
48th International Workshop, WG 2022
Tübingen, Germany, June 22–24, 2022
Revised Selected Papers

Graph-Theoretic Concepts
in Computer ScienceLN

CS
 1

34
53

AR
Co

SS
Michael A. Bekos
Michael Kaufmann (Eds.)

Lecture Notes in Computer Science 13453

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Michael A. Bekos • Michael Kaufmann (Eds.)

Graph-Theoretic Concepts
in Computer Science
48th International Workshop, WG 2022
Tübingen, Germany, June 22–24, 2022
Revised Selected Papers

123

Editors
Michael A. Bekos
University of Ioannina
Ioannina, Greece

Michael Kaufmann
Universität Tübingen
Tübingen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-15913-8 ISBN 978-3-031-15914-5 (eBook)
https://doi.org/10.1007/978-3-031-15914-5

© Springer Nature Switzerland AG 2022
Chapters “Kernelization for Feedback Vertex Set via Elimination Distance to a Forest” and “Finding
k-Secluded Trees Faster” are licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3414-7444
https://orcid.org/0000-0001-9186-3538
https://doi.org/10.1007/978-3-031-15914-5
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the 32 papers presented at the 48th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2022). The workshop was held
in Tübingen, Germany, from June 22 to 24, 2022 with a reception on the evening of
June 21. A total of 42 participants attended the workshop in person, with a further 130
registered participants online, although most talks were attended by 20–30 remote
participants on average.

WG has a longstanding tradition. Since 1975, WG has taken place 24 times in
Germany, five times in The Netherlands, three times in France, twice in Austria, the
Czech Republic, and the UK, and once in Greece, Israel, Italy, Norway, Poland,
Slovakia, Spain, Switzerland, and Turkey. This was the 25th time the workshop was
held in Germany.

WG aims to merge theory and practice by demonstrating how concepts from graph
theory can be applied to various areas in computer science, or by extracting new graph
theoretic problems from applications. The goal is to present emerging research results
and to identify and explore directions of future research. The conference is
well-balanced with respect to established researchers and junior scientists.

We received 103 submissions, seven of which were withdrawn before entering the
review process. The Program Committee (PC) provided three independent reviews for
each submission. The PC accepted 32 papers – an acceptance ratio of exactly 1/3. As in
previous years, due to strong competition and limited space there were papers that were
not accepted although they deserved to be.

The prize for the Best Paper at WG 2022 was awarded to Csaba Tóth for his paper
“Minimum Weight Euclidean ð1þ eÞ-Spanners”. The prize for the Best Student Paper
at WG 2022 was awarded to David J. C. Dekker for his paper “Kernelization for
Feedback Vertex Set via Elimination Distance to a Forest”, coauthored by Bart M.
P. Jansen. The program included two inspiring invited talks, by Bettina Speckmann
(TU Eindhoven, The Netherlands) on “Maps, Matrices, and Rugs: Algorithms for
Rectangular Visualizations” and by Torsten Ueckerdt (Karlsruher Institut für Tech-
nologie, Germany) on “Stack and Queue Layouts of Planar Graphs”.

Moreover, many individuals contributed to the success of WG 2020. In particular
our thanks go to

– All authors who submitted their newest research results to WG.
– The reviewers whose expertise supported the selection process.
– The members of the PC, who graciously gave their time and energy.
– All the members of the Organizing Committee based at the University of Tübingen:

Henry Förster, Renate Hallmayer, Julia Katheder, Axel Kuckuk, Maximilian Pfister,
and Lena Schlipf.

– The EasyChair system for hosting the evaluation process.
– Springer for supporting the Best Paper Awards.
– Our sponsors: DFG and yWorks.

– The invited speakers, all presenters, the session chairs, and the participants for their
contributions and support to make WG 2022 an inspiring event.

July 2022 Michael A. Bekos
Michael Kaufmann

vi Preface

Organization

Program Committee

Cristina Bazgan Université Paris Dauphine-PSL, France
Michael Bekos (Chair) University of Ioannina, Greece
Fedor Fomin University of Bergen, Norway
Cyril Gavoille University of Bordeaux, France
Carla Groenland Utrecht University, The Netherlands
Michael Hoffmann ETH Zurich, Switzerland
Michael Kaufmann (Chair) Universität Tübingen, Germany
Philipp Kindermann Universität Trier, Germany
Linda Kleist TU Braunschweig, Germany
Tereza Klimošová Charles University, Czech Republic
Piotr Micek Jagiellonian University, Poland
Martin Milanič University of Primorska, Slovenia
Debajyoti Mondal University of Saskatchewan, Canada
Fabrizio Montecchiani University of Perugia, Italy
Rolf Niedermeier TU Berlin, Germany
Yota Otachi Nagoya University, Japan
Sang-il Oum Institute for Basic Science (IBS) and KAIST,

South Korea
Charis Papadopoulos University of Ioannina, Greece
Dömötör Pálvölgyi ELTE, Hungary
Dieter Rautenbach University of Ulm, Germany
Bernard Ries Université de Fribourg, Switzerland
Ignasi Sau Université de Montpellier, CNRS, France
Lena Schlipf Universität Tübingen, Germany
Melanie Schmidt Universität zu Köln, Germany
Dimitrios Thilikos LIRMM, Université de Montpellier, CNRS, France
Meirav Zehavi Ben-Gurion University, Israel

Additional Reviewers

Abu-Khzam, Faisal
Andres, Stephan Dominique
Araujo, Julio
Barbay, Jérémy
Belmonte, Rémy
Bentert, Matthias
Bergougnoux, Benjamin
Bergé, Pierre

Bhattacharya, Anup
Blum, Johannes
Bläsius, Thomas
Bonnet, Édouard
Bonomo, Flavia
Bose, Prosenjit
Bougeret, Marin
Brand, Cornelius

Brandes, Ulrik
Bressan, Marco
Buchin, Kevin
Bérczi-Kovács, Erika Renáta
Casel, Katrin
Chaudhary, Juhi
Chiarelli, Nina
Coulombe, Michael
Cseh, Ágnes
Curticapean, Radu
Dabrowski, Konrad K.
Dallard, Clément
de Kroon, Jari J. H.
de Lima, Paloma
Deligkas, Argyrios
Di Giacomo, Emilio
Debski, Michał
Eiben, Eduard
Ekim, Tinaz
Fernau, Henning
Fiala, Jiri
Fleszar, Krzysztof
Fluschnik, Till
Froese, Vincent
Fujita, Shinya
Fulek, Radoslav
Fuzy, Eric
Förster, Henry
Geniet, Colin
Giannopoulos, Panos
Golovach, Petr
Grelier, Nicolas
Gronemann, Martin
Gupta, Siddharth
Gurjar, Rohit
Gurski, Frank
Hamm, Thekla
Harutyunyan, Ararat
Hatzel, Meike
Heeger, Klaus
Hegerfeld, Falko
Hoang, Hung
Hocquard, Hervé
Hodor, Jedrzej
Izbicki, Mike
Jacob, Ashwin

Jacob, Hugo
Jaffke, Lars
Jartoux, Bruno
Johnston, Tom
Kaiser, Tomas
Katzmann, Maximilian
Kavitha, Telikepalli
Keldenich, Phillip
Keszegh, Balázs
Klemz, Boris
Klobas, Nina
Knop, Dušan
Kobayashi, Yasuaki
Kobayashi, Yusuke
Konstantinidis, Athanasios
Korhonen, Tuukka
Kosinas, Evangelos
Krauthgamer, Robert
Krnc, Matjaž
Krupke, Dominik
Kuckuk, Axel
Kunz, Pascal
Kuszmaul, William
Kwon, O-Joung
Köhler, Noleen
Lafond, Manuel
Langlois, Hélène
Le, Hung
Lee, Euiwoong
Lendl, Stefan
Liedloff, Mathieu
Macajova, Edita
Maniatis, Spyridon
Manlove, David
Mann, Felix
Masařík, Tomáš
McCarty, Rose
Mertzios, George
Mestre, Julian
Milovanov, Alexey
Miltzow, Till
Misra, Neeldhara
Molter, Hendrik
Munaro, Andrea
Naia, Tassio
Nederlof, Jesper

viii Organization

Nelles, Florian
Neuen, Daniel
Nguyen, Kim Thang
Novick, Beth
Obdrzalek, Jan
Ordyniak, Sebastian
Pandey, Sukanya
Panolan, Fahad
Paulusma, Daniël
Pedrosa, Lehilton L. C.
Pfister, Maximilian
Picouleau, Christophe
Pilipczuk, Marcin
Protopapas, Evangelos
Reddy, Meghana M.
Renault, David
Rieck, Christian
Rollin, Jonathan
Roy, Sanjukta
Roy, Shivesh K.
Rzażewski, Paweł
Sagunov, Danil
Sampaio, Rudini
Sandeep, R. B.
Schindl, David
Schmidt, Daniel
Schulz, André
Simonov, Kirill
Skoviera, Martin
Smid, Michiel
Sommer, Frank
Souza, Uéverton
Staals, Frank
Steiner, Raphael

Stojakovic, Milos
Štorgel, Kenny
Stumpf, Peter
Suchy, Ondrej
Surianarayanan, Vaishali
Suzuki, Akira
Swennenhuis, Céline
Sylvester, John
Szilagyi, Krisztina
T. P., Sandhya
Takaoka, Asahi
Takazawa, Kenjiro
Tale, Prafullkumar
Tan, Jane
Tappini, Alessandra
Telle, Jan Arne
Tewari, Raghunath
Togni, Olivier
Tomescu, Alexandru I.
Tzimas, Spyridon
Uehara, Ryuhei
Vaish, Rohit
van der Zanden, Tom
van Leeuwen, Erik Jan
Walczak, Bartosz
Wasa, Kunihiro
Watrigant, Rémi
Wicke, Kristina
Wlodarczyk, Michal
Xiao, Mingyu
Zeitoun, Marc
Zeman, Peter
Zschoche, Philipp

Organization ix

The Long Tradition of WG

WG 1975 U. Pape – Berlin, Germany
WG 1976 H. Noltemeier – Göttingen, Germany
WG 1977 J. Mühlbacher – Linz, Austria
WG 1978 M. Nagl, H. J. Schneider – Burg Feuerstein, near Erlangen, Germany
WG 1979 U. Pape – Berlin, Germany
WG 1980 H. Noltemeier – Bad Honnef, Germany
WG 1981 J. Mühlbacher – Linz, Austria
WG 1982 H. J. Schneider, H. Göttler – Neuenkirchen, near Erlangen, Germany
WG 1983 M. Nagl, J. Perl – Haus Ohrbeck near Onasbrück, Germany
WG 1984 U. Pape – Berlin, Germany
WG 1985 H. Noltemeier – Schloß Schwanberg near Würzburg, Germany
WG 1986 G. Tinhofer, G. Schmidt – Stift Bernried near Munich, Germany
WG 1987 H. Göttler, H. J. Schneider – Kloster Banz near Bamberg, Germany
WG 1988 J. van Leeuwen – Amsterdam, The Netherlands
WG 1989 M. Nagl – Castle Rolduc, The Netherlands
WG 1990 R. H. Möhring – Johannesstift Berlin, Germany
WG 1991 G. Schmidt, R. Berghammer – Fischbachau near Munich, Germany
WG 1992 E. W Mayr – Wilhelm-Kempf-Haus, Wiesbaden-Naurod, Germany
WG 1993 J. van Leeuwen – Utrecht, The Netherlands
WG 1994 G. Tinhofer, E. W. Mayr, G. Schmidt – Munich, Germany
WG 1995 M. Nagl – Haus Eich, Aachen, Germany
WG 1996 G. Ausiello, A. Marchetti-Spaccamela – Cadenabbia near Como, Italy
WG 1997 R. H. Möhring – Bildungszentrum am Müggelsee, Berlin, Germany
WG 1998 J. Hromkovič, O. Sýkora – Smolenice Castle, Slovakia
WG 1999 P. Widmayer – Monte Verità, Ascona, Switzerland
WG 2000 D. Wagner – Waldhaus Jakob, Konstanz, Germany
WG 2001 A. Brandstädt, Boltenhagen near Rostock, Germany
WG 2002 L. Kučera – Český Krumlov, Czech Republic
WG 2003 H. L. Bodlaender – Elspeet, The Netherlands
WG 2004 J. Hromkovič, M. Nagl – Bad Honnef, Germany
WG 2005 D. Kratsch – Île du Saulcy, Metz, France
WG 2006 F. V. Fomin – Sotra near Bergen, Norway
WG 2007 A. Brandstädt, D. Kratsch, H. Müller – Jena, Germany
WG 2008 H. Broersma, T. Erlebach – Durham, UK
WG 2009 C. Paul, M. Habib – Montpellier, France
WG 2010 D. M. Thilikos – Zarós, Crete, Greece
WG 2011 J. Kratochvíl – Teplá Monastery, West Bohemia, Czech Republic
WG 2012 M. C. Golumbic, G. Morgenstern, M. Stern, A. Levy – Israel
WG 2013 A. Brandstädt, K. Jansen, R. Reischuk – Lübeck, Germany
WG 2014 D. Kratsch, I. Todinca – Le Domaine de Chalès, Orléans, France
WG 2015 E. W. Mayr – Garching near Munich, Germany
WG 2016 P. Heggernes – Rumeli Hisarüstü, Istanbul, Turkey
WG 2017 H. L. Bodlaender, G. J. Woeginger – Eindhoven, The Netherlands
WG 2018 A. Brandstädt, E. Köhler, K. Meer – Cottbus, Germany

x Organization

WG 2019 I. Sau, D. M. Thilikos – Vall de Núria, Catalunya, Spain
WG 2020 I. Adler, H. Müller – Leeds, UK (virtual)
WG 2021 Ł. Kowalik, M. Pilipczuk, P. Rzążewski – Warsaw, Poland
WG 2022 M. A. Bekos, M. Kaufmann – Tübingen, Germany

Organization xi

Contents

Minimal Roman Dominating Functions: Extensions and Enumeration 1
Faisal N. Abu-Khzam, Henning Fernau, and Kevin Mann

Disjoint Compatibility via Graph Classes . 16
Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz,
Josef Tkadlec, and Birgit Vogtenhuber

Testing Isomorphism of Chordal Graphs of Bounded Leafage
is Fixed-Parameter Tractable (Extended Abstract) . 29

Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Zeman

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 43
Jakub Balabán, Petr Hliněný, and Jan Jedelský

Token Sliding on Graphs of Girth Five . 56
Valentin Bartier, Nicolas Bousquet, Jihad Hanna, Amer E. Mouawad,
and Sebastian Siebertz

Recognition of Linear and Star Variants of Leaf Powers is in P 70
Bergougnoux Benjamin, Svein Høgemo, Jan Arne Telle,
and Martin Vatshelle

Problems Hard for Treewidth but Easy for Stable Gonality. 84
Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen

Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based
on Edge Cuts . 98

Cornelius Brand, Esra Ceylan, Robert Ganian, Christian Hatschka,
and Viktoriia Korchemna

An Algorithmic Framework for Locally Constrained Homomorphisms. 114
Laurent Bulteau, Konrad K. Dabrowski, Noleen Köhler,
Sebastian Ordyniak, and Daniël Paulusma

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal
Graphs. 129

Dibyayan Chakraborty, L. Sunil Chandran, Sajith Padinhatteeri,
and Raji R. Pillai

Polychromatic Colorings of Unions of Geometric Hypergraphs 144
Vera Chekan and Torsten Ueckerdt

Kernelization for Feedback Vertex Set via Elimination Distance
to a Forest . 158

David Dekker and Bart M. P. Jansen

Finding k-Secluded Trees Faster . 173
Huib Donkers, Bart M. P. Jansen, and Jari J. H. de Kroon

On the Minimum Cycle Cover Problem on Graphs with Bounded
Co-degeneracy . 187

Gabriel L. Duarte and Uéverton S. Souza

On the Lossy Kernelization for Connected Treedepth Deletion Set 201
Eduard Eiben, Diptapriyo Majumdar, and M. S. Ramanujan

Generalized k-Center: Distinguishing Doubling and Highway Dimension 215
Andreas Emil Feldmann and Tung Anh Vu

Extending Partial Representations of Circular-Arc Graphs 230
Jiří Fiala, Ignaz Rutter, Peter Stumpf, and Peter Zeman

Bounding Threshold Dimension: Realizing Graphic Boolean Functions
as the AND of Majority Gates . 244

Mathew C. Francis, Atrayee Majumder, and Rogers Mathew

Parameterized Complexity of Weighted Multicut in Trees 257
Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma,
and Prafullkumar Tale

The Segment Number: Algorithms and Universal Lower Bounds for Some
Classes of Planar Graphs . 271

Ina Goeßmann, Jonathan Klawitter, Boris Klemz, Felix Klesen,
Stephen Kobourov, Myroslav Kryven, Alexander Wolff,
and Johannes Zink

Bounding Twin-Width for Bounded-Treewidth Graphs, Planar Graphs,
and Bipartite Graphs . 287

Hugo Jacob and Marcin Pilipczuk

On Anti-stochastic Properties of Unlabeled Graphs 300
Sergei Kiselev, Andrey Kupavskii, Oleg Verbitsky, and Maksim
Zhukovskii

Computing List Homomorphisms in Geometric Intersection Graphs. 313
Sándor Kisfaludi-Bak, Karolina Okrasa, and Paweł Rzążewski

On Fully Diverse Sets of Geometric Objects and Graphs 328
Fabian Klute and Marc van Kreveld

xiv Contents

Polynomial-Delay and Polynomial-Space Enumeration of Large
Maximal Matchings. 342

Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa

The Complexity of Contracting Bipartite Graphs into Small Cycles 356
R. Krithika, Roohani Sharma, and Prafullkumar Tale

Algorithmic Aspects of Small Quasi-Kernels . 370
Hélène Langlois, Frédéric Meunier, Romeo Rizzi, and Stéphane Vialette

Parameterized Complexity of Graph Planarity with Restricted Cyclic
Orders . 383

Giuseppe Liotta, Ignaz Rutter, and Alessandra Tappini

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs. 398
Barnaby Martin, Daniël Paulusma, Siani Smith, and Erik Jan van
Leeuwen

Classifying Subset Feedback Vertex Set for H-Free Graphs 412
Giacomo Paesani, Daniël Paulusma, and Paweł Rzążewski

Linearizing Partial Search Orders . 425
Robert Scheffler

Minimum Weight Euclidean ð1þ eÞ-Spanners. 439
Csaba D. Tóth

Author Index . 453

Contents xv

Minimal Roman Dominating Functions:
Extensions and Enumeration

Faisal N. Abu-Khzam1 , Henning Fernau2(B) , and Kevin Mann2

1 Department of Computer Science and Mathematics, Lebanese American University,
Beirut, Lebanon

faisal.abukhzam@lau.edu.lb
2 Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier,

54286 Trier, Germany
{fernau,mann}@uni-trier.de

Abstract. Roman domination is one of the many variants of domination
that keeps most of the complexity features of the classical domination
problem. We prove that Roman domination behaves differently in two
aspects: enumeration and extension. We develop non-trivial enumeration
algorithms for minimal Roman dominating functions with polynomial
delay and polynomial space. Recall that the existence of a similar enu-
meration result for minimal dominating sets is open for decades. Our
result is based on a polynomial-time algorithm for Extension Roman

Domination: Given a graph G = (V, E) and a function f : V → {0, 1, 2},
is there a minimal Roman dominating function f̃ with f ≤ f̃? Here, ≤
lifts 0 < 1 < 2 pointwise; minimality is understood in this order. Our enu-
meration algorithm is also analyzed from an input-sensitive viewpoint,
leading to a run-time estimate of O(1.9332n) for graphs of order n; this
is complemented by a lower bound example of Ω(1.7441n).

Keywords: Roman domination · Extension problems · Enumeration

1 Introduction

We combine four lines of research: (a) variations of domination problems in
graphs, here Roman domination [17,21,28]; (b) input-sensitive enumeration of
minimal solutions, a topic that has drawn attention also concerning domination
problems [2,18,19,26,27]; (c) related to (and motivated by) enumeration, exten-
sion problems have been examined in particular in the context of domination
problems1 in [3,9,11,12,32,33,40]: is a given set a subset of any minimal domi-
nating set?; (d) output-sensitive enumeration: the Hitting Set Transversal

Problem is the question if all minimal hitting sets of a hypergraph can be enu-
merated with polynomial delay only: this question is open for four decades by
1 Historically, a logical extension problem [10] should be mentioned, as it has led to

[40, Théorème 2.16], dealing with an extension variant of 3-Hitting Set; also see
[40, Proposition 3.39] concerning implications for Extension Dominating Set.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 1–15, 2022.
https://doi.org/10.1007/978-3-031-15914-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_1&domain=pdf
http://orcid.org/0000-0001-5221-8421
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0002-0880-2513
https://doi.org/10.1007/978-3-031-15914-5_1

2 F. N. Abu-Khzam et al.

now and is equivalent to several enumeration problems in logic, database theory
and also to enumerating minimal dominating sets in graphs, see [20,22,25,31].
By way of contrast, we show that all minimal Roman dominating functions can
be enumerated with polynomial delay, a surprising result in view of the similar-
ities between the complexities of domination and Roman domination problems.

Roman Domination comes with a nice (hi)story: namely, it should reflect
the idea of how to secure the Roman Empire by positioning armies on the various
parts of the Empire in a way that either (1) a specific region r is also the location
of at least one army or (2) one region r′ neighboring r has two armies, so that
r′ can afford sending off one army to the region r (in case of an attack) without
diminishing self-defense capabilities. For further details, we refer to [45,49].

Roman Domination has received a lot of attention from the algorithmic
community in the past 15 years [4,15,21,24,35,36,39,43,44,47]. Relevant to our
paper is the development of exact algorithms for Roman Domination: com-
bining ideas from [35,46], an O(1.5014n) exponential-time and -space algorithm
(via a transformation to Partial Dominating Set) was presented [48]. In
[14,16,23,30,34,37,38,42,50–52], more combinatorial studies can be found. A
larger chapter on Roman domination is contained in the monograph [29]. There
is also an interesting link to the notion of a differential of a graph, introduced
in [41], see [7], also adding further algorithmic thoughts, as expressed in [1,5,6].
For instance, in [5] a different exponential-time algorithm was published.

One of the ideas leading to the development of the area of extension problems
(as described in [12]) was to cut branches of search trees as early as possible, in
the following sense: to each node of the search tree, a so-called pre-solution U
can be associated, and it is asked if it is possible to extend U to a meaningful
solution S. In the case of Dominating Set, this means that U is a set of vertices
and a ‘meaningful solution’ is an inclusion-wise minimal dominating set. Notice
that such a strategy would work not only for computing smallest dominating
sets, but also for computing largest minimal dominating set, or for counting
minimal solutions, or for enumerating them. Alas, as it has been shown by many
examples, extension problems turn out to be quite hard problems. In such a case,
the approach might still be viable, as possibly parameterized algorithms exist
with respect to the parameter ‘pre-solution size’. This would be interesting,
as this parameter is small when a big gain can be expected in terms of an
early abort of a search tree branch. In particular for Extension Dominating

Set, this hope is not fulfilled. To the contrary, with this parameterization |U |,
Extension Dominating Set is one of the few problems known to be complete
for the parameterized complexity class W[3], as shown in [8].

With an appropriate definition of the notion of minimality, Roman Domina-

tion becomes one of the few examples where the hope seeing extension variants
being efficiently solvable turns out to be true, as we will show in this paper.
This is quite a surprising result, as in nearly any other way, Roman Domina-

tion behaves most similar to Dominating Set. Together with its combinatorial
foundations (a characterization of minimal Roman dominating functions), this
constitutes the first main result of this paper. The main algorithmic exploit of

Minimal Roman Dominating Functions: Extensions and Enumeration 3

this result is a non-trivial polynomial-space enumeration algorithm for minimal
Roman dominating functions that guarantees polynomial delay only, which is
the second main result of the paper. As mentioned above, the corresponding
question for enumerating minimal dominating sets is open since decades, and we
are not aware of any other modification of the concept of domination that seems
to preserve any other of the difficulties of Dominating Set but the complexity
of extension and enumeration. Our enumeration algorithm is a branching algo-
rithm that we analyze with a simple Measure & Conquer approach, yielding a
running time of O(1.9332n), which also gives an upper bound on the number
of minimal Roman dominating functions of an n-vertex graph. This result is
complemented by a simple example that proves a lower bound of Ω(1.7441n) for
the number of minimal Roman dominating functions on graphs of order n.

Most proofs have been suppressed in this extended abstract; we refer to the
long version for all omitted details.

2 Definitions

Let N = {1, 2, 3, . . . } be the set of positive integers. For n ∈ N, let [n] = {m ∈ N |
m ≤ n}. We only consider undirected simple graphs. Let G = (V,E) be a graph.
For U ⊆ V , G[U] denotes the graph induced by U . For v ∈ V , NG(v) := {u ∈ V |
{u, v} ∈ E} denotes the open neighborhood of v, while NG[v] := NG(v) ∪ {v} is
the closed neighborhood of v. We extend such set-valued functions X : V → 2V

to X : 2V → 2V by setting X(U) =
⋃

u∈U X(u). Subset D ⊆ V is a dominating
set, or ds for short, if NG[D] = V . For D ⊆ V and v ∈ D, define the private
neighborhood of v ∈ V with respect to D as PG,D (v) := NG [v] \ NG [D \ {v}].
A function f : V → {0, 1, 2} is called a Roman dominating function, or rdf for
short, if for each v ∈ V with f (v) = 0, there exists a u ∈ NG (v) with f (u) = 2.
To simplify the notation, we define Vi (f) := {v ∈ V | f (v) = i} for i ∈ {0, 1, 2}.
The weight wf of a function f : V → {0, 1, 2} equals |V1 (f) | + 2|V2 (f) |. The
classical Roman Domination problem asks, given G and an integer k, if there
exists an rdf for G of weight at most k. Connecting to the original motivation,
G models a map of regions, and if the region vertex v belongs to Vi, then we
place i armies on v.

For the definition of the problem Extension Roman Domination, we need
to define the order ≤ on {0, 1, 2}V first: for f, g ∈ {0, 1, 2}V , let f ≤ g if and only
if f (v) ≤ g (v) for all v ∈ V . We call a function f ∈ {0, 1, 2}V a minimal Roman
dominating function if and only if f is a rdf and there exists no rdf g, g �= f , with
g ≤ f .2 The weights of minimal rdf can vary considerably. Consider for example
a star K1,n with center c. Then, f1(c) = 2, f1(v) = 0 otherwise; f2(v) = 1 for all
vertices v; f3(c) = 0, f3(u) = 2 for one u �= c, f3(v) = 1 otherwise, define three
minimal rdf with weights wf1 = 2, and wf2 = wf3 = n + 1.

2 According to [29], this notion of minimality for rdf was coined by Cockayne but then
dismissed, as it does not give a proper notion of upper Roman domination. However,
in our context, this definition seems to be the most natural one, as it also perfectly
fits the extension framework proposed in [13]; see the discussions in Sect. 7.

4 F. N. Abu-Khzam et al.

Problem name: Extension Roman Domination, or ExtRD for short
Given: A graph G = (V,E) and a function f ∈ {0, 1, 2}V .

Question: Is there a minimal rdf f̃ ∈ {0, 1, 2}V with f ≤ f̃?

As our first main result, we are going to show that ExtRD can be solved
in polynomial time in Sect. 4. To this end, we need some understanding of the
combinatorial nature of this problem, which we provide in Sect. 3.

The second problem that we consider is that of enumeration, both from an
output-sensitive and from an input-sensitive perspective.

Problem name: Roman Domination Enumeration, or RDEnum for
short
Given: A graph G = (V,E).
Task: Enumerate all minimal rdf f ∈ {0, 1, 2}V of G!

From an output-sensitive perspective, it is interesting to perform this enumer-
ation without repetitions and with polynomial delay, which means that between
the consecutive outputs of any two minimal rdf for G = (V,E) that are enu-
merated, no more than p(|V |) time elapses for some polynomial p, including the
corner-cases at the beginning and at the end of the algorithm. From an input-
sensitive perspective, we want to upper-bound the running time of the algorithm,
measured against the order of the input graph. The obtained run-time bound
should not be too far off from known lower bounds, given by graph families
where known to have a certain number of minimal rdf. Our algorithm will be
analyzed from both perspectives and achieves both goals; see Sects. 5 and 6.

3 Properties of Minimal Roman Dominating Functions

The combinatorial backbone of our algorithm is the following characterization.

Theorem 1. Let G = (V,E) be a graph, f : V → {0, 1, 2} and abbreviate
G′ := G [V0 (f) ∪ V2 (f)]. Then, f is a minimal rdf if and only if the following
conditions hold:

1. NG [V2 (f)] ∩ V1 (f) = ∅,
2. ∀v ∈ V2 (f) : PG′,V2(f) (v) � {v}, also called privacy condition, and
3. V2 (f) is a minimal dominating set of G′.

Proof. To give a flavor of the proof of this crucial result, we show the (easier) “if-
direction” in the following, assuming the “only-if-direction” was already proved.

Let f be a function that fulfills the three conditions. Since V2 (f) is a domi-
nating set in G′, for each u ∈ V0 (f), there exists a v ∈ V2 (f)∩NG [u]. Therefore,
f is a rdf. Let f̃ : V → {0, 1, 2} be a minimal rdf with f̃ ≤ f . Therefore, f̃ (also)
satisfies the three conditions by the “only-if-direction”. Assume that there exists
a v ∈ V with f̃ (v) < f (v). Hence, V2

(
f̃
)

⊆ V2 (f) \ {v}.

Case 1: f̃ (v) = 0, f (v) = 1. Therefore, there exists a u ∈ NG (v) with
f (u) ≥ f̃ (u) = 2. This contradicts Condition 1.

Minimal Roman Dominating Functions: Extensions and Enumeration 5

Case 2: f̃ (v) ∈ {0, 1}, f (v) = 2. Consider any u ∈ NG (v) with f(u) = 0. This
implies f̃(u) = 0 and ∅ �= NG [u] ∩ V2

(
f̃
)

⊆ NG [u] ∩ V2 (f) \ {v}. Therefore, u

cannot be a private neighbor of v w.r.t. f . This contradicts Condition 2 for f .
Thus, f̃ = f holds and f is minimal. �

We conclude this section with an upper bound on the size of V2(f).

Lemma 1. Let G = (V,E) be a graph and f : V → {0, 1, 2} be a minimal rdf.
Then 2 |V2 (f) | ≤ |V | holds.

Algorithm 1. Solving instances of ExtRD

1: procedure ExtRD Solver(G, f)
Input: A graph G = (V,E) and a function f : V → {0, 1, 2}.
Output: Is there a minimal Roman dominating function f̃ with f ≤ f̃?

2: f̃ := f .
3: M2 := V2 (f). { Invariant: M2 = V2(f̃) }
4: M := M2. { All v ∈ V2(f̃) are considered below; invariant: M ⊆ M2. }
5: while M �= ∅ do
6: Choose v ∈ M . { Hence, f̃(v) = 2. }
7: for u ∈ N (v) do
8: if f̃ (u) = 1 then
9: f̃ (u) := 2.

10: Add u to M and to M2.
11: Delete v from M .
12: for v ∈ M2 do
13: if NG (v) ⊆ NG [M2 \ {v}] then
14: Return No.
15: for v ∈ V \ NG [M2] do
16: f̃ (v) := 1.
17: Return Yes.

4 A Polynomial-Time Algorithm for ExtRD

By taking care of the conditions of Theorem 4, we can construct an algorithm
that solves the problem Extension Roman domination in polynomial time.

Theorem 2. Let G = (V,E) be a graph and f : V → {0, 1, 2}. For the inputs
G, f , Algorithm 1 returns yes if and only if (G, f) is a yes-instance of ExtRD.
In this case, the function f̃ computed by Algorithm 1 is a minimal rdf.

Proposition 1. Algorithm 1 runs in time cubic in the order of the input graph.

6 F. N. Abu-Khzam et al.

Algorithm 2. A simple enumeration algorithm for minimal rdf
1: procedure RD Enumeration(G)

Input: A graph G = (V,E).
Output: Enumeration of all minimal rdf f : V → {0, 1, 2}.

2: for all functions f : V → {1, 2} do
3: for all v ∈ V with f(v) = 1 do
4: if ∃u ∈ NG(v) : f(u) = 2 then
5: f(v) := 0.
6: Build graph G′ induced by f−1({0, 2}) = V0(f) ∪ V2(f).
7: private-test := 1.
8: for all v ∈ V with f(v) = 2 do
9: if PG′,V2(F)(v) ⊆ {v} then

10: private-test := 0.
11: if private-test = 1 and if f−1(2) = V2(f) is a minimal ds of G′ then
12: Output the current function f : V → {0, 1, 2}.

5 Enumerating Minimal RDF for General Graphs

For general graphs, our general combinatorial observations allow us to strengthen
the (trivial) O∗(3n)-algorithm for enumerating all minimal rdf for graphs of
order n down to O∗(2n), as displayed in Algorithm 2. To understand the cor-
rectness of this enumeration algorithm, the following lemma is crucial.

Lemma 2. Let G = (V,E) be a graph with V2 ⊆ V such that PG,V2 (v) � {v}
for each v ∈ V2 holds. Then there exists exactly one minimal rdf f ∈ {0, 1, 2}V
with V2 = V2 (f). Algorithm 1 can calculate f .

Proposition 2. Let G = (V,E) be a graph. For minimal rdf f, g ∈ {0, 1, 2}V
with V2 (f) = V2 (g), it holds f = g.

Hence, there is a bijection between the minimal rdf of a graph G = (V,E) and
subsets V2 ⊆ V that satisfy the condition of Lemma 2.

Proposition 3. All minimal rdf of a graph of order n can be enumerated in
time O∗(2n).

The presented algorithm clearly needs polynomial space only, but it is less
clear if it has polynomial delay. Below, we will present a branching algorithm that
has both of these desirable properties, and moreover, its running time is below
2n. How good or bad such an enumeration is, clearly also depends on examples
that provide a lower bound on the number of objects that are enumerated. The
next lemma explains why the upper bounds for enumerating minimal rdf must
be bigger than those for enumerating minimal dominating sets.

Lemma 3. A disjoint collection of c cycles on five vertices yields a graph of
order n = 5c that has (16)c many minimal rdf.

Minimal Roman Dominating Functions: Extensions and Enumeration 7

Corollary 1. There are graphs of order n that have at least 5
√

16
n ∈ Ω(1.7441n)

many minimal rdf.

We checked with the help of a computer program that there are no other
connected graphs of order at most eight that yield (by taking disjoint unions) a
bigger lower bound.

6 A Refined Enumeration Algorithm

In this section, we are going to present the following result, which can be seen
as the second main result of this paper.

Theorem 3. There is a polynomial-space algorithm that enumerates all min-
imal rdf of a given graph of order n with polynomial delay and in time
O∗(1.9332n).

Notice that this is in stark contrast to what is known about the enumer-
ation of minimal dominating sets, or, equivalently, of minimal hitting sets in
hypergraphs. Here, it is a long-standing open problem if minimal hitting sets in
hypergraphs can be enumerated with polynomial delay.

In the remainder of this section, we sketch the proof of Theorem 3.

6.1 A Bird’s Eye View on the Algorithm

As all along the search tree, from inner nodes we branch into the two cases if a
certain vertex is assigned 2 or not, it is clear that (with some care concerning
the final processing in leaf nodes) no minimal rdf is output twice. Hence, there
is no need for the branching algorithm to store intermediate results to test (in
a final step) if any solution was generated twice. Therefore, our algorithm needs
only polynomial space, as one has only to store information along one path of
the recursion tree.

Because we have a polynomial-time procedure that can test if a certain given
pre-solution can be extended to a minimal rdf, we can build (a slightly modified
version of) this test into an enumeration procedure, hence avoiding unnecessary
branchings. Therefore, whenever we start with our binary branching, we know
that at least one of the search tree branches will return at least one new minimal
rdf. Hence, we will not move to more than N nodes in the search tree before
outputting a new minimal rdf, where N is upper-bounded by twice the order of
the input graph. This is the basic explanation for the claimed polynomial delay.

Let G = (V,E) be a graph. Let us call a partial function f : V → {0, 1, 2, 1, 2}
a generalized Roman dominating function, or grdf for short. Extending previously
introduced notation, let V1(f) = {x ∈ V | f(x) = 1}, and V2(f) = {x ∈ V |
f(x) = 2}. A vertex is said to be active if it has not been assigned a value (yet)
under f ; these vertices are collected in the set A(f). Hence, for any grdf f , we
have the partition V = A(f) ∪ V0(f) ∪ V1(f) ∪ V2(f) ∪ V1(f) ∪ V2(f).

After performing a branching step, followed by an exhaustive application of
the reduction rules, any grdf f considered in our algorithm always satisfies the
following (grdf) invariants:

8 F. N. Abu-Khzam et al.

1. ∀x ∈ V1(f) ∪ V0(f)∃y ∈ NG(x) : y ∈ V2(f),
2. ∀x ∈ V2(f) : NG(x) ⊆ V1(f) ∪ V0(f) ∪ V2(f),
3. ∀x ∈ V1(f) : NG(x) ⊆ V2(f) ∪ V0(f) ∪ V1(f),
4. if V2(f) �= ∅, then A(f) ∪ V1(f) �= ∅.3

For the extension test, we will therefore consider the function f̂ : V →
{0, 1, 2} that is derived from a grdf f as follows:

f̂(v) =

{
0, if v ∈ A(f) ∪ V0(f) ∪ V1(f) ∪ V2(f)
f(v), if v ∈ V1(f) ∪ V2(f)

The enumeration algorithm uses a combination of reduction and branch-
ing rules, starting with the nowhere defined function f⊥, so that A(f⊥) = V .
The schematics of the algorithm is shown in Algorithm 3. To understand
the algorithm, call an rdf g as consistent with a grdf f if g(v) = 2 implies
v ∈ A(f) ∪ V2(f) ∪ V1(f) and g(v) = 1 implies v ∈ A(f) ∪ V1(f) ∪ V2(f) and
g(v) = 0 implies v ∈ A(f)∪V0(f)∪V1(f)∪V2(f). Below, we start with present-
ing some reduction rules, which also serve as (automatically applied) actions at
each branching step, whenever applicable. The branching itself always considers
a most attractive vertex v and either gets assigned 2 or not. The running time
analysis will be performed with a measure-and-conquer approach. Our simple
measure is defined by μ(G, f) = |A(f)| + ω1|V1(f)| + ω2|V2(f)| ≤ |V | for some
constants ω1 and ω2 that have to be specified later. The measure never increases
when applying a reduction rule.
We are now presenting details of the algorithm and its analysis.

6.2 How to Achieve Polynomial Delay and Polynomial Space

In this section, we need a slight modification of the problem ExtRD in order to
cope with pre-solutions. In this version, we add to an instance, usually specified
by G = (V,E) and f : V → {0, 1, 2}, a set V2 ⊆ V with V2 (f) ∩ V2 = ∅. The
question is if there exists a minimal RDF f̃ with f ≤ f̃ and V2

(
f̃
)

∩V2 = ∅. We
call this problem a generalized rdf extension problem, or GenExtRD for short.
In order to solve this problem, we modify Algorithm 1 to cope with GenExtRD

by adding an if-clause after Line 8 that asks if u ∈ V2. If this is true, then the
algorithm returns no, because it is prohibited that f̃(u) is set to 2, while this is
necessary for minimal rdf, as there is a vertex v in the neighborhood of u such
that f̃(v) has been set to 1. We call this algorithm GenExtRD Solver.

Lemma 4. Let G = (V,E) be a graph, f : V → {0, 1, 2} be a function and
V2 ⊆ V be a set with V2 (f) ∩ V2 = ∅. GenExtRD Solver gives the correct
answer when given the GenExtRD instance (G, f, V2).

3 This condition assumes that our graphs have non-empty vertex sets.

Minimal Roman Dominating Functions: Extensions and Enumeration 9

Algorithm 3. A refined enumeration algorithm for minimal rdf
1: procedure Refined RD Enumeration(G, f)

Input: A graph G = (V,E), a grdf f : V → {0, 1, 2, 1, 2}.
Assumption: There exists at least one minimal rdf consistent with f .
Output: Enumeration of all minimal rdf consistent with f .

2: if f is everywhere defined and f(V) ⊆ {0, 1, 2} then
3: Output f and return.
4: { We know that A(f) ∪ V1(f) �= ∅. }
5: Pick a vertex v ∈ A(f) ∪ V1(f) of highest priority for branching.
6: f2 := f ; f2(v) := 2.
7: Exhaustively apply reduction rules to f2. { Invariants are valid for f2. }
8: if GenExtRD Solver

(
G, f̂2, V2(f2)

)
then

9: Refined RD Enumeration (G, f2).
10: f2 := f ; if v ∈ A(f) then f2(v) := 2 else f2(v) := 0.
11: Exhaustively apply reduction rules to f2. { Invariants are valid for f2. }
12: if GenExtRD Solver

(
G, f̂2, V2(f2)

)
then

13: Refined RD Enumeration (G, f2).

Let f be a grdf at any moment of the branching algorithm. We can show that
GenExtRD Solver could tell us in polynomial time if there exists a minimal
rdf that could be enumerated by the branching algorithm from this point on. This
is crucial for showing polynomial delay of Algorithm 3. Moreover, Algorithm 3
does not enumerate any solution twice, which allows us to use polynomial space.

6.3 Details on Reductions and Branchings

For the presentation of the following rules, we assume that G = (V,E) and a
grdf f is given. The rules are executed exhaustively in the given order.

Reduction Rule LPN (Last Potential Private Neighbor). If v ∈ V2(f)
satisfies |NG(v) ∩ (V2(f) ∪ A(f))| = 1, then set f(x) = 0 for {x} = NG(v) ∩
(V2(f) ∪ A(f)).

Reduction Rule V0. Let v ∈ V0(f). Assume there exists a unique u ∈ V2(f) ∩
NG(v). Moreover, assume that for all x ∈ NG(u) ∩ (V0(f) ∪ V1(f) ∪ V2(f)),
|NG(x) ∩ V2(f)| ≥ 2 if x �= v. Then, for any w ∈ NG(v) ∩ A(f), set f(w) = 2
and for any w ∈ NG(v) ∩ V1(f), set f(w) = 0.

Reduction Rule V1. Let v ∈ V1(f). For any w ∈ NG(v) ∩ A(f), set f(w) = 2.
For any w ∈ NG(v) ∩ V1(f), set f(w) = 0.

Reduction Rule V2. Let v ∈ V2(f). For any w ∈ NG(v) ∩ A(f), set f(w) = 1.
For any w ∈ NG(v) ∩ V2(f), set f(w) = 0.

10 F. N. Abu-Khzam et al.

Reduction Rule NPD (No Potential Domination). If v ∈ V2(f) satisfies
NG(v) ⊆ V2(f) ∪ V0(f) ∪ V1(f), then set f(v) = 1 (this also applies to isolated
vertices in V2(f)).

Reduction Rule NPN (No Private Neighbor). If v ∈ A(f) satisfies
NG(v) ⊆ V0(f) ∪ V1(f), then set f(v) = 2 (this also applies to isolated ver-
tices in A(f)).

Reduction Rule Isolate. If A(f) = ∅ and if v ∈ V1(f) satisfies NG(v)∩V2(f) =
∅, then set f(v) = 0.

Reduction Rule Edges. If u, v ∈ V2(f) ∪ V0(f) ∪ V1(f) and e = uv ∈ E, then
remove the edge e from G.

In the following, we first take care of the claimed grdf invariants.

Proposition 4. After exhaustively executing the proposed reduction rules, as
indicated in Algorithm 3, the claimed grdf invariants are maintained.

We have now to show the soundness of the proposed reduction rules. In the
context of enumerating minimal rdf, this means the following: if f, f ′ are grdf
of G = (V,E) before or after applying any of the reduction rules, then g is a
minimal rdf that is consistent with f if and only if it is consistent with f ′.

Proposition 5. All proposed reduction rules are sound.

In order to fully understand Algorithm 3, we need to describe priorities for
branching. We describe these priorities in the following in decreasing order for a
vertex v ∈ A(f) ∪ V1(f).

1. v ∈ A(f) and |NG(v) ∩ (A(f) ∪ V2(f))| ≥ 2;
2. any v ∈ A(f);
3. any v ∈ V1(f), preferably if |NG(v) ∩ V2(f)| �= 2.

These priorities also split the run of our algorithm into phases, as whenever
the algorithm was once forced to pick a vertex according to some lower priority,
there will be never again the chance to pick a vertex of higher priority thereafter.
It is useful to collect some phase properties that instances must satisfy after
leaving Phase i, determined by applying the ith branching priority.

– Before entering any phase, there are no edges between vertices u, v if u, v ∈
V0(f) ∪ V1(f) ∪ V2(f) or if u ∈ Vi(f) and v ∈ Vi(f) ∪ A(f) (i ∈ {1, 2}, as we
assume the reduction rules have been exhaustively applied.

– After leaving the first phase, any active vertex with an active neighbor is
either pendant or has only further neighbors from V1(f) ∪ V0(f).

– After leaving the second phase, A(f) = ∅ and NG(V2(f)) ⊆ V1(f).
– After the third phase, A(f) = V2(f) = V1(f) = ∅, so f is a minimal rdf.

Proposition 6. The phase properties hold.

Minimal Roman Dominating Functions: Extensions and Enumeration 11

Table 1. The branching vectors of different branching scenarios of the enumeration
algorithm for listing all minimal Roman dominating functions of a given graph; we
always branch on v ∈ A(f) ∪ V1(f). The (∗) refers to the worst branchings w.r.t. our
setting of weights of ω1 = 2

3
and ω2 = 0.38488.

Phase Scenario Branching vector

1 v ∈ A(f) Subcases apply
1.1 |NG(v) ∩ A(f)| ≥ 2 (1 − ω2, 3 − 2ω1) (∗)
1.2 |NG(v) ∩ V2(f)| ≥ 2 (1 − ω2, 1 + 2ω2)

1.3

{
|NG(v) ∩ A(f)| = 1,

|NG(v) ∩ V2(f)| = 1

}

(1 − ω2, 2 + ω2 − ω1)

2 v ∈ A(f) Subcases apply
2.1 NG(v) ∩ A(f) = {x} (1 − ω2, 2)

2.2.a

{
NG(v) ∩ V2(f) = {x},

NG(x) ∩ V1(f) �= ∅

}

(1 − ω2, 1 + ω2 + ω1)

2.2.b

{
NG(v) ∩ V2(f) = {x},

|NG(x) ∩ A(f)| ≥ 2

}

(1 − ω2, 2)

2.2.c

{
NG(v) ∩ V2(f) = {x},

|NG(x)| = 1

}

(1 + ω2, 1)

3 v ∈ V1(f) Subcases apply
3.1 |NG(v) ∩ V2(f)| ≥ 3 (ω1, ω1 + 3ω2)

3.2.a

{
NG(v) ∩ V2(f) = {u},

|NG(u) ∩ V1(f)| ≥ 2

}

(ω1, 2ω1 + ω2)

3.2.b

{
NG(v) ∩ V2(f) = {u},

|NG(u) ∩ V1(f)| = 1

}

(ω1 + ω2, ω1 + ω2) (∗)

3.3.a

{
NG(v) ∩ V2(f) = {u1, u2},

|NG(u1) ∩ V1(f)| = 1

}

(ω1 + ω2, ω1 + ω2) (∗)

3.3.b

{
NG(v) ∩ V2(f) = {u1, u2},

|NG(u1) ∩ V1(f)| ≥ 2

}

(2ω1+2ω2, 2ω1+2ω2, 2ω1+2ω2, 2ω1+2ω2)
(∗)

6.4 A Measure and Conquer Approach

We now present the branching analysis, classified by the described branching
priorities. We summarize a list of all resulting branching vectors in Table 1.

Proposition 7. On input graphs of order n, Algorithm Refined RD Enu-

meration runs in time O∗(1.9332n).

Proof. We follow the run-time analysis that led us to the branching vectors listed
in Table 1. The claim follows by choosing as weights ω1 = 2

3 , ω2 = 0.38488. �

12 F. N. Abu-Khzam et al.

7 An Alternative Notion of Minimal RDF

So far, we focused on an ordering of the functions V → {0, 1, 2} that was derived
from the linear ordering 0 < 1 < 2. Due to the different functionalities, it might
be not that clear if 2 should be bigger than 1. If we rather choose as a basic partial
ordering 0 < 1, 2, with 1, 2 being incomparable, this yields another ordering for
the functions V → {0, 1, 2}, again lifted pointwise. Being reminiscent of partial
orderings, let us call the resulting notion of minimality PO-minimal rdf. This
variation would also lead to a non-trivial notion of Upper Roman Domination,
because the minimal rdf f : V → {0, 1, 2} with biggest sum

∑
v∈V f(v) is no

longer (necessarily) achieved by the constant function f = 1. Also, this can be
seen as a natural pointwise lifting of the inclusion ordering, keeping in mind that
f ≤PO g iff V1(f) ⊆ V1(g) and V2(f) ⊆ V2(g). We can obtain results that are
similar to the notion of minimality considered before; the simple enumeration
algorithm is even provably optimal in this case.

Theorem 4. Let G = (V,E) be a graph, f : V → {0, 1, 2} and abbreviate G′ :=
G [V0 (f) ∪ V2 (f)]. Then, f is a PO-minimal rdf iff the following conditions hold:
(1) NG [V2 (f)] ∩ V1 (f) = ∅, (2) V2 (f) is a minimal dominating set of G′.

Theorem 5. The extension problem ExtPO-RDF is polynomial-time solvable.

Theorem 6. There is a polynomial-space algorithm that enumerates all PO-
minimal rdf of a given graph of order n in time O∗(2n) with polynomial delay.
Moreover, there is a family of graphs Gn, with Gn being of order n, such that
Gn has 2n many PO-minimal rdf.

8 Conclusions

While the combinatorial concept of Roman domination leads to a number of
complexity results that are completely analogous to what is known about the
combinatorial concept of domination, the two concepts lead to distinctively dif-
ferent results when it comes to enumeration and extension problems. These are
the main messages and results of the present paper.

We are currently working on improved enumeration and also on counting of
minimal rdf in special graph classes. Our first results are very promising; for
instance, there are good chances to completely close the gap between lower and
upper bounds for enumerating minimal rdf for some graph classes.

Another line of research is looking into problems that are similar to Roman
domination, in order to better understand the specialties of Roman domination
in contrast to the classical domination problem. What makes Roman domination
behave different from classical domination when it comes to finding extensions
or to enumeration?

Finally, let us mention that our main branching algorithm also gives an input-
sensitive enumeration algorithm for minimal Roman dominating functions in the
sense of Chellali et al. [16]. However, we do not know of a polynomial-delay

Minimal Roman Dominating Functions: Extensions and Enumeration 13

enumeration algorithm in that case. This is another interesting line of research.
Here, the best lower bound we could find was a repetition of a C4, leading to
4
√

8 ≥ 1.68179 as the basis.

References

1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and com-
binatorial bounds for improved approximation algorithms. J. Comput. Syst. Sci.
82(3), 503–520 (2016)

2. Abu-Khzam, F.N., Heggernes, P.: Enumerating minimal dominating sets in chordal
graphs. Inf. Process. Lett. 116(12), 739–743 (2016)

3. Bazgan, C., et al.: The many facets of upper domination. Theoret. Comput. Sci.
717, 2–25 (2018)

4. Benecke, S.: Higher order domination of graphs. Master’s thesis, Department of
Applied Mathematics of the University of Stellebosch, South Africa (2004). http://
dip.sun.ac.za/∼vuuren/Theses/Benecke.pdf

5. Bermudo, S., Fernau, H.: Computing the differential of a graph: hardness, approx-
imability and exact algorithms. Discret. Appl. Math. 165, 69–82 (2014)

6. Bermudo, S., Fernau, H.: Combinatorics for smaller kernels: the differential of a
graph. Theoret. Comput. Sci. 562, 330–345 (2015)

7. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domi-
nation number of a graph. Appl. Anal. Discret. Math. 8, 155–171 (2014)

8. Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K., Schirneck, M.: Efficiently enu-
merating hitting sets of hypergraphs arising in data profiling. In: Algorithm Engi-
neering and Experiments (ALENEX), pp. 130–143. SIAM (2019)

9. Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.F.: Enumerating minimal dom-
inating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) 36th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2019).
LIPIcs, vol. 126, pp. 16:1–16:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

10. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean
functions. Optim. Methods Softw. 10(2), 147–156 (1998)

11. Casel, K., Fernau, H., Khosravian Ghadikolaei, M., Monnot, J., Sikora, F.: Exten-
sion of some edge graph problems: standard and parameterized complexity. In:
G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651,
pp. 185–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-
0 13

12. Fernau, H., Huber, K.T., Naor, J.S.: Invited talks. In: Calamoneri, T., Corò, F.
(eds.) CIAC 2021. LNCS, vol. 12701, pp. 3–19. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75242-2 1

13. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity
of solution extension of optimization problems. Theoret. Comput. Sci. 904, 48–65
(2022). https://doi.org/10.1016/j.tcs.2021.10.017

14. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for
Roman domination. SIAM J. Discret. Math. 23, 1575–1586 (2009)

15. Chapelle, M., Cochefert, M., Couturier, J.-F., Kratsch, D., Liedloff, M., Perez, A.:
Exact algorithms for weak Roman domination. In: Lecroq, T., Mouchard, L. (eds.)
IWOCA 2013. LNCS, vol. 8288, pp. 81–93. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-45278-9 8

http://dip.sun.ac.za/~vuuren/Theses/Benecke.pdf
http://dip.sun.ac.za/~vuuren/Theses/Benecke.pdf
https://doi.org/10.1007/978-3-030-25027-0_13
https://doi.org/10.1007/978-3-030-25027-0_13
https://doi.org/10.1007/978-3-030-75242-2_1
https://doi.org/10.1007/978-3-030-75242-2_1
https://doi.org/10.1016/j.tcs.2021.10.017
https://doi.org/10.1007/978-3-642-45278-9_8
https://doi.org/10.1007/978-3-642-45278-9_8

14 F. N. Abu-Khzam et al.

16. Chellali, M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., McRae, A.A.: A
Roman domination chain. Graphs Comb. 32(1), 79–92 (2016)

17. Cockayne, E.J., Dreyer, P., Jr., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discret. Math. 278, 11–22 (2004)

18. Couturier, J., Heggernes, P., van ’t Hof, P., Kratsch, D.: Minimal dominating sets
in graph classes: combinatorial bounds and enumeration. Theoret. Comput. Sci.
487, 82–94 (2013)

19. Couturier, J., Letourneur, R., Liedloff, M.: On the number of minimal dominating
sets on some graph classes. Theoret. Comput. Sci. 562, 634–642 (2015)

20. Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: A complexity theory
for hard enumeration problems. Discret. Appl. Math. 268, 191–209 (2019)

21. Dreyer, P.A.: Applications and variations of domination in graphs. Ph.D. thesis,
Rutgers University, New Jersey, USA (2000)

22. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

23. Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman dom-
ination number of a graph. Discret. Math. 309(10), 3447–3451 (2009)

24. Fernau, H.: Roman domination: a parameterized perspective. Int. J. Comput.
Math. 85, 25–38 (2008)

25. Gainer-Dewar, A., Vera-Licona, P.: The minimal hitting set generation problem:
algorithms and computation. SIAM J. Discret. Math. 31(1), 63–100 (2017)

26. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Villanger, Y.: Enumer-
ating minimal dominating sets in chordal bipartite graphs. Discret. Appl. Math.
199, 30–36 (2016)

27. Golovach, P.A., Heggernes, P., Kratsch, D.: Enumerating minimal connected dom-
inating sets in graphs of bounded chordality. Theoret. Comput. Sci. 630, 63–75
(2016)

28. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker (1998)

29. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in
Graphs. Developments in Mathematics, vol. 64. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51117-3

30. Hedetniemi, S.T., Rubalcaba, R.R., Slater, P.J., Walsh, M.: Few compare to the
great Roman empire. Congr. Numer. 217, 129–136 (2013)

31. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal
dominating sets and related notions. SIAM J. Discret. Math. 28(4), 1916–1929
(2014)

32. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algo-
rithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack,
J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3 37

33. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay
algorithm for enumerating minimal dominating sets in chordal graphs. In: Mayr,
E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 138–153. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53174-7 11

34. Kraner Šumenjak, T., Pavlić, P., Tepeh, A.: On the Roman domination in the lex-
icographic product of graphs. Discret. Appl. Math. 160(13–14), 2030–2036 (2012)

35. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles:
domination, variantes et généralisations. Ph.D. thesis, Université Paul Verlaine -
Metz, France (2007)

https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/978-3-319-21840-3_37
https://doi.org/10.1007/978-3-662-53174-7_11

Minimal Roman Dominating Functions: Extensions and Enumeration 15

36. Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Efficient algorithms for Roman domi-
nation on some classes of graphs. Discret. Appl. Math. 156(18), 3400–3415 (2008)

37. Liu, C.H., Chang, G.J.: Roman domination on 2-connected graphs. SIAM J. Dis-
cret. Math. 26(1), 193–205 (2012)

38. Liu, C.H., Chang, G.J.: Upper bounds on Roman domination numbers of graphs.
Discret. Math. 312(7), 1386–1391 (2012)

39. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Comb.
Optim. 26(3), 608–619 (2013)

40. Mary, A.: Énumération des dominants minimaux d’un graphe. Ph.D. thesis,
LIMOS, Université Blaise Pascal, Clermont-Ferrand, France, November 2013

41. Mashburn, J.L., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.:
Differentials in graphs. Utilitas Math. 69, 43–54 (2006)

42. Mobaraky, B.P., Sheikholeslami, S.M.: Bounds on Roman domination numbers of
graphs. Matematitchki Vesnik 60, 247–253 (2008)

43. Pagourtzis, A., Penna, P., Schlude, K., Steinhöfel, K., Taylor, D.S., Widmayer,
P.: Server placements, Roman domination and other dominating set variants. In:
Baeza-Yates, R.A., Montanari, U., Santoro, N. (eds.) Foundations of Information
Technology in the Era of Networking and Mobile Computing, IFIP 17th World
Computer Congress – TC1 Stream/2nd IFIP International Conference on Theo-
retical Computer Science IFIP TCS, pp. 280–291. Kluwer (2002). Also available
as Technical report 365, ETH Zürich, Institute of Theoretical Computer Science,
10/2001

44. Peng, S.L., Tsai, Y.H.: Roman domination on graphs of bounded treewidth. In:
The 24th Workshop on Combinatorial Mathematics and Computation Theory, pp.
128–131 (2007)

45. ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: a classical problem
in military strategy. Am. Math. Monthly 107, 585–594 (2000). http://www.jhu.
edu/∼jhumag/0497web/locate3.html

46. van Rooij, J.M.M.: Exact exponential-time algorithms for domination problems in
graphs. Ph.D. thesis, Universiteit Utrecht, The Netherlands (2011)

47. Shang, W., Wang, X., Hu, X.: Roman domination and its variants in unit disk
graphs. Discret. Math. Algorithms Appl. 2(1), 99–106 (2010)

48. Shi, Z., Koh, K.M.: Counting the number of minimum Roman dominating functions
of a graph. Technical report, arXiv/CoRR, abs/1403.1019 (2014)

49. Stewart, I.: Defend the Roman empire. Sci. Am. 281(6), 136–138 (1999)
50. Xing, H.M., Chen, X., Chen, X.G.: A note on Roman domination in graphs. Discret.

Math. 306(24), 3338–3340 (2006)
51. Xueliang, F., Yuansheng, Y., Baoqi, J.: Roman domination in regular graphs. Dis-

cret. Math. 309(6), 1528–1537 (2009)
52. Yero, I.G., Rodŕıguez-Velázquez, J.A.: Roman domination in Cartesian product

graphs and strong product graphs. Appl. Anal. Discret. Math. 7, 262–274 (2013)

http://www.jhu.edu/~jhumag/0497web/locate3.html
http://www.jhu.edu/~jhumag/0497web/locate3.html

Disjoint Compatibility via Graph Classes

Oswin Aichholzer1 , Julia Obmann1, Pavel Paták2, Daniel Perz1(B) ,
Josef Tkadlec3 , and Birgit Vogtenhuber1

1 Graz University of Technology, Graz, Austria
{oaich,daperz,bvogt}@ist.tugraz.at, julia.obmann@student.tugraz.at

2 Czech Technical University in Prague, Prague, Czech Republic
patak@kam.mff.cuni.cz

3 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
tkadlec@math.harvard.edu

Abstract. Two plane drawings of graphs on the same set of points are
called disjoint compatible if their union is plane and they do not have
an edge in common. Let S be a convex point set of 2n ≥ 10 points and
let H be a family of plane drawings on S. Two plane perfect matchings
M1 and M2 on S (which do not need to be disjoint nor compatible) are
disjoint H-compatible if there exists a drawing in H which is disjoint
compatible to both M1 and M2. In this work, we consider the graph
which has all plane perfect matchings as vertices and where two vertices
are connected by an edge if the matchings are disjoint H-compatible.
We study the diameter of this graph when H is the family of all plane
spanning trees, caterpillars or paths. We show that in the first two cases
the graph is connected with constant and linear diameter, respectively,
while in the third case it is disconnected.

Keywords: Compatibility · Convex Set · Matchings

1 Introduction

In this work we study straight-line drawings of graphs. Two plane drawings
of graphs on the same set S of points are called compatible if their union is
plane. The drawings are disjoint compatible if they are compatible and do not

Research on this work was initiated at the 6th Austrian-Japanese-Mexican-Spanish
Workshop on Discrete Geometry and continued during the 16th European Geometric
Graph-Week, both held near Strobl, Austria. We are grateful to the participants for
the inspiring atmosphere. We especially thank Alexander Pilz for bringing this class
of problems to our attention. D.P. is partially supported by the FWF grant I 3340-
N35 (Collaborative DACH project Arrangements and Drawings). The research stay
of P.P. at IST Austria is funded by the project CZ.02.2.69/0.0/0.0/17 050/0008466
Improvement of internationalization in the field of research and development at Charles
University, through the support of quality projects MSCA-IF.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 734922.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 16–28, 2022.
https://doi.org/10.1007/978-3-031-15914-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_2&domain=pdf
http://orcid.org/0000-0002-2364-0583
http://orcid.org/0000-0002-6557-2355
http://orcid.org/0000-0002-1097-9684
http://orcid.org/0000-0002-7166-4467
https://doi.org/10.1007/978-3-031-15914-5_2

Disjoint Compatibility via Graph Classes 17

have an edge in common. For a fixed class G, e.g. matchings, trees, etc., of
plane geometric graphs on S the (disjoint) compatibility graph of S has the
elements of G as the set of vertices and an edge between two elements of G if
the two graphs are (disjoint) compatible. For example, it is well known that
the (not necessarily disjoint) compatibility graph of plane perfect matchings is
connected [4,5]. Moreover, in [2] it is shown that there always exists a sequence
of at most O(log n) compatible (but not necessarily disjoint) perfect matchings
between any two plane perfect matchings of a set of 2n points in general position,
that is, the graph of perfect matchings is connected with diameter O(log n). On
the other hand, Razen [11] provides an example of a point set where this diameter
is Ω(log n/ log log n).

Disjoint compatible (perfect) matchings have been investigated in [2] for sets
of 2n points in general position. The authors showed that for odd n there exist
perfect matchings which are isolated vertices in the disjoint compatibility graph
and posed the following conjecture: For every perfect matching with an even
number of edges there exists a disjoint compatible perfect matching. This con-
jecture was answered in the positive by Ishaque et al. [7] and it was mentioned
that for even n it remains an open problem whether the disjoint compatibility
graph is always connected. In [1] it was shown that for sets of 2n ≥ 6 points in
convex position this disjoint compatibility graph is (always) disconnected.

Both concepts, compatibility and disjointness, are also used in combination
with different geometric graphs. For example, in [5] it was shown that the flip-
graph of all triangulations that admit a (compatible) perfect matching, is con-
nected1. It has also been shown that for every graph with an outerplanar embed-
ding there exists a compatible plane perfect matching [3]. Considering plane trees
and simple polygons, the same work provides bounds on the minimum number of
edges a compatible plane perfect matching must have in common with the given
graph. For simple polygons, it was shown in [10] that it is NP-hard to decide
whether there exist a perfect matching which is disjoint compatible to a given
simple polygon. See also the survey [6] on the related concept of compatible
graph augmentation.

In a similar spirit we can define a bipartite disjoint compatibility graph,
where the two sides of the bipartition represent two different graph classes. Let
one side be all plane perfect matchings of S while the other side consists of
all plane spanning trees of S. Edges represent the pairs of matchings and trees
which are disjoint compatible. Considering connectivity of this bipartite graph,
there trivially exist isolated vertices on the tree side – consider a spanning star,
which can not have any disjoint compatible matching. Thus, the question remains
whether there exists a bipartite connected subgraph which contains all vertices
representing plane perfect matchings.

This point of view leads us to a new notion of adjacency for perfect match-
ings. For a given set S of 2n points and a family H of drawings on S, two
plane perfect matchings M1 and M2 (which do not need to be disjoint nor com-
patible) are disjoint H-compatible if there exists a drawing D in H which is

1 In the flip-graph, two triangulations are connected if they differ by a single edge.

18 O. Aichholzer et al.

Fig. 1. Two plane perfect matchings (in blue) on the same set of twelve points in
convex position which are disjoint T -compatible. The complying disjoint compatible
spanning tree is drawn in green. (Color figure online)

disjoint compatible to both M1 and M2; see Fig. 1 for an example. The disjoint
H-compatibility graph DCGS(H) has all plane perfect matchings of S as ver-
tices. We have an edge between the vertices corresponding to M1 and M2 if M1

and M2 are disjoint H-compatible. In other words, they are two steps apart in
the corresponding bipartite disjoint compatibility graph. Rephrasing the above
question, we ask whether DCGS(H) is connected. Recall that the disjoint com-
patibility graph for perfect matchings alone is not connected (see [1,2]).

In this work we study the case where S is a set of 2n points in convex position
and consider the cases where H is the family T of all plane spanning trees, the
family C of all plane spanning caterpillars, or the family P of all plane spanning
paths. We show that DCGS(T) and DCGS(C) are connected if 2n ≥ 10. In
that case the diameter of DCGS(T) is either 4 or 5, independent of n, and the
diameter of DCGS(C) is O(n). On the other hand we show that DCGS(P) is
disconnected.

From here on, if not said otherwise, all matchings, trees, caterpillars and
paths are on point sets in convex position and are plane. Hence, we omit the word
’plane’ for these drawings. Further, all matchings considered in this work are
perfect matchings. Due to space restrictions most proofs are sketched or omitted.
This work is partially based on the master’s thesis of the second author [9].

2 Preliminaries

Throughout this article let S be a set of 2n points in the plane in convex position.
The edges of a drawing on S can be classified in the following way. We call edges,
that are spanned by two neighboring points of S, perimeter edges; all other edges
spanned by S are called diagonals. We call matchings without diagonals perime-
ter matchings. Note that there are exactly two perfect perimeter matchings. We
label the perimeter edges alternately even and odd. The even perimeter match-
ing consists of all even perimeter edges. The odd perimeter matching consists of
all odd perimeter edges.

Looking at a matching M on S, the edges of M split the convex hull of S
into regions, such that no edge of M crosses any region. More formally, we call a
set X ⊂ M of k ≥ 2 matching edges a k-semicycle if no edge of M intersects the

Disjoint Compatibility via Graph Classes 19

Fig. 2. Left: A matching M and two semicycles X1 (red edges) and X2 (blue edges)
with their convex hulls. The cycle X1 is an inside 4-cycle, since the boundary of the
red shaded area contains at least two (in fact three) diagonals. The cycle X2 is a 4-ear.
Right: The matching resulting from rotating the cycle X1. (Color figure online)

interior of the convex hull of X. Further, we call the boundary of the convex hull
of X a k-cycle, denoted by X. If X contains at least two diagonals of S, then we
call X an inside k-semicycle. Otherwise, we call X a k-semiear (this includes
perimeter matchings); see Fig. 2. Analogously, we denote cycles as inside k-cycles
or inside k-ears, respectively.

Consider a perfect matching M and a semicycle X of M . We say that we
rotate X if we take all edges of M and replace X by X\X, which gives us a
perfect matching M ′. So the symmetric difference of M and M ′ is exactly X.

3 Disjoint Compatibility via Spanning Trees

In this section we show that for convex point sets S of 2n ≥ 10 points, the
disjoint compatibility graph DCGS(T) is connected. We further prove that the
diameter is upper bounded by 5. The idea is that any matching on S has small
distance to one of the two perimeter matchings and those themselves are close
to each other in DCGS(T). First we show that arbitrarily many inside cycles
can be simultaneously rotated in one step.

Lemma 1. Let M and M ′ be two matchings whose symmetric difference is a
union of disjoint inside cycles. Then M and M ′ are T -compatible to each other.

Proof Idea. First we focus on one inside cycle X. Let u1v1 and u2v2 be two
diagonals of X, labeled as in Fig. 3. Note that v1 and u2 might be the same
point if each of M and M ′ contains one of u1v1 and u2v2. We take the edges
from u1 to any point between v1 and u2 and from u2 to any point between v2
and u1 including u1. This yields a tree on the points of X except v1 and v2.

Now we do this for every inside cycle. The resulting trees and the remaining
points can be connected in a greedy way to a spanning tree that is disjoint
compatible to both M and M ′. ��

We next consider sufficiently large ears. The following lemma states that such
ears can be rotated in at most three steps; see Fig. 4 for a sketch of this sequence

20 O. Aichholzer et al.

Fig. 3. Two plane matchings (in blue and red) on S which whose symmetric difference
is an inside cycle. The complying disjoint compatible spanning tree is drawn in green.
(Color figure online)

of rotations, whose proof uses Lemma 1. Note that Lemma 2 also implies that
the two perimeter matchings have distance at most 3 in DCGS(T).

Lemma 2. Let M and M ′ be two matchings whose symmetric difference is a
k-ear with k ≥ 6. Then M and M ′ have distance at most 3 in DCGS(T).

Fig. 4. Rotation of a 6-ear in 3 steps (in each step we rotate the grey inside cycle).

Theorem 1. For 2n ≥ 10, the graph DCGS(T) is connected with diameter
diam(DCGS(T)) ≤ 5.

Proof Idea. If 2n = 10, the claim can be checked by constructing the whole graph.
For 2n ≥ 12, the idea is to show that all matchings can be quickly transformed
either to the odd perimeter matching O or to the even perimeter matching E
(or to both – by Lemma 2 we have dist(O,E) ≤ 3). In particular, for a fixed
matching M we denote by dmin(M) (resp. dmax(M)) the distance from M to the
closer (resp. further) perimeter matching. Then we prove that the non-perimeter
matchings can be split into three classes A1, A2, A3 with the following properties:

1. ∀M ∈ A1 we have dmin(M) ≤ 1 (and hence dmax(M) ≤ 1 + 3 = 4);
2. ∀M ∈ A2 we have dmin(M) ≤ 2 and dmax(M) ≤ 3;
3. ∀M ∈ A3 we have dmax(M) ≤ 3 and ∀M,M ′ ∈ A3 we have dist(M,M ′) ≤ 4.

See Fig. 5 for a depiction. This guarantees that diam(DCGS(T)) ≤ 5. ��

Disjoint Compatibility via Graph Classes 21

Fig. 5. Depiction of the partitioning of the set of all non-perimeter matchings into
subsets A1 = AE

1 ∪ AO
1 , A2 = AE

2 ∪ AO
2 , and A3, with bounds on their distances.

3.1 A Lower Bound for the Diameter of DCGS (T)

Since the diameter of DCGS(T) has a constant upper bound, is seems reasonable
to also ask for a best possible lower bound. To do so, we first identify structures
which prevent that two matchings are T -compatible. Let M and M ′ be two
matchings in S. A boundary area with k points is an area within the convex
hull of S containing k points of S that is bounded by edges in M and M ′ such
that these edges form at least one crossing and such that all points of S on
the boundary of the area form a sequence of consecutive points of S along the
boundary of the convex hull of S; see Fig. 6.

Fig. 6. Boundary areas with five points (left) and three points (middle). The drawing
on the right does not show a boundary area; not all points are neighboring on the
convex hull of S. (Color figure online)

We next define two special matchings. A 2-semiear matching is a matching
on a set of 4k points consisting of exactly k 2-semiears and an inside k-semicycle
(with all its edges being diagonals). Similarly, a near-2-semiear matching is a
matching on a set of 4k + 2 points consisting of exactly k 2-semiears and an
inside (k + 1)-semicycle; see Fig. 7.

As for perimeter matchings, we distinguish between odd and even (near-)
2-semiear matchings. If the perimeter edges of the 2-semiears are labeled ’even’
then we call the (near-)2-semiear matching even, otherwise we call it odd.

22 O. Aichholzer et al.

Fig. 7. Left: A 2-semiear matching. Right: A near-2-semiear matching.

Lemma 3. Let M , M ′ be two matchings whose symmetric difference is an ear or
a boundary area with at least three points. Then M and M ′ are not T -compatible
to each other.

Proof Idea. Assuming that M and M ′ are both compatible to a tree T , we show
that the points of an ear or boundary area span at most two induced subtrees
of T . A counting argument on numbers of edges gives then a contradiction. ��

Lemma 4. Let M be a matching that is T -compatible to an even (odd) 2-
semiear-matching. Then M contains no odd (even) perimeter edge.

Proof Idea. Adding an odd perimeter edge always yields either an ear or a bound-
ary area with at least three points. ��

The following lemma can be proven in a similar way.

Lemma 5. Let M be a matching that is T -compatible to a near-2-semiear-
matching M ′ consisting of k even (odd) and one odd (even) perimeter edge.
Then M contains at most one odd (even) perimeter edge, which is the one in
M ′.

Lemma 6. Let M and M ′ be two T -compatible matchings. Then M and M ′

have at least two perimeter edges in common.

Proof Idea. We argue here why M and M ′ have one perimeter edge in common.
The arguments can be extended to show that M and M ′ have at least two
perimeter edges in common.

If M contains a semiear of size at least three, then one of the perimeter edges
of this semiear is in M ′. Otherwise the union of m and M ′ contains one of the
structures depicted in Fig. 8, which all prevent a disjoint spanning tree.

So we can assume that M only has 2-semiears. If M ′ contains the perimeter
edge of a 2-semiear of M , then we are done. So assume this is not the case. If
we have a union of M and M ′ which looks locally like Fig. 9(a) or Fig. 9(b) then
M and M ′ are not disjoint T -compatible. So the only possibility that M and
M ′ are disjoint T -compatible and do not share a perimeter edge of a 2-semiear
is depicted in Fig. 9(c). Out of the 2-semiears of M we choose the one with no
further semiear of M on one side of a diagonal d in M ′. This is possible since

Disjoint Compatibility via Graph Classes 23

Fig. 8. All possible cases for a semiear of size k ≥ 3 in a matching M (in red) and a
second matching M ′ (in blue) which does not use any of the perimeter edges in M .
The solid edges are the ones defining each case. (Color figure online)

Fig. 9. All possible cases for a 2-ear in a matching M (in red) and a second matching
M ′ (in blue) which does not use the perimeter edges in M . (Color figure online)

the number of semiears is finite and the diagonals in M ′ cannot intersect each
other, therefore there is an ordering of the 2-semiears in M . Since d is a diagonal,
there exists a semiear E′ on this side of d in M ′. Every edge of M on this side of d
is a perimeter edge or intersects d, since there does not exist a semiear on this side
of d in M . If E′ is a 2-semiear and one diagonal in M intersects d, we get another
blocking structure. This means that the perimeter edge of E′ is also in M . ��

Corollary 1. Let S be of size 2n ≥ 10. For even n, the distance between an
even 2-semiear matching and an odd 2-semiear matching is at least 4.
For odd n, let M be a near-2-semiear matching with a single even perimeter edge
e and let M ′ be a near-2-semiear matching with a single even perimeter edge e′

that shares a vertex with e. Then the distance between M and M ′ is at least 4.

Proof Idea. We obtain the statement by applying Lemma 4 (for n even) or 5 (for
n odd), respectively, and Lemma 6; cf. Fig. 10. ��

4 Disjoint Caterpillar-Compatible Matchings

A natural question is what happens if we do not take the set of all plane spanning
trees, but a smaller set.

A caterpillar (from p to q) is a tree which consists of a path (from p to q,
also called spine) and edges with one endpoint on the path. These latter are
also called the legs of the caterpillar. We denote the set of all plane spanning
caterpillars by C. Furthermore, a one-legged caterpillar is a caterpillar where
every vertex of the spine is incident to at most one leg. We denote the family of
all plane spanning one-legged caterpillars in S by C3. Note that every vertex of
a one-legged caterpillar has degree at most 3. Hence, one-legged caterpillars are
special instances of trees with maximum degree 3.

24 O. Aichholzer et al.

Fig. 10. The distance between two special 2-semiear matchings (top row) and between
two special near-2-semiear matchings (bottom row) is at least 4. Even perimeter edges
are drawn in red, odd ones are drawn in blue. The numbers next to the edges indicate
which Lemma is applied. (Color figure online)

Lemma 7. For any edge e = pq of a matching M there exists a plane one-legged
caterpillar compatible to M from p to q which spans all points between p and q
along the boundary of the convex hull of S (on either side of e).

Fig. 11. A matching (in blue) and a compatible caterpillar (in green) constructed in
the proof of Lemma 7. (Color figure online)

Proof Idea. We construct the caterpillar C in a greedy way from p to q. Assume
we are at a point x and the next two points are y and z. If xy is not an edge of
M , we add xy to C and continue from y. Otherwise, if xy is an edge of M , then
xz and yz are not edges of M . We add xz and yz to C and continue from z.
By construction, every spine vertex has at most one leg. So we constructed a
one-legged caterpillar. An example is depicted in Fig. 11. ��

Note that every matching M contains a perimeter edge and by Lemma 7
there also exists a caterpillar which is disjoint compatible to M . Further, by
construction p is incident to only one edge.

Lemma 8. Let M and M ′ be two matchings whose symmetric difference is an
inside cycle. Then M and M ′ are disjoint C-compatible.

Proof Idea. For every diagonal of the inside cycle we get a caterpillar by Lemma 7.
We merge caterpillars which have a point in common. This yields a set of (in

Disjoint Compatibility via Graph Classes 25

Fig. 12. Constructed caterpillar (in green) for two disjoint C-compatible matchings (in
red and blue, common edges in blue). (Color figure online)

general non-spanning) caterpillars on S. One can connect the caterpillars of this
set in a zig-zag way and add the remaining points like a fan; see Fig. 12. ��

Note that Lemma 8 is a sufficient condition for C-compatibility of matchings
similar to Lemma 1 for T -compatibility. Adapting the proof of Theorem 1 to
rotate only one cycle (instead of several) per step, and noting that the number
of cycles is O(n), we get the following theorem.

Theorem 2. For 2n ≥ 10, the graph DCGS(C) is connected with diameter
diam(DCGS(C)) = O(n).

Next we consider disjoint C3-compatible matchings. As before, we first find
a sufficient condition for their compatibility.

Lemma 9. Let M and M ′ be two matchings whose symmetric difference is an
inside 2-cycle. Then M and M ′ are disjoint C3-compatible.

Fig. 13. All possibilities for an inside 2-cycle (in red and blue) with a disjoint compat-
ible caterpillar (in green). The half circles are caterpillars. (Color figure online)

Proof Idea. We have four cases depending on how many edges of the 2-cycle
are diagonals and their relative position. The four cases are depicted in Fig. 13.

26 O. Aichholzer et al.

In the leftmost case, where exactly two diagonals share a point, we take two
one-legged caterpillars from q2 to q1 and q3, respectively, constructed as in the
proof of Lemma 7. Note that each such caterpillar has degree 1 at its start point.
Hence, together with the edge q2q4 they form a one-legged caterpillar which is
disjoint compatible to both M and M ′. The other cases work similarly. ��

With this, we can show the following theorem.

Theorem 3. For 2n ≥ 10, the graph DCGS(C3) is connected and has diameter
diam(DCGS(C3)) = O(n).

Proof Idea. We first show that any two matchings M and M ′ whose symmetric
difference is a single inside cycle K are connected in DCGS(C3). An inside cycle
K can always be split into interior-disjoint inside 2-cycles K1, . . . ,Kr; cf. Fig. 14.
Note that every edge of K is in exactly one of K1, . . . ,Kr. Further, every edge
of Ki, 1 ≤ i ≤ r, in the interior of K is in exactly two of K1, . . . ,Kr. Let
M0, . . . ,Mr be matchings such that the symmetric difference of Mi−1 and Mi is
Ki for i = 1, . . . r. Then by Lemma 9, Mi−1 and Mi are disjoint C3-compatible.
Further, the symmetric difference of M0 and Mr is K, implying that M and M ′

are connected in DCGS(C3).
Combining this result with the proof of Theorem 2, it follows that DCGS(C3)

is connected.

Fig. 14. Subdivision of an inside 6-cycle into five inside 2-cycles.

The bound on diameter then follows from the bound on diameter of
DCGS(T) in combination with the fact that any set of disjoint inside cycles
can be split into O(n) disjoint inside 2-cycles. ��

5 Disjoint Path-Compatible Matchings

Let P be the family of all spanning paths on S. Note that paths are special
instances of trees and caterpillars. The following proposition states that in con-
trast to trees and caterpillars, DCGS(P) is disconnected.

Proposition 1. Let M be a plane matching on S with at least three semiears.
Then there is no spanning path on S which is disjoint compatible to M , that is,
M is an isolated vertex in DCGS(P).

Disjoint Compatibility via Graph Classes 27

Proof Idea. If there exists a spanning path P ∈ P compatible to M , then P has
an end in every semiear of M . Since every path has only two ends, P cannot end
in more than two semiears. ��

From Proposition 1 it follows that DCGS(P) contains isolated vertices if S is
a set of at least 12 points. Note that there are also matchings with two semiears
that are not compatible to any spanning path. On the other hand, one might ask
whether all matchings which are disjoint P-compatible to some other matching
are in one connected component of DCGS(P). The following proposition gives
a negative answer to that question.

Proposition 2. The two perimeter matchings are not connected in DCGS(P).

Proof Idea. We show that every matching that is in the component of DCGS(P)
containing the even perimeter matching has only even semiears2. Assume to
the contrary that there exist two disjoint P-compatible matchings M and M ′

such that M has only even semiears and M ′ has an odd semiear. Then, roughly
speaking, the union of M and M ′ has either three disjoint semiears (which gives
a contradiction by Proposition 1) or at least one ear or one boundary area of
size at least 3, which also gives a contradiction by Lemma 3. Since the odd
perimeter matching does have an odd ear (is an odd ear), it cannot be in the
same component as the even perimeter matching. ��

We remark that several more observations on DCGS(P) can be found in [9].

6 Conclusion and Discussion

We have shown that the diameter of the disjoint T -compatible graph DCGS(T)
for point sets S of 2n points in convex position is 4 or 5 when 2n ≥ 10.

We conjecture that the diameter of DCGS(T) is 4 for all 2n ≥ 18. An
open question is the computational complexity of determining whether two given
matchings have distance 3 in DCGS(T).

For DCGS(C) and DCGS(C3), we showed that their diameters are both in
O(n). Determining whether those two diameters are (asymptotically) the same,
and what their precise values are, remains open.

Regarding spanning paths we showed that DCGS(P) is disconnected, with
no connection between the two perimeter matchings and many isolated vertices.

Further natural open questions include determining whether DCGS(T) is
connected for general point sets, and whether there exist point sets S such that
DCGS(P) is connected.

We remark that our main approach for bounding diameters was to rotate
inside semicycles. A similar approach has also been used in a different setting of
flip graphs of matchings. A difference is that in the flip graph setting, semiears
can be flipped, which is not possible in the disjoint T -compatible setting. On the
other hand, one can flip only one semicycle, or even only two edges at a time.
A recent related work on flip graphs is [8]. There, so-called centered flips in

2 Even (odd) semiears have only even (odd) perimeter edges.

28 O. Aichholzer et al.

matchings on convex point sets are considered. A centered flip is the rotation of
an empty quadrilateral that contains the center of the point set. This operation is
more restrictive than our rotation of quadrilaterals for DCGS(C3), as can also be
seen by the fact that the flip graph of matchings with centered flips is sometimes
disconnected.

References

1. Aichholzer, O., Asinowski, A., Miltzow, T.: Disjoint compatibility graph of non-
crossing matchings of points in convex position. Electron. J. Comb. 22, 1–65 (2015).
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65

2. Aichholzer, O., et al.: Compatible geometric matchings. Comput. Geom. Theor.
Appl. 42(6–7), 617–626 (2009)

3. Aichholzer, O., Garćıa, A., Hurtado, F., Tejel, J.: Compatible matchings in geo-
metric graphs. In: Proceeding XIV Encuentros de Geometŕıa Computacional, pp.
145–148. Alcalá, Spain (2011)

4. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings.
Graphs Comb. 18(3), 517–532 (2002). https://doi.org/10.1007/s003730200038

5. Houle, M.E., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations
and perfect matchings. Graphs Comb. 21(3), 325–331 (2005). https://doi.org/10.
1007/s00373-005-0615-2

6. Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspec-
tive. In: Thirty Essays on Geometric Graph Theory, pp. 327–354. Springer (2013).
https://doi.org/10.1007/978-1-4614-0110-0 17

7. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings.
Discrete Comput. Geom. 49(1), 89–131 (2013)

8. Milich, M., Mütze, T., Pergel, M.: On flips in planar matchings. Discret. Appl.
Math. 289, 427–445 (2021)

9. Obmann, J.: Disjoint Compatibility of Plane Perfect Matchings via other Graph
Classes. Master’s thesis, Graz University of Technology (2020)

10. Pilz, A., Rollin, J., Schlipf, L., Schulz, A.: Augmenting geometric graphs with
matchings. In: GD 2020. LNCS, vol. 12590, pp. 490–504. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-68766-3 38

11. Razen, A.: A lower bound for the transformation of compatible perfect matchings.
In: Proceedings of EuroCG, pp. 115–118 (2008)

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65
https://doi.org/10.1007/s003730200038
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1007/978-1-4614-0110-0_17
https://doi.org/10.1007/978-3-030-68766-3_38

Testing Isomorphism of Chordal Graphs
of Bounded Leafage is Fixed-Parameter

Tractable (Extended Abstract)

Vikraman Arvind1, Roman Nedela2, Ilia Ponomarenko3, and Peter Zeman4(B)

1 The Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

2 Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic
nedela@savbb.sk

3 V. A. Steklov Institue of Mathematics, Russian Academy of Sciences,
St. Petersburg, Russia

inp@pdmi.ras.ru
4 Institut de mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland

zeman.peter.sk@gmail.com

Abstract. The computational complexity of the graph isomorphism
problem is considered to be a major open problem in theoretical com-
puter science. It is known that testing isomorphism of chordal graphs
is polynomial-time equivalent to the general graph isomorphism prob-
lem. Every chordal graph can be represented as the intersection graph of
some subtrees of a representing tree, and the leafage of a chordal graph is
defined to be the minimum number of leaves in a representing tree for it.
We prove that chordal graph isomorphism is fixed parameter tractable
with leafage as parameter.

Keywords: graph isomorphism · chordal graphs · leafage · fixed
parameter tractable problem

1 Introduction

The graph isomorphism problem is one of the few natural problems in NP that
is neither known to be NP-complete nor it is known to be polynomial-time
solvable. In his breakthrough work, Babai [4] proved that the graph isomorphism
problem is solvable in quasipolynomial time, i.e., in time npoly(log n), where n is
the number of vertices.

The full version of this paper is available on arXiv [2]. Roman Nedela was supported
by GAČR 20-15576S and APVV-19-0308. Peter Zeman was supported by the Swiss
National Science Foundation project PP00P2-202667. While at Department of Applied
Mathematics, Faculty of Mathematics and Physics, Charles University, Peter Zeman
was supported by GAČR 20-15576S.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 29–42, 2022.
https://doi.org/10.1007/978-3-031-15914-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-15914-5_3

30 V. Arvind et al.

A significant line of research concerns the parameterized complexity of
the graph isomorphism problem with respect to some natural graph param-
eter. These include treewidth [18], degree [14,20], genus [21,23], excluded
minors [15,22], etc. It is worth mentioning that in several of these cases, Babai’s
new techniques have yielded new algorithms with improved running time. For
example, Luks’s original algorithm with running time nO(k) for degree-k graphs
has a modified npoly(log k)-time algorithm [14,20]. However, in some of these cases
a fixed-parameter tractable (FPT) algorithm, i.e., an algorithm with running
time f(k) poly(n), have remained elusive. Such an improvement likely cannot be
obtained using known techniques and would require some new techniques and
ideas.

In our work, we deal with parameterized complexity of the graph isomorphism
problem for the class of chordal graphs. An undirected graph is said to be chordal
if it has no chordless cycle of length at least four. Every chordal graph admits a
representation as the intersection graph of subtrees of some tree T [13]. In this
case, we say that T is a representing tree for X. The leafage �(X) of a chordal
graph X is the least positive integer such that X has a representing tree with
�(X) leaves. The notion of leafage was introduced in [17] and is a natural graph
parameter for chordal graphs.

It is interesting to note that the well-studied interval graphs are precisely
the intersection graphs of paths. It follows that �(X) ≤ 2 if and only if X
is an interval graph (and �(X) = 1 if and only if X is complete). Thus, the
leafage of a chordal graph X measures how far it is from being an interval
graph, which has interesting algorithmic consequences. For instance, efficient
solutions to certain NP-hard problems on interval graphs naturally extend to
chordal graphs of bounded leafage; e.g., [25].

Graph Isomorphism restricted to chordal graphs is polynomial-time equiv-
alent to Graph Isomorphism for general graphs [19, Theorem 5]. On the other
hand, the problem can be solved in polynomial (even linear time) for interval
graphs [19]. The main result of the present paper can be considered as a sub-
stantial generalization of the latter.

Theorem 1. Testing isomorphism of chordal graphs of leafage � is fixed param-
eter tractable, with � as fixed parameter.

The leafage of chordal graphs is known to be polynomial-time computable
[16]. Denote by K� the class of all chordal graphs of leafage at most �. In partic-
ular, the graph class K� is polynomial-time recognizable.

In order to test if two connected graphs X,Y ∈ K� are isomorphic, it suffices
to check if there is a generator of the automorphism group of their disjoint union
X ∪ Y , which swaps X and Y . Since the graph X ∪ Y belongs to the class K2�,
the graph isomorphism problem for the graphs in K� is reduced to the problem of
determining the automorphism group of a given graph in K2�. Thus Theorem 1
is an immediate consequence of the following theorem which is proved in the
paper.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 31

Theorem 2. Given an n-vertex graph X ∈ K�, a generating set of the group
Aut(X) can be found in time t(�) poly(n), where t(·) is a function independent
of n.

The function t from Theorem 2 is bounded from above by a polynomial
in (�2�)!. The running time bound, especially the function t, does not appear to
be final and, most likely, it can be significantly improved.

We emphasize that our algorithm does not require that the input X is given
by an intersection representation. Indeed, the algorithm works correctly on all
chordal graphs and the leafage bound � is required only to bound the running
time for inputs from the class K�.

The proof of Theorem 2 is given in Sect. 7. The main steps involved in the
algorithm are: (a) to transform the given graph X efficiently into an order-3
hypergraph H = H(X) (see below), (b) to give an algorithm for computing a
generating set for Aut(H), and (c) to recover from it a generating set for Aut(X).

This brings us to the notion of higher-order hypergraphs. A usual hypergraph
with vertex set V has hyperedge set contained in the power set E1 = 2V . The
hyperedges of an order-3 hypergraph H will, in general, include order-2 and
order-3 hyperedges. These are elements of E2 = 2E1 and E3 = 2E2 , respectively.
The hyperedge set E of H is contained in E1 ∪ E2 ∪ E3 and can be of triple-
exponential size in |V |. However, the input size of H is defined to be |V | · |E|, for
H given as input to an algorithm. The efficient reduction from finding Aut(X) to
finding Aut(H) is presented in Sects. 4 and 5. The key point of the reduction is a
graph-theoretical analysis of the vertex coloring of the chordal graph X obtained
by the 2-dimensional Weisfeiler-Leman algorithm [26]. The reduction takes X
as input and computes the colored order-3 hypergraph H such that each vertex
color class of H has size at most b = �2�, where � = �(X).

At this point, we deal with the general problem of determining the automor-
phism group of a colored order-k hypergraph H (k ≥ 1) by an FPT algorithm
with respect to the parameter b which bounds the size of each vertex color class.
This problem seems interesting in itself and could find other applications. For
ordinary hypergraphs, it was shown to be fixed parameter tractable in [3]. A gen-
eralization of that result to order-k hypergraphs is given in Sect. 6. The running
time bound we obtain is not FPT in terms of the parameter k.

We complete the introduction with some remarks about H-graphs introduced
in [5]. An H-graph X is an intersection graph of connected subgraphs of a
subdivision of a fixed graph H. Every graph is an H-graph for a suitable H,
which gives a parameterization for all graphs. It is interesting to note that we
can get well-known graph classes as H-graphs for suitable choices of H. For
instance, interval graphs are K2-graphs, circular-arc graphs are K3-graphs, and
chordal graphs are the union of all T -graphs, where T is a tree.

Basic algorithmic questions on H-graphs, including their recognition and
isomorphism testing, have been studied, e.g., [8,9,12]. It is shown in [1] that iso-
morphism testing for Sd-graphs, where Sd is a star of degree d, is fixed parameter
tractable. Since Sd-graphs are chordal graphs of leafage at most d, our FPT algo-
rithm applied to chordal graphs with bounded leafage significantly extends that

32 V. Arvind et al.

result [1].1 On the other hand, the isomorphism problem for H-graphs is as hard
as the general graph isomorphism problem if H is not unicyclic [10]. Thus, it
remains open whether isomorphism can be solved in polynomial time for the
unicyclic case with fixed number of leaves, which would provide a dichotomy for
parameterization by H-graphs. Our work can be also considered a step towards
this dichotomy.

2 Preliminaries

General Notation. Throughout the paper, Ω is a finite set. Given a bijection f
from Ω to another set and a subset Δ ⊆ Ω, we denote by fΔ the bijection from Δ
to Δf = {δf : δ ∈ Δ}. For a set S of bijections from Ω to another set, we put
SΔ = {fΔ : f ∈ S}.

Let π be a partition of Ω. The set of all unions of the classes of π is denoted
by π∪. The partition π is a refinement of a partition π′ of Ω if each class of π′

belongs to π∪; in this case, we write π ≥ π′, and π > π′ if π ≥ π′ and π �= π′.
The partition of Δ ⊆ Ω induced by π is denoted by πΔ.

Graphs. Let X be an undirected graph. The vertex and edge sets of X are
denoted by Ω(X) and E(X), respectively. The automorphism group of X is
denoted by Aut(X). The set of all isomorphisms from X to a graph X ′ is denoted
by Iso(X,X ′).

The set of all leaves and of all connected components of X are denoted
by L(X) and Conn(X), respectively. For a vertex α, we denote by αX the set of
neighbors of α in X. The vertices α and β are called twins in X if every vertex
other than α and β is adjacent either to both α and β or neither of them. The
graph X is said to be twinless if no two distinct vertices of X are twins.

Let Δ,Γ ⊆ Ω(X). We denote by XΔ,Γ the graph with vertex set Δ ∪ Γ in
which two vertices are adjacent if and only if one of them is in Δ, the other one
is in Γ , and they are adjacent in X. Thus, XΔ = XΔ,Δ is the subgraph of X
induced by Δ, and XΔ,Γ is bipartite if Δ ∩ Γ = ∅.

Let Δ ⊆ Ω(X) and Y = XΔ. The set of all vertices adjacent to at least
one vertex of Δ and not belonging to Δ is denoted by ∂Y . The subgraph of X,
induced by Δ ∪ ∂Y is denoted by Y .

For a tree T , let S(T) = {Ω(T ′) : T ′ is a subtree of T} be the set of all
vertex sets of the subtrees of T . A representation of a graph X = (Ω,E) on the
tree T (called tree-representation) is a function R : Ω → S(T) such that for all
u, v ∈ Ω,

R(u) ∩ R(v) �= ∅ ⇔ {u, v} ∈ E.

A graph X is chordal if and only if X has a tree-representation [13]. The
leafage �(X) of X is defined to be the minimum of |L(T)| over all trees T such
that X has a tree-representation on T .
1 After posting our paper on the arXiv [2], we found a paper [7] containing an FPT

algorithm testing isomorphism of T -graphs for every fixed tree T . This gives an
alternative FPT algorithm for chordal graphs of leafage �.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 33

Colorings. A partition π of Ω is said to be a coloring (of Ω) if the classes of π
are indexed by elements of some set, called colors. In this case, the classes of π
are called color classes and the color class containing α ∈ Ω is denoted by π(α).
Usually the colors are assumed to be linearly ordered. A bijection f from Ω to
another set equipped with coloring π′ is said to be color preserving if the colors
of π(α) and π′(f(α)) are the same for all points α ∈ Ω.

A graph equipped with a coloring of the vertex set (respectively, edge set) is
said to be vertex colored (respectively, edge colored); a graph that is both vertex
and edge colored is said to be colored. The isomorphisms of vertex/edge colored
graphs are ordinary isomorphisms that are color preserving. To emphasize this,
we sometimes write Aut(X,π) for the automorphism group of a graph X with
coloring π.

Let X be a colored graph with vertex coloring π. Consider the application
of the Weisfeiler-Leman algorithm (2-dim WL) to X [26]. For the purpose of
the paper, it suffices to understand that 2-dim WL iteratively colors pairs of
vertices of X until the coloring satisfies a specific regularity condition (where
the vertex coloring corresponds to the coloring of diagonal pairs (α, α)). The
resulting coloring of pairs is just what is called a coherent configuration.

The output of 2-dim WL defines a new vertex coloring WL(X,π) ≥ π of X.
We say that π is stable if WL(X,π) = π. In the language of coherent configu-
rations, π is stable precisely when the classes of π are the fibers of a coherent
configuration (details can be found in the monograph [11]). In the sequel, we will
use some elementary facts from theory of coherent configurations. The following
statement summarizes relevant properties of stable colorings.

Lemma 1. Let X be a graph and π be a stable coloring of X. Then

(1) for Δ,Γ ∈ π, the number |δX ∩ Γ | does not depend on δ ∈ Δ,
(2) if Δ ∈ π∪ or XΔ ∈ Conn(X), then the coloring πΔ is stable.

A coloring π of the vertices of a graph X is said to be invariant if every class
of π is Aut(X)-invariant. In this case, the coloring WL(X,π) is also invariant
and stable. Since the coloring of the vertices in one color is invariant and the
Weisfeiler-Leman algorithm is polynomial-time, in what follows we deal with
invariant stable colorings.

Hypergraphs. Let V be a finite set. The set Ek = Ek(V) of the order-k hyper-
edges on V is defined recursively as follows:

E0 = V, Ek = Ek−1 ∪ 2Ek−1 for k > 1.

So, we consider elements of V as order-0 hyperedges and the order-k hyperedges
include all order-(k − 1) hyperedges and their subsets.

Let U ⊆ V and e ∈ Ek (k ≥ 1). We recursively define the projection of e on
U as the multiset

eU =

{
e ∩ U if k = 1,

{{ẽU : ẽ ∈ e}} if k > 1.

34 V. Arvind et al.

We extend this definition to all sets E ⊆ Ek by putting EU = {eU : e ∈ E}.

Definition 1 (order-k hypergraph). An order-k hypergraph (k ≥ 1) on V is
a pair H = (V,E), where E ⊆ 2Ek ; the elements of V and E are called vertices
and hyperedges of H, respectively.

Clearly, order-1 hypergraphs are usual hypergraphs. Moreover, higher-order
hypergraphs (i.e., order-k hypergraph for some k) are combinatorial objects in
the sense of [6]. The concepts of isomorphism and coloring extend to higher-order
hypergraphs in a natural way.

Let k ≥ 2. The (k − 1)-skeleton of an order-k hypergraph H = (V,E) is an
order-(k − 1) hypergraph H(k−1) on V with the hyperedge set

E(k−1) = {ẽ ∈ Ek−1 : ẽ is an element of some e ∈ Ek ∩ E}.

It is easily seen that for every order-k hypergraph H ′ = (V ′, E′)

Iso(H,H ′) = {f ∈ Iso(H(k−1),H ′(k−1)) : e ∈ E(k) ⇔ ef ∈ E′(k)}. (1)

where for each order-k hyperedge e = {e1, . . . , ea} we set ef = {ef
1 , . . . , ef

a}.
Let H1 = (V1, E1) be an order-k hypergraph for some k and H2 = (V2, E2)

be a usual hypergraph such that V2 = E1. Then each hyperedge e ∈ E2 is a
subset of hyperedges of H1. We define the hypergraph composition of H1 and H2

to be the order-(k + 1) hypergraph

H := H1 ↑ H2 = (V,E1 ∪ E2).

When the hypergraphs H1 and H2 are colored, the vertex coloring of H is
defined in the obvious way. The color c(e) of e ∈ E(H) is defined as follows: if
e ∈ E1 \ E2 then c(e) is the color c1(e) of e in H1. If e ∈ E1 ∩ E2 then c(e) is
defined as the triple (0, c1(e), c2(e)), where c2(e) is the color of e in H2. Finally,
if e ∈ E2 \ E1 then c(e) = (1, c1(e′), c2(e)), where e′ is the set of elements of e.

In computations with high order hypergraphs, every hyperedge is considered
as a rooted tree and the size of a high order hypergraph is defined to be the sum
of sizes of these trees.

3 Chordal Graphs

3.1 Stable Colorings in Chordal Graphs

We now present some auxiliary statements on the structure of subgraphs of a
chordal graph induced by one or two color classes of a stable coloring.

Lemma 2. Let X be a chordal graph and π a stable coloring of X. Then for
every Δ,Γ ∈ π, the following statements hold:

(1) Conn(XΔ) consists of cliques of the same size,
(2) if |Conn(XΔ)| ≤ |Conn(XΓ)|, then Conn(XΔ) = {YΔ : Y ∈Conn(XΔ∪Γ)},
(3) if the graphs XΔ and XΓ are complete, then XΔ,Γ is either complete bipartite

or empty.

Lemma 3. Let X be a connected chordal graph and let π be a stable partition
of Ω. There exists Δ ∈ π such that the graph XΔ is complete.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 35

3.2 Estimates Depending on the Leafage

The two lemmas in this subsection show bounds that are crucial for estimating
the complexity of the main algorithm.

Lemma 4. Let X be a chordal graph, Δ a subset of its vertices, X − Δ is the
subgraph of X induced by the complement of Δ, and

S = S(X,Δ) = {Y ∈ Conn(X − Δ) : Y is not interval}. (2)

Then |S| ≤ �(X) − 2.

Let π be a vertex coloring of X. Given a pair (Δ,Γ) ∈ π × π, we define an
equivalence relation eΔ,Γ on Δ by setting

(δ, δ′) ∈ eΔ,Γ ⇔ δ and δ′ are twins in XΔ,Γ . (3)

Note that the equivalence relation eΓ,Δ is defined on Γ , and coincides with eΔ,Γ

only if Γ = Δ. The sets of classes of eΔ,Γ and eΓ,Δ are denoted by Δ/eΔ,Γ and
Γ/eΓ,Δ, respectively.

Lemma 5. Let X be a chordal graph, π a stable coloring, and Δ,Γ ∈ π. Assume
that the graph XΔ is complete. Then

|Δ/eΔ,Γ | ≤ 2� and |Γ/eΓ,Δ| ≤ �, (4)

where � = �(X).

4 Critical Set of a Chordal Graph

Let X be a chordal graph and π a stable coloring. Denote by Ω∗ = Ω∗(X,π)
the union of all Δ ∈ π such that

|Conn(XΔ)| ≤ �(X). (5)

By Lemma 2(1), the graph XΔ is a disjoint union of cliques; thus the above
condition means that the number of them is at most �(X). By Lemma 3, the
set Ω∗ is not empty if the graph X is connected.

Theorem 3. Let X be a chordal graph and Ω∗ = Ω∗(X,π). Then one of the
following statements holds:

(i) for every Y ∈ Conn(X − Ω∗), the graph Y is interval,
(ii) there is a invariant stable coloring π′ > π.

Moreover, in case (ii), the coloring π′ can be found in polynomial time in |Ω|.

36 V. Arvind et al.

We say that Ω∗ is a critical set of X (with respect to π) if statement (i) of
Theorem 3 holds. In the rest of the section we define a hypergraph H∗ associated
with the critical set Ω∗ and show that the groups Aut(H∗)Ω∗

and Aut(X)Ω∗
are

closely related.
The vertices of H∗ are set to be the elements of the disjoint union

V =
⋃

Δ∈πΩ∗

⋃
Γ∈π

Δ/eΔ,Γ ,

where eΔ,Γ is the equivalence relation on Δ, defined by formula (3). Thus any
vertex of H∗ is a class of some eΔ,Γ . Taking the disjoint union means, in par-
ticular, that if Λ is a class of eΔ,Γ and eΔ,Γ ′ , then V contains two vertices
corresponding to Λ. The partition

π = {Δ/eΔ,Γ : Δ ∈ πΩ∗ , Γ ∈ π}
of the set V is treated as a coloring of V .

Let us define the hyperedges of H∗. First, let α ∈ Ω∗. Denote by Δ the class
of π, containing α. Then Δ ∈ πΩ∗ . Moreover, for every Γ ∈ π, there is a unique
class Λα(Δ,Γ) of the equivalence relation eΔ,Γ , containing α. Put

α = {Λα(Δ,Γ) : Γ ∈ π},

in particular, α ⊆ V . It is easily seen that α = β if and only if the vertices α
and β are twins in X, lying in the same class of π. Next, let β ∈ Ω∗ be adjacent
to α in X, and Γ the class of π, containing β. Then every vertex in Λα(Δ,Γ) is
adjacent to every vertex of Λβ(Γ,Δ). Put

{α, β} = {Λα(Δ,Γ), Λβ(Γ,Δ)},

again {α, β} ⊆ V . With this notation, the hyperedge set of H∗ is defined as the
union:

E∗ = {α : α ∈ Ω∗} ∪ {{α, β} : α, β ∈ Ω∗, β ∈ αX}.

As we are interested only in the automorphisms of E∗ that stabilize the
two parts {α : α ∈ Ω∗} and {{α, β} : α, β ∈ Ω∗, β ∈ αX}, we can color the
hyperedges in E∗ using two distinct colors to ensure this. Clearly, the hypergraph
H∗ = (V,E∗) and the coloring π can be constructed in polynomial time in |Ω|.
Theorem 4. Let X be a chordal graph, π an invariant stable vertex coloring
of X, Ω∗ = Ω∗(X,π) the critical set, and H∗ = (V,E∗) is the above hypergraph
with vertex coloring π. Then

(i) max{|Δ| : Δ ∈ π} ≤ �2�, where � = �(X),
(ii) if X is twinless, then the mapping f : Ω∗ → E∗, α �→ α, is an injection,
(iii) if X is twinless and G = G(H∗) is the group induced by the natural action

of Aut(H∗) on Im(f) = {α | α ∈ Ω∗} ⊆ E∗, then

Aut(X)Ω∗ ≤ Gf−1 ≤ Aut(XΩ∗), (6)

where Gf−1
= fGf−1.2

2 Note that the composition fGf−1 is defined from left to right.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 37

5 The Hypergraph Associated with the Complement
of the Critical Set

The goal of this section is to provide some tools related to the critical set that will
help design the algorithm for computing the automorphism group of a chordal
graph in K�.

Suppose X is a chordal graph on Ω and π an invariant stable coloring of X.
Further, let Ω∗ denote the critical set of X with respect to π. Let G� = G�(X)
denote the kernel of the restriction homomorphism Aut(X) → Aut(X)Ω∗

. We
claim that a generating set for G� can be efficiently computed.

Theorem 5. A generating set for the kernel G� ≤ Sym(Ω) of the restriction
homomorphism from Aut(X) to Aut(X)Ω∗

can be found in polynomial time
in |Ω|.

In what follows, X is a chordal graph, π a stable coloring of X, Ω∗ the critical
set of X with respect to π, and Ω� = Ω \ Ω∗. Recall that by the definition of
critical set, every graph Y , Y ∈ Conn(XΩ�), is interval and

∂Y = Ω(Y) ∩ Ω∗.

Lemma 6. For every Y ∈ Conn(XΩ�), there is a colored hypergraph H = HY

whose vertex set is ∂Y colored by π∂Y , and such that

Iso(HY ,HY ′) = Iso(Y , Y ′)∂Y , Y ′ ∈ Conn(XΩ�). (7)

Moreover, in time polynomial in |Y | one can

(a) construct the hypergraph HY ,
(b) given g ∈ Iso(HY ,HY ′), find g ∈ Iso(Y , Y ′) such that g∂Y = g.

Let us define a colored order-2 hypergraph H� with vertex set Ω∗ and hyper-
edge set E1 ∪ E2, where

E1 =
⋃

Y ∈Conn(XΩ�)

E(HY) and E2 = {E(HY) : Y ∈ Conn(XΩ�)}.

The vertex coloring of H� is set to be πΩ∗ . Note that the union in the
definition of E1 is not disjoint; the color π�(e) of a hyperedge e ∈ E1 is defined
to be the multiset of the colors of e in HY , where Y runs over all graphs Y ∈
Conn(XΩ�) such that e ∈ E(HY).

To define a coloring of E2, denote by ∼ the equivalence relation on Conn(XΩ�)
by setting

Y ∼ Y ′ ⇔ HY = HY ′ .

Condition (7) implies that Y ∼ Y ′ if and only if there exists an isomorphism
g ∈ Iso(Y , Y

′
) such that the bijection g∂Y is identical. The color π�(e) of the

hyperedge e ∈ E2 is defined to be so that if e = {E(HY)} and e′ = {E(HY ′)},
then

π�(e) = π�(e′) ⇔ Iso(Y , Y
′
) �= ∅ and nY = nY ′ , (8)

38 V. Arvind et al.

where nY and nY ′ are the cardinalities of the classes of the equivalence rela-
tion ∼, containing Y and Y ′, respectively.

Remark 1. Let e ∈ E2 and Y ∈ Conn(X − Ω∗) be such that e = E(HY). In
general, the coloring πe of the hyperedges of E1, contained in e, is different from
the coloring πY of the corresponding hyperedges of HY . However, πe ≥ πY and
πY is uniquely determined by πe.

Lemma 7. Let X ′ be a colored graph obtained from X by deleting all edges of
the induced subgraph XΩ∗ . Then

Aut(H�) = Aut(X ′)Ω∗
.

Moreover, given g ∈ Aut(H�) one can construct g ∈ Aut(X ′) such that gΩ∗
= g

in polynomial time in |Ω|.
The following theorem is the main result of the section, which together with

Theorem 5 essentially provides a polynomial-time reduction of finding the group
Aut(X) to finding the groups Aut(H∗) and Aut(H�).

Theorem 6. In the conditions and notation of Theorem 4, set G∗ = G(H∗)f−1
.

Then
Aut(X)Ω∗

= Aut(H�) ∩ G∗.

Moreover, every permutation g ∈ Aut(H�) ∩ G∗ can be lifted in polynomial time
to an automorphism g ∈ Aut(X) such that gΩ∗

= g.

6 Order-k Hypergraph Isomorphism: Bounded Color
Classes

As stated in the theorem below, we show that the problem of testing isomorphism
of colored order-k hypergraphs, in which the sizes of vertex color classes are
bounded by a fixed parameter, is fixed parameter tractable; no assumption is
made on the hyperedge color class sizes. Our algorithm is a generalization of
the one for usual hypergraphs [3]. The detailed proof with the algorithm can be
found in the arXiv version [2].

Theorem 7. Let k ≥ 1. Given two colored order-k hypergraphs H and H ′, the
isomorphism coset Iso(H,H ′) can be computed in time (b! s)O(k), where b is the
maximal size of a vertex color class of H and s is the size of H. In particular,
the group Aut(H) can be found within the same time.

Remark 2. More recently, we learned about Schweitzer and Wiebking’s
work [24]. They study computing canonical forms (under permutation group
action) of an expressive class of combinatorial objects called heriditarily finite,
and obtain algorithms to compute canonical labeling cosets for such objects. In
particular, Theorem 17 of [24] can be applied to compute automorphism groups
of order-k hypergraphs, and significantly improves on the time bound of our
algorithm in Theorem 7 (in fact, their algorithm removes k from the exponent).
This, however, does not improve the bound in our main theorem, because we
use Theorem 7 for k = 3 only.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 39

7 Main Algorithm and the Proof of Theorem 2

Based on the results obtained in the previous sections, we present an algorithm
that constructs the automorphism group of a chordal twinless graph.

Main Algorithm
Input: a chordal twinless graph X and vertex coloring π of X.
Output: the group Aut(X,π).
Step 1. Construct π = WL(X,π) and Ω∗ = Ω∗(X,π).
Step 2. While the set Ω∗ is not critical with respect to π, find π := WL(X,π′)
and set Ω∗ := Ω∗(X,π), where π′ is the coloring from Theorem 3(ii).
Step 3. If Ω∗ = ∅, then X is interval and we output the group Aut(X,π) found
by the algorithm from [19, Theorem 5].
Step 4. Construct the mapping f and colored hypergraph H∗ on (Ω∗)f , defined
in Sect. 4, and the colored hypergraph H� on Ω∗, defined in Sect. 5.
Step 5. Using the algorithm from Theorem 7, find a generating set S of the
automorphism group of the colored order-3 hypergraph H∗ ↑ (H�)f .
Step 6. For each g ∈ S find a lifting g ∈ Aut(X,π) of fgf−1 ∈ Sym(Ω∗) by the
algorithm from Theorem 6; let S be the set of all these automorphisms g’s.
Step 7. Output the group Aut(X,π) = 〈G�, S〉, where G� is the group defined
in Theorem 5.

Theorem 8. The Main Algorithm correctly finds the group Aut(X,π) in time
t(�) · nO(1), where n = |Ω(X)|, t is a function independent of n, and � = �(X).

Proof. Note that the number of iterations of the loop at Step 2 is at most n,
because |π| ≤ n and |π′| > |π|. Next, the running time at each other step, except
for Step 5, is bounded by a polynomial in n, see the time bounds in the used
statements. On the other hand, at Step 5, the cardinality of each vertex color
class of the order-3 hypergraph H∗ ↑ (H�)f is at most �2� (Theorem 4(i)). By
Theorem 7 for b = �2� and k = 3, the running time of the Main Algorithm is at
most t(�) · nO(1) with t(�) = ((�2�)!)O(1).

To prove the correctness of the algorithm, we exploit the natural restriction
homomorphism

ϕ : Aut(X) → Sym(Ω∗), g �→ gΩ∗
.

Given a generating set S′ of the group Im(ϕ), we have Aut(X) = 〈ker(ϕ), S〉,
where S ⊆ Aut(X) is a set of cardinality |S| such that S′ = {ϕ(g) : g ∈ S}.

According to Step 7, ker(ϕ) = G�. Thus, it suffices to verify that as the set
S′ one can take the set {fgf−1 : g ∈ S}, where f is the bijection found at Step 4
and S is the generating set of the group Aut(H∗ ↑ (H�)f), found at Step 5. By
Theorem 6, we need to check that

Aut(H∗ ↑ (H�)f)f−1
= G∗ ∩ Aut(H�). (9)

40 V. Arvind et al.

Notice that

h ∈ Aut(H∗ ↑ (H�)f) ⇔ h ∈ Aut(H∗) and (E(H�)f)h = E(H�)f

⇔ fhf−1 ∈ G∗ and fhf−1 ∈ Aut(H�)

⇔ fhf−1 ∈ G∗ ∩ Aut(H�),

which proves equality (9).

Proof (Theorem 2). Denote by eX the equivalence relation on Ω = Ω(X) such
that (α, β) ∈ eX if and only if the vertices α and β are twins in X. Since eX is
Aut(X)-invariant, there is a natural homomorphism

ϕ : Aut(X) → Sym(Ω/eX).

To find the group Aut(X), it suffices to construct generating sets of the groups
ker(ϕ) and Im(ϕ), and then to lift every generator of the latter to an automor-
phism of X.

First, we note that every class of the equivalence relation eX consists of twins
of X. Consequently,

ker(ϕ) =
∏

Δ∈Ω/eX

Sym(Δ),

and this group can efficiently be found.
Now let X ′ be the graph with vertex set Ω/e, in which the classes Δ and

Γ are adjacent if and only if some (and hence each) vertex in Δ is adjacent to
some (and hence each) vertex of Γ . Note that X ′ is isomorphic to an induced
subgraph of X, and hence belongs to the class K�. Let π′ be the vertex coloring
of X ′ such that π′(Δ) = π′(Γ) if and only if XΔ and XΓ are isomorphic, which
is easy to check because each of XΔ and XΓ is either empty or complete. Then

Im(ϕ) = Aut(X ′, π′),

and this group can efficiently be found in time t(�) · nO(1) by Theorem 8.
To complete the proof, we need to show that given g′ ∈ Aut(X ′, π′), one can

efficiently find g ∈ Aut(X) such that ϕ(g) = g′. To this end, choose an arbitrary
bijection gΔ : Δ → Δg; recall that π′(Δ) = π′(Δg) and so |Δ| = |Δg|. Then
the mapping g taking a vertex α ∈ Ω to the vertex αgΔ , where Δ is the class of
eX , containing α is a permutation of Ω. Moreover, from the definition of eX , it
follows that g ∈ Aut(X). It remains to note that g can efficiently be constructed.

8 Concluding Remarks

In this paper we have presented an isomorphism testing algorithm for n-vertex
chordal graphs of leafage � which has running time t(�) · nO(1), where t(�) is
a double exponential function not depending on n. A natural question is to
improve the running time dependence on the leafage.

Testing Isomorphism of Chordal Graphs of Bounded Leafage 41

References

1. Agaoglu, D., Hlinený, P.: Isomorphism problem for Sd-graphs. In: Esparza, J.,
Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2020, Prague, Czech Republic, 24–28 August 2020.
LIPIcs, vol. 170, pp. 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.4

2. Arvind, V., Nedela, R., Ponomarenko, I., Zeman, P.: Testing isomorphism of
chordal graphs of bounded leafage is fixed-parameter tractable (2021). https://
arxiv.org/abs/2107.10689

3. Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is
fixed parameter tractable. Algorithmica 71(1), 120–138 (2015). https://doi.org/
10.1007/s00453-013-9787-y

4. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In:
Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 684–697. ACM (2016). https://doi.org/10.1145/2897518.2897542

5. Biro, M., Hujter, M., Tuza, Z.: Precoloring extension I. Interval graphs. Discret.
Math. 100(1–3), 267–279 (1992)

6. Brand, N.: Isomorphisms of cyclic combinatorial objects. Discret. Math. 78(1-2),
73–81 (1989). https://doi.org/10.1016/0012-365X(89)90162-3

7. Çagirici, D.A., Hlinený, P.: Isomorphism testing for T-graphs in FPT. In: Mutzel,
P., Rahman, M.S., Slamin (eds.) WALCOM 2022. LNCS, vol. 13174, pp. 239–250.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96731-4 20

8. Chaplick, S., Töpfer, M., Voborńık, J., Zeman, P.: On H -topological intersection
graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520,
pp. 167–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-
6 13

9. Chaplick, S., Zeman, P.: Combinatorial problems on H-graphs. Electron. Notes
Discret. Math. 61, 223–229 (2017). https://doi.org/10.1016/j.endm.2017.06.042

10. Chaplick, S., Zeman, P.: Isomorphism-completeness for H-graphs (2021). https://
kam.mff.cuni.cz/pizet/gic.pdf

11. Chen, G., Ponomarenko, I.: Coherent Configurations. Central China Normal Uni-
versity Press, Wuhan (2019). http://www.pdmi.ras.ru/∼inp/ccNOTES.pdf

12. Fomin, F.V., Golovach, P.A., Raymond, J.-F.: On the tractability of optimization
problems on H -graphs. Algorithmica 82(9), 2432–2473 (2020). https://doi.org/10.
1007/s00453-020-00692-9

13. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Series B 16(1), 47–56 (1974). https://doi.org/10.
1016/0095-8956(74)90094-X. https://www.sciencedirect.com/science/article/pii/
009589567490094X

14. Grohe, M., Neuen, D., Schweitzer, P.: A faster isomorphism test for graphs of small
degree. In: 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, 7–9 October 2018, pp. 89–100. IEEE Computer Society
(2018). https://doi.org/10.1109/FOCS.2018.00018

15. Grohe, M., Wiebking, D., Neuen, D.: Isomorphism testing for graphs excluding
small minors. In: 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 625–636. IEEE
(2020). https://doi.org/10.1109/FOCS46700.2020.00064

https://doi.org/10.4230/LIPIcs.MFCS.2020.4
https://arxiv.org/abs/2107.10689
https://arxiv.org/abs/2107.10689
https://doi.org/10.1007/s00453-013-9787-y
https://doi.org/10.1007/s00453-013-9787-y
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/0012-365X(89)90162-3
https://doi.org/10.1007/978-3-030-96731-4_20
https://doi.org/10.1007/978-3-319-68705-6_13
https://doi.org/10.1007/978-3-319-68705-6_13
https://doi.org/10.1016/j.endm.2017.06.042
https://kam.mff.cuni.cz/pizet/gic.pdf
https://kam.mff.cuni.cz/pizet/gic.pdf
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://www.sciencedirect.com/science/article/pii/009589567490094X
https://www.sciencedirect.com/science/article/pii/009589567490094X
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1109/FOCS46700.2020.00064

42 V. Arvind et al.

16. Habib, M., Stacho, J.: Polynomial-time algorithm for the leafage of chordal graphs.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 290–300. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0 27

17. Lin, I., McKee, T.A., West, D.B.: The leafage of a chordal graph. Discuss. Math.
Graph Theory 18(1), 23–48 (1998). https://doi.org/10.7151/dmgt.1061

18. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth.
SIAM J. Comput. 46(1), 161–189 (2017). https://doi.org/10.1137/140999980

19. Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph iso-
morphism. J. ACM 26(2), 183–195 (1979). https://doi.org/10.1145/322123.322125

20. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci. 25(1), 42–65 (1982). https://doi.org/10.1016/0022-
0000(82)90009-5

21. Neuen, D.: Hypergraph isomorphism for groups with restricted composition fac-
tors. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, Saarbrücken, Ger-
many, 8–11 July 2020 (Virtual Conference). LIPIcs, vol. 168, pp. 88:1–88:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.ICALP.2020.88

22. Ponomarenko, I.N.: The isomorphism problem for classes of graphs closed under
contraction. J. Sov. Math. 55(2), 1621–1643 (1991)

23. Ponomarenko, I.: Polynomial isomorphism algorithm for graphs which do not pinch
to K3,g. J. Sov. Math. 34(4), 1819–1831 (1986)

24. Schweitzer, P., Wiebking, D.: A unifying method for the design of algorithms can-
onizing combinatorial objects. In: Charikar, M., Cohen, E. (eds.) Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, 23–26 June 2019, pp. 1247–1258. ACM (2019)

25. Stacho, J.: On 2-subcolourings of chordal graphs. In: Laber, E.S., Bornstein, C.,
Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 544–554.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0 47

26. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the
algebra which appears therein. NTI Series 2, 12–16 (1968). https://www.iti.zcu.
cz/wl2018/pdf/wl paper translation.pdf. The URL links to an English translation

https://doi.org/10.1007/978-3-642-04128-0_27
https://doi.org/10.7151/dmgt.1061
https://doi.org/10.1137/140999980
https://doi.org/10.1145/322123.322125
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.4230/LIPIcs.ICALP.2020.88
https://doi.org/10.4230/LIPIcs.ICALP.2020.88
https://doi.org/10.1007/978-3-540-78773-0_47
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Twin-Width and Transductions of Proper
k-Mixed-Thin Graphs

Jakub Balabán , Petr Hliněný(B) , and Jan Jedelský

Faculty of Informatics, Masaryk University, Botanická 68a, Brno, Czech Republic

jakbal@mail.muni.cz, hlineny@fi.muni.cz

Abstract. The new graph parameter twin-width, recently introduced
by Bonnet et al., allows for an FPT algorithm for testing all FO prop-
erties of graphs. This makes classes of efficiently bounded twin-width
attractive from the algorithmic point of view. In particular, such classes
(of small twin-width) include proper interval graphs, and (as digraphs)
posets of width k. Inspired by an existing generalization of interval graphs
into so-called k-thin graphs, we define a new class of proper k-mixed-thin
graphs which largely generalizes proper interval graphs. We prove that
proper k-mixed-thin graphs have twin-width linear in k, and that a cer-
tain subclass of k-mixed-thin graphs is transduction-equivalent to posets
of width k′ such that there is a quadratic relation between k and k′.

Keywords: twin-width · proper interval graph · proper mixed-thin
graph · transduction equivalence

1 Introduction

The notion of twin-width (of graphs, digraphs, or matrices) was introduced quite
recently, in 2020, by Bonnet, Kim, Thomassé and Watrigant [7], and yet has
already found many very interesting applications. These applications span from
efficient parameterized algorithms and algorithmic metatheorems, through finite
model theory, to classical combinatorial questions. See also the (still growing)
series of follow-up papers [3–6,8].

We leave formal definitions for the next section. Informally, in simple graphs,
twin-width measures how diverse the neighbourhoods of the graph vertices are.
E.g., cographs (the graphs which can be built from singleton vertices by repeated
operations of a disjoint union and taking the complement) have the lowest pos-
sible value of twin-width, 0, which means that the graph can be brought down
to a single vertex by successively identifying twin1 vertices. Hence the name,
twin-width, for the parameter, and the term contraction sequence referring to
the described identification process of vertices.
1 Two vertices x and y are called twins in a graph G if they have the same neighbours

in V (G) \ {x, y}.

Supported by the Czech Science Foundation, project no. 20-04567S.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 43–55, 2022.
https://doi.org/10.1007/978-3-031-15914-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_4&domain=pdf
http://orcid.org/0000-0002-2475-8938
http://orcid.org/0000-0003-2125-1514
http://orcid.org/0000-0001-9585-2553
https://doi.org/10.1007/978-3-031-15914-5_4

44 J. Balabán et al.

Twin-width is particularly useful in the algorithmic metatheorem area.
Namely, Bonnet et al. [7] proved that classes of binary relational structures
(such as graphs and digraphs) of bounded twin-width have efficient first-order
(FO) model checking algorithms, given a witness of the boundedness (a “good”
contraction sequence). In one of the previous studies on algorithmic metatheo-
rems for dense structures, Gajarský et al. [10] proved that posets of bounded
width (the width of a poset is the maximum size of an antichain) admit efficient
FO model checking algorithms. In this regard, [7] generalizes [10] since posets of
bounded width have bounded twin-width. The original proof of the latter in [7]
was indirect (via so-called mixed minors, but this word ‘mixed’ has nothing to do
with our ‘mixed-thin’) and giving a loose bound, and Balabán and Hliněný [2]
have recently proved a straightforward linear upper bound (with an efficient
construction of a contraction sequence) on the twin-width of posets in terms of
width.

Following this research direction further, we propose a new graph class of
proper k-mixed-thin graphs (Definition 1) which is related to previous general-
izations of interval graphs to thin [12] and proper thin [9] graphs. We show some
basic properties and relations of our new class, and prove that proper k-mixed-
thin graphs have the twin-width linearly bounded in k. Moreover, a contraction
sequence can be constructed efficiently if the “geometric” representation of the
graph is given. This result brings new possibilities of proving boundedness of
twin-width for various graph classes in a direct and efficient way. The aspect
of an efficient construction of the relevant contraction sequence is quite impor-
tant from the algorithmic point of view; the exact twin-width is NP-hard to
determine [3], and no efficient approximations of it are known in general.

Another interesting aspect of our research stems from the following deep
result of [7]: the property of a class to have bounded twin-width is preserved
under FO transductions which are, roughly explaining, expressions (or logical
interpretations) of another graph in a given graph using formulae of FO logic
with help of arbitrary additional parameters in the form of vertex labels. E.g.,
to prove that the class of interval graphs has unbounded twin-width, it suffices
to show that they interpret in FO all graphs. In this regard we prove that
a subclass of our new class, of the inversion-free proper k-mixed-thin graphs,
is transduction-equivalent to the class of posets of width k′ (with a quadratic
dependence between k and k′). So, our results can be seen as a generalization
of [2] and, importantly for possible applications, they target undirected graphs
instead of special digraphs in the poset case.

1.1 Outline of the Paper

� In Sect. 2 we give an overview of the necessary concepts from graph theory
and FO logic; namely about intersection graphs, the twin-width and its basic
properties, and FO transductions.

� In Sect. 3 we define the new classes of k-mixed-thin and proper k-mixed-thin
graphs, and their inversion-free subclasses (Definition 1).
We also state the following results;

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 45

– comparing proper k-mixed-thin to k-thin graphs (Propositions 2 and 3),
– proving that multidimensional full grids (i.e., strong products of paths),

and the proper intersection graphs of subpaths in a subdivision of a given
graph, are proper k-mixed-thin for suitable k (Theorems 4 and 5).

� Sect. 4 brings the first core result composed of
– an efficient constructive proof that the class of proper k-mixed thin graphs

has twin-width at most 9k (Theorem 6), and an example in which this
bound cannot be improved below a linear function (Proposition 9),

– followed by a consequence that FO properties on these graphs can be
tested in FPT, given the representation (Corollary 8).

� Sect. 5 then states the second core result – the transduction equivalence.
– The class of inversion-free proper k-mixed-thin graphs is a transduction

of the class of posets of width at most 5 · (
k
2

)
+ 5k (Theorem 10), and

– the class of posets of width at most k is a transduction of the class of
inversion-free proper (2k+1)-mixed-thin unordered graphs (Theorem 11).

� We conclude our findings, state some open questions and outline future research
directions in the final Sect. 6.

We leave proofs of the * -marked statements for the full preprint [1].

2 Preliminaries and Formal Definitions

A (simple) graph is a pair G = (V,E) where V = V (G) is the finite vertex
set and E = E(G) is the edge set – a set of unordered pairs of vertices {u, v},
shortly uv. For a set Z ⊆ V (G), we denote by G[Z] the subgraph of G induced
on the vertices of Z. A subdivision of an edge uv of a graph G is the operation
of replacing uv with a new vertex x and two new edges ux and xv.

A poset is a pair P = (X,≤) where the binary relation ≤ is an ordering
on X. We represent posets also as special digraphs (directed graphs with ordered
edges). The width of a poset P is the maximum size of an antichain in P , i.e., the
maximum size of an independent set in the digraph P . We say that (x, y) ∈ X2

is a cover pair if x � y and there is no z ∈ X such that x � z � y.

2.1 Intersection Graphs

The intersection graph G of a finite collection of sets {S1, . . . , Sn} is a graph
in which each set Si is associated with a vertex vi ∈ V (G) (then Si is the
representative of vi), and each pair vi, vj of vertices is joined by an edge if
and only if the corresponding sets have a non-empty intersection, i.e. vivj ∈
E(G) ⇐⇒ Si∩Sj 	= ∅. We say that an intersection graph G is proper if G is the
intersection graph of {S1, . . . , Sn} such that Si 	⊆ Sj for all i 	= j ∈ {1, . . . , n}.

A nice example of intersection graphs are interval graphs, which are the inter-
section graphs of intervals on the real line. More generally, for a fixed graph H,
if H ′ is a subdivision of H, then an H-graph is the intersection graph of the
vertex sets of connected subgraphs of H ′. Such an intersection representation
is also called an H-representation. For instance, interval graphs coincide with
K2-graphs. We can speak also about proper interval or proper H-graphs.

46 J. Balabán et al.

Fig. 1. An example of a graph G (left), and a symmetric contraction sequence of its
adjacency matrix (right), which certifies that the symmetric twin-width of the adja-
cency matrix of G is at most 3, and so is the twin-width of G.

2.2 Twin-Width

We present the definition of twin-width focusing on matrices, as taken from [7,
Section 5]. Later in the paper, we will restrict ourselves only to the symmetric
twin-width because the more general version is not relevant for graphs.

Let A be a symmetric square matrix with entries from a finite set (here
{0, 1, r} for graphs) and let X be the set indexing both rows and columns of A.
The entry r is called a red entry, and the red number of a matrix A is the
maximum number of red entries over all columns and rows in A.

Contraction of the rows (resp. columns) k and � results in the matrix obtained
by deleting the row (resp. column) �, and replacing entries of the row (resp. col-
umn) k by r whenever they differ from the corresponding entries in the row
(resp. column) �. Informally, if A is the adjacency matrix of a graph, the red
entries (“errors”) in a contraction of rows k and � record where the graph neigh-
bourhoods of the vertices k and � differ.

A sequence of matrices A = An, . . . ,A1 is a contraction sequence of the
matrix A, whenever A1 is (1 × 1) matrix and for all 1 ≤ i < n, the matrix
Ai is a contraction of matrix Ai+1. A contraction sequence is symmetric if
every contraction of a pair of rows (resp. columns) is immediately followed by a
contraction of the corresponding pair of columns (resp. rows).

The twin-width of a matrix A is the minimum integer d, such that there is
a contraction sequence A = An, . . . ,A1, such that for all 1 ≤ i ≤ n, the red
number of the matrix Ai is at most d. The symmetric twin-width of a matrix A
is defined analogously, requiring that the contraction sequence is symmetric, and
we only count the red number after both symmetric row and column contractions

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 47

are performed. See Fig. 1. The twin-width of a graph G is then the symmetric
twin-width of its adjacency matrix A(G).2

2.3 FO Logic and Transductions

A relational signature Σ is a finite set of relation symbols Ri, each with associ-
ated arity ri. A relational structure A with signature Σ (or shortly a Σ-structure)
is defined by a domain A and relations Ri(A) ⊆ Ari for each relation symbol
Ri ∈ Σ (the relations interpret the relational symbols). For example, graphs can
be viewed as relational structures with the set of vertices as the domain and a
single relation symbol E with arity 2 in the relational signature.

Let Σ and Γ be relational signatures. An interpretation I of Γ -structures
in Σ-structures is a function from Σ-structures to Γ -structures defined by a
formula ϕ0(x) and a formula ϕR(x1, . . . , xk) for each relation symbol R ∈ Γ
with arity k (these formulae may use the relational symbols of Σ).

Given a Σ-structure A, I(A) is a Γ -structure whose domain B contains all
elements a ∈ A such that ϕ0(a) holds in A, and in which every relation symbol
R ∈ Γ of arity k is interpreted as the set of tuples (a1, . . . , ak) ∈ Bk satisfying
ϕR(a1, . . . , ak) in A.

A transduction T from Σ-structures to Γ -structures is defined by an interpre-
tation IT of Γ -structures in Σ+-structures where Σ+ is Σ extended by a finite
number of unary relation symbols (called marks). Given a Σ-structure A, the
transduction T (A) is a set of all Γ -structures B such that B = IT (A′) where
A′ is A with arbitrary elements of A marked by the unary marks. If C is a class
of Σ-structures, then we define T (C) =

⋃
A∈C T (A). A class D of Γ -structures

is a transduction of C if there exists a transduction T such that D ⊆ T (C).
For simplicity, our transductions are non-copying.

3 Generalizing Proper k-Thin Graphs

So-called k-thin graphs (as defined below) have been proposed and studied as a
generalization of interval graphs by Mannino et al. [12]. Likewise, proper interval
graphs have been naturally generalized into proper k-thin graphs [9]. As for-
warded in the introduction, we further generalize these classes into the classes
of (proper) k-mixed-thin graphs as follows.

Definition 1 (Mixed-thin and Proper mixed-thin). Let G = (V,E) be a
graph and k > 0 an integer. Let Ē =

(
V
2

) \ E be the complement of its edge
set. For two linear orders ≤ and ≤′ on the same set, we say that ≤ and ≤′ are
aligned if they are the same or one is the inverse of the other.

2 Note that one can also define the “natural” twin-width of graphs which, informally,
ignores the red entries on the main diagonal (as there are no loops in a simple
graph). The natural twin-width is never larger, but possibly by one lower, than the
symmetric matrix twin-width. For instance, for the sequence in Fig. 1, the natural
twin-width would be only 2.

48 J. Balabán et al.

Fig. 2. An illustration of Definition 1. Left: a proper 3-mixed-thin graph G, with the
vertex set partitioned into V1 = {1, 2, 3}, V2 = {a, b} and V3 = {x, y}. Middle: the
six linear orders ≤ij , and the sets Ei,j defaulting to Ei,j = E(G), except for E1,2 and
E2,2. Right: a “geometric” proper interval representation of the orders ≤ij (notice –
separately for each pair i, j), such that the edges between Vi and Vj belonging to Ei,j

are represented by intersections between intervals of colour i and colour j.

The graph G is proper k-mixed-thin if there exists a partition V =
(V1, . . . , Vk) of V , and for each 1 ≤ i ≤ j ≤ k a linear order ≤ij on Vi ∪ Vj

and a choice of Ei,j ∈ {E, Ē} (Fig. 2), such that, again for every 1 ≤ i ≤ j ≤ k,

(a) the restriction of ≤ij to Vi (resp. to Vj) is aligned with ≤ii (resp. ≤jj), and
(b) for every triple u, v, w such that ({u, v} ⊆ Vi and w ∈ Vj) or ({u, v} ⊆ Vj

and w ∈ Vi), we have that if u �ij v �ij w and uw ∈ Ei,j , then vw ∈ Ei,j .
(c) for every triple u, v, w such that ({v, w} ⊆ Vi and u ∈ Vj) or ({v, w} ⊆ Vj

and u ∈ Vi), we have that if u �ij v �ij w and uw ∈ Ei,j , then uv ∈ Ei,j .

General (not proper) k-mixed-thin graphs do not have to satisfy (c). A (proper)
k-mixed-thin graph G is inversion-free if, above, (a) is replaced with

(a’) the restriction of ≤ij to Vi (resp. to Vj) is equal to ≤ii (resp. ≤jj).

We remark that aforementioned (proper) k-thin graphs are those (proper) k-
mixed-thin graphs for which the orders ≤ij (for 1 ≤ i ≤ j ≤ k) in the definition
can be chosen as the restrictions of the same linear order on V , and all Ei,j = E
(‘inversion-free’ is insignificant in such case).

The class of k-mixed-thin graphs is thus a superclass of the class of k-thin
graphs, and the same holds in the ‘proper’ case. On the other hand, the class of
interval graphs is 1-thin, but it is not proper k-mixed-thin for any finite k; the
latter follows, e.g., easily from further Theorem 6.

Bonomo and de Estrada [9, Theorem 2] showed that given a (proper) k-thin
graph G and a suitable ordering ≤ of V (G), a partition of V (G) into k parts
compatible with ≤ can be found in polynomial time. On the other hand [9,
Theorem 5], given a partition V of V (G) into k parts, the problem of deciding
whether there is an ordering of V (G) compatible with V in the proper sense
is NP -complete. These results do not answer whether the recognition of k-thin
graphs is efficient or not, and neither can we at this stage say whether the
recognition of proper k-mixed-thin graphs is efficient.

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 49

3.1 Comparing (Proper) k-Mixed-Thin to Other Classes

We illustrate use of our Definition 1 by comparing it to ordinary thinness on
some natural graph classes. Recall that the (square) (r × r)-grid is the Car-
tesian product of two paths of length r. Denote by tK2 the complement of the
matching with t edges. We show that thinness and proper mixed-thinness are
incomparable.

Proposition 2 (Mannino et al. [12], Bonomo and de Estrada [9])

a) For every t ≥ 1, the graph tK2 is t-thin but not (t − 1)-thin.
b) The (r × r)-grid has thinness linear in r.
c) The thinness of the complete m-ary tree (m > 1) is linear in its height.

Proposition 3.* a) For every t ≥ 1, tK2 is inversion-free proper 1-mixed-thin.
b) For all m,n the (m × n)-grid is inversion-free proper 3-mixed-thin.
c) Every tree T is inversion-free proper 3-mixed-thin.

Proposition 3(b) can be extended much further. A d-dimensional grid is the
Cartesian product of d ≥ 1 paths, and the d-dimensional full grid is the strong
product of d ≥ 1 paths (also known as the “grid with all diagonals”). We have:

Theorem 4.* Let d ≥ 1 be an arbitrary integer. Both d-dimensional grids and
d-dimensional full grids are inversion-free proper 3d−1-mixed-thin.

To further illustrate the strength of the new concept, we show that k-mixed-
thin graphs generalize the following class [11], which itself can be viewed as a
natural generalization of proper interval graphs and k-fold proper interval graphs
(a subclass of interval graphs whose representation can be decomposed into k
proper interval subrepresentations):

Theorem 5.* Let G = (V,E) be a proper intersection graph of paths in some
subdivision of a fixed connected graph H with m edges, and let k be the number
of (all) distinct paths in H. Then G is a proper (m2k)-mixed-thin graph.

4 Proper k-Mixed-Thin Graphs Have Bounded
Twin-Width

In the founding series of papers, Bonnet et al. [4–7] proved that many common
graph classes (in addition to aforementioned posets of bounded width) are of
bounded twin-width. Their proof methods have usually been indirect (using
other technical tools such as ‘mixed minors’), but for a few classes including
proper interval graphs and multidimensional grids and full grids (cf. Theorem 4)
they provided a direct construction of a contraction sequence.

We have shown [2] that a direct and efficient construction of a contraction
sequence is possible also for posets of width k. Stepping further in this direction,
our proper k-mixed-thin graphs, which largely generalize proper interval graphs,
still have bounded twin-width, as we are now going to show with a direct and
efficient construction of a contraction sequence for them.

Before stating the result, we mention that 1-thin graphs coincide with interval
graphs which have unbounded twin-width by [4], and hence the assumption of
‘proper’ in the coming statement is necessary.

50 J. Balabán et al.

Fig. 3. On the left, there is a partition of C5 into parts ({B,C,D}, {A,E}), which with
the ordering e.g. A ≤ B ≤ C ≤ D ≤ E certifies that C5 is proper 2-thin, therefore
proper 2-mixed-thin as well. On the right, there is an adjacency matrix of C5, together
with eight blue diagonal boundaries obtained by the process described in Lemma 7.

Theorem 6. Let G be a proper k-mixed-thin graph. Then the twin-width of G,
i.e., the symmetric twin-width of A(G), is at most 9k. The corresponding con-
traction sequence for G can be computed in polynomial time from the vertex
partition (V1, . . . , Vk) and the orders ≤ij for G from Definition 1.

In the course of proving Theorem 6, an adjacency matrix A(G) of G is always
obtained by ordering the k parts arbitrarily, and then inside each part using the
order ≤ii. Furthermore, we denote Ai,j(G) the submatrix with rows from Vi and
columns from Vj .

We would like to talk about parts (“areas”) of a (p × q) matrix M . To do
so, we embed such a matrix into the plane as a ((p + 1) × (q + 1))-grid, where
entries of the matrix are represented by labels of the bounded square faces of
the grid. We call a boundary any path in the grid, which is also a separator of
the grid. In this view, we say that a matrix entry a is next to a boundary if at
least one of the vertices of the face of a lies on the boundary.

Note that the grid has four corner vertices of degree 2, and a diagonal bound-
ary is a shortest (i.e., geodesic) path going either between the top-left and the
bottom-right corners, or between the top-right and the bottom-left corners. We
say that two diagonal boundaries b1 and b2 are crossing if b1 contains two grid
vertices v and v′ not contained in b2, such that v and v′ belong to different parts
of the matrix separated by b2. We call a matrix M diagonally trisected if M
contains two non-crossing diagonal boundaries with the same ends which sepa-
rate the matrix into three parts. The part bounded by both diagonal boundaries
is called the middle part. See Fig. 3.

Lemma 7.* Let G be a proper k-mixed-thin graph. For all 1 ≤ i, j ≤ k, the sub-
matrix Ai,j(G) is diagonally trisected, such that each part has either all entries 0
or all entries 1, with the exception of entries on the main diagonal of A(G). Fur-
thermore, the diagonal boundaries of the submatrix A(G)ii are symmetric (w. r.
to the main diagonal).

Proof (of Theorem 6). For each 1 ≤ i 	= j ≤ k, by Lemma 7, the submatrix
Ai,j(G) of A(G) is diagonally trisected such that each part has all entries equal

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 51

(i.e., all 0 or all 1). The case of i = j is similar, except that the entries on the
main diagonal might differ from the remaining entries in the same area.

Furthermore, since the matrix A is symmetric, we can assume that the diag-
onal boundaries are symmetric as well.

We generalize this setup to matrices with red entries r; these come from
contractions of non-equal entries in A(G), cf. Subsect. 2.2. Considering a matrix
M = (muv)u,v obtained by symmetric contractions from A(G), we assume that

– M is consistent with the partition (V1, . . . , Vk), meaning that only rows and
columns from the same part have been contracted in A(G),

– M is red-aligned, meaning that each submatrix Mi,j obtained from Ai,j(G)
by row contractions in Vi and column contractions in Vj , is diagonally tri-
sected such that (again with the possible exception of entries on the main
diagonal of M): each of the three parts has all entries either from {0, r} or
from {1, r}, and moreover, the entries r are only in the middle part and next
to one of the diagonal boundaries, and

– the diagonal boundaries of M are also symmetric, that is, there is a boundary
between muv and muw iff there is a boundary between mvu and mwu.

We are going to show that there is a symmetric matrix-contraction sequence
starting from M0 := A(G) down to an (8k×8k) matrix M t, such that all square
matrices Mm, 0 ≤ m ≤ t, in this sequence are consistent with (V1, . . . , Vk),
red-aligned, and have red value at most 9k. Furthermore, the matrices in our
sequence are symmetric, and so are the diagonal boundaries. Hence we only need
to observe the red values of the rows. Then, once we get to M t, we may finish
the contraction sequence arbitrarily while not exceeding the red value of 8k.

Assume we have got to a matrix Mm, m ≥ 0, of the claimed properties in
our sequence, and Mm has more than 8k rows. The induction step to the next
matrix Mm+1 consists of two parts:

(i) We find a pair of consecutive rows from (some) one part of (V1, . . . , Vk),
such that their contraction does not yield more than 7k red entries.

(ii) After we do this row contraction followed by the symmetric column contrac-
tion to Mm+1 (which may add one red entry up to each other row of Mm+1),
we show that the red value of any other row does not exceed 7k + 2k = 9k.

Part (i) importantly uses the property of Mm being red-aligned, and is given
separately in the next claim:

Claim. If a matrix Mm satisfies the above claimed properties and is of size more
than 8k, then there exists a pair of consecutive rows from one part in Mm, such
that their contraction gives a row with at most 7k red entries (a technical detail;
this number includes the entry coming from the main diagonal of Mm). After
this contraction in Mm, the matrix will be again red-aligned.

In part (ii) of the induction step, we fix any row i ∈ {1, . . . , k} of Mm+1.
Row i initially (in M0) has no red entry, and it possibly got up to 7k red entries
in the previous last contraction involving it. After that, row i has possibly gained

52 J. Balabán et al.

additional red entries only through column contractions, and such a contraction
leading to a new red entry in row i (except on the main diagonal which has
been accounted for in Claim 4) may happen only if the two non-red contracted
entries lied on two sides of the same diagonal boundary. Since we have 2k such
boundaries throughout our sequence, we get that the number of red entries in
Mm+1 is indeed at most 7k + 2k = 9k.

We have finished the induction step, and so the whole proof by the above
outline. Note that all steps are efficient, including Claim 4 since at every step
there is at most a linear number of contractions which we are choosing from. �
Corollary 8 (based on [7]). Assume a proper k-mixed-thin graph G, given
alongside with the vertex partition and the orders from Definition 1. Then FO
model checking on G is solvable in FPT time with respect to k. �
Furthermore, the bound in Theorem 6 cannot be substantially improved (below
linear dependence) due to the following:

Proposition 9. For every integer k ≥ 1, there exists an inversion-free proper
(2k + 1)-mixed-thin graph G such that the twin-width of G is at least k.

5 Transductions Between Inversion-Free Proper
k-Mixed-Thin Graphs and Posets

In relation to the deep fact [7] that the class property of having bounded twin-
width is preserved under FO transductions (cf. Sect. 2), it is interesting to look
at how our class of proper k-mixed-thin graphs relates to other studied classes
of bounded twin-width. In this regard we show that our class is nearly (note
the inversion-free assumption!) transduction equivalent to the class of posets
of bounded width. We stress that the considered transductions here are always
non-copying (i.e., not “expanding” the ground set of studied structures).

Theorem 10. The class of inversion-free proper k-mixed-thin graphs is a trans-
duction of the class of posets of width at most 5 · (

k
2

)
+ 5k. For a given graph,

together with the vertex partition and the orders as from Definition 1, the cor-
responding poset and its transduction parameters can be computed in polytime.

Proof. Let G = (V,E) be an inversion-free proper k-mixed-thin graph. Let V =
(V1, . . . , Vk) be the partition of V and ≤ij for 1 ≤ i ≤ j ≤ k be the orders
given by Definition 1. On a suitable ground set X ⊇ V defined below, we are
going to construct a poset P = (X,�) equipped with vertex labels (marks), such
that the edges of G will be interpreted by a binary FO formula within P . To
simplify notation, we will also consider posets as special digraphs, and naturally
use digraph terms for them.

For start, let P0 = (V,�0) be the poset formed by (independent) chains
V1, . . . , Vk, where each chain Vi is ordered by ≤ii. Let us denote by Vi,j := Vi∪Vj .

In order to define set X, we first introduce the notion of connectors. Consider
1 ≤ i ≤ j ≤ k, X � V , a vertex x ∈ X \ V and a pair lx ∈ Vi and ux ∈ Vj .

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 53

If i = j, we additionally demand lx �ii ux. If �x is a binary relation (on X)
defined by lx �x x �x ux, then we call (x,�x) a connector with the centre x
and the joins lxx and xux. (Note that it will be important to have ux from Vj

and not from Vi, wrt. i � j.) We also order the connector centres x 	= y with
joins to Vi and Vj by x �ij y, if and only if lx �ii ly and ux �jj uy. There may
be more that one connector connecting the same pair of vertices.

Our construction relies on the following observation which, informally, tells
us that connectors can (all together) encode some information about pairs of
vertices of V in an unambiguous way.

Claim. Recall P0 = (V,�0). Let X � V be such that each x ∈ X\V is the centre
of a connector, as defined above. Let �1 be a binary relation on X � V defined
as the reflexive and transitive closure of (�0 ∪ �) where � :=

(⋃
x∈X\V �x) ∪(⋃

1≤i≤j≤k �ij

)
. Then P1 = (X,�1) is a poset, and each join of every

connector (x,�x) from x ∈ X \ V is a cover pair in P1.

We continue with the construction of the poset P encoding G; this is done by
adding suitable connectors to P0, and marks S, Vi , Bij , or Cij . To explain, S
stands for successor (cf. ≤ij), Vi stands for the part Vi, Bij means a border-pair
(to be defined later in G[Vi,j]), and Cij stands for complement (cf. Ei,j = Ē).

1. We apply the mark Vi to every vertex of each part Vi ∈ V.
2. For each 1 ≤ i < j ≤ k, and every pair (v, w) ∈ Vi × Vj such that w is the

immediate successor of v in ≤ij , we add a connector with a new vertex x
marked S and joins to lx = v and ux = w. Note that one could think about
symmetrically adding connectors for w being the immediate predecessor, but
these can be uniquely recovered from the former connectors.

3. For 1 ≤ i ≤ j ≤ k and v, w ∈ Vi,j , let Vi,j [v, w] := {x ∈ Vi,j : v ≤ij x ≤ij w}
be a consecutive subchain, and call the set Vi,j [v, w] homogeneous if, moreover,
every pair of vertices between Vi ∩ Vi,j [v, w] and Vj ∩ Vi,j [v, w] is an edge
in Ei,j . (In particular, for i = j, homogeneous Vi,i[v, w] means a clique in G
if E = Ei,i or an independent set of G otherwise.) If Vi,j [v, w] is an inclusion-
maximal homogeneous set in Vi,j , then we call (v, w) a border pair in Vi,j ,
and we add a connector with a new vertex x marked Bij and joins to v and
w. Specifically, it is lx = v and ux = w, unless v ∈ Vj and w ∈ Vi in which
case lx = w and ux = v.

4. For 1 ≤ i ≤ j ≤ k, if Ei,j = Ē, then we mark just any vertex by Cij .

Now we define the poset P = (X,�), where the set X ⊇ V results from
adding all marked connector centres defined above to P0 = (V,�0), and � is the
transitive closure of (�0 ∪ �) as defined in Claim 5 for the added connectors.

First, we claim that P with the applied marks uniquely determines our start-
ing graph G. Notice that, for each connector centre x ∈ X \V , the (unique) cover
pairs of x to and from respective Vi and Vj , by Claim 5, determine the joins of x.

The vertex set of G is determined by the marks Vi , i = 1, . . . , k. For 1 ≤ i ≤
j ≤ k, the linear order ≤ij is directly determined by � if i = j, and otherwise
the following holds. For v ∈ Vi and w ∈ Vj , we have v ≤ij w if and only if there

54 J. Balabán et al.

exists a connector x marked S with joins to lx ∈ Vi and ux ∈ Vj such that v � lx
and ux � w. For v ∈ Vj and w ∈ Vi, we have v ≤ij w if and only if w 	≤ij v.

To determine the edge set of G, we observe that Definition 1 shows that every
edge f (resp. non-edge) of G[Vi,j] is contained in some homogeneous consecutive
subchain of ≤ij . Hence f is contained in some maximal such subchain, and
so determined by some border pair in Vi,j which we recover from its connector
marked Bij using the already determined order ≤ij . We then determine whether
f means an edge or a non-edge in G using the mark Cij .

Finally, we verify that the above-stated definition of the graph G within P
can be expressed in FO logic. We leave the technical details for the next claim:

Claim. The transduction described in the proof of Theorem 10 can be defined
by FO formulae on the marked poset P .

Second, we compute the width of P . In fact, we show that P can be covered
by a small number of chains. There are the k chains of V1, . . . , Vk. Then, for each
pair 1 ≤ i ≤ j ≤ k, we have one chain of the connector centres marked S from Vi

to Vj (only i < j), and four chains of the connector centres marked Bij , sorted by
how their border pairs fall into the sets Vi or Vj (they are indeed chains because
border pairs demarcate maximal homogeneous sets). To summarize, there are
k + 5 · (

k
2

)
+ 4k chains covering whole P .

Efficiency of the construction of marked poset P from given (already parti-
tioned and with the orders) graph G is self-evident. The whole proof of Theo-
rem 10 is now finished. �

In the converse direction to Theorem 10 we can straightforwardly prove:

Theorem 11. The class of posets of width at most k is a transduction of the
class of inversion-free proper (2k + 1)-mixed-thin graphs. For a given poset, a
corresponding inv.-free proper (2k+1)-mixed-thin graph is computed in polytime.

6 Conclusions

Regarding the results in Sect. 5, we remark that it is considered very likely that
the classes of graphs of bounded twin-width are not transductions of the classes of
posets of bounded width (although we are not aware of a published proof of this).
We think that the proper k-mixed-thin graph classes are, in the “transduction
hierarchy”, positioned strictly between the classes of posets of bounded width
and the classes of bounded twin-width, meaning that they are not transductions
of posets of bounded width and they do not transduce all graphs of bounded
twin-width. We plan to further investigate this question.

Furthermore, Bonnet et al. [8] proved that the classes of structures of bounded
twin-width are transduction-equivalent to the classes of permutations with a
forbidden pattern. It would be very nice to find an analogous asymptotic char-
acterization with permutations replaced by the graphs of some natural graph
property. As a step forward, we would like to further generalize proper k-mixed-
thin graphs while keeping the property of bounded twin-width.

Twin-Width and Transductions of Proper k-Mixed-Thin Graphs 55

References

1. Balabán, J., Hlinený, P., Jedelský, J.: Twin-width and transductions of proper
k-mixed-thin graphs. CoRR abs/2202.12536 (2022)

2. Balabán, J., Hliněný, P.: Twin-width is linear in the poset width. In: IPEC. LIPIcs,
vol. 214, pp. 6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

3. Bergé, P., Bonnet, É., Déprés, H.: Deciding twin-width at most 4 is NP-complete.
In: ICALP. LIPIcs, vol. 229, pp. 18:1–18:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022)

4. Bonnet, É., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width II:
small classes. In: SODA, pp. 1977–1996. SIAM (2021)

5. Bonnet, É., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width III:
max independent set, min dominating set, and coloring. In: ICALP. LIPIcs, vol.
198, pp. 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

6. Bonnet, É., Giocanti, U., de Mendez, P.O., Simon, P., Thomassé, S., Torunczyk,
S.: Twin-width IV: ordered graphs and matrices. In: STOC, pp. 924–937. ACM
(2022)

7. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. In: FOCS, pp. 601–612. IEEE (2020)

8. Bonnet, É., Nesetril, J., de Mendez, P.O., Siebertz, S., Thomassé, S.: Twin-width
and permutations. CoRR abs/2102.06880 (2021)

9. Bonomo, F., de Estrada, D.: On the thinness and proper thinness of a graph.
Discret. Appl. Math. 261, 78–92 (2019)

10. Gajarský, J., et al.: FO model checking on posets of bounded width. In: FOCS,
pp. 963–974. IEEE Computer Society (2015)

11. Jedelský, J.: Classes of bounded and unbounded twin-width [online] (2021).
https://is.muni.cz/th/utyga/. Bachelor thesis, Masaryk University, Faculty of
Informatics, Brno

12. Mannino, C., Oriolo, G., Ricci-Tersenghi, F., Chandran, L.S.: The stable set prob-
lem and the thinness of a graph. Oper. Res. Lett. 35(1), 1–9 (2007)

https://is.muni.cz/th/utyga/

Token Sliding on Graphs of Girth Five

Valentin Bartier1, Nicolas Bousquet1 , Jihad Hanna2,
Amer E. Mouawad2,3(B) , and Sebastian Siebertz3

1 CNRS, LIRIS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
valentin.bartier@grenoble-inp.fr, nicolas.bousquet@univ-lyon1.fr

2 American University of Beirut, Beirut, Lebanon
jgh20@mail.aub.edu, aa368@aub.edu.lb
3 University of Bremen, Bremen, Germany

siebertz@uni-bremen.de

Abstract. In the Token Sliding problem we are given a graph G and
two independent sets Is and It in G of size k ≥ 1. The goal is to decide
whether there exists a sequence 〈I1, I2, . . . , I�〉 of independent sets such
that for all i ∈ {1, . . . , �} the set Ii is an independent set of size k, I1 = Is,
I� = It and Ii�Ii+1 = {u, v} ∈ E(G). Intuitively, we view each inde-
pendent set as a collection of tokens placed on the vertices of the graph.
Then, the problem asks whether there exists a sequence of independent
sets that transforms Is into It where at each step we are allowed to slide
one token from a vertex to a neighboring vertex. In this paper, we focus
on the parameterized complexity of Token Sliding parameterized by
k. As shown by Bartier et al. [2], the problem is W[1]-hard on graphs of
girth four or less, and the authors posed the question of whether there
exists a constant p ≥ 5 such that the problem becomes fixed-parameter
tractable on graphs of girth at least p. We answer their question posi-
tively and prove that the problem is indeed fixed-parameter tractable on
graphs of girth five or more, which establishes a full classification of the
tractability of Token Sliding based on the girth of the input graph.

