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Abstract. A polychromatic k-coloring of a hypergraph assigns to each
vertex one of k colors in such a way that every hyperedge contains all
the colors. A range capturing hypergraph is an m-uniform hypergraph
whose vertices are points in the plane and whose hyperedges are those
m-subsets of points that can be separated by some geometric object of
a particular type, such as axis-aligned rectangles, from the remaining
points. Polychromatic k-colorings of m-uniform range capturing hyper-
graphs are motivated by the study of weak ε-nets and cover decompos-
ability problems.

We show that the hypergraphs in which each hyperedge is determined
by a bottomless rectangle or by a horizontal strip in general do not allow
for polychromatic colorings. This strengthens the corresponding result of
Chen, Pach, Szegedy, and Tardos [Random Struct. Algorithms, 34:11–23,
2009] for axis-aligned rectangles, and gives the first explicit (not random-
ized) construction of non-2-colorable hypergraphs defined by axis-aligned
rectangles of arbitrarily large uniformity.

In general we consider unions of range capturing hypergraphs, each
defined by a type of unbounded axis-aligned rectangles. For each combi-
nation of types, we show that the unions of such hypergraphs either admit
polychromatic k-colorings for m = O(k), m = O(k log k), m = O(k8.75),
or do not admit in general polychromatic 2-colorings for any m.

Keywords: Hypergraph · Coloring · Polychromatic Coloring · Range
Space

1 Introduction

A range capturing hypergraph is a geometric hypergraph H(V,R) defined by a
finite point set V ⊂ R

2 in the plane and a family R of subsets of R2, called ranges.
Possible ranges are for example the family R of all axis-aligned rectangles, all
horizontal strips, or all translates of the first (north-east) quadrant. Given the
points V and ranges R, the hypergraph H(V,R) = (V, E) has V as its vertex
set and a subset E ⊂ V forms a hyperedge E ∈ E whenever there exists a range
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R ∈ R with E = V ∩ R. That is, a subset of points forms a hyperedge whenever
these points and no other points are captured by some range from family R.

For a positive integer m, we are then interested in the m-uniform subhyper-
graph H(V,R,m) given by all hyperedges of size exactly m. In particular, we
investigate polychromatic vertex colorings c : V → [k] in k colors of H(V,R,m)
for different families of ranges R and different values of m. A vertex coloring
is polychromatic if every hyperedge contains at least one vertex of each color.
Polychromatic colorings of range capturing hypergraphs were first studied in the
1980s by Pach [17,18] in the context of cover-decomposability problems. These
also relate to the planar sensor cover problem [10] and weak ε-nets [20,26]. Poly-
chromatic colorings of geometric hypergraphs then experienced a major revival
during the past decade with several breakthrough advances [2–6,11–15,19,23–
25]. The interested reader is referred to the (slightly outdated) survey article [22]
and the excellent website [1] which contains numerous references.

Here, we focus on polychromatic k-colorings for range capturing hypergraphs
with given range family R. In particular, we investigate the following question.

Question 1. Given R and k, what is the smallest m = m(k) such that for
every finite point set V ⊂ R

2 the hypergraph H(V,R,m) admits a polychromatic
k-coloring?

Of course, m(k) � k, while m(k) = ∞ is also possible. It also holds that
m(k) � m(k + 1) for any k: given a polychromatic (k + 1)-coloring of a hyper-
graph, we can recolor every vertex of color k + 1 arbitrarily, after that every
hyperedge will still contain all colors in 1, . . . , k. For all range families considered
here, we either show that m(k) < ∞ for every k � 1 or already m(2) = ∞ holds.
Note that in the latter case, there are range capturing hypergraphs that are not
properly1 2-colorable, even for arbitrarily large uniformity m. So although we
do not consider proper colorings explicitly in this work, our results imply that
the chromatic number of certain hypergraphs is larger than 2.

1.1 Related Work

There is a rich literature on range capturing hypergraphs, their polychromatic
colorings, and answers to Question 1. Let us list the positive results (meaning
m(k) < ∞ for all k) that are relevant here, whilst defining the respective ranges.

– For halfplanes R = {{(x, y) ∈ R
2 | 1 � ax + by} | a, b ∈ R} it is known that

m(k) = 2k − 1 [25].
– For south-west quadrants R = {{(x, y) ∈ R

2 | x � a and y � b} | a, b ∈ R} it
is easy to prove that m(k) = k, see e.g. [12].

