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Abstract. Face super-resolution (FSR) is dedicated to the restoration
of high-resolution (HR) face images from their low-resolution (LR) coun-
terparts. Many deep FSR methods exploit facial prior knowledge (e.g.,
facial landmark and parsing map) related to facial structure information
to generate HR face images. However, directly training a facial prior esti-
mation network with deep FSR model requires manually labeled data,
and is often computationally expensive. In addition, inaccurate facial pri-
ors may degrade super-resolution performance. In this paper, we propose
a residual FSR method with spatial attention mechanism guided by mul-
tiscale receptive-field features (MRF) for converting LR face images (i.e.,
16 × 16) to HR face images (i.e., 128 × 128). With our spatial attention
mechanism, we can recover local details in face images without explicitly
learning the prior knowledge. Quantitative and qualitative experiments
show that our method outperforms state-of-the-art FSR methods.

Keywords: Face super-resolution · Multiscale receptive-field features ·
Spatial attention mechanism · Deep learning

1 Introduction

Face super-resolution (FSR), also known as face hallucination, aims to generate
high-resolution (HR) face images from corresponding low-resolution (LR) face
images. In real world scenarios, there are many low-resolution (LR) face images,
generated due to the limitation in an optical imaging system or the program
used for image compression. In LR face images, some details may be lost, thus
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leading to performance degradation for tasks such as face recognition and face
landmark prediction. Thus, FSR has attracted increasing interest in a wide range
of applications (e.g., face tracking, restoration of old face images).

FSR can be considered a special sub-task of single image super-resolution
(SISR) [5]. Compared with SISR which takes images in different scenes as input,
FSR only considers face images which are of similar structure. Therefore, FSR
methods may offer better results than SISR on enhancing LR face images with
higher upscaling factors (e.g., 8×). In recent years, with the rapid development
of deep learning techniques, a number of face super-resolution methods have
been proposed [2,3,9,16,19,23].

Different from general images, a face image is a highly structured object with
facial landmarks and facial parsing maps. Such information has been used by
many FSR methods to generate HR face images. For example, Song et al. [19]
adopted CNNs to learn basic facial components first, and then synthesized fine-
grained details from a high resolution training set to enhance these components.
Kim et al. [9] proposed a progressive FSR model that generated multiscale SR
results and applied a distilled face alignment network (FAN) to predict face land-
mark locations. Chen et al. [3] designed an end-to-end FSR network to recover
the SR face images using the facial landmarks and parsing maps estimated via
the network. Ma et al. [16] developed a FSR method using two recurrent net-
works for image restoration and landmark estimation, respectively. Although
joint training with the facial prior information helps recover the key face struc-
tures, there are two major limitations. First, it is labour-intensive to manually
label the data required for training the network for estimating the prior infor-
mation. Second, it is difficult to estimate the prior information precisely for each
face image, as each person’s face is unique. Inaccurate prior information (e.g.
location information) may lead to degraded FSR performance.

In this paper, we propose a multiscale receptive-field residual network (MRR-
Net)1 for face super-resolution, by introducing a spatial attention mechanism
within the multiscale receptive-field residual blocks (MRRb). The key idea of
our spatial attention mechanism is to obtain multiscale receptive-field features
using concurrent convolution operation with different kernel size and then con-
catenate these features to generate the attention map. The spatial attention
mechanism facilitates learning of face components of different size, as well as
their outlines, allowing them to be processed at different scales. Our method
exploits the advantage of convolution with different receptive-field and the effi-
ciency of a CNN structure.

The main contributions of this paper are summarized as follows:

– We design a deep encoder-decoder residual framework for face super-
resolution named MRRNet without explicitly learning facial prior knowledge.

– An improved spatial attention mechanism based on multi-scale receptive fields
is used in each embedding layer (i.e., MRRb) of the encoder, for capturing
face attributes at different scales for reconstructing the face images.

1 https://github.com/SYLan2019/MRRNet.

https://github.com/SYLan2019/MRRNet
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Our method achieves state-of-the-art performance in terms of several metrics
for image quality evaluation.

2 Related Work

Recently, significant progress has been made in face super-resolution using deep
learning techniques. Yu et al. [24] introduced a generative adversarial network
(GAN) to produce HR face images that are similar to real images. Chan et al. [1]
designed an encoder-bank-decoder architecture for FSR using pre-trained GANs.
Facial prior guided FSR methods utilize unique facial information to facilitate
face reconstruction. Yu et al. [23] developed a convolutional neural network of
two branches with one for estimating facial component heatmaps and the other
for reconstructing face images aided by the heatmaps. Ma et al. [16] introduced
a recursive cooperative FSR method with two recurrent networks that focus
on image restoration and landmark estimation. More accurate landmark can be
predicted based on better SR face image, which in turn can be recovered based on
more precise landmarks. Thus the two recurrent networks can benefit from each
other. However, such approaches might generate unnatural face images due to
the difficulty in accurately estimating the unique facial information. In addition,
building an estimation network requires additional effort for labelling data and
training the network.