Keywords: token sliding · independent set · girth · combinatorial
reconfiguration · parameterized complexity

1 Introduction

Many algorithmic questions present themselves in the following form: Given the
description of a system state and the description of a state we would prefer the
system to be in, is it possible to transform the system from its current state
into the more desired one without “breaking” certain properties of the system

This work is supported by PHC Cedre project 2022 “PLR”.
V. Bartier—Supported by ANR project GrR (ANR-18-CE40-0032).
N. Bousquet—Supported by ANR project GrR (ANR-18-CE40-0032).
A. E. Mouawad—Research supported by the Alexander von Humboldt Foundation
and partially supported by URB project “A theory of change through the lens of
reconfiguration”.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 56–69, 2022.
https://doi.org/10.1007/978-3-031-15914-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_5&domain=pdf
http://orcid.org/0000-0003-0170-0503
http://orcid.org/0000-0003-2481-4968
https://doi.org/10.1007/978-3-031-15914-5_5

Token Sliding on Graphs of Girth Five 57

in the process? Such questions, with some generalizations and specializations,
have received a substantial amount of attention under the so-called combinatorial
reconfiguration framework [9,27,29].

Historically, the study of reconfiguration questions predates the field of com-
puter science, as many classic one-player games can be formulated as reachability
questions [19,21], e.g., the 15-puzzle and Rubik’s cube. More recently, reconfig-
uration problems have emerged from computational problems in different areas
such as graph theory [10,16,17], constraint satisfaction [14,25], computational
geometry [24], and even quantum complexity theory [13]. We refer the reader to
the surveys by van den Heuvel [27] and Nishimura [26] for extensive background
on combinatorial reconfiguration.

Independent Set Reconfiguration. In this work, we focus on the reconfiguration of
independent sets. Given a simple undirected graph G, a set of vertices S ⊆ V (G)
is an independent set if the vertices of this set are pairwise non-adjacent. Finding
an independent set of size k, i.e., the Independent Set problem, is known
to be NP-hard, but also W[1]-hard1 parameterized by solution size k and not
approximable within O(n1−ε), for any ε > 0, unless P = NP [30]. Moreover,
Independent Set remains W[1]-hard on graphs excluding C4 (the cycle on
four vertices) as an induced subgraph [7].

We view an independent set as a collection of tokens placed on the vertices of
a graph such that no two tokens are placed on adjacent vertices. This gives rise
to two natural adjacency relations between independent sets (or token configu-
rations), also called reconfiguration steps. These reconfiguration steps, in turn,
give rise to two combinatorial reconfiguration problems.

In the Token Sliding problem, introduced by Hearn and Demaine [15],
two independent sets are adjacent if one can be obtained from the other by
removing a token from a vertex u and immediately placing it on another ver-
tex v with the requirement that {u, v} must be an edge of the graph. The
token is then said to slide from vertex u to vertex v along the edge {u, v}.
Generally speaking, in the Token Sliding problem, we are given a graph G
and two independent sets Is and It of G. The goal is to decide whether there
exists a sequence of slides (a reconfiguration sequence) that transforms Is to It.
The problem has been extensively studied under the combinatorial reconfigura-
tion framework [6,8,11,12,18,20,23]. It is known that the problem is PSPACE-
complete, even on restricted graph classes such as graphs of bounded band-
width (and hence pathwidth) [28], planar graphs [15], split graphs [4], and bipar-
tite graphs [22]. However, Token Sliding can be decided in polynomial time
on trees [11], interval graphs [6], bipartite permutation and bipartite distance-
hereditary graphs [12], and line graphs [16].

In the Token Jumping problem, introduced by Kamiński et al. [20], we
drop the restriction that the token should move along an edge of G and instead
we allow it to move to any vertex of G provided it does not break the inde-
pendence of the set of tokens. That is, a single reconfiguration step consists of
first removing a token on some vertex u and then immediately adding it back on
1 Informally, this means that it is unlikely to be fixed-parameter tractable.

58 V. Bartier et al.

any other vertex v, as long as no two tokens become adjacent. The token is said
to jump from vertex u to vertex v. Token Jumping is also PSPACE-complete
on graphs of bounded bandwidth [28] and planar graphs [15]. Lokshtanov and
Mouawad [22] showed that, unlike Token Sliding, which is PSPACE-complete
on bipartite graphs, the Token Jumping problem becomes NP-complete on
bipartite graphs. On the positive side, it is “easy” to show that Token Jumping

can be decided in polynomial-time on trees (and even on split/chordal graphs)
since we can simply jump tokens to leaves (resp. vertices that only appear in the
bag of a leaf in the clique tree) to transform one independent set into another.

In this paper we focus on the parameterized complexity of the Token Slid-

ing problem on graphs where cycles with prescribed lengths are forbidden. Given
an NP-hard problem, parameterized complexity permits to refine the notion of
hardness; does the hardness come from the whole instance or from a small param-
eter? A problem Π is FPT (fixed-parameter tractable) parameterized by k if one
can solve it in time f(k) · poly(n), for some computable function f . In other
words, the combinatorial explosion can be restricted to the parameter k. In
the rest of the paper, our parameter k will be the size of the independent set
(i.e. the number of tokens). Token Sliding is known to be W[1]-hard param-
eterized by k on general [23] and bipartite [2] graphs. It remains W[1]-hard on
{C4, . . . , Cp}-free graphs for any p ∈ N [2] and becomes FPT parameterized by
k on bipartite C4-free graphs. The Token Jumping problem is W[1]-Hard on
general graphs [18] and is FPT when parameterized by k on graphs of girth five
or more [2]. For graphs of girth four, it was shown that Token Jumping being
FPT would imply that Gap-ETH, an unproven computational hardness hypothe-
sis, is false [1]. Both Token Jumping and Token Sliding were recently shown
to be XL-complete [5].

Our Result. The parameterized complexity of the Token Jumping problem
parameterized by k is settled with regard to the girth of the graph, i.e., the
problem is unlikely to be FPT for graphs of girth four or less and FPT for
graphs of girth five or more. For Token Sliding, it was only known that the
problem is W[1]-hard for graphs of girth four or less and the authors in [2]
posed the question of whether there exists a constant p such that the problem
becomes fixed-parameter tractable on graphs of girth at least p. We answer
their question positively and prove that the problem is indeed fixed-parameter
tractable on graphs of girth five or more, which establishes a full classification
of the tractability of Token Sliding parameterized by the number of tokens
based on the girth of the input graph.

Our Methods. Our result extends and builds on the recent galactic reconfiguration
framework introduced by Bartier et al. [3] to show that Token Sliding is FPT
on graphs of bounded degree, chordal graphs of bounded clique number, and
planar graphs. Let us briefly describe the intuition behind the framework and
how we adapt it for our use case. One of the main reasons why the Token

Sliding problem is believed to be “harder” than the Token Jumping problem
is due to what the authors in [3] call the bottleneck effect. Indeed, if we consider
Token Sliding on trees, there might be a lot of empty leaves/subtrees in the
tree but there might be a bottleneck in the graph that prevents any other tokens

Token Sliding on Graphs of Girth Five 59

from reaching these vertices. For instance, if we consider a star with one long
subdivided branch, then one cannot move any tokens from the leaves of the star
to the long branch while there are at least two tokens on leaves. That being said,
if the long branch of the star is “long enough” with respect to k then it should
be possible to reduce parts of it; as some part would be irrelevant. In fact, this
observation can be generalized to many other cases. For instance, when we have
a large grid minor, then whenever a token slides into the structure it should
then be able to slide freely within the structure (while avoiding conflicts with
any other tokens in that structure). However, proving that a structure can be
reduced in the context of reconfiguration is usually a daunting task due to the
many moving parts. To overcome this problem, the authors in [3] introduce a
new type of vertices called black holes, which can simulate the behavior of a
large grid minor by being able to absorb as many tokens as they see fit; and then
project them back as needed.

Since we need to maintain the girth property, we do not use the notion of
black holes and instead show that when restricted to graphs of girth five or more
we can efficiently find structures that behave like large grid minors (from the
discussion above) and replace them with subgraphs of size bounded by a function
of k that can absorb/project tokens in a similar fashion (and do not decrease
the girth of the graph). We note that our strategy for reducing such structures
is not limited to graphs of high girth and could in principle apply to any graph.
At a high level, our FPT algorithm can then be summarized as follows. We let
(G, k, Is, It) denote an instance of the problem, where G has girth five or more.
In a first stage, we show that we can always find a reconfiguration sequence from
Is to I ′

s and from It to I ′
t such that each vertex v ∈ I ′

s ∪ I ′
t has degree bounded

by some function of k. This immediately implies that we can bound the size of
L1 ∪ L2, where L1 = I ′

s ∪ I ′
t and L2 = NG(I ′

s ∪ I ′
t). In a second stage, we show

that every connected component C of L3 = V (G)\(L1 ∪ L2) can be classified
as either a degree-safe component, a diameter-safe component, a bad component,
or a bounded component. The remainder of the proof consists in showing that
degree-safe and diameter-safe components behave like large grid minors and can
be replaced by bounded-size gadgets. We then show that bounded components
and bad components will eventually have bounded size and we then conclude
the algorithm by showing how to bound the total number of components in L3.

Finally, we note that many interesting questions remain open. In particular, it
remains open whether Token Sliding admits a (polynomial) kernel on graphs
of girth five or more and whether the problem remains tractable if we forbid
cycles of length p mod q, for integers p and q, or if we exclude odd cycles.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N we let [n] = {1, 2, . . . , n}.
Graphs. We assume that each graph G is finite, simple, and undirected. We

let V (G) and E(G) denote the vertex set and edge set of G, respectively. The
open neighborhood of a vertex v is denoted by NG(v) = {u | {u, v} ∈ E(G)} and

60 V. Bartier et al.

the closed neighborhood by NG[v] = NG(v) ∪ {v}. For a set of vertices Q ⊆ V (G),
we define NG(Q) = {v �∈ Q | {u, v} ∈ E(G), u ∈ Q} and NG[Q] = NG(Q) ∪ Q.
The subgraph of G induced by Q is denoted by G[Q], where G[Q] has vertex
set Q and edge set {{u, v} ∈ E(G) | u, v ∈ Q}. We let G − Q = G[V (G)\Q].

A walk of length � from v0 to v� in G is a vertex sequence v0, . . . , v�, such
that for all i ∈ {0, . . . , � − 1}, {vi, vi+1} ∈ E(G). It is a path if all vertices are
distinct. It is a cycle if � ≥ 3, v0 = v�, and v0, . . . , v�−1 is a path. A path from
vertex u to vertex v is also called a uv-path. For a pair of vertices u and v
in V (G), by distG(u, v) we denote the distance or length of a shortest uv-path
in G (measured in number of edges and set to ∞ if u and v belong to dif-
ferent connected components). The eccentricity of a vertex v ∈ V (G), ecc(v),
is equal to maxu∈V (G)(distG(u, v)). The diameter of G, diam(G), is equal to
maxv∈V (G)(ecc(v)). The girth of G, girth(G), is the length of a shortest cycle
contained in G. If the graph does not contain any cycles (that is, it is a forest),
its girth is defined to be infinity.

Reconfiguration. In the Token Sliding problem we are given a graph G =
(V,E) and two independent sets Is and It of G, each of size k ≥ 1. The goal
is to determine whether there exists a sequence 〈I0, I1, . . . , I�〉 of independent
sets of size k such that Is = I0, I� = It, and IiΔIi+1 = {u, v} ∈ E(G) for all
i ∈ {0, . . . , �−1}. In other words, if we view each independent set as a collection
of tokens placed on a subset of the vertices of G, then the problem asks for
a sequence of independent sets which transforms Is to It by individual token
slides along edges of G which maintain the independence of the sets. Note that
Token Sliding can be expressed in terms of a reconfiguration graph R(G, k).
R(G, k) contains a node for each independent set of G of size exactly k. We
add an edge between two nodes whenever the independent set corresponding
to one node can be obtained from the other by a single reconfiguration step.
That is, a single token slide corresponds to an edge in R(G, k). The Token

Sliding problem asks whether Is, It ∈ V (R(G, k)) belong to the same connected
component of R(G, k).

3 The Algorithm

Let (G, k, Is, It) be an instance of Token Sliding, where G has girth five or
more. The aim of this section is to bound the size of the graph by a function of
k. We start with a very simple reduction rule that allows us to get rid of most
twin vertices in the graph. Two vertices u, v ∈ V (G) are said to be twins if u
and v have the same set of neighbours, that is, if N(u) = N(v).

Lemma 1. Assume u, v ∈ V (G)\(Is ∪ It) and N(u) = N(v). Then (G, k, Is, It)
is a yes-instance if and only if (G − {v}, k, Is, It) is a yes-instance.

Note that in a graph of girth at least five twins can have degree at most one.
Given Lemma 1, we assume in what follows that twins have been reduced. In
other words, we let (G, k, Is, It) be an instance of Token Sliding where G has
girth five or more and twins not in Is ∪ It have been removed. We now partition
our graph into three sets L1 = Is ∪ It, L2 = NG(L1), and L3 = V (G)\(L1 ∪L2).

Token Sliding on Graphs of Girth Five 61

Lemma 2. If u ∈ L2 ∪ L3, then u has at most |L1| ≤ 2k neighbors in L1 ∪ L2,
i.e., |NL1∪L2(u)| ≤ 2k.

Proof. Assume u1 is a vertex in L2 and u2 ∈ NL2(u1) is a neighbor of u1 in L2.
If u1 and u2 have a common neighbor u3 ∈ L1, then this would imply the
existence of a C3 (triangle) in G, a contradiction. Now assume u1 ∈ L3 and
assume u2, u3 ∈ NL2(v1) are two neighbors of u1 in L2. If u2 and u3 have
a common neighbor u4 ∈ L1 this would imply the existence of a C4 in G, a
contradiction. Hence, for any vertex u ∈ L2 ∪ L3 we have NL1(v) ∩ NL1(w) = ∅
for all v, w ∈ NL2 [u]. Since each vertex in L2 has at least one neighbor in L1 by
definition, each vertex u ∈ L2 ∪L3 can have at most one neighbor in L2 for each
non-neighbor in L1, for a total of |L1| ≤ 2k neighbors in L1 ∪ L2. �

3.1 Safe, Bounded, and Bad Components

Given G and the partition L1 = Is ∪ It, L2 = NG(L1), and L3 = V (G)\(L1∪L2)
we now classify components of G[L3] into four different types.

Definition 1. Let C be a maximal connected component in G[L3].

– We call C a diameter-safe component whenever diam(G[V (C)]) > k3.
– We call C a degree-safe component whenever G[V (C)] has a vertex u with at

least k2 + 1 neighbors X in C and at least k2 vertices of X have degree two
in G[V (C)].

– We call C a bounded component whenever diam(G[V (C)]) ≤ k3 and no
vertex of C has degree more than k2 in G[V (C)].

– We call C a bad component otherwise.

Note that every component of G[L3] = G − (L1 ∪ L2) is safe (degree- or
diameter-safe), bad, or bounded.

Lemma 3. A bounded component C in G[L3] has at most k2k3
vertices.

Proof. Let T be a spanning tree of C and let u ∈ V (C) denote the root of T .
Each vertex in T has at most k2 children given the degree bound of C and the
height of the tree is at most k3 given the diameter bound of C. Hence the total
number of vertices in C is at most k2k3

. �
We now describe a crucial property of degree-safe and diameter-safe compo-

nents, which we call the absorption-projection property. We note that this notion
is similar to the notion of black holes introduced in [3]. The key (informal) insight
is that for a safe component C we can show the following:

1. If there exists a reconfiguration sequence S = 〈I0, I1, . . . , I�−1, I�〉 from Is

to It, then we may assume that Ii ∩ NG(V (C)) ≤ 1, for 0 ≤ i ≤ �.
2. A safe component can absorb all k tokens, i.e., a safe component contains an

independent set of size at least k and whenever a token reaches NG(V (C))
then we can (but do not have to) absorb it into C (regardless of how many
tokens are already in C). Moreover, a safe component can then project the
tokens back into its neighborhood as needed.

62 V. Bartier et al.

Let us start by proving the absorption-projection property for degree-safe
components. An s-star is a vertex with s pairwise non-adjacent neighbors, which
are called the leaves of the s-star. A subdivided s-star is an s-star where each edge
is subdivided (replaced by a new vertex of degree two adjacent to the endpoints
of the edge) any number of times. We say that each leaf of a subdivided star
belongs to a branch of the star.

Lemma 4. Let C be a degree-safe component in G[L3]. Then C contains an
induced subdivided k-star where all k branches have length more than one.

Fig. 1. An illustration of a degree-safe component C.

Lemma 5. Let C be a degree-safe component in G[L3] and let A be an induced
subdivided k-star contained in C where all branches have length exactly two. Let
B = NG(A). If (G, k, Is, It) is a yes-instance, then there exists a reconfiguration
sequence from Is to It in G where we have at most one token on a vertex of B
at all times.

Proof. First, note that the existence of A follows from Lemma 4 and that it is
indeed the case that Is ∩ B = It ∩ B = ∅. Let r denote the root of the induced
subdivided k-star and let N1 and N2 denote the first and second levels of subdi-
vided the star, respectively. Let us explain how we can adapt a transformation S
from Is to It into a transformation containing at most one token on a vertex of
B at all times and such that, at any step, the number of tokens in A∪B in both
transformations is the same and the positions of the tokens in V (G)\(A ∪ B)
are the same. Assume that, in the transformation S, a token is about to reach a
vertex b ∈ B, that is, we consider the step right before a token is about to slide
into B. We first move all tokens residing in A, if any, to the second level of their
branches, i.e., to N2. This is possible as A is an induced subdivided star and
there are no other tokens on B. Note that we can assume that there is no token
on r (and hence every token is on a branch and “the branch” of a token is well
defined) since we can otherwise slide this token to one of the empty branches
while B is still empty of tokens. Then we proceed as follows:

Token Sliding on Graphs of Girth Five 63

– If b is a neighbor of the root r of the subdivided star, then b is not a neighbor
of any vertex at the second level of A, since otherwise this would create a
cycle of length four. Hence, we can slide the token into b and then r and then
some empty branch of A (which is possible since we have k branches in A).

– Otherwise, if b has no neighbors in the first level N1 of A, we choose a branch
that has a neighbor a of b in N2 (which exists since b is not adjacent to r nor
N1). Then, if the branch of a already contains a token, we can safely slide the
token into another branch by going to the first level, then the root r, then to
another empty branch of A. Now we slide all tokens in A to the first level of
their branch and finally we slide the initial token to b and then to a.

– Finally, if b has neighbors in the first level of A, note that it cannot have more
than one neighbor in N1 since that would imply the existence of a cycle of
length four. Let a denote the unique neighbor of b in N1. If the branch of a
has a token on it, then we safely slide it into another empty branch. Now we
slide all tokens in A to the first level of their branch and finally we slide the
initial token to b and then to a.

Note that all of above slides are reversible and we can therefore use a similar
strategy to project tokens from A to B. If, in S, a token is about to leave the
vertex b ∈ B, then we can similarly move a token from A to b and then perform
the same move. Finally, if a reconfiguration step in S consists of moving tokens
in A ∪ B to A ∪ B, we ignore that step. And, if it consists of moving a token
from V (G)\(A ∪ B) to V (G)\(A ∪ B) we perform the same step. It follows from
the previous procedure that whenever (G, k, Is, It) is a yes-instance we can find
a reconfiguration sequence from Is to It in G where we have at most one token
in B at all times, as claimed (see Fig. 1). �
Corollary 1. Let C be a degree-safe component. If (G, k, Is, It) is a yes-
instance, then there exists a reconfiguration sequence from Is to It in G where
we have at most one token in N(C) ⊆ L2 at all times.

Proof. Assume a token slides to a vertex c ∈ N(C) (for the first time). If c ∈
B, then the result follows from Lemma 5. Otherwise, we can follow a path P
contained in C that leads to the root of the induced k-subdivided star (such a
path exists since c ∈ N(C) and C is connected) and right before we reach B we
then again can apply Lemma 5. Note that, regardless of whether c is in B or not,
once the token reaches N(C) we can assume that it is immediately absorbed by
the degree-safe component (and later projected as needed). This implies that we
can always find a path P to slide along (i.e., having no tokens in the way). �

We now turn our attention to diameter-safe components and show that
they exhibit a similar absorption-projection behavior as degree-safe components.
Given a component C we say that a path A in C is a diameter path if A is a
longest shortest path in C.

Lemma 6. Let C be a diameter-safe component, let A be a diameter path of
C, and let B = NG(V (A)). If (G, k, Is, It) is a yes-instance, then there exists a
reconfiguration sequence from Is to It in G where we have at most one token on
vertices of B at all times.

64 V. Bartier et al.

Fig. 2. An illustration of a diameter-safe component C.

Proof. As in the proof of Lemma 5, the goal will consist in proving that we can
adapt a transformation S from Is to It into a transformation containing at most
one token on a vertex of B at all times and such that, at any step, the number
of tokens in A ∪ B in both transformations is the same and the positions of the
tokens in V (G)\(A∪B) are the same. As in the proof of Lemma 5, all the tokens
in A ∪ B will be absorbed into A (and later projected back as needed) and it
suffices to explain how we can move the tokens on A when a new token wants
to enter in B or leave into B. We know that two non-consecutive vertices in A
cannot be adjacent by minimality of the path. Now assume a token t is about
to reach a vertex b ∈ B. Note that neighbors of b in A are pairwise at distance
at least three in A, since otherwise that would create a cycle of length less
than five. We call the intervals between consecutive neighbor of b gap intervals
(with respect to b). If b has more than k neighbors in A, then we can put the
already in A tokens (at most k − 1 of them) in the at most k − 1 first gap
intervals. Indeed, since there is no token on B and A is an induced path, we
can freely move tokens where we want. Then we can slide the token t to b, since
none of its neighbors in A have a token on them, and then slide it to the next
neighbor of b in A since it has more than k neighbors. Otherwise, b has at most
k neighbors in A. Hence there are at most k +1 gap intervals in A (with respect
to b). The average number of vertices in the gap intervals (assuming k ≥ 4) is
α = diam(C)−|NA(b)|

|NA(b)|+1 ≥ k3−k
k+1 ≥ 2k. Hence at least one gap interval has length at

least α and therefore we can slide all tokens currently in A (at most k − 1 of
them) into this gap interval in such a way no token is on the border of the gap
interval (since the gap interval contains an independent set of size at least k − 1
which does not contain an endpoint of the gap interval). Now we can simply
slide the token t onto b and then onto any of the neighbors of b in A. Combined
with the fact that the above strategy can also be applied to project a token from
A to B, it then follows that whenever (G, k, Is, It) is a yes-instance we can find
a reconfiguration sequence from Is to It in G where we have at most one token
in B at all times, as claimed (see Fig. 2). �

Token Sliding on Graphs of Girth Five 65

Corollary 2. Let C be a diameter-safe component. If (G, k, Is, It) is a yes-
instance then there exists a reconfiguration sequence from Is to It where we
have at most one token in N(C) ⊆ L2 at all times.

Putting Corollary 1 and Corollary 2 together, we know that if (G, k, Is, It) is
a yes-instance, then there exists a reconfiguration sequence from Is to It where
we have at most one token in N(C) ⊆ L2 at all times, where C is either a
degree-safe or a diameter-safe component. We now show how to reduce a safe
component C by replacing it by another smaller subgraph that we denote by H.

Fig. 3. An illustration of the replacement gadget for a safe component C.

Lemma 7. Let C be a safe component in G[L3] and let G′ be the graph obtained
from G as follows:
– Delete all vertices of C (and their incident edges).
– For each vertex v ∈ N(C) ⊆ L2 add two new vertices v′ and v′′ and add the

edges {v, v′} and {v′, v′′}.
– Add a path of length 3k consisting of new vertices p1 to p3k.
– Add an edge {p1, v

′′} for every vertex v′′.

Note that this new component has size 3k + |2N(C)| (see Fig. 3). We claim that
(G, k, Is, It) is a yes-instance if and only if (G′, k, Is, It) is a yes-instance.

Proof. First, we note that replacing C with this new component, H, cannot cre-
ate cycles of length less than five. This follows from the fact that all the vertices
at distance one or two from p1 have distinct neighbors. Assume (G, k, Is, It) is
a yes-instance. Then, by Corollary 1 and Corollary 2, we know that there exists
a reconfiguration sequence from Is to It in G where we have at most one token
in N(C) ⊆ L2 at all times, where C is either a degree-safe or a diameter-safe
component. Hence, we can mimic the reconfiguration sequence from Is to It in
G′ by simply projecting tokens onto the path of length 3k in each of the safe
components that we replaced. Now assume that (G′, k, Is, It) is a yes-instance.
By the same arguments, and combined with the fact that a safe component C
can absorb/project the same number of tokens as its replacement component H,
we can again mimic the reconfiguration sequence of G′ in G. �

66 V. Bartier et al.

3.2 Bounding the Size of L2

Having classified the components in L3 and the edges between L2 and L3, our
next goal is to bound the size of L2, which until now could be arbitrarily large.
We know that vertices in L2 are the neighbors of vertices in L1, hence the size
of L2 will grow whenever there are vertices in L1 with arbitrarily large degrees.
Bounding L2 will therefore be done by first proving the following lemma.

Lemma 8. Assume a vertex u in L1 = Is ∪ It has degree greater than 2k2.
Moreover, assume, without loss of generality, that u ∈ Is. Then, there exists I ′

s

such that Is�I ′
s = {u, u′}, u′ has degree at most 2k2, and the token on u can

slide to u′.

Proof. First note that from such a vertex u ∈ Is we can always slide to a vertex
in L2. Indeed, for every v, |N(u) ∩ N(v)| ≤ 1 by the assumption on the girth of
the graph. Thus, since the degree of u is larger than the number of tokens, there
exists at least one vertex in L2 that the token on u can slide to. If we slide to a
vertex v ∈ L2 of degree at most 2k2, then we are done (we set u′ = v). Otherwise,
by Lemma 2, we know that most of the neighbors of v are in L3; since v has
degree greater than 2k2 and at most 2k of its neighbors are in L1 ∪ L2. Hence,
we are guaranteed at least one neighbor w of v in some component of L3. If we
reach a bounded component C, i.e., if w belongs to a bounded component, then
all vertices of C (including w) have at most k2 neighbors in C and have at most
2k neighbors in L2 (by Lemma 2) and thus we can set u′ = w. If we reach a bad
component C, then we know that C has a vertex b with at least k2 +1 neighbors
in C and at most k2 − 1 of those neighbors have other neighbors in C. Let z
denote a vertex in the neighborhood of b that does not have other neighbors
in C. By Lemma 2, z will have degree at most 2k + 1 and we can therefore let
u′ = z. Finally, if we reach a safe component, then after our replacement such
components contain a lot of vertices of degree exactly two and we can therefore
slide to any such vertex, which completes the proof. �

After exhaustively applying Lemma 8, each time relabeling vertices in L1,
L2 and L3 and replacing safe components as described in Lemma 7, we get an
equivalent instance where the maximum degree in L1 is at most 2k2 and hence
we get a bound on |L2|. We conclude this section with the following lemma.

Lemma 9. Let (G, k, Is, It) be an instance of Token Sliding, where G has
girth at least five. Then we can compute an equivalent instance (G′, k, I ′

s, I
′
t),

where G′ has girth at least five, |L1 ∪ L2| ≤ 2k + 4k3 = O(k3), and each safe
component of G is replaced in G′ by at most 3k + 8k3 = O(k3) vertices.

3.3 Bounding the Size of L3

We have proved that the number of vertices in L1 and L2 is bounded by a
function of k, namely |L1 ∪ L2| = O(k3). We have also showed that every safe
or bounded component in L3 has a bounded number of vertices, namely safe

Token Sliding on Graphs of Girth Five 67

components have O(k3) vertices and bounded components have k2k3
vertices. We

still need to show that L3 is bounded. We start by showing that bad components
become bounded after bounding L2:

Lemma 10. Let (G, k, Is, It) be an instance where G has girth at least five,
|L1 ∪ L2| ≤ 2k + 4k3 = O(k3), and each safe component has at most 3k + 8k3 =
O(k3) vertices. Then, every bad component has at most kO(k3) vertices.

Proof. Let C be a bad component, hence diam(C) ≤ k3 since C is not diameter-
safe. Let v ∈ V (C) be a vertex in C whose degree is d > k2. Since C is not
a degree-safe component v can have at most k2 − 1 neighbors in C that have
other neighbors in C. Hence, at least d − (k2 − 1) = d − k2 + 1 neighbors of v
will have only v as a neighbor in C and all their other neighbors must be in L2.
Since, by Lemma 1, we can assume that L3 contains no twin vertices, d − k2 of
the neighbors of v in C must have at least one neighbor in L2. But we know
that L2 has size O(k3) and if two neighbors of v had a common neighbor in L2,
this would imply the existence of a cycle of length four. Therefore, d must be at
most O(k3). Having bounded the degree and diameter of bad components, we
can now apply the same argument as in the proof of Lemma 3. �

Since bounded and bad components now have the same asymptotic number
of vertices, in what follows we refer to both of them as bounded components.
What remains to show is that the number of safe and bounded components is
also bounded by a function of k and hence L3 and the whole graph will have
size bounded by a function of k.

Definition 2. Let C1 and C2 be two components in G[L3] and B1 and B2 be
their respective neighborhoods in L2. We say C1 and C2 are equivalent when-
ever B1 = B2 = B and G[V (C1) ∪ B] is isomorphic to G[V (C2) ∪ B] by an
isomorphism that fixes B point-wise. We let β(G) and σ(G) denote the number
of equivalence classes of bounded components and safe components, respectively.

Lemma 11. Let S1 and S2 be equivalent safe components and let B1, . . ., Bk+1

be equivalent bounded components. Then, (G, k, Is, It), (G − V (S2), k, Is, It) and
(G − V (Bk+1), k, Is, It) are equivalent instances.

After exhaustively removing equivalent components as described in
Lemma 11 we obtain the following corollary, which leads to the final lemma.

Corollary 3. There are at most kβ(G) bounded components and σ(G) safe com-
ponents.

Lemma 12. We have β(G) = 2kO(k3)
, σ(G) = 2O(k6), |L3| ≤ kO(k3)2kO(k3)

+

k32O(k6) = 2kO(k3)
, and |V (G)| = |L1| + |L2| + |L3| = 2kO(k3)

.

Theorem 1. Token Sliding is fixed-parameter tractable when parameterized
by k on graphs of girth five or more.

68 V. Bartier et al.

References

1. Agrawal, A., Allumalla, R.K., Dhanekula, V.T.: Refuting FPT algorithms for some
parameterized problems under Gap-ETH. In: Golovach P.A., Zehavi M. (eds.) 16th
International Symposium on Parameterized and Exact Computation. IPEC, vol.
214 of LIPIcs, pp. 2:1–2:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021)

2. Bartier, V., Bousquet, N., Dallard, C., Lomer, K., Mouawad, A.E.: On girth and
the parameterized complexity of token sliding and token jumping. Algorithmica
83(9), 2914–2951 (2021)

3. Bartier, V., Bousquet, N., Mouawad, A.E.: Galactic token sliding. CoRR,
abs/2204.05549 (2022)

4. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token
sliding on split graphs. Theory Comput. Syst. 65(4), 662–686 (2021)

5. Bodlaender, H.L., Groenland, C., Swennenhuis, C.M. F.: Parameterized complexi-
ties of dominating and independent set reconfiguration. In: Golovach P.A., Zehavi
M. (eds.) 16th International Symposium on Parameterized and Exact Compu-
tation. IPEC, 8–10 September Lisbon. LIPIcs, vol. 214, pp. 9:1–9:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik , Portugal (2021)

6. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 10

7. Bonnet, É., Bousquet, N., Charbit, P., Thomassé, S., Watrigant, R.: Parameterized
complexity of independent set in h-free graphs. Algorithmica 82(8), 2360–2394
(2020). https://doi.org/10.1007/s00453-020-00730-6

8. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp.
86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6 8

9. Brewster, R.C., McGuinness, S., Moore, B., Noel, J.A.: A dichotomy theorem for
circular colouring reconfiguration. Theor. Comput. Sci. 639, 1–13 (2016)

10. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colourings. Discret. Math. 308(5–6), 913–919 (2008)

11. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H.,
Otachi, Y., Uehara, R., Yamada, T.: Polynomial-time algorithm for sliding tokens
on trees. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
389–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0 31

12. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 21

13. Gharibian, S., Sikora, J.: Ground state connectivity of local hamiltonians. ACM
Trans. Comput. Theory 10(2), 8:1–8:28 (2018)

14. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38(6), 2330–2355 (2009)

15. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

16. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/s00453-020-00730-6
https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1007/978-3-319-13075-0_31
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-662-48971-0_21

Token Sliding on Graphs of Girth Five 69

17. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a
graph. Discret. Appl. Math. 160(15), 2199–2207 (2012)

18. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the
parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal,
M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7 24

19. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404
(1879)

20. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

21. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. J. Int.
Comput. Games Assoc. 31(1), 13–34 (2008)

22. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms 15(1), 1–19 (2019)

23. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.:
Reconfiguration on sparse graphs. J. Comput. Syst. Sci. 95, 122–131 (2018)

24. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom. 49, 17–23 (2015)

25. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration
paths in the solution space of boolean formulas. SIAM J. Discret. Math. 31(3),
2185–2200 (2017)

26. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
27. Heuvel, J.V.D.: The complexity of change. In: Blackburn S.R., Gerke S., Wildon,

M. (eds.) Surveys in Combinatorics 2013. London Mathematical Society Lecture
Note Series, vol. 409, pp. 127–160. University Press, Cambridge (2013)

28. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput.
Syst. Sci. 93, 1–10 (2018)

29. Wrochna, M.: Homomorphism reconfiguration via homotopy. SIAM J. Discret.
Math. 34(1), 328–350 (2020)

30. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theo. Comput. 3(1), 103–128 (2007)

https://doi.org/10.1007/978-3-319-06089-7_24

Recognition of Linear and Star Variants
of Leaf Powers is in P

Bergougnoux Benjamin, Svein Høgemo, Jan Arne Telle(B),
and Martin Vatshelle

Department of Informatics, University of Bergen, 5020 Bergen, Norway
{benjamin.bergougnoux,svein.hogemo,jan.arne.telle,

martin.vatshelle}@uib.no

Abstract. A k-leaf power of a tree T is a graph G whose vertices are the
leaves of T and whose edges connect pairs of leaves whose distance in T is
at most k. A graph is a leaf power if it is a k-leaf power for some k. Over
20 years ago, Nishimura et al. [J. Algorithms, 2002] asked if recognition
of leaf powers was in P. Recently, Lafond [SODA 2022] showed an XP
algorithm when parameterized by k, while leaving the main question
open. In this paper, we explore this question from the perspective of two
alternative models of leaf powers, showing that both a linear and a star
variant of leaf powers can be recognized in polynomial-time.

Keywords: Leaf power · Co-threshold tolerance graphs · Interval
graphs

1 Introduction

Leaf powers were introduced by Nishimura et al. in [22], and have enjoyed a
steady stream of research. Leaf powers are related to the problem of recon-
structing phylogenetic trees. For an integer k, a graph G is a k-leaf power if there
exists a tree T – called a leaf root – with a one-to-one correspondence between
V (G) and the leaves of T , such that two vertices u and v are neighbors in G iff
the distance between the two corresponding leaves in T is at most k. G is a leaf
powers if it is a k-leaf power for some k. The most important open problem in
the field is whether leaf powers can be recognized in polynomial time.

Most of the results on leaf powers have followed two main lines, focusing
either on the distance values k or on the relation of leaf powers to other graph
classes, see e.g. the survey by Calamoneri et al. [7]. For the first approach,
steady research for increasing values of k has shown that k-leaf powers for any
k � 6 is recognizable in polytime [4,5,8,11,12,22]. Moreover, the recognition
of k-leaf powers is known to be FPT parameterized by k and the degeneracy
of the graph [13]. Recently Lafond [19] gave a polynomial time algorithm to

Omitted proofs and a conclusion can be found in the full version of this paper available
on https://arxiv.org/abs/2105.12407.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 70–83, 2022.
https://doi.org/10.1007/978-3-031-15914-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_6&domain=pdf
https://arxiv.org/abs/2105.12407
https://doi.org/10.1007/978-3-031-15914-5_6

Recognition of Linear and Star Variants of Leaf Powers is in P 71

recognize k-leaf powers for any constant value of k. For the second approach,
we can mention that interval graphs [5] and rooted directed path graphs [3] are
leaf powers, and also that leaf powers have mim-width one [17] and are strongly
chordal. Moreover, an infinite family of strongly chordal graphs that are not leaf
powers has been identified [18]; see also Nevris and Rosenke [21].

To decide if leaf powers are recognizable in polynomial time, it may be better
not to focus on the distance values k. Firstly, the specialized algorithms for k-leaf
powers for k � 6 do not seem to generalize. Secondly, the recent XP algorithm of
Lafond [19] uses techniques that will not allow removing k from the exponent. In
this paper we therefore take a different approach, and consider alternative models
for leaf powers that do not rely on a distance bound. In order to make progress
towards settling the main question, we consider fundamental restrictions on the
shape of the trees, in two distinct directions: subdivided caterpillars (linear) and
subdivided stars, in both cases showing polynomial-time recognizability. We use
two models: weighted leaf roots for the linear case and NeS models for the stars.

The first model uses rational edge weights between 0 and 1 in the tree T which
allows to fix a bound of 1 for the tree distance. It is not hard to see that this
coincides with the standard definition of leaf powers using an unweighted tree T
and a bound k on distance. Given a solution of the latter type we simply set all
edge weights to 1/k, while in the other direction we let k be the least common
denominator of all edge weights and then subdivide each edge a number of times
equal to its weight times k.

The second model arises by combining the result of Brandstädt et al. that leaf
powers are exactly the fixed tolerance NeST graphs [3, Theorem 4] with the result
of Bibelnieks et al. [1, Theorem 3.3] that these latter graphs are exactly those
that admit what they call a “neighborhood subtree intersection representation”,
that we choose to call a NeS model. NeS models are a generalization of interval
models: by considering intervals of the line as having a center that stretches
uniformly in both directions, we can generalize the line to a tree embedded in the
plane, and the intervals to embedded subtrees with a center, stretching uniformly
in all directions from the center, along tree edges. Thus a NeS model of a graph G
consists of an embedded tree and one such subtree for each vertex, such that two
vertices are adjacent in G iff their subtrees have non-empty intersection. Precise
definitions are given later. The leaf powers are exactly the graphs having a NeS
model. Some results are much easier to prove using NeS models, to illustrate
this, we show that leaf powers are closed under several operations such as the
addition of a universal vertex (see Lemma 6).

We show that fundamental constraints on these models allow polynomial-
time recognition. Using the first model, we restrict to edge-weighted caterpillars,
i.e. trees with a path containing all nodes of degree 2 or more. We call linear
leaf power a graph with such model. Brandstädt et al. [2] considered leaf roots
restricted to caterpillars (see also [6]) in the unweighted setting, showing that
unit interval graphs are exactly the k-leaf powers for some k with a leaf root
being an unweighted caterpillar. In the unweighted setting, linear leaf powers are
graphs with a leaf root that is a subdivision of a caterpillar. We show that linear

72 B. Benjamin et al.

leaf powers are exactly the co-threshold tolerance graphs [20], and combined with
the algorithm of Golovach et al. [14] this implies that we can recognize linear
leaf powers in O(n2) time. Our proof goes via the equivalent concept of blue-red
interval graphs introduced by [15].

The recognition of linear leaf powers in polynomial time could have practical
applications for deciding whether the most-likely evolutionary tree associated
with a set of organisms has a linear topology. Answering this question might
find particular relevance inside the field of tumor phylogenetics where, under
certain model assumptions, linear topologies are considered more likely [9,24].

For NeS models, we restrict to graphs having a NeS model where the embed-
ding tree is a star, and show that they can be recognized in polynomial time.
Note that allowing the embedding tree to be a subdivided star will result in the
same class of graphs. Our algorithm uses the fact that the input graph must be
a chordal graph, and for each maximal clique X we check if G admits a star NeS
model where the set of vertices having a subtree containing the central vertex
of the star is X. To check this we use a combinatorial characterization, that we
call a “good partition”, of a star NeS model.

2 Preliminaries

For positive integer k, denote by [k] the set {1, 2, . . . , k}. A partition of a set
S is a collection of non-empty disjoint subsets B1, . . . , Bt of S – called blocks –
such that S = B1 ∪ · · · ∪ Bt. Given two partitions A,B of S, we say A � B if
every block of A is included in a block of B, i.e. � is the refinement relation.

Graph. Our graph terminology is standard and we refer to [10]. The vertex set
of a graph G is denoted by V (G) and its edge set by E(G). An edge between two
vertices x and y is denoted by xy or yx. The set of vertices that is adjacent to
x is denoted by N(x). A vertex x is simplicial if N(x) is a clique. Two vertices
x, y are true twins if xy ∈ E(G) and N(x)\{y} = N(y)\{x}. Given X ⊆ V (G),
we denote by G[X] the graph induced by X. Given a vertex v ∈ V (G), we
denote the subgraph G[V (G)\{v}] by G − v. We denote by CC(G) the partition
of G into its connected components. Given a tree T and an edge-weight function
w : E(T) → Q, the distance between two vertices x and y is denoted by dT (x, y)
is

∑
e∈E(P) w(e) with P is the unique path between x and y. A caterpillar is

a tree in which there exists a path that contains every vertex of degree two or
more

Leaf Power. In the Introduction we have already given the standard defini-
tion of leaf powers and leaf roots, and also we argued the equivalence with the
following. Given a graph G, a leaf root of G is a pair (T,w) of a tree T and a
rational-valued weight function w : E(T) → [0, 1] such that the vertices of G are
the leaves of T and for every u, v ∈ V (G), u and v are adjacent iff dT (u, v) � 1.
Moreover, if T is a caterpillar we call (T,w) a linear leaf root. A graph is a leaf
power if it admits a leaf root and it is a linear leaf power if it admits a linear
leaf root. Since we manipulate both the graphs and the trees representing them,
the vertices of trees will be called nodes to avoid confusion.

Recognition of Linear and Star Variants of Leaf Powers is in P 73

Interval Graphs. A graph G is an interval graph if there exists a set of intervals
in Q, I = (Iv)v∈V (G), such that for every pair of vertices u, v ∈ V (G), the
intervals Iv and Iu intersect iff uv ∈ E(G). We call (Iv)v∈V (G) an interval model
of G. For an interval I = [�, r], we define the midpoint of I as (� + r)/2 and its
length as r − �.

Clique Tree. A Chordal graph is a graph in which every induced cycle have
exactly three vertices. For a chordal graph G, a clique tree CT of G is a tree whose
vertices are the maximal cliques of V (G) and for every vertex v ∈ V (G), the set
of maximal cliques of G containing v induces a subtree of CT . Figure 2 gives an
example of clique tree. Every chordal graph admits O(n) maximal cliques and
given a graph G, in time O(n+m) we can construct a clique tree of G or confirm
that G is not chordal [16,23]. When a clique tree is a path, we call it a clique
path. We denote by (K1, . . . ,Kk) the clique path whose vertices are K1, . . . ,Kk

and where Ki is adjacent to Ki+1 for every i ∈ [k − 1].

3 Linear Leaf Powers

In this section we show that linear leaf powers are exactly the co-threshold toler-
ance graphs (co-TT graphs). Combined with the algorithm in [14], this implies
that we can recognize linear leaf powers in O(n2) time.

Co-TT graphs were defined by Monma, Trotter and Reed in [20]; we will not
define them here as we do not use this characterization. Rather, we work with
the equivalent class of blue-red interval graphs [15, Proposition 3.3].

Definition 1 (Blue-red interval graph). A graph G is a blue-red interval
graph if there exists a bipartition (B,R) of V (G) and an interval model I =
(Iv)v∈V (G) (with (B,R, I) called a blue-red interval model) such that E(G) =
{b1b2 : b1, b2 ∈ B and Ib1 ∩ Ib2 �= ∅} ∪ {rb : r ∈ R, b ∈ B and Ir ⊆ Ib}.

The red vertices induce an independent set, (Ib)b∈B is an interval model of G[B],
and we have a blue-red edge for each red interval contained in a blue interval.
The following fact can be easily deduced from Fig. 1.

Fact 2 Consider two intervals I1, I2 with lengths �1, �2 and midpoints m1,m2

respectively. We have I1 ∩ I2 �= ∅ iff |m1 − m2| � �1+�2
2 . Moreover, we have

I2 ⊆ I1 iff |m1 − m2| � �1−�2
2 .

Fig. 1. Example of two intervals overlapping and one interval containing another one.

74 B. Benjamin et al.

To prove that linear leaf powers are exactly blue-red interval graphs, we use a
similar construction as the one used in [2, Theorem 6] to prove that every interval
graph is a leaf power, but in our setting, we have to deal with red vertices and
this complicates things quite a bit.

Theorem 3. G is a blue-red interval graph iff G is a linear leaf power.

Proof (Sketch of proof). (⇒) Let (B,R, (Iv)v∈V (G)) be a blue-red interval model
of a graph G. For each v ∈ V (G), we denote by mv and �v the midpoint and the
length of the interval Iv. We assume w.l.o.g. that G is connected and the lengths
of the intervals Iv’s are not 0 and at most 1. We prove that we can construct
a linear leaf root (T,w) of G. For doing so, we construct (T,w) as follows. The
inner path of T represents the midpoints of the intervals: each node of this path
is associated with a midpoint and the weights on the edges of this path are the
distances between consecutive midpoints (since G is connected by assumption
and the length are at most 1, these distances are at most 1). Each vertex v of
G is adjacent through an edge e to the node representing the midpoint mv, the
weight of e is 1−�v

2 if v ∈ B and 1+�v
2 if v ∈ R. With these weights, the distance

between two red vertices in T is strictly greater than 1. Moreover, for every
v ∈ B and u ∈ V (G), we have (♠) dT (u, v) = 1 + |mu − mv| −

(
�u+�v

2

)
if u ∈

B and 1 + |mv − mu| −
(

�v−�u
2

)
if u ∈ R. From Fact 2, one easily proves that

(T,w) is a linear leaf root of G.
(⇐) Let (T,w) be a linear leaf root of a graph G with (u1, . . . , ut) the path

induced by the internal vertices of T . The previous construction can easily be
reversed to construct a blue-red interval model (B,R, (Iv)v∈V (G)) of G. For each
vertex v ∈ V (G) whose neighbor in T is ui, we associate v with an interval Iv

and a color as follows. We color v blue if w(uiv) � 1/2, otherwise we color it
red. The midpoint mv of Iv is the distance between u1 and ui in T . We define
the length �v of Iv to be 1 − 2w(uiv) if v is blue and 2w(uiv) − 1 if v is red. By
construction, w(uiv) = 1−�v

2 if v ∈ R and 1+�v
2 if v ∈ B. Observe that two red

vertices cannot be adjacent since their distance in T is strictly greater than 1.
We can prove that (♠) holds also for this direction and with Fact 2 one concludes
that (B,R, (Iv)v∈V (G)) is a blue-red interval model of G. �

4 Star NeS Model

In this section, we first present an alternative definition of leaf powers through
the notion of NeS models. We then show that we can recognize in polynomial
time graphs with a star NeS model : a NeS model whose embedding tree is a star
(considering subdivided stars instead of stars does not make a difference).

For each tree T , we consider a corresponding tree T embedded in the
Euclidean plane so that each edge of T corresponds to a line segment of T ,
these lines segments can intersect one another only at their endpoints, and the
vertices of T correspond (one-to-one) to the endpoints of the lines. Each line
segment of T has a positive Euclidean length. These embedded trees allow us to
consider T as the infinite set of points on the line segments of T . The notion of

Recognition of Linear and Star Variants of Leaf Powers is in P 75

tree embedding used here is consistent with that found in [25]. The line segments
of T and their endpoints are called respectively the edges and the nodes of T .
The distance between two points x, y of T denoted by dT (x, y) is the length of
the unique path in T between x and y (the distance between two vertices of T
and their corresponding endpoints in T are the same).

Definition 4 (Neighborhood subtree, NeS-model). Let T be an embed-
ding tree. For some point c ∈ T and non-negative rational w, we define the
neighborhood subtree with center c and radius w as the set of points {p ∈ T :
dT (p, c) � w}. A NeS model (T , (Tv)v∈V (G)) of a graph G is a pair of an embed-
ding tree T and a collection of neigbhorhood subtrees of T associated with each
vertex of G such that for every u, v ∈ V (G), we have uv ∈ E(G) iff Tu ∩Tv �= ∅.

Theorem 5. A graph is a leaf power iff it admits a NeS model.

Proof. Brandstädt et al. showed that leaf powers correspond to the graph class
fixed tolerance NeST graph [3, Theorem 4]. Bidelnieks and Dearing showed that
G is a fixed tolerance NeST graph iff G has a NeS model [1, Theorem 3.3]. �

Fig. 2. A graph with a clique tree and NeS model. The dots are centers of Ta and Tb.

See Fig. 2 for a NeS model. From now, we consider that the intervals of an
interval models are segments of a line in the plane rather than intervals in Q.
Observe that every interval graph has a NeS model where the embedding tree
is a single edge. Moreover, if a graph G admits a NeS model (T , (Tv)v∈V (G)),
then for every embedding path L of T , (L, (Tv ∩ L)v∈X) is an interval model of
G[X] with X the set of vertices v such that Tv intersects L. As illustrated by
the proofs of the following two lemmata, some results are easier to prove with
NeS models than with other characterizations.

Lemma 6. For a graph G and u ∈ V (G) such that either (1) u is universal, or
(2) u has degree 1, or (3) N(u) is a minimal separator in G − u, or (4) N(u) is
a maximal clique in G − u. Then G is a leaf power iff G − u is a leaf power.

Lemma 7. Let G be a graph and u ∈ V (G) a cut vertex. Then G is a leaf power
iff for every component C of G − u, G[V (C) ∪ {u}] is a leaf power.

76 B. Benjamin et al.

We now give the algorithm for recognizing graphs having a star NeS model.
Our result is based on the purely combinatorial definition of good partition,
and we show that a graph admits a star NeS model iff it admits a good parti-
tion. Given a good partition, we compute a star NeS model in polynomial time.
Finally, we prove that our Algorithm 1 in polynomial time constructs a good
partition of the input graph or confirms that it does not admit one.

Consider a star NeS model (T , (Tv)v∈V (G)) of a graph G. Observe that T
is the union of line segments L1, . . . , Lβ with a common endpoint c that is the
center of T . Let X be the set of vertices whose neighborhood subtrees contain
c. For each i ∈ [β], we let Bi be the set of all vertices in V (G)\X whose neigh-
borhood subtrees are subsets of Li. The family B = {Bi : i ∈ [β]} must then
constitute a partition of V (G)\X. We will show in Theorem 12 that the pair
(X,B) has the properties of a good partition.

Fact 8 Let G, (T , (Tv)v∈V (G)) and B be as defined above. We then have:

– There is no edge between Bi and Bj for i �= j and thus CC(G − X) � B.
– For every i ∈ [β] the NeS model (Li, (Tv ∩Li)v∈Bi∪X) is an interval model of

G[X ∪ Bi].
– For each x ∈ X the neighborhood subtree Tx is the union of the β intervals

L1 ∩Tx, . . . , Lβ ∩Tx and there exist positive rationals �x and hx with �x � hx

such that one interval among these intervals has length hx and the other β−1
intervals have length �x. If �x = hx, then the center of Tx is c.

Claim. If G has a star NeS model, it has a one, (T , (Tv)v∈V (G)), where vertices
whose neighborhood subtrees contain the center of T is a maximal clique.

Claim 4 follows since we can always stretch some intervals to make X a
maximal clique. So far we have described a good partition as it arises from a
star NeS model. Now we introduce the properties of a good partition that will
allow to abstract away from geometrical aspects while still being equivalent, i.e.
so that a graph has a good partition (X,B) iff it has a star NeS model. The first
property is CC(G − X) � B and the second is that for every B ∈ B the graph
G[X ∪ B] is an interval graph having a model where the intervals of X contain
the last point used in the interval representation.

Definition 9 (X-interval graph). Let X be a maximal clique of G. We say
that G is an X-interval graph if G admits a clique path ending with X.

The third property is the existence of an elimination order for the vertices
of X based on the lengths �x in the last item of Fact 8, namely the permutation
(x1, . . . , xt) of X such that �x1 � �x2 � . . . � �xt

. This permutation has the
property that for any i ∈ [t], among the vertices xi, xi+1, ..., xt the vertex xi

must have the minimal neighborhood in at least β − 1 of the blocks of B; we say
that xi is removable from {xi, . . . , xt} for B.

Definition 10 (Removable vertex). Let X ⊆ V (G), Y ⊆ X and let B be a
partition of V (G)\X. Given a block B of B and x ∈ Y , we say N(x) is minimal
in B for Y if N(x) ∩ B ⊆ N(y) for every y ∈ Y . We say that a vertex x ∈ Y is
removable from Y for B if N(x) is minimal in at least |B| − 1 blocks of B for Y .

Recognition of Linear and Star Variants of Leaf Powers is in P 77

Definition 11 (Good partition). A good partition of a graph G is a pair
(X,B) where X is a maximal clique of G and B a partition of V (G)\X satisfying:

1. CC(G − X) � B, i.e. every C ∈ CC(G − X) is contained in a block of B.
2. For each block B ∈ B, G[X ∪ B] is an X-interval graph.
3. There exists an elimination order (x1, . . . , xt) on X such that for every i ∈ [t],

xi is removable from {xi, . . . , xt} for B.

X is the central clique of (X,B) and (x1, . . . , xt) a good permutation of (X,B).

Theorem 12. A graph G admits a good partition iff it admits a star NeS model.
Moreover, given the former we can compute the latter in polynomial time.

Proof (Sketch of proof). (⇐) Let (T , (Tv)v∈V (G)) be a star NeS model of a graph
G and (X,B) be the pair that we defined above Fact 8. Properties 1 and 2 follows
immediately from the first two items of Fact 8. Take the permutation (x1, . . . , xt)
defined above Definition 10. As argued there, for every i ∈ [t], N(xi) is minimal
in {xi, . . . , xt} for at least |B| − 1 blocks of B, and thus (x1, . . . , xt) is a good
permutation and Property 3 is satisfied.

(⇒) Let (X,B) be a good partition of a graph G with B = {B1, . . . , Bβ} and
(x1, . . . , xt) be a good permutation of (X,B). Take T , the embedding of a star
with center c that is the union of β line segments L1, . . . , Lβ whose intersection
is {c}. We start by constructing the neighborhood subtrees of the vertices in X.
For doing so, we associate each xi ∈ X and each line segment Lj with a rational
�(xi, Lj) and define Txi

as the union over j ∈ [β] of the points on Lj at distance
at most �(xi, Lj) from c. We set �(xi, Lj) = i if N(xi) is minimal in {xi, . . . , xt}
for Bj , and otherwise, we set �(xi, Lj) to a value computed from the lengths
associated with the vertices xi+1, . . . , xt on Lj such that (♣) for every x, y ∈ X,
if N(x) ∩ Bj ⊂ N(y) then �(x,Lj) < �(y, Lj).

Without going into details of how we compute these lengths, roughly what
we do is the following: for each i and each j, if we have some vertices x̂ in X
“non-minimal” on Bj such that N(xi)∩Bj ⊆ N(x̂)∩Bj ⊂ N(xi+1)∩Bj , then we
place each x̂ spaced between i and i+1. Since (x1, . . . , xt) is a good permutation,
we deduce that for each i the lengths �(xi, Lj) respect the last item of Fact 8 and
each Txi

is a neighborhood subtree. For the vertices not in X, with every j ∈ [β],
we associate each vertex v ∈ Bj to an interval of Lj so that (Li, (Tv ∩Li)v∈Bi∪X)
is an interval model of G[X ∪ Bi], which can always be done since we know that
(♣) holds. This allows us to obtain a NeS model in polynomial time. �

It is easy to see that every graph that admits a star NeS model has a clique-
tree that is a subdivided star. The converse is not true. In fact, for every graph G
with a clique tree that is a subdivided star with center X, the pair (X,CC(G−X))
satisfies Properties 1 and 2 of Definition 11 but Property 3 might not be satisfied.
See for example the graph in Fig. 2 and note that the pair ({a, b, c},CC(G −
{a, b, c})) does not satisfy Property 3, as after removing the vertex c neither a
nor b is removable from {a, b}.

We now describe Algorithm 1 that decides whether a graph G admits a good
partition. Clearly G must be chordal, so we start by checking this. A chordal

78 B. Benjamin et al.

graph has O(n) maximal cliques, and for each maximal clique X we try to
construct a good partition (X,A) of G. We start with A ← CC(G−X) and note
that (X,A) trivially satisfies Property 1 of Definition 11. Moreover, if G admits
a good partition with central clique X, then (X,A) must satisfy Property 2
of Definition 11, and we check this in Line 3. Then, Algorithm 1 iteratively in
a while loop tries to construct a good permutation (w1, . . . , w|X|) of X, while
possibly merging some blocks of A along the way so that it satisfies Property 3,
or discover that there is no good partition with central clique X.

For doing so, at every iteration of the while loop, Algorithm 1 searches for
a vertex w in W (the set of unprocessed vertices) such that notmin(w,W,A)
– the union of the blocks of A where N(w) is not minimal for W (see Defini-
tion 13) – induces an X-interval graph with X. If such a vertex w exists, then
Algorithm 1 sets wr to w, increments r and merges the blocks of A contained in
notmin(wr,W,A) (Line 8) to make wr removable in A for W . Otherwise, when no
such vertex w exists, Algorithm 1 stops the while loop (Line 7) and tries another
candidate for X. For the graph in Fig. 2, with X = {a, b, c} the first iteration of
the while loop will succeed and set w1 = c, but in the second iteration neither a
nor b satisfy the condition of Line 6.

At the start of an iteration of the while loop, the algorithm has already
choosen the vertices w1, w2, ..., wr−1 and W = X\{w1, . . . , wr−1}. For every
i ∈ [r−1], wi is removable from X\{w1, . . . , wi−1} for A. According to Definition
10 the next vertex wr to be removed should have N(wr) non-minimal for W
in at most one block of the good partition we want to construct. However,
the neighborhood N(wr) may be non-minimal for W in several blocks of the
current partition A, since these blocks may be (unions of) separate components
of G\X that should live on the same line segment of a star NeS model and thus
actually be a single block which together with X induces an X-interval graph.
An example of this merging is given in Fig. 3. The following definition captures,
for each w ∈ W , the union of the blocks of A where N(w) is not minimal for W .

Definition 13 (notmin). For W ⊆ X, x ∈ W and partition A of V (G)\X,
we denote by notmin(x,W,A) the union of the blocks A ∈ A where N(x) is not
minimal in A for W .

As we already argued, when Algorithm 1 starts a while loop, (X,A) satisfies
Properties 1 and 2, and it is not hard to argue that in each iteration, for every
i ∈ [r − 1], wi is removable from X\{w1, . . . , wi−1} for A. Hence, when W = ∅,
then (w1, . . . , w|X|) is a good permutation of (X,A) and Property 3 is satisfied.

Lemma 14. If Algorithm 1 returns (X,B), then (X,B) is a good partition.

To prove the opposite direction, namely that if G has a good partition (X,B)
associated with a good permutation (x1, . . . , xt), then Algorithm 1 finds a good
partition, we need two lemmata. The easy case is when Algorithm 1 chooses
consecutively w1 = x1, . . . , wt = xt, and we can use Lemma 15 to prove that
it will not return no. However, Algorithm 1 does not have this permutation as
input and at some iteration with w1 = x1, . . . , wr−1 = xr−1, the algorithm might

Recognition of Linear and Star Variants of Leaf Powers is in P 79

Algorithm 1:
Input: A graph G.
Output: A good partition of G or “no”.

1 Check if G is chordal and if so, compute its set of maximal cliques X , otherwise
return no;

2 for every X ∈ X do
3 if there exists C ∈ CC(G − X) such that G[X ∪ C] is not an X-interval

graph then continue;
4 A ← CC(G − X), W ← X and r ← 1;
5 while W �= ∅ do
6 if there exists w ∈ W such that G[X ∪ notmin(wr,W,A)] is an

X-interval graph then wr ← w;
7 else break;
8 Replace the blocks of A contained in notmin(wr,W,A) by

notmin(wr,W,A);
9 W ← W\{wr} and r ← r + 1;

10 end
11 if W = ∅ then return (X,A)

12 end
13 return no;

stop to follow the permutation (x1, . . . , xt) and choose a vertex wr = xi with
r < i because xr may not be the only vertex satisfying the condition of Line 6. In
Lemma 16 we show that choosing wr = xi is then not a mistake as it implies the
existence of another good partition and another good permutation that starts
with (x1, . . . , xr−1, wr = xi). See Fig. 3 for an example of a very simple graph
with several good permutations leading to quite distinct star NeS models.

We need some definitions. Given permutation P = (x1, . . . , x�) of a
subset of X and i ∈ [�], define AP

0 = CC(G − X) and AP
i the parti-

tion of V (G)\X obtained from AP
i−1 by merging the blocks contained in

notmin(xi,X\{x1, . . . , xi−1},AP
i−1). Observe that when Algorithm 1 treats X

and we have w1 = x1, . . . , w� = x�, then the values of A are successively
AP

0 , . . . ,AP
� . The following lemma proves that if there exists a good permutation

P = (x1, . . . , xt) and at some iteration we have w1 = x1, . . . , wr−1 = xr−1, then
the vertex xr satisfies the condition of Line 6 and Algorithm 1 does not return no
during this iteration. Thus, as long as Algorithm 1 follows a good permutation,
it will not return no.

Lemma 15. Let G be a graph with good partition (X,B) and P = (x1, . . . , xt)
be a good permutation of (X,B). For every i ∈ [t], we have AP

i � B and the
graph G[X ∪ notmin(xi, {xi, . . . , xt},AP

i−1)] is an X-interval graph.

Lemma 16. Let P = (x1, . . . , xt) be a good permutation of X and i ∈ [t].
For every w ∈ {xi, . . . , xt} such that G[X ∪ notmin(w, {xi, . . . , xt},AP

i−1)]
is an X-interval graph, there exists a good permutation of X starting with
(x1, . . . , xi−1, w).

80 B. Benjamin et al.

Fig. 3. A graph G and two star NeS models. The dots are the centers of the subtrees.
X = {x, y, z} is a maximal clique with four components in G−X. The left NeS model
corresponds to permutations (y, x, z) or (y, z, x) and the right to permutation (x, y, z).
If Algorithm 1 chooses w1 = x, then the components {b} and {d} will be merged in
Line 8. There is a third star NeS model, corresponding to permutation (z, y, x), similar
to the one on the right. The last two permutations of X are not good permutations.

Proof. (Sketch of proof) For every A ⊆ V (G)\X, we define X-max∩(A) =
N(A) ∩ X and X-min∩(A) = ∩a∈AN(a) ∩ X. Given A1, A2 ⊆ V (G)\X,
we say that A1 �X A2 if X-max∩(A1) ⊆ X-min∩(A2). In Fig. 3, we have
{b} �{x,y,z} {d}. We denote by Xi the set {xi, . . . , xt}. Let w ∈ Xi such
that the graph G[X ∪ notmin(w,Xi,AP

i−1)] is an X-interval graph. Let (X,B)
be a good partition of G such that (x1, . . . , xt) is a good permutation of
(X,B). If w = xp is removable from B for Xi, then we are done since
(x1, . . . , xi−1, w, xi, . . . , xp−1, xp+1, . . . , xt) is a good permutation of (X,B). In
particular, w is removable from B if we have |notmin(w,Xi,AP

i−1)| � 1.
We supose from now that |notmin(w,Xi,AP

i−1)| � 2. We construct
a good partition (X,Bnew) that admits a good permutation starting
with (x1, . . . , xi−1, w). Let A1, . . . , Ak be the blocks of AP

i−1 such that
notmin(w,Xi,AP

i−1) = A1 ∪ A2 ∪ · · · ∪ Ak. We prove a separate claim implying
that as G[X ∪notmin(w,Xi,AP

i−1)] is an X-interval graph, the blocks A1, . . . , Ak

are pairwise comparable for �X . Suppose w.l.o.g. that A1 �X . . . �X Ak.
In Fig. 3 with notmin(x, {x, y, z}, {{a}, {b}, {c}, {d}}) = {b} ∪ {d} we have

A1 = {b} and A2 = {d}. By Lemma 15, we have AP
i−1 � B. Thus, there exists

a block B1 of B containing A1 and B1 is a union of blocks of AP
i−1. See Fig. 4.

Let Bmax
1 be the union of all the blocks A of AP

i−1 included in B1 such that A is
not contained in notmin(w,Xi,AP

i−1) and A1 �X A. Note that for every block
A ∈ Bmax

1 , we have Ak �X A because otherwise we have A1 �X A �X Ak and
that implies A ⊆ notmin(w,Xi,AP

i−1) .
We prove a separate claim allowing us to assume that Bmax

1 = ∅. We then
construct the partition Bnew as follows. Recall that A1 ⊆ B1. We create a new
block B̂1 = B1 ∪ A2 ∪ · · · ∪ Ak, and for every block B ∈ B such that B �= B1, we
create a new block B̂ = B\(A2 ∪ · · · ∪ Ak). We define Bnew = {B̂1} ∪ {B̂ : B ∈
B\{B1} and B̂ �= ∅}. The construction of Bnew is illustrated in Fig. 4. Finally, we

Recognition of Linear and Star Variants of Leaf Powers is in P 81

Fig. 4. Construction of Bnew from B with k = 5. The blocks of B and Bnew are in blue,
the blocks A1, . . . , A5 of AP

i−1 contained in notmin(w,Xi,AP
i−1) are in red, the other

blocks of AP
i−1 are in purple. In each block of B or Bnew, the blocks of AP

i−1 are ordered
w.r.t. �X from left to right. (Color figure online)

prove 4 separate claims that allow us to show that (X,Bnew) is a good partition
for a good permutation starting with (x1, . . . , xi−1, w). �

Lemma 17. If G has a good partition then Algorithm 1 returns one.

Proof. Suppose G admits a good partition with central clique X. We prove the
following invariant holds at the end of the i-th iteration of the while loop for X.

Invariant. G admits a good permutation starting with w1, ..., wi.
By assumption, X admits a good permutation and thus the invariant holds

before the algorithm starts the first iteration of the while loop. By induc-
tion, assume the invariant holds when Algorithm 1 starts the i-th iteration
of the while loop. Let L = (w1, . . . , wi−1) be the consecutive vertices cho-
sen at Line 6 before the start of iteration i (observe that L is empty when
i = 1). The invariant implies that there exists a good permutation P =
(w1, . . . , wi−1, xi, xi+1, ..., xt) of G starting with L. By Lemma 15, the graph
G[X ∪ notmin(xi, {xi, . . . , xt},AP

i−1)] is an X-interval graph. Observe that AP
i−1

and {xi, . . . , xt} are the values of the variables A and W when Algorithm 1
starts the i-th iteration. Thus, at the start of the i-th iteration, there exists
a vertex wi such that G[X ∪ notmin(wi,W,A)] is an X-interval graph. Conse-
quently, the algorithm does not return no at the i-th iteration and chooses a
vertex wi ∈ {xi, . . . , xt} such that the graph G[X ∪notmin(wi, {xi, . . . , xt},AP

i)]
is an X-interval graph. By Lemma 16, G admits a good permutation starting
with (w1, . . . , wi−1, wi). Thus, the invariant holds at the end of the i-th itera-
tion. If at the end of the i-th iteration W is empty, then the while loop stops and
the algorithm returns a pair (X,A). Otherwise, the algorithm starts an i + 1-st
iteration and the invariant holds at the start of this new iteration. By induction,
the invariant holds at every step and Algorithm 1 returns a pair (X,A) which
is a good partition by Lemma 14. �

Theorem 18. Algorithm 1 decides in polynomial time if G admits a star NeS
model.

Proof. By Theorem 12 G admits a star NeS model iff G admits a good partition,
and by Lemma 14 and 17 Algorithm 1 finds a good partition iff the input graph

82 B. Benjamin et al.

has a good partition. Let us argue for the runtime. Checking that G is chordal
and finding the O(n) maximal cliques can be done in polynomial time [16,23].
Given X,Y ⊆ V (G) we check whether G[X ∪ Y] is an X-interval graph, as
follows. Take G′ the graph obtained from G[X ∪Y] by adding u and v such that
N(u) = {v} and N(v) = {u}∪X. It is easy to see that G[X ∪Y] is an X-interval
graph iff G′ is an interval graph, which can be checked in polynomial time. �

References

1. Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discret.
Appl. Math. 43(1), 13–26 (1993)

2. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers.
In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 479–491. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78773-0 42

3. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs
are leaf powers. Discret. Math. 310(4), 897–910 (2010)

4. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Inf. Process. Lett. 98(4), 133–138 (2006)

5. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear-time recognition of
4-leaf powers. ACM Trans. Algorithms 5(1), 11:1-11:22 (2008). https://doi.org/10.
1145/1435375.1435386

6. Calamoneri, T., Frangioni, A., Sinaimeri, B.: Pairwise compatibility graphs of
caterpillars. Comput. J. 57(11), 1616–1623 (2014)

7. Calamoneri, T., Sinaimeri, B.: Pairwise compatibility graphs: a survey. SIAM Rev.
58(3), 445–460 (2016)

8. Chang, M.-S., Ko, M.-T.: The 3-Steiner root problem. In: Brandstädt, A., Kratsch,
D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 109–120. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74839-7 11

9. Davis, A., Gao, R., Navin, N.: Tumor evolution: Linear, branching, neutral or punc-
tuated? Biochim. Biophys. Acta (BBA) - Rev. Cancer 1867(2), 151–161 (2017).
https://doi.org/10.1016/j.bbcan.2017.01.003, evolutionary principles - heterogene-
ity in cancer?

10. Diestel, R.: Graph Theory, 4th edn, Graduate Texts in Mathematics, vol. 173.
Springer, London (2012)

11. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border
for closest leaf powers. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 397–
408. Springer, Heidelberg (2005). https://doi.org/10.1007/11604686 35

12. Ducoffe, G.: The 4-Steiner root problem. In: Sau, I., Thilikos, D.M. (eds.) WG
2019. LNCS, vol. 11789, pp. 14–26. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30786-8 2

13. Eppstein, D., Havvaei, E.: Parameterized leaf power recognition via embedding
into graph products. Algorithmica 82(8), 2337–2359 (2020)

14. Golovach, P.A., et al.: On recognition of threshold tolerance graphs and their com-
plements. Discret. Appl. Math. 216, 171–180 (2017)

15. Golumbic, M.C., Weingarten, N.L., Limouzy, V.: Co-TT graphs and a characteri-
zation of split co-TT graphs. Discret. Appl. Math. 165, 168–174 (2014)

16. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

https://doi.org/10.1007/978-3-540-78773-0_42
https://doi.org/10.1007/978-3-540-78773-0_42
https://doi.org/10.1145/1435375.1435386
https://doi.org/10.1145/1435375.1435386
https://doi.org/10.1007/978-3-540-74839-7_11
https://doi.org/10.1016/j.bbcan.2017.01.003
https://doi.org/10.1007/11604686_35
https://doi.org/10.1007/978-3-030-30786-8_2
https://doi.org/10.1007/978-3-030-30786-8_2

Recognition of Linear and Star Variants of Leaf Powers is in P 83

17. Jaffke, L., Kwon, O., Strømme, T.J.F., Telle, J.A.: Mim-width III. graph powers
and generalized distance domination problems. Theor. Comput. Sci. 796, 216–236
(2019). https://doi.org/10.1016/j.tcs.2019.09.012

18. Lafond, M.: On strongly chordal graphs that are not leaf powers. In: Graph-
Theoretic Concepts in Computer Science - 43rd International Workshop, WG 2017,
Eindhoven, The Netherlands, 21–23 June 2017, Revised Selected Papers, pp. 386–
398 (2017). https://doi.org/10.1007/978-3-319-68705-6 29

19. Lafond, M.: Recognizing k-leaf powers in polynomial time, for constant k. In:
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1384–1410. SIAM (2022). https://doi.org/10.1137/1.9781611977073.
58

20. Monma, C.L., Reed, B.A., Trotter, W.T.: Threshold tolerance graphs. J. Graph
Theor. 12(3), 343–362 (1988)

21. Nevries, R., Rosenke, C.: Towards a characterization of leaf powers by clique
arrangements. Graphs Combin. 32(5), 2053–2077 (2016). https://doi.org/10.1007/
s00373-016-1707-x

22. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees.
J. Algorithms 42(1), 69–108 (2002)

23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

24. Azer, E.S., Ebrahimabadi, M.H., Malikić, S., Khardon, R., Sahinalp, S.C.: Tumor
phylogeny topology inference via deep learning. iScience 23(11), 101655 (2020).
https://doi.org/10.1016/j.isci.2020.101655

25. Tamir, A.: A class of balanced matrices arising from location problems. Siam J.
Algebraic Discrete Methods 4, 363–370 (1983)

https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1007/978-3-319-68705-6_29
https://doi.org/10.1137/1.9781611977073.58
https://doi.org/10.1137/1.9781611977073.58
https://doi.org/10.1007/s00373-016-1707-x
https://doi.org/10.1007/s00373-016-1707-x
https://doi.org/10.1016/j.isci.2020.101655

Problems Hard for Treewidth but Easy
for Stable Gonality

Hans L. Bodlaender1(B) , Gunther Cornelissen2 ,
and Marieke van der Wegen2

1 Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584CC Utrecht, The Netherlands

h.l.bodlaender@uu.nl
2 Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht,

The Netherlands
{g.cornelissen,.vanderwegen}@uu.nl

Abstract. We show that some natural problems that are XNLP-
hard (hence W[t]-hard for all t) when parameterized by pathwidth or
treewidth, become FPT when parameterized by stable gonality, a novel
graph parameter based on optimal maps from graphs to trees. The
problems we consider are classical flow and orientation problems, such
as Undirected Flow with Lower Bounds, Minimum Maximum

Outdegree, and capacitated optimization problems such as Capaci-

tated (Red-Blue) Dominating Set. Our hardness claims beat exist-
ing results. The FPT algorithms use a new parameter “treebreadth”,
associated to a weighted tree partition, as well as DP and ILP.

Keywords: Parameterized complexity · Graph algorithms · Network
flow · Graph orientation · Capacitated dominating set · Tree
partitions · Stable gonality

1 Introduction

The Parameterization Paradigm. Problems on finite (multi-)graphs that are NP-
hard may become polynomial by restricting a specific graph parameter k. If there
exists an algorithm that solves the problem in time bounded by a computable
function of the parameter k times a power of the input size, we say that the
problem becomes fixed parameter tractable (FPT) for the parameter k [15, 1.1].
Despite the fact that computing the parameter itself can often be shown to be
NP-hard or NP-complete, the FPT-paradigm, originating in the work of Downey
and Fellows [18], has shown to be very fruitful in both theory and practice.

One successful approach is to consider graph parameters that measure how
far a given graph is from being acyclic; e.g. how the graph may be decomposed
into “small” pieces, such that the interrelation of the pieces is described by a
tree-like structure. A prime example of such a parameter is the treewidth tw(G)
of a graph G ([15, Ch. 7]).

Other parameters have been considered (see, e.g., [21,27], [15, 7.9]), but for
some famous graph orientation and graph flow problems, as well as capacitated
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 84–97, 2022.
https://doi.org/10.1007/978-3-031-15914-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_7&domain=pdf
http://orcid.org/0000-0002-9297-3330
http://orcid.org/0000-0003-3787-2550
http://orcid.org/0000-0003-0899-6925
https://doi.org/10.1007/978-3-031-15914-5_7

Problems Hard for Treewidth but Easy for Stable Gonality 85

version of classical problems, many of these parameters did not succumb to the
FPT paradigm. As shown by Ganian et al. [22], the parameter “tree-cut width”
of Wolan [32] is successful in dealing with several such problems. We propose a
new parameter, based on mapping the graph to a tree, rather than decomposing
the graph, that gives FPT-algorithms for a larger collection of graphs.

A Novel Parameter: Stable Gonality. The new multigraph parameter, based
on “tree-likeness”, is the so-called stable gonality sgon(G) of a multigraph G,
introduced in [13, §3], and originating in algebraic geometry, where a similar
construction has been used since the 19th century. One replaces tree decomposi-
tions of a graph G by graph morphisms from G to trees, and the “width” of the
decomposition by the “degree” of the morphism, where lower degree maps corre-
spond to less complex graphs. For example, connected graphs of stable gonality
1 are trees [7, Example 2.13], those of stable gonality 2 are so-called hyperellip-
tic graphs, i.e., graphs that admit, after refinement, a graph automorphism of
order two such that the quotient graph is a tree (decidable in quasilinear time [7,
Thm. 6.1]). The formal definition, given in Sect. 2.2, requires taking care of two
technicalities, related to harmonicity of the map and refinement of the graph.

It has been shown that tw(G) ≤ sgon(G) [16, §6], that sgon(G) is computable,
and NP-complete [24,26]. One attractive point of stable gonality as parameter
for weighted problems stems from the fact that it is sensitive to multigraph
properties, whereas the treewidth is not. Given an undirected weighted graph
G = (V,E,w) where w : E → Z>0 denotes the edge weights, we have an asso-
ciated (unweighted) multigraph G̃, with the same vertex set, but where each
simple edge e = uv in G is replaced by w(e) parallel edges between the ver-
tices u and v. The stable gonality of the weighted graph G is then by definition
sgon(G) := sgon(G̃).

Three Sample Problems. We now introduce three problems that are exemplary
for our work. We later discuss a few additional variants of these problems.
Throughout, we assume that all integers are given in unary.

A typical orientation problem is the following.

Minimum Maximum Outdegree (cf. Szeider [31])
Given: Undirected weighted graph G = (V,E,w) with a weight function

w : E → Z>0 ; integer r
Question: Is there an orientation of G such that for each v ∈ V , the total

weight of all edges directed out of v is at most r?

A flow network (see, e.g., [1]) is a directed graph D = (N,A), given with
two nodes s (source) and t (target) in N , and a capacity c(e) ∈ Z>0 for each
arc e ∈ A. Given a function f : A → Z≥0 and a node v, we call

∑
wv∈A f(wv)

the flow to v and
∑

vw∈A f(vw) the flow out of v. We say f is an s-t-flow if for
each arc a ∈ A, the flow over the arc is nonnegative and at most its capacity
(i.e., 0 ≤ f(a) ≤ c(a)), and for each node v ∈ N\{s, t}, the flow conservation
law holds: the flow to v equals the flow out of v. The value val(f) of a flow is
the flow out of s minus the flow to s.

86 H. L. Bodlaender et al.

Undirected Flow with Lower Bounds ([23, Problem ND37])1

Given: Undirected graph G = (V,E), for each edge e ∈ E a capacity
c(e) ∈ Z>0 and a lower bound �(e) ∈ Z≥0, vertices s (source) and t
(target), a value R ∈ Z>0

Question: Is there an orientation of G such that the resulting directed
graph D allows an s-t-flow f that meets capacities and lower bounds
(i.e., �(a) ≤ f(a) ≤ c(a) for all arcs a in D), with value R?

Capacitated versions of classical graph problems impose a limitation on the
available “resources”, placing them closer to real-world situations. The following
is a well-studied such graph problem, that can be viewed as an abstract form of
facility location questions.

Capacitated Dominating Set

Given: Undirected graph G = (V,E), for each vertex v ∈ V a positive
integer capacity c(v) ∈ Z>0, integer k

Question: Are there a set D ⊂ V of size |D| ≤ k and a function f : V \D →
D such that vf(v) ∈ E for all v ∈ V \D and |f−1(v)| ≤ c(v) for all
v ∈ D?

Main Results: Hard Problems for Treewidth but Easy for Stable Gonality. To
specify the (parameterized) hardness of problems, we use the parameterized
complexity class XNLP from Elberfeld et al. [20]: problems that can be solved
non-deterministically in time O(f(k)nc) (c ≥ 0) and space O(f(k) log(n)) where
n is the input size, k the parameter, and f is a computable function. We note
that, in terms of the more familiar W-hierarchy of Downey and Fellows [15, 13.3],
XNLP-hardness implies W[t]-hardness for all t [11, Lemma 2.2].

Theorem 1. Minimum Maximum Outdegree (MMO), Undirected Flow

with Lower Bounds (UFLB) and Capacitated Dominating Set (CDS)

are XNLP-complete for pathwidth, and XNLP-hard for treewidth (given a path
or tree decomposition realising the path- or treewidth), but are FPT for stable
gonality (given a refinement and graph morphism from the associated multigraph
to a tree realising the stable gonality).

Our proof that UFLB is XNLP-hard for pathwidth is by reduction from
Accepting Non-deterministic Checking Counter Machine from [11].
XNLP-completeness of CDS for pathwidth was shown in [10, Thm. 8]. Hardness
for the other problems follows by easy transformations from UFLB. Membership
in XNLP follows each time by observing that a known dynamic programming
algorithm can be transformed to a non-deterministic algorithm with bounded
space. Details are given in the full paper [8]. The condition that a path decom-
position realising the pathwidth is given as part of the input may be removed
when an FPT algorithm is known that finds such decompositions and uses log-
arithmic space (see [11,19,20]).
1 In [23] it is required that val(f) ≥ R rather than val(f) = R, but the problems are

of the same complexity, cf. [28].

Problems Hard for Treewidth but Easy for Stable Gonality 87

Itai [28, Thm. 4.1] showed that UFLB is strongly NP-complete. Dominating

set is W [2]-complete for the size of the dominating set [15, Thm. 13.28], and
FPT for treewidth [15, Thm. 7.7]. CDS was shown to be W[1]-hard for treewidth
(more precisely, for treedepth plus the size of the dominating set) by Dom et
al. [17]. Szeider [31] showed that CDS is W[1]-hard for treewidth, which was
improved to W[1]-hardness for vertex cover by Gima et al. [25].

For proving FPT under stable gonality, we revive an older idea of Seese on
tree-partite graphs and their widths [30]; in contrast to the tree decompositions
used in defining treewidth, we partition the original graph vertices into disjoint
sets (‘bags’) labelled by vertices of a tree, such that adjacent vertices are in the
same bag or in bags labelled by adjacent vertices in the tree. Seese introduced tree
partition width to be the maximal size of a bag in such a partition. We consider
weighted graphs and define a new parameter, breadth, given as the maximum of
the bag size and the sum of the weights of edges between adjacent bags. The
treebreadth of a graph G is the minimum breadth of a tree partition of G. This
allows us to divide the proof in two parts: (a) show that, given a graph morphism
from the associated multigraph to a tree, one can compute in polynomial time
a tree partition of the weighted graph of breadth upper bounded by the stable
gonality of the associated multigraph; (b) provide an FPT-algorithm, given a
tree partition of bounded breadth. By reductions, the two algorithms we specify
are the following, for the indicated parameters.

Theorem 2. MMO is FPT for treebreadth (given a tree partition realising the
treebreadth), and CDS is FPT for tree partition width (given a tree partition
with bounded width).

The technique to obtain Theorem 2 is similar to one used by Ganian et al. [22]
who obtained FPT algorithms for a number of problems with tree-cut width as
parameter, including CDS. Our results show that the technique from [22] can
be extended to a wider class of graphs: with an upper bound on the weight of
all edges, tree partition width and treebreadth are bounded by a polynomial in
the tree-cut width, while stable tree partition width and tree partition width
are polynomially related; see the discussion in [9, §5]. The second half of Theo-
rem 1 is obtained from Theorem 2 by transforming the data required for sgon
(a refinement with to a harmonic morphism to a tree) into a tree partition. We
also prove that MMO and UFLB are W[1]-hard for vertex cover number by
reduction from Bin Packing [29]. In Sect. 3, we list some related problems for
which algorithmic and hardness results hold as well. Due to space considerations,
several details and all hardness proofs are omitted and can be found in the full
version [8].

2 Preliminaries

2.1 Conventions and Notations

We will consider multigraphs G = (V,E) that consist of a finite set V of vertices,
as well as a finite multiset E of unoriented (unweighted) edges, i.e., a set of pairs

88 H. L. Bodlaender et al.

of (possibly equal) vertices, with finite multiplicity on each such pair. We denote
such an edge between vertices u, v ∈ V as uv. For v ∈ V , Ev denotes the
edges incident with v, and for two disjoint subsets X,Y ⊂ V , E(X,Y) is the
collection of edges from any vertex in X to any vertex in Y . We also consider
weighted simple graphs, where edges have positive integer weights. We will make
repeated use of the correspondence between integer weighted simple graphs and
multigraphs given by replacing every edge with weight k by k parallel edges. All
graphs we consider are connected. (If a graph is not connected, we can solve the
problem at hand separately on each connected component.) For convenience, we
use the terminology “vertex” and “edge” for undirected graphs, and “arc” and
“node” for either directed graphs, or for trees that occur in graph morphisms
or tree partitions. We write Z for all integers, with unique subscripts indicating
ranges (so Z>0 is the positive integers and Z≥0 the non-negative integers). We
use interval notation for sets of integers, e.g., [2, 5] = {2, 3, 4, 5}.

2.2 Stable Gonality and Treebreadth

Stable Gonality. A graph homomorphism between two multigraphs G and H,
denoted φ : G → H consists of two (not necessarily surjective) maps φ : V (G) →
V (H) and φ : E(G) → E(H) such that φ(uv) = φ(u)φ(v) ∈ E(H) for all uv ∈
E(G). One would like to define the “degree” of such a graph homomorphism as
the number of pre-images of any vertex or edge, but in general, this obviously
depends on the chosen vertex or edge. However, by introducing certain weights on
the edges via an additional index function, we get a large collection of “indexed”
maps for which the degree can be defined as the sum of the indices of the
pre-image of a given edge, as long as the indices satisfy a certain condition of
“harmonicity” above every vertex in the target. We make this precise.

Definition 1. A finite morphism φ between two loopless multigraphs G and H
consists of a graph homomorphism φ : G → H (denoted by the same letter),
and an index function r : E(G) → Z>0 (hidden from notation). The index of
v ∈ V (G) in the direction of e ∈ E(H), where e is incident to φ(v), is defined
by

me(v) :=
∑

e′∈Ev,
φ(e′)=e

r(e′).

We call φ harmonic if this index is independent of e ∈ E(H) for any given vertex
v ∈ V (G). We call this simply the index of v, and denote it by m(v). The degree
of a finite harmonic morphism φ is

deg(φ) =
∑

e′∈E(G),
φ(e′)=e

r(e′) =
∑

v′∈V (G),
φ(v′)=v

m(v′).

where e ∈ E(H) is any edge and v ∈ V (H) is any vertex. Since φ is harmonic,
this number does not depend on the choice of e or v, and both expressions are
indeed equal.

Problems Hard for Treewidth but Easy for Stable Gonality 89

Fig. 1. Two examples of a finite harmonic morphisms of degree 2. The edges without
label have index 1. The small grey vertices represent refinements of the graph. (Color
figure online)

The second ingredient in defining stable gonality is the notion refinement.

Definition 2. Let G be a multigraph. A refinement of G is a graph obtained
using the following two operations iteratively finitely often: (a) add a leaf (i.e.,
a vertex of degree one), (b) subdivide an edge.

Definition 3. Let G be a multigraph. The stable gonality of G is the minimum
degree of a finite harmonic morphism from a refinement of G to a tree.

Two examples are found in Fig. 1. The left-hand side illustrates the need
for an index function (the middle edge needs label 2), and the right hand side
shows the effect of subdivision. Stable gonality is well-defined, as each graph
G = (V,E) has a refinement that maps to K1,|E|: refine each edge once, map
each original vertex to the center, and each refinement vertex to a unique leaf.

Tree Partitions and Their Breadth. The existence of a harmonic morphism
to a tree imposes a special structure on the graph that we can exploit in designing
algorithms. To capture this structure, we define the “breadth” of tree partitions
of weighted graphs. The notion resembles that of “tree-partite graphs” from [30].

Definition 4. A tree partition T of a weighted graph G = (V,E,w) is a pair

T = ({Xi | i ∈ I}, T = (I, F))

where each Xi is a (possibly empty) subset of the vertex set V and T = (I, F) is
a tree, such that {Xi | i ∈ I} forms a partition of V (i.e., for each v ∈ V , there
is exactly one i ∈ I with v ∈ Xi); and adjacent vertices are in the same set Xi

or in sets corresponding to adjacent nodes (i.e., for each uv ∈ E, there exists an
i ∈ I such that {u, v} ⊆ Xi or there exists ij ∈ F with {u, v} ⊆ Xi ∪ Xj). The
breadth of a tree partition T of G is defined as

b(T) := max
{

max
i∈I

|Xi|, max
jk∈F

w(Xj ,Xk)
}

,

with w(Xj ,Xk) =
∑

e∈E(Xj ,Xk)

w(e) the total weight of the edges connecting ver-

tices in Xj to vertices in Xk. The treebreadth tb(G) of a weighted graph G is
the minimum breadth of a tree partition of G.

90 H. L. Bodlaender et al.

Fig. 2. Schematic representation of a tree partition of a graph of breadth ≤ k

We refer to Fig. 2 for a schematic view of a tree partition with weights and
bounded breadth. If we have a tree partition of a weighted graph G using a tree
T , for convenience we will call the vertices of T nodes and the edges of T arcs.
We call the sets Xi bags. Observe that in a tree partition of breadth k, if the
total weight of edges between two vertices u and v is more than k, then u and v
will be in the same bag.

Remark 1. In Seese’s work [30], the structure/weights of edges between bags
does not contribute to the total width; Seese’s tree-partition-width tpw(G) of
a simple graph G, defined as the minimum over all tree partitions of G of the
maximum bag size in the tree partition, is thus a lower bound for the treebreadth
tb(G) (in particular, for sgon, see below). For any G, tpw(G) is lower bounded
in terms of tw(G), but also upper bounded in terms of tw(G) and the maximal
degree in G, cf. [33].

From Morphisms to Tree Partitions. The existence of a finite harmonic
morphism φ of some degree k from a multigraph to a tree implies the existence
of a tree partition of breadth k for the associated weighted simple graph. The
basic idea is to use the pre-images of vertices in T as partitioning sets.

Theorem 3. Suppose G is a weighted simple graph, and φ : H → T is a finite
harmonic morphism of degree deg(φ) = k, where H is a loopless refinement of
the multigraph corresponding to G and T is a tree. Then one can construct in
time O(k · |V (T)|) a tree partition T = (X,T ′) for a subdivision of G such that
b(T) ≤ k, and |V (T ′)| ≤ 2|V (G)|.

For the proof, construct a tree partition T = (X,T) as follows. For every
node t ∈ V (T), define Xt = φ−1(t) ∩ V (G). For every edge uv ∈ E(G), do the
following. Let i ∈ V (T) be such that u ∈ Xi and let j ∈ V (T) be such that
v ∈ Xj . Let i, t1, t2, . . . , tl, j be the path between i and j in T . Subdivide the
edge uv into a path u, s1, s2, . . . , sl, v and add the vertex sr to the set Xtr

for
each r. To get a bound on the size of T , remove all vertices t from T for which

Problems Hard for Treewidth but Easy for Stable Gonality 91

Xt = ∅, and, for every degree 2 vertex t of T ′ for which Xt does not contain a
vertex of V (G), contract t with one of its neighbours, and contract all vertices
in Xt with a neighbour as well.

Example 1. For the multigraphs in Fig. 1, the constructed tree partitions have
breadth two, equal to the stable gonality: for (a), each vertex forms an individual
bag, and bags are connected by edges of weight 2; for (b), there is one bag
containing both non-subdivision vertices, and no edges.

Thus, to prove that a graph problem is FPT for sgon (given a morphism of
a refinement of the corresponding multigraph to a tree of the correct degree),
it suffices to prove that it is FPT for the breadth of a given tree-partition of a
subdivision of the weighted graph.

3 Related Problems and Reductions

We consider variations of the problems MMO and UFLB.

– Circulating Orientation (CO): given an undirected weighted graph
(V,E,w), is there an orientation such that for all vertices, the total weight of
outgoing edges equals that of incoming edges?

– Outdegree Restricted Orientation (ORO): given an interval for each
vertex, is there an orientation such that for every vertex, the total weight of
outgoing edges belongs to the given interval?

– Target Outdegree Orientation (TOO): given an integer mv for each
vertex v, is there an orientation such that for every vertex v, the total weight
of outgoing edges equals mv?

– Chosen Maximum Outdegree (CMO): given an integer mv for each ver-
tex v, is there an orientation such that for every vertex v, the total weight of
outgoing edges is at most mv?

– All or Nothing Flow (AoNF): Given a directed graph with a positive
capacity for each arc, two nodes s, t and a value R, is there a flow with value
R whose value on each arc is either zero or the given capacity? (Cf. [2].)

We claim that these problems can be transformed into one another according
to the diagrams in Fig. 3 preserving parameterized complexity for the indicated
parameters. All complexity statements are then reduced to the following claims:
(a) ORO is FPT for treebreadth; (b) AoNF is XNLP-complete for pathwidth;
(c) TOO is W[1]-hard for vertex cover number.

The proof of (a) is outlined in Sect. 4.1; a full proof of (a) and the hardness
proofs in (b) and (c) are given in the full version [8].

4 Algorithms for ORO and CDS for Graphs with Bounded
Treebreadth

4.1 Outdegree Restricted Orientations

We give the main ideas for an algorithm for ORO, when we are given a tree
partition of a subdivision of G of bounded breadth. Subdivisions can be handled

92 H. L. Bodlaender et al.

Fig. 3. Transformation between different problems with respect to parameter (a) sgon
and treebreadth, for which ORO is FPT, (b) pathwidth, for which AoNF is XNLP-
complete, and (c) vertex cover number, for which TOO is W[1]-hard. AonF with vertex
cover number has a separate W [1]-hardness proof (see [8], based on [2].)

by replacing each subdivision of an edge e by a vertex xe with Dxe
= [w(e), w(e)].

This gives an equivalent instance with a corresponding tree partition of the same
breadth.

We can now assume that we have a tree partition T of G, i.e., adjacent
vertices are in the same or neighbouring bags. Let k be the breadth of T .

We add a new root node r to T , and set Xr = ∅. For each node i, we let Vi

be the union of all bags j with j = i or j is a descendant of i. For an arc a = ii′

in T with i the parent of i′, we let Ea be the set of all edges with either both
endpoints in Vi′ , or with one endpoint in Xi and one endpoint in Xi′ .

A partial solution for the arc a = ii′ (with again i the parent of i′) is an ori-
entation of all edges in Ea such that for all vertices v ∈ Vi′ , its total outdegree in
this orientation is in Dv. Vertices in Xi can have oriented incident edges (namely
to neighbours in Xi′) and incident edges that are not yet oriented (namely to
neighbours in other bags than Xi′). The fingerprint of a partial solution is the
function δ : Xi → [0, k], that maps each vertex in Xi to its total outdegree in
this partial solution, i.e., for v ∈ Xi, the sum of the weights of the edges vw with
w ∈ Xi′ and vw is oriented from v to w. These sums are bounded by the breadth,
and thus, the total number of possible fingerprints for an arc is bounded by a
function of k.

The algorithm to solve ORO uses dynamic programming: for each arc in T ,
we compute the table Aa of all fingerprints of partial solutions for that arc. This
is done bottom-up in the tree.

It is straightforward to compute the table Aa for an arc a to a leaf of T , by
enumerating all orientations of edges in Ea.

Now, suppose we have a node i′ with children j1, . . . , jq and we have already
computed the tables Ai′j1 , . . . , Ai′jq

. To compute the table Aii′ , for the arc ii′

from i′ to its parent i, we express in an Integer Linear Program (with number
of variables bounded by a function of k), the property that we can extend an
orientation of the edges between Xi and Xi′ and between pairs of vertices in Xi′

to a partial solution. Some details are given below.
Define an equivalence relation ∼ on the children of i′, with two children

equivalent if they have precisely the same set of fingerprints. As the number of

Problems Hard for Treewidth but Easy for Stable Gonality 93

different fingerprints is a function of k, the number of equivalence classes of ∼
is a (double exponential) function of k.

We write Γ for the set of equivalence classes of ∼, and Δ for the set of all
possible fingerprints of partial solutions for arcs from i′ to a child.

We then enumerate all orientations ρ of the edges in Xi×Xi′ and in Xi′ ×Xi′ .
Each such orientation would fix a fingerprint for ii′—what needs to be done is
checking whether there is actually a partial solution for ii′ that extends ρ.

To do this, we introduce yet another concept: the blueprint of a partial solu-
tion for ii′. The blueprint is a function that maps a pair (γ, f) of an equivalence
class γ ∈ Γ and a fingerprint f ∈ Δ to the number of children jα of i′ with the
following two properties: (1) the restriction of the partial solution to Ei′jα

has
fingerprint f , and (2) jα is in equivalence class γ.

Note that ρ and the blueprint contain all that is needed to compute the
outdegrees of vertices in Xi′ : from it, we can see, for each v ∈ Xi′ and for each
weight in [0, k], how many edges with that weight are directed from v to a vertex
in a child bag of i′.

This allows us to formulate an ILP that expresses the property that there
exists a blueprint of a partial solution that extends ρ. We have a non-negative
integer variable xγ,f for each pair γ ∈ Γ and f ∈ Δ that should give the value
of this pair in the blueprint.

The ILP has no objective function, and the following constraints:

• For each γ,
∑

f xγ,f equals the number of children in equivalence class γ.
• If f is not a fingerprint for children in equivalence class γ, then xγ,f = 0.
• For all v ∈ Xi′ , we have a condition that checks that the outdegree of v in

the orientation belongs to Dv. Let Dv = [dmin,v, dmax,v]. Let α be the total
weight of all edges in ρ that have v as endpoint and are directed out of v.
Now, add the inequalities:

dmin,v ≤ α +
∑

γ,f

f(v) · xγ,f ≤ dmax,v

We sum over all γ ∈ Γ , and f ∈ γ.

The first two conditions guarantee that we can choose for each child a fin-
gerprint, such that for each equivalence class γ and each fingerprint f we have
xγ,f children in the class γ with fingerprint f ; the first condition ensures that
we have the right amount of fingerprints per class, and the second that we do
not assign fingerprints to children that have no corresponding partial solution
in that subtree.

The third condition ensures that each vertex in Xi′ has an outdegree in its
interval: we have xγ,f children in the equivalence class γ from which we take
fingerprint f , and here v gets outdegree f(v) for the edges between v and a
vertex in such a child bag.

Note that the number of variables of the ILP is bounded by a function of k.
Thus, the ILPs can be solved by an FPT algorithm, see [15, Theorem 6.4].

94 H. L. Bodlaender et al.

Once we have the table Aar
for the arc ar to the root, we can decide: the

instance of ORO has a solution if and only if this table Aar
is non-empty, as any

partial solution for this arc is actually an orientation that fulfils the requirements
for G. Thus, by processing the bags of T in bottom-up order, we finally obtain
the table for the root and can decide the problem.

4.2 Capacitated Dominating Set

We now also sketch some main ideas for the FPT algorithm for Capacitated

Dominating Set. The algorithm again uses dynamic programming, with an
ILP that determines the number of children with a partial solution having a
fingerprint of a certain type (compare with [22]).2

We define a partial solution for an arc ii′ with i the parent of i′ as a set S
of vertices in Vi′ together with a mapping that maps all vertices in Vi′\Xi′ and
a subset D ⊆ Xi ∪ Xi′ to a neighbour in S, such that no vertex in S has more
than its capacity number of neighbours mapped to it. At this point, vertices in
Xi′ do not need to be dominated yet, and they can be used to dominate vertices
in the parent bag Xi. All vertices in bags that are a descendant of i′ must be
dominated. The fingerprint of a partial solution is the set D: the dominated
vertices in Xi ∪ Xi′ .

In a dynamic programming algorithm, we compute for each arc ii′ and for
each fingerprint D ⊆ Xi ∪ Xi′ the minimum size of a set S that gives a partial
solution with this fingerprint. Let Bii′(D) ∈ Z>0 ∪ {∞} be the minimum such
size for a fingerprint D. Using the classical theory of matchings in graphs and
inspiration from [12], we find the following.

Lemma 1. If the instance of CDS has a solution, then Bii′(∅) ∈ Z>0. If there
is a partial solution with fingerprint D ⊆ Xi ∪ Xi′ , then Bii′(∅) ≤ Bii′(D) ≤
Bii′(∅) + 2k.

In the step where we attempt to compute the table Bii′ given such tables
for the children of i′, we add up all values Bi′jα

(∅) and create tables B′
i′jα

by
setting

B′
i′jα

(D) = Bi′jα
(D) − Bi′jα

(∅)

Now, B′
i′jα

is a function that maps subsets of Xi ∪ Xi′ to values in [0, 2k],
and thus, the number of possible such functions is bounded by a function of k.
This is, however, not sufficient to build an equivalence relation on the children
of i′, as the non-dominated vertices in such children still must be dominated
by vertices in Xi. Instead, we look to extensions of partial solutions, where
we also dominate vertices in Xi′ by vertices in Xi, and prescribe how much
capacity each vertex in Xi uses to dominate vertices in Xi′ . This gives a number
of equivalence classes that is bounded by a function of k. Once we built an

2 In the full version [8], we in fact give a detailed, slightly different, algorithm for
Capacitated Red-Blue Dominating Set and then deduce the result for Capac-

itated Dominating Set.

Problems Hard for Treewidth but Easy for Stable Gonality 95

equivalence relation on the children, the algorithm proceeds in a similar fashion
as for ORO: an ILP is constructed that expresses for each class in the equivalence
relation and fingerprint of a partial solution how many children in that class have
that fingerprint. The ILP has an objective function which gives the size of the
partial solution built (which is a sum of B′-values).

5 Conclusion

We showed that various classical instances of flow, orientation and capacitated
graph problems are XNLP-hard when parameterized by treewidth (and even
pathwidth), but FPT for a novel graph parameter, stable gonality. Follow-
ing Goethe’s motto “Das Schwierige leicht behandelt zu sehen, gibt uns das
Anschauen des Unmöglichen”, we venture into stating some open problems.

Is stable gonality fixed parameter tractable? Can multigraphs of fixed stable
gonality be recognized efficiently (this holds for treewidth; for sgon = 2 this can
be done in quasilinear time [7])? Given the stable gonality of a graph, can a
refinement and morphism of that degree to a tree be constructed in reasonable
time (the analogous problem for treewidth can be done in linear time)? Can
we find a tree partition of a subdivision with bounded treebreadth? The same
question can be asked in the approximate sense.

Find a multigraph version of Courcelle’s theorem (that provides a logical
characterisation of problems that are FPT for treewidth, see [14]), using stable
gonality instead of treewidth: give a logical description of the class of multigraph
problems that are FPT for stable gonality.

Stable gonality and (stable) treebreadth seem useful parameters for more
edge-weighted or multigraph problems that are hard for treewidth. Find other
problems that become FPT for such a parameter. Here, our proof technique of
combining tree partitions with ILP with a bounded number of variables becomes
relevant.

Conversely, find problems that are hard for treewidth and remain hard for
stable gonality or (stable) treebreadth. We believe candidates to consider are in
the realm of problems concerning “many” neighbours of given vertices (where
our use of ILP seems to break down), such as Defensive Aliance and Secure

Set, proven to be W[1]-hard for treewidth (but FPT for solution size) [5,6]. For
such problems, it is also interesting to upgrade known W[1]-hardness to XNLP.

Other flavours of graph gonality (untied to stable gonality) exist, based on
the theory of divisors on graphs (cf. [3,4].) Investigate whether such ‘divisorial’
gonality is a useful parameter for hard graph problems.

Acknowledgements. We thank Carla Groenland and Hugo Jacob for various dis-
cussions, and in particular for suggestions related to the capacitated dominating set
problems, and the relations between tree cut-width, tree partition width, and stable
tree-partition width.

96 H. L. Bodlaender et al.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows – Theory, Algorithms
and Applications. Prentice Hall (1993)

2. Alexandersson, P.: NP-complete variants of some classical graph problems. CoRR,
abs/2001.04120 (2020). arXiv:2001.04120

3. Baker, M.: Specialization of linear systems from curves to graphs. Algebra Num-
ber Theory 2(6), 613–653 (2008). https://doi.org/10.2140/ant.2008.2.613. With an
appendix by Brian Conrad

4. Baker, M., Norine, S.: Harmonic morphisms and hyperelliptic graphs. Int. Math.
Res. Not. IMRN 15, 2914–2955 (2009). https://doi.org/10.1093/imrn/rnp037

5. Bliem, B., Woltran, S.: Complexity of secure sets. Algorithmica 80(10), 2909–2940
(2017). https://doi.org/10.1007/s00453-017-0358-5

6. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discrete
Appl. Math. 251, 334–339 (2018). https://doi.org/10.1016/j.dam.2018.04.001

7. Bodewes, J.M., Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Recogniz-
ing hyperelliptic graphs in polynomial time. Theoret. Comput. Sci. 815, 121–146
(2020). https://doi.org/10.1016/j.tcs.2020.02.013

8. Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Problems hard for treewidth
but easy for stable gonality. CoRR, abs/2202.06838 (2022). arXiv:2202.06838

9. Bodlaender, H.L., Groenland, C., Jacob, H.: On the parameterized complexity of
computing tree-partitions. CoRR, abs/2206.11832 (2022). arXiv:2206.11832

10. Bodlaender, H.L., Groenland, C., Jacob, H.: XNLP-completeness for parameter-
ized problems on graphs with a linear structure. CoRR, abs/2201.13119 (2022).
arXiv:2201.13119

11. Bodlaender, H.L., Groenland, C., Nederlof, J., Swennenhuis, C.M.F.: Parameter-
ized problems complete for nondeterministic FPT time and logarithmic space. In:
Proceedings 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, pp. 193–204 (2021). https://doi.org/10.1109/FOCS52979.2021.00027

12. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Inf. Comput. 167(2), 86–119 (2001). https://doi.org/10.1006/
inco.2000.2958

13. Cornelissen, G., Kato, F., Kool, J.: A combinatorial Li-Yau inequality and ratio-
nal points on curves. Math. Ann. (10), 211–258 (2014). https://doi.org/10.1007/
s00208-014-1067-x

14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inform. and Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/
0890-5401(90)90043-H

15. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

16. van Dobben de Bruyn, J., Gijswijt, D.: Treewidth is a lower bound on graph
gonality. Algebr. Comb. 3(4), 941–953 (2020). https://doi.org/10.5802/alco.124

17. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79723-4 9

18. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science, Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

http://arxiv.org/abs/2001.04120
https://doi.org/10.2140/ant.2008.2.613
https://doi.org/10.1093/imrn/rnp037
https://doi.org/10.1007/s00453-017-0358-5
https://doi.org/10.1016/j.dam.2018.04.001
https://doi.org/10.1016/j.tcs.2020.02.013
http://arxiv.org/abs/2202.06838
http://arxiv.org/abs/2206.11832
http://arxiv.org/abs/2201.13119
https://doi.org/10.1109/FOCS52979.2021.00027
https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1007/s00208-014-1067-x
https://doi.org/10.1007/s00208-014-1067-x
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.5802/alco.124
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9

Problems Hard for Treewidth but Easy for Stable Gonality 97

19. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. In: Proceedings 51th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2010, pp. 143–152. IEEE Computer Society
(2010). https://doi.org/10.1109/FOCS.2010.21

20. Elberfeld, M., Stockhusen, C., Tantau, T.: On the Space and Circuit Complexity of
Parameterized Problems: classes and Completeness. Algorithmica 71(3), 661–701
(2014). https://doi.org/10.1007/s00453-014-9944-y

21. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Parameterized complexity of coloring
problems: treewidth versus vertex cover. Theoret. Comput. Sci. 412(23), 2513–
2523 (2011). https://doi.org/10.1016/j.tcs.2010.10.043

22. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 348–360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 29

23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

24. Gijswijt, D., Smit, H., van der Wegen, M.: Computing graph gonality is hard.
Discret. Appl. Math. 287, 134–149 (2020). https://doi.org/10.1016/j.dam.2020.
08.013

25. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap
between treedepth and vertex cover through vertex integrity. Theoret. Comput.
Sci. 918, 60–76 (2022). https://doi.org/10.1016/j.tcs.2022.03.021

26. Koerkamp, R.G., van der Wegen, M.: Stable gonality is computable. Discrete Math.
Theor. Comput. Sci. 21(1), 14 (2019). https://doi.org/10.23638/DMTCS-21-1-10.
Paper No. 10

27. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2007). https://doi.org/10.1093/
comjnl/bxm052

28. Itai, A.: Two-commodity flow. J. ACM 25(4), 596–611 (1978). https://doi.org/10.
1145/322092.322100

29. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of
bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013). https://doi.org/10.1016/
j.jcss.2012.04.004

30. Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach, L.
(ed.) FCT 1985. LNCS, vol. 199, pp. 412–421. Springer, Heidelberg (1985). https://
doi.org/10.1007/BFb0028825

31. Szeider, S.: Not so easy problems for tree decomposable graphs. In: Advances in
Discrete Mathematics and Applications: Mysore, 2008. Ramanujan Mathemati-
cal Society Lecture Note Series, vol. 13, pp. 179–190. Ramanujan Mathematical
Society, Mysore (2010). arXiv:1107.1177

32. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb.
Theory Ser. B 110, 47–66 (2015). https://doi.org/10.1016/j.jctb.2014.07.003

33. Wood, D.R.: On tree-partition-width. Eur. J. Combin. 30(5), 1245–1253 (2009).
https://doi.org/10.1016/j.ejc.2008.11.010

https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/10.1007/978-3-662-48054-0_29
https://doi.org/10.1007/978-3-662-48054-0_29
https://doi.org/10.1016/j.dam.2020.08.013
https://doi.org/10.1016/j.dam.2020.08.013
https://doi.org/10.1016/j.tcs.2022.03.021
https://doi.org/10.23638/DMTCS-21-1-10
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1145/322092.322100
https://doi.org/10.1145/322092.322100
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1007/BFb0028825
https://doi.org/10.1007/BFb0028825
http://arxiv.org/abs/1107.1177
https://doi.org/10.1016/j.jctb.2014.07.003
https://doi.org/10.1016/j.ejc.2008.11.010

Edge-Cut Width: An Algorithmically
Driven Analogue of Treewidth Based

on Edge Cuts

Cornelius Brand , Esra Ceylan , Robert Ganian(B) , Christian Hatschka ,
and Viktoriia Korchemna

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{cbrand,rganian,vkorchemna}@ac.tuwien.ac.at,

{e1526801,e1525634}@student.tuwien.ac.at

Abstract. Decompositional parameters such as treewidth are com-
monly used to obtain fixed-parameter algorithms for NP-hard graph
problems. For problems that are W[1]-hard parameterized by treewidth,
a natural alternative would be to use a suitable analogue of treewidth
that is based on edge cuts instead of vertex separators. While tree-cut
width has been coined as such an analogue of treewidth for edge cuts, its
algorithmic applications have often led to disappointing results: out of
twelve problems where one would hope for fixed-parameter tractability
parameterized by an edge-cut based analogue to treewidth, eight were
shown to be W[1]-hard parameterized by tree-cut width.

As our main contribution, we develop an edge-cut based analogue to
treewidth called edge-cut width. Edge-cut width is, intuitively, based on
measuring the density of cycles passing through a spanning tree of the
graph. Its benefits include not only a comparatively simple definition, but
mainly that it has interesting algorithmic properties: it can be computed
by a fixed-parameter algorithm, and it yields fixed-parameter algorithms
for all the aforementioned problems where tree-cut width failed to do so.

Keywords: tree-cut width · parameterized complexity · graph
parameters

1 Introduction

While the majority of computational problems on graphs are intractable, in most
cases it is possible to exploit the structure of the input graphs to circumvent this
intractability. This basic fact has led to the extensive study of a broad hierarchy
of decompositional graph parameters (see, e.g., Fig. 1 in [3]), where for individ-
ual problems of interest the aim is to pinpoint which parameters can be used to
develop fixed-parameter algorithms for the problem. Treewidth [31] is by far the
most prominent parameter in the hierarchy, and it is known that many problems

Cornelius Brand, Robert Ganian and Viktoriia Korchemna gratefully acknowledge sup-
port from the Austria Science Foundation (FWF, Project Y1329).

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 98–113, 2022.
https://doi.org/10.1007/978-3-031-15914-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_8&domain=pdf
http://orcid.org/0000-0002-1929-055X
http://orcid.org/0000-0002-9577-4142
http://orcid.org/0000-0002-7762-8045
http://orcid.org/0000-0002-0881-8259
http://orcid.org/0000-0001-8038-905X
https://doi.org/10.1007/978-3-031-15914-5_8

Edge-Cut Width 99

of interest are fixed-parameter tractable when parameterized by treewidth; some
of these problem can even be solved efficiently on more general parameters such
as rank-width [13,30] or other decompositional parameters above treewidth in
the hierarchy [4]. However, in this article we will primarily be interested in prob-
lems that lie on the other side of this spectrum: those which remain intractable
when parameterized by treewidth.

Aside from non-decompositional parameters1 such as the vertex cover num-
ber [10,12] or feedback edge number [1,18,21], the most commonly applied
parameters for problems which are not fixed-parameter tractable with respect
to treewidth are tied to the existence of small vertex separators. One exam-
ple of such a parameter is treedepth [29], which has by now found numerous
applications in diverse areas of computer science, e.g., [17,23,28]. An alterna-
tive approach is to use a decompositional parameter that is inherently tied to
edge-cuts—in particular, tree-cut width [27,34].

Tree-cut width was discovered by Wollan, who described it as a variation of
tree decompositions based on edge cuts instead of vertex separators [34]. But
while it is true that “tree-cut decompositions share many of the natural prop-
erties of tree decompositions” [27], from the perspective of algorithmic design
tree-cut width seems to behave differently than an edge-cut based alternative
to treewidth. To illustrate this, we note that tree-cut width is a parameter that
lies between treewidth and treewidth plus maximum degree (which may be seen
as a “heavy-handed” parameterization that enforces small edge cuts) in the
parameter hierarchy [14,24]. There are numerous problems which are W[1]-hard
(and sometimes even NP-hard) w.r.t. treewidth but fixed-parameter tractable
w.r.t. the latter parameterization, and the aim would be to have an edge-cut
based parameter that can lift this fixed-parameter tractability towards graphs
of unbounded degree.

Unfortunately, out of twelve problems with these properties where a tree-cut
width parameterization has been pursued so far, only four are fixed-parameter
tractable [14,15] while eight turn out to be W[1]-hard [5,14,16,18,22]. The most
appalling example of the latter case is the well-established Edge Disjoint

Paths (EDP) problem: Vertex Disjoint Paths is a classical example of a
problem that is FPT parameterized by treewidth [33], and one should by all
means expect a similar outcome for EDP parameterized by the analogue of
treewidth based on edge cuts [18,19]. But if EDP is W[1]-hard parameterized
by tree-cut width, what is the algorithmic analogue of treewidth for edge cuts?
Here, we attempt to answer to this question through the notion of edge-cut
width.

Contribution. Edge-cut width is an edge-cut based decompositional parameter
which has a surprisingly streamlined definition: instead of specialized decompo-
sitions such as those employed by treewidth, clique-width or tree-cut width, the
“decompositions” for edge-cut width are merely spanning trees (or, in case of

1 We view a parameter as decompositional if it is tied to a well-defined graph decompo-
sition; all decompositional parameters are closed under the disjoint union operation
of graphs.

100 C. Brand et al.

disconnected graphs, maximum spanning forests). To define edge-cut width of a
spanning tree T , we observe that for each edge in G − E(T) there is a unique
path in T connecting its endpoints, and the edge-cut width of T is merely the
maximum number of such paths that pass through any particular vertex in T ;
as usual, the edge-cut width of G is then the minimum width of a spanning tree
(i.e., decomposition).

After introducing edge-cut width, establishing some basic properties of the
parameter and providing an in-depth comparison to tree-cut width, we show
that the parameter has surprisingly useful algorithmic properties. As our first
task, we focus on the problem of computing edge-cut width along with a suitable
decomposition. This is crucial, since we will generally need to compute an edge-
cut width decomposition before we can use the parameter to solve problems of
interest. As our first algorithmic result, we leverage the connection of edge-cut
width to spanning trees of the graph to obtain an explicit fixed-parameter algo-
rithm for computing edge-cut width decompositions. This compares favorably to
tree-cut width, for which only an explicit 2-approximation fixed-parameter algo-
rithm [24] and a non-constructive fixed-parameter algorithm [20] are known.

Finally, we turn to the algorithmic applications of edge-cut width. Recall that
among the twelve problems where a parameterization by tree-cut width had been
pursued, eight were shown to be W[1]-hard parameterized by tree-cut width: List
Coloring [14], Precoloring Extension [14], Boolean Constraint Sat-

isfaction [14], Edge Disjoint Paths [18], Bayesian Network Structure

Learning [16], Polytree Learning [16], Minimum Changeover Cost

Arborescence [22], and Maximum Stable Roommates with Ties and

Incomplete Lists [5]2. Here, we follow up on previous work by showing that all
of these problems are fixed-parameter tractable when parameterized by edge-cut
width. We obtain our algorithms using a new dynamic programming framework
for edge-cut width, which can also be adapted for other problems of interest.

Related Work. The origins of edge-cut width lie in the very recent work of
Ganian and Korchemna on learning polytrees and Bayesian networks [16], who
discovered an equivalent parameter when attempting to lift the fixed-parameter
tractability of these problems to a less restrictive parameter than the feedback
edge number3. That same work also showed that computing edge-cut width
can be expressed in Monadic Second Order Logic which implies fixed-parameter
tractability, but obtaining an explicit fixed-parameter algorithm for computing
optimal decompositions was left as an open question.

As far as the authors are aware, there are only four problems for which it
is known that fixed-parameter tractability can be lifted from the parameteriza-
tion by “maximum degree plus treewidth” to tree-cut width. These are Capac-

itated Vertex Cover [14], Capacitated Dominating Set [14], Imbal-

ance [14] and Bounded Degree Vertex Deletion [15]. Additionally, Gozu-

2 We remark that besides establishing W[1]-hardness for this problem, the authors
also showed that the problem becomes FPT w.r.t. tree-cut width under additional
restrictions.

3 The authors originally used the name “local feedback edge number”.

Edge-Cut Width 101

pek et al. [22] showed that the Minimum Changeover Cost Arborescence

problem is fixed-parameter tractable when parameterized by a special, restricted
version of tree-cut width where one essentially requires the so-called torsos to
be stars.

2 Preliminaries

We use standard terminology for graph theory, see for instance [7], and assume
basic familiarity with the parameterized complexity paradigm including, in par-
ticular, the notions of fixed-parameter tractability and W[1]-hardness [6,8]. Let
N denote the set of natural numbers including zero. We use [i] to denote the set
{0, 1, . . . , i}.

Given two graph parameters α, β : G → N, we say that α dominates β if
there exists a function p such that for each graph G, α(G) ≤ p(β(G)). For a
vertex set Y , we use N(Y) to denote the set of all vertices that are outside of Y
and have a neighbor in Y .

Treewidth. Treewidth [31] is a fundamental graph parameter that has found a
multitude of algorithmic applications throughout computer science.

Definition 1. A tree decomposition of a graph G is a pair (T, {βt}t∈V (T)),
where T is a tree, and each node t ∈ V (T) is associated with a bag βt ⊆ V (G),
satisfying the following conditions:

1. Every vertex of G appears in some bag of T .
2. Every edge of G is contained as a subset in some bag of T .
3. For every vertex v ∈ V (G), the set of nodes t ∈ V (T) such that v ∈ βt holds

is connected in T .

The width of a tree decomposition is defined as maxt |βt| − 1, and the treewidth
tw(G) of G is defined as the minimum width of any of its tree decompositions.

Tree-Cut Width. The notion of tree-cut decompositions was introduced by
Wollan [34], see also [27]. A family of subsets X1, . . . , Xk of X is a near-partition
of X if they are pairwise disjoint and

⋃k
i=1 Xi = X, allowing the possibility of

Xi = ∅.

Definition 2. A tree-cut decomposition of G is a pair (T,X) which consists of
a rooted tree T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T)} of V (G). A
set in the family X is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge
incident to t on the path to r. Let Tu and Tt be the two connected components
in T − e(t) which contain u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃

q∈Tt
Xq)

is a near-partition of V (G), and we use Et to denote the set of edges with one
endpoint in each part. We define the adhesion of t (adh(t)) as |Et|; we explicitly
set adh(r) = 0 and Er = ∅.

102 C. Brand et al.

The torso of a tree-cut decomposition (T,X) at a node t, written as Ht, is
the graph obtained from G as follows. If T consists of a single node t, then the
torso of (T,X) at t is G. Otherwise, let T1, . . . , T� be the connected components
of T − t. For each i = 1, . . . , �, the vertex set Zi ⊆ V (G) is defined as the set⋃

b∈V (Ti)
Xb. The torso Ht at t is obtained from G by consolidating each vertex

set Zi into a single vertex zi (this is also called shrinking in the literature). Here,
the operation of consolidating a vertex set Z into z is to substitute Z by z in G,
and for each edge e between Z and v ∈ V (G) \ Z, adding an edge zv in the new
graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex
v of degree at most 2 consists of deleting v, and when the degree is two, adding
an edge between the neighbors of v. Given a connected graph G and X ⊆ V (G),
let the 3-center of (G,X) be the unique graph obtained from G by exhaustively
suppressing vertices in V (G) \ X of degree at most two. Finally, for a node t of
T , we denote by H̃t the 3-center of (Ht,Xt), where Ht is the torso of (T,X) at
t. Let the torso-size tor(t) denote |H̃t|.
Definition 3. The width of a tree-cut decomposition (T,X) of G is
maxt∈V (T){adh(t), tor(t)}. The tree-cut width of G, or tcw(G) in short, is the
minimum width of (T,X) over all tree-cut decompositions (T,X) of G.

We refer to previous work [14,24,27,34] for a more detailed comparison of
tree-cut width to other parameters. Here, we mention only that tree-cut width is
dominated by treewidth and dominates treewidth plus maximum degree, which
we denote degtw(G).

Lemma 1 ([14,27,34]). For every graph G, tw(G) ≤ 2 tcw(G)2+3 tcw(G) and
tcw(G) ≤ 4 degtw(G)2.

3 Edge-Cut Width

Let us begin by considering a maximal spanning forest T of a graph G, and recall
that E(G) − T forms a minimum feedback edge set in G; the size of this set is
commonly called the feedback edge number [1,18,21], and it does not depend on
the choice of T . We will define our parameter as the maximum number of edges
from the feedback edge set that form cycles containing some particular vertex
v ∈ V (G).

Formally, for a graph G and a maximal spanning forest T of G, let the local
feedback edge set at v ∈ V be EG,T

loc (v) = {uw ∈ E(G) \ E(T) | the unique
path between u and w in T contains v}; we remark that this unique path forms
a so-called fundamental cycle with the edge uw. The edge-cut width of (G,T)
(denoted ecw(G,T)) is then equal to 1 + maxv∈V |EG,T

loc (v)|, and the edge-cut
width of G is the smallest edge-cut width among all possible maximal spanning
forests of G.

Notice that the definition increments the edge-cut width of T by 1. This
“cosmetic” change may seem arbitrary, but it matches the situation for treewidth

Edge-Cut Width 103

(where the width is the bag size minus one) and allows trees to have a width of 1.
Moreover, defining edge-cut width in this way provides a more concise description
of the running times for our algorithms, where the records will usually depend
on a set that is one larger than |EG,T

loc (v)|. We note that the predecessor to edge-
cut width, called the local feedback edge number [16], was defined without this
cosmetic change and hence is equal to edge-cut width minus one.

While it is obvious that ecw(G) is upper-bounded by (and hence dominates)
the feedback edge number of G (fen(G)), we observe that graphs of constant
ecw(G) can have unbounded feedback edge number—see Fig. 1. We also note
that Ganian and Korchemna established that edge-cut width is dominated by
tree-cut width.

Fig. 1. Example of a graph G with a spanning tree T (marked in red) such that
ecw(G) = ecw(G, T) = 3. The feedback edge number of G, i.e., its edge deletion
distance to acyclicity, is exactly the number of black edges and can be made arbitrarily
large in this fashion while preserving ecw(G) = 3. (Color figure online)

Proposition 1 ([16]). For every graph G, tcw(G) ≤ ecw(G) ≤ fen(G) + 1.

As for the converse, we already have conditional evidence that edge-cut width
cannot dominate tree-cut width: Bayesian Network Structure Learning

is W[1]-hard w.r.t. the latter, but fixed-parameter tractable w.r.t. the former [16].
We conclude our comparisons with a construction that not only establishes
this relationship unconditionally, but—more surprisingly—implies that edge-cut
width is incomparable to degtw.

Lemma 2. For each m ∈ N, there exists a graph Gm of maximum degree at
most 3, tree-cut width at most 2, and edge-cut width at least m + 1.

Proof (Sketch). We start from two regular binary trees Y and Y ′ of depth m, i.e.,
rooted binary trees where every node except leaves has precisely two children
and the path from any leaf to the root contains m edges. We glue Y and Y ′

together by identifying each leaf of Y with a unique leaf of Y ′ (see the left part
of Fig. 2 for an illustration). It remains to show that the resulting graph, which
we denote Gm, has the desired properties. ��

104 C. Brand et al.

Fig. 2. Left: Graph G4, where the roots of Y and Y ′ are a3 and a′
3. A path between

the two roots in the spanning tree is marked in green, and this path separates a copy
of G2 (marked in purple and denoted B2) from the rest of the graph. Crucially, the
purple subgraph must contribute a weight of at least 1 to q, and the same situation
applies for the other graphs Gi, i ≤ 2. Right: Fragment of the tree-cut decomposition
(Y ∗, χ) of G4.

Since it is known that treewidth dominates tree-cut width (see Lemma 1),
Lemma 2 implies that edge-cut width does not dominate degtw. Conversely, it is
easy to build graphs with unbounded degtw and bounded edge-cut width (e.g.,
consider the class of stars). Hence, we obtain that edge-cut width is incomparable
to degtw. An illustration of the parameter hierarchy including edge-cut width is
provided in Fig. 3.

Fig. 3. Position of edge-cut width in the hierarchy of graph parameters. Here an arrow
from parameter β to parameter α represents the fact that α dominates β, i.e., there
exists a function p such that for each graph G, α(G) ≤ p(β(G)). We use fen to denote
the feedback edge number.

Next, we note that even though Lemma 1 and Proposition 1 together imply
that tw(G) ≤ 2 ecw(G)2 + 3 ecw(G), one can in fact show that the gap is linear.
This will also allow us to provide a better running time bound in Sect. 4.

Lemma 3. For every graph G, tw(G) ≤ ecw(G).

Last but not least, we show that—also somewhat surprisingly—edge-cut
width is not closed under edge or vertex deletion. (see Fig. 4).

Edge-Cut Width 105

Corollary 1. There exist graphs G and H such that ecw(G − e) > ecw(G) and
ecw(H − v) > ecw(H) for some e ∈ E(G) and v ∈ V (H).

Fig. 4. Left: Graph G − ac of ecw(G − ac) ≥ 5. Right: Green tree witnessing that
ecw(G) ≤ 4.

4 Computing Edge-Cut Width

Before we proceed to the algorithmic applications of edge-cut width, we first con-
sider the question of computing the parameter along with an optimal “decompo-
sition” (i.e., spanning tree). Here, we provide an explicit fixed-parameter algo-
rithm for this task.

By Lemma 3, the treewidth of G can be linearly bounded by ecw(G). The
algorithm uses this to perform dynamic programming on a tree decomposition
(T, {βt}t∈V (T)) of G. For a node t ∈ V (T), we let Yt be the union of all bags βs

such that s is either t itself or a descendant of t in T , and let Gt be the subgraph
G[Yt] of G induced by Yt.

Lemma 4. Given an n-vertex graph G of treewidth k and a bound w, it is
possible to decide whether G has edge-cut width at most w in time kO(wk2) ·n. If
the answer is positive, we can also output a spanning tree of G of edge-cut width
at most w.

Using the relation between treewidth and edge-cut width above, we immediately
obtain:

Theorem 1. Given a graph G, the edge-cut width ecw(G) can be computed time
ecw(G)ecw(G)3 · n.

Proof (Proof Sketch of Lemma 4). Without loss of generality, we assume that
G is connected. Using state-of-the-art approximation algorithms [2,25], we first
compute a “nice” tree decomposition (T, {βt}t∈V (T)) with root r ∈ V (T) of
width k = O(tw(G)) in time 2O(k) · n.

106 C. Brand et al.

On a high level, the algorithm relies on the fact that if G has edge-cut width
at most w, then at each bag βt the number of unique paths contributing to the
edge-cut width of vertices in βt is upper-bounded by |βt|w ≤ kw. Otherwise, at
least one of the vertices in βt would lie on more than w cycles. We can use this
to branch on how these at most kw paths are routed through the bag.

At each vertex t ∈ T of the tree decomposition, we store records that consist
of:

– an acyclic subset F of edges of G[βt],
– a partition C of βt, and
– two multisets future, past of sequences of vertex-pairs in the form

((u1, v1), . . . , (uι, vι)) from βt, with the following property:
• Every vertex of βt appears on at most w distinct u-v paths, where (u, v)

is a pair of vertices in a sequence in future or past.
• vi and ui+1 are not connected by an edge in βt.

The semantics of these records are as follows: For every spanning tree of
width at most w, the record describes the intersection of the solution with G[βt],
and the intersection of every fundamental cycle of this solution with G[βt]. We
encode the path that a cycle takes through G[βt] via a sequence of vertex pairs
that indicate where the path leaves and enters G[βt] from the outside (it may
be that these are the same vertex). More precisely, past contains those cycles
that correspond to an edge that has already appeared in Gt, whereas future
corresponds to those cycles that correspond to an edge not in Gt. In particular,
this allows to reconstruct on how many cycles a vertex of βt lies. The partition
C says which vertices of βt are connected via the solution in Gt.

To be more precise, let t ∈ T and let S be an acyclic subset of edges of G
that has width at most w on Gt (that is, each vertex of S lies on at most w
fundamental cycles of S in Gt). We call such S partial solutions at t. Then, we
let the t-projection of S be defined as (F, C, future, past), where

– F = S ∩ E(G[βt]).
– C is a partition of F according to the connected components of S in Gt.
– Let Ce be a fundamental cycle of S in G corresponding to the edge e ∈ G−S.

Then, there is a sequence Pe = ((u1, v1), . . . , (ut, vt)) in either future or past
of vertex pairs such that the intersection of Ce with S traverses F along the
unique ui-vi paths in the order they appear in Pe (note that ui = vi is possible,
in which case the path contains just the vertex ui).

– For each fundamental cycle Ce of S in G, if e ∈ E(Gt), then Pe ∈ past,
otherwise, Pe ∈ future.

Note that Pe can (and often will) be the empty sequence Pe = ∅. Moreover, we
assume that the correspondence between future∪past and the edges in G−S is
bijective, in the sense that if two edges e, e′ produce the same sequence Pe = Pe′ ,
then Pe and Pe′ occur as two separate copies in future ∪ past.

The encoding length of a single record is O(wk2 log k), dominated by the at
most kw sequences Pe of k pairs of vertices each, with indices having O(log k)
bits. Overall, the number of records is hence bounded by 2O(wk2 log k).

Edge-Cut Width 107

For each t ∈ T , we store a set of records R(t) that has the property that
R(t) contains the set of all t-projections of spanning trees of width at most w
(that is, projections of solutions of the original instance). In addition, we require
for every record in R(t) that there is a partial solution S of Gt of width at
most w that agrees with F, C and past of the record. In this case, we call R(t)
valid. Supposing correctness of this procedure, G is a YES-instance if and only if
(Fr, Cr, pastr, futurer) ∈ R(r), with Fr = Cr = futurer = ∅, pastr = {∅m−n},
and a NO-instance otherwise.

To conclude the proof, it now suffices to compute R(t) in a leaf-to-root
fashion. ��

5 Algorithmic Applications of Edge-Cut Width

Here we obtain algorithms for the following five NP-hard problems (where a sixth
problem mentioned in the introduction, Precoloring Extension, is a special
case of List Coloring, and the fixed-parameter tractability of Bayesian Net-

work Structure Learning and Polytree Learning follows from previous
work [16]). In all of these, we will parameterize either by the edge-cut width
of the input graph or of a suitable graph representation of the input. Recall
that all problems are known to be W[1]-hard when parameterized by tree-cut
width [5,14,18,22], and here we will show they are all fixed-parameter tractable
w.r.t. edge-cut width.

As a unified starting point for all algorithms, we will apply Theorem 1 to
compute a minimum-width spanning tree T of the input graph (or the graph
representation of the input) G; the running time of Theorem 1 is also an upper-
bound for the running time of all algorithms except for MaxSRTI, which has
a quadratic dependence on the input size. Let r be an arbitrarily chosen root in
T . For each node v ∈ V (T), we will use Tv to denote the subtree of T rooted
at v. Without loss of generality, in all our problems we will assume that G is
connected.

The central notion used in our dynamic programming framework is that
of a boundary, which fills a similar role as the bags in tree decompositions.
Intuitively, the boundary contains all the edges which leave Tv (including the
vertices incident to these edges).

Definition 4. For each v ∈ V (T), the boundary ∂(v) of Tv is the edge-induced
subgraph of G induced by those edges which have precisely one endpoint in Tv.

Observe that for each v ∈ V (T), |E(∂(v))| ≤ ecw(G) and |V (∂(v))| ≤
2 ecw(G). It will also sometimes be useful to speak of the graph induced by
the vertices that are “below” v in T , and so we set Yv = {w | w is a descendant
of v in T} and Gv = G[Yv]; we note that v ∈ Yv. Observe that ∂(v) acts as a
separator between vertices outside of Yv ∪ V (∂(v)) and vertices in Yv \ V (∂(v)).

Edge Disjoint Paths. We start with the classical Edge Disjoint Paths

problem, which has been extensively studied in the literature. While its natural

108 C. Brand et al.

counterpart, the Vertex Disjoint Paths problem, is fixed-parameter tractable
when parameterized by treewidth, Edge Disjoint Paths is W[1]-hard not only
when parameterized by tree-cut width [18] but also by the vertex cover num-
ber [11].

Edge Disjoint Paths (EDP)

Input: A graph G and a set P of terminal pairs, i.e., a set of subsets of
V (G) of size two.

Question: Is there a set of pairwise edge disjoint paths connecting every set
of terminal pairs in P?

A vertex which occurs in a terminal pair is called a terminal and a set of
pairwise edge disjoint paths connecting every set of terminal pairs in P is called
a solution.

Theorem 2. EDP is fixed-parameter tractable when parameterized by the edge-
cut width of the input graph.

Proof (Sketch). We start by defining the syntax of the records we will use in our
dynamic program. For v ∈ V (G), let a record be a tuple of the form (S,D,R),
where:

– S = {(t0, e0), . . . , (ti, ei)} where for each j ∈ [i], tj ∈ Yv is a terminal whose
counterpart is not in Gv, ej ∈ E(∂(v)), and where each terminal without a
partner in Yv appears in exactly one pair,

– D,R are sets of unordered pairs of elements from E(∂(v)), and
– each edge of E(∂(v)) may only appear in at most one tuple over all of these

sets.

We refer to the edges in S,D,R as single, donated and received edges, respec-
tively, in accordance with how they will be used in the algorithm. Let R(v) be a
set of records for v. From the syntax, it follows that |R(v)| ≤ 2O(k log k) for each
v ∈ V (G).

Let Pv ⊆ (Yv ∪ V (∂(v)))2 be a set that can be obtained from P by the
following three operations:

– for some {a, b} ∈ P where a ∈ Yv, b �∈ Yv, replacing b by some c ∈ V (∂(v)),
and

– for some a′, b′ ∈ V (∂(v)) \ Yv, adding {a′, b′} to Pv, and
– for each {a, b} ∈ P where a, b �∈ Yv, remove {a, b}.

To define a partial solution we need the following graph Hv:

– First, we add Gv ∪ ∂(v) to Hv, where Gv ∪ ∂(v) is the (non-disjoint) union of
these two graphs.

– Next, we create for each edge e ∈ E(∂(v)) a pendant vertex ve adjacent to
the endpoint of e that is outside of Yv. Let V∂ denote the set of these new
vertices.

Edge-Cut Width 109

– Finally, we add edges to E(Hv) such that V∂ is a clique.

Let a partial solution at v be a solution to the instance (Hv, Pv) for some Pv

defined as above. Obviously, since at the root r we have that ∂(r) is empty,
Pr = P and Hr = G. Notice that a partial solution at the root is a solution.

Consider then the set W containing all partial solutions at v. The v-projection
of a partial solution W ∈ W at v is a record (SW ,DW , RW) where:

– (t, e) ∈ SW if and only if t is a terminal in Yv whose counterpart t′ is not in
Yv and e is the first edge in E(∂(v)) encountered by the t-t′ path in W ,

– {ei, ej} ∈ DW if and only if there is a path Q ∈ W with Q =
ei, ei+1, . . . , ej−1, ej such that the edges in Q\{ei, ej} are contained in E(Gv)4,
and

– {ei, ej} ∈ RW if and only if there is some s-t path Q ∈ W such that s, t in
Yv, ei is the first edge in E(∂(v)) that occurs in Q, and ej is the last edge in
E(∂(v)) that occurs in Q.

We say that R(v) is valid if and only if it contains all v-projections of partial
solutions in W, and in addition, for every record in R(v), there is a partial
solution such that its v-projection yields this record.

Observe that if R(r) = ∅, then (G,P) is a NO-instance, while if R(r) =
{(∅, ∅, ∅)}, then R(r) is a YES-instance. To complete the proof, it now suffices
to dynamically compute a set of valid records in a leaf-to-root fashion along
T . We note that if at any stage we obtain that a vertex v has no records (i.e.,
R(v) = ∅), we immediately reject. ��

List Coloring. The second problem we consider is List Coloring [9,14]. It
is known that this problem is W[1]-hard parameterized by tree-cut width. A
coloring col is a mapping from the vertex set of a graph to a set of colors; a
coloring is proper if for every pair of adjacent vertices a, b, it holds that col(a) �=
col(b).

List Coloring

Input: A graph G = (V,E) and for each vertex v ∈ V a list L(v) of
permitted colors.

Question: Does G admit a proper coloring col where for each vertex v it
holds col(v) ∈ L(v)?

Theorem 3. List Coloring is fixed-parameter tractable when parameterized
by the edge-cut width of the input graph.

Proof (Sketch). We start by defining the syntax of the records we will use in our
dynamic program. For v ∈ V (G), let a record for a vertex v consist of tuples of
the form (u, c), where (1) u ∈ V (∂(v)) ∩ Yv, (2) c ∈ L(u) ∪ {δ}, and (3) each
vertex of V (∂(v)) ∩ Yv appears exactly once in a record.
4 Note that by the syntax, it follows that ei and ej are both contained in ∂(v).

110 C. Brand et al.

To introduce the semantics of the records, consider the set W containing all
partial solutions (i.e., all proper colorings) at v to the instance (Gv, (L(u))u∈Yv

).
The v-projection of a partial solution col ∈ W is a set Rcol = {(u, c) | u ∈
V (∂(v)) ∩ Yv, c ∈ L(u)}) where (u, c) ∈ Rcol if and only if col(u) = c.

Let R(v) be a set of records for v. For two records R1, R2 ∈ R(v) we say
R1 � R2 if and only if for each u ∈ V (∂(v)) ∩ Yv the following holds:

– Either (u, c) ∈ R1 ∩ R2 with c ∈ L(u),
– Or (u, c) ∈ R1 with c ∈ L(u) and (u, δ) ∈ R2.

We say that R(v) is valid if for each v-projection Rcol of a partial solution
col ∈ W there is a record R ∈ R(v) which satisfies Rcol � R, and in addition,
for every record R ∈ R(v), there is a partial solution col ∈ W such that its
v-projection fulfills Rcol � R. Observe that if R(r) = ∅, then (G, (L(v))v∈V (G))
is a NO-instance, while if R(r) = {∅}, then R(r) is a YES-instance.

If a record in R(v) contains a tuple (u, δ), then this means that there is always
a possible coloring for the vertex u, e.g., if |L(u)| > dG(u); the symbol δ is intro-
duced specifically to bound |L(v)|. Therefore, it follows that |R(v)| ≤ 2O(k log k)

for each v ∈ V (G). To complete the proof, it now suffices to dynamically compute
a set of valid records in a leaf-to-root fashion along T . ��

Boolean CSP. Next, we consider the classical constraint satisfaction prob-
lem [32].

Boolean CSP

Input: A set of variables X and a set of constraints C.
Question: Is there an assignment σ : X → {0, 1} such that all constraints in

C are satisfied?

We represent this problem via the incidence graph, whose vertex set is X ∪C
and which contains an edge between a variable and a constraint if and only if
the variable appears in the scope of the constraint.

Theorem 4. Boolean CSP is fixed-parameter tractable when parameterized
by the edge-cut width of the incidence graph.

Proof (Sketch). For this problem, we do not need to consider all the vertices
in the boundary. Instead, for a vertex v ∈ V , let B(v) = V (∂(v)) ∩ Yv ∩ X.
Hence, we will consider only the vertices in the boundary inside of the current
subtree, which correspond to variables in the input instance. Note that |B(v)| ≤
|V (∂(v))| ≤ 2k.

We continue with defining the syntax of the records we will use in our dynamic
program. For v ∈ V (G), let a record for a vertex v be a set of functions of the
form ϕ : B(v) → {0, 1}. Let R(v) be a set of records for v. From the syntax, it
follows that |R(v)| ≤ 2O(k) for each v ∈ V (G). To introduce the semantics of the
records, consider the set W containing all partial solutions (i.e., all assignments

Edge-Cut Width 111

of the variables such that every constraint is fulfilled) at v for the instance
(Yv ∩ X,Yv ∩ C).

The function ϕ is a v-projection of a solution σ ∈ W if and only if σ|B(v)
= ϕ.

This means, that the functions in a record represent the assignments of variables,
which are compatible with Yv.

We say that R(v) is valid if it contains all v-projections of partial solutions
in W, and in addition, for every record in R(v), there is a partial solution such
that its v-projection yields this record. Observe that if R(r) = ∅, then (X, C) is
a NO-instance, while if R(r) = {∅}, then R(r) is a YES-instance. To complete
the proof, it now suffices to dynamically compute a set of valid records in a
leaf-to-root fashion along T . ��

Further Problems. As our final two results, we use the algorithmic frame-
work developed above to also establish the fixed-parameter tractability for
the remaining two problems which were shown to be W[1]-hard w.r.t. tree-cut
width. These are Maximum Stable Roommates with Ties and Incom-

plete Lists (MaxSRTI) [5] and Minimum Changeover Cost Arbores-

cence (MinCCA) [22].

Theorem 5. MaxSRTI is fixed-parameter tractable when parameterized by the
edge-cut width of the acceptability graph.

Theorem 6. MinCCA is fixed-parameter tractable when parameterized by the
edge-cut width of the input graph.

6 Conclusion

The parameter developed in this paper, edge-cut width, is aimed at mitigat-
ing the algorithmic shortcomings of tree-cut width and filling the role of an
“easy-to-use” edge-based alternative to treewidth. We show that edge-cut width
essentially has all the desired properties one would wish for as far as algorithmic
applications are concerned: it is easy to compute, uses a natural structure as its
decomposition, and yields fixed-parameter tractability for all problems that one
would hope an edge-based alternative to treewidth could solve.

Last but not least, we note that a preprint exploring a different parame-
ter that is aimed at providing an edge-based alternative to treewidth appeared
shortly after the results presented in our paper were obtained [26]. While it is
already clear that the two parameters are not equivalent, it would be interesting
to explore the relationship between them in future work.

References

1. Bentert, M., Haag, R., Hofer, C., Koana, T., Nichterlein, A.: Parameterized com-
plexity of min-power asymmetric connectivity. Theory Comput. Syst. 64(7), 1158–
1182 (2020)

112 C. Brand et al.

2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ck n 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: a com-
binatorial analysis through kernelization. SIAM J. Discret. Math. 27(4), 2108–2142
(2013)

4. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. In: 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 601–612. IEEE
(2020)

5. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Parameterized complexity of
stable roommates with ties and incomplete lists through the lens of graph parame-
ters. In: Lu, P., Zhang, G. (eds.) 30th International Symposium on Algorithms and
Computation, ISAAC 2019, 8–11 December 2019, Shanghai University of Finance
and Economics, Shanghai, China. LIPIcs, vol. 149, pp. 44:1–44:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

6. Cygan, M., et al.: Lower bounds for kernelization. In: Parameterized Algorithms,
pp. 523–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-
3 15

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-
4471-5559-1

9. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011)

10. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

11. Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths
based on tree-likeness. Math. Program. 171, 433–461 (2017). https://doi.org/10.
1007/s10107-017-1199-3

12. Ganian, R.: Improving vertex cover as a graph parameter. Discret. Math. Theor.
Comput. Sci. 17(2), 77–100 (2015). http://dmtcs.episciences.org/2136

13. Ganian, R., Hlinený, P.: On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discret. Appl. Math. 158(7), 851–867 (2010)

14. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 348–360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 29

15. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the
bounded-degree vertex deletion problem. Algorithmica 83(1), 297–336 (2021)

16. Ganian, R., Korchemna, V.: The complexity of Bayesian network learning: Revis-
iting the superstructure. In: Proceedings of NeurIPS 2021, The Thirty-Fifth Con-
ference on Neural Information Processing Systems (2021, to appear)

17. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters
for ILP. Artif. Intell. 257, 61–71 (2018)

18. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge-
disjoint paths. Algorithmica 83(2), 726–752 (2021)

https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/s10107-017-1199-3
https://doi.org/10.1007/s10107-017-1199-3
http://dmtcs.episciences.org/2136
https://doi.org/10.1007/978-3-662-48054-0_29
https://doi.org/10.1007/978-3-662-48054-0_29

Edge-Cut Width 113

19. Ganian, R., Ordyniak, S., Ramanujan, M.S.: On structural parameterizations of
the edge disjoint paths problem. Algorithmica 83(6), 1605–1637 (2021)

20. Giannopoulou, A.C., Kwon, O., Raymond, J., Thilikos, D.M.: Lean tree-cut decom-
positions: obstructions and algorithms. In: Niedermeier, R., Paul, C. (eds.) 36th
International Symposium on Theoretical Aspects of Computer Science, STACS
2019, Berlin, Germany, 13–16 March 2019. LIPIcs, vol. 126, pp. 32:1–32:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

21. Golovach, P.A., Komusiewicz, C., Kratsch, D., Le, V.B.: Refined notions of param-
eterized enumeration kernels with applications to matching cut enumeration. J.
Comput. Syst. Sci. 123, 76–102 (2022)

22. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity
of the MINCCA problem on graphs of bounded decomposability. Theor. Comput.
Sci. 690, 91–103 (2017)

23. Gutin, G.Z., Jones, M., Wahlström, M.: The mixed Chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discret. Math. 30(4), 2177–
2205 (2016)

24. Kim, E.J., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation
for tree-cut decomposition. Algorithmica 80(1), 116–135 (2018)

25. Korhonen, T.: Single-exponential time 2-approximation algorithm for treewidth.
CoRR abs/2104.07463 (2021). https://arxiv.org/abs/2104.07463

26. Magne, L., Paul, C., Sharma, A., Thilikos, D.M.: Edge-treewidth: algorithmic and
combinatorial properties. CoRR abs/2112.07524 (2021)

27. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Dis-
cret. Math. 28(1), 503–520 (2014)

28. Nederlof, J., Pilipczuk, M., Swennenhuis, C.M.F., W ↪egrzycki, K.: Hamiltonian
cycle parameterized by treedepth in single exponential time and polynomial space.
In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 27–39. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60440-0 3

29. Nešetřil, J., Ossona de Mendez, P.: Sparsity. Algorithms and Combinatorics, vol.
28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

30. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algo-
rithms 5(1), 1–20 (2008)

31. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

32. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited.
J. Comput. Syst. Sci. 76(2), 103–114 (2010)

33. Scheffler, P.: Practical linear time algorithm for disjoint paths in graphs with
bounded tree-width. Technical report TR 396/1994. FU Berlin, Fachbereich 3
Mathematik (1994)

34. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb.
Theory Ser. B 110, 47–66 (2015)

https://arxiv.org/abs/2104.07463
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/978-3-642-27875-4

An Algorithmic Framework for Locally
Constrained Homomorphisms

Laurent Bulteau1 , Konrad K. Dabrowski2(B) , Noleen Köhler3 ,
Sebastian Ordyniak4 , and Daniël Paulusma5

1 LIGM, CNRS, Université Gustave Eiffel, Champs-sur-Marne, France
laurent.bulteau@univ-eiffel.fr

2 School of Computing, Newcastle University, Newcastle upon Tyne, UK
konrad.dabrowski@newcastle.ac.uk

3 LAMSADE, CNRS, Université Paris-Dauphine, PSL University, Paris, France
noleen.kohler@dauphine.psl.eu

4 School of Computing, University of Leeds, Leeds, UK
sordyniak@gmail.com

5 Department of Computer Science, University of Durham, Durham, UK
daniel.paulusma@durham.ac.uk

Abstract. A homomorphism φ from a guest graph G to a host graph H
is locally bijective, injective or surjective if for every u ∈ V (G), the
restriction of φ to the neighbourhood of u is bijective, injective or
surjective, respectively. The corresponding decision problems, LBHom,
LIHom and LSHom, are well studied both on general graphs and on
special graph classes. We prove a number of new FPT, W[1]-hard and
para-NP-complete results by considering a hierarchy of parameters of
the guest graph G. For our FPT results, we do this through the develop-
ment of a new algorithmic framework that involves a general ILP model.
To illustrate the applicability of the new framework, we also use it to
prove FPT results for the Role Assignment problem, which originates
from social network theory and is closely related to locally surjective
homomorphisms.

Keywords: (locally constrained) graph homomorphism ·
parameterized complexity · fracture number

1 Introduction

A homomorphism from a graph G to a graph H is a mapping φ : V (G) → V (H)
such that φ(u)φ(v) ∈ E(H) for every uv ∈ E(G). Graph homomorphisms gen-
eralise graph colourings (using a complete graph for H) and have been inten-
sively studied over a long period of time. We refer to the textbook of Hell and
Nešetřil [34] for a further introduction.

The second and fourth authors acknowledge support from the Engineering and Physical
Sciences Research Council (EPSRC, project EP/V00252X/1).
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 114–128, 2022.
https://doi.org/10.1007/978-3-031-15914-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_9&domain=pdf
http://orcid.org/0000-0003-1645-9345
http://orcid.org/0000-0001-9515-6945
http://orcid.org/0000-0002-1023-6530
http://orcid.org/0000-0002-1825-0097
http://orcid.org/0000-0001-5945-9287
https://doi.org/10.1007/978-3-031-15914-5_9

An Algorithmic Framework for Locally Constrained Homomorphisms 115

We write G → H if there exists a homomorphism from G to H; here, G is
called the guest graph and H is the host graph. We denote the corresponding
decision problem by Hom, and if H is fixed, that is, not part of the input, we
write H-Hom. The renowned Hell-Nešetřil dichotomy [33] states that H-Hom
is polynomial-time solvable if H is bipartite, and NP-complete otherwise. We
denote the vertices of H by 1, . . . , |V (H)| and call them colours.

Instead of fixing the host graph H, one can also restrict the structure of
the guest graph G by bounding some graph parameter. Here, it is known that
if FPT �= W[1], then Hom can be solved in polynomial time if and only if the
so-called core of the guest graph has bounded treewidth [31].

Locally Constrained Homomorphisms. We are interested in three well-
studied variants of graph homomorphisms that occur after placing constraints
on the neighbourhoods of the vertices of the guest graph G. Consider a homo-
morphism φ from a graph G to a graph H. We say that φ is locally injective,
locally bijective or locally surjective for u ∈ V (G) if restricting φ to a function
φu : NG(u) → NH(φ(u)) is injective, bijective or surjective, respectively. Here,
NG(u) = {v | uv ∈ E(G)} denotes the (open) neighbourhood of a vertex u in a
graph G. We say that φ is locally injective, locally bijective or locally surjective
if it is locally injective, locally bijective or locally surjective for every u ∈ V (G).
We denote existence of these locally constrained homomorphisms by G B−→ H,
G I−→ H and G S−→ H, respectively.

Locally injective homomorphisms are also known as partial graph coverings
and are used in telecommunications [23], in distance constrained labelling [22]
and as indicators of the existence of homomorphisms of derivative graphs [46].
Locally bijective homomorphisms originate from topological graph theory [4,45]
and are more commonly known as graph coverings. They are used in distributed
computing [2,3,7] and in constructing highly transitive regular graphs [5].
Locally surjective homomorphisms are sometimes called colour dominations [41].
They have applications in distributed computing [11,12] and in social sci-
ence [20,50,53,54]. In the latter context they are known as role assignments.

Let LBHom, LIHom and LSHom be the three problems of deciding, for two
graphs G and H, whether G B−→ H, G I−→ H or G S−→ H holds, respectively. As
before, we write H -LBHom, H -LIHom and H -LSHom in the case when the host
graph H is fixed. Out of the three problems, only the complexity of H -LSHom
has been completely classified, both for general graphs and bipartite graphs [26].
We refer to a series of papers [1,6,23,25,38,39,44] for polynomial-time solvable
and NP-complete cases of H -LBHom and H -LIHom; see also the survey by Fiala
and Kratochvíl [24]. Some more recent results include sub-exponential algorithms
for H -LBHom, H -LIHom and H -LSHom on string graphs [48] and complexity
results for H -LBHom for host graphs H that are multigraphs [40] or that have
semi-edges [9].

In our paper we assume that both G and H are part of the input. We note
a fundamental difference between locally injective homomorphisms on the one
hand and locally bijective and surjective homomorphisms on the other. Namely,
for connected graphs G and H, we must have |V (G)| ≥ |V (H)| if G B−→ H or

116 L. Bulteau et al.

G S−→ H (this is a consequence of Observation 1), whereas H might be arbitrarily
larger than G if G I−→ H holds. For example, if we let G be a complete graph and
H be a graph without self-loops, then G I−→ H holds if and only if H contains a
clique on at least |V (G)| vertices.

The above difference is also reflected in the complexity results for the three
problems under input restrictions. In fact, LIHom is closely related to the
Subgraph Isomorphism problem and is usually the hardest problem. For
example, LBHom is Graph Isomorphism-complete on chordal guest graphs,
but polynomial-time solvable on interval guest graphs and LSHom is NP-
complete on chordal guest graphs, but polynomial-time solvable on proper inter-
val guest graphs [32]. In contrast, LIHom is NP-complete even on complete
guest graphs G, which follows from a reduction from the Clique problem via
the aforementioned equivalence: G I−→ H holds if and only if H contains a clique
on at least |V (G)| vertices.

The aforementioned polynomial-time result on Hom for guest graphs G
with a core of bounded treewidth [15,30] does not carry over to any of the
three locally constrained homomorphism problems. Indeed, LBHom, LSHom
and LIHom are NP-complete for guest graphs G of path-width at most 5, 4
and 2, respectively [14] (all three problems are polynomial-time solvable if G is
a tree [14,27]). It is also known that LBHom [37], LSHom [41] and LIHom [23]
are NP-complete even if G is cubic and H is the complete graph K4 on four
vertices, but polynomial-time solvable if G has bounded treewidth and one of
the two graphs G or H has bounded maximum degree [14].

An Application. Locally surjective homomorphisms from a graph G to a
graph H are known as H-role assignments in social network theory. Role assign-
ments were introduced by White and Reitz [54]. A connected graph G has an
h-role assignment if and only if G S−→ H for some connected graph H with
|V (H)| = h, as long as we allow H to have self-loops (while we assume that
G is a graph with no self-loops). The Role Assignment problem is to decide,
for a graph G and an integer h, whether G has an h-role assignment. If h is
fixed, we denote the problem h-Role Assignment. h-Role Assignment is
NP-complete for planar graphs (h ≥ 2) [51], cubic graphs (h ≥ 2) [52], bipartite
graphs (h ≥ 3) [49], chordal graphs (h ≥ 3) [35] and split graphs (h ≥ 4) [16].

Our Focus. We continue the line of study in [14] and focus on the following
research question: For which parameters of the guest graph do LBHom, LSHom
and LIHom become fixed-parameter tractable?

