
Andreas Bollin
Gerald Futschek (Eds.)

LN
CS

 1
34

88

Informatics in Schools
A Step Beyond Digital Education

15th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2022
Vienna, Austria, September 26–28, 2022, Proceedings

Lecture Notes in Computer Science 13488

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Andreas Bollin · Gerald Futschek (Eds.)

Informatics in Schools
A Step Beyond Digital Education

15th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2022
Vienna, Austria, September 26–28, 2022
Proceedings

Editors
Andreas Bollin
Universität Klagenfurt
Klagenfurt, Kärnten, Austria

Gerald Futschek
TU Wien
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-15850-6 ISBN 978-3-031-15851-3 (eBook)
https://doi.org/10.1007/978-3-031-15851-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4031-5982
https://orcid.org/0000-0001-7255-2531
https://doi.org/10.1007/978-3-031-15851-3

Preface

This volume contains all the research, best practice, and country and experience reports
presented at the 15th International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives (ISSEP 2022). The conference was held at TU Wien,
Austria, during September 26–28, 2022, in cooperation with the University of
Klagenfurt, Austria. Invitees included not only researchers in the field of computer
science didactics but also computer scientists, teachers, stakeholders from industry, and
staff from the Federal Ministry of Education, Science, and Research.

The conference series started in Klagenfurt, Austria, in 2005, when information and
communication technologies were increasingly making their way into the classroom
and beginning to displace traditional computer science teaching. In order to educate
decision-makers, Roland Mittermeir initiated ISSEP, planned initially as a one-time
international event. However, it did not stop there, and the ISSEP conference has so
far taken place in Vilnius, Lithuania (2006), Torun, Poland (2008), Zurich, Switzerland
(2010), Bratislava, Slovakia (2011), Oldenburg, Germany (2013), Istanbul, Republic of
Türkiye (2014), Ljubljana, Slovenia (2015),Münster,Germany (2016),Helsinki, Finland
(2017), St. Petersburg, Russia (2018), Larnaca, Cyprus (2019), Tallinn, Estonia (2020),
and Nijmegen, The Netherlands (2021).

In the meantime, something very interesting is happening again in our school
systems: subjects like “digital literacy” or “media literacy” are making their way
in, complementing or partially replacing computer science education. The current
ISSEP conference reacted to this trend and therefore invited computer scientists, media
didactics, and representatives of politics and industry to a discussion round on the topic
“Media Education or Computer Science? Quo Vadis, School Teaching?”.

The conference makes an equally strong effort to promote young researchers,
offering a Doctoral Consortium the day before the conference. In total, 11 Ph.D. students
presented and discussed their research on September 25, 2022. They received assistance
from international peers and introduced new ideas to their research careers.

The conference received a total of 57 submissions. Of these, 25 submissions were
full papers, four short papers, eight workshop proposals, nine poster proposals, and
11 Doctoral Consortium topics. Each submission was reviewed in a double-blind
review process and was evaluated, discussed, and selected by at least three reviewers
together with the program chairs, except for the workshop proposals and the Doctoral
Consortium where two to three reviewers reviewed and selected the topics. The review-
ers selected 12 submissions for publication in the LNCS proceedings, resulting in an
acceptance rate (for full research papers) of 48%. The decision process was performed
electronically using the EasyChair conference management system.

Past ISSEP conferences attracted submissions on various computer science
didactics/school teaching content. This year, too, there were contributions in many
areas. However, the topics dealing with computational thinking, primary education, and
Bebras tasks slightly outweighed the others. There were also contributions dealing with
curricula and examples of school practice.

vi Preface

Finally, we would like to thank everyone who made this conference possible: the
authors with their submissions, the many members of the Program Committee who
did a fantastic job, the sponsors, all the participants of the conference, and the local
organization team.

September 2022 Andreas Bollin
Gerald Futschek

Organization

Conference Chairs

Andreas Bollin University of Klagenfurt, Austria
Gerald Futschek TU Wien, Austria

Steering Committee

Andreas Bollin (Chair) University of Klagenfurt, Austria
Valentina Dagienė Vilnius University, Lithuania
Yasemin Gülbahar Ankara University, Republic of Türkiye
Juraj Hromkovič ETH Zurich, Switzerland
Ivan Kalas Comenius University, Slovakia
Erik Barendsen Radboud University and Open University,

The Netherlands
Sergei Pozdniakov Saint Petersburg Electrotechnical University,

Russia

Program Committee

Andreas Bollin (Chair) University of Klagenfurt, Austria
Peter Antonitsch University of Klagenfurt, Austria
Andrej Brodnik University of Ljubljana, Slovenia
Špela Cerar University of Ljubljana, Slovenia
Christian Datzko Wirtschaftsgymnasium und

Wirtschafts-Mittelschule Basel, Switzerland
Monica Divitini Norwegian University of Science and Technology,

Norway
Gerald Futschek TU Wien, Austria
Juraj Hromkovič ETH Zurich, Switzerland
Mile Jovanov Ss. Cyril and Methodius University of Skopje,

North Macedonia
Kaido Kikkas Tallinn University, Estonia
Dong Yoon Kim Ajou University, South Korea
Dennis Komm ETH Zurich, Switzerland
Mart Laanpere Tallinn University, Estonia
Martina Landman TU Wien, Austria
Peter Larsson University of Turku, Finland
Marina Lepp University of Tartu, Estonia

viii Organization

Nina Lobnig University of Klagenfurt, Austria
Birgy Lorenz Tallinn University, Estonia
Piret Luik University of Tartu, Estonia
Maia Lust Tallinn University, Estonia
Kati Mäkitalo University of Oulu, Finland
Tilman Michaeli TU Munich, Germany
Mattia Monga Università degli Studi di Milano, Italy
Tauno Palts University of Tartu, Estonia
Stefan Pasterk University of Klagenfurt, Austria
Hans Põldoja Tallinn University, Estonia
Sergei Pozdniakov Saint Petersburg Electrotechnical University,

Russia
John-Paul Pretti University of Waterloo, Canada
Ralf Romeike Freie Universität Berlin, Germany
Barbara Sabitzer Johannes Kepler Universität Linz, Austria
Carsten Schulte University of Paderborn, Germany
Giovanni Serafini ETH Zurich, Switzerland
Vipul Shah ACM India CSpathshala Education Initiative,

India
Gabrielė Stupurienė Vilnius University, Lithuania
Reelika Suviste University of Tartu, Estonia
Maciej Syslo Nicolaus Copernicus University in Toruń, Poland
Michael Weigend University of Münster, Germany
Albin Weiss University of Klagenfurt, Austria
Markus Wieser University of Klagenfurt, Austria

Doctoral Consortium Committee

Valentina Dagienė (Chair) Vilnius University, Lithuania
Andreas Bollin University of Klagenfurt, Austria
Gerald Futschek TU Wien, Austria
Barbara Sabitzer Johannes Kepler Universität Linz, Austria
Carsten Schulte University of Paderborn, Germany

Local Organizers

Gerald Futschek (Chair) TU Wien, Austria
Franziska Tiefenthaller

(Organization)
TU Wien, Austria

Martin Krajiczek (IT Support) TU Wien, Austria

Organization ix

Peter Kompatscher
(Event Management)

TU Wien, Austria

Stefan Pasterk (Publicity Chair) University of Klagenfurt, Austria
Melanie Ottowitz

(Publicity Support)
University of Klagenfurt, Austria

Contents

State of Research

Informatics Education in German Primary School Curricula 3
Christin Nenner and Nadine Bergner

A Tool to Create and Conduct Custom Assessments in Turtle Graphics 15
Jeremy Marbach, Alexandra Maximova, and Jacqueline Staub

Informatics at Primary Education: Teachers’ Motivation and Barriers
in Lithuania and Turkey . 27

Gabrielė Stupurienė and Yasemin Gülbahar

Bebras Challenge in a Learning Analytics Enriched Environment:
Hungarian and Indian Cases . 40

Zsuzsa Pluhár, Heidi Kaarto, Marika Parviainen, Sonia Garcha,
Vipul Shah, Valentina Dagienė, and Mikko-Jussi Laakso

How is Two Better Than One? An Observational Study on the Impact
of Working in Pairs When Solving Bebras Tasks . 54

Carlo Bellettini, Violetta Lonati, Mattia Monga, and Anna Morpurgo

Assessing Computational Thinking: The Relation of Different Assessment
Instruments and Learning Tools . 66

Vaida Masiulionytė-Dagienė and Tatjana Jevsikova

“I Now Feel that this is Unfair” A Case Study on the Effects of Professional
Development for Debugging in the K-12 Classroom . 78

Tilman Michaeli and Ralf Romeike

Robotics-Enhanced Natural Science in Primary Schools . 90
Bence Gaál

Best Practice, Country, and Experience Reports

Clear the Ring for Computer Science: A Creative Introduction for Primary
Schools . 103

Marina Rottenhofer, Lisa Kuka, and Barbara Sabitzer

Bebras Tasks Based on Assembling Programming Code . 113
Jiří Vaníček, Václav Šimandl, and Václav Dobiáš

xii Contents

Design and Analysis of a Disciplinary Computer Science Course
for Pre-service Primary Teachers . 125

Jean-Philippe Pellet, Gabriel Parriaux, and Morgane Chevalier

Textbooks and Materials for Teaching Computer Science in Slovenia 138
Špela Cerar, Matija Lokar, Gregor Anželj, Andrej Brodnik,
and Irena Nančovska Šerbec

Author Index . 151

State of Research

Informatics Education in German
Primary School Curricula

Christin Nenner(B) and Nadine Bergner

TU Dresden, Dresden, Germany
{christin.nenner,nadine.bergner}@tu-dresden.de

Abstract. The world is permeated by informatics, even the youngest
children encounter informatics systems and the respective phenomena.
Consequently, even primary school children must acquire the necessary
informatics competencies to act in this world in a self-determined man-
ner. A study on the integration of informatics education in European
education systems by the Committee on European Computing Educa-
tion showed that in 2017, none of the German states provided informat-
ics competencies in primary school. In the following years, as the study
Reviewing Computational Thinking in Compulsory Education (2022)
shows, progress towards more informatics education in primary schools
has been made in various European countries. For example, in Sweden,
informatics content has been integrated into the curricula. However, the
current situation in Germany was not analyzed in this study.

The aim of this paper is to analyze the current state of informatics
education in Germany’s primary schools, comparing it with pioneering
countries, and to identify potential for development. For this purpose, 53
curricula of different subjects in all 16 German federal states (as there
is no specific subject for informatics) were systematically scanned for
informatics content. Subsequently, the informatics competencies found
were categorized with respect to the CSTA K-12 standards in order to
work out which subject areas are currently dealt with to what extent.

The results show eight out of 16 German federal states integrated
informatics competencies as a mandatory part of primary level educa-
tion. With regard to the main concepts, Algorithms and Programming
and Computing Systems are particularly addressed, whereas the area
of Networks and the Internet is only assigned in one federal state. The
greatest potential for development is to be seen in teacher training so
that the competencies required in the curricula can be developed profes-
sionally with the children.

Keywords: Informatics education · Primary school · Primary school
curricula · German informatics education · CSTA K-12 CS standards

“The project underlying this article is part of the “Qualitätsoffensive Lehrerbildung”,
a joint initiative of the Federal Government and the Länder which aims to improve the
quality of teacher training. The programme is funded by the Federal Ministry of Edu-
cation and Research. The authors are responsible for the content of this publication”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-15851-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_1&domain=pdf
http://orcid.org/0000-0002-5230-4343
http://orcid.org/0000-0003-3527-3204
https://doi.org/10.1007/978-3-031-15851-3_1

4 C. Nenner and N. Bergner

1 Introduction

Already in 2017, the Committee on European Computing Education (CECE)
demanded that all students should receive continuous informatics education,
preferably starting in primary school [22, p. 3]. The European Digital Education
Action Plan 2021–2027 also advocates “a focus on inclusive high-quality comput-
ing education [informatics] at all levels of education” [7, p. 15], thus including
primary school. As part of the study “Informatics Education in Europe: Are
We All In The Same Boat?” [22] published in 2017, the situation of informat-
ics education in primary schools in Germany was also examined. At that time,
according to the study, none of the curricula of the 16 German states taught
informatics content in primary school. Since then, in addition to the aforemen-
tioned European action plan in Germany, several other impulses for integrating
informatics content into (primary) school curricula have been published. At the
end of 2021, a more informatics-oriented supplement to the strategy “Education
in the Digital World” from the Standing Conference of the Ministers of Educa-
tion and Cultural Affairs (KMK) was published [14]. At the beginning of 2022,
the German Rectors’ Conference further advocated informatics education in all
teacher training programs [9].

According to the study “Reviewing Computational Thinking in Compulsory
Education” by the European Commission’s Joint Research Centre, 17 European
countries (for example, Austria, Greece, and Finland) have “introduced basic
computer science [informatics] concepts as a compulsory subject in both pri-
mary and lower secondary education” [8, p. 5]. Germany was not among the
European countries studied in this regard. The situation of teaching informatics
in secondary schools is already analyzed and made visible in the Informatics
Monitor [20]. The situation in primary school is not addressed there.

Therefore, the aim of this paper is to analyze the current state of informat-
ics education in primary schools in all German federal states, to compare it
internationally and to identify development potentials.

1.1 International State of Informatics Education in Primary Schools

The 2017 published CECE report analyzed basic informatics education in
schools, digital literacy orientation, and related teacher training across Europe
[22]. For this purpose, the CECE defines informatics as “a distinct scientific
discipline, characterised by its own concepts, methods, body of knowledge, and
open issues. It covers the foundations of computational structures, processes,
artefacts and systems; and their software designs, their applications, and their
impact on society” [22, p. 3]. This report presents “a mapping across 55 admin-
istrative units (countries, nations, and regions) of Europe (including Israel) with
autonomous educational systems” [22, p. 3]. The data shows that in six out of
55 countries/regions (Croatia, Slovenia, Ukraine, and all countries of the United
Kingdom (UK)) students’ first contact with informatics is in primary school [22,
p. 12]. Outside the EU, informatics content has been a topic in schools for many
years, for example in Macedonia [12] and Turkey [10].

