sum)
4 {
5 if (n < 2)
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6 sum += n;
7 else
8 {
9 #pragma omp task in_reduction (+: sum)

10 fib(n-1, sum);
11 #pragma omp task in_reduction (+: sum)
12 fib(n-2, sum);
13 }
14 }
15
16 int main (int argc , char *argv [])
17 {
18 n = atoi(argv [1]);
19
20 #pragma omp parallel reduction (task , +: sum)
21 #pragma omp single
22 #pragma omp task in_reduction (+: sum)
23 fib(n, sum);
24
25 std::cout << "fib(" << n << ") = " << sum << std::endl;
26 return 0;
27 }

Listing 1.2. Fibonacci calculation using OpenMP task reduction

Listing 1.2 shows an implementation using OpenMP task reductions. Here the
program scopes the reduction using the reduction clause on the parallel con-
struct with the task modifier, and tasks participating in that reduction scope
use the in_reduction clause. Note that the reduction variable is passed by ref-
erence to the recursive function, because the reduction variable in the recursive
function is not in the lexical scope of the parallel region. Further, using taskwait
for synchronization is not required. The barrier at the end of the parallel region
ensures that all tasks complete.

The program can be further augmented to provide “cut-off” values below
which tasks would not be generated, thus coarsening parallelism. The effect is to
reduce the number of tasks which in return lowers overheads of task creation and
management. For example, if a cut-off of 10 were specified, then the calculation
of fib(9) would be handled by a direct sequential function call rather than an
OpenMP task. Cut-offs could be either be implemented manually (if-then-else
block) or using the final and mergeable clauses. Though not shown in the
simplified code listing, for our evaluation we implemented manual cut-offs.

An alternative to task reductions would be the use of the atomic construct to
update the reduction variable. In practice, this method is expected to introduce
contention and limit effective parallelism as all threads compete to update the
reduction variable.

Another alternative is to create thread-private copies of the reduction vari-
able, accumulate partial sums in thread-local copies and combine the partial
sums into the final sum at the end of the program. The threadprivate directive
can be used to manage the copies. However, the addition of the final combining
step makes this option somewhat cumbersome.

A third alternative with minimal requirements on compiler support is to
transmit per-task partial sums as return values through the call stack. A draw-
back of this option is that a taskwait construct is needed at each nesting level
in order to wait for the contributions of the child tasks.
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3.2 Dot Product

Dot product implements the vector dot product of two arrays of numbers. Unlike
Fibonacci, this benchmark is iterative rather than recursive. Listing 1.3 uses the
taskloop construct to decompose the iteration space of the loop into tasks. In
addition to task reduction, atomic, and thread-privatization versions, we also
compare to a version using a worksharing construct with no explicit tasks.

For Fibonacci, the number of recursive function calls determines the number
of tasks created and thus requires the use of cut-offs to limit the number of tasks.
For Dot, the number of tasks is orthogonal to the algorithm itself and can be
specified through the num_tasks clause on the taskloop construct.
1 #pragma omp parallel shared(x, y) num_threads(nthreads)
2 #pragma omp single
3 #pragma omp taskloop num_tasks(ntasks) reduction (+ : sum)
4 for (unsigned long i = 0; i < n; ++i) {
5 double tmp = x[i] * y[i];
6 sum += tmp;
7 }

Listing 1.3. Task reduction for vector dot product using the taskloop construct

3.3 Powerset

The Powerset benchmark computes the number of permutations of n elements
by expanding a binary tree with a height of log(n). While similar in algorithmic
structure to Fibonacci, the Powerset produces a balanced tree which makes it less
sensitive to task-stealing features in task schedulers. In addition to a variation of
this algorithm using reduction variables of integer type, the Powerset benchmark
also exercises implementations with user-defined reductions over a configurable
type that is variable in size. We refer to it as Powerset-UDR. This configuration
enables us to quantify and further differentiate the overheads originating from
task management versus privatization. As with Fibonacci, we have implemented
manual cut-offs (not shown in the simplified code listing).
1 int thr_priv_sum , cut_off;
2 #pragma omp threadprivate(thr_priv_sum)
3
4 void powerset(int n, int index) {
5 for (int i = index; i < n; ++i){
6 #pragma omp task
7 {
8 powerset(n, i + 1);
9 thr_priv_sum ++;

10 }
11 }
12 }
13
14 int main(int argc , char *argv []) {
15 int n = atoi(argv [1]);
16 int nthreads = atoi(argv [2]);
17 cut_off = atoi(argv [3]);
18 int sum = 0;
19
20 #pragma omp parallel num_threads(nthreads)
21 {
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22 thr_priv_sum = 0;
23 #pragma omp single
24 #pragma omp task
25 powerset(n, 0);
26 }
27
28 // Reduce thread -private copies
29 #pragma omp parallel num_threads(nthreads)
30 {
31 #pragma omp single
32 nthreads = omp_get_num_threads ();
33 #pragma omp for reduction (+ : sum)
34 for (int i = 0; i < nthreads; i++)
35 sum += thr_priv_sum;
36 }
37
38 std::cout << "powerset(" << n << ") = " << sum << std::endl;
39 return 0;
40 }

Listing 1.4. Powerset using thread-private reduction variables obtained with
manual thread privatization

The Powerset benchmark includes the variations described in the previous
section for Fibonacci. Listing 1.4 shows the implementation of Powerset using
the threadprivate directive and the subsequent manual reduction of private
copies into the final reduction variable.

4 Experimental Setup

The test machine comprises Intel R© Xeon R© “Skylake” Platinum 8160 Processors
in a dual socket configuration with 24 cores per socket (48 cores total) and 2
hardware threads per core running at 2.1GHz. The memory is 192 GB DDR4.
The operating system is Red Hat R© Enterprise Linux R© 7.9. The compiler and
runtime versions are LLVM/Clang 14.0 (release) and GCC 13 (not yet released,
code version dated 20220518).

For both compilers we have used the following sequence of options -fopenmp,
-Wall, -Wextra, -pedantic, -Werror and -O3. Further, we have set the environ-
ment variables OMP_PROC_BIND and OMP_PLACES to close and cores
respectively during execution. On the test machines, this results in a thread
mapping of one thread per core.

5 Evaluation

We have evaluated the set of presented benchmarks for the various implemen-
tations, using a variable number of threads ranging from one to 128 and for
a variable number of tasks. Further, we have compiled all implementations of
all benchmarks with both the LLVM/Clang and the GCC/g++ compilers using
the same compiler options. Lastly, the evaluation of a version of Powerset using
user-defined reductions includes results for variable reduction type sizes. This
section summarizes key finding and provides representative figures for config-
urations with 48 threads only. Executions with smaller thread counts exhibit
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similar behavior, while executions with more than 48 threads result in non-
representative data due to over-subscription of the system and the resulting
effects. All benchmark results show the average total execution time of 5 repeti-
tions for a respective constant problem size and given range of tasks.

Figures 1 and 2 show performance results for the Fibonacci and Powerset
computations. Key insights for these two benchmarks are as follows.

– Performance of implementations using the OpenMP language features for
reductions is the same order of magnitude as prior available implementations
using stack-local variables (stack) or manual privatization (threadprivate).

– The use of parallel with the task modifier (parallel-task-red) yields similar
results to the use of the task_reduction clause on the taskgroup construct
(taskgroup-red).

– Atomic accesses (atomic) incur high overhead regardless of the number of
tasks due to threads contending for the same memory location.

– Implementations relying on stack-local variables and the taskwait construct
depend on the efficiency of the underlying tasking implementation. GCC/g++
performs well only for low task counts, while LLVM/Clang outperforms for
large task counts.

– Implementations using the threadprivate clause to manually privatize vari-
ables (threadpriv) underperform compared to other techniques for small task
counts. Recall that they incur the cost of the additional step of manually
combining the thread-private copies.

– When using GCC/g++, the performance of taskloop reductions (taskloop-
red) degrades with large numbers of tasks.

– No significant differences were observed when using the untied task modifier
(parallel-task-red-untied) compared to the tied default (parallel-task-red).

Figure 3 shows results for the dot-product with two to 131k tasks for LLVM/-
Clang and an input problem size of 224 values per array. This input size cor-
responds to array allocations of 128 MB each. The results indicate a similar
behavior for the atomic implementation as described for Fibonacci and Power-
set. The implementation using the parallel for construct uses no tasks and
is provided for reference. As it is invariant to the number of tasks, its perfor-
mance represents a horizontal line (parallel-for-red). Lastly, all other techniques
perform similarly: Performance degrades when the number of tasks is too low to
provide enough parallelism and when the number of tasks is too large with the
resulting granularity being too fine. However, the amount of work per task is sig-
nificantly higher compared to Powerset or Fibonacci, potentially underexposing
some technique-specific performance variations. We have observed comparable
performance for GCC/g++ on this benchmark.

The graph in Fig. 4 shows results for the Powerset benchmark using user-
defined reductions with a constant number of 262k tasks for LLVM/Clang and
GCC/g++. Results indicate that all techniques except stack are invariant to the
size of the reduction variable, and thus the cost of memory allocation is equal.
For LLVM/Clang, the implementation using stack degrades in performance with
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increasing type sizes due to increasingly distant memory accesses for stack oper-
ations. Results for GNU/g++ resemble performance results shown in Fig. 2b
corresponding to 262k tasks: In both those results and the results for UDRs of
all sizes, tasking overheads dominate.

To summarize, the performance of task reductions is determined by the task
granularity and task count, by properties of a reduction technique and by its
implementation in the runtime system.

Techniques available prior to the support of task reductions in OpenMP
vary significantly in performance. For higher degrees of concurrency and fre-
quent accesses to the reduction variable, atomics achieve the lowest perfor-
mance. The use of stack-local variables requires task synchronization and relies
on efficient task management in the runtime. Finally, manual privatization using
threadprivate variables requires a final reduction of all private copies once the
reduction completes. If the final reduction incurs additional overhead, perfor-
mance degrades.

Task reduction support in OpenMP using the parallel and taskgroup con-
structs exhibits performance asymptotic to the threadprivate version, suggesting
that both LLVM/Clang and GCC/g++ internally use per-thread privatization
with tasks acquiring and reusing such thread-private allocations. In this case,
internal optimizations can raise the performance beyond that of manual priva-
tization coded at user level. In particular, the implementation does not need to
expose OpenMP semantics for its internal mechanism used to combine results
and may employ a more sophisticated reduction of thread-private copies such as
an in-line parallel tree based reduction.

The next section examines implementations of task reduction in both
LLVM/Clang and GCC/g++, as well as relevant differences in their general
task management approaches.

6 Implementations in GCC and LLVM/Clang

The understanding of performance characteristics described in the previous
section requires inspection of tasking and task reduction support in the front-end
compiler as well as the runtime. Of particular interest is the implementation of
memory privatization and whether it occurs on thread or task level.

Listing 1.5 shows example code for a task participating in a task reduction.
Listing 1.6 shows the corresponding intermediate code representation produced
by the GCC/g++ (compiler -fdump-tree-optimized). Accesses to the original
memory location are redirected to a new memory location obtained by call-
ing __builtin_GOMP_tas_reduction_remap. This function obtains the asso-
ciated thread-private memory location corresponding to the reduction variable
registered by the reduction clause.
1 void func(int &sum) {
2 #pragma omp task in_reduction (+ : sum)
3 sum++;
4 }

Listing 1.5. Sample code for a task participating in a reduction
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Fig. 1. Fibonacci computation with a constant problem size of N = 33, 48 threads and
a variable task cutoff resulting in a range of 1.2k–11405k tasks, showing differences
between compilers and techniques
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Fig. 2. Powerset computation with a constant problem size of N = 18, 48 threads and
a variable cutoff with a range of 2–262k tasks, compiled with both compilers
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Fig. 3. Dot-product compiled with LLVM/Clang with a constant problem size of N =
224, 48 threads and a variable cutoff resulting in a range of 2–131k tasks

1 void func (int & sum) {
2 struct .omp_data_s.0 .omp_data_o .1;
3 ...
4 .omp_data_o .1.sum = sum_2(D);
5 __builtin_GOMP_task (_Z4funcRi._omp_fn.0, &. omp_data_o.1, 0B, 8, 8, 1,

0, 0B, 0, 0B);
6 return;
7 }
8
9 void _Z4funcRi._omp_fn .0 (struct .omp_data_s.0 & restrict .omp_data_i) {

10 ...
11 void * D.2516[1];
12 _3 = .omp_data_i_2(D)->sum;
13 D.2516[0] = _3;
14 __builtin_GOMP_task_reduction_remap (1, 0, &D.2516);
15 sum_6 = D.2516[0];
16 _10 = *sum_6;
17 _11 = _10 + 1;
18 *sum_6 = _11;
19 return;
20 }

Listing 1.6. Intermediate code fragments generated by the GCC/g++ front-end
compiler for the example code in Listing 1.5

LLVM/Clang supports task reductions through per-thread privatization as
well. Similar to the approach in GCC, the intermediate code calls the function
__kmpc_task_reduction_get_th_data to access the thread-private copy.

The overhead costs of task management are critical to performance both
with and without task reductions. The use of per-thread task queues in the
LLVM runtime contributes to lower task management costs compared to the
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Fig. 4. Powerset with a constant problem size of N = 18, 48 threads, 262k tasks and
variable reduction type with type size range of 4B–131KB

GCC runtime with its centralized queue that is shared among all threads in the
team. High overhead costs particularly impact our stack benchmark versions
that pass partial results through the call stack, because they require taskwait
synchronizations that induce additional accesses to task queues in the runtime.
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7 Related Work

Prior to the addition of task reductions in OpenMP 5.0, evaluation studies [2,4]
of the proposed feature had been demonstrated using the Nanos runtime sys-
tem1 and Mercurium compiler2 [1]. In addition to OpenMP tasking, they imple-
ment the OmpSs programming model3 [5], a tasking-centric programming model
with close ties to OpenMP and support for task reductions. Previous work also
explored array reductions over OmpSs tasks [3]. User-defined reductions for
OpenMP were proposed by Duran et al. [6]. Reductions in other task paral-
lel languages and language extensions include X10/Habanero-Java phaser accu-
mulators [11] and finish accumulators [10], as well as Cilk++ hyperobjects [7].
Blaze-Tasks is a C++17-based framework for task scheduling and reductions [9].

8 Conclusions and Future Work

Our study provides evidence that the task reduction features in OpenMP are
well supported by GCC and LLVM/Clang today. Performance insights indicate
that the use of the language features is meaningful and provides performance
commensurate to efficient manually implemented reductions for reasonable task
sizes. For reproducibility, we intend to make available the benchmarks, the scripts
to build and run them, and the complete set of graphs, upon approval.

Key topics that warrant further investigation are performance differences
among compilers and the efficiency of their support for taskwait synchroniza-
tions (stressed by our manually-coded stack-based reductions) and reductions
on taskloop constructs. Further inspection of their implementations along with
a deeper experimental evaluation is a subject for future work. Based on the
results in this paper, our recommendation to users is that they can confidently
employ the convenience and performance of task reductions for their OpenMP
applications on multicore CPUs.
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Abstract. This paper presents Speculative While (SWh), a technique
that enables Speculative Task Execution (STE) in OpenMP to acceler-
ate while loops marked by the proposed while construct and the swh
clause. With SWh, the speculative tasks are generated by the OpenMP
task construct in while loops (from linear algebra or goal finding algo-
rithms) where control dependencies between iterations can be speculated.
This paper also presents a detailed analysis of the application of Hard-
ware Transactional Memory (HTM) support to implement Speculative
While and describes a preliminary evaluation of SWh implementation
using HTM. As a result, it provides evidence to support the perfor-
mance benefits of using STE over HTM to parallelize some well-known
benchmarks. Experimental results reveal that by implementing SWh over
HTM, speed-ups of up to 1.8× can be obtained for the Gauss-Seidel
benchmark.

Keywords: Speculative While · OpenMP · Transactional Memory

1 Introduction

Speculative Task Execution (STE) [17,19] is a technique that enables the specu-
lation of dependencies between (OpenMP) tasks coming from a hot-code region
and thus allowing them to be executed in parallel, achieving an acceleration
of that region of code. This form of speculative parallelization can be gener-
ated in several ways, such as when the speculative tasks are generated from
the partition of the iterations of a for loop (hot-code region) by the OpenMP
taskloop construct; in that case, the speculated dependencies are of data type
and between iterations (loop-carried). This form of STE is known as Specula-
tive Taskloop (STL) [20] and can be implemented using Hardware Transactional
Memory (HTM) and code transformations similar to how TLS has been imple-
mented before on HTM (HTM-TLS) [16]. In this way, STL needs four primary
features: conflict detection, speculative storage, transaction rollback, and ordered

This work is supported by the Sao Paulo Research Foundation (grants 18/07446-8,
20/01665-0, and 18/15519-5).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Klemm et al. (Eds.): IWOMP 2022, LNCS 13527, pp. 50–64, 2022.
https://doi.org/10.1007/978-3-031-15922-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15922-0_4&domain=pdf
http://orcid.org/0000-0002-0569-2806
http://orcid.org/0000-0001-8824-3055
https://doi.org/10.1007/978-3-031-15922-0_4


Using Off-the-Shelf Hardware HTM to Implement SWh in OpenMP 51

transactions. Commodity hardware through HTM already implements the first
three of them; ordered transactions can be implemented in software.

There are certain problems (hot-code regions) where it is not possible to
know in advance the number of iterations that the loop will have. In those
cases, while statements are used to compute the problem solution and, generally,
the execution of the next iteration (i + 1) in this kind of loop depends on the
values computed in the current iteration (i). This fact tremendously limits the
parallel execution of the loop iterations on multicore architectures. Many of
these loops are widely used for convergence in linear algebra or goal finding
problems in graph algorithms [13]. These loops run until a goal or threshold is
reached, therefore the iteration space is unknown until the end and the execution
must be sequential. In practice these loops execute for many iterations before
their termination; however, the compiler needs to be conservative and it cannot
parallelize these loops.

In order to overcome this limitation, this paper presents another form of
STE called Speculative While (SWh), which unlike STL does not speculate data
dependencies but control dependencies and has a while loop as the hot-code
region. Thus, the tasks that are inside the loop body are speculated for several
iterations. These tasks may have loop-carried data dependencies but these must
be resolved through the OpenMP depend clause. The type of while loop for
which SWh can be applied does not have a defined final boundary and the stop
condition depends on the result of the tasks of the current iteration i. Therefore
there is a control dependency from iteration i to iteration i + 1, from i + 1 to
i+ 2, and so on; then, it is possible to speculate the generation of all the tasks
of different iterations and it is up to the runtime to resolve the loop-carried
dependencies of these tasks of different iterations to be executed. However, if on
iteration j the while loop’s stop condition is set to true, all tasks speculated
on iterations greater than j must be aborted and roll-backed. In the event that
the tasks do not have data dependencies between iterations, tasks from different
iterations can be executed simultaneously, accelerating the execution.

For instance, Fig. 1a shows a while statement where three tasks are generated
for each iteration; however, the generation of tasks is paused by a taskwait at
the end of each iteration (Line 11) because the condition cond depends on the
termination of function h. Therefore, the execution flow of tasks is similar to
the one shown in Fig. 1c, where the work for each iteration is serialized. This
paper proposes the use of a new construct called while, which allows the use of
STE to generate and speculate tasks of iterations where the condition has not
yet been evaluated. As shown in Fig. 1b, the while construct is used instead of
taskwait (Line 3), thus the next iterations create speculative tasks. Speculative
tasks of different iterations are executed in parallel as shown in Fig. 1d, and they
are committed when the variable cond is true for the previous iteration. When
a task that executes function h for some iteration evaluates cond to false, it
aborts all tasks that are waiting to commit.

The key use of SWh is to speculate tasks with control dependencies on the
stop condition whose value is probably invariant for many iterations. SWh, in a
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Fig. 1. Example of loop parallelization with tasks and possible flow executions

similar way to STL, needs mechanisms that support conflict detection, specula-
tive storage, rollback of transactions, and ordered transactions. Current com-
modity off-the-shelf microprocessors provide support for speculation by means
of hardware transactions [6,7]. In the same spirit of STL, this work proposes a
novel utility for HTM enabling the implementation of three key features required
by SWh: (a) conflict detection; (b) speculative storage; and (c) transaction roll-
back. The optimistic approach to parallelism in SWh is similar to the execution
of transactions in HTM. However, in SWh, when tasks are generated within
the Speculative-While construct, the data dependencies of tasks between itera-
tions or in the same iteration are resolved by the runtime using the annotations
of the depend clause. Furthermore, the control dependencies of each iteration
with respect to the stop condition must also be respected implementing ordered
transactions (in-order-transaction commit). In contrast, HTM transactions can
execute in any order and in-order-commit feature is not provided.

In this paper we make the following contributions:
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– We propose Speculative While (SWh) in OpenMP—the novel while construct
and ste clause—to parallelize iterations speculating control dependencies of
tasks through HTM’s speculative support in while loops, which are widely
used, for instance, in algorithms to determine convergence in linear algebra;

– We describe an algorithm to implement Speculative While using Hard-
ware Transactional Memory and code transformations, enabling the spec-
ulative generation and execution of tasks from multiple while-loop iterations
(Sect. 4);

– We evaluate SWh performance using the Gauss-Seidel and Jacobi bench-
marks. We further compare against the parallelization of these benchmarks
using only the task construct and the depend clause from standard OpenMP.
The experimental results are promising with an average increase in the speed-
up of 1.36× in Gauss-Seidel when compared to the non-speculative version
using OpenMP tasks (Sect. 6).

This paper is organized as follows. Section 2 describes the background mate-
rial. Section 3 discusses related works. Section 4 details the design and implemen-
tation of Speculative While on HTM. Benchmarks, methodology and settings are
described in Sect. 5. Section 6 presents the experimental evaluation for the imple-
mentation of SWh over HTM along with an analysis of the preliminary results.
Finally, Sect. 7 concludes the work.

2 Background

This section explains fundamental concepts to understand the paper: Transac-
tional Memory, Task-based Parallelism, and Thread-Level Speculation on Hard-
ware Transactional Memory.

2.1 Transactional Memory

Transactional Memory (TM) uses the concept of transactions, borrowed from
the Database community, to provide atomic and isolated updates to volatile
memory (DRAM). Implementing transactions require devising a version man-
agement and a conflict detection scheme. Version management decides where
new (speculative) and old data are stored. In eager versioning, the speculative
data is stored in place, while the old one is kept in an internal undo-log. On
the other hand, lazy versioning does not update the original data, storing the
speculative one in a kind of internal write buffer. Conflict detection determines
whether two operations executed in separate transactions cause a conflict, i.e.,
if they access a common memory location and at least one of the operations is a
write. Conflict detection can be eager (detection is done immediately when the
conflict occurs) or lazy (detection is done when transactions attempt to com-
mit) [8]. A conflict causes at least one of the transactions involved in the conflict
to abort and it may re-execute, but other actions could also be carried out to
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support a conflict-resolution policy. Resolution can happen eagerly when the
conflict occurs or lazily when the transaction attempts to commit.

TM can be implemented in hardware (HTM) [5] or software (STM) [21].
HTMs are easier to use because programmers only need to specify the start and
the end of a transaction. STM systems can have a large overhead because conflict
detection is performed in software. On the other hand, STMs have the advantage
that they can be executed on any available hardware, and in principle have no
limit on the amount of speculative state that a transaction may use. Hybrid
Transactional Memory (HyTM) is an approach to implementing TM in software
so that it can use best-effort HTM to boost performance but it does not depend
on HTM. This approach exploits HTM if it is available to achieve hardware
performance for transactions that do not exceed the HTM’s limitations [3].

Intel TSX-NI. The Intel Transactional Synchronization Extensions New
Instructions (Intel TSX-NI) was introduced in the 6th generation of the Intel
Core processor [6]. Intel TSX-NI provides developers an instruction-set inter-
face to specify transactional execution with two software interfaces: Hardware
Lock Elision (HLE) and Restricted Transactional Memory (RTM). The RTM
is an instruction-set extension that includes the instructions xbegin, xend, and
xabort. When a transaction aborts, the state of the program immediately before
the xbegin instruction is recovered, all speculatively written data are dismissed,
and the values stored in registers are rolled back to their values prior to the
transaction. The execution restarts at a program point specified by the address
given as argument to the xbegin instruction. Data written transactionally are
not visible to other transactions until the transaction commits by executing the
xend instruction.

Intel TSX-NI does not guarantee that a conflict-free transaction will commit.
Aborts may be caused by excess transactional reads or writes, conflicts due to
false sharing, and instructions that cause aborts (e.g., system calls) [26]. All
data conflicts are detected at the granularity of the 64-byte cache line because
the implementation of TSX uses the L1 data cache to track transactional states
using physical addresses and the cache coherence protocol.

2.2 Task-Based Parallelism

Using tasks, the execution can be modeled as a directed acyclic graph, where
nodes are tasks and edges define data dependencies between tasks. A runtime
system schedules tasks whose dependencies are resolved over available worker
threads, thus enabling load balancing and work stealing [4].

StarSs. StarSs [12] is a programming model which supports out-of-order execu-
tion of tasks by enabling the programmer to identify data dependencies between
tasks through annotations of kernel functions as input, output, or inout. At
runtime, the task creation code packs the kernel code pointer and the task
operands, and then adds them to the task pipeline; in this way, the generating
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thread can continue creating additional tasks. The pipeline decodes task depen-
dencies, generates the dependence graph using this information, and schedules
tasks when they are ready [4].

Tasks in OpenMP. Tasks in OpenMP are blocks of code that the compiler
packs and arranges to be executed in parallel. Tasks were added to OpenMP
in version 3.0 [1]. In OpenMP 4.0 [9], the depend clause and the taskgroup
construct were incorporated and, in OpenMP 4.5, the taskloop construct was
proposed and added to the specification [10]. Like worksharing constructs, tasks
are generally created inside of a parallel region. To spawn each task once, the
single or master constructs are used. The ordering of tasks is not defined, but
there are ways to express it: (a) with directives such as taskgroup or taskwait;
or (b) with task dependencies (depend clause).

Variables that are used in tasks can be specified with data-sharing attribute
clauses (private, firstprivate, shared, etc.) or, by default, data accessed by
a task is shared. The depend clause takes a type (in, out, or inout) followed
by a variable or a list of variables. These types establish an order between sib-
ling tasks. The taskwait clause waits for the child tasks of the current task.
taskgroup is similar to taskwait but it waits for all descendant tasks created
in the block. Moreover, task reduction was introduced in OpenMP 5.0 [11].

2.3 Thread-Level Speculation on Hardware Transactional Memory
(HTM-TLS)

When a compiler cannot prove that a loop can be executed in parallel (DOALL)
but it can estimate with a high probability that the loop iterations will be
independent at runtime, it can schedule the parallel execution of the loop specu-
latively. A mechanism is then necessary to detect when a dependency does occur
at runtime (Speculative DOACROSS) and to re-execute the loop iterations that
were miss-speculated. This technique is known as Thread-Level Speculation.
TLS has been widely studied in the past [22–24]. For performance, TLS requires
hardware mechanisms that support four primary features: conflict detection,
speculative storage, in-order commit of transactions, and transaction roll-back.
However, to this day, there is no off-the-shelf processor that provides direct sup-
port for TLS. Speculative execution is supported, however, in the form of Hard-
ware Transactional Memory (HTM) available in processors such as the Intel Core
and the IBM POWER [16]. HTM implements three out of the four key features
required by TLS: conflict detection, speculative storage, and transaction roll-
back. And thus these architectures have the potential to be used to implement
TLS (HTM-TLS) [16]. Speculative While is based on this approach.

3 Related Works

Rauchweger et al. proposed a general framework for the automatic transforma-
tion of any while loop for parallel execution [14]. Their strategy is to evaluate
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in parallel the recurrences (statically identified) and speculatively execute the
remainder concurrently. If necessary, the approach undoes the effects of any iter-
ations that overshot the termination condition. The methods can even be applied
to loops whose data dependency relations cannot be analyzed at compile time.
Experimental results on loops from Perfect benchmarks show that this technique
can yield significant speed-ups.

Gayatri et al. proposed the speculative generation and possible execution of
loop iterations ahead of time to overcome the problem of parallelizing while
loops because of the unknown number of iterations that heavily restricts paral-
lelism [4]. They optimistically predict the execution of the future iterations of
the loop based on the fact that such loops execute for multiple iterations before
finishing. They propose a technique to speculatively create parallel tasks from
the next iterations before the current one completes using STM. Their results
indicated an average speed-up of around 1.2× with 16 threads when compared to
non-speculative parallel execution of the applications. However, they require sig-
nificant changes to the StarSs runtime to support speculative tasks using STM.
On the other hand, our approach with SWh does not make major changes to
the OpenMP runtime because speculation is done through code transformations
via HTM.

Azuelos et al. argued that speculation leads to increased parallelism in the
coarse-grain task dataflow paradigm [2]. They show how simple language addi-
tions can allow programmers to make use of speculation. They specify a set of
additions to the OmpSs language and the changes required in its runtime envi-
ronment. Their evaluation using a simple benchmark leads to a promising 10%
speed-up.

