
Bebras Tasks Based on Assembling
Programming Code

Jiří Vaníček(B) , Václav Šimandl , and Václav Dobiáš

University of South Bohemia, České Budějovice, Czech Republic
{vanicek,simandl,dobias}@pf.jcu.cz

Abstract. The paper examines the creation and evaluation of so-called situational
informatics tasks based on assembling a program fromblocks. Blockly technology
has enabled us to develop an environment where templates, called “worlds“, can
be created. In these worlds, pupils program a certain sprite to solve a problem
emerging in a described situation. We created two such templates – the world
of Karel the robot and the world of Film animation, differing both in behavior
of sprites and set of commands. Each template was supplied with its own set of
tasks, differing in topic, subject matter and graphics. As they go through each task,
pupils repeatedly run the assembled program, being provided by the system with
feedback. That comprises a visual check of how the programmed sprite behaves as
well as system-generated notifications reporting whether all the requirements for
completing a task have been met. The tasks that were compiled for this purpose
were included in the Bebras Challenge. In our paper, we describe each of the
templates and look at their didactic background as well as examining findings
from the practical use of these tasks in the Challenge and their inclusion in the
informatics curriculum. Results show that tasks created for the world of Karel the
robot used in the Bebras Challenge are no more difficult than other algorithmic
tasks. Moreover, informatics teachers are impressed with these tasks and they find
it of upmost importance that the curriculum includes such tasks in order to advance
pupils’ informatics skills.

Keywords: Computational thinking · Algorithmization · Block programming ·
Primary school · Secondary school · Bebras Challenge

1 Introduction

Programming is generally perceived as a matter of specialized professional training.
However, Gander claims it is an essential part of general public education for the 21st
century [1]. Not only providing us with the opportunity to discover the world from
another perspective and understand how a computer works, programming can also be
perceived as a microworld that can develop an individual’s mental abilities. The direc-
tion of teaching and subsequent choice of appropriate educational content, environment,
motivation and teaching methods all derive from its basic definition. From the perspec-
tive described above, programming is presented in our article as a training ground for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 113–124, 2022.
https://doi.org/10.1007/978-3-031-15851-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_10&domain=pdf
http://orcid.org/0000-0002-2092-6260
http://orcid.org/0000-0002-0652-2446
http://orcid.org/0000-0002-0193-5639
https://doi.org/10.1007/978-3-031-15851-3_10


114 J. Vaníček et al.

developing an individual’s abilities and competences. The same approach is found in
strategic documents like the “Shut down or restart?” study in the United Kingdom [2],
the worldwide ACM computing curriculum [3], CSTAK-12 computer science standards
in the United States [4], our close neighbors’ Štátny vzdelávací program in Slovakia [5]
and Podstawa programowa z informatyki in Poland [6].

If we consider education’s general aim as being to primarily develop personality,
in the field of informatics it is the development of computational thinking [7] as the
ability to find a solution to a problem in a form which could be automatically carried
out by an information-processing agent. Algorithmization, i.e. identifying a method or
process to achieve a goal and formulating it in a way so that such an agent could read
and perform it, is a fundamental part of computational thinking. This term became the
mainstay for defining school curriculum content in the above-mentioned countries as
well as the Czech Republic in its government Strategy of Digital Education [8] and in
its proposal for new General Curriculum programs [9].

According to Cuny, Snyder and Wing, the idea of computational thinking for every-
one involves abilities such as understanding what aspects of a problem are amenable to
computation, evaluating the match between computational tools and techniques and a
problem, using or adapting a computational tool for a new use and identifying opportu-
nities to use computation in a new way [10]. In order to be able to develop these abilities
through programming, we must try to find suitable approaches, situations, tasks and also
environments which will highlight and emphasize these goals. Wittmann defines such
an environment as a set of interconnected situations providing problems which enable a
pupil to identify important thoughts [11].