We will also apply our new techniques towards answering this question for the
Role Assignment problem. In order to address our research question, we need
some additional terminology. A graph parameter p dominates a parameter q if
there is a function f such that p(G) ≤ f(q(G)) for every graph G. If p domi-
nates q but q does not dominate p, then p is more powerful than q. We denote this
by p�q. If neither p dominates q nor q dominates p, then p and q are incompara-
ble (orthogonal). Given the para-NP-hardness results on LBHom, LSHom and
LIHom for graph classes of bounded path-width [14], we will consider a range

An Algorithmic Framework for Locally Constrained Homomorphisms 117

of graph parameters that are less powerful than path-width. In this way we aim
to increase our understanding of the (parameterized) complexity of LBHom,
LSHom and LIHom.

For an integer c ≥ 1, a c-deletion set of a graph G is a subset S ⊆ V (G) such
that every connected component of G \ S has at most c vertices. The c-deletion
set number dsc(G) of a graph G is the minimum size of a c-deletion set in G. If
c = 1 we obtain the vertex cover number vc(G) of G. The c-deletion set number
is closely related to the fracture number fr(G), introduced in [19], which is the
minimum k such that G has a k-deletion set on at most k vertices. Both these
parameters are also closely related to vertex integrity [18]. Note that fr(G) ≤
max{c,dsc(G)} holds for every integer c. The feedback vertex set number fv(G)
of a graph G is the size of a smallest set S such that G \ S is a forest. We write
tw(G), pw(G) and td(G) for the treewidth, path-width and tree-depth of a graph
G, respectively; see [47] for more information. It is known that tw(G)�pw(G)�
td(G)� fr(G)� dsc(G)(fixed c)� vc(G)� |V (G)|, where the second relationship
is proven in [8] and the others follow immediately from their definitions (see
also Sect. 2). It is readily seen that tw(G) � fv(G) � ds2(G) and that fv(G) is
incomparable with the parameters pw(G), td(G), fr(G) and dsc(G) for every
fixed c ≥ 3 (consider e.g. a tree of large path-width and the disjoint union of
many triangles).

Our Results. We prove a number of new parameterized complexity results for
LBHom, LSHom and LIHom by considering some property of the guest graph G
as the parameter. In particular, we consider the graph parameters above. Our
two main results, which are proven in Sect. 4, show that LBHom and LSHom
are fixed-parameter tractable parameterized by the fracture number of G. These
two results cannot be strengthened to the tree-depth of the guest graph, for
which we prove para-NP-completeness. Note that the latter results imply the
known para-NP-completeness results for path-width of the guest graph [14]. We
also prove that LBHom and LSHom are para-NP-complete when parameterized
by the feedback vertex set number of the guest graph. This result and the para-
NP-hardness for tree-depth motivated us to consider the fracture number as a
natural remaining graph parameter for obtaining an fpt algorithm.

Concerning LIHom, we prove that it is in XP and W[1]-hard when param-
eterized by the vertex cover number, or equivalently, the c-deletion set number
for c = 1. We then show that the XP-result for LIHom cannot be generalised to
hold for c ≥ 2. In fact, in Sect. 4, we will determine the complexity of LIHom
on graphs with c-deletion set number at most k for every fixed pair of integers c
and k. Our results for LBHom, LSHom and LIHom are summarised, together
with the known results, in Table 1.

Algorithmic Framework. The fpt algorithms for LBHom and LSHom are
proven via a new algorithmic framework (described in detail in Sect. 3) that
involves a reduction to an integer linear program (ILP) that has a wider appli-
cability. To illustrate this, in Sect. 4 we also use our general framework to prove
that Role Assignment is in FPT when parameterized by c+dsc, or equivalently
by fracture number.

118 L. Bulteau et al.

Table 1. Table of results. The results marked with a (�) are the new results in this
paper. The remaining results are either known results, some of which are now also
implied by our new results, or follow immediately from other results in the table; in
particular, for a graph G, dsc(G) ≥ fr(G) if c ≤ fr(G) − 1, and dsc(G) ≤ fr(G) if
c ≥ fr(G). Also note that LIHom is W[1]-hard when parameterized by |V (G)|, as
Clique is W[1]-hard when parameterized by the clique number [17], so as before, we
can let G be the complete graph in this case.

guest graph parameter LIHom LBHom LSHom

|V (G)| XP, W[1]-hard [17] FPT FPT

vertex cover number XP (�), W[1]-hard FPT FPT

c-deletion set number (fixed c) para-NP-c (c ≥ 2) (�) FPT FPT

fracture number para-NP-c FPT (Theorem 4) (�) FPT (Theorem 4) (�)

tree-depth para-NP-c para-NP-c (�) para-NP-c (�)

path-width para-NP-c [14] para-NP-c [14] para-NP-c [14]

treewidth para-NP-c para-NP-c para-NP-c

maximum degree para-NP-c [23] para-NP-c [37] para-NP-c [41]

treewidth plus maximum degree XP, W[1]-hard XP [14] XP [14]

feedback vertex set number para-NP-c para-NP-c (�) para-NP-c (�)

Techniques. The main ideas behind our algorithmic ILP framework are as
follows. Let G and H be the guest and host graphs, respectively. First, we observe
that if G has a c-deletion of size at most k and there is a locally surjective
homomorphism from G to H, then H must also have a c-deletion set of size
at most k. However it does not suffice to compute c-deletion sets DG and DH

for G and H, guess a partial homomorphism h from DG to DH , and use the
structural properties of c-deletion sets to decide whether h can be extended to a
desired homomorphism from G to H. This is because a homomorphism from G
to H does not necessarily map DG to DH . Moreover, even if it did, vertices
in G \ DG can still be mapped to vertices in DH . Consequently, components
of G \ DG can still be mapped to more than one component of H \ DH . This
makes it difficult to decompose the homomorphism from G to H into small
independent parts. To overcome this challenge, we prove that there are small
sets DG and DH of vertices in G and H, respectively, such that every locally
surjective homomorphism from G to H satisfies:

1. the pre-image of DH is a subset of DG,
2. DH is a c′-deletion set for H for some c′ bounded in terms of only c+ k, and
3. all but at most k components of G\DG have at most c vertices and, while the

remaining components can be arbitrarily large, their treewidth is bounded in
terms of c + k.

As DG and DH are small, we can enumerate all possible homomorphisms from
some subset of DG to DH . Condition 2 allows us to show that any locally sur-
jective homomorphism from G to H can be decomposed into locally surjective
homomorphisms from a small set of components of G \ DG (plus DG) to one
component of H \ DH (plus DH). This enables us to formulate the question of
whether a homomorphism from a subset of DG to DH can be extended to a

An Algorithmic Framework for Locally Constrained Homomorphisms 119

desired homomorphism from G to H in terms of an ILP. Finally, Condition 3
allows us to efficiently compute the possible parts of the decomposition, that is,
which (small) sets of components of G\DG can be mapped to which components
of H \ DH .

2 Preliminaries

Let G be a graph. We denote the vertex set and edge set of G by V (G) and
E(G), respectively. Let X ⊆ V (G) be a set of vertices of G. The subgraph
of G induced by X, denoted G[X], is the graph with vertex set X and edge set
{uv ∈ E(G) | u, v ∈ X}. When the underlying graph is clear from the context,
we will sometimes refer to an induced subgraph simply by its set of vertices.
We use G \ X to denote the subgraph of G induced by V (G) \ X. Similarly, for
Y ⊆ E(G) we let G\Y be the subgraph of G obtained by deleting all edges in Y
from G. For a graph G and a vertex u ∈ V (G), we let NG(u) = {v | uv ∈ E(G)}
and NG[v] = NG(v) ∪ {v} denote the open and closed neighbourhood of v in
G, respectively. Recall that we assume that the guest graph G does not contain
self-loops, while the host graph H is permitted to have self-loops. In this case,
by definition, u ∈ NH(u) if uu ∈ E(H). We need the following well-known fact:

Proposition 1 ([42]). Let G be a graph and let k and c be natural numbers.
Then, deciding whether G has a c-deletion set of size at most k is fixed-parameter
tractable parameterized by k + c.

A (k, c)-extended deletion set for G is a set D ⊆ V (G) such that: (1) every
component of G \ D either has at most c vertices or has a c-deletion set of size
at most k and (2) at most k components of G \ D have more than c vertices.

Locally Constrained Homomorphisms. Here we show some basic properties
of locally constrained homomorphisms.

Observation 1. Let G and H be non-empty connected graphs and let φ be a
locally surjective homomorphism from G to H. Then φ is surjective.

Observation 2. Let G and H be graphs, let D ⊆ V (G), and let φ be a homo-
morphism from G to H. Then, for every component CG of G \ D such that
φ(CG)∩φ(D) = ∅, there is a component CH of H \φ(D) such that φ(CG) ⊆ CH .
Moreover, if φ is locally injective/surjective/bijective, then φ|D∪CG

is a homo-
morphism from G′ = G[D ∪ CG] to H ′ = H[φ(D) ∪ CH] that is locally injec-
tive/surjective/bijective for every v ∈ V (CG).

Lemma 1. Let G and H be non-empty connected graphs, let D ⊆ V (G) be a c-
deletion set for G, and let φ be a locally surjective homomorphism from G to H.
Then φ(D) is a c-deletion set for H.

Integer Linear Programming. Given a set X of variables and a set C of linear
constraints (i.e. inequalities) over the variables in X with integer coefficients,

120 L. Bulteau et al.

the task in the feasibility variant of integer linear programming (ILP) is to
decide whether there is an assignment α : X → Z of the variables satisfying all
constraints in C. We will use the following well-known result by Lenstra [43].

Proposition 2 ([21,29,36,43]). ILP is fpt parameterized by the number of
variables.

3 Our Algorithmic Framework

Here we present our main algorithmic framework that will allow us to show that
LSHom, LBHom and Role Assignment are fpt parameterized by k + c when
the guest graph has c-deletion set number at most k. To illustrate the main
ideas behind our framework, let us first explain these ideas for the examples of
LSHom and LBHom. In this case we are given G and H and we know that G
has a c-deletion set of size at most k. Because of Lemma 1, it then follows that
if (G,H) is a yes-instance of LSHom or LBHom, then H also has a c-deletion
set of size at most k. Informally, our next step is to compute a small set Φ of
partial locally surjective homomorphisms such that (1) every locally surjective
homomorphism from G to H augments some φP ∈ Φ and (2) for every φP ∈ Φ,
the domain of φP is a (k, c)-extended deletion set of G and the co-domain of φP

is a c′-deletion set of H, where c′ is bounded by a function of k + c. Here and
in what follows, we say that a function φ : V (G) → V (H) augments (or is an
augmentation of) a partial function φP : VG → VH , where VG ⊆ V (G) and
VH ⊆ V (H) if v ∈ VG ⇔ φ(v) ∈ VH and φ|VG

= φP . This allows us to reduce
our problems to (boundedly many) subproblems of the following form: Given a
(k, c)-extended deletion set DG for G, a c′-deletion set DH for H, and a locally
surjective (respectively bijective) homomorphism φP from DG to DH , find a
locally surjective homomorphism φ from G to H that augments φP . We will
then show how to formulate this subproblem as an integer linear program and
how this program can be solved efficiently. Importantly, our ILP formulation will
allow us to solve a much more general problem, where the host graph H is not
explicitly given, but defined in terms of a set of linear constraints, which will
allow us to solve the Role Assignment problem.

Partial Homomorphisms for the Deletion Set. For a graph G and m ∈ N

we let Dm
G := {v ∈ V (G) | degG(v) ≥ m}. We will show in Lemma 4 that there

is a small set Φ of partial homomorphisms such that every locally surjective
(respectively bijective) homomorphism from G to H augments some φP ∈ Φ
and, for every φP ∈ Φ, the domain of φP is a (k, c)-extended deletion set for G
of size at most k and its co-domain is a c′-deletion set of size at most k for
H. The main idea behind finding this set Φ is to consider the set of high degree
vertices in G and H, i.e. the sets Dk+c

G and Dk+c
H . As it turns out (see Lemma 2),

for every subset D ⊆ Dk+c
G , D is a (k − |D|, c)-extended deletion set for G of

size at most k and Dk+c
H is a c′-deletion set for H of size at most k, where

c′ = kc(k + c). Moreover, as we will show in Lemma 3, every locally surjective
(respectively bijective) homomorphism from G to H has to augment a locally

An Algorithmic Framework for Locally Constrained Homomorphisms 121

surjective (respectively bijective) homomorphism from some induced subgraph
of G[Dk+c

G] to DH = Dk+c
H . Intuitively, this holds because for every locally

surjective homomorphism, only vertices of high degree in G can be mapped to a
vertex of high degree in H and every vertex in H must have a pre-image in G.

Lemma 2. Let G be a graph. If G has a c-deletion set of size at most k, then
the set Dk+c

G is a kc(k + c)-deletion set of size at most k. Furthermore, every
subset D ⊆ Dk+c

G is a (k − |D|, c)-extended deletion set of G.

Lemma 3. Let G and H be non-empty connected graphs such that G has a c-
deletion set of size at most k. If there is a locally surjective homomorphism φ
from G to H, then there is a set D ⊆ Dk+c

G and a locally surjective homo-
morphism φP from G[D] to H[Dk+c

H] such that φ augments φP . If φ is locally
bijective, then D = Dk+c

G and φP is a locally bijective homomorphism.

Proof. By Lemma 2, Dk+c
G is a kc(k + c)-deletion set of size at most k. Fur-

thermore, observe that for a locally surjective homomorphism φ from G to H,
the inequality degG(v) ≥ degH(φ(v)) holds for every v ∈ V (G) (degG(v) =
degH(φ(v)) holds in the locally bijective case). Since φ is surjective by Obser-
vation 1, this implies that φ(Dk+c

G) ⊇ Dk+c
H (and if φ is locally bijective,

then φ(Dk+c
G) = Dk+c

H). By Lemma 1, φ(Dk+c
G) is a kc(k + c)-deletion set

for H. Let D = φ−1(Dk+c
H), so D ⊆ Dk+c

G (note that D = Dk+c
G if φ is

locally bijective). Now φ|D is a surjective map from D to Dk+c
H . Further-

more, φ(Dk+c
G \ D) ∩ φ(D) = φ(Dk+c

G \ D) ∩ Dk+c
H = ∅. Moreover, for every

v ∈ V (G)\Dk+c
G , φ(v) /∈ Dk+c

H = φ|D(D), since degG(v) ≥ degH(φ(v)). Further-
more, φ|D is a homomorphism from G[D] to H[Dk+c

H] because φ is a homomor-
phism. We argue that φ|D is locally surjective (respectively bijective) by con-
tradiction. Suppose φ|D is not locally surjective. Then there is a vertex u ∈ D
and a neighbour v ∈ Dk+c

H of φ|D(u) such that v /∈ φ|D(NG(u) ∩ D). Since φ is
locally surjective, there must be w ∈ NG(u) \ D such that φ(w) = v. This con-
tradicts the fact that φ(V (G) \ D)∩ Dk+c

H = ∅. Hence φ|D is a locally surjective
homomorphism. In the bijective case we just need to additionally observe that
φ|D restricted to the neighbourhood of any vertex v ∈ D must be injective. This
completes the proof. �

Lemma 4. Let G and H be non-empty connected graphs and let k, c be non-
negative integers. For any D ⊆ Dk+c

G , we can compute the set ΦD of all locally
surjective (respectively bijective) homomorphisms φP from G[D] to H[Dk+c

H] in
O(|D||D|+2) time. Furthermore, |ΦD| ≤ |D||D|.

ILP Formulation. We will show how to formulate the subproblem obtained in
the previous subsection in terms of an ILP instance. More specifically, we will
show that the following problem can be formulated in terms of an ILP: given a
partial locally surjective (respectively bijective) homomorphism φP from some
induced subgraph DG of G to some induced subgraph DH of H, can this be
augmented to a locally surjective (respectively bijective) homomorphism from G

122 L. Bulteau et al.

to H? Moreover, we will actually show that for this to work, the host graph
H does not need to be given explicitly, but can instead be defined by a certain
system of linear constraints.

The main ideas behind our translation to ILP are as follows. Suppose that
there is a locally surjective (respectively bijective) homomorphism φ from G
to H that augments φP . Because φ augments φP , Observation 2 implies that φ
maps every component CG of G \ V (DG) entirely to some component CH of
H \ V (DH), moreover, φ|V (DG)∪V (CG) is already locally surjective (respectively
bijective) for every vertex v ∈ V (CG). Our aim now is to describe φ in terms of
its parts consisting of locally surjective (respectively bijective) homomorphisms
from extensions of DG in G, i.e. sets of components of G\DG plus DG, to simple
extensions of DH in H, i.e. single components of H \ DH plus DH . Note that
the main difficulty comes from the fact that we need to ensure that φ is locally
surjective (respectively bijective) for every d ∈ DG and not only for the vertices
within the components of G \ DG. This is why we need to describe the parts of
φ using sets of components of G \ DG and not just single components. However,
as we will show, it will suffice to consider only minimal extensions of DG in G,
where an extension is minimal if no subset of it allows for a locally surjective
(respectively bijective) homomorphism from it to some simple extension of DH

in H. The fact that we only need to consider minimal extensions is important
for showing that we can compute the set of all possible parts of φ efficiently.
Having shown this, we can create an ILP that has one variable xExtGExtH for
every minimal extension ExtG and every simple extension ExtH such that there
is a locally surjective (respectively bijective) homomorphism from ExtG to ExtH
that augments φP . The value of the variable xExtGExtH now corresponds to the
number of parts used by φ that map minimal extensions isomorphic to ExtG to
simple extensions isomorphic to ExtH that augment φP . We can then use linear
constraints on these variables to ensure that:

(SB2’) H contains exactly the right number of extensions isomorphic to ExtH
required by the assignment for xExtGExtH ,

(B1’) G contains exactly the right number of minimal extensions isomorphic to
ExtG required by the assignment for xExtGExtH (if φ is locally bijective),

(S1’) G contains at least the number of minimal extensions isomorphic to ExtG
required by the assignment for xExtGExtH (if φ is locally surjective),

(S3’) for every simple extension ExtG of G that is not yet used in any part of
φ, there is a homomorphism from ExtG to some simple extension of DH in
H that augments φP and is locally surjective for every vertex in ExtG \ DG

(if φ is locally surjective).

Together, these constraints ensure that there is a locally surjective (respectively
bijective) homomorphism φ from G to H that augments φP . To do so, we need
the following additional notation.

Given a graph D, an extension for D is a graph E containing D as an induced
subgraph. It is simple if E \ D is connected, and complex in general. Given two
extensions Ext1,Ext2 of D, we write Ext1 ∼D Ext2 if there is an isomorphism
τ from Ext1 to Ext2 with τ(d) = d for every d ∈ D. Then ∼D is an equivalence

An Algorithmic Framework for Locally Constrained Homomorphisms 123

relation. Let the types of D, denoted TD, be the set of equivalence classes of ∼D

of simple extensions of D. We write T c
D to denote the set of types of D of size

at most |D| + c, so |T c
D| ≤ (|D| + c)2(

|D|+c
2).

Given a complex extension E of D, let C be a connected component of
E \ D. Then C has type T ∈ TD if E[D ∪ C] ∼D T (depending on the context,
we also say that the extension E[D ∪C] has type T). The type-count of E is the
function tcE : TD → N such that tcE(T) for T ∈ TD is the number of connected
components of E \ D with type T (in particular if E is simple, the type-count
is 1 for E and 0 for other types). Note that two extensions are equivalent if and
only if they have the same type-counts; this then also implies that there is an
isomorphism τ between the two extensions satisfying τ(d) = d for every d ∈ D.
We write E � E′ if tcE(T) ≤ tcE′(T) for all types T ∈ TD. If E is an extension
of D, we write TD(E) = {T ∈ TD | tcE(T) ≥ 1} for the set of types of E and
ED(E) for the set of simple extensions of E. Moreover, for T ∈ TD, we write
ED(E, T) for the set of simple extensions in E having type T .

A target description is a tuple (DH , c,CH) where DH is a graph, c is an
integer and CH is a set of linear constraints over variables xT , T ∈ T c

DH
. A type-

count for DH is an integer assignment of the variables xT . A graph H satisfies
the target description (DH , c,CH) if it is an extension of DH , tcH(T) = 0 for
T /∈ T c

DH
, and setting xT = tcH(T) for all T ∈ T c

DH
satisfies all constraints in

CH.
In what follows, we assume that the following are given: the graphs DG, DH ,

an extension G of DG, a target description D = (DH , c,CH), and a locally sur-
jective (respectively bijective) homomorphism φP : DG → DH . Let ExtG be an
extension of DG with ExtG � G and let TH ∈ T c

DH
; note that we only consider

TH ∈ T c
DH

, because we assume that TH is a type of a simple extension of a
graph H that satisfies the target description D. We say ExtG can be weakly φP -
S-mapped to a type TH if there exists an augmentation φ : ExtG → TH of φP

such that φ is locally surjective for every v ∈ ExtG \ DG. We say that ExtG
can be φP -S-mapped (respectively φP -B-mapped) to a type TH if there exists an
augmentation φ : ExtG → TH of φP such that φ is locally surjective (respectively
locally bijective). Furthermore, ExtG can be minimally φP -S-mapped (respec-
tively minimally φP -B-mapped) to TH if ExtG can be φP -S-mapped (respectively
φP -B-mapped) to TH and no other extension Ext′G with Ext′G � ExtG can
be φP -S-mapped (respectively φP -B-mapped) to TH . Let wSM(G,DG,D, φP)
be the set of all pairs (TG, TH) such that TG ∈ TDG

(G) can be weakly φP -S-
mapped to TH . Let SM(G,DG,D, φP) be the set of all pairs (ExtG, TH) with
ExtG � G, TH ∈ T c

DH
such that ExtG can be minimally φP -S-mapped to TH

and let BM(G,DG,D, φP) be the set of all pairs (ExtG, TH) with ExtG � G,
TH ∈ T c

DH
such that ExtG can be minimally φP -B-mapped to TH .

We now build a set of linear constraints. To this end, besides variables xT for
T ∈ TH , we introduce variables xExtGTH

for each (ExtG, TH) ∈ SM (respec-
tively BM), where here and in what follows wSM = wSM(G,DG,D, φP),
SM = SM(G,DG,D, φP) and BM = BM(G,DG,D, φP).

124 L. Bulteau et al.

(S1)
∑

(ExtG,TH)∈SM tcExtG(TG) ∗ xExtGTH
≤ tcG(TG) for every TG ∈ TDG

(G),
(B1)

∑
(ExtG,TH)∈BM tcExtG(TG) ∗ xExtGTH

= tcG(TG) for every TG ∈ TDG
(G),

(S2)
∑

ExtG:(ExtG,TH)∈SM xExtG,TH
= xTH

for every TH ∈ TDH
,

(B2)
∑

ExtG:(ExtG,TH)∈BM xExtG,TH
= xTH

for every TH ∈ TDH
,

(S3)
∑

(TG,TH)∈wSM xTH
≥ 1 for every TG ∈ TDG

(G).

Lemma 5. Let DG and DH be graphs, let G be an extension of DG and let
D = (DH , c,CH) be a target description. Moreover, let φP : V (DG) → V (DH)
be a locally surjective (respectively bijective) homomorphism from DG to DH .
There exists a graph H satisfying D and a locally surjective (respectively bijec-
tive) homomorphism φ augmenting φP if and only if the equation system
(CH, S1, S2, S3) (respectively (CH, B1, B2)) admits a solution.

Constructing and Solving the ILP. We show the following theorem.

Theorem 3. Let G be a graph, let DG be a (k, c)-extended deletion set (respec-
tively a c-deletion set) of size at most k for G, let D = (DH , c′,CH) be a target
description and let φP : DG → DH be a locally surjective (respectively bijective)
homomorphism from DG to DH . Then, deciding whether there is a locally sur-
jective (respectively bijective) homomorphism that augments φP from G to any
graph satisfying CH is fpt parameterized by k + c + c′.

To prove Theorem 3, we need to show that we can construct and solve the
ILP instance given in the previous section. The main ingredient for the proof of
Theorem 3 is Lemma 7, which shows that we can efficiently compute the sets
wSM, SM, and BM. A crucial insight for its proof is that if (ExtG,ExtH) ∈
SM (or (ExtG,ExtH) ∈ BM), then ExtG consists of only boundedly many (in
terms of some function of the parameters) components, which will allow us to
enumerate all possibilities for ExtG in fpt-time. We start by showing that the
set TDG

(G) can be computed efficiently and has small size.

Lemma 6. Let G be a graph and let DG be a (k, c)-extended deletion set of size
at most k for G. Then, TDG

(G) has size at most k + (|DG| + c)2(
|DG|+c

2) and
computing TDG

(G) and tcG is fpt parameterized by |DG| + k + c.

Lemma 7. Let G be a graph, let DG be a (k, c)-extended deletion set (respec-
tively a c-deletion set) of size at most k for G, let D = (DH , c′,CH) be a tar-
get description and let φP be a locally surjective (respectively bijective) homo-
morphism from DG to DH . Then, the sets wSM = wSM(G,DG,D, φP) and
SM = SM(G,DG,D, φP) (respectively the set BM = BM(G,DG,D, φP)) can be
computed in fpt-time parameterized by k + c + c′ and |SM| (respectively |BM|)
is bounded by a function depending only on k + c + c′. Moreover, the number of
variables in the equation system (CH, S1, S2, S3) (respectively (CH, B1, B2))
is bounded by a function depending only on k + c + c′.

4 Applications of Our Algorithmic Framework

Here we show the main results of our paper, which are simple applications of
our framework from the previous section. Our first result implies that LSHom
and LBHom are fpt parameterized by the fracture number of the guest graph.

An Algorithmic Framework for Locally Constrained Homomorphisms 125

Theorem 4. LSHom and LBHom are fpt parameterized by k+c, where k and c
are such that the guest graph G has a c-deletion set of size at most k.

Proof. Let G and H be non-empty connected graphs such that G has a c-deletion
set of size at most k. Let DH = H[Dk+c

H]. We first verify whether H has a c-
deletion set of size at most k using Proposition 1. Because of Lemma 1, we
can return that there is no locally surjective (and therefore also no bijective)
homomorphism from G to H if this is not the case. Therefore, we can assume in
what follows that H also has a c-deletion set of size at most k, which together
with Lemma 2 implies that V (DH) is a kc(k+c)-deletion set of size at most k for
H. Therefore, using Lemma 6, we can compute tcH in fpt-time parameterized
by k + c. This now allows us to obtain a target description D = (DH , c′,CH)
with c′ = kc(k + c) for H, i.e. D is satisfied only by the graph H, by adding the
constraint xT = tcH(TH) to CH for every simple extension type TH ∈ T c′

DH
; note

that T c′
DH

can be computed in fpt-time parameterized by k + c by Lemma 6.
Because of Lemma 3, we obtain that there is a locally surjective (respectively

bijective) homomorphism φ from G to H if and only if there is a set D ⊆ Dk+c
G

and a locally surjective (respectively bijective) homomorphism φP from DG =
G[D] to DH such that φ augments φP . Therefore, we can solve LSHom by
checking, for every D ⊆ Dk+c

G and every locally surjective homomorphism φP

from DG = G[D] to DH , whether there is a locally surjective homomorphism
from G to H that augments φP . Note that there are at most 2k subsets D and
because of Lemma 4, we can compute the set ΦD for every such subset in O(kk+2)
time. Furthermore, due to Lemma 2, D is a (k − |D|, c)-extended deletion set of
size at most k for G. Therefore, for every D ⊆ Dk+c

G and φp ∈ ΦD, we can use
Theorem 3 to decide in fpt-time parameterized by k+c (because c′ = kc(k+c)),
if there is a locally surjective (resp. bijective) homomorphism from G to a graph
satisfying D that augments φP . As H is the only graph satisfying D, we proved
the theorem. �

The proof of our next theorem is similar to that of Theorem 4. The difference
is that H is not given. Instead, we use Theorem 3 for a selected set of target
descriptions. Each target description enforces that graphs satisfying it have to
be connected and have precisely h vertices, where h is part of the input for
Role Assignment. We ensure that every graph H satisfying the requirements
of Role Assignment satisfies at least one of the selected target descriptions.
The size of the set of considered target descriptions depends only on c and k, as
it suffices to consider any small graph DH and types of small simple extensions
of DH .

Theorem 5. Role Assignment is fpt parameterized by k + c, where k and c
are such that G has a c-deletion set of size at most k.

We also obtain the following dichotomy, where the c = 1, k ≥ 1 case (vertex
cover number case) follows from our ILP framework: we first find, in XP time, a
partial mapping from a vertex cover of the host graph G to the guest graph H
and then use our ILP framework to map the remaining vertices in FPT-time.

126 L. Bulteau et al.

Theorem 6. Let c, k ≥ 1. Then LIHom is polynomial-time solvable on guest
graphs with a c-deletion set of size at most k if either c = 1 and k ≥ 1 or c = 2
and k = 1; otherwise, it is NP-complete.

5 Conclusions

We aim to extend our ILP-based framework. If successful, this will then also
enable us to address the parameterized complexity of other graph homomorphism
variants such as quasi-covers [28] and pseudo-covers [10,12,13]. We also recall the
open problem from [14]: are LBHom and LSHom in FPT when parameterized
by the treewidth of the guest graph plus the maximum degree of the guest graph?

References

1. Abello, J., Fellows, M.R., Stillwell, J.: On the complexity and combinatorics of
covering finite complexes. Australas. J. Comb. 4, 103–112 (1991)

2. Angluin, D.: Local and global properties in networks of processors (extended
abstract). Proc. STOC 1980, 82–93 (1980)

3. Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. J.
Comb. Theory Ser. B 30, 184–187 (1981)

4. Biggs, N.J.: Algebraic Graph Theory. Cambridge University Press, Cambridge
(1974)

5. Biggs, N.J.: Constructing 5-arc transitive cubic graphs. J. Lond. Math. Soc. II(26),
193–200 (1982)

6. Bílka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple
weight graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
471–482. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-
5_46

7. Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel
Distrib. Comput. 6, 166–182 (1989)

8. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18,
238–255 (1995)

9. Bok, J., Fiala, J., Hlinený, P., Jedlicková, N., Kratochvíl, J.: Computational com-
plexity of covering multigraphs with semi-edges: small cases. In: Proceedings of
MFCS 2021. LIPIcs, vol. 202, pp. 21:1–21:15 (2021)

10. Chalopin, J.: Local computations on closed unlabelled edges: the election problem
and the naming problem. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora,
O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 82–91. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30577-4_11

11. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case
of cellular edge local computations. Fund. Inform. 74, 85–114 (2006)

12. Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed
computing: a complete complexity classification. Networks 58, 207–231 (2011)

13. Chalopin, J., Paulusma, D.: Packing bipartite graphs with covers of complete bipar-
tite graphs. Discret. Appl. Math. 168, 40–50 (2014)

https://doi.org/10.1007/978-3-642-20877-5_46
https://doi.org/10.1007/978-3-642-20877-5_46
https://doi.org/10.1007/978-3-540-30577-4_11

An Algorithmic Framework for Locally Constrained Homomorphisms 127

14. Chaplick, S., Fiala, J., van ’t Hof, P., Paulusma, D., Tesař, M.: Locally con-
strained homomorphisms on graphs of bounded treewidth and bounded degree.
Theor. Comput. Sci. 590, 86–95 (2015)

15. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoret.
Comput. Sci. 239, 211–229 (2000)

16. Dourado, M.C.: Computing role assignments of split graphs. Theoret. Comput.
Sci. 635, 74–84 (2016)

17. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W[1]. Theoret. Comput. Sci. 141, 109–131 (1995)

18. Drange, P.G., Dregi, M.S., van ’t Hof, P.: On the computational complexity of
vertex integrity and component order connectivity. Algorithmica 76, 1181–1202
(2016)

19. Dvorák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear
programs with a small number of global variables and constraints. Proc. IJCAI
2017, 607–613 (2017)

20. Everett, M.G., Borgatti, S.P.: Role colouring a graph. Math. Soc. Sci. 21, 183–188
(1991)

21. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

22. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-
labelings. Discret. Appl. Math. 113, 59–72 (2001)

23. Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discuss. Math. Graph Theory
22, 89–99 (2002)

24. Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure,
complexity, and applications. Comput. Sci. Rev. 2, 97–111 (2008)

25. Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers
of theta graphs. Discret. Appl. Math. 156, 1143–1149 (2008)

26. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theoret. Comput. Sci. 349, 67–81 (2005)

27. Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. Theory
Comput. Syst. 46, 620–635 (2010)

28. Fiala, J., Tesař, M.: Dichotomy of the H -quasi-cover problem. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 310–321. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38536-0_27

29. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

30. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems.
Proc. AAAI 1990, 4–9 (1990)

31. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54, 1:1-1:24 (2007)

32. Heggernes, P., van ’t Hof, P., Paulusma, D.: Computing role assignments of proper
interval graphs in polynomial time. J. Discret. Algorithms 14, 173–188 (2012)

33. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory Ser. B 48,
92–110 (1990)

34. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

35. van ’t Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of
chordal graphs. Theoret. Comput. Sci. 411, 3601–3613 (2010)

https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-642-38536-0_27

128 L. Bulteau et al.

36. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

37. Kratochvíl, J.: Regular codes in regular graphs are difficult. Discret. Math. 133,
191–205 (1994)

38. Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb.
Theory Ser. B 71, 1–16 (1997)

39. Kratochvíl, J., Proskurowski, A., Telle, J.A.: On the complexity of graph covering
problems. Nordic J. Comput. 5, 173–195 (1998)

40. Kratochvíl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-
vertex multigraphs. Theoret. Comput. Sci. 609, 104–117 (2016)

41. Kristiansen, P., Telle, J.A.: Generalized H -coloring of graphs. In: Goos, G., Hart-
manis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS,
vol. 1969, pp. 456–466. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40996-3_39

42. Kronegger, M., Ordyniak, S., Pfandler, A.: Backdoors to planning. Artif. Intell.
269, 49–75 (2019)

43. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

44. Lidický, B., Tesař, M.: Complexity of locally injective homomorphism to the theta
graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp.
326–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-
7_33

45. Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace and World
(1967)

46. Nešetřil, J.: Homomorphisms of derivative graphs. Discret. Math. 1, 257–268 (1971)
47. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms,

Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-27875-4

48. Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homo-
morphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020)

49. Pandey, S., Sahlot, V.: Role coloring bipartite graphs. CoRR abs/2102.01124 (2021)
50. Pekeč, A., Roberts, F.S.: The role assignment model nearly fits most social net-

works. Math. Soc. Sci. 41, 275–293 (2001)
51. Purcell, C., Rombach, M.P.: On the complexity of role colouring planar graphs,

trees and cographs. J. Discret. Algorithms 35, 1–8 (2015)
52. Purcell, C., Rombach, M.P.: Role colouring graphs in hereditary classes. Theoret.

Comput. Sci. 876, 12–24 (2021)
53. Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a 2-role

assignment? Networks 37, 67–73 (2001)
54. White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of

relations. Soc. Netw. 5, 193–235 (1983)

https://doi.org/10.1007/3-540-40996-3_39
https://doi.org/10.1007/3-540-40996-3_39
https://doi.org/10.1007/978-3-642-19222-7_33
https://doi.org/10.1007/978-3-642-19222-7_33
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

s-Club Cluster Vertex Deletion on Interval
and Well-Partitioned Chordal Graphs

Dibyayan Chakraborty1 , L. Sunil Chandran2 , Sajith Padinhatteeri3 ,

and Raji R. Pillai2(B)

1 Laboratoire de l’Informatique du Parallélisme, ENS de Lyon, Lyon, France
2 Department of Computer Science and Automation, Indian Institute of Science,

Bengaluru, India
rajipillai@iisc.ac.in

3 Department of Mathematics, BITS-Pilani, Hyderabad, India

Abstract. In this paper, we study the computational complexity of s-CLUB

CLUSTER VERTEX DELETION. Given a graph, s-CLUB CLUSTER VERTEX

DELETION (s-CVD) aims to delete the minimum number of vertices from the
graph so that each connected component of the resulting graph has a diameter at
most s. When s= 1, the corresponding problem is popularly known as CLUSTER

VERTEX DELETION (CVD). We provide a faster algorithm for s-CVD on inter-
val graphs. For each s ≥ 1, we give an O(n(n+m))-time algorithm for s-CVD
on interval graphs with n vertices and m edges. In the case of s = 1, our algo-
rithm is a slight improvement over the O(n3)-time algorithm of Cao et al. (Theor.
Comput. Sci., 2018) and for s ≥ 2, it significantly improves the state-of-the-art
running time

(
O

(
n4

))
.

We also give a polynomial-time algorithm to solve CVD on well-partitioned
chordal graphs, a graph class introduced by Ahn et al. (WG 2020) as a tool for
narrowing down complexity gaps for problems that are hard on chordal graphs,
and easy on split graphs. Our algorithm relies on a characterisation of the optimal
solution and on solving polynomially many instances of the WEIGHTED BIPAR-
TITE VERTEX COVER. This generalises a result of Cao et al. (Theor. Comput.
Sci., 2018) on split graphs. We also show that for any even integer s ≥ 2, s-CVD
is NP-hard on well-partitioned chordal graphs.

1 Introduction

Detecting “highly-connected” parts or “clusters” of a complex system is a fundamental
research topic in network science [28,38] with numerous applications in computational
biology [7,12,30,34,35], machine learning [6], image processing [37], etc. In a graph-
theoretic approach, a complex system or a network is often viewed as an undirected
graph G that consists of a set of vertices V (G) representing the atomic entities of the
system and a set of edges E(G) representing a binary relationship among the entities. A
cluster is often viewed as a dense subgraph (often a clique) and partitioning a graph into
such clusters is one of the main objectives of graph-based data clustering [7,13,33].

Ben-Dor et al. [7] and Shamir et al. [33] observed that the clusters of certain net-
works may be retrieved by making a small number of modifications in the network.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 129–143, 2022.
https://doi.org/10.1007/978-3-031-15914-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_10&domain=pdf
http://orcid.org/0000-0003-0534-6417
http://orcid.org/0000-0001-5451-6975
http://orcid.org/0000-0002-1365-3997
http://orcid.org/0000-0002-2997-5384
https://doi.org/10.1007/978-3-031-15914-5_10

130 D. Chakraborty et al.

These modifications may be required to account for the errors introduced during the
construction of the network. In graph-theoretic terms, the objective is to modify (e.g.
edge deletion, edge addition, vertex deletion) a given input graph as little as possible
so that each component of the resulting graph is a cluster. When deletion of vertices is
the only valid operation on the input graph, the corresponding clustering problem falls
in the category of vertex deletion problems, a core topic in algorithmic graph theory.
Many classic optimization problems like MAXIMUM CLIQUE, MAXIMUM INDEPEN-
DENT SET, VERTEX COVER are examples of vertex deletion problems. In this paper,
we study popular vertex deletion problems called CLUSTER VERTEX DELETION and
its generalisation s-CLUB CLUSTER VERTEX DELETION, both being important in the
context of graph-based data clustering.

Given a graph G, the objective of CLUSTER VERTEX DELETION (CVD) is to delete
a minimum number of vertices so that the remaining graph is a set of disjoint cliques.
Below we give a formal definition of CVD.

CLUSTER VERTEX DELETION (CVD)
Input: An undirected graph G, and an integer k.
Output: YES, if there is a set S of vertices with |S| ≤ k, such that each component
of the graph induced by V (G)\S is a clique. NO, otherwise.

The term CLUSTER VERTEX DELETION was coined by Gramm et al. [19] in 2004.
However NP-hardness of CVD, even on planar graphs and bipartite graphs, follows
from the seminal works of Yannakakis [39] and Lewis & Yannakakis [24] from four
decades ago. Since then many researchers have proposed parameterized algorithms
and approximation algorithms for CVD on general graphs [4,9,15–18,20,31,36,40].
In this paper, we focus on polynomial-time solvability of CVD on special classes of
graphs.

Cao et al. [10] gave polynomial-time algorithms for CVD on interval graphs (see
Definition 2) and split graphs. Chakraborty et al. [11] gave a polynomial-time algo-
rithm for CVD on trapezoid graphs. However, much remains unknown: Chakraborty et
al. [11] pointed out that computational complexity of CVD on planar bipartite graphs
and cocomparability graphs is unknown. Cao et al. [10] asked if CVD can be solved on
chordal graphs (graphs with no induced cycle of length greater than 3) in polynomial-
time. Ahn et al. [1] introduced well-partitioned chordal graphs (see Definition 1) as a
tool for narrowing down complexity gaps for problems that are hard on chordal graphs,
and easy on split graphs. Since several problems (for example: transversal of longest
paths and cycles, tree 3-spanner problem, geodetic set problem) which are either hard or
open on chordal graphs become polynomial-time solvable on well-partitioned chordal
graphs [2], the computational complexity of CVD on well-partitioned chordal graphs
is a well-motivated open question.

In this paper, we also study a generalisation of CVD known as s-CLUB CLUSTER

VERTEX DELETION (s-CVD). In many applications the equivalence of cluster and
clique is too restrictive [3,5,29]. For example, in protein networks where proteins are
the vertices and the edges indicate the interaction between the proteins, a more appro-
priate notion of clusters may have a diameter of more than 1 [5]. Therefore researchers
have defined the notion of s-clubs [5,26]. An s-club is a graph with diameter at most
s. The objective of s-CLUB CLUSTER VERTEX DELETION (s-CVD) is to delete the

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 131

minimum number of vertices from the input graph so that all connected components of
the resultant graph is an s-club. Below we give a formal definition of s-CVD.

s-CLUB CLUSTER VERTEX DELETION (s-CVD)
Input: An undirected graph G, and integers k and s.
Output: YES, if there is a set S of vertices with |S| ≤ k, such that each component
of the graph induced by V (G)\S has diameter at most s. NO, otherwise.

Schäfer [32] introduced the notion of s-CVD and gave a polynomial-time algorithm
for s-CVD on trees. Researchers have studied the particular case of 2-CVD as well [14,
25]. In general, s-CVD remains NP-hard on planar bipartite graphs for each s ≥ 2,
APX-hard on split graphs for s = 2 [11] (contrasting the polynomial-time solvability
of CVD on split graphs). Combination of the ideas of Cao et al. [10] and Schäfer [32],
provides an O(n8)-time algorithm for s-CVD on a trapezoid graphs (intersection graphs
of trapezoids between two horizontal lines) with n vertices [11]. This algorithm can be
modified to give an O(n4)-time algorithm for s-CVD on interval graphs with n vertices.

General Notations: For a graph G, let V (G) and E(G) denote the set of vertices and
edges, respectively. For a vertex v∈V (G), the set of vertices adjacent to v is denoted by
N(v) and N[v] = N(v)∪{v}. For S ⊆V (G), let G−S be an induced graph obtained by
deleting the vertices in S from G. For two sets S1,S2, let S1 −S2 denotes the set obtained
by deleting the elements of S2 from S1. The set S1ΔS2 denotes (S1 ∪S2)− (S1 ∩S2).

2 Our Contributions

In this section, we state our results formally. We start with the definition of well-
partitioned chordal graphs as given in [1].

Definition 1 ([1]). A connected graph G is a well-partitioned chordal graph if there
exists a partition P of V (G) and a tree T having P as a vertex set such that the
following hold.

(a) Each part X ∈ P is a clique in G.
(b) For each edge XY ∈ E(T), there exist X ′ ⊆ X and Y ′ ⊆Y such that edge set of the

bipartite graph G[X ,Y] is X ′ ×Y ′.
(c) For each pair of distinct X ,Y ∈V (T) with XY /∈ E(T), there is no edge between

a vertex in X and a vertex in Y .

The tree T is called a partition tree of G, and the elements ofP are called its bags
or nodes of T .

Our first result is on CVD for well-partitioned chordal graphs which generalises a
result of Cao et al. [10] for split graphs. We prove the following theorem in Sect. 3.

Theorem 1. Given a well-partitioned chordal graph G and its partition tree, there is an
O(m2n)-time algorithm to solve CVD on G, where n and m are the number of vertices
and edges.

Since a partition tree of a well-partitioned chordal graph can be obtained in poly-
nomial time [1], the above theorem adds CVD to the list of problems that are open

132 D. Chakraborty et al.

on chordal graphs but admits polynomial-time algorithm on well-partitioned chordal
graphs. Our algorithm relies on a characterisation of the solution set and we show that
the optimal solution of a well-partitioned chordal graph with m edges can be obtained
by finding weighted minimum vertex cover [23] of m many weighted bipartite graphs
with weights at most n. Then standard Max-flow based algorithms [22,23,27] from the
literature yields Theorem 1. On the negative side, we prove the following theorem in
Sect. 4.

Theorem 2. Unless the Unique Games Conjecture is false, for any even integer s ≥ 2,
there is no (2 − ε)-approximation algorithm for s-CVD on well-partitioned chordal
graphs.

Our third result is a faster algorithm for s-CVD on interval graphs.

Definition 2. A graph G is an interval graph if there is a collection I of intervals on
the real line such that each vertex of the graph can be mapped to an interval and two
intervals intersect if and only if there is an edge between the corresponding vertices in
G. The set I is an interval representation of G

We prove the following theorem in Sect. 5.

Theorem 3. For each s ≥ 1, there is an O(n(n+m))-time algorithm to solve s-CVD
on interval graphs with n vertices and m edges.

We note that our techniques deviate significantly from the ones in the previous liter-
ature [10,11,32] and our result significantly improves the state-of-the-art running time
(O

(
n4

)
, See [11]) for s-CVD on interval graphs.

3 Polynomial Time Algorithm for CVD on Well-Partitioned
Chordal Graphs

In this section, we shall give a polynomial-time algorithm to solve CVD on well-
partitioned chordal graphs. We use the following notations extensively in the description
of our algorithm and proofs.

Let G be a well-partitioned chordal graph with a partition tree T rooted at an arbi-
trary node. For a node X , let TX be the subtree rooted at X and GX be the subgraph of
G induced by the vertices in the nodes of TX . For two adjacent nodes X ,Y of T , the
boundary of X with respect to Y is the set bd(X ,Y) = {x ∈ X : N(x)∩Y 	= /0}. For a
node X , P(X) denotes the parent of X in T . We denote minimum CVD sets of GX and
GX −bd(X ,P(X)) as OPT (GX) and OPT (GX −bd(X ,P(X))), respectively.

Our dynamic programming-based algorithm traverses T in a post-order fashion and
for each node X of T , computes OPT (GX) and OPT (GX − bd(X ,P(X))). A set S of
vertices is a CVD set of G if G− S is disjoint union of cliques. At the heart of our
algorithm lies a characterisation of CVD sets of GX , showing that any CVD set of GX

can be exactly one of two types, namely, X-CVD set or (X ,Y)-CVD set where Y is a
child of X (See Definitions 3 and 4). Informally, for a node X , a CVD set is an X-CVD
set if it contains X or removing it from GX creates a cluster all of whose vertices are

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 133

from X . On the contrary, a CVD set is an (X ,Y)-CVD set if its removal creates a cluster
intersecting both X and Y , where Y is a child of X . In Lemma 1, we formally show that
any CVD set of GX must be one of the above two types.

Now we introduce some definitions and prove the lemma that facilitates the con-
struction of a polynomial-time algorithm for finding a minimum CVD set of well-
partitioned chordal graphs. A cluster C of a graph G is a connected component that
is isomorphic to a complete graph.

Definition 3. Let G be a well-partitioned chordal graph, T be its partition tree, and
X be the root node of T . A CVD set S of G is an X-CVD set if either X ⊆ S or G− S
contains a cluster C ⊆ X.

Definition 4. Let G be a well-partitioned chordal graph, T be its partition tree, X be
the root node of T . Let Y be a child of X. A CVD set S is a (X ,Y)-CVD set if G− S
has a cluster C such that C ∩ X 	= /0 and C ∩ Y 	= /0.

Lemma 1. Let S be a CVD set of G. Then exactly one of the following holds.

(a) The set S is a X-CVD set.
(b) There is exactly one child Y of X in T such that S is an (X ,Y)-CVD set of G.

3.1 Finding Minimum X-CVD Sets

Theorem 4. Let G be a well-partitioned chordal graph rooted at X and T be a
partition tree of G. Assume for each node Y ∈ V (T) − {X} both OPT (GY) and
OPT (GY − bd(Y,P(Y))) are given, where P(Y) is the parent of Y in T . Then a mini-
mum X-CVD set of G can be computed in O(|E(G)|.|V (G)|) time.

For the remainder of this section, we denote by G a fixed well-partitioned chordal
graph rooted at X with a partition tree T . Let X1,X2, . . . ,Xt be the children of X . The
main idea behind our algorithm for finding minimum X-CVD set of G is to construct
an auxiliary vertex weighted bipartite graph H with at most |V (G)| vertices such that
the (minimum) vertex covers of H can be used to construct (minimum) X-CVD set.
Below we describe the construction of H .

Let B= {bd(Xi,X) : i ∈ [t]}. The vertex set of H is X∪B and the edge set of H is
defined as E(H) = {uB : u∈X ,B∈B,∀v∈B,uv∈E(G)}. The weight function on the
vertices of H is defined as follows. For each vertex u∈ X , define w(u) = 1 and for each
set B ∈ B where B = bd(Xj,X), define w(B) = |B|+ ∣

∣OPT (GXj −B)
∣
∣− ∣

∣OPT (GXj)
∣
∣.

Note that, since B∪OPT (GXj −B) is a CVD set of GXj , we have |OPT (GXj)| ≤ |B|+
|OPT (GXj −B)| and therefore w(B) ≥ 0.

Below we show how minimum weighted vertex covers of H can be used to com-
pute minimum X-CVD set of G. For a vertex cover D of H , define

S1(D) = D ∩ X , S2(D) =
⋃

B∈D∩B
B=bd(Xi,X)

B ∪ OPT (GXi −bd(Xi,X))

S3(D) =
⋃

B∈B−D
B=bd(Xi,X)

OPT (GXi) and Sol(D) = S1(D) ∪ S2(D) ∪ S3(D)

134 D. Chakraborty et al.

Lemma 2. Let D be a vertex cover ofH . Then Sol(D) is an X-CVD set of G.

A minimum weighted vertex cover D of H is also minimal if no proper subset of
D is a vertex cover of H . The restriction of minimality is to avoid the inclusion of
redundant vertices with weight 0 in the minimum vertex cover. From now on D denotes
a minimal minimum weighted vertex cover of H and Z denotes a fixed but arbitrary
X-CVD set of G. Our goal is to show that |Sol(D)| ≤ |Z|. We need some more notations
and observations.

First we define four sets I1, I2, I3, I4 as follows. (Recall that X1,X2, . . . ,Xt are children
of the root X of the partition tree T of G.)

I1 = {i ∈ [t] : bd(X ,Xi) ⊆ Sol(D) and bd(X ,Xi) ⊆ Z} (1)

I2 = {i ∈ [t] : bd(X ,Xi) ⊆ Sol(D) and bd(X ,Xi) 	⊆ Z} (2)

I3 = {i ∈ [t]− (I1 ∪ I2) : bd(Xi,X) ⊆ Sol(D) and bd(Xi,X) ⊆ Z} (3)

I4 = {i ∈ [t]− (I1 ∪ I2) : bd(Xi,X) ⊆ Sol(D) and bd(Xi,X) 	⊆ Z} (4)

Note that I1 ∪ I2 ∪ I3 ∪ I4 = [t] and (I1 ∪ I2)∩ (I3 ∪ I4) = /0. We have the following
observations on the sets Ii,1 ≤ i ≤ 4.

Observation A. The sets I1, I2, I3, I4 form a partition of [t].

Based on the set I1, we construct two sets D1 ⊆ Sol(D) and Z1 ⊆ Z.
D1 =

⋃

i∈I1
bd(X ,Xi)∪ (Sol(D)∩GXi), Z1 =

⋃

i∈I1
bd(X ,Xi)∪ (Z∩GXi)

Based on the set I2, we construct the following two sets D2 ⊆ Sol(D) and Z2 ⊆ Z.
D2 =

⋃

i∈I2
bd(X ,Xi)∪ (Sol(D)∩GXi)−

⋃

i∈I1
bd(X ,Xi)

Z2 =
⋃

i∈I2
bd(Xi,X)∪ (Z∩ (GXi −bd(Xi,X)))

Based on the set I3, we construct the following two sets D3 ⊆ Sol(D) and Z3 ⊆ Z.
D3 =

⋃

i∈I3
bd(Xi,X)∪OPT (GXi −bd(Xi,X))

Z3 =
⋃

i∈I3
bd(Xi,X)∪ (Z∩ (GXi −bd(Xi,X)))

Based on the set I4, we construct the following two sets D4 ⊆ Sol(D) and Z4 ⊆ Z.
D4 =

⋃

i∈I4
bd(Xi,X)∪OPT (GXi −bd(Xi,X))

Z4 =
⋃

i∈I4
bd(X ,Xi)∪ (Z∩ (GXi))−

⋃

i∈I1
bd(X ,Xi)

Observation B. For each i ∈ {1,2,3,4}, |Di| ≤ |Zi|.

Lemma 3. Sol(D) =
4⊔

i=1
Di and for each i, j ⊂ [4], Zi ∩Zj = /0.

Proof of Theorem 4. Using Lemma 3, we have that |Sol(D)| ≤ |Z1 ∪Z2 ∪Z3 ∪Z4| ≤ |Z|.
Hence, Sol(D) is a minimum X-CVD set of G. Furthermore, H has at most |V (G)|
vertices and |E(G)| edges. Therefore minimum weighted vertex cover of H can be
found in O(|V (G)| · |E(G)|)-time and Sol(D) can be computed in total of O(|V (G)| ·
|E(G)|)-time.

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 135

3.2 Finding Minimum (X ,Y)-CVD Set of Well-partitioned Chordal Graphs

In this section, we prove the following theorem.

Theorem 5. Let G be a well-partitioned chordal graph; T be a partition tree of G
rooted at X; Y be a child of X. Moreover, for each Z ∈ V (T)− {X}, assume both
OPT (GZ) and OPT (GZ −bd(Z,P(Z))) are given (P(Z) denotes the parent of Z in T).
Then a minimum (X ,Y)-CVD set of G can be computed in O

(|E(G)|2.|V (G)|) time.
For the remainder of this section, the meaning of G, T , X and Y will be as given in

Theorem 5. For an (X ,Y)-edge e, we say that a minimum (X ,Y)-CVD set A preserves
the edge e if G−A contains the edge e. Let e ∈ E(X ,Y) be an (X ,Y)-edges of G. Then
to prove Theorem 5, we use Theorem 6. First we show how to construct a minimum
(X ,Y)-CVD set Se that preserves the edge e ∈ E(X ,Y) and prove Theorem 6. Clearly,
a minimum (X ,Y)-CVD set S of G is the one that satisfies |S| = min

e∈E(X ,Y)
|Se|. There-

fore, Theorem 5 will follow directly from Theorem 6. The remainder of this section is
devoted to prove Theorem 6.

Theorem 6. Assuming the same conditions as in Theorem 5, for e ∈ E(X ,Y), a mini-
mum (X ,Y)-CVD set of G that preserves e can be computed in O(|E(G)|.|V (G)|) time.

First, we need the following observation about the partition trees of well-partitioned
chordal graphs, which is easy to verify.

Observation C. Let G be a well-partitioned chordal graph with a partition treeT . Let
X ,Y be two adjacent nodes of T such that X ∪ Y induces a complete subgraph in G
and T ′ be the tree obtained by contracting the edge XY in T . Now associate the newly
created node with the subset of vertices (X ∪ Y) and retain all the other nodes of T ′
and their associated subsets as in T . Then T ′ is also a partition tree of G.

Now we begin building the machinery to describe our algorithm for finding a mini-
mum (X ,Y)-CVD of G that preserves an (X ,Y)-edge ab. Observe that any (X ,Y)-CVD
set that preserves the edge ab must contain the set (N(a) Δ N(b)) as subset. (Otherwise,
the connected component of G− S containing ab would not be a cluster, a contradic-
tion).

Let H denote the graph G− (N(a) Δ N(b)). Now consider the partition Q defined
as {Z− (N(a) Δ N(b)) : Z ∈V (T)}. Now construct a graph F whose vertex set is Q
and two vertices Z1,Z2 are adjacent in F if there is an edge uv ∈ E(H) such that u ∈ Z1

and v ∈ Z2. Observe that F is a forest.

Observation D. There is a bijection f between the connected components of H and the
connected components of F , such that for a component C of H, f (C) is the partition
tree of C. Moreover, the vertices of the root node of f (C) is subset of a node in T .

Consider the connected component H∗ of H which contains a and b and let F ′ =
f (H∗) where f is the function given by Observation D. Observe that the root R′ of F ′
is actually bd(X ,Y). Moreover, R′ has a child R′′ which is actually bd(Y,X). Observe
that, R′ ∪ R′′ induces a complete subgraph in H∗. Hence, due to Observation C, the

136 D. Chakraborty et al.

tree F ∗ obtained by contracting the edge R′R′′ is a partition tree of H∗. Moreover,
R∗ = R′ ∪R′′ = bd(X ,Y) ∪ bd(Y,X) is the root node of F ∗. Recall that our objective is
to find a minimum (X ,Y)-CVD set that preserves the edge ab. We have the following
lemma.

Lemma 4. Let H∗,H1,H2, . . . ,Hk′ be the connected components of H. Let S∗ be a min-
imum (R∗)-CVD set of H∗, S0 = (N(a) Δ N(b)), and for each j ∈ [k′], let S j denote a
minimum CVD set of Hj. Then (S0 ∪S1 ∪S2 ∪ . . .∪Sk′ ∪S∗) is a minimum (X ,Y)-CVD
set of G that preserves the edge ab.

Lemma 4 provides a way to compute a minimum (X ,Y)-CVD set of G that pre-
serves the edge ab. Clearly, the set S0 = (N(a) Δ N(b)) can be computed in polynomial
time. The following observation provides a way to compute a minimum CVD set of all
connected components that are different from H∗.

Observation E. Let A be a connected component of H which is different from H∗. Then
a minimum CVD set of A can be computed in polynomial time.

Let H1,H2, . . . ,Hk′ be the connected components of H, all different from H∗. Apply-
ing Observation E repeatedly on each component, it is possible to obtain, for each
j ∈ [k′], a minimum CVD set S j of Hj. The following observation provides a way to
compute a minimum (R∗)-CVD set of H∗.

Observation F. Let R be a child of R∗ in F ∗. Then both OPT (H∗
R) and OPT (H∗

R −
bd(R,R∗)) are known.

Due to Observation F and Theorem 4, it is possible to compute a minimum (R∗)-
CVD set S∗ of H∗ in O(|V (G)| · |E(G)|) time. Now due to Lemma 4, we have that
(S0 ∪S1 ∪S2 ∪ . . .∪Sk′ ∪S∗) is a minimum (X ,Y)-CVD set of G that preserves the edge
ab. This completes the proof of Theorem 6 and therefore of Theorem 5.

3.3 Main Algorithm

From now on G denote a fixed well-partitioned chordal graph with a partition tree T
whose vertex set is P , a partition ofV (G). We will process T in the post-order fashion
and for each node X of T , we give a dynamic programming algorithm to compute both
OPT (GX) and OPT (GX − bd(X ,P(X))) where P(X) is the parent of X (when exists)
in T . Due to Observation C, we can assume that bd(X ,P(X)) � X . In the remaining
section, X is a fixed node of T , A has a fixed value (which is either /0 or bd(X ,P(X))),
GA
X denotes the graph GX −A. Since well-partitioned chordal graphs are closed under

vertex deletion, GA
X is a well partitioned chordal graph which may be disconnected.

Since the vertices of X −A induces a clique in GA
X , there exists at most one com-

ponent G∗ in GA
X that contains a vertex from X −A. Due to Observation D there exists

a unique connected component f (G∗) = T ∗ of T ′ which is a partition tree of G∗.
Let the remaining connected components of GA

X be G1,G2, . . . ,Gk and for each i ∈ [k],
let f (Gi) = Ti and Xi is the root of Ti. Let X∗ denote the root node of T ∗ and
X∗

1 ,X
∗
2 , . . . ,X

∗
t be the children of X∗ in T ∗. We have the following observation.

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 137

Observation G. For each j ∈ [t], there is a child Yj of X in T such that Yj = X∗
j and

GYj = G∗
X∗
j
.

We have the following lemma.

Lemma 5. OPT (GA
X) =

(
k⊔

i=1

OPT (GXi)

)

OPT (G∗)

Observe that OPT (GXi) is already known. Due to Lemma 4, any CVD set S of G∗
is either a (X∗)-CVD set or there exists a unique child Y of X∗, such that S is a (X∗,Y)-
CVD set of G∗. by Theorem 4, it is possible to compute a minimum (R∗)-CVD set S0

of G∗. Due to Observation G, for any node Y of T ∗ which is different from X∗, both
OPT (GY) and OPT (GY − bd(Y,P(Y))) are known, where P(Y) is the parent of Y in
T ∗. Hence, by Theorem 5 for each child X∗

i , i ∈ [t], computing a minimum (X∗,X∗
i)-

CVD set Si is possible in O(|V (G∗
X∗
i
)| · |E(G∗

X∗
i
)|) time. Let S∗ ∈ {S0,S1,S2, . . . ,St} be

a set with the minimum cardinality. Due to Lemma 1, S∗ is a minimum CVD set of G∗
that can be obtained in O(m2n). Finally, due to Lemma 5, we have a minimum CVD set
of GA

X .

4 Hardness for Well-Partitioned Chordal Graphs

Observation H. Let H be a well-partitioned chordal graph. Let H ′ be a graph obtained
from H by adding a vertex of degree 1. Then H ′ is an well-partitioned chordal graph.

Let s ≥ 2 be an even integer and let s = 2k. We shall reduce MINIMUM VERTEX

COVER (MVC) on general graphs to s-CVD on well partitioned graphs. Let 〈G,k〉 be
an instance of MINIMUM VERTEX COVER such that maximum degree of G is at most
n− 3. Let G denote the complement of G. Now construct an well-partitioned chordal
graph Gwell from G as follows. For each vertex of v ∈ V (G), we introduce a new path
Pv with k− 1 edges and let xv,x′

v be the endpoints of Pv. For each edge e ∈ E
(
G

)
we

introduce a new vertex ye in Gwell . For each pair of edges e1,e2 ∈ E(G) we introduce an
edge between ye1 and ye2 in Gwell . For each edge e= uv∈E

(
G

)
, we introduce the edges

xuye and xvye in Gwell . Observe that C = {ye}e∈E(G) is a clique, I = {xv}v∈V (G) is an

independent set of Gwell . Therefore C ∪ I induces a split graph, say G′, in Gwell . Since
Gwell can be obtained from G′ by adding vertices of degree 1, due to Observation H, we
have that Gwell is an well-partitioned chordal graph. We show that G has a vertex cover
of size k if and only if Gwell has a s-CVD set of size k by the following Lemmas.

Lemma 6. Let D be a subset of I and let T = {u ∈ V (G) : xu ∈ D}. The set D is a
s-CVD set of Gwell if and only if T is a vertex cover of G.

Lemma 7. There is a subset of I which is a minimum s-CVD set of Gwell .

Now Theorem 2 follows from a result of Khot and Regev [21], where they showed
that unless the Unique Games Conjecture is false, there is no (2 − ε)-approximation
algorithm for MINIMUM VERTEX COVER on general graphs, for any ε > 0.

138 D. Chakraborty et al.

5 O(n(n+m))-Time Algorithm for s-CVD on Interval Graphs

In this section we give an O(n(n+m))-time algorithm to solve s-CVD on interval graph
G with n vertices and m edges. For a set X ⊆ V (G), if each connected component of
G−X is an s-club, then we call X as an s-club vertex deleting set (s-CVD set). Below
we state some definitions and the main idea behind our algorithm.

Let G denotes a connected interval graph with n vertices and m edges. The set I
denotes a fixed interval representation of G where the endpoints of the representing
intervals are distinct. Let l(v) and r(v) denote the left and right endpoints, respectively,
of an interval corresponding to a vertex v ∈ V (G). Then the interval assigned to the
vertex v in I is denoted by I(v) = [l(v),r(v)]. Observe that, intervals on a real line
satisfies the Helly property and hence for each maximal clique Q of G there is an interval
I =

⋂

v∈Q
I(v). We call I as the Helly region corresponding to the maximal clique Q. Let

Q1,Q2, . . . ,Qk denote the set of maximal cliques of G ordered with respect to their Helly
regions Ia,1 ≤ a ≤ k on the real line. That is, I1 < I2 < .. . < Ik. Observe that, for any
two integers a,b we have Ia ∩ Ib = /0 as both Qa and Qb are maximal cliques. Moreover,
for any a ≤ b ≤ c if a vertex v ∈ Qa ∩Qc, then v ∈ Qb.

For a set X ⊆ V (G), if each connected component of G−X is an s-club, then we
call X as an s-club vertex deleting set (s-CVD set). The key idea of the algorithm is to
build a minimum s-CVD set for a given interval graph G by iteratively finding minimum
s-CVD sets for a certain set of induced subgraphs (Q1 ∪Q2 ∪ . . .∪Qa)−A,A ⊆ Qa in
each iteration. We will show that the total number of subproblems we solve is O(n+m)
and each subproblem can be solved in O(n) time. First we introduce some definitions
which we use extensively in the algorithm and proofs.

Definition 5. (i) For integers a,b where 1 ≤ a< b ≤ k, let Sba = Qa ∩Qb.

(ii) For an integer a, letS (Qa) =
{
Sba : a< b ≤ k and Sba 	= Sb

′
a ,a< b′ < b

}
∪ /0 (Note

that, the members of the set S (Qa) are distinct.)
(iii) For A ∈ S (Qa), let Y a

A = (Qa −Qa−1)−A.
(iv) For a vertex v ∈ V (G), the index q−

v = min{a : v ∈ Qa}. That is, the minimum
integer a such that v belongs to the maximal clique Qa.

(v) For a vertex v ∈ V (G), the index q+v = max{a : v ∈ Qa}. That is, the maximum
integer b such that v belongs to the maximal clique Qb.

We use the following observation to prove our main lemma.

Observation I. Let X ⊆V (G) and u,v be two vertices with r(u)< l(v) such that u and
v lie in different connected components in G−X. Then there exists an integer a with
q+u ≤ a< q−

v , such that Sa+1
a ⊆ X.

For two integers a,b with 1 ≤ a ≤ b ≤ k, let G [a,b] denotes the subgraph induced
by the set {Qa ∪Qa+1 ∪ . . .∪Qb}.

Definition 6. For an induced subgraph H of G, a vertex v ∈V (H) and an integer a, let
LH (a,v) denote the set of vertices in H that lie at distance a from v in H.

Hereafter, we use the notation LH (s+1,v) where H = G [1,a]−A for some integer
a and v ∈ Ya

A (See Definition 5, (iii)) several times.

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 139

Definition 7. For an integer a,1 ≤ a≤ k−1 and a set A∈S (Qa) consider the induced
subgraph H =G [1,a]−A and the sub-interval representationI ′ ⊆ I of H. We define
the frontal component of the induced graph as the connected component of G [1,a]−A
containing the vertex with the rightmost endpoint in I ′.

Note that for an integer a and A ∈ S (Qa), the vertices of Ya
A , if any, lies in the

frontal component of G [1,a]−A. Below we categorize an s-CVD set X of G [1,a]−A
into four types.

Definition 8. Consider an integer a,1 < a ≤ k and a set A ∈ S (Qa), an s-CVD set X
of G [1,a]−A is of

1. type-1: if Y a
A ⊆ X.

2. type-2: if there is a vertex v ∈ Ya
A such that LH (s+1,v) ⊆ X.

3. type-3: if there exists an integer c,1 ≤ c< a such that Sc+1
c −A⊆X and G [c+1,a]−

(Sc+1
c ∪A) is connected and has diameter at most s.

4. type-4: if there exists an integer c,1 ≤ c< a such that Sc+1
c −A⊆X and G [c+1,a]−

(Sc+1
c ∪A) is connected and has diameter exactly s+1.

The following lemma is crucial for our algorithm.

Lemma 8 (Main Lemma). Consider an integer 1 ≤ a≤ k and a set A ∈S (Qa). Then
at least one of the following holds:

1. Every connected component of G [1,a]−A have diameter at most s.
2. Any s-CVD set of G [1,a]−A is of some type- j where j ∈ {1,2,3,4}.

5.1 The Algorithm

Our algorithm constructs a table Ψ iteratively whose cells are indexed by two param-
eters. For an integer a,1 ≤ a ≤ k and a set A ∈ S (Qa), the cell Ψ [a,A] contains a
minimum s-CVD set of G [1,a]−A. Clearly, Ψ [k, /0] is a minimum s-CVD set of G.

Now we start the construction of Ψ . Since G [1,1] is a clique, we set Ψ [1,A] = /0 for
all A ∈ S (Q1):

Lemma 9. For any A ∈ S (Q1),Ψ [1,A] = /0.

From now on assume a≥ 2 and A be a set in S (Qa). Let H be the graph G [1,a]−A
and F be the graph G [1,a−1]− (A∩Qa−1). Observe that for any two integers a,b,1 ≤
a < b ≤ k the set Sba−1 = Sba ∩Qa−1. Then, for any A ∈ S (Qa) we have (A∩Qa−1) ∈
S (Qa−1) and Ψ [a− 1,A∩Qa−1] is defined. Note that H −F = Ya

A . In the following
lemma we show that Ψ [a,A] = Ψ [a− 1,A∩Qa−1] if the frontal component of H has
diameter at most s.

Lemma 10. Let H = G [1,a]−A, for A ∈ S (Qa) ,1 < a ≤ k. If the frontal component
of H has diameter at most s, thenΨ [a,A] =Ψ [a−1,A∩Qa−1].

140 D. Chakraborty et al.

Now assume that the frontal component of H = G [1,a]−A has diameter at least
s+ 1. Recall that if Ya

A = /0, we have Ψ [a,A] =Ψ [a− 1,A∩Qa−1]. Hence assume that
Ya
A 	= /0. Due to Lemma 8, any s-CVD set of H has to be one of the four types defined

above. First, for each j ∈ {1,2,3,4}, we find an s-CVD set of minimum cardinality,
which is of type- j. We begin by showing how to construct a minimum cardinality s-
CVD set X1 which is of type-1 and defined as X1 = Ya

A ∪Ψ [a−1,A∩Qa−1].

Lemma 11. The set X1 is a minimum cardinality s-CVD set of type-1 of G [1,a]−A.

Let v be some vertex in Ya
A and b < a be the maximum integer such that

(Qb ∩LH (s+2,v)) 	= /0. We construct a minimum cardinality s-CVD set of type-2 for
G [1,a]−A, which is defined as X2 = LH (s+1,v)∪Ψ [b,Sb+1

b].

Lemma 12. The set X2 is a minimum cardinality s-CVD set of type-2 of G [1,a]−A.

Now we show how to construct a minimum cardinality s-CVD set X3 of type-3
of G [1,a]−A. Let B ⊆ {1,2, . . . ,a− 1} be the set of integers such that for any i ∈ B
the graph Hi = G [i+1,a]− (Si+1

i ∪A) is connected and has diameter at most s. By
definition, a type-3 s-CVD set X of H contains Sc+1

c for some c ∈ B. We call each
such type-3 s-CVD set as type-3(c). Now we define minimum type-3(c) s-CVD set as
follows. For each c ∈ B, Zc = (Sc+1

c −A)∪Ψ [c,Sc+1
c] and X3 = min{Zc : c ∈ B}.

Lemma 13. The set X3 is a minimum cardinality s-CVD set of type-3 of G [1,a]−A.

Finally, we show the construction of a minimum cardinality s-CVD set X4 of type-4
of G [1,a]−A. Let C ⊆ {1,2, . . . ,a− 1} be the set of integers such that for any i ∈ C
the graph Hi = G [i+1,a]− (Si+1

i ∪ A) is connected and has diameter exactly s+ 1.
By definition, a type-4 s-CVD set X of H contains Si+1

i for some i ∈ C. We call each
such type-4 s-CVD set as type-4(c). Now we define minimum type-4(c) s-CVD set as
follows. Note that Ya

A 	= /0. Let v be some vertex in Ya
A and Yi = LHi (s+1,v). For each

i ∈C, Zi = (Si+1
i −A)∪Yi ∪Ψ [i,Si+1

i] and we define X4 = min{Zi : i ∈C}.

Lemma 14. The set X4 is a minimum cardinality s-CVD set of type-4 of G [1,a]−A.

Now we define a minimum s-CVD set of G [1,a]−A as the one with minimum
cardinality among the sets Xi,1 ≤ i ≤ 4. That is, Ψ [a,A] = min{X1,X2,X3,X4}. We
formally summarize the above discussion in the following lemma.

Lemma 15. For 1 < a ≤ k, if the diameter of the frontal component of G [1,a]−A is at
least s+1, thenΨ [a,A] = min{X1,X2,X3,X4}.
Proof. The proof follows from Lemma 8 and the above discussion on the minimality
of the sets Xi,1 ≤ i ≤ 4, in their respective types.

The proof of correctness of the algorithm follows from the Lemmas 9, 10 and 15.

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 141

5.2 Time Complexity

For a given interval graph G with n vertices and m edges, the algorithm first finds the
ordered set of maximal cliques of G. Such an ordered list of the maximal cliques of G
can be produced in linear time as a byproduct of the linear (O(n + m)) time recognition
algorithm for interval graphs due to Booth and Leuker [8]. To compute the overall time
complexity of our algorithm, we have the following claims.

Claim. Total number of subproblems computed by the algorithm is at most O(|V |+
|E|) = O(n+m).

Claim. For H = G [1,a]−A,1 ≤ a ≤ k,A ∈ S (Qa) , the minimum cardinality s-CVD
set of 4-types can be computed in O(n) time.

Therefore, it follows that s-CVD set of G can be computed in O(n · (n+m)) and
hence proved Theorem 3.

References

1. Ahn, J., Jaffke, L., Kwon, O., Lima, P.T.: Well-partitioned chordal graphs: obstruction set
and disjoint paths. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 148–160.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0 12

2. Ahn, J., Jaffke, L., Kwon, O., Lima, P.T.: Three problems on well-partitioned chordal graphs.
In: Calamoneri, T., Corò, F. (eds.) CIAC 2021. LNCS, vol. 12701, pp. 23–36. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75242-2 2

3. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3(1), 113–
126 (1973)

4. Aprile, M., Drescher, M., Fiorini, S., Huynh, T.: A tight approximation algorithm for the
cluster vertex deletion problem. In: Singh, M., Williamson, D.P. (eds.) IPCO 2021. LNCS,
vol. 12707, pp. 340–353. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73879-
2 24

5. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological
networks. J. Comb. Optim. 10(1), 23–39 (2005)

6. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)
7. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol.

6(3–4), 281–297 (1999)
8. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
9. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster

vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)
10. Cao, Y., Ke, Y., Otachi, Y., You, J.: Vertex deletion problems on chordal graphs. Theoret.

Comput. Sci. 745, 75–86 (2018)
11. Chakraborty, D., Chandran, L.S., Padinhatteeri, S., Pillai, R.R.: Algorithms and complexity

of s-club cluster vertex deletion. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS,
vol. 12757, pp. 152–164. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79987-
8 11

12. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing prob-
lem: implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006). https://doi.org/10.1007/
11847250 2

https://doi.org/10.1007/978-3-030-60440-0_12
https://doi.org/10.1007/978-3-030-75242-2_2
https://doi.org/10.1007/978-3-030-73879-2_24
https://doi.org/10.1007/978-3-030-73879-2_24
https://doi.org/10.1007/978-3-030-79987-8_11
https://doi.org/10.1007/978-3-030-79987-8_11
https://doi.org/10.1007/11847250_2
https://doi.org/10.1007/11847250_2

142 D. Chakraborty et al.

13. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data
clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

14. Figiel, A., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: On 2-clubs in graph-based data
clustering: theory and algorithm engineering. In: Calamoneri, T., Corò, F. (eds.) CIAC 2021.
LNCS, vol. 12701, pp. 216–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75242-2 15

15. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex
paths. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 238–249.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5 20

16. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex
paths. Math. Program. 182(1), 355–367 (2019). https://doi.org/10.1007/s10107-019-01395-y

17. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local
search. J. ACM (JACM) 66(2), 1–23 (2019)

18. Fomin, F.V., Le, T.-N., Lokshtanov, D., Saurabh, S., Thomassé, S., Zehavi, M.: Subquadratic
kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans. Algorithms
(TALG) 15(1), 1–44 (2019)

19. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algo-
rithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)

20. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for
cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)

21. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2- ε . J. Comput.
Syst. Sci. 74(3), 335–349 (2008)

22. King, V., Rao, S., Tarjan, R.: A faster deterministic maximum flow algorithm. J. Algorithms
17(3), 447–474 (1994)

23. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India (2006)
24. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-

complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
25. Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su,

K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29700-7 22

26. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979)
27. Orlin, J.B.: Max flows in o (nm) time, or better. In: Proceedings of the Forty-Fifth Annual

ACM Symposium on Theory of Computing, pp. 765–774 (2013)
28. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in

social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)
29. Pasupuleti, Srinivas: Detection of protein complexes in protein interaction networks using

n-clubs. In: Marchiori, Elena, Moore, Jason H.. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp.
153–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78757-0 14

30. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., Böcker, S.: Exact and heuris-
tic algorithms for weighted cluster editing. In: Computational Systems Bioinformatics, vol.
6, pp. 391–401. World Scientific (2007)

31. Sau, I., Souza, U.D.S.: Hitting forbidden induced subgraphs on bounded treewidth graphs. In:
45th International Symposium on Mathematical Foundations of Computer Science (MFCS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

32. Schäfer, A.: Exact algorithms for s-club finding and related problems. Diploma thesis,
Friedrich-Schiller-University Jena (2009)

33. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math.
144(1–2), 173–182 (2004)

34. Sharan, R., Shamir, R.: CLICK: a clustering algorithm with applications to gene expression
analysis. In: Proceedings of the International Conference on Intelligent Systems in Molecular
Biology, vol. 8, p. 16 (2000)

https://doi.org/10.1007/978-3-030-75242-2_15
https://doi.org/10.1007/978-3-030-75242-2_15
https://doi.org/10.1007/978-3-319-33461-5_20
https://doi.org/10.1007/s10107-019-01395-y
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1007/978-3-540-78757-0_14

s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs 143

35. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks.
Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003)

36. Tsur, D.: Faster parameterized algorithm for cluster vertex deletion. Theory Comput. Syst.
65(2), 323–343 (2021)

37. Zhenyu, W., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and
its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–
1113 (1993)

38. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection
algorithms on artificial networks. Sci. Rep. 6(1), 1–18 (2016)

39. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264 (1978)

40. You, J., Wang, J., Cao, Y.: Approximate association via dissociation. Discret. Appl. Math.
219, 202–209 (2017)

Polychromatic Colorings of Unions
of Geometric Hypergraphs

Vera Chekan1(B) and Torsten Ueckerdt2

1 Humboldt-Universität zu Berlin, Berlin, Germany
Vera.Chekan@informatik.hu-berlin.de

2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

torsten.ueckerdt@kit.edu

Abstract. A polychromatic k-coloring of a hypergraph assigns to each
vertex one of k colors in such a way that every hyperedge contains all
the colors. A range capturing hypergraph is an m-uniform hypergraph
whose vertices are points in the plane and whose hyperedges are those
m-subsets of points that can be separated by some geometric object of
a particular type, such as axis-aligned rectangles, from the remaining
points. Polychromatic k-colorings of m-uniform range capturing hyper-
graphs are motivated by the study of weak ε-nets and cover decompos-
ability problems.

We show that the hypergraphs in which each hyperedge is determined
by a bottomless rectangle or by a horizontal strip in general do not allow
for polychromatic colorings. This strengthens the corresponding result of
Chen, Pach, Szegedy, and Tardos [Random Struct. Algorithms, 34:11–23,
2009] for axis-aligned rectangles, and gives the first explicit (not random-
ized) construction of non-2-colorable hypergraphs defined by axis-aligned
rectangles of arbitrarily large uniformity.

In general we consider unions of range capturing hypergraphs, each
defined by a type of unbounded axis-aligned rectangles. For each combi-
nation of types, we show that the unions of such hypergraphs either admit
polychromatic k-colorings for m = O(k), m = O(k log k), m = O(k8.75),
or do not admit in general polychromatic 2-colorings for any m.

Keywords: Hypergraph · Coloring · Polychromatic Coloring · Range
Space

1 Introduction

A range capturing hypergraph is a geometric hypergraph H(V,R) defined by a
finite point set V ⊂ R

2 in the plane and a family R of subsets of R2, called ranges.
Possible ranges are for example the family R of all axis-aligned rectangles, all
horizontal strips, or all translates of the first (north-east) quadrant. Given the
points V and ranges R, the hypergraph H(V,R) = (V, E) has V as its vertex
set and a subset E ⊂ V forms a hyperedge E ∈ E whenever there exists a range
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 144–157, 2022.
https://doi.org/10.1007/978-3-031-15914-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_11&domain=pdf
http://orcid.org/0000-0002-6165-1566
http://orcid.org/0000-0002-0645-9715
https://doi.org/10.1007/978-3-031-15914-5_11

Polychromatic Colorings of Unions of Geometric Hypergraphs 145

R ∈ R with E = V ∩ R. That is, a subset of points forms a hyperedge whenever
these points and no other points are captured by some range from family R.

For a positive integer m, we are then interested in the m-uniform subhyper-
graph H(V,R,m) given by all hyperedges of size exactly m. In particular, we
investigate polychromatic vertex colorings c : V → [k] in k colors of H(V,R,m)
for different families of ranges R and different values of m. A vertex coloring
is polychromatic if every hyperedge contains at least one vertex of each color.
Polychromatic colorings of range capturing hypergraphs were first studied in the
1980s by Pach [17,18] in the context of cover-decomposability problems. These
also relate to the planar sensor cover problem [10] and weak ε-nets [20,26]. Poly-
chromatic colorings of geometric hypergraphs then experienced a major revival
during the past decade with several breakthrough advances [2–6,11–15,19,23–
25]. The interested reader is referred to the (slightly outdated) survey article [22]
and the excellent website [1] which contains numerous references.

Here, we focus on polychromatic k-colorings for range capturing hypergraphs
with given range family R. In particular, we investigate the following question.

Question 1. Given R and k, what is the smallest m = m(k) such that for
every finite point set V ⊂ R

2 the hypergraph H(V,R,m) admits a polychromatic
k-coloring?

Of course, m(k) � k, while m(k) = ∞ is also possible. It also holds that
m(k) � m(k + 1) for any k: given a polychromatic (k + 1)-coloring of a hyper-
graph, we can recolor every vertex of color k + 1 arbitrarily, after that every
hyperedge will still contain all colors in 1, . . . , k. For all range families considered
here, we either show that m(k) < ∞ for every k � 1 or already m(2) = ∞ holds.
Note that in the latter case, there are range capturing hypergraphs that are not
properly1 2-colorable, even for arbitrarily large uniformity m. So although we
do not consider proper colorings explicitly in this work, our results imply that
the chromatic number of certain hypergraphs is larger than 2.

1.1 Related Work

There is a rich literature on range capturing hypergraphs, their polychromatic
colorings, and answers to Question 1. Let us list the positive results (meaning
m(k) < ∞ for all k) that are relevant here, whilst defining the respective ranges.

– For halfplanes R = {{(x, y) ∈ R
2 | 1 � ax + by} | a, b ∈ R} it is known that

m(k) = 2k − 1 [25].
– For south-west quadrants R = {{(x, y) ∈ R

2 | x � a and y � b} | a, b ∈ R} it
is easy to prove that m(k) = k, see e.g. [12].

– For axis-aligned strips R = {{(x, y) ∈ R
2 | a1 � x � a2} | a1, a2 ∈ R} ∪

{{(x, y) ∈ R
2 | a1 � y � a2} | a1, a2 ∈ R} it is known that m(k) � 2k − 1 [3].

– For bottomless rectangles R = {{(x, y) ∈ R
2 | a1 � x � a2 and y � b} |

a1, a2, b ∈ R} it is known that 1.67k � m(k) � 3k − 2 [4].
1 A vertex coloring is proper if every hyperedge contains two vertices of different colors.

146 V. Chekan and T. Ueckerdt

– For axis-aligned squares R = {{(x, y) ∈ R
2 | a � x � a + s and b � y �

b + s} | a, b, s ∈ R} it is known that m(k) � O(k8.75) [2].

On the contrary, let us also list the negative results (meaning m(k) = ∞ for
some k) that are relevant here. In all cases, it is shown that already m(2) = ∞
holds. This means that there is a sequence (Hm)m�1 of m-uniform hypergraphs
such that for each m � 1 the hypergraph Hm admits no polychromatic 2-coloring
and we have that Hm is a subhypergraph of H(Vm,R,m) for some finite point
set Vm. If the latter property holds, we say that Hm can be realized with R.
One such sequence are the m-ary tree hypergraphs, defined on the vertices of a
complete m-ary tree of height m, where for each non-leaf vertex, its m children
form a hyperedge, and for each leaf vertex, its m ancestors (including itself)
form a hyperedge (introduced by Pach, Tardos, and Tóth [21]). A second such
sequence is due to Pálvölgyi [23] (published in [19]), for which we do not repeat
the formal definition here and simply refer to them as the 2-size hypergraphs as
their inductive construction involves hyperedges of two possibly different sizes.

– For strips R = {{(x, y) ∈ R
2 | 1 � ax+ by � c} | a, b, c ∈ R} it is known that

m(2) = ∞ as every m-ary tree hypergraph can be realized with strips [21].
– For unit disks R = {{(x, y) ∈ R

2 | (x − a)2 + (y − b)2 � 1} | a, b ∈ R} it is
known that m(2) = ∞ as every 2-size hypergraph can be realized with unit
disks [19].

Finally, for axis-aligned rectangles R = {{(x, y) ∈ R
2 | a1 � x � a2 and b1 �

y � b2} | a1, a2, b1, b2 ∈ R} it is also known that m(2) = ∞. See Theorem 2
below. However, the only known proof of Theorem 2 was a probabilistic argument
and no explicit construction of a sequence (Hm)m�1 of m-uniform hypergraphs
realizable by axis-aligned rectangles that admit no polychromatic 2-coloring was
known before this work.

Theorem 2 (Chen et al. [8]). For the family R of all axis-aligned rectangles
it holds that m(2) = ∞. That is, for every m � 1 there exists a finite point set
V ⊂ R

2 such that for every 2-coloring of V some axis-aligned rectangle contains
m points of V , all of the same color.

1.2 Our Results

In this paper we consider range families R = R1 ∪ R2 that are the union of
two range families R1, R2. The corresponding hypergraph H(V,R,m) is then
the union of the hypergraphs H(V,R1,m) and H(V,R2,m) on the same vertex
set V ⊂ R

2. Clearly, if H(V,R,m) is polychromatic k-colorable, then so are
H(V,R1,m) and H(V,R2,m). But the converse is not necessarily true and this
shall be the subject of our investigations.

Aloupis et al. [3] show that if R1 and R2 admit so-called m-hitting k-sets,
then we can conclude that m(k) � m < ∞ for R = R1 ∪R2; see Lemma 3. This
is for example the case for all horizontal (resp. vertical) strips, but already fails
for all south-west quadrants. In Sect. 3 we then consider all possible families of

Polychromatic Colorings of Unions of Geometric Hypergraphs 147

unbounded axis-aligned rectangles, such as axis-aligned strips, all four types of
quadrants, or bottomless rectangles. We determine exactly for which subset of
those, when taking R as their union, it holds that m(k) < ∞.

In particular, we show in Sect. 3.1 that m(k) = ∞ for all k � 2 when R =
R1∪R2 is the union of R1 all bottomless rectangles and R2 all horizontal strips.
Our proof gives a new sequence (Hm)m�1 of m-uniform hypergraphs that admit
a geometric realization for simple ranges, but do not admit any polychromatic
2-coloring. On the positive side, we show in Sect. 3.2 that (up to symmetry) all
other subsets of unbounded axis-aligned rectangles (excluding the above pair)
admit polychromatic k-colorings for every k. Here, our proof relies on so-called
shallow hitting sets and in particular a variant in which a subset of V hits every
hyperedge defined by R1 at least once and every hyperedge defined by R1 ∪ R2

at most a constant (usually 2 or 3) number of times.

Assumptions and Notation. Before we start, let us briefly mention some conve-
nient facts that are usually assumed, and which we also assume throughout our
paper: Whenever a range family R is given, we only consider point sets V that
are in general position with respect to R. For us, this means that the points in V
have pairwise different x-coordinates, pairwise different y-coordinates, and also
pairwise different sums of x- and y-coordinates. Secondly, all range families R
that we consider here are shrinkable, meaning that whenever a set X ⊆ V of i
points is captured by a range in R, then also some subset of i − 1 points of X is
captured by a range in R. This means that for every polychromatic k-coloring
of H(V,R,m), every range in R capturing m or more points of V , contains at
least one point of each color. Finally, for every set X ⊆ V captured by a range
in R, we implicitly associate to X one arbitrary but fixed such range R ∈ R
with V ∩ R = X. In particular, we shall sometimes consider the range R for a
given hyperedge E of H(V,R,m).

2 Polychromatic Colorings for Two Range Families

Let R1,R2 be two families of ranges, for each of which it is known that m(k) < ∞
for any k � 1. We seek to investigate whether also for R = R1 ∪ R2 we have
m(k) < ∞. First, we identify a simple sufficient condition.

For fixed k,m,R, we say that we have m-hitting k-sets with respect to R if
the following holds. For every V ⊂ R

2, there exist pairwise disjoint k-subsets of
V such that every hyperedge of H(V,R,m) fully contains at least one such k-
subset. Clearly, if we have m-hitting k-sets, then m(k) � m since we can simply
use all colors 1, . . . , k on each such k-subset (and color any remaining vertex
arbitrarily). Crucially, if two range families R1 and R2 admit m-hitting k-sets,
then m(k) � m also carries over to their union R = R1 ∪ R2. This has already
been implicitly used in [3].

Lemma 3 (Aloupis et al. [3]). For fixed k,m, suppose that we have m-hitting
k-sets with respect to R1 and m-hitting k-sets with respect to R2. Then for
R = R1 ∪ R2 it holds that m(k) � m.

148 V. Chekan and T. Ueckerdt

For example, Lemma 3 gives m(k) � 2k − 1 when R consists of all axis-
parallel strips [3]. In fact, for the vertical (resp. horizontal) strips it suffices to
group the points into k-sets with consecutive x-coordinates (resp. y-coordinates).

Somewhat unfortunately, m-hitting k-sets appear to be very rare. Already
for the range family R of all south-west quadrants, for which one can easily show
that m(k) = k, we do not even have m-hitting 2-sets for any m. This will follow
from the following result, which will also be useful later.

Lemma 4. Let T be a rooted tree, and H(T) be the hypergraph on V (T) where
for each leaf vertex its ancestors (including itself) form a hyperedge. Then H(T)
can be realized with the family R of all south-west quadrants.

Moreover, the root is the bottommost and leftmost point and the children of
each non-leaf vertex lie on a diagonal line of slope −1.

Proof. We do induction on the height of T , with height 1 being a trivial case of a
single vertex. For height at least 2, remove the root r from T to obtain new trees
T1, . . . , Tp, each of smaller height and rooted at a child of r. By induction, there
are point sets in the plane for each H(Ti), i = 1, . . . , p, with each respective root
being bottommost and leftmost. We scale each of these points sets uniformly
until the bounding box of each of them has width as well as height less than 1.
For every i ∈ [p], we put the point set for H(Ti) into the plane so that the root
of Ti has the coordinate (i, p − i). Finally, we place r in the origin. This gives
the desired realization.

Note: in the end we can slightly perturb the point set so that it still realizes
H(T) but it is in general position and the children of every non-leaf vertex are
captured by a diagonal strip of slope −1. 	

Corollary 5. For any k,m � 2 and for the family R of all south-west quadrants,
we do not have m-hitting k-sets in general.

Proof. Take the rooted complete binary tree Tm of height m, for which H(Tm)
is realizable with south-west quadrants by Lemma 4. By induction on m, we
show that H(Tm) does not have m-hitting 2-sets. This is trivial for m = 2.
Otherwise, any collection of disjoint 2-subsets either avoids the root r, or pairs
r with a vertex in one of the two subtrees of Tm below r. In any case, there is
a subtree T below r, none of whose vertices is paired with r and hence, there
exist m-hitting 2-sets of H(T). Note that T is a complete binary tree of height
m − 1, so T = Tm−1. But then H(Tm−1) admits (m − 1)-hitting 2-sets too – a
contradiction to the induction hypothesis.

Finally, if H(Tm) had m-hitting k-sets for some k � 2, then taking a 2-subset
of every k-set in it, would result in m-hitting 2-sets of H(Tm). 	

Corollary 6. For any k,m � 2 and for the family R of all halfplanes, we do
not have m-hitting k-sets in general.

Proof. By a result of Middendorf and Pfeiffer [16], every range capturing hyper-
graph for south-west quadrants can also be realized by halfplanes and the result
follows from Corollary 5. 	

Polychromatic Colorings of Unions of Geometric Hypergraphs 149

To summarize, parallel strips have m-hitting k-sets, but quadrants do not.
Hence, we cannot apply Lemma 3 to conclude that m(k) < ∞ when we con-
sider R to be the union of all quadrants of one direction and all parallel strips
of one direction. In Sect. 3 we shall prove that indeed m(k) < ∞ for the union of
all quadrants and strips, however only provided that the strips are axis-aligned.
In fact, if they are not, this is not necessarily true.

Corollary 7. Let R1 be the family of all south-west quadrants and R2 =
{{(x, y) ∈ R

2 | a � x + y � b} | a, b ∈ R} be the family of all diagonal strips of
slope −1.

Then for R = R1 ∪ R2 we have m(2) = ∞.

Proof. Given m, consider the rooted complete m-ary tree Tm of height m. By
Lemma 4, V (Tm) can be placed in the plane such that for each leaf vertex, its
m ancestors (including itself) are captured by a south-west quadrant, and for
each non-leaf vertex, its m children are captured by a diagonal strip of slope −1.
Hence, every m-ary tree hypergraph Hm can be realized with R. By [21] Hm

admits no polychromatic 2-coloring for any m, which gives the result. 	

3 Families of Unbounded Rectangles

In this section we consider the following range families of unbounded rectangles:
– all (axis-aligned) south-west quadrants RSW,
– similarly all south-east RSE, north-east RNE, north-west RNW quadrants,
– all horizontal RHS, vertical RVS, diagonal RDS strips of slope −1,
– all bottomless rectangles RBL, and finally all topless rectangles RTL =

{{(x, y) ∈ R
2 | a1 � x � a2, y � b} | a1, a2, b ∈ R}.

Observe that if a point set is captured by a south-east quadrant Q, then it is
also captured by a bottomless rectangle having the same top and left sides as Q
and whose right side lies to the right of every point in the vertex set. Analogous
statements hold for other quadrants and vertical strips. Further, note that each
of the above range families, except the diagonal strips RDS, is a special case of
the family of all axis-aligned rectangles. Recall that for the family of all axis-
aligned rectangles, it is known that m(2) = ∞ [8]. Here we are interested in
the maximal subsets of {RSW,RSE,RNE,RNW,RHS,RVS,RBL,RTL} so that
for the union R of all these ranges, it still holds that m(k) < ∞ for all k. In
fact, we shall show that for R = RBL ∪ RHS we have m(2) = ∞, strengthening
the result for axis-aligned rectangles [8]. On the other hand, for R = RSW ∪
RSE ∪RNE ∪RNW ∪RHS ∪RVS, i.e., the union of all quadrants and axis-aligned
strips, we have m(k) < ∞ for all k, strengthening the results for south-west
quadrants [12] and axis-aligned strips [3]. Secondly, for R = RBL ∪RTL, i.e., the
union of bottomless and topless rectangles (which also contains all quadrants
and all vertical strips), we again have m(k) < ∞ for all k, thus strengthening
the result for bottomless rectangles [4]. Using symmetries, this covers all cases of
the considered unbounded axis-aligned rectangles. We complement our results
by also considering the diagonal strips RDS and recall that we already know by
Corollary 7 that for R = RDS ∪ RSW we have m(2) = ∞.

150 V. Chekan and T. Ueckerdt

Fig. 1. (a) The forest F2 and the desired embedding of H2. (b) Sketch of the embedding
of Hm for the proof of Theorem 9. (Color figure online)

3.1 The Case with No Polychromatic Coloring: Bottomless
Rectangles and Horizontal Strips

For every m ∈ N, we will define a rooted forest Fm consisting of mm trees
whose vertices are partitioned into a set of the so-called stages (the forest F2 is
illustrated in Fig. 1(a)). The vertices of a stage S will be totally ordered and we
denote this ordering by <S . All vertices of a stage S will have the same distance
to the root of the corresponding tree, we refer to this distance as the level of S.
Every stage on level j ∈ {0, . . . , m − 1} will consist of mm−j vertices.

We start with mm roots, one for each tree in Fm. They build the unique
stage on level 0 and they are ordered in an arbitrary but fixed way. After that,
for j = 1, . . . ,m − 1, every stage S on level j − 1, and every subset S′ ∈ (

S
mm−j

)
,

we add a new stage T (S′) on level j consisting of mm−j new vertices so that
every vertex in S′ gets exactly one child from T (S′) and the vertices of T (S′)
are ordered by <T (S′) as their parents by <S . As a result, every vertex in S gets
a child for every (mm−j)-subset of S in which it occurs.

Now we can define the hypergraph Hm = (V, E). The vertex set V is exactly
the vertex set V (Fm) of the forest Fm. There are two types of hyperedges.
First, stage-hyperedges Es: for every stage S, each m consecutive vertices in <S

constitute a stage-hyperedge. Second, the path-hyperedges Ep: every root-to-leaf
path in Fm forms a path-hyperedge. Then, the set of hyperedges is defined as
E = Es ∪ Ep. Note that Hm = (V, E) is indeed m-uniform. For a vertex v, let
root(v) denote the root of the tree in Fm containing v, and path(v) ⊂ V denote
the set of vertices on the path from v to root(v) in Fm.

Theorem 8. For every m ∈ N the m-uniform hypergraph Hm = (V, E = Es∪Ep)
admits no polychromatic coloring with 2 colors.

Proof. We show that every 2-coloring of V that makes all stage-hyperedges poly-
chromatic produces a monochromatic path-hyperedge. Let φ : V → {red, blue}

Polychromatic Colorings of Unions of Geometric Hypergraphs 151

be such a coloring. The key observation is that a stage S on level j (i.e., one that
contains mm−j vertices) can be partitioned into mm−j/m = mm−j−1 disjoint
stage-hyperedges and hence, it contains at least mm−j−1 red vertices.

We prove for j ∈ {0, . . . , m−1} that there is a stage Sj on level j and a subset
Bj ⊂ Sj such that |Bj | = mm−j−1 and for every v ∈ Bj , the vertices in path(v)
are all red. For j = 0, the stage consisting of roots contains at least mm−1 red
roots and these vertices have the desired property. Assuming the statement for
some j, consider the stage Sj+1 = T (Bj) and a set Bj+1 of mm−j−2 red points
in it. By definition, each of these points v has its parent in Bj and hence, all
vertices in path(v) are red, proving the statement for j + 1. By induction, it
holds for j = m−1 and hence, there is a vertex on level m−1 (i.e., a leaf) whose
root-to-leaf path is all red. So Hm admits no polychromatic 2-coloring. 	

Theorem 9. For every m ∈ N the m-uniform hypergraph Hm = (V, E = Es∪Ep)
admits a realization with bottomless rectangles and horizontal strips.

Proof. For a point p ∈ R
2, let x(p) and y(p) denote its x- resp. y-co-

ordinate. A sequence of points p1, . . . , pt is ascending (resp. descending)
if x(p1) < · · · < x(pt) and y(p1) < · · · < y(pt) (resp. x(p1) < · · · < x(pt) and
y(p1) > · · · > y(pt)). Writing about the vertices of a stage S, we always refer
to their ordering in <S . We shall embed each stage S of Hm into a closed hor-
izontal strip, denoted HS , in such a way that HS ∩ HS′ = ∅ whenever S �= S′.
Note that this way, the embedded stages are vertically ordered with some avail-
able space between any two consecutive ones. For illustration see Fig. 1.

First, we embed the roots of Fm, i.e., the unique stage on level 0, as an
ascending sequence in a horizontal strip for this stage. After that, until all stages
are embedded, we choose some stage S that has already been embedded but
the stages T1, . . . , Tr containing its children not yet and in one step we embed
T1, . . . , Tr as follows. We pick a thin horizontal strip H between HS and the strip
above (if it exists) and within H identify disjoint horizontal strips H1, . . . , Hr.
Then, every Ti is embedded inside Hi so that every vertex gets initially the same
x-coordinate as its parent and the vertices of Ti build an ascending sequence in
Hi. After that, for every v ∈ S we slightly shift all children of v to the right so
that they build a descending sequence but the ordering of x-coordinates relative
to all other vertices remains unchanged.

The arising embedding ensures the following two properties. First, every
stage-hyperedge is captured by a horizontal strip. Second, for every vertex v,
the bottomless rectangle B(v) with top-right corner v and root(v) on the left
side captures exactly path(v), in particular every path-hyperedge is then cap-
tured by a bottomless rectangle. In the full version of the paper [7], we prove
that these two properties indeed hold and this concludes the proof. 	

3.2 The Cases with Polychromatic Colorings

First, recall the result of Ackerman et al. [2] that for the range family RSQ of all
axis-aligned squares, we have m(k) = O(k8.75). This already seals the deal for
bottomless and topless rectangles.

152 V. Chekan and T. Ueckerdt

Theorem 10. For the family R = RBL ∪ RTL of all bottomless and topless
rectangles, we have m(k) = O(k8.75) for all k.

Proof. Let V be a finite point set and let m be arbitrary. For every bottomless
(resp. topless) rectangle capturing a hyperedge of H = H(V,R,m), we introduce
a bottom (resp. top) side below the bottommost (resp. above the topmost) point
in V so that these rectangles are bounded now. After that, we stretch the plane
horizontally until the width of every aforementioned rectangle becomes larger
than its height and obtain the point set V ′. This stretching preserves the ordering
of x- and y-coordinates of the points so that the set of hyperedges captured by
R remains the same. Finally, we pick every (now bounded) bottomless (resp.
topless) rectangle capturing a hyperedge of H and shift its bottom (resp. top) side
down (resp. up) until it becomes a square. Now for every hyperedge in H, there is
an axis-aligned square capturing it and hence, a hyperedge in H′ = (V ′,RSQ,m).
Thus, each polychromatic coloring of H′ yields a polychromatic coloring of H
and this concludes the proof. 	

For the remaining cases, we utilize so-called shallow hitting sets. For a positive
integer t, a subset X of vertices of a hypergraph H is a t-shallow hitting set
if every hyperedge of H contains at least one and at most t points from X.
It is known for example that for R being the family of all halfplanes, every
range capturing hypergraph H(V,R,m) admits a 2-shallow hitting set [25], which
implies that m(k) � 2k − 1 in this case. In general, we have the following.

Lemma 11 (Keszegh and Pálvölgyi [13]). Suppose that for a shrinkable
range family R, every hypergraph H(V,R,m) admits a t-shallow hitting set.
Then m(k) � (k − 1)t + 1.

Remark 1. Lemma 11 states that if t-shallow hitting sets exist (for a global
constant t), then m(k) = O(k). However, it is not clear whether the converse is
also true, for example when R is the family of all bottomless rectangles. Keszegh
and Pálvölgyi [13] construct for this family range capturing hypergraphs without
shallow hitting sets, but their constructed hypergraphs are not uniform. In fact,
one can extract 3-shallow hitting sets for axis-aligned strips from the m-hitting
k-sets for horizontal and vertical strips for m = 2k − 1: since every hyperedge of
H(V,RHS ∪ RVS) of size 2k − 1 or 2k is hit by at most three of the m-hitting
k-sets, each color of the resulting k-coloring is a 3-shallow hitting set. To the
best of our knowledge, it is open whether all H(V,R,m) admit shallow hitting
sets for the bottomless rectangles R = RBL.

Recall that for the family RNW of all north-west quadrants we have m(k) = k.
In such a polychromatic coloring, every color class is a 1-shallow hitting set.
Besides RNW, we want to consider other range families, and thus are interested
in t-shallow hitting sets for RNW that additionally do not hit other ranges,
such as axis-parallel strips or other quadrants, too often. Let Et(V,m) (resp.
Eb(V,m)) denote the set of m topmost (resp. bottommost) points in V .

Polychromatic Colorings of Unions of Geometric Hypergraphs 153

Fig. 2. Sketch for the proof of Lemma 12 for m = 3. The vertices in X are red.

Lemma 12. For the family RNW of all north-west quadrants, every hypergraph
H(V,RNW,m) admits a 2-shallow hitting set X such that the points x1, . . . , xn

in X have decreasing x-coordinates and decreasing y-coordinates, and

(i) x1 is the leftmost point of Et(V,m),
(ii) the hyperedge Et(V,m) is hit by X exactly once,
(iii) for any two consecutive points xj , xj+1 in X, the bottomless rectangle Bj

with top-right corner xj and xj+1 on the left side satisfies |Bj ∩V | � m+1,
and

(iv) for any three consecutive points xj , xj+1, xj+2 in X, the axis-aligned rect-
angle Rj with top-right corner xj and bottom-left corner xj+2 satisfies
|Rj ∩ V | � m + 2.

Proof. For each hyperedge of H(V,RNW,m) consider a fixed north-west quad-
rant capturing these m points of V . These quadrants can be indexed Q1, . . . , Qα

along their apices with decreasing x-coordinates (and hence also y-coordinates).
I.e., Q1 contains the topmost m points of V , while Qα contains the leftmost m
points of V . See Fig. 2 for an illustrative example.

Starting with X = ∅, we go through the north-west quadrants from Q1 to
Qα, and whenever Qi does not contain any point of X, we add the leftmost point
of Qi ∩ V to X. Label the points in X by x1, . . . , xn in the order of their addition
to X. Along this order, the points have decreasing x-coordinates and decreasing
y-coordinates. Clearly, X is a hitting set of H(V,RNW,m) and satisfies (i).

Since x1 is the leftmost point of Q1, xj does not belong to Q1 for every
j ∈ {2, . . . , n}. Since Q1 contains exactly vertices of Et(V,m), the corresponding
hyperedge is hit by X exactly once. This proves (ii).

For any two consecutive points xj , xj+1 in X, consider the bottomless rectan-
gle Bj with top-right corner xj and xj+1 on the left side. Then |Bj ∩V | � m+1
as Bj contains xj and all points of the north-west quadrant Q for which we
added xj+1 to X. This proves (iii).

154 V. Chekan and T. Ueckerdt

Moreover, every point in Q ∩ V lies above xj+2 (if it exists), as xj+1 is
leftmost in Q. Thus, the axis-aligned rectangle Rj with top-right corner xj and
bottom-left corner xj+2 contains xj , all the m points in Q ∩ V , and xj+2. This
proves (iv) and also implies that X is 2-shallow. 	

Let us explain the properties of this lemma. Suppose we have a south-west
quadrant hit at least twice by X. Then it contains two consecutive points from
X and by (iii) this quadrant contains at least m+1 points and hence it does not
capture a hyperedge of H(V,RSW,m). Similarly, a horizontal strip containing at
least three points from X does not capture a hyperedge of H(V,RHS,m) by (iv).
Finally, since x1 is the rightmost point of X and it is also the leftmost point of
Et(V,m), every hyperedge E �= Et(V,m) of H(V,RNE,m) is not hit by X at all.
For symmetry reasons, statements analogous to the above lemma hold for other
types of quadrants and ranges as well. We provide a full description of these
properties in the full version of the paper [7].

Intuitively speaking, Lemma 12 allows us to color some points in V , in such
a way that every north-west quadrant already contains all colors, while other
ranges, such as bottomless rectangles or diagonal strips, have most of their points
still uncolored. The following lemma (proven in the full version of the paper [7])
provides a framework which can then be applied to color various range families.

Lemma 13. Let R1,R2 be shrinkable range families, f : N → N be a function,
and s, t ∈ N be such that:

(i) For every k ∈ N, it holds that mR2(k) � f(k).
(ii) And for every point set V and every m ∈ N, the hypergraph H(V,R1,m)

admits a t-shallow hitting set S ⊆ V such that every hyperedge of
H(V,R2,m) is hit at most s times by S.

Then for every k ∈ N, we have mR1∪R2(k) � f(k) + kmax(s, t).

With Lemma 13 in place, we obtain the upper bounds for several range families:

Theorem 14.

(i) For the range family RBL ∪ RNW ∪ RNE, we have m(k) � 5k − 2 for all k.
(ii) For the range family RHS ∪ RVS ∪ RNW ∪ RNE ∪ RSW ∪ RSE, we have

m(k) � 10k − 1 for all k.
(iii) For the range family RHS ∪ RVS ∪ RDS ∪ RNW ∪ RSE, we have m(k) �

4k ln k + k ln 3� + 4k for all k.

Proof. In all cases, we combine Lemmas 12 and 13 with some known results.
Now we prove (i). By Lemma 12, for every point set V and every m ∈ N,

there exist subsets SNW, SNE ⊆ V such that SNW ∪ SNE is a 2-shallow hitting
set of H(V,RNW ∪RNE,m) and every hyperedge of H(V,RBL,m) is hit at most
1+1 = 2 times by this set (see [7] for more details). So we use s = t = 2. Further,
we set R1 = RNW ∪ RNE, R2 = RBL and we use f(k) = 3k − 2 for all k. By [4],

Polychromatic Colorings of Unions of Geometric Hypergraphs 155

we know that for every k, we have mR2(k) � f(k). So by Lemma 13 for every k
we have m(k) � (3k − 2) + kmax(2, 2) = 5k − 2.

The remaining two claims are proven similarly in the full version of the paper
[7]. There we use that for axis-aligned strips we have m(k) � 2k−1 and for strips
in three directions, we have m(k) � 4k ln k + k ln 3� for all k [3]. 	

4 Concluding Remarks

We have considered the range families RSW,RSE,RNE,RNW of all south-west,
south-east, north-east, and north-west quadrants, the range families RHS,RVS of
all horizontal and vertical strips, and the range families RBL,RTL of all bottom-
less and topless rectangles, each being a special case of axis-aligned rectangles.

For every single family R in this list it is known that m(k) = O(k), meaning
that for every finite point set V the m-uniform hypergraph H(V,R,m) admits
a polychromatic k-coloring as long as m = Ω(k).

By Theorems 8 and 9 range capturing hypergraphs with respect to R =
RBL ∪ RHS, i.e., bottomless rectangles and horizontal strips, do not even admit
polychromatic 2-colorings. In other words m(k) = ∞ for all k � 2 in that
case. On the other hand, by Theorems 10 and 14 such polychromatic k-colorings
exist for every k (i.e., m(k) < ∞) whenever R is the union of any subset of
{RSW,RSE,RNE,RNW,RHS,RVS,RBL,RTL} that does not include both RBL

and RHS, nor any rotation of that pair. (As horizontal strips form a special case
of both 90-degree rotations of bottomless rectangles, our results also cover these
left-unbounded and right-unbounded axis-aligned rectangles.)

In general, we observe the same behavior as for other range families in the
literature: Either m(k) < ∞ holds for every k or already m(2) = ∞. It remains
an interesting open problem to determine whether in general m(2) < ∞ always
implies m(k) < ∞ for all k. In the positive cases, our upper bounds on m(k)
are linear in k, except when R contains strips of three different directions or
bottomless and topless rectangles. It is worth noting that no range family R
is known for which m(2) < ∞ but m(k) ∈ ω(k). Such a candidate could be
R = RHS ∪ RVS ∪ RDS or R = RBL ∪ RTL.

We suggest further investigations of shallow hitting sets in range capturing
hypergraphs. To the best of our knowledge, their existence might be equivalent
to m(k) being linear in k. In particular, do bottomless rectangles (for which it is
known that m(k) ∈ O(k) [4]) allow for shallow hitting sets? And do octants in
3D (for which shallow hitting sets are known not to exist [6]) have m(k) ∈ O(k)?

Finally, let us remark that the probabilistic construction of Chen et al. [8]
for the range family R of all axis-aligned rectangles shows that the hypergraphs
H(V,R,m) even have arbitrary large chromatic number for any fixed m, while
our explicit construction for the sub-family RBL ∪ RHS only shows that the
chromatic number is at least 3. In fact, the Union Lemma of Damasdi and
Pálvölgyi [9] states that if H is the union of any k − 1 hypergraphs, each of
which admits a polychromatic k-coloring, then H has a proper k-coloring. In
particular, every hypergraph H(V,RBL∪RHS,m) has chromatic number at most

156 V. Chekan and T. Ueckerdt

3 for m � 4, and every hypergraph H(V,R,m) has chromatic number at most 5
for m � 10 when R is the union of all unbounded axis-aligned rectangles.

References

1. The geometric hypergraph zoo. https://coge.elte.hu/cogezoo.html
2. Ackerman, E., Keszegh, B., Vizer, M.: Coloring points with respect to squares.

Discrete Comput. Geom. 58(4), 757–784 (2017). https://doi.org/10.1007/s00454-
017-9902-y

3. Aloupis, G., et al.: Colorful strips. Graphs Comb. 27(3), 327–339 (2011). https://
doi.org/10.1007/s00373-011-1014-5

4. Asinowski, A., et al.: Coloring hypergraphs induced by dynamic point sets and
bottomless rectangles. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 73–84. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40104-6_7

5. Cardinal, J., Knauer, K., Micek, P., Ueckerdt, T.: Making octants colorful and
related covering decomposition problems. SIAM J. Discret. Math. 28(4), 1948–
1959 (2014). https://doi.org/10.1137/140955975

6. Cardinal, J., Knauer, K., Micek, P., Pálvölgyi, D., Ueckerdt, T., Varadara-
jan, N.: Colouring bottomless rectangles and arborescences. arXiv preprint
arXiv:1912.05251 (2020)

7. Chekan, V., Ueckerdt, T.: Polychromatic colorings of unions of geometric hyper-
graphs (2021). https://arxiv.org/abs/2112.02894

8. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the
plane with respect to axis-parallel rectangles. Random Struct. Algorithms 34(1),
11–23 (2009). https://doi.org/10.1002/rsa.20246

9. Damásdi, G., Pálvölgyi, D.: Three-chromatic geometric hypergraphs. arXiv
preprint arXiv:2112.01820v1 (2021)

10. Gibson, M., Varadarajan, K.: Decomposing coverings and the planar sensor cover
problem. In: 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pp. 159–168 (2009)

11. Keszegh, B.: Coloring half-planes and bottomless rectangles. Comput. Geom.
45(9), 495–507 (2012). https://doi.org/10.1016/j.comgeo.2011.09.004. ISSN 0925–
7721,The 19th Canadian Conference on Computational Geometry (CCCG2007)
held in Ottawa, Canada on August 20–22 2007

12. Keszegh, B., Pálvölgyi, D.: More on decomposing coverings by octants. J. Compu-
tat. Geom. 6(1), 300–315 (2015). https://doi.org/10.20382/jocg.v6i1a13

13. Keszegh, B., Pálvölgyi, D.: An abstract approach to polychromatic coloring: shal-
low hitting sets in ABA-free hypergraphs and pseudohalfplanes. J. Comput. Geom.
10(1), 1–26 (2019). https://doi.org/10.20382/jocg.v10i1a1

14. Keszegh, B., Lemons, N., Pálvölgyi, D.: Online and quasi-online colorings of wedges
and intervals. Order 33(3), 389–409 (2015). https://doi.org/10.1007/s11083-015-
9374-8

15. Kovács, I.: Indecomposable coverings with homothetic polygons. Discrete Comput.
Geom. 53(4), 817–824 (2015). https://doi.org/10.1007/s00454-015-9687-9

16. Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-
graphs. Discrete Math. 108(1), 365–372 (1992). https://doi.org/10.1016/0012-
365X(92)90688-C. ISSN 0012-365X

https://coge.elte.hu/cogezoo.html
https://doi.org/10.1007/s00454-017-9902-y
https://doi.org/10.1007/s00454-017-9902-y
https://doi.org/10.1007/s00373-011-1014-5
https://doi.org/10.1007/s00373-011-1014-5
https://doi.org/10.1007/978-3-642-40104-6_7
https://doi.org/10.1007/978-3-642-40104-6_7
https://doi.org/10.1137/140955975
http://arxiv.org/abs/1912.05251
https://arxiv.org/abs/2112.02894
https://doi.org/10.1002/rsa.20246
http://arxiv.org/abs/2112.01820v1
https://doi.org/10.1016/j.comgeo.2011.09.004
https://doi.org/10.20382/jocg.v6i1a13
https://doi.org/10.20382/jocg.v10i1a1
https://doi.org/10.1007/s11083-015-9374-8
https://doi.org/10.1007/s11083-015-9374-8
https://doi.org/10.1007/s00454-015-9687-9
https://doi.org/10.1016/0012-365X(92)90688-C
https://doi.org/10.1016/0012-365X(92)90688-C

Polychromatic Colorings of Unions of Geometric Hypergraphs 157

17. Pach, J.: Decomposition of multiple packing and covering. In: 2. Kolloquium
über Diskrete Geometrie, number CONF. Institut für Mathematik der Universität
Salzburg, pp. 169–178 (1980). URL https://infoscience.epfl.ch/record/129388

18. Pach, J.: Covering the plane with convex polygons. Discrete Comput. Geom. 1(1),
73–81 (1986). https://doi.org/10.1007/BF02187684

19. Pach, J., Pálvölgyi, D.: Unsplittable coverings in the plane. Adv. Math. 302, 433–
457 (2016). https://doi.org/10.1016/j.aim.2016.07.011. ISSN 0001-8708

20. Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. J. Am. Math.
Soc. 26(3), 645–658 (2013). https://doi.org/10.1090/S0894-0347-2012-00759-0

21. Pach, J., Tardos, G., Tóth, G.: Indecomposable coverings. In: Akiyama, J., Chen,
W.Y.C., Kano, M., Li, X., Yu, Q. (eds.) CJCDGCGT 2005. LNCS, vol. 4381, pp.
135–148. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70666-
3_15

22. Pach, J., Pálvölgyi, D., Tóth, G.: Survey on decomposition of multiple coverings.
In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.) Geometry—Intuitive,
Discrete, and Convex. BSMS, vol. 24, pp. 219–257. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41498-5_9

23. Pálvölgyi, D.: Indecomposable coverings with unit discs. arXiv preprint
arXiv:1310.6900v1 (2013)

24. Pálvölgyi, D., Tóth, G.: Convex polygons are cover-decomposable. Discrete Com-
put. Geom. 43(3), 483–496 (2009). https://doi.org/10.1007/s00454-009-9133-y

25. Smorodinsky, S., Yuditsky, Y.: Polychromatic coloring for half-planes. J. Comb.
Theor. Ser. A 119(1), 146–154 (2012)

26. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In:
Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC 2010, pp. 641–648. Association for Computing Machinery, New York (2010).
https://doi.org/10.1145/1806689.1806777. ISBN 9781450300506

https://infoscience.epfl.ch/record/129388
https://doi.org/10.1007/BF02187684
https://doi.org/10.1016/j.aim.2016.07.011
https://doi.org/10.1090/S0894-0347-2012-00759-0
https://doi.org/10.1007/978-3-540-70666-3_15
https://doi.org/10.1007/978-3-540-70666-3_15
https://doi.org/10.1007/978-3-642-41498-5_9
http://arxiv.org/abs/1310.6900v1
https://doi.org/10.1007/s00454-009-9133-y
https://doi.org/10.1145/1806689.1806777

Kernelization for Feedback Vertex Set
via Elimination Distance to a Forest

David Dekker and Bart M. P. Jansen(B)

Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

b.m.p.jansen@tue.nl

Abstract. We study efficient preprocessing for the undirected Feed-

back Vertex Set problem, a fundamental problem in graph theory
which asks for a minimum-sized vertex set whose removal yields an
acyclic graph. More precisely, we aim to determine for which parame-
terizations this problem admits a polynomial kernel. While a character-
ization is known for the related Vertex Cover problem based on the
recently introduced notion of bridge-depth, it remained an open prob-
lem whether this could be generalized to Feedback Vertex Set. The
answer turns out to be negative; the existence of polynomial kernels
for structural parameterizations for Feedback Vertex Set is governed
by the elimination distance to a forest. Under the standard assumption
NP �⊆ coNP/poly, we prove that for any minor-closed graph class G,
Feedback Vertex Set parameterized by the size of a modulator to G
has a polynomial kernel if and only if G has bounded elimination dis-
tance to a forest. This captures and generalizes all existing kernels for
structural parameterizations of the Feedback Vertex Set problem.

Keywords: Feedback Vertex Set · Kernelization · Elimination distance

1 Introduction

For NP-complete problems, a polynomial time algorithm solving any problem
instance exactly is unlikely to exist. However, as one is often interested in solving
specific instances, one can try to exploit characteristics of problem instances
and develop algorithms that are fast when the input has certain properties. We
therefore associate a parameter with each problem instance. In our context, a
problem instance is a graph for which we ask for the existence of a vertex set
of size at most � having certain properties. Such a parameterized instance can
be denoted with a triple (G, �, k), where we are asking for the existence of a
solution of size at most � for a graph G with parameter k. We say that an
algorithm is fixed parameter tractable (FPT) for such a parameterization if it

B. M. P. Jansen—This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 803421, ReduceSearch).

c© The Author(s) 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 158–172, 2022.
https://doi.org/10.1007/978-3-031-15914-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-15914-5_12

Kernelization for Feedback Vertex Set 159

solves any instance (G, �, k) of size n, as described above, in time bounded by
f(k)nO(1) for some computable function f : N → N.

A strongly related field is that of kernelization. This field focuses on reducing
a parameterized instance (G, �, k) in polynomial time to an equivalent instance
(G′, �′, k′) whose size is bounded by a computable function of the parameter. We
speak of a polynomial kernel when this function is a polynomial. It is known that
a decidable parameterized problem is fixed parameter tractable if and only if it
admits a kernelization (cf. [12, Proposition 4.7.1]). In our quest for determining
which parameterizations enable efficient algorithms, it is therefore interesting to
determine those that allow a polynomial kernel.

This paper focuses on polynomial kernels for the undirected Feedback Ver-

tex Set problem, which is an NP-complete problem in graph theory as originally
identified by Karp [21]. For an undirected graph G, a vertex set X ⊆ V (G) is
a feedback vertex set if the graph is acyclic after removal of X. We call a ver-
tex set whose removal yields a graph in some graph class G a G-modulator and
define the deletion distance to G as its minimum size. The Feedback Vertex

Set problem then asks for the minimum size of such a feedback vertex set, or
equivalently, the deletion distance to a forest. For a graph G, we let fvs(G) (the
feedback vertex number of G) denote that minimum size. Our main question
is for which parameterizations the Feedback Vertex Set problem admits a
polynomial kernel.

Before exploring the Feedback Vertex Set problem further, we should
mention the related Vertex Cover problem. It asks for a minimum set of
vertices hitting all edges in a graph. While a kernel in the solution size with a
linear number of vertices can be obtained using various techniques [1,7–9,24],
a polynomial kernel in a structurally smaller parameter was only discovered
in 2011, when Jansen and Bodlaender developed a polynomial kernel in the
feedback vertex number of a graph [18]. From there, many polynomial kernels for
Vertex Cover were discovered in modulators to even larger graph classes [4,13,
15,23]. In 2020, Bougeret, Jansen and Sau proved the following characterization
under common hardness assumptions: Vertex Cover admits a polynomial
kernel in the size of a modulator to a minor-closed graph family G if and only
if G has bounded bridge-depth [3]. With this result, they generalized all existing
work on kernels in the size of modulators to minor-closed graph families, and they
proved that their results cannot be improved further under common hardness
assumptions.

For Feedback Vertex Set, the first polynomial kernel with size bound
O(k11) was obtained in 2006 and it was subsequently improved to a quadratic
kernel [2,6,26]. After the improvements for Vertex Cover, researchers also
tried to develop polynomial kernels in smaller parameters for Feedback Ver-

tex Set [17,20,22]. It remained an open problem whether these results could
be generalized further or whether there exists some parameter that characterizes
Feedback Vertex Set similarly to how bridge-depth characterizes Vertex

Cover. In particular, Bougeret, Jansen and Sau suggested in their paper on
Vertex Cover that the deletion distance to constant bridge-depth might also

160 D. Dekker and B. M. P. Jansen

be an interesting parameter to consider for problems such as Feedback Ver-

tex Set. We therefore aim to answer the question for which graph families G
the Feedback Vertex Set problem admits a polynomial kernel when param-
eterized by the size of a G-modulator.

Our Results. To our initial surprise, the results for Vertex Cover cannot be
generalized to Feedback Vertex Set. It turns out that a minor-closed graph
family G must have bounded elimination distance to a forest (Definition 1), in
order to allow a polynomial kernel in a G-modulator. This concept was introduced
by Bulian and Dawar [5] and is another generalization of the more common
parameter treedepth [25]. The elimination distance to a forest is the minimum
number of rounds needed to transform the graph into a forest when removing one
vertex from each connected component in each round. Our result is described in
Theorem 1. Proofs of statements marked (�) are deferred to the full version [10].

Theorem 1 (�). Assume NP �⊆ coNP/poly and let G be a minor-closed graph
family. Then Feedback Vertex Set admits a polynomial kernel in the size of
a G-modulator if and only if G has bounded elimination distance to a forest.

The minor-closed and hardness assumptions are only needed for the lower
bound. To the best of our knowledge, our kernel generalizes all known polyno-
mial kernels for the Feedback Vertex Set problem. Both the kernel and its
correctness proof follow the structure of the kernel for F-Minor Free Dele-

tion in the deletion distance to a graph of constant treedepth by Jansen and
Pieterse [20]. The correctness proof of their kernel crucially relies on their Lemma
3 whose technical proof spans thirty pages. We require a variation of this lemma.
On the one hand, our variation is more involved since it deals with elimination
distance to a forest rather than treedepth; on the other hand, it is simpler since
it concerns only Feedback Vertex Set rather than F-Minor Free Dele-

tion. As a result of this simplification, we can formulate the lemma without
the use of minors. Roughly speaking, the lemma says that in a graph G of
bounded elimination distance to a forest, if no minimum feedback vertex set
exists which simultaneously hits a prescribed set of partial cycles (single vertices
in a set S or paths between two terminals in a set T), then the same holds for
some sets S∗ ⊆ S and T ∗ ⊆ T of constant size. As shown in previous work,
this limited sensitivity with respect to whether optimal solutions can break all
partial forbidden structures is crucial for the kernelization complexity. As one
of our main contributions, we prove this lemma using a strategy that differs
significantly from the one followed in earlier work [20].

Lemma 1 (�). Let G be a connected graph with disjoint vertex sets S, T ⊆
V (G). Suppose that any minimum feedback vertex set X of G misses some vertex
from S or leaves two vertices from T connected in G − X. Then there exist sets
S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on the elimination distance to a
forest of G, such that any minimum feedback vertex set X of G misses some
vertex from S∗ or leaves two vertices from T ∗ connected in G − X.

Kernelization for Feedback Vertex Set 161

Once Lemma 1 is proven, the kernelization upper bounds follow similarly
to earlier work [20]. As for the lower bound in Theorem 1, we are also able to
generalize our proof for other F-Minor Free Deletion problems as described
in Theorem 2.

Theorem 2 (�). Let G be a minor-closed family of graphs and let F be a finite
set of biconnected planar graphs on at least three vertices. If G has unbounded
elimination distance to an F-minor free graph, then F-Minor Free Deletion

does not admit a polynomial kernel in the size of a G-modulator, unless NP ⊆
coNP/poly.

Organization. Section 2 introduces all relevant terminology. Section 3 presents
our kernel and thereby proves the ‘if’ direction of Theorem 1. Then Sect. 4 con-
tains the proof of Theorem 2, thereby also proving the ‘only if’ direction of
Theorem 1. Lastly, Sect. 5 contains our conclusions and discusses future work.

2 Preliminaries

For a positive integer n, we use the shorthand [n] for the set of all natural
numbers i with 1 ≤ i ≤ n. All graphs we consider are finite, undirected and
simple. When G is a graph, we let V (G) denote the vertex set of G and E(G)
the edge set. For S ⊆ V (G), the graph G − S is the graph where all vertices in
S and all incident edges are removed, and the graph G[S] is the subgraph of G
induced by the vertices in S. When an edge exists between two vertices in G,
we say that these vertices are adjacent. The neighbors of v in G, denoted with
NG(v), are the vertices adjacent to a vertex v ∈ V (G) in G. For S ⊆ V (G), we
say that v ∈ V (G − S) is adjacent to S if there exists some edge between v and
a vertex in S. The set NG(S) contains all vertices v ∈ V (G − S) for which this
holds. We will sometimes slightly abuse notation and speak of a vertex being
adjacent to some subgraph, rather than to the vertices in that subgraph. We
say that two vertices are connected in G when they are in the same connected
component. The set cc(G) denotes the set of connected components (or shortly
components) of G. For sets S, T ⊆ V (G), we say that S separates T if each
component of G − S contains at most one vertex from T . Notice that we do not
require S and T to be disjoint. Such a set S is a vertex multiway cut of T in G.
We use the notation Oη(f(n)) to describe the functions in η and n which can be
bounded by g(η) · f(n) for some computable function g.

A concept that will be used extensively is the concept of graph minors. This
uses the notion of edge contraction. When uv is an edge in a graph G, contracting
this edge replaces vertices u and v by a new vertex whose set of neighbors is
NG({u, v}). Now H is a minor of G if H can be obtained from G by removing
vertices, removing edges and contracting edges. Alternatively, one can define H
to be a minor of G if there exists a minor model φ : V (H) → 2V (G), such that
for any v ∈ V (H) the graph G[φ(u)] is connected, for any distinct u, v ∈ V (H)
we have φ(u) ∩ φ(v) = ∅, and for any edge uv in H there exists an edge between
a vertex in φ(u) and a vertex in φ(v) in G.

162 D. Dekker and B. M. P. Jansen

A graph G has an H-minor for a set of graphs H if G contains some graph
H ∈ H as a minor. For a minor model φ of H in G and a set S ⊆ V (H), we
use the shorthand notation φ(S) :=

⋃
v∈S φ(v). We say that a minor model φ

of H in G is minimal, if there does not exist a minor model φ′ of H in G with
φ′(V (H)) � φ(V (H)). A minor model φ of H in G and a minor model φ′ of H ′

in G intersect if φ(V (H)) ∩ φ′(V (H ′)) �= ∅.

2.1 Elimination Distance

Our work relies crucially on the concept of elimination distance as introduced
by Bulian and Dawar [5].

Definition 1 (Elimination distance). Let G be a graph and G a graph family.
Then the elimination distance of G to G is

edG(G) =

⎧
⎪⎨

⎪⎩

0 if G ∈ G,
maxG′∈cc(G) edG(G′) if |cc(G)| > 1,
minv∈V (G) edG(G − {v}) + 1 otherwise.

We only consider graph families G that are minor-closed. We use the shorthand
GF for the graph family containing precisely all forests. We say that a graph
family G has bounded elimination distance to some graph class H if there is a
constant c ∈ N such that all graphs G ∈ G satisfy edH(G) ≤ c. The elimination
distance of a graph G to the empty graph is called the treedepth of G and is
denoted with td(G). More intuitively, the elimination distance to a graph class
G can be interpreted as the minimum number of ‘elimination iterations’ that are
necessary to obtain a graph where every connected component is in G. In such an
iteration, one is allowed to remove one vertex from each connected component.
This interpretation leads to the notion of an elimination forest.

Definition 2 (G-elimination forest). Let G be a graph and G a graph family.
A G-elimination forest of G is a tuple

(
F, (Bu)u∈V (F)

)
where F is a rooted forest

and where each vertex v ∈ V (F) has a bag Bv ⊆ V (G) such that:

– The bags define a partition of V (G), i.e. for any vertex v ∈ V (G) there is a
unique vertex u ∈ V (F) with v ∈ Bu.

– For any non-leaf u of F , its bag Bu contains precisely one vertex.
– For any leaf u of F , the graph G[Bu] is connected and G[Bu] ∈ G.
– For any edge uv in G, let s, t ∈ V (F) be the vertices such that u ∈ Bs and

v ∈ Bt. Then s is an ancestor of t, or t is an ancestor of s in F .

We define the height of an elimination forest F to be the maximum number
of edges on a path from the root to a leaf in F . One can prove with induction
that this height is equal to the elimination distance we defined earlier.

We will use these elimination forests extensively for our kernel and therefore
introduce some shorthand notation. Let (F, (Bu)u∈V (F)) be a G-elimination for-
est. Let v be a vertex in F . The tail of v, denoted with tail(v), is defined as the

Kernelization for Feedback Vertex Set 163

union of Bu over all proper ancestors u of v. The closed tail tail[v] also includes
Bv. Similarly, tree(v) denotes the union of Bu over all proper descendants u
of v and tree[v] also includes Bv. The subgraph of G induced by all vertices in
tree[v] is denoted with Gv. We will sometimes slightly abuse notation and use
Gv as a vertex set. We use the shorthand G+

v to describe the induced subgraph
on the vertices in tree[v] ∪ tail[v].

We will also introduce the notion of bridge-depth as introduced by Bougeret,
Jansen and Sau [3]. A bridge in a graph G is an edge whose removal increases the
number of connected components of G. The concept of bridge-depth now allows
us to delete a set of vertices S as long as G[S] is connected and each edge in
G[S] is a bridge in G. Such a structure G[S] is called a tree of bridges. Observe
that a single vertex is always a tree of bridges.

Definition 3 (Bridge-depth). Let G be a graph. The bridge-depth of G is
defined as

bd(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if G is the empty graph,
max

G′∈cc(G)
bd(G′) if |cc(G)| > 1,

min
S⊆V (G):

G[S] is a tree of bridges

bd(G − S) + 1 otherwise.

Cf. [3] for equivalent definitions. Lastly, we sometimes use the more common
concept of treewidth. The treewidth of a graph G is denoted with tw(G). We
mention some useful properties of these concepts in Proposition 1.

Proposition 1 (�). Let G be a graph with GF -elimination forest(
F, (Bu)u∈V (F)

)
and let η be an integer such that edGF

(G) ≤ η. Let X be a
minimum feedback vertex set in G and let v be a leaf in F . Then the following
claims hold.

1. tw(G) ≤ bd(G) ≤ edGF
(G) + 1.

2. X contains at most η vertices from Bv.
3. If there exists a path in G from a vertex in Bv to a vertex outside Bv, then

this path contains a vertex in tail(v).
4. Let u ∈ V (F), then u has at most η children c where X ∩ Gc is not a minimum

feedback vertex set in Gc.

3 Kernelization Upper Bounds

Our kernel follows the structure of the polynomial kernel for F-Minor Free

Deletion when parameterized by a treedepth-η modulator for some integer
η [20]. Our kernel relies crucially on the reduction rule specified in Lemma 2.

Lemma 2 (� Cf. [20], Lemma 6). There is a polynomial-time algorithm that,
given a graph G with modulator X ⊆ V (G) such that edGF

(G − X) ≤ η for a
constant η, outputs an induced subgraph G′ of G together with an integer Δ such
that fvs(G) = fvs(G′) + Δ and G′ − X has at most |X|Oη(1) components.

164 D. Dekker and B. M. P. Jansen

We can use this reduction rule to obtain a graph G′ where G′ − X has
a bounded number of connected components. We can then identify a set of
vertices Y ⊆ V (G′ − X) with |Y | ≤ |X|Oη(1) such that edGF

(G′ − X − Y) < η.
By definition of elimination distance, every connected component C of G′ − X
contains a vertex whose removal decreases edGF

(C). As we limited the number of
connected components by applying Lemma 2, these vertices constitute a suitable
set Y . Now observe that X ∪ Y is a modulator to a graph with elimination
distance to a forest η−1 and that |X∪Y | is bounded by a polynomial in |X|. One
can therefore provide an inductive argument which repeatedly applies Lemma 2
and increases the modulator such that the elimination distance to a forest of
the remaining graph decreases every iteration. Once we obtain a modulator to
a graph with elimination distance to a forest 1 (which is a forest), we can apply
a known polynomial kernel in the size of a feedback vertex set [16].

The reduction rule of Lemma 2 follows from the following key lemma using
known techniques. We therefore focus our attention on the proof of Lemma 1.

Lemma 1 (�). Let G be a connected graph with disjoint vertex sets S, T ⊆
V (G). Suppose that any minimum feedback vertex set X of G misses some vertex
from S or leaves two vertices from T connected in G − X. Then there exist sets
S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on the elimination distance to a
forest of G, such that any minimum feedback vertex set X of G misses some
vertex from S∗ or leaves two vertices from T ∗ connected in G − X.

We can split up Lemma 1 into two parts. Lemma 3 will bound the number
of vertices in the GF -elimination tree that contain a vertex in S or T . This
part corresponds to the original treedepth formulation in [20, Lemma 3], but is
significantly simplified for our restricted setting. Lemma 4 bounds the number of
vertices in S and T in a bag of the elimination tree. This covers the generalization
to elimination distance to a forest and concludes the proof of Lemma 1. In the
full version [10], we show how these lemmas imply Lemma 1.

Lemma 3. Let G be a connected graph with disjoint vertex sets S, T ⊆ V (G).
Let

(
R, (Bu)u∈V (R)

)
be a GF -elimination tree of G of height η. Suppose that

any minimum feedback vertex set X of G misses a vertex from S or leaves two
vertices from T connected. Then this also holds for some subsets S∗ ⊆ S and
T ∗ ⊆ T , such that any vertex in the elimination tree has at most 3η · 2η children
u for which Gu contains a vertex from S∗ or T ∗.

Proof. In analogy to the original formulation in [20], a labeled vertex is a vertex
in S or T . When we remove a label from a vertex, we remove the vertex from
S and T while the vertex remains in the graph. Suppose that we pick S∗ and
T ∗ such that no minimum feedback vertex set contains S∗ and separates T ∗,
while the latter property does not hold for any other pair of sets S′, T ′ with
S′ ⊆ S∗ and T ′ ⊆ T ∗. We claim that for such sets S∗ and T ∗, any vertex in the
elimination tree R has at most 3η ·2η children u for which Gu contains a labeled
vertex. We will also refer to the set T ∗ as the set of terminals.

Kernelization for Feedback Vertex Set 165

Assume towards a contradiction that vertex v has more child subtrees with
labels. Let these children be c1, . . . , c�. For each of these children ci, there exists
a minimum feedback vertex set Xi in G that witnesses the fact that the labels
cannot be removed from Gci

. This set Xi will therefore miss a vertex in S∗ ∩Gci

or leave a vertex in T ∗ ∩ Gci
connected to some other vertex in T ∗, while Xi

contains all vertices in S∗\Gci
and separates all vertices in T ∗\Gci

. Define Zi :=
tail[v]\Xi.

Now fix a set Z ⊆ tail[v]. We will bound the number of children ci for which
Zi = Z by 3η. Suppose towards a contradiction that there are 3η + 1 of these
children. Let C be the set containing these vertices. Pick some child cj ∈ C and
observe the following.

– By Proposition 1.4, there are at most η children ci ∈ C where Xj ∩Gci
is not

a minimum feedback vertex set in Gci
.

– There are at most η children ci ∈ C with i �= j such that a terminal in Gci
is

connected to a vertex in Z in G+
ci

− Xj , i.e. (recall the notation in Sect. 2.1)
in the induced subgraph on the remaining vertices in the subtree and tail of
ci. Otherwise, two children other than cj have a terminal connected to the
same vertex in Z, while Xj separates all terminals outside Gcj

.
– There are at most η − 1 children ci ∈ C such that in G+

ci
− Xj , there exists a

path between distinct vertices in Z that uses some vertex in Gci
. Otherwise,

we claim that we can directly construct a cycle in G − Xj . Consider for
example the auxiliary (multi)graph on vertex set Z which contains, for each
child ci ∈ C for which G+

ci
−Xj contains such a path, say between z1, z2 ∈ Z,

one edge z1z2. This auxiliary graph contains a cycle since it has too many
edges to be acyclic, which implies that there exists a cycle in G − Xj .

Pick a child ck ∈ C which is neither cj nor in the list of 3η − 1 children above.
As |C| > 3η, such a vertex exists. By the first item above, we can deduce that
Xj ∩ Gck

is a minimum feedback vertex set in Gck
. Besides, this set contains

S∗ ∩ Gck
, it separates all terminals in T ∗ ∩ Gck

, and it separates T ∗ ∩ Gck
from

Z. Furthermore, no path exists in G+
ck

− Xj that connects two vertices in Z and
also contains some vertex in Gck

.

Claim 1 (�). The set X ′ := (Xk\Gck
)∪(Xj ∩Gck

) is a minimum feedback vertex
set in G which contains S∗ and separates T ∗.

Claim 1 contradicts that any minimum feedback vertex set in G misses a
vertex in S∗ or leaves two vertices in T ∗ connected. We conclude that there are
at most 3η children ci of v for which a witnessing minimum feedback vertex set
has Zi = Z. As there are at most 2η subsets of tail[v] for any non-leaf v, this
leads to the bound of at most 3η · 2η children for which the labels cannot be
removed.
�
Lemma 4. Let G be a connected graph with disjoint vertex sets S, T ⊆ V (G).
Let

(
R, (Bu)u∈V (R)

)
be a GF -elimination tree of G of height η. Suppose that

any minimum feedback vertex set X of G misses a vertex from S or leaves two

166 D. Dekker and B. M. P. Jansen

vertices from T connected. Then this also holds for some subsets S∗ ⊆ S and
T ∗ ⊆ T , such that for any leaf u in the elimination tree, the set Bu contains at
most η vertices from S∗ and at most O(η2) from T ∗.

Proof. Pick some leaf v of elimination tree R, for which we want to ensure
that there are O(η2) vertices with labels among vertices in Y := Bv. Define
SY := S ∩ Y and TY := T ∩ Y . Our goal is to obtain subsets S∗

Y ⊆ SY and
T ∗

Y ⊆ TY whose sizes are O(η2), such that every minimum feedback vertex set
misses a vertex from S∗

Y ∪ (S\Y) or leaves a pair of terminals in T ∗
Y ∪ (T\Y)

connected. By applying this operation to all leaves of the elimination tree, we
obtain the sets promised by Lemma 4.

The construction of S∗
Y is straightforward. If |SY | > η + 1, we let S∗

Y be an
arbitrary subset of SY of size η + 1. Otherwise, S∗

Y = SY .

Claim 2. Let X be a minimum feedback vertex set in G. If X misses a vertex
in S, then it also misses a vertex in S∗

Y ∪ (S\Y).

Proof. If X misses a vertex in S\Y , then the implication is trivial. Therefore
assume X misses a vertex in SY . If this vertex is not in S∗

Y , then |S∗
Y | = η + 1

by construction. By Proposition 1.2, we know that |X ∩ S∗
Y | ≤ η so X misses a

vertex in S∗
Y . �

For the construction of T ∗
Y we distinguish two cases. First, we assume that TY

cannot be separated with η vertices in G[Y] and make the following observation.

Proposition 2 (�). Let G be a tree and T ⊆ V (G). If T cannot be separated
with η vertices, then there exist η + 1 vertex-disjoint paths whose endpoints are
distinct vertices in T .

We define T ∗
Y by taking the 2η + 2 endpoints of the paths guaranteed by

Proposition 2. Observe that these vertices are all in TY .

Claim 3. Suppose that TY cannot be separated with η vertices in G[Y]. Let
X be a minimum feedback vertex set in G. Then X leaves two vertices in T ∗

Y

connected.

Proof. By Proposition 1.2, X can only intersect η of the η + 1 vertex-disjoint
paths that were obtained through Proposition 2. Therefore, at least one path is
disjoint from X, so its endpoints in T ∗

Y are connected in G − X. �

It remains to consider the case where TY can be separated with η vertices. Let
Z be a vertex multiway cut of TY in G[Y] with |Z| ≤ η and let C := cc(G[Y]−Z).
Observe that each of these connected components is a tree with at most one
vertex in TY . Let CT ⊆ C be the set of components that contain a vertex in TY .
We are now going to mark components. For each z ∈ Z, mark η +2 components
in CT that are adjacent to z in G[Y], or all if there are fewer. Similarly, for each
u ∈ tail(v) we mark up to η+2 components in CT that are adjacent to v in G+

v .
Then we define T ∗

Y to be the union of all vertices in TY in the marked components,
together with Z ∩ TY . These are at most η(η + 2) + η(η + 2) + η = O(η2)
vertices.

Kernelization for Feedback Vertex Set 167

Claim 4. Suppose that TY can be separated with η vertices in G[Y]. Let X be
a minimum feedback vertex set in G and suppose that X leaves two vertices in
T connected. Then X also leaves two vertices in T ∗

Y ∪ (T\Y) connected.

Proof. Let Z be the vertex multiway cut used in the construction of T ∗
Y and let

t1, t2 ∈ T be two terminals that are connected in G − X. If they are both in
T ∗

Y ∪ (T\Y), then the implication is trivial, so assume that t1 ∈ TY but not in
T ∗

Y . Observe that therefore t1 �∈ Z. Let P be a path from t1 to t2 in G − X and
let z be the first vertex on this path that is not in G[Y]−Z. We now distinguish
two cases. If z ∈ Z, then observe that t1 was in a component in CT that was not
marked. Then there are η + 2 marked components in CT adjacent to z in G[Y]
of which the terminals are in T ∗

Y . Only η of these components can be intersected
by X by Proposition 1.2, so there exists a path between two terminals in T ∗

Y in
G[Y]. If z �∈ Z, then we obtain that z ∈ tail(v) by Proposition 1.3 and the case
follows analogously. �

This concludes the construction of the sets S∗
Y and T ∗

Y . If any minimum
feedback vertex set in G misses a vertex in S or leaves a pair of terminals in
T connected, then it also misses a vertex in S∗

Y ∪ (S\Y) or leaves a pair of
terminals in T ∗

Y ∪ (T\Y) connected. By applying this operation to all leaves of
the elimination tree, we obtain the promised sets S∗ and T ∗ which concludes
the proof of Lemma 4.
�

With Lemma 3 and Lemma 4 proven, we conclude the proof of Lemma 1:
if any minimum feedback vertex set in a graph G misses a vertex from a set
S ⊆ V (G) or leaves two terminals in a set T ⊆ V (G) connected, then this
property also holds for sets S∗ ⊆ S and T ∗ ⊆ T whose sizes only depend on
edGF

(G). This is the key ingredient for the proof of Lemma 2, which leads to
the kernel upper bound.

4 Kernelization Lower Bounds

In this section we summarize the main ideas behind the lower bound. We first
introduce the notion of a necklace, which turns out to be a crucial structure.

Definition 4. Let G be a graph and let F be a collection of connected graphs.
G is an F-necklace of length t if there exists a partition of V (G) into S1, . . . , St

such that

– G[Si] ∈ F for each i ∈ [t] (these subgraphs are the beads of the necklace),
– G has precisely one edge between Si and Si+1 for each i ∈ [t − 1],
– G has no edges between any other pair of sets Si and Sj.

When the length of the necklace is not relevant, we simply speak of an F-
necklace. The following definition specifies a special type of necklace.

Definition 5. Let F be a collection of connected graphs. Let G be an F-necklace
of length t. We say that G is a uniform necklace if it satisfies two additional
conditions.

168 D. Dekker and B. M. P. Jansen

– There exists a graph H ∈ F such that each bead G[Si] is isomorphic to H.
– There exist x, y ∈ V (H) and graph isomorphisms fi : V (H) → V (G[Si]) for

each bead G[Si], such that for each i ∈ [t − 1], the edge between G[Si] and
G[Si+1] has precisely the endpoints fi(x) and fi+1(y).

These concepts are used to derive the following characterization. We say that
a set contains arbitrarily long necklaces if there does not exist a constant c such
that each necklace in the set has length at most c.

Lemma 5 (�). Let F be a finite collection of connected planar graphs. Any
minor-closed graph family G with unbounded elimination distance to an F-minor
free graph contains arbitrarily long uniform F-necklaces.

Then we will prove the following lemma by giving a reduction from CNF

Satisfiability parameterized by the number of variables [11].

Lemma 6 (�). Let F be a finite set of biconnected planar graphs on at least
three vertices and let G be a minor-closed graph family. If G contains arbitrarily
long uniform F-necklaces, then F-Minor Free Deletion does not admit a
polynomial kernel in the size of a G-modulator, unless NP ⊆ coNP/poly.

Lemma 5 and Lemma 6 together directly imply Theorem 2. We will explain
the main ideas of the proof of Lemma 5 here. Our proof follows the proof by
Bougeret et al. when they characterize graph families with unbounded bridge-
depth [3]. Similar to their work, we define nmF (G) to be the length of the
longest F-necklace that a graph G contains as a minor for a family of connected
graphs F . Our goal is now to prove the existence of a small set X such that
nmF (G − X) < nmF (G) as described in Lemma 7.

Lemma 7 (�). Let F be a collection of connected planar graphs. Then there
exists a polynomial function fF : N → N such that for any connected graph G
with nmF (G) = t, there exists a set X ⊆ V (G) with |X| ≤ fF (t) such that
nmF (G − X) < t.

Bougeret et al. showed that one can derive a bounding function when the
considered structures satisfy the Erdős-Pósa property [3]. This also is the case
for F-necklaces when the graphs in F are connected and planar, so this approach
would be suitable for our purposes as well. To derive a polynomial bound on the
size of X, we use a different argument that uses treewidth and grid minors. We
start with the following property of planar graphs.

Proposition 3 (�). Any planar graph G on n vertices is a minor of the 4n×4n
grid.

Together with the Excluded Grid Theorem, this leads to the following
treewidth bound.

Lemma 8 (�). Let F be a collection of connected planar graphs of at most n
vertices each. There exists a polynomial f : N → N with f(g) = O(g19poly log g)
such that for any graph G with nmF (G) = t, it holds that tw(G) < f(4n(t+1)).

Kernelization for Feedback Vertex Set 169

To use this treewidth bound, we need a property similar to [3, Lemma 4.6].

Proposition 4 (�). For any family of connected graphs F and connected graph
G with nmF (G) > 0, any pair of minor models of F-necklaces of length nmF (G)
in G must intersect.

Proposition 4 is a generalization of the idea that in any connected graph,
two paths of maximum length must intersect at a vertex. Given a graph G with
a tree decomposition, we can use this property to identify a vertex in the tree
decomposition such that the removal of all vertices in its bag decreases nmF (G).
This result is described in Lemma 9.

Lemma 9 (�). Let F be a collection of connected graphs. Let G be a connected
graph with tw(G) = w and nmF (G) = t. Then there exists a set Z ⊆ V (G) with
|Z| ≤ w + 1 such that nmF (G − Z) < t.

The proof of Lemma 7 follows directly by combining Lemma 8 and Lemma 9.
An inductive argument, analogous to [3, Theorem 4.8], remains to use this result
to prove Lemma 5.

5 Conclusion and Discussion

We conclude that the elimination distance to a forest characterizes the Feed-

back Vertex Set problem in terms of polynomial kernelization. For a minor-
closed graph family G, the problem admits a polynomial kernel in the size of
a G-modulator if and only if G has bounded elimination distance to a forest,
assuming NP �⊆ coNP/poly. In particular, this implies that Feedback Vertex

Set does not admit a polynomial kernel in the deletion distance to a graph of
constant bridge-depth under the mentioned hardness assumption. We also gen-
eralize the lower bound to other F-Minor Free Deletion problems where F
contains only biconnected planar graphs on at least three vertices. It remains
unknown whether such a lower bound also generalizes to collections of graphs F
that contain non-planar graphs.

An interesting open problem is whether similar polynomial kernels can be
obtained for other F-Minor Free Deletion problems. Regarding the field of
fixed parameter tractable algorithms, it was recently shown [19] that for any
set F of connected graphs, F-Minor Free Deletion admits an FPT algo-
rithm when parameterized by the elimination distance to an F-minor free graph
(or even H-treewidth when H is the class of F-minor free graphs). This gener-
alizes known FPT algorithms for the natural parameterization by solution size.
Regarding polynomial kernels, F-Minor Free Deletion problems admit a
polynomial kernel in the solution size when F contains a planar graph [14]. Do
polynomial kernels exist when the problem is parameterized by a modulator to
a graph of constant elimination distance to being F-minor free?

170 D. Dekker and B. M. P. Jansen

References

1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown struc-
tures for vertex cover kernelization. Theor. Comput. Syst. 41(3), 411–430 (2007).
https://doi.org/10.1007/s00224-007-1328-0

2. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and
loop cutset. Theor. Comput. Syst. 46(3), 566–597 (2010). https://doi.org/10.1007/
s00224-009-9234-2

3. Bougeret, M., Jansen, B.M.P., Sau, I.: Bridge-depth characterizes which struc-
tural parameterizations of vertex cover admit a polynomial kernel. In: Czumaj,
A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, 8–11 July 2020, Saarbrücken, Ger-
many (Virtual Conference). LIPIcs, vol. 168, pp. 1–19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.16

4. Bougeret, M., Sau, I.: How much does a treedepth modulator help to obtain poly-
nomial kernels beyond sparse graphs? Algorithmica 81(10), 4043–4068 (2018).
https://doi.org/10.1007/s00453-018-0468-8

5. Bulian, J., Dawar, A.: Fixed-parameter tractable distances to sparse graph classes.
Algorithmica 79(1), 139–158 (2016). https://doi.org/10.1007/s00453-016-0235-7

6. Burrage, K., Estivill-Castro, V., Fellows, M., Langston, M., Mac, S., Rosamond, F.:
The undirected feedback vertex set problem has a poly(k) kernel. In: Bodlaender,
H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer,
Heidelberg (2006). https://doi.org/10.1007/11847250 18

7. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further
improvements. J. Algorithms 41(2), 280–301 (2001). https://doi.org/10.1006/
jagm.2001.1186

8. Chleb́ık, M., Chleb́ıková, J.: Crown reductions for the minimum weighted vertex
cover problem. Discret. Appl. Math. 156(3), 292–312 (2008). https://doi.org/10.
1016/j.dam.2007.03.026

9. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30559-0 22

10. Dekker, D., Jansen, B.M.P.: Kernelization for feedback vertex set via elimina-
tion distance to a forest. CoRR abs/2206.04387 (2022). https://doi.org/10.48550/
arXiv. 2206.04387

11. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. J. ACM 61(4), 1–27 (2014). https://doi.
org/10.1145/2629620

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

13. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F.A., Saurabh,
S.: The complexity ecology of parameters: an illustration using bounded max leaf
number. Theor. Comput. Syst. 45(4), 822–848 (2009). https://doi.org/10.1007/
s00224-009-9167-9

14. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: approx-
imation, kernelization and optimal FPT algorithms. In: 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, 20–23 October 2012, pp. 470–479. IEEE Computer Society (2012). https://
doi.org/10.1109/FOCS.2012.62

https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1007/s00224-009-9234-2
https://doi.org/10.1007/s00224-009-9234-2
https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1007/11847250_18
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1016/j.dam.2007.03.026
https://doi.org/10.1016/j.dam.2007.03.026
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.48550/arXiv.
https://doi.org/10.48550/arXiv.
https://doi.org/10.1145/2629620
https://doi.org/10.1145/2629620
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1007/s00224-009-9167-9
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62

Kernelization for Feedback Vertex Set 171

15. Hols, E.C., Kratsch, S.: Smaller parameters for vertex cover kernelization. In: Lok-
shtanov, D., Nishimura, N. (eds.) 12th International Symposium on Parameter-
ized and Exact Computation, IPEC 2017, 6–8 September 2017, Vienna, Austria.
LIPIcs, vol. 89, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.IPEC.2017.20

16. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, 10–14 July 2017, War-
saw, Poland. LIPIcs, vol. 80, pp. 1–14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.68

17. Jansen, B., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set.
Tsinghua Sci.Technol. 19(4), 387–409 (2014). https://doi.org/10.1109/TST.2014.
6867520

18. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited. Theor. Com-
put. Syst. 53(2), 263–299 (2012). https://doi.org/10.1007/s00224-012-9393-4

19. Jansen, B.M.P., de Kroon, J.J.H., W�lodarczyk, M.: Vertex deletion parameterized
by elimination distance and even less. In: Khuller, S., Williams, V.V. (eds.) STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, 21–25 June 2021, pp. 1757–1769. ACM (2021). https://doi.org/10.
1145/3406325.3451068

20. Jansen, B.M.P., Pieterse, A.: Polynomial kernels for hitting forbidden minors under
structural parameterizations. Theor. Comput. Sci. 841, 124–166 (2020). https://
doi.org/10.1016/j.tcs.2020.07.009

21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, Held 20–22 March 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. The IBM Research Symposia Series,
pp. 85–103. Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

22. Majumdar, D., Raman, V.: Structural parameterizations of undirected feedback
vertex set: FPT algorithms and kernelization. Algorithmica 80(9), 2683–2724
(2018). https://doi.org/10.1007/s00453-018-0419-4

23. Majumdar, D., Raman, V., Saurabh, S.: Polynomial kernels for vertex cover param-
eterized by small degree modulators. Theor. Comput. Syst. 62(8), 1910–1951
(2018). https://doi.org/10.1007/s00224-018-9858-1

24. Nemhauser, G.L., Jr., Trotter, L.E.: Vertex packings: structural properties
and algorithms. Math. Program. 8(1), 232–248 (1975). https://doi.org/10.1007/
BF01580444

25. Nešetřil, J., Ossona de Mendez, P.: Sparsity - Graphs, Structures, and Algorithms,
Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-27875-4

26. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Mathieu, C. (ed.)
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2009, New York, NY, USA, 4–6 January 2009, pp. 115–119. SIAM
(2009). http://dl.acm.org/citation.cfm?id=1496770.1496783

https://doi.org/10.4230/LIPIcs.IPEC.2017.20
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1109/TST.2014.6867520
https://doi.org/10.1109/TST.2014.6867520
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1016/j.tcs.2020.07.009
https://doi.org/10.1016/j.tcs.2020.07.009
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s00453-018-0419-4
https://doi.org/10.1007/s00224-018-9858-1
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/BF01580444
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
http://dl.acm.org/citation.cfm?id=1496770.1496783

172 D. Dekker and B. M. P. Jansen

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Finding k-Secluded Trees Faster

Huib Donkers , Bart M. P. Jansen(B) , and Jari J. H. de Kroon

Eindhoven University of Technology, Eindhoven, The Netherlands
{h.t.donkers,b.m.p.jansen,j.j.h.d.kroon}@tue.nl

Abstract. We revisit the k-Secluded Tree problem. Given a vertex-
weighted undirected graph G, its objective is to find a maximum-weight
induced subtree T whose open neighborhood has size at most k. We
present a fixed-parameter tractable algorithm that solves the problem
in time 2O(k log k) · nO(1), improving on a double-exponential running
time from earlier work by Golovach, Heggernes, Lima, and Montealegre.
Starting from a single vertex, our algorithm grows a k-secluded tree by
branching on vertices in the open neighborhood of the current tree T . To
bound the branching depth, we prove a structural result that can be used
to identify a vertex that belongs to the neighborhood of any k-secluded
supertree T ′ ⊇ T once the open neighborhood of T becomes sufficiently
large. We extend the algorithm to enumerate compact descriptions of all
maximum-weight k-secluded trees, which allows us to count the number
of such trees containing a specified vertex in the same running time.