Informatics Education in German Primary School Curricula 5

Since the publication of the report [22] in 2017, a lot has happened in some
countries regarding the teaching of informatics:

– In Sweden, curricula (grades 1 to 9) for math, technology, and social stud-
ies that include informatics content have been mandatory since 2018. Here,
the informatics content is integrated into existing subjects. “The revision
puts increased attention on digital technology and the need for developing
an understanding for how computers and networks work.” [11, p.121]. Clear
algorithmic instructions as the basis of programming are primarily covered in
mathematics classes [11, p.122]. In technology, the structure and functioning
of informatics systems and the control of technical devices through program-
ming are taken up [11, p. 122]. In social sciences, the Impact of Informatics
is addressed [11, p. 122].

– In Lithuania, a draft curriculum for informatics for grades 1–4 of primary
school was developed in 2016. This covers, among other things, Data and
Information and Algorithms and Programming [5, p. 89].

– In 2019, Denmark launched a three-year field trial of informatics teaching in
primary schools [23, p. 2].

– At the same time, Poland also introduced an informatics curriculum in pri-
mary school [23, p. 2].

1.2 CSTA K-12 Computer Science Standards

The CSTA K-12 Computer Science (CS) Standards were published in 2017
as concepts and matching learning objectives that map the foundations for a
complete informatics curriculum from grades 1 through 12. The authors most
important goal is to introduce fundamental concepts of informatics to all stu-
dents beginning in primary school. These standards are divided into five basic
concepts: 1. Computing Systems, 2. Networks and the Internet, 3. Data and
Analysis, 4. Algorithms and Programming and 5. Impacts of Computing [4].

2 Description of Research Object

In order to classify the research presented below internationally, the German
school system will be outlined and the range of subjects taught in primary schools
will be explained.1

2.1 German Education System

In Germany, educational sovereignty lies within the 16 federal states2 (Baden-
Württemberg (BW), Bavaria (BY), Berlin (BE) + Brandenburg (BB), Bre-
men (HB), Hamburg (HH), Hesse (HE), Mecklenburg-Western Pomerania (MV),

1 If German terms are used, these are marked in italics.
2 Detailed information can be found within the document: https://www.kmk.org/

fileadmin/Dateien/pdf/Eurydice/Bildungswesen-engl-pdfs/dossier en ebook.pdf.

https://www.kmk.org/fileadmin/Dateien/pdf/Eurydice/Bildungswesen-engl-pdfs/dossier_en_ebook.pdf
https://www.kmk.org/fileadmin/Dateien/pdf/Eurydice/Bildungswesen-engl-pdfs/dossier_en_ebook.pdf

6 C. Nenner and N. Bergner

Lower Saxony (NI), North Rhine-Westphalia (NW), Rhineland-Palatinate (RP),
Saarland (SL), Saxony (SN), Saxony-Anhalt (ST), Schleswig-Holstein (SH),
Thuringia (TH)). They all have independent educational authorities and inde-
pendent curricula that differ in content as well as structure. Even the canon
of subjects itself varies between the states. In 14 states, primary school covers
grades 1 to 4. Only in BE and BB primary school continues up to grade 6.
These states have a common framework curriculum and are therefore considered
as one in the following. In some states, there are also overarching documents that
apply to all primary school curricula. In Germany no independent school sub-
ject for informatics content exists in primary school in any of the federal states.
When informatics content is addressed, it is integrated into other primary school
subjects.

2.2 Overview of Primary School Curricula

The curricula of the three core subjects German, math and science (Sachunter-
richt) were selected for investigation in the context of this paper. In the states of
BY (Heimat- und Sachunterricht) and TH (Heimat- und Sachkunde), the nam-
ing of the subject science differs. In some federal states, there is an additional
subject in which students can develop craft and technical skills: Kunst/Werken
(BW), Werken und Gestalten (BY), Werken (MZ, SN, TH), Gestaltendes
Werken (NI), Gestalten (ST), and Technik (SH). This selection will be referred
to as technology in the following. Due to the frequent technical orientation of
this subject and because an extra learning area for informatics content was cre-
ated in the subject of Werken in Saxony in 2019, the curricula for technology
were also examined in addition to the curricula for the three core subjects.

A total of 53 curricula were considered for the document analysis. For all of
them, the date of publication or entry into force of this version of the curricula
and the presence of the respective subjects were included, depending on the
information provided (see Table 1).

2.3 Research Questions and Design

A document analysis of the current curricula of all federal states was conducted
to investigate the following research questions:

– In which federal states is informatics education included as an overarching
goal in current primary school curricula?

– In which federal states is informatics content mentioned within learning or
subject areas?

– What informatics competencies (or content) are targeted?
– To which concepts of the CSTA K-12 CS Standards can the informatics con-

tent be assigned?

The curricula are available as PDF files and were scanned for specific keywords
using the search function of a PDF reader.

Informatics Education in German Primary School Curricula 7

Table 1. Presentation of the subjects taught in the 16 federal states with the year
of publication or entry into force. The presence of informatics content including the
assignment to the respective subject is highlighted by bold and gray marking. In the
case of technology, the subject name is included.

German Math Science Technology

BW 2016 2016 2016 2016 | Kunst/Werken

BY 2014 2014 2014 | Heimat- und Sachunterricht —

BE + BB 2015 2015 2015 —

HB 2004 2004 2007 —

HH 2011 + 2020 2011 + 2020 2011 —

HE 1995 1995 1995 —

MV 2020 Not specified 2020 Not specified | Werken

NI 2017 2017 2017 2006 | Gestaltendes Werken

NW 2021 2021 2021 —

RP 2005 2014 2006 —

SL 2009 2009 2010 —

SN 2019 2019 2019 2019 | Werken

ST 2019 2019 2019 2019 | Gestalten

SH 2018 2018 2019 2021 | Technik
TH 2010 2010 2015 | Heimat- und Sachkunde 2010 | Werken

To examine the curricula, they were screened for 16 keywords. The keywords
were aligned with both the concepts of the CSTA K-12 CS Standards [4] and
the recommendations on competencies for the primary level from the German
Informatics Society (content areas and keywords of competency expectations)
[3]. The goal of searching for additional keywords (besides Informatik, informa-
tisch) is to locate informatics content even if it is not labeled as such. All text
passages found with the help of the keywords were manually examined to deter-
mine whether they contained informatics content. Since other studies sometimes
do not mention which content is mandatory or optional, only mandatory learn-
ing areas are considered here. The following is a list of the English equivalents
of the German keywords used for the analysis with German keywords in [].

– algorithm, algorithmic [Algorithmen, algorithmisch]
– automaton, incl. automation [Automat, Automatisierung]
– binary [binär]
– coding [codieren, Codierung]
– computer [Computer]
– data [Daten]
– digital [digital]
– encryption [verschlüsseln, Verschlüsselung]
– functionality [Funktionsweise]
– informatic(s)/computing, incl. informatics/computing system [Informatik,
informatisch, Informatiksystem]

– input, IPO model (Input-Process-Output) [Eingabe, EVA-Prinzip]
– internet [Internet]

8 C. Nenner and N. Bergner

– network [Netzwerk]
– processing [Verarbeitung]
– program, programming, incl. programming language [Programm, program-

mieren, Programmiersprache]
– robot [Roboter]

3 Results

In eight out of 16 German states, informatics content is integrated in mandatory
learning areas in primary school curricula (see Table 2). In four states (BE, BB,
HH, NW), it is integrated in science, in four states (HH, MV, NW, ST) in math,
and in two states (SN, SH) in technology. In six of these eight states, informatics
content is integrated in exactly one subject. Only two states (HH, NW) have
integrated informatics content in two subjects (science and math). There is no
federal state in which there is an independent subject for informatics content.
Federal states in which at least one curriculum contains informatics content have
for the most part (six out of eight) updated or published their curricula in 2018
or later. From a publication date of after 2017/2018, many curricula refer to
the strategy “Education in the Digital World” from KMK [13]. In some of the
curricula, this document is relied upon for the introduction of explicit informatics
content. However, it cannot be assumed that a curriculum revised after 2017
necessarily contains informatics content (e.g. NI - German, math, science), nor
that a publication date before 2017 means that no informatics content can be
integrated (e.g. BE, BB - science | HH - science).

In the context of the evaluation, it is considered separately whether the key-
words Informatik, informatisch are referred to in other sections (e.g. the pre-
liminary remarks, the overarching educational objectives or even the didactic
principles) in addition to the mention in informatics content. Table 2 shows that
in five out of 16 federal states the mentioned terms appear in other sections of
the curricula in addition to the learning areas. Here, the main references are
to informatics education, STEM3 education, and connectivity to informatics.
In two of the five federal states (NI, RP), STEM or informatics education is
mentioned in a superordinate way, but there is no explicit informatics content.

In the next step, it is shown which specific informatics content is integrated
in the curricula of the federal states. For this purpose, all text sections found by
means of keyword search were analyzed. All text sections that did not refer to
informatics content were discarded (e.g., when searching with the term digital:
“read all times on analog and digital clocks”). For each state, all informatics
content found was collected. The respective collection was then mapped to the
CSTA K-12 CS Standards [4]. In Table 2 below the summarized informatics
content per state is presented.

The distribution of CSTA K-12 CS standards across states with informat-
ics content shows that the informatics content found can be assigned to three,
four, or five concepts for half of the eight states (HH, NW, SN, SH). All four
3 Science, technology, engineering, and math.

Informatics Education in German Primary School Curricula 9

Table 2. Overview of informatics mentioned in overarching parts and the summarized
informatics content in mandatory learning areas to be addressed per federal state,
assigned to the subjects and including the naming of the learning areas. The assignment
to the concepts of the CSTA K-12 CS Standards [4] is presented.

Concepts of CSTA

K-12 CS Standards

F
e
d
e
ra

l
S
ta

te

Informatics
mentioned in
overarching

parts
Informatics content in mandatory learning

areas to be addressed C
o
m
p
u
ti
n
g
S
y
st
e
m
s

N
e
tw

o
rk

s
a
n
d

th
e
In

te
rn

e
t

D
a
ta

a
n
d

A
n
a
ly
si
s

A
lg
o
ri
th

m
s
a
n
d

P
ro

g
ra

m
m
in
g

Im
p
a
c
ts

o
f
C
o
m
p
u
ti
n
g

BE
+

BW
—

Science (Topic: Child, Theme: What do we
know about? | grades 1-4 [15, p. 31]):

– Computers and the internet: How do
computers work?

×
×

HH

—

Math (Topic: Solving problems mathematically
| grades 1-4 [2, p. 5])):

– Computational thinking (logical series,
codes, binary code, structure of algorithms,
regular sequences)

– Implications of automation for one’s own
reality of life

– Formalizing and describing problems
– Basic skills in programming

Science (Topic: Technology - Orientation in our
world | grades 3-4 [1, p. 24 f]):

– Components of computers and automata
– Input-process-output
– Media for data storage incl. data sets
– Internet as a form of networking computers

and as a technology through which texts,
images and sounds are transmitted

× × × × ×

MV

—

Science (Topic: Using, evaluating, and
producing media | grades 3-4 [16, p. 35]):

– Following and formulating algorithms
×

NI

Math, science:
contribution to
interdisciplinary
educational areas
→ STEM
education —

(continued)

10 C. Nenner and N. Bergner

Table 2. (continued)

NW

Science:
tasks and goals of
science
→ informatics
education

Math (Topic: Numbers and operations | grades
3-4 [18, p. 86]):

– Conversion of numbers between decimal and
binary system

Science (Topic: Democracy and society | grades
3-4 [18, p. 185]):

– Differentiation between coding and encoding
of data

– Possibilities for protecting personal data

Science (Topic: Engineering, digital technology,
and work | grades 3-4 [18, p. 192]):

– Input-process-output as a basic principle of
data processing in informatics systems

– Programming a sequence

× × × ×

RP

Math:
preliminary
remarks
→ informatics
education, STEM
education —

SN

All curricula:
overarching
educational goal
→ informatics
(pre)education

Werken (Topic: Encountering robots and
automata | grade 4 [21, p. 14]):

– Application of robots and automata
→ Input-process-output

– Application of a simplified software
development cycle including the
programming of a simple procedure

– Transfer of knowledge to the implementation
of a concrete task (tracing
input-process-output, building a model,
evaluating the implementation)

× × ×

ST

—

Math (Topic: Numbers and operations | grades
3-4 [19, p. 7]):

– Tasks in factual situations (e.g., for
encrypting data or securing access)

×

SH

Science:
didactic guidelines
of science
→ connectivity to
informatics

Technik (Topic: Information and
communication | grades 1-4 [17, p. 16]):

– Basic principles (input-process-output,
coding/decoding . . .) of
communication-technical transmission

– Possibilities of analog and digital
information transmission

– Interaction of hardware and software
– Programming of simple digital systems

× × ×

6 1 3 5 4

Informatics Education in German Primary School Curricula 11

states address the concepts Algorithms and Programming and Computing Sys-
tems. The concepts Data and Analysis and Impacts of Computing are addressed
in three of the four states. The concept Networks and the Internet is addressed
exclusively in HH. The other four states (BE, BB, MV, ST) can each be assigned
to only one concept. In SN and SH, an extra learning area was created in the
curriculum for informatics content. In the other six federal states, informatics
content was integrated into thematically different learning areas. Mapping states
with informatics content to the concepts of the CSTA K-12 CS Standards shows
that topics that can be mapped to the concepts Computing Systems and Algo-
rithms and Programming are most frequently assigned in six and five of the
eight states, respectively. Content related to these concepts appears to be given
the greatest importance. Content on the concept Networks and the Internet was
integrated in only one of the states.

The compilation and examination of the current German primary school
curricula have shown that the situation varies considerably with regard to the
integration of informatics content in primary school. Compared to the CECE
report from 2017 [22], in which none of the German states had yet integrated
informatics content, 50% of the states now have informatics content included in
their primary school curricula. However, 50% of these are exclusively attributable
to only one of five concepts of the CSTA K-12 CS Standards [4]. Accordingly,
one cannot speak of comprehensive informatics education in these cases. On the
contrary, only one concept has been explicitly singled out in these places.

