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Abstract Infectious diseases are one of the most common conditions impacting 
global health, being a matter of concern for health agencies due to their conta-
gious capacity and periodic outbreaks of new diseases, such as the global pandemic 
COVID-19. Viruses are among the main causes of this illness and it is defined as 
obligate intracellular parasites for their need to have a host cell to live and reproduce, 
since they won’t produce proteins and compete for nutrients and metabolites leading 
to the alteration of the host metabolome. The diagnosis of these viral infections can 
be done by detecting viral particles or components, isolating the virus in cell culture, 
or even by evaluating immune responses. In this context, metabolomics comes as a 
very useful tool that reflects all “omics” techniques and best represents the pheno-
type. Since water-soluble metabolites and lipids are the major molecular constituents 
of human plasma, their abnormalities are commonly observed during disease, which 
contributes to the understanding of physiology and pathology. Nuclear magnetic reso-
nance (NMR) spectroscopy and mass spectrometry (MS) are the most widely used 
techniques in metabolomics. NMR spectroscopy has emerged as a valuable appli-
cation due to its ability to identify compounds with simple sample preparation, in 
addition, to being a non-destructive, highly reproducible, and quantitative technique 
(primary ratio method). These features make NMR a valuable tool that is frequently 
used in metabolomics analysis, and nowadays used in the diagnosis of viral diseases. 
Therefore, in this chapter, we will address a short integrative description of viral 
diseases and diagnostics, metabolomics, and NMR concepts. Furthermore, we will 
explore the advances in NMR-based metabolomics applied in medicine, and finally, 
the viral diseases discriminated by NMR-based metabolomics. 
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1 Introduction 

Viruses are one of the major causes of human diseases, ranging from mild to several 
symptoms including death. Influenza viruses have been the most lethal viruses since 
early 1900. More recently, Acquired Immune Deficiency Syndrome (AIDS) caused 
by the human immunodeficiency virus (HIV), and COVID-19, caused by the human 
coronavirus SARS-CoV2 have been the major new virus diseases affecting people 
around the world. COVID-19 has been declared a pandemic by the World Health 
Organization (WHO) in March 2020 and until March 2022 (2 years later) caused 
6 million people to die [1]. Other viral outbreaks causing severe symptoms and 
death have emerged in recent decades including Dengue, Zika, and Ebola viruses. 
Table 1 shows the most common human viral diseases worldwide, their clinical 
manifestations, and their detection methods [2–21].

Viruses are structures formed by proteins and other compounds that encapsulate 
DNA or RNA molecules. Therefore, viruses don’t have the biological machinery 
to self-replicate and consequently, they have to infect a specific living cell to use 
their replicating machinery to form new virus particles and continue the infection 
process [22]. Consequently, the metabolism of infected cells is strongly affected by 
virus replication. In multicellular organisms, like animals and plants, virus infections 
may strongly affect the metabolism of the entire being. Therefore, the metabolomics 
approach can be a useful technique to monitor the virus’s infection and the organism´s 
response to the infection. 

1.1 Metabolomics 

Cells are constantly involved in a great variety of chemical reactions, acting on 
intra- and extracellular communication to provide essential biochemical processes 
for the survival of the organism as a whole, such as protection and energy. Every 
single reaction is linked in its way to one another, resulting in a complex network, 
formed by lots of different pathways. Therefore, metabolism is defined as a set of 
interconnected biochemical reactions that requires a collective and complementary 
work of all pathways [23]. 

Each molecule in the complex network of metabolism has its function, such as 
signalize other molecules to start a reaction/process. Most biochemical reactions 
in a metabolic system don’t present a pattern and spontaneous behavior since it is 
considered an open system, which is in constant energy exchange. Hence, released 
energy from a reaction contributes to the facilitation of another reaction. Enzymes 
can also act as a facilitator, since they withhold the capacity of catalyzing a reaction, 
lowering the activation energy barrier required for a given reaction, allowing it to 
proceed without changing the original arrangement of the facilitator [23]. 

Metabolic pathways may always provide a synthesis or decomposition of some 
components of the organism. Anabolism is a set of pathways that requires a load of
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Table 1 Most common human viral diseases, their clinical manifestations, and their detection 
methods [2–21] 

Disease Viral pathogenic Symptoms Detection method 

Acquired immune 
deficiency syndrome 
(AIDS) 

Human 
immunodeficiency 
virus (HIV) 

Fever, malaise, sore 
throat, muscle pain, and 
rash 

ELISA 

Chickenpox Varicella-zoster 
virus (VVZ) 

Fever, headache, 
fatigue, pharyngitis, and 
blisters on the chest, 
back, and face 

PCR 

Common cold Rhinovirus (HRV) Nasal congestion, runny 
nose, sneezing, 
headache, cough, and 
sore throat 

Observation of the 
symptoms’ 
progression 

COVID-19 Coronavirus 
(SARS-CoV-2) 

Fever, fatigue, cough, 
weakness, nausea, 
vomiting, diarrhea, 
shortness of breath, and 
changes to taste and 
smell 

RT-PCR 

Dengue Dengue virus 
(DENV) 

Severe headache, 
swollen glands, nausea, 
vomiting, rash, muscle, 
joint, and behind the 
eyes pain 

PCR and ELISA 

Ebola virus disease 
(EVD) 

Ebolavirus (EBV) Fever, fatigue, 
headache, sore throat, 
vomiting, diarrhea, rash, 
and muscle pain 

RT-PCR and ELISA 

Genital warts Human 
papilomavirus 
(HPV) 

Sore throat, earache, 
neck mass, and warts in 
the genital area 

Biopsy 

Hepatitis B Hepatitis B virus 
(HBV) 

Fatigue, nausea, 
vomiting, abdominal 
pain, dark urine, and 
jaundice 

ELISA 

Hepatitis C Hepatitis C virus 
(HRV) 

Fatigue, weakness, 
nausea weight loss, 
anorexia, joint, and 
muscle pain 

PCR and ELISA 

Infectious 
Mononucleosis 

Epstein-Barr virus 
(EBV) 

Fever, headache, 
splenomegaly, 
lymphadenopathy, and 
sore throat 

Immunofluorescent 
test 

Influenza A Influenza A virus 
(IAV) 

Fever, malaise, cough, 
sore throat, runny nose, 
muscle, and joint pain 

RT-PCR and viral 
culture

(continued)
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Table 1 (continued)

Disease Viral pathogenic Symptoms Detection method

Measles Measles virus (MV) Fever, headache, 
abdominal and pharynx 
pain, photophobia, 
swelling of lymph 
nodes, coryza, cough, 
and conjunctivitis 

ELISA and viral 
culture 

Mumps Mumps virus (MuV) Fever, headache, 
malaise, anorexia, 
parotid swelling, and 
muscle pain 

RT-PCR and 
immunofluorescent 
test 

Oral Herpes Herpes simplex 
virus (HSV) 

Fever, muscle pain, 
headache, swollen 
lymph nodes, and 
blisters or ulcers at the 
oral mucosa 

Viral culture 

Poliomyelitis Poliovirus (PV) Fever, fatigue, 
headache, vomiting, 
limb pain, and stiff neck, 
followed by paralysis 

PCR and viral culture 

Rabies Rabies virus 
(RABV) 

Fever, pain, and 
paraesthesia around the 
wound site 

RT-PCR 

Respiratory viral 
sepsis 

Adenovirus (ADV) Fever, cough, sore 
throat, nasal congestion, 
and runny nose 

PCR and viral culture 

Smallpox Variola virus Fever, headache, 
backache, abdominal 
pain, vomiting, rashes 
on the face, arms’s and 
legs 

PCR and viral culture 

Yellow fever Yellow fever virus 
(YFV) 

Fever, fatigue, 
headache, nausea, 
vomiting, jaundice, and 
muscle pain 

PCR and ELISA 

Zika fever Zika virus (ZIKV) Fever, headache, sore 
throat, conjunctivitis, 
rash, joint, and muscle 
pain 

PCR 

PCR: polymerase chain reaction, RT-PCR: reverse transcription-polymerase chain reaction, 
ELISA: enzyme-linked immunosorbent assay
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energy to complete the synthesis of complex molecules, using smaller and simpler 
ones as precursors. On the other hand, catabolism presents a collection of pathways 
that performs the rupture of chemical bonds, creating some small molecules from one 
complex structure to create energy-storing molecules, which can be used in anabolic 
pathways in an endless cycle [23]. 

Metabolites are the byproduct or the intermediate of such metabolic process. As 
the final product of a reaction, these compounds may indicate disturbances in some 
specific pathways, since it reflects each alteration that the organism has suffered 
because the organism will contribute in a different way to the formation or decom-
position of these small molecules. Thus, metabolites analysis may offer a complete 
vision of one’s phenotypical responses that other macromolecules cannot. Proteins 
may suffer post-transcriptional adaptations, as well as genes, may suffer epigenetic 
regulations, making it difficult to directly correlate these macromolecules with the 
organism’s phenotypic behavior [23]. 

Metabolomics is an emerging field within the “omics” sciences, concerning the 
biochemical processes that take place within a cell, tissue, or organism, involving 
a specific group of metabolites in a metabolome, as an approach to assimilating 
biological mechanisms and map functions of metabolic pathways. Metabolites profile 
and/or levels being monitored can help predict the biological structure, as well as the 
function, of a phenotype, leading to the understanding of the response of the organism 
to environmental stressors, such as nourishment, exposure to toxin e infections, that 
lead to perturbations in cellular homeostasis. Since the phenotype is directly linked 
to the genotype and its behavior, genetic variations will also generate phenotypic 
variations [24–26]. 

To develop an experimental study using this “omics” technique, some basic 
steps must be performed as illustrate in Fig. 1. Before starting the metabolomics 
analysis, the determination of the study strategies and the design of the experi-
ments are required. Untargeted metabolomics is a methodology based on the global 
profiling of all the metabolites in a biological sample, including chemical unknowns, 
whereas targeted methodology presents a more specific approach, with a character-
ized metabolite as a valid standard, focusing on particular metabolites signals. The 
study strategies can be developed from one of these concepts in an arrangement with 
the most appropriate analytical techniques [25, 26].