Salamanca et al. proposed adding Hardware-Transactional-Memory-based
TLS (HTM-TLS) to taskloop through the clause tls in a previous work [19].
This clause can be used to speculate about data dependencies between tasks
generated by a taskloop construct in non-DOALL loops, thus STL manipulates
multiple tasks of loop iterations in order to exploit task parallelism (load bal-
ancing, work stealing, efficient creation of parallel, etc.) and to accelerate the
execution of may-DOACROSS loops [19,20].

4 Speculative While (SWh)

Usually, when OpenMP tasks are used to parallelize while loops where the
execution of the next iteration (i + 1) depends on the values computed in the
current iteration (i), a task synchronization construct (taskwait or taskgroup)
is placed at the end of the iteration, serializing the execution of the while loop.
For instance, Fig. 2a shows the parallelization of the hottest Gauss-Seidel’s
loop using the OpenMP task construct, the depend clause for task, and the
taskgroup construct. taskgroup is used to synchronize the result of diff so
that it can be compared with TOL (Line 20) to decide about the next iteration.
Notice that the task_reduction clause (proposed in OpenMP 5.0 [11]) is also
used to calculate diff.
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Fig. 2. Gauss-Seidel’s loop

We propose another way to parallelize this type of while loops using Specu-
lative Task Execution (STE) called Speculative While (SWh). SWh differs from
Speculative Taskloop (STL) in that the loop iterations are speculated on con-
trol rather than data dependencies. SWh generates tasks of the next iterations
speculatively and, if these iterations are only control-dependent, tasks of dif-
ferent iterations can be executed simultaneously. The mechanism relies on the
fact that the tasks that were created in iterations greater than i are rolled back
when the stop condition in a task of iteration i is true. Moreover, if the itera-
tions have loop-carried dependencies, these must be respected by the OpenMP
runtime through the depend clause, but the execution of iteration i can still be
overlapped with the generation of iterations i+ 1, i+ 2, etc.

4.1 The while Construct and the swh Clause

Speculative While is implemented over OpenMP using HTM through the while
construct and the swh clause. The design of the construct is as follows:

#pragma omp while swh(stop_cond,ind_var) [clause]
while-loop
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where:

– stop_cond is the variable to stop the while loop;
– ind_var is the induction variable of the while loop;
– clause can be spec_reduction.

Figure 2b shows the parallelization of Gauss-Seidel’s loop using the pro-
posed construct and clauses. Notice that we create a new task (Lines 14–20
of Fig. 2b) to set the stop condition (in the example, variable done) because
the barrier that we use in Fig. 2a is removed to speculate iterations. Also,
we set a dependency on diff between tasks, marking depend(out:diff) in
the first tasks and depend(in:diff) in the last task. The creation of this
last task is mandatory when using SWh and it will have a comparison (e.g.,
diff < TOL) to set the value of the stop-condition variable. To improve per-
formance and remove false dependencies, we reuse code transformations for
STL [17,18], such as spec_private and the tls construct. Finally, we mark diff
as spec_reduction since task_reduction cannot be used because taskgroup
is removed. The design of spec_reduction is explained next.

The spec_reduction Clause for the while Construct. This clause is neces-
sary to improve the SWh-parallelization performance when the while loop has
variables with a reduction pattern in speculative tasks inside the while con-
struct (for the example, diff in Fig. 2). In this case, the standard OpenMP
task_reduction cannot be used because this clause needs a barrier to wait
for tasks within the loop (e.g., taskgroup) but the SWh mechanism does not
allow a barrier because it is speculative. Another alternative would be to use the
reduction clause of the parallel construct; however, in the while construct,
we need the value of the reduction for each iteration of the while loop and, using
parallel, we can only get the value of the reduction at the end of this construct.
The use of the spec_reduction clause is possible in while constructs when the
clause swh is present. It is syntactically similar to the standard task_reduction
clause. The syntax of the while construct with spec_reduction is as follows:

#pragma omp while swh(stop_cond,ind_var) spec_reduction(reduction-
identifier:list)

while-loop

where:

– reduction-identifier is one of the following operators: +, -, *, &, |, ˆ, &&, ||,
max, and min;

– list consists of a collection of one or more scalar variables separated by commas.

4.2 Implementing Speculative While (SWh) on HTM

We implement Speculative While using HTM and similar code transformations
as proposed in HTM-TLS [15,16], FOR-TLS [16,18], and STL [17,19]. However,
an important difference between SWh and the techniques mentioned is that the
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Algorithm 1: Mechanism for Speculative While
Data: while construct (directive D and while-loop L), stop_condition, and induction_var
Result: Transformed code to be parallelized with SWh on HTM

1 Create BEGIN and END functions;
2 Outside of the construct, create a new variable next whose identifier is next of the same type

of the induction variable;
3 Initialize next with the initial value of induction_var;
4 foreach task ∈ L.task_list do
5 Set induction_var as firstprivate in task;
6 Set next as shared in task;
7 Create a new variable spec whose identifier is spec of type char;
8 Create a statement st_begin to attribute to spec the value returned by the call to the

BEGIN function;
9 Insert st_begin before task.body;

10 Insert a call to the END function after task.body;
11 if task.spec_private_list �= NULL then
12 foreach scalar var ∈ task.spec_private_list do
13 Run Spec_Private_Scalar_Algorithm;

14 if task �= L.last_task then
15 Set stop_condition as shared in task;

16 else
17 Create a statement st_next to increment the value of next by L.step.value;
18 Create an if statement if_st with condition (!<stop_condition.id>), and set

st_next as the then-part;
19 At the end of task.body, insert st_next;

20 At the end of task.body, insert a label exit whose identifier is Exit;
21 Create an goto statement st_goto to label exit.id;
22 Create an if statement st_exit with condition (<spec.id>==-1), and set st_goto as the

then-part;
23 Insert st_exit after st_begin;

24 if D.spec_reduction_list �= NULL then
25 foreach scalar var ∈ D.spec_reduction_list do
26 Run Spec_Task_Reduction_Algorithm

transactions are started by each task in SWh and no longer by each iteration
(or iteration strip) as in HTM-TLS. For instance, Fig. 3a shows a sketch of the
Fig. 2b’s code (SWh) converted to standard OpenMP with HTM intrinsics using
Algorithm 1. Each speculative task in Fig. 3a has a BEGIN function inserted at
the beginning and an END function inserted at the end.

Another difference with respect to STL is the creation of the last task inside
the while construct in SWh. This is essential because this task sets the stop con-
dition (Line 12 of Fig. 3a) and updates the variable next (Line 43 of Fig. 3a),
which is used to implement ordered transactions at the END function. As
shown in Fig. 3c, the variable next will be used by all speculative tasks to validate
wether they have to commit or abort. Moreover, another important difference
with respect to STL is that SWh, before starting the transaction, verifies that the
stop-condition variable (done in the example) is not true at the BEGIN function
(Line 5 of Fig. 3b). If it is true, the execution jumps to label Exit, without start-
ing any transaction and finishing the task. Spec_Private_Scalar_Algorithm is
explained in previous work [17].

Spec_Task_Reduction_Algorithm takes as input the while construct, the
scalar var, the list of tasks marked with in_red, the induction variable ind_var,
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Fig. 3. SWh Parallelization of Gauss-Seidel
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the reduction operator op_red, and the reduction statement statement_red.
Unlike the STL-spec_reduction clause [17], the speculative task reduction is
applied to each task marked with the in_reduction clause (reused from stan-
dard task_reduction). Moreover, the algorithm creates an array var_arr to
replace the scalar variable that participates in the reductions (diff_arr is cre-
ated to replace diff in Line 4 of Fig. 3a)1. This transformation is carried out
because loop-carried dependencies could be generated in the speculative par-
allelization, although previously these did not exist because the generation of
tasks was sequential due to the taskgroup construct. For each task marked
with in_reduction for var, the algorithm sets var_arr (diff_arr in the exam-
ple) to shared. Then, it creates a local copy of var (diffL in the example) and
initialize its value to the identity value of operator op_red (Line 14 of Fig. 3a).
This local copy replaces var_arr at the position ind_var (diff_arr[iter]) in
the reduction pattern (statement_red) as shown in Line 21 of Fig. 3a. Finally,
after committing, it accumulates the partial results in the shared variable using
op_red as shown in the Line 24 of the example.

5 Benchmarks, Methodology and Experimental Setup

The performance assessment in this work reports speed-ups and abort/commit
ratios (transaction outcome) for the SWh (Speculative While) parallelization and
speed-ups for the task-depend (non-speculative) parallelization of the hottest
while loops from the Gauss-Seidel and Jacobi problems running on Intel Core.
For all experiments, a random entry of a matrix is used. The baseline for speed-
up comparisons is the serial execution of the same benchmark program com-
piled at the same optimization level. Whole-program times are used to calculate
speed-ups. Each software thread is bounded to a unique core. Each benchmark
was run twenty times and the average time is used. Runtime variations were
negligible and are not presented. We made manual code transformations to the
evaluated loops following the algorithms described in Sect. 4, thus obtaining the
SWh parallelization of the benchmarks.

Both benchmarks are linear algebra applications:

– Gauss-Seidel is a technique for solving n equations of a linear system of
equations, Ax = b. The equation coefficients are improved in every iteration
using the previous solution, x(k+1) = L−1(b − Ux(k)), where L is the lower
triangular component of A and U is the strictly upper triangular compo-
nent. The algorithm runs until the absolute approximate error is less than a
tolerance. Thus, at the end of every iteration, the convergence is checked.

– Jacobi is also an iterative technique for determining the solutions of a strictly
diagonally dominant system of linear equations. The solution is then obtained
iteratively via x(k+1) = D−1(b−Rx(k)), where D is the diagonal component
of A and R is the remainder. Unlike the Gauss-Seidel method, we cannot
overwrite x(k) with x(k+1), as those values will be needed by the rest of the
computation.

1 This technique is called Scalar Expansion.
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The benchmarks were compiled with Clang 12.0 [25] and the set of flags
specified in each benchmark program. Code compiled with clang -fopenmp was
linked against the libomp12 runtime (with monotonic scheduling [20]). The
problem size used was 64 for both benchmarks. To guarantee that each software
thread is bound to a unique core, the environment variable KMP_AFFINITY was set
to granularity = fine,balanced. This experimental evaluation was carried
out on an Intel Core i7-6700HQ processor with 4 cores with 2-way SMT, running
at 2.6GHz, with 16 GB of memory on Ubuntu 18.04.5 LTS (GNU/Linux 4.15.0-
139-generic x86_64). The cache-line prefetcher is enabled by default. Each core
has a 32 KB L1 data cache and a 256 KB L2 unified cache. The four cores share
a 6144 KB L3 cache.

Fig. 4. Speed-ups and abort ratios (4 threads) for SWh and task-depend paralleliza-
tions on Intel Core

6 Experimental Results

This section presents results and analysis. We assess Speculative While on Gauss-
Seidel and Jacobi methods using an Intel Core machine with HTM support.
Figure 4 shows the speed-ups with respect to serial for SWh and task-depend
parallelizations. Jacobi performance is worse using SWh because there is a copy
of the array at the end of each iteration of the while loop which makes the loop
more sequential in nature as the next iteration depends entirely on the array
computed in the current iteration. This causes a greater number of violations of
loop-carried dependencies in the speculative parallelization and consequently a
greater number of aborts due to conflict. The gain that can be obtained from
SWh is mainly due to being able to overlap the generation of tasks from some
iterations with the execution of tasks from another iteration.
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In the case of Gauss-Seidel, there are fewer loop-carried dependencies in the
while loop, so it is also possible to overlap the execution of tasks of different
iterations, thus achieving a higher commit rate and a lower number of aborts
due to conflict. The SWh speed-up over task-depend is 1.22×. This speed-
up is promising because this loop has loop-carried dependencies and there is a
significant performance improvement in an already accelerated version (using
the OpenMP standard).

7 Conclusions

This paper presents Speculative While (SWh), a technique that speculates about
control dependencies in a while statement to execute in parallel many itera-
tions and thus accelerating the loop execution. SWh is implemented in OpenMP
through the while construct and clauses swh and spec_reduction. A first eval-
uation using the Gauss-Seidel and Jacobi methods shows promising results. In
particular, as observed with Gauss-Seidel, SWh achieved an average increase in
the speed-up of 1.22× compared to the non-speculative version using standard
OpenMP tasks.
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Abstract. OpenMP has supported target offloading since version 4.0,
and LLVM/Clang supports its compilation and optimization. There have
been several optimizing transformations in LLVM aiming to improve
the performance of the offloaded region, especially for targeting GPUs.
Although using the memory efficiently is essential for high performance
on a GPU, there has not been much work done to automatically optimize
memory transactions inside the target region at compile time.

In this work, we develop an inter-procedural LLVM transformation to
improve the performance of OpenMP target regions by optimizing mem-
ory transactions. This transformation pass effectively prefetches some of
the read-only input data to the fast shared memory via compile time
code injection. Especially if there is reuse, accesses to shared memory far
outpace global memory accesses. Consequently, our method can signifi-
cantly improve performance if the right data is placed in shared memory.

Keywords: OpenMP · target offloading · GPU · shared memory ·
compiler optimization · LLVM/Clang

1 Introduction

On modern GPUs, the global memory is off-chip with high access latency. There-
fore, using the global memory efficiently and reducing the number of transactions
to/from it is essential to maximize a GPU’s computation capability utilization.
An alternative to global memory is shared memory which is limited on-chip and
fast memory space. The shared memory is allocated for each block (or team in
OpenMP terminology), and it can be used for optimizing a program in differ-
ent ways, including prefetching. For prefetching, a programmer first utilizes the
threads in a team to copy (most often read-only) global memory content into a
shared memory buffer. Then, all accesses to these locations in the global memory
are replaced with accesses to the prefetched data in the faster shared memory.
This method is especially beneficial if the data is reused multiple times as each
access is sped up while the initial copy costs are fixed.
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In this work, we develop a compiler optimization technique to improve the
performance of OpenMP programs containing device offloading regions by auto-
matically prefetching parts of the required data to the shared memory through code
injected at compile time. In the current version of OpenMP, runtime functions
and directives exist to explicitly allocate and use memory in the shared space
[4]. Also, the OpenMPOpt pass [14], developed as a part of the LLVM framework
[15], implements different OpenMP-aware optimization techniques that utilize
shared memory. These have proven to effectively improve the performance of
a program’s target regions. We leverage the OpenMPOpt pass infrastructure and
the LLVM/OpenMP GPU runtime functions for allocating (dynamic) shared
memory for our own optimization. By identifying suitable candidate memory
regions and prefetching them into the shared memory buffer automatically, we
can improve the program’s performance as each original load from the global
memory is now significantly faster served from shared memory instead.

For this paper, we only consider target regions consisting of a loop nest
that exploits both the team and thread level parallelism of a GPU. In other
words, the outer-most loop has to have an attached distribute and a parallel
for construct. The method is developed as a part of the LLVM framework
and operates on the program’s intermediate representation (LLVM-IR), thus
can be reused for Fortran programs as the LLVM/Flang frontend matures. In
addition to the general scheme and results of our evaluation, we also discuss a
method to use the limited space of the shared memory more efficiently and a
method to reduce bank conflicts, since those can severely degrade performance.
Our evaluation uses a simple matrix multiplication algorithm for simplicity. By
comparing the running times of the kernel with and without our experimental
optimization, we can observe a significant performance improvement potential
that is likely to translate to more realistic programs too.

The rest of this paper is organized as follows: We first briefly introduce back-
ground information related to this work in Sect. 2. Then, we detail our method
and implementation in Sect. 3. Further optimization techniques are described in
Sect. 4. Our experimental results are reported and discussed in Sect. 5 before we
conclude the paper in Sect. 6.

2 Background

In this section, we briefly explain some of the topics related to OpenMP target
offloading and GPU programming models relevant to our work. In the context
of this paper, and without loss of generality, we assume our target device is an
NVIDIA GPU.

2.1 OPENMP Target Offloading Support in LLVM/Clang

OpenMP has supported device offloading since version 4.0 [3]. Compiling and
optimizing OpenMP programs with target offload regions has been supported by
LLVM/Clang since version 11 [2]. The primary approach for compiling programs
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with OpenMP constructs is outlining [11]; however, the compiler takes some
extra stages to handle device offloading. To this end, the compiler first generates
two separate modules, the host module for regions of the program running on
the host and the device module for the offloaded region to run on the device.
Therefore, the compilation flow of OpenMP programs with target offloading
regions is different from programs with other constructs. For more details on
the complete compilation flow of an OpenMP program with target offloading
and GPU runtime, refer to [10,12,13,16]. In this work, we only need to manipu-
late the device module. Moreover, we focus on the single program multiple data
(SPMD) execution mode and do not consider the generic mode [14].

To compile an OpenMP program with the omp target pragma, the Clang
compiler outlines the target region to a kernel function and uses OpenMP run-
time functions to call the kernel from the host module. Parallel loops in an
OpenMP program are handled similarly. Clang first outlines the body of the
parallel loop, the parallel region, to a function. We call this outlined function the
parallel region function. Then, the compiler replaces the parallel for pragma
with the call to an OpenMP runtime function, e.g., kmpc parallel. This func-
tion takes a pointer to the parallel region function and all variables needed for the
execution as inputs. The work-sharing loop logic is explicitly generated through
more runtime calls placed inside the parallel region function. Distribution of
iterations is based on the thread id initialized by the parallel region.

As explained in Sect. 1, we only consider kernels that expose two levels of
parallelism on the outer-most loop level. To handle these kernels, Clang first
distributes the iterations of the “distribute component” between teams based
on the number of threads in each team. Then it parallelizes the execution of all
iterations in each chunk assigned to a team by utilizing the team’s threads.

Figure 1 shows the high-level structure of the kernel created for a target region
with a single distribute parallel for. The compiler first inserts a call to the
runtime function kmpc distribute init in the kernel to determine the lower
and upper bounds of the chunks assigned to the team. After that, the compiler
inserts a for loop in the kernel to iterate over the chunks. We call this loop the
distribute loop. The compiler then inserts a call to the kmpc parallel function

Fig. 1. Compiler view of the kernels we consider in this paper.
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in the distribute loop to distribute the iterations between threads of the teams.
The inputs to this runtime call are the pointer to the parallel region function
and its inputs, and the chunk of the work-sharing loop specified by each iteration
of the distribute loop. For easier reference, we call the region of the kernel after
the call to the kmpc distribute static init function the distribute region.

The OpenMPOpt is an inter-procedural optimization (IPO) pass in LLVM,
which is implemented for optimizing OpenMP GPU execution. This pass is
enabled by default since LLVM 11 when compiling with O2 and O3 options. It
first runs on the module and later it runs on the call graph of the program. It
uses domain knowledge about OpenMP runtime calls to better optimize the
LLVM-IR of the program.

2.2 CUDA Memory Hierarchy

While executing, GPU threads can have access to different memory spaces. All
threads across all teams have access to the global memory. Each team of threads
has access to the shared memory. Finally, all threads have private local memory.

In this work, our focus is on the shared memory. Shared memory is an on-
chip memory; therefore, it is faster than global memory. There are two kinds
of shared memory: static and dynamic. Static shared memory is used when the
required size of the shared memory is known at compile time, and dynamic
shared memory is used when this size is unknown at compile time.

A challenge while using the GPU’s shared memory is to avoid bank conflict.
The shared memory is managed in modules of equal size or memory banks. Dif-
ferent memory banks can be accessed simultaneously. However, multiple threads
cannot access different locations in the same bank in parallel. Therefore, hav-
ing multiple threads accessing the same memory bank causes the bank conflict
problem, and the accesses will be serialized. More detailed information can be
found in [1,8].

In OpenMP, #pragma omp allocate(X)allocator(omp pteam mem alloc)
is for allocating static shared memory, where X should be replaced by the variable’s
name in the shared memory.

With LLVM, the function llvm omp target dynamic shared alloc returns
a pointer to the beginning of the dynamic shared memory “allocated” with
the LIBOMPTARGET SHARED MEMORY SIZE environment variable. See: https://
openmp.llvm.org/design/Runtimes.html#libomptarget-dynamic-shared.

3 Implementation

This section explains the method we use and our implementation details. We
first explain the problem we are solving in more detail in Sect. 3.1. After that,
Sects. 3.2, 3.3, and 3.4 explain our method and implementation phases for
prefetching and retrieving the memory locations correctly and efficiently. Finally,
in Sect. 3.5, we discuss an application of our method to load input arrays of small
sizes to the static shared memory.

https://openmp.llvm.org/design/Runtimes.html#libomptarget-dynamic-shared
https://openmp.llvm.org/design/Runtimes.html#libomptarget-dynamic-shared
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3.1 Problem Statement

Considering the arrays accessed in a parallel region, we can categorize their access
relations in two cases: (1) they are a function of the work-sharing loop’s induction
variable, and (2) they do not depend on this variable. The former case is more
challenging for prefetching because different teams access different locations of
the input array. We propose a solution for prefetching an input array in the first
case under some conditions; however, the method and the implementation can
be extended to relax these limitations and also to handle the second case.

This work considers one of the input arrays to the kernel that is read in the
parallel region in a loop for prefetching. That means the read access instruction
is surrounded by a loop-nest of the depth of at least two, where the outer-most
loop is the work-sharing loop. Also, the array’s access relation is a function of
the work-sharing loop’s induction variable and the induction variable of one of
the inner loops. We call that inner loop the access loop. Figure 2 shows the work-
sharing loop, the access loop, and an eligible read access for prefetching (v1).
We also assume there are no conditional branches in the target region, and the
total number of available threads (number of teams multiplied by the number of
threads per team) is equal to the number of iterations of the work-sharing loop.
Furthermore, we assume the amount of shared memory usage per team does not
exceed the shared space allocated for the program.

We perform shared memory prefetching in the distribute region before the
distribute loop. That is before entering the parallel region. This way, we can
prefetch those locations needed in each team to the shared memory before the
threads begin computation. After that, in the parallel region, we access those
locations from the shared memory instead of the global memory. We implement
this procedure as a part of OpenMPOpt pass of LLVM, and if activated, it executes
as a part of the O3 compiler optimization passes.

3.2 Finding Memory Locations to Prefetch

The first step is to find the memory locations that we want to prefetch for each
team. In fact, our goal in this phase is to find all the global memory locations
of the considered array that are read by the threads of each team in the input

Fig. 2. Example of the supported read access.
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program. To find these memory locations, we need to have (1) the chunks of the
work-sharing loop assigned to each team and (2) the memory locations accessed
in each iteration of the chunks. Then, we get all the accessed locations by iter-
ating over all locations in each iteration assigned to the team.

As we explained in Sect. 1, the compiler inserts a call to the runtime func-
tion kmpc distribute init in the kernel to get the lower (team LB) and upper
(team UB) bounds of the chunks of the work-sharing loop assigned to each team.
Therefore, we can access their values after this function call in the kernel (after
line 3 in Fig. 1).

For each team, we want to find the locations accessed in all iterations i
of the work-sharing loop, where i is between team LB and team UB. For the
kernels we consider, we can find these memory locations by having the integer
values of the first location of the array that is accessed in iteration i (Basei),
the distance between two consecutive accesses in iteration i (Stepi), and the
number of accessed locations by iteration i (Numberi). Having these numbers,
we can find all the accessed memory locations in iteration i by computing:

(Basei + k × Stepi), 0 ≤ k < Numberi. (1)

The thread that executes iteration i of the work-sharing loop reads Numberi
locations of the array, starting from Basei, and the difference between two
indexes it accesses consecutively is Stepi.

We apply the LLVM scalar evolution (scev) [5] analysis pass to the parallel
region function to get these values. Using the result of scev analysis, we can get
the required information as objects of the LLVM Value class [9]. To be more pre-
cise, we begin by getting the result of scalar evolution of the array’s access rela-
tion (using the getSCEV function) in the parallel region function and casting it to
SCEVAddRecExpr [6]. After that, we call the getStart and getStepRecurrence
functions of the result of the previous step. The outputs of these functions are
objects of the SCEV class, and we call them BaseSCEV and StepSCEV, respectively.
In the next step, we use an object of the SCEVExpander class [7] to expand code
for BaseSCEV and StepSCEV.

The code expanded for the BaseSCEV is an instruction that computes the Basei
values corresponding to each iteration i of the work-sharing loop. Because of the
kernel’s structure, the value of Basei is a function of i and the input parameters
of the kernel. If the expanded instruction has any operands resulting from other
instructions, we get those instructions and store them in a stack. We repeat this
operation on the newly added instructions to the stack until we reach an instruction
that all its operands are either integer numbers, the variable i, or the input param-
eters. Then, the instructions in the stack make the instruction sequence that, given
the iteration number i, computes the corresponding value of Basei.

The code expanded for the StepSCEV is an object of the LLVM Value class. It
is the value of Stepi and can be inserted into the program as an integer number.

Moreover, we can get the access loop from the SCEVAddRecExpr object we
got in the first step. The value of Numberi is the number of iterations of the
access loop, and we can get it as an object of the LLVM Value class using the
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bounds of the loop. Then, it can be inserted into the program as an integer value
or as a kernel input parameter. Note that the values of Stepi and Numberi are
equal for all iterations and we can drop the i subscript.

For example, in the kernel of Fig. 2, the code expanded for Basei is (M*i),
the Step is the integer 1, and the Number is the kernel input parameter M.

Up to this point, we have generated code for computing Basei, Step, and
Number. Based on Eq. 1, to have access to all the locations we want to prefetch,
we need to generate code for iterating over the values of Basei corresponding
to the iterations assigned to each team. Therefore, we create a loop iterating
from team LB to team UB, and insert the instruction sequence for computing the
Basei value in the body of this loop. We call this loop the base computing loop.
We insert the base computing loop in the distribute region before the distribute
loop. In the following steps, we will explain how to use the generated Basei
values to prefetch their corresponding memory locations.

Notice that the function parameters in the instruction sequence for comput-
ing the Basei value and in the instruction for Number are the ones in the parallel
region function. Therefore, to keep the program’s semantic correctness, the next
step is to replace the parameters with their correspondences in the distribute
region. Also, the work-sharing loop’s iteration number variable (for example,
variable i in the instruction for computing Base for Fig. 2) should be replaced
with the induction variable of the base computing loop to compute Basei for
the team’s iteration chunk.

3.3 Loading Data to the Shared Memory

After generating code for iterating over values of Basei for i iterating over
the team’s chunk, and also for Step and Number, the next step is to prefetch
their corresponding locations from the global memory to consecutive locations
in the shared memory. For this purpose, we develop a high-level function called
copy to shared mem. This function prefetches memory locations accessed in one
iteration of the work-sharing loop. As a result, to prefetch all the locations of the
considered array read by each team, we should call this function in the base com-
puting loop. This function gets the lower bound of the team’s chunk (team LB),
the iteration number of the work-sharing loop (the induction variable of the base
computing loop i), a pointer to the array we want to prefetch (V), the value of
Basei, and the values of Step and Number as its inputs. Therefore, after inserting
the instruction sequence for computing Basei in the base computing loop, we
have all the input values and we can insert a call to the copy to shared mem
function. Figure 3 shows the call to this function in the transformed kernel.

The first global memory location accessed by each team is V[Basei], for
i =team LB, and it should be stored in location 0 of the shared buffer. The
global memory locations accessed in iteration i are V[(Basei + k × Step)], for k
between 0 and Number. The copy to shared mem function stores these locations
in consecutive indexes of the shared buffer beginning from Si to Si + Number,
where Si is the starting storing location computed for iteration i. To avoid
over-writing already prefetched data, Si is equal to the total number of the
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Fig. 3. Call to the copy to shared mem function in the transformed kernel.

locations prefetched in the previous iterations of the base computing loop, and
it is equal to (i-team LB)×Number. With these relations, each team requires
(team UB-team LB)×Number × B bits of the shared space, where B is the size of
the prefetched array’s type.

Moreover, we want to prefetch data in the shared memory in parallel to
get better performance. The function is called in the target region outside the
parallel region. Therefore, we distribute the work between threads based on their
ids. Figure 4 shows the copy to shared mem function for prefetching an integer
array into the shared memory.

Fig. 4. The implementation of copy to shared mem function.

3.4 Retrieving Data from the Shared Memory

The final step is to generate code for replacing accesses to the global memory
with their corresponding accesses in the shared memory in the parallel region
function.

Based on the explanation in Sect. 3.3 and line 9 of Fig. 4, the index
(Basei + k × Step) of the considered array in the global memory is stored in
index (i−team LB)×Number + k of the shared buffer. In these relations k iter-
ates from 0 to Number and it is the induction variable of the access loop.

To access the shared memory locations, we first generate code for getting the
pointer to the dynamic shared memory in the parallel region function. Then,
we use the values of team LB and induction variable of the access loop in the
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parallel region function and generate code for the access relation to the shared
memory. Finally, we replace the access to the global memory with the (newly
generated) access to the shared memory.