4 Interpretation of the Results

The recommendations on competencies for the primary level from the German
Informatics Society aim at a broad view on informatics already in primary school
[3]. The presented results show that this is implemented in only a few German
states so far. Only in HH content on all five concepts of the CSTA K-12 CS
Standards [4] has been integrated into the curricula. The most common concepts
Computing Systems and Algorithms and Programming are those that are also
prominent in the curricula of the UK [6], Sweden [11], and Lithuania [5]. In 2017,
the concept Algorithms and Programming was already found in the strategy
“Education in the Digital World” from KMK [13, p. 13], which explains its
frequent occurrence. The fact that the concept of Network and the Internet is
integrated as informatics content in only one of the German federal states may
be related to the fact that in Germany there is a strong focus on the use of the
internet and the associated dangers, and not yet on how the internet is structured
and functions [13, p. 3, 13]. A look at the curricula selected as examples from
Sweden, Lithuania and the UK shows that in Sweden and Lithuania the structure
and functioning of networks and the internet are not explicitly addressed [5, p.
89] [11, p. 121 f], but in the UK they are addressed in key stage 2 [6]. At this
point, there is great potential for development, since the use of the internet
is dealt with in almost all current German primary school curricula and thus
the linking of the technological background is an important further step. The

12 C. Nenner and N. Bergner

situation is similar with dealing with one’s own data and data protection. In this
respect, the curricula have so far mainly dealt with dangers and instructions on
how to deal with them in a critically competent manner, but the technological
background, is not considered. If you pick up there, you can at least partially
assign the concept Impact of Computing.

The federal states that have not yet integrated informatics content into their
curricula can also start at various connecting points beyond this. When scanning
the curricula, text passages were found that, although not explicitly informatics
in nature, certainly offer opportunities for tying in informatics content. In some
curricula (e.g. BY, HB), the function and use of everyday objects and learning
how simple machines and devices work in schools and private households are
addressed. Just like the topic of human inventions (e.g. NI) or working and liv-
ing in the past and today, there are possibilities to simply choose informatics
systems as a subject of investigation. Also, the topic of automation of certain
activities, which used to be very laborious (for example, washing machine ver-
sus washing clothes by hand) lends itself (e.g. HB, MV). The acquisition and
representation of data, which is anchored as a topic in a large part of the math
curricula, was not evaluated as explicit informatics content in the context of this
paper. What matters here is how the topic is addressed by the teacher. When
implementing the acquisition and representation with digital media, the thema-
tization of digitization, the transformation of analog into digital data, is obvious
as informatics content.

The naming of informatics in superordinate sections of the curricula is already
implemented in some federal states. Here, care should be taken to ensure that
the naming is also reflected in the content of the learning areas, so that teach-
ers have an orientation as to how this overarching goal is to be implemented
in concrete terms. The expansion of the naming of informatics education as an
overarching goal could be used to identify the concrete informatics content in
the learning areas. For the teachers it would then be obvious that at this point
the concrete functioning is to be questioned and the informatics background is
to be highlighted. As a basis for this, for example, standards for informatics edu-
cation in primary school could be supported at the state level, which would then
subsequently be integrated into the curricula of the 16 federal states. Especially
HH, NW, SN and SH can serve as role models and inspiration by integrating
informatics content out of three or more concepts of the CSTA K-12 CS Stan-
dards. It should be emphasized that the integration of informatics content into
the curricula alone is not sufficient to bring informatics education into primary
schools. It is important that the content also finds its way into teacher training,
as the teachers then have the task of teaching this content to the primary school
students.

5 Discussion of the Research Methodology

Since the research was limited to a selection of 16 keywords for finding infor-
matics content in the curricula, it is possible that not all existing informatics

Informatics Education in German Primary School Curricula 13

content was found. When using the term digital it became clear that the men-
tioning of the word pair digital media rather indicates media-forming aspects. In
the cases in which the found content is about informatics at least one or more of
the already used keywords are mentioned. Due to the partly very short mention
of informatics content in the curricula, there is some room for interpretation. In
the curriculum of the subject technology (SH), “understanding and explaining
basic principles (...) of communication-technical transmission” and the applica-
tion of “possibilities of analog and digital information transmission” [17, p. 16]
are integrated. The term transmission could also be interpreted in the direction
of the concept Networks and the Internet. Since neither the explicit treatment
of networks nor internet was named, it was not assigned to this concept.

6 Outlook

Since a more informatics-oriented supplement to the strategy “Education in
the Digital World” from KMK was published at the end of 2021 [14], and the
German Rector’s Conference also spoke out in favor of informatics education in
all teacher training programs at the beginning of 2022 [9], it can be expected
that the integration of informatics content into German primary school curricula
will develop positively in the coming years. In order to make these developments
visible, the current state (as for the situation of informatics teaching in secondary
schools [20]) should be reviewed regularly. In addition, exchange with the state
authorities would be useful to investigate further developments that are still in
the planning stage.

References

1. Behörde für Schule und Berufsbildung Hamburg: Sachunterricht (2011)
2. Behörde für Schule und Berufsbildung Hamburg: Mathematik. Anlage zur Umset-

zung der KMK-Strategie “Bildung in der digitalen Welt” (2020)
3. Best, A., et al.: Kompetenzen für informatische Bildung im Primar-

bereich (2019). https://dl.gi.de/bitstream/handle/20.500.12116/20121/61-
GI-Empfehlung Kompetenzen informatische Bildung Primarbereich.pdf?
sequence=1&isAllowed=y

4. Computer Science Teachers Association: CSTA K-12 Computer Science Standards
(2017). http://www.csteachers.org/standards

5. Dagienė, V., Jevsikova, T., Stupurienė, G.: Introducing informatics in primary
education: curriculum and teachers’ perspectives. In: Pozdniakov, S.N., Dagienė, V.
(eds.) ISSEP 2019. LNCS, vol. 11913, pp. 83–94. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-33759-9 7

6. Department for Education: National curriculum in England: computing pro-
grammes of study (2013). https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-study/national-
curriculum-in-england-computing-programmes-of-study

7. European Commission: Digital Education Action Plan 2021–2027 - Resetting
education and training for the digital age. https://education.ec.europa.eu/sites/
default/files/document-library-docs/deap-communication-sept2020 en.pdf

https://dl.gi.de/bitstream/handle/20.500.12116/20121/61-GI-Empfehlung_Kompetenzen_informatische_Bildung_Primarbereich.pdf?sequence=1&isAllowed=y
https://dl.gi.de/bitstream/handle/20.500.12116/20121/61-GI-Empfehlung_Kompetenzen_informatische_Bildung_Primarbereich.pdf?sequence=1&isAllowed=y
https://dl.gi.de/bitstream/handle/20.500.12116/20121/61-GI-Empfehlung_Kompetenzen_informatische_Bildung_Primarbereich.pdf?sequence=1&isAllowed=y
http://www.csteachers.org/standards
https://doi.org/10.1007/978-3-030-33759-9_7
https://doi.org/10.1007/978-3-030-33759-9_7
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://education.ec.europa.eu/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
https://education.ec.europa.eu/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf

14 C. Nenner and N. Bergner

8. European Commission: Joint Research Centre. Reviewing computational thinking
in compulsory education: state of play and practices from computing education
(2022). https://data.europa.eu/doi/10.2760/126955

9. German Rector’s Conference: Teacher education in a digital world. Resolution of
the Senate of the HRK on 22 March 2022 (2022). https://www.hrk.de/resolutions-
publications/resolutions/beschluss/detail/teacher-education-in-a-digital-world/

10. Gülbahar, Y., Ilkhan, M., Kilis, S., Arslan, O.: Informatics Education in Turkey.
Commentarii informaticae didacticae: (CID) (6), 77–87 (2013). https://publishup.
uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6213/file/77 87
GAlbahar etal.pdf

11. Heintz, F., Mannila, L., Nordén, L.Å., Parnes, P., Regnell, B.: Introducing pro-
gramming and digital competence in Swedish K-9 education. In: Dagiene, V., Hel-
las, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 117–128. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71483-7 10

12. Jovanov, M., Stankov, E., Mihova, M., Ristov, S., Gusev, M.: Computing as a new
compulsory subject in the Macedonian primary schools curriculum. In: 2016 IEEE
Global Engineering Education Conference (EDUCON), pp. 680–685. IEEE, Abu
Dhabi, April 2016. https://ieeexplore.ieee.org/document/7474623

13. Kultusministerkonferenz: Bildung in der digitalen Welt. Strategie der Kul-
tusministerkonferenz (2016). https://www.kmk.org/fileadmin/Dateien/pdf/
PresseUndAktuelles/2017/Strategie neu 2017 datum 1.pdf

14. Kultusministerkonferenz: Die ergänzende Empfehlung zur Strategie “Bildung in
der digitalen Welt” (2021). https://www.kmk.org/fileadmin/veroeffentlichungen
beschluesse/2021/2021 12 09-Lehren-und-Lernen-Digi.pdf

15. Landesinstitut für Schule und Medien Berlin-Brandenburg: Sachunterricht (2015)
16. Ministerium für Bildung und Kindertagesförderung Mecklenburg-Vorpommern:

Sachunterricht (2020)
17. Ministerium für Bildung, Wissenschaft und Kultur des Landes Schleswig-Holstein:

Technik (2021)
18. Ministerium für Schule und Bildung Nordrhein-Westfalen: Lehrpläne für die pri-

marstufe (2021)
19. Niedersächsische Landesinstitut für schulische Qualitätsentwicklung (NLQ): Math-

ematik (2017)
20. Schwarz, R., Hellmig, L., Friedrich, S.: Informatik-Monitor (2021). https://

informatik-monitor.de/
21. Staatsministerium für Kultus Freistaat Sachsen: Werken (2019)
22. The Committee on European Computing Education (CECE): Informatics Educa-

tion in Europe: Are We All In The Same Boat? (2017). https://doi.org/10.1145/
3106077

23. The Informatics for All Coalition: Educating People for the Digital Age (2020).
https://www.informaticsforall.org/wp-content/uploads/2020/07/Informatics-for-
All-position-paper.pdf

https://data.europa.eu/doi/10.2760/126955
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/teacher-education-in-a-digital-world/
https://www.hrk.de/resolutions-publications/resolutions/beschluss/detail/teacher-education-in-a-digital-world/
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6213/file/77_87_GAlbahar_etal.pdf
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6213/file/77_87_GAlbahar_etal.pdf
https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/6213/file/77_87_GAlbahar_etal.pdf
https://doi.org/10.1007/978-3-319-71483-7_10
https://ieeexplore.ieee.org/document/7474623
https://www.kmk.org/fileadmin/Dateien/pdf/PresseUndAktuelles/2017/Strategie_neu_2017_datum_1.pdf
https://www.kmk.org/fileadmin/Dateien/pdf/PresseUndAktuelles/2017/Strategie_neu_2017_datum_1.pdf
https://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2021/2021_12_09-Lehren-und-Lernen-Digi.pdf
https://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2021/2021_12_09-Lehren-und-Lernen-Digi.pdf
https://informatik-monitor.de/
https://informatik-monitor.de/
https://doi.org/10.1145/3106077
https://doi.org/10.1145/3106077
https://www.informaticsforall.org/wp-content/uploads/2020/07/Informatics-for-All-position-paper.pdf
https://www.informaticsforall.org/wp-content/uploads/2020/07/Informatics-for-All-position-paper.pdf

A Tool to Create and Conduct Custom
Assessments in Turtle Graphics

Jeremy Marbach1, Alexandra Maximova1, and Jacqueline Staub2(B)

1 Department of Computer Science, ETH Zürich, Universitätstrasse 6,
8092 Zürich, Switzerland

jmarbach@student.ethz.ch, alexandra.maximova@inf.ethz.ch
2 Fachbereich IV, University of Trier, Behringstraße 1, 54296 Trier, Germany

staub@uni-trier.de

Abstract. With the recent introduction of computer science in elemen-
tary school, teachers must monitor their students’ progress in a subject
known for both its creative and challenging nature. Assessing a vast num-
ber of diverse solutions is a time-taking challenge and, without the help
of automation, some teachers may be tempted to resort to traditional
assessment techniques that are easier to verify but do not provide the
same possibilities for constructionist learning. We present a tool to create
and conduct custom programming assessments in turtle graphics. Solu-
tions are verified by pixel-wise comparison of student and sample solu-
tions while also considering constraints on the set of possible solutions.
The tool has been deployed in the XLogoOnline programming environ-
ment and we are planning to further analyze student performance in
practice.

Keywords: CS education · K–6 · Programming · Assessment · Turtle
graphics

1 Programming Assessment – A Teacher’s Nightmare?

With various school reforms across the globe [2,8,10], computer science is finally
paving its way into primary school education. The role of computer science for
general education is considered to lie in the area of computational thinking, a skill
that can be fostered (among others) through programming. Children as young
as nine or ten years now have the chance to learn to program in school using
didactically-enhanced learning environments and teaching methodologies [6,22].
At this age, students are typically introduced to basic programming concepts
such as sequences and loops; once they are older they tackle also more abstract
concepts such as procedures, parameters and variables [12,13].

Programming is known to be a creative activity which requires a high level
of semantic accuracy [11,21]. A given task can usually be solved in numerous
different ways [18] and quickly comprehending the different strategies novices
may choose is highly demanding, even for experts [5]. Teachers without a strong
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 15–26, 2022.
https://doi.org/10.1007/978-3-031-15851-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-15851-3_2

16 J. Marbach et al.

background in computer science (as they are still often found in primary and
middle schools [15,19]), understandably, are challenged even more in judging
whether a task is solved correctly or not, based on just a given program.

Formative and summative assessment is considered an essential tool [3,4,26]
that allows teachers to observe their students’ individual learning progress and
analyze the teaching-learning process as a whole [9]. Usually, assessments are
designed to quantify competencies in a “typical” work environment. In the con-
text of programming classes, we seek for assessment techniques for the creative
process of solving problems using computational thinking skills.

Implementing formative and summative assessment tools in the context of
primary school programming is no easy task. Although programming classes
offer the computer as an additional help with the power of automation, there are
few widely adopted and well-established automatic assessment tools [16]. With
few exceptions [7,17], most of the available tools neither consider the special
requirements in primary schools nor their dedicated application domains (e.g.
turtle graphics). Literature classifies assessment tools depending on whether they
are student-centered, teacher-centered, or hybrid tools and whether they provide
support for manual, semi-automatic, or automatic assessment [23].