Furthermore, a large amount of biochemical information gathered can be corre-
lated through statistical and chemometric analysis. Metabolomics samples carry a 
complex load of metabolites, which generates cross information that can’t be visu-
alized considering individual biomarkers. Data analysis greatly depends on prepro-
cessing, which has the aim of transforming the data to improve the data analysis 
through a simplification of the dataset to be comparable [25]. 

After data preprocessing, several statistical tools can be used to find discriminative 
features within the sample set. Data analysis involves the application of the different 
univariate and multivariate methods that can be of parametric (e.g. student t-test, 
multivariate linear regression) or non-parametric (e.g. Mann–Whitney test, random 
forests) nature. The methods can be also divided into unsupervised techniques (i.e. 
methods where labeling of the samples is not involved in calculations, e.g. principal
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Fig. 1 Metabolomics scheme showing the sequence of macromolecules to small molecules and 
their respective omics science, the metabolomics steps from the human sample as biofluid, tissue 
or cell until final results as metabolic interpretation. Created with Biorender.com

component analysis (PCA), hierarchical cluster analysis (HCA), and supervised tech-
niques (i.e. methods where calculations involve the information regarding sample 
labels, e.g. linear discriminant analysis (LDA), k-nearest neighbor (KNN). A super-
vised multivariate technique, partial least squares discriminant analysis (PLS-DA), 
is a particularly useful tool in metabolomics studies [27]. 

The application of statistical analysis aims to see a general correlation between 
the metabolites in a simpler interpretation. Principal Components Analysis (PCA) is 
commonly used in these cases for its ability to reduce the range of a database, mini-
mizing information loss while retaining the main features. In a PCA plot, it is possible 
to analyze similarities and differences between samples and the control, considering 
the distance between the points. On the other hand, ANOVA and Student’s t-test, 
with a P-value of < 0.05, are univariate analyses that can be used to analyze the 
parameters of an isolated metabolite, since it doesn’t depend on other variables [25]. 

Scores and loadings are the usual visual results from the multi statistical analyses 
in which the scores describe samples and the loadings show the features. The scores 
must present a cluster (group) or a tendency for a cluster to claim that the metabolites 
are distinct in the different samples. Loadings features correlating with score clus-
ters are relevant to establishing what metabolites distinguish the samples. Thus, the 
feature may be presented as clearly as possible with the aim of emphasising which 
metabolites are important. One of the possible loading charts is the heatmaps based 
on VIP (variable importance in projection) [28].
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For metabolism investigation, the Pathway Analysis is used which module 
combines results from powerful pathway enrichment analysis with pathway topology 
analysis to help researchers identify the most relevant pathways involved in the condi-
tions under study. This analysis uses enrichment techniques as key tools for under-
standing complex biological systems. These tools reduce the complexity of the data, 
improve interpretation and understanding of biological systems, and help to generate 
hypotheses. The presentation of the pathways usually is a map of the metabolome 
view [29]. 

1.2 NMR as a Tool in Metabolomics 

There are several analytical tools to study metabolomics, among them, the most used 
are nuclear magnetic resonance (NMR) and mass spectrometry (MS). MS has excel-
lent sensitivity, and a large coverage of metabolites, and can be coupled with separa-
tion techniques, being important for the analysis and identification of a wide variety 
of compounds, but reproducibility and quantitation is a current issue. However, in 
this chapter we will delve deeper into the use of NMR in metabolomic analysis, 
addressing the operation and the main advantages of the technique [30–32]. 

Nuclear magnetic resonance (NMR) spectroscopy is a rapid and non-destructive 
technique that allows a high analytical reproducibility, identification of chemical 
compounds without the use of standards, and information about molecular dynamics. 
NMR can detect a gamma of metabolites in a complex sample with minimal sample 
preparation when compared to other analytical methods [33, 34]. 

When it comes to the actual experiment in human beings, the samples can be 
collected as biofluids (urine, saliva, blood, plasma, serum, cerebrospinal fluid, stool) 
or also as tissues (biopsy tissue), and cells. To obtain a sample with minimal alter-
ations for reproducible experiments, the preparation is quite simple. It starts with the 
homogenization of the collected sample by the centrifuge followed by the metabo-
lite’s extraction, adding some deuterated solvent. The extraction of metabolites can 
also be promoted by the biomolecules’ precipitation, as a result of the addition of 
methanol: chloroform mixture, or only the methanol itself, that also provides the 
inactivation of enzymes. After that, the sample is centrifuged and the floating part is 
evaporated. Then, the reference standard is added, as well as the deuterated solvent 
or buffer is added. It is important to maintain the physiological pH during the sample 
preparation, since its variation may induce unwanted reactions [35]. 

In the final step samples can be filtered or not to remove macromolecules that 
may get in the way during the spectral analysis. If the macromolecules are not 
physically removed, the choice of NMR experiment must be well planned (a Carr-
Purcell-Meiboom-Gill—CPMG—pulse sequence must be required). The samples 
are transferred to the equipment’s tubes and the analysis may begin. It is important 
to avoid a sequence of thawing processes under the same sample. At the end of 
this process, it is obtained a well-preserved biological sample, making it possible to
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use nuclear magnetic resonance (NMR) as the analytical technique, since it is non-
destructive and allows other types of analysis later, or the reproduction of the same 
one. Less processed samples provide a result loaded with information, with larger 
width and more overlaps, as well as the possibility to correlate all these features in 
a bigger view analysis. Besides, a rawer sample supports the idea of a replicable 
experiment, since it hasn’t been overly modified, and is best used in NMR analysis 
[36]. A graphical illustration of the sample handling process is available in Fig. 2. 

Several nuclei can be studied by the NMR, but the most commonly available ones 
are hydrogen-1 and carbon-13 isotopes [37, 38]. One-dimension 1H and 13C are  the  
most common NMR experiments. More sophisticated multidimensional experiments 
involving for example 1H–1H and 1H–13C, such as COSY (correlated spectroscopy) 
and HSQC (heteronuclear single quantum coherence) [38] among many others also 
are common. Solution or liquid-state NMR, and HR-MAS (High-Resolution Magic 
Angle Spinning) are the two main approaches employed in metabolomics. Solution 
NMR is used in the analyses of soluble metabolites in biofluids, cell lysates, or 
polar/apolar tissue extracts, and HR-MAS for the measurement of metabolites in 
heterogeneous samples containing solid and liquid components, like intact tissues 
[39]. 

Liquid-state NMR in high resolution (600 MHz) is the preferred instrument to 
perform metabolomics analyses in biological samples containing many compounds

Fig. 2 Representation of sample handling process to NMR-based metabolomics analysis. Initially, 
the solvent is added for protein precipitation, centrifugation, and separation of the supernatant 
and pellet fractions. Then, a deuterated solvent is added to the supernatant, followed by filtration, 
insertion of the sample into the NMR tube and, finally, the sample is inserted and analyzed in the 
NMR spectrometer. Created with Biorender.com 
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in different degrees of abundance. Usually, 1H NMR the spectrum is acquired with a 
pulse sequence including water presaturation to suppress the solvent signal [39–42]. 
Additionally, in selected samples, some bidimensional experiments, usually COSY, 
HSQC, and JRES are performed to aid the process of metabolites identification. The 
metabolites identification relies on the comparison of chemical shifts, and spin–spin 
couplings to information available in chemical databases such as HMDB, Chenomx 
NMR Suite (Chenomx, Canada), and literature [27]. After carrying out all the steps 
described, it is possible to obtain a spectrum as shown in Fig. 3. 

Under appropriate quantitative NMR (qNMR) conditions, NMR spectra may 
provide direct quantitative information since the area of each signal in the spectrum 
is directly proportional to the number of equivalent nuclei responsible for that signal, 
or in other words, is directly proportional to the molar amount of the detected isotope 
nuclei [37, 43]. Thus, absolute concentrations of the metabolites can be determined 
by NMR using internal, external, or electronic generated signal [33, 43, 44]. 

The qNMR spectra must be acquired under a set of appropriate conditions to 
obtain accurate results. For a maximum error of 1% it is necessary to set the relax-
ation delay (delay before the excitation) equal to at least 5 times the longitudinal 
relaxation time (T1) for a 90° pulse, and an acquisition time longer than 3 times 
the transverse relaxation time (T2), and at least 50:1 signal to noise ratio. Careful 
processing of NMR spectra is also required to extract accurate peak areas [33, 37].

Fig. 3 Spectra 1H NMR and bidimensional experiments were obtained from blood plasma samples 
of covid-19 patients at the time of hospitalization. a 1H NMR spectrum with identification of the 
most intense metabolites; b Correlation Spectroscopy (COSY) showing scalar couplings between 
hydrogen atoms; c Heteronuclear Single Quantum Correlation (HSQC) showing the correlations 
between carbon and hydrogen nuclei that are directly bonded; d Quantification by Chenomx NMR 
Suite (professional version 8.1). Superposition of the obtained spectrum (black line) with the soft-
ware library containing the reference compounds (filled in blue) allows spectral deconvolution, 
identification, and individual quantification of metabolites 
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NMR spectra preprocessing usually involves baseline correction, alignment, binning, 
normalization, and scaling [28]. 

2 Advances in NMR Based Metabolomics to Apply 
to Diagnostic Diseases 

As mentioned so far, metabolomics is an efficient tool to optimize viral disease 
metabolome profiling overdue the generation of detailed chemical pathology finger-
prints enabling the association to diagnostic and therapeutic interventions [45]. This 
personalized approach in medicine is probably the most important paradigm change 
in medical diagnosis and appears to be the future of modern medicine [46]. Hence, 
to improve its performance and promote a gradual transition from standardized clin-
ical protocols to personalized medicine. NMR Metabolomics has been improving its 
methodologies to obtain better data resolution, avoid peak overlap, improve sensi-
tivity, and also maintain an auto sustainable work regarding the high demands in 
clinical studies as a semi- or fully-automatization process from preparation steps to 
data results. 