– For axis-aligned strips R = {{(x, y) ∈ R
2 | a1 � x � a2} | a1, a2 ∈ R} ∪

{{(x, y) ∈ R
2 | a1 � y � a2} | a1, a2 ∈ R} it is known that m(k) � 2k − 1 [3].

– For bottomless rectangles R = {{(x, y) ∈ R
2 | a1 � x � a2 and y � b} |

a1, a2, b ∈ R} it is known that 1.67k � m(k) � 3k − 2 [4].
1 A vertex coloring is proper if every hyperedge contains two vertices of different colors.
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– For axis-aligned squares R = {{(x, y) ∈ R
2 | a � x � a + s and b � y �

b + s} | a, b, s ∈ R} it is known that m(k) � O(k8.75) [2].

On the contrary, let us also list the negative results (meaning m(k) = ∞ for
some k) that are relevant here. In all cases, it is shown that already m(2) = ∞
holds. This means that there is a sequence (Hm)m�1 of m-uniform hypergraphs
such that for each m � 1 the hypergraph Hm admits no polychromatic 2-coloring
and we have that Hm is a subhypergraph of H(Vm,R,m) for some finite point
set Vm. If the latter property holds, we say that Hm can be realized with R.
One such sequence are the m-ary tree hypergraphs, defined on the vertices of a
complete m-ary tree of height m, where for each non-leaf vertex, its m children
form a hyperedge, and for each leaf vertex, its m ancestors (including itself)
form a hyperedge (introduced by Pach, Tardos, and Tóth [21]). A second such
sequence is due to Pálvölgyi [23] (published in [19]), for which we do not repeat
the formal definition here and simply refer to them as the 2-size hypergraphs as
their inductive construction involves hyperedges of two possibly different sizes.

– For strips R = {{(x, y) ∈ R
2 | 1 � ax+ by � c} | a, b, c ∈ R} it is known that

m(2) = ∞ as every m-ary tree hypergraph can be realized with strips [21].
– For unit disks R = {{(x, y) ∈ R

2 | (x − a)2 + (y − b)2 � 1} | a, b ∈ R} it is
known that m(2) = ∞ as every 2-size hypergraph can be realized with unit
disks [19].

Finally, for axis-aligned rectangles R = {{(x, y) ∈ R
2 | a1 � x � a2 and b1 �

y � b2} | a1, a2, b1, b2 ∈ R} it is also known that m(2) = ∞. See Theorem 2
below. However, the only known proof of Theorem 2 was a probabilistic argument
and no explicit construction of a sequence (Hm)m�1 of m-uniform hypergraphs
realizable by axis-aligned rectangles that admit no polychromatic 2-coloring was
known before this work.

Theorem 2 (Chen et al. [8]). For the family R of all axis-aligned rectangles
it holds that m(2) = ∞. That is, for every m � 1 there exists a finite point set
V ⊂ R

2 such that for every 2-coloring of V some axis-aligned rectangle contains
m points of V , all of the same color.

1.2 Our Results

In this paper we consider range families R = R1 ∪ R2 that are the union of
two range families R1, R2. The corresponding hypergraph H(V,R,m) is then
the union of the hypergraphs H(V,R1,m) and H(V,R2,m) on the same vertex
set V ⊂ R

2. Clearly, if H(V,R,m) is polychromatic k-colorable, then so are
H(V,R1,m) and H(V,R2,m). But the converse is not necessarily true and this
shall be the subject of our investigations.

Aloupis et al. [3] show that if R1 and R2 admit so-called m-hitting k-sets,
then we can conclude that m(k) � m < ∞ for R = R1 ∪R2; see Lemma 3. This
is for example the case for all horizontal (resp. vertical) strips, but already fails
for all south-west quadrants. In Sect. 3 we then consider all possible families of
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unbounded axis-aligned rectangles, such as axis-aligned strips, all four types of
quadrants, or bottomless rectangles. We determine exactly for which subset of
those, when taking R as their union, it holds that m(k) < ∞.

