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Abstract. Online voting systems typically display a confirmation screen
allowing voters to confirm their selections before casting. This paper con-
siders whether a network-based observer can extract information about
voter selections from the length of the exchanged network data.

We conducted a detailed analysis of the Simply Voting implemen-
tation, which had randomly varying lengths of exchanged data due to
dynamic page content and gzip compression. We demonstrated that we
could correctly guess a voter’s selection with accuracy values ranging up
to 100% in some instances. Even on more complex ballots, we generally
could still rule out some combinations of candidates. We conducted a
coordinated disclosure with the vendor and worked with them to roll out
a mitigation.

To their credit, this discovery (and therefore its fix) was made possible
by their willingness to provide a publicly accessible demo, which, as we
will show, remains a rarity in the industry.
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1 Introduction

Online voting is becoming an increasingly prevalent method of casting a ballot.
Switzerland and Canada began the practice sub-nationally in 2003, with Estonia
offering it nationally starting in 2005 [7]. Adoption has grown steadily since.
Over 500,000 municipal voters in Ontario (Canada) cast an online ballot in
2018 [1]. Almost 250,000 Estonians (representing 45% of participating voters)
cast a ballot online in the 2019 Parliamentary elections.! And over 650,000 online
voters participated in the 2021 State election in New South Wales (Australia).?
Despite this rapid growth, few countries have developed adequate legislation or
standards for online voting systems. In this under-regulated environment, online
voting providers largely set their own security requirements, which has led to
mixed outcomes.

! https://valimised.ee/en/archive/statistics-about-internet-voting-estonia.
2 https://elections.nsw.gov.au/About-us/Media-centre/News-media-releases /iVote-
and-2021-NSW-Local- Government-elections.
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In this paper, we examine the question of ballot secrecy from the network per-
spective. Although ballot secrecy is a well-established requirement of democratic
elections, the online voting setting offers new opportunities for exploitation. For
example, suppose a network observer such as a internet service provider, content
delivery network, or data center could determine how you voted. In that case,
they could selectively prevent your ballot from reaching the election server to
unduly influence the outcome of the election. Worse, with growing precedent
for service disruptions and outages due to inadequate bandwidth® on election
night [1], a deliberate attack of this attack could escape detection.

Contributions. We present a novel ballot secrecy attack based on network traffic
analysis of (encrypted) ballot confirmation pages. For a recent mayoral race in
Canada, we demonstrate a classifier that could have correctly guessed voting
intention for 84% of ballots based only on the byte-length of encrypted network
traffic. Our results include:

— A detailed analysis of a real-world online voting system demonstrating the
attack’s effectiveness in spite of well-configured TLS and variable-length
HTML and DOM elements.

— A coordinated disclosure with the affected vendor resulting in them rolling
out a mitigation.

— An analysis of the broader industry’s susceptibility to this attack and a dis-
cussion of mitigation options.

The rest of the paper is organized as follows: Sect. 2 presents background and
related work. Section 3 recounts our efforts to reach out to vendors to seek demos
to their voter interface. Section4 describes the basics of the Simply Voting
system. Section 5 describes our overall testing methodology, including techni-
cal details of our approach replicating Simply Voting’s server functionality and
collecting network data. Section 6 presents the results of a simple (single contest)
attack on ballot secrecy. Section 7 extends the experiment to more complex ballot
configurations. Finally, Sect. 8 describes our coordinated disclosure with Simply
Voting, their mitigation strategy, and the approaches of the other (responsive)
vendors.

2 Background and Related Work

Ballot secrecy in online elections has been studied in the context of active attacks,
such as subverting TLS [2,8], exploiting implementation vulnerabilities [11,13],
or by unacknowledged privileged access [4]. Little related-work has evidently
explored passive attacks that focus on the lengths of exchanged messages. One
of the first articulations of this risk is a requirement due to Volkamer and Krim-
mer [12] (emphasis added):

3 https://zdnet.com/article/no-surprise-nsw-ivote-fails-during-local-council-
elections)/.
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The e-voting system SHALL ensure neither the vote itself nor the number
of chosen candidates (including an empty ballot), nor a spoilt vote (eg, by
using the length of the protocol messages depending on the approach) can
be deduced by reading transmitted voting protocol messages.