Regarding the NMR acquisition to improve data quality, researchers in the 
past decade studied and validated advanced NMR experiments through different 
approaches (1D and multidimensional NMR). Considering that biofluids are a 
complex matrix that not only comprises small metabolites but is also rich in proteins 
and lipids, applying a diffusion-edited pulse sequence like Carr-Purcell-Meiboom-
Gill (CPMG) for the NMR analysis is typically necessary, suppressing the protein 
and lipids signals and allowing the analysis of small molecules without matrix inter-
ference. The CPMG does not represent the last advance, however worth mentioning 
once certainly was the historical advance in biofluids analysis. 

The CPMG relies on molecules’ transversal relaxation time (T2). A spin-oriented 
chemical compound under an external magnetic field presents a longitudinal (T1) 
and a transversal (T2) relaxation rate - back to the z and y-axis, respectively. These 
properties are related to the magnetization axis the spin is oriented. CPMG pulse 
sequence starts with a 90° pulse to the y axis. The time required for the spin to lose 
its magnetization on the transversal axis (y) is smaller in macromolecules, compared 
to small molecules. Hence, to record only small molecules of T2, there is a sequence 
of 180° pulses and a T time acting as a spin echo. This enables the NMR equipment 
to filter T2 on samples [47, 48]. 

However, this CPMG approach commonly causes a broadening of the baseline, 
complicating posterior quantitative data analysis [35]. Alternatives to avoid this 
problem is physically removing the macromolecules from the samples [36, 45] or  
balancing the fast data and efficiency within additional experiments, which is the 
case with the use of the Bruker proprietary In Vitro Diagnostics research (IVDr) 
method for the entire biofluid sample [35].
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Considering saving time while handling hundreds of samples, research using the 
newest NMR Bruker metabolomics protocol named In Vitro Diagnostic research 
(IVDr) to characterize the metabolic profile and quantify metabolites in biofluids 
samples seems to be the latest innovation in viral diseases metabolomics. 

As shown in Fig. 4, for IVDr protocol the instrument is calibrated before the anal-
ysis, and the automated methods are performed on each sample. For plasma sample, 
IVDr performs four experiments in automation mode: a standard 1D experiment with 
solvent presaturation (noesy); a 1D—Carr− Purcell− Meiboom − Gill (CPMG) spin 
− echo experiment; a 2D—J-resolved experiment, and a 1D diffusion-edited spec-
trum. The methods rely on using short relaxation times within some corrector factor 
strategy to expedite quantitative analysis. The quantification data is automatically 
calculated for a standard metabolite list for each biofluid (blood, urine, and cerebral 
spinal fluid—CSF) based on the electronic signal ERETIC (Electronic Reference To 
access In vivo Concentrations) [49]. 

Novel IVDr protocols focus on fast and efficient quantification profiles of both 
small metabolites and lipoprotein fractions [50]. Elaine Holmes, John Lindon, and 
Jeremy Nicholson group have reported a series of studies trying to provide a stan-
dard protocol for IVDr methodology to ensure its reproducibility and robustness 
[45, 50–52]. This strategy showed to be appropriate for the SARS-CoV-2 metabolic 
profile due to previous reports of the high demand for lipid metabolism on Covid-
19 pathology. Their results are promising for the differentiation of SARS-CoV-2 
infected patients from healthy patients based on lipid profile (Table 2). They could 
also relate cytokine levels in both groups and compare them with lipid quantifica-
tion and the disease evolution [53]. More about Covid-19 studies are discussed in 
Sect. 3.1.

Fig. 4 Scheme showing the Bruker IVDr protocol analysis steps to perform metabolomics analysis 
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Table 2 Distinct metabolite types for SARS-CoV-2 infected patients from healthy patients 

Group Metabolites in abundance 

SARS-CoV-2 infected patients LDL cholesterol (LDCH), LDL phospholipids (LDPL), 
LDL-free cholesterol (LDFC), LDL apolipoprotein B, HDL 
cholesterol (HDCH), and phospholipids (HDPL) 

Healthy patients VLDL cholesterol (V1CH, V2CH, and so forth) and 
triglycerides (V1TG, V2TG, and so forth) 

Metabolites assigned by PCA analysis. Data extract from Lodge’s paper [53] 

Besides the advantage of fast data acquisition to cohort studies samples, IVDr 
enables NMR metabolomics researchers to manage multivariate data from different 
centers and compare their data due to the IVDr protocol required to be the same, 
making it a universal protocol. One example is the cooperation between the Australian 
National Phenome Center (ANPC) with Bruker in an attempt to deliver COVID-19 
diagnostic and prognostic solutions [54]. 

Many efforts have been putting on mainly in metabolomics data, more precisely 
in metabolites identification. Standardized methods were created such as SigMa 
which focuses on analyzing biofluids Lipoproteins, LipSpin which are lipidic NMR 
databases, Chenomx, and COLMARm whose software identifies and quantifies small 
metabolites [55, 56]. 

2.1 qNMR Strategies to Overcome the Metabolomics Issues 

The accurate quantitation of larger numbers of metabolites has some challenges. The 
overlapping signals and lower sensitivity continue to be a struggle in metabolomics. 
To overcome these issues some strategies are being developed and explored by 
researchers (Fig. 5) [44, 57].

Strategy 1 consists of the 1D NMR solutions to spectrum overlapped issues 
involving deconvolution and heteronuclear experiments [58]. Deconvolution exper-
iments use mathematical deconvolution of 1D NMR line shapes to separate indi-
vidual 1D spectra of the different analytes present in the sample; while heteronuclear 
experiments separate the data at the acquisition stage using another nucleus, such as 
13C,15 N, 31P, or 17O, different of 1H [38, 44]. In the meantime, 1D NMR with isotope 
labeling is another strategy to not only identify a metabolite set but also track down 
their metabolic pathway and cell influx/efflux. This is a methodology that alleviates a 
major challenge in NMR experiments involving low natural abundant nuclei, which 
could involve the isotopes of 13C, 15 N, 2H [59]. The use of labeling 13C quantitative 
one-dimensional HMQC (Q-1D-HMQC) 1H NMR analysis has been reported for 
HBV infection. The combination of an isotope labeling and quantification technique 
provided a quantitative pathway description of this disease and made it possible 
to point out discussions about HBV infection [60]. Yet, isotope labeling improves
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Fig. 5 Scheme illustrating 
the qNMR strategies to 
overcome the metabolomics 
limitations in the quantitative 
approach
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the technique sensitivity, overcoming a major problem in heteronuclear experiments 
[61]. 

The deconvolution of peak areas is an efficient alternative to simple data integra-
tion when peaks are overlapped, as described in Fig. 6 [27, 37]. The deconvolution 
method achieves the integration of the signals more accurately in 1D spectra since 
errors are minimized in quantitative parameters such as noise in the NMR spectrum, 
phasing errors, baseline approximation, and also, careless adjustment of slope and 
bias correction on integrals [37, 43]. In deconvolution, a peak (or peaks) is fitted 
to the observed spectrum using, for instance, a least-squares-based method. Initial 
values for line-fitting analysis (frequency, width, height, and line shape of a signal) 
can be either defined manually or obtained from a database that contains the model 
spectra of the compounds. The spectral parameters can be fitted depending on the 
software as shown in many scientific articles [37, 62]. 

Strategie 2 and 3 consist in expanding the 1D spectrum to another dimension, 
running a two-dimensional (2D) experiment regarding the factors that influenced the 
peak areas as the peaks are spread along with one (or more) orthogonal dimension(s) 
[37, 38, 44]. 2D NMR solutions are also available for qNMR, which can involve 
pulse sequence modifications, theoretical calculations, or calibration approaches with 
fast 2D acquisition methods, all carefully thought to account for the peak-specific 
response of the 2D NMR signal. The quantitative application of 2D NMR in the 
field of metabolomics is recent, and already are being developed more practical 
approaches. The intrinsically quantitative 2D NMR method is one of them [38]. 

The intrinsically quantitative 2D NMR method development relies on the use 
of a simple internal reference without the need to rely on multiple external stan-
dards, which would directly yield quantitative results in a way similar to 1D NMR. 
The “intrinsically” quantitative 2D approaches such as qHSQC and its variants and 
applications of pure shifted and NUS (nonuniform sampling) methods to 2D NMR 
experiments are strongly investigated [43, 63, 64]. 

Despite the benefits of the methods mentioned above, conventional 2D NMR 
suffers from long acquisition times because of the need to repeat numerous 1D

Fig. 6 Different methods to determine peak areas. The black line represents the observed spectrum 
where a triplet (t) and a doublet of doublets (dd) are overlapping. The red curve is the step curve 
used in the classical integration, in which their relative step heights determine the areas of 98 and 
102 for the t and dd, respectively. Using the two bins from the equidistant binning procedure (grey 
boxes) areas of 116, and 84 for the t and dd were found, respectively. The most accurate results 
were obtained with deconvolution: the area of the t (green line) is 99.91 and the area of the dd (blue 
line) is 100.09. Reprinted with permission from Soininen et al. [37] 
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experiments with incremented delays to obtain a well-resolved 2D matrix. There-
fore, many NMR methods have been developed to reduce the acquisition time of 
multi-dimensional experiments [44, 65]. Two main strategies seem to be a solution to 
overcome this situation: reducing the interscan sequence delay, e.g. band-Selective 
Optimized-Flip-Angle Short-Transient (SOFAST), Acceleration by Sharing Adja-
cent Polarization (ASAP), and Small Recovery Times (SMART). Another option is 
to introduce multiplexing instead of sequential sampling in the indirect dimension, 
by spatial encoding [61], as occurs in the ultrafast (UF) 2D NMR. 