This article presents an automatic and student-centered assessment tool for
primary schools that provides the possibility to create custom exercise collec-
tions in turtle graphics geometry. The tool is integrated into the XLogoOnline
programming interface [14,24] and hence gives the opportunity to assess learners
in an environment they are familiar with. The tool is able to auto-verify student
solutions to correctly make use of programming concepts such as sequences and
loops, and more over, is able to verify whether extra-imposed conditions on the
choice or number of commands is adhered to. The presented tool builds on an
existing system [25] applicable to a younger age group covering simple navigation
tasks instead of classical geometry tasks.

In Sect. 2, we give a short overview of the application domain turtle graphics
as well as the curriculum that we use in our approach. Section 3 then shows
a data structure for the representation of tasks and we discuss how student
solutions can be verified automatically. Section 4 discusses the question of how
the scope between “correct” and “incorrect” solutions could be accounted for
before Sect. 5 finally draws some implications and possibilities for future work.

2 A Programming Curriculum for Grades 3–4

Over the past 15 years the Center for Computer Science Education (ABZ) and
the Chair of Information Technology and Education at ETH Zurich have devel-
oped a spiral curriculum to teach computer science and programming at all
school levels. Throughout the curriculum, turtle graphics is used to teach basic
programming concepts. The corresponding programming environment XLo-
goOnline is developed by the Turtle Group Trier (TGT) and is currently used
by almost 85 000 users per year.

Tool for Custom Assessments in Turtle Graphics 17

2.1 The Idea Behind the Turtle

The turtle was introduced by Seymour Papert in the late 1960s as an object
to think with [20]. Just like a person, an animal or a vehicle, the turtle is an
object with a position in space and an orientation; it exists in both virtual and
physical realizations. Using a personified object establishes an age-appropriate
mental model of program execution and allows novices to identify themselves
with the turtle. Such a target for synchronicity is considered helpful for novice
programmers, assisting them in learning to communicate with the computer in
a language that the machine “understands”.

2.2 The Vocabulary

The turtle’s mother tongue consists of only six parameterized commands. The
two movement commands forward and back are used to steer the turtle forwards
or backwards a given number of pixels. The two rotation commands right and
left are used to turn the turtle by a given angle to the left or to the right. These
four basic navigation commands are interpreted from the turtle’s perspective
and oftentimes have a two-letter abbreviation (i.e., fd, bk, rt and lt). In our
block-based environment, the setpencolor command allows the pen color to be
changed from initially black to another color from the color palette (i.e., black,
white, green, blue, red and yellow). The last command repeat, finally, is the
first control structure pupils encounter which allows them to describe repeating
program behavior in shorter and more elegant programs using loops.

2.3 The Curriculum

A surprisingly large variety of geometric shapes can be created using this small
instruction set; from simple patterns like squares and rectangles to more com-
plex shapes like polygons, circles or mandalas. We present our curriculum as a
suggested route to explore the task space, following five rough milestones.

1. Exploring basic commands
In the beginning, only the four commands forward, back, left and right
are used while pupils learn to navigate the turtle. In this stage, novices may
execute one or few commands at a time to verify their logic along the way
(see Fig. 1, task 1).

2. Working with a restricted command set
Students not only learn to express themselves with the vocabulary available,
but they also analyze the expressiveness of the language itself. They learn
that the instruction set is redundant,i.e., with one movement and one rotation
command, the other two basic commands can be substituted. To illustrate
this point, teachers may prohibit some command to be used while solving a
given exercise.

3. Introducing colors
Colors are introduced once pupils feel confident with the four movement and

18 J. Marbach et al.

rotation commands and understand that there are several possible ways to
draw the same shape (see Fig. 1, task 2). As before, students should discover
that there are different approaches to solving the same problem by discussing
and comparing their solutions with each other.

4. Making use of the looping construct repeat
The ability to recognise repeating patterns and to express oneself using loops
is a key milestone in pupils’ programming development. However, due to
the cognitive difficulty, some students might want to avoid loops unless they
are explicitly challenged to apply the concept in their solution. Two ways
of doing so are illustrated in Fig. 1 (tasks 3 and 4); once by phrasing the
exercise statement in a specific way and once by choosing an exercise that
invites students to use a loop (i.e., filled rectangles can be drawn tracing many
lines right next to each other; drawing such a 100 by 100 square without a
loop requires some 500 commands).

5. Nested loops and sequences of loops
The last step of this curriculum is only used with advanced students: Based
on their understanding of simple loops, students move on to sequences of
loops and nested loops.

The curriculum is supported by an extensive exercise collection built into the
XLogoOnline programming environment for grades 3 and 4 (children aged 9 and
10). Moreover, teachers (and students) have the possibility to create and share
their own tasks. Figure 1 shows how the same geometric shape, a square, can be
used repeatedly throughout the curriculum with increasing difficulty attached
to it. The next section discusses how such tasks can be created using our tool
and how their automatic verification process works.

Fig. 1. Four tasks students encounter while working on our programming curriculum.
From left to right: (1) a task that can be solved in any desired way (2) a task that
requires colors, (3) and (4) are tasks that require the use of loops. (Color figure online)

3 Defining a Data Structure for Task Representation

All turtle graphics tasks used in our curriculum share the same fundamental
structure. We present a data structure that distills these structural attributes
and can be used to describe any turtle graphics task with and without colors.
Later, we dive into the topic of solution verification and constraint handling.

Tool for Custom Assessments in Turtle Graphics 19

3.1 Pixels and Lines – The Atomic Structures of the Turtle
Universe

All geometric patterns mentioned before can be represented by lines. What is
easy to explain for squares and stairs is, however, also true for filled rectangles
and circles. The argument is that filled rectangles are in essence nothing else
than a large number of lines directly adjacent to each other, while circles can
be approximated by polygons with a large number of edges. What sounds like
a gimmick has significant implications: No matter the shape, it can be drawn
using just a number of simple line segments – a basic data structure therefore
does not need anything in addition.

As a basic example, a square can be represented using just four lines.
Each such line involves two coordinates (x1, y1) and (x2, y2), specifying the
line’s start- and endpoint. The example shown in Fig. 2 can be formally
described as a set of four lines, each declared by two coordinates representing
the respective start- and endpoints: {((0, 0), (0,−100)); ((0,−100), (100,−100));
((100,−100), (100, 0)); ((100, 0), (0, 0))}.

Fig. 2. (a) A square with four lines that connect the edge coordinates and (b) its
corresponding representation using line segments

In constructionist manner, turtle graphics offers its users freedom in the
implementation of the given geometric figure. Even with a simple figure like a
square, there are numerous different solution programs, depending on the chosen
order and direction in which lines are visited. While it is possible to allow freedom
even in the choice of the turtle’s starting point, specifying which coordinate the
program must start from reduces uncertainties in the verification process [7].
Our implementation considers the coordinate (0, 0) always to be the turtle’s
implicit starting point as well as (at least) one of the line segments to start or
end at this very coordinate. On top, the turtle’s initial orientation is considered
to head north in all cases. While the turtle’s initial position and orientation are
fixed, lines can have any arbitrary start and endpoint which is the minimum
specification required to represent an exercise.

Up to this point, the world of XLogoOnline was perceived only as black and
white. In reality, however, many interesting tasks can be phrased involving the
concept of colors. How the described specification can be extended with colors
and what implications arise from such a change will be covered next.

20 J. Marbach et al.

3.2 Introducing the Concept of Color

Turtle geometry shares some of its fundamental concepts and ideas with con-
ventional geometry, i.e., the turtle universe can be understood as an arbitrar-
ily large two-dimensional space in which various coordinates can be visited
and connected. In contrast to conventional geometry, however, the otherwise
infinitesimally small point coordinates are represented by discrete pixels which
each have their own color. Any two coordinates that are connected by a sequence
of consecutive pixels of the same color can be considered to be connected by a
line.

In order to reflect the concept of line colors in the data structure, we extend
each line object with an extra label col marking the line’s color. Each line
segment may have its own color as shown in Fig. 3 where the square example
from before was extended with two red and two blue line segments.

The turtle universe provides space for large, colorful but also complex shapes.
In order to provide immediate feedback independent of class size and task com-
plexity, verification aught to be automated. The next section presents an app-
roach of how automatic solution verification works.

Fig. 3. A colored square (a) and its corresponding line segments (b) (Color figure
online)

3.3 Preparing Student Programs for Verification

Upon pressing the < PLAY >-button, a given sequence of commands is trans-
formed into an abstract syntax tree. This formal structure can be visited and
used to extract the required line segment for a student solution. Figure 4 shows
an example: the Logo program fd 100 setpc red repeat 4 [fd 100 rt 90]
is represented as its corresponding abstract syntax tree is visited in a depth-first
fashion. Each of the commands fd, bk, rt, lt, setpc and repeat mark individ-
ual inner nodes. Upon visiting the fd- or bk-nodes, a line object is generated
and appended to an external data structure element. By default, line segments
are colored black; once a setpc command is visited, however, the color flag of all
subsequent line segments is adapted. The looping construct repeat, finally, has
a special role: it re-executes its subtree block as often as requested, resulting in
an implicit loop-unroll of line segments.

Tool for Custom Assessments in Turtle Graphics 21

Fig. 4. Movement commands are converted into line segments while visiting the
abstract syntax tree. This way, student programs are converted into line segments
that can later be verified against. (Color figure online)

3.4 How to Verify the Correctness of Student Solutions

We define a verifier to be an algorithm that receives (i) a pre-processed student
solution and (ii) a sample solution that need to visually match. In this context,
we define the two terms student and sample solution as follows:

– Student Solutions, as declared in Sect. 3.3, are a sequence of line segments
that capture the essential information about the visual effect of a given Logo
program. For each execution attempt, the student program is transformed
into a sequence of line segments and passed on for verification.

– Sample Solutions have the same structure as student solutions. In contrast
to a student solution, however, sample solutions are defined ahead of time
and remain static throughout the entire exercise.

In order to verify whether a student solution matches a given sample solution,
both are converted into bitmaps and compared pixelwise. With the turtle’s start
position being fixed to the coordinate (0, 0), both solutions can be aligned and
compared easily. In order to avoid rejection due to aliasing, the comparison
takes into account only those pixels with RGB-values matching exactly one of
the pre-defined colors red, green, blue, yellow and black. White pixels in the
student solution are not compared against the (potentially non-white) pixels in
the sample solution in order not to reject partial solutions on the student side.

Despite careful comparison, this process may result in false negatives. How
such occasions occur and a measure to combat it is presented in the next section.

3.5 The Problem of Comparison on a Pixel Level

A given graphical pattern, say a square, can often be created in various different
ways. While both repeat 4 [fd 100 rt 90] and repeat 4 [lt 90 bk 100]
produce the same visual result (a square), the underlying data structure differs in
terms of line ordering (see Fig. 5). This seemingly insignificant difference causes
problems once colors are introduced.

The order of lines determines the order in which lines are drawn onto the
canvas (i.e., in a top-down fashion). In case of overlapping lines, such as the

22 J. Marbach et al.

Fig. 5. Line segments for repeat 4 [fd 100 rt 90] and repeat 4 [lt 90 bk 100]

are the same excepts for line ordering. The two parse trees create the same visual
results, once (left) in a clockwise direction, once (right) counter-clockwise. (Color figure
online)

edge of a square, minuscule pixel differences can cause seemingly-correct student
solutions to be rejected. Figure 6 visualizes this point; although both the middle
and the right square seem the same on a macroscopic level; their edge pixels differ
due to line ordering (clockwise versus counter-clockwise). Seeing that sample
solutions only capture one possible solution, they cannot be taken as ground
truth down to the pixel-level.

To tackle this problem, verification can be extended with a threshold, allowing
all solutions that match to a “high-enough” degree to be accepted. Finding a
suitable threshold, however, has proven to be a challenge in its own right, as we
will further discuss in Sect. 5.

Fig. 6. Line ordering may cause pixel-differences in intersecting pixels.

3.6 Introducing Constraints

The question of how a solution was created is of crucial importance in construc-
tionist programming classes. Educators have an interest not only in evaluating
student solutions visually, but also in examining and evaluating their program-
matic approach. To this end, we introduce the concept of constraints; a means
to restrict the linguistic flexibility in student solutions.

As shown in Fig. 1, a simple shape like a square can be programmed in vari-
ous different ways. While in the beginning, any working solution is good enough,
more advanced students are expected to make use of programming concepts such
as loops. Rather than promoting long and messy programs (e.g., instead of fd

Tool for Custom Assessments in Turtle Graphics 23

100 rt 90 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 we want to enforce
the more elegant and shorter alternative repeat 4 [fd 100 rt 90]) we want
to ensure the looping construct is properly used and understood.

In order to enforce programmatic restrictions, we extended our data struc-
ture with an extra constraint field that allows the occurrence of fd, bk, rt, lt,
setpc and repeat commands to be specified and captured in an automatically-
verifiable formal task description. For each of these commands, the number of
occurrences can be specified as an upper bound, lower bound or exact count. List-
ing 1.1 for instance, shows a task constraint for a square that is supposed to be
drawn using exactly one fd-, one rt- and one repeat-command. There are other
alternatives as to how this constraint can be expressed and, for instance, the
total number of commands in a program (independent of the kind of command)
could be used for the same purpose as well. This extension allows for more inter-
esting and constraining exercise statements to be used, such as the third and
fourth task in Fig. 1. Verifying student solutions can be performed using string
analysis on a user program.

[

{ "lines":

[{"x1":0, "y1": 0, "x2": 0, "y2":-100, "col": ...},

{"x1":0, "y1":-100,"x2": 100,"y2":-100, "col": ...},

{"x1":100,"y1":-100,"x2": 100,"y2": 0, "col": ...},

{"x1":100,"y1": 0, "x2": 0, "y2": 0, "col": ...}]} ,

{ "constraints":

[{"fd": {"type": "eq", "number": "1"},

{"rt": {"type": "eq", "number": "1"},

{"repeat": {"type": "eq", "number": "1"}]}

]

Listing 1.1. A task description that requires a square to be drawn using one fd-, one
rt- and one repeat-command.

4 The Spectrum Between Right and Wrong

The presented verifier assesses the correctness of a solution based on pixel-
comparison and constraints. However, mere correctness is only one of the aspects
a teacher might want to take into account when assessing their pupils. In order
to assess the expertise of pupils, both the overall time per task and number of
incorrect attempts may be taken into consideration. Our tool computes the score
of a solution taking into account all three aspects: correctness, time, and number
of attempts. Our score function is inspired by the one used in the programming
competition platform Topcoder [1].