Clark and Essex [3] considered the possibility of a network observer being able
to differentiate a voter’s selection based on the length of encrypted traffic sent
to the election server by the voter’s browser. They found Dominion Voting Sys-
tems encoded candidate names explicitly in the cast vote object. For example,
they observed a vote for Meghan Agosta was sent in an (encrypted) POST as
{"ChoiceName": "Meghan Agosta"}. They speculated this approach could be
susceptible to network-based length attacks, but did not conduct an analysis.

More recently, Specter et al. [10] explored this question in the context of the
Voatz mobile voting app. Like the Dominion example, Voatz explicitly encoded
the chosen candidate’s name, sending it to the server along with associated
metadata in an HT'TP POST. The authors observed a difference in the transmitted
byte length of packets between a ballot cast for a candidate with a “short” name
versus one with a “long” name.

However, our own experience examining online voting implementations has
generally found cast ballot objects have a fixed length, with selections represented
either as a code or ciphertext. This approach seemingly precludes length-based
analysis—so we thought.

3 Research Question and Scope

Our study began with a hypothesis: Do ballot confirmation pages leak informa-
tion about a voter’s selections? In particular, if the page was generated at the
server-side and sent to the client immediately prior to casting, the TLS record
byte-length may reveal information about the selected candidate.

Testing this hypothesis required access to a real-world online voting imple-
mentation. However, we were unaware of any vendor who maintained a publicly
accessible demonstration that we could examine. The sole exception we observed
was Simply Voting, a Montreal-based online voting vendor. Simply Voting mostly
focuses on non-governmental elections (schools, companies, unions, political par-
ties, etc.), however they did run the elections of 28 cities (accounting for over
300,000 voters) in the 2018 Ontario Municipal Election [1].

3.1 Vendor Demo Access Requests

As explained in subsequent sections, we were able to confirm our hypothesis on
Simply Voting’s demo website. But what about the industry at large? Follow-
ing our coordinated disclosure with Simply Voting, we decided to reach out to
companies who had run (or were likely to run) a civic election in the near term.

We emailed each company identifying ourselves as cybersecurity researchers
requesting a demonstration of the ballot casting experience. For each vendor, we
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recorded whether they responded to our request, whether we were granted access
to a demo, whether it was vulnerable to length-based analysis, and if so, what
mitigation strategy was employed. We gave each vendor 30d to respond. The
results are shown in Table 1. The observed mitigations are discussed in Sect. 8.

Table 1. Vendor responses to our demo request and associated findings.

Responsive | Access granted | Vulnerable | Mitigation strategy

Dominion No No Unknown | Unknown

Intelivote No No Unknown | Unknown

Neuvote Yes Yes—Private No Client-side generation
Scytl Yes No* Unknown | Unknown

Simply Voting | Yes Yes—Public Mitigated | Random-length padding
SwissPost Yes Yes—Private No Client-side generation
Voatz No No Unknown | Unknown

#Agreed in principle, but access not granted by time of writing.

4 Description of Simply Voting’s System

This section describes Simply Voting’s process for casting ballots and evaluates
the possibility of a length-based inference at different parts of this process.

4.1 Ballot Casting Process

Step 1: Logging In. The voter navigates to demo.simplyvoting.com and logs
in with the given user ID and password. The user’s full name is then included
in the HTML of the subsequent pages they access during the session.

Step 2: Submitting Choice of Candidates. The voter is presented with a
single ballot page, which contains a set of offices (e.g., Mayor and City Coun-
cillor) and candidates. The voter selects which candidates they would like to
vote for, and presses the Continue button. This submits a form containing the
voter’s choices to the server represented as fixed-length codes.

Step 3: Confirmation. A confirmation page is sent to the voter from
demo.simplyvoting.com. The served HTML content of this page contains the
voter’s name, as well as the name of the voter’s choice of candidate. Note that
static content, like images, stylesheets, and scripts, is served from a different
domain, static.simplyvoting.com, with a different IP address.