An operator must weigh the benefits of those first alternatives to attend to their 
research demand. SOFAST sequence is applied in HMQC experiments with an exci-
tation pulse within a flip angle leading to a partial restoration of proton magnetization 
by a subsequent 180° pulse. This leads to an increased signal-to-noise ratio for high 
repetition rates of the experiment, nevertheless, SOFAST only is efficient for systems 
in which spin diffusion is an effective relaxation mechanism, such as macromolecules 
or small molecules in viscous solvents [61, 66]. ASAP sequence for HMCQ relies on 
proton-proton coupling while a mixing stage retains the residual Z-magnetization. 
It is an advantage for small molecules, nonetheless, this sequence is restricted to 
heteronuclear experiments for samples at natural abundance or slightly enriched [61, 
67]. SMART sequence eliminates artifacts from previous scans in 2D experiments 
through a pulse field gradient (on the x, y, and z-axis), dephasing them (Fig. 7). 
It could be applied for COSY and TOCSY sequences. Despite the use of smaller 
recovery delay times, it requires rather high concentrations and access to triple axis 
gradients [61, 68]. Within the approaches mentioned, medical studies were reported 
studying macromolecules and hormones. The evaluations performed so far were 
focused on chronicle metabolites syndromes [69, 70]. These studies may enable 
further metabolic investigation in biofluids. 

The ultrafast (UF) 2D NMR is a generic approach that can record any kind of 2D 
experiment in a fraction of a second as shown in Fig. 8 [38, 71].

The ultrafast (UF) 2D NMR proposes to reduce the sampling of the indirect 
time domain by recording the complete 2D NMR dataset in a single scan. This 
can relatively decrease the sensitivity, however, this can be solved by relying on 
hybrid methods offering a reasonable compromise between the experiment duration

Fig. 7 SMART pulse sequence for a TOCSY a experiment. Comparison of a regular TOCSY b 
spectra and a SMART TOCSY c spectra containing Alanine, Arginine, Histidine, Threonine, and 
Tyrosine. Reprinted (adapted) with permission from [68] 
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Fig. 8 Conventional a and ultrafast b COSY spectra of a 5 mM metabolic mixture of Alanine, 
Glutamic acid, Inositol, Lactic acid, Leucine, Taurine, Threonine, and Valine, acquire in 34 min 
on a 500 MHz spectrometer with a cryoprobe. Signa-to-noise ratio (SNR) as a function of the 
acquisition time, in the vertical c and horizontal d dimension of ultrafast (UF) and conventional 
(Conv.) constant-time COSY. Reprinted (adapted) with permission from [71]. Copyright 2011 Royal 
Chemical Society

(a few minutes) and the sensitivity (micromolar concentrations can be detected on 
homonuclear 2D spectra of biological extracts) [71]. The ultrafast method must be 
allied to the external calibration approach. Despite the similarity with other analytical 
methods, here the calibration curve is obtained from a single series of standard 
samples containing all the targeted analytes in known concentrations for each peak 
of interest [44]. Thus, hundreds of samples can be analyzed from the same calibration 
curves if the experiment is repeatable, leading to a fast method as reported in many 
scientific articles [44, 72–74]. 

Guennec and coworkers have presented the application of these experiments to 
cancer cells. The UF NMR could assign metabolites, most of the amino acids, in 
three different cell lines. Their results could be exploited in biological fluids due to 
the efficiency of UF NMR to identify metabolites in complex mixtures and point out 
their concentration [75]. 

There are quantitative 2D methods using a simple internal reference and without 
the need to rely on multiple external standards which would directly yield quantitative 
results in a way similar to 1D NMR. The “intrinsically” quantitative 2D approaches
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such as Q HSQC and its variants (HSQC0, or Q QUIPU HSQC) were developed 
to yield quantitative data from a single 2D spectrum [63, 64]. These approaches all 
rely on the HSQC pulse sequence. Therefore, they offer a better separation than UF 
COSY, thanks to the broader 13C chemical shift range, but they are also less sensitive 
due to the low natural abundance of 13C. 

The QUIPU HSQC (QUantItative Perfected and pUre shifted HSQC) method is 
strongly recommended when strong overlap occurs once 2D 1H, 13C NMR allows 
an enhancement of the spectral resolution compared to 1H homonuclear 2D NMR 
(2D COSY), and an enhancement of the sensitivity compared to Q HSQC. However, 
this method consumes time due to the 2D acquisition mode combined with the 
long recycling times required by the quantitative requirements (5 times the longest 
longitudinal relaxation time T1), and due to the higher number of scans needed 
to access low concentrated metabolites [63]. Additionally, the BIlinear Rotational 
Decoupling (BIRD) HSQC method stands as a prominent strategy to enhance spectral 
resolution and avoid sensitivity loss. This experiment uses a pulse sequence with a 
double spin-echo containing a bilinear rotational decoupling pulse cluster and a non-
selective 180° proton pulse. This strategy provides a J-selective spin inversion and 
enhances the signal-to-noise ratio with isotope labeling and proved to be an effective 
tool for multidimensional NMR metabolomics analysis [76, 77]. 

The Nantes group has developed an accelerated version of this experiment named 
FAQUIRE (FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced NMR) 
[63], an approach that combines the Q QUIPU (quick QUIPU) with spectral aliasing, 
NUS (nonuniform sampling), and VRT (variable repetition time) methods. The 
FAQUIRE approach promises to accelerate the access to quantitative data based 
on 1H, 13C correlations while preserving the spectral resolution and the sensitivity, 
without the need for external calibration. 

In Fig. 9 we show that the acquisition time of 2D quantitative maps using the 
FAQUIRE approach is reduced by a factor of 6–9 while conserving a high spectral 
resolution due to the pure shift approach. The “pure shift” spectrum is generated 
when homonuclear broadband decoupling is applied resulting in a greatly simplified 
NMR spectrum with the multiplet pattern removed [43]. Even so, this approach may 
result in sensitivity loss due to the selective J-refocusing elements [76]. The pure 
shift concept can be applied in both dimensions in a 2D NMR experiment.

3 Viral Diseases Discriminated by NMR Based 
Metabolomics 

In this section, the scientific findings in the use of NMR-based metabolomics 
approaches for viral diseases will be discussed. NMR spectroscopy has been one 
of the most common platforms for metabolomic analysis in human infectious 
diseases caused by viruses [78–80]. The metabolomics research has been mainly 
based on comparisons and identification of differences between metabolic profiles
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Fig. 9 2D maps of the methylene/methane area for a metabolite model mixture in ∼16 h a using 
QUIPU and in less than 2 h b using Q QUIPU with 25% NUS and VRT function vd3. Reprinted 
(adapted) with permission from [63]. Copyright 2018 American Chemical Society

of study and control groups, such as the comparison of healthy and diseased indi-
viduals. Therefore, the objective of untargeted metabolomics in viral studies is to 
observe metabolic alterations associated with specific factors under study, aiming 
the discovery of diagnostic and prognostic biomarkers, and disease staging of viral 
infections. Metabolomics has been more employed in the past years for several viral 
infections as shown in Fig. 10. Here, we will focus primarily on those viruses in which 
a greater number of NMR-based metabolomics studies in patients with viral infec-
tions. Viral hepatitis B (HBV) [81], C (HCV) [82–88] and E (HEV) types [89], and 
human immunodeficiency virus (HIV) [90–96], are the most studied, as well as the 
response to many other viruses, such as West Nile virus [97], H1N1 influenza virus 
[98, 99], dengue virus [100] and other [101–103]. However, the COVID-19 pandemic 
disrupted this scenario, the metabolic profiles from patients with viral infection due 
to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have also been 
researched [51, 104–111]. The main works within the theme are listed in Table 3 
which point to relevant remarks.

Most of NMR based metabolomics viral studies demonstrated high-level discrim-
ination between the group of individuals with viral infection analyzed and the group 
of individuals not carrying viral infection analyzed or with a difference between the 
groups of individuals analyzed. These studies showed that metabolites present in 
plasma, urine, and to a lesser extent in saliva are differentially produced in response 
to HIV infection. In general, dysregulated metabolic pathways of patients caused by 
viral infection were also identified, such as TCA cycle, glycolysis, glutaminolysis, 
pentose phosphate pathway (PPP), fatty acid (FA) and lipid biosynthesis, β-oxidation, 
respiratory cycle (electron transport chain, ETC), and nucleotide and amino acid 
metabolism (Fig. 11).
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Fig. 10 a Trend in the virus NMR metabolomics publications and citations obtained using the 
keywords NMR metabolomics virus from the web of knowledge (http://apps.webofknowledge. 
com). b Number of scientific articles on NMR-based metabolomics studies of patients with 
infectious diseases caused by different viruses

The metabolism of viral studies is based on metabolites findings. The common 
metabolite NMR assignments are as follows in Table 4.

http://apps.webofknowledge.com
http://apps.webofknowledge.com
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Table 3 Relevant remarks of NMR-based metabolomic studies of patients with infectious diseases 
caused by a virus 

Virus Sample patients and/or individuals Relevant remarks References 

HBV Serum HBV-liver cirrhosis (LC) 
HBV 
Healthy individuals (HI)* 

Serum histidine as a 
potential biomarker for 
HBV patients 
Acetate, formate, 
pyruvate, and glutamine 
as potential biomarkers 
for progressing from 
HBV to HBV-LC 
Phenylalanine, 
unsaturated lipid, 
n-acetylglycoprotein, and 
acetone in the serum 
could be considered as a 
potential common 
biomarkers panel for 
these patients 

Zheng et al. [81] 

HBV and 
HCV 

Urine HCV 
HBV 

Differentiating between 
the HCV and HBV 
patients 
The metabolites 
responsible by difference 
no were revealed 

Godoy et al. [82] 

HBV and 
HCV 

Serum HCV-fibrosis 
HCV-no fibrosis 

Biologic pathways 
altered, mainly energetic 
metabolism involving 
glutamine/glutamate, 
carbohydrates, ketone 
bodies, and lipids 
Serum glucose is 
upregulated in 
HCV-fibrosis patients 
Acetoacetate at lower 
levels in HCV-fibrosis 
3-hydroxybutyrate is 
downregulated in 
cirrhotic patients 
Serum creatine and 
creatinine at significantly 
lower levels in 
HCV-fibrosis 

Embade et al. 
[112] 

(continued)

3.1 Metabolomics Analysis in Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) Infection 

Coronavirus disease (COVID-19) is an infectious disease caused by severe acute 
respiratory coronavirus type 2 (SARS-CoV-2). Molecularly, severe COVID-9 disease 
is characterized by uncontrolled inflammatory syndrome caused by immune system
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