Two variables can be set to compute the overall score si per pupil: T is the
overall time provided to solve all tasks and pi is the maximum number of points
awarded per exercise. When a task is being solved. The time ti and the number
of attempts qi until a correct solution is found, are registered resulting in the

24 J. Marbach et al.

following score function that is subject to a + b + c = 1 ∧ a, b, c ≥ 0:

si = pi

(
a +

bT 2

10t2i + T 2
+

c

qi

)
,

The maximum number of points pi that can be awarded for a task is thus sub-
divided into three parts: The a-portion of the points is awarded for correctness
as defined in the previous section, no matter the time taken or the number of
attempts. The b-portion of the points are subject to non-linear decay depending
on the time ti taken to solve a task correctly. The c-portion of the points decay
linearly with the number of wrong attempts. We manually decided for a = 0.7,
b = 0.2 and c = 0.1.

5 Conclusion

Computer science in many ways holds a special position in schools: In addi-
tion to the struggle of carrying the constructivist view of a long misunderstood
discipline into their class rooms, teachers must gain the relevant content knowl-
edge (i.e. programming skills) by themselves and figure out how to assess their
students’ learning. Despite its exacting nature, programming oftentimes allows
for numerous different solutions that may vary greatly on both a syntactic and
semantic level. Assessing a large number of diverse student solutions can be a
tedious and time-consuming endeavor.

We presented a tool that allows teachers, potentially without much back-
ground in computer science, to easily design custom assessments in turtle graph-
ics. The presented tool first verifies whether a student solution visually matches
a given sample solution, as discussed in Sect. 3.4, and then ensures that any
imposed constraints on the program-level are met as well. The tool has been
integrated into the XLogoOnline programming environment that is widely used
in primary and lower secondary schools across the globe. This work provides
a stable basis for further analyzing student solutions on a primarily semantic,
rather than syntactic, level. There are, however, also two noteworthy limitations:

1. While the presented data structure allows geometric shapes to be described
formally, the representation is not optimized for space efficiency. One funda-
mental problem is that turtle graphics is not only used for simple geometric
figures with few lines, but also for tasks that use a large number of line seg-
ments. For instance, circles can be approximated as polygons with a large
number of lines and filled rectangles are constructed using a large number of
adjacent line segments. Such figures take up an undesirable amount of mem-
ory, which can be problematic in terms of both storage and data processing.

2. A second yet unresolved question is how to find a threshold value that is
universally suitable. As discussed in Sect. 3.5, it is not possible to simply
check for an exact pixel match due to layering problems that results in pixel
differences. It is difficult to find a tight threshold that works in all cases:
the case of a colored cross cannot be handled the same as a four-colored

Tool for Custom Assessments in Turtle Graphics 25

square which again cannot be handled the same as a filled-in square with an
different-colored space in the middle (Fig. 7). Finding a suitable threshold is
relevant; a too large threshold accepts incorrect solutions whereas a too small
one might reject correct solutions.

Fig. 7. Difficulty of finding a suitable threshold: (left) one pixel of uncertainty, (middle)
two lines of uncertainty, (right) an area of uncertainty. (Color figure online)

References

1. Ratings in topcoder. https://community.topcoder.com/tc?module=Static&
d1=help&d2=ratedEvent. Accessed 26 Jan 2022

2. Bell, T., Andreae, P., Lambert, L.: Computer science in New Zealand high schools.
In: Proceedings of the Twelfth Australasian Conference on Computing Education,
vol. 103, pp. 15–22 (2010)

3. Black, P., Wiliam, D.: Developing the theory of formative assessment. Educ. Assess.
Eval. Accountability (Formerly J. Pers. Eval. Educ.) 21(1), 5–31 (2009)

4. Boston, C.: The concept of formative assessment. Pract. Assess. Res. Eval. 8(1), 9
(2002)

5. Brown, N.C., Altadmri, A.: Investigating novice programming mistakes: educa-
tor beliefs vs. student data. In: Proceedings of the Tenth Annual Conference on
International Computing Education Research, pp. 43–50 (2014)

6. Dagiene, V., Hromkovic, J., Lacher, R.: Designing informatics curriculum for K-12
education: from concepts to implementations. Inf. Educ. 20(3), 333–360 (2021).
https://doi.org/10.15388/infedu.2021.22

7. Eschbach, D.: A computer-based examination system for XLogoOnline. Master’s
thesis, ETH Zurich (2019)

8. Fowler, B., Vegas, E.: How England implemented its computer science education
program. Center for Universal Education at The Brookings Institution (2021)

9. Garrison, C., Ehringhaus, M.: Formative and summative assessments in the class-
room (2007)

10. Goode, J., Skorodinsky, M., Hubbard, J., Hook, J.: Computer science for equity:
teacher education, agency, and statewide reform. Front. Educ. 4, 162 (2020)

11. Hristova, M., Misra, A., Rutter, M., Mercuri, R.: Identifying and correcting Java
programming errors for introductory computer science students. ACM SIGCSE
Bull. 35(1), 153–156 (2003)

12. Hromkovič, J.: Einfach informatik 5/6: Programmieren. primarstufe. begleitband.
Einfach Informatik (2019)

https://community.topcoder.com/tc?module=Static&d1=help&d2=ratedEvent
https://community.topcoder.com/tc?module=Static&d1=help&d2=ratedEvent
https://doi.org/10.15388/infedu.2021.22

26 J. Marbach et al.

13. Hromkovič, J., Kohn, T.: Einfach informatik 7–9: Programmieren. sekundarstufe
i. Einfach Informatik (2018)

14. Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based
programming environment for schools aiming at reducing cognitive load on pupils.
In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7 18

15. Hunt, N.P., Bohlin, R.M.: Teacher education students’ attitudes toward using com-
puters. J. Res. Comput. Educ. 25(4), 487–497 (1993)

16. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of recent systems
for automatic assessment of programming assignments. In: Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, pp. 86–
93 (2010)

17. Kurvinen, E., Lindén, R., Rajala, T., Kaila, E., Laakso, M.J., Salakoski, T.:
Computer-assisted learning in primary school mathematics using ViLLE educa-
tion tool. In: Proceedings of the 12th Koli Calling International Conference on
Computing Education Research, pp. 39–46 (2012)

18. Menta, R., Pedrocchi, S., Staub, J., Weibel, D.: Implementing a reverse debugger
for logo. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2019. LNCS, vol. 11913,
pp. 107–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33759-9 9

19. Mozelius, P., Ulfenborg, M., Persson, N.: Teacher attitudes towards the integra-
tion of programming in middle school mathematics. In: INTED 2019, pp. 701–706
(2019)

20. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
New York (1980)

21. Pea, R.D.: Logo programming and problem solving (1987)
22. Pérez-Maŕın, D., Hijón-Neira, R., Mart́ın-Lope, M.: A methodology proposal based

on metaphors to teach programming to children. IEEE Revista Iberoamericana de
tecnologias del aprendizaje 13(1), 46–53 (2018)

23. Souza, D.M., Felizardo, K.R., Barbosa, E.F.: A systematic literature review of
assessment tools for programming assignments. In: 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEET), pp. 147–
156. IEEE (2016)

24. Staub, J.: xLogo online-a web-based programming IDE for Logo. Master’s thesis,
ETH Zürich (2016)

25. Staub, J., Chothia, Z., Schrempp, L., Wacker, P.: Encouraging task creation among
programming teachers in primary schools. In: Barendsen, E., Chytas, C. (eds.)
ISSEP 2021. LNCS, vol. 13057, pp. 135–146. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90228-5 11

26. Taras, M.: Assessment-summative and formative-some theoretical reflections. Br.
J. Educ. Stud. 53(4), 466–478 (2005)

https://doi.org/10.1007/978-3-319-71483-7_18
https://doi.org/10.1007/978-3-030-33759-9_9
https://doi.org/10.1007/978-3-030-90228-5_11
https://doi.org/10.1007/978-3-030-90228-5_11

Informatics at Primary Education:
Teachers’ Motivation and Barriers

in Lithuania and Turkey

Gabrielė Stupurienė1(B) and Yasemin Gülbahar2

1 Institute of Educational Sciences, Vilnius University, Vilnius, Lithuania
gabriele.stupuriene@mif.vu.lt

2 Department of Computer Education and Instructional Technologies, Ankara
University, Ankara, Turkey

gulbahar@ankara.edu.tr

Abstract. Scientific research shows that the role of teachers is crucial
in the integration of informatics at all educational stages. Besides some
other barriers, teachers’ lack of knowledge of informatics is believed to be
a reason why educators are reluctant to get involved in informatics teach-
ing. Hence, this study focused on the factors influencing primary school
teachers’ motivation and possible barriers for integrating informatics in
lessons. The data were collected from an accessible sample by conduct-
ing semi-structured interviews with primary school teachers in Lithuania
and Turkey in 2022. This paper also presents an overview of informat-
ics primary education curricula in both countries. Results showed that
despite different curriculum conditions and sociodemographic issues in
two countries, primary school teachers’ factors of motivation and barri-
ers are the same. Motivation depends on teachers’ willingness to acquire
new digital competences, to go beyond being a regular teacher and to
innovate in their school. Teachers understand the importance of keeping
their students up-to-date with the newest educational technologies and
CT competences, however they face serious challenges to overcome. We
sum up with a discussion comparing curricula and teachers’ attitudes in
both countries and conclude with some insights and recommendations.

Keywords: Computers science education · Informatics education ·
Computational thinking · Primary education · Primary school
teachers · Motivation and barriers · Teacher training

1 Introduction

With the growing influence of new technologies, schools are not ready to be
active participants in 21-century challenges. Computational Thinking (CT) has
achieved the status of essential 21st-century skill and is now included in school
curricula all over the world, although there is no consensus on how to define
it [15]. From an educational and curricular perspective, computational thinking
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 27–39, 2022.
https://doi.org/10.1007/978-3-031-15851-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_3&domain=pdf
http://orcid.org/0000-0001-5577-1054
http://orcid.org/0000-0002-1726-3224
https://doi.org/10.1007/978-3-031-15851-3_3

28 G. Stupurienė and Y. Gülbahar

has been recognized for developing knowledge and understanding of concepts
in CS as well as for significant contribution to general-purpose problem-solving
skills [12]. Some of the definitions are superficial and have caused confusion
among teachers who don’t understand how to teach basic computing and how
to assess student progress and teachers are asking for clarification [5]. Despite
the recent widespread acceptance of computational thinking, there are some gaps
and uncertainties in teacher training and professional development to understand
the aims and intentions of computational thinking (CT) education [7]. As stated
by Bocconi et al. (2022) [1], teachers play an important role in the successful
integration of informatics and CT at any school level. Zhang et al. (2020) [17]
specified a lack of programming and CT knowledge as a reason why teachers
do not include CT perspectives in their practice. Providing teachers with the
necessary instructional support, which will guide the teaching process in their
classroom, plays an important role in the implementation of the curriculum [14].
In the face of rapid technological change, teachers in particular are expected to
be lifelong learners with the latest knowledge and skills, as well as the ability to
replace education with these new and innovative tools and technologies [8]. But
the problem is that with the aging of teachers, not all of them are ready to be
active learners and be ready to improve their limited knowledge of CT and infor-
matics and build capacity in fundamental CT concepts and pedagogies. Related
to this topic, Jocius et al. (2020) [13], proposed the 3C (the code, connect, and
create) professional development model which was designed to support teachers
while infusing CT into their classrooms. Results showed that this professional
development model supported the integration process, and increased teachers’
self-efficacy and beliefs regarding CT integration into disciplinary content. Con-
sequently, it is very important to take into account teachers’ self-efficacy as one
of the motivating factors. In the study about informatics and CT in primary edu-
cation in 2019, 27 interviewed countries have already introduced an informatics
curriculum for primary education, 11 countries were under active development of
a new curriculum and there were no curricula for informatics in primary educa-
tion in 14 countries. The data collected showed that informatics is taught in some
form in primary education in the majority of countries surveyed (83%). However,
the level of implementation of informatics varies widely [3]. Hence, integration
of informatics and teacher training are two important topics for the world where
serious discussions are continuing by growing. Besides changing their curriculum
to include informatics concepts and CT processes, most countries have already
started to discuss whether to integrate artificial intelligence in the curriculum or
not [16].

Based on these facts, the research presented in this paper has two goals.
The first one is to overview two countries’ informatics primary school curricula
in order to have a background and perception. The second one is to identify
influencing factors of motivation of teachers to integrate informatics and CT in
primary education. To find out key challenges that teachers in two countries are
facing.

Informatics at Primary Education 29

1.1 Informatics in Primary Education in Lithuania

Lithuania has a long-standing tradition (from 1986) in informatics education,
however not in primary education (ages 7–11). In 2019, Lithuania’s Ministry of
Education, Science and Sport approved the Guidelines for Updating the General
Curriculum Framework [6]. This foresees a new informatics subject to replace the
current Information Technologies subject, with the introduction starting from
primary school. Proposed version of the informatics curriculum framework for
primary schools (grades 1–4) includes these six areas [4]:

– Digital content: essential skills of working with digital devices; managing tex-
tual, graphical, numeric, visual, audial information; information visualization
and presentation; digital content creation.

– Algorithms and programming: solving problems: algorithm, action control
commands (sequencing, branching, looping), programming in a visual pro-
gramming environment for children.

– Problem solving: essential technical and technological skills for working with
digital devices: solving technical problems, evaluating and identifying suitable
technologies for the selected problem, and creative use of technologies.

– Data and information: working with data skills: problem analysis, data col-
lection, sorting, search and data management, content quality evaluation.

– Virtual communication: social skills in a virtual environment: continuous
learning, e-learning, communication via email, chats, social networks, sharing,
collaboration, and reflection.

– Safety: digital safety, safe work with digital devices; ethics and copyright
issues of information processing and usage; safety, ethics, and copyright issues
in virtual communication.

In 2020, one hundred primary schools started to pilot the proposed informatics
curriculum. The pilot targeted the development of learning resources and text-
books, as well as teacher training. The full-scale implementation of the informat-
ics curriculum commences in 2023. While this new primary education Informat-
ics curriculum covers most of the major CT components, it is up to individual
schools (and their teachers) to decide how and in which subjects to integrate the
informatics components they choose to address.