Keywords: Secluded tree · FPT · Enumeration algorithm

1 Introduction

Background. We revisit a problem from the field of parameterized complexity:
Given a graph G with positive weights on the vertices, find a connected induced
acyclic subgraph H of maximum weight such that the open neighborhood of H
in G has size at most k.

A parameterized problem is fixed parameter tractable (FPT) [4,6] if there is
an algorithm that, given an instance I with parameter k, solves the problem in
time f(k) · |I|O(1) for some computable function f . For problems that are FPT,
such algorithms allow NP-hard problems to be solved efficiently on instances
whose parameter is small. It is therefore desirable for the function f to grow
slowly in terms of k, both out of theoretical interest as well as improving the
practical relevance of these algorithms.

We say that a vertex set S ⊆ V (G) is k-secluded in G if the open neighbor-
hood of S in G has size at most k. An induced subgraph H of G is k-secluded
in G if V (H) is. If H is also a tree, we say that H is a k-secluded tree in G.
Formally, the problem we study in this work is defined as follows.

B. M. P. Jansen—Supported by NWO Gravitation grant “Networks”.
J. J. H. de Kroon—Supported by ERC Starting grant 803421, “ReduceSearch”.

c© The Author(s) 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 173–186, 2022.
https://doi.org/10.1007/978-3-031-15914-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_13&domain=pdf
http://orcid.org/0000-0002-2767-8140
http://orcid.org/0000-0001-8204-1268
http://orcid.org/0000-0003-3328-9712
https://doi.org/10.1007/978-3-031-15914-5_13

174 H. Donkers et al.

Large Secluded Tree (LST) Parameter: k
Input: An undirected graph G, a non-negative integer k, and a weight func-
tion w : V (G) → N

+.
Task: Find a k-secluded tree H of G of maximum weight, or report that no
such H exists.

Golovach et al. [11] consider the more general Connected Secluded Π-

Subgraph, where the k-secluded induced subgraph of G should belong to some
target graph class Π. They mention that (Large) Secluded Tree is FPT
and can be solved in time 22

O(k log k) · nO(1) using the recursive understanding
technique, the details of which can be found in the arXiv version [10]. For the case
where Π is characterized by a finite set of forbidden induced subgraphs F , they
show that the problem is FPT with a triple-exponential dependency. They pose
the question whether it is possible to avoid these double- and triple-exponential
dependencies on the parameter. They give some examples of Π for which this is
the case, namely for Π being a clique, a star, a d-regular graph, or an induced
path.

Results. Our main result is an algorithm for Large Secluded Tree that takes
2O(k log k) ·n4 time. This answers the question of Golovach et al. [11] affirmatively
for the case of trees. We solve a more general version of the problem, where a set
of vertices is given that should be part of the k-secluded tree. Our algorithm goes
one step further by allowing us to find all maximum-weight solutions. As we will
later argue, it is not possible to output all such solutions directly in the promised
running time. Instead, the output consists of a bounded number of solution
descriptions such that each maximum-weight solution can be constructed from
one such description. This is similar in spirit to the work of Guo et al. [12], who
enumerate all minimal solutions to the Feedback Vertex Set problem in
O(ck ·m) time. They do so by giving a list of compact representations, a set C of
pairwise disjoint vertex subsets such that choosing exactly one vertex from every
set results in a minimal feedback vertex set. Our descriptions are non-redundant
(no two descriptions describe the same secluded tree), which allows us to count
the number of maximum-weight k-secluded trees containing a specified vertex in
the same running time.

Techniques. Rather than using recursive understanding, our algorithm is based
on bounded-depth branching with a non-trivial progress measure. Similarly to
existing algorithms to compute spanning trees with many leaves [13], our algo-
rithm iteratively grows the vertex set of a k-secluded tree T . If we select a vertex v
in the neighborhood of the current tree T , then for any k-secluded supertree T ′

of T there are two possibilities: either v belongs to the neighborhood of T ′, or
it is contained in T ′; the latter case can only happen if v has exactly one neigh-
bor in T . Solutions of the first kind can be found by deleting v from the graph
and searching for a (k − 1)-secluded supertree of T . To find solutions of the
second kind we can include v in T , but since the parameter does not decrease in
this case we have to be careful that the recursion depth stays bounded. Using a

Finding k-Secluded Trees Faster 175

reduction rule to deal with degree-1 vertices, we can essentially ensure that v has
at least three neighbors (exactly one of which belongs to T), so that adding v
to T strictly increases the open neighborhood size |N(T)|. Our main insight to
obtain an FPT algorithm is a structural lemma showing that, whenever |N(T)|
becomes sufficiently large in terms of k, we can identify a vertex u that belongs
to the open neighborhood of any k-secluded supertree T ′ ⊇ T . At that point, we
can remove u and decrease k to make progress.

Related Work. Secluded versions of several classic optimization problems have
been studied intensively in recent years [1–3,8,14], many of which are discussed in
Till Fluschnik’s PhD thesis [7]. Marx [15] considers a related problem Cutting

k (connected) vertices, where the aim is to find a (connected) set S of size
exactly k with at most � neighbors. Without the connectivity requirement, the
problem is W[1]-hard by k + �. The problem becomes FPT when S is required
to be connected, but remains W[1]-hard by k and � seperately. Fomin et al. [9]
consider the variant where |S| ≤ k and show that it is FPT parameterized by �.

Organization. We introduce our enumeration framework in Sect. 2. We present
our algorithm that enumerates maximum-weight k-secluded trees in Sect. 3 and
present its correctness and running time analyses. We give some conclusions in
Sect. 4. Proofs marked with � are deferred to the full version [5].

2 Framework for Enumerating Secluded Trees

We consider simple undirected graphs with vertex set V (G) and edge set E(G).
We use standard notation pertaining to graph algorithms, such as presented by
Cygan et al. [4]. When the graph G is clear from context, we denote |V (G)| and
|E(G)| by n and m respectively. The open neighborhood of a vertex set X in a
graph G is denoted by NG(X), where the subscript may be omitted if G is clear
from context. For a subgraph H of G we may write N(H) to denote N(V (H)).
If w : V (G) → N

+ is a weight function, then for any S ⊆ V (G) let w(S) :=∑
v∈S w(s) and for any subgraph H of G we may denote w(V (H)) by w(H).
It is not possible to enumerate all maximum-weight k-secluded trees in FPT

time; consider the graph with n vertices of weight 1 and two vertices of weight n
which are connected by k + 1 vertex-disjoint paths on n/(k + 1) vertices each,
then there are O(k · (n/k)k) maximum-weight k-secluded trees which consist of
all vertices except one vertex out of exactly k paths. However, it is possible to
give one short description for such an exponential number of k-secluded trees.

Definition 1. For a graph G, a description is a pair (r,X) consisting of a
vertex r ∈ V (G) and a set X of pairwise disjoint subsets of V (G − r) such
that for any set S consisting of exactly one vertex from each set X ∈ X , the
connected component H of G−S containing r is acyclic and N(H) = S, i.e., H
is a |X |-secluded tree in G. The order of a description is equal to |X |. We say
that a k-secluded tree H is described by a description (r,X) if N(H) consists of
exactly one vertex of each X ∈ X and r ∈ V (H).

176 H. Donkers et al.

Note that a single k-secluded tree H can be described by multiple descrip-
tions. For example, for a path on v1, . . . , v4 the 1-secluded tree induced
by {v1, v2} is described by (v1, {{v3, v4}}), (v1, {{v3}}), and (v2, {{v3}}). We
define the concept of redundancy in a set of descriptions.

Definition 2. For a graph G, a set of descriptions X of maximum order k is
called redundant for G if there is a k-secluded tree H in G such that H is
described by two distinct descriptions in X. We say X is non-redundant for G
otherwise.

Definition 3. For a graph G and a set of descriptions X of maximum order k,
let TG(X) denote the set of all k-secluded trees in G described by a description
in X.

Note 1. For a graph G we have TG(X1)∪TG(X2) = TG(X1 ∪X2) for any two sets
of descriptions X1,X2.

Note 2. For a graph G, a set of descriptions X, and non-empty vertex sets X1,X2

disjoint from
⋃

(r,X)∈X({r}∪
⋃

X∈X X), the set TG({(r,X ∪{X1∪X2}) | (r,X) ∈
X)} equals TG({(r,X ∪ {X1}) | (r,X) ∈ X)} ∪ (r,X ∪ {X2}) | (r,X) ∈ X)}).

For an induced subgraph H of G and a set F ⊆ V (G), we say that H is a
supertree of F if H induces a tree and F ⊆ V (H). Let Sk

G(F) be the set of all k-
secluded supertrees of F in G. For a set X of subgraphs of G let maxsetw(X) :=
{H ∈ X | w(H) ≥ w(H ′) for all H ′ ∈ X}. We focus our attention to the
following version of the problem, where some parts of the tree are already given.

Enumerate Large Secluded Supertrees (ELSS) Parameter: k
Input: A graph G, a non-negative integer k, non-empty vertex sets T ⊆ F ⊆
V (G) such that G[T] is connected, and a weight function w : V (G) → N

+.
Output: A non-redundant set X of descriptions such that TG(X) =
maxsetw(Sk

G(F)).

Note that if G[T], or even G[F], contains a cycle, then the answer is trivially
the empty set. In the end we solve the general enumeration problem by solving
ELSS with F = T = {v} for each v ∈ V (G) and reporting only those k-secluded
trees of maximum weight. Intuitively, our algorithm for ELSS finds k-secluded
trees that “grow” out of T . In order to derive some properties of the types of
descriptions we compute, we may at certain points demand that certain vertices
non-adjacent to T need to end up in the k-secluded tree. For this reason the
input additionally has a set F , rather than just T .

Our algorithm solves smaller instances recursively. We use the following abuse
of notation: in an instance with graph G and weight function w : V (G) → N

+,
when solving the problem recursively for an instance with induced subgraph G′

of G, we keep the weight function w instead of restricting the domain of w
to V (G′).

Finding k-Secluded Trees Faster 177

Note 3. For a graph G, a vertex v ∈ V (G), and an integer k ≥ 1, if H is a (k−1)-
secluded tree in G−v, then H is a k-secluded tree in G. Consequently, Sk−1

G−v(F) ⊆
Sk

G(F) for any F ⊆ V (G).

Note 4. For a graph G, a vertex v ∈ V (G), and an integer k ≥ 1, if H is a
k-secluded tree in G with v ∈ NG(H), then H is a (k−1)-secluded tree in G−v.
Consequently, {H ∈ Sk

G(F) | v ∈ NG(H)} ⊆ Sk−1
G−v(F) for any F ⊆ V (G).

3 Enumerate Large Secluded Supertrees

Section 3.1 proves the correctness of a few subroutines used by the algorithm.
Section 3.2 describes the algorithm to solve ELSS. In Sect. 3.3 we prove its cor-
rectness and in Sect. 3.4 we analyze its time complexity. In Sect. 3.5 we show how
the algorithm for ELSS can be used to count and enumerate maximum-weight
k-secluded trees containing a specified vertex.

3.1 Subroutines for the Algorithm

Similar to the Feedback Vertex Set algorithm given by Guo et al. [12], we
aim to get rid of degree-1 vertices. In our setting there is one edge case however.
The reduction rule is formalized as follows.

Reduction Rule 1. For an ELSS instance (G, k, F, T, w) with a degree-1 ver-
tex v in G such that F 	= {v}, contracting v into its neighbor u yields the ELSS

instance (G − v, k, F ′, T ′, w′) where the weight of u is increased by w(v) and:

F ′ =

{
(F\{v}) ∪ {u} if v ∈ F

F otherwise
T ′ =

{
(T\{v}) ∪ {u} if v ∈ T

T otherwise.

We prove the correctness of the reduction rule, that is, the descriptions of the
reduced instance form the desired output for the original instance.

Lemma 1 (�). Let I = (G, k, F, T, w) be an ELSS instance. Suppose G con-
tains a degree-1 vertex v such that {v} 	= F . Let I ′ = (G− v, k, F ′, T ′, w′) be the
instance obtained by contracting v into its neighbor u. If X is a non-redundant
set of descriptions for G−v such that TG−v(X) = maxsetw′(Sk

G−v(F ′)), then X is
a non-redundant set of descriptions for G such that TG(X) = maxsetw(Sk

G(F)).

We say an instance is almost leafless if the lemma above cannot be applied,
that is, if G contains a vertex v of degree 1, then F = {v}.

Lemma 2. There is an algorithm that, given an almost leafless ELSS instance
(G, k, F, T, w) such that k > 0 and |NG(T)| > k(k + 1), runs in time O(k · n3)
and either:

1. finds a vertex v ∈ V (G)\F such that any k-secluded supertree H of F in G
satisfies v ∈ NG(H), or

2. concludes that G does not contain a k-secluded supertree of F .

178 H. Donkers et al.

Proof. We aim to find a vertex v ∈ V (G)\F with k+2 distinct paths P1, . . . , Pk+2

from NG(T) to v that intersect only in v and do not contain vertices from T . We
first argue that such a vertex v satisfies the first condition, if it exists. Consider
some k-secluded supertree H of F . Since the paths P1, . . . , Pk+2 are disjoint apart
from their common endpoint v while |NG(H)| ≤ k, there are two paths Pi, Pj

with i 	= j ∈ [k+2] for which Pi\{v} and Pj\{v} do not intersect NG(H). These
paths are contained in H since they contain a neighbor of T ⊆ F ⊆ H. As Pi

and Pj form a cycle together with a path through the connected set T , which
cannot be contained in the acyclic graph H, this implies v ∈ NG(H).

Next we argue that if G has a k-secluded supertree H of F ⊇ T , then there
exists such a vertex v. Consider an arbitrary such H and root it at a vertex t ∈ T .
For each vertex u ∈ NG(T), we construct a path Pu disjoint from T that starts
in u and ends in NG(H), as follows.

– If u /∈ H, then u ∈ NG(H) and we take Pu = (u).
– If u ∈ H, then let �u be an arbitrary leaf in the subtree of H rooted at u;

possibly u = �u. Since T is connected and H ⊇ T is acyclic and rooted in t ∈
T , the subtree rooted at u ∈ NG(T) ∩ H is disjoint from T . Hence �u /∈ T , so
that F 	= {�u}. As the instance is almost leafless we therefore have degG(�u) >
1. Because �u is a leaf of H this implies that NG(�u) contains a vertex y other
than the parent of �u in H, so that y ∈ NG(H). We let Pu be the path from u
to �u through H, followed by the vertex y ∈ NG(H).

The paths we construct are distinct since their startpoints are. Two constructed
paths cannot intersect in any vertex other than their endpoints, since they were
extracted from different subtrees of H. Since we construct |NG(T)| > k(k + 1)
paths, each of which ends in NG(H) which has size at most k, some vertex v ∈
NG(H) is the endpoint of k + 2 of the constructed paths. As shown in the
beginning the proof, this establishes that v belongs to the neighborhood of any
k-secluded supertree of F . Since F ⊆ V (H) we have v /∈ F .

All that is left to show is that we can find such a vertex v in the promised
time bound. After contracting T into a source vertex s, for each v ∈ V (G)\F ,
do k + 2 iterations of the Ford-Fulkerson algorithm in order to check if there
are k + 2 internally vertex-disjoint sv-paths. If so, then return v. If for none of
the choices of v this holds, then output that there is no k-secluded supertree of
F in G. In order to see that this satisfies the claimed running time bound, note
that there are O(n) choices for v, and k + 2 iterations of Ford-Fulkerson runs
can be implemented to run in O(k · (n + m)) time. ��

3.2 The Algorithm

Consider an input instance (G, k, F, T, w) of ELSS. If G[F] contains a cycle,
return ∅. Otherwise we remove all connected components of G that do not contain
a vertex of F . If more than one connected component remains, return ∅. Then,
while there is a degree-1 vertex v such that F 	= {v}, contract v into its neighbor
as per Rule 1. While NG(T) contains a vertex v ∈ F , add v to T . Finally,
if NG(F) = ∅, return {(r, ∅)} for some r ∈ F . Otherwise if k = 0, return ∅.

Finding k-Secluded Trees Faster 179

We proceed by considering the neighborhood of T as follows:

1. If any vertex v ∈ NG(T) has two neighbors in T , then recursively run this
algorithm to obtain a set of descriptions X′ for (G − v, k − 1, F, T, w) and
return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

2. If |NG(T)| > k(k + 1), apply Lemma 2. If it concludes that G does not
contain a k-secluded supertree of F , return ∅. Otherwise let v ∈ V (G)\F be
the vertex it finds, obtain a set of descriptions X′ for (G − v, k − 1, F, T, w)
and return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

3. Pick some v ∈ NG(T) and let P = (v = v1, v2, . . . , v�) be the unique1 maximal
path disjoint from T satisfying degG(vi) = 2 for each 1 ≤ i < � and (v� ∈
NG(T) or degG(v�) > 2).
(a) If v� 	∈ F , obtain a set of descriptions X1 by recursively solving (G −

v�, k − 1, F, T, w). Otherwise take X1 = ∅. (We find the k-secluded trees
avoiding v� but containing P − v�.)

(b) If P−F−v� 	= ∅, obtain a set of descriptions X2 by recursively solving (G−
V (P −v�), k−1, (F\V (P))∪{v�}, T, w). Otherwise take X2 = ∅. (We find
the k-secluded trees containing both endpoints of P which have one vertex
in P as a neighbor.)

(c) If G[F ∪ V (P)] is acyclic, obtain a set of descriptions X3 by recursively
solving (G, k, F ∪ V (P), T ∪ V (P), w). Otherwise take X3 = ∅. (We find
the k-secluded trees containing the entire path P .)

Let M be the set of minimum weight vertices in P − F − v� and define:

X′
1 := {(r,X ∪ {{v�}}) | (r,X) ∈ X1}

X′
2 := {(r,X ∪ {M}) | (r,X) ∈ X2}

X′
3 := X3.

For each i ∈ [3] let wi be the weight of an arbitrary H ∈ TG(X′
i), or 0 if X′

i = ∅.
Return the set X′ defined as

⋃
{i∈[3]|wi=max{w1,w2,w3}} X

′
i.

3.3 Proof of Correctness

In this section we argue that the algorithm described in Sect. 3.2 solves the ELSS
problem. In various steps we identify a vertex v such that the neighborhood of
any (maximum-weight) k-secluded supertree must include v. We argue that for
these steps, the descriptions of the current instance can be found by adding {v}
to every description of the supertrees of T in G − v if some preconditions are
satisfied.

Lemma 3 (�). Let (G, k, F, T, w) be an ELSS instance and let v ∈ V (G)\F .
Let X be a set of descriptions for G−v such that TG−v(X) = maxsetw(Sk−1

G−v(F))
and v ∈ NG(H) for all H ∈ TG−v(X). Then we have:

TG ({(r,X ∪ {{v}}) | (r,X) ∈ X}) = maxsetw{H ∈ Sk
G(F) | v ∈ NG(H)}.

1 To construct P , initialize P := (v = v1); then while degG(v|V (P)|) = 2 and
NG(v|V (P)|)\(V (P) ∪ T) consists of a single vertex, append that vertex to P .

180 H. Donkers et al.

The following lemma is used to argue that the branches of Step 3 are disjoint.

Lemma 4. Let (G, k, F, T, w) be an almost leafless ELSS instance such that
G is connected and NG(F) 	= ∅. Fix some v ∈ NG(T) and let P = (v =
v1, v2, . . . , v�) be the unique maximal path disjoint from T satisfying degG(vi) = 2
for each 1 ≤ i < � and (v� ∈ NG(T) or degG(v�) > 2). Then for any maximum-
weight k-secluded supertree H of F , exactly one of the following holds:

1. v� ∈ N(H) (so v� /∈ F),
2. |N(H) ∩ V (P − F − v�)| = 1 and v� ∈ V (H), or
3. V (P) ⊆ V (H).

Proof. First note that such a vertex v exists since NG(F) 	= ∅ and G is connected,
so NG(T) 	= ∅. Furthermore since the instance is almost leafless, the path P is
well defined. If there is no k-secluded supertree of F , then there is nothing
to show. So suppose H is a maximum-weight k-secluded supertree of F . We
have v ∈ V (P) is a neighbor of T ⊆ F ⊆ V (H), so either V (P) ⊆ V (H) or V (P)
contains a vertex from N(H). In the first case Item 3 holds, in the second case
we have |N(H) ∩ V (P)| ≥ 1. First suppose that |N(H) ∩ V (P)| ≥ 2. Let i ∈ [�]
be the smallest index such that vi ∈ N(H) ∩ V (P). Similarly let j ∈ [�] be
the largest such index. We show that in this case we can contradict the fact
that H is a maximum-weight k-secluded supertree of F . Observe that H ′ =
V (H) ∪ {vi, . . . , vj−1} induces a tree since (vi, . . . , vj−1) forms a path of degree-
2 vertices and the neighbor vj of vj−1 is not in H. Furthermore H ′ has a strictly
smaller neighborhood than H and it has larger weight as vertices have positive
weight. Since F ⊆ V (H ′), this contradicts that H is a maximum-weight k-
secluded supertree of F .

We conclude that |N(H) ∩ V (P)| = 1. Let i ∈ [�] be the unique index such
that N(H) ∩ V (P) = {vi}. Clearly vi /∈ F . In the case that i = �, then Item 1
holds. Otherwise if i < �, the first condition of Item 2 holds. In order to argue that
the second condition also holds, suppose that v� /∈ V (H). Then H∪{vi, . . . , v�−1}
is a k-secluded supertree of F in G and it has larger weight than H as vertices
have positive weight. This contradicts the fact that H has maximum weight,
hence the second condition of Item 2 holds as well. ��

Armed with Lemma 4 we are now ready to prove correctness of the algorithm.

Lemma 5. The algorithm described in Sect. 3.2 is correct.

Proof. Let I = (G, k, F, T, w) be an ELSS instance. We prove correct-
ness by induction on |V (G)\F |. Assume the algorithm is correct for any
input (Ĝ, k̂, F̂ , T̂ , ŵ) with |V (Ĝ)\F̂ | < |V (G)\F |. We prove correctness of the
algorithm up to Step 3. The correctness of Step 3 is proven in the full version [5].

Before Step 1. We first prove correctness when the algorithm terminates before
Step 1, which includes the base case of the induction. Note that if G[F] contains
a cycle, then no induced subgraph H of G with F ⊆ V (H) can be acyclic.
Therefore the set of maximum-weight k-secluded trees containing F is the empty

Finding k-Secluded Trees Faster 181

set, so we correctly return ∅. Otherwise G[F] is acyclic. Clearly any connected
component of G that has no vertices of F can be removed. If there are two
connected components of G containing vertices of F , then no induced subgraph
of G containing all of F can be connected, again we correctly return the empty
set. In the remainder we have that G is connected.

By iteratively applying Lemma 1 we conclude that a solution to the instance
obtained after iteratively contracting (most) degree-1 vertices is also a solution
to the original instance. Hence we can proceed to solve the new instance, which
we know is almost leafless. In addition, observe that the contraction of degree-1
vertices maintains the property that G is connected and G[F] is acyclic.

After exhaustively adding vertices v ∈ NG(T) ∩ F to T we have that G[T]
is a connected component of G[F]. In the case that NG(F) = ∅, then since G is
connected it follows that F = T = V (G) and therefore T is the only maximum-
weight k-secluded tree. For any r ∈ V (G), the description (r, ∅) describes this
k-secluded tree, so we return {(r, ∅)}. In the remainder we have NG(F) 	= ∅.

Since NG(F) 	= ∅ and G is almost leafless, we argue that there is no 0-
secluded supertree of F . Suppose G contains a 0-secluded supertree H of F ,
so |NG(H)| = 0 and since H ⊇ F is non-empty and G is connected we must
have H = G, hence G is a tree with at least two vertices (since F and NG(F) are
both non-empty) so G contains at least two vertices of degree-1, contradicting
that G is almost leafless. So there is no k-secluded supertree of F in G and the
algorithm correctly returns ∅ if k = 0.

Observe that the value |V (G)\F | cannot have increased since the start of
the algorithm since we never add vertices to G and any time we remove a
vertex from F it is also removed from G. Hence we can still assume in the
remainder of the proof that the algorithm is correct for any input (Ĝ, k̂, F̂ , T̂ , ŵ)
with |V (Ĝ)\F̂ | < |V (G)\F |. To conclude this part of the proof, we have estab-
lished that if the algorithm terminates before reaching Step 1, then its output
is correct. On the other hand, if the algorithm continues we can make use of the
following properties of the instance just before reaching Step 1:

Property 1. If the algorithm does not terminate before reaching Step 1 then
(i) the ELSS instance (G, k, F, T, w) is almost leafless, (ii) G[F] is acyclic, (iii)
G[T] is a connected component of G[F], (iv) G is connected, (v) k > 0, and (vi)
NG(F) 	= ∅.

Step 1. Before arguing that the return value in Step 1 is correct, we observe the
following.

Claim 1. If H is an induced subtree of G that contains T and v ∈ NG(T) has
at least two neighbors in T , then v ∈ NG(H).

Proof. Suppose v 	∈ NG(H), then since v ∈ NG(T) and T ⊆ V (H) we have
that v ∈ V (H). But then since T is connected, subgraph H contains a cycle.
This contradicts that H is a tree and confirms that v ∈ NG(H). �

Now consider the case that in Step 1 we find a vertex v ∈ NG(T) with two
neighbors in T , and let X′ be the set of descriptions as obtained by the algorithm

182 H. Donkers et al.

through recursively solving the instance (G − v, k − 1, F, T, w). Since |V (G −
v)\F | < |V (G)\F | (as v 	∈ F) we know by induction that TG−v(X′) is the set of
all maximum-weight (k−1)-secluded supertrees of F in G−v. Any H ∈ TG−v(X′)
is an induced subtree of G with T ⊆ V (H), so by Claim 1 we have v ∈ NG(H)
for all H ∈ TG−v(X′). We can now apply Lemma 3 to conclude that TG({(r,X ∪
{{v}}) | (r,X) ∈ X′}) is the set of all maximum-weight k-secluded supertrees H
of F in G for which v ∈ NG(H). Again by Claim 1 we have that v ∈ NG(H)
for all such k-secluded supertrees of F , hence TG({(r,X ∪ {{v}}) | (r,X) ∈ X′})
is the set of all maximum-weight k-secluded supertrees of F in G. We argue
non-redundancy of the output. Suppose that two descriptions (r,X ∪{{v}}) and
(r′,X ′ ∪ {{v}}) describe the same supertree H of F in G. Note that then (r,X)
and (r′,X) describe the same supertree H of F in G − v, which contradicts
the induction hypothesis that the output of the recursive call was correct and
therefore non-redundant.

Concluding this part of the proof, we showed that if the algorithm terminates
during Step 1, then its output is correct. On the other hand, if the algorithm
continues after Step 1 we can make use of the following in addition to Property 1.

Property 2. If the algorithm does not terminate before reaching Step 2 then no
vertex v ∈ NG(T) has two neighbors in T .

Step 2. In Step 2 we use Lemma 2 if |NG(T)| > k(k + 1). The preconditions of
the lemma are satisfied since k > 0 and the instance is almost leafless by Prop-
erty 1. If it concludes that G does not contain a k-secluded supertree of F , then
the algorithm correctly outputs ∅. Otherwise it finds a vertex v ∈ V (G)\F such
that any k-secluded supertree H of F in G satisfies v ∈ NG(H). We argue
that the algorithm’s output is correct. Let X′ be the set of descriptions as
obtained through recursively solving (G − v, k − 1, F, T, w). Since v 	∈ F we
have |(V (G − v)\F | < |V (G)\F |, so by induction we have that TG−v(X′) is
the set of all maximum-weight (k − 1)-secluded supertrees of F in G − v. Fur-
thermore by Note 3 for any H ∈ TG−v(X′) = Sk−1

G−v(F) we have H ∈ Sk
G(F),

and therefore v ∈ NG(H). It follows that Lemma 3 applies to X′ so we can
conclude that TG({(r,X ∪ {{v}}) | (r,X) ∈ X′}) is the set of maximum-weight
k-secluded supertrees H of F in G for which v ∈ NG(H). Since we know there
are no k-secluded supertrees H of F in G for which v 	∈ NG(H), it follows
that TG({(r,X ∪ {{v}}) | (r,X) ∈ X}) is the set of maximum-weight k-secluded
supertrees of F in G as required. Non-redundancy of the output follows as in
Step 1.

To summarize the progress so far, we have shown that if the algorithm ter-
minates before it reaches Step 3, then its output is correct. Alternatively, if we
proceed to Step 3 we can make use of the following property, in addition to
Properties 1 and 2, which we will use later in the running time analysis.

Property 3. If the algorithm does not terminate before reaching Step 3, then
|NG(T)| ≤ k(k + 1).

Finding k-Secluded Trees Faster 183

Step 3 (�). In the full version [5] we show using Properties 1 to 3 that if the
algorithm reaches Step 3, then its output is correct. For this we use Lemma 4
to argue that the k-secluded supertrees of F in G can be partitioned into three
sets T1, T2, T3. The three recursive calls in Step 3 correspond to the subproblems
of finding the secluded trees in T1, T2, and T3. Each call finds maximum-weight
k-secluded trees of one particular type. Since the latter restriction may cause
the tree to have smaller weight than maximum k-secluded trees in general, the
postprocessing step of the algorithm restricts the output to describe only those
types providing the maximum global weight. ��

3.4 Runtime Analysis

If all recursive calls in the algorithm would decrease k then, since for k = 0 it does
not make any further recursive calls, the maximum recursion depth is k. However
in Step 3(c) the recursive call does not decrease k. In order to bound the recursion
depth, we show the algorithm cannot make more than k(k + 1) consecutive
recursive calls in Step 3(c), that is, the recursion depth cannot increase by more
than k(k+1) since the last time k decreased. This follows from Lemma 6 together
with the fact that if NG(T) > k(k + 1) then the algorithm executes Step 2,
decreases k when it goes into recursion, and does not proceed to Step 3.

Lemma 6 (�). If the recursion tree generated by the algorithm contains a
path of i ≥ 1 consecutive recursive calls in Step 3(c), and (G, k, F, T, w) is the
instance considered in Step 3 where the i-th of these recursive calls is made,
then |NG(T)| ≥ i.

Using this bound on the number of consecutive recursive calls in Step 3(c),
we obtain a maximum recursion depth of O(k3). We argue that each recursive
call takes O(kn3) time and since we branch at most three ways, we obtain a
running time of 3O(k3) · kn3 = 3O(k3) · n3. However, with a more careful analysis
we can give a better bound on the number of nodes in the recursion tree. For this,
label each edge in the recursion tree with a label from the set {1, 2, 3a, 3b, 3c}
indicating where in the algorithm the recursive call took place. Now observe
that each node in the recursion tree can be uniquely identified by a sequence of
edge-labels corresponding to the path from the root of the tree to the relevant
node. We call such a sequence of labels a trace. To bound the number of nodes in
the recursion tree we give a bound on the number of valid traces. Since recursive
calls corresponding to labels 1, 2, 3a, and 3b each decrease k, they can occur at
most k times in a valid trace. All remaining labels in the trace are 3c. So the
total number of traces of length � is

(
�
k

)
· 4k ≤ �k · 4k = (4�)k. Considering valid

traces have a length of at most k2(k + 1) we derive the following bound on the
total number of valid traces using the fact that (kc)k = (2log(k

c))k = 2O(k log k):
∑

1≤�≤k2(k+1)

(4�)k ≤ k2(k + 1) · (4k2(k + 1))k = 2O(k log k).

We can conclude that the total number of nodes in the recursion tree is at
most 2O(k log k) which leads to the following lemma.

184 H. Donkers et al.

Lemma 7 (�). The algorithm described in Sect. 3.2 can be implemented to
run in time 2O(k log k) · n3.

3.5 Finding, Enumerating, and Counting Large Secluded Trees

With the algorithm of Sect. 3.2 at hand we argue that we are able to enumerate
k-secluded trees, count such trees containing a specified vertex, and solve LST.

Theorem 1 (�). There is an algorithm that, given a graph G, weight func-
tion w, and integer k, runs in time 2O(k log k) · n4 and outputs a set of descrip-
tions X such that TG(X) is exactly the set of maximum-weight k-secluded trees
in G. Each such tree H is described by |V (H)| distinct descriptions in X.

By returning an arbitrary maximum-weight k-secluded tree described by any
description in the output of Theorem 1, we have the following consequence.

Corollary 1. There is an algorithm that, given a graph G, weight function w,
and integer k, runs in time 2O(k log k) · n4 and outputs a maximum-weight k-
secluded tree in G if one exists.

The following theorem captures the consequences for counting.

Theorem 2 (�). There is an algorithm that, given a graph G, vertex v ∈
V (G), weight function w, and integer k, runs in time 2O(k log k) · n3 and counts
the number of k-secluded trees in G that contain v and have maximum weight
out of all k-secluded trees containing v.

4 Conclusion

We revisited the k-Secluded Tree problem first studied by Golovach et al. [11],
leading to improved FPT algorithms with the additional ability to count and enu-
merate solutions. The non-trivial progress measure of our branching algorithm
is based on a structural insight that allows a vertex that belongs to the neighbor-
hood of every solution subtree to be identified, once the solution under construc-
tion has a sufficiently large open neighborhood. As stated, the correctness of this
step crucially relies on the requirement that solution subgraphs are acyclic. It
would be interesting to determine whether similar branching strategies can be
developed to solve the more general k-Secluded Connected F-Minor-Free

Subgraph problem; the setting studied here corresponds to F = {K3}. While
any F-minor-free graph is known to be sparse, it may still contain large numbers
of internally vertex-disjoint paths between specific pairs of vertices, which stands
in the way of a direct extension of our techniques.

A second open problem concerns the optimal parameter dependence for k-
Secluded Tree. The parameter dependence of our algorithm is 2O(k log k). Can
it be improved to single-exponential, or shown to be optimal under the Expo-
nential Time Hypothesis?

Finding k-Secluded Trees Faster 185

References

1. van Bevern, R., Fluschnik, T., Mertzios, G.B., Molter, H., Sorge, M., Suchý, O.:
The parameterized complexity of finding secluded solutions to some classical opti-
mization problems on graphs. Discret. Optim. 30, 20–50 (2018). https://doi.org/
10.1016/j.disopt.2018.05.002

2. van Bevern, R., Fluschnik, T., Tsidulko, Y.O.: Parameterized algorithms and data
reduction for the short secluded s-t-path problem. Networks 75(1), 34–63 (2020).
https://doi.org/10.1002/net.21904

3. Chechik, S., Johnson, M.P., Parter, M., Peleg, D.: Secluded connectivity problems.
Algorithmica 79(3), 708–741 (2016). https://doi.org/10.1007/s00453-016-0222-z

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

5. Donkers, H., Jansen, B.M.P., de Kroon, J.J.H.: Finding k-secluded trees faster
(2022). https://doi.org/10.48550/ARXIV.2206.09884

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-
0515-9

7. Fluschnik, T.: Elements of efficient data reduction: fractals, diminishers, weights
and neighborhoods. Ph.D. thesis, Technische Universität Berlin (2020). https://
doi.org/10.14279/depositonce-10134

8. Fomin, F.V., Golovach, P.A., Karpov, N., Kulikov, A.S.: Parameterized complexity
of secluded connectivity problems. Theory Comput. Syst. 61(3), 795–819 (2016).
https://doi.org/10.1007/s00224-016-9717-x

9. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity
of cutting a few vertices from a graph. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 421–432. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40313-2 38

10. Golovach, P.A., Heggernes, P., Lima, P.T., Montealegre, P.: Finding connected
secluded subgraphs. CoRR, abs/1710.10979 (2017). arXiv:1710.10979

11. Golovach, P.A., Heggernes, P., Lima, P.T., Montealegre, P.: Finding connected
secluded subgraphs. J. Comput. Syst. Sci. 113, 101–124 (2020). https://doi.org/
10.1016/j.jcss.2020.05.006

12. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.
02.001

13. Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many
leaves. Algorithmica 61(4), 882–897 (2010). https://doi.org/10.1007/s00453-010-
9454-5

14. Luckow, M.-J., Fluschnik, T.: On the computational complexity of length - and
neighborhood-constrained path problems. Inf. Process. Lett. 156, 105913 (2020).
https://doi.org/10.1016/j.ipl.2019.105913

15. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006). https://doi.org/10.1016/j.tcs.2005.10.007

https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1002/net.21904
https://doi.org/10.1007/s00453-016-0222-z
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.48550/ARXIV.2206.09884
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.14279/depositonce-10134
https://doi.org/10.14279/depositonce-10134
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.1007/978-3-642-40313-2_38
https://doi.org/10.1007/978-3-642-40313-2_38
http://arxiv.org/abs/1710.10979
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1007/s00453-010-9454-5
https://doi.org/10.1007/s00453-010-9454-5
https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1016/j.tcs.2005.10.007

186 H. Donkers et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On the Minimum Cycle Cover Problem
on Graphs with Bounded Co-degeneracy

Gabriel L. Duarte2 and Uéverton S. Souza1,2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
ueverton@ic.uff.br

2 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

gabrield@id.uff.br

Abstract. In 2017, Knop, Koutecký, Masař́ık, and Toufar [WG 2017]
asked about the complexity of deciding graph problems Π on the com-
plement of G considering a parameter p of G, especially for sparse graph
parameters such as treewidth. In 2021, Duarte, Oliveira, and Souza
[MFCS 2021] showed some problems that are FPT when parameterized
by the treewidth of the complement graph (called co-treewidth). Since
the degeneracy of a graph is at most its treewidth, they also introduced
the study of co-degeneracy (the degeneracy of the complement graph)
as a parameter. In 1976, Bondy and Chvátal [DM 1976] introduced the
notion of closure of a graph: let � be an integer; the (n + �)-closure,
cln+�(G), of a graph G with n vertices is obtained from G by recursively
adding an edge between pairs of nonadjacent vertices whose degree sum
is at least n+� until no such pair remains. A graph property Υ defined on
all graphs of order n is said to be (n+�)-stable if for any graph G of order
n that does not satisfy Υ , the fact that uv is not an edge of G and that
G+uv satisfies Υ implies d(u)+d(v) < n+ �. Duarte et al. [MFCS 2021]
developed an algorithmic framework for co-degeneracy parameterization
based on the notion of closures for solving problems that are (n + �)-
stable for some � bounded by a function of the co-degeneracy. In 2019,
Jansen, Kozma, and Nederlof [WG 2019] relax the conditions of Dirac’s
theorem and consider input graphs G in which at least n − k vertices
have degree at least n

2
, and present an FPT algorithm concerning to k,

to decide whether such graphs G are Hamiltonian. In this paper, we first
determine the stability of the property of having a bounded cycle cover.
After that, combining the framework of Duarte et al. [MFCS 2021] with
some results of Jansen et al. [WG 2019], we obtain a 2O(k) · nO(1)-time
algorithm for Minimum Cycle Cover on graphs with co-degeneracy at
most k, which generalizes Duarte et al. [MFCS 2021] and Jansen et al.
[WG 2019] results concerning the Hamiltonian Cycle problem.

Keywords: Degeneracy · Complement graph · Cycle cover · Closure ·
FPT · Kernel

This research has received funding from Rio de Janeiro Research Support Foundation
(FAPERJ) under grant agreement E-26/201.344/2021, National Council for Scientific
and Technological Development (CNPq) under grant agreement 309832/2020-9, and
the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement CUTACOMBS (No. 714704).

.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 187–200, 2022.
https://doi.org/10.1007/978-3-031-15914-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-15914-5_14

188 G. L. Duarte and U. S. Souza

1 Introduction

Graph width parameters are useful tools for identifying tractable classes of
instances for NP-hard problems and designing efficient algorithms for such prob-
lems on these instances. Treewidth and clique-width are two of the most popu-
lar graph width parameters. An algorithmic meta-theorem due to Courcelle,
Makowsky, and Rotics [7] states that any problem expressible in the monadic
second-order logic on graphs (MSO1) can be solved in FPT time when parame-
terized by the clique-width of the input graph.1 In addition, Courcelle [5] states
that any problem expressible in the monadic second-order logic of graphs with
edge set quantifications (MSO2) can be solved in FPT time when parameterized
by the treewidth of the input graph. Although the class of graphs with bounded
treewidth is a subclass of the class of graphs with bounded clique-width [4], the
MSO2 logic on graphs extends the MSO1 logic, and there are MSO2 properties
like “G has a Hamiltonian cycle” that are not MSO1 expressible [6]. In addi-
tion, there are problems that are fixed-parameter tractable when parameterized
by treewidth, such as MaxCut, Largest Bond, Longest Cycle, Longest
Path, Edge Dominating Set, Graph Coloring, Clique Cover, Mini-

mum Path Cover, and Minimum Cycle Cover that cannot be FPT when
parameterized by clique-width [12,15–18], unless FPT = W[1].

For problems that are fixed-parameter tractable concerning treewidth, but
intractable when parameterized by clique-width, the identification of tractable
classes of instances of bounded clique-width and unbounded treewidth becomes
a fundamental quest [11]. In 2016, Dvořák, Knop, and Masař́ık [13] showed that
k-Path Cover is FPT when parameterized by the treewidth of the complement
of the input graph. This implies that Hamiltonian Path is FPT when param-
eterized by the treewidth of the complement graph. In 2017, Knop, Koutecký,
Masař́ık, and Toufar (WG 2017, [21]) asked about the complexity of deciding
graph problems Π on the complement of G considering a parameter p of G (i.e.,
with respect to p(G)), especially for sparse graph parameters such as treewidth.
In fact, the treewidth of the complement of the input graph, proposed be called
co-treewidth in [11], seems a nice width parameter to deal with dense instances of
problems that are hard concerning clique-width. MaxCut, Clique Cover, and
Graph Coloring are example of problems W[1]-hard concerning clique-width
but FPT-time solvable when parameterized by co-treewidth (see [11]).

The degeneracy of a graph G is the least k such that every induced subgraph
of G contains a vertex with degree at most k. Equivalently, the degeneracy of
G is the least k such that its vertices can be arranged into a sequence so that
each vertex is adjacent to at most k vertices preceding it in the sequence. It is
well-known that the degeneracy of a graph is upper bounded by its treewidth;
thus, the class of graphs with bounded treewidth is also a subclass of the class of
graphs with bounded degeneracy. In [11], Duarte, Oliveira, and Souza presented
an algorithmic framework to deal with the degeneracy of the complement graph,
called co-degeneracy, as a parameter.

1 Originally this required a clique-width expression as part of the input.

On the Minimum Cycle Cover Problem on Graphs 189

Although the notion of co-parameters is as natural as their complementary
versions, just a few studies have ventured into the world of dense instances with
respect to sparse parameters of their complements. Also, note that would be nat-
ural to consider “co-clique-width” parameterization, but Courcelle and Olariu [8]
proved that for every graph G its clique-width is at most twice the clique-width
of G. Thus, the co-clique-width notion is redundant from the point of view of
parameterized complexity. Therefore, in the sense of being a useful parameter for
many NP-hard problems in identifying a large and new class of (dense) instances
that can be efficiently handled, the co-degeneracy seems interesting because it
is incomparable with clique-width and stronger2 than co-treewidth.

In [11], Duarte, Oliveira, and Souza developed an algorithmic framework for
co-degeneracy parameterization based on the notion of Bondy-Chvátal closure
for solving problems that have a “bounded” stability concerning some closure.
More precisely, for a graph G with n vertices, and two distinct nonadjacent
vertices u and v of G such that d(u) + d(v) ≥ n, Ore’s theorem states that G is
hamiltonian if and only if G+uv is hamiltonian. In 1976, Bondy and Chvátal [2]
generalized Ore’s theorem and defined the closure of a graph:

– let � be an integer; the (n + �)-closure, cln+�(G), of a graph G is obtained
from G by recursively adding an edge between pairs of nonadjacent vertices
whose degree sum is at least n + � until no such pair remains.

Bondy and Chvátal showed that cln+�(G) is uniquely determined from G and
that G is hamiltonian if and only if cln(G) is hamiltonian.

A property Υ defined on all graphs of order n is said to be (n + �)-stable if
for any graph G of order n that does not satisfy Υ , the fact that uv is not an
edge of G and that G+uv satisfies Υ implies d(u)+d(v) < n+�. In other words,
if uv /∈ E(G), d(u) + d(v) ≥ n + � and G + uv has property Υ , then G itself has
property Υ (c.f. [3]). The smallest integer n + � such that Υ is (n + �)-stable is
the stability of Υ , denoted by s(Υ). Note that Bondy and Chvátal showed that
Hamiltonicity is n-stable. A survey on the stability of graph properties can be
found in [3].

In [11], based on the fact that the class of graphs with co-degeneracy at
most k is closed under completion (edge addition), it was proposed the following
framework for determining whether a graph G satisfies a property Υ in FPT
time regarding the co-degeneracy of G, denoted by k:

1. determine an upper bound for s(Υ) - the stability of Υ ;
2. If s(Υ) ≤ n + � where � ≤ f(k) (for some computable function f) then

(a) set G = cln+�(G);
(b) since G = cln+�(G) and G has co-degeneracy k then G has co-vertex cover

number (distance to clique) at most 2k + � + 1 (see [11]);
(c) at this point, it is enough to solve the problem in FPT-time concerning

co-vertex cover parameterization.

2 A parameter y is stronger than x, if the set of instances where x is bounded is a
subset of those where y is bounded.

190 G. L. Duarte and U. S. Souza

In [11], using such a framework, it was shown that Hamiltonian Path,
Hamiltonian Cycle, Longest Path, Longest Cycle, and Minimum Path

Cover are all fixed-parameter tractable when parameterized by co-degeneracy.
Note that Longest Path and Minimum Path Cover are two distinct ways to
generalize the Hamiltonian Path problem just as Longest Cycle and Min-

imum Cycle Cover generalize the Hamiltonian Cycle problem. However,
the Minimum Cycle Cover problem seems to be more challenging than the
others concerning co-degeneracy parameterization, even because the stability of
having a cycle cover of size at most r, to the best of our knowledge, is unknown.

In the Minimum Cycle Cover problem, we are given a simple graph G and
asked to find a minimum set S of vertex-disjoint cycles of G such that each vertex
of G is contained in one cycle of S, where single vertices are considered trivial
cycles. Note that each nontrivial cycle has size at least three. In this paper, our
focus is on Minimum Cycle Cover parameterized by co-degeneracy.

The Dirac’s theorem from 1952 (see [10]) states that a graph G with n vertices
(n ≥ 3) is Hamiltonian if every vertex of G has degree at least n

2 . In [20], Jansen,
Kozma, and Nederlof relax the conditions of Dirac’s theorem and consider input
graphs G in which at least n − k vertices have degree at least n

2 , and present
a 2O(k) · nO(1)-time algorithm to decide whether G has a Hamiltonian cycle.
In 2022, F. Fomin, P. Golovach, D. Sagunov, and K. Simonov [19] presented the
following algorithmic generalization of Dirac’s theorem: if all but k vertices of
a 2-connected graph G are of degree at least δ, then deciding whether G has a
cycle of length at least min{2δ + k, n} can be done in time 2k · nO(1). Besides,
in 2020, F. Fomin, P. Golovach, D. Lokshtanov, F. Panolan, S. Saurabh, and M.
Zehavi [14] proved that deciding whether a 2-connected d-degenerate n-vertex
G contains a cycle of length at least d + k can be done in time 2O(k) · nO(1).

In this paper, we first determine the stability of the property of having a cycle
cover of size at most r. After that, using the closure framework proposed in [11]
together with some results and techniques presented in [20], we show that Mini-

mum Cycle Cover admits a kernel with linear number of vertices when param-
eterized by co-degeneracy. After that, by designing an exact single-exponential
time algorithm for solving Minimum Cycle Cover, we obtain as a corollary a
2O(k) ·nO(1)-time algorithm for the Minimum Cycle Cover problem on graphs
with co-degeneracy at most k. These results also implies a 2O(k) ·nO(1)-time algo-
rithm for solving Minimum Cycle Cover on graphs G in which at least n − k
vertices have degree at least n

2 , generalizing the Jansen, Kozma, and Nederlof’s
result presented in [20] (WG 2019) for the Hamiltonian Cycle problem. Also,
the single-exponential FPT algorithm for Minimum Cycle Cover parameter-
ized by co-degeneracy implies that Hamiltonian Cycle can be solved with the
same running time, improving the current state of the art for solving the Hamil-

tonian Cycle problem parameterized by co-degeneracy since the algorithm
presented in [11] runs in 2O(k log k) · nO(1) time, where k is the co-degeneracy.
Note that our results also imply that Minimum Cycle Cover on co-planar
graphs can be solved in polynomial time, which seemed to be unknown in the
literature.

On the Minimum Cycle Cover Problem on Graphs 191

2 On the Stability of Having a Bounded Cycle Cover

Although the stability of several properties has already been studied (c.f. [3]),
the stability of the property of having a cycle cover of size at most r, to the best
of our knowledge, is unknown. Therefore, we show that s(Υ) ≤ n, where r is any
positive integer, and Υ is the property of having a cycle cover of size at most r.

Lemma 1. Let r be a positive integer. A simple graph G with n vertices has a
cycle cover of size at most r if and only if its n-closure, cln(G), has also a cycle
cover of size at most r.

Proof. Let G be a simple graph with n vertices, r be a positive integer, and Υ
be the graph property of having a cycle cover of size at most r. Since the claim
trivially holds when r = 0 or r ≥ n, we assume that 1 ≤ r ≤ n − 1.

First, note that if G has a cycle cover S of size r then the set S is also a cycle
cover of cln(G), because G is a spanning subgraph of cln(G).

Now, suppose that G does not have a cycle cover of size at most r but cln(G)
has a cycle cover of size at most r.

Given that cln(G) is uniquely determined from G [2], the construction of
cln+�(G) can be seen as an iterative process of adding edges, starting from G,
where a single edge is added at each step i, until no more edges can be added.
Let E0 = E(G). We call by Ei the resulting set of edges after adding i edges
during such a process. Therefore, G0 = G, G1 = (V,E1), G2 = (V,E2), . . . , Gt =
(V,Et), where Gt = cln(G) is the finite sequence of graphs generated during a
construction of the n-closure of G.

Since G does not have a cycle cover of size at most r but cln(G) has a cycle
cover of size at most r, by the construction of cln(G), there is a single i (1 ≤ i ≤ t)
such that Gi−1 does not has a cycle cover of size at most r but Gi has a cycle
cover of size at most r. Let {uw} = Ei \ Ei−1.

Fig. 1. Representation of a graph with r − 1 cycles, a path of size h and the edge vw
that will be added, creating a graph with r cycles.

Suppose that Gi has a cycle cover Si of size at most r. For simplicity, we
assume that |Si| = r. Therefore, the vertices of Gi−1 can be covered by a set
formed by r − 1 cycles C1, C2, . . . , Cr−1 and a path P (the cycle of Gi that

192 G. L. Duarte and U. S. Souza

contains the edge uw). Assume that each cycle Cj is defined by the sequence
v1

Cj
, v2

Cj
, . . . , v

xj

Cj
of vertices, where xj is the number of vertices of Cj . Let C =

{C1, C2, . . . , Cr−1}, and P = v1
P , v2

P , . . . , vh
P , where u = v1

P , w = vh
P and h is the

number of vertices of P . Note that h ≥ 3; otherwise u = w, implying that P is
a trivial cycle and Gi−1 has a cycle cover of size r. Figure 1 illustrates C and P .

We partition some vertices of Gi−1 into four sets:

XP = {vq
P | (vq−1

P , vh
P) ∈ Ei−1 and 2 < q < h},

XC = {vq
Cj

| (v(q mod xj)+1
Cj

, vh
P) ∈ Ei−1, 1 ≤ q ≤ xj , and Cj ∈ C},

YP = {vq
P | (v1

P , vq
P) ∈ Ei−1 and 2 < q < h},

and

YC = {vq
Cj

| (vq
Cj

, v1
P) ∈ Ei−1, 1 ≤ q ≤ xj , and Cj ∈ C}.

Note that v1
Cj

= v
(1 mod 1)+1
Cj

for trivial cycles Cj . Thus, XC it is well defined.
Let X = XP ∪ XC and Y = YP ∪ YC .
The set X, is the set of vertices (with the exception of vh

P) in which its
predecessor in the path or its successor in the cycle is adjacent to vh

P . Also, the
set Y , is the set of vertices adjacent to v1

P (with the exception of v2
P). Note that

the size of both X and Y are bounded by n − 3, since they exclude the vertices
v1

P , v2
P and vh

P of P . Besides that, we can observe that

|X| = d(vh
P) − 1 and |Y | = d(v1

P) − 1,

where d(v) is the degree of the vertex v. Therefore, the following holds:

|X| + |Y | = d(vh
P) + d(v1

P) − 2

that is,
|X| + |Y | ≥ n − 2

since d(u) + d(w) ≥ n where u = v1
P , w = vh

P , and {uw} = Ei \ Ei−1.
However, |X ∪ Y | ≤ n − 3 because both X and Y exclude v1

P , v2
P and vr

P .
Therefore, there is at least one vertex that belong to both X and Y . Note that
(XP ∪ YP) ∩ (XC ∪ YC) = ∅, since, by definition, the elements of the covering
are vertex disjoint.

Therefore, there are two possibilities:

1. There is a vertex vq
P belonging to the path P such that vq

P ∈ XP ∩ YP . This
implies that Gi−1 already had a cycle covering exactly the vertices of P before
the addition of the edge uw = v1

P vh
P , which could be formed as follows (see

Fig. 2):
v1

P , v2
P , . . . , vq−1

P , vh
P , vh−1

P , vh−2
P , . . . , vq+1

P , vq
P , v1

P ;

On the Minimum Cycle Cover Problem on Graphs 193

Fig. 2. Representation of case 1, where the vertex vq
P , highlighted in gray, belongs to

XP ∩ YP .

2. There is a vertex vq
Cj

belonging to a cycle Cj ∈ C such that vq
Cj

∈ XC ∩ YC .
In this case, Gi−1 has a larger cycle that can be obtained by merging Cj with
the path P as follows (see Fig. 3):

v
(q mod xj)+1
Cj

, v
(q mod xj)+2
Cj

, . . . , vq
Cj

, v1
P , v2

P , . . . , vh
P , v

(q mod xj)+1
Cj

.

Fig. 3. Representation of case 2, where the vertex vq
Cj

, highlighted in gray, belongs to
XC ∩ YC .

In the first case Gi−1 has a cycle cover of size r, while in the second case
Gi−1 has a cycle cover of size r − 1. Both cases contradicts the hypothesis that
Gi−1 does not have a cycle cover of size at most r.

Therefore, there is no 1 ≤ i ≤ t such that Gi−1 does not have a cycle cover
of size at most r and Gi has such a cycle cover. Thus, if Gt = cln(G) has a cycle
cover of size at most r then G0 = G also has a cycle cover of size at most r. �	

Lemma 1 states that for any positive integer r, the graph property Υ of
having a cycle cover of size at most r satisfies that s(Υ) ≤ n. We remark that
such a bound is tight since whenever r = 1, the target Υ is the Hamiltonicity
property, which is well known to have stability (exactly) equal to n (c.f. [2]).

Now, observe that the class of graphs with co-degeneracy at most k is closed
under completion (edge addition), in the same way as the class of graphs with
degeneracy at most k is closed under edge removals. Recall that cln(G) is
uniquely determined from a n-vertex graph G and it can be constructed in poly-
nomial time. Therefore, by Lemma 1, we may assume that G = cln(G) whenever
G is an instance of Minimum Cycle Cover parameterized by co-degeneracy.

194 G. L. Duarte and U. S. Souza

We call by co-vertex cover any set of vertices whose removal makes the result-
ing graph complete, i.e., a vertex cover in the complement graph. The co-vertex
cover number of a graph G, co-vc(G), is the size of its minimum co-vertex cover.3

The following theorem is a key tool for this work.

Theorem 1 ([11]). Let � ≥ 0 be an integer. If a graph G has co-degeneracy k
and G = cln+�(G) then G has co-vertex cover number bounded by 2k + � + 1.
In addition, a co-vertex cover of G with size at most 2k + � + 1 can be found in
polynomial time.

From Lemma 1 and Theorem 1, the problem of solving Minimum Cycle

Cover on instances G with co-degeneracy k can be reduced in polynomial time
to the problem of solving Minimum Cycle Cover on instances G′ = cln(G)
with co-vertex cover number at most 2k + 1. Therefore, in the next section we
will focus on parameterization by the co-vertex cover number.

3 Polynomial Kernelization

In [20], Jansen, Kozma, and Nederlof showed that given a graph G with n ver-
tices such that at least n − k vertices of G have degree at least n

2 , there is a
deterministic algorithm that constructs in polynomial time a graph G′ with at
most 3k vertices, such that G is Hamiltonian if and only if G′ is Hamiltonian. In
other words, they showed that the Hamiltonian Cycle problem parameterized
by such a k has a kernel with a linear number of vertices.

First, we remark that such a parameterization that aims to explore a “dis-
tance measure” (k) of a given graph G from satisfying the Dirac property, when
applied to problems that are n-stable (such as Hamiltonian Cycle and Min-

imum Cycle Cover) can be polynomial-time reduced to the case where the
co-degeneracy is bounded by k. Since for such problems one can consider only
instances G′ such that G′ = cln(G′), from a graph G with n vertices such that at
least n−k vertices of G have degree at least n

2 , we obtain an instance G′ = cln(G)
having a clique of size at least n − k.

Therefore, in the following, we extend the “relaxed” Dirac result from [20]
by considering co-degeneracy and the Minimum Cycle Cover problem.

Theorem 2. There is a polynomial-time algorithm that, given a graph G and a
nonempty set S ⊆ V (G) such that G−S is a clique, outputs an induced subgraph
G′ of G on at most 3|S| vertices such that G has a cycle cover of size at most r
if and only if G′ has a cycle cover of size at most r.

Proof. Let G = (V,E) be a graph having a co-vertex cover S. Let C = V (G)\S. If
|C| ≤ 2|S| then by setting G′ = G the claim holds. Now, assume that |C| > 2|S|.

As in [20], let S′ = {v1, v2 : v ∈ S} be a set containing two representatives
for each vertex of S. We construct a bipartite graph H on vertex set C ∪ S′,

3 co-vc(G) is also called the distance to clique of G, and a co-vertex cover set is also
called a clique modulator.

On the Minimum Cycle Cover Problem on Graphs 195

where for each edge cv ∈ E(G) with c ∈ C and v ∈ S, we add the edges cv1, cv2
to E(H).

Now, we compute a maximum matching M ⊆ E(H) of H. Let C∗ be the
subset of vertices of C saturated (matched) by M . If |C∗| ≥ |S| + 1 then set
C ′ = C∗; otherwise, let C ′ ⊆ C be a superset of C∗ with size |S| + 1. Finally,
set G′ = G[C ′ ∪ S].

Note that G′ has at most 3|S| vertices, because C ′ has at most 2|S| vertices.
First, suppose that G′ has cycle cover Q′ of size at most r. Since G′ is

a subgraph of G, the set Q′ is a set of vertex disjoint cycles of G covering
S ∪ C ′ ⊆ V (G). Thus, only vertices of C \ C ′ are not covered by Q′. However,
since the size of C ′ is greater than the size of S, there is at least one cycle
Qj ∈ Q′ that either is a single vertex of C or contains an edge between vertices
of C. If |Qj | = 1 then we can replace it by a cycle containing all the vertices of
(C \ C ′) ∪ Qj . If Qj has an edge uv such that u, v ∈ C, then we can replace this
edge by a uv-path containing the vertices of C \ C ′ as internal vertices. In both
cases we obtain a cycle cover of size at most |Q′| in the graph G.

At this point, it remains to show that if G has a cycle cover of size r then G′

has a cycle cover of size at most r.
Using a strategy similar to that in [20], we first present a structure that

implies cycle covers of size at most r in G′. For a vertex set S∗ in a graph G∗, we
define a cycle-path cover of S∗ in G∗ as a set L of pairwise vertex-disjoint simple
paths or cycles such that each vertex of S∗ belongs to exactly one element of
L, i.e., L can be seen as a subgraph with maximum degree two which contains
every vertex of S∗. For a vertex set C∗ in G∗, we say that a cycle-path cover L
has C∗-endpoints if the endpoints of each path P ∈ L belong to C∗.

Claim 1. If G′ has a cycle-path cover of S having C ′-endpoints and containing
at most r − 1 cycles, then G′ has a cycle cover of size at most r.

Proof. We have two cases to analyse: if the cycle-path cover of S contains only
cycles, as the number of cycles is at most r − 1, then we can add a new cycle
formed by the vertices not yet covered; if the cycle-path cover contains some
paths, by vertex disjointness, all the paths have different endpoints in C ′, and,
since C ′ is a clique, we can connect such endpoints in such a way as to form a
single cycle containing these paths as subgraphs, after that, an edge uv of such a
cycle having u, v ∈ C ′ can replaced by a uv-path containing as internal vertices
the vertices of G′ that are not in such a cycle-path cover of S. In both cases, we
conclude that G′ has a cycle cover of size at most r. �

Now, considering the bipartite graph H and its maximum matching M , let
UC be the set of vertices of C that are not saturated by M , and let R be the
vertices of H that are reachable from UC by an M -alternating path in H (which
starts with a non-matching edge). Set RC = R ∩ C and RS′ = R ∩ S′.

By Claim 1, it is enough to show that if G has a cycle cover of size r then G′

has a cycle-path cover of S having C ′-endpoints and containing at most r − 1
cycles. For that, we consider Claim 2 presented in [20].

196 G. L. Duarte and U. S. Souza

Claim 2 ([20]). The sets R, RC , RS′ satisfy the following.

1. Each M -alternating path in H from UC to a vertex in RS′ (resp. RC) ends
with a non-matching (resp. matching) edge.

2. Each vertex of RS′ is matched by M to a vertex in RC .
3. For each vertex x ∈ RC we have NH(x) ⊆ RS′ .
4. For each vertex v ∈ S we have v1 ∈ RS′ if and only if v2 ∈ RS′ .
5. For each vertex v ∈ S′ \ RS′ , we have NH(v) ∩ RC = ∅ and each vertex of

NH(v) is saturated by M .

Lemma 2. If G has a cycle cover of size at most r, then G′ has a cycle-path
cover of S having C ′-endpoints and containing at most r − 1 cycles.

Proof. Let F be a cycle cover of size at most r of G. Consider F as a 2-regular
subgraph of G. Let F1 = F [S] be the subgraph of F induced by S. Since F is
a spanning subgraph of G, and S ⊂ V (G′), it follows that F1 is a cycle-path
cover of S in G′. At this point, we need to extend it to have C ′-endpoints. As
in [20], we do that by inserting edges into F1 to turn it into a subgraph F2 of
G′ in which each vertex of S has degree exactly two. This structure F2 must be
a cycle-path cover of S in G′ with C ′-endpoints, since the degree-two vertices S
cannot be endpoints of the paths.

Setting F2 = F1, RS = {v ∈ S : v1 ∈ RS′ or v2 ∈ RS′}, we proceed as follows.

1. For each vertex v ∈ RS , we have v1, v2 ∈ RS′ by Claim 2(4), which implies
by Claim 2(2) that both v1 and v2 are matched to distinct vertices x1, x2 in
RC . If v has degree zero in subgraph F1, then add the edges vx1, vx2 to F2.
If v has degree one in F2 then only add the edge vx1. (we do not add edges
if v already has degree two in F1)

2. For each vertex v ∈ S \ RS , it holds that NG(v) ∩ RC = ∅. This follows
from the fact that NG(v) = NH(v1) = NH(v2) and Claim 2(5). Note that
v /∈ RS implies v1, v2 /∈ RS′ . Hence the (up to two) neighbors that v ∈ S \RS

has in C on the cycle cover F do not belong to RC (see also Claim 2(3)), In
addition, Claim 2(5) ensures that all vertices of NG(v) are saturated by H
and hence belong to C ′. Thus, for each vertex v ∈ S \ RS , for each edge from
v to C ∩ C ′ incident on v in F , we insert the corresponding edge into F2.

It is clear that the above procedure produces a subgraph F2 in which all
vertices of S have degree exactly two. By Claim 2(5), we have that a vertex
c ∈ C does not have edges added in F2 by both previous steps, thus each vertex
c ∈ C added in F2 has degree at most two in it because c has at most one edge
in the matching M (see Step 1), while c has two edges in the cycle cover F (see
Step 2).

At this point, we know that F2 is a cycle-path cover of S having C ′-endpoints.
It remains to show that it contains at most r − 1 cycles.

On the Minimum Cycle Cover Problem on Graphs 197

Claim 3. Every cycle of F2 is a cycle of F .

Proof. Suppose that F2 has a cycle Q that is not in F . As F2 is formed from F1,
the edges in Q between the vertices of S are also edges of F . Furthermore, by
construction, the added edges from F1 to obtain F2 are the edges incident to the
vertices of S. Therefore, there is no edge between the vertices of the clique C in
Q. By Claim 2(5), we have that a vertex c ∈ C cannot be incident to two edges
of F2 being one added by Step 1 and the other by Step 2 of the construction.
Since these steps are mutually exclusive with respect to a vertex c ∈ C, and
given that c has degree two in Q (since Q is a cycle), we have that the edges of
each vertex c ∈ C∩Q were added by Step 2 of the construction (Step 1 adds only
one edge of the matching). However, by construction, the edges in Q incident to
a vertex c ∈ C are the edges in F . Therefore, every edge of Q is contained in F ,
contradicting the hypothesis that Q is not contained in F . �

By hypothesis, F has at most r cycles. Since |C| > |S|, it holds that at least
one cycle of F must have an edge between vertices of C. Thus, at least one cycle
of F is not completely contained in F2, which implies, by Claim 3, that F2 has at
most r − 1 cycles. Therefore, F2 is a cycle-path cover of S having C ′-endpoints
which contains at most r − 1 cycles. This concludes the proof of Lemma 2. �

By Lemma 2 and Claim 1, it holds that if G has a cycle cover of size at most r
then G′ has a cycle cover of size at most r. Since the reduction can be performed
in polynomial time, and |V (G′)| ≤ 3|S|, we conclude the proof of Theorem 2. �	
Corollary 1. Minimum Cycle Cover parameterized by co-degeneracy admits
a kernel with at most 6k + 3 vertices, where k = co-deg.

4 An Exact Single-Exponential Time Algorithm

By Corollary 1, it holds that an exact and deterministic single-exponential time
algorithm for Minimum Cycle Cover is enough to obtain an FPT algorithm
for Minimum Cycle Cover with single-exponential dependency concerning
the co-degeneracy of the input graph. In [9], using the Cut&Count technique,
M. Cygan, J. Nederlof, Ma. Pilipczuk, Mi. Pilipczuk, J. Rooij and J. Wojtaszczyk
produces a 2O(tw) · |V |O(1) time Monte Carlo algorithm for Minimum Cycle

Cover (Undirected Min Cycle Cover in [9]), where tw is the treewidth
of the input graph. In [1], H. Bodlaender, M. Cygan, S. Kratsch, J. Nederlof
presented two approaches to design deterministic 2O(tw) ·|V |O(1)-time algorithms
for some connectivity problems, and claimed that such approaches can be apply
to all problems studied in [9].

Although such approaches can be used to solve Minimum Cycle Cover by
a single-exponential time algorithm, in order to present a simpler deterministic
procedure, below we present a simple and deterministic dynamic programming
based on modifying the Bellman-Held-Karp algorithm.

Theorem 3. Minimum Cycle Cover can be solved in O(2n · n3) time.

198 G. L. Duarte and U. S. Souza

Proof. Given a graph G = (V,E) with an isolated vertex w, a vertex subset
X ⊆ V , s, t ∈ X, and a Boolean variable P2, we denote by M [X, s, t, P2] the size
of a minimum set S of vertex-disjoint cycles but one nonempty vertex-disjoint
st-path of G[X] such that

– every vertex of X is in an element of S;
– the st-path is not a P2 if the variable P2 = 0;
– the st-path is a P2 if the variable P2 = 1.

Note that M [V,w,w, 0] represents the size of a minimum cycle cover of G.
In essence, the st-path represents the open cycle that is still being built. The

variable P2 is a control variable to avoid P2 as cycles of size two. At each step,
we can interpret that the algorithm either lengthens the path by adding a new
endpoint or closes a cycle and opens a new trivial path. As we can reduce the
Minimum Cycle Cover problem to the case where the graph has an isolated
vertex w, we assume that this is the case and consider w ∈ X just when X = V .

Our recurrence is as follows.
If X = {v} then M [X, s, t, P2] = 1 for s = t = v and P2 = 0;
otherwise, it is ∞.

If |X| ≥ 2 then M [X, s, t, P2] is equal to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if s = t, P2 = 1
min

s′,t′∈X\{t} : s′t′∈E or s′=t′
(M [X \ {t}, s′, t′, 0]) + 1 if s = t, P2 = 0

∞ if s = t, P2 = 1, st /∈ E

M [X \ {t}, s, s, 0] if s = t, P2 = 1, st ∈ E

min
t′∈X\{t} s.t. tt′∈E, P ′

2∈{0,1}
(M [X \ {t}, s, t′, P2′]) if s = t, P2 = 0

The size of the table is bounded by (2n − 1) · n2 · 2 where n is the number
of vertices of the graph. Regarding time complexity, we have three cases: when
P2 = 1 the recurrences can be computed in O(1) time; when s = t and P2 = 0
the recurrence can be computed in O(n2) time, and since there are at most
(2n − 1) · n + 1 cells in this case, the total amount of time taken to compute
those cells is O(2n · n3); finally, when s = t and P2 = 0 the recurrence can
be computed in O(n) time, but there are O(2n · n2) cells in this case, implying
into a total amount of O(2n · n3) time to compute all these cells. Therefore, the
dynamic programming algorithm can be performed in O(2n ·n3) time. Note that,
in addition to determining the size of a minimum cycle cover, one can find it with
the same running time. Also, the correctness of the algorithm is straightforward.

�	
Corollary 2. Minimum Cycle Cover can be solved in 2O(co-deg) ·nO(1) time.

By Corollary 2, it follows that Minimum Cycle Cover on co-planar graphs
can be solved in polynomial time, which seems to be unknown in the literature.

Corollary 3. Minimum Cycle Cover on graphs G in which at least n − k
vertices have degree at least n

2 can be solved in 2O(k) · nO(1) time.

On the Minimum Cycle Cover Problem on Graphs 199

References

1. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015). 40th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2013)

2. Bondy, J.A., Chvátal, V.: A method in graph theory. Discret. Math. 15(2), 111–135
(1976)

3. Broersma, H., Ryjáček, Z., Schiermeyer, I.: Closure concepts: a survey. Graphs
Comb. 16(1), 17–48 (2000)

4. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

5. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

6. Courcelle, B.: The monadic second order logic of graphs VI: on several represen-
tations of graphs by relational structures. Discret. Appl. Math. 54(2–3), 117–149
(1994)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret.
Appl. Math. 101(1–3), 77–114 (2000)

9. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms 18(2), 1–31 (2022)

10. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 3(1),
69–81 (1952)

11. Duarte, G.L., de Oliveira Oliveira, M., Souza, U.S.: Co-degeneracy and co-
treewidth: using the complement to solve dense instances. In: Bonchi, F., Puglisi,
S.J. (eds.) 46th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2021). Leibniz International Proceedings in Informatics
(LIPIcs), Dagstuhl, Germany, vol. 202, pp. 42:1–42:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

12. Duarte, G.L., et al.: Computing the largest bond and the maximum connected cut
of a graph. Algorithmica 83(5), 1421–1458 (2021)

13. Dvořák, P., Knop, D., Masaŕık, T.: Anti-path cover on sparse graph classes. In:
Bouda, J., Hoĺık, L., Kofron, J., Strejcek, J., Rambousek, A. (eds.) Proceedings
11th Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science, MEMICS 2016, Telč, Czech Republic, 21–23 October 2016. EPTCS, vol.
233, pp. 82–86 (2016)

14. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi,
M.: Going far from degeneracy. SIAM J. Discret. Math. 34(3), 1587–1601 (2020)

15. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Clique-width: on the
price of generality. In: Proceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 825–834. SIAM (2009)

16. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized by clique-width. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 493–502. SIAM
(2010)

200 G. L. Duarte and U. S. Souza

17. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-
width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

18. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower
bounds for problems parameterized by clique-width. SIAM J. Comput. 43(5),
1541–1563 (2014)

19. Fomin, F.V., Golovach, P.A., Sagunov, D., Simonov, K.: Algorithmic extensions
of Dirac’s theorem. In: Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference,
Alexandria, VA, USA, 9–12 January 2022, pp. 406–416. SIAM (2022)

20. Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition.
In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 27–39. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30786-8 3

21. Knop, D., Koutecký, M., Masař́ık, T., Toufar, T.: Simplified algorithmic metathe-
orems beyond MSO: treewidth and neighborhood diversity. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 344–357. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 26

https://doi.org/10.1007/978-3-030-30786-8_3
https://doi.org/10.1007/978-3-319-68705-6_26

On the Lossy Kernelization for Connected
Treedepth Deletion Set

Eduard Eiben1 , Diptapriyo Majumdar2(B) , and M. S. Ramanujan3

1 Royal Holloway, University of London, Egham, UK
eduard.eiben@rhul.ac.uk

2 Indraprastha Institute of Information Technology Delhi, New Delhi, India
diptapriyo@iiitd.ac.in

3 University of Warwick, Coventry, UK
R.Maadapuzhi-Sridharan@warwick.ac.uk

Abstract. We study the Connected η-Treedepth Deletion prob-
lem, where the input instance is an undirected graph G, and an integer
k and the objective is to decide whether there is a vertex set S ⊆ V (G)
such that |S| ≤ k, every connected component of G − S has treedepth
at most η and G[S] is a connected graph. As this problem naturally gen-
eralizes the well-studied Connected Vertex Cover problem, when
parameterized by the solution size k, Connected η-Treedepth Dele-
tion is known to not admit a polynomial kernel unless NP ⊆ coNP/poly.
This motivates the question of designing approximate polynomial kernels
for this problem.

In this paper, we show that for every fixed 0 < ε ≤ 1, Connected
η-Treedepth Deletion admits a time-efficient (1+ε)-approximate ker-
nel of size k2O(η+1/ε)

(i.e., a Polynomial-size Approximate Kernelization
Scheme).

Keywords: Treedepth · Kernelization · Connected Treedepth Deletion
Set · Lossy Kernelization

1 Introduction

Parameterized complexity is a popular approach to cope with NP-Completeness
and the related area of kernelization studies mathematical formulations of prepro-
cessing algorithms for (typically) NP-complete decision problems. Kernelization
is an important step that preprocesses the input instance (I, k) into a smaller,
equivalent instance (I ′, k′) in polynomial-time such that |I|′ + k′ is bounded by
g(k). It is desired that g(k) is polynomial in k, in which case we have a polynomial
kernelization. Over the past few decades, the design of (polynomial) kerneliza-
tion for numerous problems has been explored [4–6,22] and a rich variety of algo-
rithm design techniques have been introduced. There are, however, problems that

M. S. Ramanujan is supported by Engineering and Physical Sciences Research Council
(EPSRC) grants EP/V007793/1 and EP/V044621/1.
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 201–214, 2022.
https://doi.org/10.1007/978-3-031-15914-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_15&domain=pdf
http://orcid.org/0000-0003-2628-3435
http://orcid.org/0000-0003-2677-4648
http://orcid.org/0000-0002-2116-6048
https://doi.org/10.1007/978-3-031-15914-5_15

202 E. Eiben et al.

provably do not admit polynomial kernels unless NP ⊆ coNP/poly [1,8,18,19], in
which case one requires an alternate rigorous notion of preprocessing. Moreover,
the notion of kernelization is defined with respect to decision problems, implying
that when a suboptimal solution to the reduced instance is provided, one may
not be able to get a feasible solution to the original input instance. To address
both of the aforementioned issues with kernelization, Lokshtanov et al. [21] intro-
duced the framework of Approximate Kernelization. Roughly speaking, an α-
approximate kernelization is a polynomial-time preprocessing algorithm for a
parameterized optimization problem with the promise that if a c-approximate
solution to the reduced instance is given, then a (c ·α)-approximate feasible solu-
tion to the original instance can be obtained in polynomial time. In this case,
both c, α ≥ 1. When the reduced instance has size bounded by g(k) for some poly-
nomial function g, then we have a α-approximate polynomial-size approximate
kernel (see Sect. 2 for formal definitions). In recent years, there has been a sus-
tained search for polynomial-size approximate kernels for well-known problems
in parameterized complexity that are known to exclude standard polynomial ker-
nelizations. One such set of problems is the family of “vertex deletion” problems
with a connectivity constraint. A classic example here is Vertex Cover that
admits a 2k vertex kernel, but Connected Vertex Cover provably does not
admit a polynomial kernel unless NP ⊆ coNP/poly. Lokshtanov et al. [21] proved
that for every ε > 0, Connected Vertex Cover admits a (1+ε)-approximate
kernel of size O(k�1/ε�). This is also called a Polynomial-size Approximate Ker-
nelization Scheme (PSAKS). Subsequent efforts have mainly focused on studying
the feasibility of approximate kernelization for problems that generalize Con-
nected Vertex Cover. For instance, Eiben et al. [11] obtained a PSAKS for
the Connected H-Hitting Set problem (where one wants to find a smallest
connected vertex set that hits all occurrences of graphs from the finite set H as
induced subgraphs) and Ramanujan obtained a PSAKS for Connected Feed-
back Vertex Set [24] and a (2 + ε)-approximate polynomial compression [25]
for the Planar F-deletion problem [14] with connectivity constraints on the
solution. A compression is a weaker notion than kernelization, where the output
can be an instance of a different problem.

In this paper, our focus is on the connectivity constrained version of the η-
Treedepth Deletion Set problem. In the (unconnected version of the) prob-
lem, one is given a graph G and an integer k and the goal is to decide whether
there is a vertex set of size at most k whose deletion leaves a graph of treedepth
at most η. We refer the reader to Sect. 2 for the formal definition of treedepth.
Intuitively, it is a graph-width measure that expresses the least number of rounds
required to obtain an edge-less graph, where, in each round we delete some vertex
from each surviving connected component. Treedepth is a graph parameter that
has attracted significant interest in the last decade. It allows improved algorith-
mic bounds over the better-known parameter of treewidth for many problems
(see, for example, [17,26]) and it plays a crucial role in the study of kerneliza-
tion [15]. In recent years, the optimal solution to the η-Treedepth Deletion
Set problem itself has been identified as a useful parameter in the kernelization

On the Lossy Kernelization for Connected Treedepth Deletion Set 203

of generic vertex-deletion problems [20]. The many insightful advances made
by focusing on graphs of bounded treedepth motivates us to consider the Con-
nected η-Treedepth Deletion problem as an ideal conduit between the well-
understood Connected Vertex Cover problem and the connected versions
of more general problems such as the η-Treewidth Deletion Set problem,
which is still largely unexplored from the point of view of approximate kernel-
ization. We formally state our problem as follows.

Connected η-Treedepth Deletion (Con-η-Depth-Transversal)
Input: An undirected graph G, and an integer k.
Parameter: k
Question: Does G have a set S of at most k vertices such that G[S] is
connected and (G − S) has treedepth at most η?

A set S ⊆ V (G) is called a connected η-treedepth deletion set if G[S] is con-
nected and every connected component of G − S has treedepth at most η. As
edgeless graphs have treedepth 1, it follows that Connected η-Treedepth
Deletion generalizes Connected Vertex Cover and does not have a poly-
nomial kernelization under standard hypotheses even for constant values of η,
thus motivating its study through the lens of approximate kernelization. Here,
two results in the literature are of particular consequence to us and form the
starting point of our work:

➢ Graphs of treedepth at most η can be characterized by a finite set of forbid-
den induced subgraphs, where each obstruction has size at most 22

η−1
[10] and

hence, an invocation of the result of Eiben et al. [11] gives a (1+ ε)-approximate
kernelization of size O(k22

η−1 ·2 1
ε +1) for Con-η-Depth-Transversal.

➢ On the other hand, using the fact that graphs of treedepth at most η also
exclude a finite set of graphs as forbidden minors including at least one planar
graph, we infer that the (2 + ε)-approximate polynomial compression for Con-
nected Planar F-Deletion of Ramanujan [25] implies a (2+ε)-approximate
compression for Connected η-Treedepth Deletion of size kf(η)·2O(1/ε)

for
some function f that is at least exponential.

Naturally, these two “meta-results” provide useful proofs of concept using
which we can conclude the existence of an approximate kernel (or compression)
for Connected η-Treedepth Deletion. However, the kernel-size bounds that
one could hope for by taking this approach are far from optimal and in fact, the
second result mentioned above only guarantees the weaker notion of compres-
sion. Thus, these two results raise the following natural question: “Could one
exploit structure inherent to the bounded treedepth graphs and improve upon
both results, by obtaining a (1 + ε)-approximate polynomial kernelization for
Connected η-Treedepth Deletion with improved size bounds?" Our main
result is a positive answer to this question.

Theorem 1. For every fixed 0 < ε ≤ 1, Connected η-Treedepth Deletion
has a time-efficient (1 + ε)-approximate kernelization of size kO(�2η+�10/ε�η/ε�).

204 E. Eiben et al.

2 Preliminaries

Sets and Graphs: We use [r] to denote the set {1, . . . , r} and A�B to denote the
disjoint union of two sets. We use standard graph theoretic terminologies from
Diestel’s book [7]. Throughout the paper, we consider undirected graphs. We use
P� to denote a path with � vertices. A graph is said to be connected if there is
a path between every pair of vertices. Let G = (V,E) be a graph and a pair of
vertices u, v ∈ V (G). We call a set A ⊆ V (G) an (u, v)-vertex cut if there is no
path from u to v in G − A. For u, v ∈ G, we use dist(u, v) to denote the length
of a ‘shortest path’ from u to v. We use diam(G) = maxu,v∈V (G) dist(u, v) to
denote the diameter of G. Let R ⊆ V (G) be a vertex set the elements of which
are called terminals and a weight function w : E(G) → N. A Steiner tree with
terminal set R is a subgraph T of G such that T is a tree and R ⊆ V (T). The
weight of a Steiner tree T is w(T) =

∑

e∈E(T)

w(e). A t-component for R is a

tree with at most t leaves and all these leaves coincide with a subset of R. A
t-restricted Steiner tree for R is a collection T of t-components for R such that
the union of the t-components in T induces a Steiner tree for R. We refer to
Byrka et al. [3] for more detailed introduction on these terminologies.

Proposition 1 ([2]). For every t ≥ 1, given a graph G, a terminal set R, a cost
function w : E(G) → N, and a Steiner tree T for R, there exists a t-restricted
Steiner tree T for R of cost at most (1 + 1

�log2 t�) · w(T).

Proposition 2 ([9]). Let G be a graph, R be a set of terminals, and a w :
E(G) → N be a cost function. Then, a minimum weight Steiner tree for R can
be computed in O(3|R||V (G)||E(G)|)-time.

Note that if |R| is constant then the above algorithm runs in polynomial time.

Treedepth: Given a graph G, we define td(G), the treedepth of G as follows.

td(G) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if |V (G)| = 1

1 + min
v∈V (G)

td(G − v) if G is connected and |V (G)| > 1

p
max
i=1

td(Gi) if G1, . . . , Gp are connected components of G

(1)

A treedepth decomposition of graph G = (V,E) is a rooted forest Y with
vertex set V , such that for each edge uv ∈ E(G), we have either that u is an
ancestor of v or v is an ancestor of u in Y . Note that a treedepth decomposition
of a connected graph G is equivalent to some depth-first search tree of G and in
the context of treedepth is also sometimes referred to as elimination tree of G.
It is clear from the definition that the treedepth of a graph G is equivalent to
the minimum depth of a treedepth decomposition of G, where depth is defined
as the maximum number of vertices along a path from the root of the tree to
a leaf [23]. Let T be a tree rooted at a node r. The upward closure for a set
of nodes S ⊆ V (T) is denoted by UClosT (S) = {v ∈ V (T) | v is an ancestor

On the Lossy Kernelization for Connected Treedepth Deletion Set 205

of u ∈ S in T}. This notion has proved useful in the kernelization algorithm
of Giannopoulou et al. [16] for η-Treedepth Deletion. The following facts
about the treedepth of a graph will be useful throughout the paper.

Proposition 3 ([23]). Let G be a graph such that td(G) ≤ η. Then, the diam-
eter of G is at most 2η.

Proposition 4 ([14]). For every constant η ∈ N, there exists a polynomial-time
O(1)-approximation for η-Treedepth Deletion.

Proposition 5 ([26]). Let G be a connected graph and η ∈ N. There exists an
algorithm running in O(f(η)|V (G)|)-time, for some computable function f , that
either correctly concludes that td(G) > η or computes a treedepth decomposition
for G of depth at most η.

Parameterized Algorithms and Kernels: A parameterized problem Π is a subset
of Σ∗ × N for a finite alphabet Σ. An instance of a parameterized problem is a
pair (x, k) where x ∈ Σ∗ is the input and k ∈ N is the parameter. We assume
without loss of generality that k is given in unary. We say that Π admits a
kernelization if there exists a polynomial-time algorithm that, given an instance
(x, k) of Π, outputs an equivalent instance (x′, k′) of Π such that |x′|+k′ ≤ g(k).
If g(k) is kO(1), then we say that Π admits a polynomial kernelization.

Parameterized Optimization Problem and Approximate Kernels

Definition 1. A parameterized optimization problem is a computable function
Π : Σ∗ × N × Σ∗ → R ∪ {±∞}.

The instances of a parameterized problem are pairs (x, k) ∈ Σ∗ × N, and a
solution to (x, k) is simply s ∈ Σ∗ such that |s| ≤ |x|+k. The value of a solution
s is Π(x, k, s). Since the problems we deal with here are minimization problems,
we state some of the definitions only in terms of minimization problems (for
maximization problems, the definition would be analogous). As an illustrative
example, we provide the definition of the parameterized optimization version of
Connected η-Treedepth Deletion problem as follows. This is a minimiza-
tion problem that is a function CON-η-TDS : Σ∗ × N × Σ∗ → R ∪ {±∞} as
follows.

We define CON-η-TDS(G, k, S) = ∞ if S is not a connected η-treedepth
deletion set of G. Otherwise, S is a connected η-treedepth deletion set of G and
then we define CON-η-TDS(G, k, S) = min{|S|, k + 1}.

Definition 2. For a parameterized minimization problem Π, the optimum value
of an instance (x, k) is OPTΠ(x, k) = mins∈Σ∗,|s|≤|x|+k Π(x, k, s).

For the case of Connected η-Treedepth Deletion, we define OPT(G, k)
= minS⊆V (G){CON-η-TDS(G, k, S)}. We now recall the other relevant definitions
regarding approximate kernels.

206 E. Eiben et al.

Definition 3. Let α ≥ 1 be a real number and let Π be a parameterized
minimization problem. An α-approximate polynomial-time preprocessing algo-
rithm A is a pair of polynomial-time algorithms. The first one is called the
reduction algorithm and the second one is called the solution-lifting algorithm.
Given an input instance (x, k) of Π, the reduction algorithm is a function
RA : Σ∗ × N → Σ∗ × N that outputs an instance (x′, k′) of Π.

The solution-lifting algorithm takes the input instance (x, k), the reduced
instance (x′, k′) and a solution s′ to the instance (x′, k′). The solution-lifting
algorithm works in time polynomial in |x|, k, |x′|, k′, and |s′|, and outputs a solu-
tion s to (x, k) such that the following holds:

Π(x, k, s)
OPTΠ(x, k)

≤ α
Π(x′, k′, s′)
OPTΠ(x′, k′)

The size of a polynomial-time preprocessing algorithm A is a function sizeA :
N → N defined as sizeA(k) = sup{|x′| + k′ : (x′, k′) = RA(x, k), x ∈ Σ∗}.

Definition 4 (Approximate Kernelization). An α-approximate kerneliza-
tion (or α-approximate kernel) for a parameterized optimization problem Π, and
a real α ≥ 1 is an α-approximate polynomial-time preprocessing algorithm A for
Π such that sizeA is upper-bounded by a computable function g : N → N. If g
is a polynomial function, we call A an α-approximate polynomial kernelization
algorithm.

Definition 5 (Approximate Kernelization Schemes). A polynomial-size
approximate kernelization scheme (PSAKS) for a parameterized problem Π is
a family of α-approximate polynomial kernelization algorithms, with one such
algorithm for every fixed α > 1.

Definition 6 (Time-efficient PSAKS). A PSAKS is said to be time efficient
if both the reduction algorithm and the solution lifting algorithms run in f(α)|x|c
time for some function f and a constant c independent of |x|, k, and α.

3 Approximate Kernel for Connected η-Treedepth
Deletion

In this section, we describe a (1 + ε)-approximate kernel for Connected η-
Treedepth Deletion. For the entire proof, let us fix a constant η ∈ N, the
instance (G, k) of Connected η-Treedepth Deletion, as well as ε ∈ R

such that 0 < ε ≤ 1. We prove by Theorem 1 that Connected η-Treedepth
Deletion admits a (1 + ε)-approximate kernel with kO(�2η+�10/ε�η/ε�) vertices.
As η and ε are fixed constants, the hidden constants in Big-Oh notation could
depend both on η and ε.

Overview of the Algorithm. Our reduction algorithm works in three phases.
First observe that in order for a connected η-treedepth deletion set to exist, at
most one connected component of G can have treedepth more than η. Hence, we

On the Lossy Kernelization for Connected Treedepth Deletion Set 207

can focus on the case when G is connected. We then show that we can decompose
the graph G into three sets X, Z, and R such that X is an η-treedepth deletion
set, the size of the neighborhood of every component C of G[R] in Z is at most
η and every η-treedepth deletion set S of size at most k hits all but at most η
neighbors of C in X. This completes Phase 1 (details in Sect. 3.1) and closely
follows similar decompositions in [14,16]. At this point, we observe that if the
neighborhood of C is large (at least some constant depending on η and ε), then
including the whole neighborhood in the solution is not ‘too suboptimal’. This is
a key insight in our algorithm. So, we can force the neighborhood of C in every
solution by adding a small gadget to G. Repeating this procedure allows us to
identify a set of vertices H ⊆ X that we can safely force into a solution without
increasing the size of an optimal solution too much. Moreover, we obtain that
every component of G[R] has only constantly many neighbors outside of H. This
completes the Phase 2 (Reduction Rule 2).

Notice now that the vertices of any solution for Connected η-Treedepth
Deletion can be split into two parts - the obstruction hitting vertices the
removal of which guarantees a graph of treedepth at most η, and the connec-
tor vertices that are only there to provide connectivity to a solution. This high
level approach of identifying obstruction hitters and connectors among the ver-
tices is a natural first step for problems with this flavor [11,12,24,25]. Now all
the connected components of G[R] have treedepth at most η. Moreover, we are
guaranteed that any solution of size at most k contains all but at most 2η neigh-
bors of a connected component C of G[R]. Hence, if our goal was only hitting
the obstructions in G, then we could assume that S contains at most 2η vertices
of every connected component of G[R]. But we do not know which 2η vertices
are in N(C) \ S and which vertices of C can provide connectivity to S. This
requires us to use careful ‘problem-specific argumentation’ and reduction rules.
We observe that N(C)\H has already constant size and we can classify the (sub-
sets of) vertices of C into types depending on their neighborhood in N(C) \ H.
In addition we allow each connected component of G[R] to have much larger but
still a constant, intersection with S. We furthermore observe that if we chose
this constant, denoted by λ, then we can include the whole neighborhood of
every component C that intersects a solution S in more than λ vertices without
increasing the size of the solution too much. Now, we finally can identify the
vertices that are not necessary for any solution that intersects every component
in at most λ vertices. Denote the set of these vertices M. There is no danger in
removing such vertices for hitting the obstructions, as for every component C of
G′ − (X ∪ Z) that intersects more than λ vertices of a solution in the reduced
instance G′ our solution-lifting algorithm adds the neighborhood of C into the
solution. However, removing all of these vertices may very well destroy the con-
nectivity of the solution. Here, we make use of Propositions 1 and 2 to find a
small subset N of vertices in M such that G−(M\N) actually have a connected
η-treedepth deletion set of approximately optimal size. This completes Phase 3
(details in Sects. 3.3 and 3.4).

208 E. Eiben et al.

3.1 Decomposition of the Graph G

We first observe that we can remove all connected components of G that already
have treedepth at most η, as we do not need to remove any vertex from such a
component.

Reduction Rule 1. Let C be a connected component of G such that td(G[C]) ≤
η. Then, delete C from G. The new instance is (G − C, k).

It follows that Reduction Rule 1 is an approximation preserving reduction
rule. Hence, given a c-approximate connected η-treedepth deletion set of (G −
C, k), we can in polynomial time compute a c-approximate connected η-treedepth
deletion set of (G, k). Hence, we can assume that G is a connected graph. We
start by constructing a decomposition of the graph such that V (G) = X �Z �R
satisfying some crucial properties that we use in our subsequent phases of the
preprocessing algorithm. The construction is inspired by the decompositions used
by Fomin et al. [14] (for the Planar F-Deletion problem) and Giannopoulou
et al. [16].

Lemma 1. ()1 There exists a polynomial-time algorithm that either correctly
concludes that no η-treedepth deletion set S for G of size at most k exists, or
it constructs a partition V (G) = X � Z � R such that the following properties
are satisfied. (1) X is an η-treedepth deletion set of G and |X| = O(k), (2)
|Z| = O(k3), (3) For every connected component C of G[R], |NG(C) ∩ Z| ≤ η,
and (4) Let C be a connected component of G[R]. Then, for any η-treedepth
deletion set S of size at most k, it holds that |(NG(C) ∩ X) \ S| ≤ η.

We run the algorithm of Lemma 1 and we fix for the rest of the proof the sets
of vertices X, Z, and R such that they satisfy the above lemma. Furthermore,
let us fix a δ = ε

10 and notice that since ε ≤ 1, we have that (1 + δ)4 ≤ (1 + ε).
Finally let us set d = � 2η+3η

δ �. The next step of the algorithm is to find a set of
vertices H ⊆ X such that every component C of G − (X ∪ Z) has at most d+ η
neighbors in X \ H. Our goal is to do it in a way that we can force H into every
solution and increase the size of an optimal solution only by a small fraction.

3.2 Processing Connected Components of G − (X ∪ Z) with Large
Neighborhoods

We initialize H := ∅ and we apply the following reduction rule exhaustively.

Reduction Rule 2. Let C be a connected component of G[R]. If |(NG(C) ∩
X) \ H| > d + η, then for every u ∈ NG(C) ∩ X, add a new clique J with η + 1
vertices to G such that J ∩ X = {u} and NG(J \ {u}) = {u}. Add the vertices
of NG(C) to H.

1 Due to lack of space, omitted proofs or the proofs marked � can be found in the full
version.

On the Lossy Kernelization for Connected Treedepth Deletion Set 209

After we finish applying Reduction Rule 2 on (G, k) exhaustively, let G′ be
the resulting graph. We prove the following two lemmas using Lemma 1.

Lemma 2. () Let S be an optimal connected η-treedepth deletion set of (G, k)
of size at most k. Then, Reduction Rule 2 is not applicable more than |S|/d
times.

Using the above lemma, we prove the following lemma.

Lemma 3. () Let (G′, k′) be the instance obtained after exhaustively applying
the Reduction Rule 2 on (G, k) such that k′ = k. Then, the following conditions
are satisfied. (i) Any connected η-treedepth deletion set of (G′, k′) is a connected
η-treedepth deletion set of (G, k), and (ii) If OPT(G, k) ≤ k, then OPT(G′, k′) ≤
(1 + δ)OPT(G, k)

3.3 Understanding the Structure of a Good Solution

From now on we assume that we have applied Reduction Rule 2 exhaustively
and, for the sake of exposition, we denote by G the resulting graph. Moreover,
we also fix the set H we obtained from the exhaustive application of Reduction
Rule 2. It follows that every connected component of G − (X ∪ Z) have at most
d + 2η neighbors outside H. Furthermore, Reduction Rule 2 ensures that any
feasible connected η-treedepth deletion set must contain H. This follows because
for every vertex u ∈ H there exists a clique J of size η + 1 that contains u and
NG(J \ {u}) = {u}. So every connected η-treedepth deletion set that contains
a vertex in J and a vertex outside of J contains also u. Notice that if S is a
connected η-treedepth deletion set for (G, k) and C is a component of G[R], then
(S \ C) ∪ N(C) is an η-treedepth deletion set. Moreover, we can connect each
vertex from N(C)\H to H using at most 2η vertices of C. Hence the only reason
for a component of G[R] to contain more than 2η(d + 2η) vertices is if C also
provides connectivity to S. Let us fix for the rest of the proof λ = 2η�d+2η

δ �.
Let T ⊆ (X ∪ Z) \ H. We denote by Comp(T) the set of all the components C
of G − (X ∪ Z) such that N(C) \ H = T . Note that, by the definition of H, if
|T | ≥ d + 2η + 1, then Comp(T) = ∅. Let S be an η-treedepth deletion set of G.
Suppose that for every T ⊆ (X ∪ Z) \ H it holds that if S intersects Comp(T)
in more than λ vertices (i.e. |

⋃
C∈Comp(T)(S ∩ C)| > λ), then T ⊆ S. Then we

call S is nice treedepth deletion set.
From now on, we focus on nice connected η-treedepth deletion sets. We first

reduce the instance (G, k) to an instance (G′, k) such that (i) G′ is an induced
subgraph of G, (ii) every nice connected η-treedepth deletion set for (G′, k) is
also a nice connected η-treedepth deletion set for (G, k), and (iii) (G′, k) has a
nice connected η-treedepth deletion set of size at most (1 + δ)2OPT(G, k).

Afterwards, we show that any connected η-treedepth deletion set S′ for (G′, k)
can be transformed into a nice connected η-treedepth deletion set for (G′, k) of
size at most (1 + δ)|S′|. To obtain our reduced instance we will heavily rely on
the following lemma that helps us identify vertices that only serve as connectors
in any nice connected η-treedepth deletion set.

210 E. Eiben et al.

Lemma 4. () Let G′ be an induced (not necessarily strict) subgraph of G and
T,C1, C2, . . . , C� be pairwise disjoint sets of vertices in G such that: (i) G′[Ci]
is connected, (ii) N(Ci) \ H = T , for some fixed set of vertices T , and (iii)
td(G′[Ci]) = td(G′[Cj]) for all i, j ∈ [�]. Now let S be an η-treedepth deletion
set in G′ such that H ⊆ S and let J = {Ci | Ci ∩ S = ∅}, i.e., J is the set of
components in C1, C2, . . . , C� that do not contain any vertex of S. If |J | ≥ η+1,
then S′ = S \ (

⋃
i∈[�] Ci) is an η-treedepth deletion set in G′.

3.4 Identifying Further Irrelevant Vertices

We now mark some vertices of G − (X ∪ Z) that we would like to remove, as
these vertices are not important for hitting obstructions in a nice connected η-
treedepth deletion set. We note that we will end up not removing all of these
vertices, as some of them will be important as connectors for obstruction hitting
vertices in the solution. However, this step lets us identify a relatively small
subset of vertices such that any nice η-treedepth deletion set for the subgraph
induced by this subset of vertices is indeed nice η-treedepth deletion set for G.
We then make use of Propositions 1 and 2 to add some vertices back as possible
connectors. Recall that we fixed λ = 2η�d+2η

δ �. Let us set M = ∅. We now
describe two reduction rules based on Lemma 4 that do not change G and only
add vertices to M. For T ⊆ (X ∪ Z) \ H and i ∈ N, let Comp(T, i) denote the
components C ∈ Comp(T) such that td(G[C]) = i.

Reduction Rule 3. Let T ⊆ (X∪Z)\H and i ∈ [η]. If |Comp(T, i)| ≥ λ+η+2,
then add vertices of all but λ + η + 1 of the components in Comp(T, i) to M.

Reduction Rule 4. Let C be a component of G−(X∪Z∪M), YC be a treedepth
decomposition of G[C] of depth at most η, and i ∈ [η]. Moreover, let v be a vertex
in C and T ⊆ (N(C) \ H) ∪ UClosYC

({v}). Finally, let C = {C1, C2, . . . , C�} be
all the components of G − T such that for all j ∈ [�] it holds that Cj ⊆ C,
N(Cj) \ H = T and td(G[Cj]) = i. If |C| ≥ λ + η + 2, then add the vertices of
all but λ + η + 1 of the components in C to M.

Once we apply Reduction Rules 3 and 4 exhaustively and obtain a vertex set
M, we use Lemma 4 in order to prove the following two lemmas that provide
some interesting characteristics (the following two lemmas) of nice η-treedepth
deletion sets of G.

Lemma 5. () Let M be the set of vertices obtained by exhaustive application of
Reduction Rules 3 and 4 and let S′ be a nice η-treedepth deletion set for G−M.
Then S′ is a nice η-treedepth deletion set for G.

Lemma 6. () Let M be the set of vertices obtained by exhaustive application
of Reduction Rules 3 and 4. Then |V (G) \ M| = O(k3d+6η).

Now our next goal is to add some of the vertices from M back, in order to
preserve also an approximate nice connected η-treedepth deletion set. We start

On the Lossy Kernelization for Connected Treedepth Deletion Set 211

by setting N = ∅. Now for every set L ⊆ V (G) \ M of size at most t = 2� 1
δ �

we compute a Steiner tree TL for the set of terminals L in G. If TL has at most
(1 + δ)k vertices, we add all vertices on TL to N . It follows from Lemma 6 that
|N | = O(k(3d+6η)t+1). Since t is a constant, it follows from Proposition 2 that
we can compute each of at most O(k(3d+6η)t) Steiner trees in polynomial time.
We now let G′ = G − (M \ N).

The following lemma will be useful to show that there is a small nice con-
nected η-treedepth deletion set solution in G′. Moreover, it will be also useful in
our solution-lifting algorithm, where we need to first transform the solution to
a nice connected η-treedepth deletion set.

Lemma 7. () Let Y ⊆ (V (G) \ (X ∪ Z)) and let S be a connected η-treedepth
deletion set for G − Y of size at most k. There is a polynomial-time algorithm
that takes on the input G, Y , and S and outputs a nice connected η-treedepth
deletion set for G − Y of size at most (1 + δ)|S|.

Using the above lemma, we now prove the following two lemmas that we will
eventually use to prove our final theorem statement. The proofs of the following
two lemmas use the correctness of Lemma 7.

Lemma 8. () If OPT(G, k) ≤ k, then there exists a connected η-treedepth
deletion set for G′ of size at most (1 + δ)2OPT(G, k).

The proof of following lemma will also use both Lemma 7 and Lemma 8.

Lemma 9. () Given a connected η-treedepth deletion set S′ of (G′, k′) of size
at most k, we can in polynomial time compute a connected η-treedepth deletion
set S of (G, k) such that

|S|
OPT(G, k)

≤ (1 + δ)3
|S′|

OPT(G′, k′)
.

We are now ready to prove our main result.

Theorem 2. For every fixed 0 < ε ≤ 1, Connected η-Treedepth Deletion
has a time-efficient (1 + ε)-approximate kernelization of size kO(�2η+�10/ε�η/ε�).

Proof (Sketch). We choose δ, λ and t as described earlier. The approximate ker-
nelization algorithm has two parts, i.e. reduction algorithm and solution lifting
algorithm.

➢ Reduction Algorithm: Let (G, k) be an input instance and we can
assume without loss of generality that G is connected. The reduction algorithm
works as follows. If |V (G)| ≤ 23η2+dη(λ + η + 1)η+1(1 + δ)k(3d+6η)t+1, then we
output (G, k). Otherwise, we first invoke Lemma 1 and construct a decomposition
of V (G) = X�Z�R and some conditions are satisfied. Then we apply Reduction
Rule 2 to construct H and the instance (G1, k). Afterwards, we apply Reduction
Rules 3 and 4 on (G1, k) exhaustively to compute M. Afterwards, we compute an
optimal Steiner tree TL for every subset L of V (G) \ M of size at most t = 2� 1

δ �

212 E. Eiben et al.

and if its size is at most (1+δ)k, then we add TL to the set N . We delete M\N
from (G1, k) to compute the instance (G′, k′) with k′ = k. This completes the
reduction algorithm.

➢ Solution Lifting Algorithm: Let S′ be a connected η-treedepth deletion
set to (G′, k′). If |S′| > k′, then we output the entire vertex set of a connected
component whose treedepth is larger than η. Otherwise |S′| ≤ k′. We invoke
Lemma 9 to compute a nice connected η-treedepth deletion set S1 of the instance
(G1, k). By construction, H ⊆ S1. If |S1| ≤ k, we output S = S1 as a connected
η-treedepth deletion set of (G, k). Otherwise |S1| > k, then also we output the
entire vertex set of a connected component whose treedepth is larger than η. By
case, analysis it can be proved that these two algorithm together constitutes a
(1 + ε)-approximate kernel.

By construction, Lemma 6, and the size bound of |N |, we have that |V (G′)| =
O(k(3d+6η)t+1). Recall that d = �2η+3η/δ�, t = 2�1/δ�, and δ = ε

10 . It can be
observed that all the reduction rules can be performed in kO(3d+6η)tnO(1)-time
and are executed only when |V (G)| = n > 23η2+dη(λ+η+1)η+1(1+δ)k(3d+6η)t+1.

Hence, we have a time-efficient PSAKS with the claimed bound. ��

4 Conclusions

We obtained a polynomial-size approximate kernelization scheme (PSAKS) for
Connected η-Treedepth Deletion, improving upon existing bounds and
advancing the line of work on approximate kernels for vertex deletion problems
with connectivity constraints. Towards our result, we combined known decom-
position techniques with new preprocessing steps that exploit structure present
in bounded treedepth graphs. Our work points to a few interesting questions for
follow up research:

➢ Is there a PSAKS for η-Treedepth Deletion with stronger connec-
tivity constraints, e.g., when the solution is required to induce a biconnected
graph. Recently, Einarson et al. [13] initiated this line of research in the con-
text of studying approximate kernels for Vertex Cover with biconnectivity
constraints. It would be interesting to obtain similar results for η-Treedepth
Deletion?

➢ Could one get a PSAKS for Con-η-Depth-Transversal at which the
dependency of η in the exponent of k can be removed? Such a result is known
for η-Treedepth Deletion without connectivity constraints (a kernel with
O(2O(η2)k6) vertices [16]). Some parts of our algorithm are based on this work
of [16]. However, we incur the kO(2O(η)·1/ε) cost in the kernel size in several places
(e.g. Reduction Rules 3 and 4). We believe that one would need to formulate a
significantly distinct approach in order to attain a such a bound.

➢ Could one get a PSAKS for Connected η-Treewidth Deletion? The
current best approximate kernel result for this problem is a (2+ ε)-approximate
polynomial compression from [25]. We believe that several parts of our algorithm
can be adapted to work for η-Treewidth Deletion. However, we have crucially
used the fact that a connected bounded treedepth graph has bounded diameter
that does not hold for bounded treewidth graphs.

On the Lossy Kernelization for Connected Treedepth Deletion Set 213

References

1. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-
composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

2. Borchers, A., Du, D.: The k-Steiner ratio in graphs. SIAM J. Comput. 26(3), 857–
869 (1997)

3. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

4. Cygan, M.: Deterministic parameterized connected vertex cover. In: Fomin, F.V.,
Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 95–106. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31155-0_9

5. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex
set is fixed-parameter tractable. SIAM J. Discret. Math. 27(1), 290–309 (2013)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Cham (2012)

8. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors
and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

9. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

10. Dvorák, Z., Giannopoulou, A.C., Thilikos, D.M.: Forbidden graphs for tree-depth.
Eur. J. Comb. 33(5), 969–979 (2012)

11. Eiben, E., Hermelin, D., Ramanujan, M.S.: On approximate preprocessing for dom-
ination and hitting subgraphs with connected deletion sets. J. Comput. Syst. Sci.
105, 158–170 (2019)

12. Eiben, E., Kumar, M., Mouawad, A.E., Panolan, F., Siebertz, S.: Lossy kernels
for connected dominating set on sparse graphs. SIAM J. Discret. Math. 33(3),
1743–1771 (2019)

13. Einarson, C., Gutin, G.Z., Jansen, B.M.P., Majumdar, D., Wahlström, M.: p-
edge/vertex-connected vertex cover: parameterized and approximation algorithms.
CoRR abs/2009.08158 (2020)

14. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approxima-
tion, kernelization and optimal FPT algorithms. In: 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23
October 2012, pp. 470–479. IEEE Computer Society (2012)

15. Gajarský, J., et al.: Kernelization using structural parameters on sparse graph
classes. J. Comput. Syst. Sci. 84, 219–242 (2017)

16. Giannopoulou, A.C., Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: Uniform ker-
nelization complexity of hitting forbidden minors. ACM Trans. Algorithms 13(3),
35:1–35:35 (2017)

17. Hegerfeld, F., Kratsch, S.: Solving connectivity problems parameterized by
treedepth in single-exponential time and polynomial space. In: Paul, C., Bläser,
M. (eds.) 37th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2020, Montpellier, France, 10–13 March 2020. LIPIcs, vol. 154, pp.
29:1–29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

18. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: A completeness
theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015)

https://doi.org/10.1007/978-3-642-31155-0_9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

214 E. Eiben et al.

19. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial
lower bounds for kernelization. In: Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 Jan-
uary 2012, pp. 104–113 (2012)

20. Jansen, B.M.P., Pieterse, A.: Polynomial kernels for hitting forbidden minors under
structural parameterizations. Theor. Comput. Sci. 841, 124–166 (2020)

21. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 224–237 (2017)

22. Misra, N., Philip, G., Raman, V., Saurabh, S.: The kernelization complexity of
connected domination in graphs with (no) small cycles. Algorithmica 68(2), 504–
530 (2014)

23. Nesetril, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. Eur. J. Comb. 27(6), 1022–1041 (2006)

24. Ramanujan, M.S.: An approximate kernel for connected feedback vertex set. In:
27th Annual European Symposium on Algorithms, ESA 2019, Munich/Garching,
Germany, 9–11 September 2019, pp. 77:1–77:14 (2019)

25. Ramanujan, M.S.: On approximate compressions for connected minor-hitting sets.
In: 29th Annual European Symposium on Algorithms, ESA 2021 (2021)

26. Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: A faster parameterized algo-
rithm for treedepth. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014. LNCS, vol. 8572, pp. 931–942. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43948-7_77

https://doi.org/10.1007/978-3-662-43948-7_77

Generalized k-Center: Distinguishing
Doubling and Highway Dimension

Andreas Emil Feldmann and Tung Anh Vu(B)

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

feldmann.a.e@gmail.com, tung@kam.mff.cuni.cz

Abstract. We consider generalizations of the k-Center problem in
graphs of low doubling and highway dimension. For the Capacitated

k-Supplier with Outliers (CkSwO) problem, we show an efficient
parameterized approximation scheme (EPAS) when the parameters
are k, the number of outliers and the doubling dimension of the supplier
set. On the other hand, we show that for the Capacitated k-Center

problem, which is a special case of CkSwO, obtaining a parameterized
approximation scheme (PAS) is W[1]-hard when the parameters are k,
and the highway dimension. This is the first known example of a prob-
lem for which it is hard to obtain a PAS for highway dimension, while
simultaneously admitting an EPAS for doubling dimension.

Keywords: Capacitated k-Supplier with Outliers · Highway
dimension · Doubling dimension · Parameterized approximation

1 Introduction

The well-known k-Center problem and its generalizations has plenty of appli-
cations, for example selecting suitable locations for building hospitals to serve
households of a municipality (see [3] for a survey of healthcare facility location
in practice). In this setting, the number of hospitals we can actually build is
limited, e.g. by budgetary constraints. We want to choose the locations so that
the quality of the provided service is optimal, and a societally responsible way
of measuring the quality of service is to ensure some minimal availability of
healthcare to every household. We can quantify this by measuring the distance
of a household to its nearest hospital, and then minimize this distance over all
households. This strategy, however, does not account for the reality that health-
care providers have (possibly different) limits on the number of patients they can
serve, and thus we introduce capacity constraints. Furthermore, as the instances
are given by transportation networks, we model them by the titular doubling
dimension and highway dimension, which we define later.

Andreas Emil Feldmann was supported by the project 19-27871X of GA ČR. Tung
Anh Vu was supported by the project 22-22997S of GA ČR.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 215–229, 2022.
https://doi.org/10.1007/978-3-031-15914-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_16&domain=pdf
http://orcid.org/0000-0001-6229-5332
http://orcid.org/0000-0002-8902-5196
https://doi.org/10.1007/978-3-031-15914-5_16

216 A. E. Feldmann and T. A. Vu

We formalize the problem as follows. In the Capacitated k-Supplier
(CkS) problem, the input consists of a graph G = (V,E) with positive edge
lengths, a set VS ⊆ V of suppliers, a set VC ⊆ V of clients, a capacity func-
tion L : VS → IN, and an integer k ∈ IN. A feasible solution is an assignment
function φ : VC → VS such that |φ(VC)| ≤ k and for every supplier u ∈ φ(VC) we
have |φ−1(u)| ≤ L(u). For a pair of vertices u, v ∈ V we denote by distG(u, v)
the shortest-path distance between vertices u and v with respect to edge
lengths of G. For a subset of vertices W ⊆ V and a vertex u ∈ V , we
denote distG(u,W) = minw∈W distG(u,w). We omit the subscript G if the
graph is clear from context. The cost of a solution φ is defined as cost(φ) =
maxu∈VC

dist(u, φ(u)) and we want to find a feasible solution of minimum cost.
Let us mention the following special cases of CkS. If V = VS = VC , then the
problem is called Capacitated k-Center (CkC). If L(u) = ∞ for every sup-
plier u ∈ VS , then the problems are called k-Supplier and k-Center respec-
tively. It is known that k-Center is already NP-hard [26].

Two popular approaches of dealing with NP-hard problems are approxima-
tion algorithms [30,31] and parameterized algorithms [13]. Given an instance I of
some minimization problem, a c-approximation algorithm computes in polyno-
mial time a solution of cost at most c·OPT(I) where OPT(I) is the optimum cost
of the instance I, and we say that c is the approximation ratio of the algorithm.
If the instance is clear from context, we write only OPT. In a parameterized
problem, the input I comes with a parameter q ∈ IN. If there exists an algorithm
which computes the optimum solution in time f(q) · |I|O(1) where f is some com-
putable function, then we call such a problem fixed parameter tractable (FPT)
and the algorithm an FPT algorithm. The rationale behind parameterized algo-
rithms is to capture the “difficulty” of the instance by the parameter q and then
design an algorithm which is allowed to run in time superpolynomial in q but
retains a polynomial running time in the size of the input. In this work, we focus
on the superpolynomial part of the running time of FPT algorithms, so we will
express f(q) · |I|O(1) as O∗(f(q)); in particular the “O∗” notation ignores the
polynomial factor in the input size.

It is known that k-Center and k-Supplier do not admit approxima-
tion algorithms with an approximation ratio better than 2 and 3 respectively
unless P = NP [27]. It is shown in the same work that these results are tight by
giving corresponding approximation algorithms. For Capacitated k-Center,
An et al. [4] give a 9-approximation algorithm, and Cygan et al. [14] show a
lower bound of 3 − ε for approximation assuming P �= NP. From the perspec-
tive of parameterized algorithms, Feldmann and Marx [21] show that k-Center

is W[1]-hard in planar graphs of constant doubling dimension when the param-
eters are k, highway dimension and pathwidth. Under the standard assump-
tion FPT � W[1] � W[2], this means that an FPT algorithm for k-Center in
planar constant doubling dimension graphs with the aforementioned parameters
is unlikely to exist. To overcome these hardness results, we will design param-
eterized c-approximation algorithms, which are algorithms with FPT runtime
which output a solution of cost at most c ·OPT. The approach of parameterized
approximation algorithms has been studied before, see the survey in [20].

Generalized k-Center: Distinguishing Doubling and Highway Dimension 217

Let us discuss possible choices for a parameter for these problems. An imme-
diate choice would be the size k of the desired solution. Unfortunately, Feld-
mann [18] has shown that approximating k-Center within a ratio better than 2
when the parameter is k is W[2]-hard. So to design parameterized approxima-
tion algorithms, we must explore other parameters. Guided by the introductory
example, we focus on parameters which capture properties of transportation
networks.

Abraham et al. [2] introduced the highway dimension in order to explain fast
running times of various shortest-path heuristics in road networks. The definition
of highway dimension is motivated by the following empirical observation of Bast
et al. [5,6]. Imagine we want to travel from some point A to some sufficiently
far point B along the quickest route. Then the observation is that if we travel
along the quickest route, we will inevitably pass through a sparse set of “access
points”. Highway dimension measures the sparsity of this set of access points
around any vertex of a graph. We give one of the several formal definitions of
highway dimension, see [8,19]. Let (X,dist) be a metric, for a point u ∈ X and
a radius r ∈ IR+ we call the set Bu(r) = {v ∈ X | dist(u, v) ≤ r} the ball of
radius r centered at u.

Definition 1 ([19]). The highway dimension of a graph G is the smallest inte-
ger h such that, for some universal constant1 γ ≥ 4, for every r ∈ IR+, and every
ball Bv(γr) of radius γr where v ∈ V (G), there are at most h vertices in Bv(γr)
hitting all shortest paths of length more than r that lie in Bv(γr).

We show the following hardness of parameterized approximation for CkC in
low highway dimension graphs. Among the definitions of highway dimensions,
the one we use gives us the strongest hardness result, cf. [8,19].

Theorem 1. Consider any universal constant γ in Definition 1. For any ε > 0,
there is no parameterized ((1 + 1

γ) − ε)-approximation algorithm for CkC with
parameters k, treewidth2, and highway dimension unless FPT = W[1].

Another parameter we consider is doubling dimension, defined as follows.

Definition 2. The doubling constant of a metric space (X,dist) is the small-
est value λ such for every x ∈ X and every radius r ∈ IR+, there exist at
most λ points y1, . . . , yλ ∈ X such that Bu(r) ⊆ ∪λ

i=1Byi
(r
2). We say that the

ball Bx(r) is covered by balls By1(
r
2), . . . , Byλ

(r
2). The doubling dimension Δ(X)

of X is defined as log2(λ). The doubling dimension of a graph is the doubling
dimension of its shortest path metric.

Folklore results show that every metric for which the distance function is
given by the �q-norm in D-dimensional space IRD has doubling dimension O(D).
As a transportation network is embedded on a large sphere (namely the Earth),
a reasonable model is to assume that the shortest-path metric abides to the
Euclidean �2-norm. Buildings in cities form city blocks, which form a grid of
1 See [19, Section 9] for a discussion. In essence, the highway dimension of a given

graph can vary depending on the selection of γ.
2 See [13] or the full version of the paper for a formal definition.

218 A. E. Feldmann and T. A. Vu

streets. Therefore it is reasonable to assume that the distances in cities are given
by the Manhattan �1-norm. Road maps can be thought of as a mapping of a
transportation network into IR2. It is then sensible to assume that transportation
networks have constant doubling dimension.

Prior results on problems in graphs of low doubling and highway dimension
went “hand in hand” in the following sense. For the k-Median problem param-
eterized by the doubling dimension, Cohen-Addad et al. [12] show an efficient
parameterized approximation scheme (EPAS), which is a parameterized algo-
rithm that for some parameter q and any ε > 0 outputs a solution of cost at
most (1 + ε)OPT and runs in time O∗(f(q, ε)) where f is a computable func-
tion. In graphs of constant highway dimension, Feldmann and Saulpic [22] follow
up with a polynomial time approximation scheme (PTAS) for k-Median. If we
allow k as a parameter as well, then Feldmann and Marx [21] show an EPAS
for k-Center in low doubling dimension graphs, while Becker et al. [7] show an
EPAS for k-Center in low highway dimension graphs. By using the result of Tal-
war [29] one can obtain quasi-polynomial time approximation schemes (QPTAS)
for problems such as TSP, Steiner Tree, and Facility Location in low
doubling dimension graphs. Feldmann et al. [19] extend this result to low high-
way dimension graphs and obtain analogous QPTASs. The takeaway is that
approximation schemes for low doubling dimension graphs can be extended to
the setting of low highway dimension graphs. In light of Theorem 1, we would
then expect that CkC is also hard in graphs of low doubling dimension.

Our main contribution lies in breaking the status quo by showing an EPAS
for CkC in low doubling dimension graphs. This is the first example of a prob-
lem, for which we provably cannot extend an algorithmic result in low dou-
bling dimension graphs to the setting of low highway dimension graphs.3 In
fact, our algorithm even works in the supplier with outliers regime, where we
are allowed to ignore some clients: in the Capacitated k-Supplier with Out-

liers (CkSwO) problem, in addition to the CkS input (G, k, L), we are given an
integer p. A feasible solution is an assignment φ : VC → VS ∪{⊥} which, in addi-
tion to the conditions specified in the definition of CkS, satisfies |φ−1(⊥)| ≤ p.
Vertices φ−1(⊥) are called outliers. The goal is to find a solution of mini-
mum cost, which is defined as cost(φ) = maxu∈VC\φ−1(⊥) dist(u, φ(u)). Facility
location and clustering with outliers were introduced by Charikar et al. [11].
Among other results, they showed a 3-approximation algorithm for k-Center

with Outliers and an approximation lower bound of 2 − ε. Later, Harris et
al. [25] and Chakrabarty et al. [10] independently closed this gap and showed
a 2-approximation algorithm for the problem. For CkSwO, Cygan and Koci-
umaka [15] show a 25-approximation algorithm. It may be of interest that the
algorithm we show requires only that the doubling dimension of the supplier set
to be bounded.

3 We remark that for this distinction to work, one has to be careful of the used
definition of highway dimension: a stricter definition of highway dimension from [1]
already implies bounded doubling dimension. On the other hand, for certain types
of transportation networks, it can be argued that the doubling dimension is large,
while the highway dimension is small. See [22, Appendix A] for a detailed discussion.

Generalized k-Center: Distinguishing Doubling and Highway Dimension 219

Theorem 2. Let I = (G, k, p, L) be an instance of Capacitated k-Supplier
with Outliers. Moreover, let (VS ,dist) be the shortest-path metric induced
by VS and Δ be its doubling dimension. There exists an algorithm which for
any ε > 0 outputs a solution of cost (1+ε)OPT(I) in time O∗((k+p)k ·ε−O(kΔ)).

In light of the following results, this algorithm is almost the best we can
hope for. We have already justified the necessity of approximation by the result
of Feldmann and Marx [21]. An EPAS parameterized only by Δ is unlikely to
exist, as Feder and Greene [17] have shown that unless P = NP, approximation
algorithms with ratios better than 1.822 and 2 for two-dimensional Euclidean,
resp. Manhattan metrics cannot exist. Hence it is necessary to parameterize by
both k and Δ. The only improvement we can hope for is a better dependence on
the number of outliers in the running time, e.g. by giving an algorithm which is
polynomial in p.

Given our hardness of approximation result for CkC on low highway dimen-
sion graphs in Theorem 1 and the known EPAS for k-Center given by Becker
et al. [7], it is evident that the hardness stems from the introduction of capac-
ities. For low doubling dimension graphs we were able to push the existence of
an EPAS further than just introducing capacities, by considering suppliers and
outliers. It therefore becomes an interesting question whether we can show an
EPAS also for low highway dimension graphs when using suppliers and outliers,
but without using capacities. The following theorem shows that this is indeed
possible. We prove this theorem in the full version of the paper.

Theorem 3. Let I = (G, k, p) be an instance of the k-Supplier with Out-

liers problem. There exists an EPAS for this problem with parameters k, p, ε,
and highway dimension of G.

1.1 Used Techniques

To prove Theorem 1, we enhance a result of Dom et al. [16] which shows that
Capacitated Dominating Set is W[1]-hard in low treewidth graphs.

We prove Theorem 2 by using the concept of a δ-net which is a sparse subset
of the input metric such that every input point has a net point near it. This
approach was previously used by Feldmann and Marx [21] to show an EPAS for
k-Center in low doubling dimension graphs.

To prove Theorem 3, we generalize the EPAS for k-Center in low highway
dimension graphs by Becker et al. [7]. A major component of this algorithm is
an EPAS for kSwO in low treewidth graphs, which generalizes an EPAS for
k-Center in low treewidth graphs by Katsikarelis et al. [28]. We show how to
obtain this EPAS in the full version of the paper.

2 Inapproximability in Low Highway Dimension Graphs

In this section we are going to prove Theorem 1, i.e. we show that there is no
parameterized approximation scheme for Capacitated k-Center in graphs of
low highway dimension unless FPT = W[1].

220 A. E. Feldmann and T. A. Vu

We reduce from Multicolored Clique, which is known to be a W[1]-hard
problem [13]. The input of Multicolored Clique consists of a graph G and
an integer k. The vertex set of G is partitioned into color classes V1, . . . , Vk

where each color class is an independent set. The goal is to find a k-clique. Note
that if a k-clique exists in G, then it has exactly one vertex in each color class.

To prove Theorem 1, we will need several settings of edge lengths. Namely
for every λ ≥ 2γ ≥ 8, given an instance I = (G, k) of Multicolored Clique,
we produce in polynomial time a CkC instance Iλ = (G, k, L, dλ) where the
highway dimension and treewidth of G is O(k4) and k = 7k(k − 1) + 2k. If we
are not interested in a particular setting of λ or we speak generally about all
instances for all possible settings of λ, we omit the subscript.

It follows from [13] that we can assume without loss of generality that every
color class consists of N vertices and the number of edges between every two
color classes is M . For two integers m ≤ n by 〈m,n〉 we mean the set of inte-
gers {m,m+1, . . . , n}, and 〈m〉 = 〈1,m〉. For distinct i, j ∈ 〈k〉 we denote by Ei,j

the set of ordered pairs of vertices (u, v) such that u ∈ Vi, v ∈ Vj , and {u, v}
is an edge in G. When we add an (A,B)-arrow from vertex u to vertex v, we
add A subdivided edges between u and v and additionally we add B unique ver-
tices to the graph and connect them to v, see Fig. 1. When we mark a vertex u,
we add k + 1 new vertices to the graph and connect them to u. We denote the
set of all marked vertices by Z.

We first describe the structure of G and we set the capacities and edge lengths
of G afterwards. See Fig. 2 for an illustration of the reduction.

Color Class Gadget. For each color class Vi, we create a gadget as follows. We
arbitrarily order vertices of Vi and to the jth vertex u ∈ Vi we assign num-
bers u↑ = j · 2N2 and u↓ = 2N3 − u↑. For each vertex u ∈ Vi we create a
vertex u and we denote V i = {u | u ∈ Vi}. We add a marked vertex xi and
connect it to every vertex of V i. We add a set Si of k + 1 vertices and connect
each vertex of Si to every vertex of V i. For every j ∈ 〈k〉 \ {i} we add a pair
of marked vertices yi,j and zi,j . We denote Yi = ∪j∈〈k〉\{i}{yi,j , zi,j}. For every
vertex u ∈ V i we add a (u↑, u↓)-arrow from u to each vertex of ∪j∈〈k〉\{i}yi,j

and a (u↓, u↑)-arrow from u to each vertex of ∪j∈〈k〉\{i}zi,j .

Edge Set Gadget. For every i ∈ 〈k − 1〉, j ∈ 〈i + 1, k〉 we create a gadget for the
edge set Ei,j as follows. For every edge e ∈ Ei,j we create a vertex e and we
denote Ei,j = {e | e ∈ Ei,j}. We add a marked vertex xi,j and connect it to every
vertex of Ei,j . We add a set Si,j of k +1 vertices and connect each vertex of Si,j

to every vertex of Ei,j . We add four marked vertices pi,j , pj,i, qi,j , qj,i. Consider
an edge e = (u, v) ∈ Ei,j , we connect e to pi,j with a (u↓, u↑)-arrow, to qi,j with
a (u↑, u↓)-arrow, to pj,i with a (v↓, v↑)-arrow, and to qj,i with a (v↑, v↓)-arrow.
We denote S = (∪i∈〈k〉Si) ∪ (∪i∈〈k−1〉,j∈〈i+1,k〉Si,j).

Generalized k-Center: Distinguishing Doubling and Highway Dimension 221

Fig. 1. The result of adding an (A, B)-arrow from u to v.

Fig. 2. Part of the reduction for color class Vi and edge set Ei,j . Vertex e represents
an edge (v, w) ∈ Ei,j in G. We omit the sets Si and Si,j . Marked vertices are drawn by
boxes and we omit their k + 1 “private” neighbors. Edges drawn by a dashed line have
length 1 and the remaining edges have length λ. We also omit the appropriate arrows
from vertices of V i \ {u} to yi,j and to zi,j , and the appropriate arrows from vertices
of Ei,j \ {e} to pi,j and to qi,j .

Adjacency Gadget. To connect the color class gadgets and the edge set gad-
gets, for every distinct i, j ∈ 〈k〉 we add marked vertices ri,j and si,j , and we
add (2N3, 0)-arrows from yi,j to ri,j , from pi,j to ri,j , from zi,j to si,j , and
from qi,j to si,j .

Capacities. We now describe the capacities L : V (G) → IN. To streamline the
exposition, we will assume that each vertex of φ(V (G)) covers itself at no “cost”
with respect to the capacity. For every two distinct i, j ∈ 〈k〉, the vertex xi

has capacity N − 1 + k + 1, the vertex xi,j has capacity M − 1 + k + 1, ver-
tices yi,j and zi,j have capacity 2N4 + k + 1, vertices pi,j and qi,j have capac-
ity 2MN3 + k + 1, vertices ri,j and si,j have capacity 2N3 + k + 1, and the
remaining vertices have capacity equal to their degree.

Edge Lengths. Given λ ∈ IR+ we set edge lengths dλ : E(G) → IR as follows. For
every i ∈ 〈k〉 and every vertex u ∈ V i, we assign length 1 to edges between u
and N(u)\({xi}∪Si), i.e. the set of vertices originating from subdivided edges of
arrows between u and Yi. Similarly for every i ∈ 〈k − 1〉, j ∈ 〈i + 1, k〉 and every
vertex v ∈ Ei,j , we assign length 1 to edges between v and N(v) \ ({xi,j}∪Si,j).
To the remaining edges we assign length λ.

222 A. E. Feldmann and T. A. Vu

From the way we assign edge lengths dλ, in a solution φ of cost λ + 1 such
that |φ(V (G))| ≤ k, it must be the case that Z ⊆ φ(V (G)), since Z is the set of
marked vertices with k + 1 private neighbors.

Dom et al. [16, Observation 1] observe that tw(G) = O(k4): The size of S
is O(k4) and the size of Z is 1

2 (13k2 − 11k). Removing S ∪ Z leaves us with a
forest and the observation follows.

We prove that G has bounded highway dimension.

Lemma 1. For any λ ≥ 2γ, where γ is the universal constant in Definition 1,
graph G with edge lengths dλ has highway dimension h(G) ∈ O(k4).

We present the proof in the full version of the paper. Let V = (∪k
i=1Vi) ∪

(∪1≤i<j≤kEi,j). The idea is that in the case r ≥ 2, we can consider S ∪ Z as the
hitting set for all shortest paths. In the remaining case r < 2, we can use S∪V∪Z
as the hitting set for all shortest paths.

Now we prove that I contains a k-clique if and only if Iλ contains a solution
of cost at most λ+1. As dλ assigns edge lengths 1 and λ, this will imply that if I
does not contain a k-clique, then any solution of I has to have cost at least λ+2
and vice versa.

The forward implication follows implicitly from the original result of Dom
et al. [16], since we can interpret a capacitated dominating set as a solution of
cost λ, hence we omit the proof.

Lemma 2 ([16, Lemma 1]). If I contains a k-clique, then Iλ contains a
solution of cost λ.

To prove the backward implication, we start need to show that a solution
of cost λ + 1 has to open a vertex in every V i and every Ei,j . In contrast to
Lemma 2, the backward implication does not simply follow from the original
result since we have added edge lengths to the graph.

Lemma 3. Let φ be a solution of Iλ of cost λ+1, and D = φ(V (G)). Then for
each i ∈ 〈k〉 we have |V i ∩D| = 1 and for each i ∈ 〈k − 1〉, j ∈ 〈i+ 1, k〉 we have
and |Ei,j ∩ D| = 1.

We defer the proof to the full version of the paper, but the idea is the fol-
lowing. Let i ∈ 〈k〉 and suppose for a contradiction that we want to cover Si by
balls of radius λ + 1 without using vertices of Vi. Then, from the construction
of the graph, the size of the solution would be greater than k.

Now we show that if Iλ contains a solution of cost λ + 1, then I contains
a k-clique.

Lemma 4. If Iλ has a solution φ of cost λ + 1, then I contains a k-clique.

Proof. Let D = φ(V (G)). For i ∈ 〈k〉 let ui be the vertex of V i ∩ D and
for i ∈ 〈k − 1〉, j ∈ 〈i + 1, k〉 let ei,j be the vertex of Ei,j ∩ D. These vertices are
well-defined by Lemma 3. To prove that these vertices encode a k-clique in G,
we want to show for every i ∈ 〈k−1〉, j ∈ 〈i+1, k〉 that vertices ui and uj , which
correspond to ui and uj respectively, are incident to the edge ei,j corresponding

Generalized k-Center: Distinguishing Doubling and Highway Dimension 223

to the vertex ei,j . We will only present the proof of incidence for ui and ei,j ,
for uj we can proceed analogously. Let v be the vertex of the edge ei,j which
belongs to Vi in G. Before we prove that ui and ei,j are incident, we first argue
that u↑

i + v↓ = 2N3.
We prove this statement by contradiction. First suppose u↑

i + v↓ < 2N3.
Then u↑

i + v↓ ≤ 2N3 − 2N2 as for every two distinct vertices w1 and w2 of a
color class we have |w↑

1 − w↑
2 | ≥ 2N2 and |w↓

1 − w↓
2 | ≥ 2N2. Consider the set

T = (N(yi,j) ∪ N(ri,j) ∪ N(pi,j)) \ φ−1({xi, ui, ei,j , xi,j}). (1)

It follows that in a solution of cost λ + 1, vertices of T must be covered by yi,j ,
ri,j or pi,j as edges of G have length 1 or λ. We have L(yi,j)+L(ri,j)+L(pi,j) =
2N4 + 2MN3 + 2N3 + 3(k + 1). However,

|T | ≥ 2N4 + 2MN3 + 4N3 + 3(k + 1) − ((2N3 − 2N2) + (N − 1) + (M − 1))

> 2N4 + 2MN3 + 2N3 + 3(k + 1),
(2)

where we used that M ≤ N2 and N2 > N . Thus yi,j , ri,j , and pi,j cannot
cover T . This contradicts the fact that φ is a solution of cost λ + 1.

If u↑
i +v↓ > 2N3, then u↓

i +v↑ < 2N3 and we can apply the identical argument
for vertices zi,j , si,j , qi,j .

It remains to prove that ui is incident to ei,j . Again, let v be the vertex of ei,j

which lies in Vi of G. We know from the preceding argument that u↑
i +v↓ = 2N3.

However, the only vertex w ∈ Vi such that w↓ = 2N3 − u↑
i is ui itself; for

any w ∈ Vi \ {ui} we would have |(u↑
i + w↓) − 2N3| ≥ 2N2. Hence v = ui and

so ei,j is incident to ui. This concludes the proof. ��
We complete the proof of Theorem 1 in the full version of the paper. With

Lemmas 1, 2, and 4 in hand, the main argument is the following. Suppose for
a contradiction that there exists an FPT algorithm A which is excluded by
Theorem 1. We can decide whether I has a k-clique by checking whether the
solution A(I) has cost at most (1+ 1

γ). This type of argument has been previously
used in both the polynomial and parameterized approximation setting, see [31],
respectively [18].

3 EPAS on Graphs of Bounded Doubling Dimension

In this section we prove Theorem 2, i.e. we show the existence of an EPAS for
CkSwO on instances where the supplier set has bounded doubling dimension.
To be more precise, we develop a decision algorithm which, given a cost 	 ∈ IR+,
and ε > 0, computes a solution of cost (1 + ε)	 in FPT time with parameters k,
p, doubling dimension and ε. Formally, the result is the following lemma.

Lemma 5. Let I = (G, k, p, L) be a CkSwO instance. Moreover, let (VS ,dist)
be the shortest-path metric induced by VS and Δ be its doubling dimension. There
exists an algorithm which, given a cost 	 ∈ IR+ and ε > 0, either

224 A. E. Feldmann and T. A. Vu

– computes a feasible solution of cost (1 + ε)	 if (1 + ε)	 ≥ OPT(I), or
– correctly decides that I has no solution of cost at most 	,

running in time O∗ (
(k + p)kε−O(kΔ)

)
.

Using Lemma 5, we can obtain the algorithm of Theorem 2 as follows. We can
first assume without loss of generality, that VC ∪ VS = V (G). Suppose that we
can guess the optimum cost OPT of any CkSwO instance. By using OPT as 	
in Lemma 5, we can output a solution of cost (1+ε)OPT. To guess the optimum
cost OPT, observe that OPT must be one of the inter-vertex distances. Hence
the minimum inter-vertex distance 	 for which the algorithm outputs a solution
has the property that 	 ≤ OPT and consequently (1 + ε)	 ≤ (1 + ε)OPT.

The main ingredient of the algorithm is the notion of a δ-net. For a met-
ric (X,dist), a subset Y ⊆ X is called a δ-cover if for every u ∈ X there exists
a v ∈ Y such that dist(u, v) ≤ δ. If a δ-cover Y has an additional property that
for every two distinct u, v ∈ Y we have dist(u, v) > δ, then we say that Y is a
δ-net. Observe that a δ-net can be computed greedily in polynomial time.

Let us give the main idea behind the algorithm. Given an instance of the
problem and ε > 0, let φ∗ be an optimum solution of cost OPT, V ∗

C be clients
that are not outliers according to φ∗, i.e. V ∗

C = {u ∈ VC | φ∗(u) �= ⊥}, and Y
be an (ε · OPT)-net of the metric (VS ,dist). Consider an assignment function φ
constructed as follows. For each client u ∈ V ∗

C we set φ(u) to the nearest point
of Y to φ∗(u), and for the remaining clients we set the value of φ to ⊥. If for
every selected supplier s ∈ (φ(VC) \ {⊥}) we have |φ−1(s)| ≤ L(s), then φ is a
feasible solution. Since Y is a (ε ·OPT)-net, the cost of φ is at most (1+ ε)OPT.

The main obstacle to implementing an algorithm from this idea is that we
do not know the optimum solution φ∗. However, by the definition of the net Y ,
we know that each selected supplier φ∗(V ∗

C) is near some point of Y . If Y was
not too large, we could guess which k of its points are near to every supplier
of φ∗(V ∗

C). Later, we will also show how to ensure that the solution we create
respects capacities of suppliers we pick.

We now show how to bound the size of the net. Let (X,dist) be a metric of
doubling dimension Δ, by the aspect ratio of a set X ′ ⊆ X, we mean the diameter
of X ′ divided by the minimum distance between any two distinct points of X ′,
that is maxu,v∈X′ dist(u,v)

minu,v∈X′,u�=v dist(u,v) . The following lemma by Gupta et al. [24] shows that
the cardinality of a subset X ′ ⊆ X can be bounded by its aspect ratio and Δ.

Lemma 6. ([24]). Let (X,dist) be a metric and Δ its doubling dimension.
Consider a subset X ′ ⊆ X of aspect ratio α and doubling dimension Δ′. Then it
holds that Δ′ = O(Δ) and |X ′| ≤ 2O(Δ�log2 α).

Using Lemma 6, we bound the size of Y .

Lemma 7. Let I = (G, k, p, L) be an instance of the CkSwO problem, ε > 0,
and 	 ∈ IR+ a cost. Moreover let (VS ,dist) be the shortest-path metric induced
by VS and Δ its doubling dimension. Assume that for each supplier s ∈ VS there
exists a client c ∈ VC such that dist(s, c) ≤ 	. If I has a feasible solution φ
with cost(φ) ≤ 	, then an (ε)-net Y of VS has size at most (k + p)ε−O(Δ).

Generalized k-Center: Distinguishing Doubling and Highway Dimension 225

We present the proof in the full version of the paper. Before we give the main
ideas of the proof, let us make a few comments the statement of the lemma. We
do not know the cost of the optimum solution and we are merely guessing it.
Hence we need to also consider the case when our guess on the cost 	 is wrong,
i.e. it is less than the cost of the optimum solution. The requirement that every
supplier has a client nearby is a natural one: if we assume that our solution
has cost 	 and a supplier s has dist(s, VC) > 	, then it will never be picked
in a solution. Thus we can without loss of generality remove all such suppliers
from the input. The idea behind the proof is the following. Suppose that φ is a
solution of cost 	 and let D = φ(VC). Then balls of radius 2	 around D∪φ−1(⊥)
cover the entire graph. By applying Lemma 6 in each of these balls, we get the
desired bound.

When we gave the intuition behind the algorithm, we assumed that the
derived solution φ, which replaces every optimum supplier of φ∗(VC)\{⊥} by its
nearest net point, does not violate the capacity of any selected net point, i.e. for
every s ∈ φ(VC) \ {⊥} we have |φ−1(s)| ≤ L(s). This does not have to be the
case, so instead of replacing every optimum supplier by its nearest net point,
we need to select the replacement net point in a more sophisticated manner, in
particular to avoid violating the capacity of the replacement net point.

Let V ∗
S be the optimum supplier set corresponding to the optimum assign-

ment function φ∗. Suppose that we are able to guess a subset S∗ ⊆ Y of size k
such that for every supplier u ∈ V ∗

S we have dist(u, S∗) ≤ ε	. Let A : V ∗
S → S∗

map each optimum supplier to its nearest net point. As we have discussed,
we cannot just replace each supplier u ∈ V ∗

S by A(u) since it may happen
that |(φ∗)−1(u)| > L(A(u)). However, there is a supplier in the ball BA(u)(ε)
which is guaranteed to have capacity at least L(u) since u ∈ BA(u)(ε) Thus we
can implement the “replacement step” by replacing each optimum supplier by
the supplier of highest capacity in BA(u)(ε) and this increases the cost of the
optimum solution by at most 2ε	, i.e. the diameter of the ball.

We must also consider the case when |A−1(v)| > 1 for some net point v ∈ S∗.
Generalizing the previous idea, we replace suppliers A−1(v) by |A−1(v)| suppliers
of Bv(ε) with the highest capacities. As we do not know the optimum solution,
we do not know |A−1(v)| either. Nevertheless, we know that |S∗| ≤ k, and so we
can afford to guess these values after guessing the set S∗.

The final ingredient we need is the ability to verify our guesses. That is, given
a set of at most k suppliers, we need to check if there exists a feasible solution
of a given cost which assigns clients to a prescribed set of suppliers. This can be
done by a standard reduction to network flows. We state the result formally and
present the proof in the full version of the paper.

Lemma 8. Given a CkSwO instance I = (G, k, p, L), a cost 	 ∈ IR+, and a
subset S ⊆ VS, we can determine in polynomial time whether there exists an
assignment φ : VC → S such that |φ(u)−1| ≤ L(u) for each u ∈ S, |φ−1(⊥)| ≤ p,
and cost(φ) ≤ 	.

We now prove the correctness of the replacement strategy.

226 A. E. Feldmann and T. A. Vu

Lemma 9. Let I = (G, k, p, L) be a CkSwO instance such that there exists a
solution φ∗ of cost 	 and for each supplier there exists a client at distance at
most 	 from it. Given an (ε)-net Y of the shortest-path metric induced by VS,
and ε > 0, we can compute a solution of cost (1 + 2ε)	 in time O∗

((|Y |
k

)
kk

)
.

Proof. Let V ∗
S = φ∗(VC) \ {⊥}. For an optimum supplier u ∈ V ∗

S it may happen
that |Bu(ε) ∩ Y | > 1, i.e. it is close to more than one net point. This may
cause issues when we guess for each net point v ∈ Y the size of Bv(ε) ∩ V ∗

S . To
circumvent this problem, we fix a linear order � on the set of net points Y and
we assign each optimum supplier to the first close net point. Formally, we define
for a net point v ∈ Y

– P (v) = {v′ ∈ Y | v′ ≺ v} (note that v �∈ P (v)),
– M(v) = Bv(ε) \ (∪v′∈P (v)Bv′(ε)),
– D(v) = |M(v) ∩ V ∗

S |, and
– R(v) to be the set of D(v) suppliers in M(v) with the highest capacities.

For a net point v ∈ Y , it is easy to see that
∑

s∈R(v) L(s) ≥
∑

t∈M(v)∩V ∗
S

L(t).
The sets {R(v) | v ∈ Y } are disjoint by the way we defined M(v).

We guess a subset Y ′ ⊆ Y of size k such that V ∗
S ⊆

⋃
v∈Y ′ Bv(ε). For

each v ∈ Y ′ we guess D(v) and select S =
⋃

v∈Y ′ R(v). We apply the algorithm
from Lemma 8 with the set S and cost (1 + 2ε)	. If this check passes, then the
solution we obtain is in fact a solution of cost (1 + 2ε)	 since we replaced each
optimum supplier by a supplier at distance at most 2ε	 from it. Conversely, if
none of our guesses pass this check, then the instance I has no solution of cost 	.

The running time of our algorithm is dominated by the time required to
guess Y ′ and the cardinalities D(v) for each v ∈ Y ′. From |Y ′| ≤ k, the time
required to guess the Y ′ is O

((|Y |
k

))
. Since D(v) ≤ k for every v ∈ Y , the time

required to guess D(v) for each v ∈ Y ′ is O(kk). In total, the running time of
the algorithm is O∗

((|Y |
k

)
kk

)
. ��

We can prove Lemma 5 by applying Lemmas 7 and 9, and we present the
argument in the full version of the paper.

4 Open Problems

We conclude with the following open problems. The algorithms given by The-
orems 2 and 3 have the number of outliers in the base of the exponent. Is it
possible to remove the outliers from the set of parameters? An improvement of
Theorem 1 would be to show that the hardness is preserved in the case of planar
graphs. It may be of interest that Planar Capacitated Dominating Set

is W[1]-hard when parameterized by solution size [9]. Goyal and Jaiswal [23]
have shown that it is possible to 2-approximate CkC when the parameter is
only k, and that this result is tight. An improvement of Theorem 1 would be to
show that this lower bound is tight in low highway dimension graphs. Finally,

Generalized k-Center: Distinguishing Doubling and Highway Dimension 227

we ask whether there exists a problem which admits an EPAS in low highway
dimension graphs but we cannot approximate in low doubling dimension graphs,
i.e. the converse of Theorems 1 and 2.

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimen-
sion and provably efficient shortest path algorithms. J. ACM (JACM) 63(5), 1–26
(2016)

2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pp. 782–793. SIAM (2010)

3. Ahmadi-Javid, A., Seyedi, P., Syam, S.S.: A survey of healthcare facility location.
Comput. Oper. Res. 79, 223–263 (2017). https://doi.org/10.1016/j.cor.2016.05.
018, https://www.sciencedirect.com/science/article/pii/S0305054816301253

4. An, H.C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Cen-
trality of trees for capacitated k-center. Math. Program. 154(1–2), 29–53 (2015).
https://doi.org/10.1007/s10107-014-0857-y

5. Bast, H., Funke, S., Matijevic, D.: Transit ultrafast shortest-path queries with
linear-time preprocessing. 9th DIMACS Implementation Challenge [1] (2006)

6. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to con-
stant time shortest-path queries in road networks. In: 2007 Proceedings of the
Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 46–
59. SIAM (2007)

7. Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for
k-center, k-median, and capacitated vehicle routing in bounded highway dimen-
sion. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Sympo-
sium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 112, pp. 8:1–8:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2018)

8. Blum, J.: Hierarchy of transportation network parameters and hardness results.
In: Jansen, B.M.P., Telle, J.A. (eds.) 14th International Symposium on Parame-
terized and Exact Computation (IPEC 2019). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 148, pp. 4:1–4:15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2019)

9. Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar capacitated dominating
set is W [1]-Hard. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 50–60. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-
0 4

10. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
ACM Trans. Algorithms 16(4) (2020). https://doi.org/10.1145/3392720

11. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: SODA, vol. 1, pp. 642–651 (2001)

12. Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximation
schemes for clustering in doubling metrics. J. ACM 68(6), 1–34 (2021). https://
doi.org/10.1145/3477541

13. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1016/j.cor.2016.05.018
https://doi.org/10.1016/j.cor.2016.05.018
https://www.sciencedirect.com/science/article/pii/S0305054816301253
https://doi.org/10.1007/s10107-014-0857-y
https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1007/978-3-642-11269-0_4
https://doi.org/10.1145/3392720
https://doi.org/10.1145/3477541
https://doi.org/10.1145/3477541
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

228 A. E. Feldmann and T. A. Vu

14. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-
uniform hard capacities. In: 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, pp. 273–282. IEEE (2012)

15. Cygan, M., Kociumaka, T.: Constant factor approximation for capacitated k-
center with outliers. In: Mayr, E.W., Portier, N. (eds.) 31st International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 25, pp. 251–262. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014). https://doi.org/
10.4230/LIPIcs.STACS.2014.251, https://drops.dagstuhl.de/opus/volltexte/2014/
4462

16. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79723-4 9

17. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
pp. 434–444. STOC 1988, Association for Computing Machinery, New York, NY,
USA (1988). https://doi.org/10.1145/62212.62255,https://doi.org/10.1145/62212.
62255

18. Feldmann, A.E.: Fixed-parameter approximations for k-center problems in low
highway dimension graphs. Algorithmica 81(3), 1031–1052 (2019). https://doi.
org/10.1007/s00453-018-0455-0

19. Feldmann, A.E., Fung, W.S., Konemann, J., Post, I.: A (1+ε)-embedding of low
highway dimension graphs into bounded treewidth graphs. SIAM J. Comput.
47(4), 1667–1704 (2018)

20. Feldmann, A.E., Karthik, C., Lee, E., Manurangsi, P.: A survey on approxima-
tion in parameterized complexity: hardness and algorithms. Algorithms 13(6), 146
(2020)

21. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem in
transportation networks. Algorithmica 82(7), 1989–2005 (2020). https://doi.org/
10.1007/s00453-020-00683-w

22. Feldmann, A.E., Saulpic, D.: Polynomial time approximation schemes for clus-
tering in low highway dimension graphs. J. Comput. Syst. Sci. 122, 72–
93 (2021). https://doi.org/10.1016/j.jcss.2021.06.002, https://www.sciencedirect.
com/science/article/pii/S0022000021000647

23. Goyal, D., Jaiswal, R.: Tight FPT approximation for constrained k-center and
k-supplier. CoRR abs/2110.14242 (2021). https://arxiv.org/abs/2110.14242

24. Gupta, A., Krauthgamer, R., Lee, J.: Bounded geometries, fractals, and low-
distortion embeddings. In: 44th Annual IEEE Symposium on Foundations of Com-
puter Science, 2003. Proceedings, pp. 534–543. IEEE (2003)

25. Harris, D.G., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type
problems with outliers. ACM Trans. Algorithms 15(3) (2019). https://doi.org/10.
1145/3311953

26. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

27. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33(3), 533–550 (1986). https://doi.org/10.1145/
5925.5933

28. Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds,
and approximation for (k, r)-center. Discret. Appl. Math. 264, 90–117 (2019)

https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://drops.dagstuhl.de/opus/volltexte/2014/4462
https://drops.dagstuhl.de/opus/volltexte/2014/4462
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1145/62212.62255,
https://doi.org/10.1145/62212.62255
https://doi.org/10.1145/62212.62255
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1007/s00453-018-0455-0
https://doi.org/10.1007/s00453-020-00683-w
https://doi.org/10.1007/s00453-020-00683-w
https://doi.org/10.1016/j.jcss.2021.06.002
https://www.sciencedirect.com/science/article/pii/S0022000021000647
https://www.sciencedirect.com/science/article/pii/S0022000021000647
https://arxiv.org/abs/2110.14242
https://doi.org/10.1145/3311953
https://doi.org/10.1145/3311953
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/5925.5933

Generalized k-Center: Distinguishing Doubling and Highway Dimension 229

29. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In:
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 281–290. STOC 2004, Association for Computing Machinery, New York,
NY, USA (2004). https://doi.org/10.1145/1007352.1007399

30. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-662-04565-7

31. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithmsd. Cam-
bridge University Press, Cambridge (2011)

https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Extending Partial Representations
of Circular-Arc Graphs

Jǐŕı Fiala1 , Ignaz Rutter2 , Peter Stumpf2(B) , and Peter Zeman3

1 Department of Applied Mathematics, Charles University,
Prague, Czech Republic
fiala@kam.mff.cuni.cz

2 Faculty of Computer Science and Mathematics, University of Passau,
Passau, Germany

{rutter,stumpf}@fim.uni-passau.de
3 Institut de mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland

zeman.peter.sk@gmail.com

Abstract. The partial representation extension problem generalizes the
recognition problem for classes of graphs defined in terms of geometric
representations. We consider this problem for circular-arc graphs, where
several arcs are predrawn and we ask whether this partial representa-
tion can be completed. We show that this problem is NP-complete for
circular-arc graphs, answering a question of Klav́ık et al. (2014).

We complement this hardness with tractability results of the repre-
sentation extension problem for various subclasses of circular-arc graphs.
We give linear-time algorithms for extending normal proper Helly and
proper Helly representations. For normal Helly circular-arc representa-
tions we give an O(n3)-time algorithm where n is the number of vertices.

Surprisingly, for Helly representations, the complexity hinges on the
seemingly irrelevant detail of whether the predrawn arcs have distinct
or non-distinct endpoints: In the former case the algorithm for normal
Helly circular-arc representations can be extended, whereas the latter
case turns out to be NP-complete. We also prove that the partial repre-
sentation extension problem for unit circular-arc graphs is NP-complete.

Keywords: Partial representation extension · Circular arc graphs ·
Helly circular arc graphs

1 Introduction

An intersection representation R of a graph G is a collection of sets {R(v) : v ∈
V (G)} such that R(u) ∩ R(v) �= ∅ if and only if uv ∈ E(G). Important classes
of graphs are obtained by restricting the sets R(v) to some specific geometric

Funded by the grant 19-17314J of the GA ČR and by grant Ru 1903/3-1 of the German
Science Foundation (DFG). Peter Zeman was also supported by the Swiss National
Science Foundation project PP00P2-202667.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 230–243, 2022.
https://doi.org/10.1007/978-3-031-15914-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_17&domain=pdf
http://orcid.org/0000-0002-8108-567X
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0003-0531-9769
http://orcid.org/0000-0003-0071-9149
https://doi.org/10.1007/978-3-031-15914-5_17

Extending Partial Representations of Circular-Arc Graphs 231

objects. In an interval representation of a graph, each set R(v) is a closed interval
of the real line; and in a circular-arc representation, the sets R(v) are closed arcs
of a circle (but not the whole circle); see Fig. 1. A graph is an interval graph if
it admits an interval representation and it is a circular-arc graph if it admits a
circular-arc representation. We denote the corresponding graph classes by INT
and CA, respectively.

Often, the availability of a geometric representation makes computational
problems tractable that are otherwise NP-complete, e.g., maximum clique can be
solved in polynomial time for both interval graphs and circular-arc graphs [15].
Another example is the coloring problem, which can be solved in polynomial
time for interval graphs but remains NP-complete for circular-arc graphs [12].

A key problem in the study of geometric intersection graphs is the recogni-
tion problem, which asks whether a given graph has a specific type of intersec-
tion representation. It is a classic result that interval graphs can be recognized
in linear time [4]. For circular-arc graphs the first polynomial-time recognition
algorithm was given by Tucker [34]. McConnell gave a linear-time recognition
algorithm [29].

In this paper, we are interested in a generalization of the recognition problem.
For a class X of intersection representations, the partial representation exten-
sion problem for X (RepExt(X) for short) is defined as follows. In addition to
a graph G, the input consists of a partial representation R′ that is a representa-
tion of a subgraph G′ of G. The question is whether there exists a representation
R ∈ X of G that extends R′ in the sense that R(u) = R′(u) for all u ∈ V (G′)
where R(u), R′(u) are the arcs assigned to u by R, R′. The recognition problem
is the special case where the partial representation is empty. We assume that G′

is an induced subgraph of G. Otherwise, an adjacency in the subgraph induced by
V (G′) is violated in any representation extension R of R′ and we can reject. The
partial representation extension problem has been recently studied for many dif-
ferent classes of intersection graphs, e.g., interval graphs [23], proper/unit inter-
val graphs [20], function and permutation graphs [19], circle graphs [6], chordal
graphs [22], and trapezoid graphs [24]. Related extension problems have also
been considered, e.g., for planar topological [1,17] and straight-line [30] draw-
ings, for contact representations [5], and rectangular duals [7]. In many cases,
RepExt(X) can be reduced to the corresponding simultaneous representation
problem SimRep(X), which asks for k input graphs G1, . . . , Gk whether each
Gi admits a representation Ri such that for any vertex shared by Gi and Gj

its representations in Ri and Rj coincide. For example, RepExt(INT) can be
reduced in linear time to SimRep(INT) with two input graphs by a result of
Bläsius and Rutter [2].