HBV and 
HCV 

Serum HBV or HCV with 
schistosomiasis mansoni 
HBV or HCV 
monoinfected 

Lactate and HDL are 
responsible for 
discrimination between 
the groups of patients 
Lactate at higher levels in 
coinfected patients in 
comparison to 
mono-infected 
HDL at lower levels in 
coinfected patients in 
comparison to 
mono-infected 

Gouveia et al. [85] 

HBV and 
HCV 

Serum HCV-before DAAs 
treatment 
HCV-after DAAs treatment 
Naïve HBV 
Healthy individuals 

Distinction between the 
metabolomic profile of 
HCV patients before and 
after effective DAA 
treatment 
Tyrosine and formate at 
higher levels and 
potential biomarkers for 
the severity of HCV 
3-hydroxybutyrate, 
formate, and acetate 
levels were significantly 
higher before DAAs 
therapy in HCV patients 
2-oxoglutarate and 
3-hydroxybutyrate at high 
levels in HCV patients 
when compared to HC 
and HBV individuals 

Meoni et al. [86] 

HCV Serum HCV (patients with 
different liver disease 
severity) 
Healthy individuals 

Choline and histidine at 
high levels in HCV 
patients with late-stage of 
fibrosis when compared 
to early-stage fibrosis 
HCV individuals 
Choline/uric acid ration 
as a potential biomarker 
for differentiation of liver 
disease severity 
Serum 5-oxo-proline at 
higher levels in HCV in 
comparison to non-HCV 
individuals 

Shanmuganathan 
et al. [87]

(continued)
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

HEV Serum 
and 
urine 

HEV 
HBC 
Healthy individuals 

L-isoleucine, acetone, 
and glycerol at reduced 
levels, while glycine at 
higher levels in the 
plasma in HEV patients 
Imidazole, 
3-aminoisobutanoic acid, 
1-methyl nicotinamide, 
biopterin, adenosine, 
1-methylhistidine, and 
salicyluric acid at lower 
levels on the urinary fluid 
in HEV patients 
Both HEV and HBV, 
l-proline at high levels on 
the plasma and urinary 
when compared to HI 

Munshi et al. [89] 

HIV Serum HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-no 
antiretroviral therapy 
HIV—negative (healthy 
individuals) 

Discrimination between 
three analyzed groups 

Hewer et al. [90] 

HIV Plasma HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-naïve 
therapy 
HIV-negative (healthy 
individuals) 

Multivariate statistical 
analyzes unraveled 
distinct metabolic 
phenotypes and pathways 
among groups 
Glycolysis, TCA cycle, 
amino acid metabolism 
altered of the HIV/AIDS 
children 

Kaur et al. [91] 

HIV Serum HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-naïve 
therapy; 
HIV-negative (healthy 
individuals) 

Serum alanine at higher 
levels in HCV-negative, 
when compared to 
individuals with infection 
caused by HIV 
Alanine, glutamine, 
valine, taurine, and 
glucose levels can be 
altered due to viral 
infection and/or during 
antiretroviral therapy 
Alanine levels decrease, 
while glutamine and 
glucose increase with 
disease severity 

McKnight et al. 
[92]

(continued)



The Use of NMR Based Metabolomics to Discriminate Patients … 151

Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

HIV Serum HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-naïve 
therapy 
HIV-negative (healthy 
individuals) 

Lipids, including 
low-density lipoprotein 
(LDL) and 
very-low-density 
lipoprotein (VLDL) 
mainly responsible for 
discrimination between 
infected individuals and 
HIV-negative 

Philippeos et al. 
[93] 

HIV Serum HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-naïve 
therapy 
HIV-negative (healthy 
individuals) 

Significant differences in 
glucose, lipids, 
phenylalanine, glutamic 
acid, aspartic acid, and 
branched amino acids 
compounds 
Aspartic acid, 
phenylalanine, and 
glutamic acid 
up-regulated in HIV 
individuals when 
compared to 
HIV-negative 
Tryptophan and tyrosine 
at lower levels in 
HIV-naïve therapy as 
compared to other groups 
Cystine at higher levels in 
HIV-naïve therapy as 
compared to other groups 
11 metabolic pathways to 
be significantly altered by 
infection and/or treatment 

Sitole et al. [95] 

(continued)

hyperactivation. According to the World Health Organization (WHO), the standard 
method for diagnosis of acute SARS-CoV-2 infections is based on the detection of 
unique viral sequences by nucleic acid amplification tests (NAATs), such as rRT-
PCR, however other methods are also used as microscopy, culture, antigen tests and 
antibody tests [120]. In this sense, intense efforts have been put into research on 
the application of single and multi-omics-based strategies have been carried out on 
several fronts to dissect a plethora of aspects involved in the SARS-CoV-2 infec-
tion. The understanding of the molecular processes altered by viral infection due 
to targeting host-response, providing the discovery of diagnostic and prognostic 
biomarkers for infectious diseases caused by SARS-CoV-2. However, the broad spec-
trum of severity of the COVID-19, and unpredictability in the outcome of the viral 
infection outcome make the metabolomic study of patients particularly challenging. 
Since the host response can be highly variable, the application of metabolomics
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

HIV Plasma, 
saliva, 
and 
urine 

HIV/AIDS-antiretroviral 
therapy; HIV/AIDS-naïve 
therapy 
HIV-negative (healthy 
individuals) 

Plasma and urine 
biofluids proportion 
better discrimination 
between HIV-infected 
individuals and 
HIV-negative than saliva 
Neopterin from urinary 
can be potential 
biomarkers for 
HIV-positive individuals 
Choline and sarcosine 
from serum can be 
potential biomarkers for 
HIV-positive individuals 
Serum sarcosine, 
Methylmalonic acid, 
D-Glucose, Choline, and 
L-Aspartic acid at high 
levels in HIV-infected 
individuals, when 
compared to 
HIV-negative individuals 
Metabolic pathways, such 
as metabolic cycles, 
glucose metabolism, 
hormone biosynthesis and 
amino acid biosynthesis 
pathways to be 
significantly altered by 
infection and/or treatment 

Munshi et. al. [96] 

HIV Plasma In HIV-infected 
individuals, atherogenic 
profile in terms of lipid 
and lipoprotein 
compositions and 
functions 
Classification of 
HIV-dyslipidemia from 
HIV normolipidemic 
VLDL particles, lactate, 
and LDL-TG compounds 
as potential biomarkers of 
dyslipidemia in patients 
on stable NNRTI-based 
ART and 
HIV-dyslipidemia 
predisposition 

Rodriguez-Gallego 
et al. [94]

(continued)
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19-hospitalized 
patients 
Healthy controls 
COVID-19-nonhospitalized 
patients (3 and 6 months 
pos-covid) 

Tyrosine and formate at 
higher levels and potential 
In vitro diagnostics 
research (IVDr) protocol 
COVID-19 biomarker 
signatures in many 
Pos-COVID-19 patients 
At the elevated level the 
taurine, and reduced 
glutamine/glutamate ratio 
in Pos-COVID-19 
patients in comparison to 
healthy controls 
Glutamate at an elevated 
level, glutamine at a 
reduced level, and a low 
glutamine/glutamate ratio 
in COVID-19 
hospitalized patients in 
comparison to 
Pos-COVID-19 patients 
Gly A and 
Kynurenine/tryptophan 
ration at elevated levels in 
Pos-COVID-19 patients, 
when compared to 
healthy individuals 
The HDL parameters 
H4A1, H4A2 
(apolipoproteins A1 and 
A2 in HDL subfraction 
4), and kynurenine were 
partially normalized in 
Pos-COVID patients 
Glyc A and Glyc B at 
higher levels in 
COVID-19-hospitalized 
patients, when compared 
to among groups 

Holmes et al. [107] 

(continued)

in COVID-19 becomes a major challenge in potential biomarkers for its diagnosis 
[121–123]. 

The metabolomics profile of COVID-9 patients has displayed dyslipidemia at 
every level of complexity [53]. Remarkably, the works have described rich lipopro-
tein information from plasma samples obtained by NMR spectroscopy, and several 
are using in vitro diagnostic research (IVDr) information on quantitative lipoprotein 
profiles [53, 104, 107–109]. In the studies described by Günther and collabora-
tors [53], the NMR-based metabolomics experiments were conducted by the Bruker



154 B. S. B. Correia et al.

Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19; 
Healthy controls 

In vitro diagnostics 
research (IVDr) protocol 
116 metabolic variables 
derived from NMR 
spectroscopy and 41 from 
mass spectrometry 
α-1-acid glycoprotein 
signal A (Glyc A) at  
elevated levels and an 
increased 
kynurenine/tryptophan 
ratio were discriminant 
metabolites between 
groups and inflammation 
markers 
Higher level of VLDL 
class parameters and a 
high Apolipoprotein 
B100/A1 ratio in 
COVID-19 patients 
Major HDL class 
particles and components 
at lower levels in 
COVID-19 patients 
Elevated 
glutamine/glutamate ratio 
as marked for liver 
dysfunction 

Kimhofer et al. 
[108] 

(continued)

in-vitro Diagnostic Research (IVDr) protocol, aiming to distinguish the metabolic 
profile between COVID-9 patients and healthy individuals. From the spectra collected 
using a pulse program noesygppr1d and cpmgpr1d, 39 metabolites and 112 lipopro-
teins were found by slash Instant 20% using Bruker Quantification in plasma/serum 
B.I Quant-Ps 2.0.0 and Bruker IVDr Lipoprotein Subclass Analysis B.I-Lisa (Bruker 
BioSpin). The study of individuals with severe SARS-CoV-2 hospitalized in an inten-
sive care unit (ICU) exhibited a distinct serum metabolic profile when compared 
to healthy individuals. Metabolic differences were also found between COVID-19 
patients and patients also submitted to ICU with respiratory distress as a conse-
quence of cardiogenic shock. The lipoprotein profile investigated has whether showed 
severely altered in the COVID-19 patients about among analyzed groups, which 
signature to predict the severity of COVID-19 infection. When compared with 
healthy individuals, the individuals with COVID-19 prominently displayed dyslipi-
demia: Very-low-density lipoprotein and intermediate-density lipoprotein and asso-
ciated apolipoprotein B and intermediate-density lipoprotein cholesterol; as well 
as the VLDL, IDL, and large-sized low-density lipoprotein (LDL)-1 particles were
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19 
Healthy controls 
Patients with Influenza-like 
and SARS-CoV-2 negative 