3.5 Static Shared Memory Prefetching

We can take advantage of the method explained in the previous parts to prefetch
input arrays of small sizes to the static shared memory. In this case, we prefetch
the whole considered arrays into the shared memory for all teams. We first
select input arrays that fit in the shared memory. Then, we use the approach of
inserting a high-level copy function in the distribute region and replacing read
instructions from the global memory with read instructions from the shared
memory in the parallel region function to prefetch them.

4 Optimization

In this section we explain two optimization methods that can be applied at
compile time for some special cases to improve the performance and applicability
of the method explained in Sect. 3 in these cases.

4.1 Space Optimization

The method explained in Sect. 3 stores every read location in the team to the
shared memory. Although this method works correctly for all the cases, its time
and space usage is not efficient if some iterations in the chunks assigned to each
team read the same locations. In other words, if Basei is equal for some values
of i ranging from team LB to team UB, the corresponding iterations of the base
computing loop prefetch redundant data.

We extend the method of Sect. 3 to more efficiently handle the special case
that all1 iterations of the team’s chunk read the exact same locations. For this
purpose, we add an option that can be set at compile time to different, or
to same. The different option is the default one and works as explained in
Sect. 3. The same option can be used when it is known in advanced that all
iterations assigned to each team read the exact same locations. In this case, the
base computing loop is unnecessary, and we can load all the required data for a
team by finding Basei for i=team LB and call the copy to shared mem function
only once. In this case, the global memory locations are prefetched in the shared
buffer from index 0 to Number-1 and we can retrieve them in the parallel region
by the induction variable of the access loop.

1 It is better to use the default option for cases where some (but not all) of the team’s
chunk iterations read the same locations. The reason is that avoiding prefetching
redundant data in these cases complicates the copy to shared mem function in dif-
ferent ways (e.g., adds conditional branches to it) that degrades the performance.
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4.2 Reducing Bank Conflict

We explained in Sect. 2.2 that bank conflict might happen when a kernel uses
GPU’s shared memory. In the kernels we consider, the number of accesses with
bank conflict depends on the value of Number. In the worst case, where Number is
a multiple of 32, almost all of the accesses have bank conflict and we get slowdown
by prefetching. The reason is that each iteration of the base computing loop (calls
to the copy to shared mem function) starts storing data to the bank 0 of the
shared memory. This causes all threads requesting from the same memory bank
when retrieving data.

To solve this problem, we use the padding technique. More specifically, if
Number is a multiple of 32, we store one invalid data in the shared memory by
altering the copy to shared mem function. This can be done by changing line 4
of Fig. 4 to bufOff=(i-teamLb)×(Number+1)+Tid. Also, to ignore the invalid
location, we add 1 to the Number when retrieving data in the parallel region
function.

5 Performance Evaluation

In this section, we evaluate the method explained in Sect. 3 and the optimiza-
tion techniques proposed in Sect. 4 in terms of running time improvements.
We compile all the programs with the Clang compiler, along with -O3 and
-openmp-opt-inline-device options. We run the experiments on an NVIDIA
GeForce MX150 GPU of sm=6.0. For the shared memory experiments, we allo-
cate enough space of dynamic shared memory for the kernel, by setting the envi-
ronment variable LIBOMPTARGET SHARED MEMORY SIZE to the appropriate num-
ber. This number varies based on the size of the experiment.

For evaluation, we use the rectangular matrix multiplication kernel, and con-
sider multiplying matrices with different number of rows and columns. We com-
pare the running times of the kernel (reported by NVIDIA profiler, nvprof) with
and without prefetching and report the speedups based on the multiplier’s size.
Figure 5 shows the speedup we get when multiplying two matrices by prefetching
rows of the multiplier, and Fig. 6 shows the speedup we get when we multiply
transposes of two matrices and prefetch columns of the multiplier.

In both of these sets of experiments, the outermost loop is considered
the work-sharing loop with distribute parallel for pragma, the number of
threads we use is 32, and the number of teams is the number of iterations of
the work-sharing loop (the number of rows in the first case, and the number of
columns in the second case) divided by 32. Also, locations read by each thread
in each team are different and we cannot apply the space optimization from
Sect. 4.1 on these kernels (compile them with the default (different) option).

To examine the effect of bank conflict and padding method’s effectiveness
explained in Sect. 4.2, Figs. 5a and 6a show the speedup we get without applying
the padding method, and Figs. 5b and 6b shows the speedup when we apply the
padding method when prefetching data.
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Fig. 5. Prefetching speedup of the matrix multiplication when applying prefetching.

Fig. 6. Prefetching speedup of the matrix transpose multiplication by applying
prefetching.

To test the space optimization of Sect. 4.1, we again consider the matrix
multiplication kernel and we add the collapse(2) construct to the outermost
loop. We set the number of teams and the number of threads per team equal
to the number of rows of the multiplier. For these examples, the locations used
by all threads in a team are similar and we compile them with the same option.
Figure 7 shows the speedups we get by prefetching.
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Fig. 7. Prefetching speedup of matrix multiplication with collapsed loops.

In the final evaluation, we consider the XSBench [17] with small size. For
different grid types (Nuclide, Unionized, Hash) the input data structure has
three small size arrays that we can prefetch to the static shared memory, as
explained in Sect. 3.5. Figure 8 shows the speedup and also the total number of
global memory load requests (ld req) with and without prefetching, reported by
nvprof. The maximum speedup is 5%, and the number of load requests from
the global memory decreased by prefetching.

Fig. 8. Prefetching speedup and comparing number of global memory load requests in
XSBench.

5.1 Analysis of the Experiments

In the experiments represented in Figs. 5 and 6, there are reuses of the mul-
tiplier’s rows and columns in each team of threads, respectively. As a result,
by applying the prefetching technique, we reduce the number of global memory
accesses, which improves the performance of the kernels in most cases. However,
as shown in Figs. 5a and 6a, the kernels get slowdown when the number of rows
in Fig. 5a and the number of columns in Fig. 6a is 32, because of shared mem-
ory bank conflict. We can improve the performance in these cases by applying
the padding method, as explained in Sect. 4.2. The effectiveness of the padding
method is shown in Figs. 5b and 6b. Similarly, in the experiment represented in
Fig. 7, there are reuses of the same row of the multiplier in each team of threads.
By prefetching and applying the space optimization explained in Sect. 4.1 the
kernels gain speedup in all cases.
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In our experiment with XSBench, represented in Fig. 8, accessing the
prefetched arrays is not time-consuming compared to the other steps of the algo-
rithms. Although prefetching works as expected and reduces the number of load
requests from the global memory, the kernels do not gain significant speedup.

6 Conclusion

In this paper, we used the infrastructure of the OpenMPOpt pass to develop an
LLVM pass to optimize offloaded regions of OpenMP when targeting GPUs by
prefetching data to the shared memory. The method can be applied on the kernels
with some properties (explained in Sect. 3.1) and we show that it improves the
performance of these kernels. We also propose solutions for more efficient use of
shared space and for avoiding bank conflicts.

For future works, we plan to improve the applicability of the method by
supporting more general kernels and by relaxing the limitations explained before.
For instance, we want to improve our process to handle functions that use other
OpenMP constructs. Moreover, in the current version, we only prefetch one of
the read-only arrays. An interesting idea is to improve the algorithm to prefetch
more than one array or choose the best one for prefetching.
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Abstract. Many of the largest supercomputers are based on hetero-
geneous architectures with multiple general-purpose graphics processing
units (GPGPUs) per compute node. While many APIs for GPU program-
ming are vendor-specific, OpenMP offers a portable alternative. There-
fore OpenMP target offloading is advantageous in terms of long-term
code sustainability. Further, many applications have already been par-
allelized with OpenMP. Hence the amount of work needed to port the
code to GPUs may be limited. However, the support for the OpenMP 5.x
specification is not equally mature across different compilers. Addition-
ally, the multi-GPU support in the OpenMP 5.x specification is limited.
We explore what is possible with the Nvidia NVC compiler.

We present a case study of solving the Poisson equation on multiple
GPGPUs to outline which approaches for multi-target offloading give
good results. We find that a task-based multi-GPU implementation leads
to better performance than generating deferrable tasks with the nowait
clause.

We demonstrate that data transfers and computations can be fully
overlapped by using only the subset of the OpenMP specifications, which
is supported in the 22.3 release of the Nvidia NVC compiler. For com-
pute nodes with multiple Nvidia A100 or V100, we obtain close to ideal
strong scaling when increasing the number of accelerators.

Keywords: Heterogeneous computing · GPGPU programming ·
Tasks · Target offloading

1 Introduction

Many supercomputers are now based on heterogeneous architectures with mul-
tiple accelerators per compute node. An important example is the world’s first
publicly known exascale supercomputer, Oak Ridge National Laboratory’s Fron-
tier [2]. The compute nodes at Frontier come with four AMD Instinct 250X GPUs
[3]. Many other leading supercomputers are based on heterogeneous architectures
[2]. To name a few, Summit at the Oak Ridge National Laboratory comes with
six Nvidia Volta V100s per node [4], and Lawrence Livermore National Labora-
tory’s Sierra has four Nvidia Tesla P100 GPUs per compute node [5].
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The recent evolution in supercomputing has brought powerful GPGPUs to
the compute nodes. Thus it is crucial to study how to make performant applica-
tions utilizing multiple accelerators. The compiler support for OpenMP target
offloading is not yet mature across all compilers, which limits the number of
clauses and runtime functions that can be used if one wants to write portable
multi-GPU applications. Also, some programmers are accustomed to using inter-
device address mapping from other GPU programming APIs that OpenMP does
not support. However, it is possible to write code that scales well across multiple
GPUs with only a subset of the OpenMP 5.x specification.

In some literature, a basic approach for programming multiple GPUs with
OpenMP is to create deferrable tasks in a loop by using the nowait and
dev i ce ( ) clauses [6]. While this simple approach works for some problems,
we were unable to fine-tune it to obtain satisfactory results across more than
two accelerators. Instead, we found that using tasks and task groups gave better
strong scaling across multiple targets. It was found that there are two main ben-
efits of making a task-based implementation. First, it allows the task scheduler
to start kernels on multiple targets without delay between the launch time. Next,
embedding data transfers in tasks allowed us to avoid unnecessary synchroniza-
tion. Both aforementioned advantages result in an application with significantly
less idle time on the accelerators.

2 Background

In this case study, we will consider solving the Poisson equation on a hyper-
rectangle Ω with a finite difference scheme. The Poisson equation can readily
and efficiently be solved by direct methods such as Sparse LU decomposition
[7]. However, when the system size grows, the matrix decompositions become
computationally infeasible [8]. That motivates using an iterative method such as
multigrid methods or the simpler finite difference methods. The Jacobi method
is an embarrassingly parallelizable lower order method but proves to be a good
example of what one can achieve on a single compute node.

We will consider the Poisson equation on the form

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= −f, (x, y, z) ∈ Ω. (1)

A research team at the Technical University of Denmark needed a Poisson solver
with Dirichlet boundary conditions on two of the boundary planes and Neumann-
type boundary conditions on the remaining four. Hence these are the boundary
conditions that we will consider in this paper,
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Due to the Neumann boundary conditions, it is necessary to derive different
stencils for interior, boundary, and corner points. The stencils for boundary
walls and corners can be derived with the ghost point approach. In total, this
yields nine different kernels.

For a univariate function, the second order central difference operator is
given by

∂2u

∂x2
� ui+1 − 2ui + ui−1

h2
(3)

where h is the uniform spacing between the lattices in the grid. From the sepa-
rability of the Laplacian operator (1) it follows that the second-order accurate
finite difference approximation is given by

ui+1,j,k + ui,j+1,k + ui,j,k+1 − 6ui,j,k + ui−1,j,k + ui,j−1,k + ui,j,k−1

h2
� −f (4)

where i, j and k are indices in the x, y and z dimensions respectively. By reorder-
ing the approximation (4) we arrive at the Jacobi update for interior points

u
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1
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u
(l)
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(l)
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(l)
i,j−1,k +u

(l)
i,j+1,k +u

(l)
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(l)
i,j,k+1 +h2f

)

(5)

where l indicates the iteration number. Listing 1.1 exemplifies how the Jacobi
update (5) for interior points can be implemented in C. We derived the remaining
eight lattice update equations for boundaries and corners in the same manner
as L. Cheng [10] but for a 3D domain.

Figure 1 shows a slab partitioning of the hyperrectangular domain. We will
now outline how multiple GPUs can be used to work on each slab and how to
exchange intermediate results from each GPU to its neighbor GPUs.

1 #pragma omp dec l a r e t a r g e t

2 void i n t e r i o r ( double ∗ u1 , double ∗ u2 , double ∗ f ,

3 i n t i , i n t j , i n t k , i n t ny , i n t nz )

4 {
5 s i z e t idx = i ∗ny∗nz+j ∗nz+k ;

6 u1 [ idx ] = FRAC∗( u2 [ idx−ny∗nz ] + u2 [ idx+ny∗nz ] + u2 [ idx−nz ]

7 + u2 [ idx+nz ] + u2 [ idx −1] + u2 [ idx+1] + f [ idx ] ) ;

8 }
9 #pragma omp end de c l a r e t a r g e t

Listing 1.1. The stencil to update interior points. For this stencil to work, the right-
hand side f must have been multiplied with h2 in advance, and FRAC should hold the
value 1

6
. The arguments i, j, k are the indices in the three dimensions, and ny and nz

are the numbers of lattices in the y and z dimensions respectively.
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Fig. 1. Illustration of the partitioning of the domain. It was chosen to split the domain
across the x-axis but it could in principle have been partitioned along any axis.

3 Design Patterns

The OpenMP specification provides many options for utilizing accelerators.
However, the Nvidia HPC SDK release 22.3 [9] supports only a subset [1] of
the OpenMP 5.0 API. Therefore we will pursue what is possible under these
limitations.

3.1 Initial Target Version

The nowait clause makes the target task a deferrable task allowing the host
thread to continue execution after launching a kernel on the device [6]. Thereby
multiple kernels can be run in parallel, potentially on multiple devices.

Therefore a simple approach for implementing a multi-GPU version of the
code is to use the nowait clause for data transfers and kernel execution. All
target constructs yield a new task, and thereby a combination of nowait and
taskwai t provides a straightforward yet powerful way of using accelerators in
parallel. However, this approach has its limitations compared to tasking since
more synchronization points are needed.

Parallelizing the Jacobi Scheme on the Target. We have to consider mul-
tiple levels of parallelism to achieve good performance on the target. First, the
t a r g e t construct creates a thread on the target device. Then teams is used
to start a league of initial threads. The d i s t r i b u t e construct can then be
applied to distribute the loop iterations across the initial threads. By adding the
p a r a l l e l construct, each initial thread becomes the master of a new team of
threads.

The c o l l a p s e clause must also be applied to fully distribute the iterations
if high performance should be achieved for multiple nested loops. Listing 1.2
shows how to use the combined constructs to loop over interior points in the
domain.
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1 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r c o l l a p s e (3 ) \
2 schedu le ( s t a t i c ) dev i c e ( node−>id ) nowait

3 f o r ( i n t i =1; i<nx−1; i++)

4 f o r ( i n t j =1; j<ny−1; j++)

5 f o r ( i n t k=1; k<nz−1; k++)

6 i n t e r i o r (u1 , u2 , f , i , j , k , ny , nz ) ;

Listing 1.2. Kernel to loop over all interior points in target region.

1 // Copy boundary l a y e r s from dev i c e s to host
2 f o r ( i n t i =0; i<num devices ; i++){
3 #pragma omp ta rg e t update from ( . . . ) \
4 dev i ce ( node−>id ) nowait
5 }
6 #pragma omp taskwai t
7 // Copy boundary l a y e r s from host to dev i c e s
8 f o r ( i n t i =0; i<num devices ; i++){
9 #pragma omp ta rg e t update to ( . . . ) dev i c e ( node−>id )

nowait
10 }
11 #pragma omp taskwai t

Listing 1.3. The nowait approach for communicating the boundary layers from each
device to the neighbor devices in the grid.

Transferring Boundary Points. As of the OpenMP 5.1 specification,
omp target memcpy ( ) should be able to copy data between any combina-
tion of host and device pointers. However, it is one of the features currently not
supported in the Nvidia HPC SDK. An alternative approach is to transfer the
data from a device to a buffer located on the host and subsequently transfer it
to another device. Listing 1.3 provides an example of how boundary points can
be exchanged via the host using t a r g e t update and taskwai t clauses. In
the example, we assume that the ids of devices are stored in a linked list.

Overlapping Computations and Communication. To overlap computa-
tions and data transfer the interior kernel must first be applied to the boundary
lattices. Then the results on the boundaries can be exchanged with neighbor
GPUs while the remaining lattices are updated. With this strategy, it is possible
to overlap computations and communication. At least to a certain degree.
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1 #pragma omp p a r a l l e l
2 #pragma omp s i n g l e nowait
3 #pragma omp taskgroup
4 f o r ( i n t i =0; i<num devices ; i++){
5 . . .
6 i f ( node−>prev != NULL) {
7 #pragma omp task f i r s t p r i v a t e ( node )
8 {
9 #pragma omp ta rg e t update from ( . . . ) \

10 dev i ce ( node−>id )
11 #pragma omp ta rg e t update to ( . . . ) \
12 dev i ce ( node−>prev−>id )
13 }
14 }
15 . . .
16 }
Listing 1.4. Example task to move data from one device to another. One could also
have used two calls to omp target memcpy ( ) instead of the compiler directives.

3.2 Tasking-Based Strategy

While using the nowait and taskwai t clauses in combination provides a sim-
ple framework for using multiple accelerators in parallel, this approach does not
scale well when using more accelerators. The primary reason for this is that the
kernels are not launched at the exact same time on each device. That leads to a
high fraction of idle time. Using tasks and task groups is a powerful alternative
that scales better with the number of accelerators for our type of problem.

Transferring Boundary Points with Tasking. Assuming that the devices
are stored in a linked list data structure, Listing 1.4 gives an example of how a
task can be used to transfer boundary points from one device to a neighbor device
via the host. A similar approach could be to use the task depend clause, but
we once again found that the required clauses are still not well supported in the
NVC compiler. However, this simplistic approach of including two blocking data
transfers in the same task performs well. Note that since the t a r g e t update
clause generates a task itself, we now need to consider task groups to wait for
all tasks and their descendants generated in the relevant code region.

Overlapping Computations and Communication with Tasking. We
found that Nvidia’s compilers do not support embedding a ta r g e t teams
construct in a task. Therefore the stencil kernels were still launched with the
nowait clause in this version. Listing 1.4 gives a simple example of how the
data transfers can be embedded in tasks and how the tasks can be created inside
a task group. Note that it is generally not recommended to open parallel regions
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inside a loop due to the overhead of opening and closing parallel regions. In our
implementation, the entire iteration loop was embedded in a single region inside
a parallel region and therefore differed a bit from the example.

4 Results

In this section, the implementation based on generating a deferrable task in a
loop with the nowait clause will be compared to the slightly more complex
tasking-based implementation. We will refer to them as the nowait strategy
and the tasking strategy, respectively.

4.1 Experimental Setup

Two types of nodes were used to test the multi-GPU implementations of the
Jacobi scheme. One with an AMD EPYC CPU and four Nvidia A100 GPUs.
Most of the results stated in the next section were obtained on this node. We also
had access to a node with an Intel Xeon Gold 6142 CPU and four Nvidia V100
GPUs. We chose to focus on the Ampere node in the figures. Mainly for brevity

Table 1. System information for the two types of nodes used for the benchmarks. The
two tables under (a) states highlighted information about the node with Nvidia A100
GPUs which was used for most figures in this paper. Table (b) lists the equivalent
information for the node with Nvidia V100 GPUs.

(a) Ampere Node

CPU Information

Model name AMD EPYC 7F72

Sockets 2

Cores per socket 24

Threads per core 2

L1d cache 32K

L1i cache 32K

L2 cache 512K

L3 cache 16384K

(b) Volta Node

CPU Information

Model name Intel Xeon Gold 6142

Sockets 2

Cores per socket 16

Threads per core 1

L1d cache 32K

L1i cache 32K

L2 cache 1024K

L3 cache 22528K

Accelerator Information

Number of GPGPUs 4

Model name Tesla A100

RAM 40 GB

FP64 Cores 3456

L1 cache 20736 KB

L2 cache 40960 KB

Accelerator Information

Number of GPGPUs 4

Model name Tesla V100

RAM 32 GB

FP64 Cores 2560

L1 cache 10240 KB

L2 cache 6144 KB



88 A. Rydahl et al.

but also because the Ampere architecture is newer than the Volta architecture.
However, we will highlight when the results differ. Table 1 states technical details
about the two compute nodes.

4.2 Experimental Results

The experimental results were collected by running 5000 iterations of the appli-
cations ten times and averaging the results. Note that it required significantly
more than 5000 iterations to converge on the high-resolution domains. The
performance of the multi-GPU versions was compared to an equivalent SIMD-
optimized and parallelized CPU version. When the GPU versions are compared
to the CPU version, we compare them to using all cores per socket for all sockets
on the compute node.

Figure 2 shows that both the strategies we tested led to significant speedups
when utilizing one or more GPUs. We obtained similar results on both the Volta
and Ampere nodes, but only the results for the latter are shown. However, it
is noticeable that even on the largest domain size that was tested, the nowait
strategy led to worse results when using four GPUs compared to using only
three. With the tasking strategy, we obtained 48.62 times speedup compared
to the average running time of the parallel CPU version on a domain with 109

lattices. With the nowait strategy, using four GPUs only led to 22.46 times
speedup.

By using the nsys and nv−ns ight−cu−c l i profilers, we found an expla-
nation for why the nowait approach does not scale well. The profiling results
made it clear that even though the kernels and data transfers execute in parallel,
there is a delay in the launch time for each GPU. That leads to a significant
amount of idle time when the number of accelerators increases. Another reason
is that this version has more synchronization points due to the lack of compiler
support for task dependencies on target regions. Hence we must wait for all the
device to host transfers to terminate before we can initiate the data transfers

Fig. 2. Speedup from using an entire CPU to using multiple GPUs. This figure is made
with results from the Ampere node Table 1a. The speedup is measured in comparison
to using all 48 physical cores on the Ampere node Table 1b
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Fig. 3. Speedup as function of the number of accelerators utilized on the two types of
nodes. Figure (a) shows the speedup for the Ampere node and (b) for the Volta node.
In the test the number of lattices in the domain was fixed at 109.

from the host to the devices. That results in only partially overlapping data
transfers and kernel executions.

Figure 3 shows how the number of lattice updates per second scales with the
number of GPUs used. This time we would like to address both the results on
the Nvidia A100 and V100 GPUs. On the node with Volta GPUs, we observe
that the task-based approach gives close to ideal speedup for a domain with 109

lattices. With this approach, we obtain 3.78 times speedup compared to using
only one of the V100 GPUs.

However, for the same domain resolution, the tasking approach is more than
four times faster when using four Nvidia A100 GPUs. Figure 4 can explain this
result. We can explain the behavior on the Ampere node by investigating the
cache performance, which is plotted as a function of resolution in Fig. 4a. When
the resolution of the domain becomes higher, the level two cache hit rate drops
to approximately 50%. When we go from a domain size of 2503 � 1.56 · 107 to
5003 = 1.25 · 108 lattices, we see a simultaneous decrease in level two cache hit
rate and streaming multi-processor throughput, Fig. 4d. So when we partition
the domain on more GPUs, the interior point kernel is more efficient. It turns
out that this performance gain more than cancels out the synchronization that is
introduced when working with multiple accelerators for our particular problem.

The main reason that we do not see this behavior on the Volta node is that
the level two cache is approximately seven times smaller compared to the Ampere
GPU. However, for an even larger domain, it can be expected that the scaling
on the Ampere node will be similar to the scaling on the Volta node.
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Fig. 4. Performance counters for the interior point kernel Listing 1.2 that takes up the
vast majority of the running time. Figure (a) shows the cache hit rate for the level one
and level two cache on a Nvidia A100 GPU. (b) shows the memory pipeline throughput,
(c) shows the throughput in TB/s, and (d) shows the SM throughput in percent.

5 Related Work

There are many examples of directive-based multi-GPU programming on a single
compute node. An early example, Xu et al. [11] use an OpenMP and OpenACC
hybrid model to solve the heat equation in 2D using two GPUs. Here OpenMP
is used for host parallelism and OpenACC for device parallelism. The lattice
update procedure in this work is similar to the Jacobi stencil, but due to the
evolution of OpenMP, we had the option to use OpenMP for offloading to GPUs
as well.

Jaber et al. [12] have developed a far more complex open-source Poisson
solver, which is based on an MPI and OpenACC hybrid model. This solver relies
on fast Fourier transform (FFT) and parallel cyclic reduction (PCR). Further,
the weak scaling analysis of this solver was run for up to 16384 GPUs at Oak
Ridge National Laboratory’s Titan supercomputer. In comparison to this app-
roach, the solver we present is, first of all, limited to one single node. Second,
the method we use has worse time and storage complexity than an FFT-based
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method [7]. Yet our work shows that OpenMP can be used for multi-target
offloading, potentially in a more complicated Poisson solver.

Kale et al. [13] use OpenMP target offloading to utilize multiple GPUs. Here
the task loop construct is used to distribute the work and data among the
accelerators. In this way, blocks of work are dynamically distributed among the
accelerators to handle work imbalance. Since the problem considered in this
paper is not work imbalanced, it was chosen not to pursue the same paral-
lelization strategy. Instead, letting the data reside on a specific GPU helped us
minimize the total amount of intra-node communication.

Patel et al. [14] demonstrate how OpenMP can be used to offload to remote
accelerators. They show how accelerators efficiently can be utilized across a
distributed system without MPI. Their work has been included in the LLVM
project. That work is interesting because it shows that an application like the
Poisson solver outlined in this paper could, in principle, run on remote accelera-
tors without using other APIs such as MPI. However, this would require moving
to an LLVM-based compiler.

In terms of the choice of compiler, we are not the first to address the lack of
OpenMP support for target offloading and tasking in Nvidia’s HPC SDK. Chap-
man et al. [15] report that their program did not compile or resulted in a crashing
executable when compiled with NVC. In comparison, the program worked when
compiled with Clang, CCE, and, to some extent, GCC. For their application,
release 21.3 of Nvidia’s HPC SDK was used. While we got our application to
work with release 22.3, we also faced challenges. During the development of this
application, we reported a compiler bug related to data scoping for tasks [16] and
two bugs [17] related to embedding a target region in a task. The data scoping
bug was fixed in release 22.5, but the two latter have not been fixed at the time
of writing.

6 Conclusion

In this paper, we compared different strategies for utilizing multiple GPGPUs
with the OpenMP API. We showed that for sufficiently large problems, it is
possible to fully overlap computations and data transfers with the subset of the
OpenMP specification, which is currently supported in the Nvidia NVC compiler.

We found that when embedding data transfers in tasks, our application
achieved close to ideal, strong scaling across multiple accelerators. We got super-
linear, strong scaling on a compute node with four Nvidia A100 GPUs. This was
explained by the fact that the performance of the interior lattice update ker-
nel was influenced by the level two cache hit rate. We expect this effect to be
less influential for larger domains which will probably lead to sublinear, strong
scaling.

The approach of making deferrable tasks with the nowait clause did make
it possible to use multiple accelerators. However, for the large domains, we got a
twice as large speedup by using tasks to transfer boundary points when utilizing
all four accelerators. That holds for both types of compute nodes that we had
access to.
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By using the nsys−ui profiler, we could explain this behavior by the fact
that the kernels and data transfers launch with some offset in time when using
the nowait clause to generate deferrable tasks. That results in more and more
idle time when increasing the number of accelerators. Therefore the nowait
approach was less performant. We found that all data transfers and kernels

launched in parallel without delay for the tasking approach. The tasking strat-
egy also provided much greater flexibility in terms of synchronization. This is
also part of the explanation for why embedding data transfers in tasks led to
substantially better performance.

The application considered in this case study is embarrassingly parallelizable,
yet it demonstrates how a finite difference method, or a similar method with
lattice updates, can be implemented in OpenMP. It would not be difficult to
extend this implementation to a higher-order finite difference approximation.

We would have liked to pursue an implementation based solely on tasks and
task dependencies, but this was not possible due to bugs in the NVC compiler.
However, when these bugs have been fixed, we would like to try to follow this
path. It would perhaps be a way to eliminate the synchronization that we were
forced to have between each iteration of the Jacobi updates. For instance, it
would be straightforward to use task dependencies to improve Listing 1.4.
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Abstract. Recent works aimed at expanding the target offloading capa-
bilities of OpenMP to FPGA platforms. While enabling the easy con-
struction of heterogeneous systems, the approach has to face a major
hurdle: by blurring the line between software and hardware development,
it forces software developers to consider hardware limitations. This can
be difficult through the abstractions that OpenMP introduces over the
generated hardware. The high level synthesis tools used by OpenMP
compilers to generate hardware already offer predictions on hardware
usage. Their value for OpenMP offloading however is questionable. This
paper is based on the data mining we conducted on thousands of ker-
nel variations. It demonstrates and proves under which circumstances
these predictions can be trusted in the context of OpenMP to FPGA
offloading and concludes by showing how to derive runtime performance
predictions from them. The model we present can be used without expe-
rience in hardware development and quickly predicts runtime on our
benchmarks with an average Pearson correlation of 0.897. This knowl-
edge allows developers to make fast, informed design decisions.