Step 4: Review and Submission. The voter may choose to go back to the
previous page and change their choices. If they do, they will again be presented
with a confirmation page. If they are satisfied with their choices, the voter clicks
the Confirm button, and their ballot is submitted to the server.


https://dominionvoting.com/
http://www.intelivote.com/
https://neuvote.com/
https://scytl.com/
https://www.simplyvoting.com/
https://www.post.ch/
https://voatz.com/
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4.2 Potential Side-channel Attacks in the Ballot Casting Process

One opportunity for a length-based attack is when a voter’s selections are sent
to the sever, as was observed in the Voatz system [10]. The names of the chosen
candidate names were being POSTed to the server as explicit, uncompressed
text. By contrast, Simply Voting’s system only POSTs fixed-length candidate
IDs. For example, a vote for Cassandra De Rolo as Committee President is
encoded in the HTTP request to the server as ballot_579193[]1=5724277. Con-
versely, a vote for the opposing candidate, Fernanda Rodriguez, is represented
by ballot_579193[]1=5724278.

But what happens if the server returns a confirmation page containing the
explicit names of the voter’s selections?

The values of some of the DOM elements are unknown to a network observer,
while others can be predicted or deduced (see Table 2 for the full list).

We hypothesized that the length and value of the chosen candidate’s name
had at least some effect on the size of the confirmation page and could leak
information under certain conditions.

Table 2. Confirmation page DOM elements with varying values

Element Example Length | Predictable | Changes
CSRF token c9590a. . .67652 Fixed |No By session
Vote serial e600de. . .9683b Fixed | No By session
Static resource version | 84932 Fixed | Yes Weekly®
Text time remaining 5min and Os Varies | Likely® Every second
Integer time remaining | 300 Varies | Likely® Every second
Voter name Taher Elgamal Varies | Varies® Every voter
Chosen candidate(s) Linda Marlene Eales | Varies By ballot

#Used by Simply Voting to periodically invalidate browser caches of their static
resources. We sampled it every few days during the testing period.

> An observer could reasonably guess this by applying an offset to the time observed
on their own confirmation page. However, off-by-one errors are possible: to make
our approach as conservative as possible, we do not rely on knowing the time in our
testing.

°Could plausibly be known by ISP or network administrator, see Sect. 5.3.

5 Methodology

To test our hypothesis that a voter’s choice could correlate to the TLS record
length of the ballot confirmation page, we needed to make a large volume of
requests for confirmation pages and analyze the data transferred. Simply Voting’s
public demo of their service allows us to observe what data is transmitted from
their servers in a realistic election setting. However, making tens of thousands
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of requests to their servers would place an undue burden on their resources and
could trigger their network intrusion detection systems. Instead, we created our
own server that replicates their confirmation page functionality. We also designed
an application that could automatically make thousands of browser requests to
this service and log the response for later analysis.

5.1 Testing a Length-Based Side-channel Attack

We created a testing system composed of two parts: a Client Application (to
mimic a set of voters) and a Server Application (to mimic the online voting
system). Each ballot “cast” in the experiments below corresponded to an actual
HTTP request made over the internet between our local Client and cloud-based
Sever applications.

We designed our applications to simulate an election where a voter is eligible
to vote for one or more offices (e.g., Mayor, Councillor, Deputy Mayor), and may
cast a vote for no more than one candidate for each office. A voter casts a single
ticket, a combination of candidates selected for each office. This is a common
electoral system for municipalities in Ontario. Some Ontario municipalities use
at-large systems,* but this paper does not examine those elections.

5.2 Technical Implementation of the Client Application

We created the Client Application using Python, Selenium WebDriver, Google
Chrome, and Wireshark. It was designed to make requests for confirmation pages,
programmatically capture the response at the network layer, parse the TLS
record length, and log the candidate choice and TLS record length to a file for
statistical analysis. Our test bench is extensible and programmable: The client
can decide which ballot to render by sending descriptive JSON to the server.
The client can also set the flags to modify server behavior. For example, we
implemented a flag that could programmatically enable/disable Simply Voting’s
X-Ballot-Secrecy header (see Sect.8.3).