In vitro diagnostics 
research (IVDr) protocol 
Glucose and α-1-acid 
glycoprotein are 
responsible for 
discrimination between 
the COVID-19 and 
healthy individuals 
Glyc A and Glyc B at 
higher levels in 
COVID-19 in comparison 
to Influenza-like 
(SARS-CoV-2) groups 
Alanine, lactate, and 
pyruvate at higher 
concentrations in 
COVID-19 than healthy 
controls 
· LDL cholesterol 
(LDCH), LDL 
phospholipids (LDPL), 
LDL-free cholesterol 
(LDFC), LDL 
apolipoprotein B, HDL 
cholesterol (HDCH), and 
phospholipids (HDPL) in 
higher levels in the 
healthy individuals 
VLDL cholesterol (e.g., 
V1CH, V2CH, and so 
forth) and triglycerides 
(e.g., V1TG, V2TG, and 
so forth) subclasses in 
higher levels in the 
COVID-19 individuals 

Lodge et al. [51] 

(continued)

increased, and triglycerides for nearly all lipoprotein subfractions. However, choles-
terol and apolipoprotein A2 were decreased. In general, a severely disturbed lipopro-
tein profile with remarkably increased TG levels potentially contributes to atheroscle-
rosis. Another important aspect addressed in the studies was demonstrating metabolic 
and lipoprotein profiles from asymptomatic individuals infected with SARS-CoV-2 
were similar to healthy individuals absent antibody-negative [53]. 

The analyses and quantification of routine lipids, lipoprotein subclasses, fatty 
acids, and their saturation, as well as the low-molecular-weight metabolites, have 
been shown to play a relevant role in the metabolomic studies of the patients with 
SAR-CoV-2 [109, 110]. According to Izquierdo-Garcia et al. [111], the disease 
severity of the COVID-19 patients may be associated with serum 56 metabolites (p < 
0.05), being mainly lipid and lipoprotein subclasses. Notably, increased triglyceride
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19- ICU patients 
Healthy controls 
Pneumonia (negative 
SARS-CoV-2) patients 

• 162 metabolites 
analyzed by 
DI-LC–MS/MS and 
NMR 

• Creatinine alone and 
creatinine/arginine ratio 
predicted ICU mortality 
with 100% accuracy 

• Kynurenine, arginine, 
and creatinine as 
potential biomarkers for 
diagnostic and 
prognostic for 
COVID-19 patients, as 
well as for patients 
stratification 

Lysophosphatidylcholines 
(LysoPCs) also helped 
discriminate between 
COVID19 patients and 
healthy individuals 

Fraser et al. [105] 

SARS-CoV Serum COVID-19 • In vitro diagnostics 
research (IVDr) 
protocol 

• Apolipoproteins, both 
Apo-A1 and Apo-A2, 
at lower levels in 
COVID-19 patients 

• Triglyceride (TG)-rich 
lipoprotein profile in 
the serum COVID-19 
patient 

• TG-VLDL, TG-IDL, 
TG-LDL, and TG-HDL 
at higher levels in 
COVID-19 patients 

• TC-LDL and TC-HDL 
at lower levels in 
COVID-19 patients 

• Acetoacetic acid, 
3-hydroxybutyric acid, 
and acetone were at 
markedly elevated 
levels in COVID-19 
patients 

Bruzzone et al. 
[104]

(continued)
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Serum COVID-19 patients in ICU 
Healthy individuals 
(control group) 
Patients in ICU caused by 
Cardiogenic shock 
Asymptomatic 
SARS-CoV-2 infection 

• 39 metabolites and 112 
lipoprotein-related 
parameters determined 
In-vitro Diagnostic 
Research (IVDr) 
protocol 

• COVID-19 disease is 
associated with 
dyslipidemia 

• SARS-CoV-2 
asymptomatic 
individuals did not 
develop dyslipidemia 

• Very-low-density 
lipoprotein (VLDL) and 
intermediate-density 
lipoprotein particles 
and associated 
apolipoprotein B and 
intermediate-density 
lipoprotein cholesterol 
at lower levels in 
COVID-19 patients 

• Glucose and formic 
acid at higher levels in 
COVID-19 patients, 
when compared to 
healthy individuals 

• Lactic acid and the 
lactic acid/pyruvic acid 
ratio were decreased in 
COVID-19 patients 
when compared to 
healthy individuals 

Creatine, creatinine, and 
phenylalanine at higher 
levels in COVID-19 
suggesting alterations in 
hepatic or renal 
metabolism 

Schmelter et al. 
[109] 

(continued)

content and very-low-density lipoprotein (VLDL), a decrease in HDL, percentage 
of cholesterol/cholesteryl esters in HDL and IDL were associated with increased 
severity of COVID-19 disease. Furthermore, the acetoacetate, 3-hydroxybutyrate, 
phenylalanine metabolites, as well as the ratio of apolipoprotein B/apolipoprotein A 
were also biomarkers for the severity of COVID-19 patients. 

An assessment of serum metabolites from SAR-CoV-2 patients has indicated a 
disturbed energy status [109]. The glucose and formic acid levels were increased, and 
the lactic acid/pyruvic acid ratio decreased compared to healthy individuals. These
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19 
COVID-19-tocilizumab 
treatment 

Changes in the 
lipoprotein particles 
levels and composition 
associated with severe 
disease 
– Triglyceride content 
and VLDL at higher 
levels; a decrease in 
HDL 

– The percentage of 
cholesterol/cholesteryl 
esters in HDL, and IDL 

Acetoacetate, 
3-hydroxybutyrate, 
phenylalanine, and the 
ratio of apolipoprotein B 
to A1 (ApoB/ApoA1) can 
be potential biomarkers 
for COVID-19 severity 
Valine levels, triglyceride 
content of VLDL, and the 
ratio of the 
polyunsaturated fatty 
acids (PUFA) were 
associated with 
tocilizumab treatment 

Rendeiro et al. 
[110] 

SARS-CoV-2 Serum COVID-19 
Influenza A 

Free fatty acids, acetone, 
creatinine, and lactate at 
higher levels in 
COVID-19 
Valine, 
2-hydroxybutyrate, 
proline, 
methyl-guanidine, 
glucose, and tyrosine at 
higher levels in 
COVID-19 
Branched-chain amino 
acids (isoleucine and 
valine) at higher levels in 
COVID-19 in comparison 
with Influenza A patients 
Lactate-to-glucose ratio 
can be a potential 
biomarker for the 
up-regulation of the 
glycolysis pathway in 
COVID-19 patients 

Lorente et al. [111]

(continued)
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Table 3 (continued)

Virus Sample patients and/or individuals Relevant remarks References

SARS-CoV-2 Plasma COVID-19 (survivors) 
COVID-19 (patients with a 
worsening condition during 
the sampling period) 

Metabolites described as 
the most important in the 
discrimination, not be 
specific to COVID-19 
disease, since associated 
with inflammation, 
immune response, and 
energy metabolism 
3-hydroxybutyrate, a 
ketone bodies 
representative at higher 
levels in COVID-19 
patients 
BCAAs (branched-chain 
amino acids), including 
leucine and isoleucine at 
levels similar in both 
groups of patients 
Citrate at a lower level in 
the blood plasma in 
COVID-19 patients, 
suggesting changes in the 
TCA cycle 

Baranovicoa et al. 
[113] 

Healthy individuals (HI)* was a term used to describe individuals no-infected with the virus under study; 
HBV-liver cirrhosis (HBV-LC); direct-acting antiviral agents (DAAs), which are used in the treatment 
of hepatitis C; Acquired immune deficiency syndrome (AIDS); intensive care unit (ICU); severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2); triglyceride (TG); cholesterol (TC); tricarboxylic 
acid (TCA) cycle; Very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL); low-
density lipoproteins (LDL); high-density lipoproteins (HDL); α-1-acid glycoprotein signal A (Gly A); 
α-1-acid glycoprotein signal B (Gly B) Lysophosphatidylcholines (LysoPCs)

studies identified a decrease in the alanine, glutamine and histidine may be associated 
with disrupted hepatic amino acid metabolism and hepatic damage. The hepatic or 
renal metabolism changes were also suggested by increased levels of creatine, crea-
tinine, and phenylalanine in comparison to healthy individuals. Correia et al. also 
corroborated with this data showing that metabolomics from samples of COVID-19 
patients is a powerful tool for a better understanding of the SARS-CoV-2 mecha-
nism of action and metabolic consequences of the infection in the human body. They 
showed Glycerol, 3-aminoisobutyrate, formate, and glucuronate levels as alternated 
in COVID-19 patients, affecting the lactate, phenylalanine, tyrosine, and trypto-
phan biosynthesis, D-glutamine, D-glutamate, and glycerolipid metabolisms. Thus, 
SARS-CoV-2 infection presents disturbance in the energetic system, supporting the 
viral replication and corroborating with the severe clinical condition of the patient 
[124]. 