In particular, we show in Sect. 3.1 that m(k) = ∞ for all k � 2 when R =
R1∪R2 is the union of R1 all bottomless rectangles and R2 all horizontal strips.
Our proof gives a new sequence (Hm)m�1 of m-uniform hypergraphs that admit
a geometric realization for simple ranges, but do not admit any polychromatic
2-coloring. On the positive side, we show in Sect. 3.2 that (up to symmetry) all
other subsets of unbounded axis-aligned rectangles (excluding the above pair)
admit polychromatic k-colorings for every k. Here, our proof relies on so-called
shallow hitting sets and in particular a variant in which a subset of V hits every
hyperedge defined by R1 at least once and every hyperedge defined by R1 ∪ R2

at most a constant (usually 2 or 3) number of times.

Assumptions and Notation. Before we start, let us briefly mention some conve-
nient facts that are usually assumed, and which we also assume throughout our
paper: Whenever a range family R is given, we only consider point sets V that
are in general position with respect to R. For us, this means that the points in V
have pairwise different x-coordinates, pairwise different y-coordinates, and also
pairwise different sums of x- and y-coordinates. Secondly, all range families R
that we consider here are shrinkable, meaning that whenever a set X ⊆ V of i
points is captured by a range in R, then also some subset of i − 1 points of X is
captured by a range in R. This means that for every polychromatic k-coloring
of H(V,R,m), every range in R capturing m or more points of V , contains at
least one point of each color. Finally, for every set X ⊆ V captured by a range
in R, we implicitly associate to X one arbitrary but fixed such range R ∈ R
with V ∩ R = X. In particular, we shall sometimes consider the range R for a
given hyperedge E of H(V,R,m).

2 Polychromatic Colorings for Two Range Families

Let R1,R2 be two families of ranges, for each of which it is known that m(k) < ∞
for any k � 1. We seek to investigate whether also for R = R1 ∪ R2 we have
m(k) < ∞. First, we identify a simple sufficient condition.

For fixed k,m,R, we say that we have m-hitting k-sets with respect to R if
the following holds. For every V ⊂ R

2, there exist pairwise disjoint k-subsets of
V such that every hyperedge of H(V,R,m) fully contains at least one such k-
subset. Clearly, if we have m-hitting k-sets, then m(k) � m since we can simply
use all colors 1, . . . , k on each such k-subset (and color any remaining vertex
arbitrarily). Crucially, if two range families R1 and R2 admit m-hitting k-sets,
then m(k) � m also carries over to their union R = R1 ∪ R2. This has already
been implicitly used in [3].

Lemma 3 (Aloupis et al. [3]). For fixed k,m, suppose that we have m-hitting
k-sets with respect to R1 and m-hitting k-sets with respect to R2. Then for
R = R1 ∪ R2 it holds that m(k) � m.
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For example, Lemma 3 gives m(k) � 2k − 1 when R consists of all axis-
parallel strips [3]. In fact, for the vertical (resp. horizontal) strips it suffices to
group the points into k-sets with consecutive x-coordinates (resp. y-coordinates).

Somewhat unfortunately, m-hitting k-sets appear to be very rare. Already
for the range family R of all south-west quadrants, for which one can easily show
that m(k) = k, we do not even have m-hitting 2-sets for any m. This will follow
from the following result, which will also be useful later.

Lemma 4. Let T be a rooted tree, and H(T ) be the hypergraph on V (T ) where
for each leaf vertex its ancestors (including itself) form a hyperedge. Then H(T )
can be realized with the family R of all south-west quadrants.

Moreover, the root is the bottommost and leftmost point and the children of
each non-leaf vertex lie on a diagonal line of slope −1.

Proof. We do induction on the height of T , with height 1 being a trivial case of a
single vertex. For height at least 2, remove the root r from T to obtain new trees
T1, . . . , Tp, each of smaller height and rooted at a child of r. By induction, there
are point sets in the plane for each H(Ti), i = 1, . . . , p, with each respective root
being bottommost and leftmost. We scale each of these points sets uniformly
until the bounding box of each of them has width as well as height less than 1.
For every i ∈ [p], we put the point set for H(Ti) into the plane so that the root
of Ti has the coordinate (i, p − i). Finally, we place r in the origin. This gives
the desired realization.

Note: in the end we can slightly perturb the point set so that it still realizes
H(T ) but it is in general position and the children of every non-leaf vertex are
captured by a diagonal strip of slope −1. 	

Corollary 5. For any k,m � 2 and for the family R of all south-west quadrants,
we do not have m-hitting k-sets in general.