Keywords: FPGA · OpenMP · target offloading · data mining

1 Introduction

FPGAs are already widely used for a broad variety of computational tasks.
Depending on the use case they can outmatch CPUs and GPUs in performance
and energy efficiency given the right domain [2,26]. However there is an obstacle
to the use of FPGAs: while basic software development is a widespread skill,
knowledge of hardware development is far less common. Hence, there is a need
to make FPGA development more accessible for software programmers.

One way to bridge this gap is OpenMP. OpenMP already offers a model and
syntax for target offloading, that conceptually can be applied to FPGA offload-
ing. Previous works presented tools that already generate hardware for offloaded
regions and to construct heterogeneous systems from OpenMP code [14,18,19,23].

Figure 1 shows the general workflow of these tools. First, the OpenMP compiler
identifies the annotated regions that are to be executed on the FPGA platform.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Workflow of a typical OpenMP to FPGA compiler.

For each of these regions it identifies the data that has to be transmitted at runtime
between host and FPGA and vice versa. This step is called target outlining. For
the code that later runs on the host and that is fed into a regular CPU-compiler
the outlined region is cut from the host side code and is replaced by routines that
handle data transfer and launch the computation on the FPGA.

In order to program the FPGA, a so-called high level synthesis tool (HLS)
translates the outlined code into a hardware description, yielding a so-called
intellectual property (IP) kernel. Typically, the HLS is an of-the-shelf building
block provided by FPGA vendors [4,15,18,29]. The kernel is then embedded
into a low-level platform (LLP) that, apart from the actual calculation, provides
the necessary infrastructure, like FPGA memory, bus system, and kernel control
[19]. In general the OpenMP-to-FPGA tools use fixed LLPs since the OpenMP
code itself does not provide details on the underlying hardware architecture.
Finally, a Bitstream is generated from the hardware description. The resulting
Bitstream and the generated host code form the heterogeneous system.

Unfortunately, this workflow cannot entirely bridge the gap between hard-
ware and software development, as often OpenMP code developed without
FPGAs in mind turns into hardware with unsatisfactory runtime performance
[18]. HLS tools struggle with offloaded OpenMP code. There are two main rea-
sons. First, HLS tools are targeted at translating C/C++ code written specifi-
cally for an FPGA, which often is different from the C/C++ code cut from an
OpenMP source code. Second, HLS tools expect their users to be FPGA experts
who manually tune, annotate, and adjust their codes [5,10,11,17]. Expert knowl-
edge is crucial as a single hardware generation can often take hours or even days,
hence only experts can avoid extensive experimentation and soon get to a well-
performing FPGA that fits into and best exploits the available hardware space.

As the typical OpenMP developer is not an FPGA expert, the offloaded code
is neither written with an FPGA mindset nor does it include HLS pragmas. The
OpenMP developer needs help as due to the excessive HLS generation times
compiling and testing multiple solutions is not an option. As a remedy the HLS-
tools offer early estimates (on both area use and on runtime) that are available
within minutes instead of hours. But even these estimates are of no help in
this setting. This is because to produce reasonable and reliable numbers the
HLS needs annotations and specifications on the exact path of execution. To
interpret the runtime estimates a detailed understanding of the floorplan of the
generated hardware and its circuits is needed. One that an average OpenMP
developer without extensive hardware knowledge does not have.
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This is where the contributions of this paper come in. We provide the OpenMP
developer first with crucial information on the reliability of the early HLS area esti-
mates and second with a model to predict the runtime performance of OpenMP
code within minutes instead of hours, more specifically to predict the effect that
HLS pragmas have on the runtime time performance when developers add them
to the target regions of their OpenMP codes. Note that in contrast to the vendors’
runtime performance estimates, our prediction model does not require any addi-
tional (path) specification or other user input to achieve reliable numbers.

To understand how different combinations of HLS pragmas affect the result-
ing FPGA runtime performance, we explored the extensive search space. We
automatically annotated many OpenMP codes with various HLS pragmas and
their combinations. We then measured both final hardware usage of the FPGA
and the resulting runtime. We trained regression models on a part of this dataset
to predict the final runtime purely from early HLS area estimates. We validated
our predictions with another part of this dataset. Section 2 explains our approach
and the conducted and evaluated experiments. Section 3 presents the statistics
and results and discusses their impact of runtime performance predictions for
OpenMP programmers that are no hardware experts. Section 4 covers the limi-
tations and the threats to the validity of our work. Before we conclude, Sect. 5
sketches related work on hardware performance prediction.

2 Data Mining

We took a benchmark set (see Table 1) written in C + OpenMP and randomly
annotated the codes with various parameterizations of a set of HLS pragmas
(see Table 2). We synthesized and ran the resulting random samples, yielding
an extensive dataset. On this set we evaluated the reliability of early HLS area
estimates with respect to the four main FPGA resources, namely lookup tables
(LUT), block ram (BRAM), flipflops (FF), and digital signal processors (DSP),
and trained regression models that use these early area estimates to quickly
predict the runtime more reliably and without any additional input from the
developers. Let us explain the details below.

Table 1. Benchmarks.

Name Description
Performance Floating Func-

Loops Samples
Bottleneck Point tions

SHA256 Hash compute 15 9 542

SHA3 Hash compute 8 13 432

MD5 Hash compute 2 7 551

Filter 2D Convolution memory X 3 4 297

OE-Sort Odd-even-
transposition sort

memory 3 3 238

Mandelbrot Mandelbrot set compute X 1 2 335
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Table 2. Inserted HLS pragmas.

Pragma applicable to parameters

HLS unroll loops factor [1;1024]

HLS pipeline loops initiation interval (II) [1;32], rewind

HLS inline functions region

2.1 Benchmark Set

The benchmark set holds hash algorithms, a 2D convolution (filter), an (odd-
even-transposition) sort, and Mandelbrot. The reason for this choice is that fast
hashing and fast filter operations on FPGAs have been an ongoing topic for
decades [1,3,6,12,20,21,25]. We included a sort as a building block of many
FPGA applications [13,16]. The Mandelbrot computation is in the set as it is a
widely used benchmark [9,15,31]. The six C implementations are from textbooks
or taken from open source code. They are not specifically optimized for the use
in HLS/FPGA. Table 1 loosely classifies them on whether their performance
is compute bound or memory bound. Some benchmarks require a significant
proportion of floating point arithmetics. The table also lists the number of func-
tions and loops in each benchmark’s target region (which itself forms the top
level function after the outlining). These are the hooks where we later add the
HLS pragmas. We postpone the discussion of the last column (samples) to Sect.
2.3. For each benchmark we generate a random input set that we later use to
measure the runtime performance of the generated Bitstream.

2.2 Inserted HLS Pragmas

HLS pragmas manipulate the way code is synthesized, control the degree of
parallelism that the hardware achieves, and thus have a huge impact on both the
area demand and the runtime performance of the FPGA. We chose the pragmas
from Table 2 for their ability to control the degree of parallelism in FPGA logic
(in contrast to memory). All these pragmas keep the semantic correctness of
the program intact. They are mere hints to the HLS. For example, if an HLS
pragma suggests to parallelize a loop but existing data dependencies disallow
that parallelization, no parallel hardware is generated.

At each loop in a given benchmark code we inserted (at most) one HLS
loop pragma (unroll or pipeline) plus pragma-specific parameter values and
optional flags. In total there are up to 1090 = 1024 + 1 + 64 + 1 variants that
can be the result of pragma insertions per loop.

The unroll pragma unrolls the annotated loop, enabling the synthesis of
parallel hardware for the loop bodies where possible. The pragma can supplied
with an explicit unroll factor. We considered the range [1;1024] for it. If the
factor is omitted, the HLS will try to fully unroll the loop where possible.

The pipeline pragma instructs the HLS to construct a pipeline from the
annotated loop. We only applied the pragma to loops. While conceptually it
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is feasible to ask the HLS to figure out the minimal initiation interval (II)
of such a pipeline, i.e., the latency between the completion of two consecutive
iterations, our pragma insertion process only considers explicitly specified II
values in the range [1;32]. Moreover, if there is only one single pipelined loop
within an OpenMP target region and if there is neither a conditional statement
nor function call outside of it, then an optional rewind flag can be added to
further decrease latency. For codes where rewind is feasible we considered two
versions per II value, i.e., with and without the rewind flag.

At each function in the given benchmark code we can insert the HLS inline
pragma, with or without an optional region flag. This yields 3 potential variants
as a result of the pragma insertion per function. The inline pragma controls the
inlining of functions, allowing their content to be executed in parallel with their
caller. The annotated function is inlined upwards unless the optional parameter
region is set. Then the function calls within the function are instead inlined into
the function body (downwards). In theory these two options are not exclusive to
each other, but we treat them as such, since applying both to the same function
tends to lead to excessive hardware bloat.

2.3 Search Space Exploration

The mentioned set of pragmas and parameters leads to a vast parameter space
on our benchmarks. For instance, for the SHA3 benchmark there are in the order
of 1028 combinations, even after we remove meaningless ones (e.g., we do not
unroll a statically bound loop beyond its number of iterations, we do not inline
a function downwards if it does not have an inner function call, etc.). Since it is
infeasible to fully explore the whole parameter space, we only generate random
samples to acquire a representative dataset.

For each benchmark we construct samples in two phases. The initialization
creates a set of samples, say 500. The refining inspects the set and adds more
samples that hopefully inhabit undiscovered areas of the search space. The refin-
ing is repeated until a given time budget, say a week, is up.

To construct an initial sample, we randomly select 25% of the hooks in a
benchmark code to insert one of the applicable pragmas. If that pragma has a
parameter we use a geometric distribution to pick its value. The factor param-
eter of the unroll pragma was omitted with a probability of 20%. If feasible we
add rewind or region with a chance of 50%. After construction of the sample,
the HLS either provides an early area estimation or indicates unsynthesizabil-
ity, for instance if a large unroll factor is combined with heavy inlining into the
respective loop because this may need more space than the target FPGA can
offer. We purge unsynthesizable samples from the set.

The second phase refines the set of samples. Often there are samples whose
pragmas or whose parameter values have little or no impact on the area esti-
mates. The HLS estimates of those samples are close to each other; the samples
form clusters around similar area estimates. For example a pragma that suggests
parallelism if there are data dependencies does not affect the FPGA area esti-
mates at all. The idea of the refining phase is to take representatives from such
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Table 3. Fraction of unsynthesizable codes. HLS and Bitstream generation.

Name HLS Bitstream

SHA256 17% 4%

SHA3 29% 7%

MD5 19% 1%

Filter 9% 7%

OE-Sort 31% 1%

Mandelbrot 4% 0%

clusters of samples with similar area estimates and to modify, extend, and alter
the inserted pragmas, hoping to end up with new samples, whose area estimates
are outside of already discovered clusters, i.e., cover previously unknown areas of
the search space. Alteration of a sample is again randomized. When we generate
a new pragma for a hook, we either replace the preexisting pragma (50%) or
remove it completely (50%).

To find the clusters and to pick the samples that we use to generate new
samples we rank all samples by their distance to their nearest neighbor based
on the utilized FPGA area (low to high). We then randomly pick 25% of the
samples with a probability that is proportional to their rank (rank 1 being the
most unlikely) and generate a variation as described above. The new sample is
again fed to the HLS for area estimates. An unsynthesizable sample is purged.
If the time budget is not up, there is another round of refining. The “samples”
column Table 1 shows how many samples we generated for each of the benchmark
codes (in a week for the hash benchmarks and in five days for the others).
The HLS-column of Table 3 shows the fraction of generated samples that are
unsynthesizable. Our benchmarks as well as the samples generated from them
are available from https://github.com/FAU-Inf2/OpenMP2FPGASamples.git.

2.4 Performance Measurements

After completing the HLS we build Bitstreams from the (non-purged) samples.
This step can again fail due to the hardware getting too complicated, see the
Bitstream-column of Table 3. We again purge failing samples from the set.

For each of the successfully generated Bitstreams we measured its runtime
performance on our test system: an Intel Core i7-4770 CPU running Ubuntu
20.04.4 LTS and communicating with a Xilinx VCU118 FPGA board via PCI
express (speed 5GT/s, width ×4). We invoked the heterogeneous system with the
benchmark’s input data and measured the runtime that is spent on computations
on the FPGA. These runtime measurements ignore the runtime of the host-side
code as well as the delays caused by data transfers between host and FPGA. In
total we have three different sets of data for each sample: the HLS area estimates,
that are available after the HLS is completed, the final area reports, that are
generated together with the Bitstream, and the runtime of the respective sample.

https://github.com/FAU-Inf2/OpenMP2FPGASamples.git


100 J. Brandner et al.

2.5 Predictive Modeling and Interpretation

To quickly predict the runtime performance from early area estimates, i.e., without
having to await the Bitstream generation and without needing additional anno-
tations, we trained regression models on our datasets. We set aside 30% of each
dataset for the evaluation. We use the remaining 70% to train three regressors:

– Linear: We fit a linear regression model using the method of least squares.
– Tree: We train regression trees using the analysis of variance method. We

set the minimum split size to 20 and the cost complexity parameter to 0.001.
– Random Forest: We conduct a random forest regression with 9 trees per

model and consider all input axes per tree.

We measure and interpret the prediction quality of the models by calculating the
correlation between the predicted value and the measurement. To do so we utilize
the Pearson correlation coefficient rp as well as the Spearman rank correlation
coefficient rs. Depending on the use case either coefficient can quantify desir-
able qualities in a prediction. While an automatic optimization procedure (e.g.
generic optimization, simulated annealing) may only be interested in the rank
of measurements to gradually improve the result, a human manually optimizing
the code may be better represented by Pearson’s rp.

3 Results

3.1 Reliability of Early HLS Area Estimates

When offloading onto an FPGA, OpenMP developer have to consider both the
runtime performance as well as the resource consumption of their codes. As this is
usually done with the vendors’ HLS area estimates, we examine their reliability.
For all our samples, Table 4 compares these area estimates to the reported actual
area usage of the generated Bitstream and correlates these measures.

Table 4. Reliability of early area estimates measured by correlation.

All LUT BRAM FF DSP

Samples rp rs rp rs rp rs rp rs

SHA256 0.890 0.850 0.622 0.678 0.903 0.891 -2 -2

SHA3 0.957 0.895 0.707 0.665 0.903 0.890 -2 -2

MD5 0.997 0.893 0.404 0.678 0.998 0.907 -2 -2

Filter 0.591 0.636 -1 -1 0.518 0.676 0.346 0.382

OE-Sort 0.995 0.679 -1 -1 0.982 0.616 -2 -2

Mandelbrot 0.454 0.501 -1 -1 0.375 0.533 0.096 0.484
1 The BRAM usage is reported in 36 kb tiles. If a benchmark uses so
few BRAM tiles that the number of reported tiles barely fluctuates,
the correlation is undefined.
2 Only floating point kernels use DSPs.
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Table 5. Correlation of area estimates with FPGA runtimes.

All LUT BRAM FF DSP

Samples rp rs rp rs rp rs rp rs

SHA256 −0.568 −0.153 0.472 0.390 −0.608 −0.150 - -

SHA3 −0.515 −0.407 0.587 0.527 −0.394 −0.390 - -

MD5 0.013 −0.556 0.346 0.568 0.044 −0.460 - -

Filter 0.013 −0.006 −0.213 −0.184 −0.005 −0.008 −0.151 −0.118

OE-Sort −0.384 −0.169 0.182 0.212 −0.369 −0.195 - -

Mandelbrot −0.161 −0.455 0.055 0.004 −0.176 −0.462 −0.067 −0.398

There are some main insights: For benchmarks that require a large propor-
tion of floating point arithmetics the early area estimates are not very reliable,
especially in terms of their usage of digital signal processors (DSPs, rp < 0.5)
but also with regard to the other measures. OpenMP developers should use these
estimates with care.

For benchmarks that do not need floating point arithmetics and hence do
not need DSPs in their IPs, the area estimates for the lookup table (LUT) and
for flipflops (FF) often are fairly reliable (correlation above 85%). For BRAM
cells there still is a strong correlation (62%–69%). This is crucial for OpenMP
developers as it allows them to optimize the target regions of their codes, i.e.,
they can add/modify HLS pragmas and quickly and reliably check the effects
with the early HLS estimates. But there is a caveat: If the OpenMP developer
modifies the HLS pragma (or its parameters) only slightly and subsequently sees
only a small effect on area consumption, this estimated small effect is not reliable,
only large effects are. In Table 4 this can be seen in particular for OE-Sort. On
this benchmark many pragma parameterizations only have a small impact on
the final hardware usage. This causes the rank of the samples (and thereby rs)
to be distorted by noise (while rp is still strong).

3.2 Correlating Area and Runtime Performance

Predicting the runtime performance of an FPGA solution from its area estimates
sounds like a reasonable approach as FPGAs often derive their performance from
highly parallel hardware, that correspondingly requires a lot of resources.

We checked the validity of this assumption with quantitative measurements
on all samples, i.e., on the entire dataset, see Table 5. For the usage of LUTs
and FFs the assumption holds, although the correlation fluctuates between the
benchmarks. There is the expected negative correlation between resource usage
and runtime, but in some cases it is purely by rank (MD5, LUT, rs = −0.556) or
purely linear by value (SHA256, LUT, rp = −0.568). For digital signal processor
usage there is also a negative correlation, but it less pronounced, as predictions
for floating point benchmarks are again less reliable (see Sect. 3.1). In contrast,
for the BRAM numbers more hardware usage does not cause better runtime
performance. More BRAM usage even seems to indicate slower hardware.
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Table 6. Correlation of regression models with FPGA runtimes.

Test
Samples

Linear Tree
Random
Forest

rp rs rp rs rp rs
SHA256 0.674 0.344 0.774 0.691 0.847 0.728

SHA3 0.648 0.629 0.863 0.725 0.876 0.735

MD5 0.384 0.587 0.882 0.787 0.932 0.863

Filter 0.530 0.563 0.963 0.660 0.960 0.729

OE-Sort 0.255 0.275 0.679 0.444 0.798 0.538

Mandelbrot 0.812 0.703 0.956 0.711 0.969 0.826

For the OpenMP developer this means that naive attempts to improve the
performance simply by increasing hardware usage are bound to fail. While there
is a clear correlation it is too inconsistent to be of practical use for the purpose
of optimization by means of iteratively fiddling with HLS pragmas.

3.3 Predicting Runtime Performance

Regression models excel at combining multiple varying relationships (like those
shown in Sect. 3.2) into a strong prediction. We explore three predictors for the
runtime performance of an FPGA that take the four early area estimates as
their inputs. These models were trained on the training data. Table 6 holds the
results as computed on the evaluation data, i.e., the samples set aside.

The Linear model already generates a meaningful prediction (averages: rp =
0.546, rs = 0.517) that works well, especially for Mandelbrot, but fails for OE-
Sort in the evaluation dataset. Due to the non-linear nature of the prediction
task the Linear model still leaves room for improvement.

The Tree based predictor (averages: rp = 0.853, rs = 0.670) and especially
the Random Forest regression (averages: rp = 0.897, rs = 0.736) nicely predict
FPGA runtimes for all benchmarks. Only the comparatively small impact of
pragmas on OE-Sort again hurts the rank correlation on this benchmark.

Hence, the OpenMP developer has a highly reliable runtime prediction at
his/her fingertips within minutes. The model can provide fast and meaningful
feedback on the runtime effect of added or modified HLS pragmas, while being
trivial and quick to acquire.

4 Threats to Validity

We see three possible threats to the validity of our results.
While we strictly separate the training data from the test data during model

training, both sets contained samples constructed from the same benchmarks.
In practice, however, an ideal regression would deliver reliable predictions for
arbitrary OpenMP programs with target regions. We still think our work is



Reducing OpenMP to FPGA Round-Trip Times with Predictive Modelling 103

relevant. First, as discussed in Sect. 1, our benchmarks are typical examples
of FPGA use cases and many OpenMP target regions are similar to the ones
we cover. Second, the benchmark set and the diverse set of samples that we
constructed from them by adding parameterized HLS pragmas are both pub-
licly available, so the methodology we use to add pragmas to a benchmark set
and to construct a diverse set of samples for the search space exploration can
be applied to a larger and more diverse dataset. This would yield a more uni-
versally applicable prediction model. A larger benchmark set also allows for
future research that checks if more advanced machine learning approaches can
achieve even better predictions.

We conducted our experiments using only one FPGA platform and with the
affiliated vendor tool. Our work is still relevant to a wide range of users since this
platform is based on the common UltraScale FPGA architecture and the vendor
Xilinx has more than a 50% share of the FPGA market. Our methodology, the
benchmark codes, and the generated samples can be used to construct predictors
for other platforms as other vendors offer similar estimates.

Finally, our models only learn from synthesizable samples that generated
a working Bitstream. They cannot predict unsynthesizability. Which samples
are unsynthesizable depends on particular FPGA board used. It even fluctuates
between FPGAs from the same architecture. For a different board, the predictors
hence have to be re-trained (which can be done with the available benchmark set
and the samples). But even without such a re-training the results form Sect. 3.1
indicate that the early HLS area estimates suffice for the OpenMP developer to
reason about the feasibility, as there is strong correlation to the actual hardware
demands (at least for non-floating point codes).

5 Related Work

Our work relates to HLS resource and performance prediction, to HLS design
space exploration (DSE), and to OpenMP-to-FPGA compilers. We organize the
discussion accordingly.

In the first research field, several groups found accuracy gaps between the early
HLS estimates on both resource usage and runtime performance and the actual
values that the generated hardware achieves. We look at some of the projects
below. They all explore data mining, machine learning, or other approaches to
improve the HLS estimates. They have in common that they focus on pure C/C++
code, that they mostly use static analysis to derive resource and runtime data, and
that they are not predicting the effect that HLS pragmas have on the resource
usage and on the runtime performance of the resulting FPGA. In contrast, we
employ OpenMP programs, help the developer in picking suitable HLS pragmas,
and collect the area and runtime data on a fully generated Bitstream on a real
FPGA board. Let us sketch some representative projects now.

Ustun et al. [30] notice that the HLS often mispredicts the actual usage of
DSPs, because the FPGA toolchain only later decides where to use a DSP. The
authors use Graph Neural Networks (GNN) to better predict the DSP usage for
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a given code segment and also to also improve the HLS’s delay estimates. As
their training codes mainly are randomly generated basic blocks, it is unknown
whether the approach also works on benchmark codes with more complex control
flows. In contrast to our work, they do neither benchmark nor predict the effect
of HLS pragmas. They also did not measure on a real FPGA board.

Makrani et al. [22] use Machine Learning to improve the HLS estimates on
throughput and throughput-to-area for a given code segment (instead of area
and runtime). In addition to the HLS estimates, the authors use the maximal
clock frequency (Fmax) of their benchmark codes (found with Minverva [7]) to
train the model. We may look into adding Fmax to our models in the future.
They do not explore the effect of HLS pragmas and also do not measure on a
real FPGA board.

HlsPredict [24] by O’Neal et al. predicts an FPGA’s runtime performance
and power consumption. The authors profile each benchmark code with pre-
defined workloads both on a regular CPU and on an FPGA board. They train
their model with the measured data. While the authors manually optimize their
benchmarks with HLS pragmas, their tool does not help in gauging the effect of
such pragmas on the FPGA area or its runtime performance.

HLS design space exploration (DSE) also shares common ground with
our work, as researchers try to automatically find the best set of HLS pragmas
(or other means) to generate the best possible hardware. A survey by Schafer
et al. [28] identifies three general approaches. Synthesis-based works use unmod-
ified HLS resource usage and runtime performance estimates to guide the DSE
[8,27]. Because it is time consuming to run the HLS in each DSE iteration,
supervised learning approaches first build a custom model from previously col-
lected HLS estimates and use that model instead of the HLS to guide the DSE
[32,35]. Finally, graph analysis based DSE bypasses the HLS and builds a graph
representation for each input. Resource and performance metrics to guide the
DSE [33,34] are extracted from these graphs.

We exclude from the discussion the many publications mentioned in the
survey that do not target FPGAs or that do not use C/C++ as input language.
We exclude the remaining synthesis-based approaches as they neither predict
HLS metrics nor aid the programmer with these predictions. The few remaining
graph-based methods that bypass the HLS are far away from our work. As far
as we know, only the supervised learning approach by Zhong et al. [35] is closely
related to our work as it predicts the area and performance to accelerate the
DSE. But in contrast to our work it only focuses on code that solely consists of
loops, it only covers the unroll pragma, and it does not deal with OpenMP.

Finally, to the best of our knowledge, OpenMP-to-FPGA compilers do
not yet use the early HLS estimates on hardware usage to automatically improve
the runtime performance, nor do they employ them to aid the programmer in
picking HLS pragmas [14,15,19].



Reducing OpenMP to FPGA Round-Trip Times with Predictive Modelling 105

6 Conclusion

We generated a dataset by randomly annotating the OpenMP target regions
of benchmark codes with HLS pragmas. The benchmarks and the generated
annotated samples are available online. We measured the runtime performance
of these samples on fully generated Bitstreams on a real FPGA board and trained
regression models to predict the runtime performance from the quickly available
early HLS area estimates. The output of our fast prediction models reaches
average Pearson and Spearman correlations to the runtime of rp = 0.897, rs =
0.736 and is trivial to interpret, so that the OpenMP developer does not need
hardware expertise to use it as feedback. These insights can help the developer to
make informed decisions on the selection of HLS pragmas to add to her/his code.
This decreases development round-trip times and thereby increases productivity.