The Client Application takes the following steps while interacting with the
Server Application:

Table 3. 2018 municipal ballot options in Ward Ennismore, township of Selwyn

Mayoral candidate | Council candidate

Linda Marlene Eales | Donna Ballantyne

Andy Mitchell Brad Sinclair
Ron Black ABSTAIN
ABSTAIN

* https://guelph.ca/wp-content /uploads/Ward- councillors-or-councillors-at-large.
pdf.


https://guelph.ca/wp-content/uploads/Ward-councillors-or-councillors-at-large.pdf
https://guelph.ca/wp-content/uploads/Ward-councillors-or-councillors-at-large.pdf

42 J. Brunet et al.

—_

Client App is provided a list of offices and candidates (see e.g., Table 3).

2. Let o be the total number of offices and let Cy,C5...C, represent the set
of choices available to a voter for each respective office (including abstain).
The set of all possible candidate combinations (also known as tickets) that
could be submitted by a voter T, is (C1)(C2)...(C,). The Client Application
generates |T|n tickets, where n is the required sample size for each ticket.

3. In its main process, the client requests a ballot confirmation page from the
Server Application using Google Chrome automated with Selenium Web-
Driver. The confirmation page contains one ticket in 7. The main process
of the Client Application then listens to a message queue.

4. A second process (the listening process) uses Wireshark’s Python API® to
continuously listen to responses from the server application. When a response
is detected, it records the TLS record length and pushes its value into the
message queue.

5. The Client Application’s main process receives a TLS record length from the

listening process in the message queue. Each observed record length (and the

associated candidate) is appended to a CSV file. Steps 3 to 5 are repeated
|T'|n times, until the test is complete.

5.3 Technical Implementation of the Server Application

Our goal was to replicate Simply Voting’s confirmation page functionality as
faithfully as possible. To that end, we studied Simply Voting’s server stack and
voting application by analyzing headers and interacting with their publicly acces-
sible demo. We then matched this server stack as closely as possible, choosing
popular and up-to-date software to fill gaps in the stack where Simply Voting’s
choice was unknown (e.g., the server OS).

Observing Simply Voting’s Server Stack. We used several methods to learn
about Simply Voting’s application configuration. We performed an SSL test®
to determine their supported and preferred encryption methods and analyzed
the server headers sent to us while interacting with the demo application. We
were able to determine the following relevant information about their server
configuration:

— demo.simplyvoting.com reports its server software is Apache.

— The contents of the confirmation page are compressed via gzip.

— The confirmation page is streamed to the client with chunked transfer-
encoding. However, in practice, only one chunk is transferred.”

— The TLS cipher suite on Windows and Linux desktops running Firefox or
Chrome is TLS_AES_256_GCM_SHA384.%

® https://github.com/KimiNewt /pyshark/.

5 https://www.ssllabs.com /ssltest/.

" We tested chunked transfer-encoding on and found it made no significant difference
in the ability to distinguish different ballots in our tests.

8 The chosen ciphersuite does not impact the feasibility of our attack. An observer
can compute a separate record-length distribution for each observed ciphersuite.


https://github.com/KimiNewt/pyshark/
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Approximating Simply Voting’s Server Stack. We rented a Virtual Private
Server (VPS) from ChunkHost to use as our replicated voting server, connected
it to a domain name, and obtained a TLS certificate from Let’s Encrypt. We
then deployed our Server Application with the following stack:

— Debian 11.3 as the OS. While we do not know what OS Simply Voting’s
servers use, Debian is an operating system with considerable market share in
the server space, and 11.3 was the latest release at the time of writing.

— Apache 2.4.52 as the server. Simply Voting reported in its headers that
it used Apache, and Apache 2.4 was the most recent minor version.

— Flask/Python 3.9 as the web framework. Simply Voting’s web frame-
work is unknown to us. For consistency with our client and analysis applica-
tions, we chose a Python-based web framework, and Flask is a mature Python
web framework that met our relatively simple use case.