1.2 Informatics at Primary Education in Turkey

The first “Computer” course in K-12 was added as an elective course in 1997
with the decision of the Head Council of Education and Morality of the Ministry
of National Education (MoNE). In this context, the course has been taught for
1–5 years, 1–2 h a week, starting from the 4th grade. Since the curriculum is
designed in a spiral structure, students can choose this course starting from any
class. This course was expanded to cover grades 1–8 later, and the choice of the
course was left to the teachers’ board. The course has been named differently,
weekly hours and grades are changed from time to time besides revisions in
the curriculum. In 2012, the name of the course was changed to “Information

30 G. Stupurienė and Y. Gülbahar

Technologies and Software” and the course became compulsory in the 5th and
6th grades. Previously focusing on ICT concepts, the curriculum of the course
has also been changed including “problem solving and programming”. Lastly,
in 2016, the curriculum of the courses for primary education has been slightly
revised to include “Ethics” whereas a more important change in grades for 9th
and 10th grades happened. For high school the course is named “Computer Sci-
ence” and the curriculum shifted from teaching ICT to teaching “problem solving
and programming” concepts. In science schools and social sciences schools, this
course was made compulsory [9].

The whole curriculum from 1st grade to 10th grade is framed around basic
topics with possible differences in sub-topics and difficulty in content. Hence
basics were as follows:

– Information and Communication Technologies: the effect and importance of
technology in terms of society, computer systems, file management etc.

– Ethics and Security: ethical values, digital citizenship, privacy and security,
copyright and licensing etc.

– Communication, Search and Collaboration: computer networks, searching the
net, communication tools, social media etc.

– Product Creation: developing documents and presentations, spreadsheets,
using audio and visual tools, creating animations, 3D design etc.

– Problem Solving and Programming: problem solving approaches and tools,
programming (block-based, text-based, physical, mobile, and web-based
depending on the age level)

The curriculum is implemented in schools since then devoting the autumn
semester to the first four headings and the spring semester only to the “Prob-
lem Solving and Programming” heading. Although no separate courses were
announced for 1–4th grades in primary schools, MoNE delivered the curriculum
(mostly based on CT) supported with books and activities and advised classroom
teachers to deliver the content in free activity hours which is weekly 4 hours.

There were also many other initiatives for spreading coding around the coun-
try like makers and coding clubs for students, training opportunities provided
to teachers and students with the support of governorships etc. However, due
to some challenges like technological infrastructure and lack of knowledge of
teachers, the implementation has not reached its full potential yet.

1.3 Summary of Two Countries Situation

As a summary, the policy documents overview highlights the fact that currently,
both countries are not teaching informatics at the primary level in 1–4th grades.
Turkey advised doing so by providing curriculum and support materials in 2016
whereas Lithuania decided to provide a compulsory course to integrate from
grades 1–4 starting in the year 2023. The idea of integration should be at least
30% of the time or separate lessons one time per week from 2023. In 2019, 51%
of primary teachers in Lithuania were at least 50 years old, and there was no

Informatics at Primary Education 31

systematic training, only some public or private initiatives (not free of charge).
Starting with the F@tih project in 2011, Turkey, having quite a young genera-
tion of computing teachers, not only started to donate schools with the neces-
sary technology and infrastructure but also started to provide continuous and
planned teacher training activities in the form of training the trainers. Hence,
having diverse implementations and situations, this paper aims to provide differ-
ent insights and underline major and common problems together with possible
suggestions.

2 Research Methodology

The aim of this research study is to reveal the current situation of teaching infor-
matics in two countries, namely Lithuania and Turkey, in order to provide differ-
ent perspectives on the same phenomena. For this purpose, qualitative analysis
was carried out to explore the phenomena in depth. An overview of policy doc-
uments and curricula was used as a primary source in order to have an insight
of both countries’ intentions in teaching informatics. This study was planned
while a Lithuanian researcher was doing an internship at a Turkish university,
so there was an opportunity for collaboration. Moreover, accessible teachers were
interviewed to gather varying experiences and thoughts.

Semi-structured interviews were conducted from January to May 2022. From
Lithuania 8 primary school teachers and from Turkey 7 primary school teachers
were interviewed about the integration of informatics into curricula. Respondents
were the only ones who volunteered to take part in the research. Some of the
interviews were done online through video conferencing software and some of
them were carried out face-to-face. The interviews lasted about 40-60 minutes.

The average age of respondents in Lithuania was 48,5 years, with 6 out of 8
teachers with more than 20 years experience in primary education, one teacher
with up to 15 years experience, and one teacher with up to 5 years experience
in primary education. The average age of respondents in Turkey was 37 where
3 out of 7 had more than 20 years of experience whereas 4 other teachers had
less than 7 years of experience. Age and experience have a great effect on infor-
matics teaching since we are living in a digital age and transforming with tech-
nology. Hence having a diverse sample for this study, despite the small number
of participants is important to provide a broader insight. Semi-structured inter-
views were conducted according to the Interview Guide, which has been designed
based on literature review and the experience of researchers. It was validated by
five experts for different areas (psychologists, educologist, and sociologists). The
Interview Guide consisted of 17 questions.

The policy documents and curricula were analyzed using “content analysis”
whereas interviews were analyzed through “inductive coding” in order to reveal
emerging themes. Hence, based on content and inductive analysis of the policy
documents and the interviews, findings are revealed and interpreted to provide
a deep insight to the problem.

32 G. Stupurienė and Y. Gülbahar

3 Results

In this section, the analysis of the data will be presented separately for each
country to reveal possible differences from different perspectives.

3.1 Case of Lithuania

In order to have a broader view of Lithuania, 8 teachers were selected from 3
state schools (N = 6) and 2 private schools (N = 2) in 4 regions. Four interviews
were done face-to-face and four by using an online video-conferencing tool. The
analysis of interviews showed that there are several practices regarding informat-
ics integration in schools and it is closely related to teachers’ competencies and
understanding of informatics but discouraged by a lack of tools and methodology.
Three teachers have a very clear view on how to integrate informatics or even
to teach as a separate subject; where four teachers have some misunderstanding
about informatics as a subject and differences between digital competencies or
lack of methodology on how to integrate and one teacher was really in doubtful
situations with even technologies.

Integration of Informatics. Informatics is integrated or even is taught as a sep-
arate subject, not in all private and state schools and this mostly depends on
teachers’ competencies, schools administration, and infrastructure. Two experi-
enced teachers from the same state school are integrating informatics and CT
and have a separate lesson one time per week together with an IT teacher. They
mentioned that what they do in a separate lesson sticks with the child more. Both
of them think that it is useful to teach informatics from an early age because the
skill has to grow: “In this world, it is probably no longer an option to leave tech-
nologies behind. The earlier students start to grasp all this and to further their
knowledge the better.” Teachers, who integrate informatics and CT use plugged
and unplugged informatics activities. They use a variety of tools like Blue bot,
Logo, Scratch, ScratchJr, Scottie Go!, Eduten, WordBall, Liveworksheets.com,
Nearpod, StoryJump, Cospaces, Bebras cards. Some schools have a separate IT
lab for primary school students. All schools also provide coding clubs/robotics
which is an informal after-school activity for students.

Source of Motivation. Interviewed teachers think that the interest in technologies
depends on themselves first. If teachers are not interested, it will be difficult to
integrate informatics. There are schools where teachers don’t want to be behind
other colleagues, so they go and learn. Most teachers’ motivation is curiosity, but
some of them (up to 50 years) catch themselves thinking that they are probably
in a generation where they don’t learn as quickly and can’t keep up with the
young anymore.

Professional Development. All 8 teachers took part in the Teachers Lead Tech
program, which is a paid private initiative for creativity in informatics and tech-
nology. The goal of this program is to patiently and adequately help prepare
primary school teachers from the very beginning. For inexperienced teachers,

http://www.Liveworksheets.com

Informatics at Primary Education 33

this is a good opportunity to start to get acquainted with technologies, but
experienced teachers lack progress because sometimes they know more than in
this program. There are also some courses/seminars for free from universities
and other educational institutions in order to provide new tools or methodology.
All teachers have an opportunity to be part of the Methodology group of pri-
mary education in their region. An older teacher from state schools likes that she
is involved in such group meetings, because together with other teachers they
analyze new tools and activities, discuss, and reveal both their weaknesses and
strengths. This teacher is very important to have a very good collaboration with
colleagues in school and not be afraid to show that she doesn’t know something.

The Role of Administration. Principals in one state and two private schools
invest in technologies, not because it is fashionable, but because they see the
benefits in it. They are very accepting, both interested and capable. In these
three schools, students also have a separate lesson on informatics in the IT
lab. In schools where integration of informatics is in its initial state, school
principals and administration are open to helping teachers as much as they
can but financial, innovation, and management issues are barriers. In schools
where there is no integration of informatics despite teachers’ understanding of
informatics, but lack of pedagogical knowledge on how to integrate unplugged
activities, the principal is open, but the school is in a rural and not rich area
and they have very limited financial resources.

Parent Support. In all 5 schools, parents are helpful. But teachers also mentioned
that they need to invest some time to talk with parents about ethics, safety, and
data protection because not all parents are well educated to use technologies in a
safe way. In one state school parents from two classes provide personal computers
for their children to be used at school. It lets 2 teachers of this school integrate
informatics and CT whatever they need.

Challenges. The challenges more experienced teachers have faced are that there
is no systematic approach, and teachers are distracted. One young teacher from
a private school misses clarity on how to integrate and what because now she is
looking for herself on how to do it and wasting her time. Some teachers argue
that informatics becomes a much more complex subject to integrate into primary
school and requires a lot of effort compared to other subjects. They would like to
know the key, how teachers should teach children in the best way and understand
that instead of playing games they need to show students the real informatics,
which is actually becoming relevant for that young child. All interviewed teach-
ers (even older ones) argue that they can’t ignore technology: “Children are born
with technology, it would be a sin if they didn’t introduce informatics in primary
school”. But overall there is a lot of dissatisfaction from older teachers in Lithua-
nia for renewed curricula which include informatics. One teacher from primary
school who partly integrated informatics thinks the biggest barrier for teachers
is fear: “Here’s a small child sitting down at a computer and he does everything
right away. And we have fears: I can’t do it, I won’t succeed.” In one state school,
2 teachers have an understanding of informatics but are not integrating, because

34 G. Stupurienė and Y. Gülbahar

they don’t know how to do this without computers and other tools. It means
that they don’t know how informatics can be integrated by unplugged activities.
One teacher from a state school has very low digital competence and she is wor-
rying about technologies in general. She agrees that their students know more
than she does but is trying to be open to any changes in curriculum. One more
challenge is that a large part of certain platforms and applications require very
long logins, especially if it is for children and this frustrates many teachers.

Suggestions. Recommendations from more experienced teachers would be that
primary school teachers shouldn’t be in charge of computers/tablets and other
physical tools. Especially for those teachers who are still struggling with com-
puters, they need help from an IT teacher/technical person, at least for the first
year. Teacher’s book/good practices material or practical training that clearly
states what to teach from informatics and CT and how to do this would really
be a big boost for most teachers. Also, teachers mentioned that they would like
live training (not online), to try to learn by doing and understand practically,
because the theory is one. Also to get supporting continuous learning and not
one-off courses.

3.2 Case of Turkey

The situation in Turkey shows a great variety between state and private schools.
For this reason, primary school teachers were selected both from the state (N =
4) and private (N = 3) schools for this study. Hence, the data will be presented by
mentioning this gap wherever relevant. State school teachers were from Istanbul
whereas private school teachers were from Ankara. That is why online interviews
were held with teachers from Istanbul and face-to-face meetings were planned
for teachers in Ankara.

Integration of Informatics. Like the majority of the private schools in Turkey,
the teachers working at private schools mentioned that they have a separate
informatics course starting from the 1st grade whereas there were no separate
courses for state schools. Although MoNE prepared and published curriculum,
activities, and even books for grades 1 to 4, only possible implementation can
be done in free activity hours which is only 4 h a week. State school teachers
mentioned they are teaching coding and using CS unplugged activities in these
hours. All schools can also provide coding clubs which is an informal after-
school activity for students. Since private schools have their separate course and
curriculum they state that they teach both ICT, computing, and informatics at
the same time. Some mentioned content is about keyboard usage, input-output
concept, use of block-based programming (code.org, Scratch, kodu.org), three-
dimensional design, use of programming tools, etc. State schools teachers stated
that they are trying to teach similar concepts like coding-pixel painting and CS
unplugged activities, using weekly free activity time to invite an expert from
a private organization, they prefer gamified teaching of coding, especially in
grades 2–3, and using Web 2.0 tools most of the time. Due to the curriculum,
they stated that they have difficulties integrating informatics into 4th grade.

Informatics at Primary Education 35

They also mentioned that they also integrate relevant concepts into Turkish,
and Mathematics courses.

Assessment of Informatics Concepts. In terms of assessment state school teachers
mentioned they evaluate their students based on learning outcomes and criteria
defined through practices, presentations, and the use of rubrics. However, they
also mentioned that since there is no official course, no need to do assessments
and students are demotivated due to not being graded on their performance.
Meanwhile, private school teachers mentioned that students make presentations,
they use a paid learning environment for teaching and assessment through a
QR Code approach, and they also assess their students’ algorithmic approach
and products they developed through physical programming. Moreover, students
have their own blogs starting from 1st grade to 4th grade, which they use as an
e-portfolio for evaluation. Private schools also integrate computing into math
and social studies courses by using the STEAM approach from time to time.
They also teach ethics in 1–3 grades besides IT topics.

Hence, while private schools provide a separate courses for students, state
school teachers are using free hours and integrating into different disciplines.
They integrate computational thinking algorithms into Turkish with “instruc-
tions” and into Math with “patterns”. They also mentioned that implementation
takes too much time, even in the breaks they have to work, and teaching both
theories and making them practice requires more time. Luckily, students are
open to change, open to learning, and ready to go digital and their self-esteem
increases due to learning this kind of knowledge.

Source of Motivation. Private school teachers mention that their motivation
comes from the willingness to integrate technology, so they are using Web 2.0
tools and interactive learning environments for teaching. They want to make
students ready for real life so they teach technology through practice. They are
also using an international Cambridge curriculum and preventing multiple choice
until 4th grade. On the other hand, state school teachers’ motivation comes from
their loyalty to their profession and dedication to work. Teachers wish to diffuse
innovations, so they have the self-control to be donated with up-to-date knowl-
edge which in the end makes them get respect from their students. They want
to be real role models for their students and feel that their behavior is valued
by their students.