Attention mechanisms have been widely applied in low-level vision tasks, such
as image enhancement and face super-resolution. Zhang et al. [27] proposed a
residual channel attention block (RCAN) which generates different attention for
each channel-wise feature to improve the discrimination ability of their network.
Liu et al. [12] incorporated convolutional block attention module (CBAM) into
their UNet-like generator to enhance the representation of regions of interest for
anomaly detection. Chen et al. [2] proposed a face attention unit (FAU) that
generates an attention map to enlarge the weight of the feature map related to
face components. Unlike [27] which is based on channel attention, our attention
mechanism utilizes spatial attention which contains more location information
of face components. Despite being similar to [2] which takes advantages of mul-
tiscale features, our attention map is built from the multiscale receptive-field
features corresponding to the face components of different size.

Different from the conventional way for building CNN networks in vision
tasks, i.e. stacking many small spatial convolutions (e.g., 3 × 3) to enlarge the
receptive field [4], several new ideas have emerged recently. In ConvNeXt [14], a
Vision Transformers-like pure CNN is designed which outperformed Swin Trans-
formers [13] on detection and segmentation tasks. One of their modifications in
ConvNeXt was to use convolution with large kernel size 7 × 7. Ding et al. [4]
demonstrated that using a few large convolutional kernels instead of using a
stack of small kernels could obtain much larger effective receptive field, so as to
achieve better performance in low-level vision tasks. Thus, different kernel sizes
of convolutions are considered in the design of our spatial attention mechanism.



148 W. Huang et al.

3 Proposed Method

3.1 Overview

In face super-resolution task, we aim to convert LR face images ILR to SR
counterparts ISR which are close to the ground truth face images IHR. In this
paper, we propose a residual FSR method with spatial attention mechanism
guided by multiscale receptive-filed features. As shown in Fig. 1, our proposed
method consists of two networks including a multiscale receptive-field residual
network (MRRNet) and an average discriminator. MRRNet works as a gener-
ator to generate ISR. To recover the face components, MRRNet employs mul-
tiscale receptive-field residual (MRR) blocks (which is introduced in Sect. 3.2).
In addition, we utilize the average discriminator and other losses (introduced in
Sect. 3.3) to recover the face images with additional details.

Fig. 1. The framework of the proposed method for face super-resolution. (a) is the
detailed structure of our multi-scale receptive-field residual block. (b) is our generative
network which is composed of MRR block. Rather than recovering low resolution face
images directly, we resized them to 128 × 128 first through bicubic. (c) is our proposed
average discriminator.

3.2 Multiscale Receptive-Field Residual Block

When observing face images, we usually look at the overall outline first, then
we pay attention to the key facial components (e.g., eyebrows, eyes, nose, and
mouth). This means that a FSR network is expected to not only pay attention
to the overall structure, but also the key local details. However, due to the
fact that the facial components and overall outline are of different size, it is
not trivial to reconstruct the face features at various scales. To address this
issue, we propose a spatial attention mechanism guided by multiscale receptive-
filed features (MRF) embedded in a residual block. Our MRF is motivated by
the Inception module in [20] and ConvNeXt [14]. The Inception module applies
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convolutions of different kernel size (i.e. 1, 3, 5) for multiscale feature processing,
while ConvNeXt uses 7 × 7 convolution to simulate shifted window in Swin
Transformer [13]. Thus, in our system, we design MRF using convolutions of
four different kernel sizes (i.e. 1, 3, 5, 7).

By stacking the MRR blocks, our spatial attention mechanism helps the
network to focus on facial features in different size. Denote the feature input
of the j-th indexed MRR block as xj−1 ∈ R

Cj−1×Hj−1×Wj−1 . The fusion of
multiscale receptive-field features can be computed as:

fc2
j = Conv2

j

(
Conv1

j (xj−1)
)

(1)

ffusion
j = Concat

[
Convk1

j (fc2
j ), Convk2

j (fc2
j ),

Convk3
j (fc2

j ), Convk4
j (fc2

j )
] (2)

where Convi=1,2
j is the i-th convolutional layer followed by Instance Normal-

ization and Leaky ReLU activation function of the j-th MRR block. Features
fc2
j ∈ R