— The TLS ciphersuite was forced to TLS_AES_256_GCM_SHA384. This is
the same as the TLS cipher suite preferred by Simply Voting on Windows
and Linux desktops with major browsers.

— Apache’s HTTP response headers were manually overridden to match
to Simply Voting’s.

Replicating Simply Voting’s Web Application. Our Server System re-
implements Simply Voting’s ballot confirmation page. Upon receiving a request
from the Client Application, the Server Application generates a confirmation
page HTML document containing the data in Table 2, compresses it with GZIP,
encrypts it with TLS_AES_256_GCM_SHA384, and serves it to the Client Applica-
tion. Table 2 shows the elements with varying contents in the confirmation page,
and our implementation substitutes appropriate values for all DOM elements
with dynamic content:

— The Server Application generates random CSRF tokens and Vote Serials for
each request.

— The Application assumes the Static Resource Version is fixed, as we observed
it did not change for days at a time.

— The Server Application kept the voter’s name static across our trials for sev-
eral reasons. First, real-world municipal elections do not include the voter’s
name in the web session [1]. The voter’s name may be present in non-civic elec-
tions (unions, student clubs, and political parties). Even in these cases, two
further reasons exist for assuming the voter’s name is known. First, the likely
threat actors (e.g., internet service providers, family members, and cellular
carriers) could plausibly associate a voter’s TLS session with their identity
and compute a distribution of TLS record lengths for a voter with that name.
Second, to meaningfully abuse ballot secrecy vulnerabilities in many cases, it
is necessary to already know the identity of the voter whose ballot is being
observed.”

9 In the case of a selective network outage attack, only the chosen candidate (not the
voter’s name) is relevant to the attacker.



44 J. Brunet et al.

— The Application makes a conservative assumption that the time remaining
varies within a 48- to 72-h window before voting closes. A more sophisticated
observer may be able to increase the accuracy of their predictions by building
a distribution with a more narrow time window to better approximate when
a voter casts a ballot.

— The Server Application inserts the candidate choice that is requested by the
Client Application.

6 Experiment 1 (Single Contest): Township of Selwyn,
Ward Lakefield

6.1 Data Collection

In our first experiment, we replicated the behavior of a simple confirmation page
offering a single choice for a single office, with a substantial length difference for
each candidate name. One Ontario municipality that used Simply Voting during
the 2018 municipal election meeting this criterion was the Township of Selwyn.!?
In 2018, voters in Ward Lakefield were eligible to vote for a Mayor, Deputy
Mayor, and a Councillor. However, the positions of Deputy Mayor and Councillor
were uncontested, so voters only cast a ballot for Mayor. Voters had four possible
choices: Linda Marlene Eales, Andrew Mitchell, Ron Black, and Abstain.

Table 4. Observed TLS record lengths (2,000 trials per candidate)

Candidate Frequency of occurrence Length (Bytes)
Min Mean Max
Abstain --llIIIIl-- 3,301 3,306 3,311
Ron Black —'IIIIII'— 3,319 3,326 3,331
Andy Mitchell ——-IIIIII'-— 3,322 3,329 3,334
Linda Marlene Eales —-IIIIIII'-— 3,327 3,333 3,338

Using our Client/Server test bench described in the previous section, we cast
2,000 ballots for each candidate: While we used the actual candidate names from
this contest, we simulated an equal proportion of votes for each choice instead of

10 https://elections.amo.on.ca/web/en/municipal /19401.
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the proportions of the actual election result. We recorded the TLS record length
for each confirmation page returned by the Server Application. The distribution
of TLS record lengths for each candidate choice is shown in Table 4.

6.2 Data Analysis

We want to estimate the probability that an encrypted vote V with byte length
B is for candidate k, i.e., m(Vi|B). To classify which candidate the encrypted
vote is for a given byte length, we choose the candidate who maximizes the
posterior probability:

Vi, = argmax {7 (Vi|B)}
keK

= arg max {m(B|Vi)m(Vi)}.
keK

Generally, 7(B|V}) is unknown. However, we can use simplifying assumptions
to facilitate prediction. In particular, if we consider byte length as a categorical
variable, then we can assume the likelihood for byte length is multinomial

7w (B|V};) = Multinomial(6y,) .