Professional Development. Thus, for professional development, all teachers are
in search of appropriate opportunities. State school teachers are attending pro-
fessional development activities with the support of parents, they are engaging
in projects, and attend workshops and training provided by MoNE. They men-
tion that university support is so important since schools are living labs for
implementation. Private school teachers are also mentioned in similar activities
where all of them are supported by their administration. They are attending
workshops and training provided by their own academy besides participating in
various teacher training activities, watching videos, and reading course notes.

36 G. Stupurienė and Y. Gülbahar

The Role of Administration. It is obvious how important the administrators’ role
here is. While private school teachers mention that their administration supports
projects, looks for innovations, and values this leadership, state school teachers
are complaining about the lack of this technological leadership in their schools.
All the teachers agreed on “school leaders’ being also a technological leader is
so important”. Thus, they mentioned that school principals’ have to take risks
since their support is so important.

Parent Support. Likewise in all other questions, the situation of parent sup-
port also showed diversity between private and state schools. Parents in private
schools are more supportive of innovations and the integration of informatics,
they provide great support and even demand for training. Thus, they look for
after-school makers and monitor the homework of their children. Even parents
are provided training for secure and healthy use of technology to support them-
selves and their children. On the other hand in state schools, well-educated
parents provide more support, while others don’t care. Parents value concrete
outcomes and for them, students’ wellness is more important.

Challenges. Surprisingly, private schools are facing almost no challenges due
to their administrations’ points of view. Thus, we can conclude that they are
successfully integrating informatics in primary education as a separate subject,
through the STEAM approach by using constructivist approaches like problem-
based learning. Unfortunately, state schools underline several obstacles they face
for effective integration of informatics as follows:

– Lack of technical infrastructure, out-of-date technologies;
– No computing teachers in the first two grades due to system change 4 + 4;
– Overcrowded classes (20–25 students, should be at most 16);
– Resistance from parents;
– Lack of time.

Suggestions. As expected most of the suggestions are made by state school
teachers. They mentioned that have to teach “data” concepts and “algorithms”
through variables, loops, and constraints through different approaches. They
mentioned logic and philosophy should be integrated starting from 1st grade in
schools and thinking skills should be focused on so that children have the chance
for improving their higher-order thinking skills. Informatics courses should be
compulsory starting from the first grade and content should be culture-sensitive.
Interdisciplinary teaching of informatics concepts should be planned and should
aim for permanent learning.

4 Discussions and Conclusion

Following the purpose of the study, the policy documents and curricula about
informatics in primary education have been overviewed and teachers are inter-
viewed for their opinions and insight. Many countries have already been involved

Informatics at Primary Education 37

in the process of updating their curricula for informatics education at primary
school [3,4]. But most countries are struggling with similar obstacles.

Integration of informatics in all countries, like in these two, strongly depends
on teachers’ experiences and attitudes toward the idea. Hence, although teacher
training is one of the most important steps in achieving the goal of integration
of informatics, even it is not sufficient if the teacher is not in favor of doing it or
if the teacher doesn’t value and believe its importance. This fact is true for both
the countries, but Turkey has already started integrating informatics earlier in
primary education, especially in most private schools and some state schools
[10]. Although the percentage is small for state schools now, more teachers every
day are provided necessary training both face-to-face and online through the
delivery of instructional materials and activities. Hence, teacher training can be
the most important requirement for effective integration [2,11].

Teachers of both countries stated that they cannot effectively teach infor-
matics concepts because of their perceived inadequacy of knowledge, or due
to lacking infrastructure in some schools. However, one of the most important
components in making this process effective is teaching methods, activities, and
materials. Yet another common challenge for both countries is the lack of tech-
nical infrastructure. Having not enough technology or out-of-date technologies
makes it difficult to implement the informatics curriculum. Hence, inefficient dig-
ital competencies combined with insufficient technology resources, what could
be achieved?

Therefore, based on the literature, content, and analysis of interview data
following suggestions need to be considered for effective integration at the indi-
vidual level:

– Efforts should support that teachers become aware of the fact that computa-
tional thinking and informatics concepts can be taught with or without the
use of computers via various approaches;

– Strategies for overcoming resistance should be used to increase teachers’ self-
confidence and overcome fears of the use of technology;

– Professional development opportunities (practice-oriented) for integration
into the educational process and for learning how to teach informatics should
be continuously provided to classroom teachers;

– Coherent and systemic provision of teaching support (e.g. material/teacher
book/practice by learning by doing) should be delivered.

Moreover, some suggestions at organizational level are also seem to be very
important in the educational system:

– School principals and administrative staff should also have technological lead-
ership competencies, so there should be acting as role models;

– Best practices should be shared together with the discussions of pros and
cons.

Although this qualitative research study is limited to the volunteer teachers par-
ticipating in the study, the efforts provided some different insights and revealed

38 G. Stupurienė and Y. Gülbahar

potential problems for many other countries. Hence, at least now it is known
where to start and what possible obstacles could be faced in the future, so pol-
icy makers and other stakeholders can update agenda for effective integration of
informatics in schools based on lessons learned from two countries.

Acknowledgement. The authors acknowledge the contribution of interviewed pri-
mary school teachers from both countries. This project has received funding from
European Social Fund (project No 09.3.3-LMT-K-712-23-0083) under grant agreement
with the Research Council of Lithuania (LMTLT).

References

1. Bocconi, S., et al.: Reviewing Computational Thinking in Compulsory Education
(No. JRC128347). Joint Research Centre (Seville site) (2022)

2. Caskurlu, S., Yadav, A., Dunbar, K., Santo, R.: Professional development as a
bridge between teacher competencies and computational thinking integration. In:
Computational Thinking in Education, pp. 136–150. Routledge (2021)

3. Dagienė, V., Jevsikova, T., Stupurienė, G.: Introducing informatics in primary
education: curriculum and teachers’ perspectives. In: Pozdniakov, S.N., Dagienė, V.
(eds.) ISSEP 2019. LNCS, vol. 11913, pp. 83–94. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-33759-9 7

4. Dagienė, V., Jevsikova, T., Stupurienė, G., Juškevičienė, A.: Teaching computa-
tional thinking in primary schools: worldwide trends and teachers’ attitudes. Com-
put. Sci. Inf. Syst. 19(1), 1–24 (2021)

5. Denning, P.J., Tedre, M.: Computational thinking: a disciplinary perspective. Inf.
Educ. 20(3), 361–390 (2021)

6. Education development center: Lithuanian Informatics curriculum outline. https://
informatika.ugdome.lt/lt/biblioteka/dokumentai/

7. Fagerlund, J., Häkkinen, P., Vesisenaho, M., Viiri, J.: Computational thinking in
programming with Scratch in primary schools: a systematic review. Comput. Appl.
Eng. Educ. 29(1), 12–28 (2021)

8. Garzón-Artacho, E., Sola-Mart́ınez, T., Romero-Rodŕıguez, J.M., Gómez-Garćıa,
G.: Teachers’ perceptions of digital competence at the lifelong learning stage.
Heliyon 7(7), e07513 (2021)

9. Gülbahar, Y., Kalelioğlu, F.: Bilişim Teknolojileri Ve Bilgisayar Bilimi: Öğretim
Programı Güncelleme Süreci (ICT and computer science: Curriculum Improvement
Process). Milli Eğitim Dergisi 47(217), 5–23 (2018)

10. Gülbahar, Y., Ilkhan, M., Kilis, S., Arslan, O.: Informatics education in Turkey:
national ICT curriculum and teacher training at elementary level. Commentarii
informaticae didacticae: (CID) 6, 77–87 (2013)

11. Howard, S.K., Tondeur, J., Ma, J., Yang, J.: What to teach? Strategies for devel-
oping digital competency in preservice teacher training. Comp. Edu. 165, 104149
(2021)

12. Israel-Fishelson, R., Hershkovitz, A.: Persistence in a game-based learning envi-
ronment: the case of elementary school students learning computational thinking.
J. Educ. Comput. Res. 58(5), 891–918 (2020)

13. Jocius, R., et al.: Code, connect, create: the 3C professional development model to
support computational thinking infusion. In: Proceedings of the 51st ACM Tech-
nical Symposium on Computer Science Education, pp. 971–977 (2020)

https://doi.org/10.1007/978-3-030-33759-9_7
https://doi.org/10.1007/978-3-030-33759-9_7
https://informatika.ugdome.lt/lt/biblioteka/dokumentai/
https://informatika.ugdome.lt/lt/biblioteka/dokumentai/

Informatics at Primary Education 39

14. Kert, S.B., Kalelioğlu, F., Gülbahar, Y.: A holistic approach for computer science
education in secondary schools. Inf. Educ. 18(1), 131–150 (2019)

15. Nordby, S.K., Bjerke, A.H., Mifsud, L.: Computational thinking in the primary
mathematics classroom: a systematic review. Digit. Exp. Math. Educ. 8, 1–23
(2022)

16. Tedre, M., et al.: Teaching machine learning in K-12 classroom: pedagogical
and technological trajectories for artificial intelligence education. IEEE Access 9,
110558–110572 (2021)

17. Zhang, L., Nouri, J., Rolandsson, L.: Progression of computational thinking skills
in Swedish compulsory schools with block-based programming. In: Proceedings
of the Twenty-Second Australasian Computing Education Conference, pp. 66–75
(2020)

Bebras Challenge in a Learning Analytics
Enriched Environment: Hungarian and Indian

Cases

Zsuzsa Pluhár1(B) , Heidi Kaarto2, Marika Parviainen2, Sonia Garcha3,
Vipul Shah4, Valentina Dagienė5 , and Mikko-Jussi Laakso2

1 Eötvös Loránd University, Budapest, Hungary
pluharzs@inf.elte.hu

2 University of Turku, Turku, Finland
{heemkaa,mhparv,milaak}@utu.fi

3 CSpathshala, Pune, India
4 Tata Consultancy Services, Pune, India

v.shah@tcs.com
5 Vilnius University Institute of Educational Sciences, Vilnius, Lithuania

valentina.dagiene@mif.vu.lt

Abstract. Education needs to provoke young people to be active participants of
modern society and contribute to changing and shaping the world. The interna-
tional Bebras initiative, with over 70 countries participating, is one of the success-
ful approaches involving school students in solving problems of computer science
and deep thinking. In 2021, Finland, Hungary and India, supported by Lithuania,
started a research study on solving Bebras tasks integrated into the Finnish virtual
learning environment ViLLE using learning analytics. In this paper, we describe
the methodology of the research study and two pilots conducted in Hungary and
India with 1548 participants in total. A detailed analysis of Hungarian Bebras
Challenge run in November 2021 in the ViLLE environment is provided. Results
of 33,467 students aged 9–18 are discussed using task difficulty, gender, and time
as the underlying variables. Also, a brief overview of feedback from teachers and
students on using the ViLLE environment is given. The results from the pilots and
from the Hungarian Bebras Challenge show that the ViLLE environment supports
the task solving process of the Bebras Challenge and easy adaptive to different
languages and task sets.

Keywords: Computational Thinking · Bebras Challenge · Computer science
education · Task solving

1 Introduction

In recent years, Computational Thinking (CT) has been recognized as an essential skill
for all citizens, as they are members of the digital era. Many researchers discuss the
definitions of CT and the skills, components and main concepts included, adjust and
develop new approaches, and establish learning content and assessment tools.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 40–53, 2022.
https://doi.org/10.1007/978-3-031-15851-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_4&domain=pdf
http://orcid.org/0000-0003-2688-4652
http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0001-9163-2676
https://doi.org/10.1007/978-3-031-15851-3_4

Bebras Challenge in a Learning Analytics Enriched Environment 41

Four decades ago, Seymour Papert coined the term “computational thinking” and
suggested that computers might enhance thinking and change patterns of knowledge
accessibility [1]. Later Jeanette Wing [2] actively reformulated CT as thought processes
and promoted these ideas in the design and analysis of problem solving.

Román-González et al. [3] distinguished three types of the definitions of CT: 1)
generic definition that focus on CT as a thought process, 2) operational definition that
describe what CT entails based on Selby and Woollard’s five fundamental elements [4],
and 3) curricular definitions derived from different frameworks.

According to various research works [1, 2, 5–7] CT is a way of thinking (thought
process) for problem solving. However, researchers also specify that it is not just prob-
lem solving: the solution of the problem must be expressed in a way that allows a
computational agent to carry it out [8–11].

A systematic review of empirical studies [9] highlighted that a lot of CT definitions
are related to programming and computing. Numerous recent studies discussed that
coding skills should be considered to be among basic skills and are of equal importance as
reading andwriting skills. Programming and CT are deeply intertwined: programming is
used asmeans to learn the concepts and skills related to CT [10]. CT shifts the focus from
simple coding to problem solving in various disciplines by emphasizing computational
skills [11].

Thinking computationally means being able to approach and solve problems effi-
ciently based on the principles and methods of computer science [12, 13]. Whichever
view one takes of the definition of CT, it is important to be pragmatic regarding devel-
oping the best ways to teach it [14]. CT refers to an individual’s ability to recognize
aspects of real-world problems appropriate for computational formulation and evalu-
ate and develop algorithmic solutions to those problems so that the solutions could be
operationalized with a computer [15].

Most researchers [e.g., 16, 7, 17] use the 3-dimensional theoretical framework of CT
components by Brennan and Resnick [18] based on CT Concepts, CT Practice, and CT
Perspectives.

CTConcepts refer to the computational concepts, i.e., algorithm, pattern recognition,
encryption, artificial intelligence, deadlock, decomposition, including programming
terms, i.e., sequences, loops, parallelism, events, conditionals, operators, parameters,
recursion, data structures [19–21].

During the last decade,CTPractices gained themost attention, althoughCTConcepts
play a central role. Researchers tend to investigate different CTConcepts in their studies,
so CT Concepts and Practices are tightly pinned together, the most cited are together.

Denning and Tedre [22] analyze CT from the perspective of computing’s disciplinary
ways of thinking and practicing and explain that CT is not a set of concepts for pro-
gramming. It is a way of thinking that is honed through practice: the mental skills for
designing computations to do jobs for us, and for explaining the world as a complex of
information processes.