Xia defines teaching of programming as supporting students to understand the con-
cepts of programming via hands-on experiences and learning as the activity of obtaining
useful programmingknowledge and skills by studying [12].Manyapproaches to teaching
programming favor student activity, active learning, learning by doing, and the construc-
tion of knowledge as a result of active creative work. All this with respect to the fact that
knowledge andknowing are not transmittable.According toPiaget, knowledge is actively
constructed by the learner in interaction with the world, so, as Ackermann [13] suggests,
it is worth providing opportunities for children to engage in hands-on explorations that
fuel the constructive process. Ackermann quoted Piaget’s theory that “children interpret
what they hear in the light of their own knowledge and experience”, and his belief that
“knowledge is formed and transformed within specific contexts, shaped and expressed
through different media” [14]. How one constructs knowledge is a function of the prior
experiences, mental structures, and beliefs that one uses to interpret objects and events
[15].

Two basic types of programming tasks can be found in coursebooks and manuals
for the teaching of programming:

• “Études” lasting several minutes, always focused on a specific skill or programming
concept, their aim being particular knowledge acquisition;

• Bigger “projects”, often in the form of creating stories or games which are more
complex, the outcome being a product.



Bebras Tasks Based on Assembling Programming Code 115

Études allow better detection of a learner’s error and appropriate sorting of such tasks
facilitates the creation of mental models of a learner. Projects require a combination
of more skills at the same time, including planning and creativity; the created longer
programming codes require more knowledge from a learner but this is counterbalanced
by higher motivation, as a learner works towards a final product. For example, études
were used in the textbook [16], projects were used in the textbook [17].

If a learner solves problems by creating software, specifically by assembling a pro-
gram, a teacher can get feedback by analyzing the written program to determine how
a learner has understood the situation which the problem he/she is solving occurs in;
how well he/she understands the concepts he/she uses; what level he/she has reached in
terms of elements of computational thinking like algorithmization, decomposition and
generalization; or the approaches he/she uses to solve problems [18].

The Bebras Challenge has contributed to the development of computational thinking
for a number of years [19], being held in more than 60 countries worldwide [20]. Via
an online test, the tasks put learners in a situation where they have to determine the
corresponding informatics concept and select an answer by applying their computational
thinking. The situational tasks used in the Bebras Challenge – in the Czech version called
Bobřík informatiky [21] – are similar to études in their structure and focus on a particular
informatics concept. The contest consists of an online test so there are multiple-choice,
click on object or drag object tasks. Bebras produces a number of new informatics tasks,
contributing to innovations in the school curriculum, someof the tasks being incorporated
into new Czech informatics coursebooks [22].

1.1 Motivation and Aim

Situational “Bebras” tasks should develop various aspects of computational thinking
including algorithmization. Typical algorithmic tasks used in the contest include identi-
fying start and end state after applying a particular algorithm, comparing several algo-
rithms with a task assignment, considering rules for carrying out a computation, identi-
fying an error in an algorithm or its optimalization. The contest did not include tasks to
be answered by assembling a program, which restricted the variety of informatics tasks
in the contest.

We tried to find a solution that would enhance the existing contest to include tasks
where, just like in the programming environments used in schools, contestants could
assemble a program from blocks. This would involve using the widespread concept of
block programming, known from programming environments like Scratch, Blockly or
MakeCode, which learners are familiar with from informatics or robotics coursebooks.
Such a solution will bring innovation into the Bebras Challenge which will benefit from
this newly developed type of tasks.

2 Methods

Solutionmethodology proceeds from design-based research as per Trna [23]. To develop
the software module, we first analyzed familiar open source block programming envi-
ronments (e.g. Scratch, Blockly, MakeCode) to determine whether they could be used



116 J. Vaníček et al.

to create the software module, primarily in terms of pedagogy and implementation. We
then analyzed familiar “worlds” which the programming tasks would be created in (e.g.
Karel the Robot, turtle graphics, Baltie the magician) in terms of:

• their ability to cover the curriculum range (minimum of pre-entry knowledge,
maximum of educational aims),

• their suitability for the creation of a set of tasks that progress in small steps with
regards to acquired knowledge

• their suitability for the creation of particular “contest” tasks, considering the specific
nature of each one.

2.1 Design

We designed and developed a software environment where interactive situational pro-
gramming tasks can be created. A learner solves a problem in it by assembling a program
from blocks and is given the possibility of testing and debugging his/her program. We
implemented a modified module of Blockly [24] into our environment.