In many cases, the key to solving the partial representation extension problem
is to understand the structure of all possible representations. For interval repre-
sentations, the basis for this is the characterization of Fulkerson and Gross [9],
which establishes a bijection between the combinatorially distinct interval repre-
sentations of a graph G on the one hand and the linear orders � of the maximal
cliques of G where for each vertex v the cliques containing v appear consecutively
in � on the other hand. This not only forms the basis for the linear-time recogni-
tion by Booth and Lueker [4], but also shows that a PQ-tree can compactly store

232 J. Fiala et al.

(a) (b) (c)

Fig. 1. (a) The graph 3K2 and (b) its circular-arc representation (the arcs correspond-
ing to the solid vertices are bold). (c) A non-Helly representation of K4.

the set of all possible interval representations of a graph. The partial representa-
tion extension problem for interval graphs can be solved efficiently by searching
this set for one that is compatible with the given partial representation.

Despite the fact that circular-arc graphs straightforwardly generalize interval
graphs, the structure of their representations is much less understood. It is not
clear whether there exists a way to compactly represent the structure of all
representations of a circular-arc graph. There are two structural obstructions
to this aim. First, in contrast to interval graphs, it may happen that two arcs
have disconnected intersection, namely in the case when their union covers the
entire circle. Secondly, intervals of the real line satisfy the Helly property : any
non-empty subfamily of sets with an empty intersection contains two disjoint
sets. Consequently, the maximal cliques of interval graphs can be associated to
distinct points of the line and also the number of maximal cliques in an interval
graph is linear in the number of its vertices. In contrast, arcs of a circle do not
necessarily satisfy the Helly property and indeed the number of maximal cliques
can be exponential. The complement of a perfect matching nK2 is an example
of this phenomenon, see Fig. 1b.

To capture the above properties, that may have substantial impact on explo-
rations of circular-arc graphs, the following specific subclasses of circular-arc
graphs have been defined and intensively studied [13,26,28,32]:

– Normal circular-arc graphs (NCA) have a circular-arc representation where
the intersection of any two arcs is either empty or connected.

– Helly circular-arc graphs (HCA) have a circular-arc representation that sat-
isfies the Helly property, i.e. there are no k ≥ 3 pairwise intersecting arcs
without a point in common.

– Proper circular-arc graphs (PCA) are circular-arc graphs that have a circular-
arc representation in which no arc properly contains another.

– Unit circular-arc graphs (UCA) are circular-arc graphs with a circular-arc
representation in which every arc has a unit length.

The above properties can be combined together in the sense that a single
representation shall satisfy more properties simultaneously, e.g. Proper Helly
circular-arc graphs (PHCA) are circular-arc graphs with a circular-arc repre-
sentation that is both proper and Helly [25]. This is stronger than requir-
ing that a graph is a proper circular-arc graph as well as a Helly circular-

Extending Partial Representations of Circular-Arc Graphs 233

(a) (b)
CAR−

NCAR?

HCAR−

PCAR?

NHCAR+ PHCAR+

NPCAR+

UCAR−

NPHCAR+

PCANCA

HCACA

PHCA

UCA

NHCA

Fig. 2. (a) Relationships between classes of circular-arc graphs. (b) Relationships
between classes of circular-arc representations. We study the underlined classes.
RepExt is polynomial for blue+, while NP-complete for red− and open for black?.
(Color figure online)

arc graph (with each property guaranteed by a different representation), i.e.,
PHCA � PCA ∩ HCA.

Analogously, since C4 has a unique representation, the wheel W4 is a graph
with a Helly representation (the degree-4 vertex intersects all four intersections)
or a normal representation (it intersects three intersections) but no normal Helly
representation (note that the whole circle is not an arc). Thus also NHCA �

NCA ∩ HCA.
Moreover, Tucker [33] proved that every representation of a proper (Helly)

circular-arc graph that is not normal can be transformed into a normal proper
(Helly) representation. Hence, we have PCA = NPCA and PHCA = NPHCA.
Figure 2a shows inclusions between the defined graph classes.

We use an analogous notation for the classes of possible representations, i.e.,
for X ⊆ {N,P,H} the symbol XCAR for the class of all XCA representations,
see Fig. 2b. We note that whether a graph G with a partial representation R′

admits an extension depends crucially on the class of allowed representations,
as illustrated by the example of W4 above.
Our Results. While for many classes efficient algorithms for the representa-
tion extension problem have been found, the problem has been open for cir-
cular arc graphs for several years [21]. We prove in Sect. 3 that RepExt(CAR)
is NP-complete. With the reduction from [2] this strengthens the hardness of
SimRep(CAR) by Bok et al. [3] to two input graphs. Our hardness reduction
also works for RepExt(HCAR).

We complement this result by showing tractability for several subclasses,
including all Helly variants; see Fig. 2b. In Sect. 4 we give linear-time algorithms
for RepExt(NPHCAR) and RepExt(PHCAR). They are based on characteri-
zations of Deng et al. [8] and Lin et al. [27], who characterize the correspond-
ing graph classes by vertex orders. In Sect. 5 we solve RepExt(NHCAR) and
RepExt(HCAR) in O(n3) time where the latter requires the extra condition that
the prescribed arcs have pairwise distinct endpoints to circumvent the hardness
result from Sect. 3. It is surprising that the complexity of the problem hinges on

234 J. Fiala et al.

such degeneracies, especially since non-degeneracy assumptions are often made
without much consideration of the impact on the problem when working with
graph representations. The results from Sect. 5 are based on a characterization
by Gavril [14], namely, that a graph G is a Helly circular-arc graph if and only
if there exists a cyclic order � of its maximal cliques such that for every vertex
v, the maximal cliques containing v appear consecutively in �.

We note that the classical approach for recognizing HCA graphs [18,27], which
uses McConnell’s [29] algorithm to construct a circular-arc representation and
transform it to a Helly circular-arc representation, does not extend to RepExt.
The reason is that such transformations cannot be exploited in the presence of
a partial representation, which cannot be changed.

Finally, we show that for unit circular arcs RepExt(UCAR) is NP-complete.
We prove lemmas and theorems marked with (�) in the full version.

2 Preliminaries

Let G = (V,E) be a graph. For a vertex u ∈ V let N [u] denote its closed
neighborhood {v | uv ∈ E(G)} ∪ {u}. If N [u] = V , we call u universal. Two
adjacent vertices u, v ∈ V form a universal pair if N [u] ∪ N [v] = V .
Cyclic Orders. Let < = v0, . . . , vn−1 and <′ = u0, . . . , un−1 be two linear orders
on a finite set S. We say that < and <′ are cyclically equivalent if there is
k ∈ {0, . . . , n − 1} such that vi = ui+k, where the addition is modulo n. Clearly,
this is an equivalence relation on the set of all linear orders on S. A cyclic order
� on S is an equivalence class of this relation. For a linear order <, we denote
the corresponding cyclic order by [<].

Every linear order < on S induces a linear order <′ on a subset S′ ⊆ S by
omitting all ordered pairs in which the elements of S \ S′ occur. In this case we
say that < extends <′ and similarly that the cyclic order [<] extends [<′].
Circular-Arc Representations. For any circular-arc representation R and each
connected component C of a graph G the set

⋃
v∈V (C) R(v) is a connected subset

of the circle. Therefore, if G is a disconnected circular-arc graph, then each
connected component of G has to be an interval graph. These cases can be
treated with the corresponding algorithms for interval graphs of [20,23]. Hence
without loss of generality we restrict ourselves to connected graphs in this paper.

Let R be a representation of a circular-arc graph G. For a vertex v of G,
we refer to the two endpoints of R(v) as tail R(v)t and head R(v)h. We use
the convention of traversing the arc from the tail to the head in the clockwise
direction along the circle. We denote such an arc as R(v) = [R(v)t, R(v)h], and
its complement (R(v)h, R(v)t) as R(v)c.

Let R be a Helly representation of a circular-arc graph G. Denote by C the
set of maximal cliques of G. We assign every maximal clique C ∈ C a unique
point cp(C) ∈ ⋂

v∈C R(v) and call it the clique-point of C.

Lemma 1 (Gavril [14]). A graph G is a Helly circular-arc graph if and only
if there exists a cyclic order � of its maximal cliques such that for every vertex
v, the maximal cliques containing v appear consecutively in �.

Extending Partial Representations of Circular-Arc Graphs 235

(a) (b) (c)

(d)

G

Fig. 3. (a) construction for green dots with blue universal arcs (b) the instance of
RepExt(CAR) obtained from {1, 1, 2, 2, 2, 3, 3, 3, 4} of 3-Partition (predrawn univer-
sal vertices not shown). (c) the corresponding solution (d) variant without shared
endpoints. (Color figure online)

Note that if we distribute clique points on the circle according to a cyclic
order � of Lemma 1, then a representation R of G can be obtained by choosing
for each vertex v an arc R(v) that covers exactly the clique-points v belongs to.

3 Complexity

Theorem 1. The problems RepExt(HCAR), RepExt(CAR) are NP-complete.
RepExt(CAR) is NP-complete even if the predrawn arcs have pairwise distinct
endpoints.

Proof (sketch). By predrawing k universal vertices as in Fig. 3a in an instance
for RepExt(HCAR) or RepExt(CAR), we can require all other arcs to contain
at least one of k points; see the green dots in Fig. 3a. We use this to reduce
the strongly NP-complete problem 3-Partition [11] to RepExt(HCAR). Let S
be an instance of 3-Partition, i.e., a set S = {s1, . . . , s3n} of positive integers
with a total sum of nt for some t ∈ N. We may assume t/4 < si < t/2 for
each si ∈ S. The question is whether S can be partitioned into n disjoint triples
whose sum is always t. For the reduction, we generate (t + 1)n green dots and
predraw a blocker vertex that is only adjacent to the universal vertices at every
(t+1)-th green dot. For every number si ∈ S we add a star with si leaves to the
input graph G, see Fig. 3b (each star is only adjacent to the predrawn universal
vertices). Note that in every solution distinct leaf arcs must contain distinct
green dots and the green dots covered by the leaves of a star are consecutive.
The arc-segments between the blocker vertices thus correspond to the partition
sets for S, see Fig. 3c. The restriction on the si ensures that every partition set
contains exactly three elements.

For RepExt(CAR), the same construction works. In fact, we can avoid shared
endpoints in the partial representation with a simple modification. Namely, we
slightly shorten the arc for each universal vertex; see Fig. 3d. Then we have for
each former green dot a green area (on the circle) between the corresponding
arc ends. Each leaf of a star must now contain a green area. Note that in every

236 J. Fiala et al.

solution each leaf of a star in G contains exactly one green area and thus violates
the Helly property with the two universal arcs ending there.
�

For unit circular-arc representations we also reduce from 3-Partition. Here
we make use of the limited space between predrawn arcs and the fact that paths
of certain length cover at least a certain portion of the circle.

Theorem 2 (�). The problem RepExt(UCAR) is NP-complete.

4 (Normal) Proper Helly Circular-Arc Graphs

We show how to extend partial representations of NPHCA graphs in linear time.
To this end, we use that the extension is essentially unique. An instance of
RepExt(NPHCA) where G is not connected can be reduced to RepExt for
proper interval graphs (PINT) by opening the circle between predrawn arcs of
distinct components, or it can be reduced to RepExt(NPHCA) with a connected
input graph if only one component has predrawn vertices. RepExt(PINT) can
be solved in linear time [20]. For details see the full version.

Two vertices u, v ∈ V (G) are called twins if N [u] = N [v]. It is possible to
find the equivalence classes of twin vertices in linear time [31]. If vertices u, v are
twins and if either u is not predrawn or if both u, v are predrawn with the same
arc, then we remove u and in the final representation we just set R(u) = R(v).
We thus assume that all twins are predrawn with distinct arcs.

We use NPHCA models as combinatorial abstractions of NPHCA representa-
tions. Namely, an NPHCA model is a cyclic order of the heads and tails in an
NPHCA representation R with the special case, that for any pair of touching
arcs R(u), R(v) with R(u)h = R(v)t we let R(u)h immediately follow R(v)t. We
use the following result of Lin et al. [26].

Lemma 2. The NPHCA model of a connected NPHCA graph is unique up to
permuting twins and reversal. It can be obtained in linear time.

Theorem 3. The problem RepExt(NPHCAR) can be solved in linear time.

Proof. We solve RepExt(NPHCAR) as follows. Recall that we can assume that
all twins are predrawn. By Lemma 2 we can compute an NPHCA model M of
the input graph G (we just try both reversal decisions) and we reject if G is not
NPHCA. Then permute twins to match their order in the partial representation
R′ (including arranging them at the corresponding end if they touch another
predrawn arc).

Note that this is simple since the heads (tails) of a twin class are consecutive.
Next test whether the model for R′ is contained in M to ensure that R′ extends
to an NPHCA representation with model M. Additionally, check for each pair of
vertices u, v with R(u)h = R(v)t that R(u)h and R(v)t are consecutive in M.
Otherwise, they cannot be placed on the same point and we can reject. Note
that this wont occur for twin vertices. Each step can be done in linear time.
�

For RepExt(PHCAR), note that even though all proper Helly circular-
arc graphs allow a normal proper representation, we cannot reduce

Extending Partial Representations of Circular-Arc Graphs 237

RepExt(PHCAR) to RepExt(NPHCAR) directly, as the given partial repre-
sentation need not be normal. However, the existence of a proper Helly rep-
resentation extending a pair of arcs in a non-normal position imposes strong
conditions on the structure of G: after pruning all universal vertices only two
disjoint cliques remain. Such instances can be solved in linear time. For details
the full version.

Theorem 4 (�). The problem RepExt(PHCAR) can be solved in linear time.

5 (Normal) Helly Circular-Arc Graphs

Recall that in the case of interval graphs, PQ-trees can be used to capture all
plausible linear orders of the maximal cliques. Klav́ık et al. [23] use this to solve
RepExt(INT) by determining an order that is represented by the PQ-tree and
that extends a partial order that is derived from the partial representation. We
generalize their approach to RepExt(NHCAR) and RepExt(HCAR).

By Lemma 1 a graph G is a Helly circular-arc graph if and only if there exists
a cyclic order � of its maximal cliques such that for every vertex v, the maximal
cliques containing v appear consecutively in � and Hsu and McConnell [16]
use PC-trees to capture all plausible cyclic orders of the maximal cliques of a
Helly circular-arc graph. However, this cannot be straightforwardly applied since
extending a partial cyclic order is NP-complete, even without requiring that the
order be additionally represented by some given PC-tree [10]. We overcome this
problem by working with suitably linearized partial orders.

With the following lemma, we can solve instances of RepExt(NHCAR) with
universal vertices since they can be considered as instances of the interval case.

Lemma 3. Let G be a graph with a universal vertex u. Then every NHCA rep-
resentation of G has a point on the circle that is contained in no arc.

Proof. Let R be an NHCA representation of G. Assume that every point of the
circle is contained in some arc. Without loss of generality, we may assume that
R(u) is not strictly contained in any other arc of R. We consider the comple-
ment Rc(u) of R(u). Let vt, vh be vertices whose arcs contain Rc(u)t, Rc(u)h
respectively, and whose arcs maximize the intersection with Rc(u).

Note that, since R is normal, neither R(vt) nor R(vh) contain Rc(u). Assume
that one of R(vt), R(vh), say R(vt) contains both endpoints of R(u). We then
have R(u) ⊆ R(vt) which by the maximality of R(u) implies R(vt) = R(u). By
the choice of vt, we find in this case a point close to R(u)t that is not contained in
any arc. In the other case, each of R(vt) and R(vh) contains exactly one endpoint
of R(u). In particular, we have vt �= vh. Since u is universal and since every point
of Rc(u) is contained in some arc, it follows that Rc(u) ⊆ R(vt) ∪ R(vh). We
obtain R(vt) ∩ R(vh) ∩ Rc(u) �= ∅ (recall that our arcs are closed sets). Due to
the normal property, it follows that R(vt)∩R(vh)∩R(u) = ∅, which contradicts
the Helly property. We conclude that there exists a point p that is not contained
in any arc.
�

238 J. Fiala et al.

We assume for the rest of this section that G contains no universal vertices.

Lemma 4. A graph G without a universal vertex is an NHCA graph if and only
if there exists a cyclic order � of its maximal cliques such that

(i) for every vertex v, the maximal cliques containing v are consecutive in �.
(ii) for every universal pair u, w, the maximal cliques containing both u and w

are consecutive in �.

Proof. If G has an NHCA representation, then, due to the Helly property, we
have for each maximal clique C a clique point cp(C) where the arcs of all vertices
in C intersect. Let � be the cyclic order of the maximal cliques that corresponds
to the cyclic order of their clique points on the circle. For each vertex v and for
each universal pair u, w the corresponding cliques are consecutive in � since R(v)
and R(u) ∩ R(w) each are connected (the latter due to the normal property).

Next assume that we have a cyclic order � of the maximal cliques of G with
properties (i) and (ii). We obtain an NHCA representation as follows. We first
arrange the maximal clique points on the circle according to �. Then, for each
vertex v, we define the arc R(v) as the smallest subarc of the circle that contains
exactly the clique points of the maximal cliques that contain v. Note that R(v) is
well-defined since v is not universal. This defines a circular-arc representation R
of G since any two intersecting arcs share a clique point. Moreover, the existence
of the clique points shows the Helly property. It remains to show that R is
normal.

Assume that there are two nodes u, w such that R(u) ∩ R(w) is not con-
nected. Then u, w is a universal pair. Thus the cliques containing u and w are
consecutive in � which contradicts R(u)∩R(w) being not connected. Hence, the
representation is normal.
�

Let R′ be a partial representation of G, let C be the set of all its maximal
cliques and let C ∈ C. We define Pre(C) = {R′(v) : v ∈ C ∩ V (G′)} to be the
predrawn arcs corresponding to the vertices in C. We further define Reg+(C) =⋂

Pre(C) to be the set of all locations covered by all predrawn arcs of vertices
in C and Reg−(C) =

⋃
(R′ \ Pre(C)) to be the set of all locations covered by

any predrawn arc of a vertex not in C. The region of C is the set Reg(C) =
Reg+(C)\Reg−(C); see Fig. 4. Note that cp(C) lies in Reg(C) in any extension.
We thus assume in the following that no region is empty.

Lemma 5. For C,D ∈ C, we have Reg(C)∩Reg(D) = ∅ or Reg(C) = Reg(D).

Proof. If Pre(C) = Pre(D), then clearly Reg(C) = Reg(D). So, assume that
Pre(C) �= Pre(D) with an arc R′ ∈ Pre(C)\Pre(D). Then Reg(C) ⊆ Reg+(C) ⊆
R′ ⊆ Reg−(D) which is disjoint to Reg(D).
�

Let C be a maximal clique. An island of C is a connected component of
Reg(C) and a gap of C is a connected component of its complement Regc(C).
We say an island and a gap are neighboring if they share an endpoint (where one
end is open and the other is closed). Note that every island has two neighboring
gaps and every gap has two neighboring islands.

Extending Partial Representations of Circular-Arc Graphs 239

Observe that if two maximal cliques C,D ∈ C satisfy Pre(C) = Pre(D) then
Reg(C) = Reg(D) by definition. Otherwise, we obtain the following relationship:

Lemma 6. Let C,D ∈ C with Pre(C) �= Pre(D). Then a single gap of D con-
tains Reg(C).

Proof. By Lemma 5 we have Reg(C) ⊆ Regc(D). Assume that there are two
gaps J1, J2 of D that contain points j1, j2 ∈ Reg(C). Let I1, I2 be the islands
of D neighboring J1. Let i1 ∈ I1, i2 ∈ I2. For R′(v) ∈ Pre(C) it holds that
j1, j2 ∈ R′(v) and thus i1 ∈ R′(v) or i2 ∈ R′(v) since i1, i2 separate j1, j2 on the
circle. This implies Pre(C) ⊆ {R′(v) : i1 ∈ R′(v) ∨ i2 ∈ R′(v)} = {R′(v) : i1 ∈
R′(v)} ∪ {R′(v) ∈ V (G′) : i2 ∈ R′(v)} = Pre(D) ∪ Pre(D) = Pre(D). Likewise,
we obtain Pre(D) ⊆ Pre(C), contradicting Pre(C) �= Pre(D). Thus, Reg(C) is
contained in a single gap of D.
�

This means that for C,D ∈ C the clique point cp(C) must be placed in a
given gap of D. We obtain additional consecutivity constraints. For every gap J
of a maximal clique of G, we define the set SJ = {C ∈ C | Reg(C) ∩ J �= ∅} =
{C ∈ C | Reg(C) ⊆ J}. Recall that we assumed that no region is empty.

Lemma 7. Let ≤ be the clique order derived from an NHCA extension of R′

and let J be a gap of a maximal clique. Then SJ is consecutive in ≤.

Proof. Direct consequence of Lemma 6 since all clique points of SJ must be
placed in J and all other clique points must be placed in its complement Jc.
�
Lemma 8. There exists a maximal clique D with a single island.

Proof. Let D be a maximal clique with |Pre(D)| maximal. We claim that
Reg+(D) and Reg−(D) are disjoint. Otherwise there would exist a point p in
Reg+(D) ∩ Reg−(D) with Pre(D) � {R′(v) : p ∈ R′(v)}. This implies the exis-
tence of a (maximal) clique C in G with Pre(D) � Pre(C) in contradiction
to the choice of D. Since R′ is normal, this yields that Reg(D) = Reg+(D) is
connected. In other words, D has a single island.
�

For the rest of the section, let D be a maximal clique with a single island.
Let pD be a point in the interior of Reg(D) (or the only point in Reg(D), if it
is a single point) and let ≤ be the linear order of points on the circle obtained
by starting at pD. We consider a point p to be on the left of a point q if we have
p ≤ q. For two sets of points P , Q, we write P < Q if all points in P are on the
left of all points in Q.

We define a partial order ≺ on C with minimum D (i.e., ∀C ∈ C\{D} : D ≺ C)
and with C ≺ C ′ for any two other cliques C, C ′ with Reg(C) < Reg(C ′). Note
that every linearization of a clique order of an extension of R′ starting with D
extends ≺. For any vertex v let Mv denote the set of maximal cliques containing
v. Recall that for any linear order < the corresponding cyclic order is denoted
by [<]. Note that a set S ⊆ C \ {D} is consecutive in [<] if and only if it is
consecutive in <. On the other hand, a set D ∈ S ⊆ C is consecutive in [<] if
and only if its complement is consecutive in <.

240 J. Fiala et al.

Reg(C)
Reg+(C)

Reg−(C)
a b

c
d

Fig. 4. Reg(C),Reg+(C) and Reg−(C)
for c, d ∈ C, a, b �∈ C.

pD pDcp(Cj)

I J

Reg(Ci)

cp(Cj−1)

Fig. 5. Argument for the existence of a
placement for cp(Ci).

Theorem 5. Let G be a graph without universal vertices and let R′ be a par-
tial NHCA representation of G. There exists an NHCA representation of G that
extends R′ if and only if there exists a linear extension < of ≺ such that

1. For any pair of distinct maximal cliques C �= C ′ with Reg(C) = Reg(C ′), the
region Reg(C) is not a single point.

2. For every vertex v, the set Mv is consecutive in [<].
3. For every universal pair u, w, the set Mu ∩ Mw is consecutive in [<].
4. For every gap J of some C ∈ C, the set SJ is consecutive in [<].

Proof. We first show that, if there is an NHCA-extension of R′, then these prop-
erties are satisfied. We obtain < as the linearization of a clique order of an
extension of R′ starting with D where the clique point of D is pD. By the con-
struction of ≺, the order < is a linear extension of ≺. By Lemmas 4 and 7, we
obtain Properties 2, 3, 4. Property 1 is necessary, since no two clique points can
be placed at the same point.

For the converse, let <= C1, . . . , Ck be a linear extension of ≺ such that
Properties 1, 2, 3, 4 are satisfied. We show that each Ci ∈ C can be assigned its
clique point cp(Ci) ∈ Reg(Ci) such that cp(Cj) < cp(Ci) whenever j < i. With
Properties 2, 3, such a placement of the clique points yields an NHCA-extension
of R′ by representing every non-predrawn vertex u /∈ V (G′) by the minimal arc
R(u) containing exactly the clique points of the maximal cliques from Mu as in
the proof of Lemma 4.

Let ε > 0 be the 1
2n+1 -fraction of the length of the shortest island that is

not a point. This choice of ε allows to place all clique points at distance at least
ε but still within any island or within any side of pD in island Reg(D). For
C1 = D we place cp(C1) on pD. In a greedy way, when the location of the clique
points cp(C1), . . . , cp(Ci−1) is settled, we determine the set P of feasible points
for cp(Ci) that is P = Reg(Ci) ∩ {p : p > cp(Ci−1) + ε}. If P has minimum, we
place cp(Ci) there, otherwise we put cp(Ci) at inf(P) + ε. We argue that such
choice always exists.

Assume for a contradiction that Ci is the first maximal clique in the order <
that cannot be placed, i.e., with P = ∅. Note that a clique C �= Ci can only have
an island IC consisting of a single point if we have IC = Reg(C), since Reg+ is
a closed arc and all islands separated by gaps within Reg+ have an open end.
Hence, by the choice of ε, we only place a clique C at the maximum of Reg(C),
if Reg(C) consists of a single point. With Property 1, this cannot happen if
Reg(C) = Reg(Ci). Therefore, one clique point must be placed to the right of
Reg(Ci) before placing cp(Ci). We identify the first maximal clique Cj , j < i

Extending Partial Representations of Circular-Arc Graphs 241

that is placed to the right of all points in Reg(Ci). Since cp(Cj) /∈ Reg(Ci), we
have that Pre(Ci) �= Pre(Cj). By Lemma 6, the maximal clique Cj has a gap J
with Reg(Ci) ⊆ J , see Fig. 5.

By definition of <, clique Cj has an island I that neighbors J on the left.
Since cp(Cj) was not placed on I, the clique point cp(Cj−1) has been placed
to the right of I. By the choice of Cj , we have that cp(Cj−1) is not placed to
the right of J and thus cp(Cj−1) ∈ J . Since cp(Cj) has been placed to the
right of Reg(Ci) and thus to the right of J , we have pD �∈ J and thus D �∈ SJ .
With D < Cj−1 < Cj < Ci, where Cj−1, Ci ∈ SJ and D,Cj �∈ SJ we get a
contradiction with the Property 4, since SJ is not consecutive in [<].
�

By a result of Klav́ık et al. [23] we can efficiently find a linear order that
extends a given partial order and satisfies a set of consecutivity constraints.
This yields the following theorem; see the full version for details.

Theorem 6. The problem RepExt(NHCAR) can be solved in O(n3) time.

In light of the hardness result from Theorem 1, it is unlikely that this can be
generalized to RepExt(HCAR). However, the hardness proof crucially relies on
predrawn arcs sharing endpoints. If all predrawn arcs have distinct endpoints,
the problem can be solved in a similar fashion. For details see the full version.

Theorem 7 (�). The problem RepExt(HCAR) can be solved in O(n3) time if
the partial representation consists of arcs with pairwise distinct endpoints.

Proof (sketch). We characterize extendable HCA instances similar as in Theo-
rem 5 with Lemma 1 instead of Lemma 4. Since the predrawn arcs have pairwise
distinct endpoints, we have no islands consisting of a single point. Note that
Lemma 8 no longer applies and thus the placement of pD cannot be chosen
freely. Instead, we choose an arbitrary clique as C1 and test for each island I
of C1, whether we find a representation extension by choosing cp(C1) ∈ I. In
contrast to our method for RepExt(NHCAR) we have no special procedure for
universal vertices.
�

6 Conclusions and Open Problems

Our study of the RepExt problem has been restricted in two ways: First, we
have considered mostly representations satisfying the Helly property as this
allows us to consider the clique points of maximal cliques. For representations
without this property one would use a completely different approach.

Secondly, for the recognition problem it is irrelevant whether the arcs are
closed or open, but this is not the case for the representation extension. Observe
that touching intervals in RepExt(NPHCAR) imply constraints on the order.
For the sake of completeness it might be worth to check whether use of open or
semi-open intervals would significantly impact the computational complexity.

Acknowledgement. We thank Bartosz Walczak for inspiring comments, in particular
for his hint to extend Theorem 1 to the case of CAR with distinct endpoints.

242 J. Fiala et al.

References

1. Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans.
Algorithms 11(4), 32:1–32:42 (2015)

2. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms (TALG) 12(2), 1–46 (2015)

3. Bok, J., Jedličková, N.: A note on simultaneous representation problem for interval
and circular-arc graphs. arXiv preprint arXiv:1811.04062 (2018)

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

5. Chaplick, S., Dorbec, P., Kratochv́ıl, J., Montassier, M., Stacho, J.: Contact repre-
sentations of planar graphs: extending a partial representation is hard. In: Kratsch,
D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12340-0 12

6. Chaplick, S., Fulek, R., Klav́ık, P.: Extending partial representations of circle
graphs. J. Graph Theory 91(4), 365–394 (2019)

7. Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A.: Extending partial
representations of rectangular duals with given contact orientations. arXiv preprint
arXiv:2102.02013 (2021)

8. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.
15, 835–855 (1965)

10. Galil, Z., Meggido, N.: Cyclic ordering is NP-complete. Theoret. Comput. Sci. 5,
179–182 (1977)

11. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling
under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

12. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity
of coloring circular arcs and chords. SIAM J. Algebraic Discret. Methods 1(2),
216–227 (1980)

13. Gavril, F.: Algorithms on circular-arc graphs. Networks 4(4), 357–369 (1974)
14. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal

graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)
15. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle

graphs. SIAM J. Comput. 14(1), 224–231 (1985)
16. Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrangements. Theoret.

Comput. Sci. 296(1), 99–116 (2003)
17. Jeĺınek, V., Kratochv́ıl, J., Rutter, I.: A Kuratowski-type theorem for planarity of

partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)
18. Joeris, B.L., Lin, M.C., McConnell, R.M., Spinrad, J.P., Szwarcfiter, J.L.: Linear-

time recognition of Helly circular-arc models and graphs. Algorithmica 59(2), 215–
239 (2011)

19. Klav́ık, P., Kratochv́ıl, J., Krawczyk, T., Walczak, B.: Extending partial repre-
sentations of function graphs and permutation graphs. In: Epstein, L., Ferragina,
P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33090-2 58

20. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil,
T.: Extending partial representations of proper and unit interval graphs. Algorith-
mica 77(4), 1071–1104 (2017)

http://arxiv.org/abs/1811.04062
https://doi.org/10.1007/978-3-319-12340-0_12
http://arxiv.org/abs/2102.02013
https://doi.org/10.1007/978-3-642-33090-2_58

Extending Partial Representations of Circular-Arc Graphs 243

21. Klav́ık, P., et al.: Extending partial representations of proper and unit interval
graphs. CoRR abs/1207.6960 (2012). https://arxiv.org/abs/1207.6960

22. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Saitoh, T.: Extending partial representations
of subclasses of chordal graphs. Theoret. Comput. Sci. 576, 85–101 (2015)

23. Klav́ık, P., Kratochv́ıl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial
representations of interval graphs. Algorithmica 78(3), 945–967 (2017)

24. Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs.
In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp.
358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 27

25. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly circular-arc graphs. In:
Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp.
248–257. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-
7 24

26. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and
its subclasses. Discret. Appl. Math. 161(7–8), 1037–1059 (2013)

27. Lin, M.C., Szwarcfiter, J.L.: Characterizations and linear time recognition of Helly
circular-arc graphs. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol.
4112, pp. 73–82. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678 10

28. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc
graphs and subclasses: a survey. Discret. Math. 309(18), 5618–5635 (2009). Com-
binatorics 2006, A Meeting in Celebration of Pavol Hell's 60th Birthday (1–5
May 2006)

29. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica
37(2), 93–147 (2003)

30. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Com-
put. Sci. 17(5), 1061–1070 (2006)

31. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

32. Tucker, A.: Matrix characterizations of circular-arc graphs. Pac. J. Math. 39, 535–
545 (1971)

33. Tucker, A.: Structure theorems for some circular-arc graphs. Discret. Math. 7(1–2),
167–195 (1974)

34. Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24
(1980)

https://arxiv.org/abs/1207.6960
https://doi.org/10.1007/978-3-319-68705-6_27
https://doi.org/10.1007/978-3-540-74839-7_24
https://doi.org/10.1007/978-3-540-74839-7_24
https://doi.org/10.1007/11809678_10

Bounding Threshold Dimension:
Realizing Graphic Boolean Functions

as the AND of Majority Gates

Mathew C. Francis1 , Atrayee Majumder2(B) , and Rogers Mathew3

1 Indian Statistical Institute, Chennai, India
mathew@isichennai.res.in

2 Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India

atrayee.majumder@iitkgp.ac.in
3 Department of Computer Science and Engineering, Indian Institute of Technology,

Hyderabad, India

rogers@cse.iith.ac.in

Abstract. A graph G on n vertices is a threshold graph if there exist
real numbers a1, a2, . . . , an and b such that the zero-one solutions of the

linear inequality
n∑

i=1

aixi ≤ b are the characteristic vectors of the cliques

of G. Introduced in [Aggregation of inequalities in integer programming.
Chvátal and Hammer, Annals of Discrete Mathematics, 1977], the thresh-
old dimension of a graph G, denoted by dimTH(G), is the minimum num-
ber of threshold graphs whose intersection yields G. Given a graph G on
n vertices, in line with Chvátal and Hammer, fG : {0, 1}n → {0, 1} is the
Boolean function that has the property that fG(x) = 1 if and only if x is
the characteristic vector of a clique in G. A Boolean function f for which
there exists a graph G such that f = fG is called a graphic Boolean
function. It follows that for a graph G, dimTH(G) is precisely the mini-
mum number of majority gates whose AND (or conjunction) realizes the
graphic Boolean function fG. The fact that there exist Boolean functions
which can be realized as the AND of only exponentially many majority
gates motivates us to study threshold dimension of graphs. We give tight
or nearly tight upper bounds for the threshold dimension of a graph in
terms of its treewidth, maximum degree, degeneracy, number of vertices,
size of a minimum vertex cover, etc. We also study threshold dimension
of random graphs and graphs with high girth.

Keywords: Intersection dimension · Threshold dimension · Boxicity ·
Threshold graphs · Graphic Boolean function · Majority gates ·
Depth-2 circuits · Treewidth

1 Introduction

All the graphs that are mentioned in this paper are finite, simple, and undirected.
Given a graph G = (V,E), we shall use V (G) and E(G) to denote the vertex
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 244–256, 2022.
https://doi.org/10.1007/978-3-031-15914-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_18&domain=pdf
http://orcid.org/0000-0002-0498-7856
http://orcid.org/0000-0002-6694-777X
http://orcid.org/0000-0003-4536-1136
https://doi.org/10.1007/978-3-031-15914-5_18

Bounding Threshold Dimension 245

set and edge set of G, respectively. For any v ∈ V (G), we use NG(v) to denote
the neighborhood of v in G, i.e., NG(v) = {u ∈ V (G) : vu ∈ E(G)}. We use
NG[v] to denote NG(v) ∪ {v}. For any S ⊆ V (G), we shall use G[S] to denote
the subgraph induced by the vertex set S in G. We use G − S to denote the
graph G[V (G) \ S]. A subset of vertices in a graph forms a clique if each pair of
vertices in this subset has an edge between them; if no pair of vertices have an
edge between them, then the subset is called an independent set.

Graphic Boolean Functions. Given a graph G on n vertices, we define the
Boolean function fG : {0, 1}n → {0, 1} as follows: ∀x ∈ {0, 1}n, fG(x) = 1 if
and only if x is the characteristic vector of a clique in G. A Boolean function f
such that there exists a graph G for which fG = f is called a graphic Boolean
function. Graphic Boolean functions were defined by Chvátal and Hammer [7]
(they defined the Boolean function corresponding to a graph G to be the function
whose solutions are exactly the characteristic vectors of the independent sets of
G; it is easy to see that this is the function fG and hence this definition and the
one that we gave above for graphic Boolean functions are equivalent). Below,
we give a characterization of graphic Boolean functions due to Hammer and
Mahadev [13].

Proposition 1 (Hammer and Mahadev [13] (�1)). A Boolean function on
n variables x1, x2, . . . , xn is graphic if and only if it can be written in conjunctive
normal form where each clause is of the form (xi∨xj), for some distinct i, j ∈ [n].

Majority Gates and LTFs. A majority gate is a logic gate that produces
an output of 1 if and only if at least half of its input bits are 1. It can be
easily seen that an AND or OR gate can be realized using a majority gate by
the addition of a suitable number of hardcoded input bits. A Boolean function
f : {0, 1}n → {0, 1} is called a Linear Threshold Function (LTF) if there exists

a linear inequality I :
n∑

i=1

aixi ≤ b on variables x1, x2, . . . , xn such that ∀x =

(x1, x2, . . . , xn) ∈ {0, 1}n, f(x) = 1 if and only if x satisfies I. We say that
the linear inequality I “represents” f . It is well known that every LTF can be
represented by a linear inequality in which the coefficients a1, a2, . . . , an, b are
integers (from here onward, a linear inequality representing an LTF shall be
implicitly assumed to have integer coefficients). This implies the well known
fact that every LTF can be realized using a majority gate by wire duplication.
Conversely, it is easy to see that any Boolean function that can be realized using
a majority gate is an LTF.

Threshold Graphs. A graph G on n vertices is a threshold graph if there
exist real numbers a1, a2, . . . , an and b such that the zero-one solutions of the

linear inequality
n∑

i=1

aixi ≤ b are the characteristic vectors of the cliques of G.

1 The proofs of the statements marked with (�) are not included in the paper due to
space constraints. Please refer to [11] for these proofs.

246 M. C. Francis et al.

This implies that G is a threshold graph if and only if fG is an LTF. Since
LTFs are exactly the Boolean functions that can be realized using a majority
gate, we can equivalently say that a graph G is a threshold graph if and only
if fG can be realized using a majority gate. Chvátal and Hammer [7] showed
that threshold graphs are exactly the graphs that contain no induced subgraph
isomorphic to 2K2, P4 or C4 (the graph with four vertices and two disjoint edges,
the path on four vertices and the cycle on four vertices respectively). Thus, the
complement of a threshold graph is also a threshold graph, implying that one can
replace ‘cliques’ with ‘independent sets’ in the definition of a threshold graph.
The complete graph on n vertices is a threshold graph with the corresponding

linear inequality being
n∑

i=1

xi ≤ n. Similarly, the star graph K1,n−1 is a threshold

graph, as shown by the linear inequality x1 +
n∑

i=2

(n − 1)xi ≤ n. For a graph

G, the characteristic vectors of the subsets of V (G) correspond to the corners
of the n-dimensional hypercube. Thus, a graph G is threshold if and only if
there is a hyperplane in R

n that separates the corners of the n-dimensional
hypercube that correspond to the cliques of G from the other corners of the
hypercube. Threshold graphs, which find applications in integer programming
and set packing problems, were introduced by Chvátal and Hammer [7]. Refer
to the book [12] by Golumbic to know more about the different properties of
threshold graphs. A more comprehensive study of threshold graphs can be found
in the book [17] by Mahadev and Peled.

The following equivalent characterization of threshold graphs (Corollary 1B
in [7]) will be useful for us.

Proposition 2 (Chvátal and Hammer [7]). G is a threshold graph if and
only if there is a partition of V (G) into an independent set A and a clique B, and
an ordering u1, u2, . . . , uk of A such that NG(uk) ⊆ NG(uk−1) ⊆ · · · ⊆ NG(u1).

Threshold Dimension. If G1, G2, . . . , Gk are graphs on the same vertex set
as G such that E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk), then we say that G =
G1∩G2∩· · ·∩Gk. In a similar way, if E(G) = E(G1)∪E(G2)∪· · ·∪E(Gk), then
we say that G = G1 ∪ G2 ∪ · · · ∪ Gk. Given a class A of graphs, Kratochv́ıl and
Tuza [16] defined the A-dimension of a graph G, denoted as dimA(G), to be the
minimum integer k such that there exist k graphs in A whose intersection is G.
Let TH denote the class of threshold graphs. Chacko and Francis [4] studied the
parameter dimTH(G) of a graph G, which in the language of [16], can be called
the threshold dimension of G.

Definition 1 (Threshold dimension). The threshold dimension of a graph G,
denoted by dimTH(G), is the smallest integer k for which there exist threshold
graphs G1, G2, . . . , Gk such that G = G1 ∩ G2 ∩ · · · ∩ Gk.

Let f : {0, 1}n → {0, 1} be a Boolean function. Let γ(f) denote the minimum
number of LTFs whose AND (or conjunction) realizes f , or equivalently, the
minimum number of majority gates in a depth-2 circuit realizing f whose first

Bounding Threshold Dimension 247

layer consists of only majority gates and second layer consists of a single output
AND gate. Chvátal and Hammer proved the following theorem connecting the
parameters γ(fG) and dimTH(G) for a graph G.

Theorem 1 (Chvátal and Hammer [7] (�)). For every graph G, γ(fG) =
dimTH(G).

For any Boolean function f on n variables, γ(f) ≤ 2n (since any Boolean
function on n variables can be realized using a depth-2 circuit in which the
first layer contains at most 2n OR gates and the second layer contains an AND
gate—which is just another way of saying that f can be written in conjunctive
normal form), and there are families of Boolean functions {f1, f2, . . .}, where f i

is a Boolean function on i variables, for which γ(fn) is exponential in n [18]. For
a Boolean function f on n variables that can be expressed as a 2-CNF formula,
the number of clauses in it is at most

(
2n
2

)
, which means that f can be realized

using a depth-2 circuit containing at most
(
2n
2

)
majority gates. If further, f is

a graphic Boolean function, then the number of clauses when written in 2-CNF
form is at most

(
n
2

)
(by Proposition 1), implying that f can be realized using

a depth-2 circuit containing at most
(
n
2

)
majority gates. As for any graph G,

we have γ(fG) = dimTH(G) ≤ n (this can be seen as follows: for every vertex
u ∈ V (G), we define the graph Gu on vertex set V (G) and having edge set {xy :
x, y ∈ V (G) \ {u} and x
= y} ∪ {uv : v ∈ NG(u)}; then G =

⋂
u∈V (G) Gu and

each Gu is a threshold graph), every graphic Boolean function on n variables
can be realized using a depth-2 circuit whose first layer contains at most n
majority gates. This can be improved further by deriving better upper bounds
for threshold dimension (see for example, Corollary 4). Further, when the graphs
corresponding to the graphic Boolean functions have some nice properties, we
can show even better bounds on the number of majority gates required in a
depth-2 circuit realizing the function.

Note that Chvátal and Hammer [7] use the term “threshold dimension” of
a graph G with a slightly different meaning: they define it to be the minimum
integer k for which there exist threshold graphs G1, G2, . . . , Gk such that G =
G1 ∪ G2 ∪ · · · ∪ Gk. We call this the threshold cover number of G and denote
it by covTH(G). Since the complement of a threshold graph is also a threshold
graph, we have the following.

Observation 1. For every graph G, covTH(G) = dimTH(G).

For a graph G, let α(G), ω(G), and χ(G) denote the size of a maximum
independent set, the size of a maximum clique, and the chromatic number
of G, respectively. It was shown in [7] that for every graph G on n vertices,
covTH(G) ≤ n − α(G). In the same paper, the authors also showed that for
every positive ε, there is a graph G on n vertices such that covTH(G) > (1− ε)n.
Yannakakis [23] showed that it is NP-complete to recognize graphs having thresh-
old cover number at most k, for all fixed k ≥ 3. Raschle and Simon [20] showed
that there is a polynomial time algorithm that recognizes graphs having thresh-
old cover number at most 2. Combining Observation 1 with the results due
in [7,20,23] mentioned above directly yields the following.

248 M. C. Francis et al.

Corollary 1.

(a) For every graph G on n vertices, dimTH(G) ≤ n−ω(G), where ω(G) denotes
the size of a largest clique in G.

(b) For every positive ε, there is a graph G on n vertices such that dimTH(G) >
(1 − ε)n.

(c) It is NP-complete to recognize graphs having threshold dimension at most k,
for all fixed k ≥ 3.

(d) There is a polynomial time algorithm that recognizes graphs having threshold
dimension at most 2.

We now give a lower bound on the threshold dimension of a graph.

Proposition 3 (�). For every graph G, dimTH(G) ≥ min{χ(G − C) : C is a
clique of G}.

Note that the above proposition actually gives a lower bound on dimSPLIT(G),
where SPLIT is the class of “split graphs”—the graphs whose vertex set can be
partitioned into an independent set and a clique—of which the class of threshold
graphs is a subclass.

A graph is an interval graph if there is a mapping from the set of vertices of
the graph to the set of closed intervals on the real line such that two vertices in
the graph are adjacent to each other if and only if the intervals they are mapped
to have a non-empty intersection. Let INT denote the class of interval graphs.
The parameter dimINT(G) is more commonly known as the boxicity of the graph
G and denoted as box(G). It is known that threshold graphs form a subclass of
the class of interval graphs. This implies the following.

Observation 2. For every graph G, box(G) ≤ dimTH(G).

The graph parameter ‘boxicity’ was introduced by Roberts [21] in 1969 and,
since then, it has been extensively studied (see [1,2,5,6,10,15]). We will see
how Observation 2 helps us get tight examples to various bounds we prove for
threshold dimension in this paper. Chacko and Francis [4] gave the following
upper bound for the threshold dimension of a graph G in terms of its boxicity
and chromatic number.

Theorem 2 (Theorem 19 in [4]). For every graph G, dimTH(G) ≤ box(G) ·
χ(G).

We note here that the above upper bound is tight, as shown by the following
observation, which also shows that the threshold dimension of a graph cannot
be bounded by any function of its boxicity.

Proposition 4 (�). There is an interval graph G for which dimTH(G) =
χ(G) = |V (G)|/2.

In this paper, we prove tighter upper bounds for the threshold dimension of a
graph that cannot be obtained from Theorem 2 by plugging in known upper
bounds for boxicity.

Bounding Threshold Dimension 249

1.1 Our Results

Let G be a graph with n vertices. Let Δ denote the maximum degree of a vertex
in G and let tw(G) denote the treewidth of G. Let α(G) and ω(G) denote the
sizes of a maximum independent set and a maximum clique, respectively, in G.
We prove the following results.

1. Chandran and Sivadasan [6] showed that for any graph G, box(G) ≤
tw(G) + 2. Chacko and Francis [4] note that for any graph G, dimTH(G) ≤
(tw(G) + 1)(tw(G) + 2) and ask if the threshold dimension of every graph
can be bounded by a linear function of its treewidth. In Sect. 2, we answer
this question in the affirmative by showing that dimTH(G) ≤ 2(tw(G) + 1).
We show that this bound is tight up to a multiplicative factor of 2. Co-
comparability graphs, AT-free graphs, and chordal graphs are known to have
O(Δ) upper bounds on their treewidth. We thus get an O(Δ) upper bound
to the threshold dimension of such graphs.

2. Let dimTH(Δ) := max{dimTH(G) : G is a graph having maximum degree
Δ}. In Sect. 3, we show that dimTH(Δ) = O(Δ ln2+o(1) Δ). It was shown by
Erdős, Kierstead, and Trotter in [9] that there exist graphs G having boxicity
Ω(Δ ln Δ). Using Observation 2, we get dimTH(Δ) = Ω(Δ ln Δ). Bridging the
gap between the upper and lower bounds for dimTH(Δ) would be interesting.
Since, by Theorem 1, dimTH(G) = γ(fG), it may be worthwhile to see if
techniques from complexity theory could be used to bridge this gap.

3. Let G be k-degenerate. We show in Sect. 4 that dimTH(G) ≤ 10k ln n. It was
shown in Sect. 3.1 in [2] that there exist k-degenerate graphs on n vertices
with boxicity in Ω(k ln n). Together with Observation 2, this implies that the
upper bound for dimTH(G) we prove in Sect. 4 is tight up to constants. This
bound gives some interesting corollaries.
(a) Let G ∈ G(n,m), where m ≥ n/2. Then, asymptotically almost surely

dimTH(G) ∈ O(dav log n), where dav = 2m
n denotes the average degree

of G.
(b) If G has a girth greater than g + 1, then dimTH(G) = O(n

1
�g/2� ln n).

4. In Sect. 5, we show that the threshold dimension of any graph is upper
bounded by its minimum vertex cover number, which implies that for any
graph G, dimTH(G) ≤ n − max{α(G), ω(G)}. We show that this bound is
tight. As a corollary we show that if n is sufficiently large, then dimTH(G) ≤
n − 0.72 ln n.

1.2 Preliminaries

Definition 2. Given a graph G, an independent set A = {u1, u2, . . . , ut} in G,
and a total ordering σ : u1, u2, . . . , ut of the vertices of A, we define the threshold
supergraph τ(G,A, σ) of G as below. Let B = V (G)\A and for v ∈ B, let s(v) =
max{i : ui ∈ NG(v)} if N(v) ∩ B
= ∅ and s(v) = 0 otherwise. In τ(G,A, σ), the
vertices of A form an independent set and those of B form a clique and each
vertex v ∈ B is adjacent to exactly the vertices u1, u2, . . . , us(v). Formally,

V (τ(G,A, σ)) = V (G)

250 M. C. Francis et al.

E(τ(G,A, σ)) = E(G) ∪ {xy : x, y ∈ B and x
= y} ∪
⋃

v∈B

{vu1, vu2, . . . , vus(v)}

The following proposition follows directly from the above definition and Propo-
sition 2.

Proposition 5. Given a graph G, an independent set A of G, and an ordering
σ of A, the graph τ(G,A, σ) is a threshold graph and G is its subgraph.

2 Threshold Dimension and Treewidth

In this section, we show that for every graph G, we have dimTH(G) ≤ 2(tw(G)+
1), where tw(G) denotes the treewidth of G. We set up some notations and
discuss some necessary existing results before going into the proof of the main
result. The notion of treewidth was first introduced by Robertson and Seymour
in [22].

Definition 3 (Tree decomposition). A tree decomposition of a graph G =
(V,E) is a pair (T, {Xi : i ∈ V (T)}) where T is a tree and for each i ∈ V (T), Xi

is a subset of V (G) (sometimes called a bag), such that the following conditions
are satisfied:

–
⋃

i∈V (T) Xi = V (G).
– ∀uv ∈ E(G),∃i ∈ V (T), such that u, v ∈ Xi.
– ∀i, j, k ∈ V (T): if j is on the path in T from i to k, then Xi ∩ Xk ⊆ Xj.

The width of a tree-decomposition (T, {Xi : i ∈ V (T)}) is maxi∈V (T) |Xi| − 1.

Definition 4 (Treewidth). The treewidth of a graph G, denoted by tw(G), is
the minimum width over all possible tree decompositions of G.

A tree decomposition (T, {Xi : i ∈ V (T)}) of a graph G is said to be a path
decomposition of G if T is a path. The pathwidth of G, denoted by pw(G), is
defined as the minimum width over all possible path decompositions of G. The
following result by Chacko and Francis connects threshold dimension of a graph
with its pathwidth.

Theorem 3 (Theorem 7 in [4]). For every graph G, dimTH(G) ≤ pw(G)+ 1.

Since path decompositions are special cases of tree decompositions, it can be seen
that tw(G) ≤ pw(G). Korach and Solel showed that pw(G) = O(log n · tw(G)),
where n = |V (G)| (Theorem 6 in [14]). We thus have dimTH(G) = O(log n ·
tw(G)). Chacko and Francis note that for any graph G, dimTH(G) ≤ (tw(G) +
1)(tw(G) + 2) and ask if there is a linear bound on the threshold dimension of a
graph in terms of its treewidth. We give an affirmative answer to this question.

Given an ordering σ of the vertices of a graph G and u, v ∈ V (G), we denote
by u <σ v the fact that u appears before v in the ordering.

Let T be a rooted tree. For any u, v ∈ V (T), u is an ancestor of v, and v a
descendant of u, if u lies on the path from v to the root of T . It follows from this

Bounding Threshold Dimension 251

definition that every vertex of T is both an ancestor and descendant of itself.
For a rooted tree T , a preorder traversal of T is an ordering of V (T) in the order
in which a depth-first search algorithm starting from the root may visits the
vertices of T . The following is not difficult to see.

Proposition 6. If π is a preorder traversal of a rooted tree T , then:

(i) for u, v ∈ V (T) such that v is a descendant of u, we have u <π v, and
(ii) for u, v, w ∈ V (T) such that u <π v <π w, if w is a descendant of u, then v

is also a descendant of u.

Let G be a graph and T = (T, {Xi : i ∈ V (T)}) be a tree decomposition of
G having width k. We choose an arbitrary vertex r to be the root of T and
henceforth consider T to be a rooted tree. Then a function b : V (G) → V (T) is
defined as follows: for a vertex v ∈ V (G), b(v) is the bag containing v in the tree
decomposition that is closest to r. Formally, b(v) is the vertex of T such that
v ∈ Xb(v) and v /∈ Xi for any i ∈ V (T) that is an ancestor of b(v).

Lemma 1 (Lemma 10 in [6]). If uv ∈ E(G), then b(u) is either an ancestor
or descendant of b(v) in T .

Lemma 2 (Lemma 8 in [6]). There exists a function θ : V (G) → {0, 1, . . . , k},
such that for any i ∈ V (T) and for any two distinct nodes u, v ∈ Xi, θ(u)
= θ(v).

Remark. The function θ is a proper vertex colouring of the chordal graph G′

that one obtains from G by adding edges between every pair of vertices that
appear together in some bag of the tree decomposition. Clearly, T is a tree
decomposition of G′ as well. From the fact that every clique in G′ has to be
contained in some bag of T , and the fact that chordal graphs are perfect, it
follows that θ needs to use only max{|Xi| : i ∈ V (T)} different colours.

The following lemmas from [6] describe some properties of the functions θ
and b that we will use later. These are direct corollaries of the definition of θ
and that of tree decompositions.

Lemma 3 (Lemma 9 in [6]). If uv ∈ E(G) then θ(u)
= θ(v).

Lemma 4 Lemma 11 in [6]). Let uv ∈ E(G) and let b(u) be an ancestor of
b(v). For any vertex w ∈ V (G) \ {u}, θ(w)
= θ(u) if b(w) is in the path from
b(v) to b(u) in T .

Let π be a preorder traversal of T . Let σ be an ordering of V (G) such that for any
two vertices u, v ∈ V (G), u <σ v in σ if b(u) <π b(v). (In σ, we let the ordering
between two vertices u, v ∈ V (G) such that b(u) = b(v) to be arbitrary. Thus, if
u <σ v, then b(u) ≤π b(v).) Let σ−1 denote the ordering of V (G) obtained by
reversing the ordering σ. Given a set A ⊆ V (G), we denote by σ|A the ordering
of vertices of A in the order in which they appear in σ.

For i ∈ {0, 1, . . . , k}, we define Ci = {v ∈ V (G) : θ(v) = i}. From Lemma 3,
we know that θ is a proper colouring of G, which implies that Ci is an inde-
pendent set of G. For each class Ci, where 0 ≤ i ≤ k, we define two graphs
G1

i = τ(G,Ci, σ|Ci
) and G2

i = τ(G,Ci, σ
−1|Ci

).

252 M. C. Francis et al.

Lemma 5. Let u, v be distinct vertices in G. Then there do not exist xu, yu ∈
NG(u) and xv, yv ∈ NG(v) such that xu <σ v <σ yu, xv <σ u <σ yv, θ(u) =
θ(xv), and θ(v) = θ(xu).

Proof. Clearly, we have either u <σ v or v <σ u. Let us assume without loss
of generality that u <σ v. Then we have u <σ v <σ yu, which implies that
b(u) ≤π b(v) ≤π b(yu). Since uyu ∈ E(G), we have from Lemma 1 that b(u)
is either an ancestor or descendant of b(yu). As π is a preorder traversal of T ,
Proposition 6(i) implies that b(u) is an ancestor of b(yu) in T . As b(u) ≤π b(v) ≤π

b(yu), it now follows from Proposition 6(ii) that b(v) is a descendant of b(u).
Similarly, xv <σ u <σ v implies that b(xv) ≤π b(u) ≤π b(v), and vxv ∈ E(G)
then implies by Lemma 1, Proposition 6(i) and (ii) that b(u) is a descendant of
b(xv). Now applying Lemma 4 to xv, u and v, we have that θ(xv)
= θ(u), which
is a contradiction. ��

Lemma 6. G =
⋂

0≤i≤k

(G1
i ∩ G2

i)

Proof. Consider any two distinct vertices u and v of G. Since G1
i and G2

i , for
1 ≤ i ≤ k, are both supergraphs of G by definition, we have that if uv ∈ E(G),
then uv is an edge of both G1

i and G2
i . So in order to prove the lemma, we

only need to prove that whenever uv /∈ E(G), there exists i ∈ {0, 1, . . . , k} and
j ∈ {1, 2} such that uv /∈ E(Gj

i).
Suppose θ(u) = θ(v) = i. Since the class Ci is an independent set in G1

i

and G2
i , uv is an edge in neither G1

i nor G2
i , and we are done. So let us assume

that θ(u)
= θ(v). Let θ(u) = i and θ(v) = j. We claim that uv is not an edge
in one of the graphs G1

i , G2
i , G1

j , or G2
j . Suppose for the sake of contradiction

that uv ∈ E(G1
i) ∩ E(G2

i) ∩ E(G1
j) ∩ E(G2

j). Then uv is an edge in each of the
graphs τ(G,Ci, σ|Ci

), τ(G,Ci, σ
−1|Ci

), τ(G,Cj , σ|Cj
), τ(G,Cj , σ

−1|Cj
). Since

uv ∈ E(τ(G,Ci, σ|Ci
)), by Definition 2, we have that there exists yv ∈ Ci ∩

NG(v) such that u <σ yv. Further, since uv ∈ E(τ(G,Ci, σ
−1|Ci

)), there exists
xv ∈ Ci ∩ NG(v) such that u <σ−1 xv, or in other words, xv <σ u. As uv ∈
E(τ(G,Cj , σ|Cj

)) and uv ∈ E(τ(G,Cj , σ
−1|Cj

)), we can similarly conclude that
there exist xu, yu ∈ Cj ∩NG(u) such that xu <σ v <σ yu. Since θ(xu) = θ(v) = j
and θ(xv) = θ(u) = i, we now have a contradiction to Lemma 5. ��

From Proposition 5 and Definition 2, it follows that G1
i and G2

i are both threshold
graphs for each i ∈ {0, 1, 2, . . . , k}. Thus by Lemma 6, we get that dimTH(G) ≤
2(k + 1), which leads to the following theorem.

Theorem 4. For any graph G, dimTH(G) ≤ 2(tw(G) + 1).

Tightness of the Bound. Note that from Proposition 4, we know that the
graph 2Kn has threshold dimension n and it is easy to see that the treewidth
of this graph is n − 1. Thus the upper bound on threshold dimension given by
Theorem 4 is tight up to a multiplicative factor of 2. Please see Example 1 in [11]
for the construction of another graph that shows the same tightness bound.

Bounding Threshold Dimension 253

3 Threshold Dimension and Maximum Degree

Let dimTH(Δ) := max{dimTH(G) : G is a graph having maximum degree Δ}. In
this section, we show that dimTH(Δ) = O(Δ ln2+o(1) Δ).

Given a graph G and an S ⊆ V (G), recall that we use G[S] to denote the
subgraph induced by the vertex set S in G. For any disjoint pair of sets S, T ⊆
V (G), we use G[S, T] to denote the bipartite subgraph of G where V (G[S, T]) =
S∪T and E(G[S, T]) = {uv : u ∈ S, v ∈ T, uv ∈ E(G)}. Let G∗[S, T] denote the
graph constructed from G[S, T] by making T a clique. That is, V (G∗[S, T]) =
S ∪ T and E(G∗[S, T]) = E(G[S, T]) ∪ {uv : u, v ∈ T}.

Lemma 7 (�). Let G be a bipartite graph with bipartition {A,B}, where ver-
tices in A have degree at most Δ and vertices in B have degree at most d, for
some 2 ≤ d ≤ Δ. Then,

dimTH(G∗[A,B]) ≤ (81 + o(1))d ln (dΔ) ln lnΔ(2e)
√
ln d,

when d → ∞.

Theorem 5 (�). For a graph G with maximum degree Δ,

dimTH(G) ≤ (24300 + o(1))Δ ln2 Δ ln lnΔ(2e)
√

(1+o(1)) ln lnΔ,

when Δ → ∞.

Since (2e)
√

(1+o(1)) ln lnΔ ln lnΔ = (lnΔ)
ln(2e)

√
(1+o(1)) ln ln Δ

ln ln Δ + ln ln ln Δ
ln ln Δ = lno(1) Δ

we get the following corollary.

Corollary 2.
dimTH(Δ) ∈ O(Δ ln2+o(1) Δ).

4 Threshold Dimension and Degeneracy

Given a graph G and a positive integer k, an ordering of the vertices of G
such that no vertex has more than k neighbors after it is called a k-degenerate
ordering of G. We say a graph is k-degenerate if it has a k-degenerate ordering.
The minimum k such that G is k-degenerate is called the degeneracy of G. From
its definition, it is clear that the degeneracy of a graph is at most its maximum
degree. In this section, we derive upper bounds on the threshold dimension of a
graph in terms of its degeneracy. The techniques we adopt are mostly inspired
by those in [2].

Throughout this section, we shall assume that G is a k-degenerate graph on n
vertices with vertex set {v1, v2, . . . , vn} and that v1, v2, . . . , vn is a k-degenerate
ordering of G. Thus, for each i ∈ {1, 2, . . . , n}, |NG(vi)∩{vi+1, vi+2, . . . , vn}| ≤ k.
The vertices in NG(vi) ∩ {vi+1, vi+2, . . . , vn} are called the forward neighbors of
vi. Let i < j and vivj /∈ E(G). A coloring f of the vertices of G is desirable for
the non-adjacent pair (vi, vj) if (i) f is a proper coloring, and (ii) f(vj)
= f(vt),
for all neighbors vt of vi such that t > j.

254 M. C. Francis et al.

Lemma 8 (�). Let G be a k-degenerate graph on n vertices and let v1, v2, . . . , vn

be a k-degenerate ordering of G. Let r = �ln n�. Then there is a collection
{f1, . . . , fr}, where each fi : V (G) → [10k] is a proper coloring of the vertices of
G, such that for every non-adjacent pair (vi, vj), where i < j, there exists an
� ∈ [r] such that f� is a desirable coloring for the pair (vi, vj).

Theorem 6 (�). For every k-degenerate graph G on n vertices, dimTH(G) ≤
10k lnn.

4.1 Random Graphs

The following lemma was proved in [2].

Lemma 9 (Lemma 12 in [2]). For a random graph G ∈ G(n, p), where p =
c

n−1 and 1 ≤ c ≤ n − 1, Pr[G is 4ec-degenerate] ≥ 1 − 1
Ω(n2) .

Applying Lemma 9 and Theorem 6, we get the following lemma.

Lemma 10. For a random graph G ∈ G(n, p), where p = c
n−1 and 1 ≤ c ≤ n−1,

Pr[dimTH(G) ∈ O(c ln n)] ≥ 1 − 1
Ω(n2) .

It is known that (see page 35 of [3])

Pm(Q) ≤ 3
√

mPp(Q) (1)

where (i) Q is a property of graphs of order n, (ii) Pm(Q) is the probability that
Property Q is satisfied by a graph G ∈ G(n,m), and (iii) Pp(Q) is the probability
that Property Q is satisfied by a graph G ∈ G(n, p) with p = m

(n
2)

= 2m/n
n−1 .

Assume m ≥ n/2. Then, p = 2m/n
n−1 ≥ 1

n−1 and by Lemma 10, Pr[dimTH(G) /∈
O(2m

n ln n)] ≤ 1
Ω(n2) . Applying Eq. 1, for a random graph G ∈ G(n,m), m ≥

n/2, Pr[dimTH(G) /∈ O(2m
n ln n)] ≤ 3

√
m

Ω(n2) ≤ 1
Ω(n) . We thus have the following

theorem.

Theorem 7. For a random graph G ∈ G(n,m), m ≥ n/2, Pr[dimTH(G) ∈
O(2m

n ln n)] ≥ 1− 1
Ω(n) . In other words, Pr[dimTH(G) ∈ O(dav ln n)] ≥ 1− 1

Ω(n) ,
where dav denotes the average degree of G.

4.2 Graphs of High Girth

The girth of a graph is the length of a smallest cycle in it. We assume that
if the graph is acyclic, then its girth is ∞. We apply Theorem 6 to prove an
upper bound for the threshold dimension of a graph in terms of its girth and the
number of vertices. The following lemma was proved in [19].

Lemma 11 (Lemma 23 in [19]). Let G be a graph on n vertices having girth
greater than g + 1. Then, G is k-degenerate, where k = �n

1
�g/2� �.

Bounding Threshold Dimension 255

Applying the above lemma, we get the following corollary to Theorem 6.

Corollary 3. Let G be a graph on n vertices with girth greater than g+1. Then,
dimTH(G) ≤ 10�n

1
�g/2� � ln n.

The bipartite graph G obtained by removing a perfect matching from the com-
plete bipartite graph Kn,n is known to have a boxicity of n

2 . From Observation 2
and by applying Corollary 3 with g = 2, we have n

2 ≤ dimTH(G) = O(n ln n).
Thus, we cannot expect to get an upper bound of O(nα/g), with α < 2, for the
threshold dimension of a graph with girth greater than g + 1.

5 Threshold Dimension and Minimum Vertex Cover

A vertex cover of G is a set of vertices S ⊆ V (G) such that ∀e ∈ E(G), at least
one endpoint of e is in S. A minimum vertex cover of G is a vertex cover of G
of the smallest cardinality. We use β(G) to denote the cardinality of a minimum
vertex cover. In this section, we prove a tight upper bound for the threshold
dimension of a graph in terms of the size of its minimum vertex cover.

Proposition 7 (�). For every graph G, dimTH(G) ≤ β(G).

Since α(G) = |V (G)| − β(G), by combining Corollary 1(a) with Proposition 7,
we get the following theorem.

Theorem 8. For every graph G on n vertices, dimTH(G) ≤ n −
max{ω(G), α(G)}.

In Ramsey theory, R(k, k) denotes the smallest positive integer n such that every
graph on n vertices has either an independent set of size k or a clique of size k. It
is known due to [8] that R(k, k) ≤ k

−c ln k
ln ln k 4k, where c is a constant. This implies

that for sufficiently large n, every graph on n vertices has either an independent
set or a clique (or both) of size 0.72 ln n. This gives us the following corollary.

Corollary 4. When n is sufficiently large, a graph G on n vertices satisfies
dimTH(G) ≤ n − 0.72 ln n.

Tightness of the bound in Theorem 8 It can be verified that the graph H
on 2n vertices having threshold dimension n constructed in Example 1 in [11]
satisfies α(H) = ω(H) = β(H) = n. Hence, the bounds in Theorem 8 and
Proposition 7 are tight.

Acknowledgment. We thank Karteek Sreenivasaiah for helpful discussions and the
anonymous reviewers for their valuable suggestions.

256 M. C. Francis et al.

References

1. Adiga, A., Bhowmick, D., Chandran, L.S.: The hardness of approximating the box-
icity, cubicity and threshold dimension of a graph. Discrete Appl. Math. 158(16),
1719–1726 (2010)

2. Adiga, A., Chandran, L.S., Mathew, R.: Cubicity, degeneracy, and crossing number.
Eur. J. Comb. 35, 2–12 (2014)

3. Bollobás, B.: Random graphs, vol. 73. Cambridge University Press, Cambridge
(2001)

4. Chacko, D., Francis, M.C.: Representing graphs as the intersection of cographs and
threshold graphs. Electron. J. Comb. 28(3), P3.11 (2021)

5. Chandran, L.S., Francis, M.C., Sivadasan, N.: Geometric representation of graphs
in low dimension using axis parallel boxes. Algorithmica 56(2), 129–140 (2010).
https://doi.org/10.1007/s00453-008-9163-5

6. Chandran, L.S., Sivadasan, N.: Boxicity and treewidth. J. Combinatorial Theory
Ser. B 97(5), 733–744 (2007)

7. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming.
Ann. Discrete Math. 1, 145–162 (1977)

8. Conlon, D.: A new upper bound for diagonal Ramsey numbers. Ann. Math. 941–
960, (2009)

9. Erdős, P., Kierstead, H.A., Trotter, W.T.: The dimension of random ordered sets.
Random Struct. Algorithms 2(3), 253–275 (1991)

10. Esperet, L., Wiechert, V.: Boxicity, poset dimension, and excluded minors. Elec-
tron. J. Comb. 25(4), P4.51 (2018)

11. Francis, M.C., Majumder, A., Mathew, R.: Bounding threshold dimension: realiz-
ing graphic Boolean functions as the AND of majority gates (2022). https://arxiv.
org/abs/2202.12325

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Ams-
terdam (2004)

13. Hammer, P.L., Mahadev, N.V.: Bithreshold graphs. SIAM J. Algebraic Discrete
Methods 6(3), 497–506 (1985)

14. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discret. Appl. Math.
43(1), 97–101 (1993)

15. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discret. Appl. Math. 52, 233–252 (1994)

16. Kratochv́ıl, J., Tuza, Z.: Intersection dimensions of graph classes. Graphs Comb.
10(2–4), 159–168 (1994). https://doi.org/10.1007/BF02986660

17. Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier, Ams-
terdam (1995)

18. Mahajan, M.: Depth-2 threshold circuits. Resonance 24(3), 371–380 (2019)
19. Majumder, A., Mathew, R.: Local boxicity and maximum degree (2021). https://

arxiv.org/abs/1810.02963
20. Raschle, T., Simon, K.: Recognition of graphs with threshold dimension two. In

Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of com-
puting, pp. 650–661 (1995)

21. Roberts, F.S.: Recent Progresses in Combinatorics, chapter On the boxicity and
cubicity of a graph, pp. 301–310. Academic Press, New York (1969)

22. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

23. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Algebraic Discrete Methods 3(3), 351–358 (1982)

https://doi.org/10.1007/s00453-008-9163-5
https://arxiv.org/abs/2202.12325
https://arxiv.org/abs/2202.12325
https://doi.org/10.1007/BF02986660
https://arxiv.org/abs/1810.02963
https://arxiv.org/abs/1810.02963

Parameterized Complexity of Weighted
Multicut in Trees

Esther Galby1, Dániel Marx1 , Philipp Schepper1(B) , Roohani Sharma2 ,
and Prafullkumar Tale1

1 CISPA Helmholtz Center for Information Security, Saarbrucken, Germany
{esther.galby,marx,philipp.schepper,prafullkumar.tale}@cispa.de
2 Max Planck Institute for Informatics, Saarland Informatics Campus,

Saarbrucken, Germany
rsharma@mpi-inf.mpg.de

Abstract. The Edge Multicut problem is a classical cut problem
where given an undirected graph G, a set of pairs of vertices P, and
a budget k, the goal is to determine if there is a set S of at most k edges
such that for each (s, t) ∈ P, G−S has no path from s to t. Edge Mul-

ticut has been relatively recently shown to be fixed-parameter tractable
(FPT), parameterized by k, by Marx and Razgon [SICOMP 2014], and
independently by Bousquet et al. [SICOMP 2018]. In the weighted ver-
sion of the problem, called Weighted Edge Multicut one is addition-
ally given a weight function wt : E(G) → N and a weight bound w, and
the goal is to determine if there is a solution of size at most k and weight
at most w. Both the FPT algorithms for Edge Multicut by Marx et al.
and Bousquet et al. fail to generalize to the weighted setting. In fact, the
weighted problem is non-trivial even on trees and determining whether
Weighted Edge Multicut on trees is FPT was explicitly posed as
an open problem by Bousquet et al. [STACS 2009]. In this article, we
answer this question positively by designing an algorithm which uses a
very recent result by Kim et al. [STOC 2022] about directed flow aug-
mentation as subroutine.

We also study a variant of this problem where there is no bound on
the size of the solution, but the parameter is a structural property of the
input, for example, the number of leaves of the tree. We strengthen our
results by stating them for the more general vertex deletion version.

Keywords: Weighted multicut in trees · Directed flow augmentation ·
Weighted digraph pair cut

1 Introduction

Edge Multicut is a generalization of the classical (s, t)-Cut problem where
given a graph G, a set of terminal pairs P = {(s1, t1), . . . , (sp, tp)}, and an
integer k, the goal is to determine if there exists a set of at most k edges whose
deletion disconnects si from ti, for each i ∈ [p]. Such a set is called a P-multicut
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 257–270, 2022.
https://doi.org/10.1007/978-3-031-15914-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_19&domain=pdf
http://orcid.org/0000-0002-5686-8314
http://orcid.org/0000-0002-5810-7949
http://orcid.org/0000-0003-2212-1359
http://orcid.org/0000-0001-9753-0523
https://doi.org/10.1007/978-3-031-15914-5_19

258 E. Galby et al.

in G. The case p = 1 corresponds to the classical (s, t)-cut problem. Edge

Multicut is polynomial time solvable for p ≤ 2 [22] and is NP-hard even for p =
3 [8]. From the parameterized complexity point of view, it was a long-standing
open question to determine if the problem is fixed-parameter tractable (FPT)
parameterized by the solution size. This question was resolved independently
by Marx and Razgon [21] and Bousquet et al. [1], proving that the problem
is FPT. Both algorithms extensively use the notion of important separators,
a technique introduced earlier by Marx [20]. Bousquet et al. [1] additionally
use several problem-specific observations and arguments about the structure of
multicut instances, while Marx and Razgon [21] formulated the technique of
random sampling of important separators, which found further applications for
many other problems [4–6,16,18,19].

Weighted Multicut. One drawback of the algorithms using important separators
is that they are essentially based on a replacement argument: if a subset X
of the solution satisfies some property, then this technique allows us to find a
set X ′ such that X can be replaced with X ′, thereby making progress towards
fully identifying a solution. This local replacement argument inherently fails
if the overall solution is also required to satisfy additional properties, such as
minimizing the overall weight, since replacing X with X ′ may violate these
additional constraints. Thus, the ideas from the algorithms of Marx and Raz-
gon [21] and Bousquet et al. [1] fail to generalize to the edge deletion version
of Weighted Multicut (wMC) where we are, additionally, given a weight
function wt : E(G) → N and an integer w, and the goal is to determine if there
exists a P-multicut in G of size at most k and weight at most w.

(Weighted) Multicut on Trees. Edge Multicut remains NP-hard on trees [10]
but can be solved in O(2k · n)-time, where n is the number of vertices in the
input tree, using an easy branching algorithm [11]: for the “deepest” (si, ti)-
path branch on the deletion of the two edges on this path which are incident to
the lowest common ancestor of si and ti. A series of work shows improvement
over this simple running time [3,13], and also the problem admits a polynomial
kernel [2,3]. Since the algorithmic approaches for Edge Multicut on trees are
based on greedily finding partial solutions, they do not generalize to the weighted
setting. In fact, the question whether wMC on trees is FPT (parameterized by
the solution size), was explicitly posed as an open problem by Bousquet et al. [2].
In this article, we answer this question in the positive.

Flow Augmentation. As mentioned earlier, most of the available techniques
used to design FPT algorithms, especially for cut problems, do not work in the
weighted setting. Kim et al. [15] recently developed the technique of flow augmen-
tation in directed graphs. This technique offers a new perspective to design FPT
algorithms for cut problems and positively settles the parameterized complexity
of some long standing open problems, such as Weighted (s, t)-Cut, Weighted

Directed Feedback Vertex Set and Weighted Digraph Pair Cut.

Parameterized Complexity of Weighted Multicut in Trees 259

Our main goal is to use this technique for the underlying core difficulty
in wMC on trees. More precisely, we do not use the directed flow augmenta-
tion technique as such but we crucially use the FPT algorithm for Weighted

Digraph Pair Cut (wDPC) which is one important example of the use of this
technique. The wDPC problem is defined as follows [15,17]: given a directed
graph G, a source vertex r ∈ V (G), terminal pairs P = {(s1, t1), . . . , (sp, tp)}, a
weight function wt : E(G) → N, a positive integer k, the goal is to determine if
there exists a set S of at most k arcs of G such that wt(S) is minimum1, and for
each i ∈ [p], if G−S has a path from r to si, then G−S has no path from r to ti.
Such a set is called a P-dpc with respect to r in G. Kim et al. [15, Section 6.1ff]
showed that wDPC can be solved in randomized 2O(k4) · nO(1)-time. The ran-
domized running time of this algorithm is an artifact of the use of the directed
flow augmentation procedure which is randomized. Apart from this step, all the
other steps of the algorithm are deterministic. Our basic observation is that the
algorithm for wDPC can be used to solve a non-trivial base case of wMC in
trees. Indeed, the following three statements are equivalent: (a) if there is a ver-
tex r ∈ V (T) such that all the terminal pair paths of P pass through r, then
S is a P-multicut of T , (b) for all (s, t) ∈ P, S intersects the (r, s)-path or the
(r, t)-path, and (c) S is a P-dpc for T (in wDPC we interpret each edge of T
to be directed away from r).2

Edge Deletion vs. Vertex Deletion. In the weighted setting, the edge deletion
version of wMC (on trees) reduces to its vertex deletion version (on trees),
by subdividing each edge and assigning the weight of the original edge to the
newly added vertex corresponding to the edge, and by setting the weights of the
original vertices to ∞ (or larger than the weight budget parameter). Note that
such a reduction does not work in the unweighted setting as the vertex deletion
version of Multicut in trees is polynomial time solvable [7].

Main Result. From now on we only study the vertex deletion version of wMC on
trees which, as mentioned above, is more general than the edge deletion version.
It is formally defined below.

Weighted Multicut on Tree (wMC-Tree)
Input: A tree T , a collection of terminal pairs P ⊆ V (T) × V (T), a vertex
weight function wt : V (T) → N, and positive integers w and k.
Question: Does there exist S ⊆ V (T) such that |S| ≤ k, wt(S) ≤ w, and S
intersects the unique (s, t)-path in T , for each (s, t) ∈ P?

1 Though the formal description of the problem in [15] asks for a solution S with
wt(S) ≤ w, the authors remark that the algorithm in fact finds a minimum weight
solution.

2 When dealing with undirected graphs, the flow augmentation restricted to undi-
rected graphs given by Kim et al. [14] may suffice to solve wDPC on undirected
graphs. As this problem is not mentioned explicitly in [14], we stick to the directed
setting.

260 E. Galby et al.

We set wt(S) =
∑

v∈S wt(v) for the ease of notation. We use the FPT algo-
rithm for wDPC (restricted to trees) [15, Section 6.1ff] as a subroutine to prove
our main result, namely that wMC-Tree is FPT.

Theorem 1. wMC-Tree can be solved in randomized 2O(k4) · nO(1) time.

Structural Parameterizations. In scenarios where the size of the solution is large,
it might be desired to drop the constraint on the size of the solution altogether,
and seek to parameterize the problem with some structural parameter of the
input. In this setting, we first consider the problem parameterized by the number
of leaves of the tree and then extend this result to a more general parameter that
takes into account the number of requests (terminal pair paths) passing through
a vertex. Technically, we solve a different problem in this setting, where we only
have a uni-objective function seeking to minimize the weight of the solution (in
contrast to the bi-objective function in the case of wMC-Tree). This problem
is formally defined below.

Unconstrained Weighted Multicut on Tree (uwMC-Tree)
Input: A tree T , a collection of terminal pairs P ⊆ V (T) × V (T), a vertex
weight function wt : V (T) → N and a positive integer w.
Question: Does there exist S ⊆ V (T) such that wt(S) ≤ w and S intersects
the unique (s, t)-path in T , for each (s, t) ∈ P?

uwMC is another generalization of the vertex deletion variant of Multicut.
The former problem has been studied on trees in the parameterized complex-
ity setting with respect to certain structural parameters. In particular, Guo et
al. [12, Theorem 9] showed that uwMC-Tree is FPT when the parameter is the
maximum number of (s, t)-paths that pass through any vertex of the input. We
call this parameter the request degree d of an instance. Guo et al. [12] gave an
algorithm for uwMC-Tree that runs in time O(3d · n).

We first study uwMC-Tree when the parameter is the number of leaves
of the tree. The problem is polynomial time solvable on paths (Lemma 5) but
becomes NP-hard on (general) trees. Thus, the number of leaves appears to be
a natural parameter which could explain the contrast between the above two
results. Formally, we prove the following theorem.

Theorem 2. uwMC-Tree can be solved in 2O(�2 log �) · nO(1) time, where � is
the number of leaves in the input tree.

At the core of the algorithm for Theorem 2, we again solve instances of
wDPC on trees, but, in this case, these instances have a special structure: they
are subdivided stars (i.e. trees with at most one vertex of degree at least 3).
We show that these instances do not require the use of the flow augmentation
technique. In fact, these instances correspond to the arcless instances of wDPC

in [15, Section 6.2.2] defined roughly as follows: the input graph comprises of
two designated vertices s, t with internally vertex-disjoint paths from s to t, and

Parameterized Complexity of Weighted Multicut in Trees 261

the solution picks exactly one arc from each of these internally vertex-disjoint
paths. Since the arcless instances can be solved faster than the general instances
of wDPC and do not require the usage of the flow augmentation technique [15,
Lemma 6.12], the algorithm for uwMC-Tree is deterministic and has a better
running time.

As a final result, we use the algorithm of Theorem 2 as a subroutine to give
an FPT algorithm for uwMC-Tree that generalizes the result of Guo et al. [12,
Theorem 9] and Theorem 2. To do so, we define a new parameter that com-
prises both the request degree and the number of leaves of the input instance.
An instance (T,P, wt,w) is (d, q)-light if the following hold. Let Y be the set of
vertices through which at most d terminal pair paths of P pass. Such vertices
are called d-light vertices. Then for each connected component C of T − Y , the
number of leaves of T [N [C]] must be at most q. We show in the full version [9]
that it is crucial to consider the neighborhood of the component, as the problem
is otherwise already NP-hard for d = 3 and q = 2. We design a dynamic pro-
gramming algorithm that stores partial solutions for every d-light vertex using
the algorithm of Theorem 2 as a subroutine to solve the problem on (d, q)-light
instances.

Theorem 3 (�). uwMC-Tree can be solved in 3d ·2dq ·2O(q2 log q) ·nO(1) time
on (d, q)-light instances.

Observe that an instance with a tree on � leaves is a (0, �)-light instance, and
an instance with the request degree at most d is a (d, 0)-light instance. Thus,
Theorem 3 implies Theorem 2 and Theorem 9 in [12], up to the polynomial
factors in the running time.

Our Methods. Our algorithms for Theorems 1 and 2, are crucially based on
the observation mentioned earlier: if every terminal path goes through a root r,
then the problem reduces to wDPC. In the vertex deletion version, the vertex P-
multicut in a tree can be found using the algorithm for wDPC, by assigning the
weight of a vertex to the unique edge connecting it to its parent in T . The general
idea for both our algorithms is to design a branching algorithm that effectively
solves instances of the above-mentioned type to reduce the measure in each
branch. Let T be a rooted tree. The goal is to identify two vertices x, y ∈ V (T)
where x is a descendant of y, and branch on the possibility of a hypothetical
solution intersecting the (y, x)-path. If the solution does not intersect the (y, x)-
path, then contracting the edges of the (y, x)-path and making the resulting
vertex undeletable, is a safe operation. If the solution intersects the (y, x)-path,
then for each vertex v on the (y, x)-path, we increase the weight of v by adding
to it the minimum weight of a solution in Tv − {v} (where Tv is the subtree of
T rooted at V), and then forget about the terminal pair paths in Tv − {v}. To
update the weight of v, one therefore needs to find a minimum weight solution
in Tv − {v}. For this reason, we choose the vertices x, y so that the instance
restricted to Tv − {v} can be solved using the algorithm for wDPC.

If x, y are vertices of degree at least 3 (branching vertices) in T , then contract-
ing the (y, x)-path decreases the number of branching vertices in the resulting

262 E. Galby et al.

instance. This choice of x, y allows to design a branching algorithm where the
measure is the number of branching vertices, and thus the number of leaves (The-
orem 2). If x, y are vertices of a minimum-size (unweighted) P-multicut (which
can be found in polynomial time), then contracting the (y, x)-path decreases
the size of a P-multicut in the resulting instance. This choice of x, y allows the
design of a branching algorithm parameterized by the solution size (Theorem 1).
Additionally, if we choose x to be the furthest branching vertex in T (resp. fur-
thest vertex of X) from the root and y to be its unique closest ancestor that
is a branching vertex (resp. in X), then for each vertex v on the (y, x)-path,
the instance restricted on Tv − {v} can indeed be solved using the algorithm for
wDPC. The proofs of statements marked with � appear in the full version [9].

2 Basic Notation

Let T be a tree. For any u, v ∈ V (T), Pu,v denotes the unique (u, v)-path in
T . For a set P ⊆ V (T) × V (T) of terminal pairs, we interchangeably refer to
a pair (s, t) ∈ P as the terminal pair (s, t) and as the path Ps,t in T . For any
subtree T ′ of T , P|T ′ denotes the paths of P that are contained in T ′ and for
any E′ ⊆ E(T), P/E′ denotes the paths in P obtained by contracting the edges
of E′ in T . Also, T/E′ denotes the tree obtained from T after contracting the
edges in E′. The sets V≥3(T) and V=1(T) denote the set of vertices of degree at
least 3 (branching vertices) and of degree equal to 1 (leaves), respectively. We
denote by Tu the subtree of T rooted at u and T †

u = Tu\{u}. For any descendant
x of u, the tree denoted by Tu,x is defined as follows. Let {v1, . . . , vp} be the
children of u in T and say x ∈ V (Tvi

). Then Tu,x = Tu \ (∪j∈[p]\{i}Tvj
). We

define T †
u,x = Tu,x \ {u}. Observe that, both Tu,x are T †

u,x are connected.

3 wMC-Tree Parameterized by the Solution Size

In this section, we prove Theorem 1 by designing a branching algorithm. In order
to reduce the measure of a given instance, our branching algorithm requires a
solution for the instances where every terminal pair path passes through a single
vertex. Let I = (T,P, r, wt, k) be an instance such that all the terminal pair
paths of P pass through r, and wt : V (T) → N is a vertex weight function.
Let

−→
T be the directed tree obtained by orienting the edges of T so that all the

vertices, except for r, have in-degree exactly one, while r has in-degree zero. In
other words, the oriented tree

−→
T is an out-tree rooted at r. We define an edge

weight function wt′ : E(
−→
T) → N such that for every arc e = (u, v) ∈ E(

−→
T),

wt′(e) = wt(v). Then it can be easily seen that Z ⊆ E(
−→
T) is a P-dpc in T with

wt′(Z) = w if and only if S = {v : (u, v) ∈ Z} ⊆ V (T) \ {r} (that is, S is
obtained from Z by picking the heads of all the arcs in Z) is a P-multicut in T
with wt(S) = w. Let Adpc be the algorithm that takes as input an instance I as
above, constructs the edge-weight function wt′ and uses the wDPC algorithm
of Kim et al. [15, Section 6.1ff] to solve the instance (

−→
T ,P, r, wt′, k). This runs

Parameterized Complexity of Weighted Multicut in Trees 263

in randomized 2O(k4) ·nO(1)-time3. Therefore, Adpc outputs the minimum weight
of a solution of I if it exists, and ∞ otherwise. In particular, if P = ∅ then Adpc

outputs 0.

Branching Algorithm. Let (T,P, wt,w, k) be an instance of wMC-Tree. Fix
an arbitrary vertex r ∈ V (T) to be the root of T . We begin by finding a set X ⊆
V (T) which is a P-multicut in T and is closed under taking lca (least common
ancestor). To find X, we first compute a unweighted P-multicut Xopt ⊆ V (T)
in T of minimum size. The set Xopt can be found in polynomial time (folklore)
by the following greedy algorithm. Initialize Xopt = ∅, T ′ = T , and P ′ = P.
Let v ∈ V (T ′) be a furthest vertex from r such that there exists (s, t) ∈ P ′

with s, t ∈ V (Tv). By the choice of v, the (s, t)-path (and every terminal pair
path in P|Tv

) passes through v. It is easy to see that there is a minimum-size
P ′-multicut containing v. Set Xopt = Xopt ∪ {v}, P ′ = P ′ \ P|Tv

, T ′ = T ′ \ Tv,
and repeat the procedure until P ′ = ∅. At the end of the procedure, Xopt is a
minimum-size P-multicut in T . If |Xopt| > k, report No. Otherwise, let X be
the lca-closure of Xopt in T . Hence, |X| ≤ 2k.

A notable property of a P-multicut X closed under taking lca is that for
any x ∈ X, if y ∈ X is the unique closest ancestor of x in T , then for each
v ∈ V (Py,x) \ {y}, all the terminal pair paths of P|Tv

either pass through x, or
are contained in Tx. Indeed, if Tv \Tx contains a path of P, then any P-multicut
intersects V (Tv \ Tx). Then there exists a vertex y′ ∈ X such that y′ 	= x lies on
Pv,x ⊆ P †

y,x, contradicting the choice of y.
We design a branching algorithm whose input is I = (T,P, wt,w, k,X) where

X is P-multicut X ⊆ V (T) closed under taking lca, and where the measure of an
instance I is defined as μ(I) = |X|. Note that, as mentioned above, μ(I) ≤ 2k.
The base case of the branching algorithm occurs in the following scenarios.

1. If μ(I) = 0, then ∅ is a solution of I. Return Yes iff k ≥ 0 and w ≥ 0.
2. If μ(I) = 1, let X = {x}. In this case, since all the paths of P pass through

x, return Yes if and only if the Adpc(T,P, x, wt, k) ≤ w.
3. If k < 0, or k ≤ 0 and P 	= ∅, then return No.

If μ(I) ≥ 2 (that is, |X| ≥ 2), then let x ∈ X be a furthest vertex from r and
let y ∈ X be its unique closest ancestor. We branch in the following two cases.

Case 1. There exists a solution of I that does not intersect V (Py,x). In this
case, we return the instance I1 = (T1,P1, wt1,w, k,X1) where T1 = T/E(Py,x),
P1 = P/E(Py,x). Let the vertex onto which the edges of Py,x are contracted
be y◦. Then wt1(y◦) = w + 1 and, for each v ∈ V (T1) \ {y◦}, wt1(v) = wt(v).
Observe that (X \{x, y})∪{y◦} is a P1-multicut in T1 and is closed under taking
lca and thus, we may set X1 = (X \ {x, y}) ∪ {y◦}. Clearly, μ(I1) < μ(I) and
I1 can be constructed in polynomial time.

Case 2. There exists a solution of I that intersects V (Py,x). In this case, the
idea is the following: for each vertex v on the Py,x path, we increase the weight
3 The dependency in k is not explicit in [15] but can be easily deduced.

264 E. Galby et al.

of v by the weight of the solution in the tree T †
v,x (the tree strictly below v). To

do so, the size of a solution in the tree T †
v,x is first guessed. Once the weights

are updated, we can forget the terminal pairs contained in the tree T †
y,x and just

remember that the solution picks a vertex from Py,x. This is formalized below.
Let S be a solution which intersects V (Py,x) and let z ∈ V (Py,x) be the vertex

in S closest to y. Then we further branch into k +1 branches where each branch
corresponds to the guess on |S ∩ T †

z,x|. More precisely, for every i ∈ {0} ∪ [k],
we create the instance I2,i = (T2,P2, wt2,i,w, k − i,X2) where T2 = T \ T †

x ,
P2 = P|T2 \ (V (T †

y,x) × V (T †
y,x)) ∪ {(y, x)} and wt2,i is defined below.

wt2,i(v) =

{
wt(v) + Adpc(T †

v,x,P|T †
v,x

, x, wt|V (T †
v,x)

, i) if v ∈ V (Py,x)

wt(v) otherwise.

Observe that the set X \ {x} is a P2-multicut in T2 with y ∈ X \ {x}. The
only paths that might not be cut are the ones in P|T †

y,x
as they pass through

x, but they are not contained in P2 by definition. Also X \ {x} is closed under
taking lca in T2, thus we may set X2 = X \ {x}. Clearly, μ(I2,i) < μ(I) for
each i ∈ {0} ∪ [k].

Lemma 4. I is a Yes-instance if and only if at least one of I1, I2,0, . . . , I2,k

is a Yes-instance.

Proof. (⇒) Assume that I is a Yes-instance and let S be a minimal solution
of I. Suppose first that S ∩ V (Py,x) = ∅ and consider a path Ps,t of P1. Then
(s, t) 	= (y◦, y◦) for otherwise, S would not intersect the path in P corresponding
to the pair (s, t) ∈ P1. If y◦ /∈ {s, t} then (s, t) ∈ P and so, S intersects the path
Ps,t. Otherwise, assume, without loss of generality, that s = y◦ and let (z, t) ∈ P
where z ∈ V (Py,x), be the terminal pair in P corresponding to (s, t). Then, since
Pz,t is intersected by S \ V (Py,x), Ps,t is also intersected by S \ {y◦}. Thus, S is
a solution for I1.

Suppose next that S ∩ V (Py,x) 	= ∅ and let z ∈ V (Py,x) be the vertex in S
closest to y. Observe that since X is a P-multicut in T and x ∈ X is a furthest
vertex in T from r, every path of P contained in Tx passes through x. Similarly,
if z 	= x then, from the choice of x and y, each terminal pair path contained in
T †

z,x passes through x: indeed, if there exists a terminal pair path contained in
T †

z,x \ Tx, then it is not intersected by X, a contradiction to the fact that X is a
P-multicut. Let S∗ = S ∩ T †

z,x and let i = |S∗|. Note that if z = x then PT †
x,x

= ∅
by the above, and thus, S∗ = ∅ by minimality of S. Since S∗ is a P|T †

z,x
-multicut,

it follows that wt(S∗) ≥ Adpc(T †
z,x,P|T †

z,x
, x, wt|T †

z,x
, i). Now let S′ = S\S∗. Note

that z ∈ S′; in fact, S′ ∩ V (Py,x) = {z} by the choice of z. We claim that S′ is
a solution for I2,i. Clearly, |S′| = |S| − |S∗| ≤ k − i. Furthermore, wt2,i(S′) =
wt(S)−wt(S∗)−wt(z)+wt2,i(z) and since z ∈ V (Py,x), wt2,i(z) ≤ wt(z)+wt(S∗).
Thus, wt2,i(S′) ≤ wt(S) ≤ w. We now show that S′ is a P2-multicut. Consider
a path Ps,t of P2. Since by construction, P2 ∩ (V (T †

y,x) × V (T †
y,x)) = ∅, at most

one of s and t belongs to V (T †
y,x). Suppose first that {s, t} ∩ V (T †

y,x) 	= ∅, say

Parameterized Complexity of Weighted Multicut in Trees 265

s ∈ V (T †
y,x) without loss of generality. If s ∈ V (Py,z) \ {y, z} then, by the choice

of z and because S is a P-multicut, Ps,t is intersected by S \ V (T †
y,x) ⊆ S′.

Otherwise, Ps,t passes through z and is therefore intersected by S′. Since it is
clear that Ps,t is intersected by S′ if {s, t} ∩ V (T †

y,x) = ∅, we conclude that S′ is
indeed a P2-multicut.

(⇐) Suppose first that I1 is a Yes-instance and let S1 be a solution of I1.
Since wt1(y◦) = w + 1, y◦ 	∈ S. This implies, in particular, that (y◦, y◦) /∈ P1

and thus, no path of P is contained in Py,x. Therefore, S1 is a solution for I.
Suppose next that there exists i ∈ {0, . . . , k} such that I2,i is a Yes-instance
and let S2,i be a minimal solution of I2,i. We first claim that |S2,i ∩ V (Py,x)| =
1. Indeed, observe that S2,i ∩ V (Py,x) 	= ∅ since (y, x) ∈ P2. For the sake of
contradiction, suppose that there exist z, z′ ∈ S2,i ∩ V (Py,x) such that z′ 	= z,
say z′ is a descendant of z. Since, by construction, no path of P2 is contained
in T †

y,x, each path of P2 that passes through z′, also passes through z. Thus,
S2,i \ {z′} is a P2-multicut, contradicting the minimality of S2,i. Let S2,i ∩
V (Py,x) = {z}. As argued above, if z 	= x, then, from the choice of x and y,
every path of P contained in T †

z,x passes through x. Similarly, every path of P
contained in Tx passes through x. Let S∗ be a P|T †

z,x
-multicut of size at most

i such that wt(S∗) is minimum. Then wt(S∗) = Adpc(T †
z,x,PT †

z,x
, x, wt|T †

z,x
, i).

Let S = S2,i ∪ S∗. We claim that S is a solution for I. Indeed, first note that
|S| = |S2,i| + |S∗| ≤ k − i + i = k. Furthermore, since S2,i ∩ V (Py,x) = {z},
wt(S2,i) = wt2,i(S2,i) − wt2,i(z) + wt(z) and wt2,i(z) = wt(z) + wt(S∗). Thus,
wt(S) = wt(S2,i) + wt(S∗) ≤ wt2,i(S2,i) ≤ w. We now show that S is a P-
multicut. Since S2,i ⊆ S and S2,i is a P2-multicut, any path of P fully contained
in V (T)\V (T †

y,x) is intersected by S. Consider now a path Ps,t of P that intersects
V (Ty,x) If Ps,t is fully contained in T †

z,x, then it is intersected by S∗. Similarly,
if Ps,t passes through z, then it is intersected by S since z ∈ S. If Ps,t passes
through y without containing z, then Ps,t ∈ P2 and so, by the choice of z, Ps,t

is intersected by S2,i \ {z} ⊆ S. Observe finally that Ps,t is not fully contained
in V (P †

y,z) \ {z} for otherwise, Ps,t is not intersected by X, a contradiction to
the fact that X is a P-multicut. Therefore, S is a solution for I. ��
Proof (Theorem 1). Let I = (T,P, wt,w, k) be an instance of wMC-Tree.
Lemma 4 shows that the above algorithm correctly solves the problem. The
described algorithm does a (k + 2)-way branching, where the measure of the
input instance is bounded by 2k and drops by at least 1 in every branch. Since
the branching stops when the measure is at most 1, the total number of branching
nodes of the algorithm is at most (k + 2)2k+1. Since I1 can be constructed in
polynomial time and each instance I2,i can be constructed by making O(n) calls
to Adpc, the final running time is 2O(k4) · nO(1). ��

4 uwMC-Tree Parameterized by the Number of Leaves

In this section, we prove Theorem 2. We first show that the problem on sub-
divided stars can be solved without using the flow augmentation from [15]

266 E. Galby et al.

(Lemma 7). Towards this, we first design a simple polynomial-time algorithm
for the problem on paths (Lemma 5) and use it to eliminate the terminal pair
paths that do not pass through the high degree vertex of the sub-divided star.
We then observe that the problem on sub-divided stars, when each terminal pair
path pass through the high degree vertex, corresponds to the arcless instances
of [15, Section 6.2.2], which can be solved faster [15, Lemma 6.12] (Proposi-
tion 6). We then use the algorithm of Lemma 7 as a subroutine to design a
branching algorithm that proves Theorem 2.

Lemma 5 (�). Let T be a disjoint union of paths, P ⊆ V (T) × V (T) and
wt : V (T) → N. There is an algorithm Apath that outputs the weight of a P-
multicut S ⊆ V (T), in T such that wt(S) is minimum, in polynomial time.

The following result follows from [15, Section 6.2.2, Lemma 6.12]. The root
of a subdivided star, that is not a path, is the unique branching vertex.

Proposition 6 (�, [15]). Given an instance (T,P ⊆ V (T) × V (T), r ∈ V (T),
wt : V (T) → N) such that T is a subdivided star with root r and � ≥ 3 leaves.
Suppose all the terminal pair paths in P pass through r. Then one can find
the weight of a P-multicut S ⊆ V (T) such that wt(S) is minimum, in time
2O(�2 log �) · nO(1).

Lemma 7. uwMC can be solved in 2O(�2 log �) · nO(1)-time on a subdivided star
with � leaves.

Proof. Let the input instance be I = (T,P, wt,w). If � = 2, then T is a path. In
this case, report Yes if and only if Apath(T,P, wt) ≤ w. Otherwise, let r ∈ V (T)
be the root of T , that is r is the unique vertex of degree at least 3 in T . In the
first step, the algorithm guesses whether r is in the solution or not. If r belongs
to the solution, then delete r from T and solve the resulting instance using Apath.
Formally, the algorithm returns Yes if and only if wt(r) + Apath(T,P, wt) ≤ w.
Henceforth, we assume that the solution does not contain r, or equivalently, we
set wt(r) = w + 1. The remaining algorithm has two phases. In the first phase,
it eliminates all the paths in P that do not pass through r. In the second phase,
it uses the algorithm of Proposition 6 to solve the problem.

Suppose that there exists a path in P that does not pass through r. Let
z ∈ V (T) be a vertex that is closest to r such that there exists a path Ps,t

in P where Ps,t ⊆ P †
r,z. We create a new instance I ′ = (T ′,P ′, wt′,w) (in

polynomial time) such that I ′ is equivalent to I. Here, T ′ = T \ T †
z and, P ′ =

P\(V (T †
r,z)×V (T †

r,z))∪{(r, z)}. Observe that the new terminal pair path Pr,z in
P ′ intersects r and thus, P ′ contains strictly fewer paths that do not pass through
r (compared to P). Since T is a subdivided star, for each v ∈ V (T) \ {r}, T †

v is
a path. The new weight function wt′ is defined as follows.

wt′(v) =

{
wt(v) + Apath(T †

v ,P|T †
v
, wt|V (T †

v)
) if v ∈ V (P †

r,z)

wt(v) otherwise.

Parameterized Complexity of Weighted Multicut in Trees 267

(⇒) Let S be a P-multicut of T such that wt(S) ≤ w. Since P †
r,z contains

a path of P, S ∩ V (P †
r,z) 	= ∅. Let y ∈ S ∩ V (P †

r,z) be the vertex that is closest
to r. Construct S′ = S \ V (T †

y). We claim that S′ is a solution for I ′. Observe
that S′ ∩V (T †

r,z) = {y}. Observe that S ∩V (T †
y) is a P|T †

y
-multicut in T †

y . Thus,
wt(S ∩ V (T †

y)) ≥ Apath(T †
y ,P|T †

y
, wt|V (T †

y)
). From the construction of S′ and the

weight function wt′, wt′(S′) = wt(S)−wt(S ∩V (T †
y))−wt(y)+wt′(y) ≤ wt(S) ≤

w. We now show that S′ is a P ′-multicut. Since y ∈ S′ ∩ V (P †
r,z), T − S′ has

no (r, z)-path. Consider any path of P ′ that intersects a vertex of T †
y . Since the

paths of P ′ are not contained in T †
r,z, such a path also pass through r and hence

y. Since y ∈ S′, S′ is a P ′-multicut.
(⇐) Let S′ be a minimal P ′-multicut in T such that wt′(S′) ≤ w. Then

T − S′ has no (r, z)-path. Since wt′(r) = w + 1, S′ ∩ V (P †
r,z) 	= ∅. Since S′

is a minimal solution, |S′ ∩ V (P †
r,z)| = 1 for otherwise, deleting the vertex of

S on the (r, z)-path that is furthest from r would result in a smaller solution.
Let S′ ∩ V (P †

r,z) = {y}. Let S∗ be a minimum weight P|T †
y
-multicut. Then

wt(S∗) = Apath(T †
y ,P|T †

y
, wt|V (T †

y)
). Construct S = S′ ∪ S∗. We will now show

that S is a solution of I. From the construction of S and wt′, wt(S) = wt(S′) +
wt(S∗) = wt′(S′) − wt′(y) + wt(y) + wt(S∗) ≤ wt′(S′) ≤ w. Since S′ ⊆ S, S
is a P ′-multicut. Consider a path of P that is contained in T †

r,z. If such a path
passes through y or is contained in Ty, then it is intersected by S∗ ∪ {y} (and
hence S). Otherwise such a path is contained in P †

r,y \ {y}. But this contradicts
the choice of z. Therefore, S is indeed a P-multicut.

We conclude that whenever there exists a path in P that does not pass
through r, we can apply the above procedure in polynomial time. Since every
application of the above procedure decreases the number of paths of P that do
not pass through r by at least one, the above procedure can be exhaustively
applied in polynomial time. This ends the first phase of the algorithm. At the
end of the first phase, all the paths of P pass through r. Therefore, in this case,
we solve the instance (T,P, r, wt) using the algorithm of Proposition 6. Since the
first phase of the algorithm takes polynomial time and the second phase takes
2O(�2 log �) · nO(1)-time, the algorithm runs in time 2O(�2 log �) · nO(1). ��

Observe that we can use Lemma 7 to find the minimum weight P-multicut
in a subdivided star by doing a simple binary search starting with w =
0, 1, 2, 4, 8, . . . and so on. This would incur an extra O(logw) factor in the run-
ning time. Thus, even if w is given as a unary input, the resulting algorithm is
still polynomial in the input size. Therefore, the following corollary follows from
Lemmas 5 and 7.

Corollary 8. Let T be a subdivided star with � leaves. Let P ⊆ V (T)×V (T) and
wt : V (T) → N. There is an algorithm Astar that finds the weight of a P-multicut
S ⊆ V (T) such that wt(S) is minimum, in 2O(�2 log �) · nO(1)-time.

We are now equipped to design the branching algorithm for Theorem 2. Let
I = (T,P, wt,w) be an instance of uwMC-Tree. Root T at an arbitrary vertex

268 E. Galby et al.

r. With each instance I, we associate the measure μ(I) = |V≥3(T)| + |V=1(T)|.
Since |V=1(T)| ≤ � and |V≥3(T)| ≤ |V=1(T)| − 1, μ(I) ≤ 2�. We now design a
branching algorithm such that the measure μ drops in each branch. The following
cases appear as base cases: (1) If |V≥3(T)| ≤ 1, then return Yes if and only if
Astar(T,P, wt) ≤ w, and (2) If w < 0 or, w ≤ 0 and P 	= ∅, then return No.

If |V≥3(T)| ≥ 2, let x, y ∈ V≥3(T) such that x is a furthest in T and, y is its
unique closest ancestor. We branch into the following two cases.
Case 1. There exists a solution of I that does not intersect V (Py,x). In this
branch, we return the instance I1 = (T1,P1, wt1,w) where T1 = T/E(Py,x) and
P1 = P/E(Py,x). Let the vertex onto which the edges of Py,x are contracted be
y◦. The new weight function wt1 is defined as follows: wt1(v) = wt(v) for each
v ∈ V (T1) \ {y◦}, and wt1(y◦) = w + 1. Observe that I1 can be constructed
in polynomial time. Furthermore, since x, y ∈ V≥3(T) and the edges of Py,x are
contracted in I1, |V≥3(T1)| = |V≥3(T)| − 1 and thus, μ(I1) = μ(I) − 1.
Case 2. There exists a solution of I that intersects V (Py,x). In this case, let
z ∈ V (Py,x) be the closest vertex to y such that Py,z contains a path of P. If
no such vertex exists then set z = x. Return the instance I2 = (T2,P2, wt2,w)
where T2 = T \ T †

z and P2 = (P \ (V (Ty,x) × V (Ty,x))) ∪ {(y, z)}. Observe that,
by construction, any solution of I intersects V (Py,z). The new weight function
wt2 is defined as follows.

wt2(v) =

{
wt(v) + Astar(T †

v,x,P|T †
v,x

, wt|V (T †
v,x)

) if v ∈ V (Py,z)

wt(v) otherwise.

Observe that, for each v ∈ V (Py,x) \ {x}, T †
v,x has exactly one branching

vertex, namely x, since x is a furthest branching vertex in T from r, y is the
branching vertex that is the closest ancestor of x and v ∈ V (Py,x). Also, T †

x,x =
T †

x is a disjoint union of paths. Since x ∈ V≥3(T), from the construction of T2,
|V=1(T3)| < |V=1(T)| and so, μ(I2) < μ(I). The full proof is given in [9].

5 Future Directions

The natural question to ask is, whether the running times of our algorithms
can be improved. Faster algorithms for the arcless instances in [15], directly
yield faster algorithms for uwMC-Tree parameterized by the number of leaves.
Another interesting question is to determine the parameterized complexity of the
(bi-objective) wMC problem with respect to structural parameters such as the
number of leaves. There it seems difficult to use the flow augmentation technique
from [15], since such a step takes exponential time in the solution size, but the
number of the leaves in the input may be much smaller than the solution size.

Another interesting follow up question is to determine if one can use
the directed flow augmentation to resolve the parameterized complexity of
Weighted Steiner Multicut on trees, where given a tree T , sets P1, . . . , Pr ⊆
V (T) each of size p ≥ 1, a weight function wt : V (T) → N and positive integers
w, k, the goal is to determine if there exists a set S ⊆ V (T) such that |S| ≤ k,

Parameterized Complexity of Weighted Multicut in Trees 269

wt(S) ≤ w and for each i ∈ [q] there exists ui, vi ∈ Pi such that T − S has no
(ui, vi)-path. Observe that wMC-Tree is a special case of this problem when
p = 2.

Acknowledgements. Research supported by the European Research Council (ERC)
consolidator grant No. 725978 SYSTEMATICGRAPH. Philipp Schepper is part of
Saarbrücken Graduate School of Computer Science, Germany.

References

1. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. SIAM J. Comput.
47(1), 166–207 (2018). https://doi.org/10.1137/140961808

2. Bousquet, N., Daligault, J., Thomassé, S., Yeo, A.: A polynomial kernel for multi-
cut in trees. In: Albers, S., Marion, J. (eds.) 26th International Symposium on
Theoretical Aspects of Computer Science, STACS 2009, 26–28 February 2009,
Freiburg, Germany, Proceedings. LIPIcs, vol. 3, pp. 183–194. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany (2009). https://doi.org/10.4230/LIPIcs.
STACS.2009.1824

3. Chen, J., Fan, J.H., Kanj, I., Liu, Y., Zhang, F.: Multicut in trees viewed through
the eyes of vertex cover. J. Comput. Syst. Sci. 78(5), 1637–1650 (2012)

4. Chitnis, R., Egri, L., Marx, D.: List H-coloring a graph by removing few vertices.
Algorithmica 78(1), 110–146 (2016). https://doi.org/10.1007/s00453-016-0139-6

5. Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback
vertex set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28:1-28:28
(2015). https://doi.org/10.1145/2700209

6. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4),
1674–1696 (2013). https://doi.org/10.1137/12086217X

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994).
https://doi.org/10.1137/S0097539792225297

9. Galby, E., Marx, D., Schepper, P., Sharma, R., Tale, P.: Parameterized complexity
of weighted multicut in trees. CoRR abs/2205.10105 (2022). https://doi.org/10.
48550/arXiv.2205.10105

10. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997). https://
doi.org/10.1007/BF02523685

11. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for mul-
ticut in trees. Networks 46(3), 124–135 (2005). https://doi.org/10.1002/net.20081

12. Guo, J., Niedermeier, R.: Exact algorithms and applications for tree-like weighted
set cover. J. Discrete Algorithms 4(4), 608–622 (2006). https://doi.org/10.1016/j.
jda.2005.07.005

13. Kanj, I., et al.: Algorithms for cut problems on trees. In: Zhang, Z., Wu, L., Xu,
W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 283–298. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12691-3 22

https://doi.org/10.1137/140961808
https://doi.org/10.4230/LIPIcs.STACS.2009.1824
https://doi.org/10.4230/LIPIcs.STACS.2009.1824
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1145/2700209
https://doi.org/10.1137/12086217X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/S0097539792225297
https://doi.org/10.48550/arXiv.2205.10105
https://doi.org/10.48550/arXiv.2205.10105
https://doi.org/10.1007/BF02523685
https://doi.org/10.1007/BF02523685
https://doi.org/10.1002/net.20081
https://doi.org/10.1016/j.jda.2005.07.005
https://doi.org/10.1016/j.jda.2005.07.005
https://doi.org/10.1007/978-3-319-12691-3_22

270 E. Galby et al.

14. Kim, E.J., Kratsch, S., Pilipczuk, M., Wahlström, M.: Solving hard cut problems
via flow-augmentation. In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 Jan-
uary 2021, pp. 149–168. SIAM (2021). https://doi.org/10.1137/1.9781611976465.
11

15. Kim, E.J., Kratsch, S., Pilipczuk, M., Wahlström, M.: Directed flow-augmentation.
In: Leonardi, S., Gupta, A. (eds.) STOC 2022: 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, Rome, Italy, 20–24 June 2022, pp. 938–947. ACM
(2022). https://doi.org/10.1145/3519935.3520018 Full version: arXiv:2111.03450

16. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter
tractability of multicut in directed acyclic graphs. SIAM J. Discret. Math. 29(1),
122–144 (2015). https://doi.org/10.1137/120904202

17. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new
tools for kernelization. J. ACM 67(3), 16:1-16:50 (2020). https://doi.org/10.1145/
3390887

18. Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222,
278–292 (2013). https://doi.org/10.1016/j.ic.2012.10.016

19. Lokshtanov, D., Ramanujan, M.S.: Parameterized tractability of multiway cut with
parity constraints. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012. LNCS, vol. 7391, pp. 750–761. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31594-7 63

20. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006). https://doi.org/10.1016/j.tcs.2005.10.007

21. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014). https://doi.org/
10.1137/110855247

22. Yannakakis, M., Kanellakis, P.C., Cosmadakis, S.S., Papadimitriou, C.H.: Cutting
and partitioning a graph after a fixed pattern. In: Diaz, J. (ed.) ICALP 1983.
LNCS, vol. 154, pp. 712–722. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036950

https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1145/3519935.3520018
http://arxiv.org/abs/2111.03450
https://doi.org/10.1137/120904202
https://doi.org/10.1145/3390887
https://doi.org/10.1145/3390887
https://doi.org/10.1016/j.ic.2012.10.016
https://doi.org/10.1007/978-3-642-31594-7_63
https://doi.org/10.1007/978-3-642-31594-7_63
https://doi.org/10.1016/j.tcs.2005.10.007
https://doi.org/10.1137/110855247
https://doi.org/10.1137/110855247
https://doi.org/10.1007/BFb0036950
https://doi.org/10.1007/BFb0036950

The Segment Number: Algorithms
and Universal Lower Bounds for Some

Classes of Planar Graphs

Ina Goeßmann1, Jonathan Klawitter1 , Boris Klemz1 , Felix Klesen1 ,
Stephen Kobourov2 , Myroslav Kryven2 , Alexander Wolff1 ,

and Johannes Zink1(B)

1 Institut für Informatik, Universität Würzburg, Würzburg, Germany
zink@informatik.uni-wuerzburg.de

2 Department of Computer Science, University of Arizona, Tucson, USA

Abstract. The segment number of a planar graph G is the smallest num-
ber of line segments needed for a planar straight-line drawing of G. Duj-
mović, Eppstein, Suderman, and Wood [CGTA’07] introduced this mea-
sure for the visual complexity of graphs. There are optimal algorithms for
trees and worst-case optimal algorithms for outerplanar graphs, 2-trees,
and planar 3-trees. It is known that every cubic triconnected planar n-
vertex graph (except K4) has segment number n/2+3, which is the only
known universal lower bound for a meaningful class of planar graphs.

We show that every triconnected planar 4-regular graph can be drawn
using at most n+3 segments. This bound is tight up to an additive con-
stant, improves a previous upper bound of 7n/4 + 2 implied by a more
general result of Dujmović et al., and supplements the result for cubic
graphs. We also give a simple optimal algorithm for cactus graphs, gen-
eralizing the above-mentioned result for trees. We prove the first linear
universal lower bounds for outerpaths, maximal outerplanar graphs, 2-
trees, and planar 3-trees. This shows that the existing algorithms for
these graph classes are constant-factor approximations. For maximal
outerpaths, our bound is best possible and can be generalized to cir-
cular arcs.

Keywords: Visual complexity · Segment number · Lower/upper
bounds

1 Introduction

A drawing of a given graph can be evaluated by various quality measures depend-
ing on the concrete purpose of the drawing. Classic examples of such measures
include drawing area, number of edge crossings, neighborhood preservation, and
stress of the embedding. More recently, Schulz [20] proposed the visual com-
plexity of a drawing, determined by the number of geometric objects (such as
line segments or circular arcs) that the drawing consists of. It has been experi-
mentally verified that people without mathematical background tend to prefer
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 271–286, 2022.
https://doi.org/10.1007/978-3-031-15914-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_20&domain=pdf
http://orcid.org/0000-0001-8917-5269
http://orcid.org/0000-0002-4532-3765
http://orcid.org/0000-0003-1136-5673
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0003-4778-3703
http://orcid.org/0000-0001-5872-718X
http://orcid.org/0000-0002-7398-718X
https://doi.org/10.1007/978-3-031-15914-5_20

272 I. Goeßmann et al.

drawings with low visual complexity [13]. The visual complexity of a graph draw-
ing depends on the drawing style, as well as on the underlying graph properties.
A well-studied measure of the visual complexity of a graph is its segment num-
ber, introduced by Dujmović, Eppstein, Suderman, and Wood [5]. It is defined
as follows. A straight-line drawing of a graph maps (i) the vertices of the graph
injectively to points in the plane and (ii) the edges of the graph to straight-line
segments that connect the corresponding points. A segment in such a drawing is
a maximal set of edges that together form a line segment. Given a straight-line
drawing Γ of a graph, the set of segments it induces is unique. Its cardinality is
the segment number of Γ . The segment number, seg(G), of a planar graph G is
the smallest segment number over all crossing-free straight-line drawings of G.

Previous Work. Dujmović et al. [5] pointed out two natural lower bounds for the
segment number: (i) η(G)/2, where η(G) is the number of odd-degree vertices
of G, and (ii) the slope number, slope(G), of G, which is defined as follows.
The slope number slope(Γ) of a straight-line drawing Γ of G is the number of
different slopes used by any of the straight-line edges in Γ . Then slope(G) is
the minimum of slope(Γ) over all straight-line drawings Γ of G. Dujmović et al.
also showed that any tree T admits a drawing with seg(T) = η(T)/2 segments
and slope(T) = Δ(T)/2 slopes, where Δ(T) is the maximum degree of a vertex
in T . These drawings, however, use exponential area. Recall that an outerplanar
graph is a plane graph that can be drawn such that all vertices lie on the outer
face. The weak dual graph of an outerplane graph is its dual graph without the
vertex corresponding to the outer face; it is known to be a tree. An outerplane
graph whose weak dual is a path is called an outerpath. A maximal outerplanar
graph is an outerplanar graph with the maximum number of edges. Dujmović et
al. showed that every maximal outerplanar graph G with n vertices admits an
outerplanar straight-line drawing with at most n segments. They showed that
this is worst-case optimal. They also gave (asymptotically) worst-case optimal
algorithms for 2-trees and plane (where the combinatorial embedding and outer
face is fixed) 3-trees. Finally, they showed that every triconnected planar graph
with n vertices can be drawn using at most 5n/2 − 3 segments. For the special
cases of triangulations and 4-connected triangulations, Durocher and Mondal [6]
improved the upper bound of Dujmović et al. to (7n − 10)/3 and (9n − 9)/4,
respectively. The former bound implies a bound of (16n − 3m − 28)/3 for
arbitrary planar graphs with n vertices and m edges. Kindermann et al. [12]
observed that this implies that seg(G) ≤ (8n − 14)/3 for any planar graph G: if
m > (8n−14)/3 this follows from the bound, otherwise any drawing of G is good
enough. Constructive linear-time algorithms that compute the segment number
of series-parallel graphs of maximum degree 3 and of maximal outerpaths were
given by Samee et al. [19] and by Adnan [1], respectively. Mondal et al. [17]
and Igamberdiev et al. [11] showed that every cubic triconnected planar graph
(except K4) has segment number n/2+3. Hültenschmidt et al. [10] showed that
trees, maximal outerplanar graphs and planar 3-trees admit drawings on a grid of
polynomial size, using slightly more segments. Kindermann et al. [12] improved
some of these bounds.

The Segment Number: Algorithms and Universal Lower Bounds 273

Table 1. Bounds on the segment number for subclasses of planar graphs. By existential
upper bound we mean an upper bound for the universal lower bound. Here, η is the
number of odd-degree vertices and γ = 3c0 +2c1 + c2, where ci is the number of simple
cycles with exactly i cut vertices. Our results are shaded in gray.

Universal Existential Existential Universal

Graph class lower bound upper bound lower bound upper bound

planar conn. 1 1 2n − 2 [5] (8n − 14)/3 [6,12]

planar 3-conn.
√
2n [5] O(

√
n) [5] 2n − 6 [5] 5n/2 − 3 [5]

planar 3-conn. 4-reg. Ω(
√

n) [7] O(
√

n) [7] n P1 n + 3 T2

planar 3-conn. 3-reg. n/2 + 3 [5] — — n/2 + 3 [11,17]

triangulation Ω(
√

n) [5] O(
√

n) [5] 2n − 2 [5] (7n − 10)/3 [6]

4-conn. triangulation Ω(
√

n) [5] O(
√

n) [5] 2n − 6 [5] (9n − 9)/4 [6]

planar 3-trees n + 4 T6 n + 7 [7] 3n/2 [7] 2n − 2 [5]

2-trees (n + 7)/5 T5 (5n + 24)/13 [7] 3n/2 − 2 [5] 3n/2 [5]

maximal outerplanar (n + 7)/5 T5 (5n + 24)/13 [7] n [5] n [5]

maximal outerpath �n/2� + 2 T3 �n/2� + 2 P3 n [5] n [5]

cactus η/2 + γ T7 — — η/2 + γ T7

Other Related Work. Okamoto et al. [18] investigated variants of the segment
number. For planar graphs in 2D, they allowed bends. For arbitrary graphs, they
considered crossing-free straight-line drawings in 3D and straight-line drawings
with crossings in 2D. They showed that all segment number variants are ∃R-
complete to compute, and they gave upper and existential lower bounds for the
segment number variants of cubic graphs. The arc number, arc(G), of a graph G
is the smallest number of circular arcs in any circular-arc drawings of G. It has
been introduced by Schulz [20], who gave algorithms for drawing series-parallel
graphs, planar 3-trees, and triconnected planar graphs with few circular arcs. For
trees, he reduced the drawing area (from exponential to polynomial). Chaplick
et al. [3,4] considered a different measure of the visual complexity, namely the
number of lines (or planes) needed to cover crossing-free straight-line drawings
of graphs in 2D (and 3D). Kryven et al. [16] considered spherical covers.

Contribution and Outline. In terms of universal upper bounds, we first show
that every triconnected planar 4-regular graph with n vertices can be drawn
using at most n + 3 segments (note that there are 2n edges); see Sect. 2. This
bound is tight up to an additive constant, improves a previous upper bound
of 7n/4 + 2 implied by a more general result [5, Theorem 15] of Dujmović et
al., and supplements the result for cubic graphs due to Mondal et al. [17] and
Igamberdiev et al. [11]. Our algorithm works even for plane graphs and produces
drawings that are convex, that is, the boundary of each face corresponds to a
convex polygon. We remark that triconnected planar 4-regular graphs are a rich
and natural graph class that comes with a simple set of generator rules [2]. It
might seem tempting to prove our result inductively by means of these rules,

274 I. Goeßmann et al.

though we have not been able make this idea work. Instead, our algorithm relies
on a decomposition of the graph along carefully chosen paths (Lemma 3), which
might be of independent interest. We also give a simple optimal (cf. Table 1)
algorithm for cactus graphs1 (see Sect. 4), generalizing the result of Dujmović et
al. for trees.

We prove the first linear universal lower bounds for maximal outerpaths
(�n/2�+2; see Sect. 3), maximal outerplanar graphs as well as 2-trees ((n+7)/5;
see Sect. 4), and planar 3-trees (n + 4; see Sect. 4). This makes the correspond-
ing algorithms of Dujmović et al. constant-factor approximation algorithms. For
Adnan’s algorithm [1] that computes the segment number of maximal outer-
paths, our result provides a lower bound on the size of the solution. For maximal
outerpaths, our bound is best possible and can be generalized to circular arcs.
For planar 3-trees, the bound is best possible up to the additive constant. Known
and new results are listed in Table 1. Claims marked with “�” are proved in [7].

Notation and Terminology. All graphs in this paper are simple. For any graph G,
let V(G) be the vertex set and E(G) the edge set of G. Now let Γ be a planar
drawing of a planar and connected graph G. The boundary ∂f of each face f
of Γ can be uniquely described by a counterclockwise sequence of edges. If G is
biconnected, then ∂f is a simple cycle. The collection of the boundaries of all
faces of Γ is called the combinatorial embedding of Γ . The unique unbounded
face of Γ is called its outer face; the remaining faces are called internal. Vertices
(edges) belonging to the boundary of the outer face are called outer vertices
(edges); the remaining vertices (edges) are called internal. A plane graph is
a planar graph equipped with a combinatorial embedding and a distinguished
outer face. A path in a plane graph is internal if its edges and interior vertices
do not belong to its outer face. For any k ∈ N, we use [k] as shorthand for
{1, 2, . . . , k}.

2 Triconnected 4-Regular Planar Graphs

This section is concerned with the segment number of 3-connected 4-regular
planar graphs. We establish a universal upper bound of n + 3 segments, which
we complement with an existential lower bound of n segments, where n denotes
the number of vertices.

Overview. Towards the upper bound, we will show that each graph of the con-
sidered class admits a drawing where all but three of its vertices are placed in
the interior of some segment. In such a drawing, each of these vertices is the
endpoint of at most two segments. The claimed bound then follows from the
fact that each segment has exactly two endpoints.

To construct the desired drawings, we follow a strategy that has already
been used in an algorithm by Hong and Nagamochi [9], which was sped up by
Klemz [15]. Both algorithms generate convex drawings of so-called hierarchical
1 A cactus is a connected graph where any two simple cycles share at most one vertex.

The Segment Number: Algorithms and Universal Lower Bounds 275

plane st-graphs, but they can also be applied to “ordinary” plane graphs. In
this context, the algorithmic framework is as follows: the input is an internally
(defined below, see Definition 1) 3-connected plane graph G and a convex draw-
ing Γ o of the boundary of its outer face. The task is to extend Γ o to a convex
drawing of G. The main idea of both algorithms is to choose a suitable inter-
nal vertex y of the given graph G and compute three disjoint (except for y)
paths P1, P2, P3 from y to the outer face. Each of these paths is then embedded
as a straight-line segment so that Γ o is dissected into three convex polygons,
for an illustration see Fig. 1a. The graphs corresponding to the interior of these
polygons can now be handled recursively. To ensure that a solution exists, the
computed paths (as well as the paths corresponding to the segments of Γ o) need
to be archfree, meaning that they are not arched by an internal face: a path P
is arched by a face a between u, v ∈ V(∂a) ∩ V(P) if the subpath Puv of P
between u and v is interior-disjoint from ∂a, see Fig. 1a. Indeed, if a is internal,
then such a path P cannot be realized as a straight-line segment in a convex
drawing since the interior of the segment uv has to be disjoint from the real-
ization of a. We follow the idea of dissecting our graphs along archfree paths.
However, to ensure that each internal vertex is placed in the interior of some
segment, the way in which we construct our paths is necessarily quite different.
Specifically, we will show that a large subfamily of the considered graph class can
be dissected along three archfree paths that are arranged in a windmill pattern
as depicted in Fig. 2a.

Existence of Convex Drawings. It is well-known that a plane graph admits a
convex drawing if and only if it is a subdivision of an internally 3-connected
graph [8,9,21,22]. There are multiple ways to define this property and it will be
convenient to refer to all of them. Therefore, we use the following well-known
characterization; for a proof, see, e.g., [14].

Definition 1. Let G be a plane 2-connected graph. Let o denote its outer face.
Then G is called internally 3-connected if and only if the following equivalent
statements are satisfied:

(I1) Inserting a new vertex v in o and adding edges between v and all vertices
of ∂o results in a 3-connected graph.

(I2) From each internal vertex w of G there exist three paths to o that are
pairwise disjoint except for the common vertex w.

(I3) Every separation pair u, v of G is external, i.e., u and v lie on ∂o and
every connected component of the subgraph of G induced by V(G) \ {u, v}
contains a vertex of ∂o.

Observation 1 (�, folklore). Let G be an internally 3-connected plane graph,
and let C be a simple cycle in G. The closed interior C− of C is an internally
3-connected plane graph.

In the context of our recursive strategy, we face a special case of the following
problem: given an internally 3-connected plane graph G and a convex drawing Γ o

276 I. Goeßmann et al.

u

v a

(a)

s′ t′ = t
s

(b)

y

Fig. 1. (a) Splitting Γ o along three straight-line paths. The subpolygon containing
arch a cannot be extended to a convex drawing of its subgraph. (b) Left-aligned path
LG(P) of P = (s, . . . , t).

of the boundary of its outer face, extend Γ o to a convex drawing of G. It is known
that such an extension exists if and only if each segment of Γ o corresponds to
an archfree path of G [8,9,21,22]. Hence, we say that Γ o is compatible with G if
and only if it satisfies this property.

Construction of Archfree Paths. The following lemma gives rise to a strategy for
transforming a given internal path into an archfree path:

Lemma 1 ([9, Lem. 1]). Let G be an internally 3-connected plane graph, f an
internal face of G. Any subpath P of ∂f with |E(P)| ≤ |E(∂f)| − 2 is archfree.

Let G be an internally 3-connected graph. Consider the edges of the outer
face ∂o of G to be directed in counterclockwise direction. Assume that there
are two distinct vertices s′ and t′ on ∂o that are joined by a simple internal
path P ′. Consider P ′ to be directed from s′ to t′ and let P = (s, . . . , t) be a
directed subpath of P ′. Suppose that P is arched by an internal face a. Then
we say a arches P from the left if a is interior to the cycle formed by P ′ and the
directed t′s′-path on ∂o; otherwise, we say that a arches P from the right. The
left-aligned path LG(P) of P is obtained be exhaustively applying the following
modification (for an illustration see Fig. 1b): suppose that an internal face a
arches P from the left between two vertices u, v such u precedes v along P .
Transform P by replacing its uv-subpath with the uv-path obtained by walking
along ∂a in counterclockwise direction from u to v. The right-aligned path RG(P)
is defined symmetrically.

Lemma 2 ([8, Lemma 5, Corollary 6]). Let G be an internally 3-connected plane
graph. Let P = (s, . . . , t) be a subpath of a simple internal directed path P ′

between two distinct outer vertices of G. Then:

– LG(P) (RG(P)) is a simple internal st-path not arched from the left (right).
– If P is not arched from the right (left) by an internal face, then LG(P)

(RG(P)) is archfree.
– RG(LG(P)) (LG(RG(P))) is archfree.

The Segment Number: Algorithms and Universal Lower Bounds 277

G1
G2

G3

G4

(c)(b)

u G1

G2

P1

P2
P2o3

o

q1

q2

q3

P1

P2

P3

(a)

o1

v
o

Fig. 2. (a) A windmill (P1, P2, P3). (b,c) The 3-connected case in the proof of Theo-
rem. 1.

Existence of Archfree Windmills. Recall that our plan is to dissect our given
(internally) 3-connected graph along three archfree paths that form a windmill
pattern; see Fig. 2a.

Definition 2. Let G be an internally 3-connected plane graph and let o denote
its outer face. For i ∈ [3], let Pi = (oi, . . . , qi) be a simple path in G. We call
(P1, P2, P3) a windmill of G if and only if all of the following properties hold (all
indices are considered modulo 3):

(W1) The vertices o1, o2, o3 are pairwise distinct and belong to ∂o.
(W2) For i ∈ [3], no vertex of V(Pi) \ {oi} belongs to ∂o.
(W3) For i ∈ [3], no interior vertex of Pi belongs to Pi+1.
(W4) For i ∈ [3], the endpoint qi is an interior vertex of Pi+1.

If (P1, P2, P3) is a windmill of G, we call it archfree if P1, P2, P3 are archfree.

A necessary condition for the existence of an archfree windmill is the existence
of a strictly internal face (a face without outer vertices). For the considered graph
class we show that the condition is sufficient. The following lemma is the main
technical contribution of this section:

Lemma 3 (�). Let G be an internally 3-connected plane graph of maximum
degree 4 with a strictly internal face f . Then G contains an archfree windmill.

Proof (sketch). Let o be the outer face of G. By means of the internal 3-
connectivity of G and Lemma 2, it can be shown that there are three pairwise
disjoint archfree paths Pi = (oi, . . . , fi), i ∈ [3] between ∂o and ∂f as depicted
in Fig. 3a. We now walk along ∂f in a clockwise fashion and append appropriate
parts of ∂f to the paths P1, P2, P3 to obtain an initial windmill (P cw

1 , P cw
2 , P cw

3)
as illustrated in Fig. 3b. Specifically, we extend each Pi by the fifi+1 subpath
of ∂f that does not contain fi+2 (indices are considered modulo 3). This wind-
mill is not necessarily archfree, but its paths can only be arched in a controlled
way: suppose that P cw

i is arched by an internal face acw
i . The subpath of P cw

i

that belongs to ∂f is archfree by Lemma 1. Combined with the fact that Pi is
archfree, it follows that acw

i arches P cw
i between some vertex scwi ∈ V(Pi) \ {fi}

and a vertex tcwi ∈ V(P cw
i) \ V(Pi). Moreover, by planarity, acw

i has to arch P cw
i

278 I. Goeßmann et al.

o1

o2o3

f1

f2f3
f

o
o1

o2o3

f1

f2f3
f

tcw3

scw1

scw3

o

acw
1

acw
3

o1

o2o3

f1

f2f3
f

tcw3

scw1

scw3

o

acw
1

acw
3

o1

o2o3

f1

f2f3
f

tcw3

scw1

scw3

o

acw
1

acw
3

D−
1D−

3

D−
2

(a) (P1, P2, P3) (b) (P cw
1 , P cw

2 , P cw
3)

(c) (Qcw
1 , Qcw

2 , Qcw
3) (d) (Rcw

1 , Rcw
2 , Rcw

3)

tcw1

tcw1 tcw1

f

o

acw
1

accw
1

(e) (Qcw
1 , P cw

2 , P cw
3) (f) (Qcw

1 , P cw
2 , Scw

3)

(g) (Qcw
1 , P cw

2 , T cw
3) (h) (Qcw

1 , P cw
2 , T cw

3)

scw1

tcw1tccw1

sccw1

f

o

acw
1

accw
1

scw1

tcw1tccw1

sccw1

f

o

acw
1

accw
1

scw1

tcw1tccw1

sccw1

f

o

acw
1

accw
1

scw1

tcw1tccw1

sccw1

a

a

a

s

t

s

t

s

t

o1

o2o3

o1

o2o3

o1

o2o3

o1

o2o3

f1

f2f3

f1

f2f3

f1

f2f3

f1

f2f3

Fig. 3. Evolution of the three paths in the first (subfigures (a)–(d)) and second (sub-
figures (e)–(h)) part of the proof of Lemma 3.

The Segment Number: Algorithms and Universal Lower Bounds 279

from the left, as illustrated in Fig. 3b. We remark that there might be multiple
“nested” faces that arch P cw

i . W.l.o.g., we use acw
i to denote the “outermost”

one, that is, the unique arch whose boundary replaces a part of P cw
i in the

left-aligned path Qcw
i = LG(P cw

i), see Fig. 3c. The paths of (Qcw
1 , Qcw

2 , Qcw
3) are

now archfree by Lemma 2, though, (W4) from Definition 2 is satisfied only for
exactly those i ∈ [3] where the arch P cw

i+1 is archfree. For each Qcw
i where (W4)

is violated, we append the fi+1t
cw
i+1-path of ∂f that does not contain fi, see

Fig. 3d. This modification maintains the archfreeness by planarity and Lemma
1. However, the resulting path triple (Rcw

1 , Rcw
2 , Rcw

3) might still not be a wind-
mill: suppose that a path P cw

i is not archfree and its arching face acw
i is big,

that is, tcwi = fi+1, while additionally the path P cw
i+1 is archfree (this is the

case for i = 1 in Fig. 3b). Then (W3) from Definition 2 is violated for Rcw
i+1

and (W4) is violated for Rcw
i+2. Suppose that (Rcw

1 , Rcw
2 , Rcw

3) is indeed not a
windmill. We construct path triples (P ccw

1 , P ccw
2 , P ccw

3), (Qccw
1 , Qccw

2 , Qccw
3), and

(Rccw
1 , Rccw

2 , Rccw
3) in a symmetric fashion by walking around ∂f in counterclock-

wise direction. If (Rccw
1 , Rccw

2 , Rccw
3) is also not a windmill, it follows that both

(Rcw
1 , Rcw

2 , Rcw
3) and (Rccw

1 , Rccw
2 , Rccw

3) contain a path that is arched by a big
face. By planarity and the degree bounds, we can now argue that there is exactly
one i ∈ [3] such that both (P cw

i) and (P ccw
i) are arched by big faces while both

(P cw
i+1) and (P ccw

i+2) are archfree, which is illustrated in Fig. 3e for i = 1. Assume
w.l.o.g. that i = 1 and that scw1 is not closer to o1 on P1 than sccw1 . In view of the
previous observations, it is now easy to argue that the paths of (Qcw

1 , P cw
2 , P cw

3)
are archfree and satisfy all windmill properties with the exception of (W4) for
i = 3. We restore (W4) by appending the f1s

cw
1 -subpath of P1 to P cw

3 , see Fig. 3f.
By means of the degree bounds, it can be argued that (W2) and (W4) are main-
tained for i = 3. The resulting path Scw

3 might now be arched (from the left, by
planarity), which can be remedied by applying Lemma 2, see Figs. 3g and h. By
means of the degree bounds and planarity arguments, it can be shown that this
modification maintains all windmill properties. �	

A plane graph G is internally 4-regular if all of its internal vertices have
degree 4 and its outer vertices have degree at most 4. In Lemma 3, we established
that the existence of an internal face suffices for the existence of an archfree
windmill. By means of simple counting arguments, it can be shown that this
condition is satisfied if G has a triangular outer face.

Lemma 4 (�). Let G be an internally 3-connected plane graph that is internally
4-regular. Let o denote the outer face of G and assume |∂o| = 3. Then G has a
strictly internal face.

Theorem 1 (�). Let G be an internally 3-connected internally 4-regular plane
graph and let Γ o be a compatible convex drawing of its outer face. There exists
a convex drawing Γ of G that uses Γ o as the realization of the outer face where
each internal vertex of G is contained in the interior of some segment of Γ .

Proof (sketch). Our goal is to (recursively) compute coordinates for the internal
vertices to obtain the desired drawing of G. The base case of the recursion is
that G contains no internal edges, in which case there is nothing to show. Assume

280 I. Goeßmann et al.

that G is 3-connected – we deal with the case where G is not 3-connected in the
full version. If |V(Γ o)| ≥ 4, then there exist two distinct outer vertices u, v that
do not belong to a common segment of Γ o, see Fig. 2b. By 3-connectivity and
Lemma 2, they are joined by an archfree internal path P . We split Γ o into two
simple convex polygons along P and handle the two corresponding subgraphs
recursively. If |V(Γ o)| = 3, then G contains an archfree windmill (P, S,Q) by
Lemmas 4 and 3. Since the three outer endpoints of P, S,Q do not belong to
a common segment of Γ o, we can embed them in a straight-line fashion such
that Γ o is dissected into four simple convex polygons, see Fig. 2c. We handle the
corresponding four subgraphs recursively. �	

Universal Upper Bound. Recall that to establish the claimed upper bound, it
suffices to create a drawing where all but three of the vertices of the graph are
drawn in the interior of some segment. To achieve this goal, we can now draw
the outer face of the graph as a triangle and then apply Theorem 1.

Theorem 2 (�). Every 3-connected internally 4-regular plane graph G admits
a convex drawing on at most n + 3 segments where n is the number of vertices.

Existential Lower Bound. For a graph G, let G2 denote the square of G, that
is, V(G) = V(G2), and two vertices in G2 are adjacent if and only if their
distance in G is at most 2. For n ≥ 6, the square of the n-cycle, C2

n, is 4-
regular and triconnected. By removing three edges from a drawing Γ of C2

n, we
obtain a drawing of a graph whose segment number is n [5, proof of Theorem 7].
Consequently, Γ uses at least n−3 segments. We prove a slightly stronger bound.

Proposition 1 (�). For even n ≥ 6, C2
n is planar and seg(C2

n) ≥ n.

3 Maximal Outerpaths

In this section, we generalize segments and arcs to pseudo-k-arcs (defined below)
and give a universal lower bound for the number of pseudo-k-arcs in drawings
of maximal outerpaths.

We call a sequence v1, v2, . . . , vn of the vertices of a maximal outerpath G a
stacking order of G if for each i, the graph Gi induced by the vertices v1, v2, . . . , vi

is a maximal outerpath. An arrangement of pseudo-k-arcs is a set of curves in the
plane such that any two of the curves intersect at most k times. (If two curves
share a tangent, this counts as two intersections.) We forbid self-intersections,
but for k ≥ 2 we allow a pseudo-k-arc to be closed.

To show the bound, we present a charging scheme that assigns internal edges
to pseudo-k-arcs. Any drawing of a maximal outerpath has exactly n−3 internal
edges. A pseudo-k-arc is long if it contains at least k+1 internal edges; otherwise
it is short. Let arck denote the number of pseudo-k-arcs, and let arci

k denote the
number of pseudo-k-arcs with i internal edges. The internal edges of a long
arc α subdivide the outerpath into subgraphs H0,H1, . . . , H� called bays; see
Fig. 4. Given a drawing Γ of a maximal outerpath, we denote the sub-drawings

The Segment Number: Algorithms and Universal Lower Bounds 281

e1 α

H5

H4H0

H1

H2

H3

H6

e2 e3
e4

e5 e6

β

γ

p

Fig. 4. An outerpath represented by a pseudo-2-arc arrangement. The internal edges
e1, . . . , e6 of arc α subdivide the outerpath into bays H0, . . . , H6. We marked the bay
crossings of α and β by red crosses and violet triangles, respectively. For the bay
crossings in C that are relevant for our charging scheme we used larger symbols. (Color
figure online)

of G3, G4, . . . , Gn within Γ by Γ3, Γ4, . . . , Γn, respectively. A pseudo-k-arc α is
incident to a face f if α contains an edge incident to a vertex of f . We say that
α is active in Γi if α is incident to the last face that has been added.

Lemma 5 (�). For any i ∈ {3, . . . , n}, a partial outerpath drawing Γi contains
at most one active long pseudo k-arc.

We do a 2-round assignment to assign each internal edge to a pseudo-k-arc.
We start with the round-1 assignment. Let I denote the set of internal edges
of long pseudo-k-arcs starting at the (k + 1)-th internal edge (as for the first k
internal edges an arc is still short). We assign all n − 3 internal edges except for
the edges in I to their own pseudo-k-arcs:

(n−3)−|I| = k arc≥k
k +(k−1) arck−1

k + · · ·+arc1k = k arck −∑k
i=0(k−i) arci

k (1)

Now we describe the round-2 assignment. There, we charge the internal edges
of I to specific crossings, which we can charge in turn to pseudo-k-arcs. A crossing
is a triple (α, β, p) that consists of two pseudo-k-arcs α and β and a point p at
which α and β intersect. These specific crossings involve long arcs and we call
them bay crossings. Next, we define them such that for each long pseudo-k-arc α
with 	 internal edges (> k), there are 2	 bay crossings (α, ∗, ∗) where ∗ is
a wildcard. For each bay H ∈ {H1, . . . , H�−1}, we have two bay crossings: a
crossing of α with another pseudo-k-arc at each of the two vertices of H that
have degree 2 within H; see the red crosses in Fig. 4. Clearly, they exist for
each H because H is an outerpath. Since these two vertices are distinct for each
pair of consecutive bays, their bay crossings are distinct as well. Note that a
tangential point may be shared by some Hj and Hj+2 (for j ∈ [− 3]); see, e.g.,
H2 and H4 in Fig. 4. However, we still have distinct bay crossings for Hj and
Hj+2 since a tangential point counts for two crossings. For each of H0 and H�,
there is one bay crossing defined next. In H0 and H�, consider the two crossings
of α at the internal edge e1 and e�, respectively – one at each of the vertices of
the internal edge. One of these vertices is the degree-2 vertex of H1 (H�−1) and
hence may be identical with a bay crossing of H1 (H�−1). E.g., in Fig. 4, the bay

282 I. Goeßmann et al.

crossing (α, γ, p) of H5 occurs as one of the considered crossings of H6. The other
one of the two considered crossings cannot be a bay crossing in a neighboring
bay and this is our bay crossing of H0 (H�); see the red crosses at H0 and H6 in
Fig. 4.

In the round-2 assignment, we charge the surplus internal edges of a long
arc α to the other pseudo-k-arcs involved in bay crossings with α. For each
internal edge of I, we have two distinct bay crossings of the preceding bay, e.g.,
in Fig. 4 H2 provides two bay crossings for e3. Let C be the set of these bay
crossings. The bay crossings of H0, . . . , Hk−1, and H� are not included in C as
the internal edges e1, . . . , ek are not contained in I and there is no e�+1. Clearly,
2|I| = |C|.

Next, we give an upper bound for |C| in terms of arck. The main argument
we exploit is that, by definition, each pseudo-k-arc can participate in at most k
crossings with the (current) long arc and, hence, also in at most k bay crossings
with the (current) long arc. However, we need to be a bit careful when one long
pseudo-k-arc becomes inactive and a new pseudo-k-arc becomes long, i.e., we
consider the transition between one long arc to a new long arc. A (not necessarily
long) pseudo-k-arc γ could potentially contribute k crossings in C with each
long arc. To compensate for the double counting at transitions, we introduce
the transition loss tk, which we define as tk =

∑
γ∈A\{α1}(|{c = (∗, γ, ∗) | c ∈

C}| − k), where A is the set of all pseudo-k-arcs and α1 is the first long arc
in Γ . In other words, each pseudo-k-arc, while it is short, contributes to tk the
number of its bay crossings minus k. For example, in Fig. 4, γ contributes 1 to
tk: γ has one bay crossing in C with the long arc α (red cross at e6) and two
bay crossings in C with the long arc β (violet triangles on the top right). The
arc β contributes −1 to tk: β has one bay crossing in C with the long arc α.

Note that, while it is long, an arc does not cross other long arcs. Also, we do
not count the crossings of the first k bays and the very last bay. Hence,

2|I| = |C| ≤ k · (arck
︸ ︷︷ ︸

Each pseudo-k-arc intersects the
current long arc at most k times.

The first long pseudo-k-arc does not provide
crossings with another long pseudo-k-arc.

︷︸︸︷
−1) −(2k − 1)

︸ ︷︷ ︸
Crossings of H0, H1, . . . , Hk−1 of
the first long arc are not in C.

The crossing of H� of the last
long arc is not in C.

︷︸︸︷
−1 + tk︸︷︷︸

transition
loss

(2)

Plugging Eq. (2) into Eq. (1), we obtain the following general formula, which
gives a lower bound on the number of pseudo-k-arcs for any outerpath.

arck ≥ (
2n − 6 + 2 · ∑k

i=0(k − i) arci
k −tk

)
/(3k) + 1 (3)

Since this formula still contains unresolved variables, we now resolve tk.

Lemma 6 (�). There is a loss of at most one crossing per transition
from one long pseudo-k-arc to another long pseudo-k-arc. Hence, tk ≤
max{0, arc>k

k −1} ≤ arc>k
k = arck −∑k

i=0 arci
k, where arc>k

k is the number of
long pseudo-k-arcs.

The Segment Number: Algorithms and Universal Lower Bounds 283

r

(a) Pr (b) Q6 (c) U2

Fig. 5. Families of maximal outerpaths with (a) n/2+2 segments (matching the lower
bound in Theorem 3), (b) n/3 + 1 circular arcs, and (c) (5n + 18)/16 < n/3 pseudo
2-arcs.

By Lema 6 and Eq. (3),

arck ≥ (
2n + 3k − 6 +

∑k
i=0(2k − 2i + 1) arci

k

)
/(3k + 1) . (4)

Into this general formula, we plug specific values of k and prove lower bounds
on arci

k. We start with k = 1, i.e., outerpath drawings on pseudo segments.

Lemma 7 (�). For k = 1 and n ≥ 3, in any outerpath drawing either arc01 ≥ 3
or (arc01 ≥ 2 and arc11 ≥ 3).

Using Lema 7, we fill the gaps in Eq. 4 for k = 1 and obtain Theorem 3.

Theorem 3 (�). For any n-vertex maximal outerpath G, seg(G) ≥ �n
2 � + 2.

For k = 2, i.e., for (pseudo) circular arcs, Eq. (4) leads to the following bound.

Theorem 4 (�). For any n-vertex maximal outerpath G, arc(G) ≥ � 2n
7 .

For k > 2, it is not obvious how to generalize circular arcs. Still, we can make
a similar statement for curve arrangements, which follows directly from Eq. (4).

Proposition 2. Let G be an n-vertex maximal outerpath drawn on a curve
arrangement in the plane s.t. curves intersect pairwise ≤ k times, can be
closed, but do not self-intersect. Then, the number arck(G) of curves required
is � 2n+3k−6

3k+1 .
The infinite families of examples in Proposition 3 and Fig. 5 show that our

bounds for segments and arcs are tight. This implies, somewhat surprisingly,
that, at least for worst-case instances, using pseudo segments requires as many
elements as using straight line segments. Whether this also holds for pseudo
circular arcs and circular arcs is an open question. With circular arcs, we could
not beat a bound of n/3, which we could do for pseudo circular arcs.

Proposition 3 (�). For every r ∈ N, maximal outerpaths Pr, Qr, Ur exist s.t.

(i) Pr has n = 2r + 6 vertices and seg(Pr) ≤ r + 5 = n/2 + 2,
(ii) Qr has n = 3r vertices and arc(Qr) ≤ r + 1 = n/3 + 1,
(iii) Ur has n = 16r + 6 vertices and arc2(Ur) ≤ 5r + 3 = 5n+18

16 ≈ 0.3125n.

284 I. Goeßmann et al.

4 Further Results and Open Problems

In the full version [7], we give an alternative proof for Theorem 3, charging
segment ends to vertices. We also give universal lower bounds on the segment
numbers of 2-trees and maximal outerpaths. The key idea is to “glue” outerpaths,
while adjusting the charging scheme. With a different charging scheme from
segment ends to faces, we show an (almost) tight universal lower bound for
planar 3-trees.

Theorem 5 (�). For a 2-tree (or a maximal outerplanar graph) G with n
vertices, seg(G) ≥ (n + 7)/5.

Theorem 6 (�). For a planar 3-tree G with n ≥ 6 vertices, seg(G) ≥ n + 4.

For cactus graphs, we can compute the segment number in linear time.

Theorem 7 (�). Given a cactus graph G, we can compute seg(G) in linear
time. Within this timebound, we can draw G using seg(G) many segments. If G
is given with an outerplanar embedding, the drawing will respect the given embed-
ding.

Now we turn to open problems. The most prominent one is to close the
gaps in Table 1. Since circular-arc drawings are a generalization of straight-line
drawings, it is natural to ask about the maximum ratio between the segment
number and the arc number of a graph. We make some initial observations
regarding this question in the full version [7]. Finally, what is the complexity
of deciding whether the arc number of a given graph is strictly smaller than its
segment number?

References

1. Adnan, M.A.: Minimum segment drawings of outerplanar graphs. Master’s
thesis, Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology (BUET), Dhaka (2008). http://lib.buet.ac.
bd:8080/xmlui/bitstream/handle/123456789/1565/Full%20%20Thesis%20.pdf?
sequence=1&isAllowed=y

2. Broersma, H.J., Duijvestijn, A.J.W., Göbel, F.: Generating all 3-connected 4-
regular planar graphs from the octahedron graph. J. Graph Theory 17(5), 613–620
(1993). https://doi.org/10.1002/jgt.3190170508

3. Chaplick, Steven, Fleszar, Krzysztof, Lipp, Fabian, Ravsky, Alexander, Verbitsky,
Oleg, Wolff, Alexander: The complexity of drawing graphs on few lines and few
planes. In: Ellen, F., Kolokolova, A., Sack, J.-R. (eds.) WADS 2017. LNCS, vol.
10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
62127-2 23

4. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Draw-
inggraphs on few lines and few planes. J. Comput. Geom 11(1), 433–475 (2020).
https://doi.org/10.20382/jocg.v11i1a17

http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/1565/Full%20%20Thesis%20.pdf?sequence=1&isAllowed=y
http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/1565/Full%20%20Thesis%20.pdf?sequence=1&isAllowed=y
http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/1565/Full%20%20Thesis%20.pdf?sequence=1&isAllowed=y
https://doi.org/10.1002/jgt.3190170508
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.1007/978-3-319-62127-2_23
https://doi.org/10.20382/jocg.v11i1a17

The Segment Number: Algorithms and Universal Lower Bounds 285

5. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212
(2007). https://doi.org/10.1016/j.comgeo.2006.09.002

6. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. Com-
put. Geom. Theory Appl. 77, 27–39 (2019). https://doi.org/10.1016/j.comgeo.
2018.02.003

7. Goeßmann, I., et al.: The segment number: Algorithms and universal lower bounds
for some classes of planar graphs. arXiv preprint (2022). https://arxiv.org/abs/
2202.11604

8. Hong, S., Nagamochi, H.: Convex drawings of graphs with non-convex boundary
constraints. Discret. Appl. Math. 156(12), 2368–2380 (2008). https://doi.org/10.
1016/j.dam.2007.10.012

9. Hong, S., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clus-
tered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010). https://doi.org/
10.1016/j.jda.2009.05.003

10. Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar
graphs with few geometric primitives. J. Graph Alg. Appl. 22(2), 357–387 (2018).
https://doi.org/10.7155/jgaa.00473

11. Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected
graphs with few segments: Algorithms & experiments. J. Graph Algorithms Appl.
21(4), 561–588 (2017). https://doi.org/10.7155/jgaa.00430

12. Kindermann, P., Mchedlidze, T., Schneck, T., Symvonis, A.: Drawing planar graphs
with few segments on a polynomial grid. In: Archambault, D., Tóth, C.D. (eds.)
GD 2019. LNCS, vol. 11904, pp. 416–429. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-35802-0 32

13. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessi-
bility of drawings with few segments. J. Graph Alg. Appl. 22(3), 501–518 (2018).
https://doi.org/10.7155/jgaa.00474

14. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-
increasing morphs of planar graphs. Comput. Geom. 84, 69–88 (2019). https://
doi.org/10.1016/j.comgeo.2019.07.007

15. Klemz, B.: Convex drawings of hierarchical graphs in linear time, with applications
to planar graph morphing. In: Mutzel, P., Pagh, R., Herman, G., (eds.) Proceed-
ings of 29th Annual European Symposium on Algorithms (ESA 2021), vol. 204 of
LIPIcs, pp. 57:1–57:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.ESA.2021.57

16. Kryven, M., Ravsky, A., Wolff, A.: Drawing graphs on few circles and few spheres.
J. Graph Alg. Appl. 23(2), 371–391 (2019). https://doi.org/10.7155/jgaa.00495

17. Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.: Minimum-segment convex draw-
ings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480 (2013).
https://doi.org/10.1007/s10878-011-9390-6

18. Okamoto, Y., Ravsky, A., Wolff, A.: Variants of the segment number of a graph.
In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 430–443.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0 33

19. Samee, M.A.H., Alam, M.J., Adnan, M.A., Rahman, M.S.: Minimum segment
drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.G.,
Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00219-9 40

20. Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412
(2015). https://doi.org/10.7155/jgaa.00366

https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2018.02.003
https://doi.org/10.1016/j.comgeo.2018.02.003
https://arxiv.org/abs/2202.11604
https://arxiv.org/abs/2202.11604
https://doi.org/10.1016/j.dam.2007.10.012
https://doi.org/10.1016/j.dam.2007.10.012
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.1016/j.jda.2009.05.003
https://doi.org/10.7155/jgaa.00473
https://doi.org/10.7155/jgaa.00430
https://doi.org/10.1007/978-3-030-35802-0_32
https://doi.org/10.1007/978-3-030-35802-0_32
https://doi.org/10.7155/jgaa.00474
https://doi.org/10.1016/j.comgeo.2019.07.007
https://doi.org/10.1016/j.comgeo.2019.07.007
https://doi.org/10.4230/LIPIcs.ESA.2021.57
https://doi.org/10.7155/jgaa.00495
https://doi.org/10.1007/s10878-011-9390-6
https://doi.org/10.1007/978-3-030-35802-0_33
https://doi.org/10.1007/978-3-642-00219-9_40
https://doi.org/10.7155/jgaa.00366

286 I. Goeßmann et al.

21. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R.,
(eds.) Progress in Graph Theory, pp. 43–69. Academic Press (1984)

22. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. s3–10(1),
304–320 (1960). https://doi.org/10.1112/plms/s3-10.1.304

https://doi.org/10.1112/plms/s3-10.1.304

Bounding Twin-Width
for Bounded-Treewidth Graphs, Planar

Graphs, and Bipartite Graphs

Hugo Jacob1(B) and Marcin Pilipczuk2

1 ENS Paris-Saclay, Gif-sur-Yvette, France
hugo.jacob@ens-paris-saclay.fr

2 Institute of Informatics, University of Warsaw, Warsaw, Poland

malcin@mimuw.edu.pl

Abstract. Twin-width is a newly introduced graph width parameter
that aims at generalizing a wide range of “nicely structured” graph
classes. In this work, we focus on obtaining good bounds on twin-width
tww(G) for graphs G from a number of classic graph classes. We prove
the following:

– tww(G) ≤ 3 · 2tw(G)−1, where tw(G) is the treewidth of G,
– tww(G) ≤ max(4bw(G), 9

2
bw(G) − 3) for a planar graph G with

bw(G) ≥ 2, where bw(G) is the branchwidth of G,
– tww(G) ≤ 183 for a planar graph G,
– the twin-width of a universal bipartite graph (X, 2X , E) with |X| = n

is n − log2(n) + O(1).
An important idea behind the bounds for planar graphs is to use an
embedding of the graph and sphere-cut decompositions to obtain good
bounds on neighbourhood complexity.