Here, the multinomial parameter 8y, is indexed by k to allow for different candi-
dates to have different probabilities for observing various byte lengths. Making
this assumption on the likelihood leads to the Multinomial Naive Bayes Model.
Using data with labelled votes and byte lengths, 8y can be estimated and then
used to make predictions.

Using Python and scikit-learn [9], we ingest the data recorded by the
Client Application and fit a Multinomial Naive Bayes Model and evaluate its
out-of-sample performance on predicting which candidate a vote is for given
the encrypted vote’s byte length. To estimate our model’s out-of-sample perfor-
mance, we randomly split our data, using half to train the model and the other
half to assess the accuracy of the model. The training set was used to fit our
model. The performance metrics we present below are based on the predictions
made on this test set. All data and code used in our analysis is available online.!!

We evaluate model classification ability using three metrics: accuracy, preci-
sion, and recall. The ballot in this example has four choices, and we simulated
an equal proportion of results for each choice. This means that the best accuracy
that should be achieved for a random guess—at least in theory—is 25%.

Result. The Naive Bayes model yielded an accuracy, precision, and recall on the
test set of 83%, meaning 83 of every 100 votes from a simple random sample are
correctly classified using byte length alone. Class-specific accuracy varies among
candidates, with some candidates seeing very high accuracy (89%) while others
see smaller accuracy (58%). However, accuracy across all classes is consistently
larger than the expected 25%.

M https://github.com/dpananos/ballot.
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Abstain

Black

True Label

Mitchell

Eales

Abstain  Black Mitchell Eales

Predicted Label

Fig. 1. Confusion Matrix (Proportions), Experiment 1. Rows normalized to sum to 1.
Diagonal entries indicate class candidate-specific accuracy, while the other cells indicate
proportion of votes for row candidate predicted to be the column candidate. As an
example, 86% of votes for Black were correctly predicted to be for Black. 13% of votes
for Black were predicted to be for Mitchell. The remaining 1% of votes for Black were
predicted to be for Eales.

Figure 1, the confusion matrix, shows details about the predictions made by
the Naive Bayes model on our test set. Voter choices are ordered by their mean
TLS record length: It is apparent that the model is only confusing voter choices
that are closest to each other in mean length. This property proves useful in
later analyses of more complex elections. See Identifying a Subset of Possible
Candidate Combinations in Sect.7.1.

7 Additional Experiments

We conducted additional experiments with more complex confirmation pages
that contain voter choices for multiple offices.

7.1 Experiment 2 (Two Contests): Township of Selwyn, Ward
Ennismore

In 2018, voters in Ward Ennismore had four possible choices for mayor and three
possible choices for Councillor, listed in Table 3. This results in twelve possible
unique candidate combinations (tickets). We collected 500 samples per combina-
tion, for a total of 6,000 samples. Fitting a Multinomial Naive Bayes Model, we
find values for accuracy, precision, and recall in Table 5. In general, performance
is lower than in Experiment 1 because the length variation of different confir-
mation pages for the same candidate is greater. The variation increases due to
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Table 5. Performance on test set by office, Experiment 2.

Mayor Councillor

Accuracy | Precision | Recall | Accuracy | Precision | Recall
Naive Bayes 65% 75% 65% | 50% 58% 51%
Random guessing | 25% 25% 25% | 33% 33% 33%

candidates for other offices being present on the confirmation page: they vary
independently from the candidate being predicted.

Identifying a Subset of Possible Candidate Combinations. We also con-
sider a more relaxed definition of violating ballot secrecy. Given a certain TLS
record length, if we could identify a subset of possible candidate combinations
that were chosen, that would also violate ballot secrecy. For each byte length,
we counted the number of ballot configurations that produced record lengths of
that byte length. Table 6 shows the proportion of ballots that have a TLS record
length unique to a subset of possible candidate combinations.