The advantage of block programming is that it prevents syntax errors. In our imple-
mentation, it also has a limited set of programming commands, which encourages learn-
ers to think rather than searching for a tool that could conveniently solve the problem
for them.

As they go through each task, pupils repeatedly run the assembled program, being
provided with feedback by the system. That comprises a visual check of how the pro-
grammed sprite behaves as well as system-generated notifications as to whether all the
requirements for completing a task have been met. The environment enables the creation
of sets of tasks that follow on as the learner progresses, similar to Hour of Code activities
[25], resulting in tasks of increasing difficulty with the progressive employment of more
complex concepts and situations.

Each time a learner asks for a program to be run by clicking on Run button, the
system simultaneously saves the learner’s program along with information as to whether
his/her solution hasmet all assigned requirements and the number of attempts the learner
required to create the right program.

To accompany this software environment, we developed two templates of program-
ming tasks, so-called “worlds”, each having program-controlled sprites that behave dif-
ferently and each having different sets of basic commands. Each template was supplied
with its own set of tasks, differing in topic, subject matter and graphics.

1st World: Controlling the Robot.
Thefirst template simulated “theworld ofKarel the robot” [26], a sprite thatwalks around
a system of squares picking up and putting down objects. The basic set of commands
can move the programmed sprite around the game board one square at a time, make a
quarter turn in both directions, detect objects on the square where the sprite is located
and remove such an object from a square or place an object on a free square. It can
also detect an obstacle on an adjacent square in the direction the sprite is facing. The
basic language commands were supplemented with a Repeat structure, constituting a
loop with a fixed number of repeats (see Fig. 1).



Bebras Tasks Based on Assembling Programming Code 117

Fig. 1. The world of Karel the robot and the task in which learners are assigned to collect gears.
The program created by a learner to complete the task is in the middle.

We chose “the world of Karel the robot” as it is simple enough for a learner to under-
stand and manage the basics of the language so that he/she can quickly move on to more
complicated tasks. The advantages of this “world” include the possibility to create real
situations, the visual clarity of the sprite’s status, facing one of the four main directions
so not requiring a turning angle parameter as well as the limited number of basic lan-
guage commands (step forward, turn, pick, put). Another advantage is the absence of
more complicated terms like object, coordinates, procedure or variable. This reduces the
amount of time needed to get acquainted with the environment, meaning that learners
can soon progress onto and concentrate more intensively on the algorithmic core of the
solved problems.

Typical tasks in this world were to go to a particular place, avoid an obstacle, pick up
equally distributed objects or find a way composed of multiple parts. In this world, we
have created a set of programming tasks which gradually increase in difficulty. The loop
programming concept was used to repeat one block, assemble a program with blocks
preceding and/or following a loop; with several blocks in the loop body; with several
loops following each other in a program and find a way to complete a task using the
shortest possible programming code. From the 4th task on, the number of blocks that
could be used in a program was limited, forcing learners to shorten code and use the
loop.

2nd World: Animation
The other developed template was the so-called “World of Film”, in which a sprite is
programmed to change its position and size over time. The sprite has four parameters:
position X, position Y, size and rotation (as opposed to one basic direction). The pro-
gramming language has one basic command Sprite, which draws a sprite on the game



118 J. Vaníček et al.

board in the place given by the parameters of X, Y positions, its size given by a param-
eter and rotated by a given number of degrees. This command was supplemented with a
block for creating mathematical expressions with basic arithmetic operations and the If
structure controlling the time condition (e.g. whether time has exceeded a certain value).

Fig. 2. The World of Film. Learners are assigned to animate an apple falling from a tree (the
situation in the picture having a time value of 70). The correct solution to the task can be seen in
the middle, the time variable having been used in the expression.

Animation is carried out in such a way that when the program is run, the time variable
continuously changes its value from 0 to 100 and the Sprite command is performed for
each of these values. The time variable can be used as a parameter in a command. If the
value of the X position parameter is set equal to the time variable, the X position will
continuously change from 0 to 100 and the sprite will move uniformly from left to right
over the whole game board.