Future work will utilize our prediction model to fully automatize the pragma
selection process. The idea is that some meta heuristics will optimize the model
output and thereby reliably increase performance of a given OpenMP code with
target regions for an FPGA.
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12. Gramata, P., Trebatickỳ, P., Gramatová, E.: The MD5 message-digest algorithm in
the XILINX FPGA. In: Proceedings of the International Workshop on Field Pro-
grammable Logic and Applications, pp. 126–128. Prague, Czech Republic, Septem-
ber 1994. https://doi.org/10.1007/3-540-58419-6 79. Accessed 19 May 2022

13. Hematian, A., Chuprat, S., Manaf, A.A., Parsazadeh, N.: Zero-delay FPGA-based
odd-even sorting network. In: Proceedings of IEEE Symposium on Computers
Informatics (ISCI 2013), pp. 128–131. Langkawi, Malaysia, April 2013. https://
doi.org/10.1109/ISCI.2013.6612389. Accessed 19 May 2022

14. Huthmann, J., Sommer, L., Podobas, A., Koch, A., Sano, K.: OpenMP device
offloading to FPGAs using the Nymble infrastructure. In: Proceedings of the Inter-
national Workshop on OpenMP (IWOMP 2020), pp. 265–279. Austin, TX. Septem-
ber 2020. https://doi.org/10.1007/978-3-030-58144-2 17. Accessed 19 May 2022

15. Knaust, M., Mayer, F., Steinke, T.: OpenMP to FPGA Offloading Prototype using
OpenCL SDK. In: Proceedings of the International Workshop on High-Level Paral-
lel Programming Models and Supportive Environments (HIPS 2019), pp. 387–390.
Rio de Janeiro, Brazil, May 2019. https://doi.org/10.1109/IPDPSW.2019.00072.
Accessed 19 May 2022

16. Lipu, A.R., Amin, R., Islam Mondal, M.N., Mamun, M.A.: Exploiting parallelism
for faster implementation of bubble sort algorithm using FPGA. In: Proceedings
of the International Conference on Electrical, Computer Telecommunication Engi-
neering (ICECTE 2016), pp. 1–4. Rajshahi, Bangladesh, December 2016. https://
doi.org/10.1109/ICECTE.2016.7879576. Accessed 19 May 2022

17. Martinez Vallina, F.: Implementing memory structures for video processing in the
Vivado HLS tool. Xilinx Appl. Notes 793, 1–8 (2012)

18. Mayer, F., Brandner, J., Hellmann, M., Schwarzer, J., Philippsen, M.: The ORKA-
HPC compiler–practical OpenMP for FPGAs. In: Proceedings of the International
Workshop on Languages and Compilers for Parallel Computing (LCPC 2021).
LNCS, vol. 13181, pp. 83–97. Springer, Newark (2022). https://doi.org/10.1007/
978-3-030-99372-6 6. Accessed 19 May 2022

https://doi.org/10.1109/RECONFIG.2017.8279804
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1109/ICCD.2018.00040
https://doi.org/10.1109/TNS.2017.2715900
https://doi.org/10.1109/ELMAR.2016.7731785
https://doi.org/10.1109/ELMAR.2016.7731785
https://doi.org/10.1007/3-540-58419-6_79
https://doi.org/10.1109/ISCI.2013.6612389
https://doi.org/10.1109/ISCI.2013.6612389
https://doi.org/10.1007/978-3-030-58144-2_17
https://doi.org/10.1109/IPDPSW.2019.00072
https://doi.org/10.1109/ICECTE.2016.7879576
https://doi.org/10.1109/ICECTE.2016.7879576
https://doi.org/10.1007/978-3-030-99372-6_6
https://doi.org/10.1007/978-3-030-99372-6_6


Reducing OpenMP to FPGA Round-Trip Times with Predictive Modelling 107

19. Mayer, F., Knaust, M., Philippsen, M.: OpenMP on FPGAs-a survey. In: Pro-
ceedings of the International Workshop on OpenMP (IWOMP 2019), pp. 94–108.
Auckland, New Zealand, August 2019. https://doi.org/10.1007/978-3-030-28596-
8 7. Accessed 19 May 2022

20. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 family of hash functions on FPGAs. In: Proceedings of IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Architectures
(ISVLSI 2006), pp. 317–322. Karlsruhe, Germany, March 2006. https://doi.org/
10.1109/ISVLSI.2006.70. Accessed 19 May 2022

21. Meher, P.K., Chandrasekaran, S., Amira, A.: FPGA realization of FIR filters by
efficient and flexible systolization using distributed arithmetic. IEEE Trans. Sig-
nal Process. 56(7), 3009–3017 (2008). https://doi.org/10.1109/TSP.2007.914926.
Accessed on May 19, 2022

22. Mohammadi Makrani, H., et al.: Pyramid: machine learning framework to estimate
the optimal timing and resource usage of a high-level synthesis design. In: 2019 29th
International Conference on Field Programmable Logic and Applications (FPL
2019), pp. 397–403. Barcelona, Spain, September 2019. https://doi.org/10.1109/
FPL.2019.00069. Accessed 19 May 2022

23. Nepomuceno, R., Sterle, R., Valarini, G., Pereira, M., Yviquel, H., Araujo, G.:
Enabling OpenMP task parallelism on multi-FPGAs. arXiv:2103.10573 [cs.DC]
(March 2021). https://doi.org/10.1109/FCCM51124.2021.00047. Accessed 19 May
2022

24. O’Neal, K., Liu, M., Tang, H., Kalantar, A., DeRenard, K., Brisk, P.: HLSPre-
dict: cross platform performance prediction for FPGA high-level synthesis. In:
Proceedings of the International Conference on Computer-Aided Design (ICCAD
2018), pp. 1–8. San Diego, CA, November 2018. https://doi.org/10.1145/3240765.
3264635. Accessed 19 May 2022

25. Park, S.Y., Meher, P.K.: Efficient FPGA and ASIC realizations of a DA-based
reconfigurable FIR digital filter. IEEE Trans. Circ. Syst. II: Exp. Briefs 61(7),
511–515 (2014). https://doi.org/10.1109/TCSII.2014.2324418. Accessed 19 May
2022

26. Qasaimeh, M., Denolf, K., Lo, J., Vissers, K., Zambreno, J., Jones, P.H.: Comparing
energy efficiency of CPU, GPU and FPGA implementations for vision kernels. In:
Proceedings IEEE International Conference on Embedded Software and Systems
(ICESS 2019), pp. 1–8. Las Vegas, NV, June 2019. https://doi.org/10.1109/ICESS.
2019.8782524. Accessed 19 May 2022

27. Schafer, B.C., Wakabayashi, K.: Divide and conquer high-level synthesis design
space exploration. ACM Trans. Des. Autom. Electron. Syst. 17(3), 1–19 (2012).
https://doi.org/10.1145/2209291.2209302. Accessed on May 19, 2022

28. Schafer, B.C., Wang, Z.: High-level synthesis design space exploration: past,
present, and future. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 39(10),
2628–2639 (2020). https://doi.org/10.1109/TCAD.2019.2943570. Accessed 19 May
2022

29. Sommer, L., Korinth, J., Koch, A.: OpenMP device offloading to FPGA accel-
erators. In: Proceedings of the International Conference on Application-specific
Systems, Architectures and Processors (ASAP 2017), pp. 201–205. Seattle, WA,
July 2017. https://doi.org/10.1109/ASAP.2017.7995280. Accessed 19 May 2022

30. Ustun, E., Deng, C., Pal, D., Li, Z., Zhang, Z.: Accurate operation delay prediction
for FPGA HLS using graph neural networks. In: Proceedings of the International
Conference on Computer Aided Design (ICCAD 2020), pp. 1–9. San Diego, CA,
November 2020. https://doi.org/10.1145/3400302.3415657. Accessed 19 May 2022

https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1109/ISVLSI.2006.70
https://doi.org/10.1109/ISVLSI.2006.70
https://doi.org/10.1109/TSP.2007.914926
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.1109/FPL.2019.00069
http://arxiv.org/abs/2103.10573
https://doi.org/10.1109/FCCM51124.2021.00047
https://doi.org/10.1145/3240765.3264635
https://doi.org/10.1145/3240765.3264635
https://doi.org/10.1109/TCSII.2014.2324418
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1145/2209291.2209302
https://doi.org/10.1109/TCAD.2019.2943570
https://doi.org/10.1109/ASAP.2017.7995280
https://doi.org/10.1145/3400302.3415657


108 J. Brandner et al.

31. Wang, K., Nurmi, J.: Using OpenCL to rapidly prototype FPGA designs. In: Pro-
ceedings of the IEEE Nordic Circuits and Systems Conference (NORCAS 2016, pp.
1–6. Copenhagen, Denmark, November 2016. https://doi.org/10.1109/NORCHIP.
2016.7792907. Accessed 19 May 2022

32. Zacharopoulos, G., Barbon, A., Ansaloni, G., Pozzi, L.: Machine learning app-
roach for loop unrolling factor prediction in high level synthesis. In: Proceedings of
the International Conference on High Performance Computing Simulation (HPCS
2018), pp. 91–97. Orleans, France, July 2018. https://doi.org/10.1109/HPCS.2018.
00030. Accessed 19 May 2022

33. Zhao, J., Feng, L., Sinha, S., Zhang, W., Liang, Y., He, B.: COMBA: a comprehen-
sive model-based analysis framework for high level synthesis of real applications. In:
Proceedings of the International Conference on Computer-Aided Design (ICCAD
2017), pp. 430–437. Irvine, CA, November 2017. https://doi.org/10.1109/ICCAD.
2017.8203809. Accessed 19 May 2022

34. Zhong, G., Prakash, A., Liang, Y., Mitra, T., Niar, S.: Lin-analyzer: a high-level
performance analysis tool for FPGA-based accelerators. In: Proceedings of the
International Conference on Design Automation (DAC 2016), pp. 1–6. Austin,
TX, June 2016. https://doi.org/10.1145/2897937.2898040. Accessed 19 May 2022

35. Zhong, G., Venkataramani, V., Liang, Y., Mitra, T., Niar, S.: Design space explo-
ration of multiple loops on FPGAs using high level synthesis. In: Proceedings
of the International Conference on Computer Design (ICCD 2014), pp. 456–463.
Seoul, South Korea, October 2014. https://doi.org/10.1109/ICCD.2014.6974719.
Accessed 19 May 2022

https://doi.org/10.1109/NORCHIP.2016.7792907
https://doi.org/10.1109/NORCHIP.2016.7792907
https://doi.org/10.1109/HPCS.2018.00030
https://doi.org/10.1109/HPCS.2018.00030
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1145/2897937.2898040
https://doi.org/10.1109/ICCD.2014.6974719


OpenMP Tool Support



Improving Tool Support for Nested
Parallel Regions with Introspection

Consistency

Vladimir Indic1(B) and John Mellor-Crummey2

1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
vladaindjic@uns.ac.rs

2 Department of Computer Science, Rice University, Houston, TX 77251-1892, USA

johnmc@rice.edu

Abstract. The OpenMP 5 standard defines OMPT—an application
programming interface for tools that includes a set of introspection rou-
tines. At any point in time, a sampling-based performance tool may
invoke these introspection routines from a signal handler to inquire about
the nesting of parallel and task regions. Unfortunately, the OpenMP 5
standard doesn’t precisely specify what one may observe with these rou-
tines when monitoring a program as it executes nested parallel regions.
To address this shortcoming, we propose that the OpenMP standard
require that an OpenMP implementation supports introspection consis-
tency. This paper defines introspection consistency, describes why tools
need it, and explains a novel strategy for implementing it using wait-free
coordination between an OpenMP implementation and its OMPT intro-
spection routines. We describe an implementation of this technique in the
LLVM OpenMP runtime and evaluate the runtime overhead of support-
ing introspection consistency in LLVM OpenMP using a microbenchmark
for nested parallel regions and SPEC OMP2012.
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1 Introduction

The OpenMP Application Programming Interface (API) defines a directive-
based programming model for harnessing parallelism within nodes that employ
one or more multicore processors and sometimes accelerators. Since the incep-
tion of OpenMP, providing tools that support two or more OpenMP implemen-
tations has been a challenge. The substantial semantic gap between an OpenMP
program and its implementation, compounded by differences between OpenMP
implementations, makes it difficult for tools to attribute performance metrics
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to a source-level calling contexts. To bridge this gap, Eichenberger et al. [5]
proposed OMPT—an API for performance analysis and correctness tools. In
2018, OMPT became an integral part of the OpenMP 5.0 standard [10].

The OMPT API defines a set of runtime entry points designed to support
asynchronous introspection of the state of an executing OpenMP program by
a sampling-based performance tool. To retrieve information about the current
parallel (respectively, task) region, a sampling-based performance tool asyn-
chronously invokes the ompt get parallel info (ompt get task info) runtime
entry point passing ancestor level = 0; information about enclosing parallel
(task) regions can be obtained by specifying values of ancestor level > 0.
To date, not enough attention has been paid to the semantics of these rou-
tines. The standard simply states that ompt get parallel info (respectively,
ompt get task info) returns

– 2 if a parallel (task) region exists at the specified ancestor level and informa-
tion about the parallel (task) region is available,

– 1 if a parallel (task) region exists at the specified ancestor level but informa-
tion is currently unavailable, and

– 0 otherwise.

While integrating support for the OMPT interface into Rice Univer-
sity’s HPCToolkit performance tools [1,13], which use asynchronous sam-
pling to collect call path profiles and traces [12] for CPU threads as a pro-
gram executes, it became clear that this definition of the semantics for the
ompt get parallel info (ompt get task info) introspection routines is too
weak. There are several problems.

– After an OpenMP program (1) enters a parallel (respectively, task) region
and (2) the OpenMP implementation provides information about that region
to a tool by returning 2 to an introspection query, there is no requirement
that the OpenMP introspection routine must continue to return information
about the region until the program begins to exit the region.

– If a tool stores into the ompt data t parallel data (respectively,
ompt task data) word maintained by an OpenMP implementation for a par-
allel (task) region, a tool will not be reliably able to use an OpenMP intro-
spection routine to retrieve this data throughout the lifetime of the region.

These problems are not just theoretical. We have observed both issues in practice
while using HPCToolkit to profile an OpenMP program linked againts the LLVM
OpenMP runtime. When a thread receives a sample, it executes HPCToolkit’s
signal handler code and unwinds the call stack to determine the context that
incurs cost. Worker threads of OpenMP parallel regions can only determine
partial call paths because they are unaware of the region’s invocation context
known only to the primary thread. To compute a full, user-level calling context,
a worker thread subscribes to receive the region context from the primary thread
by updating a tool data structure whose pointer is stored in the active region’s
parallel data word. At the end of the parallel region, the primary thread reads
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parallel data to obtain the pointer to the tool data structure, unwinds the call
stack to determine the region’s context, and shares it with subscribed worker
threads that then asynchronously assemble full call paths for samples received
while executing the region.

In the LLVM OpenMP runtime, we noticed timing windows while creat-
ing nested parallel regions during which HPCToolkit receives wrong information
about enclosing parallel regions, causing a sampled thread to be unable to deter-
mine if it is a worker thread that should subscribe to receive the region’s con-
text. Furthermore, runtime might override the content of an enclosing region’s
parallel data while creating a nested parallel region; this causes the loss of the
worker threads’ subscriptions, which causes the profiler to fail.

Such issues can be avoided by improving the OpenMP specification and tightly
integrating the implementation of OpenMP parallel and task regions with their
OMPT introspection routines. This paper makes the following contributions:

– We propose that the OpenMP specification requires that an OpenMP imple-
mentation supports introspection consistency; in brief, this requires that when
a program is executing in an OpenMP parallel or task region, the region must
be visible to OMPT introspection routines.

– We explain why introspection consistency is needed to support reliable
sampling-based performance tools for call path profiling.

– We describe a novel approach for implementing introspection consistency
using wait-free coordination between an OpenMP implementation and its
OMPT introspection routines.

– We overview an implementation of introspection consistency in LLVM
OpenMP.

– We evaluate the runtime overhead of supporting introspection consistency
in LLVM OpenMP using a microbenchmark for nested parallel regions and
SPEC OMP2012.

Section 2 briefly describes the implementation of parallel regions, tasks1, and
OpenMP introspection routines in LLVM OpenMP to provide context for under-
standing our contributions. The remaining sections motivate introspection con-
sistency, describe a high-level approach to providing it, describe our implemen-
tation in LLVM OpenMP, evaluate its cost, discuss related work, and present
our conclusions.

2 Background

This section briefly describes the implementation of parallel regions, serialized
parallel regions, implicit and explicit tasks, and OMPT introspection support
for nested parallel and task regions in LLVM OpenMP runtime.

Parallel Regions and Implicit Tasks. When a thread encounters a parallel region
construct that at least two threads should execute, it must form a team of threads
1 We use the word “task” as a synonym for a task region for brevity.
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that will execute that region. The encountering thread becomes the primary
thread of the region’s team. Prior to entering this region, the primary thread
initializes the team descriptor, records the number of threads in the team, sets
the descriptor’s parent pointer to the enclosing parallel region (if any), assembles
a team of threads for the region, shares the descriptor with the team of threads,
and sets its own current team descriptor to the region’s team descriptor. Then,
each thread of the region’s team begins an implicit task that executes the code for
the region. Before scheduling the implicit task for execution, a thread assembles
the task descriptor, updates its team and scheduling parent pointers to link
the parallel region’s team descriptor and the enclosing task, respectively, and
finally sets its own current task descriptor to the assembled task descriptor.
After every thread completes the work of its implicit task and synchronizes with
a final barrier, it destroys the current implicit task descriptor. Afterward, the
primary thread destroys the parallel region’s team descriptor and resumes work
in the context of the region’s parent.

Explicit Tasks. An explicit task may suspend its execution after the creation.
Furthermore, multiple threads may schedule and suspend the execution of an
untied explicit task, causing the runtime to update the task’s scheduling parent
pointer in its task descriptor when the untied task was rescheduled.

Serialized Parallel Regions. A serialized parallel region is executed by a single
thread. Serialized parallel regions occur frequently enough that OpenMP imple-
mentations often provide a tailored implementation for high performance. Here,
we discuss the implementation of nested serialized parallel regions in the LLVM
OpenMP runtime.

When a thread executing a serialized parallel region R1 encounters a parallel
region construct that yields another serialized region R2, it reuses the current
team descriptor associated with R1 for R2 rather than allocating and initializ-
ing a separate descriptor for R2. Similarly, the thread reuses the current task
descriptor associated with the R1’s implicit task to represent the R2’s implicit
task. This approach is roughly 80% faster than using separate descriptors; how-
ever, it leads to problematic behaviors for both ompt get parallel info and
ompt get task info.

The lack of separate team and task descriptors leads to losing important
OMPT information about nested serialized parallel regions and corresponding
implicit tasks. To overcome this problem, LLVM runtime developers introduced
a separate lightweight team descriptor (lwt) to store OMPT information about
nested serialized parallel regions and associated implicit tasks. When creating
nested serialized parallel region R2, the current team and task descriptors con-
tain OMPT information about R1 and its implicit task. The thread allocates a
new lwt descriptor, fills it with OMPT information associated with R1 and the
corresponding task from the current team and task descriptors, and then over-
writes the OMPT information in those descriptors with information about R2

and its implicit task. The lwt descriptor for R1 is then pushed into a linked list,
known hereafter as the lwt list. After executing R2’s implicit task, the process
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is reversed. The thread removes R1’s lwt descriptor from the lwt list and copies
OMPT information about R1 and its implicit task back to the current team and
task descriptors, overwriting the OMPT information about region R2 and the
corresponding task which recently completed.

Tool Support for Parallel and Task Regions. For each ancestor level level at
which information is available, ompt get parallel info will return the team
size for the parallel region and a pointer to a parallel data word provided
for the region by an OpenMP implementation for use by a tool. Similarly,
a tool might inspect the OMPT state of an active task region by invoking
ompt get task info. This routine reveals the type of the task, procedure frame
information for that task, and the number of the thread in the parallel region
executing the task. ompt get task info provides the task data word associ-
ated with the task and maintained by the runtime for use by a tool as well as
parallel data word for the region that contains the task.

While a thread executes a parallel region, ompt get parallel info reads
OMPT information from the current team descriptor and either follows the par-
ent pointers of region team descriptors or a chain of lightweight team descriptors
that contain information about enclosing serialized parallel regions. The rou-
tine ompt get task info is similar, returning information about the nesting of
explicit tasks, implicit tasks, and their associated parallel regions. It reads the
information from the current task and team descriptor and eventually follows
the chain of task and team (lwt) descriptors in pairs.

3 Approach

As described in the Introduction, having tool data associated with parallel
and/or task regions be lost or unavailable as a program executes is unacceptable
for tools. To address these issues, we propose introspection consistency to avoid
having tool data become unavailable while a parallel region or task is active.

An OpenMP implementation provides introspection consistency if it obeys
the following principles:

– A thread that is part of a team for a parallel region must provide information
about the region and its implicit task to the OMPT introspection routines
ompt get parallel info and/or ompt get task info upon request from the
time of its implicit-task-begin event until the implicit-task-end event of the
primary thread in the region.

– A thread must provide information about a tied explicit task to the OMPT
introspection routine ompt get task info upon request from the time the
task is scheduled on a thread until the task completes.

– A thread must provide information about an untied explicit task to the
OMPT introspection routine ompt get task info upon request from the time
the task is scheduled for execution on a thread until it suspends.



116 V. Indic and J. Mellor-Crummey

When creating a parallel region, one must associate a thread with descrip-
tors for both a team and an implicit task. One approach for entering a parallel
region is to atomically push a (team, task) pair of descriptors representing a par-
allel region and its implicit task. However, that approach will require that the
runtime always accesses the descriptors with an additional level of indirection.
The LLVM OpenMP runtime maintains the current task and team descriptors
separately to avoid this extra level of indirection. When creating a new parallel
region, the runtime first updates the current team descriptor to the new region
and then the current task descriptor to the region’s implicit task. With this
approach, one must be careful, or ompt get task info might, for instance, read
OMPT information from the current team descriptor matching the new inner-
most parallel region and the current task descriptor corresponding to an implicit
task of an enclosing parallel region (if any). In the upstream LLVM OpenMP,
this causes inconsistent results from ompt get task info.

To avoid such inconsistencies, in our improved implementation, ompt get
task info first reads OMPT information from the current task descriptor and
then accesses the current team descriptor. Each task descriptor links the descrip-
tor of the team to which it belongs. Suppose ompt get task info finds that the
current task descriptor does not reference the current team descriptor, meaning
that the current task descriptor corresponds to the implicit task of an enclosing
parallel region. In that case, ompt get task info will report the presence of the
inner parallel region but indicate that it cannot provide information about the
region. ompt get task info will not provide information about a parallel region
and its implicit task until the runtime updates both the team and task descrip-
tors for the region and its task. A tool can still access the information about the
inner parallel region by invoking ompt get parallel info, and thus detect the
creation/destruction of the region.

We encountered a different obstacle to providing introspection consistency
for nested serialized parallel regions. As described in Sect. 2, the implementa-
tion of nested serialized parallel regions is optimized to avoid allocation and
full initialization of a descriptors for nested serialized parallel regions and cor-
responding implicit tasks. However, the runtime fails to preserve introspection
consistency for an enclosing serialized parallel region R1 and its implicit task
during the creation (and respectively, destruction) of a nested serialized parallel
region R2. The signal handler might interrupt the runtime during R2’s creation
and store a value for parallel data for R1 (for task data for R1’s implicit
task) after the runtime has captured parallel data for R1 (task data for R1’s
implicit task) to move it into a lightweight team (lwt) descriptor, causing a value
of parallel data (task data) to be lost.

The runtime can trivially overcome this problem by blocking all signals dur-
ing the creation/destruction of a nested serialized parallel region to prevent sig-
nal delivery and tool introspection while information about a serialized parallel
region and its implicit task is being updated. However, in the case of frequent
short nested serialized parallel regions, blocking and unblocking signals can sig-
nificantly interfere with sampling and cause a tool to collect unrepresentative
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data. Instead, we have the runtime and an introspection routine invoked from a
signal handler employ wait-free coordination [7] to achieve consensus about the
information associated with R1 and R2. The next section describes a protocol
that enables a call to ompt get parallel info or ompt get task info from a
signal handler to recognize when the runtime is in the process of moving data
to prepare for a nested parallel region. In that case, the introspection routine
finishes preparing the nested region so it can return information about both the
nested and enclosing regions. It atomically writes this information into the run-
time’s current team, task, and lwt descriptors to ensure that the runtime will
observe it after the introspection routine finishes.

4 Implementation

In this section, we describe the implementation of a novel wait-free protocol for
coordinating the LLVM OpenMP runtime with its OMPT introspection routines
to maintain introspection consistency for nested serialized parallel regions. For
this purpose, we extended each of the team, task, and lwt descriptors with a
pair of OMPT descriptors (depicted and numbered with 1 and 2 in Fig. 1) and
a pointer (shown as ptr in Fig. 1) that indicates which descriptor of the pair
contains valid OMPT information about the OpenMP parallel/task construct.
The runtime and an introspection routine called from a tool’s signal handler
use wait-free coordination to achieve consensus about which OMPT descriptor
associated with a nested serialized parallel region (and its implicit tasks) contains
valid state by atomically updating the value of the ptr pointer to reference one
of the pair’s descriptors.

Figure 1a depicts the descriptors containing information associated with two
serialized parallel regions, R1 and R2, and their corresponding implicit tasks
when the primary thread executes the nested region R2. As the ptr pointer
(shown in blue) of the heap-allocated team descriptor indicates, the R2’s OMPT
information resides in the first OMPT descriptor of the pair. The ptr (shown in
red) of the task descriptor allocated on heap indicates that the second OMPT
descriptor of the corresponding pair contains the information associated with
R2’s implicit task. The first OMPT descriptor of the pair belonging to the stack-
allocated lwt descriptor depicted in the right half of Fig. 1a contains information
about the enclosing parallel region R1 and its implicit task. This lwt descriptor
is the only element of the lwt list at the moment, meaning that the list’s head
pointer (lwt list) references this descriptor.

When a primary thread encounters a parallel construct yielding another seri-
alized region R3 while executing region R2, it starts executing runtime code
responsible for assembling a new serialized parallel region. The thread allocates
a new lwt descriptor (bottommost in the Fig. 1b) for storing the OMPT infor-
mation associated with region R2 and its implicit task. As Fig. 1b depicts, the
thread sets the lwt’s ptr to 0, meaning that consensus is not achieved yet. Simi-
larly, this thread marks the ptr pointers of the current team and task descriptors
by setting their least significant bits to 1 to announce that the information about
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Fig. 1. Migrating data from the current team and task descriptors to a newly allocated
lwt descriptor while creating a nested serialized region. OMPT descriptors belonging
to the current team, task and lwt descriptors are numbered with the corresponding
index in the pair (1 or 2). A slash over a pointer indicates the pointer has been marked
by setting its least significant bit to 1. Shaded fields do not contain information of
interest. (Color figure online)

the R2 region and its implicit task will be moved shortly after. Suppose a tool
receives a sample at this moment. In that case, the signal handler invokes the
introspection routine to inspect the information about R2 and its implicit task.
The routine masks team and task ptr pointers by removing marks and reads
the contents of the addresses referenced by masked pointers.

Afterward, the primary thread sets the new lwt’s parent pointer to refer-
ence the lwt list head pointer, marks the address of the lwt, and updates the
lwt list pointer with the marked address. As a result, the lwt is inserted at the
end of the lwt list. The updated marked lwt list head pointer indicates that
the process of copying OMPT information requiring wait-free coordination is in
progress, meaning that the introspection routine is responsible for finishing it if
called from the signal handler.
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As Fig. 1c depicts, the primary thread copies the OMPT information associ-
ated with region R2 and its implicit task from the locations indicated by the ptr
pointers of the team and task descriptors to the first OMPT descriptor of the
pair belonging to the recently allocated lwt. Subsequently, the thread tries to
atomically update the value of the lwt’s ptr with the address of the previously
updated OMPT descriptor by using compare-and-swap. As shown in Fig. 1c,
the primary thread decides that the first OMPT descriptor of the pair contains
valid information associated with R2 and its implicit task. Otherwise, suppose a
tool receives a sample before the primary thread updates the lwt’s ptr. In that
case, the introspection routine invoked by the tool’s signal handler and executed
by the same primary thread decides that the second OMPT descriptor of lwt’s
pair contains the valid information, and the compare-and-swap executed by the
runtime fails.

Afterward, the primary thread tries to reuse the current team and task
descriptors depicted on the left in Fig. 1d for storing the information associated
with the new R3 region and corresponding implicit task. To do so, it initializes
the content of the first OMPT descriptors of team and task descriptor pairs
(solid red and dark grey, respectively) to store the desired OMPT information.
Subsequently, it tries to update the values of the corresponding ptr pointers to
reference the initialized OMPT descriptors using compare-and-swap. As in the
case of copying the OMPT information about the R2 and its task to the lwt
descriptor, the update succeeds if no call to the introspection routine by a tool’s
signal handler interrupts the runtime execution. Otherwise, the first call to an
introspection routine finishes the update by deciding that the second OMPT
descriptor of the team (task) descriptor’s pair contains the valid information
about the region R2 (R2’s implicit task). Finally, the primary thread clears the
mark bit of lwt list, indicating that the preparation of the new serialized par-
allel region R3 is complete.

If an introspection routine sees that lwt list is marked, it recognizes that
the runtime is in the process of updating and initializing OMPT information
about the two innermost serialized parallel regions (and associated tasks). The
introspection routine finishes the update. Since the primary thread executes the
introspection routine atomically with respect to the runtime code, the introspec-
tion routine need not use compare-and-swap to update the ptr pointers shared
with the runtime. The introspection routine examines whether the lwt’s ptr is
equal 0 to observe if the runtime finished moving OMPT information from the
current team and task descriptors to the lwt. Similarly, it examines if the ptr
pointers of team and task descriptors are marked, meaning the runtime still has
not reused the team and task descriptors for storing OMPT information about
the innermost parallel region and its task. The introspection routine uses the
second OMPT descriptors of the pairs that belong to the team, task, and lwt
descriptors while moving and initializing OMPT information associated with
the innermost serialized regions. After finishing the process of migrating the
OMPT information for these regions, the introspection routine provides OMPT
information about all active parallel regions and tasks to the tool.
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5 Evaluation

This section evaluates four standard-compliant versions of the LLVM OpenMP
runtime. The versions differ in how they implement nested serialized parallel
regions and support OMPT introspection. Consider how they handle a program
executing serialized parallel region R1 that enters another nested serialized par-
allel region R2.

– The U version uses a lightweight implementation of serialized parallel regions
for speed but lacks special support for introspection consistency. This version
is basically upstream LLVM OpenMP2 adjusted to not provide incorrect infor-
mation about enclosing serialized parallel regions during creation of an inner
region. As a result, it may report that information about R1 is Unavailable
while R2 is being created.

– The W version, described in the previous section, uses a lightweight imple-
mentation of serialized parallel regions and supports introspection consistency
by using Wait-free coordination between the LLVM OpenMP runtime and its
OMPT introspection routines.

– The F version is modified from the U version to implement serialized parallel
regions using Full team descriptors. With our changes to avoid mismatched
team and task information for parallel regions described in the Sect. 3, this
version supports introspection consistency.

– The B version provides introspection consistency by Blocking all signals dur-
ing the creation/destruction of a nested serialized region, preventing intro-
spection while state is inconsistent. We modified the U version to block
signals using the Linux sigprocmask routine while a serialized region is
created/destroyed.

We compared the performance of the runtime versions on a system with one
Intel Xeon Phi 7250 processor with 68 4-way SMT cores with 115 GB of DRAM
running CentOS Linux 7.2.1511. The system was chosen principally because of its
availability for isolated experiments. To avoid performance variability caused by
different code and data layout in our experiments, we disabled Linux Address
Space Layout Randomization. On the system’s x86 64 processors, we imple-
mented the compare-and-swap used for wait-free coordination in the W run-
time version using the cmpxchg instruction. No lock prefix is necessary since
the compare-and-swap coordinates between the OpenMP runtime and a signal
handler making introspection calls executed by the same thread.