Proof. Take the rooted complete binary tree Tm of height m, for which H(Tm)
is realizable with south-west quadrants by Lemma 4. By induction on m, we
show that H(Tm) does not have m-hitting 2-sets. This is trivial for m = 2.
Otherwise, any collection of disjoint 2-subsets either avoids the root r, or pairs
r with a vertex in one of the two subtrees of Tm below r. In any case, there is
a subtree T below r, none of whose vertices is paired with r and hence, there
exist m-hitting 2-sets of H(T ). Note that T is a complete binary tree of height
m − 1, so T = Tm−1. But then H(Tm−1) admits (m − 1)-hitting 2-sets too – a
contradiction to the induction hypothesis.

Finally, if H(Tm) had m-hitting k-sets for some k � 2, then taking a 2-subset
of every k-set in it, would result in m-hitting 2-sets of H(Tm). 	

Corollary 6. For any k,m � 2 and for the family R of all halfplanes, we do
not have m-hitting k-sets in general.

Proof. By a result of Middendorf and Pfeiffer [16], every range capturing hyper-
graph for south-west quadrants can also be realized by halfplanes and the result
follows from Corollary 5. 	
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To summarize, parallel strips have m-hitting k-sets, but quadrants do not.
Hence, we cannot apply Lemma 3 to conclude that m(k) < ∞ when we con-
sider R to be the union of all quadrants of one direction and all parallel strips
of one direction. In Sect. 3 we shall prove that indeed m(k) < ∞ for the union of
all quadrants and strips, however only provided that the strips are axis-aligned.
In fact, if they are not, this is not necessarily true.

Corollary 7. Let R1 be the family of all south-west quadrants and R2 =
{{(x, y) ∈ R

2 | a � x + y � b} | a, b ∈ R} be the family of all diagonal strips of
slope −1.

Then for R = R1 ∪ R2 we have m(2) = ∞.

Proof. Given m, consider the rooted complete m-ary tree Tm of height m. By
Lemma 4, V (Tm) can be placed in the plane such that for each leaf vertex, its
m ancestors (including itself) are captured by a south-west quadrant, and for
each non-leaf vertex, its m children are captured by a diagonal strip of slope −1.
Hence, every m-ary tree hypergraph Hm can be realized with R. By [21] Hm

admits no polychromatic 2-coloring for any m, which gives the result. 	


3 Families of Unbounded Rectangles

In this section we consider the following range families of unbounded rectangles:
– all (axis-aligned) south-west quadrants RSW,
– similarly all south-east RSE, north-east RNE, north-west RNW quadrants,
– all horizontal RHS, vertical RVS, diagonal RDS strips of slope −1,
– all bottomless rectangles RBL, and finally all topless rectangles RTL =

{{(x, y) ∈ R
2 | a1 � x � a2, y � b} | a1, a2, b ∈ R}.

Observe that if a point set is captured by a south-east quadrant Q, then it is
also captured by a bottomless rectangle having the same top and left sides as Q
and whose right side lies to the right of every point in the vertex set. Analogous
statements hold for other quadrants and vertical strips. Further, note that each
of the above range families, except the diagonal strips RDS, is a special case of
the family of all axis-aligned rectangles. Recall that for the family of all axis-
aligned rectangles, it is known that m(2) = ∞ [8]. Here we are interested in
the maximal subsets of {RSW,RSE,RNE,RNW,RHS,RVS,RBL,RTL} so that
for the union R of all these ranges, it still holds that m(k) < ∞ for all k. In
fact, we shall show that for R = RBL ∪ RHS we have m(2) = ∞, strengthening
the result for axis-aligned rectangles [8]. On the other hand, for R = RSW ∪
RSE ∪RNE ∪RNW ∪RHS ∪RVS, i.e., the union of all quadrants and axis-aligned
strips, we have m(k) < ∞ for all k, strengthening the results for south-west
quadrants [12] and axis-aligned strips [3]. Secondly, for R = RBL ∪RTL, i.e., the
union of bottomless and topless rectangles (which also contains all quadrants
and all vertical strips), we again have m(k) < ∞ for all k, thus strengthening
the result for bottomless rectangles [4]. Using symmetries, this covers all cases of
the considered unbounded axis-aligned rectangles. We complement our results
by also considering the diagonal strips RDS and recall that we already know by
Corollary 7 that for R = RDS ∪ RSW we have m(2) = ∞.
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Fig. 1. (a) The forest F2 and the desired embedding of H2. (b) Sketch of the embedding
of Hm for the proof of Theorem 9. (Color figure online)