The learner is assigned the programming task by running animation of the pro-
grammed sprite’s shadow. The learner’s task is to create a program (i.e. assemble param-
eters of the Sprite block) to make his/her sprite behave in the same way as its shadow,
i.e. both objects should overlap each other throughout the animation (see Fig. 2). The
learner has the possibility of running the program repeatedly, animation having the time
value of 0 to 100. He/she can also use a scroll bar to manually set any value of the time
variable and analyze the situation at a given time (see Fig. 3).

Whereas the didactical aim of the world of Karel the robot is to get fluent with loops,
the world of Film aims to understand procedures with parameters. The world of Film is
based on the parameter concept, working with the variable and primarily with expres-
sions. The method of programming in this world is close to functional programming.
Consisting of more complicated concepts than the world of Karel the robot, it is more
suitable for learners at high school or in their final years of lower secondary school.



Bebras Tasks Based on Assembling Programming Code 119

Fig. 3. Phased animation of a task requiring a spaceship to land on a planet in time values of 0,
25, 50, 75, 100, showing the shadow of the planet getting closer and bigger over time.

In this world, learners were typically assigned to move a sprite horizontally or vertically
in uniform motion (motion from right to left is more complicated than motion from
left to right due to position becoming smaller as against time), to move it around more
slowly and more quickly, to combine motion in those directions, to make the sprite grow
or shrink over time and to combine growth with the motion of the sprite. In this world,
we created a set of programming tasks which gradually increase in difficulty. More
simple tasks include placing a sprite in a specific position in the coordinate system or
increasing one of its coordinates in relation to time. More complicated tasks include the
use of expressions to decrease one of the sprite’s coordinates or its size as time increases,
the combination of several parameters dependent on time (e.g. motion on the diagonal
or simultaneous motion and shrinking of a sprite). The most difficult tasks combined
several motions over time (e.g. motion there and back during one animation), applying
decision-making.

2.2 Evaluation

The created environment for assembling programs from blocks was implemented as a
module in the Czech edition of Bebras Challenge.We used the created tasks in twoways.

As programming is not a compulsory part of Czech Informatics curricula, we sup-
posed that many pupils have no programming skills. Thus, we created a special set of
tasks called Blocks which contained tasks from the world of Karel the robot. We offered
this set of tasks to schools as preparation for the national round of the contest. During
September and October 2021, this test of 11 questions was taken by 45 000 learners
at lower secondary and high schools. Having examined findings drawn from feedback
from schools and from a consulting expert’s review, we made improvements to the
environment and tasks. Problems with graphics not working properly in some tasks in
some browsers were most common. There were also reports of difficulties in transition
between task 4 and 6, caused by a very large cognitive step. We solved this problem by
inserting another task 5 and adding explaining elements to the task questions.

The national round of the Bebras Challenge was another iteration for verification.
Each of the 109 442 contestants worked on 3 completely new tasks from the world of
Karel the robot (the total number of tasks being 12). Tasks in older age categories were
based on more complex algorithmic situations. This iteration allowed us to determine to
what extent these new tasks are more difficult than other algorithmic tasks and to what
extent they are more difficult than the average task (see Results for further details).



120 J. Vaníček et al.

Verification of the world of Film was also carried out in two iterations, despite fewer
contestants having participated. During January and February 2022, a set of 12 tasks of
this type served as a practice set for contestants that had qualified for the central round
in the category for the oldest pupils. 546 learners worked on this set of tasks.

The second iterationwas carried out in the central round itself, which 358 contestants
took part in. The test was made up of 15 tasks, 3 of which were from the world of Film
(one of them is shown in Fig. 4) and another 3 from the world of Karel the robot. It
means that 40% of the tasks involved programming by assembling programming code
from blocks. Verification showed that these tasks can be used at such a high level as the
central round of a nationwide contest.

Fig. 4. A complex task where the sprite first moves closer and then moves away, taken from
the central round of the contest, using program branching depending on the time parameter. The
correct solution being on the left, its phased animation is on the right in time values of 10, 30, 50
and 80 (at time 0 and 100, the flying saucer measured zero).