Here, a possible candidate combination of n means that record length was
sufficient to identify a vote to within n out of the 12 possible candidate combina-
tions. Of note, 100% of ballots are associated with at most 11 possible candidate
combinations, meaning that limited information about a voter’s choice is leaked
for every ballot. In other words, for all ballots, we know at least one combination
of candidates that were not chosen by the voter.

Table 6. Proportion of ballots by possible candidate combinations, Experiment 2
(Cumulative).

Possible candidate combinations
1 |2 3 4 5 6 7 8 9 10 |11 12
Proportion | 8% | 11% | 14% | 19% | 22% | 25% | 37% | 43% | 69% | 90% | 100% | 100%

7.2 Experiment 3 (Three Contests): Town of Ajax, Ward 1

In 2018, voters in Ajax Ward 1 had six possible choices for Mayor, three possible
choices for Regional Councillor, and seven possible choices for Councillor, result-
ing in 126 possible candidate combinations. We collected 987-1052 samples for
each combination, for a total of 128,094 samples collected. Fitting a Multinomial
Naive Bayes Model, we find values for accuracy, precision, and recall in Table 7.
In general, performance is lower than in Experiments 1 and 2 because of even
length variations introduced by a larger set of candidates for other offices.

Candidate Combination Subsets. By viewing the TLS record lengths of
different candidate combinations, we show that we can still compromise ballot
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secrecy (albeit to a limited extent) for all ballots in a manner similar to Exper-
iment 2. Of the 126 possible candidate combinations (tickets), we found:

— 1% of all ballots had a unique TLS record length for that candidate combi-
nation

— 12% of all ballots cast had TLS record lengths that were shared with 10 or
fewer other candidate combinations

— 53% of all ballots cast had TLS record lengths that were shared with 73 or
fewer other candidate combinations

— 100% of all ballots cast had TLS record lengths that were shared with 92 or
fewer other candidate combinations. In other words, for all votes cast in this
election, we know at least 33 different ways to mark a ballot that was not
chosen by the voter.

Table 7. Performance on test set by office, Experiment 3.

Mayor Councillor Regional Councillor

Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall
Bayes 33% 32% 33% 32% 33% 32% 63% 70% 63%
Guessing | 17% 17% 17% 14% 14% 14% 33% 33% 33%

8 Mitigations

8.1 Client-Side Confirmation Page Generation

Transmitting the confirmation page over the internet can be avoided by gener-
ating the confirmation page on the client side in JavaScript. We observed the
SwissPost and Neuvote systems taking this approach, rendering this particular
side-channel not-applicable.

We met separately with representatives from Neuvote and Swiss Post and
were granted private access to their (respective) demo systems. In both cases,
we performed a basic analysis by casting ballots and observing the responses in
Charles (an HTTP proxy) and Wireshark. We observed no ballot-related network
activity in the time between selecting a candidate and rendering the confirma-
tion page, indicating the page is generated on the client-side. We additionally
observed that the cast ballot selections were encrypted at the application layer
before being transmitted to the server. As expected, our experimental observa-
tions of packet lengths in Wireshark showed no perceptible correlation between
candidate name length and network response length.
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8.2 Fixed-Length Responses

Much discussion exists on the mitigation of length-based fingerprinting attacks,
including adding padding to ensure the response is always of a fixed length.
Gellert et al. describe such as scheme as “perfect length-hiding padding”, but
also outline major performance tradeoffs [6].

We discussed this option with Simply Voting, but the practical limitations
quickly became apparent. First, the padded size would need to be larger than
the largest naturally-occurring response. The second is that the gzipped length
is non-linearly dependent on the content itself, requiring the padding to either
be calculated and applied after compression or for compression to be disabled.

Padding applied dynamically as a server header after compression is an atypi-
cal use case and would likely be difficult using standard server software. Disabling
compression would needlessly slow page load times, which is highly problematic
for an application involving large numbers of users making requests in a short
window (i.e., election night). By default, many servers only compress MIME
text/HTML. One solution might be to display candidate names as fixed-length
images, although this would not, on its own, rule out the possibility it could lead
to other distinguishing events.