We conducted two groups of experiments. The first group uses one synthetic
microbenchmark, S (Listing 1), designed to measure the worst-case overhead
of maintaining nested serialized parallel regions. S contains a serialized paral-
lel region that spawns 16 million trivial nested serialized parallel regions. For
the second group of experiments, we used the SPEC OMP 2012 [9] benchmark
suite. We compiled all runtime implementations U, W, F, and B with Clang

2 Forked from the commit with the hash b552adf8b388a4fbdaa6fb46bdedc83fc738fc2b
on March 11th 2021.
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#pragma omp parallel num_threads(1)

for (int i = 0; i < 16000000; i++)

#pragma omp parallel num_threads(1)

volatile int x = 0;

Listing 1. Microbenchmark S measures the overhead of creating nested serialized
parallel regions.

12.0.0 into four shared libraries in Release mode with -O3 optimization and
OMPT SUPPORT=on and used them in both groups of experiments.

5.1 Stress Testing of OpenMP Runtime Variants

The first group of experiments represents a stress testing of the runtime imple-
mentations overhead. For this purpose, we compiled S microbenchmark with
Clang 12.0.0 using -O3 optimization and -g to provide line maps for tools. We
created four executables by dynamically linking S to each of the U, W, F, and
B runtime shared libraries. In our experiments, we measured each microbench-
mark 30 times, computing its average execution time and standard deviation.
For more representative results, the 30 runs of each microbenchmark are per-
formed by three processes, each measuring ten runs of the microbenchmark after
a warmup run.

Table 1 presents measurements of the S microbenchmark linked to each of
the U, W, F and B runtime versions under three conditions: (a) with no tool
present, (b) with a trivial OMPT tool that performs no measurement but causes
the runtime maintain OMPT state, and (c) a basic OMPT sampling tool that
periodically interrupts the program and invokes the OMPT ompt get task info
introspection routine to inspect every active parallel region and implicit task.3

We discuss the performance of our microbenchmark under each of these three
conditions to assess the cost of providing introspection consistency. The U vari-
ant, which does not support introspection consistency, serves as the baseline for
the other three runtime implementations.

No Tool. Running a program without a tool is the common case, so high perfor-
mance is important. Table 1(a) compares the cost of executing the S microbench-
mark for serialized parallel regions using each of the U, W, F, and B runtime
variants with no tool present. Overhead for SW , SF , and SB are relative to SU .
The W version, which uses a wait-free protocol to provide introspection consis-
tency was 1.49% faster than the U version which does not support introspection
consistency. Our claim here is not that W is inherently faster than U but rather
that they have comparable performance with no tool. Although blocking signals
does not happen when the tool is not attached, introducing calls to sigprocmask
changed the code layout resulting in 7% more overhead. One may not observe
3 HPCToolkit uses ompt get task info to assemble user-level calling contexts for all

OpenMP work.
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Table 1. Performance of benchmark S (Listing 1), which repeatedly executes a trivial
nested serialized parallel region using four runtimes: U may report region information
Unavailable; W uses a Wait-free strategy to implement introspection consistency; F
implements nested parallelism using Full team descriptors; B may Block signals to
support introspection consistency.

(a) No tool (b) Trivial tool (c) Sampling Tool

Code Time(s) Ovhd(%) Time(s) Ovhd(%) Time(s) Ovhd(%)

SU 8.9846± 0.0006 - 10.926± 0.004 - 10.959± 0.001 0.30

SW 8.8508± 0.0009 -1.49 12.477± 0.007 14.20 12.513± 0.008 0.29

SF 16.077± 0.007 78.94 16.241± 0.012 48.65 16.280± 0.002 0.24

SB 9.656± 0.002 7.47 43.965± 0.056 302.40 44.062± 0.024 0.22

this cost on other machines with more cache per core. In contrast, F, which
always allocates and initializes full team descriptors, is almost 80% slower than
the others. This shows that the complexity of W’s wait-free coordination needed
for introspection consistency with optimized serialized parallel regions is a good
alternative to F’s simpler protocol based on full region descriptors.

Trivial Tool. We developed a simple tool that uses the ompt start tool func-
tion, an initializer, and a finalizer to inform the runtime that a tool is present,
but that’s all; it doesn’t use register for OMPT callbacks or enable sampling.
Table 1(b) compares the cost of executing the S microbenchmark for serialized
parallel regions using each of the U, W, F, and B runtime variants with a trivial
tool, calculating overhead relative to SU . Compared with the no tool version
in column (a), SU with a tool, which must maintain lwt descriptors, is 21.6%
slower. On top of that, the wait-free coordination in the W version adds a 14.2%
overhead. This shows that the cost of maintaining the lwt descriptors with a
wait-free protocol is about 2/3 more costly than introducing lwt descriptors in
the first place. The F version, which does not maintain lwt descriptors, has an
overhead of almost 49%, which is more than 3×- higher than the overhead of
the W version. Again, W delivers introspection consistency much cheaper than
F, which maintains full descriptors for nested serialized regions. Furthermore,
blocking signals while profiling short nested parallel regions is extremely costly.
Namely, the B version is almost 3.5×- slower than the W version, meaning that
providing introspection consistency using wait-free coordination is suitable for
short nested parallel regions.

Sampling Tool. To assess the performance of nested serialized parallel regions
for the four runtime variants while being observed with a sampling-based OMPT
tool, we developed a simple proxy tool for benchmarking. We extended the trivial
tool from the previous experiments with a simple signal handler and configured
each thread to receive 200 samples per second from a Linux CPUTIME timer.
The signal handler calls ompt get task info for each available enclosing parallel
and task region. Unlike the previous experiments in Table 1(a) and Table 1(b),
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for the sampling-based measurements in Table 1(c), we calculate the overhead
of sampling for each code relative to the trivial tool times in Table 1(b). Each
of the runtime versions have similar overhead from sampling, even though for
the W version, invoking ompt get task info might require additional work to
finish assembly of a nested serialized parallel region that was in progress when
the runtime was interrupted. Less than 10% of the asynchronous samples were
received while the runtime was executing the code that requires wait-free syn-
chronization between the runtime and the introspection routine invoked from a
signal handler, which explains why the difference in time between Table 1(b) and
Table 1(c) is similar for the U and W versions.

5.2 OpenMP Runtime Performance in Real-World Scenarios

To test the performance of U, W, F, and B runtime implementations in real-
world scenarios, we used the SPEC OMP 2012 benchmark suite [9]. We created
a configuration file for each runtime shared library to be used by the runspec [9]
running tool. All configuration files specify the usage of intel compilers icc/icpc
and ifort (version 16.0.3) with -O3 optimization for compiling C/C++ and For-
tran benchmarks, respectively. We observed that thread binding sometimes slows
a benchmark’s execution, so we disabled it by setting OMP PROC BIND to false. We
supply the configuration files to runspec. By default, runspec runs each bench-
mark three times with the reference workload with no profiling tool attached,
meaning OMPT support is compiled but not used. Runspec finds each bench-
mark’s median run time and divides it by the reference system’s run time to
calculate the normalized ratio. Finally, runspec calculates the geometric mean
of all fourteen benchmark normalized ratios.

For brevity, Table 2 provides only the geometric mean of normalized ratios
for each runspec invocation supplied with configuration files corresponding to
the U, W, F, and B, respectively. The W runtime version employing wait-free
coordination shows a negligible drop in performance compared to the others. We
observed an overhead of about 3% when running the 376-tree benchmark, which
spawns many recursive explicit tasks. Measurements using Linux perf showed
that W causes more branch and instruction cache misses than U. Although
the code we introduced for the wait-free coordination protocol is not executed
when creating explicit tasks, it changes the code and data layout, which has a
surprising effect on the cache performance on the Xeon Phi.

The W implementation outperforms the F and B versions while providing
introspection consistency for short nested serialized parallel regions. However,
the results presented in Table 2 show that nested serialized parallel regions are
not widespread in real-world applications.

6 Related Work

The OMPT interface has been widely adopted by open-source performance tools
including Caliper [4], HPCToolkit [12], Tau [11], and Score-P [8] as well as data
race detection tools such as ARCHER [2], ROMP [6], and SWORD [3].
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Table 2. The final measurements reports of SPEC OMP 2012 benchmark suite run
four times with each of the U, W, F, and B runtime implementation. One run of suite
assumes running all 14 benchmarks link to the same runtime version, determining the
median run time, dividing it by the reference time to calculate normalized ratio, and
calculating the geometric mean of all 14 ratios.

Runtime Geomean

SPECU 4.23

SPECW 4.22

SPECF 4.23

SPECB 4.23

With the exception of Tau and HPCToolkit, which support asynchronous
sampling, the remainder of these tools use OMPT callbacks and synchronous
calls to introspection routines. Only tools that monitor OpenMP programs with
asynchronous sampling are affected when OpenMP implementations lack sup-
port for introspection consistency.

7 Conclusions

An OpenMP implementation that supports introspection consistency for parallel
and task regions is necessary for sampling-based performance tools to provide
accurate information about nested regions. We have described strategies for sup-
porting introspection consistency, including how to coordinate entry to regular
parallel regions and a wait-free coordination protocol for nested serialized par-
allel regions, which efficiently handles a corner case that was an impediment to
introspection consistency.

Our experiments with the microbenchmark that stresses the runtime imple-
mentation to its limits have shown that the cost of providing introspection
consistency is negligible without a tool. When sampling is enabled, our wait-
free implementation of optimized serialized parallel regions delivers introspec-
tion consistency at a significantly lower cost than allocating and initializing full
region team descriptors or blocking signals to provide introspection consistency.
We found that the runtime overhead for providing introspection consistency
in a representative set of HPC benchmarks is negligible. The drawback of our
approach is the complexity introduced to handle a corner case not commonly
encountered in OpenMP applications. This might encourage runtime develop-
ers to prefer an alternative strategy such as blocking signals while entering or
leaving a nested serialized parallel region.
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In our view, the benefit of introspection consistency for tools greatly out-
weighs its cost. As a result, we believe that the next OpenMP standard should
specify that OpenMP implementations and their OMPT introspection routines
must support introspection consistency to be standard-conforming. It is worth
noting that the OpenMP Debugging API [10] also needs introspection consis-
tency. Since one can interrupt a program execution at any time in a debugger,
the OMPD interface would benefit from being able to determine the nesting of
parallel and task regions at arbitrary points in time using mechanisms described
in this paper.

Although we developed a wait-free coordination protocol to solve a problem
specific to the LLVM OpenMP runtime implementation, our approach is more
broadly applicable. Namely, whenever a program manipulates data that a signal
handler can inspect and change at any time, our wait-free coordination approach
handles the data race between the runtime and a signal handler.
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Abstract. OpenACC* and OpenMP* have been supporting offloading
to accelerators for almost a decade now, with OpenACC leading the
adoption rate for the usage in the context of accelerated computing.
However, as OpenACC only supports limited device vendors, there has
been a growing interest in adopting OpenMP for offloading to acceler-
ators, especially now with an increasing number of accelerator vendors
supporting OpenMP offload.

Motivated by the recent additions into the OpenMP 5+ specifications
and the wider compiler adoption of these versions, we have developed
and open-sourced the IntelR© Application Migration Tool for OpenACC
to OpenMP API. We present the tool in this paper and discuss the sin-
gularities and commonalities of both programming models, and then we
present the migration tool, discuss its implementation and its limita-
tions, and present successful stories when migrating applications from
OpenACC to OpenMP 5+.

Keywords: Accelerated computing · Application portability · Tools

1 Introduction

Accelerators are nowadays present in many supercomputers as a way to achieve
higher computer density at a lower cost and power envelope. As their availability
has increased, so has increased the number of application developers interested in
harnessing their computational power. While initially these programmers could
only use proprietary languages, libraries or language extensions, the OpenMP*
ARB released its first Technical Report (TR1) [17] describing a set of exten-
sions that would make accelerators programmable in an standard way. OpenMP
version 4.0 consolidated the proposed directives from TR1. This initial support
was lacking in several aspects which have been slowly improved in subsequent
specification versions.

In the time-frame between the initial discussions of the TR1 [7] and the
4.0 specification, OpenACC* [5] emerged as an alternative to use a direc-
tive based language for accelerators instead of OpenMP. OpenACC focused on
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providing support particularly for GPU accelerators and being available before
the OpenMP extensions and an initial focus to introduce advanced features at
a faster rate than OpenMP made it appealing to many programmers. However,
although it was supposed to be portable standard, in practice, mature imple-
mentations of OpenACC are limited and support few hardware vendors.

As OpenMP has closed the feature gap (and even gone beyond OpenACC
in some aspects) its appeal has increased as it allows OpenMP to be used more
portably across a wider range of compiler and hardware vendors. Furthermore,
the migration path from one language to the other has also become much simpler
and many (but not all) of the directives of one language can be systematically
translated to an equivalent one in the other language. Still, for developers of
large scale applications that decided to use OpenACC in the past, moving away
might not be a negligible cost.

In this paper we present the open-source Intel R© Application Migration Tool
for OpenACC* to OpenMP*1 (currently released under BSD 3-clause) which
aims precisely to help making the migration from OpenACC to OpenMP simpler
by automating as much of the process as possible. Unfortunately, because of a
number of reasons discussed later, the tool cannot perform a perfect translation,
and the user is required to validate the final translation as well as comments
that the tool inserts where it can not translate the original with full certainty.

2 Related Work

There are several research projects related to the translation of OpenACC into
OpenMP (up to 4.5). These projects only focus on one application source code
language (either C/C++ or Fortran).

Hernandez et al. describe in [11,13] a mechanical approach to translate Ope-
nACC 2.0 applications into OpenMP 4.0. Their approach consists of application
developers following five steps: 1) modify OpenACC constructs that do not have
an OpenMP counterpart, 2) translate data regions, 3) translate data update
operations, 4) translate accelerator parallel regions through some general hard-
ware mapping indications, and 5) adjust attribute specifiers for routines. While
this is a manual approach, it can be considered the inception for many of the
subsequent translation tools.

Sultana et al. describe an algorithm to convert a subset of OpenACC con-
structs into OpenMP [18]. Authors implemented it and validated against EPCC
Level1 OpenACC benchmarks [2] but supported C only. In essence, their app-
roach is similar to the one of Hernandez but they extend step 4) with some steps
to leverage loop nests and explicit hardware mapping through binding clauses.

Clacc [10] is an open-source production OpenACC C/C++ compiler ecosys-
tem which by design features a translation of OpenACC into OpenMP to use
Clang’s existing OpenMP compiler and runtime support. Given the differences
between OpenACC and OpenMP, the translation applied is effectively a lower-
ing of the representation and mapping it to the compiler phases that are not
1 https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp.

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
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normally exposed to the compiler user. This approach also allows it to reuse the
existing runtime infrastructure (including debugging and development). While
the tool is capable of transparently supporting OpenACC, it also enables a
source-to-source translation. Flacc [9] is related to this project but supports
Fortran instead. To the best of our knowledge, the research around Flacc has
focused on the support for the OpenACC compiler tool-chain to run on top of
the OpenMP LLVM runtime, mimicking Clacc; however, Flacc does not offer a
source-to-source translator.

ACC2OMP [1] is a source-to-source translation from OpenACC to OpenMP
(4.5) for Fortran applications written by Nichols Romero. It is a Python-based
tool that parses Fortran source files looking for OpenACC directives and trans-
lates them into OpenMP through a dictionary.

GPUFORT [3] is an AMD project aiming at providing a source-to-source
translation tool for Fortran with OpenACC or CUDA to OpenMP (4.5). As
in ACC2OMP, GPUFORT is written in Python but aims at creating a For-
tran2003 parser to identify the OpenACC offloaded regions, and OpenACC API
and CUDA calls to convert them into OpenMP or HIP calls [6].

We finally refer to CCAMP [14], an OpenMP 4+ and OpenACC inter-
operable framework built on top of OpenARC [15]. It provides two functional-
ities to help programmers transplant non-portable code into new architectures:
language translation between the two standards, and device-specific directive
optimization within each standard.

The tool we describe in this paper differs from the aforementioned on sev-
eral fronts. First, it generates OpenMP 5+ compliant code which results on a
more natural (almost one-to-one) clause mapping between the two programming
models as described in Sect. 4. Second, compared to the previous efforts, our
tool supports both C/C++ and Fortran applications. Last, while previous tools
focused on providing an optimized translation (under certain assumptions), our
tool focuses on providing a semantically equivalent translation with a number of
knobs that allow the user to specify more performant translations if she knows
they are correct.

3 OpenACC vs OpenMP 5+

There are several works that discuss the differences between OpenACC and
OpenMP (up to 4.5) (see [10,13,14,18]). Among the differences, authors high-
light differences related to:

– the OpenACC kernels construct, which delimits a program region and lets
the compiler to identify the enclosed loops, and among those which are safe
to parallelize and accelerate,

– the work distribution for single and nested loops because the leeway that the
OpenACC compilers have compared to the explicit OpenMP requirement to
distribute the work, and

– the cache construct does not have an OpenMP counterpart, and any caching
decision will be done by the compiler based upon its optimization guidelines.
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The advent of OpenMP 5.0 (and, later, 5.1 and 5.2) have introduced features
that has simplified the mapping with OpenACC, most notably with the loop and
present constructs but also the interoperability directives can helpmatching some
of the OpenACC’s API. The loop in OpenMP behaves similarly to the one in
OpenACC, it specifies that the logical iterations of the associated loop may exe-
cute concurrently and the compiler has leeway to apply some optimizations and
map bindings. One important difference between the two refers to the hardware
map binding because OpenACC allows the vector binding but this is not possi-
ble in OpenMP, where this may occur implicitly (due to compiler optimizations)
or explicitly through the simd construct. With respect to the present construct,
OpenMP offers the present map type modifier or argument in defaultmap. The
present map type modifier alters the map behavior by checking if a variable exists
on the device address space on entry to the region. If it does not exists, execu-
tion results in runtime error. If it does exist, then the map statement is applied.
Still, some differences remain even when comparing OpenACC to OpenMP 5+:
OpenMP still lacks a construct that resembles to the OpenACC kernels construct
and the inability to nest a loop construct inside a simd construct.

4 Description of the Tool

The Intel Migration Tool for OpenACC to OpenMP API is a tool that aims to
help migrate valid OpenACC Fortran and/or C/C++ based applications into
OpenMP 5+ and it focuses on providing a semantically equivalent translation.
The tool currently converts a commonly used subset of the OpenACC direc-
tives into OpenMP, an approach taken by other tools like [14,18]. In contrast
to the tools mentioned in the related work which generate OpenMP 4+, our
tool generates OpenMP 5+ compliant code. There are two reasons: first, the
recent OpenMP specifications include a number of directives that map natu-
rally with OpenACC; and second, the growing compiler support for OpenMP
5+2. Regarding the directives, we highlight the loop directive (introduced in
OpenMP 5.0) and the present map type modifier or argument for defaultmap
(introduced in OpenMP 5.1). Still, there are a number of differences between
OpenACC and OpenMP, and given that the OpenACC runtime calls are not
currently translated, it is imperative that the user supervises the translation.

We want to stress that the tool does not focus on guaranteeing the best
achievable performance but at generating a semantically equivalent translation.
The rationale is threefold:

1. many accelerators achieve high performance when using the vendor-compiler
tied to that device;

2. there are a number of OpenACC performance-related clauses that are unlikely
to be performance-portable to different hardware accelerators (even from the
same vendor); and,

3. some of these clauses require greater (compiler-like) effort that is currently
beyond the scope of this tool.

2 https://www.openmp.org/resources/openmp-compilers-tools.

https://www.openmp.org/resources/openmp-compilers-tools
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This is why, once the application has been successfully ported, we encourage
developers and users to use performance tools for fine-tuning their application
performance.

4.1 Tool Overview

The Intel Migration Tool for OpenACC to OpenMP API is written in Python
because of the parsing flexibility it provides and, as of the writing of this paper,
the tool does not use any compiler technology underneath. In short, the tool
translates OpenACC statements into OpenMP statements with little or no appli-
cation source-code context. This approach simplifies the translation mechanism
but also imposes certain restrictions that we discuss later. Notwithstanding these
limitations, we believe that our approach is still valid because most OpenACC
applications tend to use a limited set of OpenACC constructs.

The tool generates a translation for a valid OpenACC application source code
that adheres to the latest OpenACC (3.2) specification, and also emits a report
with some translation details and issues found during the translation. The result-
ing translation consists of the input source code, where OpenACC statements are
followed by the translated statements. The translation tool supports a number
of knobs to alter the translation, among others: alter the translation to support
OpenMP 5.0 or 5.1, alter the asynchronous clauses translation, specify whether
to honor the binding clauses, or add C preprocessor conditional guards into the
pre-existing OpenACC and OpenMP constructs. With respect to the report, it
contains a list of identified OpenACC statements, and for each of those there is
the OpenMP translation as well as some comments and/or warnings related to
the conversion.

The tool is composed by the following components, which are executed in a
sequential manner:
parser. module, responsible for parsing C/C++ and Fortran (in either fixed

or free-form formats) files. It extracts each OpenACC statement as a single
string without superfluous blank characters and in lower-case to simplify the
subsequent phase. Then this statement is added together with the statement
as-is and the delimiting code line numbers into a data-object that is inserted
into a hash-map indexed by the code-line.

migration. module traverses the hash-map by line number and converts the
extracted OpenACC statements into OpenMP statements as described in the
following subsection. This module also annotates potential translation issues.

code-generation. module, which dumps the input file but extended with the
translated construct. Upon request, this step also adds preprocessor guards
into the OpenACC or freshly generated OpenMP statements. It is also respon-
sible for creating the translation report.

As a side note, the repository hosting the tool includes many validation tests.
These tests can be validated at three levels: 1) against an OpenACC compiler
to ensure that the input is legitimate, 2) a reference output file to ensure that
the translation is correct, and 3) against an OpenMP compiler that ensures that
the translation can be compiled.
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Table 1. Concise translation mappings for OpenACC constructs to OpenMP 5+.

OpenACC OpenMP 5+ OpenACC OpenMP 5+

atomic ⇒ atomic kernels ⇒ target / target teams

cache ⇒ untranslated loop ⇒ loop

data ⇒ target data kernels loop ⇒ target teams loop

declare ⇒ declare target parallel ⇒ target teams

enter data ⇒ target enter data routine ⇒ declare target

exit data ⇒ target exit data serial ⇒ target

host data ⇒ target data / target update update ⇒ target update

Table 2. Concise translation mappings for OpenACC clauses to OpenMP 5+.

OpenACC OpenMP 5+

async ⇒ nowait

delete(X) ⇒ map(delete:X)

detach(X) ⇒ map(release:X)

deviceptr(X) ⇒ is device ptr(X)

default(present) ⇒ defaultmap(present:aggregate) and

defaultmap(present:pointer) in OpenMP 5.1

⇒ implicit mapping rules in OpenMP 5.0

present(X) ⇒ map(present,alloc:X) in OpenMP 5.1

⇒ map(alloc:X) or map(tofrom:X) in OpenMP 5.0

(p|present or )copy(X) ⇒ map(tofrom:X)

(p|present or )copyin(X) ⇒ map(to:X)

(p|present or )copyout(X) ⇒ map(from:X)

(p|present or )create(X) ⇒ map(alloc:X)

wait ⇒ taskwait

4.2 OpenACC to OpenMP 5+ Migration

The tool generates OpenMP 5+ compliant code because it allows a simpler and
more natural translation. Tables 1 and 2 summarize the translations applied by
our migration tool. From these, we highlight some translation details regarding
the OpenACC constructs and clauses:

loop. This construct is translated into the OpenMP construct with the same
name. The OpenMP construct has similar behavior to OpenACC (although
not equal as we describe in the following section) while offering the compiler
some leeway to apply optimizations.

present. The translation of this clause depends on the target OpenMP version
which can be tuned through a knob. OpenMP 5.1+ added the present map-
type modifier that checks for the availability of the data in the device address
space. Since the present clause in OpenACC does not imply any transfer, we
translate it to map(present,alloc). The present modifier allows to check
for the presence of the data in the device address space while the alloc map-
type prevents any memory transfer. However, OpenMP 5.0 does support the
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present modifier and thus the user has to choose between map(alloc) or
map(tofrom) mappings and although they are not identical to present they
are likely to behave similarly in most situations.

default. This clause in OpenACC applies to all variables except scalars but
the OpenMP counterpart (defaultmap) applies to all variables except if a
variable category is given. The translation to OpenMP combines defaultmap
constructs so that they apply to all variable categories except scalars. For the
particular case of default(present), the behavior is similar to the present
clause. The same knob used to control the present clause dictates how to
translate defaultmap(present).

host data. This construct makes the address of data in device memory available
to the host (useful, for example, in GPU-enabled MPI implementations).
Since this functionality may not be present on the target system or its software
stack, our tool can translate this construct to target data or to target
update. While the former has similar semantics to OpenACC, the second
approach uses the host memory as a staging buffer for the operation to be
executed. Users should choose the former if the enclosed statements can make
use of the address of data in device memory, and choose the latter otherwise.

async, wait. These two clauses can be mapped, on trivial cases, to the nowait
clause and taskwait construct, respectively. However, OpenACC supports an
optional argument that specifies an activity queue to which the clause refers,
potentially leading to non-trivial dependencies. We are currently working to
support this functionality using OpenMP dependencies (i.e. depend clause).
As of now, the user can disable the translation of asynchronous statements
when those statements define non-trivial dependencies.

4.3 Limitations and Potential Work-Arounds

Given the simple nature of the migration tool, it has a number of limitations
although some of these can be circumvented in particular cases. The following
sections describe known limitations and potential work-arounds.

OpenACC Kernels Construct and Loop Auto Clause. The first, and
possibly most notable, limitation refers to the lack of a direct translation of the
kernels construct. This construct instructs the compiler to identify paralleliza-
tion opportunities within the enclosed construct, and if so, parallelize and offload
the identified regions. OpenMP, however, requires explicit identification of par-
allel and offload regions. If the kernels construct is combined with the loop
construct, then the tool generates a parallel target teams loop offload parallel
region, otherwise the tool offloads the code region serially through the target
construct. Since the loop construct may appear nested in target regions, we
have implemented an experimental feature for Fortran applications that identi-
fies these loops and generates target teams loop rather than target loop.

In a similar direction, the auto clause from the loop construct tells the
compiler to determine whether the iterations have data dependencies. If not,
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Listing 1. Sample OpenACC code with loop vector.

1 void mmul (int SIZE , float ** restrict c, float **a, float **b)

2 {

3 int i,j,k;

4 #pragma acc data copyin(a[0: SIZE ][0: SIZE],b[0: SIZE ][0: SIZE]) \

5 copy(c[0: SIZE ][0: SIZE])

6 {

7 #pragma acc parallel loop

8 for (i = 0; i < SIZE; ++i)

9 #pragma acc loop vector

10 for (j = 0; j < SIZE; ++j)

11 {

12 float tmp = 0.f;

13 #pragma acc loop reduction (+:tmp)

14 for (k = 0; k < SIZE; ++k)

15 tmp += a[i][k] * b[k][j];

16 c[i][j] = tmp;

17 }

18 }

19 }

the code within the loop can be executed in parallel. As stated earlier, the
migration tool cannot extract parallelism from the source code and the code
within this clause is executed sequentially. Since the OpenMP loop expresses
that the associated loop is to be executed in parallel, the tool simply ignores
the loop construct when the auto clause is given so that the associated loop is
executed serially.

Hardware Binding Clauses. The OpenACC hardware binding clauses relate
to the gang, worker and vector clauses. Despite performance being beyond the
current goals of the tool, because of the difficulty of performance portability
across vendors and specific compiler optimizations, we support translating these
clauses into the corresponding OpenMP binding clauses, if appropriate knobs are
provided. This allows users to test the potential performance of maintaining these
clauses. However, there is a caveat regarding the vector clause. Its translation
is the simd construct but this construct does not allow nested loop constructs.
Consequently, the translation of the valid OpenACC code shown in Listing 1
would need further modifications than those in the scope of the tool so that the
simd construct and its associated loop appear as the inner-most loop.

Multi-dimensional and Non-contiguous Data Mapping. In our tests,
OpenACC has shown to be somewhat more flexible than OpenMP when deal-
ing with multi-dimensional non-contiguous data as in the example shown in
Listing 2. Depending on the definition of variable v3, if the data referenced by
the aforementioned statement is contiguous the user could accept the ordinary
OpenMP translation (see Listing 3). For C/C++ applications, the migration
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Listing 2. Multi-dimensional OpenACC construct.

1 #pragma acc enter data copyin(v3 [:3][:7][:8])

Listing 3. Multi-dimensional OpenACC construct translated into OpenMP.