Following verification, we had to improve the method of the learner’s data evaluation
while solving a task. There were deviations in computations when using parameters in
combination with multiplication and division (e.g. multiplication by 0.001 and division
by 1000 did not give the same result), which, in rare cases, led to incorrect evaluations
of learners’ solutions.

It also emerged that rotating a sprite visually by angular degrees is not optimal as it
had rotated the sprite by 100° by the end of the animation. Learners can easily recognize
a 90° rotation but for the sprite to rotate by 90° during a time interval of 100, it would
have to be rotated in grades rather than in angular degrees, i.e. in units that learners are
not acquainted with in schools. For that reason, we finally decided not to use the rotation
parameter in tasks.

3 Results

In order to compare the difficulty of programming tasks involving assembling blocks as
against other algorithmic task, we worked with proportion of contestants that had been
able to solve a task, which is the factor for describing task difficulty [27]. While devising
tests for the Challenge, we made efforts to create programming tasks which difficulty
coincided with the overall difficulty level of algorithmic tasks. A verification process
was used to ascertain whether we had managed to do so.



Bebras Tasks Based on Assembling Programming Code 121

First, we used the Anderson-Darling test to ascertain whether success rates for pro-
gramming tasks and other algorithmic tasks are normally distributed. The hypothesis for
testing normality of data was rejected at a significance level of 0.05. We then tested the
equality of variances of both samples. At the level of 0.05 the null hypothesis was not
rejected. Therefore, it can be claimed that variances of both samples are equal.

We subsequently used the two-sided non-parametric Wilcoxon test to ascertain
whether the means of both samples are equal. Since the null hypothesis was rejected at
a significance level of 0.05, we used the one-sided non-parametric Wilcoxon test. This
enabled us to verify whether the mean of the success rate for the programming tasks was
equal to or lower than for the other algorithmic tasks. As this hypothesis was rejected at
a significance level of 0.05, it can be claimed that the success rate for programming tasks
involving assembling blocks is significantly higher than for other algorithmic tasks.

Fig. 5. A comparison of the difficulty level of all tasks included in the 2021 national round of the
contest; tasks that involve assembling programming code are marked in a light color.

When comparing programming tasks with all contest tasks in this year’s national round,
we discovered that, apart from two exceptions, all of these tasks from all age categories
were placed in the top half according to the proportion of correct answers (see Fig. 5). In
this figure, programming tasks involving assembling blocks are marked in a light color.
To confirm a statistically significant difference in the difficulty of programming tasks as
against other task, a verification process was used.

First, we used the Anderson-Darling test to ascertain whether success rates for pro-
gramming tasks and other tasks are normally distributed. The null hypothesis for testing
normality of data was not rejected at a significance level of 0.05. We then tested the
equality of variances of both samples. At a significance level of 0.05 the null hypothesis
was not rejected. Therefore, it can be claimed that variances of both samples are equal.
We subsequently used the two-sided Student’s t-test to ascertain whether the means of
both samples are equal. Since the null hypothesis was rejected at a significance level
of 0.05, we used the one-sided Student’s t-test. This enabled us to verify whether the
mean of the success rate for the programming tasks was equal to or lower than for the
other tasks. As this null hypothesis was rejected at a significance level of 0.05, it can
be claimed that the success rate for programming tasks is significantly higher than for
other tasks.



122 J. Vaníček et al.

It means that programming tasks involving assembling blocks can be declared as
being demonstrably easier for learners. Thismay be due to the fact that the tasks provided
feedback and learners could have several attempts to iterate their answers, unlike in
regular Bebras tasks, where they click on objects or answer multiple choice questions
without receiving any feedback. The attractiveness of this new type of tasks is another
factor that has to be taken into account.

In November 2021we asked 939 school coordinators whowere responsible for orga-
nizing the contest in their school to fill in a questionnaire. 199 replies were received,
representing a 20% rate of return. Therefore, it can be regarded as a statistically
representative sample and the views expressed can be taken into consideration.

One of the questions referred to how teachers rated the new type of Bebras tasks,
based on assembling a program from blocks. Using the Czech school grading system,
almost three quarters of them rated this type of tasks “excellent”, one sixth “very good”
and the remaining tenth “good”, “satisfactory” or “unsatisfactory”.