Keywords: Twin-width · Planar graphs · Treewidth

1 Introduction

Twin-width is a graph parameter recently introduced by Bonnet et al. [7], which
has already proven to be very versatile and useful. It is defined via iterated
contraction of vertices that are almost twins, while limiting the amount of errors
that are carried on. Twin-width is known, for instance, to be bounded on classes
of graphs of bounded treewidth, bounded rank-width, or excluding a fixed minor

This research is part of projects that have received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme Grant Agreement 714704. Initial part
of the reseach was done when Hugo Jacob was on an internship at University
of Warsaw in Spring and Summer 2021. The authors acknowledge support
from the ERC starting grant “CRACKNP” (Grant Agreement 853234) for
attending the conference.

.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 287–299, 2022.
https://doi.org/10.1007/978-3-031-15914-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_21&domain=pdf
http://orcid.org/0000-0003-1350-3240
http://orcid.org/0000-0001-5680-7397
https://doi.org/10.1007/978-3-031-15914-5_21

288 H. Jacob and M. Pilipczuk

[7]. It is also possible to design algorithms on the contraction sequences, thus
providing a common framework for efficient algorithms on several graph classes
[6,7]. Twin-width is also linked to First Order logic, FO model checking is FPT
for graphs of bounded twin-width, and FO transductions preserve twin-width
boundedness [7] (see also [12]). However, finding good contraction sequences is
hard [4]. Furthermore, no efficient approximation algorithm is known yet. This
motivates looking at some simple classes and comparing twin-width to other
parameters (the case of poset width has already been considered [2] for instance).
Bounds on the twin-width of general graphs and random graphs have also been
established [1].

Many currently known bounds on the twin-width, in particular for minor-
closed graph classes such as planar graphs, rely on very general arguments and
result in unreasonably large constants. Finding a better bound was explicitly
mentionned as an open problem. In this paper, we present a few results we
obtained while looking for an improved bound.

We first give some results on graphs of bounded treewidth: an exponential
bound on the twin-width of a graph of bounded treewidth, and a linear bound
on the twin-width of planar graphs of bounded treewidth. We then obtain a
bound of 183 on the twin-width of planar graphs, which is, to the best of our
knowledge, currently the best known bound. We were not able to prove a match-
ing exponential lower bound for the twin-width of graphs of bounded treewidth.
As a partial result in this direction, we determine the twin-width of universal
bipartite graphs up to a constant additive term.

Independently of this work, Bonnet, Kwon, and Wood [8] obtained a bound
of 583 on the twin-width of planar graphs, among other results on more general
classes such as bounded genus graphs.

2 Preliminaries

In the following [n] denotes {1, . . . , n}. Given a set X, |X| denotes its cardinality
and 2X denotes the set of subsets of X.

The subgraph induced by a vertex subset A in a graph G is denoted by G[A],
G − A denotes G[V \ A]. For a graph G = (V,E) and B a subset of E, G − B
denotes (V,E \B). The neighbourhood of vertex v in G = (V,E) is N(v) = {w ∈
V |{v, w} ∈ E}, and we extend this notation with N(X) =

(⋃
x∈X N(x)

) \ X.
To emphasize that the neighbourhood is taken in graph G, we use NG instead
of N .

We call neighbourhood classes with respect to Y in X the set Ω(X,Y) =
{N(x) ∩ Y : x ∈ X}. Note that if |Y | = k, then |Ω(X,Y)| ≤ 2k.

We call universal bipartite graph the bipartite graph B(n) = ([n], 2[n], {(k,A∪
{k}) : k ∈ [n], A ∈ 2[n]\{k}}).

We now define formally the notion of twin-width of a graph. A trigraph is a
triple G = (V,E,R) where E and R are disjoint sets of edges on V , the (usual)
edges and the red edges respectively. The notion of induced subgraph is extended
to trigraphs in the obvious way. We denote by R(v) the red neighbourhood of

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 289

v. A trigraph (V,E,R) such that (V,R) has maximum degree at most d is a
d-trigraph. Any graph (V,E) can be seen as the trigraph (V,E, ∅). Given a
trigraph G = (V,E,R) and two vertices u, v of V , the trigraph G′ = (V ′, E′, R′)
obtained by the contraction1 of u, v into a new vertex w is defined as the trigraph
on vertex set V ′ = V \ {u, v} ∪ {w}, such that G − {u, v} = G′ − {w}, and such
that NG′(w) = NG(u)∩NG(v) and RG′(w) = RG(u)∪RG(v)∪(NG(u)ΔNG(v)),
where Δ denotes the symmetric difference. A d-contraction sequence of G is a
sequence of trigraph contractions starting with G and ending with the single-
vertex trigraph, such that all intermediate trigraphs have maximum red degree
d. The twin-width of graph G is the minimum d such that there exists a d-
contraction sequence, it is denoted tww(G). A partial d-contraction sequence
is a sequence of trigraph contractions starting with G such that intermediate
trigraphs have maximum red degree d (i.e. we removed the constraint of ending
with a single-vertex trigraph).

We use the notation of [9] for tree decompositions. Given a rooted tree T , NT

denotes its nodes, ≤T denotes its ancestor relation which is a partial order on NT

where the root is the maximal element, and the leaves are the minimal elements.
For a fixed node u of T , we denote by p(u) its parent (minimal strict ancestor),
by T≤(u) the set {w ∈ NT |w ≤T u} and similarly for T<(u), T≥(u), T>(u). A
tree T is normal for graph G if V (G) = NT , and for each edge of G, its endpoints
are comparable under <T . We denote by (T, f) a tree decomposition of G where
T is a rooted tree, f maps NT to 2V (G) and satisfies the following conditions:
every vertex of G is contained in at least one bag f(u), for every edge of G there
is a bag containing its two endpoints, and for every vertex v of G, the nodes u
such that f(u) contains v induce a connected subgraph of T . (T, f) is normal if
T is normal for G, f(u) ⊆ T≥(u) and u ∈ f(u), for every u ∈ NT . f∗(u) denotes
f(u) \ {u}. (T, f) is clean if it is normal, f∗(u) = NG(T≤(u)) ∩ T>(u) for every
node u of T , and p(u) ∈ f(u) for every node u of T except its root. The width
of (T, f) is maxu∈NT

|f(u)| − 1, and the treewidth of a graph is the minimum
width over its tree decompositions. It is denoted by tw(G).

Let Σ be a sphere {(x, y, z) ∈ R
3|x2 + y2 + z2 = 1}. A Σ-plane graph G is a

planar graph embedded in Σ without crossing edges. To simplify notations, we
do not distinguish vertices and edges from the points of Σ representing them.
An O-arc is a subset of Σ homeomorphic to a circle. An O-arc in Σ is a noose
if it meets G only in vertices and intersects every face at most once. The set
of vertices met by a noose N is denoted by V (N), the length of the noose is
|V (N)|, the number of vertices it meets. Every noose N bounds two open discs
Δ1,Δ2 in Σ, i.e., Δ1 ∩ Δ2 = ∅ and Δ1 ∪ Δ2 ∪ N = Σ.

A branch decomposition (T, μ) of a graph G consists of a ternary tree T
(internal vertices of degree 3) and a bijection μ : L → E(G) from the set L
of leaves of T to the edge set of G. For every edge e of T , the middle set of
e is a subset of V (G) corresponding to the common vertices of the two graphs
induced by the edges associated to the leaves of the two connected components
of T − e. The width of the decomposition is the maximum cardinality of the

1 The vertices are not required to be adjacent.

290 H. Jacob and M. Pilipczuk

middle sets over all edges of T . An optimal decomposition is one with minimum
width, which is called branchwidth and denoted by bw(G).

For a Σ-plane graph G, a sphere-cut decomposition (T, μ) is a branch decom-
position such that for every edge e of T , there exists a noose Ne meeting G only
on the vertices of the middle set of e and such that the two graphs induced by
the edges associated to the leaves of the two connected components of T − e are
each on one side of Ne. The following result is stated in [10] as a consequence of
the results of Seymour and Thomas [15], and Gu and Tamaki [13].

Lemma 1. Let G be a connected Σ-plane graph of branchwidth at most � without
vertices of degree one. There exists a sphere-cut decomposition of G of width at
most �, and it can be computed in time O(|V (G)|3).

A sphere-cut decomposition (T, μ) can be rooted by subdividing an edge e
of T into two edges e′, e′′ with middle vertex s, and adding a root r connected
to s. The middle set of e′ and e′′ is the middle set of e, and {r, s} has an empty
middle set. For every edge e of T , the subtree of T − e that does not contain
the root is called the lower part, we denote by Ge the subgraph induced by the
edges associated to the leaves of the lower part. For an internal node v of T , the
edge incident to v on the path to r, is called the parent edge, and the other two
are called children edges. There can be at most 2 vertices common to the middle
sets of these three edges [10].

We slightly extend sphere-cut decompositions to cover the case of connected
graphs with minimal degree one and branchwidth at least 2. Consider a con-
nected graph G, let G′ be its maximal induced subgraph with no vertex of
degree one. Note that G′ must be connected and that the graph H induced by
the edges E(G) \ E(G′) is a forest where each tree has only a vertex in common
with G′, which we will consider as its root. We can first compute a sphere-cut
decomposition (T ′, μ′) of G′ and then for each root r of a tree Hi in H, we can
find an edge e of T ′ such that r is in its middle set (it exists because r has degree
at least 2 in G′), and attach an optimal branch decomposition of Hi on e. This
does not increase the branchwidth because r was already in the middle set of
e. Once this is done for all trees Hi in H, we obtain a branch decomposition
(T, μ) of G, such that there exists a noose meeting exactly the middle set of each
edge of T . However, the nooses do not correspond to cycles in the radial graph
anymore since we have to embed the Hi in faces of G′.

Lemma 2. Let G be a connected Σ-plane graph of branchwidth � ≥ 2. There
exists a sphere-cut decomposition of G of width �, and it can be computed in time
O(|V (G)|3).
Proof. Computing G′ and H can be done in time O(|E(G)|) and the optimal
decompositions of the trees in H can be produced in total time O(|V (G)|). 	

3 Twin-Width of Graphs of Bounded Treewidth

The following result reuses a method to bound clique-width described in [9,
Proposition 13].

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 291

Theorem 1. For an undirected graph G, tww(G) ≤ 3 · 2tw(G)−1.

Proof. We consider a connected graph G as the twin-width of a disconnected
graph is simply the maximum twin-width of its connected components.

We consider a clean tree decomposition (T, f) of G of width tw(G) (this is
always possible [9, Lemma 3, Lemma 5]).

We proceed by structural induction on the tree T . Consider a node v with
children u1, . . . , uk.

We assume that for each ui, we have contracted V (T≤(ui)) into Ai consisting
of at most |Ω(T≤(ui), f∗(ui))| vertices such that their incident red edges have
both endpoints within Ai. Equivalently, vertices of V (T≤(ui)) that were con-
tracted have the same neighbourhood class with respect to G − V (T≤(ui)), i.e.
the same neighbourhood class with respect to f∗(ui), because f∗(ui) separates
V (T≤(ui)) from the rest of the graph.

We will contract these sets of vertices into a set C consisting of at most
|Ω(T≤(v), f∗(v))| vertices.

Let B0 = ∅. We will inductively obtain for each i ∈ [k] a vertex set Bi of

size at most

∣
∣
∣
∣
∣
Ω

(
i⋃

j=1

T≤(uj), f∗(v)

)∣
∣
∣
∣
∣
, by contracting vertices of

i⋃

j=1

Ai.

For each i ∈ [k], we first contract vertices of Ai that have the same neighbour-
hood in f∗(v), this produces Ãi consisting of at most |Ω(T≤(ui), f∗(ui) − {v})|
vertices. Doing so will produce at most |Ãi| red edges incident to v, which now
has at most |Bi−1|+|Ãi| incident red edges. We then contract vertices of Ãi∪Bi−1

that have the same neighbourhood in f∗(v), producing Bi consisting of at most∣
∣
∣
∣
∣
Ω

(
i⋃

j=1

T≤(uj), f∗(v)

)∣
∣
∣
∣
∣
vertices. Note that the red degree of a vertex resulting

from one of these contractions is at most |Ãi|−1+|Bi−1|−1+|{v}| ≤ |Bi−1|+|Ãi|.
The two −1 terms are because we bound after the first contraction, and there is
no selfloop. Vertex v now has |Bi| incident red edges.

After this we can contract v with the vertex of Bk having the same neighbour-
hood in f∗(v) if it exists. This produces C consisting of at most |Ω(T≤(v), f∗(v))|
vertices and such that their incident red edges remain within C.

In all of the described steps, the red degree of a vertex is at most 3 ·2tw(G)−1:

– Vertices in Ai have red degree at most |Ai| ≤ |Ω(T≤(ui), f∗(ui))| ≤ 2tw(G).
– Vertices in Ãi have red degree at most |Ãi| ≤ |Ω(T≤(ui), f∗(ui) − {v})| ≤

2tw(G)−1.
– v has red degree at most

|Bi−1| + | ˜Ai| ≤
∣

∣

∣

∣

∣

Ω

(

i−1
⋃

j=1

T≤(uj), f
∗(v)

)∣

∣

∣

∣

∣

+ |Ω(T≤(ui), f
∗(ui) − {v})| ≤ 3 · 2tw(G)−1

.
– When contracting Bi−1 ∪ Ãi, vertices have red degree at most

|Bi−1| + |Ãi| ≤ 3 · 2tw(G)−1

292 H. Jacob and M. Pilipczuk

Since the property is trivial on leaves of the tree, we conclude that

tww(G) ≤ 3 · 2tw(G)−1

	

Using sphere-cut decompositions, we establish the following theorem. Similar

results are shown for clique-width in [9,11], but would lead to a worse constant,
if we combined them with the bound on clique-width.

Theorem 2. For an undirected connected planar graph G with bw(G) ≥ 2,

tww(G) ≤ max
(

4bw(G),
9
2
bw(G) − 3

)
≤ max

(
4tw(G) + 4,

9
2
tw(G) +

3
2

)

For an undirected connected planar graph G with bw(G) ≤ 1, tww(G) = 0.

This mainly relies on the following result.

Lemma 3. If N is a noose with |V (N)| = k > 1 that separates a plane graph
G into G1 and G2, then Ω(V (G1) \ V (G2), V (G2)) = Ω(V (G1) \ V (N), V (N))
and |Ω(V (G1) \ V (N), V (N))| ≤ 4k − 4 =: h(k).

Proof. We will count the different possible neighbourhoods with respect to N
by size:

– The only possibility for size 0 is the empty neighbourhood.
– The possibilities for size 1 are the singletons of V (N) and there are k of them.
– For the neighbourhoods of size 2, we pick one vertex for each of them, and

call A the set of picked vertices. We now consider G1[A ∪ V (N)] and smooth
the vertices of A in it, i.e. for each vertex a of A with incident edges ua, av, we
remove vertex a and edges ua, av and replace them by edge uv, this operation
preserves planarity and the resulting graph H is an outerplanar graph on
vertices V (N) because they were on the outerface of G1[A∪V (N)]. Since the
number of edges of H is at most 2k − 3 because it is outerplanar and is equal
to |A|, the number of different neighbourhoods is bounded by 2k − 3.

– For the neighbourhoods of size at least 3, we once again pick one vertex
for each of them, and call B the set of picked vertices. We now consider
G1[B ∪ V (N)] − E(G[B]) which is planar. We show |B| ≤ n3(k) ≤ k − 2
by induction on k = V (N), where n3(k) denotes the maximum number of
vertices of B of degree more than 3 we can have in G1[B ∪ V (N)]. First, if
k ≤ 2 then there are no such neighbourhoods, and if k = 3, there is exactly
one. Then for k > 3,

n3(k) = 1 + max

{
�∑

i=1

n3(ai + 1) : � ≥ 3,∀i ∈ [�], ai ≥ 1,

�∑

i=1

ai = k

}

because after placing one vertex v of degree � ≥ 3, we must have subdivided
our instance into � smaller instances because edges incident to v will not be

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 293

crossed by other edges. Note that with two consecutive edges incident to v
and the part of the noose between their other endpoints x, y, we can obtain
a smaller instance with only the vertices between x and y (inclusive) on the
noose. Using the induction hypothesis, we have

n3(k) ≤ 1 +
�∑

i=1

(ai − 1) ≤ 1 + k − l ≤ k − 2

By summing the previous bounds, we conclude that

|Ω(V (G1) \ V (N), V (N))| ≤ 4k − 4

	

Note that this bound is tight: denote the vertices in their order on the noose

by [k], we can place vertices with neighbourhoods {∅}∪{{i} : i ∈ [k]}∪{{i, i+1} :
i ∈ [k − 1]} ∪ {{1, i, i + 1}, {1, i + 1} : i ∈ [2, k − 1]}.

Proof (of Theorem 2). Consider a connected planar graph G. If G has branch-
width at most 1, it cannot contain a path on 4 vertices as a subgraph, hence it
is a star and has twin-width 0 (first contract twins and finish with the root).

We now consider the case when bw(G) ≥ 2. G admits a sphere-cut decom-
position (T, μ) of width k := bw(G). Let Ĝe denote Ge − V (Ne).

We root T arbitrarily and proceed by structural induction on T . Consider a
parent edge e with children edges e1, e2. We assume that, for i ∈ {1, 2}, V (Ĝei

),
has been contracted to a set Ai according to the neighbourhood in V (Nei

).
Consequently, |Ai| is at most |Ω(V (Ĝei

), V (Nei
))|, and red edges incident to Ai

have both endpoints in Ai.
Let x := |V (Ne) ∩ V (Ne1)| and y := |V (Ne) ∩ V (Ne2)|.
Note that x + y − 2 ≤ |V (Ne)| ≤ k.
Let I := V (Ne1) ∩ V (Ne2) \ V (Ne), and z := |I|
For i ∈ {1, 2}, we contract vertices of Ai that have the same neighbourhood

in V (Nei
)\I, and call the resulting set of vertices Ãi. The vertices of I now have

red degree at most |Ã1| + |Ã2|, while the vertices of Ãi have red degree at most
|I| + |Ãi| − 1.

We then contract the vertices of I∪Ã1∪Ã2 that have the same neighbourhood
in V (Ne), and call A the resulting set of vertices. Contracted vertices have red
degree at most |Ã1| + |Ã2| + |I| − 2. Using Lemma 3, we obtain the following
inequalities:

| ˜A1|+| ˜A2| ≤ |Ω(V (̂Ge1), V (Ne1)\I)|+|Ω(V (̂Ge2), V (Ne2)\I)| ≤ (4x−4)+(4y−4) ≤ 4k

| ˜A1| + | ˜A2| + |I| − 2 ≤ |Ω(V (̂Ge1), V (Ne1) \ I)| + |Ω(V (̂Ge2), V (Ne2) \ I)| + z − 2

≤ 4x + 4y + z − 10 =
7

2
(x + y) +

1

2
(x + z) +

1

2
(y + z) − 10

294 H. Jacob and M. Pilipczuk

We have the following constraints on x, y, z:

x + y ≤ k + 2, |V (Ne1)| = x + z ≤ k, |V (Ne2)| = y + z ≤ k

By summing inequalities, we obtain |Ã1| + |Ã2| + |I| − 2 ≤ 9
2k − 3.

One can check that in the degenerate cases when we can’t apply Lemma 3,
the bounds still hold.

V (Ĝe) has been contracted to a set A of at most |Ω(V (Ĝe), V (Ne))| vertices.
We conclude that tww(G) ≤ max(4k, 9

2k − 3) 	

4 Twin-Width of Planar Graphs

Theorem 3. The twin-width of planar graphs is at most 183.

Proof. We will make use of the argument used to decompose planar graphs in [16,
Lemma 5], and produce a d-contraction sequence of a planar graph G inductively
on the decomposition, d ≤ 183. The embedding of the graph will be useful in
our arguments to make use of Lemma 3. Recall that h(k) = 4k − 4.

We may suppose that G is connected since the twin-width of a graph is sim-
ply the maximum of the twin-width over its connected components. We denote
by G+ a triangulation containing G as a spanning subgraph. Let T be a BFS
spanning tree in G+ with root r on its outerface. Note that since G is a sub-
graph of G+, the plane embedding of G+ gives a plane embedding of G and its
subgraphs. We call vertical a subpath of a path from a leaf to the root in T . We
call layer a set of vertices that are at the same distance from r in T .

For a cycle C, we write C = [P1, . . . , Pk] if the Pi are pairwise disjoint paths,
and the last vertex of Pi is adjacent to the first vertex of Pi+1 for i ∈ [k], with
Pk+1 = P1. For a path P , we write P = [P1, . . . , Pk] if the Pi are pairwise disjoint,
and the last vertex of Pi is adjacent to the first vertex of Pi+1 for i ∈ [k − 1].

The following version of Sperner’s Lemma is used to recursively decompose
G+.

Lemma 4 (Sperner’s Lemma). Let G be a near-triangulation2 whose vertices
are coloured 1, 2, 3, with the outerface F = [P1, P2, P3] where each vertex in Pi is
coloured i. Then G contains an internal face whose vertices are coloured 1, 2, 3.

We prove inductively the following:

Lemma 5. Let P1, . . . , Pk for some k ∈ [5] be pairwise disjoint vertical paths of
T such that F = [P1, . . . , Pk] is a cycle in G+, let H be the subgraph of G induced
by the vertices of F and the set X of vertices in the (strict) interior of F , with
r /∈ X. Let Xj denote the set of vertices of X that are at a distance j from r in
T . We can construct a partial d-contraction sequence of H to trigraph H ′ such
that for each j, the vertices of Xj are contracted to obtain a set of vertices Aj in
H ′, |Aj | ≤ h(3k), the vertices of Aj have red neighbours only in Aj−1, Aj , Aj+1,
and d ≤ 183.
2 A near-triangulation is a planar graph with only one face that is not a triangle.

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 295

Proof. If we have 3 vertices then there is no vertex in the interior of the triangle,
the empty contraction sequence satisfies the properties.

Otherwise, we decompose H using the argument of [16], see Fig. 1. First, we
colour the vertices of H with k colours as follows. For each vertex v ∈ V (H),
we assign colour i ∈ [k] if the first vertex of F on the path from v to r in T is a
vertex of Pi. This is well defined because r is on the outerface of G+. Since G+

is planar, the minor obtained by contracting each colour class to a single vertex
cannot be K5. If k = 5, there must be a pair of non-consecutive antiadjacent
colours. Without loss of generality, we assume this is the case for (2, 5).

We set up for Sperner’s Lemma with the following constructions:

– If k = 1 then, since F is a cycle, P1 has at least 3 vertices so we can write
P1 = [u,R2, v], and set R1 := u,R3 := v.

– If k = 2 then, since F is a cycle, one of P1 and P2 has at least 2 vertices.
W.l.o.g. assume it is P1, then we write P1 = [u,R2], and set R1 := u,R3 := P2.

– If k = 3 then set R1 := P1, R2 := P2, R3 := P3.
– If k = 4 then set R1 := P1, R2 := P2, R3 := [P3, P4]
– If k = 5 then set R1 := P1, R2 := [P2, P3], R3 := [P4, P5]

Note that F = [R1, R2, R3]. We give colour i to the vertices of H whose first
vertex of F on their path to the root in T is in Ri (i.e. we merge the previous
colour classes in the same way we merged the Pi to obtain the Ri).

Applying Sperner’s Lemma, we obtain a triangular face of G+, with vertices
v1, v2, v3 where vi is of colour i. We denote Q′

i the path in T from vi to r
restricted to its vertices in X (it might be empty). These paths delimit at most
3 faces F1, F2, F3, each of which having at most 5 vertical paths around it. For
the face delimited by R2, R3, Q

′
3, Q

′
2, P2 and P5 can’t both be on its border

without contradicting the assumption that their respective colour classes were
antiadjacent.

We can apply the induction hypothesis on each of the faces to obtain partial
contraction sequences. We first apply them in an arbitrary order (the contents of
the faces are antiadjacent to each other). We denote by Aj

α the set of contracted
vertices in face Fα obtained by the partial contraction sequence.

For each α and increasing j, we contract all vertices of Aj
α that are in the same

neighbourhood class with respect to P1, . . . , Pk in G. Note that only vertices on
layers j − 1, j, j + 1 of the Pi may be adjacent and that there are at most 3
of the Pis that are adjacent to Fα. This gives us sets Ãj

α of size at most h(9)
by Lemma 3, since by removing the vertices of Q′

i and keeping only vertices of
layers j − 1, j, j + 1 we obtain a graph that is still planar and in which the cycle
delimiting Fα gives a noose with at most 9 vertices (vertical paths have at most
1 vertex per layer).

Then for increasing j, we contract vertices of Ãj
1 ∪ Ãj

2 ∪ Ãj
3 ∪ qj

1 ∪ qj
2 ∪ qj

3

that are in the same neighbourhood class with respect to P1, . . . , Pk in G, see
Fig. 2, where qj

α is the vertex of Q′
α in layer j. This gives sets Aj of size at most

h(15) by Lemma 3, because we can deduce a noose from F = [P1, . . . , Pk] and
by keeping only the vertices of layers j − 1, j, j + 1 we have at most 15 vertices
on the noose.

296 H. Jacob and M. Pilipczuk

v1v2

v3

F1

F2

F3

F

Q′
1

Q′
2

Q′
3

P1

P2

P3

P4

P5

R1R2

R3

Fig. 1. Decomposition of F

We now bound the red degree that may appear in our contraction sequence.
When first contracting Aj

α the red degree of its vertices is at most |Ãj−1
α |+|Aj

α|+
|Aj+1

α | + 6 − 2. The 6 term bounds the number of vertices on the Q′
i that are

adjacent to vertices of Aj
α, and the −2 term is because we bound the red degree

after the first contraction (decreasing the number of vertices by 1) and because
there is no selfloop. This amounts to at most h(9) + 2h(15) + 4 = 148.

We then observe that the number of contractions of pairs of vertices of Ãj
1 ∪

Ãj
2 ∪ Ãj

3 that may happen when obtaining Aj is at most 5 for the following
reasons. We have at most two contractions to contract the potential vertices with
empty neighbourhoods coming from each Fi. Furthermore, at most 3 vertices of
the Pi can have adjacent vertices in two Fα (the first vertices of F on the path
from each vi to r in T), so we may contract the two potential representatives of
the neighbourhood classes consisting of a singleton of such a vertex in the two
adjacent Fα. Since we know |Aj | ≤ h(15) and each contraction may reduce the
number of vertices by at most 1, we have |Ãj

1| + |Ãj
2| + |Ãj

3| ≤ h(15) + 5.
The red degree of a vertex of Q′

i is bounded by the sizes of the |Ãj
α| of its 3

adjacent layers on the two faces to which it is adjacent, this is because by always
contracting to the same vertex in each neighbourhood class we can ensure that

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 297

Aj−1

qj1

Ãj
1

qj2

Ãj
2

qj3

Ãj
3

qj+1
1

Ãj+1
1
qj+1
2

Ãj+1
2

qj+1
3

Ãj+1
3Aj

Fig. 2. Second phase of the contraction procedure

the number of red edges to this vertex is always increasing. If we add the size
of the last face for each layer (positive terms), we can easily bound using the
previous inequality, by 3(h(15) + 5) = 183.

The red degree of a vertex of layer j when contracting to form Aj is at most
|Aj−1|+ |Ãj

1|+ |Ãj
2|+ |Ãj

3|+ |Ãj+1
1 |+ |Ãj+1

2 |+ |Ãj+1
3 |+6−2. The 6 term bounds

the number of vertices of Q′
i in the layers j and j+1, and the −2 term is because

we bound the red degree after the first contraction (decreasing the number of
vertices by 1) and because there is no selfloop. Combining previous inequalities,
we may bound by 3h(15) + 2 · 5 + 4 = 182. 	

When the outerface is reached, we can contract arbitrarily to a single vertex
layer by layer, and then contract the path. Doing so we have red degree at most
3h(9) + 1 < 183 because there are only 3 vertices on the outerface.

We conclude that we have constructed a d-contraction sequence of G such
that d ≤ 183. 	

5 Bipartite Graph

Theorem 4. The twin-width of the universal bipartite graph B(n) is n−log(n)+
O(1).

Proof. We first prove an upper bound. Let k ∈ [n]. We denote by A a subset of
k vertices in X = [n]. First, contract vertices of Y = 2[n] that have the same
neighbourhood in A. When this is done, vertices of A have no incident red edges,
while vertices of X \A have red edges going to all remaining vertices of Y (there
are 2k such vertices).

At this point the red degree is at most max(2k, n − k). When contracting
a neighbourhood class with respect to A in Y , we can pick an arbitrary vertex
contract all others to it. This way there is only one vertex with incident red

298 H. Jacob and M. Pilipczuk

edges in the class, and its red degree is increasing. In consequence, the bound on
the red degree extends to the partial contraction sequence leading to this point.

The vertices of X \ A can then be contracted into a single vertex without
creating new red edges. We can then contract all the remaining vertices of Y
into a new vertex of red degree k+1. Finally, we contract A onto the said vertex.
This establishes that for any choice of k,

tww(B(n)) ≤ max(2k, n − k, k + 1).

By choosing k = �log(n) − 1, we obtain tww(B(n)) ≤ n − log(n) + O(1).
We now prove a lower bound. Consider a (n − k)-contraction sequence for

B(n). We focus on the moment before the first contraction with a vertex of X.
Note that the number of initial vertices contained in a current vertex of Y

with red degree d is at most 2d, hence at most 2n−k.
A contracted vertex of Y has red degree at least 1. From the bound on the

red degree of vertices of X, we know that there are at most n(n − k) red edges.
More precisely, if we denote by la for a ∈ [n − k] the number of vertices of Y

with red degree a, we have
∑n−k

a=1 ala ≤ n(n − k).
The number of vertices that were contracted in Y is therefore at most

n−k∑

a=1

la2a =
n−k∑

a=1

ala · 2a

a
≤ n(n − k) · 2n−k

n − k
= n2n−k.

When contracting with a vertex of X for the first time, the number of red
edges that become incident to it is therefore at least

2n−1 − n2n−k − 1.

This is bounded by n − k, which implies k ≤ log2(n) + O(1).
We can thus conclude that tww(B(n)) = n − log2(n) + O(1) 	

6 Conclusion

Although, we provide no lower bound matching our upper bound on the twin-
width of graphs of bounded treewidth, the exponential dependency is necessary
[5]. One might want to consider k-trees with heavy branching in order to find a
tight lower bound.

As for the twin-width of planar graphs, it seemed reasonable that one could
improve the given bound with a more careful analysis. Subsequent to this work,
[3] improves the bound to 37 using the same decomposition but with a stronger
invariant on the partial contraction sequence. Hliněný further improved the
bound to 9 using a modified decomposition and a careful analysis [14]. Another
interesting prospect would be to adapt our arguments for planar graphs to graphs
of bounded genus, for which properties of the embedding might also prove useful.

Bounding Twin-Width for Bounded-Treewidth Graphs, and Planar Graphs 299

References

1. Ahn, J., Hendrey, K., Kim, D., Oum, S.: Bounds for the twin-width of graphs.
CoRR abs/2110.03957 (2021). https://arxiv.org/abs/2110.03957

2. Balabán, J., Hlinený, P.: Twin-width is linear in the poset width. In: Golovach,
P.A., Zehavi, M. (eds.) 16th International Symposium on Parameterized and Exact
Computation, IPEC 2021, 8–10 September 2021, Lisbon, Portugal. LIPIcs, vol. 214,
pp. 6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://
doi.org/10.4230/LIPIcs.IPEC.2021.6

3. Bekos, M.A., Lozzo, G.D., Hlinený, P., Kaufmann, M.: Graph product structure for
h-framed graphs. CoRR abs/2204.11495 (2022). https://doi.org/10.48550/arXiv.
2204.11495

4. Bergé, P., Bonnet, É., Déprés, H.: Deciding twin-width at most 4 is NP-complete.
CoRR abs/2112.08953 (2021). https://arxiv.org/abs/2112.08953

5. Bonnet, É., Déprés, H.: Twin-width can be exponential in treewidth. CoRR
abs/2204.07670 (2022). https://doi.org/10.48550/arXiv.2204.07670

6. Bonnet, É., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width III:
max independent set, min dominating set, and coloring. In: Bansal, N., Merelli,
E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, 12–16 July 2021, Glasgow, Scotland (Virtual Con-
ference). LIPIcs, vol. 198, pp. 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.35

7. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp.
601–612. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00062

8. Bonnet, É., Kwon, O., Wood, D.R.: Reduced bandwidth: a qualitative strength-
ening of twin-width in minor-closed classes (and beyond). CoRR abs/2202.11858
(2022). https://arxiv.org/abs/2202.11858

9. Courcelle, B.: From tree-decompositions to clique-width terms. Discret. Appl.
Math. 248, 125–144 (2018). https://doi.org/10.1016/j.dam.2017.04.040

10. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica 58(3), 790–
810 (2010). https://doi.org/10.1007/s00453-009-9296-1

11. Fomin, F.V., Oum, S., Thilikos, D.M.: Rank-width and tree-width of H-minor-
free graphs. Eur. J. Comb. 31(7), 1617–1628 (2010). https://doi.org/10.1016/j.ejc.
2010.05.003

12. Gajarský, J., Pilipczuk, M., Torunczyk, S.: Stable graphs of bounded twin-width.
CoRR abs/2107.03711 (2021). https://arxiv.org/abs/2107.03711

13. Gu, Q., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3)
time. ACM Trans. Algorithms 4(3), 30:1-30:13 (2008). https://doi.org/10.1145/
1367064.1367070

14. Hliněný, P.: Twin-width of planar graphs is at most 9 (2022). https://doi.org/10.
48550/ARXIV.2205.05378. https://arxiv.org/abs/2205.05378

15. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Comb. 14(2), 217–241
(1994). https://doi.org/10.1007/BF01215352

16. Ueckerdt, T., Wood, D.R., Yi, W.: An improved planar graph product structure
theorem. CoRR abs/2108.00198 (2021). https://arxiv.org/abs/2108.00198

https://arxiv.org/abs/2110.03957
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://doi.org/10.4230/LIPIcs.IPEC.2021.6
https://doi.org/10.48550/arXiv.2204.11495
https://doi.org/10.48550/arXiv.2204.11495
https://arxiv.org/abs/2112.08953
https://doi.org/10.48550/arXiv.2204.07670
https://doi.org/10.4230/LIPIcs.ICALP.2021.35
https://doi.org/10.1109/FOCS46700.2020.00062
https://arxiv.org/abs/2202.11858
https://doi.org/10.1016/j.dam.2017.04.040
https://doi.org/10.1007/s00453-009-9296-1
https://doi.org/10.1016/j.ejc.2010.05.003
https://doi.org/10.1016/j.ejc.2010.05.003
https://arxiv.org/abs/2107.03711
https://doi.org/10.1145/1367064.1367070
https://doi.org/10.1145/1367064.1367070
https://doi.org/10.48550/ARXIV.2205.05378
https://doi.org/10.48550/ARXIV.2205.05378
https://arxiv.org/abs/2205.05378
https://doi.org/10.1007/BF01215352
https://arxiv.org/abs/2108.00198

On Anti-stochastic Properties
of Unlabeled Graphs

Sergei Kiselev4 , Andrey Kupavskii1 , Oleg Verbitsky2(B) ,
and Maksim Zhukovskii3

1 CNRS, Grenoble, France
kupavskii@ya.ru

2 Humboldt-Universität zu Berlin, Berlin, Germany
verbitsky@informatik.hu-berlin.de

3 Weizmann Institute of Science, Rehovot, Israel
4 Grenoble, France

Abstract. We study vulnerability of a uniformly distributed random
graph to an attack by an adversary who aims for a global change of the
distribution while being able to make only a local change in the graph.
We call a graph property A anti-stochastic if the probability that a ran-
dom graph G satisfies A is small but, with high probability, there is a small
perturbation transforming G into a graph satisfying A. While for labeled
graphs such properties are easy to obtain from binary covering codes, the
existence of anti-stochastic properties for unlabeled graphs is not so evi-
dent. If an admissible perturbation is either the addition or the deletion
of one edge, we exhibit an anti-stochastic property that is satisfied by a
random unlabeled graph of order n with probability (2 + o(1))/n2, which
is as small as possible. We also express another anti-stochastic property
in terms of the degree sequence of a graph. This property has probability
(2 + o(1))/(n lnn), which is optimal up to factor of 2.

Keywords: Network resilience · Random graphs · Canonical labeling

1 Introduction

The asymptotic properties of a random graph are the subject of a rich and
comprehensive theory [2,10]. Specifically, let Gn be a graph chosen equiprobably
from among all graphs on the vertex set {1, . . . , n}. Identifying a graph property
with the set of all graphs possessing this property, we say that Gn has a property
P with high probability (whp) or asymptotically almost surely if P[Gn ∈ P] =
1 − o(1) as n increases.

If the “error probability” o(1) is very small, then the definition above is
stable with respect to local perturbations of Gn. To be specific, here and below
a perturbation means adding one edge to a graph or deleting one edge from
it. If P[Gn ∈ P] = 1 − o(1/n2), then the union bound implies that, whp, P
holds not only for Gn but even for each of the

(
n
2

)
perturbed versions of Gn. In

The third author is supported by DFG grant KO 1053/8–2.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 300–312, 2022.
https://doi.org/10.1007/978-3-031-15914-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_22&domain=pdf
http://orcid.org/0000-0003-0103-3093
http://orcid.org/0000-0002-8313-9598
http://orcid.org/0000-0002-9524-1901
http://orcid.org/0000-0001-8763-9533
https://doi.org/10.1007/978-3-031-15914-5_22

On Anti-stochastic Properties of Unlabeled Graphs 301

other words, the property P is robust with respect to the following adversarial
attack. An adversary receives a random graph Gn and is allowed to change the
(non)adjacency of a single pair of vertices in Gn. Whatever he does, the modified
graph G′

n still satisfies P whp.
We here address an opposite scenario when an adversary is able to modify

Gn so that, whp, the corrupted graph G′
n has a property which is unlikely

for a random graph. More precisely, we call a property A anti-stochastic if the
following two conditions are true:

– P[Gn ∈ A] = o(1), and
– there is an adversary such that P[G′

n ∈ A] = 1 − o(1).

More formally, by an adversary we understand an arbitrary function f which if
applied to a graph G, produces a graph f(G) such that G and f(G) differ by at
most a single edge. Thus, G′

n = f(Gn) is a random variable which we observe
instead of a uniformly distributed Gn.

Our interest in anti-stochastic properties is motivated by the fact that they
yield a conceptual formalization of the global damage effect on a source of random
graphs that can be caused by a malicious adversary allowed to make only a local
perturbation in a graph he accesses. Adversarial attacks on a random graph
are studied in [3,4,7] focusing on the question on how many vertices can or
must be deleted in order to make a dynamically evolving random graph highly
disconnected. In general, resilience and vulnerability of graphs have been studied
in network science in many various contexts; we refer to the recent survey [15]
for overview of the concepts and results in this large research area.

Let An denote the set of n-vertex graphs with property A, and set N =
(
n
2

)
.

Since a graph in An can be a perturbed version of at most N graphs, the second
condition in the above definition implies that |An|(N + 1) ≥ (1 − o(1))2N for
any anti-stochastic property. It immediately follows that if A is anti-stochastic,
then

P[Gn ∈ A] ≥ (2 − o(1))/n2. (1)

This argument readily reveals a notable source of anti-stochastic properties.
A set CN ⊂ {0, 1}N is a covering code [5] if every string in {0, 1}N is within
Hamming distance 1 of some string in CN . For N =

(
n
2

)
, we can identify the

graphs on the vertex set {1, . . . , n} with the binary strings of length N . Thus,
if the density |CN |/2N tends to 0 as N increases, then the binary code can be
seen as an anti-stochastic property. The lower bound (1) turns out to be tight
as there are covering codes of asymptotically optimal density (1 + o(1))/N ; see
[11] or [5, Ch. 12.4].

Being a natural combinatorial concept in the realm of strings, covering codes
can hardly be considered natural graph properties. As a minimum criterion for a
graph property to be natural, we require that it should be isomorphism invariant,
that is, it should hold or not hold for every two isomorphic graphs simultaneously.
Our first result meets this expectation, implying that the damage caused by a
combinatorially optimal adversary can be, in a way, conscious.

Theorem 1. There is an isomorphism invariant anti-stochastic property hold-
ing for a random graph of order n with probability (2 + o(1))/n2.

302 S. Kiselev et al.

In this theorem and the preceding discussion, we consider labeled graphs
(whose vertices are labeled by 1, . . . , n). An unlabeled graph can be defined
formally as an isomorphism class of labeled graphs. Theorem 1 translates into
virtually the same statement saying that there exists an anti-stochastic property
of unlabeled graphs holding with an asymptotically optimal probability (2 +
o(1))/n2; cf. [8, Ch. 9].

Our proof of Theorem 1 uses the existence of covering codes with optimal
density. Ensuring the invariance under graph isomorphism is, however, a subtle
business. If we identify a binary code with the corresponding set of labeled graphs
and just take the closure of this set under isomorphism, then we cannot exclude
that this closure will have too high density, violating the first condition of an
anti-stochastic property. To rectify this problem, we use the following strategy.

– For a graph G, we define a set W of vertices of G in terms of their degrees.
– We define another set of vertices W ′ such that W and W ′ are disjoint. For

a vertex w /∈ W , its membership in W ′ is determined by the degree of w in
the subgraph of G induced on the complement of W . Moreover, W ′ is split
into ten parts W ′

1, . . . ,W
′
10 according to the vertex degrees in this induced

subgraph.
– If G is chosen randomly, then every two vertices in W have, whp, differently

many neighbors in W ′
i for some i ≤ 10, which determines a canonical labeling

of W .
– Somewhat loosely speaking, the subgraphs of G induced on W and W ′ are

almost uniformly distributed and independent from each other as well as
from the adjacency pattern between W and W ′. This ensures that, whp,
the subgraph induced on W remains uniformly distributed also with respect
to the aforementioned canonical labeling. In this way we can simulate the
property of a binary word to belong to a covering code by an isomorphism
invariant graph property.

The above strategy resembles the classical canonization procedure for almost all
graphs due to Babai, Erdős, and Selkow [1]. Note that we cannot use canonization
of a random graph directly because we need the graph to be uniformly distributed
after relabeling, which makes our problem more sofisticated.

It is natural to ask which computational power must the adversary have in
order to corrupt the random graph by enforcing an anti-stochastic property A.
Obviously, it would be enough for him to be able to recognize whether or not a
given graph satisfies A. The decision complexity of the property constructed in
the proof of Theorem 1 is no more than the decision complexity of the covering
code used in the construction. If n = 2k−1, we can use the Hamming code, which
is perfect and can serve as a covering code. The membership in the Hamming
code is efficiently recognizable. If n is not of this kind, we can expand the closest
Hamming code to the length n just by appending the missing bits in all possible
ways, which retains the polynomial-time complexity. However, the probability
of the corresponding anti-stochastic property becomes twice higher, i.e., (4 +
o(1))/n2 instead of (2 + o(1))/n2. If the adversary is not content with this, he
has to use an asymptotically optimal covering code. Such a code is suggested by

On Anti-stochastic Properties of Unlabeled Graphs 303

Kabatyanskii and Panchenko [11]. Since their construction uses randomization,
the recognition complexity of this code seems to be a subtle issue.

Our second construction of an isomorphism invariant anti-stochastic property
is, in a certain sense, more natural as it is defined solely in terms of the degree
sequence of a graph. Note that any condition on the degree sequence defines an
isomorphism invariant graph property.

Theorem 2.

1. There is an anti-stochastic property expressible in terms of the degree sequence
that holds for a random graph of order n with probability (2 + o(1))/(n ln n).

2. On the other hand, every such anti-stochastic property has probability at least
(1 − o(1))/(n ln n).

After preliminary technical results in Sect. 2, we present the proofs of Theo-
rems 1 and 2 in Sects. 3 and 4 respectively. Due to space limitations, some parts
of the proofs are omitted or only sketched. Full proofs are available in a long
version of this paper [12].

2 Preliminaries

The vertex set of a graph G is denoted by V (G). If U ⊂ V (G), then we write
G|U to denote the subgraph of G induced on the set of vertices U . The degree
of a vertex v ∈ V (G) is denoted by degG(v).

For the uniformly distributed random graph Gn on n vertices, it is supposed
that V (Gn) = [n], where [n] = {1, . . . , n}. In some contexts, a set A of graphs
on [n] can be identified with the event Gn ∈ A, whose probability P[Gn ∈ A]
will then be denoted by P[A].

Recall that the characteristic function of a random variable X is defined
as φ(t) = EeitX where t ∈ R. For an n-dimensional random vector X =
(X1, . . . , Xn), this generalizes to φ(t1, . . . , tn) = Eei

∑n
k=1 tkXk . The following

lemma is a simple extension of its 1-dimensional analogue than can be found
in [9, Theorem 1].

Lemma 3. Let m be a positive integer. Let X = (X1, . . . , Xn) be an integer-
valued random vector with characteristic function φ, then

P[m divides Xk for every k = 1, . . . , n] =
1

mn

m−1∑

j1=0

. . .
m−1∑

jn=0

φ

(
2πj1
m

, . . . ,
2πjn

m

)
.

We use Lemma 3 to prove that if we take the remainders modulo m of the
vertex degrees in Gn, then the resulting sequences are evenly distributed.

Lemma 4. Fix an odd integer m ≥ 3 and let rv ∈ {0, 1, . . . ,m − 1} for v =
1, . . . , n. Then

∣
∣
∣
∣P[degGn

(v) ≡ rv (mod m) for every v = 1, . . . , n] − 1
mn

∣
∣
∣
∣ = O(e−cn),

where the constant c > 0 as well as the constant absorbed in the big O notation
depend solely on m.

304 S. Kiselev et al.

Proof. Let Y = (Y1, . . . , Yn) be the vector of vertex degrees of Gn. Let
R = (r1, . . . , rn) and X = Y − R. Denote the characteristic functions
of X and Y by φX and φY respectively and note that φX(t1, . . . , tn) =
e−i

∑n
v=1 rvtvφY (t1, . . . , tn). By Lemma 3, the probability that Yv ≡ rv (mod m)

for all v is equal to

1
mn

∑

x∈{0,1,...,m−1}n

φX

(
2πx

m

)
=

1
mn

⎛

⎝1 +
∑

x�=0

φX

(
2πx

m

)
⎞

⎠

where 2πx/m is an n-dimensional real vector and the equality is just due to
the observation that φX(0) = 1 for the n-dimensional zero vector. Noting that∣
∣
∣
∑

x�=0 φX(2πx/m)
∣
∣
∣ ≤ ∑

x�=0 |φY (2πx/m)| , we have to prove that the last sum
is exponentially small. To this end, we bound the term |φY (2πx/m)| from above
for each non-zero vector x ∈ {0, 1, . . . ,m − 1}n.

For distinct u, v ∈ [n], let ξu,v denote the indicator random variable of the
presence of the edge {u, v} in Gn. For a real vector t = (t1, . . . , tn), we have

φY (t) = Eei
∑n

u=1
∑

v �=u tuξu,v = Eei
∑

u<v(tu+tv)ξu,v =
∏

u<v

(
1
2

+
1
2
ei(tu+tv)

)
.

Set α = max1≤j<m |1 + e2πij/m| and note that α < 2. Let n0(x) be the number
of zeros in x. Note that |12 + 1

2ei(tu+tv)| ≤ 1. Moreover, this number does not
exceed α/2 for t = 2πx/m such that exactly one of the coordinates xu and xv is
equal to 0. It follows that |φY (2πx/m)| ≤ (α/2)n0(x)(n−n0(x)). Now, fix k to be
the smallest integer such that (α/2)k < 1/m. Since x �= 0, we conclude that

|φY (2πx/m)| ≤
{

(α/2)n−1 if n0(x) ≥ n − k

(α/2)k(n−k) if n/2 ≤ n0(x) < n − k.

Consider the case that n0(x) < n/2. Since each of the more than n/2 non-
zero coordinates of x can take on at most m − 1 values, there are at least
(m − 1)

(�n/(2(m−1))�
2

)
pairs (u, v) with u < v and xu = xv �= 0. For such a pair,

the assumption that m is odd implies that the sum xu + xv is not divisible by
m. It follows that |φY (2πx/m)| ≤ (α/2)(m−1)(�n/(2(m−1))�

2). Thus,

∑

x�=0

∣
∣
∣
∣φY

(
2πx

m

)∣
∣
∣
∣ < k

(
n

k

)
mk

(α

2

)n−1

+mn

(
(α

2

)k(n−k)

+
(α

2

)(m−1)(�n/(2(m−1))�
2)

)

= O
((

m(α/2)k
)n

)
,

completing the proof. �	

On Anti-stochastic Properties of Unlabeled Graphs 305

3 Proof of Theorem 1

Let k > 11 be an odd integer non-divisible by 11. For a graph G, we define
U(G) to be the set of vertices of G whose degrees are divisible by k. For r =
0, 1, . . . , 10, let Ur(G) denote the set of those vertices in U(G) whose degrees in
G|U(G) are congruent to r modulo 11. We also set W (G) = V (G) \ U(G) and
R(G) = U(G) \ U0(G). In what follows, an important role will be played by the
partition

V (G) = W (G) ∪ U0(G) ∪ R(G). (2)

For notational simplicity, we suppress the dependence of this partition on k. The
value of the parameter k is supposed to be fixed until the final step of the proof.

For the random graph Gn, the partition (2) translates in [n] = W∪U0 ∪R,
where W = W (Gn), Ur = Ur(Gn), and R = R(Gn). Also, U = U(Gn).

Distribution of Induced Subgraphs. For a set X, we write GX to denote the
uniformly distributed random graph on the vertex set X. Moreover, if X∩Y = ∅,
then GX×Y stands for the uniformly distributed random bipartite graph with
vertex classes X and Y .

Our main technical tool will be a lemma about asymptotical independence
and uniformity of the subgraphs Gn|R, Gn|W, and Gn|R×W. Note that this
is equivalent to asymptotical uniformity of the subgraph Gn|W∪R. Somewhat
loosely speaking, we show that the random graphs Gn|W∪R and GW∪R have
almost the same distribution under the condition that W = W and R = R.

Specifically, we fix a real ε ∈ (0, 1) and suppose that U0, U1, . . . , U10 are
disjoint subsets of [n] such that n

11k (1 − ε) < |Ui| < n
11k (1 + ε). We also set

U =
⋃10

i=0 Ui, W = [n] \ U , and R = U \ U0. Moreover,
−→
U = (U0, . . . , U10).

These sets, in contrast to the sets Ur(G), W (G) etc. defined above, are consid-
ered irrespectively of any graph G. Set

−→
U = (U0, . . . ,U10). Lemma 4 makes it

intuitively clear that, conditioned on U = U and on
−→
U =

−→
U respectively, the

graphs Gn|U and Gn|W∪R are ‘almost’ uniformly distributed. We formalize this
as follows.

Lemma 5. Under the above assumption we have the following equalities.

1. For every property A of graphs on U ,

P [Gn|U ∈ A | U = U] = (1 + o(1))P [GU ∈ A] .

2. For every property A of graphs on [n] \ U0,

P
[
Gn|W∪R ∈ A

∣
∣
∣
−→
U =

−→
U

]
= (1 + o(1))P [GW∪R ∈ A] .

The Property. For an n-vertex graph G, we will suppose that V (G) = [n]. Let
Q be an anti-stochastic property of labeled graphs. More specifically, for each n

we fix a covering code in {0, 1}(n2) of asymptotically optimal density. An n-vertex

306 S. Kiselev et al.

graph G belongs to Q if the
(
n
2

)
-dimensional vector of adjacencies of G belongs

to the code. By [11], we may assume that P[Gn ∈ Q] ≤ (2 + 1/k)/n2 for large
enough n.

We say that R(G) = U1(G)∪ . . .∪U10(G) resolves W (G) if every two distinct
vertices in W (G) have differently many neighbors in Ur(G) for some r ∈ [10].
More specifically, for v ∈ W (G), let

−→
d (v) = (d1(v), . . . , d10(v)) where dr(v)

denotes the number of neighbors of v in Ur(G). Then R(G) resolves W (G) if−→
d (v) �= −→

d (u) for any distinct u, v ∈ W (G). If this is the case, consider the lexi-
cographical order on {0, 1, . . . , n − 1}10 and relabel the vertices in W (G) by the
integers 1, . . . , |W (G)| according to this order. This results in an isomorphic copy
of G|W (G), and we will say that the subgraph G|W (G) is canonically relabeled.

Let B denote the set of graphs G such that R(G) resolves W (G). We define
the property Qk by setting G ∈ Qk if

– either G /∈ B,
– or G ∈ B and the canonically relabeled subgraph G|W (U) belongs to Q.

Note that Qk is isomorphism invariant. Indeed, this is obvious for the property
B. Now, if G satisfies the second condition above and G′ ∼= G, then G′ ∈ B too.
Let f be an isomorphism from G to G′. Note that f induces an isomorphism
from G|W (G) to G′|W (G′) preserving the canonical labels. As a consequence, G′

also satisfies the second condition in the definition of Qk.
We split the proof of Theorem 1 in three parts.

1. We will prove that Qk has small probability, specifically, P[Gn ∈ Qk] ≤(
1 + 3

k

)
2

n2 for large enough n.
2. Then, we will prove that Qk is close to an anti-stochastic property in the sense

that an adversary is able to transform Gn in G′
n such that P[G′

n ∈ Qk] > 1− 4
k

for large enough n.
3. These facts will allow us to combine a sequence of properties Qk into a single

anti-stochastic property Q∗.

The Probability of Qk is Small. Technically, this part of the proof will be
accomplished by showing that

– B holds with probability 1 − o(1/n2), and
– the canonically relabeled subgraph Gn|W remains almost uniformly dis-

tributed.

The following fact is the first step towards showing that Gn ∈ B whp. We call
a set U ⊂ [n] standard if n

k − √
n ln n ≤ |U | ≤ n

k +
√

n ln n. Fix a standard
U ⊂ [n] and let

−→
U = (U0, . . . , U10) be a partition of U . We call

−→
U standard

if |U |
11 − √

n ln n ≤ |Ur| ≤ |U |
11 +

√
n ln n for every r = 0, . . . , 10. Recall that U

consists of all vertices in Gn with degrees divisible by k.

Claim 6. 1. U is standard with probability 1 − o(1/n3).
2. (U0(GU), . . . , U10(GU)) is standard with probability 1 − o(1/n3).

On Anti-stochastic Properties of Unlabeled Graphs 307

The proof is based on the approximation of the degree sequence of Gn

by a vector of independent binomial random variables due to McKay and
Wormald [14] and an application of Lemma 3.

Using part 1 of Lemma 5, we conclude from part 2 of Claim 6 that

P
[−→
U is standard

∣
∣
∣ U = U

]
= 1 − o

(
1
n3

)
. (3)

Assume that
−→
U is standard and consider a random graph GW∪R where, as

usually, W = [n] \ U and R = U \ U0. As follows from de Moivre–Laplace limit
theorem, two fixed vertices u, v ∈ W of GW∪R have equally many neighbors
in Ur for every r = 1, . . . , 10 with probability O(1/n5). By the union bound,
the partition R = U1 ∪ . . . ∪ U10 does not resolve W in GW∪R with probability
O(1/n3). By part 2 of Lemma 5 we conclude that, conditioned on

−→
U =

−→
U ,

R(Gn) does not resolve W (Gn) with asymptotically the same probability, that
is,

P
[
B

∣
∣
∣
−→
U =

−→
U

]
= O

(
1
n3

)
, (4)

where B denotes the event Gn /∈ B.
We now can see that the event B holds with high probability. Indeed, taking

into account Estimate (4), part 1 of Claim 6, and Estimate (3), we have

P
[
B

] ≤
∑

U and
−→
U standard

P
[
B

∣
∣
∣
−→
U =

−→
U

]
P[

−→
U =

−→
U] + P [U is not standard]

+
∑

U standard

P
[−→
U is not standard

∣
∣
∣ U = U

]
P[U = U] = O

(
1
n3

)
.

With this upper bound for the probability of B, we are ready to estimate the
probability of Qk from above. Note that

P[Qk] = P[Qk ∩ B] + P[B] = P[Qk ∩ B] + o(1/n2).

By part 1 of Claim 6 and Estimate (3),

P[Qk ∩ B] =
∑

U and
−→
U standard

P[Qk ∩ B | −→
U =

−→
U]P[

−→
U =

−→
U] + o

(
1
n3

)
.

By part 2 of Lemma 5, the probability P[Qk ∩B | −→
U =

−→
U] is asymptotically the

same as the probability that in the uniformly distributed random graph GW∪R,
simultaneously,

(1) R = U1 ∪ . . . ∪ U10 resolves W = [n] \ U , and
(2) the canonically relabeled subgraph GW∪R|W belongs to Q.

308 S. Kiselev et al.

Assume that the former condition is fulfilled. Since the random graphs
GW∪R|W = GW and GW×R are independent, the latter condition has the same
probability as the event G|W | ∈ Q, which does not exceed 2+1/k+o(1)

(n−n/k−√
n lnn)2

. We
conclude that

P[Gn ∈ Qk] ≤ (2 + 1/k)(1 + o(1))
(1 − 1/k)2n2

+ o

(
1
n2

)
≤

(
1 +

3
k

)
2
n2

, (5)

where the last inequality is fulfilled for all sufficiently large n.

Qk is Almost Anti-stochastic. For a graph G and two distinct vertices u, v ∈
V (G), let G(u, v) denote the graph obtained from G by changing the adjacency
between u and v. If u = v, we set G(u, v) = G.

Let A denote the event {∃u, v ∈ W Gn(u, v) ∈ Qk}. It is enough to prove
that A has high probability.

In what follows, for a partition
−→
U = (U0, . . . , U10) of U , the event

−→
U =

−→
U

will for brevity be denoted by C−→
U

. With some abuse of notation, we write A
and C−→

U
also to denote the corresponding sets of graphs. We have

P[A] ≥ P[A ∩ B] ≥
∑

U and
−→
U standard

P[A ∩ B | C−→
U

]P[C−→
U

]

=
∑

U and
−→
U standard

P[A | B ∩ C−→
U

]P[B | C−→
U

]P[C−→
U

].

We can bound P[B | C−→
U

] from below according to Estimate (4). The probability
P[A | B ∩ C−→

U
] can also be bounded according to the following claim.

Claim 7. If a set U ⊂ [n] and its partition
−→
U = (U0, . . . , U10) are standard, then

P[A | B ∩ C−→
U

] ≥
(

1 − 4
k

+
4
k2

)
(1 − o(1)).

We, therefore, obtain

P[A] ≥
(

1 − o

(
1
n2

))(
1 − 4

k
+

4
k2

)
(1 − o(1))

∑

U and
−→
U standard

P[C−→
U

].

Note that
∑

U and
−→
U standard

P[C−→
U

] = P[U and
−→
U are standard]

= P[
−→
U is standard | U is standard]P[U is standard] ≥ 1 − o

(
1
n3

)
,

where the last inequality follows from Estimate (3) and Claim 6. We conclude
that

P[A] ≥ 1 − 4
k

for sufficiently large n. (6)

On Anti-stochastic Properties of Unlabeled Graphs 309

Merging All Qk’s Together. It remains to convert the sequence of graph
properties Qk into a single anti-stochastic property Q∗. Based on Estimates (5)
and (6), for each Qk we define an integer Nk such that Nk > Nk′ if k′ < k and
the inequalities P[Gn ∈ Qk] ≤ (1+3/k) 2

n2 and P[∃u, v Gn(u, v) ∈ Qk] ≥ 1−4/k
are true for all n ≥ Nk. Let k(n) be the maximum k such that Nk ≤ n. Define
Q∗ to be the event that Gn ∈ Qk(n). The graph property Q∗ is anti-stochastic
because k(n) → ∞ as n → ∞. The proof of Theorem 1 is complete.

4 Proof of Theorem 2

Upper Bound. Let [a, b] denote the interval of integers a, a + 1, . . . , b. We con-
sider the interval of integers

Dn =

{

d ∈ Z : |d − n/2| ≤ 1
2

√

n
(
ln n − 2

√
ln n

)
}

.

The smallest and the largest integers in Dn are denoted by d∗ and d∗ respectively;
thus, Dn = [d∗, d∗]. The integer �n/2� splits Dn in two parts Dn,1 = [d∗, �n/2�−
1] and Dn,2 = [�n/2�+1, d∗], that is, Dn = Dn,1 ∪{�n/2�}∪Dn,2. Set δ = |Dn|,
δ1 = |Dn,1|, and δ2 = |Dn,2|. Shifting Dn,1 and Dn,2 in 1, we obtain the intervals
D+

n,1 = [d∗ + 1, �n/2�] and D+
n,2 = [�n/2� + 2, d∗ + 1].

For a non-negative integer y, we denote the number of vertices of degree y
in Gn by Ny. For an integer y > d∗, we define Xy to be the total number of
vertices v such that d∗ ≤ deg(v) ≤ y, that is, Xy =

∑y
d=d∗ Nd.

We define two integer sequences X↓ = (Xy)y∈D1
n

and X↑ = (Xy)y∈D2
n

of
length δ1 and δ2 respectively, and make a simple observation.

Claim 8. Let u and v be vertices of degrees deg(u) = x and deg(v) = y.

1. If x ∈ Dn,1, y ∈ Dn,2, and u and v are non-adjacent, then addition of an
edge between u and v changes only one coordinate of X↓, namely the one
indexed by x, and only one coordinate of X↑, namely the one indexed by y.
Both coordinates decrease by 1.

2. If x ∈ D+
n,1, y ∈ D+

n,2, and u and v are adjacent, then deletion of the edge
between u and v changes only one coordinate of X↓, namely the one indexed
by x − 1, and only one coordinate of X↑, namely the one indexed by y − 1.
Both coordinates increase by 1.

Denote by Y↓ ∈ {0, 1}δ1 the vector of parities of X↓, that is, (Y↓)i =
(X↓)d∗+i−1 mod 2. Similarly, Y↑ ∈ {0, 1}δ2 is the vector of parities of X↑. Let
S↓ ⊂ {0, 1}δ1 and S↑ ⊂ {0, 1}δ2 be covering codes with asymptotically optimal
densities. Define

Z =
∑

d∗≤y≤n/2

yNy, (7)

where the summation goes over all y ∈ Dn,1 ∪ {�n/2�}. Let A be the property
that Y↓ ∈ S↓, Y↑ ∈ S↑, and Z mod 4 ∈ {0, 1} . We show that this is the
desired anti-stochastic property.

310 S. Kiselev et al.

The approximation of the degree sequence of Gn by a vector of independent
binomial random variables [14] and Lemma 3 imply that the distribution of the
remainders of Nd∗+j−1, j ∈ [δ], modulo 4 is almost uniform. Then, the optimality
of the covering codes S↓ and S↑ yields the following.

Lemma 9.

1. P[Y↓ ∈ S↓] = 2+o(1)√
n lnn

and P[Y↑ ∈ S↑] = 2+o(1)√
n lnn

.

2. P[Gn ∈ A] = 2+o(1)
n lnn .

As the probability of A is asymptotically determined by part 2 of Lemma 9, it
remains to prove the existence of an adversary. A characteristic V of a random
graph Gn is, formally, a function defined on the set of graphs with vertices
1, . . . , n. For a graph G on this vertex set, we therefore write V(G) to denote
the value of V on G. Let G be a graph on [n] such that Y↓(G) /∈ S↓, Y↑(G) /∈ S↑,
and for every two integers x, y ∈ [d∗, d∗ +1] there exist a pair of adjacent vertices
of degrees x and y and a pair of non-adjacent vertices of degrees x and y. The
first two conditions hold whp for Gn by part 1 of Lemma 9. The third condition
also holds whp since both Gn and its complement whp contain no cliques of
size (ln n)1.5 and no complete bipartite graphs with both parts of size at least
(ln n)1.5, and because Ny > ln2 n for all y ∈ Dn. Therefore, it suffices to show
that, by adding or deleting one edge, the adversary can transform G into a graph
G′ possessing the property A.

The adversary is going either to add an edge between two vertices u and v as
in part 1 of Claim 8 or to delete an edge between two vertices u and v as in part
2 of this claim. Note that Z(G′) = Z(G)+1 in the case of addition, and Z(G′) =
Z(G) − 1 in the case of deletion. This allows the adversary to choose a type
of action (deletion or insertion) ensuring that Z(G′) mod 4 ∈ {0, 1} whatever
Z(G) mod 4 is. Once the action type is fixed, the adversary chooses a codeword
S↓ ∈ S↓ at the Hamming distance 1 from Y↓(G) and a codeword S↑ ∈ S↑

at the Hamming distance 1 from Y↑(G). Suppose that S↓ and Y↓(G) differ at
coordinate i and that S↑ and Y↑(G) differ at coordinate j. The adversary changes
the adjacency relation between vertices u and v of degree x and y respectively
where x = d∗ + i− 1 and y = d∗ + j − 1 in the case of addition or x = d∗ + i and
y = d∗ + j in the case of deletion. By Claim 8, Y↓(G′) = S↓ and Y↑(G′) = S↑

and, therefore, G′ has the property A. This proves part 1 of Theorem 2.

Lower Bound. Using the coding-theoretic terminology, we say that a graph G
covers a graph G′ if G′ is obtained from G by changing the adjacency relation
between two vertices. All graphs considered in this section are on the vertex
set [n]. Let Γ (G) denote the set of all

(
n
2

)
graphs covered by G. For a set of graphs

Q, let Γ (Q) =
⋃

G∈Q Γ (G). If Q is an anti-stochastic property, then |Γ (Q)| =

(1 − o(1))2(n2) and, therefore, if we also have |Γ (Q)| ≤ (1 + o(1))n ln n|Q|, this
readily implies the desired lower bound P[Gn ∈ Q] ≥ 1+o(1)

n lnn . Moreover, for a
set of graphs A, let ΓA(Q) = Γ (Q) ∩ A. If Gn ∈ A whp, then it suffices to
have |ΓA(Q)| ≤ (1 + o(1))n ln n|Q|. We prove that the latter inequality holds
for every anti-stochastic property Q expressible in terms of vertex degrees when

On Anti-stochastic Properties of Unlabeled Graphs 311

A is chosen to be the set of graphs with ‘typical’ degree sequences. Roughly
speaking, the labeled degree sequence (d1(G), . . . , dn(G)) of G is typical, if

(i) all di = di(G) are not ‘far’ from n/2, namely |di − n/2| <
√

(n ln n)/2,
(ii) the number of i such that di is not ‘close enough’ to n/2, namely |di−n/2| >

1
2

√
n ln n(1 − o(1)), is small,

(iii) for all y ‘close enough’ to n/2, there exists a sufficiently large set of i such
that di = y.

Note that the number of distinct elements in a typical degree sequence is at
most

√
2n ln n. Moreover, almost all degrees lie within the interval I = (n

2 −
1
2

√
n ln n, n

2 + 1
2

√
n ln n) of length

√
n ln n. Therefore, perturbations of a graph

with a typical degree sequence produce at most 2 (
√
2n lnn)2

2 (1+o(1)) = 2n ln n(1+
o(1)) degree sequences. The factor 2 appears due to the choice of either an
insertion or a deletion of an edge. Some technical work is required to show that
only perturbations inside I contribute to the asymptotics of the produced degree
sequences, leading to the upper bound n ln n(1+o(1)). Finally, the desired bound
|ΓA(Q)| ≤ (1 + o(1))n ln n|Q| follows from the fact that, for G ∈ A and for all
y ∈ I we have many i such that di(G) = y and from the asymptotics of the
number of graphs with given degrees due to Liebenau and Wormald [13].

5 Conclusion and Further Questions

Anti-stochastic properties of graphs studied in this paper are a natural con-
cept in the context of the research on network vulnerability [15]. Our focus
on isomorphism-invariant properties (or, equivalently, on unlabeled graphs) is
motivated by an observation that, in realistic scenarios, an adversary can only
be interested in forcing somehow meaningful, structured properties. Theorem 1
determines the optimum probability of an anti-stochastic property in this setting,
and Theorem 2 concerns the even more constrained scenario when an adversary
aims at an anti-stochastic property expressible solely in terms of vertex degrees.

There are several further questions naturally arising in this context. We here
consider the random graph model G(n, p) in the case p = 1/2. Not all tools in
our analysis can be directly applied to other edge probabilities p = p(n). For
example, the assumption p = 1/2 is essentially used in our proof of the lower
bound in Theorem 2. Other random graph models, especially those designed to
describe real-life networks (e.g., [3,4,7]), would also be of considerable interest.

We restrict ourselves to the case of a limited adversary who is able to change
the adjacency relation just between a single pair of vertices. Consideration of
other perturbation types, like changing adjacencies of multiple pairs, vertex/edge
deletions or insertions, etc., would be also well motivated (corresponding to
various types of errors studied in coding theory [6]).

References

1. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980). https://doi.org/10.1137/0209047

https://doi.org/10.1137/0209047

312 S. Kiselev et al.

2. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics,
vol. 73, 2nd edn. Cambridge University Press (2001). https://doi.org/10.1017/
CBO9780511814068

3. Bollobás, B., Riordan, O.: Coupling scale-free and classical random graphs. Internet
Math. 1(2), 215–225 (2003). https://doi.org/10.1080/15427951.2004.10129084

4. Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random
graphs. Internet Math. 1(1), 1–35 (2003). https://doi.org/10.1080/15427951.2004.
10129080

5. Cohen, G.D., Honkala, I.S., Litsyn, S., Lobstein, A.: Covering Codes. North-
Holland Mathematical Library, vol. 54. North-Holland (2005)

6. Firer, M.: Alternative metrics. In: Concise Encyclopedia of Coding Theory, pp.
555–574. CRC Press (2021)

7. Flaxman, A.D., Frieze, A.M., Vera, J.: Adversarial deletion in a scale-free random
graph process. Comb. Probab. Comput. 16(2), 261–270 (2007). https://doi.org/
10.1017/S0963548306007681

8. Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, New York-
London (1973)

9. Herschkorn, S.J.: On the modular value and fractional part of a random vari-
able. Probab. Eng. Inf. Sci. 9(4), 551–562 (1995). https://doi.org/10.1017/
S0269964800004058

10. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley, Hoboken (2000)
11. Kabatyanskĭı, G.A., Panchenko, V.I.: Packings and coverings of the Hamming space

by balls of unit radius. Problems Inform. Transm. 24(4), 261–272 (1988)
12. Kiselev, S., Kupavskii, A., Verbitsky, O., Zhukovskii, M.: On anti-stochastic prop-

erties of unlabeled graphs. arXiv:2112.04395 (2021)
13. Liebenau, A., Wormald, N.: Asymptotic enumeration of graphs by degree sequence,

and the degree sequence of a random graph. arXiv:1702.08373 (2018)
14. McKay, B.D., Wormald, N.C.: The degree sequence of a random graph I. The

models. Random Struct. Algorithms 11(2), 97–117 (1997)
15. Schaeffer, S., Valdés, V., Figols, J., Bachmann, I., Morales, F., Bustos-Jiménez, J.:

Characterization of robustness and resilience in graphs: a mini-review. J. Complex
Netw. 9(2) (2021). https://doi.org/10.1093/comnet/cnab018

https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1080/15427951.2004.10129084
https://doi.org/10.1080/15427951.2004.10129080
https://doi.org/10.1080/15427951.2004.10129080
https://doi.org/10.1017/S0963548306007681
https://doi.org/10.1017/S0963548306007681
https://doi.org/10.1017/S0269964800004058
https://doi.org/10.1017/S0269964800004058
http://arxiv.org/abs/2112.04395
http://arxiv.org/abs/1702.08373
https://doi.org/10.1093/comnet/cnab018

Computing List Homomorphisms
in Geometric Intersection Graphs

Sándor Kisfaludi-Bak1 , Karolina Okrasa2,3(B) , and Pawe�l Rz ↪ażewski2,3

1 Department of Computer Science, Aalto University, Espoo, Finland
sandor.kisfaludi-bak@aalto.fi

2 Faculty of Mathematics and Information Science, Warsaw University
of Technology, Warsaw, Poland

karolinaokrasa@gmail.com, pawel.rzazewski@pw.edu.pl
3 Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Warsaw, Poland

Abstract. A homomorphism from a graph G to a graph H is an
edge-preserving mapping from V (G) to V (H). Let H be a fixed graph
with possible loops. In the list homomorphism problem, denoted by
LHom(H), the instance is a graph G, whose every vertex is equipped
with a subset of V (H), called list. We ask if there exists a homomor-
phism from G to H, such that every vertex from G is mapped to a
vertex from its list.

We study the complexity of the LHom(H) problem in intersection
graphs of various geometric objects. In particular, we are interested in
answering the question for what graphs H and for what types of geomet-
ric objects, the LHom(H) problem can be solved in time subexponential
in the number of vertices of the instance.

We fully resolve this question for string graphs, i.e., intersection graphs
of continuous curves in the plane. Quite surprisingly, it turns out that the
dichotomy coincides with the analogous dichotomy for graphs excluding
a fixed path as an induced subgraph [Okrasa, Rz ↪ażewski, STACS 2021].

Then we turn our attention to intersections of fat objects. We observe
that the (non) existence of subexponential-time algorithms in such
classes is closely related to the size mrc(H) of a maximum reflexive clique
in H, i.e., maximum number of pairwise adjacent vertices, each of which
has a loop. We study the maximum value of mrc(H) that guarantees
the existence of a subexponential-time algorithm for LHom(H) in inter-
section graphs of (i) convex fat objects, (ii) fat similarly-sized objects,
and (iii) disks. In the first two cases we obtain optimal results, by giving
matching algorithms and lower bounds.

Keywords: Graph homomorphisms · Geometric intersection graphs ·
Subexponential-time algorithms · Exponential Time Hypothesis

Karolina Okrasa–Supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme Grant Agreement no.
714704.
Pawe�l Rz ↪ażewski–Supported by Polish National Science Centre grant no. 2018/31/D/
ST6/00062.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 313–327, 2022.
https://doi.org/10.1007/978-3-031-15914-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_23&domain=pdf
http://orcid.org/0000-0002-6856-2902
http://orcid.org/0000-0003-1414-3507
http://orcid.org/0000-0001-7696-3848
https://doi.org/10.1007/978-3-031-15914-5_23

314 S. Kisfaludi-Bak et al.

1 Introduction

For a family S of sets, its intersection graph is the graph whose vertex set is S,
and two sets are adjacent if and only if they have a nonempty intersection.

A prominent role is played by geometric intersection graphs, i.e., intersection
graphs of some geometrically defined object (usually subsets of the plane). Some
best studied families of this type are interval graphs [13,24] (intersection graphs
of segments on a line), disk graphs [7,9] (intersection graphs of disks in the plane),
segment graphs [21] (intersection graphs of segments), or string graphs [22,23]
(intersection graphs of continuous curves). Geometric intersection graphs are
studied not only for their elegant structural properties, but also for potential
applications. Indeed, many real-life graphs have some underlying geometry [14,
17,18]. Thus the complexity of graph problems restricted to various classes of
geometric intersection graphs has been an active research topic [2,10–12,25–27].

The underlying geometric structure can sometimes be exploited to obtain
much faster algorithms than for general graphs. For example, for each fixed k,
the k-Coloring problem is polynomial-time solvable in interval graphs, while
for k � 3 the problem is NP-hard and thus unlikely to be solvable in polyno-
mial time in general graphs. For disk graphs, the k-Coloring problem remains
NP-hard for k � 3, but still it is in some sense more tractable than for gen-
eral graphs. Indeed, for every fixed k � 3, then k-Coloring problem can be
solved in subexponential time 2O(

√
n) in n-vertex disk graphs, while assuming

the Exponential-Time Hypothesis (ETH) [15,16] no such algorithm can exist
for general graphs. Furthermore, the running time of the above algorithm is
optimal under the ETH [20]. Biró et al. [4] studied the problem for supercon-
stant number of colors and showed that if k = o(n), then k-Coloring admits
a subexponential-time algorithm in disk graphs, and proved almost tight com-
plexity bounds conditioned on the ETH.

As a stark contrast, they showed that 6-Coloring does not admit a subexpo-
nential-time algorithm in segment graphs. This was later improved by Bonnet
and Rz ↪ażewski [6] who showed that already 4-Coloring cannot be solved in
subexponential time in segment graphs, but 3-Coloring admits a 2O(n2/3 log n)-
algorithm in all string graphs. They also showed several positive and nega-
tive results concerning subexponential-time algorithms for segment and string
graphs.

This line of research was continued in a more general setting by Okrasa
and Rz ↪ażewski [29] who considered variants of the graph homomorphism prob-
lem in string graphs. For graphs G and H, a homomorphism from G to H
is an edge-preserving mapping from V (G) to V (H). Note that a homomor-
phism to Kk is precisely a proper k-coloring, so graph homomorphisms generalize
colorings. Among other results, Okrasa and Rz ↪ażewski [29] fully classified the
graphs H for which a weighted variant of the homomorphism problem admits
a subexponential-time algorithm in string graphs (assuming the ETH). It turns
out that the substructure of H that makes the problem hard is an induced
4-cycle.

Computing List Homomorphisms in Geometric Intersection Graphs 315

Separators in Geometric Intersection Graphs. Almost all subexponential-
time algorithms for geometric intersection graphs rely on the existence of bal-
anced separators that are small or simple in some other way. This is very conve-
nient for a divide-&-conquer approach – due to the simplicity of the separator
we can guess how the solution looks on the separator, and then recurse into
connected components of the graph with the separator removed.

For example it is known that n-vertex disk graphs, where each point is con-
tained in at most k disks, admit a balanced separator of size O(

√
nk) [28,30].

This separator theorem was recently significantly extended by De Berg et al. [2]
who introduced the notion of clique-based separators. Roughly speaking, a clique-
based separator consists of cliques, and, instead of measuring its size (i.e., the
number of vertices), we measure its weight defined as the sum of logarithms of
sizes of the cliques. This approach shifts the focus from “small” separators to
separators with “simple” structure, and proved helpful in obtaining ETH-tight
algorithms for various combinatorial problems in intersection graphs of simi-
larly sized fat or convex fat objects. The direction was followed by De Berg et
al. [3] who proved that some other classes of intersection graphs admit balanced
clique-based separators of small weight.

In the above approaches the size (or the weight) of the separator, as well as
the balance factor, were measured in purely combinatorial terms. However, some
alternative approaches, with more geometric flavor, were also used. For example
Alber and Fiala [1] showed a separator theorem for intersection graphs of disks
with diameter bounded from below and from above, where both the size of the
separator and the size of each component of the remaining part of the graph is
measured in terms of the area occupied by the geometric representation.

Our Contribution. In this paper we study the complexity of the list variant of
the graph homomorphism problem in intersection graphs of geometric objects.
For a fixed graph H (with possible loops), by LHom(H) we denote the com-
putational problem, where every vertex of the input graph G is equipped with
the subset of V (H) called list, and we need to determine whether there exists
a homomorphism from G to H, such that every vertex from G is mapped to a
vertex from its list.

First we study the complexity of LHom(H) in string graphs and exhibit
the full complexity dichotomy, i.e., we fully characterize graphs H for which
the LHom(H) problem can be solved in subexponential time. It turns out that
the positive cases are precisely the graphs H that not predacious. The class of
predacious graphs was defined by Okrasa and Rz ↪ażewski [29] who studied the
complexity of LHom(H) in Pt-free graphs (i.e., graphs excluding a t-vertex path
as an induced subgraph). It is quite surprising that the complexity dichotomies
for LHom(H) in Pt-free graphs and in string graphs coincide; note that the
classes are incomparable.

Our approach closely follows the one by Okrasa and Rz ↪ażewski [29]. First we
show that if H does not belong to the class of predacious graphs, then a com-
bination of branching on a high-degree vertex and divide-&-conquer approach
using the string separator theorem yields a subexponential-time algorithm. For

316 S. Kisfaludi-Bak et al.

the hardness counterpart, we observe that the graphs constructed in [29] are
actually string graphs. Summing up, we obtain the following result.1

Theorem 1 (♠). Let H be a fixed graph.

(a) If H is not predacious, then LHom(H) can be solved in time 2O(n2/3 log n)

in n-vertex string graphs, even if a geometric representation is not given.
(b) Otherwise, assuming the ETH, LHom(H) cannot be solved in time 2o(n) in

n-vertex string graphs, even if they are given with a geometric representation.

Then in Sect. 3 we turn our attention to subclasses of string graphs defined
by intersections of fat objects. We observe that in this case the parameter of the
graph H that seems to have an influence on the (non)existence of subexponential-
time algorithms is the size of a maximum reflexive clique, denoted by mrc(H).
Here, by a reflexive clique we mean a set of pairwise adjacent vertices, each of
which has a loop. We focus on the following question.

Question. For a class C of geometric objects (subsets of the plane), what is
the maximum k (if any), such that for every graph H with mrc(H) � k,
the LHom(H) problem admits a subexponential-time algorithm in intersection
graphs of objects from C?

Note that k from the question might not exist, as for example 4-Coloring

(and thus LHom(K4)) does not admit a subexponential-time algorithm in seg-
ment graphs [6], while mrc(K4) = 0.

First, we show that the existence of clique-based separators of sublinear
weight is sufficient to provide subexponential-time algorithms for the case
mrc(H) � 1. In particular, this gives the following result.

Theorem 2 (♠). Let H be a graph with mrc(H) � 1. Then LHom(H) can be
solved in time:

(a) 2O(
√

n) in n-vertex intersection graphs of fat convex objects,
(b) 2O(n2/3 log n) in n-vertex pseudodisk intersection graphs.

provided that the instance graph is given along with a geometric representation.

Next, we study intersection graphs of fat, similarly-sized objects. The exact
definition of these families is given in Sect. 2, but, intuitively, each object should
contain a disk of constant diameter, and be contained in a disk of constant
diameter. We show that for such graphs subexponential-time algorithms exist
even for the case mrc(H) � 2. Our proof uses a new separator theorem, which
measures the size of the separator in terms of the number of vertices, and the
size of the components of the remaining graph in terms of the area.

Theorem 3. Let H be a graph with mrc(H) � 2. Then LHom(H) can be solved
in time 2O(n2/3 log n) in n-vertex intersection graphs of fat, similarly-sized objects,
provided that the instance graph is given along with a geometric representation.
1 Proofs of statements marked with (♠) can be found in the full version of the

paper [19].

Computing List Homomorphisms in Geometric Intersection Graphs 317

It turns out that both Theorem 2 (a) and Theorem 3 are optimal in terms of
the value of mrc(H). More precisely, we prove (♠) that, assuming the ETH, there
are graphs H1 and H2 with mrc(H1) = 2 and mrc(H2) = 3, such that LHom(H1)
does not admit a subexponential-time algorithm in intersection graphs of equilat-
eral triangles, and LHom(H2) does not admit a subexponential-time algorithm
in intersection graphs of fat similarly-sized triangles.

A very natural question is to find the maximum value of mrc(H) that guar-
antees the existence of subexponential-time algorithms for LHom(H) in disk
graphs. By Theorem 2 (a) we know that it is at least 1. However, disk graphs
admit many nice structural properties that proved very useful in the construction
of algorithms. Unfortunately, we were not able to obtain any stronger algorithmic
results for disk graphs. For the lower bounds, we note that the constructions in
our hardness reductions essentially used that triangles can “pierce each other”,
which cannot be done with disks. The best lower bound we could provide for
disk graphs is as follows.

Theorem 4. Assume the ETH. There is a graph H with mrc(H) = 4, such
that LHom(H) cannot be solved in time 2o(n/ log n) in n-vertex disk intersection
graphs.

The paper is concluded with several open questions in Sect. 5.

Full Version. In the full version of this paper [19] in addition to full proofs
of statements marked with (♠), we consider the complexity of two weighted
generalizations of the list homomorphism problem.

2 Preliminaries

Graph Theory. For a graph G and a vertex v ∈ V (G), by NG(v) we denote
the set of neighbors of v. If the graph is clear from the context, we simply write
N(v). For a graph H with possible loops, by R(H) we denote the set of reflexive
vertices, i.e., the vertices with a loop, and by I(H) we denote the set of irreflexive
vertices, i.e., vertices without loops. Clearly R(H) and I(H) form a partition of
V (H). By mrc(H) we denote the size of a maximum reflexive clique in H.

String Graphs and their Subclasses. For a set V of subsets of the plane R
2,

by IG(V) we denote their intersection graph, i.e., the graph with vertex set V
where two elements are adjacent if and only if they have nonempty intersection.
To avoid confusion, the elements of V will be called objects.

A collection V of objects in R
2 is fat if there exists a constant α > 0,

such that each v ∈ V satisfies rin,v/rout,v � α, where rin,v and rout,v denote,
respectively, the radius of the largest inscribed and smallest circumscribed disk
of v. A collection V of objects in R

2 is similarly-sized if there is some constant
β > 0, such that maxv∈V diam(v)/minv∈V diam(v) � β, where diam(v) denotes
the diameter of v. If a collection of objects is fat and similarly-sized, then we can
set the unit to be the smallest diameter among the maximum inscribed disks of

318 S. Kisfaludi-Bak et al.

the objects, and as a consequence of the properties each object can be covered
by some disk of radius R = O(1).

List Homomorphisms. A homomorphism from a graph G to a graph H is
a mapping f : V (G) → V (H) such that for every uv ∈ E(G) it holds that
f(u)f(v) ∈ E(H). If f is a homomorphism from G to H, we denote it shortly by
f : G → H. Note that homomorphisms to the complete graph on k vertices are
precisely proper k-colorings. Thus we will often refer to vertices of H as colors.

In this paper we consider the LHom(H) problem, which asks for the existence
of list homomorphisms. Formally, for a fixed graph H (with possible loops), an
instance of LHom(H) is a pair (G,L), where G is a graph and L : V (G) → 2V (H)

is a list function. We ask whether there exists a homomorphism f : G → H,
which respects the lists L, i.e., for every v ∈ V (G) it holds that f(v) ∈ L(v).

The following straightforward observation will be used several times.

Observation 1. Let G be an irreflexive graph and let H be a graph with possible
loops and let f : G → H. For every clique C of G we have the following:

– at most |I(H)| vertices from C are mapped to vertices of I(H) (each to a
distinct vertex of I(H)),

– the remaining vertices of C are mapped to some reflexive clique of H.

3 Algorithm for Intersection Graphs of Fat Objects

In this section we consider intersection graphs of fat, similarly-sized objects. The
algorithm presented here uses the area occupied by the geometric representation
as the measure of the instance. Let us start with introducing some notions.

Let V be a set of n fat, similarly-sized objects in R
2. Recall that there is

a constant R, such that each object in V contains a unit diameter disk and is
contained in a disk of radius R. In what follows we hide the factors depending
on R in the O(·) notation.

Let us imagine a fine grid partitioning of R2 into square cells of unit diameter,
i.e., of side length 1/

√
2. This allows us to use discretized notion of a bounding

box and of the area. For an object v ⊆ R
2, by bb(v) we denote the minimum

grid rectangle (i.e., rectangle whose sides are contained in grid lines) containing
v, and by area(v) we denote the area of bb(v). For a set V of objects, we define
bb(V) = bb(

⋃
v∈V v) and area(V) = area(bb(V)). Let us point out that in

general area(V) can be arbitrarily large (unbounded in terms of n). However, it
is straightforward to observe that if IG(V) is connected, then area(V) = O(n2).

Recall that each object v ∈ V contains a unit-diameter disk with the center
cv. We assign v to the grid cell containing cv (if cv is on the boundary of cells, we
choose one arbitrarily). Now note that all objects assigned to a single cell form
a clique in IG(V). Consequently, the vertex set of IG(V) can be partitioned into
O(area(V)) subsets, each inducing a clique; we call these subsets cell-cliques.

First, we show that intersection graphs of fat, similarly-sized objects admit
balanced separators, where the size of instances is measured in terms of the area
occupied by the geometric representation.

Computing List Homomorphisms in Geometric Intersection Graphs 319

Lemma 1 (♠). Let G = IG(V), where V is a set of n fat, similarly-sized
objects in R

2 and G is connected. Then either area(V) = O(n2/3), or there
exists a horizontal or vertical separating line � such that:

– the number of objects whose convex hull intersects � is O(n2/3), and
– the sets V1, V2 of objects on each side of � (whose convex hulls are disjoint

from �) satisfy area(V1) � 3
4area(V) and area(V2) � 3

4area(V).

Furthermore � can be found in time polynomial in area(V) and n.

Let us introduce an auxiliary problem. The LHomrc(H) problem is a restric-
tion of LHom(H), where for every instance (G,L), and for every v ∈ V (G) the
set L(v) induces a reflexive clique in H. Note that in this problem we can always
focus on the subgraph induced by reflexive vertices of H, as irreflexive vertices do
not appear in any lists. Thus, LHomrc(H) is equivalent to LHomrc(H[R(H)]).

Lemma 2. Let V be a set of n similarly-sized fat objects in R
2. Let (G,L) be

an instance of LHom(H), where G = IG(V). Then in time nO(area(V)) we can
build a family Y of instances of LHomrc(H), such that:

– |Y| = nO(area(V)),
– each instance in Y is an induced subgraph of G,
– (G,L) is a yes-instance if and only if Y contains a yes-instance.

Proof. Recall that V can be partitioned into O(area(V)) cell-cliques, and con-
sider one such cell-clique C. By Observation 1 at most |I(H)| vertices from C
receive colors from I(H) and the remaining vertices of C must be mapped to
some reflexive clique of H. We guess the vertices mapped to I(H) along with their
colors and the reflexive clique to which the remaining vertices are mapped. As H
is a constant, the total number of branches created for C is |C|O(|V (H)|) = nO(1).
Repeating this for every clique, we result in nO(area(V)) branches.

Consider one such a branch. For each vertex v whose color was guessed (i.e.,
this color is in I(H)), we update the lists of neighbors of v. More precisely, if the
color guessed for v is a, then we remove every nonneighbor of a from the lists of
all neighbors of v. After that we remove v from the graph. Similarly, we update
the lists of vertices v that are supposed to be mapped to vertices of R(H): we
remove from L(v) every vertex that is not in the guessed reflexive clique.

Note that this way we obtained an instance of LHomrc(H), where the
instance graph is an induced subgraph of G. We include such an instance into
Y.

As the number of branches is nO(area(V)), we obtain that |Y| = nO(area(V)).
It is clear that (G,L) is a yes-instance if and only if Y contains a yes-instance.

Combining Lemmas 1 and 2 gives the following.

Lemma 3. Let H be a fixed graph. Suppose that LHomrc(H) can be solved in
time 2O(n2/3 log n) in n-vertex intersection graphs of fat, similarly-sized objects,
given along with a geometric representation.

320 S. Kisfaludi-Bak et al.

Then LHom(H) can be solved in time 2O(n2/3 log n) in n-vertex intersection
graphs of fat, similarly-sized objects, given along with a geometric representa-
tion.

Proof. Let V be a set of n fat, similarly-sized objects in R
2 and let G = IG(V).

Let (G,L) be an instance of LHom(H). Notice that if G is disconnected, then
we can solve the problem for each connected component separately. Thus let us
assume that G is connected. We do induction on area(V).

If area(V) = O(n2/3) (the actual constant in O(·) is the constant from Lemma
1), we call Lemma 2 to obtain a family Y of instances of LHomrc(H), such that
|Y| = nO(n2/3). Each instance in Y is an induced subgraph of G and thus can
be solved in time 2O(n2/3 log n). As solving every instance in Y is enough to solve
(G,L), we can solve the problem in total time 2O(n2/3 log n), as claimed.

In the other case, we apply Lemma 1, let � be the obtained separating line.
Let S ⊆ V be the set of objects whose convex hull intersects �; by Lemma 1 the
size of S is O(n2/3). Let V1, V2 be the partition of V −S into instances of each side
of �, as in Lemma 1. Recall that area(V1) � 3

4area(V) and area(V2) � 3
4area(V).

We exhaustively guess the coloring of S, this results in |V (H)||S| = 2O(n2/3)

branches. For each such branch we update the lists of neighbors of vertices whose
color was guessed. Now observe that the subinstances induced by V1 and V2 can
be solved independently. Our initial instance is a yes-instance if and only if for
some guess both subinstances are yes-instances.

Denoting by μ := area(V), we obtain the recursion for the running time:
F (μ) � 2O(n2/3) · F

(
3
4μ

)
, which solves to F (μ) � 2O(n2/3 log μ). As μ = O(n2)

(since G is connected), we conclude that the total running time is 2O(n2/3 log n).

Observe that if mrc(H) � 2, then in every instance of LHomrc(H), each list is
of size at most 2. It follows from the result of Edwards [8] that such instances can
be solved in polynomial time. Thus, Lemma 3 immediately implies Theorem 3.

4 Lower Bound for Intersection Graphs of Disks

In this section we show that the assumption that mrc(H) � 1 in Theorem 2
cannot be significantly improved. Our goal is to prove the following theorem.

Theorem 4. Assume the ETH. There is a graph H with mrc(H) = 4, such
that LHom(H) cannot be solved in time 2o(n/ log n) in n-vertex disk intersection
graphs.

We reduce from 3-Sat. Let �1, . . . , �t be the literals of the formula Φ on N
variables and M clauses, each of which contains exactly three variables, i.e., the
i-th clause consists of literals �3i−2, �3i−1, and �3i, and t = 3M . Let k = 1+�log t�
be the number of binary digits required to represent numbers up to t.

Construction Overview. We construct an instance of LHom(H) for the graph
H depicted on Fig. 3 (iii). The construction has variable gadgets placed at the

Computing List Homomorphisms in Geometric Intersection Graphs 321

R = 6

R = 12

R = 24

variable gadgets

clause gadgets

(.)

(0) (1)

(00) (01) (10) (11)

(111)(110)(101)(100)(011)(010)(001)(000)

Fig. 1. Overview of the construction, with the path of the literal with binary index
‘011’ highlighted. The lined rectangles are literal cliques, with the common prefix of
the literal indices. The triplets of squares represent subset turning and divider gadgets.

top, consisting of two disks with lists {T, F}, where the value of the first disk
corresponds to setting the variable true or false.

The bulk of the construction consists of large cliques of disks of various sizes,
and in each clique the disks correspond to some specific subsets of literals. All
of these cliques have lists of size 2, where the assigned colors correspond to
the literal being true or false. At the top, the initial clique will have all the
literals arranged by the index of the corresponding variable, i.e., starting with
the positive literals of x1, then the negative literals of x1, then the positive
literals of x2, etc.

Represent each literal index i with a binary number of t digits (with leading
zeros as necessary). We use a so-called divider gadget to partition the set of
literals to two subsets: the first subset will contain disks for those literals �i

where the first binary digit of i is 0, and the other subset will contain those
where the first binary digit of i is 1. Using two smaller copies of the divider
gadget, we further partition both sets according to the second, third, etc. binary
digits, creating a structure resembling a binary tree of depth log N + O(1).
At the leaves, the cliques contain a single disk, and the leaves are ordered in
increasing order of the index i, that is, the literals of each clause cj appear at
three consecutive leaves. We attach a gadget on consecutive triplets to check the
clauses.

322 S. Kisfaludi-Bak et al.

We will now explain the construction in detail.

Literal Cliques, Variable and Clause Gadgets. A literal clique consists of
at most t disks of unit radius that are on the same horizontal segment of length
1. Each literal clique will contain the set of literals whose index starts with some
fixed binary prefix s of length at most k, and these cliques will be connected by
other gadgets, creating a binary tree. Let us denote the set of literals with prefix
s by Ls. The initial literal clique will have disks for all the literals (the set L∅).
In the initial clique, these literals will be ordered from left to right according to
the corresponding variable’s index and the sign of the literal. Each later clique
will contain the subset Ls of literals, positioned the same way, just translated
somewhere else in the plane. Note that for prefixes s of length k, the set Ls is
a singleton, it contains the literal of binary index s. These literal cliques will
correspond to the leaves of our construction. All literal cliques have lists {1, 2},
corresponding to the literal being set to true or false, respectively.

In the full version (♠), we describe how a careful arrangement of these disks
in the cliques allows us to attach to the top a simple variable gadget, consisting
of two small disks, that intersect only the relevant literal disks. The gadget of
xi ensures that the positive literals of xi in the initial literal clique get color 1
if and only if the gadget of xi is set to true, and the negative literal disks of xi

get color 2 if and only if the gadget is set to true.
At the bottom of the binary tree, our construction will ensure that the centers

of the disks in consecutive singleton literal cliques (at the leaves of the binary
tree) have a distance between 11 and 13. We attach a constant-size clause gad-
get (♠) on the three literal disks that correspond to the clause. The clause
gadgets have a valid coloring if and only if not all three literal disks have color
2.

Subset Turning and the Divider Gadget. Our task now is to connect a
literal clique to its children by dividing its literals into two subsets, keeping the
information carried for each individual literal. First, we show how we can create
a turn gadget using disks of any size.

Consider a horizontal segment of length R with its left endpoint at the point
o, and let p be a point where a disk in some literal clique touches the segment
from above. Suppose moreover that p is somewhere in the length 1 interval at
the middle of the segment, see Fig. 2 (i). Then the turning disk at p is the unique
disk Dp that touches the segment from below and has radius |op|. Note that if
we draw a vertical segment of length R with top endpoint o, then it will touch
the disk on the left at some point p′ where |op| = |op′|. The turning gadget is
simply a collection of turning disks for some custom set of points in the middle
length-1 interval. We can represent the gadget with a square of side length R
whose top side is the initial segment. Note that some turning disks may not be
completely covered by the square, but since p is required to be in the middle
length-1 interval, the disks can protrude at most distance 1 beyond the boundary
of the square. Also note that we can create an analogous gadget with disks that
touch any pair of consecutive sides of the side-length R square.

Computing List Homomorphisms in Geometric Intersection Graphs 323

Fig. 2. (i) Unique disk of radius between
[

R−1
2

, R+1
2

]
touching two perpendicular lines.

(ii) Making two turns with some subset of the literals (iii) Dividing the set of literals
into two arbitrary subsets (red versus green disks) using overlaid turns. (Color figure
online)

We can glue two turning gadgets together as depicted in Fig. 2 (ii). The disks
of the first (right) gadget have lists {3, 4}, and the disks of the second (left) have
lists {5, 6}. In the graph H, we have 1, 2, 3, 4 as well as 3, 4, 5, 6 and 5, 6, 1, 2
form induced 4-cycles. The connecting literal cliques have disks with lists {1, 2},
and all of the colors {1, 2, 3, 4, 5, 6} are reflexive vertices of H, see Fig. 3 (ii). It
is routine to check that the turning disks receive odd colors if and only if the
corresponding disks in the literal cliques have color 1.

Finally, we can overlay such a glued turning gadget with its mirror image,
as depicted in Fig. 2 (iii). In the mirror image, the disks of the first turning
gadget get the list {3′, 4′}, and the disks of the second turning gadget get
the list {5′, 6′}. The vertices 1, 2, 3′, 4′, 5′, 6′ induce the same graph as vertices
1, 2, 3, 4, 5, 6. These four turns together define a divider gadget of size R. If the
literal clique at the top contained the disks of index prefix s, then we use the first
two turns (going to the left child, red disks in Fig. 2 (iii)) only on the touching
points for literals with prefix s0, and the other two turns (going to the right
child, green disks in Fig. 2 (iii)) only for the touching points for literals with
prefix s1.

324 S. Kisfaludi-Bak et al.

1 2

3

4

3′

4′

56 5′ 6′

1 2

3

4

56

(i) (ii)

1 2
T F

C

B

A

(iii)

T F
C

B

A

H

Fig. 3. (i) The part of H used in the variable and clause gadgets. (ii) The part of H
responsible for propagating the truth of literals in the left side of the division. Blue
edges propagate true literals, orange edges propagate a false literals. (iii) The graph
H. Note that all numbered vertices are reflexive, and vertices with a letter are not
reflexive. (Color figure online)

Notice however that inside the turning gadgets, there may be arbitrary inter-
sections between red and green disks, therefore 3, 4, 5, 6 and 3′, 4′, 5′, 6′ form a
complete bipartite graph in H, see Fig. 3 (iii). Clearly the two sides of the gadget
do not interfere and disks with colors 3′, 4′, 5′, 6′ have an odd number if and only
if the corresponding disk at the top literal clique has color 1.

Proof of Theorem 4. Recall that our formula has t literals, and each literal index
can be represented by a binary string of length k = �log2 t� + 1.

We place the initial literal clique together with the variable gadgets as
described in the construction. At the bottom of this literal clique the disks
touch a length 1 interval. We attach a divider gadget of size R = 6 · 2k−1 to
this interval (see Fig. 1). We then use the divider gadget to propagate the values
stored in the literals to the children with prefix s = 0 on the left and s = 1 on
the right. For literal cliques of prefix length len(s), we attach dividers of size
R = 6 ·2k−1−len(s). At the bottom, we end up with singleton literal cliques hang-
ing off of literal gadgets of size R = 6. One can verify that the gaps between
literal cliques of consecutive leaves have length 9 (that is, the right side of the
2×3 rectangle covering the first leaf and the left side of the rectangle of the next
leaf has distance 9). It is also easy to verify that the turning disks of distinct
divider gadgets are disjoint: recall that the disks protrude beyond the boundary
of the base square by at most 1, and the literal cliques have height 2.

Based on the formula, the described set can clearly be constructed in poly-
nomial time. Each literal has corresponding disks in O(k) = O(log t) gad-
gets, and each literal clique and divider has O(1) disks per represented literal.
Additionally, the variable and clause gadgets have constant size. Thus for a 3-
CNF formula of N variables and M clauses with t = 3M literals, there are
O(t log t + M + N) = O((M + N) log(M + N)) disks in the construction, which
implies the desired lower bound under the ETH.

Computing List Homomorphisms in Geometric Intersection Graphs 325

5 Conclusion and Open Problems

One of the best studied classes of intersection graphs are unit disk intersection
graphs. They are known to admit many nice structural properties that can be
exploited in the construction of algorithms [5,7]. However, we were not able
to obtain any better results that the general ones for (pseudo)disk intersection
graphs given by Theorem 2. On the other hand we were not able to show that
subexponential algorithms for this class cannot exist. We believe that obtaining
improved bounds for unit disk graphs is an interesting and natural problem.

Let us point out that there are three natural places where one could try
to improve our hardness reduction in Theorem 4: (a) to avoid using disks of
unbounded size, (b) to show hardness for some H with mrc(H) ∈ {2, 3}, and (c)
to improve the lower bound to 2Ω(n) (instead of 2Ω(n/ log n)).

References

1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004).
https://doi.org/10.1016/j.jalgor.2003.10.001

2. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.:
A framework for exponential-time-hypothesis-tight algorithms and lower bounds in
geometric intersection graphs. SIAM J. Comput. 49(6), 1291–1331 (2020). https://
doi.org/10.1137/20M1320870

3. de Berg, M., Kisfaludi-Bak, S., Monemizadeh, M., Theocharous, L.: Clique-based
separators for geometric intersection graphs. In: 32nd International Symposium
on Algorithms and Computation, ISAAC 2021. LIPIcs, vol. 212, pp. 22:1–22:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.ISAAC.2021.22

4. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rz ↪ażewski, P.: Fine-grained complexity
of coloring unit disks and balls. J. Comput. Geom. 9(2), 47–80 (2018). https://
doi.org/10.20382/jocg.v9i2a4

5. Bonamy, M., et al.: EPTAS and subexponential algorithm for maximum clique on
disk and unit ball graphs. J. ACM 68(2), 9:1-9:38 (2021). https://doi.org/10.1145/
3433160

6. Bonnet, É., Rz ↪ażewski, P.: Optimality program in segment and string graphs. Algo-
rithmica 81(7), 3047–3073 (2019). https://doi.org/10.1007/s00453-019-00568-7

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

8. Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Com-
put. Sci. 43, 337–343 (1986). https://doi.org/10.1016/0304-3975(86)90184-2

9. Fishkin, A.V.: Disk graphs: a short survey. In: Solis-Oba, R., Jansen, K. (eds.)
WAOA 2003. LNCS, vol. 2909, pp. 260–264. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24592-6 23

10. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting
and packing cycles in subexponential time on unit disk graphs. Discrete Computat.
Geom. 62(4), 879–911 (2019). https://doi.org/10.1007/s00454-018-00054-x

https://doi.org/10.1016/j.jalgor.2003.10.001
https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
https://doi.org/10.4230/LIPIcs.ISAAC.2021.22
https://doi.org/10.4230/LIPIcs.ISAAC.2021.22
https://doi.org/10.20382/jocg.v9i2a4
https://doi.org/10.20382/jocg.v9i2a4
https://doi.org/10.1145/3433160
https://doi.org/10.1145/3433160
https://doi.org/10.1007/s00453-019-00568-7
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1016/0304-3975(86)90184-2
https://doi.org/10.1007/978-3-540-24592-6_23
https://doi.org/10.1007/978-3-540-24592-6_23
https://doi.org/10.1007/s00454-018-00054-x

326 S. Kisfaludi-Bak et al.

11. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: ETH-tight algo-
rithms for long path and cycle on unit disk graphs. In: Cabello, S., Chen, D.Z. (eds.)
36th International Symposium on Computational Geometry, SoCG 2020, 23–26
June 2020, Zürich, Switzerland. LIPIcs, vol. 164, pp. 44:1–44:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.SoCG.
2020.44

12. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs.
In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012,
pp. 1563–1575. SIAM (2012). https://doi.org/10.1137/1.9781611973099

13. Golumbic, M.C.: Chapter 8 - interval graphs. In: Golumbic, M.C. (ed.) Algorithmic
Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, vol. 57, pp.
171–202. Elsevier (2004). https://doi.org/10.1016/S0167-5060(04)80056-6

14. Huson, M., Sen, A.: Broadcast scheduling algorithms for radio networks. In: Pro-
ceedings of MILCOM 1995, vol. 2, pp. 647–651 (1995). https://doi.org/10.1109/
MILCOM.1995.483546

15. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

17. Jungck, J.R., Viswanathan, R.: Chapter 1 - graph theory for systems biology: inter-
val graphs, motifs, and pattern recognition. In: Robeva, R.S. (ed.) Algebraic and
Discrete Mathematical Methods for Modern Biology, pp. 1–27. Academic Press,
Boston (2015). https://doi.org/10.1016/B978-0-12-801213-0.00001-0

18. Kaufmann, M., Kratochv́ıl, J., Lehmann, K.A., Subramanian, A.R.: Max-tolerance
graphs as intersection graphs: cliques, cycles, and recognition. In: Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, 22–26 January 2006, pp. 832–841. ACM Press (2006).
http://dl.acm.org/citation.cfm?id=1109557.1109649

19. Kisfaludi-Bak, S., Okrasa, K., Rz ↪ażewski, P.: Computing list homomorphisms in
geometric intersection graphs. CoRR abs/2202.08896 (2022). https://arxiv.org/
abs/2202.08896

20. Kisfaludi-Bak, S., van der Zanden, T.C.: On the exact complexity of Hamiltonian
cycle and q-colouring in disk graphs. In: Fotakis, D., Pagourtzis, A., Paschos, V.T.
(eds.) CIAC 2017. LNCS, vol. 10236, pp. 369–380. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57586-5 31

21. Kratochv́ıl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory
Ser. B 62(2), 289–315 (1994). https://doi.org/10.1006/jctb.1994.1071

22. Kratochv́ıl, J.: String graphs. I. The number of critical nonstring graphs is infi-
nite. J. Comb. Theory Ser. B 52(1), 53–66 (1991). https://doi.org/10.1016/0095-
8956(91)90090-7

23. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. J.
Comb. Theory Ser. B 52(1), 67–78 (1991). https://doi.org/10.1016/0095-
8956(91)90091-W

24. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on
the real line. Fundam. Math. 51(1), 45–64 (1962). http://eudml.org/doc/213681

25. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11561071 41

https://doi.org/10.4230/LIPIcs.SoCG.2020.44
https://doi.org/10.4230/LIPIcs.SoCG.2020.44
https://doi.org/10.1137/1.9781611973099
https://doi.org/10.1016/S0167-5060(04)80056-6
https://doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/B978-0-12-801213-0.00001-0
http://dl.acm.org/citation.cfm?id=1109557.1109649
https://arxiv.org/abs/2202.08896
https://arxiv.org/abs/2202.08896
https://doi.org/10.1007/978-3-319-57586-5_31
https://doi.org/10.1007/978-3-319-57586-5_31
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0095-8956(91)90090-7
https://doi.org/10.1016/0095-8956(91)90091-W
https://doi.org/10.1016/0095-8956(91)90091-W
http://eudml.org/doc/213681
https://doi.org/10.1007/11561071_41

Computing List Homomorphisms in Geometric Intersection Graphs 327

26. Marx, D.: On the optimality of planar and geometric approximation schemes. In:
FOCS 2007 Proceedings, pp. 338–348 (2007). https://doi.org/10.1109/FOCS.2007.
50

27. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility loca-
tion problems using voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015.
LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48350-3 72

28. Miller, G.L., Teng, S., Thurston, W.P., Vavasis, S.A.: Separators for sphere-
packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997). https://doi.
org/10.1145/256292.256294

29. Okrasa, K., Rz ↪ażewski, P.: Subexponential algorithms for variants of the homo-
morphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020).
https://doi.org/10.1016/j.jcss.2019.12.004

30. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In:
FOCS 1998 Proceedings, pp. 232–243. IEEE Computer Society, Washington, DC,
USA (1998)

https://doi.org/10.1109/FOCS.2007.50
https://doi.org/10.1109/FOCS.2007.50
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1145/256292.256294
https://doi.org/10.1145/256292.256294
https://doi.org/10.1016/j.jcss.2019.12.004

On Fully Diverse Sets of Geometric
Objects and Graphs

Fabian Klute(B) and Marc van Kreveld

Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{f.m.klute,m.j.vankreveld}@uu.nl

Abstract. Diversity is a property of sets that shows how varied or differ-
ent its elements are. We define full diversity in a metric space and study
the maximum size of fully diverse sets. A set is fully diverse if each pair
of elements is as distant as the maximum possible distance between any
pair, up to a constant factor. We study metric spaces based on geom-
etry, embeddings of graphs, and graphs themselves. In the geometric
cases, we study measures like Hausdorff distance, Frechét distance, and
area of symmetric difference between objects in a bounded region. In
the embedding cases, we study planar embeddings of trees and planar
graphs, and use the number of swaps in the rotation system as the met-
ric. In the graph cases, we use the number of insertions and deletions
of leaves or edges as the metric. In most cases, we show (almost) tight
lower and upper bounds on the maximum size of fully diverse sets. Our
results lead to a very simple randomized algorithm to generate large fully
diverse sets in several cases.

Keywords: Diversity · Distance Measures · Diverse Geometric
Objects · Diverse Graphs · Diverse Embeddings

1 Introduction

When generating data, for example for benchmarks, it may be important that
the generated set is sufficiently diverse. The same is true for systems that assist in
choosing a desired layout or configuration by showing various options. For exam-
ple, in graph drawing this observation has led to systems that present several
drawings of a graph. A user can now choose a drawing, or indicate preference,
after which more drawings like the preferred one can be generated [2].

But what does diversity mean in this context? We address this question in
a formal way. We introduce a framework that allows us to study diversity of
“objects”, and analyze the maximum number of objects that are pairwise far
apart. This framework is applicable in many contexts.

Supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 612.001.651 and the Austrian Science Foundation (FWF) grant J4510.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 328–341, 2022.
https://doi.org/10.1007/978-3-031-15914-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_24&domain=pdf
http://orcid.org/0000-0002-7791-3604
http://orcid.org/0000-0001-8208-3468
https://doi.org/10.1007/978-3-031-15914-5_24

On Fully Diverse Sets of Geometric Objects and Graphs 329

Fig. 1. Fully diverse set of labeled (color+symbol) n-vertex stars. Opposite leaves have
the same color but a different symbol. The second embedding has one opposite-pair
exchange per triple when compared to the first embedding, and the third embedding
has two opposite-pair exchanges per triple. Any two of the three embeddings have
distance Ω(n2) if distance is measured by the number of swaps of adjacent edges.

Diversity as a Counting Problem. Let (S, μ) be a metric space where S is a
base set or class of objects and μ is a distance measure that takes a pair from
S and assigns a distance. We consider the cases where μ(a, b) is bounded for all
a, b ∈ S; let M = supa,b∈S μ(a, b) be the highest value that is attained (possibly
in the limit) by μ on S.

Definition 1. For a given c ≥ 1, a subset Ŝ ⊆ S is called 1
c -diverse if for all

x, y ∈ Ŝ, we have μ(x, y) ≥ 1
c · M . If c can be chosen constant, independent of

|Ŝ|, then Ŝ is called fully diverse.

Intuitively, we relate the distance of all pairs of the subset to the maximum
distance within the base set. We are interested in the question how large fully
diverse subsets can be. As a simple example, consider all points in a unit square
region in the plane and Euclidean distance as the metric. Then the maximum
distance is

√
2, so a 1

c -diverse (sub)set of points must have pairwise distances of
at least

√
2/c. It is easy to see that any 1

c -diverse set has size O(c2) by a packing
argument, and any maximal 1

c -diverse set has size Ω(c2). The maximum size of
a fully diverse set of points is Θ(c2) = Θ(1) if c is a constant.

When considering more complex objects, like polygonal lines, triangulations,
drawings of graphs, and graphs themselves, we need a distance between any
two objects. We consider geometric distance measures for geometric objects and
discrete measures for graphs. In several geometric cases, we need to assume that
the objects reside in a bounded space to make the metric space bounded. Let U
be a unit diameter disk in the plane. Some geometric distance measures are:

– For any two simple polygons inside U , their Hausdorff distance.
– For any two polygonal lines inside U , the Fréchet distance between them.
– For two simple polygons inside U , their symmetric difference.
– For two drawings of a given labeled graph inside U , the total vertex displace-

ment (summed distance between vertices with the same label).
– For any two drawings of a given labeled graph with the same embedding, the

L1-distance of the vector of angles of adjacent edges (sum of differences of
corresponding angles).

330 F. Klute and M. van Kreveld

The maximum distance between any two objects in these cases is bounded by 1,
1, π/4, |V |, and 4π|V |, respectively.

Some discrete measures for two embeddings of a given labeled graph are:

– For two embeddings of a labeled graph, the L1-distance of the vectors on the
edges, where an edge gives 1 if it intersects any other edge and 0 otherwise.

– For two embeddings of a labeled tree, the number of swaps of adjacent edges
at a vertex to convert the embedding of one into the other.

– For two planar embeddings of a labeled graph, the number of swaps around
cut-vertices and split pairs to convert one into the other.

See Fig. 1 for a fully diverse set of embeddings of a labeled star graph.
For general graphs (independent of embedding), we study measures based on

the number of additions and removals of edges or leaves; in other words, the edit
distance for a set of possible edits [10].

Relation to Diversity and Similar Notions in Science. Diversity has been studied
in a variety of scientific contexts. One well-known example is in ecosystems,
specifically, the diversity of species that are represented in a sample of animals
or plants, see for instance [12,21]. The Shannon index is commonly used, also
known as Shannon entropy in information theory.

In computer science, diversity has been studied in a variety of areas. For
example, the diversity of the output in selection tasks in big data [9] or recom-
mender systems [17], the diversity of input data sets for machine learning [16],
or the diversity of colored point sets in computational geometry [15].

Diversity without a priori assigned categories is of interest in the study of
the diversity of a population in genetic algorithms, e.g. [23]. Following similar
ideas, researchers later studied the diversity of sets of solutions in satisfiability
problems [14], multicriteria optimization problems [22], and, recently, parame-
terized algorithms, e.g. [3]. Similar to our work, the diversity measures found
in this line of work are commonly based on the Hamming distance. Hebrard et
al. [11] introduced the maximization problem to find the set of solutions that
maximizes this sum or minimum distance over all sets of solutions.

With respect to drawings of graphs, Biedl et al. [5] studied how to heuris-
tically generate a set of different not necessarily planar straight-line drawings.
Their measure of distance between any two drawings is obtained by greedily
matching vertices using a composite measure of Euclidean distance and position
in the drawing. Bridgeman and Tamassia [7] investigated geometric measures for
the distance between two orthogonal drawings.

Counting the overall number of structures such as planar triangulations or
crossing-free geometric graphs on a point set (without requiring that they pair-
wise be far) has been widely studied, e.g. in [13]. See also the blog entry by
Sheffer with a list of references on this topic.1 Finally, for a given planar graph
the number of embeddings it admits has been studied in the context of algo-
rithms to count them [8,20].
1 https://adamsheffer.wordpress.com/numbers-of-plane-graphs/.

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

On Fully Diverse Sets of Geometric Objects and Graphs 331

Table 1. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces where the measure is geometric. U denotes a unit diameter disk.

Object Metric Space Diameter Lower bound Upper bound

Polygons Hausdorff distance U Θ(1) Ω(1) O(1)

Polylines Fréchet distance U Θ(1) 2Ω(n) 2O(n)

Polygons Area symm. diff. U Θ(1) 2Ω(n) 2O(n log n)

The Approach and the Results. We initiate the study of the size of fully diverse
sets in bounded metric spaces, as described in this introduction. We believe that
such a study is important in all algorithmic problems where different objects are
generated, for example, in graph drawing and benchmark construction.

We use a unified approach to obtain our results, which we can explain best
on bit strings of length n with the metric the number of bit flips (or Hamming
distance). We choose a sufficiently large constant c. Then we show that for any
bit string, the number of bit strings that can be obtained by at most n/c bit
flips is bounded from above, while the total number of bit strings is 2n. Dividing
the latter quantity (2n) by the former gives a lower bound on the maximum size
of a fully diverse set. When we apply this simple scheme to the various metric
spaces listed before, we encounter different kinds of challenges.

In Sect. 2 we investigate the maximum size of a fully diverse set of fair bit
strings (fair = equally many 0s as 1s). We show that for fair bit strings of length
n, the maximal size of a fully diverse set is exponential. The same is true for fair
cyclic bit strings. These results are used as a core ingredient in later proofs.

In Sect. 3 we present results for three metric spaces where distance is geo-
metric. Bounds on the maximum size of fully diverse sets are given in Table 1,
where diameter specifies the maximum distance in the metric space. The main
challenge is the suitable discretization of the space of all possible polylines or
polygons, so that the desired distance between pairs can be analyzed.

Next we consider embeddings of trees and planar graphs, that is, the cyclic
order of neighboring nodes, in Sect. 4. The metric is the minimum number of
swaps of adjacent neighbors to get from the one embedding to the other. Our
results are given in Table 2.

In Sect. 5 we consider graphs as combinatorial objects and base the metric on
edit distance. We distinguish labeled and unlabeled graphs, and consider trees,
planar graphs, and general graphs. Table 3 gives the results.

There exists a very simple randomized algorithm to generate fully diverse
sets of size k (provided k is small enough). It works as follows, starting with an
empty set S and a constant c ≥ 1, and a known maximum diameter M of the
base set: (i) Generate a random element e from the base set. (ii) Test if e has
distance at least M/c to all elements in S. If so, add e to S, and if not, discard it
and continue at (i). Stop when set S contains k elements. This algorithm leads
to fully diverse sets of large size with high probability for several examples in
this paper, if distances can be computed easily.

332 F. Klute and M. van Kreveld

Table 2. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces concerning embedded labeled graphs with n nodes. The lower bound for
trees holds for any tree, whereas the upper bound holds for some trees (Theorem 4).

Object Metric Diameter Lower bound Upper bound

Ternary trees # adjacent swap Θ(n) 2Ω(n) 2O(n)

Star graphs # adjacent swap Θ(n2) 2Ω(n) 2O(n log n)

Trees # adjacent swap Θ(
∑

v∈V deg2(v)) 2Ω(
√

n) [2O∗(
√

n)]

Star graphs # any swap Θ(n) 2Ω(n log n) 2O(n log n)

Planar graphs # adjacent swap Theorem 5 Theorem 5 Theorem 5

Table 3. Lower and upper bounds on the maximum size of fully diverse sets in various
metric spaces where the measure is edit distance and the objects are graphs with n
nodes. Intermediate graphs must be in the same class.

Object Metric Diameter Lower bound Upper bound

Trees # reattach leaf Θ(n) 2Ω(n log n) 2O(n log n)

Planar graphs # insert/delete edge Θ(n) 2Ω(n log n) 2O(n log n)

Graphs # insert/delete edge Θ(n2) 2Ω(n2) 2O(n2)

Trees (unlabeled) # reattach leaf Θ(n) 2Ω(n) 2O(n)

Planar graphs (unlab.) # insert/delete edge Θ(n) nΩ(1) 2O(n)

Graphs (unlabeled) # insert/delete edge Θ(n2) 2Ω(n2) 2O(n2)

2 Fair Bit Strings

Let B be a bit string of length n ≥ 8. We say that B is a fair bit string if it
contains at least �n

2 � ones and at least �n
2 � zeros. Moreover, we say two fair bit

strings B1 and B2 of length n are far if they differ in at least �n
8 � positions.

Conversely, if B1 and B2 are not far we say they are close. Since rounding does
not influence our results, we omit rounding to integers from now on. We obtain
the following lemma using a bound by Robbins [19] and Stirling’s approximation.

Lemma 1 (�). Let B be a fair bit string with n bits, the number of fair bit
strings close to B is at most

2
3π

·
(

256
27

)n/4

= O(1.754...n).

Lemma 1 allows us to show (in Lemma 2) that there are exponentially many
fair bit strings of length n that are all pairwise far from each other when we
consider the number of bit flips as the distance measure. Since we need at most
n bit flips to transform any bit string of length n into any other, upper-bounding
M in Definition 1, a set of pairwise far fair bit strings is fully diverse.

Lemma 2. For fair bit strings of length n, any maximal fully diverse set of fair
bit strings, using Hamming distance, has size at least

Ω

(
n−1 ·

(
27
16

)n/4
)

= Ω (1.139...n) .

On Fully Diverse Sets of Geometric Objects and Graphs 333

Proof. Since
∑n

i=0

(
n
i

)
= 2n and

(
n

n/2

)
is the largest term of n + 1 terms, it is at

least 2n/n (taking the first and last term as one term), which is a lower bound
on the number of fair bit strings of length n.

A maximal set of fully diverse fair bit strings can be obtained by starting
with the set of all fair bit strings, selecting any member, removing all that are
close, and repeating. By Lemma 1, we know how many we maximally delete in
one step, so the number of iterations (and size of a maximal set of fair fully
diverse bit strings) is at least

2n/n

2
3π · (

256
27

)n/4
=

3π · 2n · 27n/4

2n · 256n/4
≥ Ω

(
n−1 ·

(
27
16

)n/4
)

= Ω(1.139...n). �	

When considering cyclic bit strings (a bit string is equivalent to any of its
n − 1 cyclically shifted versions), the above analysis does not apply directly. For
two fair cyclic bit strings B1 and B2 of length n, we say that B1 and B2 are
far if they differ in at least n

8 positions for all of their cyclically shifted versions.
Conversely, if B1 and B2 are not far we say they are close.

Lemma 3 (�). For fair cyclic bit strings of length n, any maximal fully diverse
set of fair cyclic bit strings, using Hamming distance, has size

Ω

(
n−2 ·

(
27
16

)n/4
)

= Ω (1.139...n) .

3 Geometric Diversity

Given two closed subsets A and B of a metric space, the Hausdorff distance
between A and B is defined as the maximum distance of any point in A to its
closest point in B or vice versa. For the Fréchet distance let A and B be two
curves in the plane. Informally, the Fréchet distance between A and B is the
minimum length of a leash that allows a person to walk along A and a dog along
B with neither of them ever walking backwards. See Alt and Godau [1] for the
formal definitions. The area of symmetric difference between two polygons is the
total area inside exactly one of the polygons.

Let S be any set of simple polygons inside a unit diameter disk U . Any two
polygons inside U have Hausdorff distance ≤ 1. Assume S is fully diverse, so a
constant c ≥ 1 exists such that for any two Pi, Pj ∈ S (i �= j), their Hausdorff
distance is at least 1/c. We partition U by horizontal and vertical lines spaced
1/(2c), resulting in O(c2) cells. If Pi and Pj occupy exactly the same cells of this
grid, then their Hausdorff distance is at most 1/(

√
2c) < 1/c, a contradiction, so

there must be a cell occupied by exactly one of Pi and Pj . This property holds
for every pair of polygons in S, so S cannot contain more than 2O(c2) = O(1)
polygons and be fully diverse. The size of S does not depend on the descriptive
complexity of the polygons. The upper bound also applies to polygons with holes
or that are disconnected, and to drawings of graphs.

334 F. Klute and M. van Kreveld

0

0.4

0.8

π

π/4 3π/4

Fig. 2. Left, lower bound construction for Fréchet distance. Right, lower bound con-
struction for sum of angle differences by encoding the bit string 01011.

Theorem 1. A fully diverse set of polygons inside a bounded region has size
O(1) when we measure the distance by the Hausdorff distance.

Next we show by construction that a fully diverse set of polygonal lines with
n vertices inside a unit diameter disk U can have exponential size when using the
Fréchet distance. We choose points on three horizontal lines y = 0, y = 0.4, and
y = 0.8; on the first line we take points with x-coordinates i/n for 1 ≤ i ≤ n/2,
and on the second and third line we take points with x-coordinates i/n+1/(2n)
for 1 ≤ i ≤ n/2. We make x-monotone polygonal lines by using all points on the
line y = 0, and between two such points, we choose either the point on y = 0.4
or on y = 0.8. See Fig. 2(left). Any two of the 2n/2 different options has Fréchet
distance at least 0.4, hence these options together give a set of size 2Ω(n) that is
fully diverse. The construction is easily adapted to simple polygon boundaries.

For area of symmetric difference, we can use the construction in Fig. 2(left) if
we add one vertex at the bottom right to close the polyline with one straight-line
segment to a polygon. Having Ω(n) spikes different implies an area of symmetric
difference of Ω(1). Hence, the spikes encode the bits of a bit string, and Lemma 2
gives the lower bound.

We obtained 2Ω(n) lower bounds on the size of fully diverse sets in two cases.
Is it the right lower bound, or can we also achieve a bound like 2Ω(n log n)?

Concerning the Fréchet distance, assume a unit diameter disk U and let a
constant c ≥ 1 be given. We partition U by a square grid of line spacing 1/(2c),
so that any two points in the same grid cell have distance < 1/c. There are
O(c2) cells, which is constant. We can encode any polyline of n vertices by the
sequence of cells in which the vertices lie. It is straightforward to see that two
polylines that have the same sequence of cells, have Fréchet distance < 1/c, so
they cannot be in the same fully diverse set. Consequently, the size of a fully
diverse set is bounded by the number of sequences of cells: (O(c2))n = 2O(n).

Theorem 2. A fully diverse set of polygonal lines or simple polygon boundaries
with n vertices in a bounded region, may have size 2Ω(n) and has size at most
2O(n), if distance is measured by the Fréchet distance.

For area of symmetric difference we need a much finer grid in order to ensure
that visiting the same cells implies a distance of at most π/(4c). Consider a grid
with cells of diameter < 1/(2cn). Then two simple polygons that have the same
vertices in the same cells in the same order have an area of symmetric difference

On Fully Diverse Sets of Geometric Objects and Graphs 335

of at most 1/(
√

2c) < π/(4c) because each pair of corresponding edges causes
a symmetric difference of at most

√
2/(2cn). This leads to an upper bound of

((2cn)2)n = 2O(n log n).

Theorem 3. A fully diverse set of simple polygons with n vertices, may have
size 2Ω(n) and has size at most 2O(n log n), if distance is measured by the area of
symmetric difference.

Remark 1. The techniques presented in Sects. 2 and 3 are quite versatile. With-
out any new ideas, we can also show that for drawings of labeled star graphs in
a bounded region, the maximum size of a fully diverse set is 2Θ(n) when distance
is measured as sum of vertex displacements. The lower bound uses an encoding
of a fair bit string to generate drawings that are far apart. The construction is in
fact the one shown in Fig. 1, used for a different metric space. The upper bound
uses the partition of the bounded region into a grid of size O(c2). Similarly, we
can show that for drawings of ternary trees with the same embedding whose dis-
tance is measured by the sum of absolute differences of corresponding angles, we
also get 2Θ(n) as the maximum size of a fully diverse set. Figure 2(right) shows
how a bit string can be converted to a drawing so that far bit strings give far
drawings.

4 Embedding Diversity

In this section we investigate the existence of large sets of embedded graphs
that are diverse according to a topological measure. We show that there are
superpolynomially many fully diverse sets of embedded trees and planar graphs
when we use the number of changes in the rotation system as the distance
measure. An adjacent-edge swap exchanges the position of two edges that are
incident to the same vertex and adjacent in its rotation. Notice that degree-2
vertices can be omitted or ignored, since their rotation system is not changed by
a swap. In this section, all graphs are assumed to be labeled.

Trees. To start, we consider ternary trees, i.e., trees that contain only degree
3 vertices as non-leaf vertices. Let T = (V,E) be such a ternary tree with n
leaves and n − 2 non-leaf vertices. Observe that at every non-leaf vertex there
are exactly two possible cyclic orders of the incident edges. We derive a bit
encoding of the possible embeddings of T as a bit string B that contains a bit
for every non-leaf vertex of T . For each such vertex we associate its bit set to 0
with one of the cyclic orders, and its bit set to 1 with the other cyclic order.

Lemma 4 (�). Let T be a labeled ternary tree with n leaves and B1 and B2

two bit encodings of embeddings of T , such that B1 and B2 are fair bit strings
and far from each other, then they correspond to embeddings of T that are Ω(n)
adjacent-edge swaps apart.

Applying the analysis from Sect. 2 we obtain the following.

336 F. Klute and M. van Kreveld

Lemma 5 (�). For a labeled ternary tree with n leaves, a fully diverse set of
embeddings may have size 2Ω(n) if distance is the number of adjacent-edge swaps.

Next, we consider labeled star graphs. Let S = (V,E) be a labeled star with
central vertex u ∈ V and leaves v1, . . . , vn ∈ V incident to edges e1, . . . , en ∈ E
for some even n ∈ N. We define a cyclic bit string B describing orders of the
edges incident to u as follows. Consider the edges e1, . . . , en around u, ordered
by their indices. For each antipodal pair of edges ei, ej in S (where j = i + n

2),
we add one bit bi to B and let it be 1 if ei, ej have exchanged their positions in
the cyclic order and 0 if not; see Fig. 1. Clearly, B has length n

2 ; recall that two
cyclic bit strings of length n

2 are fair if they contain at least n
4 zeros and at least

n
4 ones, and they are far if they differ in at least n

16 positions.

Lemma 6 (�). Let S be a labeled star graph with n leaves and B1 and B2 two
bit encodings of embeddings of S, such that B1 and B2 are fair cyclic bit strings
and far from each other, then they correspond to embeddings of S that are Ω(n2)
adjacent-edge swaps apart.

Lemma 7 (�). For a labeled star graph with n leaves, a fully diverse set of
embeddings may have size 2Ω(n) if distance is the number of adjacent-edge swaps.

It remains to combine the two previous cases to handle any tree T = (V,E)
that does not contain degree 2 vertices. This is non-trivial, and in fact, for some
trees, we no longer have a fully diverse set of embeddings of exponential size.
First, observe that the maximum distance between two embeddings of a tree
whose internal nodes that have degrees d1, . . . , dk is proportional to

∑k
i=1 d2i .

Lemma 8 (�). For any labeled tree with n leaves, there exists a fully diverse set
of embeddings of size 2Ω(

√
n).

Proof Sketch. Assume that a labeled tree T is given whose internal vertices
v1, . . . , vk are sorted by degrees d1 ≥ d2 ≥ · · · ≥ dk. Let j be the smallest
value such that

∑j
i=1 d2i ≥ 1

2

∑k
i=1 d2i . We distinguish two cases, dj ≥ √

n and
dj <

√
n. In the former case, we only use the vertices v1, . . . , vj to make fully

diverse sets. Each such vertex already admits a fully diverse set of size 2Ω(di) by
Lemma 7. This allows us to just combine the embeddings and choose embeddings
for the remaining vertices at random.

If dj <
√

n we use the vertices vj , . . . , vk. We group them into sets V1, . . . , Vz

with z = Θ(
√

n) such that for each Vh, h = 1, . . . z, the sum of its squared degrees
is in Θ

(∑k
i=1 d2i /

√
n
)
. We then fix two far embeddings for each group Vh. Using

these two embeddings to encode a bit string we then get a fully diverse set of
sufficient size using Lemma 3 essentially in the same manner as for Lemma 5. �	

To prove that no better bound exists that applies to all trees, consider a tree
with n leaves, one vertex v with degree

√
n log n, and all other internal vertices

with degree 3. The maximum distance between two embeddings is determined by
vertex v only: it is Θ(n log2 n). The linearly many vertices of degree 3 require only

On Fully Diverse Sets of Geometric Objects and Graphs 337

O(n) adjacent-edge swaps, so they play no role in obtaining a fully diverse set.
Considering v and its neighbors as a star graph then implies that the maximum
size of a fully diverse set is 2O(

√
n log n). Intuitively, we have just O(

√
n log n)

bits in an encoding that are effective to realize a fully diverse set. We can give
v degree

√
n log log n or even smaller for a slightly better bound.

Theorem 4. For any labeled tree with n leaves, there is a fully diverse set of
embeddings of size 2Ω(

√
n), and there exists a tree whose size of a fully diverse

set of embeddings is 2O∗(
√

n), where O∗(
√

n) denotes O(f(n)) for any function
f(n) that is asymptotically larger than

√
n.

Suppose we consider a different metric, namely the number of edge relocations
for embedded trees. A relocation on the cyclic order around a vertex places one
of its edges anywhere else in the order in a single step. For ternary trees this is
equivalent to an adjacent-edge swap, but for a star graph, the maximum distance
between any two embeddings of stars is Θ(n) instead of Θ(n2).

Lemma 9 (�). For a labeled star graph with n leaves, a fully diverse set of
embeddings may have size 2Ω(n log n) if distance is measured by edge relocations.

Planar Graphs. Here we give a sketch of how the results just given can be
extended to planar embeddings of planar graphs. Let G = (V,E) be an embedded
labeled planar connected simple graph. Since swapping two adjacent edges in G
does not necessarily preserve planarity we instead consider swaps of components
separated by cut-vertices and split pairs [4]. A cut-vertex u ∈ V is a vertex such
that G is not connected after u is removed. Similarly, a split pair {u, v} ⊂ V
of G is a pair of vertices such that G is not connected after u and v are both
removed from G. The incident components of a cut-vertex or a split pair are the
connected components obtained after removing this cut-vertex or split pair.

We consider the rotation of the incident components around a cut-vertex or
split pair, and so-called adjacent-component swaps between them. To ensure that
every possible embedding can be reached, we allow the operation of mirroring a
triconnected component at no cost. Each cut-vertex or split pair can be treated as
the central vertex of a star and its incident components as the leaves. Swapping
the order of two leaves corresponds one-to-one to swapping the order of two of its
incident components. To ensure this we first resolve nesting components around
cut-vertices. Then, it suffices to only consider rotations around cut-vertices and
split pairs in which the respective incident components appear one after another.
This allows us to derive analogous versions of Lemmas 4 and 6 which in turn
enables us to argue in the same fashion as for Theorem 4 to obtain the lower
bound in the following theorem.

Moreover, the upper bound of Theorem 4 translates immediately since trees
are planar graphs and adjacent-edge swaps in trees are equivalent to swapping
the incident components around a cut-vertex.

Theorem 5. For any labeled planar graph G = (V,E) with nc cut-vertices and
np split pairs each with at least 3 incident connected components, a fully diverse

338 F. Klute and M. van Kreveld

set of planar embeddings may have size 2Ω(
√

nc+np) and there exists a planar
graph whose size of a fully diverse set of embeddings is 2O∗(

√
nc+np) if distance

is measured by adjacent-component swaps.

5 Abstract Graphs

In this section we consider the diversity of abstract graphs of some given graph
class and a distance based on edits. Throughout, we require that if a graph is in
graph class G, then after applying an operation to it the resulting graph is still
in G. We consider trees, planar graphs, and general graphs, and discuss diversity
for the labeled and unlabeled cases. As most of the ideas are the same as the
ones used earlier, we keep the description short. The results are given in Table 3.

Trees. For trees, we use the following edit operation: Take a leaf, unattach
it from its neighbor, and attach it to a different vertex. We consider the edit
distance measure: the distance between two trees of n vertices is the number of
leaf reattachments needed to convert one tree into the other. Note that any two
trees with n vertices have a finite distance, since every tree can easily be turned
into the star graph (in the labeled case, a specific node must become the central
vertex to use a star as a canonical tree). The maximum distance is Θ(n), since
we need at most n − 2 edits to convert any tree into a star.

We start with the labeled case. To construct a large size fully diverse set of
labeled trees, we can restrict ourselves to paths. A path essentially encodes a
permutation of its labels and reverse permutations are identified. We can use
essentially the same proof ideas as for the case of labeled stars and their embed-
ding under swaps (where cyclic shifts were identified). The upper bound is trivial,
and we obtain 2Θ(n log n) for the maximum size of a fully diverse set.

Next we switch to unlabeled trees. The situation is quite different, because
there is only one path now, and in fact, it is known that there are only 2O(n)

different unlabeled trees [18]. To show an exponential lower bound for unlabeled
trees, we start out with a path of 2 + n/4 vertices. We attach either one or two
leaves to the middle n/4 vertices, encoding a 0 or 1 in a bit string. We attach
all remaining vertices equally as paths to the ends of the initial path. These two
tails have length at least n/16, ensuring that we need n/16 operations to operate
on the bit string in unwanted ways. Using our knowledge on the full diversity of
bit strings, we obtain 2Θ(n) as the bound.

General Graphs. We consider general graphs of n vertices with edge insertion or
deletion as the elementary operation. The edit distance is the distance between
two graphs. We again distinguish in the labeled and unlabeled cases. The two
graphs furthest apart are the empty graph and the complete graph in both cases.

We start with the labeled case. Every labeled edge can be seen as a bit in a
bit string, where absence encodes 0 and presence 1. We immediately get a bound
of 2Θ(n2) by Sect. 2. For the unlabeled case, we observe that there are at least
2n(n−1)/2/n! graphs, since we can assign labels in at most n! ways. This is still
2Ω(n2). The upper bound follows from the labeled case.

On Fully Diverse Sets of Geometric Objects and Graphs 339

Planar Graphs. For planar graphs we use the same edit operation as for general
graphs. Since we can always first remove edges and then insert them, any edit
sequence can be turned into an edit sequence that stays within the class of planar
graphs. An upper bound on the number of operations needed is clearly 6n − 12.

For labeled planar graphs, we obtain a lower bound by analyzing how many
labeled planar graphs are within (6n − 12)/c edits from a given graph. This
number is certainly bounded by (n2)(6n−12)/c = nO(n/c). At the same time, the
number of labeled paths is already n!/2. By choosing c sufficiently large, we
obtain 2Θ(n log n) as the maximum size of a fully diverse set.

The most intriguing case turns out to be unlabeled planar graphs. It is known
that the number of unlabeled planar graphs is bounded by 2O(n) [6], which is
obviously also an upper bound on the size of a fully diverse set.

For a lower bound, the idea is to consider graphs that are unions of stars.
We can connect them into one connected graph if needed, but the argument is
cleanest for these unconnected graphs. We consider only stars with 2i vertices,
0 ≤ i ≤ log n − log log n. Suppose we have n/(2i log n) stars of size 2i, then it
takes n/(2 log n) edge insertions (and a number of edge deletions) to convert this
into n/(2i+1 log n) stars of size 2i+1. Converting in the other direction also takes
at least n/(2 log n) operations.

In the fully diverse set we construct, we choose stars with either 2i or 2i+1

vertices, for i = 0, 2, 4, . . . , (log n)−(log log n)−1, the latter value rounded down
to the nearest even number, henceforth denoted by m. We then have roughly
m/2 different sizes in any single set, out of the twice as many sizes used in the
whole construction. Notice that a set indeed has size n. We can see the choice
between stars of size 2i and 2i+1 as an encoding of a bit, and hence we have a bit
string of length roughly m/2. We choose a fully diverse set of bit strings, which
implies the choice of stars in a graph in the set. By Lemma 2, a fully diverse set
of fair bit strings of this length has maximum size 2Ω(m/2), which is nΩ(1).

6 Conclusions and Open Problems

We introduced the concept of a fully diverse set of objects, like polygons and
graphs, in a metric space, by relating the inter-distance between any two objects
in that set to the maximum distance possible. We then studied a number of
distance measures, both geometric and combinatorial, and proved bounds on
the maximum size of fully diverse sets. There are two cases where the lower and
upper bounds do not match, giving rise to the two main open problems of this
paper. We also sketched a simple randomized algorithm to generate fully diverse
sets of a certain type of objects.

As our full diversity definition can be applied to any class of objects in
a metric space provided the maximum distance is bounded, there are many
other cases to be explored. For example, 2-dimensional distributions with the
Wasserstein distance, or graphs with different edit distances than the ones used
in this paper. Furthermore, a definition of full diversity that does not require
the metric space to be bounded is worth examination.

340 F. Klute and M. van Kreveld

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995). https://doi.org/10.1142/
S0218195995000064

2. Bach, B., Spritzer, A., Lutton, E., Fekete, J.-D.: Interactive random graph gen-
eration with evolutionary algorithms. In: Didimo, W., Patrignani, M. (eds.) GD
2012. LNCS, vol. 7704, pp. 541–552. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36763-2 48

3. Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-
parameter tractability theory. In: Proceedings of the 29th International Joint Con-
ference on Artificial Intelligence (IJCAI 2020), pp. 1119–1125 (2020). https://doi.
org/10.24963/ijcai.2020/156

4. Battista, G.D., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996). https://doi.org/10.1137/S0097539794280736

5. Biedl, T., Marks, J., Ryall, K., Whitesides, S.: Graph multidrawing: finding nice
drawings without defining nice. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol.
1547, pp. 347–355. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
37623-2 26

6. Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar
graphs, via well-orderly maps and trees. Graphs Combin. 22(2), 185–202 (2006).
https://doi.org/10.1007/s00373-006-0647-2

7. Bridgeman, S., Tamassia, R.: Difference metrics for interactive orthogonal graph
drawing algorithms. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp.
57–71. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2 5

8. Cai, J.: Counting embeddings of planar graphs using DFS trees. SIAM J. Discret.
Math. 6(3), 335–352 (1993). https://doi.org/10.1137/0406027

9. Drosou, M., Jagadish, H.V., Pitoura, E., Stoyanovich, J.: Diversity in big data: a
review. Big Data 5(2), 73–84 (2017). https://doi.org/10.1089/big.2016.0054

10. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

11. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar
solutions in constraint programming. In: Proceedings of 20th National Conference
on Artificial Intelligence (AAAI 2005), pp. 372–377 (2005)

12. Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecol-
ogy 54(2), 427–432 (1973). https://doi.org/10.2307/1934352

13. Huemer, C., Pilz, A., Silveira, R.I.: A new lower bound on the maximum number of
plane graphs using production matrices. Comput. Geom. 84, 36–49 (2019). https://
doi.org/10.1016/j.comgeo.2019.07.005

14. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of solu-
tions. In: Proceedings of 34th AAAI Conference on Artificial Intelligence (AAAI
2020), pp. 1528–1535 (2020)

15. van Kreveld, M., Speckmann, B., Urhausen, J.: Diverse partitions of colored points.
In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 641–654.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83508-8 46

16. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning.
Found. Trends Mach. Learn. 5(2–3), 123–286 (2012). https://doi.org/10.1561/
2200000044

17. Kunaver, M., Pozrl, T.: Diversity in recommender systems - a survey. Knowl. Based
Syst. 123, 154–162 (2017). https://doi.org/10.1016/j.knosys.2017.02.009

https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1007/978-3-642-36763-2_48
https://doi.org/10.1007/978-3-642-36763-2_48
https://doi.org/10.24963/ijcai.2020/156
https://doi.org/10.24963/ijcai.2020/156
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1007/3-540-37623-2_26
https://doi.org/10.1007/3-540-37623-2_26
https://doi.org/10.1007/s00373-006-0647-2
https://doi.org/10.1007/3-540-37623-2_5
https://doi.org/10.1137/0406027
https://doi.org/10.1089/big.2016.0054
https://doi.org/10.2307/1934352
https://doi.org/10.1016/j.comgeo.2019.07.005
https://doi.org/10.1016/j.comgeo.2019.07.005
https://doi.org/10.1007/978-3-030-83508-8_46
https://doi.org/10.1561/2200000044
https://doi.org/10.1561/2200000044
https://doi.org/10.1016/j.knosys.2017.02.009

On Fully Diverse Sets of Geometric Objects and Graphs 341

18. Otter, R.: The number of trees. Ann. Math. 49(3), 583–599 (1948)
19. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)
20. Stallmann, M.F.M.: On counting planar embeddings. Discret. Math. 122(1–3),

385–392 (1993). https://doi.org/10.1016/0012-365X(93)90316-L
21. Tuomisto, H.: A consistent terminology for quantifying species diversity? Yes, it

does exist. Oecologia 164(4), 853–860 (2010). https://doi.org/10.1007/s00442-010-
1812-0

22. Ulrich, T., Bader, J., Thiele, L.: Defining and optimizing indicator-based diver-
sity measures in multiobjective search. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 71

23. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used
in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45110-2 21

https://doi.org/10.1016/0012-365X(93)90316-L
https://doi.org/10.1007/s00442-010-1812-0
https://doi.org/10.1007/s00442-010-1812-0
https://doi.org/10.1007/978-3-642-15844-5_71
https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21

Polynomial-Delay and Polynomial-Space
Enumeration of Large Maximal Matchings

Yasuaki Kobayashi1 , Kazuhiro Kurita2(B) , and Kunihiro Wasa3

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

koba@ist.hokudai.ac.jp
2 Graduate School of Informatics, Nagoya University, Nagoya, Japan

kurita@i.nagoya-u.ac.jp
3 Department of Computer Science and Engineering, Toyohashi University

of Technology, Aichi, Japan
wasa@cs.tut.ac.jp, wasa@hosei.ac.jp

Abstract. Enumerating matchings is a classical problem in the field of
enumeration algorithms. There are polynomial-delay enumeration algo-
rithms for several settings, such as enumerating perfect matchings, max-
imal matchings, and (weighted) matchings in specific orders. In this
paper, we present polynomial-delay enumeration algorithms for maxi-
mal matchings with cardinality at least given threshold t. Our algorithm
enumerates all such matchings in O(nm) delay with exponential space,
where n and m are the number of vertices and edges of an input graph,
respectively. We also present a polynomial-delay and polynomial-space
enumeration algorithm for this problem. As a variant of this algorithm,
we give an algorithm that enumerates k-best maximal matchings that
runs in polynomial-delay.

Keywords: Maximal matching · Cardinality constraint enumeration ·
K-best enumeration

1 Introduction

Computing a maximum cardinality matching in graphs is a fundamental problem
in combinatorial optimization and has numerous applications in many theoretical
and practical contexts. This problem is well known to be solvable in polynomial
time by the famous blossom algorithm due to Edmonds [9]. This algorithm runs
in time O(n2m), where n and m are the numbers of vertices and edges of an
input graph, and the running time is improved to O(n1/2m) [21] and O(nω) [22],
where ω < 2.37 is the matrix multiplication exponent.

Enumerating matchings in graphs is also a well-studied problem in the lit-
erature [4,11,27–29]. In this problem, we are given a graph G = (V,E) and the
goal is to compute all matchings of G satisfying some prescribed conditions.
This is motivated by a typical situation that a single optimal matching can be
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 342–355, 2022.
https://doi.org/10.1007/978-3-031-15914-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_25&domain=pdf
http://orcid.org/0000-0003-3244-6915
http://orcid.org/0000-0002-7638-3322
http://orcid.org/0000-0001-9822-6283
https://doi.org/10.1007/978-3-031-15914-5_25

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 343

inadequate for real-world problems since intricate constraints and preferences
emerging in real-world problems are overly simplified or even ignored to solve
the problem efficiently. In this situation, multiple near optimal solutions are
preferable rather than a single optimal solution.

There are two lines of research for enumerating matchings. The problem of
enumerating inclusion-wise maximal matchings is a special case of enumerating
maximal independent sets or cliques in graphs, which is one of the most promi-
nent problems in the field of enumeration algorithms [6,7,12,20,26]. Tsukiyama
et al. [26] showed that the problem of enumerating all maximal independent sets
in graphs is solvable in O(nm) delay and polynomial space. Johnson et al. [12]
also discussed a similar algorithm for this problem. Makino and Uno [20] and
Comin and Rizzi [6] improved the running time for dense graphs via fast matrix
multiplication algorithms. For maximal matching enumeration, Uno [28] gave
an O(n + m + ΔN)-time algorithm for enumerating all maximal matchings of
graphs, which substantially improves the known algorithm for enumerating max-
imal independent sets in general graphs [26] when input graphs are restricted to
line graphs. Here, Δ is the maximum degree and N is the number of maximal
matchings in an input graph.

The other line of work is to enumerate matchings with cardinality or weight
constraints. One of the best known results along this line is based on k-best
enumeration [10]. Here, we say that an enumeration algorithm for (weighted)
matchings is a k-best enumeration algorithm if given an integer k, the algo-
rithm enumerates k distinct matchings M = {M1, . . . ,Mk} of G such that every
matching in M has cardinality (or weight) not smaller than that not in M. In
the 1960s, Murty developed a k-best enumeration algorithm based on a sim-
ple binary partition technique [23]. Lawler [19] generalized Murty’s algorithm to
many combinatorial problems, and then k-best enumeration algorithms for other
problems have been discussed in various fields (see [10] for a survey). Chegireddy
and Hamacher [4] developed an O(kn3)-time k-best enumeration algorithm for
weighted perfect matchings in general graphs.

In this paper, we focus on enumerating matchings satisfying both maximality
and cardinality conditions. More specifically, we address the following problems.

Definition 1. Given a graph G = (V,E) and a non-negative integer t, Large
Maximal Matching Enumeration asks to enumerate all maximal matchings
of G with cardinality at least t.

Definition 2. Given a graph G = (V,E) and a non-negative integer k, k-Best

Maximal Matching Enumeration asks to compute a set M of k maximal
matchings of G such that the cardinality of any maximal matching in M is not
smaller than that not in M.

These kind of problems are recently focused in several work [15,17], where
they considered the problems of enumerating minimal solutions with weight or
cardinality constraints. We would like to mention that satisfying both weight or
cardinality and maximal/minimal constraints makes enumeration problems even
more difficult: Korhonen [17] showed that the problem of enumerating minimal

344 Y. Kobayashi et al.

2n

Fig. 1. The graph is obtained from the complete graph K2n (depicted as the rounded
rectangle) with 2n vertices by adding a pendant vertex to each vertex. Since K2n

has (2n)!
2n·n!

perfect matchings, the graph contains exactly one maximal matchings of

cardinality 2n and at least (2n)!
2n·n!

maximal matchings.

separators of cardinality at most k is solvable in incremental polynomial time
or FPT delay, while the problem of enumerating minimal separators without
cardinality constraint k is solvable in polynomial delay [25].

The results of our paper are as follows. We observe that a straightforward
application of the binary partition technique [2,11] would not yield polynomial-
delay algorithms for Large Maximal Matching Enumeration: This tech-
nique is typically based on the extension problem, which will be defined in Sect. 3,
and we prove that this problem for Large Maximal Matching Enumera-

tion is NP-hard even if t = 0. This result is independently shown by Casel et
al. [3]. See Theorem 10 in [3]. As algorithmic results, we present O(nm)-delay
enumeration algorithms for Large Maximal Matching Enumeration and
k-Best Maximal Matching Enumeration. These algorithms run in expo-
nential space. Note that for k-Best Maximal Matching Enumeration, our
algorithm requires Ω(k) space, while this is indeed exponential when k is expo-
nential in n. We also present an O(n2Δ2)-delay and polynomial-space enumer-
ation algorithm for Large Maximal Matching Enumeration.

Whereas our algorithms are slower than the known algorithm of Uno [28],
our algorithms only enumerate matchings that are maximal and have cardinality
at least t, which would be more efficient with respect to the overall performance
when the number of “large” maximal matchings are sufficiently smaller than
that of all maximal matchings. See Fig. 1 for such an example.

Our algorithms are based on the supergraph technique, which is frequently
used in designing enumeration algorithms [5,8,13,14,18,24]. In this technique,
we define a directed graph on the set of all solutions and the enumeration algo-
rithm simply traverses this directed graph from an arbitrary solution. To enu-
merate all solutions, we need to carefully design this directed graph so that
all the nodes can be traversed from an arbitrary solution. We basically fol-
low the technique due to Cohen et al. [5], which allows to define a suitable
directed graph for enumerating maximal matchings. We carefully analyze this
directed graph and prove that this directed graph has a “monotone” path from
an arbitrary maximum matching to any maximal matching of G, where we mean
by a monotone path a sequence of maximal matchings (M1,M2, . . . ,Mk) with
|M1| ≥ |M2| ≥ · · · ≥ |Mk|. This also enables us to enumerate all maximal match-
ings in a non-decreasing order of its cardinality. Let us note that our approach
is different from those in the maximal matching enumeration [28] and the k-best

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 345

enumeration for matchings [4,23]. Our polynomial-space enumeration algorithm
also exploits this monotone path. Due to the space limitation, we omit the proofs
marked with star �, which can be found in the full version [16].

2 Preliminaries

Let G = (V,E) be a graph. Let n = |V | and m = |E|. Throughout this paper, we
assume that G has no self-loops and parallel edges. We also assume that G has
no isolated vertices and hence we have n = O(m). The vertex set and edge set
of G are denoted by V (G) and E(G), respectively. For a vertex v ∈ V , the set of
edges incident to v is denoted by Γ (v). To simplify the notation, we also use Γ (e)
to denote (Γ (u)∪Γ (v))\{e} for each edge e = {u, v} ∈ E. A sequence of vertices
P = (u1, u2, . . . , uk) is called a path if ui is adjacent to ui+1 for any 1 ≤ i < k
and all the vertices are distinct. A sequence of vertices C = (u1, u2, . . . , uk) is
called a cycle if ui is adjacent to ui+1 for any 1 ≤ i ≤ k, where uk+1 is considered
as u1, and all the vertices except for pair {u1, uk+1} are distinct. For F ⊆ E, we
denote by G[F] the subgraph consisting of all end vertices of F and edges in F .
For two sets X and Y , we denote by X�Y the symmetric difference between X
and Y (i.e., X�Y = (X \ Y) ∪ (Y \ X)).

Let M be a set of edges in G. We say that M is a matching of G if for any pair
of distinct e, f ∈ M , they does not share their end vertices (i.e., e∩f = ∅ holds).
Moreover, M is a maximal matching of G if M is a matching and M ∪{e} is not a
matching of G for every e ∈ E\M . The maximum cardinality of a matching of G
is denoted by ν(G). Every matching with cardinality ν(G) is called a maximum
matching of G. For a matching M , we say that a vertex v is matched in M if M
has an edge incident to v. Otherwise, v is unmatched in M .

In this paper, we measure the running time of enumeration algorithms in an
output-sensitive manner [12]. In particular, we focus on the delay of enumer-
ation algorithms: The delay of a enumeration algorithm is the maximum time
interval between two consecutive outputs (including both preprocessing time and
postprocessing time).

3 Hardness of the Extension Problem

We show that a direct application of the binary partition technique or the k-best
enumeration framework to Large Maximal Matching Enumeration seems
to be impossible.

In enumeration algorithms based on the binary partition technique [2,11], we
solve a certain decision or optimization problem, called an extension problem, to
enumerate solutions. Basically, the extension problem asks to decide whether,
given disjoint sets I and O, there is a solution that includes all elements in I
and excludes every element in O. For enumerating maximum matchings, the
extension problem is tractable: For I,O ⊆ E with I ∩ O = ∅, the extension
problem simply asks for a matching M in a graph obtained by removing all
endpoints in I and edges in O from G with |M | = ν(G)−|I|. However, for Large

346 Y. Kobayashi et al.

Maximal Matching Enumeration, the extension problem is intractable. The
formal definition of the extension problem is as follows: Given a graph G =
(V,E) and I,O ⊆ E with I ∩ O = ∅, Maximal Matching Extension asks to
determine whether G has a maximal matching M with I ⊆ M and M ∩O = ∅.

Theorem 1 (�). Maximal Matching Extension is NP-complete even on
planar bipartite graphs with maximum degree three.

As for k-best enumeration algorithms based on Lawler’s framework [19], we
need to solve an optimization version of Maximal Matching Extension. The
above theorem also rules out the applicability of Lawler’s framework to obtain
a polynomial-delay algorithm for Large Maximal Matching Enumeration,
assuming that P
= NP.

4 Enumeration of Maximal Matchings

4.1 Large Maximal Matching Enumeration

Our enumeration algorithm is based on the supergraph technique, which is fre-
quently used in many enumeration algorithms [5,8,13,14,18,24]. In particular,
our algorithm is highly related to the enumeration algorithm for maximal inde-
pendent sets with the input-restricted problem due to [5]. The basic idea of the
supergraph technique is quite simple. We define a directed graph G whose node
set corresponds to all the solutions we wish to enumerate. The enumeration algo-
rithm solely traverses this directed graph and outputs a solution at each node.
To this end, we need to carefully design the arc set of G so that all the nodes in
G are reachable from a specific node.