3.1 The Case with No Polychromatic Coloring: Bottomless
Rectangles and Horizontal Strips

For every m ∈ N, we will define a rooted forest Fm consisting of mm trees
whose vertices are partitioned into a set of the so-called stages (the forest F2 is
illustrated in Fig. 1(a)). The vertices of a stage S will be totally ordered and we
denote this ordering by <S . All vertices of a stage S will have the same distance
to the root of the corresponding tree, we refer to this distance as the level of S.
Every stage on level j ∈ {0, . . . , m − 1} will consist of mm−j vertices.

We start with mm roots, one for each tree in Fm. They build the unique
stage on level 0 and they are ordered in an arbitrary but fixed way. After that,
for j = 1, . . . ,m − 1, every stage S on level j − 1, and every subset S′ ∈ (

S
mm−j

)
,

we add a new stage T (S′) on level j consisting of mm−j new vertices so that
every vertex in S′ gets exactly one child from T (S′) and the vertices of T (S′)
are ordered by <T (S′) as their parents by <S . As a result, every vertex in S gets
a child for every (mm−j)-subset of S in which it occurs.

Now we can define the hypergraph Hm = (V, E). The vertex set V is exactly
the vertex set V (Fm) of the forest Fm. There are two types of hyperedges.
First, stage-hyperedges Es: for every stage S, each m consecutive vertices in <S

constitute a stage-hyperedge. Second, the path-hyperedges Ep: every root-to-leaf
path in Fm forms a path-hyperedge. Then, the set of hyperedges is defined as
E = Es ∪ Ep. Note that Hm = (V, E) is indeed m-uniform. For a vertex v, let
root(v) denote the root of the tree in Fm containing v, and path(v) ⊂ V denote
the set of vertices on the path from v to root(v) in Fm.

Theorem 8. For every m ∈ N the m-uniform hypergraph Hm = (V, E = Es∪Ep)
admits no polychromatic coloring with 2 colors.

Proof. We show that every 2-coloring of V that makes all stage-hyperedges poly-
chromatic produces a monochromatic path-hyperedge. Let φ : V → {red, blue}
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be such a coloring. The key observation is that a stage S on level j (i.e., one that
contains mm−j vertices) can be partitioned into mm−j/m = mm−j−1 disjoint
stage-hyperedges and hence, it contains at least mm−j−1 red vertices.

We prove for j ∈ {0, . . . , m−1} that there is a stage Sj on level j and a subset
Bj ⊂ Sj such that |Bj | = mm−j−1 and for every v ∈ Bj , the vertices in path(v)
are all red. For j = 0, the stage consisting of roots contains at least mm−1 red
roots and these vertices have the desired property. Assuming the statement for
some j, consider the stage Sj+1 = T (Bj) and a set Bj+1 of mm−j−2 red points
in it. By definition, each of these points v has its parent in Bj and hence, all
vertices in path(v) are red, proving the statement for j + 1. By induction, it
holds for j = m−1 and hence, there is a vertex on level m−1 (i.e., a leaf) whose
root-to-leaf path is all red. So Hm admits no polychromatic 2-coloring. 	

Theorem 9. For every m ∈ N the m-uniform hypergraph Hm = (V, E = Es∪Ep)
admits a realization with bottomless rectangles and horizontal strips.

Proof. For a point p ∈ R
2, let x(p) and y(p) denote its x- resp. y-co-

ordinate. A sequence of points p1, . . . , pt is ascending (resp. descending)
if x(p1) < · · · < x(pt) and y(p1) < · · · < y(pt) (resp. x(p1) < · · · < x(pt) and
y(p1) > · · · > y(pt)). Writing about the vertices of a stage S, we always refer
to their ordering in <S . We shall embed each stage S of Hm into a closed hor-
izontal strip, denoted HS , in such a way that HS ∩ HS′ = ∅ whenever S �= S′.
Note that this way, the embedded stages are vertically ordered with some avail-
able space between any two consecutive ones. For illustration see Fig. 1.