Fig. 6. Results of the poll question asking teachers whether and how they gave their learners the
opportunity to play the Blocks preparatory test in the world of Karel the robot.

Another question inquired into the extent teachers used their lessons to give learners the
opportunity towork on the type of tasks used in theworld ofKarel the robot. Results show
that almost two thirds of schools involved in the poll had given pupils the opportunity to
prepare for the contest during lessons (for details see Fig. 6). Schools can therefore be
regarded as perceiving this type of tasks to be an appropriate innovation to the curriculum
for advancing learners’ informatics skills.

4 Conclusion

We introduced a new type of informatics tasks into the Czech edition of the Bebras Chal-
lenge, not having previously been used in that informatics contest. The tasks involve the
use of blocks to assemble programming code. Considering the potential of the block envi-
ronment, such tasks are of value both from a motivational and a pedagogical respect.
Apart from their significance in the Bebras Challenge, they will also be of vital impor-
tance in the teaching of computing in primary and secondary schools. The developed tool
can be used to create and test sets of tasks focusing on one concept or one programming
skill, with the possibility of later implementing them into the school curriculum. In the
future the developed module can be enhanced by adding more “worlds” such as turtle
graphics or the world of Baltie the magician.



Bebras Tasks Based on Assembling Programming Code 123

Being able to continuously save created programs, the environment allows monitor-
ing of the way a learner deals with a programming task or the way he/she progresses in
a set of tasks. That will enable future research to examine the programming mistakes a
beginner might make, what kind of instructions might contribute to or eliminate their
occurrence or to reveal misconceptions that might prevent beginners from solving pro-
gramming tasks in a block environment. This could be useful for future compilation
of the programming curriculum for beginners, where appropriate tasks could be cho-
sen either to prevent typical mistakes or, contrarily, to lead a learner into making them,
allowing the potential of failure to be used to develop a learner’s understanding.

Acknowledgement. The research was supported by the project TAČR TL03000222 “Develop-
ment of computational thinking by situational algorithmic problems”.

References

1. Gander, W.: informatics and general education. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP
2014. LNCS, vol. 8730, pp. 1–7. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09958-3_1

2. The royal society: shut down or restart? The Way Forward for Computing in UK Schools.
The Royal Society, London (2012). https://royalsociety.org/~/media/royal_society_content/
education/policy/computing-in-schools/2012-01-12-computing-in-schools.pdf

3. K-12 Computer Science Framework Steering Committee: K-12 Computer Science Frame-
work. ACM, New York, NY (2016). https://dl.acm.org/doi/book/10.1145/3079760

4. CSTA: K-12 Computer Science Standards (2011)
5. Blaho, A.: Informatika v štátnom vzdelávacom programe (Informatics in a state educational

programme). In: Kalaš, I. (ed.) DidInfo 2012, pp. 7–14.Matej Bel University, Banská Bystrica
(2012). http://www.didinfo.net/images/DidInfo/files/didinfo_2012.pdf

6. Sysło, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum for all
school levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378,
pp. 141–154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25396-1_13

7. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006). https://doi.org/
10.1145/1118178.1118215

8. Ministry of education, youth and sports of the Czech Republic: Strategie digitálního
vzdělávání (Strategy of digital education). Ministry of education, youth and sports of the
Czech Republic, Praha (2014). https://www.msmt.cz/uploads/DigiStrategie.pdf

9. Ministry of education, youth and sports of the Czech Republic: Rámcový vzdělávací program
pro základní vzdělávání (Frame educational programme for basic education – basic version).
Ministry of Education, Youth and Sports of the Czech Republic, Praha (2021). https://www.
edu.cz/wp-content/uploads/2021/07/RVP-ZV-2021.pdf

10. Wing, J.M.: Computational thinking: what and why? Carnegie Mellon University, Pittsburgh
(2010). https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

11. Wittmann, E.H.: Developing mathematics education in a systemic process. Educ. Stud. Math.
48(1), 1–20 (2001). https://www.jstor.org/stable/3483113