Cj×Hj×Wj extracted by Conv2
j are passed to four convolutions (e.g.,

Convki
j ) of different kernel size (i.e., k1, k2, k3, k4) without using normalization

and activation function. Each convolution outputs a feature map where the num-
ber of channels is a quarter of fc2

j . We use padding in the four convolutions to
ensure the four feature maps to be of same size. Then, we concatenate the
four feature maps to get ffusion

j ∈ R
Cj×Hj×Wj , where ffusion

j contains mul-
tiscale features that can be further utilized for generating the attention map
aj ∈ R

1×Hj×Wj , as follows:

aj = S
(
Cj(f

fusion
j )

)
(3)

where Cj is a convolution operation that only has one kernel. S(·) denotes the
sigmoid function. Finally, the output of the j-th MRR block is computed as:

xj = xj−1 + aj ⊗ fc2
j (4)

where ⊗ is element-wise multiplication, and aj assigns a value between 0 and 1
to fc2

j which is passed through the channels.
We design our MRRNet as a hourglass-like network, due to the potential

benefits offered by its downscale and upscale layers in improving feature repre-
sentation. Specifically, we implement the downscale layer by adding a convolution
to the residual branch of the MRR block to downscale the feature size, mean-
while in the upscale layer, the feature map is up-sampled by using the nearest
neighbor interpolation. Thus, Eq. (4) is changed in downscale and upscale layers
to:

xj = Convd(xj−1) + aj ⊗ fc2
j (5)

xj = In(xj−1) + aj ⊗ fc2
j (6)

where Convd denotes downscaling the convolutional layer with stride 2, and In
is the nearest interpolation where the scale factor is typically chosen as 2 [17].
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3.3 Objective Functions

Pixel Loss: We first train the MRRNet by optimizing the L1 loss with N pairs
of LR-HR images as follows

Lpixel =
1
N

N∑

i=1

||IiHR − FMRRNet(IiLR, Θ)|| (7)

where FMRRNet and Θ are the MRRNet and its parameters, respectively. IiHR

is the i-th HR image, IiLR is the i-th LR image. We then apply other losses
including adversarial loss and perceptual loss to train MRRGAN (generative
adversarial version of MRRNet) for reconstructing high-fidelity face image.

Adversarial Loss: Recently, GAN [6] has been shown to be a powerful method
for generating high-fidelity images. Therefore, we introduce Relativistic Aver-
age HingeGAN (RAHingeGAN) [8] to generate photo-realistic face images.
RAHingeGAN D outputs a matrix as shown in the discriminator in Fig. 1. Each
element in this matrix reflects the confidence level on how similar a certain area
of the SR images is to that of the HR images. The discriminator D differentiates
the ground-truth and ISR by minimizing:

LD = E[max(0, 1 − (D(xh) − E[D(xg)]))]
+E[max(0, 1 + (D(xg) − E[D(xh)]))]

(8)

Meantime, the generator G tries to deceive D by minimizing:

LG = E[max(0, 1 + (D(xh) − E[D(xg)]))]
+E[max(0, 1 − (D(xg) − E[D(xh)]))]

(9)

where xh and xg are ground-truth and super-resolved face image, respectively.

Perceptual Loss: Perceptual loss [7] encourages G to generate natural results
in perception. Perceptual loss here is defined as the l1 norm between the feature
maps of the ground-truth and ISR extracted by a pre-trained VGG19 network
[18], as follows:

Lper = E

[
I∑

i=1

||φi(xg) − φi(xh)||1
]

(10)

where φi extracts feature maps by the i-th layer of the VGG network and I
is the number of the layers used. Finally, by combining the loss functions with
different weights, we get the total loss defined as

Ltotal = λGLG + λpLper + λpixLpixel (11)

where λG, λp and λpix are weights, which are used to adjust the relative impor-
tance of LG, Lper, and Lpixel, respectively.
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4 Experiments

4.1 Datasets and Metrics

We conduct experiments on two widely used face datasets: CelebA [15] and
Helen [11]. For both datasets, we first crop face images roughly according to
landmark. Then, we further remove the excess background in the cropped face
images by setting a threshold. Finally, we resize the cropped images to 128 × 128
as HR (i.e., ground-truth) face images and downsample the HR images to 16× 16
as LR face images. For the CelebA dataset, we use 193K images for training and
1K images for testing. For the Helen dataset, we use 2000 images for training and
50 images for testing. Our test sets are the same as in [16]. We evaluate SR results
using performance metrics PSNR, SSIM [21] and LPIPS [26], respectively. PSNR
and SSIM are most commonly used evaluation metrics in super-resolution task,
calculated on the Y channel of the transformed YCbCr space in our experiments.
Learned Perceptual Image Patch Similarity (LPIPS) is a deep features based
metric, evaluating the perceptual similarity between two images.