1 #pragma omp target enter data map(to:v3 [:3][:7][:8])

tool proposes an OpenMP translation that uses nested mappings, as shown in
Listing 4; we are exploring similar alternatives for Fortran applications.

Seq Clauses. OpenACC supports the seq clause on the loop and routine
constructs prevents any automatic parallelization or vectorization, ultimately
to allow composability with invoking routines and/or loops. To our knowledge,
there is no such a similar OpenMP counterpart and this clause is currently
ignored by the migration tool.

Runtime Calls. OpenACC offers a number of runtime routines that the appli-
cation developer can use to interact with the runtime library and/or device.
Currently, our tool does not convert any of these and this implies that the user
has to manually translate these calls into their OpenMP counterparts, if any. In
the future, we will consider migrating OpenACC API calls into OpenMP API
calls. To this end, the interoperability mechanisms added in OpenMP 5.1 seem
helpful.

Other Differences. There exist other OpenACC and OpenMP specific dif-
ferences that may hinder a fully automated translation. For instance, Ope-
nACC supports the read-only modifier when transferring data to the device
(i.e. copyin) and the zero modifier when allocating a variable in the device
memory address space. Also, the OpenACC declare copyin directive would be
translated into declare target but the OpenMP translation is more restric-
tive when applied to variables. In a similar direction, the OpenACC declare

Listing 4. Multi-dimensional OpenACC construct translated into OpenMP using
nested of allocations.

1 #pragma omp target enter data map(to:v3 [0:3])

2 for (int _idx0 = 0; _idx0 < 3; ++ _idx0)

3 {

4 #pragma omp target enter data map(to:v3[0+ _idx0 ][0:7])

5 for (int _idx1 = 0; _idx1 < 7; ++ _idx1)

6 {

7 #pragma omp target enter data map(to:v3[0+ _idx0 ][0+ _idx1 ][:8])

8 }

9 }
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create directive does not have a OpenMP counterpart. To our understanding,
these OpenACC directives are not widely used and thus it is not urgent to con-
vert them, but we are exploring migration alternatives for them.

5 Experiences on Application Migrations.

In this section we describe our experiences migrating OpenACC benchmarks
and mini-applications using the Intel Application Migration Tool for OpenACC
to OpenMP API3. Table 3 provides some characteristics of these applications.
Unless explicitly stated, we have used the migration tool with the default set-
tings, except disabling the translation of the asynchronous clauses (i.e. knob
-async=ignore) thus not allowing explicit overlapping. Despite the aim of the
translation tool being portability, we have done an initial performance study on
a few of the applications.

We have compiled and evaluated the translated sources in two sys-
tems. The first system is equipped with 2 Intel R© Xeon R© Platinum 8360Y
processors and a discrete NVIDIA R© A100 80 GB PCIe GPU. Applica-
tions on this system have been compiled with the NVIDIA HPC SDK
22.2 using the flags: -fast -Mstack arrays -Mnouniform -Mfprelaxed -acc

-Minfo -gpu=fastmath. The second system is equipped with an Intel R© Core
TM

i7-1165G7 chip, which features an integrated GPU: this GPU does not support
FP64 operations natively and these operations are emulated. We have used an
engineering version of the Intel C++/Fortran Compilers that supports a sub-
set of the OpenMP 5.1 specification. The features used in the context of this
paper are likely to be available as part of the next major release of the compiler.
The OpenMP offload compilation flags for the C++ applications are -fiopenmp
-fopenmp-version =51 -fopenmp-targets=spir64 whereas the flags for the
Fortran applications are -fiopenmp -fopenmp-targets=spir64.

Table 3. Application characteristics.

OpenACC constructs / clauses

Application name Language #lines #computea #datab #atomicc #asyncd #API calls

SpecACCEL-370-BT C 7765 52 9 0 0 0

SpecACCEL-354-CG C 1418 18 2 0 0 0

POT3D Fortran 11698 33 36 2 19 0

CloverLeaf Fortran 10134 628 562 0 0 0
a Compute constructs cover: kernels, loop, parallel, serial and loop.
bData constructs cover: data, host data and update.
cAtomic constructs cover: atomic.
dAsynchronous clauses and constructs cover: async and wait.

3 Commit-id be6c54f11564b8cfa185c0e1c5390be57d78a8f1.
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SpecACCEL-370-BT and SpecACCEL-354-CG. The SPEC ACCEL R©

benchmark suite [12] tests performance with computationally intensive par-
allel applications using both OpenACC and OpenMP APIs. We have chosen
the 370-BT and 354-CG benchmarks from SPEC ACCEL 1.4 which are a
C+ OpenACC re-implementation of the NAS benchmarks [4]. BT solves a
3D discretization of Navier-Stockes equation, while CG solves an unstruc-
tured sparse linear system using the conjugate gradient method.
Figure 1 shows the estimated4 relative performance on the different variants
when compared to the OpenMP executions on the same system. We want
to note that, given the different purpose of the selected systems, we have
used different inputs so that the benchmarks finish in a reasonable amount
of time. The BT results on the NVIDIA machine show that the OpenACC
version (in orange) is about 66× faster than the OpenMP version (in pur-
ple). An inspection of the source code shows that 370.bt and 570.pbt differ
in the loop ordering on the most-time consuming kernels and this is likely to
explain part of this difference. The OpenACC translation (in blue) is 1.6×
faster than the OpenMP version. If we manually apply loop collapsing to
the most time-consuming offloaded loops (which is applied automatically by
the OpenACC compiler but not in OpenMP) then this version (shown in
yellow) is 13.8× faster than the OpenMP variant. On the Intel machine,
the translated OpenACC version is 1.4× slower than the OpenMP version,
but manually applying the previous loop collapse modifications improves the
translated OpenACC version to be 3.5× faster than the OpenMP version.
Regarding the CG benchmark, on the NVIDIA-based system, the translated
OpenACC version is much slower (68×) than the OpenMP version because
the OpenACC variant uses the kernels construct without combining with the
loop construct and the migration tool does not parallelize it. If we explicitly
offload and parallelize the loops within the kernels constructs, then the per-
formance gets in line with the OpenACC version on the NVIDIA system and
the performance on the Intel system gets in line with the OpenMP version.

CloverLeaf. [16]5 is a Fortran mini-application that solves the compressible
Euler equations on a Cartesian grid, using an explicit, second-order accurate
method. Regarding the translation, we have mapped the present clause to
the alloc map-type because the present map type modifier is not supported
on the nvfortran version we have used. We also have disabled the experimental
feature that parallelizes loop constructs within kernels on two files6 because
the kernels construct is immediately followed by control flow statements
and this is not supported by this experimental feature. We have focused
a comparison in the NVIDIA-based machine because the application uses
double precision FP heavily and we cannot obtain performance results on
the system with the integrate Intel GPU in a reasonable amount of time.

4 Estimated results are those not audited by SpecACCEL.
5 Commit-id d957cef81c5e5765a2e9045432845eada980cc79 from https://github.com/

UK-MAC/CloverLeaf OpenACC.
6 advec cell kernel.f90 and advec mom kernel.f90.

https://github.com/UK-MAC/CloverLeaf_OpenACC
https://github.com/UK-MAC/CloverLeaf_OpenACC
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Fig. 1. Translation performance achieved on the two systems. (see Sect. 5 for workloads
and configurations and Appendix for additional usage details. Results may vary.)

Also, despite there exists an initial implementation of the application using
OpenMP offload7, it is an older version tagged as work-in-progress and does
not compile as-is, and consequently we cannot use it for comparison purposes.
If we limit ourselves to the OpenACC and its translated version, we observe
that the translated version on the NVIDIA system is approximately 9% slower
than the original version on the same system. Interestingly, if we manually
add the teams construct into the serial target offloaded regions to run the
regions in parallel in the aforementioned files there is no performance impact
on the translated version.

POT3D. [8]8 is a Fortran code that computes potential field solutions to
approximate the solar coronal magnetic field using observed photospheric
magnetic fields as a boundary condition. The code is parallelized using MPI
and is GPU-accelerated using Fortran standard parallelism (do concurrent)
and OpenACC. The application exhibits a variety of OpenACC constructs,
including host data for GPU-enabled MPI environments. The application
translates without issues and compiles successfully on the Intel system but
fails to generate a binary using the NVIDIA HPC SDK 22.2, so we cannot
fairly compare the performance.

6 Conclusions and Future Work

We have introduced and described the open-source Intel Application Migration
Tool for OpenACC to OpenMP API, which helps migrating OpenACC applica-
tions to OpenMP with user supervision. In contrast to previous works in this
field, this Python-based tool generates OpenMP 5+ compliant code and supports
7 https://github.com/UK-MAC/CloverLeaf OpenMP4.
8 Commit-id 42984a8ce428d54036d6b8a0732f05a046e8f840 (3.1.0r) from https://

github.com/predsci/POT3D.

https://github.com/UK-MAC/CloverLeaf_OpenMP4
https://github.com/predsci/POT3D
https://github.com/predsci/POT3D
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C/C++ and Fortran. The tool is still in development but it already translates
many of the OpenACC clauses and it has allowed us to convert several bench-
marks and mini-applications.

There are a number of topics that we are interested in pursuing in the future.
First, we envision the tool translating the asynchronous mechanisms offered by
OpenACC, so that applications can effectively overlap CPU and GPU computa-
tions and memory transfers. We are exploring how to extend the support of the
kernels construct so that the tool, with potential user guidance, can offload and
parallelize the enclosed code regions. Finally, it may be convenient to support the
translation of the OpenACC API routines into their OpenMP counterparts. Fur-
thermore, the same API migration process could be reused to translate standard
APIs, such as BLAS routines.
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developing this tool.
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Intel technologies may require enabled hardware, software or service activation.
c© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
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* Other names and brands may be claimed as the property of others.

A Using the Migration Tool on POT3D

A.1 Downloading the Migration Tool

$ git clone https :// github.com/intel/intel -application -migration -tool -for -openacc -to -openmp

Cloning into ’intel -application -migration -tool -for -openacc -to -openmp ’...

remote: Enumerating objects: 307, done.

remote: Counting objects: 100% (307/307) , done.

remote: Compressing objects: 100% (203/203) , done.

remote: Total 307 (delta 132), reused 275 (delta 102), pack -reused 0

Receiving objects: 100% (307/307) , 86.24 KiB | 9.58 MiB/s, done.

Resolving deltas: 100% (132/132) , done.

$ cd intel -application -migration -tool -for -openacc -to-openmp/

$ git rev -parse HEAD

be6c54f11564b8cfa185c0e1c5390be57d78a8f1
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A.2 Downloading POT3D

~/apps $ git clone https :// github.com/predsci/POT3D

Cloning into ’POT3D ’...

remote: Enumerating objects: 211, done.

remote: Counting objects: 100% (3/3) , done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 211 (delta 1), reused 0 (delta 0), pack -reused 208

Receiving objects: 100% (211/211) , 24.56 MiB | 12.56 MiB/s, done.

Resolving deltas: 100% (102/102) , done.

$ git checkout 42984 a8ce428d54036d6b8a0732f05a046e8f840

Note: switching to ’42984 a8ce428d54036d6b8a0732f05a046e8f840 ’.

..

HEAD is now at 42984a8 RMC: POT3D v3.1.0 - Cleaned up code , added analytic validation run mode , updated

documentation and scripts.

A.3 Applying the Migration Tool to POT3D

~/apps/POT3D/src $ ~/intel -application -migration -tool -for -openacc -to-openmp/src/intel -application -migration -

tool -for -openacc -to-openmp -async=ignore -overwrite -input *.f

Processing file number_types.f

Processing file pot3d.f

Processing file zm_parse.f

Processing file zm_parse_modules .f

Processing file zm_sds.f

Processing file zm_sds_modules.f

A.4 Makefile Example Using Intel Compiler

~/apps/POT3D/src $ cat Makefile.ifx

FC = mpiifort -fc=ifx

FFLAGS = -fiopenmp -fopenmp -targets=spir64 -mllvm -vpo -paropt -atomic -free -reduction=true -O -g -mcmodel=

medium -I$(HDF5_HOME)/include

OBJS = number_types.o \

zm_parse_modules .o \

zm_parse.o \

zm_sds_modules.o \

zm_sds.o \

pot3d.o

LDFLAGS = -L$(HDF5_HOME)/lib -Wl ,-rpath -Wl ,$(HDF5_HOME)/lib -lhdf5_fortran -lhdf5_hl_fortran -lhdf5 -

lhdf5_hl

all: $(OBJS)

$(FC) $(FFLAGS) $(OBJS) $(LDFLAGS) -o pot3d

rm *.mod *.o 2>/dev/null

clean:

rm pot3d 2>/dev/null

rm -f *.mod *.o 2>/dev/null

number_types.o: number_types.f

$(FC) -c $(FFLAGS) $<

zm_parse_modules .o: zm_parse_modules .f

$(FC) -c $(FFLAGS) $<

zm_parse.o: zm_parse.f zm_parse_modules .f number_types.f

$(FC) -c $(FFLAGS) $<

zm_sds_modules.o: zm_sds_modules.f

$(FC) -c $(FFLAGS) $<

zm_sds.o: zm_sds.f zm_sds_modules.f number_types.f

$(FC) -c $(FFLAGS) $<

pot3d.o: pot3d.f

$(FC) -c $(FFLAGS) $<
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Abstract. Following the mass adoption of external accelerators for high
performance computing, the overall performance of many applications
has become increasingly dependent on relatively small accelerated ker-
nels. As static analysis is fundamentally limited by dynamic values and
external definitions, standard ahead-of-time compilation is not always
sufficient to achieve the best performance. Furthermore, many users look-
ing to port an existing application to run on an external accelerator will
not want to fundamentally restructure their programs. These and other
problems can be addressed through both link-time optimization (LTO)
and just-in-time (JIT) compilation, but until now had sparse and incon-
sistent support from the compiler.

In this work, we present a new compilation method that enables
device-side LTO as well as a transparent JIT compilation tool-chain for
OpenMP target offloading. Our contributions include an entirely new
device linking and embedding scheme to enable LTO as well as a novel
JIT engine to efficiently optimize OpenMP offloading regions at run-time.
We also introduce a persistent caching system to improve end-to-end run-
time using the JIT engine and minimize kernel launching overheads. We
measure the performance of our LTO and JIT implementation via sev-
eral real-world scientific applications. With our optimizations we observe
significant improvements through LTO on large applications as well as
significant end-to-end execution time improvement using JIT.

Keywords: OpenMP · GPU · LTO · JIT

1 Introduction

The dominance of massively-parallel GPGPU based accelerators in high perfor-
mance computing systems has resulted many applications being highly depen-
dent on small accelerated kernels executed on the device. This poses a challenge
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for compilers looking to optimize applications targeting heterogeneous systems,
especially through generic programming models, such as OpenMP target offload-
ing. The massively parallel nature of these systems means that any missed opti-
mizations or overhead can result in considerably large performance losses. Fur-
thermore, the compiler’s ability to optimize these program is fundamentally lim-
ited by external definitions or dynamic values only known at runtime. OpenMP
especially makes heavy use of environment variables whose values can only be
known at runtime. This means that ahead-of-time (AoT) optimizations alone are
not sufficient to determine important constants, such as the number of teams
and threads in a region.

In this work we present a transparent implementation of link-time optimiza-
tion (LTO) and just-in-time (JIT) compilation for OpenMP offloading for the
LLVM/Clang compiler infrastructure. We first show an overhauled driver for
compiling OpenMP offloading programs in LLVM/Clang that allows transpar-
ent embedding and linking of device LLVM IR. The JIT engine uses the linked
bitcode to perform further optimizations and code generation at runtime with the
knowledge of runtime values, e.g., environment variables. Finally, we present the
performance improvements of the LTO and JIT compilation on several bench-
marks and proxy-applications.

In the following we first briefly explain the necessary background on OpenMP
offloading compilation via LLVM/Clang, LTO, and JIT. Sections 3 and 4
describe our LTO and JIT contributions in detail. The evaluation of our app-
roach is given in Sect. 5, and finally, before the conclusion in Sect. 7, we discuss
related works in Sect. 6.

2 Background

In this section, we will briefly introduce the current compilation pipeline used
to create OpenMP target offloading applications and support LTO and JIT.

The LLVM/Clang compiler driver is responsible for creating the neces-
sary actions to produce the compiled output. Compilation for LLVM/OpenMP
offloading is more complex than a standard compilation job because the compiler
must compile and link for multiple architectures at once. In order to maintain
standard compilation semantics, the compiler driver will create a compilation
for each target architecture and then embed the result into a single fat binary.
Device linking occurs by extracting the device code inside the fat binary and
first running the appropriate device linking job on it. After linking, the device
image still needs to be registered with offloading runtime on the host. To register
the device image we create a new module containing the necessary registration
code and link it with the rest of the application.

Standard LTO in LLVM is performed by emitting LLVM IR bitcode instead
of an object file. During linking, if the linker supports LTO, all the identified
LLVM IR bitcode files will be merged and optimized together using symbol
resolution information from the linker. The linked and optimized bitcode is then
compiled and linked with the other input files. Similarly, JIT compilation uses
LLVM IR bitcode to compile for the target architecture as-needed at runtime.
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3 Link Time Optimization Support

As mentioned in Sect. 2, creating offloading binaries is more challenging than
standard compilation. In this section, we first introduce our new offloading driver
for LLVM/Clang. Then, we describe our new augmented linker to support device
linking with LTO.

3.1 Offload Driver

Fig. 1. The main phases of the new LLVM/Clang offloading driver. Source file compila-
tion is done for every target architecture using the device tools. This is then embedded
into the host to create a fat-binary and linked with the new augmented linker.

Our new driver supports OpenMP offloading compilation is a unified manner by
utilizing a common embedding and linking scheme for each target architecture.
The first step is to compile each input OpenMP offloading program to an object
file using LLVM/Clang. If we are performing LTO, we instead emit LLVM-IR
instead of a standard ELF object file

We then complete the host compilation and create a fat-binary by storing
each output device object file in a special section in the output ELF file. This
special section contains both the embedded image and a binary blob containing
necessary metadata to link the device image, such as its target and architecture.
This section will be named llvm.offloading and is identified in the ELF using
the new SHT_LLVM_OFFLOADING section type. Furthermore, we use the SHF_EXCLUDE
section flag to indicate that this section should be dropped by the linker when
creating the final executable. The final compilation step is to pass the new fat
binary to the linker, which will use the embedded device code to create an
executable device image. These steps are roughly outlined in Fig. 1.

3.2 Offload Linker

We created a new augmented linker supporting offloading device linking and reg-
istration. This new augmented linker works as a thin wrapper over the original
host linking job called the linker wrapper. First, the linker wrapper searches every
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input file or library for embedded device code stored in the SHT_LLVM_OFFLOADING
sections. Once the files are located and extracted we sort each input object using
its target architecture that was extracted from the metadata stored previously.
We then identify all the input files containing LLVM-IR and use LLVM’s exist-
ing LTO library to create an object file output. All device objects for a single
target architecture are then linked together using the vendor linker to create an
executable.

The device executable is useless on its own, so first we need to register each
linked executable with the vendor’s runtime library. We perform this final step
by creating a new module containing the executable data and the runtime calls
necessary to register it. This module is then compiled to an ELF object file and
added to the linker input. Finally, we run the original host linking job and obtain
an executable containing offloading code.

4 Just-in-Time Compilation Support

In this section, we will introduce our support for JIT compilation of OpenMP
offloading applications in LLVM. We will first talk about the necessary compiler
support, followed by the code generation and sub-architecture portability sup-
port. Next, we propose three specializations to improve optimizations using JIT.
Finally, we discuss a multi-level caching implementation used to mitigate host
overhead caused by JIT compilation and optimization.

4.1 Compilation Flow

We utilized the LTO support shown in Sect. 3 to create linked LLVM-IR neces-
sary for JIT compilation. The only change required to the compilation flow for
JIT is to skip the LTO back-end in the linker and register the linked LLVM-IR
directly. Now when the runtime attempts to register the device code it will use
JIT if it encounters LLVM-IR instead of a device executable.

4.2 JIT Kernel Invocation

When the OpenMP runtime attempts to execute a kernel when performing JIT
we first need to compile and register it as before. We will also use LLVM’s LTO
support for the code generation to call the same back-end we skipped during
ahead-of-time linking. The previous LTO optimization pass is augmented with
JIT-specific optimizations that will be described later as well as aggressive prun-
ing of global definitions unused by the current kernel. After the LTO backend is
run, we then need to register the kernel with the device runtime and proceed to
the kernel launch.
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4.3 Sub-architecture Portability

AoT compilation does not support sub-architecture portability because device
images are not usually compatible with different compute capabilities. For exam-
ple, if the program is compiled for sm_35, it can only run on sm_35 GPUs. Pro-
grams instead must be recompiled for the desired target device.

With our JIT support, device images are generated at runtime using target
information collected from the target device, thus we only need to compile pro-
grams once (AoT) and they can be executed on different target devices with
varying sub-architectures. However, it is worth noting that this does not sup-
port the portability across different vendors. As we mentioned before, we embed
LLVM IR which is still inherently vendor dependent. In addition, for AMD
GPUs, an extra pass is set up to update all target features attached to functions
to make sure its backend works properly.

4.4 Specialization

We propose three specializations with information only available at runtime.
They are all enabled by default and can be configured via environment variables.

Scalar Kernel Arguments. One of the most important pieces of runtime infor-
mation is kernel arguments. There are two kinds of kernel arguments: pointer
values and scalar values. We do not specialize pointer values because it can easily
invalid caching, which will be discussed later, incurring more host side overhead.
Scalar values are however specialized, hence replaced with their runtime value
prior to optimizations. If the scalar values are loop bounds, it can make more
aggressive loop optimization possible.

Pointer Alignments. An important characteristic of a pointer is its align-
ment, which plays an important role in vectorization and instruction selection.
Although each target has a default pointer alignment, the actual alignment of
a pointer can be more strict. For each pointer value p, we iterate a list of pre-
defined alignments a ∈ {128, 64, 32, 16, 8} in decreasing order and find the first
a that p is aligned to. If a is greater than the default alignment, an attribute
align with value a is added to the pointer kernel argument.

Launch Parameters. Two kernel launch parameters, grid size and block size,
are provided to the driver API when launching a kernel. If the num_teams clause
or thread_limit clause is present and a compile time constant value is specified,
the corresponding runtime functions to query the size are optimized away at
compile time [1]. If the clause is not specified, the runtime will choose a default
value. Given that these launch parameters are known to the JIT, specialization
is performed as if the user provided constant values via the respective clauses.
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4.5 Internalization

In the device runtime, there are global variables listed in @llvm.used to prevent
to be optimized out when building the device runtime. At JIT time1, since the
module has already been linked, all feasible global variables, except those that
should be exposed to users, can be optimized. We mark all global variables,
except those exposed to users, as internal and remove them from @llvm.used.

4.6 Caching

JIT compilation requires constructing an LTOModule, going through kernel argu-
ments, modifying the module, generating a device image, and loading it to the
target device. This can have significant overheads and can potentially cancel the
benefits of our runtime optimizations. To mitigate the cost we need to reuse the
generated device image for multiple kernel launches. To this end, we implement
a novel classification system for kernel launches together with a persistent, two-
level cache system that keeps specialized images in the host memory (L2) as well
as in the device memory (L1) for future reuse. JIT compilation is only invoked
if there is no compatible cached image available at launch time.

Kernel Launch Identification. In order to reuse an image, we need an effi-
cient way to determine if it is compatible with an incoming kernel launch request.
A kernel launch is effectively defined by the kernel (function) name, the kernel
arguments, and the number of teams and threads (= grid dimensions). However,
kernel launches do not require identical values to share/reuse the same opti-
mized image. For example, pointers 0x1230 and 0x4560 are not exactly same, but
they are both 16-byte aligned. If that is the only difference between two kernel
launches, they are compatible. Additionally, if parameters are not involved in
specialization their values do not impact kernel launch compatibility.

In order to efficiently query the cache we employ a kernel launch descriptor,
which includes: the kernel name, kernel arguments, architecture, and a list of
specializations applied to the kernel when the image was compiled. An existing
optimized image with a kernel launch descriptor is compatible with a kernel
launch, and hence can be reused, if (1) the kernel name and architecture match
and (2) the specializations applied to obtain the image match what would have
been applied for the new launch in question.

L1: Target Table Cache. A target table stores information about offloading
entries, such as entry size, host pointer and its corresponding device pointer. It
is constructed when an image is loaded to the device. Therefore, it is per device
and every execution starts with an empty L1 cache that is filled on-demand.

We set up a target table cache, indexed by kernel entry name, for each target
device. Each entry is a list of target tables for the same kernel entry but with
different kernel launch descriptors.
1 Technically, this does not have to be limited to JIT time but LTO time is sufficient.
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L2: Image Cache. An image is a memory buffer that can be loaded to a
target device. It can be used for all target devices with same sub-architecture.
More importantly, it does not contain (dynamic) device pointers, which gives
us the ability to reuse it across executions. Images are reused within and across
program runs whenever a compatible kernel launch is encountered.

We set up an image cache for each sub-architecture. An image cache is orga-
nized similar to target table cache. In addition, during the runtime shutdown,
the image cache writes all cached images and metadata to a file. When the run-
time is loaded, it reads all images from the file and construct the image cache
to be used by the application. Hence, prior runs with compatible kernel launch
parameters can effectively eliminate most overheads of just-in-time compilation.

Cache Lookup. When a kernel k is launched, the cache lookup works as follows:

1. Check if there is a compatible entry in the target table cache (L1) for the
target device. If yes, move to Step 2; otherwise, move to Step 3.

2. Iterate over the list of target tables. If there is a match, it is a L1 cache hit,
and the target table can be used directly; otherwise, it is a L1 cache miss and
we proceed with Step 3.

3. Check if there is a compatible entry in the image cache (L2) for the sub-
architecture of the target device. If yes, move to Step 4; otherwise, it is a L2
cache miss and we proceed to Step 5.

4. Iterate over the list of images. If there is a match, it is a L2 cache hit. The
image will be loaded to the target device, a new target table will be con-
structed and added to the L1 cache. If no match was found it is a cache miss.
Move to Step 5.

5. JIT the device image, add it to the L2 cache (for cross-execution persistence),
load it to the target device, and add it to the L1 cache.

4.7 Specialization Tracker

In spite of the multi-level caching system, it is still possible that scalar kernel
arguments for a kernel vary in every (or many) different kernel launches. For
example, 552.pep in SPEC ACCEL [2] has one scalar argument that changes in
every kernel launch. As consequence, we have to compile a new image and load
it to the device for every launch. This situation can cause significant overheads
and device resource waste.

We set up a specialization tracker for each kernel entry which records the total
number of specializations, denoted by N , and the number of specializations for
each kernel argument, including the launching parameters, represented by ni.
Before we apply any specialization, we check if N > T and ni/N > R, where
T is a threshold to always allow a certain amount of specialization, and R is
an argument specialization control ratio. If both conditions are true we have
exceeded the specialization quota for an argument and it is not specialized in
the future. For any subsequent kernel launch, no matter whether the argument
value change, there has to be a match as no argument specializations has been
applied to one image. Both T and R can be configured via environment variables.
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5 Evaluation

For our performance evaluation we used a Nvidia A100 GPU system with an
AMD EPYC 7532 CPU and 256 GB DDR4 RAM. We used CUDA 11.4.0 for
all experiments and collected kernel times with nsys. In addition to the Nvidia
system, an AMD MI100 GPU system with two AMD EPYC 7532 CPUs and 512
GB DDR4 RAM is used for portability evaluation. Our prototype version (�) is
based on � 3723868d.

5.1 Benchmarks

We looked at seven scientific proxy applications for our performance study for
LTO and JIT compilation and evaluated both the end-to-end execution time and
the performance of their main GPU kernels. Our results are presented relative
to the performance of AoT compilation without LTO. We also test four of the
seven proxy applications for sub-architecture portability with JIT.

OpenMC is a continuous-energy Monte Carlo particle transport applica-
tion [3] that has recently been ported to the OpenMP target offloading pro-
gramming model for use on GPU-based systems [4]. In addition to being an
open source application, OpenMC also provides a host of advanced modeling
and simulation capabilities including depletion, advanced geometry representa-
tions, on-the-fly Doppler broadening, and multigroup cross section generation.

XSBench and RSBench are two proxy applications for the Open Monte
Carlo (OpenMC) project. Both proxies compute the continuous energy macro-
scopic neutron cross-section lookup when studying neutron transport and
both are available in multiple programming languages and frameworks. While
XSBench [5] extracts one of the main kernels in OpenMC, which is in memory
bound, RSBench [6] provides a compute bound alternative implementation.

MiniFMM is a proxy application developed by the University of Bristol
for Fast Multipole Method (FMM) [7]. It solves the Laplace equation in a three-
dimensional polar coordinate plane by applying the FMM, which uses a dualtree
traversal method.

SU3 is a Lattice QCD SU(3) matrix-matrix multiply microbenchmark. The
kernel is based on the mult_su3_nn() SU(3) matrix-matrix multiply routine in
the MILC Lattice Quantum Chromodynamics(LQCD) code.