First, we embed the roots of Fm, i.e., the unique stage on level 0, as an
ascending sequence in a horizontal strip for this stage. After that, until all stages
are embedded, we choose some stage S that has already been embedded but
the stages T1, . . . , Tr containing its children not yet and in one step we embed
T1, . . . , Tr as follows. We pick a thin horizontal strip H between HS and the strip
above (if it exists) and within H identify disjoint horizontal strips H1, . . . , Hr.
Then, every Ti is embedded inside Hi so that every vertex gets initially the same
x-coordinate as its parent and the vertices of Ti build an ascending sequence in
Hi. After that, for every v ∈ S we slightly shift all children of v to the right so
that they build a descending sequence but the ordering of x-coordinates relative
to all other vertices remains unchanged.

The arising embedding ensures the following two properties. First, every
stage-hyperedge is captured by a horizontal strip. Second, for every vertex v,
the bottomless rectangle B(v) with top-right corner v and root(v) on the left
side captures exactly path(v), in particular every path-hyperedge is then cap-
tured by a bottomless rectangle. In the full version of the paper [7], we prove
that these two properties indeed hold and this concludes the proof. 	


3.2 The Cases with Polychromatic Colorings

First, recall the result of Ackerman et al. [2] that for the range family RSQ of all
axis-aligned squares, we have m(k) = O(k8.75). This already seals the deal for
bottomless and topless rectangles.
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Theorem 10. For the family R = RBL ∪ RTL of all bottomless and topless
rectangles, we have m(k) = O(k8.75) for all k.

Proof. Let V be a finite point set and let m be arbitrary. For every bottomless
(resp. topless) rectangle capturing a hyperedge of H = H(V,R,m), we introduce
a bottom (resp. top) side below the bottommost (resp. above the topmost) point
in V so that these rectangles are bounded now. After that, we stretch the plane
horizontally until the width of every aforementioned rectangle becomes larger
than its height and obtain the point set V ′. This stretching preserves the ordering
of x- and y-coordinates of the points so that the set of hyperedges captured by
R remains the same. Finally, we pick every (now bounded) bottomless (resp.
topless) rectangle capturing a hyperedge of H and shift its bottom (resp. top) side
down (resp. up) until it becomes a square. Now for every hyperedge in H, there is
an axis-aligned square capturing it and hence, a hyperedge in H′ = (V ′,RSQ,m).
Thus, each polychromatic coloring of H′ yields a polychromatic coloring of H
and this concludes the proof. 	


For the remaining cases, we utilize so-called shallow hitting sets. For a positive
integer t, a subset X of vertices of a hypergraph H is a t-shallow hitting set
if every hyperedge of H contains at least one and at most t points from X.
It is known for example that for R being the family of all halfplanes, every
range capturing hypergraph H(V,R,m) admits a 2-shallow hitting set [25], which
implies that m(k) � 2k − 1 in this case. In general, we have the following.

Lemma 11 (Keszegh and Pálvölgyi [13]). Suppose that for a shrinkable
range family R, every hypergraph H(V,R,m) admits a t-shallow hitting set.
Then m(k) � (k − 1)t + 1.

Remark 1. Lemma 11 states that if t-shallow hitting sets exist (for a global
constant t), then m(k) = O(k). However, it is not clear whether the converse is
also true, for example when R is the family of all bottomless rectangles. Keszegh
and Pálvölgyi [13] construct for this family range capturing hypergraphs without
shallow hitting sets, but their constructed hypergraphs are not uniform. In fact,
one can extract 3-shallow hitting sets for axis-aligned strips from the m-hitting
k-sets for horizontal and vertical strips for m = 2k − 1: since every hyperedge of
H(V,RHS ∪ RVS) of size 2k − 1 or 2k is hit by at most three of the m-hitting
k-sets, each color of the resulting k-coloring is a 3-shallow hitting set. To the
best of our knowledge, it is open whether all H(V,R,m) admit shallow hitting
sets for the bottomless rectangles R = RBL.

Recall that for the family RNW of all north-west quadrants we have m(k) = k.
In such a polychromatic coloring, every color class is a 1-shallow hitting set.
Besides RNW, we want to consider other range families, and thus are interested
in t-shallow hitting sets for RNW that additionally do not hit other ranges,
such as axis-parallel strips or other quadrants, too often. Let Et(V,m) (resp.
Eb(V,m)) denote the set of m topmost (resp. bottommost) points in V .
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Fig. 2. Sketch for the proof of Lemma 12 for m = 3. The vertices in X are red.