For maximal matchings (without cardinality constraints), we can enumerate
those in polynomial delay with this technique. Let G = (V,E) be a graph. For
a (not necessarily maximal) matching M of G, we denote by μ(M) an arbi-
trary maximal matching of G that contains M . This maximal matching can
be computed from M by greedily adding edges in E \ M . Let M be a maxi-
mal matching of G. For e ∈ E \ M , (M \ Γ (e)) ∪ {e} is a matching of G, and
then Me = μ((M \ Γ (e)) ∪ {e}) is a maximal matching of G. We define the
(out-)neighbors of a maximal matching M in G, denoted NG(M), as the set of
maximal matchings {Me : e ∈ E \ M}. To avoid a confusion, each maximal
matching in NG(M) is called a G-neighbor of M . The arc set of G is defined by
this neighborhood relation. With this definition, we can show that every maxi-
mal matching M2 is reachable from any other maximal matching M1, that is, G
is strongly connected. To see this, we consider the value m(M,M ′) = |M ∩ M ′|
defined between two (maximal) matchings M and M ′ of G. Since M1 and M2

are maximal matchings of G, there is an edge e ∈ M2 \ M1. Then, we have

m(M1,M2) = |M1∩M2| < |((M1\Γ (e))∪{e})∩M2| ≤ |μ((M1\Γ (e))∪{e})∩M2|,
where the first inequality follows from e ∈ M2 and Γ (e)∩M2 = ∅ and the second
inequality follows from M ⊆ μ(M) for any matching M of G. This indicates
that M1 has a G-neighbor M ′ = μ((M1 \ Γ (e)) ∪ {e}) such that m(M1,M2) <
m(M ′,M2). Moreover, the following proposition holds.

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 347

Algorithm 1: Given a graph G and an integer t, the algorithm enumerates
all maximal matchings of G with cardinality at least t.
1 Procedure Traverse(G, t)
2 Let M∗ be a maximum matching of G
3 Add M∗ to a queue Q and to set S
4 while Q is not empty do
5 Let M be a maximal matching in Q
6 Output M and delete M from Q
7 foreach M ′ ∈ NG(M) do
8 if M ′ �∈ S and |M ′| ≥ t then Add M ′ to Q and to S

Proposition 1. Let M1 and M2 be maximal matchings of G. Then,
m(M1,M2) ≤ |M2|. Moreover, m(M1,M2) = |M2| if and only if M1 = M2.

By induction on k = |M2| − m(M1,M2), there is a directed path from M1

to M2 in G for every pair of maximal matchings of G, which proves the strong
connectivity of G.

Our algorithm for Large Maximal Matching Enumeration also tra-
verses G from an arbitrary maximum matching of G in a breadth-first manner
but truncates all maximal matchings of cardinality less than given threshold t.
The pseudocode is shown in Algorithm 1. In the following, we show that Algo-
rithm 1 enumerates all the maximal matchings of G with cardinality at least t,
provided t < ν(G). We discuss later for the other case t = ν(G).

For a non-negative integer k, we say that a directed path in G is k-thick
if every maximal matching on the path has cardinality at least k. To show
the correctness of Algorithm 1, it is sufficient to prove that (1) for any pair of
maximum matching M∗ of G and a maximal matching M of G with |M | < ν(G),
there is a directed |M |-thick path from M∗ to M in G and (2) for a pair of
maximum matchings M and M ′ of G, there is a directed (ν(G) − 1)-thick path
from M to M ′ in G.

In the rest of this subsection, fix distinct maximal matchings M1 and M2 of G.
Since M1 and M2 are matchings of G, each component of the graph G[M1�M2]
is either a path or a cycle. We say that a path component P in G[M1�M2] is
even-alternating if exactly one end vertices of P is unmatched in M1. Let us note
that P is even-alternating if and only if it has an even number of edges. We say
P is M1-augmenting (resp. M2-augmenting) if the both end vertices of P are
unmatched in M1 (resp. M2). Since both M1 and M2 are maximal matchings of
G, the following proposition holds.

Proposition 2. Every component in G[M1�M2] is either a path with at least
two edges or a cycle with at least four edges.

For M2-augmenting path component P in G[M1�M2], it holds that |M1 ∩
E(P)| > |M2 ∩ E(P)|. Thus, the following proposition holds.

Proposition 3. Suppose that G[M1�M2] has no M1-augmenting path compo-
nents but has at least one M2-augmenting path component. Then, |M1| > |M2|.

348 Y. Kobayashi et al.

Lemma 2. If G[M1�M2] has an M1-augmenting or even-alternating path com-
ponent P , then there is a directed |M1|-thick path from M1 to a maximal match-
ing M ′ in G such that m(M1,M2) < m(M ′,M2) and |M ′| ≥ |M1|. Moreover, if
P is M1-augmenting, then |M ′| > |M1|.

Proof. Let P = (v1, v2, . . . , v�) and let ei = {vi, vi+1} for 1 ≤ i < �. By Propo-
sition 2, P contains at least two edges. Assume, without loss of generality, we
have e1 ∈ M2 and e2 ∈ M1. Define M̂ = (M1 \ {e2}) ∪ {e1}. As v1 is unmatched
in M1. M̂ is a matching of G, and hence M ′ = μ(M̂) is a G-neighbor of M1.
Then,

m(M ′,M2) ≥ m(M̂,M2) = |((M1\{e2})∪{e1})∩M2| > |M1∩M2| = m(M1,M2),

as e1 ∈ M2 and e2 ∈ M1 \ M2. Moreover, we have |μ(M̂)| ≥ |M̂ | = |M1|. Thus,
the arc (M1, μ(M̂)) is the desired directed path in G.

Suppose moreover that P is M1-augmenting. In this case, we have � ≥ 4.
We prove the claim by induction on �. Let M̂ be as above. If M̂ ⊂ μ(M̂), we
are done. Suppose otherwise. If � = 4, as v4 is unmatched in M1, M̂ ∪ {e3} is
a matching of G, implying that M̂ ⊂ μ(M̂). Otherwise, that is, M̂ = μ(M̂),
the subpath (v3, v4, . . . , v�) of P is a path component in G[M̂�M2] and is
M̂ -augmenting. Applying the induction hypothesis to this subpath, there is
a directed |M ′|-thick path from M ′ to a maximal matching M ′′ in G such
that m(M ′,M2) < m(M ′′,M2) and |M ′′| > |M ′| = |M1|. As m(M1,M2) <
m(M ′,M2) < m(M ′′,M2), the lemma follows. �

If G[M1�M2] has neither M1-augmenting path components nor cycle com-
ponents, the maximal matching M ′ of G in Lemma 2 satisfies the following
additional property.

Corollary 3 (�). Let M ′ be the maximal matching of G obtained in Lemma 2. If
G[M1�M2] has neither M1-augmenting path components nor cycle components,
then G[M ′�M2] has no cycle components.

Lemma 4. If G[M1�M2] has a cycle component C, then there is a directed
(|M1| − 1)-thick path from M1 to a maximal matching M ′ of G in G such that
m(M1,M2) < m(M ′,M2) and |M ′| ≥ |M1|.

Proof. Let C = (v1, v2, . . . , v�) and for each 1 ≤ i ≤ �, let ei = {vi, vi+1}, where
v�+1 = v1. Assume without loss of generality that ei ∈ M1 for odd i. Define
M̂ = (M1 \{e1, e3})∪{e2}. Clearly, M̂ is a matching of G and then M ′ = μ(M̂)
is a G-neighbor of M1. Similarly to Lemma 2, we have m(M1,M2) < m(M ′,M2).
If |M1| ≤ |M ′|, we are done. Moreover, if � = 4, M̂ ∪ {e4} is a matching of
G and hence we have |M1| ≤ |M ′| as well. Thus, suppose that � ≥ 6 and
|M ′| = |M̂ | = |M1|−1. The subpath P = (v4, v5, . . . , v�+1) is an M ′-augmenting
path component in G[M ′�M2]. By Lemma 2, there is a directed path from
M ′ to a maximal matching M ′′ of G in G such that m(M ′,M2) < m(M ′′,M2)
and |M ′| < |M ′′|. Moreover, each maximal matching on the directed path has
cardinality at least |M ′|. This completes the proof of lemma. �

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 349

Lemma 5. If G[M1�M2] has an M2-augmenting path component P , then there
is a directed (|M1| − 1)-thick path from M1 to a maximal matching M ′ of G in
G such that m(M1,M2) < m(M ′,M2) and |M ′| ≥ |M1| − 1.

Proof. The proof is almost analogous to that in Lemma 2. Let P =
(v1, v2, . . . , v�) and let ei = {vi, vi+1} for 1 ≤ i < �. By Proposition 2, P con-
tains at least two edges. Moreover, as P is M2-augmenting, P contains at least
three edges and e1, e3 ∈ M1 and e2 ∈ M2. Define M̂ = (M1 \ {e1, e3}) ∪ {e2}.
Then, M̂ is a matching of G, and hence M ′ = μ(M̂) is a G-neighbor of M1.
As e1, e3 ∈ M1 \ M2 and e2 ∈ M2 \ M1, we have m(M1,M2) < m(M ′,M2).
Moreover, |M̂ | = |M1| − 1. the lemma follows. �

Corollary 6 (�). Let M ′ be the maximal matching of G obtained in Lemma 5. If
G[M1�M2] has neither M1-augmenting path components nor cycle components,
then G[M ′�M2] has no cycle components.

Now, we are ready to prove the main claims.

Lemma 7. Let M1 and M2 be maximal matchings of G with |M1| > |M2|. Then,
there is a directed |M2|-thick path from M1 to M2 in G.

Proof. We prove the lemma by induction on k = |M2| − m(M1,M2). Note that,
by Proposition 1, it holds that k ≥ 0. Let G′ = G[M1�M2]. We prove a slightly
stronger claim: If either (1) |M1| > |M2| or (2) |M1| = |M2| and G′ has no cycle
components, then there is a directed |M2|-thick path from M1 to M2 in G. The
base case k = 0 follows from Proposition 1.

We assume that k > 0 and the lemma holds for all k′ < k. As k > 0, G′

has at least one connected component. Suppose that G′ has a cycle component.
In this case, it holds that |M1| > |M2| from the assumption. By Lemma 4, G
has a directed (|M1| − 1)-thick path from M1 to a maximal matching M ′ of G
such that m(M1,M2) < m(M ′,M2) and |M ′| ≥ |M1|. Applying the induction
hypothesis to M ′ and M2, G has a directed |M2|-thick path from M ′ to M2. As
|M1| > |M2|, the directed path obtained by concatenating these two paths (from
M1 to M ′ and from M ′ to M2) is a directed |M2|-thick path from M1 to M2

and hence the claim follows in this case.
Suppose that G′ has an M1-augmenting path component. By Lemma 2, G has

a directed |M1|-thick path from M1 to M ′ such that m(M1,M2) < m(M ′,M2)
and |M1| < |M ′|. Since pair M ′ and M2 satisfies (1), by the induction hypothesis,
G has a directed |M2|-thick path from M ′ to M2, and hence the claim holds for
this case.

In the following, we assume that G′ has neither cycle components nor M1-
augmenting path components. Suppose that G′ has an even-alternating path
component. By Lemma 2, G has a directed |M1|-thick path from M1 to M ′

such that m(M1,M2) < m(M ′,M2) and |M1| ≤ |M ′|. Moreover, by Corollary 3,
G[M ′�M2] has no cycle components. Thus, applying the induction hypothesis
to M ′ and M2 proves the claim.

Finally, suppose that G′ has only M2-augmenting path components. By
Proposition 3, |M1| > |M2|. By Lemma 5, G has a directed (|M1|−1)-thick path

350 Y. Kobayashi et al.

from M1 to M ′ such that m(M1,M2) < m(M ′,M2) and |M ′| ≥ |M1| − 1. More-
over, by Corollary 6, G[M ′�M2] has no cycle components. Thus, as |M ′| ≥ |M2|,
applying the induction hypothesis to M ′ and M2 proves the claim as well. �

Lemma 8. Let M1 and M2 be maximum matchings of G. Then, there is a
directed (ν(G) − 1)-thick path from M1 to M2 in G.

Proof. We prove the lemma by induction on k = |M2| − m(M1,M2). The base
case k = 0 follows from Proposition 1. We assume that k > 0 and the lemma
holds for all k′ < k. Let G′ = G[M1�M2]. As k > 0, G′ has at least one connected
component. Observe that every component of G′ is either an even-alternating
component or a cycle component. This follows from the fact that if G′ has an
M1- or M2-augmenting path component, then this path is an augmenting path
for M1 or M2, respectively, which contradicts to the assumption that M1 and M2

are maximum matchings of G. By Lemmas 2 and 4, G has a directed (|M1|− 1)-
thick path from M1 to a maximal matching M ′ of G such that m(M1,M2) <
m(M ′,M2) and |M1| ≤ |M ′|. As M1 is a maximum matching of G, M ′ is also
a maximum matching of G. Applying the induction hypothesis to pair M ′ and
M2 proves the lemma. �

Thus, we can enumerate all large maximal matchings in polynomial delay.
By simply traversing G, we can enumerate all neighbor of G in O(nm) time.
However, to determine whether each neighbor has already been output, we need
a data structure.

Lemma 9 (�). Let M be a collection of maximal matchings. There is a data
structure for representing M that supports the following operations: (1) Decide
if M contains a given matching M in O(n) time; (2) Insert a matching M into
M in O(n) time.

Theorem 10. Algorithm 1 enumerates all maximal matchings of G with cardi-
nality at least t in O(nm) delay and exponential space, provided that t < ν(G).

Proof. The correctness of the algorithm directly follows from Lemmas 7 and 8.
We analyze the delay of the algorithm. We first compute a maximum matching
M∗ of G. This can be done in time O(n1/2m) using the algorithm of [21]. Each
maximal matching has G-neighbors at most m. For each such G-neighbor M ′ of
M , we can check whether M ′ ∈ S at line 8 in O(n) time with the data structure
given in Lemma 9. Thus, it suffices to show that μ((M \ Γ (e)) ∪ {e}) can be
computed in O(n) time from given a maximal matching M and e ∈ E \ M .
Observe that M ∩ Γ (e) consists of at most two edges f1, f2 ∈ E, each of which
is incident to one of the end vertices of e. Since at least one of end vertices of
each edge in E \ (Γ (f1) ∪ Γ (f2)) is matched in (M \ {f1, f2}) ∪ {e}, we can
compute μ((M \ Γ (e)) ∪ {e}) from (M \ Γ (e)) ∪ {e} by greedily adding edges
in Γ (f1) ∪ Γ (f2). Since |Γ (f1) ∪ Γ (f2)| = O(n), this can be done in O(n) time.
Therefore, the theorem follows. �

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 351

To reduce the space complexity, we follow another well-known strategy, called
the reverse search technique, due to Avis and Fukuda [1]. The basic idea of this
technique is to define a rooted tree T over the set of solutions instead of a
directed graph. The reverse search technique solely traverses this rooted tree
and outputs a solution on each node in the tree. A crucial difference from the
supergraph technique is that we do not need exponential-space data structures
used in the supergraph technique to avoid duplicate outputs.

Let G≥t be the subgraph of G induced by the maximal matchings of G with
cardinality at least t. Our rooted tree T is in fact defined as a spanning tree of
the underlying undirected graph of G≥t. To define the rooted tree T , we select
an arbitrary maximum matching R∗ of G as a root. In the following, we fix
R∗ and define a parent function par with respect to R∗. We assume that the
edges in G are totally ordered with respect to some edge ordering. Let M be a
maximal matching of G with |M | ≥ t and M
= R∗. If G[M�R∗] contains a path
component, then there is an edge e ∈ R∗\M that is incident to an end vertex of a
path component in G[M�R∗]. Then, we choose the minimum edge (with respect
to the edge ordering) satisfying this condition as e, and we define par(M) =
μ((M \Γ (e))∪{e}). Otherwise, we choose the minimum edge in R∗ \M as e, and
we define par(M) = μ((M\Γ (e))∪{e}). Note that as R∗ is a maximum matching
of G, there is at least one path component in G[M�R∗] whose end vertex is
matched in R∗ under the assumption that G[M�R∗] has a path component.
Similarly to the proofs of Lemmas 2 and 4, we have m(par(M), R∗) > m(M,R∗)
and |par(M)| ≥ min{|M |, ν(G)−1}. This implies that the parent function defines
a rooted tree T in G≥t with root R∗ by considering par(M) is the parent of M .

Next, we consider the time complexity for computing par(M). As we have
seen in the proof of Theorem 10, μ((M \ Γ (e)) ∪ {e}) can be computed in O(n)
time. Given M and R∗, we can compute the minimum edge e in G[M�R∗] in
O(n) time as |M | + |R∗| ≤ n. Thus, par(M) can be computed in O(n) time and
the following lemma holds.

Lemma 11. Given a maximal matching M of G with M
= R∗, we can compute
par(M) in O(n) time.

Now, we are ready to describe our polynomial-space enumeration algorithm
for Large Maximal Matching Enumeration. For maximal matchings M
and M ′ of G with cardinality at least t, M ′ is a child of M if par(M ′) =
M . Algorithm 2 recursively generates the set of children of a given maximal
matching, which enable us to traverse all nodes in T .

The following lemma is vital to bound the delay of the algorithm.

Lemma 12. Let M be a maximal matching of G with |M | ≥ t. Then, there are
O(nΔ2) children of M . Moreover, the children of M can be enumerated in total
time O(n2Δ2).

Proof. Let M ′ be a child of M . From the definition of the parent-child relation,
we have

|M�M ′| = |μ((M ′ \ Γ (e)) ∪ {e})�M ′| ≤ 5.

352 Y. Kobayashi et al.

Algorithm 2: Given a graph G and an integer t < ν(G), Reverse-Search
enumerates all maximal matchings of G with cardinality at least t.
1 Procedure Reverse-Search(G, t)
2 Let R∗ be a maximum matching of G;
3 Traverse-tree(G, t,R∗);
4 Procedure Traverse-tree(G, t,M)

5 Output M ;
6 Let C be the children of M ;
7 foreach M ′ ∈ C do
8 Traverse-tree(G, t,M ′)

This inequality follows from the facts that |M ′ ∩ Γ (e)| ≤ 2 and |M \ μ((M ′ \
Γ (e)) ∪ {e})| ≤ 2 (as observed in the proof of Theorem 10). Thus, we can
enumerate all the children C = {M ′ | par(M ′) = M} of M in polynomial time.
To improve the running time of enumerating children in C, we take a closer look
at both M and M ′.

Let e be the edge such that M = par(M ′) = μ((M ′ \ Γ (e)) ∪ {e}) and let
F = M ′ ∩ Γ (e). As observed above, |F | ≤ 2. Let A be the edge set such that
M = (M ′ \ F) ∪ {e} ∪ A. Each f ∈ A is incident to an edge f ′ in F as M ′ is a
maximal matching of G. This implies that A ⊆ M is uniquely determined from
e ∈ M and F ⊆ Γ (e) with |F | ≤ 2 (i.e., A = {f ∈ (M \ {e}) ∩ Γ (f ′) | f ′ ∈ F}).
Thus, we have |C| = O(nΔ2). For each e ∈ M and F ⊆ Γ (e) with |F | ≤ 2, we
can compute M ′ as M ′ = M \ (A ∪ {e}) ∪ F in O(n) time and, by Lemma 11,
check if par(M ′) = M in O(n) time as well. Hence we can enumerate all children
in C in O(n2Δ2) time. �

We output a solution for each recursive call. This implies that the delay of the
algorithm is upper bounded by the running time of Line 6 in Algorithm 2. Since
m ≤ nΔ, the delay of the algorithm is bounded by O(n1/2m+n2Δ2) = O(n2Δ2)
as well. Moreover, as the depth of T is at most |R∗|, the algorithm runs in
polynomial space.

Finally, when t = ν(G), we can enumerate all maximum matchings using the
binary partition technique in O(nm) delay and polynomial space. By combining
these results, we obtain the following theorem.

Theorem 13. One can enumerate all maximal matchings of G with cardinality
at least t in O(n2Δ2) delay with polynomial space.

4.2 k-Best Maximal Matching Enumeration

In the previous subsection, we define the graph G, allowing us to enumerate all
the maximal matchings of G with cardinality at least given threshold t. The key
to this result is Lemma 7, which states that, for any t < ν(G), there is a directed
t-thick path from a maximum matching M1 to a maximal matching M2 with
cardinality t. This implies that every maximal matching of cardinality at least

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 353

Algorithm 3: Given a graph G and a non-negative integer k, the algorithm
solves k-Best Maximal Matching Enumeration

1 Procedure k-best(G, k)
2 Let A be a polynomial delay enumeration algorithm for maximum

matchings.;
3 foreach M generated by A(G) do
4 Output M and add M to queue Q;
5 if k solutions are output then halt;
6 foreach M ′ ∈ NG(M) with M ′ /∈ S do
7 Add M ′ to Q and to S
8 while Q is not empty do
9 Let M be a largest maximal matching in Q;

10 Output M and delete M from Q;
11 if k solutions are output then halt;
12 foreach M ′ ∈ NG(M) with M ′ /∈ S do
13 Add M ′ to Q and to S

t is “reachable” from a maximum matching in the subgraph of G induced by
the node set {M : M is a maximal matching of G, |M | ≥ t} for every t < ν(G).
From this fact, we can extend Algorithm 1 to an algorithm for k-Best Maximal

Matching Enumeration, which is shown in Algorithm 3. The algorithm first
enumerates all maximum matchings of G with the algorithm A and outputs those
maximum matchings as long as at most k solutions are output. The remaining
part of the algorithm is almost analogous to Algorithm 1 and the essential dif-
ference from it is that the algorithm chooses a largest maximal matching in the
priority queue Q at line 9. Intuitively, we traverse a forest based on best-first
manner.

Theorem 14. We can solve k-Best Maximal Matching Enumeration in
O(nm) delay.

Proof. The delay of the algorithm follows from a similar analysis in Theorem
10. Note that, at line 9, we can choose in time O(1) a largest maximal matching
in Q by using ν(G) linked lists L1, L2, . . . , Lν(G) for Q, where Li is used for
maximal matchings of cardinality i.

Let M be the set of maximal matchings of G that are output by the algo-
rithm. To show the correctness of the algorithm, suppose for contradiction that
there are maximal matchings M /∈ M and M ′ ∈ M of G such that |M | > |M ′|.
Since G has a directed |M |-thick path from a maximum matching of G to M ,
we can choose such M so that every maximal matching on the path except for
M belongs to M. Let M ′′ be the immediate predecessor of M on the path. As
M ′′ ∈ M, M must be in the queue Q at some point. Hence as |M | > |M ′|, the
algorithm outputs M before M ′. �

354 Y. Kobayashi et al.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math. 65(1),
21–46 (1996). https://doi.org/10.1016/0166-218X(95)00026-N

2. Birmelé, E., et al.: Optimal listing of cycles and st-paths in undirected graphs. In:
Proceedings of the SODA 2013, pp. 1884–1896 (2013). https://doi.org/10.1137/1.
9781611973105.134

3. Casel, K., Fernau, H., Khosravian Ghadikolaei, M., Monnot, J., Sikora, F.: Exten-
sion of some edge graph problems: standard and parameterized complexity. In:
G ↪asieniec, L.A., Jansson, J., Levcopoulos, C. (eds.) FCT 2019. LNCS, vol. 11651,
pp. 185–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25027-
0 13

4. Chegireddy, C.R., Hamacher, H.W.: Algorithms for finding k-best perfect match-
ings. Discret. Appl. Math. 18(2), 155–165 (1987). https://doi.org/10.1016/0166-
218X(87)90017-5

5. Cohen, S., Kimelfeld, B., Sagiv, Y.: Generating all maximal induced subgraphs
for hereditary and connected-hereditary graph properties. J. Comput. Syst. Sci.
74(7), 1147–1159 (2008). https://doi.org/10.1016/j.jcss.2008.04.003

6. Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via
rectangular fast matrix multiplication. Algorithmica 80(12), 3525–3562 (2017).
https://doi.org/10.1007/s00453-017-0402-5

7. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enu-
meration for massive network analytics: maximal cliques. In: Proceedings of the
ICALP 2016. LIPIcs, vol. 55, pp. 148:1–148:15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.148

8. Conte, A., Uno, T.: New polynomial delay bounds for maximal subgraph enu-
meration by proximity search. In: Proceedings of the STOC 2019, pp. 1179–1190
(2019)

9. Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17, 449–467 (1965).
https://doi.org/10.4153/CJM-1965-045-4

10. Eppstein, D.: k-best enumeration. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms,
pp. 1003–1006. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-
2864-4 733

11. Fukuda, K., Matsui, T.: Finding all minimum-cost perfect matchings in bipartite
graphs. Networks 22(5), 461–468 (1992). https://doi.org/10.1002/net.3230220504

12. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988). https://doi.org/10.
1016/0020-0190(88)90065-8

13. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.:
Enumerating spanning and connected subsets in graphs and matroids. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 444–455. Springer, Heidelberg
(2006). https://doi.org/10.1007/11841036 41

14. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K.:
Generating cut conjunctions in graphs and related problems. Algorithmica 51(3),
239–263 (2008)

15. Kobayashi, Y., Kurita, K., Wasa, K.: Efficient constant-factor approximate enumer-
ation of minimal subsets for monotone properties with weight constraints. CoRR,
abs/2009.08830 (2020). https://arxiv.org/abs/2009.08830

16. Kobayashi, Y., Kurita, K., Wasa, K.: Polynomial-delay enumeration of large max-
imal matchings. CoRR, abs/2105.04146 (2021). https://arxiv.org/abs/2105.04146

https://doi.org/10.1016/0166-218X(95)00026-N
https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1007/978-3-030-25027-0_13
https://doi.org/10.1007/978-3-030-25027-0_13
https://doi.org/10.1016/0166-218X(87)90017-5
https://doi.org/10.1016/0166-218X(87)90017-5
https://doi.org/10.1016/j.jcss.2008.04.003
https://doi.org/10.1007/s00453-017-0402-5
https://doi.org/10.4230/LIPIcs.ICALP.2016.148
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/978-1-4939-2864-4_733
https://doi.org/10.1007/978-1-4939-2864-4_733
https://doi.org/10.1002/net.3230220504
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1007/11841036_41
https://arxiv.org/abs/2009.08830
https://arxiv.org/abs/2105.04146

Poly.-Delay and Poly.-Space Enumeration of Large Maximal Matchings 355

17. Korhonen, T.: Listing small minimal separators of a graph. CoRR, abs/2012.09153
(2020). https://arxiv.org/abs/2012.09153

18. Kurita, K., Kobayashi, Y.: Efficient enumerations for minimal multicuts and mul-
tiway cuts. In: Proceedings of the MFCS 2020, pp. 60:1–60:14 (2020). https://doi.
org/10.4230/LIPIcs.MFCS.2020.60

19. Lawler, E.L.: A procedure for computing the k best solutions to discrete optimiza-
tion problems and its application to the shortest path problem. Manage. Sci. 18(7),
401–405 (1972). https://doi.org/10.1287/mnsc.18.7.401

20. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8 23

21. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: Proceedings of the FOCS 1980, pp. 17–27 (1980)
22. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: Pro-

ceedings of the FOCS 2004, pp. 248–255. IEEE Computer Society (2004). https://
doi.org/10.1109/FOCS.2004.40

23. Murty, K.G.: Letter to the editor - an algorithm for ranking all the assignments
in order of increasing cost. Oper. Res. 16(3), 682–687 (1968). https://doi.org/10.
1287/opre.16.3.682

24. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Discret. Appl. Math. 117(1–3), 253–265 (2002)

25. Takata, K.: Space-optimal, backtracking algorithms to list the minimal vertex sep-
arators of a graph. Discret. Appl. Math. 158(15), 1660–1667 (2010)

26. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977). https://
doi.org/10.1137/0206036

27. Uno, T.: Algorithms for enumerating all perfect, maximum and maximal matchings
in bipartite graphs. In: Proceedings of the ISAAC 1997, pp. 92–101 (1997)

28. Uno, T.: A fast algorithm for enumerating non-bipartite maximal matchings. NII
J. 3, 89–97 (2001)

29. Uno, T.: Constant time enumeration by amortization. In: Dehne, F., Sack, J.-R.,
Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 593–605. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21840-3 49

https://arxiv.org/abs/2012.09153
https://doi.org/10.4230/LIPIcs.MFCS.2020.60
https://doi.org/10.4230/LIPIcs.MFCS.2020.60
https://doi.org/10.1287/mnsc.18.7.401
https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1109/FOCS.2004.40
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1287/opre.16.3.682
https://doi.org/10.1137/0206036
https://doi.org/10.1137/0206036
https://doi.org/10.1007/978-3-319-21840-3_49

The Complexity of Contracting Bipartite
Graphs into Small Cycles

R. Krithika1, Roohani Sharma2, and Prafullkumar Tale3(B)

1 Indian Institute of Technology Palakkad, Palakkad, India
krithika@iitpkd.ac.in

2 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

rsharma@mpi-inf.mpg.de
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

prafullkumar.tale@cispa.de

Abstract. For a positive integer � ≥ 3, the C�-Contractibility prob-
lem takes as input an undirected simple graph G and determines whether
G can be transformed into a graph isomorphic to C� (the induced
cycle on � vertices) using only edge contractions. Brouwer and Veld-
man [JGT 1987] showed that C4-Contractibility is NP-complete in
general graphs. It is easy to verify that that C3-Contractibility is
polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed
that C�-Contractibility is NP-complete on bipartite graphs for � = 6
and posed as open problems the status of C�-Contractibility when �
is 4 or 5. In this paper, we show that both C5-Contractibility and
C4-Contractibility are NP-complete on bipartite graphs.

Keywords: C5-Contractibility · C4-Contractibility · bipartite
graphs

1 Introduction

Operations on graphs produce new graphs from existing ones. Elementary editing
operations include deleting vertices, deleting and/or adding edges, subdividing
edges and contracting edges. Due to the ubiquitous presence of graphs in mod-
eling real-world networks, many problems of practical importance may be posed
as editing problems on graphs. In this work, we focus on modifying a graph by
only performing edge contractions. Contracting an edge in a graph results in the
addition of a new vertex adjacent to the neighbors of its endpoints followed by
the deletion of the endpoints. As graphs typically represent binary relationships
among a collection of objects, edge contractions naturally correspond to merging

The full version of this paper is at https://arxiv.org/abs/2206.07358
P. Tale—The author has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under
grant agreement SYSTEMATICGRAPH (No. 725978).

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 356–369, 2022.
https://doi.org/10.1007/978-3-031-15914-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_26&domain=pdf
https://arxiv.org/abs/2206.07358
https://doi.org/10.1007/978-3-031-15914-5_26

The Complexity of Contracting Bipartite Graphs into Small Cycles 357

two objects into a single entity or to treating two objects as indistinguishable.
Contractions can therefore be seen as a way of ‘simplifying’ the graph and they
have applications in clustering, compression, sparsification and computer graph-
ics [1,3,6,7,13,19]. Edge contractions also play an imporant role in Hamiltonian
graph theory, planar graph theory and graph minor theory [5,15,24].

Given graphs G and H, the Graph Contractibility problem decides
whether G can be transformed into a graph isomorphic to H using only edge con-
tractions. Graph Contractibility is known to be NP-complete [10, GT51].
This led to the study of the problem on special graph classes and for restricted
choices of H. When H is a fixed graph, the Graph Contractibility problem
is called H-Contractibility. Intuitively, this problem of determining whether
G is contractible to H may be seen as the task of determining if the ‘underlying
structure’ of G is H. One of the related graph parameters in this context is
cyclicity. The cyclicity of a graph is the largest integer � for which the graph is
contractible to the induced cycle on � vertices (denoted as C�). This parameter
was introduced in the study of another important graph invariant called circular-
ity [4]. Ever since, there have been efforts towards understanding the complexity
of computing cyclicity and expressing it in terms of some structural property
of the graph. Brouwer and Veldman [5] showed that C4-Contractibility is
NP-complete, hence proving that determining cyclicity is NP-hard in general.
This result led to the study of the problem on special graph classes including
bipartite graphs, claw-free graphs and planar graphs [8,9,11].

Hammack [11] showed that the cyclicity of planar graphs can be computed in
polynomial time and in another work [12], he showed that C�-Contractibility

is NP-complete for every � ≥ 5 in general. Later, Kaminski et al. [18] showed that
H-Contractibility is polynomial-time solvable on planar graphs for any H.
Levin et al. [21] showed that H-Contractibility is polynomial-time solvable
on general graphs if H is a graph on at most 5 vertices containing a universal
vertex. However, the presence of a universal vertex in H on more than 5 ver-
tices does not guarantee that H-Contractibility can be solved in polynomial
time [16]. Fiala et al. [9] showed that C�-Contractibility is NP-complete
for claw-free graphs for every � ≥ 6. Heggernes et al. [14] proved that P�-
Contractibility is polynomial-time solvable on chordal graphs for every � ≥ 1,
where P� denotes the induced path on � vertices. Later, Belmonte et al. [2] proved
that H-Contractibility is polynomial-time solvable on chordal graphs for
every H. Dabrowski and Paulusma [8] showed that C6-Contractibility is NP-
complete for bipartite graphs. It is easy to verify that that C3-Contractibility

is polynomial-time solvable in general graphs. In this paper, we show that both
C5-Contractibility and C4-Contractibility are NP-complete on bipartite
graphs.

Theorem 1. C5-Contractibility is NP-complete on bipartite graphs.

Theorem 2. C4-Contractibility is NP-complete on bipartite graphs.

Theorems 1 and 2 involve reductions from the Positive Not All Equal

SAT (Positive NAE-SAT) problem where given a formula ψ in conjunctive

358 R. Krithika et al.

normal form with no negative literals, the objective is to determine if there is an
assignment of True or False to each of the variables such that for each clause
at least one but not all variables in it are set to True. Such an assignment is
called a not-all-equal satisfying assignment. Positive NAE-SAT (also referred
to as Monotone NAE-SAT) is known to be NP-complete [25]. Also, a straight-
forward reduction from Set Splitting or Hypergraph 2-Colorability [10,
SP4] to Positive NAE-SAT ascertains this fact.

Preliminaries. For a positive integer q, [q] denotes the set {1, 2, . . . , q}. N

denotes the collection of all non-negative integers. A partition of a set S is a
set of disjoint subsets of S whose union is S. Standard graph-theoretic terminol-
ogy is omitted here due to space constraints and is given in the full version. We
now formally define the notion of graph contractibility.

Definition 1. G is said to be contractible to H if there is a surjective function
ψ : V (G) → V (H) such that the following properties hold.

1. For each h ∈ V (H), ψ−1(h), called the witness set corresponding to h, is
connected.

2. For each h, h′ ∈ V (H), hh′ ∈ E(H) if and only if E(ψ−1(h), ψ−1(h′)) �= ∅.
Then, we say that G is contractible to H via the function ψ and that G has a
H-witness structure W = {ψ−1(h) | h ∈ V (H)} which is the collection of all
witness sets.

In Definition 1, a witness set that contains more than one vertex is called a
big witness set and the one that is a singleton set is called a small witness set
or singleton witness set. Note that a witness structure W is a partition of V (G).
Also, if a vertex v is in some big witness set W , then at least one neighbor of
v is also in W . Recall that the H-Contractibility problem takes as input a
graph G and decides whether G is contractible to H or not. Observe that this
task is equivalent to determining if G has a H-witness structure or not.

Now, we proceed to proving Theorems 1 and 2 in Sects. 2 and 3, respectively.
Proofs of results labelled with a [�] have been deferred to the full version of the
paper due to space constraints.

2 C5-Contractibility on Bipartite Graphs

In this section, we prove Theorem 1. It is easy to verify that C5-
Contractibility is in NP. Given an instance ψ of Positive NAE-SAT with
N variables and M clauses, we give a polynomial-time algorithm that outputs
a bipartite graph G equivalent to ψ. For the sake of simplicity, we describe the
algorithm in two steps. In the first step, the algorithm constructs a non-bipartite
graph H equivalent to ψ (Lemmas 3 and 4) and then in the second step, the
algorithm constructs a bipartite graph G that is equivalent to H (Lemma 1). We
remark that G is obtained from H by dividing some (and not all) of the edges
of H.

The Complexity of Contracting Bipartite Graphs into Small Cycles 359

2.1 Construction of H and G

Let {X1,X2, . . . , XN} and {C1, C2, . . . , CM} be the sets of variables and clauses,
respectively, in ψ. The non-bipartite graph H is constructed as follows. Refer to
Fig. 1 for an illustration.

1. Add a set Vα = {α0, α1, α2, α3, α4} of five vertices that induce the 5-cycle
(α0, α1, α2, α3, α4). This set forms the “base cycle” in the witness structure.

2. For every i ∈ [N], add a set of five vertices that induce a 5-cycle Ci =
(x0

i , x
1
i , x

2
i , x

3
i , x

4
i) and two sets of edges {x0

i α
0, x1

i α
1, x2

i α
2, x3

i α
3, x4

i α
4} and

{x0
i α

1, x1
i α

2, x2
i α

3, x3
i α

4, x4
i α

0}. The variable gadget is designed so that there
are two choices for Ci to co-exist (in a C5-witness structure) with the C5

induced by Vα. We will associate these two choices with a True or False
assignment to the corresponding variable.

3. For every j ∈ [M], add vertices cj and bj and a set {cjα
0, cjα

2, bjα
2, bjα

4} of
edges. The neighbours of cj and bj are defined so that cj will be in the same
witness set as α1 (a non-neighbor of cj) and bj will be in the same witness
set as α3 (a non-neighbor of bj).

4. Finally, for every i ∈ [N] and j ∈ [M] such that Xi appears in Cj , add edges
x1

i cj and x2
i bj . This step is the one that encodes the clause-variable relation-

ship. Relevant variables are expected to help cj (and bj) to be connected to
witness sets containing α1 (and α3).

This completes the construction of H. For p ∈ {0, 1, 2, 3, 4}, define Xp := {xp
i |

i ∈ [N]}. Also, define Y c := {cj | j ∈ [M]} and Y b := {bj | j ∈ [M]}. For an edge
uv ∈ E(H), let λ(u, v) denote the new vertex added while subdividing uv in the
construction of G. Let L = {α0, α2, α4} ∪ X1 ∪ X3 and R = {α1, α3} ∪ X0 ∪
X2 ∪ X4 ∪ Y c ∪ Y b. Then, {L,R} is a partition of H into two parts where there
are certain edges with both endpoints in the same part. We subdivide exactly
these edges to obtain G.

5. Subdivide the edge α0α4.
6. For every i ∈ [N], subdivide the edges x0

i x
4
i , x0

i α
1, x1

i α
2, x2

i α
3, and x3

i α
4.

7. For every i ∈ [N] and j ∈ [M], subdivide the edge x2
i bj if it exists.

This completes the construction of G.
We now argue that G is a bipartite graph. Observe that L and R are inde-

pendent sets in G. We will extend this partition {L,R} of H into a bipartition of
G as follows: λ(α0, α4) ∈ R and for every i ∈ [N], λ(x0

i , x
4
i) ∈ L, λ(x0

i , α
1) ∈ L,

λ(x1
i , α

2) ∈ R, λ(x2
i , α

3) ∈ L and λ(x3
i , α

4) ∈ R. For every i ∈ [N], j ∈ [M],
if x2

i bj ∈ E(H), then λ(x2
i , bj) ∈ L. See Fig. 1 for an illustration. It is easy to

verify that {L,R} is a bipartition of G and hence G is a bipartite graph. We
remark that the natural bipartite graph obtained from H by subdividing all the
edges may not be equivalent to H in the context of C5-Contractiblity. In
Lemma 1, we show that the set of edges of H that are subdivided to obtain G
are safe (in preserving contractiblity to C5) to subdivide.

360 R. Krithika et al.

Fig. 1. (Left) The graph H with certain edges highlighted as purple (dotted) edges
denote setting variable Xi to True and as green (dashed) edges denote setting Xi

to False, respectively. (Right) The bipartite graph G where blue (round) and red
(squares) vertices denote a bipartition. (Color figure online)

2.2 Equivalence of H and G

We show that G and H are equivalent in the context of C5-Contractiblity.
As G is obtained from H by subdividing some edges, one can obtain H from G
by contracting some edges. Hence, if one can obtain a C5 by contracting edges in
H, then one can also obtain a C5 by contracting edges in G by first contracting
G to H and then contracting H to C5. To prove the converse, we first argue that
no vertex in V (G) \ V (H) is a singleton witness set in any C5-witness structure
W of G. Then, we show that deleting vertices of V (G) \ V (H) from W results
in a C5-witness structure W ′ of H.

Lemma 1. [�] H is a Yes-instance of C5-Contractibility if and only if G
is a Yes-instance of C5-Contractibility.

2.3 Properties of a C5-Witness Structure of H

Before we state properties of H, we mention the following observation.

Observation 1. In any partition {X,Y } of the vertices of an induced 5-cycle
into 2 non-empty parts, E(X,Y) �= ∅.
Now, we state certain properties of vertex subsets in H that we later use to show
properties of a C5-witness structure of H.

Observation 2. X0,X1,X2,X3,X4, Y c and Y b are independent sets and Vα

is a dominating set in H. Further, X0 ∪ X4 ∪ Y c ⊆ N(α0), X1 ∪ X0 ⊆ N(α1),
X2 ∪ X1 ∪ Y c ∪ Y b ⊆ N(α2), X3 ∪ X2 ⊆ N(α3) and X4 ∪ X3 ∪ Y b ⊆ N(α4).

Next, we show a property of a C5-witness structure of H that will be crucial to
proving the correctness of the reduction. As we have indicated in the construction
of H, we need a handle on the base cycle of the C5-witness structure (for Yes-
instances) which Lemma 2 provides.

The Complexity of Contracting Bipartite Graphs into Small Cycles 361

Lemma 2. In any C5-witness structure of G, every pair of vertices in Vα are
in different witness sets.

Proof. Suppose W = {W i | i ∈ [4] ∪ {0}} is a C5-witness structure of H where
E(W i,W j) �= ∅ if and only if j = (i ± 1) mod 5. We argue that Vα has a non-
empty intersection with each W i. Suppose Vα ⊆ W i for some 0 ≤ i ≤ 4. Then,
W (i+2) mod 5 = ∅ and W (i+3) mod 5 = ∅ leading to a contradiction. Suppose Vα

intersects exactly two witness sets. We will consider the cases when these sets are
W 0,W 1 and W 0,W 2. The other cases are similar to these cases. If Vα intersects
only with W 0 and W 1, then since Vα is a dominating set in H it follows that
W 3 = ∅ and this leads to a contradiction. Suppose Vα intersects only with W 0

and W 2. From Observation 1, this implies that E(W 0,W 2) �= ∅ leading to a
contradiction. Suppose Vα intersects exactly four witness sets, say W 0,W 1,W 2,
and W 3. Without loss of generality, assume α0 ∈ W 0. As α1 and α4 are adjacent
to α0, we have {α1, α4} ⊆ W 0 ∪ W 1. Then, one of α2 or α3 is in W 2 and the
other is in W 3. However, as α1α2, α3α4 ∈ E(H), neither α2 nor α3 can be in
W 3 implying that W 3 = ∅ and leading to a contradiction.

Suppose Vα intersects exactly three witness sets. Without loss of generality,
let α0 ∈ W 0. We consider the following cases.

– Case (i) Vα intersects W 0,W 1 and W 2.
– Case (ii) Vα intersects W 0,W 1 and W 4.
– Case (iii) Vα intersects W 0,W 2 and W 3. This leads to contradiction as Obser-

vation 1 implies E(W 0,W 2 ∪ W 3) �= ∅.
– Case (iv) Vα intersects W 0,W 2 and W 4. This leads to contradiction as Obser-

vation 1 implies E(W 2,W 0 ∪ W 4) �= ∅.
– Case (v) Vα intersects W 0,W 4 and W 3. This is similar to Case (i).
– Case (vi) Vα intersects W 0,W 1 and W 3. This is similar to Case (iv).

Consider Case (i). As α1 and α4 are adjacent to α0, we have {α1, α4} ⊆ W 0∪W 1.
Then, at least one of α2 or α3 is in W 2 and since α2α3 ∈ E(H), neither α2 nor
α3 can be in W 0. Thus, we have {α2, α3} ⊆ W 1 ∪ W 2. Since E(W 0,W 3) = ∅
and E(W 1,W 3) = ∅, we have W 3 ∩ N(α0) = ∅, W 3 ∩ N(α1) = ∅ and W 3 ∩
N(α4) = ∅. From Observation 2, this implies that W 3 ⊆ X2. Similarly, since
E(W 1,W 4) = ∅ and E(W 2,W 4) = ∅, we have W 4 ∩ N(α2) = ∅ and W 4 ∩
N(α3) = ∅. From Observation 2, this implies W 4 ⊆ (X0 ∪ X4). However, by the
construction, E(X2,X0 ∪ X4) = ∅ implying that E(W 3,W 4) = ∅ which leads
to a contradiction.

Let us now consider Case (ii). Recall that α0 ∈ W 0. Then, either α1 ∈
W 0∪W 1 or α1 ∈ W 0∪W 4. As both these cases are similar, we consider the case
when α1 ∈ W 0∪W 1. Suppose α1 ∈ W 1. Then, we have {α1, α2} ⊆ W 0∪W 1 since
α1α2 ∈ E(H). We will show that this leads to a contradiction. At least one of α3

or α4 is in W 4 and since α3α4 ∈ E(H), neither α3 nor α4 can be in W 1. Thus,
we have {α3, α4} ⊆ W 0 ∪ W 4. Since E(W 0,W 3) = ∅ and E(W 1,W 3) = ∅, we
have W 3 ∩N(α0) = ∅, W 3 ∩N(α1) = ∅ and W 3 ∩N(α2) = ∅. From Observation
2, this implies W 3 ⊆ X3. Similarly, since E(W 0,W 2) = ∅ and E(W 4,W 2) =
∅, we have W 2 ∩ N(α0) = ∅, W 2 ∩ N(α3) = ∅ and W 2 ∩ N(α4) = ∅. From

362 R. Krithika et al.

Observation 2, this implies W 2 ⊆ X1. However, by construction, E(X1,X3) = ∅
implying that E(W 2,W 3) = ∅ which leads to a contradiction.

Suppose α1 ∈ W 0. If α2 ∈ W 0, then one of α3 or α4 is in W 1 and the other
is in W 4 resulting in an edge between W 1 and W 4. Thus, α2 ∈ W 1 or α2 ∈ W 4.
As these cases are similar, we only consider α2 ∈ W 1. Then we once again have
{α1, α2} ⊆ W 0 ∪ W 1 which leads to a contradiction. ��

2.4 Equivalence of H and ψ

Now, we are ready to establish the equivalence of ψ and H.

Lemma 3. If ψ is a Yes-instance of Positive NAE-SAT then H is a Yes-
instance of C5-Contractibility.

Proof. Suppose π : {X1,X2, . . . , XN} → {True, False} is a not-all-equal satis-
fying assignment of ψ. Define the following partition of V (H).

W 0 := {α0} ∪ {x0
i | i ∈ [N], π(Xi) = True} ∪ {x4

i | i ∈ [N], π(Xi) = False},

W 1 := {α1} ∪ {x1
i | i ∈ [N], π(Xi) = True} ∪ {x0

i | i ∈ [N], π(Xi) = False}
∪ {cj | j ∈ [M]},

W 2 := {α2} ∪ {x2
i | i ∈ [N], π(Xi) = True} ∪ {x1

i | i ∈ [N], π(Xi) = False},

W 3 := {α3} ∪ {x3
i | i ∈ [N], π(Xi) = True} ∪ {x2

i | i ∈ [N], π(Xi) = False}
∪ {bj | j ∈ [M]},

W 4 := {α4} ∪ {x4
i | i ∈ [N], π(Xi) = True} ∪ {x3

i | i ∈ [N], π(Xi) = False},

Clearly W 0, W 2, and W 4 are connected sets. For any j ∈ [M], there exists
i ∈ [N] such that x1

i ∈ W 1 (since π sets at least one of the variables in Cj to
True) and i′ ∈ [N] such that x2

i′ ∈ W 3 (since π sets at least one of the variables
in Cj to False). Also, cjx

1
i , bjx

2
i′ ∈ E(H). As for every i ∈ [N], α1 is adjacent

to x1
i and α3 is adjacent to x2

i , it follows that W 1 and W 3 are connected sets.
Now, it is easy to verify that {W 0,W 1,W 2,W 3,W 4} is a C5-witness structure.

��
In the proof of the converse of Lemma 3, we will crucially use Lemma 2.

That is, if H is contractible to a 5-cycle, then in any C5-witness structure
{W 0,W 1,W 2,W 3,W 4} with E(W i,W j) �= ∅ if and only if j = (i ± 1) mod 5,
each of the five witness sets has a non-empty intersection with Vα. This structure
along with a couple of other properties translates to a not-all-equal satisfying
assignment of ψ.

Lemma 4. If H is a Yes-instance of C5-Contractibility then ψ is a Yes-
instance of Positive NAE-SAT.

Proof. Suppose W = {W 0,W 1,W 2,W 3,W 4} is a C5-witness structure of H
where E(W i,W j) �= ∅ if and only if j = (i ± 1) mod 5. Then, by Lemma 2,
Vα has a non-empty intersection with each W i. Without loss of generality, let

The Complexity of Contracting Bipartite Graphs into Small Cycles 363

αp ∈ W p for every p ∈ {0, 1, 2, 3, 4}. We first argue that for any i ∈ [N], the
set Si = {x0

i , x
1
i , x

2
i , x

3
i , x

4
i } also has a non-empty intersection with each W j .

Suppose Si ∩W 0 = ∅. Then, as α0 is adjacent to x0
i , x

4
i and x0

i x
4
i ∈ E(H), either

{x0
i , x

4
i } ⊆ W 1 or {x0

i , x
4
i } ⊆ W 4. As α4x4

i , α
1x0

i ∈ E(H), both these cases
contradict the fact that E(W 1,W 4) = ∅. Using the similar arguments, it follows
that Si has a non-empty intersection with each W j .

Next, we claim that for each i ∈ [N] and 0 ≤ p ≤ 4, xp
i ∈ W p ∪W (p+1) mod 5.

This is due to the fact that xp
i is adjacent with αp and αp+1 (mod 5). Now,

we show that for each i ∈ [N] and 0 ≤ p ≤ 4, xp
i ∈ W p if and

only if x
(p+1) mod 5
i ∈ W (p+1) mod 5 and xp

i ∈ W (p+1) mod 5 if and only if
x
(p+1) mod 5
i ∈ W (p+2) mod 5. If x0

i ∈ W 0 and x1
i /∈ W 1, then E(W 0,W 2) ∪

E(W 0,W 3) ∪ E(W 2,W 4) �= ∅ leading to a contradiction. If x0
i ∈ W 1 and

x1
i /∈ W 2, then E(W 1,W 3) ∪ E(W 0,W 2) ∪ E(W 1,W 4) �= ∅ leading to a contra-

diction. Similar arguments hold for x1
i , x

2
i , x

3
i and x4

i . This is indicated by the
collections of purple (dotted) edges and green (dashed) edges in Fig. 1. We will
associate these two choices with setting Xi to True and to False, respectively.

We now construct an assignment π : {X1,X2, . . . , XN} → {True, False}.
Consider the witness set W 1. For each i ∈ [N], if x1

i ∈ W 1 then set π(Xi) = True,
otherwise (x1

i ∈ W 2) set π(Xi) = False. We argue that π is a not-all-equal
satisfying assignment for ψ. We show that for each j ∈ [M], cj ∈ W 1 and
bj ∈ W 3, further, the clause Cj has variables Xi and Xi′ such that x1

i ∈ W 1 and
x2

i′ ∈ W 3. Observe that cj (being adjacent with α0 and α2) is in the same witness
set that has α1 and bj (being adjacent with α2 and α4) is in the same witness set
that has α3. Thus, for each j ∈ [M], cj ∈ W 1 and bj ∈ W 3. By the property of
witness structures, W 1 and W 3 are connected sets. As the only vertices outside
Vα that are adjacent to cj are vertices x1

i corresponding to variables Xi appearing
in Cj , it follows that Cj has a variable Xi such that x1

i ∈ W 1. Similarly, as the
only vertices outside Vα that are adjacent to bj are vertices x2

i corresponding
to variables Xi appearing in Cj , it follows that Cj has a variable Xi′ such that
x2

i′ ∈ W 3. ��

3 C4-Contractiblity on Biparitite Graphs

In this section, we prove Theorem 2. It is easy to verify that C4-
Contractibility is in NP. Given an instance ψ of Positive NAE-SAT with
N variables and M clauses, we give a polynomial-time algorithm that outputs a
bipartite graph G equivalent to ψ (Lemmas 7 and 8).

3.1 Construction of G

Let {X1,X2, . . . , XN} and {C1, C2, . . . , CM} be the sets of variables and clauses,
respectively, in ψ. The graph G with a partition {V, V ′} of its vertex set is
constructed as follows. See Fig. 2 for an illustration.

1. Add vertices t, f to V , vertices t′, f ′ to V ′ and edges tt′, ff ′ to E(G). This
set would eventually form the “base cycle” in the witness structure.

364 R. Krithika et al.

Fig. 2. (Left) The graph G where only three vertices each in D and D′ shown with
purple (dotted) edges denote setting variable Xi to True and green (dashed) edges
denote setting Xi to False. (Right) Adjacency relation between different subsets of
vertices. (Color figure online)

2. For every i ∈ [N], add vertices xi, yi, zi to V and x′
i, y

′
i, z

′
i to V ′ corresponding

to the variable Xi. Further, make every vertex in {x′
i, y

′
i, z

′
i} adjacent to every

vertex in {xi, t, f} and every vertex in {xi, yi, zi} adjacent to every vertex in
{x′

i, t
′, f ′}. Let X = {xi | i ∈ [N]}, X ′ = {x′

i | i ∈ [N]}, Y = {yi | i ∈ [N]},
Y ′ = {y′

i | i ∈ [N]}, Z = {zi | i ∈ [N]}, Z ′ = {z′
i | i ∈ [N]}. The neighborhood

of X ′ is set so that every element of X ′ is in the witness set containing t
or f . This forces every element of X to be respectively in the witness set
containing t′ or f ′. These binary choices would be associated with setting the
corresponding variable to True or False. The sets Y , Y ′, Z, Z ′ are added for
technical reasons.

3. For every j ∈ [M], add vertices cj , bj to V , c′
j , b

′
j to V ′ and edges cjf

′, bjf
′,

c′
jt, b′

jt to E(G) corresponding to clause Cj . Let C = {cj | j ∈ [M]}, C ′ =
{c′

j | j ∈ [M]}, B = {bj | j ∈ [M]}, B′ = {b′
j | j ∈ [M]}. Subsequently,

we will add more vertices (sets D and D′ defined subsequently) adjacent to
vertices in C ∪ B ∪ C ′ ∪ B′ so that no vertex in B ∪ C is in a witness set
that is non-adjacent to the one containing t and no vertex in B′ ∪ C ′ is in a
witness set that is non-adjacent to the one containing f ′.

4. For every i ∈ [N] and j ∈ [M], if Xi appears in Cj then add edges cjx
′
i, bjx

′
i,

xic
′
j , and xib

′
j to E(G). This step is the one that encodes the clause-variable

relationship. Relevant variables are expected to help clause vertices to be
connected to witness sets containing them.

5. Let D denote the following collection of pairs of vertices: {{t, f}, {t′, f ′}}⋃{{t, cj}, {t, bj}, {f ′, c′
j}, {f ′, b′

j} | j ∈ [M]}. Note that for any pair of vertices

The Complexity of Contracting Bipartite Graphs into Small Cycles 365

in D, either both elements of the pair are in V or both are in V ′. For every
pair {u, v} of vertices in D that are in V , add three vertices d′

u,v,1, d′
u,v,2,

d′
u,v,3 to V ′ and make them adjacent to both u, v. For every pair {u, v} of

vertices in D that are in V ′, add three vertices du,v,1, du,v,2, du,v,3 to V and
make them adjacent to both u, v. The pairs in D are the ones that should
not be in non-adjacent witness sets and the common neighbors are added to
achieve this property.

This completes the construction of G. As the reduction always adds edges with
one of its endpoints in V and the other endpoint in V ′, G is a bipartite graph
with bipartition {V, V ′}. Let D = {du,v,p | {u, v} ∈ D, u, v ∈ V and p ∈ [3]} and
D′ = {d′

u,v,p | {u, v} ∈ D, u, v ∈ V ′ and p ∈ [3]}.

3.2 Properties of a Nice C4-Witness Structure of G

Now, we show that if G is contractible to a 4-cycle, then there is a C4-witness
structure of G satisfying certain nice properties. For this purpose, we introduce
the following notion of a nice C4-witness structure.

Definition 2. A C4-witness structure of G is a nice C4-witness structure if the
following properties hold.
(P1) For every pair {u, v} in D, u and v are in the same or adjacent witness
sets.
(P2) Every vertex in D ∪ D′ is in a big witness set. Further, every vertex in D′

is in the same witness set as t and every vertex in D is in the same witness set
as f ′.

Next, we show the existence of a nice C4-witness structure for Yes-instances.

Lemma 5. [�] If G is contractible to a 4-cycle, then there is a nice C4-witness
structure of G.

Now, we show a property of a nice C4-witness structure of G that will be crucial
to proving the correctness of the reduction.

Lemma 6. [�] In any nice C4-witness structure of G, every pair of vertices in
{t, t′, f, f ′} are in different witness sets.

3.3 Equivalence of G and ψ

Now, we are ready to establish the equivalence of ψ and G.

Lemma 7. If ψ is a Yes-instance of Positive NAE-SAT then G is a Yes-
instance of C4-Contractibility.

366 R. Krithika et al.

Proof. Suppose π : {X1,X2, . . . , XN} → {True, False} is a not-all-equal satis-
fying assignment of ψ. Define the following partition of V (G).

W 0 := {t} ∪ {x′
i, y

′
i, z

′
i | i ∈ [N] and π(Xi) = True} ∪ D′,

W 1 := {t′} ∪ {xi, yi, zi | i ∈ [N] and π(Xi) = True} ∪ B′ ∪ C ′,

W 2 := {f ′} ∪ {xi, yi, zi | i ∈ [N] and π(Xi) = False} ∪ D, and

W 3 := {f} ∪ {x′
i, y

′
i, z

′
i | i ∈ [N] and π(Xi) = False} ∪ B ∪ C.

As t is adjacent to every vertex in X ′ ∪ Y ′ ∪ Z ′ ∪ D′, and f ′ is adjacent to
every vertex in X ∪ Y ∪ Z ∪ D, W 0 and W 2 are connected sets in G. Further,
by construction, E(W 0,W 2) = ∅ and E(W 1,W 3) = ∅. W 1 is a connected set
since X ∪ Y ∪ Z ⊆ N(t′) and for each j ∈ [M], there exists i ∈ [N] such that
xi ∈ W 1 (corresponding to a variable in Cj set to True) and c′

jxi, b
′
jxi ∈ E(G).

Similarly, W 3 is also a connected set. The edges tt′ and ff ′, respectively, ensure
that W 0 is adjacent to W 1 and W 3 is adjacent to W 2. As for any i ∈ [N], x′

i

is adjacent with t and f and x′
i ∈ W 0 ∪ W 3, it follows that W 0 and W 3 are

adjacent. Similarly, W 1 and W 2 are adjacent. Hence, {W 0,W 1,W 2,W 3} is a
C4-witness structure. ��

Now, we proceed to show the converse of Lemma 7. We crucially use the
properties of a nice C4-witness structure. This structure along with certain other
properties help to obtain a not-all-equal satisfying assignment of ψ.

Lemma 8. If G is a Yes-instance of C4-Contractibility then ψ is a Yes-
instance of Positive NAE-SAT.

Proof. Suppose W = {W 0,W 1,W 2,W 3} is a C4-witness structure of G where
E(W i,W j) �= ∅ if and only if j = (i ± 1) mod 4. From Lemmas 5 and 6,
we may assume that W is a nice C4-witness structure in which every pair of
vertices in {t, t′, f, f ′} are in different witness sets. As {t, f} and {t′, f ′} are in
D, by Property (P1) of a nice C4-witness structure of G, t and f are in adjacent
witness sets and t′ and f ′ are in adjacent witness sets. Hence, without loss of
generality, we may assume that t ∈ W 0, t′ ∈ W 1, f ′ ∈ W 2, and f ∈ W 3. Also,
by Property (P2) of a nice C4-witness structure of G, we have D′ ⊆ W 0 and
D ⊆ W 2.

For each i ∈ [N], x′
i is adjacent to t, f and xi is adjacent to t′, f ′. Therefore,

xi /∈ W 0 ∪ W 3, x′
i /∈ W 1 ∪ W 2 and we have X ′ ⊆ W 0 ∪ W 3 and X ⊆ W 1 ∪ W 2.

Further, since xix
′
i ∈ E(G), it follows that xi ∈ W 1 if and only if x′

i ∈ W 0

and xi ∈ W 2 if and only if x′
i ∈ W 3. Refer to Fig. 2 for an illustration where

these two choices are indicated by the purple (dotted) edges and green (dashed)
edges. We will associate these two choices with setting the variable Xi to True
or False, respectively. Consider a vertex cj ∈ C for some j ∈ [M]. As f ′ ∈ W 2

and f ′cj ∈ E(G), it follows that cj /∈ W 0. Also, since t ∈ W 0 and {t, cj} is in
D, by Property (P1) of a nice C4-witness structure of G, it follows that cj is not
in W 2. As N(cj) ⊆ W 0 ∪ W 2 ∪ W 3 and t′ ∈ W 1, if cj ∈ W 1, then W 1 cannot
be a connected set. Hence, cj ∈ W 3. As cj is an arbitrary vertex of C in this

The Complexity of Contracting Bipartite Graphs into Small Cycles 367

reasoning, we have C ⊆ W 3. Similarly, B ⊆ W 3. This implies C ∪ B ⊆ W 3. By
a symmetric argument, we have C ′ ∪ B′ ⊆ W 1.

We now construct an assignment π : {X1,X2, . . . , XN} → {True, False}
using W. For every i ∈ [N], set π(Xi) = True if xi ∈ W 1 (or equivalently
x′

i ∈ W 0) and set π(Xi) = False if x′
i ∈ W 3 (or equivalently xi ∈ W 2). As

mentioned before, xi ∈ W 1 if and only if x′
i ∈ W 0 and x′

i ∈ W 3 if and only if
xi ∈ W 2. As W 3 is connected and f, cj ∈ W 3, for every j ∈ [M], there exists
i ∈ [N], such that x′

i ∈ W 3 and cjxi ∈ E(G). Similarly, as W 1 is connected, for
every j ∈ [M], there exists i ∈ [N] such that xi ∈ W 1 and c′

jxi ∈ E(G). ��

4 Conclusion and Future Directions

In this work, we showed that C�-Contractibility is NP-complete on bipartite
graphs for � ∈ {4, 5} by giving polynomial-time reductions from Positive NAE-

SAT.
Positive NAE-SAT (or equivalently, Hypergraph 2-Colorability) has

been one of the canonical NP-complete problems in many intractability results
on C�-Contractibility [5,8,9]. In general, in most contraction problems, it is
a non-trivial task to forbid certain edges from being contracted in a solution. The
simultaneous property of requiring a variable to be True and a variable to be
False in every clause of a Yes-instance of Positive NAE-SAT helps to encode
that certain edges in the output graph of the reduction cannot be contracted,
hence, giving a handle on the required structure of the witness sets. This is one
of the reasons that makes Positive NAE-SAT an amenable choice in many
reductions for graph contractibility problems. However, the sophistication level
of the gadgets involved in the reduction increases with the restriction required
on the input graph (e.g. bipartite graphs, claw-free graphs). In contrast, the
sophistication decreases with increase in the size of the target graph, for instance,
the gadgets required for the NP-hardness of C4-Contractibility are more
complex than those needed for C5-Contractibility, which are more complex
that what are required for C6-Contractibility.

Continuing along the direction of solving cycle contractibility in restricted
graph classes, we can also show the following result.

Theorem 3. [�] C4-Contractibility is NP-complete on K4-free graphs of
diameter 2.

Theorem 3 can be generalized to show that Kp,q-Contractibility (the
problem of determining if a graph is contractible to the complete bipartite graph
with p vertices in one part and q vertices in the other part) is also NP-complete
for each p, q ≥ 2 on K4-free graphs of diameter 2. Our interest in this restricted
case stems from its relationship with Disconnected Cut, the problem of deter-
mining if a connected graph G contains a subset U ⊆ V (G) such that both G[U]
and G − U are disconnected [17,22,23]. If the diameter of G is 2, then G has a
disconnected cut if and only if G is contractible to Kp,q for some p, q ≥ 2 [17,

368 R. Krithika et al.

Proposition 1]. Martin et al. proved that Disconnected Cut is polynomial-
time solvable for H-free graphs when H �= K4 is a graph on at most 4 vertices
[23, Theorem 7]. Theorem 3 (and its generalization to p, q ≥ 2) implies that
(p, q)-Disconnected Cut (see [17]) is NP-complete for all p, q ≥ 2 on K4-free
graphs. Although this falls short of completing the dichotomy of [23, Theorem 7],
we believe that it strongly suggests that there is no polynomial-time algorithm
for Disconnected Cut on K4-free graphs.

Finally, determing the longest cycle to which an H-free graph (for a fixed
H) is contractible is another interesting future direction. A similar study on H-
free graphs in the context of longest paths is known [20]. Note that assuming
P�=NP, the complexities of contracting to a longest path and longest cycle do
not coincide on H-free graphs.

References

1. Andersson, M., Gudmundsson, J., Levcopoulos, C.: Restricted mesh simplifica-
tion using edge contractions. Int. J. Comput. Geom. Appl. 19(3), 247–265 (2009).
https://doi.org/10.1142/S0218195909002940

2. Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M.,
Paulusma, D.: Detecting Fixed Patterns in Chordal Graphs in Polynomial Time.
Algorithmica 69(3), 501–521 (2013). https://doi.org/10.1007/s00453-013-9748-5

3. Bernstein, A., Däubel, K., Disser, Y., Klimm, M., Mütze, T., Smolny, F.: Distance-
preserving graph contractions. SIAM J. Discrete Math. 33(3), 1607–1636 (2019).
https://doi.org/10.1137/18M1169382

4. Blum, D.J.: Circularity of graphs. Ph.D. thesis, Virginia Polytechnic Institute and
State University (1982)

5. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph
Theory 11(1), 71–79 (1987). https://doi.org/10.1002/jgt.3190110111

6. Cheng, S., Dey, T.K., Poon, S.: Hierarchy of surface models and irreducible triangu-
lations. Comput. Geom. 27(2), 135–150 (2004). https://doi.org/10.1016/j.comgeo.
2003.07.001

7. Cong, J., Lim, S.K.: Edge separability-based circuit clustering with application to
multilevel circuit partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 23(3), 346–357 (2004). https://doi.org/10.1109/TCAD.2004.823353

8. Dabrowski, K.K., Paulusma, D.: Contracting bipartite graphs to paths and cycles.
Inf. Process. Lett. 127, 37–42 (2017). https://doi.org/10.1016/j.ipl.2017.06.013

9. Fiala, J., Kaminski, M., Paulusma, D.: A note on contracting claw-free graphs.
Discrete Math. Theor. Comput. Sci. 15(2), 223–232 (2013)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman, New York (1979)

11. Hammack, R.H.: Cyclicity of graphs. J. Graph Theory 32(2), 160–170
(1999). https://doi.org/10.1002/(SICI)1097-0118(199910)32:2〈160::AID-JGT6〉3.
0.CO;2-U

12. Hammack, R.H.: A note on the complexity of computing cyclicity. Ars Comb. 63,
89–95 (2002)

13. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Vinay,
V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45294-X 3

https://doi.org/10.1142/S0218195909002940
https://doi.org/10.1007/s00453-013-9748-5
https://doi.org/10.1137/18M1169382
https://doi.org/10.1002/jgt.3190110111
https://doi.org/10.1016/j.comgeo.2003.07.001
https://doi.org/10.1016/j.comgeo.2003.07.001
https://doi.org/10.1109/TCAD.2004.823353
https://doi.org/10.1016/j.ipl.2017.06.013
https://doi.org/10.1002/(SICI)1097-0118(199910)32:2<160::AID-JGT6>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0118(199910)32:2<160::AID-JGT6>3.0.CO;2-U
https://doi.org/10.1007/3-540-45294-X_3

The Complexity of Contracting Bipartite Graphs into Small Cycles 369

14. Heggernes, P., van ’t Hof, P., Lévêque, B., Paul, C.: Contracting chordal graphs
and bipartite graphs to paths and trees. Discrete Appl, Math. 164, 444–449 (2014).
https://doi.org/10.1016/j.dam.2013.02.025

15. Hoede, C., Veldman, H.J.: Contraction theorems in Hamiltonian graph theory.
Discrete Math. 34(1), 61–67 (1981). https://doi.org/10.1016/0012-365X(81)90022-
4

16. van ’t Hof, P., Kaminski, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph
contractions and induced minors. Discrete Appl. Math. 160(6), 799–809 (2012).
https://doi.org/10.1016/j.dam.2010.05.005

17. Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a
graph by the number of their components. Theor. Comput. Sci. 412(45), 6340–6350
(2011). https://doi.org/10.1016/j.tcs.2011.07.005

18. Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of planar graphs in poly-
nomial time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
122–133. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 11

19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/
10.1137/S1064827595287997

20. Kern, W., Paulusma, D.: Contracting to a longest path in H-free graphs. In: Cao,
Y., Cheng, S., Li, M. (eds.) 31st International Symposium on Algorithms and
Computation, ISAAC 2020, 14–18 December 2020, Hong Kong, China (Virtual
Conference). LIPIcs, vol. 181, pp. 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.22

21. Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph
contractions I: polynomially solvable and NP-complete cases. Networks 51(3), 178–
189 (2008). https://doi.org/10.1002/net.20214

22. Martin, B., Paulusma, D.: The computational complexity of disconnected cut and
2K2-partition. J. Comb. Theory Ser. B 111, 17–37 (2015). https://doi.org/10.
1016/j.jctb.2014.09.002

23. Martin, B., Paulusma, D., van Leeuwen, E.J.: Disconnected cuts in claw-free
graphs. J. Comput. Syst. Sci. 113, 60–75 (2020). https://doi.org/10.1016/j.jcss.
2020.04.005

24. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem.
J. Comb. Theory Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.
1006

25. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978,
San Diego, California, USA. pp. 216–226. ACM (1978). https://doi.org/10.1145/
800133.804350

https://doi.org/10.1016/j.dam.2013.02.025
https://doi.org/10.1016/0012-365X(81)90022-4
https://doi.org/10.1016/0012-365X(81)90022-4
https://doi.org/10.1016/j.dam.2010.05.005
https://doi.org/10.1016/j.tcs.2011.07.005
https://doi.org/10.1007/978-3-642-15775-2_11
https://doi.org/10.1007/978-3-642-15775-2_11
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.4230/LIPIcs.ISAAC.2020.22
https://doi.org/10.1002/net.20214
https://doi.org/10.1016/j.jctb.2014.09.002
https://doi.org/10.1016/j.jctb.2014.09.002
https://doi.org/10.1016/j.jcss.2020.04.005
https://doi.org/10.1016/j.jcss.2020.04.005
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350

Algorithmic Aspects of Small
Quasi-Kernels

Hélène Langlois1(B) , Frédéric Meunier1 , Romeo Rizzi2 ,
and Stéphane Vialette3

1 CERMICS, École des Ponts ParisTech, 77455 Marne-la-Vallée, France
{helene.langlois,frederic.meunier}@enpc.fr

2 Department of Computer Science, Università di Verona, 37129 Verona, Italy
romeo.rizzi@univr.it

3 LIGM, Univ Gustave Eiffel, CNRS, 77454 Marne-la-Vallée, France
stephane.vialette@univ-eiffel.fr

Abstract. In a digraph, a quasi-kernel is a subset of vertices that is
independent and such that every vertex can reach some vertex in that
subset via a directed path of length at most two. Whereas Chvátal and
Lovász proved in 1974 that every digraph has a quasi-kernel, very little
is known so far about the complexity of computing small quasi-kernels.
In 1976, Erdős and Székely conjectured that every sink-free digraph has
a quasi-kernel containing at most half of the vertices. Obviously, if a
digraph has two disjoint quasi-kernels then it has such a quasi-kernel
and in 2001, Gutin, Koh, Tay and Yeo conjectured that every sink-free
digraph has two disjoint quasi-kernels. Yet, they constructed in 2004 a
counterexample, thereby disproving this stronger conjecture.

We shall show that not only do sink-free digraphs occasionally fail
to contain two disjoint quasi-kernels, but it is computationally hard to
distinguish those that do from those that do not. We also prove that the
problem of computing a smallest quasi-kernel is computationally hard,
even for restricted classes of acyclic digraphs and for orientations of split
graphs. Finally, we observe that this latter problem is polynomial-time
solvable for graphs with bounded treewidth and identify a class of graphs
with unbounded treewidth for which the problem is also polynomial-time
solvable, namely orientations of complete split graphs.

Keywords: Quasi-kernel · Digraph · Computational complexity

1 Introduction

Let D = (V,A) be a digraph. A kernel K is a subset of vertices that is indepen-
dent (i.e., all pairs of distinct vertices of K are non-adjacent) and such that, for
every vertex v /∈ K, there exists w ∈ K with (v, w) ∈ A. Kernels were introduced
by von Neumann and Morgenstern [20]. It is now a central notion in graph theory
and has important applications in relation with colorings [11], perfect graphs [4],
game theory and economics [15], logic [21], etc. Clearly, not every digraph has
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 370–382, 2022.
https://doi.org/10.1007/978-3-031-15914-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_27&domain=pdf
http://orcid.org/0000-0002-3859-7290
http://orcid.org/0000-0002-5331-2863
http://orcid.org/0000-0002-2387-0952
http://orcid.org/0000-0003-2308-6970
https://doi.org/10.1007/978-3-031-15914-5_27

Algorithmic Aspects of Small Quasi-Kernels 371

a kernel (for instance, a directed cycle of odd length does not contain a kernel)
and a digraph may have several kernels. Chvátal proved that deciding whether
a digraph has a kernel is NP-complete [6] and the problem is equally hard for
planar digraphs with bounded degree [10].

Chvátal and Lovász [5] later introduced the notion of quasi-kernels. A quasi-
kernel in a digraph is a subset of vertices that is independent and such that every
vertex can reach some vertex in that set via a directed path of length at most
two. Defining the (directed) distance d(v, w) from a vertex v to a vertex w as
the minimum length of a directed path from v to w, a quasi-kernel Q is a subset
of vertices that is independent and such that for every vertex v /∈ Q there exists
w ∈ Q such that d(v, w) � 2. In particular, any kernel is a quasi-kernel. Yet,
unlike kernels, every digraph has a quasi-kernel. Chvátal and Lovász provided a
proof of this fact, which can be turned into a simple polynomial-time algorithm
(alternative simple proofs exist [3]).

In 1976, Erdős and Székely [9] conjectured that a sink-free digraph D = (V,A)
(i.e., every vertex of D has positive outdegree) has a quasi-kernel of size at most
|V |/2. Very recently, Kostochka et al. [17] renewed the interest in the small
quasi-kernel conjecture and proved that the conjecture holds for orientations
of 4-colorable graphs (in particular, for all planar graphs). The conjecture is
however still wide open.

In 2001, Gutin et al. [13] conjectured that every sink-free digraph has two
disjoint quasi-kernels (this stronger conjecture implies the original small quasi-
kernel conjecture). In 2004, in an update of their paper, the authors constructed a
counterexample with 14 vertices [12]. The conjecture about disjoint quasi-kernels
holds however for special classes of digraphs; see Heard and Huang [14].

As we shall prove, not only do sink-free digraphs occasionally fail to contain
two disjoint quasi-kernels, but it is actually computationally hard to distinguish
those that do from those that do not. Whereas the small quasi-kernel conjecture
has been established for planar sink-free digraphs, the systematic existence of
two disjoint quasi-kernels in such graphs is still unsettled (the counterexample
constructed by Gutin et al. does contain a directed K7). We shall show however
that deciding whether a planar digraph has three disjoint quasi-kernels is NP-
complete.

In addition to these results on the complexity of deciding the existence of dis-
joint quasi-kernels, we initiate the study of computing quasi-kernels of minimum
size. Surprisingly enough, whereas every digraph has a quasi-kernel, very little
was known so far about this problem, which we call Min-Quasi-Kernel (and
we let Quasi-Kernel stand for the related decision problem). The main message
is that these problems are computationally hard even for very simple digraph
classes, e.g., for acyclic orientations of bipartite graphs or for orientations of
split graphs. Courcelle’s theorem [8] ensures that the problem is polynomial-time
solvable for orientations of graphs with bounded treewidth (and a similar result
holds for deciding the existence of disjoint quasi-kernels). We show that orienta-
tions of complete split graphs form a nontrivial class of graphs with unbounded
treewidth for which the problem is polynomial, but identifying other classes of
this sort seems to be quite challenging.

372 H. Langlois et al.

We assume that the readers are familiar with standard terms of directed
graphs [2], parametrized complexity [8] and approximability theory [19].

2 Disjoint Quasi-Kernels

Our main complexity result about the existence of disjoint quasi-kernels is the fol-
lowing one. Our proof uses the counterexample constructed by Gutin et al. [12].

Theorem 1. Deciding if a digraph has two disjoint quasi-kernels is NP-
complete, even for digraphs with maximum outdegree six.

Proof. Given a Boolean expression F in conjunctive normal form (CNF) where
each clause is the disjunction of at most three distinct literals, 3-SATasks to
decide whether F is satisfiable. We reduce from 3-SAT, which is known to be
NP-complete [16].

Consider an instance of 3-SAT. Let X = {x1, x2, . . . , xn} be its variables,
and let F = C1 ∨ C2 ∨ · · · ∨ Cm be its CNF-formula. We construct a digraph
D = (V,A) as follows.

– We start with the gadget D0 shown on the top part of Fig. 1 which contains
the specified vertex b′.

– For every Boolean variable xi ∈ X we introduce the gadget Di shown in
the middle part of Fig. 1 which contains two specified vertices fi and ti.
Furthermore, we connect Di to D0 with two arcs (fi, b′) and (ti, b′).

– For every clause C = �i∨�j∨�k of F we introduce the gadget DC shown in the
bottom part of Fig. 1 which contains one specified vertex kC,1. Furthermore,
we connect DC to the gadgets Di,Dj ,Dk with three arcs (kC,1, λi), (kC,1, λj)
and (kC,1, λk), where λi = ti (resp. λj = tj & λk = tk) if �i (resp. �j & �k)
is a positive literal, and λi = fi (resp. λj = fj & λk = fk) if �i (resp. �j &
�k) is a negative literal.

Note that for every clause C of F , the digraph DC is the counterexample con-
structed by Gutin et al. [12]. It has the important property that any two distinct
vertices of {kC,i : 1 � i � 7} have a common outneighbor in {kC,i : 1 � i � 7}.

It is clear that |V | = 14m + 6n + 6 and |A| = 31m + 11n + 9. Moreover, D
has maximum outdegree six (but it has unbounded indegree; see vertex b′). We
claim that the Boolean formula F is satisfiable if and only if the digraph D has
two disjoint quasi-kernels.

Suppose that the Boolean formula F is satisfiable and consider any satisfying
assignment ϕ. Construct two subsets Q1, Q2 ⊆ V as follows.

– The elements of Q1 are the following vertices: the vertices b and b′ from D0,
the vertex A′

i from Di for every variable xi ∈ X, and the vertices kC,6, sC,1,
sC,3 and sC,7 from DC for every clause C of F .

– The elements of Q2 are the following vertices: the vertices c and c′ from D0,
the vertices A′′

i and ti from Di for every variable xi ∈ X with ϕ(xi) = true,
or the vertices A′′

i and fi from Di with ϕ(xi) = false and the vertices kC,7,
sC,2 and sC,4 from DC for every clause C of F .

Algorithmic Aspects of Small Quasi-Kernels 373

Fig. 1. Proof of Theorem 1: Connecting the gadgets for clause c = xi ∨ xj ∨ ¬xk.
Red (resp. Blue) vertices denote vertices in Q1 (resp. Q2). Shown here is the case
ϕ(xi) = true, ϕ(xj) = false and ϕ(xk) = false (i.e., ti ∈ Q2, fj ∈ Q2 and fk ∈ Q2).
Note that fj /∈ Q2 and tj /∈ Q2 implies ϕ(xj) = false. (Color figure online)

374 H. Langlois et al.

It is a simple matter to check that Q1 and Q2 are disjoint and that both Q1

and Q2 are independent subsets. Furthermore, we claim that Q1 and Q2 are two
quasi-kernels of D. The claim is clear for Q1. As for Q2, it is enough to show
that, for every clause C, the vertex sC,1 is at distance at most two of some vertex
in Q2. Indeed, let C = �i ∨ �j ∨ �k be a clause where �i, �j and �k are positive or
negative literals. Since ϕ is a satisfying assignment, there exists one literal, say �i,
that evaluates to true in the clause C. Therefore, if ϕ(xi) = true then ti ∈ Q2

and (kC,1, ti) ∈ A, and if ϕ(xi) = false then fi ∈ Q2 and (kC,1, fi) ∈ A.
Conversely, suppose that there exist two disjoint quasi-kernels Q1 and Q2 in

D. We first observe that Q1∩{a, b, c} �= ∅ and Q2∩{a, b, c} �= ∅. Then it follows
that a′ /∈ Q1 ∪ Q2 (by independence), and hence b′ ∈ Q1 ∪ Q2. Without loss of
generality, suppose b′ ∈ Q1. Define an assignment ϕ for the Boolean formula
F as follows: for 1 � i � n, if ti ∈ Q2 then set ϕ(xi) = true; otherwise set
ϕ(xi) = false. Let us show that ϕ is a satisfying assignment.

By independence, we have ti /∈ Q1 and fi /∈ Q1 for 1 � i � n.
We need the following claim.

Claim. We have {kC,1, kC,2, kC,3, kC,5} ∩ (Q1 ∪ Q2) = ∅ for every clause C of F .

Proof. We only prove kC,1 /∈ Q1 ∪ Q2 (the proof is similar for kC,2 /∈ Q1 ∪ Q2,
kC,3 /∈ Q1 ∪ Q2 and kC,5 /∈ Q1 ∪ Q2.) Suppose, aiming at a contradiction, that
kC,1 ∈ Q1 ∪ Q2. Without loss of generality we may assume kC,1 ∈ Q1 (the
argument is symmetric if kC,1 ∈ Q2). Then it follows that {sC,2, sC,3, sC,5} ⊆ Q1,
and hence {sC,2, sC,3, sC,5}∩Q2 = ∅. But, for any vertex kC,i, 2 � i � 7, we can
easily check that either d(sC,2, kC,i) > 2, or d(sC,3, kC,i) > 2, or d(sC,5, kC,i) > 2.
Hence Q2 is not a quasi-kernel of D. This is the sought contradiction. �	
Claim. We have sC,1 ∈ Q1 for every clause C of F .

Proof. Suppose, aiming at a contradiction, that sC,1 /∈ Q1. Combining Claim 2
with ti /∈ Q1 and fi /∈ Q1 for 1 � i � n, we conclude that no vertex in Q1 is at
distance at most two from sC,1. Therefore, Q1 is not a quasi-kernel of D. This
is a contradiction. �	

Let C = �i ∨ �j ∨ �k be a clause. According to Claim 2, we have sC,1 ∈ Q1.
Furthermore, according to Claim 2, {kC,1, kC,2, kC,3, kC,5} ∩ Q2 = ∅. Then it
follows that {λi, λj , λk} ∩ Q2 �= ∅ where λi = ti (resp. λj = tj & λk = tk) if �i
(resp. �j & �k) is a positive literal, and λi = fi (resp. λj = fj & λk = fk) if �i
(resp. �j & �k) is a negative literal. Therefore ϕ is a satisfying assignment. �	
As noted in the introduction, very little is known about the existence of disjoint
quasi-kernels in planar digraphs.

Theorem 2. Deciding if a digraph has three disjoint quasi-kernels is NP-
complete, even for bounded degree planar digraphs.

Algorithmic Aspects of Small Quasi-Kernels 375

3 Acyclic Digraphs

In this section, we address the complexity status of Quasi-Kernel and Min-

Quasi-Kernel for acyclic orientations of various classes of graphs. The next two
theorems show that there is not so much room for extending the polynomiality
result about orientations of graphs with bounded treewidth.

We recall that a cubic graph is a graph in which every vertex has degree
three.

Theorem 3. Quasi-Kernel is NP-complete, even for acyclic orientations of
cubic graphs.

Assuming FPT �= W[2], our next result shows that one cannot confine the
seemingly inevitable combinatorial explosion of computational difficulty to an
additive function of the size of the quasi-kernel, even for restricted digraph
classes.

Theorem 4. Quasi-Kernel is W[2]-complete when the parameter is the size
of the sought quasi-kernel, even for acyclic orientations of bipartite graphs.

We finish the section with a series of propositions providing complementary
evidence for the versatile hardness of computing small quasi-kernels.

Recall that a kernel is a quasi-kernel. Actually we have more: a kernel is an
inclusion-wise maximal quasi-kernel. Inclusion-wise minimal quasi-kernels are
easy to find with a greedy algorithm. Though, finding a minimum-size quasi-
kernel included in a kernel is hard as shown by the following result, whose proof
is identical to the one of Theorem 4 (F ∪ {t} is actually a kernel of the digraph
D).

Proposition 1. Let D = (V,A) be an acyclic orientation of a bipartite graph,
K ⊆ V be a kernel of D and k be a positive integer. Deciding whether there
exists a quasi-kernel included in K of size k is W[2]-complete for parameter k.

Dinur and Steuer [7] have shown that Set Cover cannot be approximated in
polynomial time within a factor of (1 − ε) ln(|U |) for some constant ε > 0 unless
P = NP. Moreover, they built an instance of Set Cover where the number of
subsets is a polynomial of the universe size. Therefore, the construction used in
the proof of Theorem 4 allows us to state the following inapproximability result.

Proposition 2. Min-Quasi-Kernel cannot be approximated in polynomial
time within a factor of (1 − ε) ln(|V |) for some constant ε > 0 unless P = NP,
even for acyclic orientations of bipartite graphs.

Our last result focuses on another restricted classes of digraphs, namely
acyclic digraphs with bounded degrees. We need a preliminary lemma which
we state for general digraphs.

Lemma 1. Min-Quasi-Kernel belongs to APX for digraphs with fixed maxi-
mum indegrees.

376 H. Langlois et al.

Proof. Let D = (V,A) be a digraph and Q ⊆ V be a quasi-kernel.
It is clear that (d2 + d + 1)|Q| � |V |, where d is the maximum indegree of D.

Then it follows that any polynomial-time algorithm that computes a quasi-kernel
(such as the algorithm proposed by Chvátal and Lovász [5]) is a (d2 + d + 1)-
approximation algorithm. �	
Proposition 3. Min-Quasi-Kernel is APX-complete for acyclic digraphs with
maximum indegree three and maximum outdegree two.

Proof. Membership in APX for acyclic digraphs with fixed indegrees follows from
Lemma 1. Specifically, Min-Quasi-Kernel for acyclic digraphs with maximum
indegree three can be approximated in polynomial time within a factor of 13.

To prove hardness, we L-reduce from Vertex Cover in cubic graphs which
is known to be APX-complete [1]. As defined in [18], letting P and P ′ be two
optimization problems, we say that P L-reduces to P ′ if there are two polynomial-
time alogirhtms f, g, and constants α, β > 0 such that for each instance I of P :
algorithm f produces an instance I ′ = f(I) of P , such that the optima of I and
I ′, OPT (I) and OPT (I ′), respectively, satisfy OPT (I ′) � αOPT (I) and given
any solution of I ′ with cost c′, algorithm g produces a solution of I with cost c
such that |c − OPT (I)| � β|c′ − OPT (I ′)|. Let f be the following L-reduction
from Vertex Cover in cubic graphs to Min-Quasi-Kernel with maximum
indegree three. Given a cubic graph G = (V,E) with V = [n] and m edges, we
construct a digraph D = (V ′, A) as follows:

V ′ = {wi, w
′
i, w

′′
i : 1 � i � n} ∪ {ze, z

′
e : e ∈ E} ,

A = {(wi, w
′
i), (w

′
i, w

′′
i) : 1 � i � n} ∪ {(z′

e, ze), (ze, wi), (ze, wj) : e = ij ∈ E} .

Note that the vertices w′′
i are sinks in D. It is clear that |V ′| = 3n + 2m,

|A| = 2n + 3m and, since G is a cubic graph, that every vertex has maximum
indegree three in D. We also observe that the maximum outdegree is two in D.
See Fig. 2 for an example.

Consider a quasi-kernel Q ⊆ V ′ of D = f(G). We claim that it can be
transformed in polynomial time into a vertex cover C ⊆ V of G such that
|C| � |Q|. To see this, observe first that Q can be transformed in polynomial
time into a quasi-kernel Q′ ⊆ V ′ such that (i) |Q′| � |Q| and (ii) z′

e /∈ Q′ and
ze /∈ Q′ for every e ∈ E. Indeed, repeated applications of the following two
procedures enable us to achieve the claimed quasi-kernel.

– Suppose that there exists z′
e ∈ Q for some e = ij ∈ E. Then it follows that

ze /∈ Q (by independence). Furthermore, we have w′′
i ∈ Q and w′′

j ∈ Q, and
hence w′

i /∈ Q and w′
j /∈ Q. Therefore, wi ∈ Q or wj ∈ Q (possibly both).

On account of the above remarks, Q′ = Q \ {z′
e} is a quasi-kernel of D and

|Q′| < |Q|.
– Let Zi ⊆ Q stand for the set of vertices ze ∈ Q, where e is an edge incident

to the vertex i in G. Suppose that there exists some set Zi �= ∅. Then it
follows that wi /∈ Q (by independence). Furthermore, we have w′′

i ∈ Q, and
hence w′

i /∈ Q. On account of the above remarks, Q′ = (Q \ Zi) ∪ {wi} is a
quasi-kernel of D and |Q′| � |Q|.

Algorithmic Aspects of Small Quasi-Kernels 377

G

1 2

3

4

5 6

D

w1 w2

w3

w4

w5 w6

w1w1 w2 w2

w3w3

w4w4

w5w5 w6 w6

z13
z13

z12

z12

z23
z23

z34 z34

z45
z45

z56

z56

z46
z46

z15

z15
z26

z26

Fig. 2. Example of the construction presented in the proof of Proposition 3.

From such a Q′, construct then a vertex cover C ⊆ V of G as follows: for
1 � i � n, add the vertex i to C if wi ∈ Q′. By construction, C is a vertex cover
of G of size |C| = |Q′| − |V |

Finally, it is easy to see that from a vertex cover C ∈ V of G we can construct
a quasi-kernel Q ⊆ V ′ of D = f(G) of size exactly |C|+ |V |: for every 1 � i � n,
add w′′

i to Q and add wi to Q if i ∈ C. Since G is a cubic graph, we have
|C| � |V |/4, and hence |Q| = |C| + |V | � |C| + 4|C| = 5|C|.

Thus opt(f(G)) � 5 opt(G) and we have shown that f is an L-reduction with
parameters α = 5 and β = 1. �	

4 Orientations of Split Graphs

In this section, we focus on orientations of split graphs. A graph is a split graph if
it can be partitioned in an independent set and a clique. This class seems to play
an important role in the study of small quasi-kernels since the only examples of
oriented graphs having no two disjoint quasi-kernels contain the orientation of a
split graph constructed by Gutin et al. [12].

378 H. Langlois et al.

4.1 Computational Hardness

We first show that one cannot confine the seemingly inevitable combinatorial
explosion of computational difficulty to the size of the sought quasi-kernel.

Proposition 4. Quasi-Kernel is W[2]-complete when the parameter is the
size of the sought quasi-kernel even for orientations of split graphs.

Proof. Membership in W[2] is clear. Given a digraph D = (V,A) and an integer
q, Directed Dominating Set is the problem of deciding if there exists a subset
S ⊆ V of size q such that every vertex v ∈ V is either in S or has an outneighbor
in S. Directed Dominating Set is W[2]-complete for parameter q [8].

We reduce Directed Dominating Set to Quasi-Kernel. Let D = (V,A)
be a digraph and q be a positive integer. Write n = |V |, V = {vi : 1 � i � n}
and m = |A|, and set b = 2q + 3. Let ≺ be some arbitrary total order on A.
Define an orientation of a split graph D′ = (V ′, A′) as follows:

V ′ = {s} ∪ S1 ∪ S2 ∪ K1 ∪ K2

A′ = A(s) ∪ A
(
S1

) ∪ A
(
S2

) ∪ A
(
K1

) ∪ A
(
K2

)

where

S1 =
{
s1i : 1 � i � n

}

S2 =
{
s2i : 1 � i � b

}

K1 =
{
k1
i,j : (vi, vj) ∈ A

}

K2 =
{
k2
i : 1 � i � b

}

and

A(s) =
{(

s, k1
i,j

)
: (vi, vj) ∈ A

} ∪ {(
k2
i , s

)
: 1 � i � b

}

A
(
S1

)
=

{(
s1i , k

1
i,j

)
: (vi, vj) ∈ A

} ∪ {(
k1
i,j , s

1
j

)
: (vi, vj) ∈ A

}

A
(
S2

)
=

{(
s2i , k

2
i

)
: 1 � i � b

}

A
(
K1

)
=

{(
k1
i,j , k

1
i′,j′

)
: (vi, vj) ∈ A, (vi′ , vj′) ∈ A, (vi, vj) ≺ (vi′ , vj′)

} ∪
{
(k1

i,j , k
2
l) : (vi, vj) ∈ A, 1 � l � b

}

A
(
K2

)
=

{
(k2

i , k
2
j) : 1 � i < j � b, i ≡ j (mod 2)

} ∪
{
(k2

j , k
2
i) : 1 � i < j � b, i �≡ j (mod 2)

}
.

Clearly, D′ is an orientation of a split graph (i.e., {s}∪S1∪S2 is an independent
set and K1 ∪ K2 induces a tournament), |V ′| = n + m + 2b + 1 and |A′| =(
m+b
2

)
+ 2m + 2b.

We claim that there exists a dominating set of size q in D if and only if D′

has a quasi-kernel of size q + 1.
Suppose first that there exists a directed dominating set M ⊆ V of size q in

D. Define Q = {s} ∪ {
s1i : vi ∈ M

}
. We note that Q ⊆ {s} ∪ S1, and hence Q is

Algorithmic Aspects of Small Quasi-Kernels 379

an independent set. Furthermore, by construction, the vertex s is at distance at
most two from every vertex in S2 ∪ K1 ∪ K2. Since M is a directed dominating
set, it is now clear that Q is a quasi-kernel of D′ of size q + 1.

Conversely, suppose that there exists a quasi-kernel Q ⊆ V ′ of size q +1 in D′.
By independence of Q, we have

∣
∣Q ∩ (

K1 ∪ K2
)∣∣ � 1. We first claim that s ∈ Q.

Indeed, suppose, aiming at a contradiction, that s /∈ Q. Let X = S2 \ Q. By
construction, N+(X) =

{
k2
i ∈ K2 : s2i ∈ X

}
. Furthermore, |X| �

∣
∣S2

∣
∣ − |Q| =

b−(q+1) = q+2, and hence |N+(X)| � q+2. Since |X| is strictly positive, there
exists k2

j ∈ K2 ∩ Q such that
{
k2
i ∈ K2 : s2i ∈ X

} ⊆ N− [
k2
j

]
. But, according to

the definition of A
(
K2

)
, |N−[k2

j] ∩ K2| � �b/2 < q + 2 for every k2
j ∈ K2. This

is a contradiction and hence s ∈ Q. We now observe that k1
i ∈ N+(s) for every

k1
i ∈ K1 and s ∈ N+(k2

j) for every k2
j ∈ K2. Combining this observation with

s ∈ Q and the independence of Q, we obtain Q ∩ (
K1 ∪ K2

)
= ∅. Furthermore,

since the vertex s is at distance at most two from every vertex in S2, we may safely
assume that

(
S2 ∪ K1 ∪ K2

) ∩ Q = ∅ and hence
∣
∣S1 ∩ Q

∣
∣ = q. We now turn to

S1. It is clear that s is at distance three from every vertex s1i ∈ S1. Therefore, by
definition of quasi-kernels, for every vertex s1i ∈ S1 \ Q, there exists one vertex
s1j ∈ S1∩Q such that (s1i , k

1
i,j) ∈ A′ and (k1

i,j , s
1
j) ∈ A′. Note that, by construction,

(s1i , k
1
i,j) and (k1

i,j , s
1
j) are two arcs of D′ if and only (vi, vj) is an arc of D. Then

it follows that M =
{
vi : s1i ∈ Q

}
is a directed dominating set in D. �	

Proposition 5. Quasi-Kernel for orientations of split graphs is FPT for
parameter |K| or parameter k + |I|, where K is the set of vertices in the clique-
part, I is the set of vertices in the independent-part and k is the size of the sought
quasi-kernel.

Proof. Let D = (K ∪ I,A) be an orientation of a split graph, and write n =
|K ∪ I|. Let M be the adjacency matrix of D. It is clear that, after having
computed M2, one can decide in linear time if any given subset Q ⊆ K ∪ I is
a quasi-kernel of D. This preprocessing step is O(n3) time (a better running
time can be achieved by fast matrix multiplication but is not relevant here).
Furthermore, by independence of quasi-kernels, we have |Q ∩ K| � 1 for every
quasi-kernel Q of D. This straightforward observation is the first step of the two
algorithms.

Algorithm for parameter |K|. Select (including none) a vertex of K. Define
the equivalence relation ∼ on I as follows: s ∼ s′ if and only if N−(s) = N−(s′)
and N+(s) = N+(s′). The key point is to observe that in any minimum car-
dinality quasi-kernel Q of D, for every equivalence class I ′ ∈ I/ ∼, either
I ′ ∩ Q = ∅, I ′ ⊆ Q or any vertex of I ′ is in Q. For any combination, check
if the selected vertices of I together with the selected vertex of K (if any) is
a quasi-kernel of D of size k. The size of I/ ∼ is bounded by 4|K| since each
equivalence class is determined by its out and inneighborhood. The algorithm is
O(n3 + k |K| 3|I/∼|) = O(n3 + k |K| 3(4|K|)) time.

Algorithm for parameter k + |I|. Select (including none) a vertex of K. For
every subset I ′ ⊆ I of size k − 1 (or k, if no vertex of K is selected), check if I ′

together with the selected vertex of K is a quasi-kernel of D. The algorithm is
O(n3 + k |K| (|I|

k

)
) time. �	

380 H. Langlois et al.

4.2 Complete Split Graphs

A split graph is complete if every vertex in the independent-part is adjacent to
every vertex in the clique-part. Before stating our main result about this class
we start with a lemma that will play a role in its proof.

Lemma 2. Let D = (V,A) be an orientation of a complete split graph with
no quasi-kernel of size one. Let x be a vertex with the maximum number of
inneighbors in the clique-part. Denote by S the set of vertices with the same
inneighborhood as x (including x). Then,

– the set S is included in the independent-part.
– every vertex v in S forms a quasi-kernel of D[(V \ S) ∪ {v}].

Proof. Denote by K (resp. I) the set of vertices in the clique-part (resp.
independent-part) of D. Suppose, aiming for a contradiction, that there is a
vertex v in K with the maximum number of inneighbors in K. Then {v} is a
quasi-kernel because every vertex in N+(v) has an outneighbor in N−(v), by
the maximality of v; a contradiction with D having no quasi-kernel of size one.
This proves the first item.

Consider a vertex v in S and a vertex u not in S. Suppose first that u is in
K. We have just seen that u has fewer inneighbors in K than v. Thus, u has an
outneighbor in N−(v) ∪ {v}. Suppose now that u is in I. Since u is not in S, it
has an outneighbor in N−(v). In any case, there is a path of length at most two
from u to v. This proves the second item. �	

A consequence of the next theorem is that Quasi-Kernel is polynomial-time
solvable for complete split digraphs.

Theorem 5. Let D be an orientation of a complete split graph. If D has a sink,
then there is a unique minimum-size quasi-kernel, which is formed by all sinks.
If D has no sink, then the minimum size of a quasi-kernel is at most two.

Proof. Observe that in an orientation of a complete split graph, if a vertex is
a sink, then there is a path of length two from every other non-sink vertex to
this sink. Thus, if D has at least one sink, then there is a unique inclusionwise
minimal quasi-kernel, which is formed by all sinks. Assume from now on that D
has no sink and no quasi-kernel of size one. We are going to show that D has a
quasi-kernel of size two.

Denote by K the vertices in the clique-part of D and by I the vertices in the
independent-part of D. Let x be a vertex maximizing |N−(x) ∩ K|. We know
from Lemma 2 that x is in I.

Suppose now, aiming for a contradiction, that every vertex v in I is such
that N+(x) ⊆ N+(v). Choose any vertex y in N+(x). The singleton {y} is no
quasi-kernel of D[K], since otherwise it would be a quasi-kernel of D of size
one. A well-known consequence of the proof of Chvátal and Lovász is that in a
digraph every vertex is in a quasi-kernel or has an outneighbor in a quasi-kernel.
Thus, there exists a vertex z in N+(y) ∩ K that forms a quasi-kernel of D[K].

Algorithmic Aspects of Small Quasi-Kernels 381

The singleton {z} is then a quasi-kernel of D as well since every vertex of I has
y as outneighbor; a contradiction.

Hence, there is a vertex t in I with N+(x) ∩ N−(t) �= ∅. We claim that
{x, t} is a quasi-kernel of D. It is an independent set. Let S be the set of vertices
having the same inneighborhood as x. Consider a vertex v in V \ {x, t}. If v is
in S, then by definition of t there is a directed path of length two from v to t. If
v is in V \ S, Lemma 2 ensures that there is a directed path of length at most
two from v to x. �	

Orientations of complete split graphs always have two disjoint quasi-kernels
when there is no sink. This is a consequence of a result by Heard and Huang [14].
The existence of two disjoint quasi-kernels for this class of digraphs can thus triv-
ially be decided in polynomial time. Their proof provides actually a polynomial-
time algorithm for finding such quasi-kernels.

5 Concluding Remarks

We mentioned in the introduction that Gutin et al. conjectured in 2001 that
every sink-free digraph has two disjoint quasi-kernel and that they disproved
this conjecture with a counterexample a few years later. Yet, the key element
of the counterexample is the presence of a K7. On the other hand, the small
quasi-kernel conjecture is true for sink-free orientations of 4-colorable graphs,
which have no K5. (This is the result of Kostochka et al., also mentioned in
the introduction.) This raises the question on whether every sink-free K5-free
digraph has two disjoint quasi-kernels, and, more generally, on how disjoint quasi-
kernels and the clique number relate.

References

1. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In:
Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203,
pp. 288–298. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62592-
5 80

2. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory Algorithms and Applications.
Springer, Berlin (2008)

3. Bondy, J.A.: Short proofs of classical theorems. J. Graph Theor. 44(3), 159–165
(2003)

4. Boros, E., Gurvich, V.: Perfect graphs, kernels, and cores of cooperative games.
Discrete Math. 306(19–20), 2336–2354 (2006)

5. Chvátal, V., Lovász, L.: Every directed graph has a semi-kernel. In: Berge, C., Ray-
Chaudhuri, D. (eds.) Hypergraph Seminar. LNM, vol. 411, pp. 175–175. Springer,
Heidelberg (1974). https://doi.org/10.1007/BFb0066192

6. Chvátal, V.: On the computational complexity of finding a kernel. Technical Report
CRM300, Centre de Recherches Mathématiques, Université de Montréal (1973)

7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 624–633
(2014)

https://doi.org/10.1007/3-540-62592-5_80
https://doi.org/10.1007/3-540-62592-5_80
https://doi.org/10.1007/BFb0066192

382 H. Langlois et al.

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

9. Erdős, P.L., Székely, L.A.: Two conjectures on quasi-kernels, open problems no.
4. in fete of combinatorics and computer science. Bolyai Society Mathematical
Studies (2010)

10. Fraenkel, A.S.: Planar kernel and Grundy with d ≤ 3, dout ≤ 2, din ≤ 2 are
NP-complete. Discrete Appl. Math. 3(4), 257–262 (1981)

11. Galvin, F.: The list chromatic index of a bipartite multigraph. J. Combin. Theory
Ser. B 63, 153–158 (1995)

12. Gutin, G., Koh, K.M., Tay, E.G., Yeo, A.: On the number of quasi-kernels in
digraphs, Rep. Ser. 01-7 (2001)

13. Gutin, G., Koh, K.M., Tay, E.G., Yeo, A.: On the number of quasi-kernels in
digraphs. J. Graph Theor. 46(1), 8–56 (2004)

14. Heard, S., Huang, J.: Disjoint quasi-kernels in digraphs. J. Graph Theor. 58(3),
251–260 (2008)

15. Igarashi, A.: Coalition formation in structured environments. In: Proceedings of the
16th Conference on Autonomous Agents and Multiagent Systems, pp. 1836–1837
(2017)

16. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

17. Kostochka, A., Luo, R., Shan, S.: Towards the Small Quasi-Kernel Conjecture.
arXiv:2001.04003 [math] (2020)

18. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

19. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

20. Morgenstern, O., Von Neumann, J.: Theory of Games and Economic Behavior.
Princeton University Press, Princeton (1947)

21. Walicki, M., Dyrkolbotn, S.: Finding kernels or solving SAT. J. Discret. Algorithms
10, 146–164 (2012)

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/2001.04003
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Parameterized Complexity of Graph
Planarity with Restricted Cyclic Orders

Giuseppe Liotta1 , Ignaz Rutter2 , and Alessandra Tappini1(B)

1 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
{giuseppe.liotta,alessandra.tappini}@unipg.it

2 Faculty of Computer Science and Mathematics, University of Passau,
Passau, Germany

rutter@fim.uni-passau.de

Abstract. We study the complexity of testing whether a biconnected
graph G = (V, E) is planar with the additional constraint that
some cyclic orders of the edges incident to its vertices are allowed while
some others are forbidden. The allowed cyclic orders are conveniently
described by associating every vertex v of G with a set D(v) of FPQ-
trees. Let tw be the treewidth of G and let Dmax = maxv∈V |D(v)|,
i.e., the maximum number of FPQ-trees per vertex. We show that the
problem is FPT when parameterized by tw + Dmax; for a contrast, we
prove that the problem is paraNP-hard when parameterized by Dmax

only and it is W[1]-hard when parameterized by tw only. We also apply
our techniques to the problem of testing whether a clustered graph is
NodeTrix planar with fixed sides. We extend a result by Di Giacomo et
al. [Algorithmica, 2019] and prove that NodeTrix planarity with fixed
sides is FPT when parameterized by the size of the clusters plus the
treewidth of the graph obtained by collapsing these clusters to single
vertices, provided that this graph is biconnected.

Keywords: Planarity Testing · Embedding Constraints · NodeTrix

1 Introduction

The study of graph planarity testing and of its variants is at the heart of graph
algorithms. Mostly motivated by graph drawing applications, constrained ver-
sions of graph planarity testing have been extensively studied in the literature.
They include, for example, rectilinear planarity testing (see, e.g., [23,24,30,32]),
upward planarity testing (see, e.g., [7,22,29,30]), and clustered planarity testing
(see, e.g., [8,9,13,28]). See also [37,38] for more results and references.

This paper studies the complexity of a fundamental, but not yet completely
explored, constrained planarity testing problem: Given a graph G such that

This work was partially supported by: (i) MIUR, grant 20174LF3T8; (ii) Diparti-
mento di Ingegneria - Università degli Studi di Perugia, grants RICBA20EDG and
RICBA21LG; (iii) German Science Foundation (DFG), grant Ru 1903/3-1.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 383–397, 2022.
https://doi.org/10.1007/978-3-031-15914-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_28&domain=pdf
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0002-3794-4406
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-031-15914-5_28

384 G. Liotta et al.

Fig. 1. (a)–(b) Two allowed cyclic orders for the neighbors of a vertex representing
different living things and tree-like structures describing different hierarchical groupings
of the attributes; (c)–(d) two FPQ-trees representing the allowed cyclic orders, where
F-nodes are gray-filled boxes, Q-nodes are white-filled boxes, P-nodes are white-filled
disks, and leaves are small black disks. (Color figure online)

each vertex v of G is equipped with a set of allowed cyclic orders for its inci-
dent edges, we want to test whether G admits a planar embedding that uses
the allowed orders. Besides its theoretical interest, the question is motivated
by those applications of information visualization where different cyclic orders
around the vertices of a network help to convey the semantic properties of its
vertices and edges. For instance, in a knowledge graph vertices and edges are typ-
ically equipped with several attributes and different cyclic orders around the
vertices correspond to different hierarchical groupings based on the meaning of
such attributes.

Consider, for example, vertex v in Figs. 1(a) and 1(b) whose neighbors repre-
sent different living things and are equipped with attributes that specify whether
they are animals or plants, whether they are aquatic or not, and whether they are
stemless plants or vertebrate animals. In the visualization of Fig. 1(a) the cyclic
order around v groups together the neighbors corresponding to invertebrate ani-
mals which precede the vertebrates and follow the plants in clockwise order;
among the plants, the aquatic plants follow the non-aquatic plants, and among
the non-aquatic plants those that are stemless precede the stemmed ones; within
each subgroup, any permutation is allowed as long as it makes it possible to con-
struct a planar drawing of a larger graph that includes v and its neighbors. Con-
versely, the cyclic order of Fig. 1(b) is such that aquatic living things follow the
non-aquatic ones and, for each of these two groups, animals precede plants; again,
within each subgroup any permutation that guarantees planarity is possible.

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 385

The allowed cyclic orders for each vertex v of G can be conveniently rep-
resented by associating v with a set of FPQ-trees [36], a data structure that
generalizes the classical PQ-trees [11] and effectively encodes edge permutations.
The leaves of each FPQ-tree associated with v are the edges incident to v, while
each non-leaf node is either a P-node, or a Q-node, or an F-node. The children
of a P-node can be arbitrarily permuted, the order of the children of a Q-node is
fixed up to reversal, while an F-node corresponds to a permutation of its children
that cannot be changed. For example, the two FPQ-trees of Figs. 1(c) and 1(d)
encode two allowed sets of cyclic orders for the vertex v of Figs. 1(a) and 1(b). In
Figs. 1(c) and 1(d), F-nodes are gray-filled boxes, Q-nodes are white-filled boxes,
P-nodes are white-filled disks, and leaves are small black disks. Observe that the
cyclic order of Fig. 1(a) is one of those described by the FPQ-tree of Fig. 1(c),
while the cyclic order of Fig. 1(b) is one of those described by the FPQ-tree of
Fig. 1(d). More formally, we study the following problem.

FPQ-Choosable Planarity

Input: A pair (G,D) where G = (V,E) is a (multi-)graph and D is a mapping
that associates each vertex v ∈ V with a set D(v) of FPQ-trees whose leaves
represent the edges incident to v.
Question: Does there exist a planar embedding of G such that, for each v ∈ V ,
the cyclic order of the edges incident to v is encoded by an FPQ-tree in D(v)?

We study the parameterized complexity of FPQ-Choosable Planarity

with respect to two natural parameters: The treewidth tw of G and the maximum
number Dmax of FPQ-trees per vertex. We remark that the special case where
Dmax = 1 is linear-time solvable even for graphs of unbounded treewidth [31].
The following theorem summarizes our main contribution.

Theorem 1. FPQ-Choosable Planarity for biconnected graphs is paraNP-
hard when parameterized by the maximum number Dmax of FPQ-trees per vertex,
it is W[1]-hard when parameterized by the treewidth tw of the graph, and it is
fixed-parameter tractable when parameterized by tw + Dmax.

As an application of Theorem 1, we shed new light on the complexity of
another constrained planarity testing problem, namely NodeTrix Planarity

with Fixed Sides, which we briefly describe below.
Let G be a clustered graph, i.e., a graph whose vertex set is partitioned into

subsets called clusters. A NodeTrix representation of G represents clusters as
adjacency matrices, while the edges connecting different clusters are Jordan arcs.
NodeTrix Planarity asks whether G admits a NodeTrix representation
without edge crossings. The question can be asked in the “fixed sides” scenario
and in the “free sides” scenario. The former specifies, for each edge e between two
matrices M and M ′, the sides (“top”, “bottom”, “left”, “right”) of M and M ′

to which e must be incident; in the free sides scenario the algorithm can choose
the sides to which e is incident. We focus on the scenario with fixed sides and,
by combining results of [15,21] with our techniques, we derive the following.

Theorem 2. NodeTrix Planarity with Fixed Sides is paraNP-hard when
parameterized by the maximum size k of the clusters; it is also paraNP-hard

386 G. Liotta et al.

when parameterized by the treewidth tw of the graph GC obtained by collapsing
every cluster into a single vertex; the problem is fixed-parameter tractable when
parameterized by tw + k, provided that GC is biconnected.

Theorem 2 extends a result of [21], where it is proved that NodeTrix Pla-

narity with Fixed Sides can be solved in polynomial time when the size of
the clusters is bounded by a constant and the treewidth of the graph obtained
by collapsing each cluster into a single vertex is two.

We remark that Theorems 1 and 2 contribute to the flourishing literature that
studies the parameterized complexity of graph drawing problems (see, e.g., [6,12,
20,26,27,34]). Our paper can also be related to [8,10,36], which study planarity
problems where vertices are equipped with one FPQ-tree but several constraints
in addition to those imposed by the planar embedding are taken into account.

The rest of the paper is organized as follows. Section 2 reports prelimi-
nary definitions; Sect. 3 introduces FPQ-Choosable Planarity and stud-
ies its computational complexity; Sect. 4 describes an FPT approach for
FPQ-Choosable Planarity; Sect. 5 analyzes the interplay between FPQ-

Choosable Planarity and NodeTrix Planarity; open problems are
in Sect. 6. Some proofs are omitted or sketched; their statements are marked
with [*].

2 Preliminaries

We assume familiarity with graph theory and algorithms (see, e.g., [4,16]).

FPQ-Tree. A PQ-tree is a tree-based data structure that represents a family of
permutations on a set of elements [11]. In a PQ-tree, each element is represented
by one of the leaf nodes and each non-leaf node is a P-node or a Q-node. The
children of a P-node can be permuted arbitrarily, while the order of the children
of a Q-node is fixed up to reversal. An FPQ-tree is a PQ-tree where, for some of
the Q-nodes, the reversal of the permutation described by their children is not
allowed. To distinguish these special Q-nodes, we call them F-nodes.

SPQR-Tree. Let G be a biconnected planar multi-graph. The SPQR-tree T
of G describes the structure of G in terms of its triconnected components (see,
e.g., [16,17]). The tree T can be computed in linear time and it has three types of
internal nodes that correspond to different arrangements of the components of G.
If the components are arranged in a cycle, they correspond to an S-node of T ; if
they share two vertices and are arranged in parallel, they correspond to a P-node
of T ; if they are arranged in a triconnected graph, they correspond to an R-node
of T . The leaves of T are Q-nodes, and each of them corresponds to an edge of
G. For each node μ of T , the skeleton of μ is an auxiliary graph that represents
the arrangement of the triconnected components of G corresponding to μ, and it
is denoted by skel(μ). Each edge of skel(μ) corresponds to one such triconnected
component and is called a virtual edge; the end-points of a virtual edge are
called poles. The tree T encodes all possible planar combinatorial embeddings
of G. These embeddings are determined by P- and R-nodes, since the skeletons
of S- and Q-nodes have a unique embedding. Indeed, the skeleton of a P-node

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 387

Fig. 2. (a) An FPQ-choosable planar graph (G, D). (b) A planar embedding of G that
is consistent with assignment {A(u1) = Tα, A(u2) = Tγ , A(u3) = Tδ, A(u4) = Tε}; the
assignment is compatible with G. (c) A non-planar embedding of G that is consistent
with assignment {A(u1) = Tα, A(u2) = Tβ , A(u3) = Tδ, A(u4) = Tε}; there is no planar
embedding that is consistent with A.

consists of parallel edges that can be arbitrarily permuted, while the skeleton of
an R-node is triconnected, and hence it has a unique embedding up to a flip.

Embedding Tree. The planar combinatorial embeddings that are repre-
sented by the SPQR-tree of a biconnected graph G define constraints on the
cyclic order of edges around each vertex of G. Such constraints can be encoded
by associating an FPQ-tree with each vertex v of G, called embedding tree of v
and denoted by T ε

v .

3 FPQ-Choosable Planarity and Its Complexity

Let G = (V,E) be a multi-graph, let v ∈ V , and let Tv be an FPQ-tree whose
leaf set is E(v), i.e., the set of the edges incident to v. Let σv be a cyclic order
of the edges incident to v. If σv is in a bijection with a permutation of the leaves
of Tv, we say that Tv represents σv or, equivalently, that σv is represented by Tv.
We define consistent(Tv) as the set of all cyclic orders of the edges incident to v
that are represented by Tv. Given a planar embedding E of G, we denote by E(v)
the cyclic order of edges incident to v in E .

An FPQ-choosable graph is a pair (G,D) where G = (V,E) is a multi-graph,
and D is a mapping that associates each vertex v ∈ V with a set D(v) of FPQ-
trees whose leaf set is E(v). An assignment A is a function that assigns to each
vertex v ∈ V an FPQ-tree in D(v). We say that A is compatible with G if there
exists a planar embedding E of G such that E(v) ∈ consistent(A(v)) for all v ∈ V .
In this case, we also say that E is consistent with A. An FPQ-choosable graph
(G,D) is FPQ-choosable planar if there exists an assignment of FPQ-trees that
is compatible with G. Figure 2(a) shows an FPQ-choosable planar graph G. It
has two possible assignments that differ by the FPQ-tree chosen from D(u2). As
Figs. 2(b) and 2(c) show, one of them is compatible with G, while there is no
planar embedding that is consistent with the other assignment.

The FPQ-Choosable Planarity problem asks whether an FPQ-choosable
graph (G,D) is FPQ-choosable planar, i.e., whether there exists an assignment

388 G. Liotta et al.

that is compatible with G. Clearly, G must be planar or else the problem becomes
trivial. Also, any assignment that is compatible with G must define a planar
embedding of G among those described by an SPQR-tree of G.

Therefore, a preliminary step for an algorithm that tests whether (G,D) is
FPQ-choosable planar is to intersect each FPQ-tree Tv ∈ D(v) with the embed-
ding tree T ε

v of v, so that the cyclic order of the edges incident to v satisfies
both the constraints given by Tv and the ones given by T ε

v (see, e.g., [10] for
details on the intersection operation). Thus, from now on we assume that each
FPQ-tree of D has been intersected with the corresponding embedding tree. If
no permutation is possible, the intersection returns a null-tree, which formally
represents the empty set of permutations. For ease of notation, we denote by
D(v) the set of FPQ-trees associated with v and resulting from the intersec-
tions after the removal of null-trees, if any. Clearly, a necessary condition for the
FPQ-choosable planarity of (G,D) is that D(v) �= ∅ for each vertex v.

As we will show, FPQ-Choosable Planarity is fixed-parameter tractable
when parameterized by the treewidth of the input graph plus the number of
FPQ-trees per vertex. One may wonder whether the problem remains FPT when
parameterized by treewidth or by the number of FPQ-trees per vertex only.

Theorem 3. [*] FPQ-Choosable Planarity for biconnected graphs is
paraNP-hard with respect to the maximum number of FPQ-trees per vertex, even
when the FPQ-trees have only P-nodes.

Theorem 3 uses a reduction from 3-EdgeColoring, which is NP-complete
for cubic graphs [35]. For the reduction, we replace each edge of the input graph
by a bundle of parallel edges, so that the ordering of the edges inside the bun-
dle encodes the color of the corresponding edge. The possible choices of the
FPQ-trees ensure that edges incident to the same vertex must receive different
colors. One complication is that all planar cubic graphs are 3-edge colorable. We
therefore start from a non-planar graph and planarize it.

Theorem 4. [*] FPQ-Choosable Planarity for biconnected graphs is W[1]-
hard with respect to treewidth, even when the FPQ-trees have only P-nodes.

Theorem 4 uses a reduction from ListColoring, which is W[1]-hard parame-
terized by treewidth [14], even for biconnected planar graphs. The colors of the
vertices correspond to the choices of the FPQ-trees, which allows us to naturally
encode the list restriction. The key idea is to replace each edge (u, v) of the input
graph by a bundle that consists of a sub-bundle of three edges for each color. The
FPQ-tree that encodes color c for vertex u is constructed so to impose a fixed
ordering on the sub-bundles of color c for each edge (u, v) such that this choice
is incompatible with a choice of the FPQ-tree that encodes color c for vertex v.

4 FPT Algorithm for FPQ-Choosable Planarity

In this section we show that FPQ-Choosable Planarity is FPT with respect
to tw+Dmax. Our algorithm is based on studying the interplay between different
data structures, namely SPQR-trees, FPQ-trees, and sphere-cut decompositions.

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 389

Boundaries and Extensible Orders. Let T be an FPQ-tree, let leaves(T)
denote the set of its leaves, and let L be a proper subset of leaves(T). We say
that L is a consecutive set if the leaves in L are consecutive in every cyclic order
represented by T . Let e be an edge of T , and let T ′ and T ′′ be the two subtrees
obtained by removing e from T . If either leaves(T ′) or leaves(T ′′) are a subset
of a consecutive set L, then we say that e is a split edge for L. The subtree that
contains the leaves in L is the split subtree of e for L. A split edge e is critical
for L if there exists no split edge e′ such that the split subtree of e′ contains e.

Lemma 1. [*] Let T be an FPQ-tree, let L be a consecutive proper subset of
leaves(T), and let S be the set of critical split edges for L. Then either |S| = 1,
or |S| > 1 and there exists a Q-node or an F-node χ of T such that χ has degree
at least |S| + 2 and the elements of S appear consecutively around χ.

If |S| = 1, the split edge in S is called the boundary of L. If |S| > 1, the Q-
node or the F-node χ defined in the statement of Lemma 1 is the boundary of L.
See Fig. 3(a) for an example, where the three red edges b, c, and d of G define a
consecutive set Lu in Tu, and the red edges e and f define a consecutive set Lv

in Tv. The boundary of Lu in Tu is a Q-node, while the boundary of Lv in Tv is
a split edge. We denote by B(L) the boundary of a set of leaves L. If B(L) is a
Q-node, we associate B(L) with a default orientation (i.e., a flip) that arbitrarily
defines one of the two possible permutations of its children. We call this default
orientation the clockwise orientation of B(L). The other possible permutation of
the children of B(L) corresponds to the counter-clockwise orientation. If B(L) is
an F-node, its fixed orientation is clockwise. Since F-nodes are a more constrained
version of Q-nodes, when we refer to boundary Q-nodes we also take into account
the case in which they are F-nodes.

Let L′ = L∪{�}, where � is a new element. Let σ ∈ consistent(T), and let σ|L′

be a cyclic order obtained from σ by replacing the elements of the consecutive set
leaves(T)\L by the single element �. We say that a cyclic order σ′ of L′ is extensi-
ble if there exists a cyclic order σ ∈ consistent(T) with σ|L′ = σ′. In this case, we
say that σ is an extension of σ′. Note that if the boundary of L is a Q-node χ, any
two extensions of σ′ induce the same clockwise or counter-clockwise orientation
of the edges incident to χ. An extensible order σ is clockwise if the orientation
of χ is clockwise; σ is counter-clockwise otherwise. If the boundary of L is an
edge, we consider any extensible order as both clockwise and counter-clockwise.

Let L and L̂ be disjoint consecutive sets of leaves that have the same bound-
ary Q-node χ in T and let � and �̂ be new elements. Let σ and σ̂ be the extensions
of two extensible orders of L∪ � and L̂∪ �̂, respectively. We say that σ and σ̂ are
incompatible if one of them is clockwise and the other one is counter-clockwise.

Lemma 2. [*] Let T be an FPQ-tree, let L1, L2, . . . , Lk be a partition of
leaves(T) into consecutive sets, and let σi be an extensible order of Li, for
1 ≤ i ≤ k. There exists an order Σ of leaves(T) represented by T such that
Σ|Li

= σi if and only if no pair σi, σj is incompatible, for 1 ≤ i, j ≤ k.

Pertinent FPQ-Trees, Skeletal FPQ-Trees, and Admissible Tuples. Let
(G,D) be an FPQ-choosable graph, let T be an SPQR-tree of G rooted at an

390 G. Liotta et al.

Fig. 3. (a) Two different types of boundaries: A boundary Q-node in Tu and a boundary
edge in Tv. (b) The pertinent FPQ-trees Pertμ(Tu) of Tu and Pertμ(Tv) of Tv. (c) The
skeletal FPQ-trees Skelμ(Tu) of Pertμ(Tu) and Skelμ(Tv) of Pertμ(Tv).

arbitrary Q-node, let μ be a node of T , and let Tμ be the subtree of T rooted
at μ. The pertinent graph of μ, denoted as Gμ, is the subgraph of G induced
by the edges represented by the leaves of Tμ. Let v be a pole of a node μ of T ,
let Tv ∈ D(v) be an FPQ-tree associated with v, let Eext be the set of edges
that are incident to v and not contained in the pertinent graph Gμ, and let
E�

μ(v) = E(v) \ Eext. Note that there is a bijection between the edges E(v) of G
and the leaves of Tv, hence we shall refer to the set of leaves of Tv as E(v). Also
note that E�

μ(v) is represented by a consecutive set of leaves in Tv, because in
every planar embedding of G the edges in E�

μ(v) must appear consecutively in
the cyclic order of the edges incident to v.

The pertinent FPQ-tree of Tv, denoted as Pertμ(Tv), is the FPQ-tree obtained
from Tv by replacing the consecutive set Eext with a single leaf �. Informally,
the pertinent FPQ-tree of v describes the embedding constraints for the pole v
within Gμ. For example, in Fig. 3(b) a pertinent graph Gμ with poles u and v
is highlighted by a shaded region; the pertinent FPQ-trees Pertμ(Tu) of Tu and
Pertμ(Tv) of Tv are obtained by the FPQ-trees Tu and Tv of Fig. 3(a).

Let ν1, . . . , νk be the children of μ in T . Observe that the edges E�
νi

(v) of
each Gνi

(1 ≤ i ≤ k) form a consecutive set of leaves of Pertμ(Tv). The skeletal
FPQ-tree Skelμ(Tv) of Pertμ(Tv) is the tree obtained from Pertμ(Tv) by replac-
ing each of the consecutive sets E�

νi
(v) (1 ≤ i ≤ k) by a single leaf �i. See

for example, Fig. 3(c). Observe that each Q-node of Skelμ(Tv) corresponds to a

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 391

Q-node of Pertμ(Tv), and thus to a Q-node of Tv; also, distinct Q-nodes
of Skelμ(Tv) correspond to distinct Q-nodes of Pertμ(Tv), and thus to distinct
Q-nodes of Tv. Each Q-node χ of Tv that is a boundary of μ or of one of its
children νi inherits its default orientation from the corresponding Q-node iner,
there is a corresponding Q-node in Skelμ(Tv) that inherits its default orientation
from Tv.

Let (G,D) be an FPQ-choosable graph, let T be an SPQR-tree of G, let μ
be a node of T , and let u and v be the poles of μ. We denote with (Gμ,Dμ)
the FPQ-choosable graph consisting of the pertinent graph Gμ and the set Dμ

that is defined as follows: Dμ(z) = D(z) for each vertex z of Gμ that is not
a pole, and Dμ(v) = {Pertμ(Tv) | Tv ∈ D(v)} if v is a pole of μ. A tuple
〈Tu, Tv, ou, ov〉 ∈ D(u) × D(v) × {0, 1} × {0, 1} is admissible for Gμ if there
exist an assignment Aμ of (Gμ,Dμ) and a planar embedding Eμ of Gμ consistent
with Aμ such that Aμ(u) = Pertμ(Tu), Aμ(v) = Pertμ(Tv), B(E�

μ(u)) is clockwise
(counter-clockwise) in Tu if ou = 0 (ou = 1), and B(E�

μ(v)) is clockwise (counter-
clockwise) in Tv if ov = 0 (ov = 1). We say that a tuple is admissible for μ if it
is admissible for Gμ. We denote by Ψ(μ) the set of admissible tuples for Gμ.

FPT Algorithm. In order to test if (G,D) is FPQ-choosable planar, we root
the SPQR-tree T at an arbitrary Q-node and we visit T from the leaves to
the root. To simplify the description and without loss of generality, we shall
assume that every S-node of T has exactly two children. Indeed, we iteratively
replace every S-node μ having children ν1, . . . , νk in T (k > 2) by an S-node μ′

whose children are ν1 and an S-node μ′′ with children ν2, . . . , νk. By repeating
this operation until every S-node has exactly two children, we obtain a rooted
SPQR-tree T ′ which implicitly represents the same planar embeddings as those
represented by T . At each step of the visit, we equip the currently visited node
μ with the set Ψ(μ). If we encounter a node μ such that Ψ(μ) = ∅, we return
that (G,D) is not FPQ-choosable planar; otherwise the planarity test returns
an affirmative answer. If the currently visited node μ is a leaf of T , we set
Ψ(μ) = D(u) × D(v) × {0, 1} × {0, 1}, because its pertinent graph is a single
edge. If μ is an internal node, Ψ(μ) is computed from the sets of admissible
tuples of the children of μ. Let Dmax be the maximum number of FPQ-trees per
vertex, i.e., Dmax = maxv∈V |D(v)|. The next lemmas describe how to compute
Ψ(μ) depending on whether μ is an S-, P-, or R-node. Due to space constraints,
we report here only the proof for the R-nodes.

Lemma 3. [*] Let μ be a node of the SPQR-tree with children ν1, . . . , νk. Given
Ψ(ν1), . . . , Ψ(νk), the set Ψ(μ) can be computed in O(D2

max log(Dmax)) time if μ
is an S-node (with two children), and in O(D2

max · n) time if μ is a P-node.

The next lemma uses branchwidth as a parameter. Recall that, for a graph G
with treewidth tw and branchwidth bw > 1, bw− 1 ≤ tw ≤

⌊
3
2bw

⌋
− 1 holds [39].

Lemma 4. [*] Let μ be an R-node with children ν1, ν2, . . . , νk. Given Ψ(ν1),

Ψ(ν2), . . . , Ψ(νk), the set Ψ(μ) can be computed in O(D
3
2bw
max · n2

μ + n3
μ) time,

where bw is the branchwidth of Gμ, and nμ is the number of vertices of Gμ.

392 G. Liotta et al.

Proof (Sketch). Since μ is an R-node, skel(μ) has only two possible planar
embeddings, which we denote by Eμ and E ′

μ. Let u and v be the poles of μ.
Let νi (1 ≤ i ≤ k) be a child of μ that corresponds to a virtual edge (x, y) of T
and let Tx ∈ Dμ(x). Recall that E�

νi
(x) is a consecutive set of leaves in Tx.

If B(E�
νi

(x)) in Tx is a Q-node χ, by Lemma 1 there are at least two edges inci-
dent to χ that do not belong to E�

νi
(x). Hence, an orientation ox of χ determines

an embedding of skel(μ). We call the pair (Tx, ox) compliant with a planar
embedding Eμ of skel(μ) if either the boundary is an edge, or if the orienta-
tion of the boundary Q-node χ determines the embedding Eμ of skel(μ). We
denote by ΨEμ

(νi) the subset of tuples 〈Tx, Ty, ox, oy〉 ∈ Ψ(νi) such that Tx with
orientation ox and Ty with orientation oy are both compliant with Eμ; ΨEμ

(μ)
is the subset of tuples 〈Tu, Tv, ou, ov〉 ∈ Ψ(μ) whose pairs (Tu, ou) and (Tv, ov)
are compliant with Eμ.

We show how to compute ΨEμ
(μ) from the sets ΨEμ

(νi) of the children νi of μ
(1 ≤ i ≤ k). Set ΨE′

μ
(μ) is computed analogously. Note that the set ΨEμ

(νi) can
be extracted by scanning Ψ(νi) and selecting only those admissible tuples whose
pairs (Tx, ox) and (Ty, oy) are both compliant with Eμ. Since Gμ has branchwidth
bw, skel(μ) is planar, it has branchwidth at most bw, and we can compute a
sphere-cut decomposition of width at most bw [25] of the planar embedding Eμ

of skel(μ). Such a decomposition recursively divides skel(μ) into two subgraphs,
each of which is embedded inside a topological disk having at most bw vertices on
its boundary. The decomposition is described by a rooted binary tree, called the
sphere-cut decomposition tree and denoted as Tsc. The root of Tsc is associated
with skel(μ); the leaves of Tsc are the edges of skel(μ); any internal node β of Tsc

is associated with the subgraph of skel(μ) induced by the leaves of the subtree
rooted at β. Tree Tsc is such that when removing any of its internal edges, the
two subgraphs induced by the leaves in the resulting subtrees share at most bw
vertices. We denote as skel(β) the subgraph associated with a node β of Tsc and
with Dβ the topological disk that separates skel(β) from the rest of skel(μ). Note
that skel(β) has at most bw vertices on the boundary of Dβ . In particular, if β
is the root of Tsc, skel(β) coincides with skel(μ) and the vertices of skel(β) on
the boundary of Dβ are exactly the poles u and v of μ.

We compute ΨEμ
(μ) by visiting Tsc bottom-up. We equip each node β of Tsc

with a set of tuples ΨEμ
(β), each one consisting of at most bw pairs of elements

(Tx, ox) such that (Tx, ox) is compliant with Eμ, and (Tx, ox) belongs to some
ΨEμ

(νi). The set of tuples associated with the root of Tsc is therefore the set
ΨEμ

(μ). Let β be the currently visited node of Tsc. If β is a leaf, it is associated
with an edge representing a child νi of μ in T and ΨEμ

(β) = ΨEμ
(νi).

If β is an internal node of Tsc, we compute ΨEμ
(β) from the sets of

tuples ΨEμ
(β1) and ΨEμ

(β2) associated with the two children β1 and β2 of
β. Let B1 = {w1

1, . . . , w
i
1, w

1
c , . . . , wr

c} be the set of vertices of skel(β1) that
lie on the boundary of Dβ1 , and let B2 = {w1

2, . . . , w
j
2, w

1
c , . . . , wr

c} be the
set of vertices of skel(β2) that lie on the boundary of Dβ2 ; see Fig. 4. Let
{w1

1, . . . , w
i
1, w

1
c , . . . , wr

c , w
1
2, . . . , w

j
2} be the set of vertices of B1 ∪ B2. Also, let

B = {w1
c , . . . , wr

c} be the set of vertices that lie on the boundary of Dβ1 ∩ Dβ2 ;

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 393

Dβ1 Dβ2

wi
1

w1
1

w1
2

wj
2

w1
c

wr
c

Fig. 4. An example illustrating two topological disks Dβ1 and Dβ2 containing two
subgraphs skel(β1) and skel(β2). B1 = {w1

1, . . . , w
i
1, w

1
c , . . . , wr

c}, B2 = {w1
2, . . . , w

j
2, w

1
c ,

. . . , wr
c}, B = {w1

c , . . . , wr
c}.

note that B consists of at most bw vertices, i.e., r ≤ bw, and B ⊆ B1 ∪ B2.
A tuple 〈Tw1

1
, . . . , Twi

1
, Tw1

c
, . . . , Twr

c
, ow1

1
, . . . , owi

1
, ow1

c
, . . . , owr

c
〉 ∈ ΨEμ

(β1) con-
sists of pairs (Twl

1
, owl

1
) and pairs (Twh

c
, owh

c
) (1 ≤ l ≤ i, 1 ≤ h ≤ r)

that are compliant with Eμ. Similarly, a tuple 〈Tw1
2
, . . . , Twj

2
, Tw1

c
, . . . , Twr

c
, ow1

2
,

. . . , owj
2
, ow1

c
, . . . , owr

c
〉 ∈ ΨEμ

(β2) consists of pairs (Twq
2
, owq

2
) and pairs (Twh

c
, owh

c
)

(1 ≤ q ≤ j, 1 ≤ h ≤ r) that are compliant with Eμ. Let B′ be the vertices on
the boundary of Dβ . We can assume B′ = {w1

1, . . . , w
i
1, w

1
2, . . . , wj

2, w
1
c , wr

c}. An
admissible tuple of ΨEμ

(β) is constructed by combining two admissible tuples
that agree on the pairs for w1

c , . . . , wr
c . Therefore, ΨEμ

(β) can be computed from
ΨEμ

(β1) and ΨEμ
(β2) by a join operation between two sorted tables τ1 and τ2.

Observe that τ1 has O(D(i+r)
max) tuples and τ2 has O(D(j+r)

max) tuples. The join
operation between τ1 and τ2 gives rise to a table τ that has O(D(i+j+r)

max) tuples;
since i + r ≤ bw, j + r ≤ bw, and i + j ≤ bw, we have that 2i + 2j + 2r ≤ 3bw
and thus i + j + r ≤ 3

2bw. ��

By means of Lemmas 3 and 4, we can prove the following result which,
together with Theorems 3 and 4, implies Theorem 1.

Theorem 5. [*] FPQ-Choosable Planarity parameterized by Dmax + tw

is FPT for biconnected graphs. Precisely, it can be solved in O(D
3
2bw
max · n2 + n3)

time, where bw ≤ tw + 1 is the branchwidth of the graph.

5 FPQ-Choosable Planarity and NodeTrix Planarity

A clustered graph is a graph G for which subsets of its vertices are grouped into
sets C1, . . . , CnC

, called clusters, and no vertex belongs to two clusters. An edge
(u, v) with u ∈ Ci and v ∈ Cj is an inter-cluster edge if i �= j, (1 ≤ i, j ≤ nC).
In a NodeTrix representation Γ of G each cluster Ci is represented as an
adjacency matrix Mi of the graph induced by the vertices of Ci [5,15,21,33].
Let Ci and Cj be two clusters represented by matrices Mi and Mj , respectively.
Each inter-cluster edge (u, v) with u ∈ Ci and v ∈ Cj is represented in Γ as a
Jordan arc γ connecting a point on the boundary of Mi belonging to the row or

394 G. Liotta et al.

Fig. 5. (a) A matrix Mi; (b) the matrix FPQ-tree TMi .

the column corresponding to u to a point on the boundary of Mj belonging to
the row or the column corresponding to v; also, γ is such that it does not cross
any matrix of Γ . A NodeTrix representation is planar if no inter-cluster edges
cross. A NodeTrix graph with fixed sides is a clustered graph G that admits a
NodeTrix representation where, for each inter-cluster edge e, the sides of the
matrices to which e is incident are specified [21]. Let G be a NodeTrix graph
with fixed sides and clusters C1, . . . , CnC

. Each permutation of the vertices of Ci

(1 ≤ i ≤ nC) corresponds to a matrix Mi in some NodeTrix representation of
G. Note that even if the side of Mi to which each inter-cluster edge is incident is
fixed, it is still possible to permute the edges incident to a same side and to a same
vertex. For example, the edges f and g incident to the right side of the matrix in
Fig. 5(a) can be permuted. Each of the possible cyclic orders of the edges incident
to Mi can be described by means of an FPQ-tree, that we call the matrix FPQ-
tree of Mi, denoted as TMi

. Tree TMi
consists of an F-node χc connected to 4|Mi|

P-nodes representing the vertices of Ci; see Fig. 5(b). The P-nodes around χc

appear in the clockwise order defined by Mi, namely xτ
1 , . . . , x

τ
|Mi|, x

ρ
1, . . . , xρ

|Mi|,

xβ
|Mi|, . . . , xβ

1 , xλ
|Mi|, . . . , x

λ
1 (τ , ρ, β, and λ represent the top, right, bottom, and

left side of Mi, respectively). Any inter-cluster edge incident to a vertex v of Mi

corresponds to a leaf of TMi
adjacent to xs

v (1 ≤ v ≤ |Mi|, s ∈ {τ, ρ, β, λ}).
The constraint graph of a NodeTrix graph with fixed sides G,

denoted as GC , is the FPQ-choosable multi-graph defined as follows. Graph
GC has nC vertices, each corresponding to one of the clusters of G, and in GC

there is an edge (u, v) for each inter-cluster edge that connects the two clusters
corresponding to u and to v in G. Each vertex v of GC is associated with a set
D(v) of |Cv|! FPQ-trees. More precisely, for each permutation π of the vertices
of Cv, let Mπ

v be the matrix associated with Cv. For each such a permutation,
we equip v with TMπ

v
.

Da Lozzo et al. [15] proved that NodeTrix Planarity with Fixed

Sides is NP-complete even when GC has only two vertices, and thus bounded
treewidth; Di Giacomo et al. [21] proved that NodeTrix Planarity with

Fixed Sides is NP-complete when the size k of the clusters is larger than 2.
These results imply that the problem is paraNP-hard parameterized by either k
or the treewidth of GC . Also, by the above described relationship between FPQ-

Choosable Planarity and NodeTrix Planarity with Fixed Sides, we
can prove that the last problem is FPT parameterized by both parameters and
obtain Theorem 2.

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 395

6 Open Problems

It would be interesting to: (i) Improve the time complexity stated by Theorem 5.
(ii) Study the complexity of FPQ-Choosable Planarity for simply connected
instances. (iii) Apply our approach to other problems of planarity testing related
with hybrid representations including, for example, intersection-link, ChordLink,
and (k, p) representations (see, e.g., [1–3,18,19]).

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–
755 (2017). https://doi.org/10.7155/jgaa.00437

2. Angelini, P., et al.: Graph planarity by replacing cliques with paths. Algorithms
13(8), 194 (2020). https://doi.org/10.3390/a13080194

3. Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: Hybrid graph
visualizations with ChordLink: algorithms, experiments, and applications. IEEE
Trans. Vis. Comput. Graph. 28(2), 1288–1300 (2022). https://doi.org/10.1109/
TVCG.2020.3016055

4. Arumugam, S., Brandstädt, A., Nishizeki, T., Thulasiraman, K.: Handbook
of Graph Theory, Combinatorial Optimization, and Algorithms. Chapman and
Hall/CRC (2016)

5. Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011). https://doi.
org/10.1109/TVCG.2010.265

6. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. J. Graph Algorithms Appl. 24(4), 603–620 (2020).
https://doi.org/10.7155/jgaa.00526

7. Binucci, C., Di Giacomo, E., Liotta, G., Tappini, A.: Quasi-upward planar drawings
with minimum curve complexity. In: Purchase, H.C., Rutter, I. (eds.) GD 2021.
LNCS, vol. 12868, pp. 195–209. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92931-2 14

8. Bläsius, T., Fink, S.D., Rutter, I.: Synchronized planarity with applications to
constrained planarity problems. In: 29th Annual European Symposium on Algo-
rithms, ESA 2021, Lisbon, Portugal, 6–8 September 2021 (Virtual Conference),
pp. 19:1–19:14 (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.19

9. Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial
embedding problem. Theor. Comput. Sci. 609, 306–315 (2016). https://doi.org/
10.1016/j.tcs.2015.10.011

10. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms 12(2), 16:1–16:46 (2016). https://
doi.org/10.1145/2738054

11. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976). https://doi.org/10.1016/S0022-0000(76)80045-1

12. Chaplick, S., Di Giacomo, E., Frati, F., Ganian, R., Raftopoulou, C.N., Simonov,
K.: Parameterized algorithms for upward planarity. In: 38th International Sympo-
sium on Computational Geometry, SoCG 2022, Berlin, Germany, 7–10 June 2022,
pp. 26:1–26:16 (2022). https://doi.org/10.4230/LIPIcs.SoCG.2022.26

https://doi.org/10.7155/jgaa.00437
https://doi.org/10.3390/a13080194
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1007/978-3-030-92931-2_14
https://doi.org/10.1007/978-3-030-92931-2_14
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1145/2738054
https://doi.org/10.1145/2738054
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.4230/LIPIcs.SoCG.2022.26

396 G. Liotta et al.

13. Cortese, P.F., Di Battista, G.: Clustered planarity. In: Proceedings of the 21st
ACM Symposium on Computational Geometry, Pisa, Italy, 6–8 June 2005, pp.
32–34 (2005). https://doi.org/10.1145/1064092.1064093

14. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

15. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176
(2018). https://doi.org/10.7155/jgaa.00461

16. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice
Hall, Upper Saddle River (1999)

17. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5),
956–997 (1996). https://doi.org/10.1137/S0097539794280736

18. Di Giacomo, E., Didimo, W., Montecchiani, F., Tappini, A.: A user study on
hybrid graph visualizations. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS,
vol. 12868, pp. 21–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92931-2 2

19. Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (k, p)-
planarity: a relaxation of hybrid planarity. Theor. Comput. Sci. 896, 19–30 (2021).
https://doi.org/10.1016/j.tcs.2021.09.044

20. Di Giacomo, E., Liotta, G., Montecchiani, F.: Orthogonal planarity testing of
bounded treewidth graphs. J. Comput. Syst. Sci. 125, 129–148 (2022). https://
doi.org/10.1016/j.jcss.2021.11.004

21. Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix pla-
narity testing with small clusters. Algorithmica 81(9), 3464–3493 (2019). https://
doi.org/10.1007/s00453-019-00585-6

22. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity test-
ing. SIAM J. Discret. Math. 23(4), 1842–1899 (2009). https://doi.org/10.1137/
070696854

23. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of
planar 3-graphs in linear time. In: Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020,
pp. 806–825 (2020). https://doi.org/10.1137/1.9781611975994.49

24. Didimo, W., Liotta, G., Patrignani, M.: HV-planarity: algorithms and complexity.
J. Comput. Syst. Sci. 99, 72–90 (2019). https://doi.org/10.1016/j.jcss.2018.08.003

25. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: exploiting sphere cut decompositions. Algorithmica 58(3), 790–
810 (2010). https://doi.org/10.1007/s00453-009-9296-1

26. Dujmovic, V., et al.: A fixed-parameter approach to 2-layer planarization. Algo-
rithmica 45(2), 159–182 (2006). https://doi.org/10.1007/s00453-005-1181-y

27. Dujmovic, V., et al.: On the parameterized complexity of layered graph drawing.
Algorithmica 52(2), 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1

28. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.
(ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60313-1 145

29. Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)
30. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear

planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.
1137/S0097539794277123

31. Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge inser-
tion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008).
https://doi.org/10.7155/jgaa.00160

https://doi.org/10.1145/1064092.1064093
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1007/978-3-030-92931-2_2
https://doi.org/10.1007/978-3-030-92931-2_2
https://doi.org/10.1016/j.tcs.2021.09.044
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1007/s00453-019-00585-6
https://doi.org/10.1007/s00453-019-00585-6
https://doi.org/10.1137/070696854
https://doi.org/10.1137/070696854
https://doi.org/10.1137/1.9781611975994.49
https://doi.org/10.1016/j.jcss.2018.08.003
https://doi.org/10.1007/s00453-009-9296-1
https://doi.org/10.1007/s00453-005-1181-y
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.7155/jgaa.00160

Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders 397

32. Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-bend orthogo-
nally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan,
Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 21

33. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). https://doi.
org/10.1109/TVCG.2007.70582

34. Hliněný, P., Sankaran, A.: Exact crossing number parameterized by vertex cover.
In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 307–319.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0 24

35. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–
720 (1981). https://doi.org/10.1137/0210055

36. Liotta, G., Rutter, I., Tappini, A.: Simultaneous FPQ-ordering and hybrid pla-
narity testing. Theor. Comput. Sci. 874, 59–79 (2021). https://doi.org/10.1016/j.
tcs.2021.05.012

37. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on
Computing, vol. 12. World Scientific (2004). https://doi.org/10.1142/5648

38. Patrignani, M.: Planarity testing and embedding. In: Handbook on Graph Drawing
and Visualization, pp. 1–42 (2013)

39. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-
decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991). https://doi.org/
10.1016/0095-8956(91)90061-N

https://doi.org/10.1007/978-3-030-26176-4_21
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1007/978-3-030-35802-0_24
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.tcs.2021.05.012
https://doi.org/10.1016/j.tcs.2021.05.012
https://doi.org/10.1142/5648
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N

Induced Disjoint Paths and Connected
Subgraphs for H-Free Graphs

Barnaby Martin1 , Daniël Paulusma1 , Siani Smith1(B) ,
and Erik Jan van Leeuwen2

1 Department of Computer Science, Durham University, Durham, UK
{barnaby.d.martin,daniel.paulusma,siani.smith}@durham.ac.uk

2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract. Paths P 1, . . . , P k in a graph G = (V,E) are mutually
induced if any two distinct P i and P j have neither common vertices nor
adjacent vertices. The Induced Disjoint Paths problem is to decide
if a graph G with k pairs of specified vertices (si, ti) contains k mutu-
ally induced paths P i such that each P i starts from si and ends at ti.
This is a classical graph problem that is NP-complete even for k = 2.
We introduce a natural generalization, Induced Disjoint Connected
Subgraphs: instead of connecting pairs of terminals, we must connect
sets of terminals. We give almost-complete dichotomies of the compu-
tational complexity of both problems for H-free graphs, that is, graphs
that do not contain some fixed graph H as an induced subgraph. Finally,
we give a complete classification of the complexity of the second problem
if the number k of terminal sets is fixed, that is, not part of the input.

Keywords: induced subgraphs · connectivity · H-free graph ·
complexity dichotomy

1 Introduction

The well-known Disjoint Paths problem is one of the problems in Karp’s list
of NP-complete problems. It is to decide if a graph has pairwise vertex-disjoint
paths P 1, . . . , P k where each P i connects two pre-specified vertices si and ti. Its
generalization, Disjoint Connected Subgraphs, plays a crucial role in the
graph minor theory of Robertson and Seymour. This problem asks for connected
subgraphs D1, . . . , Dk, where each Di connects a pre-specified set of vertices Zi.
In a recent paper [18] we classified, subject to a small number of open cases, the
complexity of both these problems for H-free graphs, that is, for graphs that do
not contain some fixed graph H as an induced subgraph.

Our Focus. We consider the induced variants of Disjoint Paths and Disjoint
Connected Subgraphs. These problems behave differently. Namely, Disjoint
Paths for fixed k, or more generally, Disjoint Connected Subgraphs, after
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 398–411, 2022.
https://doi.org/10.1007/978-3-031-15914-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_29&domain=pdf
http://orcid.org/0000-0002-4642-8614
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0003-0797-0512
http://orcid.org/0000-0001-5240-7257
https://doi.org/10.1007/978-3-031-15914-5_29

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 399

fixing both k and � = max{|Z1|, . . . , |Zk|}, is polynomial-time solvable [29]. In
contrast, Induced Disjoint Paths is NP-complete even when k = 2, as shown
both by Bienstock [2] and Fellows [5]. Just as for the classical problems [18], we
perform a systematic study and focus on H-free graphs. As it turns out, for the
restriction to H-free graphs, the induced variants actually become computation-
ally easier for an infinite family of graphs H. We first give some definitions.

Terminology. For a subset S ⊆ V in a graph G = (V,E), let G[S] denote
the induced subgraph of G by S, that is, G[S] is the graph obtained from G
after removing every vertex not in S. Let G1 + G2 be the disjoint union of two
vertex-disjoint graphs G1 and G2. We say that paths P 1, . . . , P k, for some k ≥ 1,
are mutually induced paths of G if there exists a set S ⊆ V such that G[S] =
P 1 + . . . + P k; note that every P i is an induced path and that there is no edge
between two vertices from different paths P i and P j . A path P is an s-t-path
(or t-s-path) if the end-vertices of P are s and t.

A terminal pair (s, t) is an unordered pair of two distinct vertices s and t in
a graph G, which we call terminals. A set T = {(s1, t1), . . . , (sk, tk)} of terminal
pairs of G is a terminal pair collection if the terminals pairs are pairwise disjoint,
so, apart from si �= ti for i ∈ {1, . . . , k}, we also have {si, ti} ∩ {sj , tj} = ∅ for
every 1 ≤ i < j ≤ k. We now define the following decision problem:

Induced Disjoint Paths
Instance: a graph G and terminal pair collection T = {(s1, t1) . . . , (sk, tk)}.
Question: does G have a set of mutually induced paths P 1,. . . ,P k such that

P i is an si-ti path for i ∈ {1, . . . , k}?

Note that as every path between two vertices s and t contains an induced path
between s and t, the condition that every P i must be induced is not strictly
needed in the above problem definition. We say that the paths P 1, . . . , P k, if
they exist, form a solution of Induced Disjoint Paths.

We now generalize the above notions from pairs and paths to sets and con-
nected subgraphs. Subgraphs D1, . . . , Dk of a graph G = (V,E) are mutually
induced subgraphs of G if there exists a set S ⊆ V such that G[S] = D1+. . .+Dk.
A connected subgraph D of G is a Z-subgraph if Z ⊆ V (D). A terminal set Z
is an unordered set of distinct vertices, which we again call terminals. A set
Z = {Z1, . . . , Zk} is a terminal set collection if Z1, . . . , Zk are pairwise disjoint
terminal sets. We now introduce the generalization:

Induced Disjoint Connected Subgraphs
Instance: a graph G and terminal set collection Z = {Z1, . . . , Zk}.
Question: does G have a set of mutually induced connected subgraphs

D1, . . . , Dk such that Di is a Zi-subgraph for i ∈ {1, . . . , k}?

The subgraphs D1, . . . , Dk, if they exist, form a solution. We write Induced
Disjoint Connected �-Subgraphs if � = max{|Z1|, . . . , |Zk|} is fixed. Note
that Induced Disjoint Connected 2-Subgraphs is exactly Induced Dis-
joint Paths.

400 B. Martin et al.

1.1 Known Results

Only results for Induced Disjoint Paths are known and these hold for a
slightly more general problem definition (see Sect. 6). Namely, Induced Dis-
joint Paths is linear-time solvable for circular-arc graphs [10]; polynomial-time
solvable for chordal graphs [1], AT-free graphs [11], graph classes of bounded
mim-width [15]; and NP-complete for claw-free graphs [6], line graphs of triangle-
free chordless graphs [28] and thus for (theta,wheel)-free graphs, and for pla-
nar graphs; the last result follows from a result of Lynch [23] (see [11]). More-
over, Induced Disjoint Paths is XP with parameter k for (theta,wheel)-free
graphs [28] and even FPT with parameter k for claw-free graphs [9] and planar
graphs [17]; the latter can be extended to graph classes of bounded genus [20].

1.2 Our Results

Let Pr be the path on r vertices. A linear forest is the disjoint union of one or
more paths. We write F ⊆i G if F is an induced subgraph of G and sG for the
disjoint union of s copies of G. We can now present our first two results: the first
one includes our dichotomy for Induced Disjoint Paths (take � = 2).

Theorem 1. Let � ≥ 2. For a graph H, Induced Disjoint Connected �-
Subgraphs on H-free graphs is polynomial-time solvable if H ⊆i sP3 + P6 for
some s ≥ 0; NP-complete if H is not a linear forest; and quasipolynomial-time
solvable otherwise.

Theorem 2. For a graph H such that H �= sP1 +P6 for some s ≥ 0, Induced
Disjoint Connected Subgraphs on H-free graphs is polynomial-time solv-
able for H-free graphs if H ⊆i sP1 + P3 + P4 or H ⊆i sP1 + P5 for some s ≥ 0,
and it is NP-complete otherwise.

Note the complexity jumps if we no longer fix �. We will show that all open cases
in Theorem 2 are equivalent to exactly one open case, namely H = P6.

Comparison. The Disjoint Connected Subgraphs problem restricted to
H-free graphs is polynomial-time solvable if H ⊆i P4 and else it is NP-complete,
even if the maximum size of the terminal sets is � = 2, except for the three
unknown cases H ∈ {3P1, 2P1+P2, P1+P3} [18]. Perhaps somewhat surprisingly,
Theorems 1 and 2 show the induced variant is computationally easier for an
infinite number of linear forests H (if P �= NP).

Fixing k. If the number k of terminal sets is fixed, we write k-Induced Dis-
joint Connected Subgraphs and prove the following complete dichotomy.

Theorem 3. Let k ≥ 2. For a graph H, k-Induced Disjoint Connected
Subgraphs on H-free graphs is polynomial-time solvable for H-free graphs if
H ⊆i sP1 + 2P4 or H ⊆i sP1 + P6 for some s ≥ 0, and it is NP-complete
otherwise.

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 401

Comparison. We note a complexity jump between Theorems 2 and 3 when
H = sP1 + 2P4 for some s ≥ 0.

Paper Outline. Sect. 2 contains terminology, known results and auxiliary
results that we will use as lemmas. Hardness results for Theorem 1 transfer
to Theorem 2, whereas the reverse holds for polynomial results. As such, we
show all our polynomial-time algorithms in Sect. 3 and all our hardness reduc-
tions in Sect. 4. The cases H = sP3 + P6 in Theorem 1 and H = sP1 + P5 in
Theorem 2 are proven by a reduction to Independent Set via so-called blob
graphs, just as the quasipolynomial-time result if H is a linear forest. Hence, we
also include the proof of the latter result in Sect. 3. In Sect. 5 we combine the
results from the previous two sections to prove Theorems 1–3.

In our theorems we have infinite families of polynomial cases related to nearly
H-free graphs. For a graph H, a graph G is nearly H-free if G is (P1 + H)-free.
It is easy to see (cf [3]) that Independent Set is polynomial-time solvable on
nearly H-free graphs if it is so on H-free graphs. However, for many other graph
problems, this might either not be true or less easy to prove (see, for exam-
ple, [16]). In Sect. 3 we show that it holds for the relevant cases in Theorem 2,
in particular for the case H = P6 (see Lemma 7). The latter result yields no
algorithm but shows that essentially H = P6 is the only one open case left in
Theorem 2.

In Sect. 6 we consider a number of directions for future work. In particular
we consider the restriction k-Disjoint Connected �-Subgraphs where both
k and � are fixed and discuss some open problems.

2 Preliminaries

Let G = (V,E) be a graph. A subset S ⊆ V is connected if G[S] is connected.
A subset D ⊆ V (G) is dominating if every vertex of V (G) \ D is adjacent to
least one vertex of D; if D = {v} then v is a dominating vertex. The open
and closed neighbourhood of a vertex u ∈ V are N(u) = {v | uv ∈ E} and
N [u] = N(u) ∪ {u}. For a set U ⊆ V we define N(U) =

⋃
u∈U N(u) \ U and

N [U] = N(U) ∪ U .
For a graph G = (V,E) and a subset S ⊆ U , we write G − S = G[V \ S]. If

S = {u} for some u ∈ V , we write G − u instead of G − {u}. A vertex u is a
cut-vertex of a connected graph G if G − u is disconnected.