Thermo4PFM is a software library used for Phase-Field modeling of solidi-
fication in metallic alloys [8]. Given the thermodynamic properties of a materials
in its various phases, it solves a small system of non-linear equations to compute
the force that drives phase changes.

miniMDock is a GPU-accelerated performance portable particle-grid based
protein ligand molecular docking tool. It is used for virtual drug discovery com-
pound screens based on a molecular recognition model, that analysis a three-
dimensional model of an interaction between a protein and a small molecule.
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Fig. 2. Kernel execution time relative to the base AoT case without LTO.

5.2 Performance Results

Figure 2 shows the relative improvement in kernel time for LTO and JIT. Our
results show large improvements for miniMDock, OpenMC, and Thermo4PFM
when LTO is used because these applications have code split between many
files and benefit most from LTO. Although the other cases do not benefit from
cross-file optimizations, LTO can still affect performance due to additional opti-
mizations and internalization of external symbols. The performance evaluation
for JIT uses only the kernel timings and does not include the overhead necessary
to first compile the image. Hence, we assume a perfect pre-filled cache.

Figure 3 shows the relative improvement in end-to-end time for JIT with and
without the offline cache. We can see that in most cases, JIT compilation can
improve the end-to-end performance, except for miniMDock and Thermo4PFM.
For miniMDock, the total kernel time is optimized to about 1.4 s from 2.6 s.
However, because miniMDock uses random inputs the cache is easily invalidated
which results in overall slower execution. In the worst case, the overall JIT over-
head is more than 4.5 s, leading to the performance regression shown in Fig. 3.
This demonstrates that for applications similar to miniMDock, specialization
should be disabled (adaptively). Thermo4PFM also shows an end-to-end perfor-
mance regression, but the offline cache allows it to retain performance.

5.3 Portability Results

Although performance can change when using JIT, another advantage is provid-
ing sub-architecture portability. The sub-architectures of our GPU systems are
SM80 (Nvidia A100) and GFX908 (AMD MI100) respectively. Figure 4 shows
the results of different benchmarks compiled with different sub-architectures on
the two GPU systems, where � means the benchmark runs without any issue.
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Fig. 3. End-to-end execution time relative to the base AoT case without LTO.

Fig. 4. Portability of benchmarks compiled with different SM versions for Nvidia A100
GPU and different GFX versions for AMD MI100 GPU.

6 Related Works

6.1 OpenMP Target Offloading

OpenMP 4.0 introduced target offloading. In LLVM/Clang, OpenMP offloading
support for GPUs was first presented by [9,10]. The (PGI) Fortran front-end,
known as Flang, supports OpenMP offloading via the LLVM/OpenMP run-
times [11]. GCC 5 first supports OpenMP target offloading on Intel MIC archi-
tecture. Starting from GCC 7, Nvidia platforms support was added. All existing
implementation feature ahead-of-time compilation of device code.

6.2 Just-in-Time Compilation

Just-in-time compilation has been used in software systems for decades [12].
However, the support in programming languages vary. For parallel programming
models, OpenCL naturally employs JIT compilation for parallel code execution
via an intermediate representation SPIR-V [13]. [14] implemented automatic
translation of OpenACC to LLVM IR with SPIR kernels, optimization of the IR
code by LLVM optimizer, and execution of the host LLVM IR by LLVM JIT.
For OpenMP, [15] proposed an on-the-fly technique on top of the Pin binary
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instrumentation [16] to detect data races in OpenMP programs. [17] presented
support for parallel programs written in OpenMP executing on JVM using
LLVM IR.

6.3 Link Time Optimization

Link-time optimization is not a new concept and has been supported by various
compilers, including GCC and LLVM/Clang [18]. Nvidia has supported device-
side LTO for CUDA following the CUDA 11.2 release [19], however the Nvidia
compilers do not support LTO for OpenMP offloading. The AMDGPU toolchain
uses LLVM IR bitcode as its relocatable object file format and used bitcode
linking and LLVM optimizations as a part of its compilation.

6.4 Compiler Optimization for OpenMP

Regarding compiler-based optimizations on OpenMP, [20] introduced the first
front-end based optimizations for Nvidia GPUs in LLVM/Clang, related to
choosing the number of teams and threads for parallel loops to avoid idle threads
and reduce register usage. [21] presented the TRegion interface which delayed the
discovery of SPMD regions into LLVM, by contrast to the Clang-based approach,
which enabled more kernels to execute in SPMD mode. [22] introduce in the IBM
XL C/C++ compiler a lowering of OpenMP that executes without the control
loop state machine in a mode where all threads execute in parallel, deemed
SPMD mode of execution, when the target offloaded region encloses a single
parallel construct. [1] presented OpenMP-aware program analyses and optimiza-
tions that allow efficient execution of the generic, CPU-centric parallelism model
provided by OpenMP on GPUs. [23] presented a co-design methodology for opti-
mizing applications using a specifically crafted OpenMP GPU runtime inducing
near-zero overhead in most cases. Recent advances in architecture porting have
made it feasible to extend our work of sub-architecture specialization to retar-
geting across different vendors [24,25].

To our best knowledge, this is the first work to present JIT compilation and
LTO for OpenMP target offloading.

7 Conclusion and Future Works

In this paper, we proposed just-in-time compilation and link-time optimiza-
tion for LLVM/OpenMP target offloading. We showed a new compiler driver
to embed and link device bitcode, and a novel JIT engine that features opti-
mization, caching, and sub-architecture portability. The evaluation results show
that link-time optimization can provide large performance benefits for certain
applications and we can further optimize applications and offer sub-architecture
portability using JIT compilation. In the future, we plan to further improved
JIT compilation and specialization in LLVM/Clang as a default for better inter-
operability between architectures.
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Abstract. OpenMP’s variant directives support specialization at com-
pilation time using OpenMP context for portability or performance. This
specialization is confined either to variants explicitly written by the code
author, which can cross translation units, or to implicit context passed
by the compiler. The implicit context allows a metadirective direc-
tive to choose a directive variant based on context or the compiler to
optimize out runtime interactions. However, that implicit context only
exists in a single translation unit (TU), either in a single compilation or
with link-time optimization linking the set of TUs. In order to enable
more optimization opportunities, we propose the metavariant directive,
a new variant directive to define possible function specializations over
a set of specified OpenMP contexts that are available across different
translation units. The compiler lowers the definition of a metavariant-
annotated function to different instances for each specified context. Calls
of the function in different translation units use local OpenMP context
for specialization, relying on the fact that the compiler will have gen-
erated appropriately mangled symbol names for those instances. Using
a prototype source-to-source tool and a set of use cases, we evaluate
our approach to observe a speedup of up to 30× with inter-procedural
specialization versus no specialization, while simplifying and enhancing
modular adaptation with modest user effort.

Keywords: OpenMP · Function Specialization · Translation Units

1 Introduction

Recent versions of OpenMP have added several directives that enable the appli-
cation programmer to specify context-specific optimization hints and specializa-
tions as well as application-specific requirements. However, these mechanisms
currently provide limited support across translation units and often include
restrictions that the programmer must ensure that they are used consistently
across them. Mechanisms to extend optimization opportunities across transla-
tion units and to enforce requirements across them would enable greater modu-
larity in application source code while also preserving and, perhaps, simplifying
implementation-specific optimizations.
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For example, the metadirectives and declare variant directives allow the appli-
cation programmer to specify context-specific specialization. The use of OpenMP
contexts allows these mechanisms to incorporate aspects of the OpenMP (and,
through the user selector, application-specific) context. These contexts may
arise in a different translation unit. However, metadirectives do not provide any
mechanism for the application programmer to specify that the context-specific
specialization is available to the calling context. Alternatively, declare variant
directives allow specialized functions to be called, possibly from a different trans-
lation unit, based on the calling context. However, the programmer must fully
specify the specialized function and the OpenMP implementation is not expected
to exploit the information about the calling context that the directive provides.

Application programmers would benefit from OpenMP extensions that better
support optimization and specialization across translation units. In this paper,
we define the metavariant directive, a mechanism that enables the program-
mer to specify that the implementation should generate function variants that
can be safely called from a specific context. When combined with the use of
metadirectives and declare variant directives, the programmer can ensure that
the function conforms to any requirements of the calling context and that it
provides information about assumptions that may hold in it.

We evaluate the metavariant directive using a prototype source-to-source
translation tool. We explore potential use cases of the directive that illustrate
the benefits that it can provide in terms of programmability and in making opti-
mization hints more useful across translation units. Our preliminary experiments
demonstrate that it can yield substantial performance benefits.

2 Background

Variant directives, including metadirectives and declare variant directives,
are major new features introduced in OpenMP 5.0 [3] to improve performance
portability by enabling adaptation of OpenMP pragmas and user code at com-
pile time. The basic idea of variant directives is to allow programmers to sug-
gest a suitable code variant for a given OpenMP context, which includes traits
that describe active OpenMP constructs, execution devices, functionality of an
implementation, and user-defined conditions. While OpenMP 5.0 supported only
matching compile-time conditions on traits, OpenMP 5.1 [4] extended that to
include user-defined conditions resolved at runtime. A metadirective is a declar-
ative directive that conditionally resolves to another executable or declarative
directive by selecting from multiple directive variants based on traits that define
an OpenMP context. The declare variant directive has similar functionality as
the metadirective but selects a function variant at the call site based on context
or user-defined conditions.

However, a major limitation of the current variant directives is that program-
mers need to specify both context and variant information (i.e., the mapping of
context and variants) within the same translation unit. Currently, OpenMP does
not include any direct language support to propagate context-variant mapping
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information easily across multiple translation units for either specialization or
facilitating compiler optimizations. Existing context-aware directives, such as
declare simd and declare target have a narrow definition of context and
provide limited specialization across translation units. The declare variant
directive supports OpenMP traits for expanding the possible context specifi-
cation but requires explicit user specification of the correspondence of variant
function symbols to the matching context that specializes the base function
symbol. Further, this correspondence is visible to callers of declare variant
functions, to specialize their call sites, while function variants themselves are
not required to include a notion of their corresponding context, thus lacking in
using and propagating context in their definitions.

The following code snippet shows an example use of metadirective. An
OpenMP compiler can readily generate two specializations (or variants) of the
for loop based on the context-variant mapping information explicitly specified
by the metadirective.

void foo (int* v1, int* v2, int*v3, size_t N)
{

# pragma omp metadirective \

when(target_device={arch(nvptx)}: \

target teams distribute parallel for \

map(to:v1[0:N],v2[0:N]) map(from:v3[0:N]) ) \

otherwise(parallel for)

for (int i= 0; i< N; i++)
v3[i] = v1[i] * v2[i];

}

The function foo() may be defined in one source file while many of its call
sites are located in other source files. A compiler may better optimize the function
(such as generating more or less specializations) if it knows all possible contexts
within which the function will be called, when compiling the source file with the
function definition. Similarly, a compiler may invoke the right function variant
at each call site, if it knows all available variants of the function definition when
compiling a source file containing the call site.

For example, if a compiler knows that all call sites of foo() will be within a
parallel region, it may specialize the function definition to implement only omp
for and to avoid generating code for nested parallelism. A CPU implementation
involves relatively little difference between these choices other than the fork
and join overhead. However, the difference on a GPU though can be between
running the entire region directly on the native parallel threads, and being forced
to use a heavy-weight concurrent state machine to implement varying levels of
parallelism as the kernel progresses. The difference in performance between the
“lightweight” native runtime and the state-machine can be orders of magnitude
in some cases, even for otherwise identical code.

While in some cases, the compiler can perform LTO (Link-Time-Optimization)
to propagate the OpenMP context and code variant information across
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translation units, LTO for most heterogeneous platforms is currently pro-
hibitively expensive. Enabling LTO may entirely serialize the process of com-
pilation of large-scale code bases. This cost is too high in practice as many
large scientific applications already take hours to build while being compiled in
parallel. Another limitation of compiler-based solutions is that statically com-
puting the caller-callee relationship (such as the one used by Interprocedural
Optimization or IPO) is still a challenging problem when facing complex uses of
function pointers and dynamic dispatch. Yet another approach is to detect acti-
vated context at runtime and to trigger runtime code specialization. However,
this approach requires the implementation to generate code variants at runtime,
with potentially significant runtime overhead.

Therefore, OpenMP needs to allow programmers to communicate the
context-variant mapping information across multiple translation units explicitly.
An implementation could then automatically exploit such semantics to optimize
code generation at compile time, without relying on sophisticated program anal-
yses or incurring runtime overhead. While we could introduce such functionality
through significant re-definition of the semantics and specification of declare
variant, we choose to introduce a new directive, named metavariant, both
for exposition and because it is cleaner and more concise than retrofitting it to
declare variant.

3 The metavariant Directive

We introduce a new directive, the metavariant directive, to enable compile-
time function specializations across translation units, by matching the OpenMP
context that propagates at call sites of those functions. For the translation
unit that contains the definition of a metavariant-annotated function, com-
pilers generate OpenMP context specializations of the function by special-
izing metadirective directives in the function’s body, assuming a specific
OpenMP context is matched. Correspondingly, at the translation units contain-
ing metavariant function callers, OpenMP compilation tracks the OpenMP con-
text at call sites of the metavariant function to call the function specialization
that matches the context, if any, otherwise falling back to the function special-
ization that does not assume a specific context. Since the metavariant function
and its caller functions may be in different translation units, we propose seman-
tic function symbol naming to encode the different function specializations, so
that OpenMP compilation infers the function specialization symbol to call at
call sites by using the OpenMP context and the original function symbol.

In more detail, the syntax of the metavariant directive is:

#pragma omp metavariant [clause,[[,] clause]...] new-line
function definition or declaration

where clause is the following:
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Fig. 1. An example translation unit with the definition of a metavariant function

match(context-selector-specification)

Semantically, a metavariant-annotated base function has one specialization
associated with each match clause and this specialization assumes the context
specified in the clause is in effect. Thus, the specified context of this specializa-
tion will forward to metadirective directives in the function definition or calls
to other metavariant functions, which will be specialized by this propagating
context. Also, the base function without specialization remains available with-
out assuming any specific OpenMP context. The symbol name of each function
specialization is determined from base language rules extended by a string deter-
mined by the effective context selector of its associated match clause. The symbol
name of the function without specialization is determined from base language
rules without any string extension.

The function specialization variant is determined at the call site depending
on its OpenMP context. If the OpenMP context at the call site matches the
context of a specialization, the call is replaced with a call to the function variant
of this specialization. Otherwise the call is not replaced, thus resolving to the
original function, which is the no-specialization variant.

To make use of a metavariant function across translation units, a func-
tion prototype with its corresponding metavariant directive can be put into a
header file, which is then included by other translation units. Symbol names of
specializations provide the ABI contract that supports this functionality.

In summary, on a metavariant function definition, metavariant-enabled
OpenMP compilation generates different functions for the different context spec-
ification in each match clause, specializing any metadirectives, calls declare vari-
ant functions, or to other metavariant functions in the function body by forward-
ing the matching context. Each different function variant follows an ABI con-
vention that encodes context-awareness across translation units. On metavariant
function declarations, metavariant-enabled OpenMP compilation generates the
variant function declarations following the same ABI convention and transforms
call sites of the metavariant function to use the function variant that matches
the context at the call site.



164 G. Georgakoudis et al.

Fig. 2. Lowering of the translation unit with the metavariant function definition

Figure 1 illustrates the definition of a metavariant function named foo, per-
forming a simple vector addition that specializes the execution of its loop depend-
ing on whether it is called within a parallel or a sequential context. Specifically,
foo uses a metadirective to use a taskloop construct for parallel execution
of the loop when it is called from a parallel context, whereas the metadirec-
tive specifies parallel for for parallel work-sharing execution when it is called
from a sequential context. Figure 2 presents a source-to-source lowering of the
metavariant function, using symbol naming that uniquely identifies different spe-
cializations corresponding to different metavariant contexts, including flattening
of metadirectives in the function’s body.

Figure 3 also shows how the metavariant function is declared and called in
a different translation unit. The source code must include the prototype of the
metavariant-annotated function declaration to declare its possible specializa-
tions. The caller function bar calls the metavariant function using its declaration
symbol (foo). OpenMP compilation replaces this symbol at each call site with
the symbol name that corresponds to the metavariant function specialization
that matches the enclosing OpenMP context of the call site. Figure 4 shows a
source-to-source lowering of the translation of a caller to a metavariant function.
The metavariant function declaration resolves to two function declarations, one
matches the parallel context specialization assuming the same function symbol in
the callee’s translation unit in Fig. 2, the other matches the non-parallel context
specialization with the function symbol unchanged.

3.1 Discussion

In this section we discuss several aspects of metavariant-enabled compilation and
its relation to other compilation and specialization approaches.

JIT/LTO Context Propagation and Specialization. Using LTO for context
propagation across translation units is an interesting proposition assuming some
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Fig. 3. An example translation unit with a call site of a metavariant function

mechanism conveys context information from existing context-aware directives,
such as declare variant, to both callers and callees. This alternative requires that
LTO completely re-constructs the call graph to couple it with context informa-
tion. However, this alternative can be problematic since LTO compilation is time
consuming and also necessitates shared libraries to be amenable to it. Context-
aware JIT compilation is also a possibility, however the cost of runtime compilation
and tracking context may be prohibitive. The metavariant approach avoids those
issues by providing an elegant way to specify and to propagate context at compile
time, to generate specializations through automatic code generation, and propos-
ing a context-dependent ABI convention for cross-translation unit specialization.
It does so without relying on LTO or JIT compilation, which may be unavailable
or undesirable due to their limitations.

Consumers of Context for Specialization. In this formulation of the
metavariant directive possible consumers of context for specialization include
metadirectives and calls to declare variant or other metavariant functions, prop-
agating context, in the metavariant function’s definition. While this approach
gives explicit control to the user, a specification-based rule set for automatic
transformations of OpenMP directives can avoid pathological use-cases, such as
nesting parallel regions shown in the example of Fig. 3. Such rule sets can also
be used for error checking to emit warning/errors when incompatibilities or per-
formance degradation occurs between the caller and the assumed callee context
of a metavariant function. We leave that as interesting future work.

Differences with declare variant Specialization. The declare variant
directive explicitly specifies the symbol of function variant specializations of a
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Fig. 4. Lowering of the translation unit with a call site of a metavariant function

base function that correspond to different matching contexts. Calls to the base
function symbol are specialized to the function variant that matches the caller’s
context. By the specification, context cannot be not assumed to propagate to the
function variant. Thus, the user must explicitly implement any specialization in
the definition of the function variant symbol without assuming any context is
propagated during compilation for compiler-based specialization, e.g., through
metadirectives. By contrast, metavariant function variants are context-aware,
auto-generated during compilation using compiler-based code generation for spe-
cialization by propagating context to existing variant directives (metadirectives,
declare variant) or to other metavariant functions called by the variant. The base
function definition of a metavariant function is a fallback that does not assume
any OpenMP context. We purposefully avoid providing user-visible naming of
function variants in the metavariant directive, relying instead on an ABI conven-
tion. The functionality of calling a function variant without requiring explicitly
naming the function symbol is possible through a metadirective, using a when
clause with the matching context. Also, exposing function variants to users is
error prone, since users could call them within incompatible caller contexts.

Tracking Context. The example specialization of Fig. 1 uses taskloop for
parallelizing loop execution when called within a parallel context instead of a
work-sharing construct. This choice is necessary to avoid possibly incompati-
ble nesting of work-sharing constructs. Implementors of metavariant functions
should be aware of such limitations to implement compatible specializations or
context specification should be enhanced to include extended traits, such as
work-sharing execution. The metavariant directive proposal opens up this dis-
cussion, which we leave as future work.
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4 Evaluation

4.1 Experimentation Setup

We experimented on a computing node of the Lassen cluster at Lawrence Liver-
more National Laboratory. The node is equipped with IBM Power9 processors
(2 sockets × 20 user-level usable cores), 256 GB of main memory, and four
NVIDIA Tesla V100 GPUs with 16 GB of device memory each. We build a
source-to-source transformation tool in Python that parses metavariant anno-
tations and lowers metavariant function definitions, declarations and call sites,
tracking the OpenMP context, similarly to the way presented in the examples
of the previous section. The compiler used for generating executables from the
lowered sources is Clang/LLVM version 13.0.1.

Our experimentation includes three use cases: (1) a use case that avoids
nested parallelism; (2) a use case that specializes a metavariant function for
concurrent parallel host execution and offloading execution; and (3) a use case
that avoids nesting target regions with unspecified behavior.

The example programs with which we experiment invoke a reasonably opti-
mized blocked GEMM kernel in single precision, using square matrix inputs. The
kernel is implemented as a metavariant function, specialized depending on the
propagated caller’s OpenMP context. For each experiment we perform 10 trials
of each configuration to present the mean execution time. Any confidence inter-
vals shown correspond to 95% confidence level. We also ensure that experiments
run on an exclusively allocated node, using threads pinned to the physical cores
of the machine to reduce variability.

4.2 Using Metavariant to Avoid Nested Parallelism

Figure 5 presents this use case in pseudo-code. The main function in the driver
translation unit (Fig. 5a) is the caller of the gemm function, which implements
the matrix multiplication in another translation unit. The driver emulates calling
gemm within a parallel context, masked to execute by the main thread. There are
three versions of the gemm function: (1) gemm is a metavariant function (Fig. 5b)
that specializes at compile time to taskloop execution, when called in a parallel
context, or to a parallel for work-sharing construct when called in a sequen-
tial context; (2) gemm is specialized at runtime (Fig. 5c) to use either taskloop or
parallel for depending on the result of the runtime call omp in parallel()
which dynamically detects a parallel context; (3) gemm is not specialized (Fig. 5d),
nesting instead a parallel region within masked execution that results in sequen-
tial execution within the main thread. We omit the metavariant function declara-
tion in the driver (when applicable) since the function prototype is the same as in
the metavariant function definition. The runtime mode replicates the functional-
ity of the metavariant mode using a dynamic context selector in a metadirective
by checking the result of omp in parallel. However, this specialization is lim-
ited to the context information available through runtime calls, in contrast to
the much more widely available context specification available through OpenMP
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Fig. 5. A use case that avoids nested parallelism

traits. Further, dynamic context selectors require extra conditionals generated
at compile time to select the specialization variant, which add to the overhead of
the runtime call. Metavariant avoids those overheads while also providing a more
powerful specialization mechanism through context forwarding that propagates
context to both metadirectives and calls to other metavariant functions.

Figure 6 shows the execution time of the GEMM kernel for different matrix
dimensions in the different modes of execution. The metavariant mode, denoted
as meta, and the runtime mode, denoted as runtime, both avoid the nested
parallel region. The serialized, nested parallel region execution mode, denoted as
nometa, is the slowest. The performance of meta and runtime is comparable, with
meta being slightly faster by avoiding the runtime call to omp in parallel(),
around 5% on average.

4.3 Using Metavariant for Concurrent CPU or GPU Execution

Figure 7 shows the pseudo-code of the second case where the program performs a
batch of matrix multiplications of different sizes. The main program, in Fig. 7a,
processes the batch within a parallel work-sharing loop. Based on a threshold
of the matrix sizes, the loop issues a matrix multiplication to execute on the
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Fig. 6. Execution time for GEMM over various matrix dimensions using the metavari-
ant or runtime to avoid serialized nested parallel regions

CPU or to the GPU, through the metavariant function gemm specialization for
different contexts (shown in Fig. 7b) including a parallel context, a target con-
text, or defaulting to a parallel work-sharing construct (does not apply in this
use case). Adding a nowait clause to the target region of Fig. 7a could enable
more concurrency through asynchronous execution. However, we did not observe
a noticeable performance difference when we used it.

Besides concurrent execution on both CPU and GPU, we experiment with
executing on the GPU only, setting the threshold to 0, or the CPU only (by
setting the threshold above the largest dimension in the batch, i.e., 4000. Figure 8
shows the results. CPU-only execution is the slowest, as expected, since for
larger matrices the speedup from CPU parallelization reaches its limits. GPU-
only execution is much faster, about 5×. Concurrent CPU and GPU execution
performs even better, by about 3%, compared to GPU-only execution by utilizing
both processing elements.

4.4 Using Metavariant to Avoid Nested Target Regions

Figure 9 presents a use case in which the metavariant is used to avoid nesting tar-
get regions. Nesting a target construct within a target region, without providing
the ancestor modifier for reverse offloading to the host, results in unspecified
behavior [4]. The metavariant definition of gemm() avoids this issue, by specializ-
ing to use the distribute construct, within a target region, otherwise defaulting
to using a target construct for offloading.

We experiment by running the GEMM kernel for various matrix dimensions,
using either the target context specialization by executing within a target region,
or by using the default execution through a target construct. Figure 10 shows
the resulting execution times. Execution through the target context specializa-
tion is denoted as target, while execution outside a target region using a target
construct is denoted as default. Execution times are not significantly different.
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Fig. 7. A use case of concurrent CPU and GPU execution

However, the combined construct of default shows higher performance as the
matrix dimension grows, ranging between 10% to 18%, compared to the nested
distribute construct within the target context. Observing the generated LLVM
IR, we notice more aggressive optimization in the combined construct case. We
plan to investigate further compilation differences due to specialization and espe-
cially how to integrate context information in the metavariant specification for
additional inter-procedural optimization during compilation.

5 Related Work

Many related research efforts extend OpenMP for better productivity, portabil-
ity, and performance, especially in the context of programming heterogeneous
architectures. We only name a few examples in this section.

A popular approach to achieving portable performance of OpenMP is through
autotuning. One early study [1] leveraged source code outlining to extract
OpenMP loops from large-scale scientific applications and subsequently enable the
tuning of different OpenMP execution parameters. Similarly, Sreenivasan et al. [7]
proposed a lightweight autotuner of OpenMP pragmas to optimize OpenMP exe-
cution parameters such as scheduling policies, chunk sizes, and thread counts.

To study the benefits of specialization mechanisms introduced in OpenMP
5.0, Pennycook et al. [6] used the miniMD benchmark from the Mantevo suite
to investigate how metadirective and declare variant may impact real-life
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Fig. 8. Execution time of the matrix multiplication batch.

Fig. 9. A use case for avoiding nested target regions

codes. They reported that these features allowed a more compact source code
form to express code variants, resulting in a performance portability of 59.35%
across CPU and GPU hardware. While metadirective allows user-guided run-
time adaptation as proposed by Yan et al. [8], having users define portable con-
ditions across different hardware platforms is impractical. To address this lim-
itation, Liao et al. [2] proposed a declare adaptation directive that enables
automatic model-driven runtime adaptation, by integrating machine learning
techniques into OpenMP compiler and runtime systems. The directive allows
programmers to express semantics related to the desired type of machine learn-
ing model, the input parameters to the model and the ranges of the parameters.

In order to avoid writing different directives for different devices, Ozen and
Wolfe [5] proposed a descriptive model with a new OpenMP loop directive to
demonstrate how a compiler implementation could automatically decide target-
specific parallelization for multiple devices based on a single directive. In their
work, they exploited the parallelism semantics associated with the loop construct
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Fig. 10. Executing on GPU directly or using target context specialization

and also used dependence analysis to discover more parallelism. Their evaluation
showed that 60% fewer directives were required for the SPEC ACCEL benchmark
suite while yielding competitive performance compared to other compilers.

While it is not a significant point in that paper, the solution proposed is heav-
ily influenced by OpenACC, which provides the acc routine directive to provide
context information on parallelism across translation units. That feature is highly
related to ours, but differs in that the acc routine directive states the levels of
parallelism that a function intends to consume where metavariant states the set
of possible contexts from which a function may be called and, thus, for which
it should be specialized. The context specification of metavariant is a super-
set of the acc routine parallelism-only context specification. Also, metavari-
ant supports specialization through metadirectives or calls to other metavariant
functions in the metavariant function’s body by propagating context, whereas
acc routine designates functions for device compilation using parallelism-level
information for error checking. Context matching is explicit in metavariant, by
contrast, acc routine defines an implicit rule set to determine whether paral-
lelism levels are composable. Interesting future work for the metavariant spec-
ification includes exploring specification-based implicit rule sets both for auto-
mated transformations and error checking.

6 Conclusion

In this paper, we propose to extend OpenMP to support automated function
specialization across translation units by providing the metavariant directive.
The metavariant directive explicitly communicates information about calling
context and specializations between call sites and function definitions residing
in different source files. Using a source-to-source prototype tool and a set of use
cases, we have shown the feasibility and benefits of this extension.
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In the future, we plan to extend other directives (such as assume and
requires directives) to support optimization across translation units further.
We will explore fully automated generation of function specialization without
relying on metadirective. We will also expand the evaluation by using a pro-
duction quality implementation based on LLVM and comparing it to alternative
approaches such as LTO and runtime specialization, combined with more use
cases running on more platforms. Further, we will propose this extension for
upcoming versions of the OpenMP specification by drafting a more rigorous
functional specification and expanding the use cases using our robust LLVM
implementation.
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