12. Xia, B.S.: A pedagogical review of programming education research: what have we learned.
Int. J. Online Pedagog. Course Des. 7(1), 33–42 (2017). https://doi.org/10.4018/IJOPCD.201
7010103

https://doi.org/10.1007/978-3-319-09958-3_1
https://royalsociety.org/~/media/royal_society_content/education/policy/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://dl.acm.org/doi/book/10.1145/3079760
http://www.didinfo.net/images/DidInfo/files/didinfo_2012.pdf
https://doi.org/10.1007/978-3-319-25396-1_13
https://doi.org/10.1145/1118178.1118215
https://www.msmt.cz/uploads/DigiStrategie.pdf
https://www.edu.cz/wp-content/uploads/2021/07/RVP-ZV-2021.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.jstor.org/stable/3483113
https://doi.org/10.4018/IJOPCD.2017010103


124 J. Vaníček et al.

13. Ackermann, E.: Constructivism(s): shared roots, crossed paths,multiple legacies. In: Clayson,
J.E., Kalaš I. (eds.) Constructionism 2010: Constructionist Approaches to Creative Learning,
Thinking and Education: Lessons for the 21st Century: Proceedings for Constructionism
2010. Comenius University, Bratislava (2010)

14. Ackermann, E.: Piaget’s constructivism, Papert’s constructionism: what’s the difference?
(2001). http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf

15. Jonassen, D.H.: Objectivism versus constructivism: do we need a new philosophical
paradigm? Educ. Tech. Res. Dev. 39, 5–14 (1991). https://doi.org/10.1007/BF02296434

16. Kalaš, I.: UCL Scratchmaths curriculum. University College London, London (2017). http://
www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials

17. The LEAD Project: Easy LEAD: Super Scratch programming adventure! No Starch Press,
San Francisco (2012)

18. Chao, P.-Y.: Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Comput. Educ. 95, 202–215 (2016).
https://doi.org/10.1016/j.compedu.2016.01.010

19. Dagienė, V.: The bebras contest on informatics and computer literacy – students drive to
science education. In: Joint Open and Working IFIP Conference, ICT and Learning for the
Net Generation, pp. 214–223. Kuala Lumpur (2008). https://www.bebras.org/sites/default/
files/documents/publications/DagieneV-2008.pdf

20. Bebras Challenge. https://www.bebras.org/
21. Bobřík informatiky (Beaver of Informatics). https://www.ibobr.cz/english-uk
22. Berki, J., Drábková, J.: Základy informatiky pro 1. stupeň ZŠ (Basic of informatics for primary

school). Textbook. Technical University of Liberec, Liberec (2020). https://imysleni.cz/uce
bnice/zaklady-informatiky-pro-1-stupen-zs

23. Trna, J.: Konstrukční výzkum (design-based research) v přírodovědných didaktikách. Scientia
in educatione. 2(1), 3–14 (2011). https://ojs.cuni.cz/scied/article/view/11/12

24. Blockly. https://developers.google.com/blockly
25. Hour of code. https://hourofcode.com/
26. Pattis, R.E.: Karel the Robot: Gentle Introduction to the Art of Programming with Pascal.

Wiley, Hoboken (1981)
27. Vaníček, J., Šimandl, V.: Participants’ perception of tasks in an informatics contest. In: Kori,

K., Laanpere, M. (eds.) ISSEP 2020. LNCS, vol. 12518, pp. 55–65. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63212-0_5

http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf
https://doi.org/10.1007/BF02296434
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials
https://doi.org/10.1016/j.compedu.2016.01.010
https://www.bebras.org/sites/default/files/documents/publications/DagieneV-2008.pdf
https://www.bebras.org/
https://www.ibobr.cz/english-uk
https://imysleni.cz/ucebnice/zaklady-informatiky-pro-1-stupen-zs
https://ojs.cuni.cz/scied/article/view/11/12
https://developers.google.com/blockly
https://hourofcode.com/
https://doi.org/10.1007/978-3-030-63212-0_5

	Bebras Tasks Based on Assembling Programming Code
	1 Introduction
	1.1 Motivation and Aim

	2 Methods
	2.1 Design
	2.2 Evaluation

	3 Results
	4 Conclusion
	References