4.2 Implementation Details

We set the number of MRRb blocks in the encoder, extractor, decoder to 3,
10, 3, respectively. For training the MRRNet model, we set λpixel = 1 and
when training the MRRGAN, the parameters λG, λper, and λpixel are set as
0.01, 0.01 and 1, respectively. The kernel sizes k1, k2, k3, k4 are set to 1, 3, 5, 7,
respectively. The entire network is optimized using Adam [10] with β1 = 0.9,
β2 = 0.99, ε = 10−8 and a learning rate 0.0001. For data augmentation, we
use random horizontal flipping, and image rescaling. We built our network in
Pytorch and trained it on an NVIDIA RTX 3080 GPU.

4.3 Results and Analysis

Comparison with the State-of-the-Art Methods: We compare our method
with state-of-the-art FSR and general SR methods qualitatively and quantita-
tively on Helen and CelebA test sets provided by [16]. For methods that pro-
vide training codes, we retrain these models on our training set. Table 1 shows
the PSNR and SSIM results on Helen and CelebA datasets. Different from our
method, DIC [16], PFSR [9] and FSRNet [3] applied facial prior knowledge to
improve super-resolution performance. It can be observed that our MRRNet out-
performs other methods in terms of the PSNR and SSIM metrics. Our MRRGAN
has a lower PSNR and SSIM than MRRNet, but gives comparable performance
with other methods. This shows that our method offers better performance,
achieving balance in perceptual quality and pixel accuracy of super-resolved face
image, thanks to the special network design with the attention mechanism and
integrated loss function. Apart from PSNR and SSIM, we evaluate our methods
and other methods with LPIPS [26] which reflect perceptual similarity based on
deep features. Our MRRGAN has achieved best scores on both datasets, which
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demonstrates that the super-resolved face images generated by our MRRGAN
are perceptually more similar to the HR face images.

Table 1. Quantitative comparison on CelebA (rows 2 to 4) and Helen (rows 5 to 7) with
state-of-the-art FSR methods. The best and second best performance are highlighted
in red and blue, respectively.

Method Bicubic PFSR [9] URDGN [24] FSRNET [23] DIC [16] DICGAN [16] MRRNET MRRGAN

PSNR 23.73 23.97 24.73 26.29 27.22 26.38 27.27 26.64

SSIM 0.6261 0.6787 0.6871 0.7518 0.7845 0.7517 0.7873 0.7632

LPIPS 0.5329 0.2716 0.2427 0.2315 0.1974 0.0976 0.1921 0.0930

PSNR 24.04 23.61 24.22 25.20 26.75 26.02 26.86 26.15

SSIM 0.6743 0.6486 0.6909 0.7091 0.7894 0.7518 0.7912 0.7614

LPIPS 0.5253 0.2636 0.2449 0.2356 0.2050 0.0966 0.2038 0.0941

In Fig. 2, we visualize some super-resolution results of different methods. We
can see that even without face prior information, MRRNet can still correctly
generate face key components including eye, nose, and mouth. This is because
our spatial attention mechanism exploits feature maps obtained through differ-
ent receptive fields. Furthermore, compared with DICGAN where a discrimina-
tor D is used to differentiate the ground-truth and the super-resolved images.
MRRGAN achieved better visual results, i.e. giving clearer textures and more
realistic details in eyebrow, teeth and other facial components. The qualitative
comparisons demonstrate the powerful ability of our methods for generating
human face images.

Table 2. Average Euclidean distance between the estimated landmarks and ground
truth landmarks.

Method DICGAN [16] MRRGAN

AED 1.4564 1.4126

As [3], we conduct facial landmark estimation comparison on Helen between
DICGAN and MRRGAN that have the best visual effect in Fig. 2. The more con-
sistent the predictions between super-resolved face images and GT are, the better
the generated face images. We use OpenFace [25] to detect 68 facial landmarks
of each face image. Then, we calculate the average Euclidean distance (AED)
between the 68 landmarks of DICGAN, MRRGAN and GT respectively. We
tabulate the results in Table 2. Figure 3 shows a landmark estimation example
of DICGAN, MRRGAN and GT. From Fig. 3 we can see the lower AED value,
the closer the image is to GT. The comparison demonstrates that MRRGAN
has powerful generation ability in recovering facial components of different sizes
precisely.
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Bicubic PFSR [4] GPEN [24] DIC [7] DICGAN [7] MRRNet MRRGAN GT
(Ours) (Ours)

Fig. 2. Visual comparison with state-of-the-art methods. The size of low resolution
face image is 16× 16 and magnified by a factor of 8. More details could be observed
by zooming into the figures.