Lemma 12. For the family RNW of all north-west quadrants, every hypergraph
H(V,RNW,m) admits a 2-shallow hitting set X such that the points x1, . . . , xn

in X have decreasing x-coordinates and decreasing y-coordinates, and

(i) x1 is the leftmost point of Et(V,m),
(ii) the hyperedge Et(V,m) is hit by X exactly once,
(iii) for any two consecutive points xj , xj+1 in X, the bottomless rectangle Bj

with top-right corner xj and xj+1 on the left side satisfies |Bj ∩V | � m+1,
and

(iv) for any three consecutive points xj , xj+1, xj+2 in X, the axis-aligned rect-
angle Rj with top-right corner xj and bottom-left corner xj+2 satisfies
|Rj ∩ V | � m + 2.

Proof. For each hyperedge of H(V,RNW,m) consider a fixed north-west quad-
rant capturing these m points of V . These quadrants can be indexed Q1, . . . , Qα

along their apices with decreasing x-coordinates (and hence also y-coordinates).
I.e., Q1 contains the topmost m points of V , while Qα contains the leftmost m
points of V . See Fig. 2 for an illustrative example.

Starting with X = ∅, we go through the north-west quadrants from Q1 to
Qα, and whenever Qi does not contain any point of X, we add the leftmost point
of Qi ∩ V to X. Label the points in X by x1, . . . , xn in the order of their addition
to X. Along this order, the points have decreasing x-coordinates and decreasing
y-coordinates. Clearly, X is a hitting set of H(V,RNW,m) and satisfies (i).

Since x1 is the leftmost point of Q1, xj does not belong to Q1 for every
j ∈ {2, . . . , n}. Since Q1 contains exactly vertices of Et(V,m), the corresponding
hyperedge is hit by X exactly once. This proves (ii).

For any two consecutive points xj , xj+1 in X, consider the bottomless rectan-
gle Bj with top-right corner xj and xj+1 on the left side. Then |Bj ∩V | � m+1
as Bj contains xj and all points of the north-west quadrant Q for which we
added xj+1 to X. This proves (iii).
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Moreover, every point in Q ∩ V lies above xj+2 (if it exists), as xj+1 is
leftmost in Q. Thus, the axis-aligned rectangle Rj with top-right corner xj and
bottom-left corner xj+2 contains xj , all the m points in Q ∩ V , and xj+2. This
proves (iv) and also implies that X is 2-shallow. 	


Let us explain the properties of this lemma. Suppose we have a south-west
quadrant hit at least twice by X. Then it contains two consecutive points from
X and by (iii) this quadrant contains at least m+1 points and hence it does not
capture a hyperedge of H(V,RSW,m). Similarly, a horizontal strip containing at
least three points from X does not capture a hyperedge of H(V,RHS,m) by (iv).
Finally, since x1 is the rightmost point of X and it is also the leftmost point of
Et(V,m), every hyperedge E �= Et(V,m) of H(V,RNE,m) is not hit by X at all.
For symmetry reasons, statements analogous to the above lemma hold for other
types of quadrants and ranges as well. We provide a full description of these
properties in the full version of the paper [7].

Intuitively speaking, Lemma 12 allows us to color some points in V , in such
a way that every north-west quadrant already contains all colors, while other
ranges, such as bottomless rectangles or diagonal strips, have most of their points
still uncolored. The following lemma (proven in the full version of the paper [7])
provides a framework which can then be applied to color various range families.

Lemma 13. Let R1,R2 be shrinkable range families, f : N → N be a function,
and s, t ∈ N be such that:

(i) For every k ∈ N, it holds that mR2(k) � f(k).
(ii) And for every point set V and every m ∈ N, the hypergraph H(V,R1,m)

admits a t-shallow hitting set S ⊆ V such that every hyperedge of
H(V,R2,m) is hit at most s times by S.

Then for every k ∈ N, we have mR1∪R2(k) � f(k) + kmax(s, t).

With Lemma 13 in place, we obtain the upper bounds for several range families:

Theorem 14.