Another NMR-based metabolic approach that has been employed is the differen-
tial between COVID-19 patients and individuals that developed severe acute respi-
ratory distress syndrome caused by the H1N1 influenza A virus [111]. In studies



160 B. S. B. Correia et al.

Fig. 11 Dysregulated metabolic pathways of patients caused by viral infections [114]

performed by Izquierdo-Garcia et al., the samples were analyzed by high-resolution 
magic angle spinning (HR-MAS-NMR), aiming to reduce the linewidth of the NMR 
due to macromolecules, such as proteins and lipids. HR-MAS reduces the line width 
of NMR spectra by spinning at a magic angle to a magic angle (54.7°) about the 
magnetic field. Serum samples of patients with viral infection in the intensive care 
unit (ICU) were analyzed by HR-MAS NMR at 4 °C to minimize metabolic degra-
dation. From 1H spectra, the metabolites were identified by the Chenomx Profiler 
tool. Statical modeling of NMR data provided discrimination between the COVID-
19 and H1N1 patients. The ICU patients due COVID-19 showed up-regulation of 
energy-generating pathways, such as glycolysis, fatty acid degradation, CoA biosyn-
thesis, glycerolipids, and glycerophospholipids metabolism. A potential biomarker 
described for up-regulation in the glycolysis pathway of patients with SAR-CoV-
2 infection was increased lactate/glucose ratio, when compared to patients with



The Use of NMR Based Metabolomics to Discriminate Patients … 161

Table 4 1H NMR assignment of common metabolites finding in biofluids [113, 115–119] 

Metabolites Chemical shift (ppm), multiplicity, 
integrals 

Biofluid 

Lipids and Lipoproteins 

Lipoprotein 0.82–0.93 (m), 1.20–1.37 (m) Blood 

Alcohols and derivatives 

Ethanol 1.17 (t; 3H) 3.65 (q; 2H) Blood 

Amines and derivatives 

Dimethylamine 2.50 (s; 6H) Urine 

Trimethylamine 2.88 (s; 9H) Urine 

Trimethylamine-N-oxide 3.25 (s; 9H) Blood, Urine 

Urea 5.78 (s; 4H) Urine 

Amino acids and derivatives 

1-Methylhistidine 3.06 (dd; 1H), 3.16 (dd; 1H), 3.69 (s; 
3H), 3.96 (t; 1H), 6.99 (s; 1H), 7.89 (s; 
1H) 

Urine 

2-Aminobutyric acid 1.18 (d; 3H), 2.59 (m; 1H), 3.02 (dd; 
1H), 3.10 (dd; 1H) 

Blood 

2-Furoylglycine 3.92 (s; 2H), 6.62 (dd; 1H), 7.20 (dd; 
1H), 7.85 (dd; 1H) 

Urine 

Alanine 1.47 (d; 3H), 3.78 (q; 1H) Blood, urine 

Arginine 1.53 (m; 1H), 1.59 (m; 1H), 1.86 (td; 
2H), 3.17 (t; 2H), 3.77 (t; 1H) 

Urine 

Asparagine 2.84 (dd; 2H) 3.84 (t; 1H) Blood 

Betaine 3.89 (s; 2H), 3.25 (s; 9H) Urine 

Creatine 3.02 (s; 3H) 3.92 (s; 2H) Blood, urine 

Creatinine 3.03 (s; 3H) 4.04 (d; 1H) 4.09 (d; 1H) Blood, urine 

Glutamic acid 2.04 (m; 2H), 2.13 (m; 2H), 3.35 (m; 
1H), 3.75 (m) 

Blood 

Glutamine 2.12 (td; 2H) 2.42 (dt; 1H) 2.46 (dt; 1H) 
3.76 (t; 1H) 

Blood 

Glycine 3.55 (s; 2H) Blood, urine 

Guanidinoacetic acid 3.75 (s;2H) Urine 

Histidine 3.15 (dd; 1H) 3.24 (dd; 1H) 3.98 (t; 1H) 
7.07 (s,1H) 7.82 (s; 1H) 

Blood, urine 

Isoleucine 0.92 (t;3H) 1.00 (d; 2H) 1.00 (d; 1H) 
1.25 (m; 2H) 1.97 (m;1H) 3.66 (t; 3H) 

Blood 

Leucine 0.94 (d; 3H), 0.96 (d; 3H), 1.71 (m; 3H); 
3.73 (dd; 1H) 

Blood 

Lysine 1.43 (m; 2H) 1.72 (tt;2H) 1.90 (dtd; 1H) 
2.12 (dtd; 1H) 3.01 (t; 1H) 3.74 (t; 1H) 

Blood

(continued)
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Table 4 (continued)

Metabolites Chemical shift (ppm), multiplicity,
integrals

Biofluid

Methionine 2.11 (dtd; 1H) 2.12 (s; 3H) 2.19 (dtd; 
1H) 2.63 (t;2H) 3.85 (t; 1H) 

Blood, urine 

Dimethylglycine 2.92 (s; 6H), 3.72 (s; 2H) Blood, urine 

Ornithine 1.78 (tt; 2H) 1.94 (td; 1H) 3.04 (t; 2H) 
3.74 (t; 1H) 

Blood 

Phenylalanine 3.12 (m; 1H), 3.28 (m; 1H), 3.99 (dd; 
2H), 7.32 (d; 2H), 7.40 (t; 1H), 7.42 (t; 
2H) 

Blood 

Proline 1.47 (m;1H) 1.75 (m; 2H) 2.20 (m; 1H) 
2.99 (ddd; 1H) 3.40 (ddd; 1H) 3.57 (dd; 
1H) 

Blood 

Sarcosine 2.73 (s; 3H) 3.60 (d; 1H) 3.78 (d; 1H) Blood, urine 

Taurine 3.25 (t;2H), 3.41 (t;2H) Urine 

Threonine 1.32 (d; 3H), 3.58 (d; 1H), 4.25 (m; 1H) Blood 

Tryptophan 7.19 (t; 1H), 7.28 (t; 1H), 7.32 (s; 1H), 
7.54 (d; 1H), 7.73 (d;1H) 

Blood 

Tyrosine 6.88 (d; 2H), 7.18 (d; 2H) Blood 

Valine 0.97 (d; 3H), 1.03 (d; 3H), 2.25 (m; 1H), 
3.59 (d; 1H) 

Blood, urine 

Benzene and substituted 
derivatives 

Benzoic acid 7.47 (dd; 2H), 7.54 (t; 1H), 7.86 (d; 2H), Urine 

Mandelic acid 4.93 (s, 1H), 7.13 (m, 1H), 7.41 (tt, 1H), 
7.44 (m, 1H), 7.45 (m, 1H) 

Urine 

Hippuric acid 3.96 (d, 2H), 7.54 (m, 2H), 7.63 (tt, 1H), 
7.83 (dd, 2H) 

Urine 

Carboxylic acids 

2-Hydroxybutyric acid 0.89 (t; 3H) 1.64 (m; 2H) 3.98 (t; 1H) Blood 

Acetic acid 1.91 (s; 3H) Blood, urine 

Citric acid 2.52 (d; 2H), 2.68 (d; 2H) Blood, urine 

Formic acid 8.45 (s; 1H) Blood, urine 

Fumaric acid 6.38 (s;2H) Urine 

Imidazole 7.26 (s; 3H) Urine 

Lactic acid 1.32 (d; 3H), 4.10 (q; 1H) Blood, urine 

Proline betaine 3.57(s;1H), 3.31 (s; 2H), 3.26 (s; 6H), 
2,58 (s; 2H), 2.02 (s; 2H) 

Urine 

Succinic acid 2.39 (t; 4H) Blood, urine 

Tartaric acid 3.70 (d; 1H), 4.34 (d; 1H) Urine

(continued)
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Table 4 (continued)

Metabolites Chemical shift (ppm), multiplicity,
integrals

Biofluid

Trignolline 4.33 (s; 3H), 8.07 (m; 1H), 8.83 (m; 
2H), 9.11 (s; 1H), 

Urine 

Fatty acids and derivatives 

2-Methylsuccinic acid 1.09 (m; 3H), 2.12 (dd; 1H), 2.51 (dd; 
1H), 2.61 (td; 1H), 

Urine 

Essential nutrient 

Choline 3.19 (s; 6H) 3.50 (m; 2H) 4.10 (s; 2H) Blood 

Keto acids and derivatives 

2-Oxoglutaric acid Blood, urine 

3-Hydroxybutyric acid 1.19 (d; 2H) 2.29 (dd; 1H) 2.39 (dd; 1H) 
4.14 (td; 1H) 

Blood, urine 

Acetoacetic acid 2.27 (s; 3H) 3.43 (s; 2 H) Blood, urine 

Acetone 2.22 (s; 6H) Blood, urine 

Oxaloacetic acid 3.32 (s; 2H) Urine 

Pyruvic acid 2.37 (s; 3H) Blood, urine 

Purine, Pyridine, and Pyrimidine 
derivatives 

1-Methyladenosine 3.49 (dd; 1H), 3.75 (dd; 2H), 3.97 (s; 
3H), 4.12 (td; 1H), 4.68 (dd; 1H), 5.90 
(d; 1H), 8.28 (s; 1H), 8.31 (s; 1H) 

Urine 

1-Methylnicotinamide 4.47 (s; 3H), 8.18 (t; 1H), 8.89 (d; 1H), 
8.96 (d; 1H), 9.28 (d; 1H) 

Urine 

Adenosine 3.49 (td; 1H), 3.49 (dd; 1H), 3.75 (dd; 
1H), 3.91 (dd; 1H), 4.62 (d; 1H), 4.73 
(dd; 1H), 8.49 (s; 2H) 

Urine 

Allatoin 4.12 (s; 1H) Urine 

Allopurinol 7.51 (s; 1H), 8.01 (s; 1H) Urine 

Caffeic acid 6.33 (d; 1H), 6.92 (d; 1H), 7.06 (dd; 
1H), 7.14 (d; 1H), 7.29 (d; 1H) 

Urine 

Inosine 3.86 (dd; 1H), 3.93 (dd; 1H), 4.34 (dd; 
1H), 4.38 (td; 1H), 4.78 (dd; 1H), 6.09 
(d; 1H), 8.49 (s; 2H) 

Urine 

Sugars and derivatives 

D-Galactose 3.71 (t; 1H ) 3.71 (dd; 1H) 3.75 (quint; 
2H) 3.81 (dd; 1H) 3.99 (d, 1H) 5.27 (d; 
1H) 

Blood, urine 

D-Glucose 3.25 (m; 1H), 3.41 (m; 2H), 3.48 (m; 
2H), 3.54 (dd; 1H), 3.72 (m; 3H), 3.76 
(dd), 3.82 (m; 2H), 3.89 (dd; 1H), 4.65 
(d; 1H), 5.23 (d; 1H) 

Blood, urine

(continued)
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Table 4 (continued)

Metabolites Chemical shift (ppm), multiplicity,
integrals

Biofluid

D-lactose 5.18 (s; H), 4.63 (s; H), 4.12 (s; H), 3.84 
(s; H), 3.81 (s; H), 3.75 (s; H) 3.63 (s; 
H) 3. 53 (s; H) 