GT
AED

MRRGAN
2.8608

DICGAN
8.9203

DICGAN
2.1343

MRRGAN
0.7061

GT
AED

Fig. 3. Landmark detection comparison between DICGAN and our MRRGAN. For
example, the landmark detection accuracy at the nose by the proposed method is
significantly higher than that of the baseline.

MRR-CBAM MRRGAN GTMRR-CBAM MRRGAN GT

Fig. 4. Visualization of attention map in MRRGAN and MRR-CBAM.
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Table 3. Quantitative comparison of different kernel sizes combinations used in
MRRGAN on Helen.

Method MRRGAN-k1,3 MRRGAN-k5,7 MRRGAN-k1,7 MRRGAN

PSNR 26.23 26.49 26.31 26.64

SSIM 0.7515 0.7586 0.7530 0.7632

Effects of Spatial Attention Mechanism: In order to demonstrate the effec-
tiveness of the proposed spatial attention mechanism. We conduct an experi-
ment between our spatial attention mechanism and CBAM [22] for extracting
key facial components. Specifically, we replace our spatial attention mechanism
with CBAM in MRRGAN (denoted as MRR-CBAM) and keep other settings the
same. In Fig. 4, we visualize some attention maps, generated in the upscale pro-
cess of MRRGAN and MRR-CBAM. We can see that: 1) Our spatial attention
mechanism can effectively learn to focus on facial components of different sizes
(such as eyes, eyebrows, mouths, and facial contours). However, MRR-CBAM
lacks attention to the small-scale lip lines in the left image. 2) CBAM pays more
attention to the outer contours of the face, and even to the areas outside the
face. However, our attention mechanism mainly focuses on the key parts of the
face, maintaining low attention outside the face. We believe this is due to the
use of convolution in different kernel size in the spatial attention mechanism.
This experiment demonstrates that our spatial attention mechanism can guide
the generation of HR face images.

Study of Kernel Size: To investigate the impact of the convolution in different
kernel size used in our spatial attention mechanism. We conducted an experiment
by combining convolutions with different kernel sizes pairwise in spatial attention
within MRRGAN. In particular, we implement 1× 1 with 3× 3, 5× 5 with 7× 7
and 1×1 with 7×7 (denoted as MRRGAN-k1,3, MRRGAN-k5,7 and MRRGAN-
k1,7) three combinations, which correspond to small-small, large-large and small-
large convolution kernel size paired. We evaluate PSNR and SSIM on CelebA
for these three combinations and show the results in Table 3. From this table,
it can be observed that MRRGAN which has convolution with four kernels in
spatial attention achieves the best performance, while MRRGAN-k5,7 is better
than other combinations.

Table 4. Quantitative comparison of different models, where w/o SA means without
the spatial attention module.

Method MRRNet w/o SA MRRGAN w/o SA MRRNet MRRGAN

PSNR 26.83 25.47 27.27 26.64

SSIM 0.7585 0.7469 0.7873 0.7632
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(a) (b) (c) (d) (e)

Fig. 5. Visual comparison between (a) MRRNet w/o SA. (b) MRRNet. (c) MRRGAN
w/o SA. (d) MRRGAN. (e) GT. Better zoom in to see the detail

4.4 Ablation Study

We further perform an ablation study to demonstrate the effectiveness of our
spatial attention mechanism. In the ablation experiment, we remove the spatial
attention mechanism in MRRNet and MRRGAN which are called MRRNet w/o
SA and MRRGAN w/o SA. The quantitative comparison results of PSNR and
SSIM on Helen are presented in Table 4. It can be observed that, compared with
MRRNet w/o SA and MRRGAN w/o SA, MRRNet and MRRGAN achieve bet-
ter performances in all metrics. In Fig. 5, we visualize SR images generated with
and without spatial attention mechanism and GAN. We can see that MRRNet
w/o SA and MRRGAN w/o SA produced artifacts in key face components such
as the eyes, while MRRGAN generates the best quality face images with the
guidance of spatial attention.

5 Conclusion

We have presented a multiscale receptive-field residual network for face super-
resolution. Specifically, a spatial attention mechanism guided by multiscale
receptive field features embedded in a vanilla residual block helps recover the
facial components of different size. The qualitative and quantitative experimental
results on the CelebA and Helen datasets show the effectiveness of our method,
as compared with other state-of-the-art FSR methods.
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