The contraction of an edge e = uv in a graph G replaces the vertices u and v
by a new vertex w that is adjacent to every vertex previously adjacent to u or v;
note that the resulting graph G/e is still simple, that is, G/e contains no multi-
edges or self-loops. The following lemma is easy to see (see, for example, [19]).

Lemma 1. For a linear forest H, let G be an H-free graph. Then G/e is H-free
for every e ∈ E(G).

In a solution (D1, . . . , Dk) for an instance (G,Z) of Induced Disjoint Con-
nected Subgraphs, if Di is minimal and Xi is a minimum connected domi-
nating set of Di, then Xi ∪ Zi = Di or, equivalently, Di \ Xi ⊆ Zi. This will be

402 B. Martin et al.

relevant in our proofs, where we use the following result of Camby and Schaudt,
in particular for the case r = 6 (alternatively, we could use the slightly weaker
characterization of P6-free graphs in [13] but the below characterization gives a
faster algorithm).

Theorem 4 ([4]). Let r ≥ 4 and G be a connected Pr-free graph. Let X be
any minimum connected dominating set of G. Then G[X] is either Pr−2-free or
isomorphic to Pr−2.

Let G = (V,E) be a graph. Two sets X1,X2 ⊆ V are adjacent if X1 ∩X2 �= ∅
or there exists an edge with one end-vertex in X1 and the other in X2. The
blob graph G◦ of G has vertex set {X ⊆ V (G) | X is connected} and edge set
{X1X2 | X1 and X2 are adjacent}. Note that blob graphs may have exponential
size, but in our proofs we will only construct parts of blob graphs that have
polynomial size. We need the following known lemma that generalizes a result
of Gartland et al. [8] for paths.

Lemma 2 ([26]). For every linear forest H, a graph G is H-free if and only if
G◦ is H-free.

The Independent Set problem is to decide if a graph G has an independent
set (set of pairwise non-adjacent vertices) of size at least k for some given inte-
ger k. We need the following two known results for Independent Set. The first
one is due to Grzesik, Klimosová, Pilipczuk and Pilipczuk [12]. The second one
is due to Pilipczuk, Pilipczuk and Rzążewski [27], who improved the previous
quasipolynomial-time algorithm for Independent Set on Pt-free graphs, due
to Gartland and Lokshtanov [7] (whose algorithm runs in nO(log3 n) time).

Theorem 5 ([12]). The Independent Set problem is polynomial-time solvable
for P6-free graphs.

Theorem 6 ([7]). For every r ≥ 1, the Independent Set problem can be
solved in nO(log2 n) time for Pr-free graphs.

Two instances of a decision problem are equivalent if one is a yes-instance if and
only if the other one is. We frequently use the following lemmas (proofs omitted).

Lemma 3. From an instance (G,Z) of Induced Disjoint Connected Sub-
graphs we can in linear time, either find a solution for (G,Z) or obtain an
equivalent instance (G′,Z ′) with |V (G′)| ≤ |V (G)|, such that the following holds:

1. |Z ′| ≥ 2;
2. every Z ′

i ∈ Z ′ has size at least 2; and
3. the union of the sets in Z ′ is an independent set.

Moreover, if G is H-free for some linear forest H, then G′ is also H-free.

Lemma 4. Let H be a linear forest. If (G,Z) is a yes-instance of Induced
Disjoint Connected Subgraphs and G is H-free, then (G,Z) has a solution
(D1, . . . , Dk), where each Di has size at most (2|V (H)| − 1)|Zi|.

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 403

3 Algorithms

In this section we show all the polynomial-time and quasipolynomial-time results
needed to prove our main theorems. We start with the following result.

Lemma 5. Let � ≥ 2. For every s ≥ 0, Induced Disjoint Connected �-
Subgraphs is polynomial-time solvable for (sP3 + P6)-free graphs.

Proof. Let (G,Z) be an instance of the Induced Disjoint Connected �-
Subgraphs problem, where G is (sP3 + P6)-free for some s ≥ 0. By Lemma 3,
we may assume the union of the sets in Z = {Z1, . . . , Zk} is independent.

First suppose that k ≤ s. By Lemma 4 we may assume that each Di in a
solution (D1, . . . , Dk) has size at most t = (6s+11)�. So |D1|+. . .+|Dk| has size
at most kt ≤ st. Hence, we can consider all O(nst) options of choosing a solution.
As s and t are constants, this takes polynomial time in total. Now suppose that
k ≥ s+1. We consider all O(n(s−1)t) options of choosing the first s subgraphs Di,
discarding those with an edge between distinct Di or between some Di and Zj for
some j ≥ s+1. For each remaining option, let G′ = G−N [V (D1)∪· · ·∪V (Ds)]
and Z ′ = {Zs+1, . . . , Zk}. Note that G′ is P6-free.

Let F be the subgraph of the blob graph G′◦ induced by all connected subsets
X in G′ that have size at most 11�, such that X contains all vertices of one set
from Z ′ and no vertices from any other set of Z ′. Then F has polynomial size, as
it has O(n11�) vertices, so we can construct F in polynomial time. By Lemma 2,
F is P6-free.

We claim that (G′,Z ′) has a solution if and only if F has an independent
set of size k − s. First suppose that (G′,Z ′) has a solution. Then, by Lemma 4,
it has a solution (Ds+1, . . . , Dk), where each Di has size at most 11�. Such a
solution corresponds to an independent set of size k − s in F . For the reverse
implication, two vertices in F that each contain vertices of the same set Zi are
adjacent. Hence, an independent set of size k − s in F is a solution for (G′,Z ′).

Due to the above, it remains to apply Theorem 5 to find in polynomial time
whether G′◦ has an independent set of size k − s.
�
By replacing Theorem 5 by Theorem 6 in the above proof and repeating the
arguments of the second part we obtain the following result.

Lemma 6. Let � ≥ 2. For every r ≥ 1, Induced Disjoint Connected �-
Subgraphs is quasipolynomial-time solvable for Pr-free graphs.

We no prove a crucial lemma on nearly H-free graphs.

Lemma 7. For k ≥ 2, r ≤ 6 and s ≥ 1, if (k-)Induced Disjoint Connected
Subgraphs is polynomial-time solvable for Pr-free, graphs, then it is so for
(sP1 + Pr)-free graphs.

Proof. First let r = 6 and k be part of the input. Let (G,Z) be an instance
of Induced Disjoint Connected Subgraphs, where G is an (sP1 + P6)-free
graph for some integer s ≥ 1 and Z = {Z1, . . . , Zk}. We may assume without

404 B. Martin et al.

loss of generality that |Z1| ≥ |Z2| ≥ · · · ≥ |Zk|. By Lemma 3, we may assume
that k ≥ 2; every Zi ∈ Z has size at least 2; and the union of the sets in Z is an
independent set. We assume that Induced Disjoint Connected Subgraphs
is polynomial-time solvable for P6-free graphs.

Case 1. For every i ≥ 2, |Zi| ≤ s − 1.
Let D1, . . . , Dk be a solution for (G,Z) (assuming it exists). By Lemma 4, we
may assume without loss of generality that for i ≥ 2, the number of vertices
of Di is at most (2s + 11)|Zi| ≤ (2s + 11)(s − 1).

First assume k ≤ s. Then V (D2) ∪ · · · ∪ V (Dk) has size at most t, where
t = (s−1)(2s+11)(s−1) is a constant. Hence, we can do as follows. We consider
all O(nt) options for choosing the subgraphs D2, . . . , Dk. For each choice we
check in polynomial time if D2, . . . , Dk are mutually induced and connected,
and if each Di contains Zi. We then check in polynomial time if the graph
G − N [(V (D2) ∪ · · · V (Dk)] has a connected component containing Z1. As the
number of choices is polynomial, the total running time is polynomial.

Now assume k ≥ s+1. We consider all O(ns(2s+11)(s−1)) options of choosing
the s subgraphs D2, . . . , Ds+1. We discard an option if for some i ∈ {1, . . . , s},
the graph Di is disconnected. We also discard an option if there is an edge
between two vertices from two different subgraphs Dh and Di for some 2 ≤
h < i ≤ s + 1, or if there is an edge between a vertex from some subgraph Dh

(2 ≤ h ≤ s) and a vertex from some set Zi (i = 1 or i ≥ s + 2). If we did not
discard the option, then we solve Induced Disjoint Connected Subgraphs
on instance (G−⋃s+2

i=2 N [V (Di)],Z\{Z2, . . . , Zs+1}). The latter takes polynomial
time as G − ⋃s+1

i=2 N [Di] is P6-free. As the number of branches is polynomial as
well, the total running time is polynomial.

Case 2. |Z2| ≥ s (and thus also |Z1| ≥ s).
Let D1, . . . , Dk be a solution for (G,Z) (assuming it exists). As |Z1| ≥ s, we
find that for every i ≥ 2, Di is P6-free. As |Z2| ≥ s, we also find that D1 is
P6-free. Then, by setting r = 6 in Theorem 4, every Di (i ∈ {1, . . . , k}) has a
connected dominating set Xi such that G[Xi] is either P4-free or isomorphic to
P4. We may assume that every Xi is inclusion-wise minimal (as else we could
just replace Xi by a smaller connected dominating set of Di).

Case 2a. There exist some Xi with size at least 7s + 2.
As s ≥ 1, we have that G[Xi] is P4-free. We now set r = 4 in Theorem 4 and
find that G[Xi] has a connected dominating set Yi of size at most 2. Hence,
G[Xi] contains a set R of 7s vertices that are not cut-vertices of G[Xi]. As Xi is
minimal, this means that in Di, each r ∈ R has at least one neighbour z ∈ Zi that
is not adjacent to any vertex of Xi \ {r}. We say that z is a private neighbour
of r. We now partition R into sets R1, . . . , R7, each of exactly s vertices. For
h = 1, . . . , 7, let Rh = {r1h, . . . , rs

h} and pick a private neighbour zj
h of rj

h. For
h = 1, . . . , 7, let Qh = {z1h, . . . , zs

h}. Each Qh is independent, as Zi is independent
and Qh ⊆ Zi.

We claim that there exists an index h ∈ {1, . . . , 7} such that G−(N [Qh]\Rh)
is P6-free. For a contradiction, assume that for every h ∈ {1, . . . , 7}, we have

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 405

that G− (N [Qh] \Rh) is not P6-free. As G is (sP1+P6)-free and every Qh is an
independent set of size s, we have that G − N [Qh] is P6-free. We conclude that
every induced P6 of G contains a vertex of Rh for every h ∈ {1, . . . , 7}. This is
contradiction, as every induced P6 only has six vertices. Hence, there exists an
index h ∈ {1, . . . , 7} such that G − (N [Qh] \ Rh) is P6-free.

We exploit the above structural claim algorithmically as follows. We consider
all k = O(n) options that one of the sets Xi has size at least 7s + 2. For each
choice of index i we do as follows. We consider all O(n2s) options of choosing
a set Qh of s vertices from the independent set Zi together with a set Rh of s
vertices from N(Qh). We discard the option if a vertex of Qh has more than one
neighbour in Rh, or if G′ = G− (N [Qh] \Rh) is not P6-free. Otherwise, we solve
Induced Disjoint Connected Subgraphs on instance (G′,Z ′), where Z ′ =
(Z \ {Zi})∪ {(Zi \ Qh)∪ Rh}. As G′ is P6-free, the latter takes polynomial time
by our initial assumption. Hence, as the total number of branches is O(n2s+1)
the total running time of this check takes polynomial time.

Case 2b. Every Xi has size at most 7s + 1.
First assume k ≤ s. We consider all O(ns(7s+1)) options of choosing the sets
X1, . . . , Xk. For each option we check if (X1 ∪ Z1, . . . , Xk ∪ Zk) is a solution for
(G,Z). As the latter takes polynomial time and the total number of branches is
polynomial, this takes polynomial time.

Now assume k ≥ s + 1. We consider all O(ns(7s+1)) options of choosing the
first s sets X1, . . . , Xs. We discard an option if for some i ∈ {1, . . . , s}, the set
Xi∪Zi is disconnected. We also discard an option if there is an edge between two
vertices from two different sets Xh ∪ Zh and Xi ∪ Zi for some 1 ≤ h < i ≤ s, or
if there is an edge between a vertex from some set Xh ∪Zh (h ≤ s) and a vertex
from some set Zi (i ≥ s + 1). If we did not discard the option, then we solve
Induced Disjoint Connected Subgraphs on instance (G − ⋃s

i=1 N [Xi ∪
Zi], {Zs+1, . . . , Zk}). The latter takes polynomial time as G − ⋃s

i=1 N [Xi ∪ Zi]
is P6-free. As the number of branches is polynomial as well, the total running
time is polynomial.

From the above case analysis we conclude that the running time of our algorithm
is polynomial. If r ≤ 5 and/or k is fixed we use exactly the same arguments.
�

Remark 1. Due to Lemma 7, the missing cases H = sP1 + P6 in Theorem 2
are all equivalent to the case H = P6.

We will use Lemma 7 for the case where r = 5. We also make use of the blob
approach again.

Lemma 8. For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P5)-free graphs.

Proof. Due to Lemma 7 it suffices to prove the statement for P5-free graphs
only. Let (G,Z) be an instance of Induced Disjoint Connected Subgraphs,

406 B. Martin et al.

where G is a P5-free graph and Z = {Z1, . . . , Zk}. By Lemma 3, we may assume
that k ≥ 2; every Zi ∈ Z has size at least 2; and the union of the sets in Z is
an independent set. We may also delete every vertex from G that is not in a
terminal set from Z but that is adjacent to two terminals in different sets Zh

and Zi (such a vertex cannot be used in any subgraph of a solution). We now
make a structural observation that gives us a procedure for safely contracting
edges; recall that edge contraction preserves P5-freeness by Lemma 1.

Consider a solution (D1 . . . Dk) that is maximal in the sense that any vertex v
outside V (D1) ∪ · · · ∪ V (Dk) must have a neighbour in at least two distinct
subgraphs Di and Dj . As G is P5-free, v must be adjacent to all vertices of
at least one of Di and Dj . As v has no neighbours in both Zi ⊆ V (Di) and
Zj ⊆ V (Dj), v must be adjacent to all vertices of exactly one of Di and Dj .

The above gives rise to the following algorithm. Let v be a vertex that is
adjacent to at least one vertex z ∈ Zi but not to all vertices of Zi. As v is
adjacent to z and z is in Zi, it hold that v does not belong to any Dh with h �= i
for every (not necessarily maximal) solution (D1, . . . , Dk). The observation from
the previous paragraph tells us that if v is not in any Dh and (D1, . . . , Dk) is
a maximal solution, then v must be adjacent to all vertices of some Dj . As v is
adjacent to z ∈ Zi, it holds by construction that v is not adjacent to any vertex
of any Zh ⊆ V (Dh) with h �= i. Hence, i = j must hold. However, this is not
possible, as we assumed that v is not adjacent to all vertices of Zi ⊆ V (Di).
Hence, we may assume without loss of generality that v belongs to Di (should
a solution exist). This means that we can safely contract the edge vz and put
the resulting vertex in Zi. Then we apply Lemma 3 again and also remove all
common neighbours of vertices from Zi and vertices from other sets Zj . This
takes polynomial time and the resulting graph has one vertex less. Hence, by
applying this procedure exhaustively we have, in polynomial time, either solved
the problem or obtained an equivalent but smaller instance.

Suppose the latter case holds. For simplicity we denote the obtained instance
by (G,Z) again, where G is a P5-free graph and Z = {Z1, . . . , Zk} with k ≥ 2.
Due to our procedure, every Zi ∈ Z has size at least 2; the union of the sets in
Z is an independent set. Moreover, every non-terminal vertex is adjacent either
to no terminal vertex or is adjacent to all terminals of exactly one terminal set.
We let S be the set of vertices of the latter type. Observe that it follows from
the preceding that only vertices of S need to be used for a solution.

We now construct the subgraph F of the blob graph G◦ that is induced by
all connected subsets X of the form X = Zi ∪ {s} for some 1 ≤ i ≤ k and s ∈ S.
Note that F has O(kn) vertices. Hence, constructing F takes polynomial time.
Moreover, F is P5-free due to Lemma 2. As in the proof of Lemma 5, we observe
that (G,Z) has a solution if and only if F has an independent set of size k. It
now remains to apply (in polynomial time) Theorem 5.
�
We now show a stronger result when k is fixed (proof omitted).

Lemma 9. For every s ≥ 0, k-Induced Disjoint Connected Subgraphs
is polynomial-time solvable for (sP1 + P6)-free graphs.

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 407

We now present our final two polynomial-time algorithms (proofs omitted).

Lemma 10. For every k ≥ 2 and s ≥ 0, k-Induced Disjoint Connected
Subgraphs is polynomial-time solvable for (sP1 + 2P4)-free graphs.

Lemma 11. For every s ≥ 0, Induced Disjoint Connected Subgraphs is
polynomial-time solvable for (sP1 + P3 + P4)-free graphs.

4 NP-Completeness Results

In this section we present a number of NP-completeness results; we omitted
all proofs except one. If � = 2, we write Induced Disjoint Paths instead of
Induced Disjoint Connected �-Subgraphs. The girth of a graph G that is
not a forest is the length of a shortest cycle of G.

Lemma 12. For every g ≥ 3, Induced Disjoint Paths is NP-complete for
graphs of girth at least g.

Lemma 13. For every g ≥ 3, 2-Induced Disjoint Connected Subgraphs
is NP-complete for graphs of girth at least g.

The line graph L(G) of a graph G has vertex set {ve | e ∈ E(G)} and an edge
between ve and vf if and only if e and f are incident on the same vertex in G. The
following two lemmas show NP-completeness for line graphs. Lemma 14 is due
to Fiala et al. [6]. They consider a more general variant of Induced Disjoint
Paths, but their reduction holds in our setting as well. Lemma 15 can be derived
from the NP-completeness of 2-Disjoint Connected Subgraphs [14].

Lemma 14 ([6]). Induced Disjoint Paths is NP-complete for line graphs.

Lemma 15. 2-Induced Disjoint Connected Subgraphs is NP-complete
for line graphs.

Finally, we show two lemmas for graphs without certain induced linear forests.

Lemma 16. 2-Induced Disjoint Connected Subgraphs is NP-complete
for (3P2, P7)-free graphs.

Proof. We reduce from Not-All-Equal-3-Sat, known to be NP-complete [30].
Let (X , C) be an instance of Not-All-Equal-3-Sat containing n variables
x1, . . . , xn and m clauses C1, . . . , Cm. We construct a graph G as follows. Let X
be a clique of size n on vertices v1, . . . , vn. Introduce a copy v′

i of each vi in X.
Call the new set X ′ and make it a clique. Add the edges viv

′
i for each vi in X.

Let C be an independent set of size m on vertices c1, . . . , cm. Introduce a copy
c′
j of each vertex cj in C. Call the new set C ′ (and keep it an independent set).

Now for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, add an edge vicj and an edge v′
ic

′
j if

clause Cj contains variable xi. Set Z1 = C and Z2 = C ′. Then, (G,Z1, Z2) is an
instance of 2-Induced Disjoint Connected Subgraphs.

408 B. Martin et al.

Observe that G is P7-free. Indeed, let P be any longest induced path in G.
Then P can contain at most two vertices from X and at most two vertices from
X ′. If P contains at most one vertex from C and at most one vertex from C ′,
then P has length at most 2 + 2 + 1 + 1 = 6. On the other hand, if P contains
two vertices from C or two vertices from C ′, then P has length at most 3.

We also observe that G is 3P2-free, as any P2 must contain at least one vertex
from X or from X ′, and X and X ′ are cliques. So we are done after proving the
following claim: (X , C) is a yes-instance of Not-All-Equal-3-Sat if and only if
(G,Z1, Z2) is a yes-instance of 2-Induced Disjoint Connected Subgraphs.

In the forward direction, let τ be a satisfying truth assignment. We put in
A every vertex of X for which the corresponding variable is set to true. We put
in A′ every vertex of X ′ for which the corresponding variable is set to false.
As each clause Cj contains at least one true variable, cj is adjacent to a vertex
in A. Similarly, each clause Cj contains at least one false variable, so each c′

j

is adjacent to a vertex in A′. As X and X ′ are cliques, A and A′ are cliques.
Hence, G[C ∪ A] and G[C ′ ∪ A′] are connected.

Now suppose there is an edge between a vertex of C ∪ A and a vertex of
C ′ ∪ A′. Then, by construction, this edge must be equal to some viv

′
i, which

means that vi is in A and v′
i is in A′, so xi must be true and false at the same

time, a contradiction. Hence, there exists no edge between a vertex from C ∪ A
and a vertex from C ′ ∪ A′. We conclude that (C ∪ A,C ′ ∪ A′) is a solution.

In the backwards direction, let (C ∪ A,C ′ ∪ A′) be a solution. Then, by
definition, there is no edge between C ∪ A and C ′ ∪ A′, which means that there
is no edge between A and A′. Then A ⊆ X and A′ ⊆ X ′, since X and X ′ are
cliques and A (A′) needs to contain at least one vertex of X (X ′). Also, there is
no variable xi such that vi is in A and v′

i is in A′. This means we can define a
truth assignment τ by setting all variables corresponding to vertices in A to be
true, all variables corresponding to vertices in A′ to be false, and all remaining
vertices in X to be true (or false, it does not matter).

As C is an independent set and C ∪ A is connected, each cj has a neighbour
in A. So each Cj contains a true literal. As C ′ is an independent set and C ′ ∪A′

is connected, each c′
j has a neighbour in A′. So each Cj contains a false literal.

Hence, τ is a satisfying truth assignment. This completes the proof.
�
Lemma 17. Induced Disjoint Connected Subgraphs is NP-complete for
2P4-free graphs.

5 The Proofs of Theorems 1–3

We are now ready to prove Theorems 1–3, which we restate below.

Proof of Theorem 1. We prove the theorem for � = 2; extending the proof to
� ≥ 3 is trivial. If H contains a cycle Cs, then we use Lemma 12 by setting the
girth to g = s + 1. Suppose that H contains no cycle, that is, H is a forest. If
H contains a vertex of degree at least 3, then we use Lemma 14, as in that case
the class of H-free graphs contains the class of K1,3-free graphs, which in turn

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 409

contains the class of line graphs. In the remaining cases, H is a linear forest. If
H ⊆i sP3 + P6 for some s ≥ 0 we use Lemma 5. Else we use Lemma 6.
�
Proof of Theorem 2. If H is not a linear forest, we use Theorem 1. Suppose
H is a linear forest. If H ⊆i sP1 + P5 for some s ≥ 0 we use Lemma 8. If
H ⊆i sP1 + P3 + P4 for some s ≥ 0 we use Lemma 11. If 3P2 ⊆i H or P7 ⊆i H
we use Lemma 16. Otherwise 2P4 ⊆i H and we use Lemma 17.
�
Proof of Theorem 3. If H contains a cycle Cs, then we use Lemma 13 by setting
the girth to g = s+1. Suppose that H contains no cycle, that is, H is a forest. If
H contains a vertex of degree at least 3, then we use Lemma 15, as in that case
the class of H-free graphs contains the class of K1,3-free graphs, which in turn
contains the class of line graphs. In the remaining cases, H is a linear forest. If
H ⊆i sP1+P6 for some s ≥ 0 we use Lemma 9. If H ⊆i sP1+2P4 for some s ≥ 0
we use Lemma 10. Otherwise 3P2 ⊆i H or P7 ⊆i H and we use Lemma 16.
�

6 Future Work

Our results naturally lead to some open problems. First of all, can we find
polynomial-time algorithms for the quasipolynomial cases in Theorem 1? This is
a challenging task that is also open for Independent Set; note that we reduce
to the latter problem to solve the case where H = sP1 + P6 for some s ≥ 0.

We also recall that the case H = P6 is essentially the only remaining open
case left in Theorem 2, which is for the setting where k and � are both part
of the input. As shown in Theorems 1 and 3, respectively, we have a positive
answer for the settings where � is fixed (and k is part of the input) and where k
is fixed (and � is part of the input), respectively. However, it seems challenging
to combine the techniques when both k and � are part of the input.

We did not yet discuss the k-Induced Disjoint Connected �-Subgraphs
problem, which is the variant where both k and � are fixed; note that if � = 2,
then we obtain the k-Induced Disjoint Paths problem. The latter problem
restricted to k = 2 is closely related to the problem of deciding if a graph
contains a cycle passing through two specified vertices and has been studied for
hereditary graph classes as well; see [21]. Recently, we made some more progress.
A subdivided claw is obtained from a claw after subdividing each edge zero or
more times. In particular, the chair is the graph obtained from the claw by
subdividing one of its edges exactly once. The set S consists of all graphs with
the property that each of their connected components is a path or a subdivided
claw. We proved in [24] that for every integer k ≥ 2 and graph H, k-Induced
Disjoint Paths is polynomial-time solvable if H is a subgraph of the disjoint
union of a linear forest and a chair, and it is NP-complete if H is not in S.

From the above it follows in particular that k-Induced Disjoint Paths is
polynomial-time solvable for claw-free graphs (just like Independent Set [25,
31]) in contrast to the other three variants, which are NP-complete for claw-free
graphs (see Theorems 1–3). We leave completing the classification of k-Induced
Disjoint Paths as future work and refer to [24] for a more in-depth discussion.

410 B. Martin et al.

Acknowledgments. We thank Paweł Rzążewski for the argument using blob graphs,
which simplified two of our proofs and led to the case H = P6 in Theorem 1.

References

1. Belmonte, R., Golovach, P.A., Heggernes, P., van’t Hof, P., Kaminski, M.,
Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algo-
rithmica 69, 501–521 (2014)

2. Bienstock, D.: On the complexity of testing for odd holes and induced odd paths.
Discret. Math. 90, 85–92 (1991)

3. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the
maximum weight stable set problem. Theoret. Comput. Sci. 389, 295–306 (2007)

4. Camby, E., Schaudt, O.: A new characterization of Pk-free graphs. Algorithmica
75, 205–217 (2016)

5. Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. Proc.
AMS-IMS-SIAM Joint Summer Res. Conf. Contemp. Math. 89, 1–18 (1989)

6. Fiala, J., Kamiński, M., Lidický, B., Paulusma, D.: The k-in-a-Path problem for
claw-free graphs. Algorithmica 62, 499–519 (2012)

7. Gartland, P., Lokshtanov, D.: Independent set on Pk-free graphs in quasi-
polynomial time. In: Proceedings of the FOCS 2020, pp. 613–624 (2020)

8. Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Finding
large induced sparse subgraphs in C t-free graphs in quasipolynomial time. In:
Proceedings of the STOC 2021, pp. 330–341 (2021)

9. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-
free graphs. SIAM J. Discret. Math. 29, 348–375 (2015)

10. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in
circular-arc graphs in linear time. Theoret. Comput. Sci. 640, 70–83 (2016)

11. Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-free
graphs. J. Comput. Syst. Sci. 124, 170–191 (2022)

12. Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for maximum weight independent set on P6-free graphs. In: Proceedings of
the SODA 2019, pp. 1257–1271 (2019)

13. van’t Hof, P., Paulusma, D.: A new characterization of P6-free graphs. Discrete
Appl. Math. 158, 731–740 (2010)

14. van’t Hof, P., Paulusma, D., Woeginger, G.J.: Partitioning graphs into connected
parts. Theoret. Comput. Sci. 410, 4834–4843 (2009)

15. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width I. induced path problems. Discrete
Appl. Math. 278, 153–168 (2020)

16. Johnson, M., Paesani, G., Paulusma, D.: Connected Vertex Cover for (sP1 + P5)-
free graphs. Algorithmica 82, 20–40 (2020)

17. Kawarabayashi, K., Kobayashi, Y.: A linear time algorithm for the induced disjoint
paths problem in planar graphs. J. Comput. Syst. Sci. 78, 670–680 (2012)

18. Kern, W., Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Disjoint paths
and connected subgraphs for H-free graphs. Theoret. Comput. Sci. 898, 59–68
(2022)

19. Kern, W., Paulusma, D.: Contracting to a longest path in H-free graphs. Proc.
ISAAC 2020, LIPIcs 181, 22:1–22:18 (2020)

20. Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in
planar graphs and bounded genus graphs. In: Proceedings of the SODA 2009, pp.
1146–1155 (2009)

Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs 411

21. Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs.
Discret. Appl. Math. 157, 3540–3551 (2009)

22. Li, W.N.: Two-segmented channel routing is strong NP-complete. Discret. Appl.
Math. 78, 291–298 (1997)

23. Lynch, J.: The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl. 5, 31–36 (1975)

24. Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Few induced disjoint paths
for H-free graphs. Proc. ISCO 2022, LNCS (to appear)

25. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theor. Ser. B 28, 284–304 (1980)

26. Paesani, G., Paulusma, D., Rzążewski, P.: Feedback Vertex Set and Even Cycle
Transversal for H-free graphs: finding large block graphs. SIAM J. Discret. Math.
(to appear)

27. Pilipczuk, M., Pilipczuk, M., Rzążewski, P.: Quasi-polynomial-time algorithm for
independent set in Pt-free graphs via shrinking the space of induced paths. In:
Proceedings of the SOSA 2021, pp. 204–209 (2021)

28. Radovanović, M., Trotignon, N., Vus̆ković, K.: The (theta, wheel)-free graphs Part
IV: induced paths and cycles. J. Comb. Theor. Ser. B 146, 495–531 (2021)

29. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theor. Ser. B 63, 65–110 (1995)

30. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC, pp. 216–226
(1978)

31. Shibi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discret. Math. 29, 53–76 (1980)

Classifying Subset Feedback Vertex Set
for H-Free Graphs

Giacomo Paesani1(B) , Daniël Paulusma2 , and Pawe�l Rz ↪ażewski3,4

1 School of Computing, University of Leeds, Leeds, UK
g.paesani@leeds.ac.uk

2 Department of Computer Science, Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

3 Faculty of Mathematics and Information Science, Warsaw University
of Technology, Warsaw, Poland
pawel.rzazewski@pw.edu.pl

4 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,

Warsaw, Poland

Abstract. In the Feedback Vertex Set problem, we aim to find a
small set S of vertices in a graph intersecting every cycle. The Sub-

set Feedback Vertex Set problem requires S to intersect only those
cycles that include a vertex of some specified set T . We also consider
the Weighted Subset Feedback Vertex Set problem, where each
vertex u has weight w(u) > 0 and we ask that S has small weight. By
combining known NP-hardness results with new polynomial-time results
we prove full complexity dichotomies for Subset Feedback Vertex

Set and Weighted Subset Feedback Vertex Set for H-free graphs,
that is, graphs that do not contain a graph H as an induced subgraph.

Keywords: Feedback vertex set · H-free graph · Complexity
dichotomy

1 Introduction

In a graph transversal problem the aim is to find a small set of vertices within
a given graph that must intersect every subgraph that belongs to some speci-
fied family of graphs. Apart from the Vertex Cover problem, the Feedback

Vertex Set problem is perhaps the best-known graph transversal problem. A
vertex subset S is a feedback vertex set of a graph G if S intersects every cycle
of G. In other words, the graph G− S obtained by deleting all vertices of S is a
forest. We can now define the problem:

Feedback Vertex Set

Instance: a graph G and an integer k.
Question: does G have a feedback vertex set S with |S| ≤ k?

P. Rz ↪ażewski—Supported by Polish National Science Centre grant no. 2018/31/D/
ST6/00062.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 412–424, 2022.
https://doi.org/10.1007/978-3-031-15914-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_30&domain=pdf
http://orcid.org/0000-0002-2383-1339
http://orcid.org/0000-0001-5945-9287
http://orcid.org/0000-0001-7696-3848
https://doi.org/10.1007/978-3-031-15914-5_30

Classifying Subset Feedback Vertex Set for H-Free Graphs 413

The Feedback Vertex Set problem is well-known to be NP-complete even
under input restrictions. For example, by Poljak’s construction [14], the Feed-

back Vertex Set problem is NP-complete even for graphs of finite girth at
least g (the girth of a graph is the length of its shortest cycle). To give another rel-
evant example, Feedback Vertex Set is also NP-complete for line graphs [10].

In order to understand the computational hardness of Feedback Vertex

Set better, other graph classes have been considered as well, in particular those
that are closed under vertex deletion. Such graph classes are called hereditary.
It is readily seen that a graph class G is hereditary if and only if G can be
characterized by a (possibly infinite) set F of forbidden induced subgraphs.
From a systematic point of view it is natural to first consider the case where
F has size 1, say F = {H} for some graph H. This leads to the notion of H-
freeness: a graph G is H-free for some graph H if G does not contain H as an
induced subgraph, that is, G cannot be modified into H by a sequence of vertex
deletions.

As Feedback Vertex Set is NP-complete for graphs of finite girth at
least g for every g ≥ 1, it is NP-complete for H-free graphs whenever H has a
cycle. As it is NP-complete for line graphs and line graphs are claw-free, Feed-
back Vertex Set is NP-complete for H-free graphs whenever H has an induced
claw (the claw is the 4-vertex star). In the remaining cases, the graph H is a
linear forest, that is, the disjoint union of one or more paths. When H is a linear
forest, several positive results are known even for the weighted case. Namely,
for a graph G, we can define a (positive) weighting as a function w : V → Q

+.
For v ∈ V , w(v) is the weight of v, and for S ⊆ V , we define the weight
w(S) =

∑
u∈S w(u) of S as the sum of the weights of the vertices in S. This

brings us to the following generalization of Feedback Vertex Set:

Weighted Feedback Vertex Set

Instance: a graph G, a positive vertex weighting w of G and a rational
number k.

Question: does G have a feedback vertex set S with w(S) ≤ k?

Note that if w is a constant weighting function, then we obtain the Feedback

Vertex Set problem. We denote the r-vertex path by Pr, and the disjoint union
of two vertex-disjoint graphs G1 and G2 by G1+G2 = ((V (G1)∪V (G2), E(G1)∪
E(G2)), where we write sG for the disjoint union of s copies of G. It is known
that Weighted Feedback Vertex Set is polynomial-time solvable for sP3-
free graphs [11] and P5-free graphs [1]. The latter result was recently extended to
(sP1+P5)-free graphs for every s ≥ 0 [11]. We write H ⊆i G to denote that H is
an induced subgraph of G. We can now summarize all known results [1,10,11,14]
as follows.

Theorem 1. (Weighted) Feedback Vertex Set for the class of H-free
graphs is polynomial-time solvable if H ⊆i sP3 or H ⊆i sP1 + P5 for some
s ≥ 1, and is NP-complete if H is not a linear forest.

414 G. Paesani et al.

Note that the open cases of Theorem 1 are when H is a linear forest with
P2 + P4 ⊆i H or P6 ⊆i H.

The (Weighted) Feedback Vertex Set problem can be further general-
ized in the following way. Let T be some specified subset of vertices of a graph
G. A T -cycle of G is a cycle that intersects T . A set ST ⊆ V is a T -feedback
vertex set of G if ST contains at least one vertex of every T -cycle; see also Fig. 1.
We now consider the following generalizations of Feedback Vertex Set:

Subset Feedback Vertex Set

Instance: a graph G, a subset T ⊆ V (G) and an integer k.
Question: does G have a T -feedback vertex set ST with |ST | ≤ k?

Weighted Subset Feedback Vertex Set

Instance: a graph G, a subset T ⊆ V (G), a positive vertex weighting w
of G and a rational number k.

Question: does G have a T -feedback vertex set ST with w(ST) ≤ k?

The NP-complete cases in Theorem 1 carry over to (Weighted) Subset Feed-

back Vertex Set; just set T := V (G) in both cases. However, this is no longer
true for the polynomial-time cases: Fomin et al. [7] proved NP-completeness of
Subset Feedback Vertex Set for split graphs, which form a subclass of 2P2-
free graphs. Interestingly, Papadopoulos and Tzimas [13] proved that Weighted

Subset Feedback Vertex Set is NP-complete for 5P1-free graphs, whereas
Brettell et al. [4] proved that Subset Feedback Vertex Set can be solved
in polynomial time even for (sP1 +P3)-free graphs for every s ≥ 1 [4]. Hence, in
contrast to many other transversal problems, the complexities on the weighted
and unweighted subset versions do not coincide for H-free graphs.

It is also known that Weighted Subset Feedback Vertex Set can be
solved in polynomial time for permutation graphs [12] and thus for its subclass of
P4-free graphs. The latter result also follows from a more general result related
to the graph parameter mim-width [15]. Namely, Bergougnoux, Papadopou-
los and Telle [3] proved that Weighted Subset Feedback Vertex Set is

Fig. 1. Two examples of a slightly modified Petersen graph with the set T indicated by
square vertices. In both examples, the set ST of black vertices is a T -feedback vertex
set. On the left, ST \ T �= ∅. On the right, ST ⊆ T .

Classifying Subset Feedback Vertex Set for H-Free Graphs 415

polynomial-time solvable for graphs for which we can find a decomposition of
constant mim-width in polynomial time [3]; the class of P4-free graphs is an
example of such a class. Brettell et al. [5] extended these results by proving that
Weighted Subset Feedback Vertex Set, restricted to H-free graphs, is
polynomial-time solvable if H ⊆i 3P1 + P2 or H ⊆i P1 + P3.

The above results leave open a number of unresolved cases for both problems,
as identified in [4] and [5], where the following open problems are posed:

Fig. 2. The graph 2P1 + P4.

Open Problem 1. Determine the complexity of Weighted Subset Feed-

back Vertex Set for H-free graphs if H ∈ {2P1 + P3, P1 + P4, 2P1 + P4}.
Open Problem 2. Determine the complexity of Subset Feedback Vertex

Set for H-free graphs if H = sP1 + P4 for some integer s ≥ 1.

1.1 Our Results

We completely solve Open Problems 1 and 2.
In Sect. 3, we prove that Weighted Subset Feedback Vertex Set is

polynomial-time solvable for (2P1 + P4)-free graphs. This result generalizes all
known polynomial-time results for Weighted Feedback Vertex Set. It also
immediately implies polynomial-time solvability for the other two cases in Open
Problem 1, as (2P1+P3)-free graphs and (P1+P4)-free graphs form subclasses of
(2P1 + P4)-free graphs. Combining the aforementioned NP-completeness results
of [7] and [13] for 2P2-free graphs and 5P1-free graphs, respectively, with the
NP-completeness results in Theorem 1 for the case where H has a cycle or a
claw and this new result gives us the following complexity dichotomy (see also
Fig. 2).

Theorem 2. For a graph H, the Weighted Subset Feedback Vertex Set

problem on H-free graphs is polynomial-time solvable if H ⊆i 2P1 + P4, and is
NP-complete otherwise.

In Sect. 4 we solve Open Problem 2 by proving that Subset Feedback Ver-

tex Set can be solved in polynomial time for (sP1 + P4)-free graphs, for every
s ≥ 1. This result generalizes all known polynomial-time results for Weighted

Feedback Vertex Set. After combining it with the aforementioned NP-
completeness results of [7] and Theorem 1 we obtain the following complexity
dichotomy.

416 G. Paesani et al.

Theorem 3. For a graph H, the Subset Feedback Vertex Set problem on
H-free graphs is polynomial-time solvable if H ⊆i sP1 + P4 for some s ≥ 0, and
is NP-complete otherwise.

Due to Theorems 2 and 3 we now know where exactly the complexity jump
between the weighted and unweighted versions occurs.

Our proof technique for these results is based on the following two ideas.
First, if the complement FT of a T -feedback vertex set contains s vertices of
small degree in FT , then we can “guess” these vertices and their neighbours in
FT . We then show that after removing all the other neighbours of small-degree
vertices, we will obtain a graph of small mim-width. If FT does not contain s
small-degree vertices, we will argue that FT contains a bounded number of ver-
tices of T . We guess these vertices and exploit their presence. This is straight-
forward for Subset Feedback Vertex Set but more involved for Weighted

Subset Feedback Vertex Set. The latter was to be expected from the hard-
ness construction for Weighted Subset Feedback Vertex Set on 5P1-free
graphs, in which |T | = 1 (but as we will show our algorithm is able to deal with
that construction due to the (2P1 + P4)-freeness of the input graph).

We finish our paper with a brief discussion on related graph transversal
problems and some open questions in Sect. 5.

2 Preliminaries

Let G = (V,E) be a graph. If S ⊆ V , then G[S] denotes the subgraph of G
induced by S, and G− S is the graph G[V \ S]. We say that S is independent if
G[S] has no edges, and that S is a clique and G[S] is complete if every pair of
vertices in S is joined by an edge. A (connected) component of G is a maximal
connected subgraph of G. The neighbourhood of a vertex u ∈ V is the set N(u) =
{v | uv ∈ E}. A graph is bipartite if its vertex set can be partitioned into at
most two independent sets.

Recall that for a graph G = (V,E) and a subset T ⊆ V , a T -feedback vertex
set is a set S ⊆ V that intersects all T -cycles. Note that G − S is a graph that
has no T -cycles; we call such a graph a T -forest. Thus the problem of finding a
T -feedback vertex set of minimum size is equivalent to finding a T -forest of max-
imum size. Similarly, the problem of finding a T -feedback vertex set of minimum
weight is equivalent to finding a T -forest of maximum weight. These maximisa-
tion problems are actually the problems that we will solve. Consequently, any
T -forest will be called a solution for an instance (G,T) or (G,w, T), respec-
tively, and our aim is to find a solution of maximum size or maximum weight,
respectively.

Throughout our proofs we will need to check if some graph F is a solution.
The following lemma shows that we can recognize solutions in linear time. The
lemma combines results claimed but not proved in [9,13]. It is easy to show but
for an explicit proof we refer to [4, Lemma 3].

Lemma 1. It is possible to decide in O(n + m) time if a graph F is a T -forest
for some given set T ⊆ V (F).

Classifying Subset Feedback Vertex Set for H-Free Graphs 417

In our proofs we will not refer to Lemma 1 explicitly, but we will use it implicitly
every time we must check if some graph F is a solution.

3 The Weighted Variant

In this section, we present our polynomial-time algorithm for Weighted Sub-

set Feedback Vertex Set on (2P1 + P4)-free graphs.
Outline. Our algorithm is based on the following steps. We first show in Sect. 3.1
how to compute a solution F that contains at most one vertex from T , which
moreover has small degree in F . In Sect. 3.2 we then show that if two vertices
of small degree in a solution are non-adjacent, we can exploit the (2P1 + P4)-
freeness of the input graph G to reduce to a graph G′ of bounded mim-width.
The latter enables us to apply the algorithm of Bergougnoux, Papadopoulos and
Telle [3]. In Sect. 3.3 we deal with the remaining case, where all the vertices of
small degree in a solution F form a clique and F contains at least two vertices
of T . We first show that every vertex of T that belongs to F must have small
degree in F . Hence, as the vertices in T ∩V (F) must also induce a forest, F has
exactly two adjacent vertices of T , each of small degree in F . This structural
result enables us to do a small case analysis. We combine this step together with
our previous algorithmic procedures into one algorithm.

Remark. Some of the lemmas in the following three subsections hold for (sP1 +
P4)-free graphs, for every s ≥ 2, or even for general graphs. In order to re-use
these lemmas in Sect. 4, where we consider Subset Feedback Vertex Set for
(sP1 + P4)-free graphs, we formulate these lemmas as general as possible.

3.1 Three Special Types of Solutions

In this section we will show how we can find three special types of solutions in
polynomial time for (2P1 + P4)-free graphs. These solutions have in common
that they contain at most one vertex from the set T and moreover, this vertex
has small degree in F .

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A
T -forest F is a ≤1-part solution if F contains at most one vertex from T and
moreover, if F contains a vertex u from T , then u has degree at most 1 in F .
The following lemma holds for general graphs and is easy to see.

Lemma 2. For a graph G = (V,E) with a positive vertex weighting w and a set
T ⊆ V , it is possible to find a ≤1-part solution of maximum weight in polynomial
time.

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A
T -forest F is a 2-part solution if F contains exactly one vertex u of T and u has
exactly two neighbours v1 and v2 in F . We say that u is the center of F and
that v1 and v2 are the center neighbours. Let A be the connected component of
F that contains u. Then we say that A is the center component of F . We will
prove how to find 2-part solutions in polynomial time even for general graphs.
In order to do this, we will reduce to a classical problem, namely:

418 G. Paesani et al.

Weighted Vertex Cut

Instance: a graph G = (V,E), two distinct non-adjacent terminals t1
and t2, and a positive vertex weighting w.

Task: determine a set S ⊆ V \ {t1, t2} of minimum weight such that
t1 and t2 are in different connected components of G − S.

The Weighted Vertex Cut problem is well known to be polynomial-time
solvable by standard network flow techniques.

Lemma 3. Weighted Vertex Cut is polynomial-time solvable.

We use Lemma 3 in several of our proofs, including in the (omitted) proof of the
next lemma.

Lemma 4. For a graph G = (V,E) with a positive vertex weighting w and a set
T ⊆ V , it is possible to find a 2-part solution of maximum weight in polynomial
time.

Let G = (V,E) be a graph and let T ⊆ V be a subset of vertices of G. A T -
forest F is a 3-part solution if F contains exactly one vertex u of T and u has
exactly three neighbours v1, v2, v3 in F . Again we say that u is the center of F ;
that v1, v2, v3 are the center neighbours; and that the connected component of F
that contains u is the center component of F . We can show the following lemma
(proof omitted).

Lemma 5. For a (2P1+P4)-free graph G = (V,E) with a positive vertex weight-
ing w and a set T ⊆ V , it is possible to find a 3-part solution of maximum weight
in polynomial time.

3.2 Mim-Width

We also need some known results that involve the mim-width of a graph. This
width parameter was introduced by Vatshelle [15]. For the definition of mim-
width we refer to [15], as we do not need it here. A graph class G has bounded
mim-width if there exists a constant c such that every graph in G has mim-
width at most c. The mim-width of a graph class G is quickly computable if it is
possible to compute in polynomial time a so-called branch decomposition for a
graph G ∈ G whose mim-width is bounded by some function in the mim-width of
G. We can now state the aforementioned result of Bergougnoux, Papadopoulos
and Telle in a more detailed way.

Theorem 4 ([3]). Weighted Subset Feedback Vertex Set is polynomial-
time solvable for every graph class whose mim-width is bounded and quickly com-
putable.

Belmonte and Vatshelle [2] proved that the mim-width of the class of permu-
tation graphs is bounded and quickly computable. As P4-free graphs form a

Classifying Subset Feedback Vertex Set for H-Free Graphs 419

subclass of the class of permutation graphs, we immediately obtain the follow-
ing lemma1.

Lemma 6. The mim-width of the class of P4-free graphs is bounded and quickly
computable.

For a graph class G and an integer p ≥ 0, we let G + pv be the graph class that
consists of all graphs that can be modified into a graph from G by deleting at
most p vertices. The following lemma follows in a straightforward way from a
result of Vatshelle [15].

Lemma 7. If G is a graph class whose mim-width is bounded and quickly com-
putable, then the same holds for the class G + pv, for every constant p ≥ 0.

Let G = (V,E) be an (sP1 +P4)-free graph for some s ≥ 2 and let T ⊆ V . Let F
be a T -forest of G. We define the core of F as the set of vertices of F that have
at most 2s − 1 neighbours in F . We say that F is core-complete if the core of
F has no independent set of size at least s; otherwise F is core-incomplete2. We
use the above results to show the following algorithmic lemma (proof omitted).

Lemma 8. Let s ≥ 2. For an (sP1 + P4)-free graph G = (V,E) with a positive
vertex weighting w and a set T ⊆ V , it is possible to find a core-incomplete
solution of maximum weight in polynomial time.

3.3 The Algorithm

In this section we present our algorithm for Weighted Subset Feedback

Vertex Set restricted to (2P1 + P4)-free graphs. We first need to prove one
more structural lemma for core-complete solutions. We prove this lemma for
any value s ≥ 2, such that we can use this lemma in the next section as well.
However, for s = 2 we have a more accurate upper bound on the size of the core.

Lemma 9. For some s ≥ 2, let G = (V,E) be an (sP1 + P4)-free graph. Let
T ⊆ V . Let F be a core-complete T -forest of G such that T ∩ V (F) 	= ∅. Then
the core of F contains every vertex of T ∩ V (F), and T ∩ V (F) has size at most
2s−2. If s = 2, the core of F is a clique of size at most 2 (in this case T ∩V (F)
has size at most 2 as well).

Proof. Consider a vertex u ∈ T ∩ V (F). For a contradiction, assume that u
does not belong to the core of F . Then u has at least 2s neighbours in F . Let
Vu = {v1, . . . , vp} for some p ≥ 2s be the set of neighbours of u in F .

Let A be the connected component of F that contains u. As F is a T -forest,
A − u consists of p connected components D1, . . . , Dp such that vi ∈ V (Di) for

1 It is well-known that P4-free graphs have clique-width at most 2, and instead of
Theorem 4 we could have used a corresponding result for clique-width. We chose
to formulate Theorem 4 in terms of mim-width, as mim-width is a more powerful
parameter than clique-width [15] and thus bounded for more graph classes.

2 These notions are not meaningful if s ∈ {0, 1}. Hence, we defined them for s ≥ 2.

420 G. Paesani et al.

i ∈ {1, . . . , p}. In particular, this implies that Vu = {v1, . . . , vp} must be an
independent set. As the core of F has no independent set of size s, this means
that at most s−1 vertices of Vu may belong to the core of F . Recall that p ≥ 2s.
Hence, we may assume without loss of generality that v1, . . . , vs+1 do not belong
to the core of F . This means that v1, . . . , vs+1 each have degree at least 2s in
A. Hence, for i ∈ {1, . . . , s + 1}, vertex vi is adjacent to some vertex wi in Di.
As s ≥ 2, we have that 2s > s + 1 and hence, vertex vs+2 exists. However, now
the vertices w1, v1, u, vs+2, w2, w3, . . . , ws+1 induce an sP1 + P4, a contradiction
(see also Fig. 3).

From the above, we conclude that every vertex of T ∩ V (F) belongs to the
core of F . As F is a T -forest, T ∩ V (F) induces a forest, and thus a bipartite
graph. As F is core-complete, every independent set in the core has size at most
s − 1. Hence, T ∩ V (F) has size at most 2(s − 1) = 2s − 2.

Now suppose that s = 2. As F is core-complete, the core of F must be a
clique. As the core of F contains T ∩ V (F) and T ∩ V (F) induces a forest, this
means that the core of F , and thus also T ∩ V (F), has size at most 2. This
completes the proof of the lemma. ��

u ∈ T

p ≥ 2s

s+ 1

Vu {w1, . . . , ws+1}
w1

ws+1

v1

vs+2

vp

Fig. 3. An example of the contradiction obtained in Lemma 9: the assumption that
a vertex u ∈ T does not belong to the core of a core-complete solution leads to the
presence of an induced sP1 + P4 (highlighted by the black vertices and thick edges).
(Color figure online)

By using the above results and the results from Sects. 3.1 and 3.2, we are now
able to prove our main result.

Theorem 5. Weighted Subset Feedback Vertex Set is polynomial-time
solvable for (2P1 + P4)-free graphs.

Proof. Let G = (V,E) be a (2P1 + P4)-free graph, and let T be some subset
of V . Let w be a positive vertex weighting of G. We aim to find a maximum
weight T -forest F for (G,T,w) (recall that we call T -forests solutions for our

Classifying Subset Feedback Vertex Set for H-Free Graphs 421

problem). As s = 2, the core of F is, by definition, the set of vertices of F that
have maximum degree at most 3 in F .

We first compute a core-incomplete solution of maximum weight; this takes
polynomial time by Lemma 8 (in which we set s = 2). We will now compute in
polynomial time a core-complete solution F of maximum weight for (G,T,w).
We then compare the weights of the two solutions found to each other and pick
one with the largest weight.

By Lemma 9, it holds for every core-complete solution F that T ∩ V (F)
belongs to the core of F , and moreover that |T ∩V (F)| ≤ 2. We first compute a
core-complete solution F with |T ∩V (F)| ≤ 1 of maximum weight. As T ∩V (F)
belongs to the core of F , we find that if |T ∩ V (F)| = 1, say T ∩ V (F) = {u}
for some u ∈ T , then u has maximum degree at most 3 in F . Hence, in the case
where |T ∩ V (F)| ≤ 1, it suffices to compute a ≤1-part solution, 2-part solution
and 3-part solution for (G,T,w) of maximum weight and to remember one with
the largest weight. By Lemmas 2, 4 and 5, respectively, this takes polynomial
time.

It remains to compute a core-complete solution F with |T ∩ V (F)| = 2 of
maximum weight. By Lemma 9, it holds for every such solution F that both
vertices of T ∩ V (F) are adjacent and are the only vertices that belong to the
core of F .

We consider all O(n2) possibilities of choosing two adjacent vertices of T to
be the two core vertices of F . Consider such a choice of adjacent vertices u1, u2.
So, u1 and u2 are the only vertices of degree at most 3 in the solution F that
we are looking for and moreover, all other vertices of T do not belong to F .

Suppose one of the vertices u1, u2 has degree 1 in F . First let this vertex
be u1. Then we remove u1 and all its neighbours except for u2 from G. Let G′

be the resulting graph. Let T ′ = T \ ({u1} ∪ (N(u1) \ {u2})), and let w′ be
the restriction of w to G′. We now compute for (G′, w′, T ′), a ≤1-part solution
and 2-part solution of maximum weight with u2 as center. By Lemmas 2 and 4,
respectively, this takes polynomial time3. We then add u1 back to the solution
to get a solution for (G,w, T). We do the same steps with respect to u2. In the
end we take a solution with largest weight.

So from now on, assume that both u1 and u2 have degree at least 2 in F . We
first argue that in this case both u1 and u2 have degree exactly 2 in F . For a
contradiction, suppose u1 has degree 3 in F (recall that u1 has degree at most 3
in F). Let v1 and v′

1 be two distinct neighbours of u1 in V (F) \ {u2}. Let v2 be
a neighbour of u2 in V (F) \ {u1}. As F is a T -forest, v1, v′

1, v2 belong to distinct
connected components D1, D′

1 and D2, respectively, of F −{u1, u2}. As the core
of F consists of u1 and u2 only, v1, v′

1, v2 each have a neighbour x1, x
′
1, x2 in D1,

D′
1 and D2, respectively. However, now x2, v2, u2, u1, x1, x

′
1 induce a 2P1 +P4 in

F and thus also in G, a contradiction; see also Fig. 4.

3 Strictly speaking, this statement follows from the proofs of these two lemmas, as we
have fixed u2 as the center.

422 G. Paesani et al.

u1 u2

v1 v1 v2

x1 x1 x2

Fig. 4. The situation in Theorem 5 where u1 has degree at least 3 in F and u2 has
degree 2 in F ; this leads to the presence of an induced 2P1 + P4 (highlighted by the
black vertices and thick edges). (Color figure online)

From the above we conclude that each of u1 and u2 has exactly one other
neighbour in F . Call these vertices v1 and v2, respectively. We consider all O(n2)
possibilities of choosing v1 and v2. As F is a T -forest, G−{u1, u2} consists of two
connected components D1 and D2, such that v1 belongs to D1 and v2 belongs
to D2.

Let G′ be the graph obtained from G by removing every vertex of T , every
neighbour of u1 except v1 and every neighbour of u2 except v2. Let w′ be the
restriction of w to G′. Then, it remains to solve Weighted Vertex Cut for the
instance (G′, v1, v2, w′). By Lemma 3, this can be done in polynomial time. Out
of all the solutions found for different pairs u1, u2 we take one with the largest
weight. Note that we found this solution in polynomial time, as the number of
branches is O(n4).

As mentioned we take a solution of maximum weight from all the solutions
found in the above steps. The correctness of our algorithm follows from the fact
that we exhaustively considered all possible situations. Moreover, the number
of situations is polynomial and processing each situation takes polynomial time.
Hence, the running time of our algorithm is polynomial. ��

4 The Unweighted Variant

In this section, we present our polynomial-time algorithm for Subset Feedback

Vertex Set on (sP1 + P4)-free graphs for every s ≥ 0. As this problem is
a special case of Weighted Subset Feedback Vertex Set (namely when
w ≡ 1), we can use some of the structural results from the previous section.

Theorem 6. Subset Feedback Vertex Set is polynomial-time solvable on
(sP1 + P4)-free graphs for every s ≥ 0.

Proof. Let G = (V,E) be an (sP1 + P4)-free graph for some integer s, and let
T ⊆ V . Let |V | = n. As the class of (sP1 + P4)-free graphs is a subclass of the
class of ((s + 1)P1 + P4)-free graphs, we may impose any lower bound on s; we
set s ≥ 2. We aim to find a T -forest F of G of maximum size (recall that we call
T -forests solutions for our problem).

We first compute a maximum-size core-incomplete solution for (G,T). By
Lemma 8, this takes polynomial time. It remains to compare the size of this
solution with a maximum-size core-complete solution, which we compute below.

Classifying Subset Feedback Vertex Set for H-Free Graphs 423

By Lemma 9, we find that T ∩ V (F) has size at most 2s − 2 for every
core-complete solution F . We consider all O(n2s−2) possibilities of choosing the
vertices of T ∩V (F). For each choice of T ∩V (F) we do as follows. We note that
the set of vertices of G−T that do not belong to F has size at most |T ∩V (F)|;
otherwise F ′ = V \T would be a larger solution than F . Hence, we can consider
all O(n|T∩V (F)|) = O(n2s−2) possibilities of choosing the set of vertices of G−T
that do not belong to F , or equivalently, of choosing the set of vertices of G−T
that do belong to F . In other words, we guessed F by brute force, and the number
of guesses is O(n4s−4). In the end we found in polynomial time a maximum-size
core-complete solution. We compare it with the maximum-size core-incomplete
solution found above and pick one with the largest size. ��

5 Conclusions

By combining known hardness results with new polynomial-time results, we com-
pletely classified the complexities of Weighted Subset Feedback Vertex

Set and Subset Feedback Vertex Set for H-free graphs. We recall that the
classical versions Weighted Feedback Vertex Set and Feedback Vertex

Set are not yet completely classified (see Theorem 1).
We now briefly discuss the variant where instead of intersecting every T -

cycle, a solution only needs to intersect every T -cycle of odd length. These two
problems are called Weighted Subset Odd Cycle Transversal and Sub-

set Odd Cycle Transversal, respectively. So far, these problems behave
in exactly the same way on H-free graphs as their feedback vertex set coun-
terparts (see [4] and [5]). So, the only open cases for Weighted Subset Odd

Cycle Transversal on H-free graphs are the ones where H ∈ {2P1+P3, P1+
P4, 2P1 + P4} and the only open cases for Subset Odd Cycle Transversal

on H-free graphs are the ones where H = sP1 +P4 for some s ≥ 1. As solutions
F for these problems may only contain vertices of T of high degree, we can no
longer use our proof technique, and new ideas are needed.

We note, however, that complexity dichotomies of Weighted Subset Odd

Cycle Transversal and Subset Odd Cycle Transversal do not have
to coincide with those in Theorems 2 and 3 for their feedback vertex set coun-
terparts. After all, the complexities of the corresponding classical versions may
not coincide either. Namely, it is known that Odd Cycle Transversal is NP-
complete for (P2 +P5, P6)-free graphs [6], and thus for (P2 +P5)-free graphs and
P6-free graphs, whereas for Feedback Vertex Set such a hardness result is
unlikely: for every linear forest H, Feedback Vertex Set is quasipolynomial-
time solvable on H-free graphs [8].

References

1. Abrishami, T., Chudnovsky, M., Pilipczuk, M., Rz ↪ażewski, P., Seymour, P.:
Induced subgraphs of bounded treewidth and the container method. Proc. SODA
2021, 1948–1964 (2021)

424 G. Paesani et al.

2. Belmonte, R., Vatshelle, M.: Graph classes with structured neighborhoods and
algorithmic applications. Theoret. Comput. Sci. 511, 54–65 (2013)

3. Bergougnoux, B., Papadopoulos, C., Telle, J.A.: Node multiway cut and subset
feedback vertex set on graphs of bounded mim-width. Proc. WG 2020, LNCS
12301, 388–400 (2020)

4. Brettell, N., Johnson, M., Paesani, G., Paulusma, D.: Computing subset transver-
sals in H-free graphs. Theoret. Comput. Sci. 898, 59–68 (2022)

5. Brettell, N., Johnson, M., Paulusma, D.: Computing weighted subset transversals
in H-free graphs. J. Comput. Syst. Sci. 128, 71–85 (2022). https://doi.org/10.
1007/978-3-030-83508-8 17

6. Dabrowski, K.K., Feghali, C., Johnson, M., Paesani, G., Paulusma, D., Rz ↪ażewski,
P.: On cycle transversals and their connected variants in the absence of a small
linear forest. Algorithmica 82, 2841–2866 (2020). https://doi.org/10.1007/s00453-
020-00706-6

7. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enu-
merating minimal subset feedback vertex sets. Algorithmica 69, 216–231 (2014).
https://doi.org/10.1007/s00453-012-9731-6

8. Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rz ↪ażewski, P.: Finding
large induced sparse subgraphs in C t-free graphs in quasipolynomial time. Proc.
STOC, 2021, 330–341 (2021)

9. Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.: Hitting selected (odd)
cycles. SIAM J. Discret. Math. 31, 1581–1615 (2017)

10. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discret. Math. 340,
1210–1226 (2017)

11. Paesani, G., Paulusma, D., Rz ↪ażewski, P.: Feedback vertex set and even cycle
transversal for H-free graphs: finding large block graphs. SIAM Journal on Discrete
Mathematics, to appear

12. Papadopoulos, C., Tzimas, S.: Polynomial-time algorithms for the subset feed-
back vertex set problem on interval graphs and permutation graphs. Discret. Appl.
Math. 258, 204–221 (2019)

13. Papadopoulos, C., Tzimas, S.: Subset feedback vertex set on graphs of bounded
independent set size. Theoret. Comput. Sci. 814, 177–188 (2020)

14. Poljak, S.: A note on stable sets and colorings of graphs. Comment. Math. Univ.
Carol. 15, 307–309 (1974)

15. Vatshelle, M.: New Width Parameters of Graphs. PhD thesis, University of Bergen
(2012)

https://doi.org/10.1007/978-3-030-83508-8_17
https://doi.org/10.1007/978-3-030-83508-8_17
https://doi.org/10.1007/s00453-020-00706-6
https://doi.org/10.1007/s00453-020-00706-6
https://doi.org/10.1007/s00453-012-9731-6

Linearizing Partial Search Orders

Robert Scheffler(B)

Institute of Mathematics, Brandenburg University of Technology,
Cottbus, Germany

robert.scheffler@b-tu.de

Abstract. In recent years, questions about the construction of special
orderings of a given graph search were studied by several authors. On
the one hand, the so called end-vertex problem introduced by Corneil et
al. in 2010 asks for search orderings ending in a special vertex. On the
other hand, the problem of finding orderings that induce a given search
tree was introduced already in the 1980s s by Hagerup and received new
attention most recently by Beisegel et al. Here, we introduce a general-
ization of some of these problems by studying the question whether there
is a search ordering that is a linear extension of a given partial order on
a graph’s vertex set. We show that this problem can be solved in poly-
nomial time on chordal bipartite graphs for LBFS, which also implies
the first polynomial-time algorithms for the end-vertex problem and two
search tree problems for this combination of graph class and search. Fur-
thermore, we present polynomial-time algorithms for LBFS and MCS
on split graphs, which generalize known results for the end-vertex and
search tree problems.

Keywords: Graph search · Partial order · End-vertex problem ·
Search tree recognition · LBFS · MCS

1 Introduction

The graph searches Breadth First Search (BFS) and Depth First Search (DFS)
are considered as some of the most basic algorithms in both graph theory and
computer science. Taught in many undergraduate courses around the world, they
are an elementary component of several graph algorithms. There are also many
other more sophisticated graph searches, e.g., the Lexicographic Breadth First
Search (LBFS) [21] or the Maximum Cardinality Search (MCS) [23] which are
also used to solve several graph problems among them the recognition problems
of graph classes [6,8,12,13], the computation of minimal separators [19] as well
as the computation of minimal triangulations [5].

In recent years, different problems of finding special search orderings have
gained attention from several researchers. One of these problems is the end-
vertex problem introduced in 2010 by Corneil et al. [10]. It asks whether a given
vertex in a graph can be visited last by some graph search. The problem was
motivated by multi-sweep algorithms where a search is applied several times to a
c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 425–438, 2022.
https://doi.org/10.1007/978-3-031-15914-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_31&domain=pdf
http://orcid.org/0000-0001-6007-4202
https://doi.org/10.1007/978-3-031-15914-5_31

426 R. Scheffler

graph such that every application starts in the vertex where the preceding search
ordering has ended. Corneil et al. [10] showed that the end-vertex problem is
NP-complete for LBFS on weakly chordal graphs. Similar results were obtained
for other searches such as BFS, DFS and MCS [2,7,20], while for several graph
classes, among them split graphs, polynomial-time algorithms were presented
in [2,7,10,14,20].

An important structure closely related to a graph search is the corresponding
search tree. Such a tree contains all the vertices of the graph and for every vertex
different from the start vertex exactly one edge to a vertex preceding it in the
search ordering. Such trees can be of particular interest as for instance the tree
obtained by a BFS contains the shortest paths from the root to all other vertices
in the graph and the trees generated by DFS can be used for fast planarity
testing [17]. The problem of deciding whether a given spanning tree of a graph
can be obtained by a particular search was introduced by Hagerup [15] in 1985,
who presented a linear-time algorithm for recognizing DFS-trees. In the same
year, Hagerup and Nowak [16] gave a similar result for the BFS-tree recognition.

Recently, Beisegel et al. [3,4] introduced a more general framework for the
search tree recognition problem. They introduced the term F-tree for search
trees where a vertex is connected to its first visited neighbor, i.e., BFS-like trees,
and L-trees for search trees where a vertex is connected to its most recently
visited neighbor, i.e., DFS-like trees. They showed, among other things, that
the F-tree recognition is NP-complete for LBFS and MCS on weakly chordal
graphs, while the problem can be solved in polynomial time for both searches
on chordal graphs.

Our Contribution. There seems to be a strong relationship between the com-
plexity of the end-vertex problem and the recognition problem of F-trees. There
are many combinations of graph classes and graph searches where both problems
are NP-complete or both problems are solvable in polynomial time. To further
study this relationship, we present a generalization of these two problems by
introducing the Partial Search Order Problem (PSOP) of a graph search A.
Given a graph G and a partial order π on its vertex set, it asks whether there is
a search ordering produced by A which is a linear extension of π.

We show that a greedy algorithm solves the PSOP of Generic Search, i.e., the
search where every vertex can be visited next as long as it has an already visited
neighbor. Furthermore, we present a polynomial-time algorithm for the PSOP of
LBFS on chordal bipartite graphs, i.e., bipartite graphs without induced cycles
of length larger than four. This result also implies a polynomial-time algorithm
for the end-vertex problem on chordal bipartite graphs, a generalization of the
result by Gorzny and Huang [14] on the end-vertex problem of LBFS on AT-
free bipartite graphs. For split graphs, we will give polynomial-time algorithms
for the PSOP of LBFS and MCS that generalize the results on the end-vertex
problem [2,7] and the F-tree problem [3] of these searches on this graph class.

Due to lack of space, the proofs of the results are omitted here. They can be
found in the full version [22].

Linearizing Partial Search Orders 427

2 Preliminaries

General Notation. The graphs considered in this paper are finite, undirected,
simple and connected. Given a graph G, we denote by V (G) the set of vertices
and by E(G) the set of edges. For a vertex v ∈ V (G), we denote by N(v) the
neighborhood of v in G, i.e., the set N(v) = {u ∈ V | uv ∈ E}, where an edge
between u and v in G is denoted by uv. The neighborhood of a set A ⊂ V (G) is
the union of the neighborhoods of the vertices in A. The distance of a vertex v
to a vertex w is the number of edges of the shortest path from v to w. The set
N �(v) contains all vertices whose distance to the vertex v is equal to �.

A clique in a graph G is a set of pairwise adjacent vertices and an independent
set in G is a set of pairwise nonadjacent vertices. A split graph G is a graph whose
vertex set can be partitioned into sets C and I, such that C is a clique in G and
I is an independent set in G. We call such a partition a split partition. A graph is
bipartite if its vertex set can be partitioned into two independent sets X and Y .
A bipartite graph G is called chordal bipartite if every induced cycle contained
in G has a length of four. Note that there is a strong relationship between split
graphs and bipartite graphs. Every bipartite graph is a spanning subgraph of a
split graph and every split graph can be made to a bipartite graph by removing
the edges between the clique vertices.

A tree is an acyclic connected graph. A spanning tree of a graph G is an
acyclic connected subgraph of G which contains all vertices of G. A tree together
with a distinguished root vertex r is said to be rooted. In such a rooted tree T ,
a vertex v is the parent of vertex w if v is an element of the unique path from w
to the root r and the edge vw is contained in T . A vertex w is called the child
of v if v is the parent of w.

A vertex ordering of G is a bijection σ : {1, 2, . . . , |V (G)|} → V (G). We
denote by σ−1(v) the position of vertex v ∈ V (G). Given two vertices u and v in
G we say that u is to the left (resp. to the right) of v if σ−1(u) < σ−1(v) (resp.
σ−1(u) > σ−1(v)) and we denote this by u ≺σ v (resp. u �σ v).

A partial order π on a set X is a reflexive, antisymmetric and transitive
binary relation on X. We also denote (x, y) ∈ π by x ≺π y if x �= y. A linear
extension of π is a total order σ of the elements of X that fulfills all conditions
of π, i.e., if x ≺π y, then x ≺σ y. We will often use the term “σ extends π”. For
a binary relation π′ on X we say that the reflexive and transitive closure of π′

is the smallest binary relation π ⊇ π′ that is reflexive and transitive.

Graph Searches. A graph search is an algorithm that, given a graph G as input,
outputs a vertex ordering of G. All graph searches considered in this paper can
be formalized adapting a framework introduced by Corneil et al. [9] (a similar
framework is given in [18]). This framework uses subsets of N

+ as vertex labels.
Whenever a vertex is visited, its index in the search ordering is added to the
labels of its unvisited neighbors. The search A is defined via a strict partial order
≺A on the elements of P(N+) (see Algorithm 1). For a given graph search A we
say that a vertex ordering σ of a graph G is an A-ordering of G if σ can be the
output of A with input G.

428 R. Scheffler

Algorithm 1. Label Search(≺A)
Input: A graph G
Output: A search ordering σ of G

1 begin
2 foreach v ∈ V (G) do label(v) ← ∅;
3 for i ← 1 to |V (G)| do
4 Eligible ← {x ∈ V (G) | x unnumbered and � unnumbered y ∈ V (G)
5 such that label(x) ≺A label(y)};
6 let v be an arbitrary vertex in Eligible;
7 σ(i) ← v; /* assigns to v the number i */

8 foreach unnumbered vertex w ∈ N(v) do label(w) ← label(w) ∪ {i};

In the following, we define the searches considered in this paper by presenting
suitable partial orders ≺A (see [9]). The Generic Search (GS) is equal to the
Label Search(≺GS) where A ≺GS B if and only if A = ∅ and B �= ∅. Thus, any
vertex with a numbered neighbor can be numbered next.

The partial label order ≺BFS for Breadth First Search (BFS) is defined as
follows: A ≺BFS B if and only if A = ∅ and B �= ∅ or min(A) > min(B). For
the Lexicographic Breadth First Search (LBFS) [21] we consider the partial order
≺LBFS with A ≺LBFS B if and only if A � B or min(A \ B) > min(B \ A).

The Maximum Cardinality Search (MCS) [23] uses the partial order ≺MCS

with A ≺MCS B if and only if |A| < |B|. The Maximal Neighborhood Search
(MNS) [11] is defined using ≺MNS with A ≺MNS B if and only if A � B. If
A ≺MNS B, then it also holds that A ≺LBFS B and A ≺MCS B. Thus, any
ordering produced by LBFS or MCS is also an MNS ordering.

In the search algorithms following the framework given in Algorithm 1, any
of the vertices in the set Eligible can be chosen as the next vertex. Some applica-
tions use special variants of these searches that involve tie-breaking. For any
instantiation A of Algorithm 1, we define the graph search A+ as follows:
Add a vertex ordering ρ of graph G as additional input and replace line 6 in
Algorithm 1 with “let v be the vertex in Eligible that is leftmost in ρ”. Note
that this corresponds to the algorithm TBLS given in [9]. The search ordering
A+(ρ) is unique since there are no ties to break.

3 The Partial Search Order Problem

We start this section by introducing the problem considered in this paper.

Problem 1. Partial Search Order Problem (PSOP) of graph search A
Instance: A graph G, a partial order π on V (G).
Task: Decide whether there is an A-ordering of G that extends π.

We will also consider a special variant, where the start vertex of the search
ordering is fixed. We call this problem the rooted partial search order problem.

Linearizing Partial Search Orders 429

Note that the general problem and the rooted problem are polynomial time
equivalent. If we have a polynomial time algorithm to solve the rooted problem
we can apply it |V (G)| times to solve the general problem. On the other hand, the
rooted problem with fixed start vertex r can be solved by a general algorithm.
To this end, we add all the tuples (r, v), v ∈ V (G), to the partial order π.
Note that in the following we always assume that a given start vertex r is a
minimal element of the partial order π since otherwise we can reject the input
immediately.

The end-vertex problem of a graph search A introduced by Corneil et
al. [10] in 2010 asks whether the vertex t can be the last vertex of an A-
ordering of a given graph G. This question can be encoded by the partial order
π := {(u, v) | u, v ∈ V (G), u = v or v = t}, leading to the following observation.

Observation 2. The end-vertex problem of a graph search A on a graph G can
be solved by solving the PSOP of A on G for a partial order of size O(|V (G)|).

From this observation it follows directly that the partial search order problem
is NP-complete for BFS, DFS, LBFS, LDFS, MCS and MNS [2,7,10].

In [3], Beisegel et al. introduced the terms F-tree and L-tree of a search
ordering. For this we only consider search orderings produced by a connected
graph searches, i.e., a graph search that outputs search orderings of the Generic
Search. In the F-tree of such an ordering, every vertex different from the start
vertex is connected to its leftmost neighbor in the search ordering. In the L-
tree, any vertex v different from the start vertex is connected to its rightmost
neighbor that is to the left of v in the search ordering. The problem of deciding
whether a given spanning tree of a graph can be the F-tree (L-tree) of a search
ordering of a given type is called F-tree (L-tree) recognition problem. If the start
vertex is fixed, it is called the rooted F-tree (L-tree) recognition problem. The
rooted F-tree recognition problem is a special case of the (rooted) PSOP, as the
following proposition shows.

Proposition 3. Let A be a connected graph search. Given a graph G and a
spanning tree T of G rooted in r, we define π to be the reflexive, transitive
closure of the relation R := {(x, y) | x is parent of y in T or there is child z of
x in T with yz ∈ E(G)}. The tree T is the F-tree of an A-ordering σ of G if
and only if π is a partial order and σ extends π.

Therefore, the rooted F-tree problem of a graph search A on a graph G can
be solved by solving the (rooted) PSOP of A on G.

Note that the general F-tree recognition problem without fixed start vertex
can be solved by deciding the partial search order problem for any possible root.
The L-tree recognition problem, however, is not a special case of the partial
search order problem. For a vertex w, its parent v and another neighbor z of w,
it must either hold that v ≺σ w ≺σ z or that z ≺σ v ≺σ w. These constraints
cannot be encoded using a partial order. Nevertheless, we will see in Sect. 5
that on bipartite graphs the PSOP of (L)BFS is a generalization of the L-tree
recognition problem of (L)BFS.

430 R. Scheffler

Algorithm 2. Rooted PSOP of Generic Search
Input: Connected graph G, a vertex r ∈ V (G), a partial order π on V (G)
Output: GS ordering σ of G extending π or “π cannot be linearized”

1 begin
2 S ← {r}; i ← 1;
3 while S �= ∅ do
4 let v be an arbitrary element of S;
5 remove v from S and from π;
6 σ(i) ← v; i ← i + 1;
7 foreach w ∈ N(v) do mark w;
8 foreach marked x ∈ V (G) which is minimal in π do S ← S ∪ {x};

9 if i = |V (G)| + 1 then return σ;
10 else return “π cannot be linearized”;

We conclude this section with a simple algorithm for the rooted PSOP of
Generic Search (see Algorithm 2 for the pseudocode). First the algorithm visits
the given start vertex r. Afterwards it looks for a vertex with an already visited
neighbor among all vertices that are minimal in the remaining partial order. If
no such vertex exists, then it rejects. Otherwise, it visits one of these vertices
next.

Theorem 4. Algorithm 2 solves the rooted partial search order problem of Ge-
neric Search for a graph G and a partial order π in time O(|V (G)|+|E(G)|+|π|).

4 One-Before-All Orderings

Before we present algorithms for the PSOP we introduce a new ordering problem
that will be used in the following two sections to solve the PSOP of LBFS on
both chordal bipartite graphs and split graphs.

Problem 5. One-Before-All Problem (OBAP)

Instance: A set M , a set Q ⊆ P(M), a relation R ⊆ Q × Q
Task: Decide whether there is a linear ordering σ of M fulfilling the One-Before-

All property, i.e., for all A,B ∈ Q with (A,B) ∈ R and B �= ∅ there is an
x ∈ A such that for all y ∈ B it holds that x ≺σ y.

Note that every partial order π on a set X can be encoded as an OBAP
instance by setting M = X, Q = {{x} | x ∈ X} and R = {({x}, {y}) | x ≺π y}.
Thus, the OBAP generalizes the problem of finding a linear extension of an
partial order.

In the following we describe how we can solve the one-before-all problem in
time linear in the input size |M | + |R| +

∑
A∈Q |A| (see Algorithm 3 for the

pseudocode). For every set A ∈ Q we introduce a counter r(A) containing the
number of tuples (X,A) ∈ R. For every element x ∈ M the variable t(x) counts

Linearizing Partial Search Orders 431

Algorithm 3. OBAP
Input: A set M , a set Q ⊆ P(M), a relation R ⊆ Q × Q.
Output: An OBA-ordering σ of the elements in M or “No ordering”.

1 begin
2 r(A) ← 0 ∀A ∈ Q; t(x) ← 0 ∀x ∈ M ; S ← ∅; i ← 1;
3 foreach (A, B) ∈ R do r(B) ← r(B) + 1;
4 foreach A ∈ Q with r(A) > 0 do
5 foreach x ∈ A do t(x) ← t(x) + 1;

6 foreach x ∈ M with t(x) = 0 do S ← S ∪ {x};
7 while S �= ∅ do
8 let x be an element in S;
9 S ← S \ {x}; σ(i) ← x; i ← i + 1;

10 foreach A ∈ Q with x ∈ A do
11 Q ← Q \ {A};
12 foreach (A, B) ∈ R do
13 R ← R \ {(A, B)};
14 r(B) ← r(B) − 1;
15 if r(B) = 0 then
16 foreach y ∈ B do
17 t(y) ← t(y) − 1;
18 if t(y) = 0 then S ← S ∪ {y};

19 if i = |M | + 1 then return σ;
20 else return “No ordering”;

the number of sets A ∈ Q with x ∈ A and r(A) > 0. Our algorithm builds the
ordering σ from left to right. It is not difficult to see that an element x can
be chosen next if and only if t(x) = 0. As long as such an element exists, the
algorithm chooses one, deletes all tuples (A,B) with x ∈ A from R and updates
the r- and the t-values. If no such element exists, then the algorithm returns
“No ordering”.

Theorem 6. Given a set M , a set Q ⊆ P(M) and a relation R ⊆ Q × Q,
Algorithm 3 returns a linear ordering σ of M fulfilling the one-before-all property
if and only if such an ordering exists. The running time of the algorithm is
O(|M | + |R| +

∑
A∈Q |A|).

5 Partial LBFS Orders of Chordal Bipartite Graphs

In [14], Gorzny and Huang showed that the end-vertex problem of LBFS is NP-
complete on bipartite graphs but can be solved in polynomial time on AT-free
bipartite graphs. In this section we will generalize the latter result in two ways
by presenting a polynomial-time algorithm for the partial search order problem
on chordal bipartite graphs, a superset of AT-free bipartite graphs.

432 R. Scheffler

The following result will be a key ingredient of our approach. It shows that
for two vertices x and y in the same layer Ni(r) of a BFS starting in r that
have a common neighbor in the succeeding layer N i+1(r), it holds that the
neighborhoods of x and y in the preceding layer N i−1(r) are comparable.

Lemma 7. Let G be a connected chordal bipartite graph and let r be a vertex of
G. Let x and y be two vertices in N i(r). If there is a vertex z ∈ N i+1(r) which is
adjacent to both x and y, then N(x)∩N i−1(r) ⊆ N(y) or N(y)∩N i−1(r) ⊆ N(x).

Algorithm 4 presents the pseudocode of an algorithm for the rooted PSOP of
LBFS on chordal bipartite graphs. We assume that the partial order π contains
only tuples where both elements are in the same layer of a BFS starting in r.
Otherwise, the tuple is trivially fulfilled by any BFS ordering starting in r or no
such BFS ordering fulfills the tuple. The algorithm constructs an OBAP-instance
with set Qi ⊆ P(N i(r)) and Ri ⊆ Qi × Qi for any layer i of the BFS. First we
add the tuple ({x}, {y})to the set Ri for every tuple (x, y) ∈ π with x, y ∈ N i(r).
Now the algorithm iterates through all layers starting in the last one. For any
element (A,B) ∈ Ri the algorithm inserts a tuple (A′′, B′) to the relation Ri−1.
The set A′′ contains all neighbors of set A in layer i − 1 that are not neighbors
of set B and whose neighborhood in layer i − 2 is maximal among all these
neighbors. The set B′ contains all neighbors of B in the layer i − 1 that are not
neighbors of A. At the end, the algorithm checks whether the OBAP-instance
(N i(r),Qi,Ri) of every layer i can be solved. If this is not the case, then the
algorithm rejects. Otherwise, it concatenates the computed OBA-orderings. The
resulting ordering ρ is used as tie-breaker for a LBFS+ whose result is returned
by the algorithm.

The following lemma is a direct consequence of the construction of the ele-
ments of Ri and Lemma 7.

Lemma 8. Let (A,B) ∈ Ri. For any x ∈ A it holds that N(A) ∩ N i−1(r) ⊆
N(x) and if B �= ∅ then there is a vertex y ∈ B with N(B) ∩ N i−1(r) ⊆ N(y).

Using this lemma, we can show the correctness of Algorithm 4.

Theorem 9. Given a connected chordal bipartite graph G, a partial order π
on V (G) and a vertex r ∈ V (G), Algorithm 4 decides in time O(|π| · |V (G)|2)
whether there is an LBFS ordering of G that starts in r and is a linear extension
of π.

Due to Observation 2, we can solve the end-vertex problem of LBFS on
chordal bipartite graphs by solving the rooted PSOP |V (G)| times with a partial
order of size O(|V (G)|). This leads to the following time bound.

Corollary 10. Given a connected chordal bipartite graph G, we can solve the
end-vertex problem of LBFS on G in time O(|V (G)|4) .

Similarly, it follows from Proposition 3 that the rooted F-tree recognition
problem can be solved in time O(|V (G)|4). Different to the general case, we can
show that for BFS orderings of bipartite graphs the L-tree recognition problem
can also be reduced to the partial search order problem.

Linearizing Partial Search Orders 433

Algorithm 4. Rooted PSOP of LBFS on chordal bipartite graphs
Input: Connected chordal bipartite graph G, vertex r ∈ V (G), partial order π

on V (G)
Output: An LBFS ordering σ of G extending π or “π cannot be linearized”

1 begin
2 let k be the maximal distance of a vertex v ∈ V (G) from r;

3 Qi ← {{x} | x ∈ N i(r)} ∀i ∈ {1, . . . , k};

4 Ri ← {({x}, {y}) | x, y ∈ N i(r), x ≺π y} ∀i ∈ {1, . . . , k};
5 for i ← k downto 2 do
6 foreach (A, B) ∈ Ri do
7 A′ ← [N(A) ∩ N i−1(r)] \ N(B);

8 A′′ ← {v ∈ A′ | N(v) ∩ N i−2(r) = N(A′) ∩ N i−2(r)};

9 B′ ← [N(B) ∩ N i−1(r)] \ N(A);
10 Qi−1 ← Qi−1 ∪ {A′′, B′};
11 Ri−1 ← Ri−1 ∪ {(A′′, B′)};

12 let ρ be an empty vertex ordering;
13 for i ← k downto 1 do
14 if there is an OBA-ordering σ for input (N i(r), Qi, Ri) then
15 ρ ← σ ++ ρ

16 else return “π cannot be linearized”;

17 ρ ← r ++ ρ;
18 return LBFS+(ρ) of G;

Proposition 11. The rooted L-tree recognition problem of any graph search A
that produces BFS orderings can be solved on a bipartite graph G by solving the
rooted PSOP of A on G.

This proposition and the observation above lead to the following time bound
for the search tree recognition problems on chordal bipartite graphs.

Corollary 12. On a chordal bipartite graph G, we can solve the rooted F-tree
and the rooted L-tree recognition problem of LBFS in time O(|V (G)|4).

6 Partial LBFS and MCS Orders of Split Graphs

Both the end-vertex problem and the F-tree recognition problem of several
searches are well studied on split graphs (see [2,4,7]). In this section we will
generalize some of these results to the partial search order problem.

Consider a split graph G with a split partition consisting of a clique C and
an independent set I. During a computation of an MNS ordering of G, every
vertex that has labeled some vertex in I has also labeled every unnumbered
vertex contained in C. Therefore, we can choose a vertex of C as the next vertex
as long as there are still unnumbered vertices in C. This means that it is not a
problem to force a clique vertex to be to the left of an independent vertex in an

434 R. Scheffler

MNS ordering. However, forcing a vertex of I to be to the left of a vertex of C is
more difficult. We will call a vertex of I that is left to a vertex of C in a vertex
ordering σ a premature vertex of σ. The neighbors of such a premature vertex
must fulfill a strong condition on their positions in σ as the following lemma
shows.

Lemma 13 ([1], Lemma 22). Let G be a split graph with a split partition
consisting of the clique C and the independent set I. Let σ be an MNS ordering
of G. If the vertex x ∈ I is a premature vertex of σ, then any vertex of C that is
to the left of x in σ is a neighbor of x and any non-neighbor of x that is to the
right of x in σ is also to the right of any neighbor of x in σ.

Similar to total orders we will call a vertex x ∈ I a premature vertex of partial
order π if there is an element y ∈ C with x ≺π y. To decide whether a partial
order π can be extended by an MNS ordering the set of premature vertices of π
must fulfill strong properties which we define in the following.

Definition 14. Let G be a split graph with a split partition consisting of the
clique C and the independent set I. Let π be a partial order on V (G) and let
A be a subset of I. The tuple (π,A) fulfills the nested property if the following
conditions hold:

(N1) If y ∈ C and x ≺π y, then x ∈ C ∪ A.
(N2) The neighborhoods of the elements of A can be ordered by inclusion, i.e.,

there are pairwise disjoint sets C1, I1, C2, I2, . . . , Ck, Ik with
⋃k

j=1 Ij = A and
for any i ∈ {1, . . . , k} and any x ∈ Ii it holds that N(x) =

⋃i
j=1 Cj.

(N3) If y ∈ Ci ∪ Ii and x ≺π y, then x ∈ Cj ∪ Ij with j ≤ i.
(N4) For any i ∈ {1, . . . , k} there is at most one vertex x ∈ Ii for which there

exists a vertex y ∈ Ci with x ≺π y.

The nested partial order πN (π,A) is defined as the reflexive and transitive clo-
sure of the relation containing the following tuples:

(P1) (x, y) ∀x, y ∈ V (G) with x ≺π y

(P2) (x, y) ∀x ∈ Ii ∪ Ci, y ∈ V (G) \ ⋃i
j=1(Ij ∪ Cj)

(P3) (x, y) ∀x ∈ C, y ∈ I \ A
(P4) (x, y) ∀x, y ∈ Ii for which ∃z ∈ Ci with x ≺π z

It is straightforward to check that πN (π,A) is a partial order if (π,A) fulfills
the nested property. We first show that the set A of the premature vertices of
a partial order π must necessarily fulfill the nested property if there is an MNS
ordering extending π. Furthermore, any such MNS ordering fulfills a large subset
of the constraints given by the nested partial order πN (π,A).

Lemma 15. Let G be a split graph with a split partition consisting of the clique
C and the independent set I and let π be a partial order on V (G). Let A =
{v ∈ I | ∃w ∈ C with v ≺π w}. If there is an MNS ordering σ of G extending
π, then (π,A) fulfills the nested property. If x ≺σ y but (y, x) ∈ πN (π,A), then
x /∈ A ∪ C.

Linearizing Partial Search Orders 435

The nested property is, in a restricted way, also sufficient for the existence of
a MNS ordering extending π. We show that if (π,A) fulfills the nested property,
then there is an MNS ordering that fulfills all tuples of π that contain elements
of the set A or the clique C. This ordering can be found using an A+-algorithm.

Lemma 16. Let G be a split graph with a split partition consisting of the clique
C and the independent set I, let π be a partial order on V (G) and A be a subset
of I. Assume (π,A) fulfills the nested property and let ρ be a linear extension
of π′ = πN (π,A). Then for any graph search A ∈ {MNS, MCS, LBFS} the
ordering σ = A+(ρ) of G fulfills the following property: If x ≺π′ y, then x ≺σ y
or both x and y are not in A ∪ C.

After an instance of Algorithm 1 has visited all the clique vertices of a split
graph, the labels of the remaining independent vertices do not change anymore.
Thus, a vertex x whose label is now smaller than the label of another vertex y
will be taken after y. Therefore, it is not enough to consider only the premature
vertices of π. Instead, we must also consider all independent vertices x that π
forces to be left of another independent vertex y whose label is larger than the
label of x if all clique vertices are visited. In the case of MCS this is sufficient to
characterize partial orders that are extendable.

Lemma 17. Let G be a split graph with a split partition consisting of the clique
C and the independent set I. Let π be a partial order on V (G). Let A := {u ∈
I | ∃v ∈ V (G) with v ∈ C or |N(u)| < |N(v)| such that u ≺π v}. There is an
MCS ordering which is a linear extension of π if and only if (π,A) fulfills the
nested property.

This lemma implies a linear-time algorithm for the PSOP of MCS on split
graphs.

Theorem 18. Given a split graph G and a partial order π on V (G), we can
solve the partial search order problem of MCS in time O(|V (G)|+ |E(G)|+ |π|).

This is a generalization of the linear-time algorithms for the end-vertex prob-
lem [2] and the F-tree recognition problem [3] of MCS on split graphs.

For LBFS there is a characterization of extendable partial orders that is
similar to Lemma 17. However, due to the more complex label structure of
LBFS, the result is slightly more complicated and uses OBA-orderings.

Lemma 19. Let G be a split graph with a split partition consisting of the clique
C and the independent set I. Let π be a partial order on V (G). Let A := {u ∈
I | ∃v ∈ V (G) with v ∈ C or N(u) � N(v) such that u ≺π v}. Let π′ be the
nested partial order πN (π,A) and let R be the following relation:

R = {(X,Y) | ∃x, y ∈ I \ A with X = N(x) \ N(y), Y = N(y) \ N(x), x ≺π y}
∪ {({x}, {y}) | x, y ∈ C, x ≺π′ y}.

There is an LBFS ordering extending π if and only if the tuple (π,A) fulfills
the nested property and there is an OBA-ordering for (C,Q,R) where Q is the
ground set of R.

436 R. Scheffler

a b

c
d e

f g

Fig. 1. A split graph consisting of clique {a, b, c} and independent set {d, e, f, g}.
Let π be the reflexive and transitive closure of the relation {(f, e), (g, d)}. There
is no MCS ordering extending π since the set A defined in Lemma 17 contains
both f and g and, thus, (π, A) does not fulfill the nested property. There is nei-
ther an LBFS ordering extending π as there is no OBA ordering for the relation
R = {({a}, {b, c}), ({b}, {a, c})} defined in Lemma 19. However, the MNS ordering
(f, a, b, c, e, g, d) extends π.

Again, this characterization leads to an efficient algorithm for the PSOP of
LBFS on split graphs. However, its running time is not linear.

Theorem 20. Given a split graph G and a partial order π on V (G), we can
solve the partial search order problem of LBFS in time O(|V (G)| · |π|).

Unfortunately, the ideas of Lemmas 17 and 19 cannot be directly adapted to
the PSOP of MNS. A main difficulty of this problem seems to be the identifi-
cation of independent vertices that have to be premature vertices. To illustrate
this, we consider the example given in Fig. 1. The defined partial order π has no
premature vertices. Furthermore, the set A defined in Lemma 19 is empty for
π. Nevertheless, for any MNS ordering σ extending π, one of the vertices f or g
has to be a premature vertex of σ.

7 Further Research

Besides the cases considered in this paper, there are several other combinations
of graph classes and searches for which both the end-vertex problem and the
F-tree recognition problem can be solved efficiently. Examples are the searches
MNS and MCS on chordal graphs [2,4,20]. Can all these results be generalized
to the PSOP or is there a combination of graph search and graph class where
the PSOP is hard but both the end-vertex problem and the F-tree recognition
problem can be solved in polynomial time?

As mentioned in the introduction, the graph searches considered in this paper
are used to solve several problems on graphs efficiently. This leads to the question
whether the construction of a search ordering that extends a special partial order
can be used in efficient algorithms for problems besides the end-vertex problem
and the search tree recognition problem.

The algorithms given in this paper use the complete partial order as input.
Using a Hasse diagram, it is possible to encode a partial order more efficiently.
Since there are partial orders of quadratic size where the Hasse diagram has only
linear size (e.g. total orders), it could be a good idea to study the running time
of the algorithms for instances of the PSOP where the partial order is given as
Hasse diagram.

Linearizing Partial Search Orders 437

References

1. Beisegel, J., et al.: Recognizing graph search trees. Preprint on arXiv (2018).
https://doi.org/10.48550/arXiv.1811.09249

2. Beisegel, J., et al.: On the End-Vertex Problem of Graph Searches. Discrete Math.
Theor. Comput. Sci. 21(1) (2019). https://doi.org/10.23638/DMTCS-21-1-13

3. Beisegel, J., et al.: Recognizing graph search trees. In: Proceedings of Lagos 2019,
the tenth Latin and American Algorithms, Graphs and Optimization Symposium.
ENTCS, vol. 346, pp. 99–110. Elsevier (2019). https://doi.org/10.1016/j.entcs.
2019.08.010

4. Beisegel, J., et al.: The recognition problem of graph search trees. SIAM J. Discrete
Math. 35(2), 1418–1446 (2021). https://doi.org/10.1137/20M1313301

5. Berry, A., Blair, J.R., Heggernes, P., Peyton, B.W.: Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004).
https://doi.org/10.1007/s00453-004-1084-3

6. Bretscher, A., Corneil, D., Habib, M., Paul, C.: A simple linear time LexBFS
cograph recognition algorithm. SIAM J. Discrete Math. 22(4), 1277–1296 (2008).
https://doi.org/10.1137/060664690

7. Charbit, P., Habib, M., Mamcarz, A.: Influence of the tie-break rule on the end-
vertex problem. Discrete Math. Theor. Comput. Sci. 16(2), 57 (2014). https://doi.
org/10.46298/dmtcs.2081

8. Chu, F.P.M.: A simple linear time certifying LBFS-based algorithm for recognizing
trivially perfect graphs and their complements. Inf. Process. Lett. 107(1), 7–12
(2008). https://doi.org/10.1016/j.ipl.2007.12.009

9. Corneil, D.G., Dusart, J., Habib, M., Mamcarz, A., De Montgolfier, F.: A tie-break
model for graph search. Discrete Appl. Math. 199, 89–100 (2016). https://doi.org/
10.1016/j.dam.2015.06.011

10. Corneil, D.G., Köhler, E., Lanlignel, J.M.: On end-vertices of lexicographic breadth
first searches. Discrete Appl. Math. 158(5), 434–443 (2010). https://doi.org/10.
1016/j.dam.2009.10.001

11. Corneil, D.G., Krueger, R.M.: A unified view of graph searching. SIAM J. Discrete
Math. 22(4), 1259–1276 (2008). https://doi.org/10.1137/050623498

12. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009). https://doi.
org/10.1137/S0895480100373455

13. Dusart, J., Habib, M.: A new LBFS-based algorithm for cocomparability graph
recognition. Discrete Appl. Math. 216, 149–161 (2017). https://doi.org/10.1016/
j.dam.2015.07.016

14. Gorzny, J., Huang, J.: End-vertices of LBFS of (AT-free) bigraphs. Discrete Appl.
Math. 225, 87–94 (2017). https://doi.org/10.1016/j.dam.2017.02.027

15. Hagerup, T.: Biconnected graph assembly and recognition of DFS trees. Techni-
cal report A 85/03, Universität des Saarlandes (1985). https://doi.org/10.22028/
D291-26437

16. Hagerup, T., Nowak, M.: Recognition of spanning trees defined by graph searches.
Technical report A 85/08, Universität des Saarlandes (1985)

17. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974). https://doi.org/10.1145/321850.321852

18. Krueger, R., Simonet, G., Berry, A.: A general label search to investigate classical
graph search algorithms. Discrete Appl. Math. 159(2–3), 128–142 (2011). https://
doi.org/10.1016/j.dam.2010.02.011

https://doi.org/10.48550/arXiv.1811.09249
https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.1016/j.entcs.2019.08.010
https://doi.org/10.1016/j.entcs.2019.08.010
https://doi.org/10.1137/20M1313301
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1137/060664690
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.1016/j.ipl.2007.12.009
https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1016/j.dam.2015.07.016
https://doi.org/10.1016/j.dam.2015.07.016
https://doi.org/10.1016/j.dam.2017.02.027
https://doi.org/10.22028/D291-26437
https://doi.org/10.22028/D291-26437
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/j.dam.2010.02.011
https://doi.org/10.1016/j.dam.2010.02.011

438 R. Scheffler

19. Kumar, P.S., Madhavan, C.E.V.: Minimal vertex separators of chordal graphs.
Discrete Appl. Math. 89(1), 155–168 (1998). https://doi.org/10.1016/S0166-
218X(98)00123-1

20. Rong, G., Cao, Y., Wang, J., Wang, Z.: Graph searches and their end vertices.
Algorithmica (2022). https://doi.org/10.1007/s00453-022-00981-5

21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

22. Scheffler, R.: Linearizing partial search orders. Preprint on arXiv (2022). https://
doi.org/10.48550/arXiv.2206.14556

23. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

https://doi.org/10.1016/S0166-218X(98)00123-1
https://doi.org/10.1016/S0166-218X(98)00123-1
https://doi.org/10.1007/s00453-022-00981-5
https://doi.org/10.1137/0205021
https://doi.org/10.48550/arXiv.2206.14556
https://doi.org/10.48550/arXiv.2206.14556
https://doi.org/10.1137/0213035

Minimum Weight Euclidean
(1 + ε)-Spanners

Csaba D. Tóth1,2(B)

1 California State University Northridge, Los Angeles, CA, USA
csaba.toth@csun.edu

2 Tufts University, Medford, MA, USA

Abstract. Given a set S of n points in the plane and a parameter
ε > 0, a Euclidean (1 + ε)-spanner is a geometric graph G = (S, E)
that contains a path of weight at most (1 + ε)‖pq‖2 for all p, q ∈ S.
We show that the minimum weight of a Euclidean (1 + ε)-spanner for
n points in the unit square [0, 1]2 is O(ε−3/2 √

n), and this bound is the
best possible. The upper bound is based on a new spanner algorithm that
sparsifies Yao-graphs. It improves upon the baseline O(ε−2√n), obtained
by combining a tight bound for the weight of an MST and a tight bound
for the lightness of Euclidean (1 + ε)-spanners, which is the ratio of the
spanner weight to the weight of the MST. The result generalizes to d-
space for all d ∈ N: The minimum weight of a Euclidean (1 + ε)-spanner

for n points in the unit cube [0, 1]d is Od(ε
(1−d2)/dn(d−1)/d), and this

bound is the best possible. For the n×n section of the integer lattice, we
show that the minimum weight of a Euclidean (1+ε)-spanner is between
Ω(ε−3/4n2) and O(ε−1 log(ε−1) n2). These bounds become Ω(ε−3/4√n)
and O(ε−1 log(ε−1)

√
n) when scaled to a grid of n points in [0, 1]2.

Keywords: Geometric spanner · Yao-graph · Farey sequences

1 Introduction

For a set S of n points in a metric space, a graph G = (S,E) is a t-spanner if G
contains, between any two points p, q ∈ S, a pq-path of weight at most t · ‖pq‖,
where t ≥ 1 is the stretch factor of the spanner. In other words, a t-spanner
approximates the true distances between the

(
n
2

)
pairs of points up to a factor t

distortion. Several optimization criteria have been developed for t-spanners for
a given parameter t ≥ 1. Natural parameters are the size (number of edges),
the weight (sum of edge weights), the maximum degree, and the hop-diameter.
Specifically, the sparsity of a spanner is the ratio |E|/|S| between the number of
edges and vertices; and the lightness is the ratio between the weight of a spanner
and the weight of an MST on S.

In the geometric setting, S is a set of n points in Euclidean d-space in constant
dimension d ∈ N. For every ε > 0, there exist (1 + ε)-spanners with Od(ε1−d)

Research partially supported by NSF grant DMS-1800734.

c© Springer Nature Switzerland AG 2022
M. A. Bekos and M. Kaufmann (Eds.): WG 2022, LNCS 13453, pp. 439–452, 2022.
https://doi.org/10.1007/978-3-031-15914-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15914-5_32&domain=pdf
http://orcid.org/0000-0002-8769-3190
https://doi.org/10.1007/978-3-031-15914-5_32

440 C. D. Tóth

sparsity and Od(ε−d) lightness, and both bounds are the best possible [23]. In
particular, the Θ-graphs, Yao-graphs [31], gap-greedy and path-greedy spanners
provide (1 + ε)-spanners of sparsity Od(ε1−d). For lightness, Das et al. [9,10,28]
were the first to construct (1 + ε)-spanners of lightness ε−O(d). Gottlieb [18]
generalized this result to metric spaces with doubling dimension d; see also [6,15].
Recently, Le and Solomon [23] showed that the greedy (1 + ε)-spanner in R

d has
lightness O(ε−d); and so it simultaneously achieves the best possible bounds for
both lightness and sparsity. The greedy (1 + ε)-spanner algorithm [4] generalizes
Kruskal’s algorithm: It sorts the

(
n
2

)
edges of Kn by nondecreasing weight, and

incrementally constructs a spanner H: it adds an edge uv if H does not contain
an uv-path of weight at most (1 + ε)‖uv‖.

Lightness versus Minimum Weight. Lightness is a convenient optimization
parameter, as it is invariant under scaling. It also provides an approximation
ratio for the minimum weight (1 + ε)-spanner, as the weight of a Euclidean
MST (for short, EMST) is a trivial lower bound on the spanner weight. How-
ever, minimizing the lightness is not equivalent to minimizing the spanner weight
for a given input instance, as the EMST is highly sensitive to the distribution
of the points in S. Given that worst-case tight bounds are now available for the
lightness, it is time to revisit the problem of approximating the minimum weight
of a Euclidean (1 + ε)-spanner, without using the EMST as an intermediary.

Euclidean Minimum Spanning Trees. For n points in the unit cube [0, 1]d, the
weight of the EMST is Od(n1−1/d), and this bound is also best possible [14,33].
In particular, a suitably scaled section of the integer lattice attains these bounds
up to constant factors. Supowit et al. [34] proved similar bounds for the minimum
weight of other popular graphs, such as spanning cycles and perfect matchings
on n points in the unit cube [0, 1]d.

Extremal Configurations for Euclidean (1 + ε)-Spanners. The tight Od(ε−d)
bound on lightness [23] implies that for every set of n points in [0, 1]d, there
is a Euclidean (1 + ε)-spanner of weight O(ε−dn1−1/d). However, the combi-
nation of two tight bounds need not be tight; and it is unclear which n-point
configurations require the heaviest (1 + ε)-spanners. We show that this bound
can be improved to O(ε−3/2

√
n) in the plane. Furthermore, the extremal point

configurations are not an integer grid, but an asymmetric grid.

Contributions. We obtain a tight upper bound on the minimum weight of a
Euclidean (1 + ε)-spanner for n points in [0, 1]d.

Theorem 1. For constant d ≥ 2, every set of n points in the unit cube [0, 1]d

admits a Euclidean (1 + ε)-spanner of weight Od(ε(1−d2)/dn(d−1)/d), and this
bound is the best possible.

The upper bound is established by a new spanner algorithm, SparseYao, that
sparsifies the classical Yao-graph using novel geometric insight (Sect. 3). The
weight analysis is based on a charging scheme that charges the weight of the
spanner to empty regions (Sect. 4).

Minimum Weight Euclidean (1 + ε)-Spanners 441

The lower bound construction is the scaled lattice with basis vectors of weight√
ε and 1√

ε
(Sect. 2); and not the integer lattice Z

d. We analyze the minimum
weight of Euclidean (1 + ε)-spanners for the integer grid in the plane.

Theorem 2. For every n ∈ N, the minimum weight of a (1+ε)-spanner for the
n×n section of the integer lattice is between Ω(ε−3/4n2) and O(ε−1 log(ε−1)·n2).

When scaled to n points in [0, 1]2, the upper bound confirms that the integer
lattice does not maximize the weight of Euclidean (1 + ε)-spanners.

Corollary 1. For every n ∈ N, the minimum weight of a (1 + ε)-spanner for
n points in a scaled section of the integer grid in [0, 1]2 is between Ω(ε−3/4

√
n)

and O(ε−1 log(ε−1)
√

n).

The lower bound is derived from two elementary criteria (the empty ellipse
condition and the empty slab condition) for an edge to be present in every
(1+ε)-spanner (Sect. 2). The upper bound is based on analyzing the SparseYao
algorithm from Sect. 3, combined with results from number theory on Farey
sequences (Sect. 5). Closing the gap between the lower and upper bounds in
Theorem 2 remains an open problem. Higher dimensional generalizations are also
left for future work. In particular, multidimensional variants of Farey sequences
are currently not well understood.

Further Related Previous Work. Many algorithms have been developed for con-
structing (1+ε)-spanners for n points in R

d [1,8–10,13,19,25,27,29], designed for
one or more optimization criteria (lightness, sparsity, hop diameter, maximum
degree, and running time). A comprehensive survey up to 2007 is in the book by
Narasinham and Smid [28]. We briefly review previous constructions pertaining
to the minimum weight for n points the unit square (i.e., d = 2). As noted above,
the recent worst-case tight bound on the lightness [23] implies that the greedy
algorithm returns a (1 + ε)-spanner of weight O(ε−2‖MST‖) = O(ε−2

√
n).

A classical method for constructing a (1 + ε)-spanners uses well-separated
pair decompositions (WSPD) with a hierarchical clustering (e.g., quadtrees);
see [20, Chap. 3]. Due to a hierarchy of depth O(log n), this technique has been
adapted broadly to dynamic, kinetic, and reliable spanners [7,8,17,30]. However,
the weight of the resulting (1 + ε)-spanner for n points in [0, 1]2 is O(ε−3

√
n ·

log n) [17]. The O(log n) factor is due to the depth of the hierarchy; and it cannot
be removed for any spanner with hop-diameter O(log n) [3,11,32].

Yao-graphs and Θ-graphs are geometric proximity graphs, defined as follows.
For a constant k ≥ 3, consider k cones of aperture 2π/k around each point p ∈ S;
in each cone, connect p to the “closest” point q ∈ S. For Yao-graphs, q minimizes
the Euclidean distance ‖pq‖, and for Θ-graphs q is the point that minimizes the
length of the orthogonal projection of pq to the angle bisector of the cone. It
is known that both Θ- and Yao-graphs are (1 + ε)-spanners for a parameter
k ∈ Θ(ε−1), and this bound is the best possible [28]. However, if we place �n/2�
and �n/2	 equally spaced points on opposite sides of the unit space, then the
weight of both graphs with parameter k = Θ(ε−1) will be Θ(ε−1 n).

442 C. D. Tóth

Organization. We start with lower bound constructions in the plane (Sect. 2) as
a warm-up exercise. The two elementary geometric criteria build intuition and
highlight the significance of

√
ε as the ratio between the two axes of an ellipse of

all paths of stretch at most 1 + ε between the foci. Section 3 presents Algorithm
SparseYao and its stretch analysis in the plane. Its weight analysis for n points
in [0, 1]2 is in Sect. 4. We analyze the performance of Algorithm SparseYao for
the n × n grid, after a brief review of Feray sequences, in Sect. 5. We conclude
with a selection of open problems in Sect. 6. The generalization of Algorithm
SparseYao and its analysis are sketched in the full paper [35].

2 Lower Bounds in the Plane

We present lower bounds for the minimum weight of a (1 + ε)-spanner for the
n × n section of the integer lattice (Sect. 2.1); and for n points in a unit square
[0, 1]2 (Sect. 2.2).

Let S ⊂ R
2 be a finite point set. We observe two elementary conditions that

guarantee that an edge ab is present in every (1 + ε)-spanner for S. Two points,
a, b ∈ S, determine a (closed) line segment ab = conv{a, b}; the relative interior
of ab is denoted by int(ab) = ab\{a, b}. Let Eab denote the ellipse with foci a and
b, and great axis of weight (1 + ε)‖ab‖, Lab be the slab bounded by two lines
parallel to ab and tangent lines to Eab; see Fig. 1. Note that the width of Lab

equals the minor axes of Eab, which is ((1+ε)2−12)1/2‖ab‖ = (2ε+ε2)1/2‖ab‖ >√
2ε‖ab‖.

– Empty ellipse condition: S ∩ Eab = {a, b}.
– Empty slab condition: S ∩ int(ab) = ∅ and all points in S ∩ Lab are on the

line ab.

a b

Eab

(1 + ε)‖ab‖

>
2
√ ε

‖a
b‖ Lab

Fig. 1. The ellipse Eab with foci a and b, and great axis of weight (1 + ε)‖ab‖.

Observation 1. Let S ⊂ R
2, G = (S,E) a (1 + ε)-spanner for S, and a, b ∈ S.

1. If ab meets the empty ellipse condition, then ab ∈ E.
2. If S is a section of Z2, ε < 1, and ab meets the empty slab condition, then

ab ∈ E.

Proof. The ellipse Eab contains all points p ∈ R
2 satisfying ‖ap‖ + ‖pb‖ ≤ (1 +

ε)‖ab‖. Thus, by the triangle inequality, Eab contains every ab-path of weight at

Minimum Weight Euclidean (1 + ε)-Spanners 443

most (1 + ε)‖ab‖. The empty ellipse condition implies that such a path cannot
have interior vertices.

If S is the integer lattice, then S ∩ int(ab) = ∅ implies that
−→
ab is a primitive

vector (i.e., the x- and y-coordinates of
−→
ab are relatively prime), hence the dis-

tance between any two lattice points along the line ab is at least ‖ab‖. Given that
Eab ⊂ Lab, the empty slab condition now implies the empty ellipse condition. ��

2.1 Lower Bounds for the Grid

Lemma 1. For every n ∈ N with n ≥ 2 ε−1/4, the weight of every (1+ε)-spanner
for the n × n section of the integer lattice is Ω(ε−3/4n2).

Proof. Let S = {(s1, s2) ∈ Z
2 : 0 ≤ s1, s2 < n} and A = {(a1, a2) ∈ Z

2 :
0 ≤ a1, a2 < �ε−1/4	/2}. Denote the origin by o = (0, 0). For every grid point
a ∈ A, we have ‖oa‖ ≤ ε−1/4/

√
2. A vector −→oa is primitive if a = (a1, a2) and

gcd(a1, a2) = 1. We show that every primitive vector −→oa with a ∈ A satisfies
the empty slab condition. It is clear that S ∩ int(oa) = ∅. Suppose that s ∈ S
but it is not on the line spanned by oa. By Pick’s theorem, area(Δ(oas)) ≥ 1

2 .
Consequently, the distance between s and the line oa is at least ‖oa‖−1 ≥ √

2 ·
ε1/4 ≥ 2 ε1/2 ‖oa‖; and so s /∈ Loa, as claimed.

By elementary number theory, −→oa is primitive for Θ(|A|) points a ∈ A. Indeed,
every a1 ∈ N is relatively prime to Nϕ(a1)/a1 integers in every interval of length
N , where ϕ(.) is Euler totient function, and ϕ(a1) = Θ(a1). Consequently, the
total weight of primitive vectors −→oa, a ∈ A, is Θ(|A| · ε−1/4) = Θ(ε−3/4).

The primitive edges oa, a ∈ A, form a star centered at the origin. The
translates of this star to other points s ∈ S, with 0 ≤ s1, s2 ≤ n

2 ≤ n − �ε−1/4	
are present in every (1 + ε)-spanner for S. As every edge is part of at most two
such stars, summation over Θ(n2) stars yields a lower bound of Ω(ε−3/4n2). ��
Remark 1. The lower bound in Lemma 1 derives from the total weight of prim-
itive vectors −→oa with ‖oa‖ ≤ O(ε−1/4), which satisfy the empty slab condition.
There are additional primitive vectors that satisfy the empty ellipse condition
(e.g., −→oa with a = (1, a2) for all |a2| < ε−1/3). However, it is unclear how to
account for all vectors satisfying the empty ellipse condition, and whether their
overall weight would improve the lower bound in Lemma 1.

Remark 2. The empty ellipse and empty slab conditions each imply that an
edge must be present in every (1 + ε)-spanner for S. It is unclear how the total
weight of such “must have” edges compare to the the minimum weight of a
(1 + ε)-spanner.

2.2 Lower Bounds in the Unit Square

Lemma 2. For every n ∈ N and ε ∈ (0, 1], there exists a set S of n points in
[0, 1] such that every (1 + ε)-spanner for S has weight Ω(ε−3/2

√
n).

444 C. D. Tóth

Proof. First let S0 be a set of 2m points, where m = �ε−1/2�, with m equally
spaced points on two opposite sides of a unit square. By the empty ellipse prop-
erty, every (1+ε)-spanner for S0 contains a complete bipartite graph Km,m. The
weight of each edge of Km,m is between 1 and

√
2, and so the weight of every

(1 + ε)-spanner for S0 is Ω(ε−2).
For n ≥ ε−1, consider an �√εn� × �√εn� grid of unit squares, and insert a

translated copy of S0 in each unit square. Let S be the union of these Θ(εn)
copies of S0; and note that |S| = Θ(n). A (1 + ε)-spanner for each copy of S0

still requires a complete bipartite graph of weight Ω(ε−2). Overall, the weight
of every (1 + ε)-spanner for S is Ω(ε−1n).

Finally, scale S down by a factor of �√εn� so that it fits in a unit square. The
weight of every edge scales by the same factor, and the weight of a (1+ε)-spanner
for the resulting n points in [0, 1]2 is Ω(ε−3/2

√
n), as claimed. ��

Remark 3. The points in the lower bound construction above lie on O(
√

εn) axis-
parallel lines in [0, 1]2, and so the weight of their MST is O(

√
εn). Recall that the

lightness of the greedy (1+ ε)-spanner is O(ε−d log ε−1) [23]. For d = 2, it yields
a (1 + ε)-spanner of weight O(ε−2 log ε−1) · ‖MST(S)‖ = O(ε−3/2 log(ε−1)

√
n).

3 Spanner Algorithm: Sparse Yao-Graphs

Let S be a set of n points in the plane and ε ∈ (0, 1
9). As noted above, the

Yao-graph Yk(S) with k = Θ(ε−1) cones per vertex is a (1 + ε)-spanner for S.
We describe an new algorithm, SparseYao(S, ε), that computes a subgraph of
a Yao-graph Yk(S) (Sect. 3.1); and show that it returns a (1 + ε)-spanner for S
(Sect. 3.2). Later, we use this algorithm for n points in the unit square (Sect. 4;
and for an n × n section of the integer lattice (Sect. 5). Our algorithm starts
with a Yao-graph that is a (1 + ε

2)-spanner, in order to leave room for minor
loss in the stretch factor due to sparsification. The basic idea is that instead of
cones of aperture 2π/k = Θ(ε), cones of much larger aperture Θ(

√
ε) suffice in

some cases. (This is idea is flashed out in Sect. 3.2). The angle
√

ε then allows
us to charge the weight of the resulting spanner to the area of empty regions
(specifically, to an empty section of a cone) in Sect. 4.

3.1 Sparse Yao-Graph Algorithm

We present an algorithm that computes a subgraph of a Yao-graph for S. It starts
with cones of aperture Θ(

√
ε), and refines them to cones of aperture Θ(ε−1). We

connect each point p ∈ S to the closest points in the larger cones, and use the
smaller cones only when “necessary.” To specify when exactly the smaller cones
are used, we define two geometric regions that will also play crucial roles in the
stretch and weight analyses.

Definitions. Let p, q ∈ S be distinct points; refer to Fig. 2. Let A(p, q) be the line
segment of weight

√
ε
2 ‖pq‖ on the line pq with one endpoint at p but interior-

disjoint from the ray −→pq; and Â(p, q) the set of points in R
2 within distance

Minimum Weight Euclidean (1 + ε)-Spanners 445

p
q

c

W2

B(p, q)

√
ε

√
ε
4

√
ε
2

W1

Â(p, q)
a

b

A(p, q)

B̂(p, q)

Fig. 2. Wedges W1 and W2, line segment A(p, q), and regions ̂A(p, q), B(p, q), and
̂B(p, q) for p, q ∈ S.

ε
16 ‖pq‖ from A(p, q). Let W1 be the cone with apex p, aperture 1

2 ·√ε, and sym-
metry axis −→pq; and let W2 be the cone with apex q, aperture

√
ε, and symmetry

axis −→pq. Let B(p, q) = W1 ∩ W2. Finally, let B̂(p, q) be the set of points in R
2

within distance at most ε
8 ‖pq‖ from B(p, q).

We show below (cf. Lemma 3) that if we add edge pq to the spanner, then
we do not need any of the edges ab with a ∈ Â(p, q) and b ∈ B̂(p, q). We can
now present our algorithm.

Algorithm SparseYao(S, ε). Input: a set S ⊂ R
2 of n points, and ε ∈ (0, 1

9).

Preprocessing Phase: Yao-Graphs. Subdivide R
2 into k := �16π/

√
ε	 con-

gruent cones of aperture 2π/k ≤ 1
8 · √

ε with apex at the origin, denoted
C1, . . . , Ck. For i ∈ {1, . . . , k}, let −→r i be the symmetry axis of Ci, directed
from the origin towards the interior of Ci. For each i ∈ {1, . . . , k}, subdivide
Ci into k congruent cones of aperture 2π/k2 ≤ ε/8, denoted Ci,1, . . . , Ci,k; see
Fig. 3. For each point s ∈ S, let Ci(s) and Ci,j(s), resp., be the translates of
cones Ci and Ci,j to apex s.

For all s ∈ S and i ∈ {1, . . . , k}, let qi(s) be a closest point to s in Ci(s) ∩
(S\{s}); and for all j ∈ {1, . . . , k}, let qi,j(s) be a closest point in Ci,j(s) ∩
(S\{s}); if such points exist. For each i ∈ {1, . . . , k}, let Li be the list of all
ordered pairs (s, qi(s)) sorted in decreasing order of the orthogonal projection of
s to the directed line −→r i; ties are broken arbitrarily.

Main Phase: Computing a Spanner. Initialize an empty graph G = (S,E)
with E := ∅.

1. For all i ∈ {1, . . . , k}, do:
– While the list Li is nonempty, do:

(a) Let (p, q) be the first ordered pair in Li.

446 C. D. Tóth

(b) Add (the unordered edge) pq to E.
(c) For all i′ ∈ {i − 2, . . . , i + 2} and j ∈ {1, . . . , k}, do:

If ‖pqi(p)‖ ≤ ‖pqi′,j(p)‖ and qi′,j(p) /∈ B(p, q), then add pqi′,j(p) to
E.

(d) For all s ∈ Â(p, q), including s = p, delete the pair (s, qi(s)) from Li.
2. Return G = (S,E).

s

q1

C1(s)
q2

C2(s)

q3

q4

C3(s)

q5

q6 C6(s)

q5

C5(s)C4(s)

q1,1

q1,4

q1,3

q1,2

q1,6

C3,5(s)

q3,6

q4,1

C3,6(s)

C3,4(s)

Fig. 3. Cones Ci(s) and Ci,j(s) for a point s ∈ S, with k = 6.

It is clear that the runtime of Algorithm SparseYao is polynomial in n
in the RAM model of computation. In particular, the runtime is dominated
preprocessing phase that constructs the Yao-graph with O(ε−1n) edges: finding
the closest points qi(s) and qi,j(s) is supported by standard range searching data
structures [2]. The main phase then computes a subgraph of Yk2(S) in O(ε−1n)
time. Optimizing the runtime, however, is beyond the scope of this paper. ��

3.2 Stretch Analysis

In this section, we show that G = SparseYao(S, ε) is a (1 + ε)-spanner for
S. In the preprocessing phase, Algorithm SparseYao computes a Yao-graph
with k2 = Θ(ε−1) cones. The following lemma justifies that we can omit some
of the edges sqi,j from G. In the general case, we have s = a ∈ Ã(p, q) and
qi,j = b ∈ B̂(p, q). For technical reasons, we use a slightly larger neighborhood
instead of Â(p, q). Let Ã(p, q) be the set of points in R

2 within distance at most
ε
5 from A(p, q).

Lemma 3. For all a ∈ Ã(p, q) and b ∈ B̂(p, q), we have

(1 + ε)‖ap‖ + ‖pq‖ + (1 + ε)‖qb‖ ≤ (1 + ε)‖ab‖. (1)

The proof of Lemma 3 is a fairly technical; see the full paper [35]. Next we
clarify the relation between Â(p, q) and Ã(p, q).

Lemma 4. Let p, q ∈ S, and assume that q ∈ Ci′,j(p) for some i, j ∈ {1, . . . , k}
and i′ ∈ {i − 1, i, i + 1}, where qi′,j = qi′,j(p) is a closest point to p in Ci′,j(p).
Then Â(p, qi) ⊂ Ã(p, qi′,j).

Minimum Weight Euclidean (1 + ε)-Spanners 447

Proof. Since the aperture of Ci(p) is 1
8 ·√ε and qi ∈ Ci(p), then ∠qipqi′,j ≤ 1

4

√
ε.

Since ‖pqi‖ ≤ ‖pqi′,j‖, then ‖A(p, qi)‖ ≤ ‖A(p, qi′,j)‖. Consequently, every point
in A(p, qi) is within distance at most ‖A(p, qi)‖ sin ∠qipqi′,j) ≤

√
ε
2 ‖pqi‖ · 1

4

√
ε ≤

ε
8 ‖pqi‖ from A(p, qi′,j). By the triangle inequality, the (ε

16 ‖pqi‖)-neighborhood
of A(p, qi) is within distance at most (ε

8 + ε
16)‖pqi‖ < ε

5 ‖pqi‖ from A(p, qi′,j).��

The following lemma justifies the role of the regions B̂(p, qi). Due to space
constraints, its proof is deferred to the full paper [35].

Lemma 5. Let p, q ∈ S, and assume that q ∈ Ci′,j(p) for some i, j ∈ {1, . . . , k}
and i′ ∈ {i − 1, i, i + 1}, where qi′,j = qi′,j(p) is a closest point to p in Ci′,j(p).
If q /∈ B(p, qi) but qi′,j ∈ B(p, qi), then q ∈ B̂(p, qi).

Completing the Stretch Analysis. We are now ready to present the stretch anal-
ysis for SparseYao(S, ε).

Theorem 3. For every finite point set S ⊂ R
2 and ε ∈ (0, 1

9), the graph G =
SparseYao(S, ε) is a (1 + ε)-spanner.

Proof. Let S be a set of n points in the plane. Let L0 be the list of all
(
n
2

)
edges

of the complete graph on S sorted by Euclidean weight (ties broken arbitrarily).
For � = 1, . . . ,

(
n
2

)
, let e� be the �-th edge in L0, and let E(�) = {e1, . . . , e�}. We

show the following claim, by induction, for every � = 1, . . . ,
(
n
2

)
:

Claim. For every edge ab ∈ E(�), G = (S,E) contains an ab-path of weight at
most (1 + ε)‖ab‖.

For � = 1, the claim clearly holds, as the shortest edge pq is necessarily the
shortest in some cones Ci(p) and Ci′(q), as well, and so the algorithm adds pq
to E. Assume that 1 < � ≤ (

n
2

)
and the claim holds for � − 1. If the algorithm

added edge e� to E, then the claim trivially holds for �.
Suppose that e� /∈ E. Let e� = pq, and q ∈ Ci,j(p) for some i, j ∈ {1, . . . , k}.

Recall that qi = qi(p) is a closest point to p in the cone Ci; and qi,j = qi,j(p) is
a closest point to p in the cone Ci,j(p). We distinguish between two cases.

(1) The algorithm added the edge pqi to E. Note that ‖qiq‖ < ‖pq‖ and ‖qi,jq‖ <
‖pq‖. By the induction hypothesis, G contains a qiq-path Pi of weight at most
(1+ε)‖qiq‖ and a qi,jq-path Pi,j of weight at most (1+ε)‖qi,jq‖. If q ∈ B̂(p, qi),
then pqi +Pi is a pq-path of weight at most (1+ε)‖pq‖ by Lemma 3. Otherwise,
q /∈ B̂(p, qi). In this case, qi,j /∈ B(p, qi) by Lemma 5. This means that the
algorithm added the edge pqi,j to E. We have q ∈ B̂(p, qi,j) by Lemma 5, and
so pqi,j + Pi,j is a pq-path of weight at most (1 + ε)‖pq‖ by Lemma 3.

(2) The algorithm did not add the edge pqi to E. Then the algorithm deleted
(p, qi) from the list Li in a step in which it added another edge p′q′

i to E. This
means that p ∈ Â(p′, q′

i), where q′
i is the closest point to p′ in the cone Ci(p′). As

diam(A(pi, q
′
i)) < (

√
ε + 2 · ε

16)‖p′q′
i‖ < 1

4 ‖p′q′
i‖ for ε ∈ (0, 1

9), then p ∈ Â(p′, q′
i)

implies ‖pp′‖ ≤ 1
4 ‖p′q′

i‖. Since Li is sorted by weight, then ‖p′q′
i‖ ≤ ‖pqi‖.

448 C. D. Tóth

Although we have q ∈ Ci(p), the point q need not be in the cone Ci(p′);
see Fig. 4. We claim that q lies in the union of three consecutive cones: q ∈
Ci−1(p′) ∪ Ci(p′) ∪ Ci+1(p′). Let Di(p′) be part of the cone Ci(p′) outside of the
circle of radius ‖p′q′

i‖ centered at p′. Since q ∈ Ci(p) and ‖p′q′
i‖ < ‖pq‖, then q

lies in the translate Di(p′) +
−→
p′p of Di(p′). Consider the union of translates:

D = Di(p) + {−→
p′a : a ∈ Api,q′

i
},

and note that q ∈ D. We have diam(Â(p′, q′
i)) ≤ (

√
ε
2 + 2 · ε

16)‖p′q′
i‖ < 1

4 ‖p′q′
i‖

for ε ∈ (0, 1
9); and recall that the aperture of Ci(p′) is γ := 2π/k ≤ 1

8 · √
ε.

We can now approximate ∠qp′q′
i as follows; refer to Fig. 4: tan ∠qp′q′

i ≤
‖p′q′

i‖ tan γ/(‖p′q′
i‖−2diam(A(p′, qi))) ≤ 2 tan α. Consequently, ∠qp′q′

i < 2 γ. It
follows that q ∈ ⋃i+2

i′=i−2 Ci′(p′). We distinguish between two subcases:

Fig. 4. The relative position of pq and p′q′
i. Specifically, p ∈ ̂A)(p′, q′

i) and q ∈ Ci(p).

Left: the region Di(p
′) and translates of ̂A(p′, q′

i) to two critical points of Di(p
′). Right:

q ∈ Ci−1(p
′) ∪ Ci(p

′) ∪ Ci+1(p
′) and the region B(p′q′

i)

(2a) q ∈ B̂(p′, q′
i). By induction, G contains (1+ ε)-paths between p and p′, and

between q and q′
i. By Lemma 3 (with a = p and b = q), the concatenation of

these paths and the edge p′q′
i is a pq-path of weight at most (1 + ε)‖pq‖.

(2b) q /∈ B̂(p′, q′
i). Then q ∈ Ci′,j′(p′) for some i′ ∈ {i − 1, i, i + 1} and j′ ∈

{1, . . . , k}. By Lemma 5, we have qi′,j′ /∈ B(p′, qi). and so the algorithm added
the edge p′qi′,j′ , where qi′,j′ is the closest point to p′ in the cone Ci′,j′(p′). We
have p ∈ Â(p′, q′

i) ⊂ Ã(p′, qi′,j) by Lemma 4, and q ∈ B̂(p′, qi′,j) by Lemma 5.
By induction, G contains (1 + ε)-paths between p and p′, and between qi′,j′ and
q. The concatenation of these paths and the edge p′qi′,j′ is a pq-path of weight
at most (1 + ε)‖pq‖ by Lemma 3.

4 Spanners in the Unit Square

In this section, we show that for a set S ⊂ [0, 1]2 of n points in the unit
square and ε ∈ (0, 1

9), Algorithm SparseYao returns a (1+ε)-spanner of weight
O(ε−3/2

√
n) (cf. Theorem 4).

Minimum Weight Euclidean (1 + ε)-Spanners 449

The spanner SparseYao(S, ε) is a subgraph of the Yao-graph with cones of
aperture 2π/k2 = O(ε), and so it has O(ε−1n) edges. Recall that for all p ∈ S
and all i ∈ {1, . . . , k}, there is at most one edge pqi(p) in G, where qi(p) is the
closest point to p in the cone Ci(p) of aperture 1

8

√
ε. Let

F =
{
pqi(p) ∈ E(G) : p ∈ S, i ∈ {1, . . . , k}}

.

We first show that the weight of F approximates the weight of the spanner.

Lemma 6. If Algorithm SparseYao adds pqi(p) and pqi′,j(p) to G in the same
iteration, then ‖pqi′,j(p)‖ < 2 ‖pqi(p)‖.
Proof. For short, we write qi = qi(p) and qi′,j = qi′,j(p), where i ∈ {i−1, i, i+1}.
Since SparseYao added pqi′,j to G, then qi′,j /∈ B(p, qi). Recall (cf. Fig. 2) that
B(p, qi) = W1 ∩ W2, where W1 and W2 are cones centered at p and qi, resp.,
with apertures 1

2

√
ε and

√
ε. Since the aperture of the cone Ci(p) is 1

8

√
ε, then

Ci−1(p) ∪ Ci(p) ∪ Ci+1(p) ⊂ W1, hence (Ci−1(p) ∪ Ci(p) ∪ Ci+1(p)) \B(p, qi) ⊂
W1\W2. The line segment pqi decomposes W1vW2 into two isosceles triangles.
By the triangle inequality, the diameter of each isosceles triangle is less than
2‖pqi‖. This implies ‖pq′‖ < 2 ‖pqi‖ for any q′ ∈ W1\W2, as claimed. ��
Lemma 7. For G = SparseYao(S, ε), we have ‖G‖ = O(ε−1/2) · ‖F‖.
Proof. Fix p and i ∈ {1, . . . , k}, let qi = qi(p) for short, and suppose pqi ∈ E(G).
Consider one step of the algorithm that adds the edge pqi to G, together with up
to 3k = Θ(ε−1/2) edges of type pqi′,j , where qi′,j /∈ B(p, qi) and i′ ∈ {i−1, i, i+1}.
By Lemma 6, ‖pqi′,j‖ < 2‖pqi‖. The total weight of all edges pqi′,j added to the
spanner is

‖pqi(p)‖+
i+1∑

i′=i−1

k∑

j=1

‖pqi′,j‖ ≤ ‖pqi‖+3k ·2 ‖pqi‖ ≤ O(k‖pqi‖) ≤ O(ε−1/2)‖pqi‖).

Summation over all edges in F yields ‖G‖ = O(ε−1/2) · ‖F‖. ��
It remains to show that ‖F‖ ≤ O(ε−1

√
n). For i = 1, . . . , k, let Fi = {pqi(p) ∈

E(G) : p ∈ S}, that is, the set of edges in G between points p and the closest
point qi(p) in cone Ci(p) of aperture

√
ε. We prove that ‖Fi‖ ≤ O(ε−1/2

√
n)

(in the full version of this paper citefull). Since k = Θ(ε−1/2) this implies the
following.

Theorem 4. For every set of n points in [0, 1]2 and every ε > 0, Algorithm
SparseYao returns a Euclidean (1 + ε)-spanner of weight O(ε−3/2

√
n).

Proof. Let G = SparseYao(S, ε), and define F ⊂ E(G) and F1, . . . , Fk as
above. We prove ‖F‖ =

∑k
i=1 ‖Fi‖ = O(k ε−1/2

√
n) = O(ε−1

√
n) in the full

paper [35]. Now Lemma 7 yields ‖G‖ ≤ O(ε−1/2) · (‖F‖+
√

2) ≤ O(ε−3/2
√

n). ��

450 C. D. Tóth

5 Spanners for the Integer Grid

Two points in the integer lattice p, q ∈ Z
2 are visible if the line segment pq does

not pass through any lattice point. An integer point (i, j) ∈ Z
2 is visible from

the origin (0, 0) if i and j are relatively prime, that is, gcd(i, j) = 1. The slope
of a segment between (0, 0) and (i, j) is j/i. For every n ∈ N, the Farey set of
order n, Fn =

{
a
b : 0 ≤ a ≤ b ≤ n

}
, is the set of slopes of the lines spanned by

the origin and lattice points (b, a) ∈ [0, n]2 with a ≤ b. The Farey sequence is the
sequence of elements in Fn in increasing order. Note that Fn ⊂ [0, 1]. Farey sets
and sequences have fascinating properties, and the distribution of Fn, as n → ∞
is not fully understood [12,16,22,26].

The key result we need is a bound on the average distance to a Farey set Fn.
For every x ∈ [0, 1], let

ρn(x) = min
p
q ∈Fn

∣
∣
∣
∣
p

q
− x

∣
∣
∣
∣

denote the distance between x and the Farey set Fn. Kargaev and Zhigl-
javsky [21] proved that

∫ 1

0

ρn(x) dx =
3
π2

ln n

n2
+ O

(
1
n2

)
, as n → ∞. (2)

In the full paper [35], we use (2) to prove the following.

Theorem 5. Let S be the n × n section of the integer lattice for some positive
integer n. Then the graph G =SparseYao(S, ε) has weight O(ε−1 log(ε−1) ·n2).

The combination of Lemma 1 and Theorem 5 establishes Theorem 2.

6 Outlook

Our SparseYao algorithm combines features of Yao-graphs and greedy span-
ners. It remains an open problem whether the celebrated greedy algorithm [4]
always returns a (1 + ε)-spanner of weight O(ε−3/2

√
n) for n points in the unit

square (and O(ε(1−d2)/dn(d−1)/d) for n points in [0, 1]d). The analysis of the
greedy algorithm is known to be notoriously difficult [15,23]. It is also an open
problem whether SparseYao or the greedy algorithm achieves an approxima-
tion ratio better than the tight lightness bound of O(ε−d) for n points in R

d

(where the approximation ratio compares the weight of the output with the
instance-optimal weight of a (1 + ε)-spanner).

All results in this paper pertain to Euclidean spaces. Generalizations to Lp-
norms for p ≥ 1 (or Minkowski norms with respect to a centrally symmetric
convex body in R

d) would be of interest. It is unclear whether some or all
of the machinery developed here generalizes to other norms. Finally, we note
that Steiner points can substantially improve the weight of a (1 + ε)-spanner in
Euclidean space [5,23,24]. It is left for future work to study the minimum weight
of a Euclidean Steiner (1 + ε)-spanner for n points in the unit square [0, 1]2 (or
unit cube [0, 1]d); and for an n × n section of the integer lattice.

Minimum Weight Euclidean (1 + ε)-Spanners 451

References

1. Abu-Affash, A.K., Bar-On, G., Carmi, P.: δ-greedy t-spanner. Comput. Geom.
100, 101807 (2022). https://doi.org/10.1016/j.comgeo.2021.101807

2. Agarwal, P.K.: Range searching. In: Goodman, J.E., O’Rourke, J., Tóth, C.D.
(eds.) Handbook of Discrete and Computational Geometry, chap. 40, 3 edn., pp.
1057–1092. CRC Press, Boca Raton (2017)

3. Agarwal, P.K., Wang, Y., Yin, P.: Lower bound for sparse Euclidean spanners. In:
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 670–671 (2005). https://dl.acm.org/citation.cfm?id=1070432.1070525

4. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/
10.1007/BF02189308

5. Bhore, S., Tóth, C.D.: Light euclidean steiner spanners in the plane. In: Proceed-
ings of the 37th Annual Symposium on Computational Geometry (SoCG). LIPIcs,
vol. 189, pp. 15:1–15:17. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.
SoCG.2021.15

6. Borradaile, G., Le, H., Wulff-Nilsen, C.: Greedy spanners are optimal in doubling
metrics. In: Proceedings of the 30th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2371–2379 (2019). https://doi.org/10.1137/1.9781611975482.
145

7. Buchin, K., Har-Peled, S., Oláh, D.: A spanner for the day after. Discrete Comput.
Geom. 64(4), 1167–1191 (2020). https://doi.org/10.1007/s00454-020-00228-6

8. Chan, T.M., Har-Peled, S., Jones, M.: On locality-sensitive orderings and their
applications. SIAM J. Comput. 49(3), 583–600 (2020). https://doi.org/10.1137/
19M1246493

9. Das, G., Heffernan, P.J., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional euclidean space. In: Proceedings of the 9th Symposium on Com-
putational Geometry (SoCG), pp. 53–62 (1993). https://doi.org/10.1145/160985.
160998

10. Das, G., Narasimhan, G., Salowe, J.S.: A new way to weigh malnourished euclidean
graphs. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 215–222 (1995). https://dl.acm.org/citation.cfm?id=313651.313697

11. Dinitz, Y., Elkin, M., Solomon, S.: Low-light trees, and tight lower bounds
for euclidean spanners. Discrete Comput. Geom. 43(4), 736–783 (2009). https://
doi.org/10.1007/s00454-009-9230-y

12. Dress, F.: Discrépance des suites de farey. J. Théor. Nombres Bordeaux 11(2),
345–367 (1999)

13. Elkin, M., Solomon, S.: Optimal euclidean spanners: really short, thin, and lanky.
J. ACM 62(5), 1–45 (2015). https://doi.org/10.1145/2819008

14. Few, L.: The shortest path and the shortest road through n points. Mathematika
2(2), 141–144 (1955). https://doi.org/10.1112/S0025579300000784

15. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. SIAM J.
Comput. 49(2), 429–447 (2020). https://doi.org/10.1137/18M1210678

16. Franel, J.: Les suites de farey et les problemes des nombres premiers. Gottinger
Nachr. 1924, 198–201 (1924)

17. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. Comput.
Geom. 35(1–2), 2–19 (2006). https://doi.org/10.1016/j.comgeo.2005.10.001

18. Gottlieb, L.: A light metric spanner. In: Proceedings of the 56th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 759–772 (2015). https://doi.
org/10.1109/FOCS.2015.52

https://doi.org/10.1016/j.comgeo.2021.101807
https://dl.acm.org/citation.cfm?id=1070432.1070525
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.4230/LIPIcs.SoCG.2021.15
https://doi.org/10.4230/LIPIcs.SoCG.2021.15
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1007/s00454-020-00228-6
https://doi.org/10.1137/19M1246493
https://doi.org/10.1137/19M1246493
https://doi.org/10.1145/160985.160998
https://doi.org/10.1145/160985.160998
https://dl.acm.org/citation.cfm?id=313651.313697
https://doi.org/10.1007/s00454-009-9230-y
https://doi.org/10.1007/s00454-009-9230-y
https://doi.org/10.1145/2819008
https://doi.org/10.1112/S0025579300000784
https://doi.org/10.1137/18M1210678
https://doi.org/10.1016/j.comgeo.2005.10.001
https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1109/FOCS.2015.52

452 C. D. Tóth

19. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500
(2002). https://doi.org/10.1137/S0097539700382947

20. Har-Peled, S.: Geometric Approximation Algorithms. Mathematics Surveys and
Monographs, vol. 173. AMS (2011)

21. Kargaev, P., Zhigljavsky, A.: Approximation of real numbers by rationals: some
metric theorems. J. Number Theor. 61, 209–225 (1996). https://doi.org/10.1006/
jnth.1996.0145

22. Landau, E.: Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel.
Göttinger Nachr. 8, 202–206 (1924). Coll. works, (Thales Verlag, Essen)

23. Le, H., Solomon, S.: Truly optimal Euclidean spanners. In: Proceedings of the 60th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 1078–1100.
IEEE Computer Society (2019). https://doi.org/10.1109/FOCS.2019.00069

24. Le, H., Solomon, S.: Light euclidean spanners with steiner points. In: Proceedins of
the 28th European Symposium on Algorithms (ESA). LIPIcs, vol. 173, pp. 67:1–
67:22. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.67

25. Le, H., Solomon, S.: Towards a unified theory of light spanners I: fast (yet optimal)
constructions. CoRR abs/2106.15596 (2021). https://arxiv.org/abs/2106.15596

26. Ledoan, A.H.: The discrepancy of farey series. Acta Math. Hungar. 156(2), 465–
480 (2018). https://doi.org/10.1007/s10474-018-0868-x

27. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for con-
structing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002). https://
doi.org/10.1007/s00453-001-0075-x

28. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511546884

29. Rao, S., Smith, W.D.: Approximating geometrical graphs via “spanners” and
“banyans”. In: Proceedings of the 30th Annual ACM Symposium on the The-
ory of Computing (STOC), pp. 540–550 (1998). https://doi.org/10.1145/276698.
276868

30. Roditty, L.: Fully dynamic geometric spanners. Algorithmica 62(3–4), 1073–1087
(2012). https://doi.org/10.1007/s00453-011-9504-7

31. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete euclidean
graph. In: Proceedings of the 3rd Canadian Conference on Computational Geom-
etry (CCCG), pp. 207–210 (1991). https://cccg.ca/proceedings/1991/paper50.pdf

32. Solomon, S., Elkin, M.: Balancing degree, diameter, and weight in euclidean span-
ners. SIAM J. Discret. Math. 28(3), 1173–1198 (2014). https://doi.org/10.1137/
120901295

33. Steele, J.M., Snyder, T.L.: Worst-case growth rates of some classical problems of
combinatorial optimization. SIAM J. Comput. 18(2), 278–287 (1989). https://doi.
org/10.1137/0218019

34. Supowit, K.J., Reingold, E.M., Plaisted, D.A.: The travelling salesman problem
and minimum matching in the unit square. SIAM J. Comput. 12(1), 144–156
(1983). https://doi.org/10.1137/0212009

35. Tóth, C.D.: Minimum weight euclidean (1 + ε)-spanners. CoRR abs/2206.14911
(2022). https://arxiv.org/abs/2206.14911

https://doi.org/10.1137/S0097539700382947
https://doi.org/10.1006/jnth.1996.0145
https://doi.org/10.1006/jnth.1996.0145
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.4230/LIPIcs.ESA.2020.67
https://arxiv.org/abs/2106.15596
https://doi.org/10.1007/s10474-018-0868-x
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1145/276698.276868
https://doi.org/10.1145/276698.276868
https://doi.org/10.1007/s00453-011-9504-7
https://cccg.ca/proceedings/1991/paper50.pdf
https://doi.org/10.1137/120901295
https://doi.org/10.1137/120901295
https://doi.org/10.1137/0218019
https://doi.org/10.1137/0218019
https://doi.org/10.1137/0212009
https://arxiv.org/abs/2206.14911

Author Index

Abu-Khzam, Faisal N. 1
Aichholzer, Oswin 16
Arvind, Vikraman 29

Balabán, Jakub 43
Bartier, Valentin 56
Benjamin, Bergougnoux 70
Bodlaender, Hans L. 84
Bousquet, Nicolas 56
Brand, Cornelius 98
Bulteau, Laurent 114

Ceylan, Esra 98
Chakraborty, Dibyayan 129
Chandran, L. Sunil 129
Chekan, Vera 144
Cornelissen, Gunther 84

Dabrowski, Konrad K. 114
de Kroon, Jari J. H. 173
Dekker, David 158
Donkers, Huib 173
Duarte, Gabriel L. 187

Eiben, Eduard 201

Feldmann, Andreas Emil 215
Fernau, Henning 1
Fiala, Jiří 230
Francis, Mathew C. 244

Galby, Esther 257
Ganian, Robert 98
Goeßmann, Ina 271

Hanna, Jihad 56
Hatschka, Christian 98
Hliněný, Petr 43
Høgemo, Svein 70

Jacob, Hugo 287
Jansen, Bart M. P. 158, 173
Jedelský, Jan 43

Kiselev, Sergei 300
Kisfaludi-Bak, Sándor 313
Klawitter, Jonathan 271
Klemz, Boris 271
Klesen, Felix 271
Klute, Fabian 328
Kobayashi, Yasuaki 342
Kobourov, Stephen 271
Köhler, Noleen 114
Korchemna, Viktoriia 98
Krithika, R. 356
Kryven, Myroslav 271
Kupavskii, Andrey 300
Kurita, Kazuhiro 342

Langlois, Hélène 370
Liotta, Giuseppe 383

Majumdar, Diptapriyo 201
Majumder, Atrayee 244
Mann, Kevin 1
Martin, Barnaby 398
Marx, Dániel 257
Mathew, Rogers 244
Meunier, Frédéric 370
Mouawad, Amer E. 56

Nedela, Roman 29

Obmann, Julia 16
Okrasa, Karolina 313
Ordyniak, Sebastian 114

Padinhatteeri, Sajith 129
Paesani, Giacomo 412
Paták, Pavel 16
Paulusma, Daniël 114, 398, 412
Perz, Daniel 16
Pilipczuk, Marcin 287
Pillai, Raji R. 129
Ponomarenko, Ilia 29

Ramanujan, M. S. 201
Rizzi, Romeo 370

454 Author Index

Rutter, Ignaz 230, 383
Rzążewski, Paweł 313, 412

Scheffler, Robert 425
Schepper, Philipp 257
Sharma, Roohani 257, 356
Siebertz, Sebastian 56
Smith, Siani 398
Souza, Uéverton S. 187
Stumpf, Peter 230

Tale, Prafullkumar 257, 356
Tappini, Alessandra 383
Telle, Jan Arne 70
Tkadlec, Josef 16
Tóth, Csaba D. 439

Ueckerdt, Torsten 144

van der Wegen, Marieke 84
van Kreveld, Marc 328
van Leeuwen, Erik Jan 398
Vatshelle, Martin 70
Verbitsky, Oleg 300
Vialette, Stéphane 370
Vogtenhuber, Birgit 16
Vu, Tung Anh 215

Wasa, Kunihiro 342
Wolff, Alexander 271

Zeman, Peter 29, 230
Zhukovskii, Maksim 300
Zink, Johannes 271

	Preface
	Organization
	Contents
	Minimal Roman Dominating Functions: Extensions and Enumeration
	1 Introduction
	2 Definitions
	3 Properties of Minimal Roman Dominating Functions
	4 A Polynomial-Time Algorithm for ExtRD
	5 Enumerating Minimal RDF for General Graphs
	6 A Refined Enumeration Algorithm
	6.1 A Bird's Eye View on the Algorithm
	6.2 How to Achieve Polynomial Delay and Polynomial Space
	6.3 Details on Reductions and Branchings
	6.4 A Measure and Conquer Approach

	7 An Alternative Notion of Minimal RDF
	8 Conclusions
	References

	Disjoint Compatibility via Graph Classes
	1 Introduction
	2 Preliminaries
	3 Disjoint Compatibility via Spanning Trees
	3.1 A Lower Bound for the Diameter of DCGS(T)

	4 Disjoint Caterpillar-Compatible Matchings
	5 Disjoint Path-Compatible Matchings
	6 Conclusion and Discussion
	References

	Testing Isomorphism of Chordal Graphs of Bounded Leafage is Fixed-Parameter Tractable (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 Chordal Graphs
	3.1 Stable Colorings in Chordal Graphs
	3.2 Estimates Depending on the Leafage

	4 Critical Set of a Chordal Graph
	5 The Hypergraph Associated with the Complement of the Critical Set
	6 Order-k Hypergraph Isomorphism: Bounded Color Classes
	7 Main Algorithm and the Proof of Theorem 2
	8 Concluding Remarks
	References

	Twin-Width and Transductions of Proper k-Mixed-Thin Graphs
	1 Introduction
	1.1 Outline of the Paper

	2 Preliminaries and Formal Definitions
	2.1 Intersection Graphs
	2.2 Twin-Width
	2.3 FO Logic and Transductions

	3 Generalizing Proper k-Thin Graphs
	3.1 Comparing (Proper) k-Mixed-Thin to Other Classes

	4 Proper k-Mixed-Thin Graphs Have Bounded Twin-Width
	5 Transductions Between Inversion-Free Proper k-Mixed-Thin Graphs and Posets
	6 Conclusions
	References

	Token Sliding on Graphs of Girth Five
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 Safe, Bounded, and Bad Components
	3.2 Bounding the Size of L2
	3.3 Bounding the Size of L3

	References

	Recognition of Linear and Star Variants of Leaf Powers is in P
	1 Introduction
	2 Preliminaries
	3 Linear Leaf Powers
	4 Star NeS Model
	References

	Problems Hard for Treewidth but Easy for Stable Gonality
	1 Introduction
	2 Preliminaries
	2.1 Conventions and Notations
	2.2 Stable Gonality and Treebreadth

	3 Related Problems and Reductions
	4 Algorithms for ORO and CDS for Graphs with Bounded Treebreadth
	4.1 Outdegree Restricted Orientations
	4.2 Capacitated Dominating Set

	5 Conclusion
	References

	Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts
	1 Introduction
	2 Preliminaries
	3 Edge-Cut Width
	4 Computing Edge-Cut Width
	5 Algorithmic Applications of Edge-Cut Width
	6 Conclusion
	References

	An Algorithmic Framework for Locally Constrained Homomorphisms
	1 Introduction
	2 Preliminaries
	3 Our Algorithmic Framework
	4 Applications of Our Algorithmic Framework
	5 Conclusions
	References

	s-Club Cluster Vertex Deletion on Interval and Well-Partitioned Chordal Graphs
	1 Introduction
	2 Our Contributions
	3 Polynomial Time Algorithm for CVD on Well-Partitioned Chordal Graphs
	3.1 Finding Minimum X-CVD Sets
	3.2 Finding Minimum (X,Y)-CVD Set of Well-partitioned Chordal Graphs
	3.3 Main Algorithm

	4 Hardness for Well-Partitioned Chordal Graphs
	5 O(n(n+m))-Time Algorithm for s-CVD on Interval Graphs
	5.1 The Algorithm
	5.2 Time Complexity

	References

	Polychromatic Colorings of Unions of Geometric Hypergraphs
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Polychromatic Colorings for Two Range Families
	3 Families of Unbounded Rectangles
	3.1 The Case with No Polychromatic Coloring: Bottomless Rectangles and Horizontal Strips
	3.2 The Cases with Polychromatic Colorings

	4 Concluding Remarks
	References

	Kernelization for Feedback Vertex Set via Elimination Distance to a Forest
	1 Introduction
	2 Preliminaries
	2.1 Elimination Distance

	3 Kernelization Upper Bounds
	4 Kernelization Lower Bounds
	5 Conclusion and Discussion
	References

	Finding k-Secluded Trees Faster
	1 Introduction
	2 Framework for Enumerating Secluded Trees
	3 Enumerate Large Secluded Supertrees
	3.1 Subroutines for the Algorithm
	3.2 The Algorithm
	3.3 Proof of Correctness
	3.4 Runtime Analysis
	3.5 Finding, Enumerating, and Counting Large Secluded Trees

	4 Conclusion
	References

	On the Minimum Cycle Cover Problem on Graphs with Bounded Co-degeneracy
	1 Introduction
	2 On the Stability of Having a Bounded Cycle Cover
	3 Polynomial Kernelization
	4 An Exact Single-Exponential Time Algorithm
	References

	On the Lossy Kernelization for Connected Treedepth Deletion Set
	1 Introduction
	2 Preliminaries
	3 Approximate Kernel for Connected -Treedepth Deletion
	3.1 Decomposition of the Graph G
	3.2 Processing Connected Components of G - (X Z) with Large Neighborhoods
	3.3 Understanding the Structure of a Good Solution
	3.4 Identifying Further Irrelevant Vertices

	4 Conclusions
	References

	Generalized k-Center: Distinguishing Doubling and Highway Dimension
	1 Introduction
	1.1 Used Techniques

	2 Inapproximability in Low Highway Dimension Graphs
	3 EPAS on Graphs of Bounded Doubling Dimension
	4 Open Problems
	References

	Extending Partial Representations of Circular-Arc Graphs
	1 Introduction
	2 Preliminaries
	3 Complexity
	4 (Normal) Proper Helly Circular-Arc Graphs
	5 (Normal) Helly Circular-Arc Graphs
	6 Conclusions and Open Problems
	References

	Bounding Threshold Dimension: Realizing Graphic Boolean Functions as the AND of Majority Gates
	1 Introduction
	1.1 Our Results
	1.2 Preliminaries

	2 Threshold Dimension and Treewidth
	3 Threshold Dimension and Maximum Degree
	4 Threshold Dimension and Degeneracy
	4.1 Random Graphs
	4.2 Graphs of High Girth

	5 Threshold Dimension and Minimum Vertex Cover
	References

	Parameterized Complexity of Weighted Multicut in Trees
	1 Introduction
	2 Basic Notation
	3 wMC-Tree Parameterized by the Solution Size
	4 uwMC-Tree Parameterized by the Number of Leaves
	5 Future Directions
	References

	The Segment Number: Algorithms and Universal Lower Bounds for Some Classes of Planar Graphs
	1 Introduction
	2 Triconnected 4-Regular Planar Graphs
	3 Maximal Outerpaths
	4 Further Results and Open Problems
	References

	Bounding Twin-Width for Bounded-Treewidth Graphs, Planar Graphs, and Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 Twin-Width of Graphs of Bounded Treewidth
	4 Twin-Width of Planar Graphs
	5 Bipartite Graph
	6 Conclusion
	References

	On Anti-stochastic Properties of Unlabeled Graphs
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Conclusion and Further Questions
	References

	Computing List Homomorphisms in Geometric Intersection Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithm for Intersection Graphs of Fat Objects
	4 Lower Bound for Intersection Graphs of Disks
	5 Conclusion and Open Problems
	References

	On Fully Diverse Sets of Geometric Objects and Graphs
	1 Introduction
	2 Fair Bit Strings
	3 Geometric Diversity
	4 Embedding Diversity
	5 Abstract Graphs
	6 Conclusions and Open Problems
	References

	Polynomial-Delay and Polynomial-Space Enumeration of Large Maximal Matchings
	1 Introduction
	2 Preliminaries
	3 Hardness of the Extension Problem
	4 Enumeration of Maximal Matchings
	4.1 Large Maximal Matching Enumeration
	4.2 k-Best Maximal Matching Enumeration

	References

	The Complexity of Contracting Bipartite Graphs into Small Cycles
	1 Introduction
	2 C5-Contractibility on Bipartite Graphs
	2.1 Construction of H and G
	2.2 Equivalence of H and G
	2.3 Properties of a C5-Witness Structure of H
	2.4 Equivalence of H and

	3 C4-Contractiblity on Biparitite Graphs
	3.1 Construction of G
	3.2 Properties of a Nice C4-Witness Structure of G
	3.3 Equivalence of G and

	4 Conclusion and Future Directions
	References

	Algorithmic Aspects of Small Quasi-Kernels
	1 Introduction
	2 Disjoint Quasi-Kernels
	3 Acyclic Digraphs
	4 Orientations of Split Graphs
	4.1 Computational Hardness
	4.2 Complete Split Graphs

	5 Concluding Remarks
	References

	Parameterized Complexity of Graph Planarity with Restricted Cyclic Orders
	1 Introduction
	2 Preliminaries
	3 FPQ-Choosable Planarity and Its Complexity
	4 FPT Algorithm for FPQ-Choosable Planarity
	5 FPQ-Choosable Planarity and NodeTrix Planarity
	6 Open Problems
	References

	Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs
	1 Introduction
	1.1 Known Results
	1.2 Our Results

	2 Preliminaries
	3 Algorithms
	4 NP-Completeness Results
	5 The Proofs of Theorems 1–3
	6 Future Work
	References

	Classifying Subset Feedback Vertex Set for H-Free Graphs
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 The Weighted Variant
	3.1 Three Special Types of Solutions
	3.2 Mim-Width
	3.3 The Algorithm

	4 The Unweighted Variant
	5 Conclusions
	References

	Linearizing Partial Search Orders
	1 Introduction
	2 Preliminaries
	3 The Partial Search Order Problem
	4 One-Before-All Orderings
	5 Partial LBFS Orders of Chordal Bipartite Graphs
	6 Partial LBFS and MCS Orders of Split Graphs
	7 Further Research
	References

	Minimum Weight Euclidean (1+)-Spanners
	1 Introduction
	2 Lower Bounds in the Plane
	2.1 Lower Bounds for the Grid
	2.2 Lower Bounds in the Unit Square

	3 Spanner Algorithm: Sparse Yao-Graphs
	3.1 Sparse Yao-Graph Algorithm
	3.2 Stretch Analysis

	4 Spanners in the Unit Square
	5 Spanners for the Integer Grid
	6 Outlook
	References

	Author Index