(i) For the range family RBL ∪ RNW ∪ RNE, we have m(k) � 5k − 2 for all k.
(ii) For the range family RHS ∪ RVS ∪ RNW ∪ RNE ∪ RSW ∪ RSE, we have

m(k) � 10k − 1 for all k.
(iii) For the range family RHS ∪ RVS ∪ RDS ∪ RNW ∪ RSE, we have m(k) �

4k ln k + k ln 3� + 4k for all k.

Proof. In all cases, we combine Lemmas 12 and 13 with some known results.
Now we prove (i). By Lemma 12, for every point set V and every m ∈ N,

there exist subsets SNW, SNE ⊆ V such that SNW ∪ SNE is a 2-shallow hitting
set of H(V,RNW ∪RNE,m) and every hyperedge of H(V,RBL,m) is hit at most
1+1 = 2 times by this set (see [7] for more details). So we use s = t = 2. Further,
we set R1 = RNW ∪ RNE, R2 = RBL and we use f(k) = 3k − 2 for all k. By [4],
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we know that for every k, we have mR2(k) � f(k). So by Lemma 13 for every k
we have m(k) � (3k − 2) + kmax(2, 2) = 5k − 2.

The remaining two claims are proven similarly in the full version of the paper
[7]. There we use that for axis-aligned strips we have m(k) � 2k−1 and for strips
in three directions, we have m(k) � 4k ln k + k ln 3� for all k [3]. 	


4 Concluding Remarks

We have considered the range families RSW,RSE,RNE,RNW of all south-west,
south-east, north-east, and north-west quadrants, the range families RHS,RVS of
all horizontal and vertical strips, and the range families RBL,RTL of all bottom-
less and topless rectangles, each being a special case of axis-aligned rectangles.

For every single family R in this list it is known that m(k) = O(k), meaning
that for every finite point set V the m-uniform hypergraph H(V,R,m) admits
a polychromatic k-coloring as long as m = Ω(k).

By Theorems 8 and 9 range capturing hypergraphs with respect to R =
RBL ∪ RHS, i.e., bottomless rectangles and horizontal strips, do not even admit
polychromatic 2-colorings. In other words m(k) = ∞ for all k � 2 in that
case. On the other hand, by Theorems 10 and 14 such polychromatic k-colorings
exist for every k (i.e., m(k) < ∞) whenever R is the union of any subset of
{RSW,RSE,RNE,RNW,RHS,RVS,RBL,RTL} that does not include both RBL

and RHS, nor any rotation of that pair. (As horizontal strips form a special case
of both 90-degree rotations of bottomless rectangles, our results also cover these
left-unbounded and right-unbounded axis-aligned rectangles.)

In general, we observe the same behavior as for other range families in the
literature: Either m(k) < ∞ holds for every k or already m(2) = ∞. It remains
an interesting open problem to determine whether in general m(2) < ∞ always
implies m(k) < ∞ for all k. In the positive cases, our upper bounds on m(k)
are linear in k, except when R contains strips of three different directions or
bottomless and topless rectangles. It is worth noting that no range family R
is known for which m(2) < ∞ but m(k) ∈ ω(k). Such a candidate could be
R = RHS ∪ RVS ∪ RDS or R = RBL ∪ RTL.

We suggest further investigations of shallow hitting sets in range capturing
hypergraphs. To the best of our knowledge, their existence might be equivalent
to m(k) being linear in k. In particular, do bottomless rectangles (for which it is
known that m(k) ∈ O(k) [4]) allow for shallow hitting sets? And do octants in
3D (for which shallow hitting sets are known not to exist [6]) have m(k) ∈ O(k)?

Finally, let us remark that the probabilistic construction of Chen et al. [8]
for the range family R of all axis-aligned rectangles shows that the hypergraphs
H(V,R,m) even have arbitrary large chromatic number for any fixed m, while
our explicit construction for the sub-family RBL ∪ RHS only shows that the
chromatic number is at least 3. In fact, the Union Lemma of Damasdi and
Pálvölgyi [9] states that if H is the union of any k − 1 hypergraphs, each of
which admits a polychromatic k-coloring, then H has a proper k-coloring. In
particular, every hypergraph H(V,RBL∪RHS,m) has chromatic number at most
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3 for m � 4, and every hypergraph H(V,R,m) has chromatic number at most 5
for m � 10 when R is the union of all unbounded axis-aligned rectangles.
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