Urine 

D-mannitol 3.61 (dd;1H) 3.71 (td;1H) 3.71 (dd;1H) 
3.72 (td;1H) 3.83 (dd;1H) 3.84 (dd;1H) 
3.88 (dd;1H) 

Urine 

D-mannose 3.47 (dt; 1H) 3.68 (dd; 1H) 3.75 (dd; 
1H) 3.80 (dd; 1H) 3.82 (dd; 1H) 3.95 
(dd; 1H) 5.21 (d; 1H) 

Urine 

Glucuronate 3.27 (m; 1H), 3.49 (m; 2H), 3.57 (dd; 
1H), 3.71 (m; 1H), 4.05 (d; 1H), 4.65 (d; 
2H), 5.23 (d; 1H) 

Blood 

Glycerol 3.55 (m; 4H), 3.64 (m; 4H), 3.78 (m; 
1H) 

Blood 

Myo-Inositol 3.87 (t; 1H) 3.87 (dd; 2H) 4.12 (dd;2H) 
4.12 (dd; 1H) 

Urine 

Sulfones 

Dimethylsulfone 3.14 (s; 6H) Blood

influenza A. The decrease in the amino acid metabolism in COVID-19 patients is 
mainly due to isoleucine and valine at low levels. The branched-chain amino acids 
levels may be associated with intense inflammatory of host-response, the authors 
suggesting that the lower levels of BCAAs in COVID-19 patients may be indicative 
of less intense inflammatory response in patients infected with SARS-CoV-2 than 
influenza A patients [111]. 

The metabolomic data and immune response were used to develop the approach 
to stratification of COVID-19 patients. Through regularized Canonical Correlation 
Analysis (rCCA), both NMR and flow cytometry datasets were integrated, and 
six groups were characterized by distinct clinical parameters and an abundance 
of immune-metabolic species [110]. The groups characterized by mild COVID-19 
patients were differentiated by distinct BMI, liver enzyme levels, and triglyceride 
content of lipoproteins. While stratifying between “late” and “earlier” severe COVID-
19 patients, one of the main factors was creatinine level, being at a higher level in 
the late group than that the “earlier” severe group [110]. 

The response of COVID-19 patients to drug therapy is also being monitored by 
metabolic changes. Salvatore et al. reported a metabolomics study of ten COVID-
19 patients hospitalized with hyper inflammation before and after treatment with 
Tocilizumab. The metabolic profile of the patients treated with Tociluzumab was 
more similar to patients with milder infection viral. However, the metabolites are 
associated with the severity of COVID-19 patients [110].



The Use of NMR Based Metabolomics to Discriminate Patients … 165

3.2 Metabolomics Analysis in Hepatitis C Viral Infection 

Chronic hepatitis C virus infection can lead to progressive liver diseases, such as 
chronic liver disease, cirrhosis, and hepatocellular carcinoma [125, 126]. Similar to 
other forms of chronic liver disease, the progression of the viral infections caused by 
HCV is accompanied by liver fibrosis. The liver biopsy is the gold standard method for 
detecting liver disease and fibrosis through different semiquantitative and validated 
histological scores. The METAVIR system scores fibrosis on a scale ranging from 0 
to 4, where F0 indicates the absence of fibrosis and F4 is a fully developed cirrhosis. 
There is currently an immense interest in the diagnosis and prognosis for hepatitis 
viruses in a non-invasive way. In this context, NMR-based metabolomics studies 
have been performed to identify potential biomarkers for HCV, as well as HBV and 
HEV, to effectively distinguish patients in different stages and healthy individuals 
[125–128]. 

The liver plays a central role in energy and lipid metabolism. Liver diseases affect 
lipids levels, including those caused by HCV, hepatitis B virus (HBV), and hepatitis E 
virus (HEV). Serum lipid profile can be a biomarker of liver insufficiency in fibrosis 
and cirrhosis patients [112]. According to Millet and collaborators [112], low-density 
lipids, such as VLDL and VLDL2, were found at higher levels in HCV-cirrhosis 
patients when compared to healthy individuals. The serum of patients with HBV 
and HBV-LC also exhibited a high concentration of unsaturated lipid in comparison 
to healthy individuals. On the other hand, the low-density lipoproteins (LDL) and 
lipoproteins with higher densities (HDL) were observed at lower levels in cirrhotic-
HCV patients compared to HCV non-fibrotic patients [112]. In another study [83], the 
spectra profile of serum of HCC and HCV patients showed clear differences. From 
broad signals of the 1H spectra, the fatty acid methyl and methylene moieties were 
determined, however, lipids with different fatty acid chains were not differentiated 
due to their overlapping signals [83]. 

Silva et al. also reported differences between coinfected patients with schistosomi-
asis and HBV/HCV chronic infection and HBV/HCV chronic monoinfected patients 
regarding the levels of HDL and triglycerides. By conventional assays, these metabo-
lites did not present any statistically significant in the different analyzed groups [94]. 
Similarly, Gao et al. [81] reported that HBV-LC and HBV patients had a higher level 
of saturated/monounsaturated fatty acid and a lower level of polyunsaturated fatty 
acid than healthy individuals. 

Undoubtedly, in the different works reported in the literature, there is a great vari-
ation of several metabolites, mainly low molecular weight metabolites, between the 
groups of patients infected with the hepatitis virus. They are assigned to different 
metabolites, such as amino acids, organic acids, creatine, creatinine, and choline, 
among others. Since then, NMR-based metabolomic studies have demonstrated alter-
ations in biological pathways of the patients with viral infection caused by hepatitis, 
mainly energetic metabolism involving glutamine/glutamate, carbohydrates, ketone 
bodies, and lipids. The distinction between analyzed groups is reported by comparing 
the concentrations of only a reduced set of metabolites [86, 87, 112].
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A pilot study reported by Simas et al. in 2010 demonstrated the potential of NMR-
based metabolomics on urine samples for differentiating patients infected with HCV 
from healthy individuals with sensitivity and specificity [82]. 

In the serum metabolite comparison of HBV, HBV-liver cirrhotic and healthy 
individuals, the histidine, n-acetylglicoprotein, phenylalanine, acetone, unsaturated 
lipid, and citrate were the main metabolites for differentiation of the analyzed groups 
[81]. Compared to HBV patients, serum phenylalanine and unsaturated lipid concen-
trations were higher in the serum of patients in the severe stage (HBV-LC), while that 
n-acetylglycoprotein and acetone were found at lower levels. To distinguish HBV 
patients from healthy individuals, the serum histidine and citrate were described as 
important metabolites that contributed to the distinction of these groups [81]. 

The differentiation between the metabolomics profile of individuals with hepato-
cellular carcinoma (HCC) from the Hepatitis C virus (HCV) population was achieved 
through OSP-PLS analysis of the NOESY spectra. Therefore, the contributions of 
lipids were most prominent, however, the lipids responsible for separation were not 
attributed. About low-molecular-weight metabolites, creatinine, valine, and choline 
were found at higher levels in HCC patients than in HCV. Choline is an important 
metabolite in several cancer types in high concentrations, which plays a key role in 
the synthesis of phospholipids for cancer cell membranes and donors in methylation 
reactions. The advanced stages of liver fibrosis/cirrhosis in both diseases, HCC and 
HCV, can lead to a higher concentration of this metabolite [83]. 

A cross-platform serum metabolomics study compared the performance of MSI-
CE-MS and NMR methods standardized protocols [88]. Both platforms offered 
similar reproducibility with a good mutual agreement to classify HCV individuals in 
different stages of the disease. The researchers highlighted the NMR metabolomics 
approach by an automated spectral processing and deconvolution software, as well 
as the identification and quantification of metabolites by a serum-specific metabolite 
library. However, there are disadvantages of 1D NMR over MSI-CE_MS. MSI-
CE-MS spectrometric was improved resolution and lower detection limits, as result, 
MSI-CE-MS, 60 serum metabolites were found in the HCV patient samples, while by 
NMR platform were determined 47 metabolites, being 30 serum metabolites were 
reliably determined in most non-HCV controls and HCV patients. In both instru-
mental platforms, serum choline and histidine metabolites were found as the best 
biomarkers to distinguish between HCV patients in late-stage fibrosis and early-
stage fibrosis HCV individuals [88]. In other studies, choline is also one of the most 
significant biomarkers to assess liver cirrhosis in HCV individuals [112]. It is worth 
mentioning that several other serum metabolites were determined with increasing 
liver fibrosis, such as asparagine, arginine, tyrosine, and hydroxyproline [87]. 

Serum creatine and creatinine levels are also associated as biomarkers to differen-
tiate HCV patients of different fibrosis stages [112]. These metabolites were found 
at higher levels in HCV patients in the non-fibrotic than HBV-LC patients. Crea-
tine is an important metabolite in the energy transfer process, which is synthesized 
primarily in the liver and is again involved in the general energy supply [113]. 

Glucose is a metabolite with significant variations in its concentration in the 
serum of patients infected with hepatitis virus [85, 112]. As reported by Millet et al.
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in NMR-based metabolomics [110], HCV-cirrhosis patients present a high level of 
serum glucose when compared to HCV-no cirrhosis individuals. Similarly, Embade 
et al. reported towards patients with mild or severe chronic liver in comparison to 
healthy individuals. The severity of liver diseases is also associated with glucose 
metabolism changes. The high level of serum glucose in severe cirrhosis patients 
may be related to reduced metabolism via the tricarboxylic acid cycle. Also, the 
upregulation of serum glucose is associated with a lower level of glycerol, which can 
be metabolized to glucose in the liver and result in energy for cellular metabolism 
[112]. 

4 Conclusions and Future Perspectives 

Amongst the methodologies reported, communication efforts are required to make 
end-users aware of recent methodological advances. Otherwise, NMR method 
improvements may not cross laboratory doors to meet the outside world. Efforts 
to standardize the metabolomics protocols and solve pattern metabolomics issues 
allow the integration of international cooperation to determine the metabolism type 
of a wide range of viral diseases. 
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