8.3 Uniformly Random-Length Padding in Response Header

Coordinated Disclosure with Simply Voting. Once we had confirmed our
hypothesis with the results of Experiment 1, we contacted Simply Voting to make
the coordinated disclosure. They acknowledged our result, which we discussed
in-depth in a meeting. Overall, we found the interaction positive and constructive
and commend them for their commitment to the disclosure process.

Following internal discussions with the engineers, they eventually settled
on a mitigation involving adding a random amount of padding bytes sam-
pled uniformly in the interval [0,1000). The sever added this padding in a new
X-Ballot-Secrecy response header, which is now live on their ballot confirma-
tion pages.

Analysis of Simply Voting’s Fix. We implemented Simply Voting’s mitiga-
tion on our cloned server. We then re-ran Experiment 1 (see Sect.6), which had
4 ballot options. With this mitigation enabled, our prediction strategy now had
an accuracy of approximately 25%—reduced to (nearly) random guessing.

However, candidates with longer names become disproportionately distin-
guishable in instances where the X-Ballot-Secrecy header sampled close to the
maximal length. For example, when a voter casts a ballot for Linda Marlene Eales
(the choice that produces the largest ballot selection), if the X-Ballot-Secrecy
header is near maximal (e.g., 998, 999, or 1000 bytes), it will produce a total
TLS record length that is impossible to achieve with any other candidate choice.
In that case, a passive observer would be able to identify that this voter cast a
ballot for Linda with a high degree of certainty.
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This phenomenon also exists when the ballot secrecy header is very close to
its minimal length (e.g., 0 bytes), and a voter chooses to abstain (the choice
produces the shortest ballot).

To quantify this, we can perform a similar analysis to the one we did in
Experiments 2 and 3; we view the maximum and minimum TLS record lengths
produced by each ballot choice and identify where these distributions do not
overlap. If we observe a record length outside of the distribution of one of the
ballot choices, we can deduce the ballot was not cast for that candidate. We
conducted 8,000 trials per candidate for a total sample size of 32,000. We found:

— 0.25% of all ballots had a unique TLS record length for the candidate choice

— 0.38% of all ballots had TLS record lengths that were shared with 2 or fewer
other candidate choices

— 1.18% of all ballots had TLS record lengths that were shared with 3 or fewer
other candidate choices

— 98.83% of all ballots had TLS record lengths within the distribution of all
other candidate choices

Simply Voting’s mitigation substantially lowers the risk of the attack presented
in this paper. Although a practical fix under the circumstances, it still poses
a risk to ballot secrecy for some voters in some cases. Client-side confirmation
page generation, therefore, should remain the eventual goal.

8.4 Padding from a Gaussian Distribution

Degabriele [5] addresses the issue of overlapping uniform length distributions
in the context of the CRIME/BREACH attack, where multiple observations of
the same ciphertext with random padding by an attacker can be used to leak
actual record lengths. The problem is similar to the limitations we identified
with uniform padding in the ballot secrecy context: An attacker can observe the
difference in the maximum and minimum of overlapping distributions. Degabriele
proposes mitigating this by using a truncated Gaussian distribution, reducing the
number of items at the tail end of the distribution. Future work should study the
extent to which this approach reduces the number of clearly identifiable ballots.

8.5 Discussion and Conclusion

Using the network-observed TLS record length of the voter’s vote confirmation
page, our model predicted the chosen candidate in a recent real-world mayoral
contest with 83% accuracy relative to random guessing (which had 25% accu-
racy). In more complex ballots, our model still outperformed random guessing.
However, for a large subset of ballots cast in an election, we could still obtain
limited information in the form of certain combinations of candidates who were
not voted for. Validation of our models shows this performance difference is
unlikely to be explained by sampling variation.
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Perhaps the biggest takeaway for us, however, was how difficult it was to

obtain access to voter demos. If the security of a civic election is in the public
interest, companies should not need long internal deliberations to respond to a
request to see what a voter already sees. In this regard, we hope the industry
will eventually follow Simply Voting’s example and offer demos pro forma.
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