42 Zs. Pluhár et al.

2 Bebras and ViLLE in Connection to Computational Thinking

2.1 The Bebras Challenge

The international Bebras Challenge promotes computer science or informatics and CT
by solving short tasks based on CT concepts and is well-known in many countries as an
informal school event [21]. Having organized the Bebras Challenge annually for almost
twenty years, organizers (and authors of this paper) have noticed that students (and their
teachers) consider the activities very exciting as they provide problem solving experience
and insight into what lies beyond digital technology. The crucial point of the challenge
is the tasks: they are based on the informatics concepts and help to understand what is
beyond technology, they are short, attractive, and answerable in a few minutes.

The Bebras Challenge is aimed at all primary and secondary school students to
promote informatics education and CT. Students solve 18 to 24 tasks in 45–55 min.
There are different task sets for different age groups. Six age groups are used: Group I:
Pre-Primary (grades 1–2), Group II: Primary or Little Beavers (grades 3–4), Group III:
Benjamins (grades 5–6), Group IV: Cadets (grades 7–8), Group V: Juniors (grades 9–10)
and Group VI: Seniors (grades 11–12). Participants are usually supervised by teachers
who may integrate the Challenge into their teaching activities as well. More explanation
of structure of the Bebras Challenge on www.bebras.org.

Solving short concept-based tasks makes informatics education more attractive for
learners [23]. During the Challenge, students have the opportunity to test their skills
among peers from different schools or even countries and make friends in a field that
they have interest in. The challenge on CS and CT named “Bebras” (Lithuanian for
“beaver”)maybe a key to the potential of informatics science knowledge and an attractive
way to bind technology and education. A big challenge for Bebras is to organize easily
accessible and highly motivating online problem-solving events in different countries.

The Bebras Challenge is mostly run online, however the Bebras model share most
features of the CS unplugged approach [24, 25]: tasks can be solved also without the
use of computer, learning by doing is the implied pedagogy, tasks cover the computing
discipline in its broader sense.

2.2 ViLLE Learning Environment

ViLLE is a digital learning environment that has been developed at the Centre for
Learning Analytics in the University of Turku, Finland [26]. ViLLE utilizes automatic
assessment and offers immediate feedback for the students and comprehensive learning
analytics for the teacher.

Technology enhanced learning with ViLLE is an effective way to improve students’
mathematics skills both in short [27] and in long term [28] and this virtual environment is
widely used in Finland, not only for math but for programming, languages, CT andmore.
The focus of developing the ViLLE environment and materials made by the Centre for
Learning Analytics has always been in research. ViLLE supports over 150 automatically
assessed exercise types which can be used by all ViLLE teachers. The Bebras Lodge,
developed by Vilnius University team, is a tool to create interactive exercises/tasks [29],
and from fall 2021 onwards it is also supported by ViLLE.

http://www.bebras.org

Bebras Challenge in a Learning Analytics Enriched Environment 43

ViLLE has been used in national testing and therefore has a built-in Research Sys-
tem that can be flexibly adapted to different kinds of tests. This Research System sup-
ports anonymous accounts, all ViLLE exercise types, automatic assessment, time limits,
monitoring students’ performance and much more. The reason to use ViLLE in Bebras
Challenge lies in these features.

The Bebras Challenge framework in ViLLE includes creating the tasks by the Bebras
Community, transferring them into ViLLE, organizing them into courses for each age
group, and connecting them into the Research System. With the Research System, we
can create activation codes which the local administrators can send to the teachers.When
the teachers use their activation codes, the Research System automatically creates a copy
of the desired age group’s course and the anonymous student accounts which the teacher
can then easily give to the students. All the data from the students completing tasks is
saved into the Research System from where it can be fully accessed. (See Appendix A).

3 Study Settings - The Research and Methodology

With the support from Lithuania, Finland, Hungary and India we have started research
to study the future results of Bebras Challenge in many countries using the tools that
ViLLE offers. We will analyze the differences in difficulty levels, types of tasks in CS,
the influence of differences in cultural backgrounds, and the difficulty of the tasks in
Bebras Challenges in multiple countries.

Fig. 1. The schema for the process of the research about the Bebras challenge in ViLLE

The study has been started with an initialization phase following a design phase, a
pilot, a second design phase, an official Bebras Challenge and a third design phase.

The study focuses on the results of the pilots and first contest organized in this new
environment for Bebras Challenge. The following researched question are raised:

• RQ1: How successfully could the ViLLE with Research System built-in support the
student’s task solving and teacher’ organizational work in the Bebras Challenge?

• RQ2: Looking at the Bebras Challenge run in ViLLE, what patterns of students
performance can be identified?

The pilotswere used to test only the virtual environmentViLLEwith research System
built-in in order to see how students and teachers are comfortable using ViLLE environ-
ment for the Bebras Challenge. It is important to test human-machine interaction. After

44 Zs. Pluhár et al.

the pilots, based on feedback from the teachers we had a refine phase of the registration
process and the documentation of ViLLE. We used questionnaires for feedback of the
teacher’s experiences with an overview of the student’s reactions. Moreover, we studied
the results (scores) and the time used to answer the questions in general separately for
age groups with the emphasis on the genders.

The next challenges - will be organized with several countries in ViLLE - give the
base of the research’s lifecycle: after the closed challenges, we will analyze the results,
the influence factor of the gender, the difficulty level of the tasks, and the cultural
background of the participating countries. The results will support the improvement of
the ViLLE system and the Bebras tasks development process.

4 Bebras Challenge in Hungary and India

The Hungarian Bebras Challenge [25, 30] has been organized since 2011 and the Indian
since 2018. Besides promoting informatics and CT among students, the Bebras Chal-
lenges in Hungary and India seek to excite students about CT and interest them in
exploring computing; help students develop problem solving skills and critical thinking
skills; delink lack of computing infrastructure from teaching of computing by providing
activities that can be done in classrooms and do not require computers; present ideas to
teachers for school and after-school activities.

The number of participants is growing continuously from year to year in both coun-
tries. Students from both countries participate from many levels, ages 8–18 years and
different kinds of schools. In each age group the participants have 45 min – based on the
lesson lengths in the school systems – to solve tasks online. Students may participate
in the Challenge at any time within a one or (since 2020) two weeks period (“Bebras
week”) in November.

India conducts the Challenge across 16 states and it is offered in English and also in
the regional languages: Gujarati, Marathi, Kannada, Odia, Tamil and Telugu to enable
inclusion: rural, semi-urban and government school students who are typically excluded
and are given the opportunity to participate in the Challenge. The Hungarian Challenge
uses only Hungarian as the official language of the country.

The Challenge in both countries uses tasks at three levels of difficulty (easy, medium,
and hard) based on difficulty-sorting of International Bebras TaskWorkshop. In India, the
tasks are multiple choice questions: five easy, fivemedium, and five hard level questions.
Hungary also uses multiple choice questions, but four for the youngest and six for others
in each difficulty level.

The answer options aremixed up, but the tasks are always in the same order according
to their difficulty. Participants can switch between tasks while they compete, but they get
the easiest tasks first and the hardest tasks last. ViLLE is designed so that the students
are encouraged to solve the tasks from the first to the last and offers an option choose
the next one. This also means that most of the students answer all of the questions.

As the Bebras Challenge has negativemarks for incorrect answers, the students begin
the Challenge with bonus marks so that no student feels discouraged by getting negative
marks in the end.

Bebras Challenge in a Learning Analytics Enriched Environment 45

5 The Pilots in Hungary and India

Apilot for theViLLEenvironment forBebras practiceChallenge in Indian andHungarian
schoolswas conducted inOctober 2021.Owing to the pandemic the students in amajority
of the states in Indiawere not physically back in school, so the selection of Indian schools
was based on students having access to digital technology and organized in a hybridmode
(online and in-person). The Hungarian pilot was organized in schools in-person.

5.1 Process of the Piloting

Three Indian schools had volunteered for the pilot and registered the students but in
the end, students from only two schools could participate in the pilot. Owing to the
constraints due to floods in Tamil Nadu in October/November which led to complete
school closure, the students from the third schoolwere unable to participate. The students
from the selected schools had not participated in the Bebras India Challenge earlier and
they were exposed to the Bebras tasks for the first time. Hungarian schools were selected
randomly from schools participating in previous years.

India had selected twenty tasks for the pilot, and it was conducted across two groups:
Group II (grades 3 and 4) and Group III (grades 5 and 6). They used ten common tasks
across the two groups with 15 tasks in each group’s Challenge. The Bebras tasks were
multiple choice questions: five easy, fivemedium, and five hard level questions. Hungary
didn’t determine the age of the participants in the pilot but used only the tasks from last
year in the Benjamin (age 11–12) group. In both countries the duration of the Pilot was
45 min.

The Indian team organized an online orientation session for the teachers of the
participating schools with a walk through of the process for conducting this pilot in the
ViLLE environment. The activation codes were shared with the teachers to set up the
competition for their class and to manage the competition afterwards. Since the number
of students per class is high in India, the activation code was the same for a maximum
of 75 students taking the same Bebras Challenge groups (II or III). The registration of
the students was managed by the schools.

Hungary translated and prepared documents and sent them to the teachers with the
activation codes. The registration of the students was organized by the teachers. The
number of students were between ten and twenty in each group because the teachers
took the pilot in the school, during a lesson.

5.2 Results of the Pilots

The feedback collected for pilots in both Hungary and India were qualitative. The feed-
back was used to design a feedback form for the actual Challenge that provided more
quantitative feedback.

The Pilot in India.
A total of 196 students from two schools participated in the Indian Challenge with an
average participation of 98 students per school. There were 107 students (52 girls and
55 boys) in the Group II and 89 students (43 girls and 46 boys) in the Group III from the

46 Zs. Pluhár et al.

two schools. The average score in Group II was 66.034 (girls 66.0577, boys 66.0182)
and the highest score was 149 and the lowest score was 19 of a maximum score of 165.
In Group III the average score was 61.0674 (girls 55.8837, boys 65.913) and the highest
score was 165 and the lowest score was 6 of a maximum score of 165.

The teachers had informed the students that this would be like a game that theywould
be playing and showing their skills while solving playful tasks. The students liked the
ViLLE environment, had no difficulty using it, and they enjoyed solving the tasks as this
was their first time. The pilot familiarized the students with the Bebras tasks, and the
virtual environment.

During the feedback, the teachers shared that the registration process on the ViLLE
environment was fairly simple. The main problem was that in the hybrid mode (in-
person and virtual teaching) it became difficult to monitor and motivate students to take
participation. The teachers also shared that handing over the student login slips to the
boys and girls separatelywas anotherwork that teachers felt was hectic. Another problem
the teachers faced was with schools reopening after nearly a year and a half, the labs
have not been functional and internet connectivity was a problem too.

The Pilot in Hungary.
There were 1351 students (708 girls and 641 boys) from 40 schools participating in the
Hungarian pilot. On average, 33.775 students participated from each school, and the
maximum number of students from one school was 83.

The average score was 115.3412 (girls 114.3588, boys 116.3701). The highest aver-
age score per school was 153.343 and the lowest 82.692. The students were coming from
several age groups and most of them probably knew the tasks from last year. Therefore,
the emphasis of the Hungarian pilot was on the new environment and preparing to use
it for the main Challenge.

At the end of the pilot the teacher’s feedback was collected by a questionnaire
and analyzed. The registration process and the translations, user documentation were
improved based on the feedback.

6 Results in Hungarian Challenge

In 2021 Hungary used the ViLLE environment for the official Bebras Challenge. That
included the translation of the ViLLE environment and integration of the tasks in Hun-
garian. The Bebras Challenge was prepared as in previous years: the tasks were not
interactive; the students could choose one answer from four options. The order of the
tasks was the same (easy, medium and hard) and the order of the answer options were
random.

Over 30 thousand participants (N= 33467, from 305 schools) across thewhole coun-
try and Hungarian language schools joined from outside Hungary as well. More schools
attend from the capital and western regions (as shown in the map – see Appendix B).

The largest increase in the number of participants can be found in the Little Beavers
(age 9–10) age group with a 36% increase compared to the year 2020. The largest
number of participants (12491 students) was in the Junior (age 15–16) age group. (See
Appendix B).

Bebras Challenge in a Learning Analytics Enriched Environment 47

This time the youngest had 12 tasks (four in each difficulty level) and they could
reach a total of 144 points. The other four age groups had 18 tasks as usual (six in each
difficulty level) and they could reach a total of 216 points. Figure 1 shows the number
of students in each group of total scores by age group (except Little Beavers because of
lower total score) (Fig. 2).

Fig. 2. The number of students per age group achieving a given scores.

More analyses can be done on the standard deviation of scores in each age group
(see Appendix B). There is no significant difference between the scores of girls (f) and
boys (m) in the two youngest age groups (Benjamins: Nm = 4104; Nf = 3859; Z =
–.553; p = .580 and Little Beavers: Nm = 927; Nf = 833; Z = –1.492; p = .136.). The
total time working with tasks is significantly higher in the case of girls (Benjamins: Nm
= 4104; Nf = 3859; Z = –7.413; p < .001 and Little Beavers: Nm = 927; Nf = 833; Z
= –3.645; p < .001).

The three oldest groups’ scores show significant differences between boys and girls.
(Cadets: Nm = 4194; Nf = 4274; Z = –4.027; p < .001; Juniors: Nm = 6562; Nf =
5929; Z= –2.801; p= .005 and Seniors: Nm = 1976; Nf = 808; Z= –5.178; p < .001).
There is no significant difference between the total times of working with tasks of the
boys and girls.

In recent years there has not been significant differences with the genders, so we
analyze deeper what could be the influencer this year.

The average time “in task” (Little Beavers: 823.80; Benjamins: 1616.83; Cadets:
1528.83; Juniors: 1801.53; Seniors: 1943.78) shows the increase of task’s difficulty.

An analysis of variance (ANOVA) on these scores and the times in the tasks yielded
significant variation among age groups (Fscore = 811.159, Ftime = 1640.349, p < .001).
A post hoc Tukey HSD test (α < .05) showed that both the main scores ([Seniors] <

[Benjamins] < [Juniors] < [Cadets]) and the used times ([Cadets] < [Benjamins] <

[Juniors] < [Seniors]) for age groups differed significantly at p < .001. The students
in the oldest age group had significantly smaller scores (in mean) and they spent the
longest time with tasks. The students in the Cadets spent significantly less time and had

48 Zs. Pluhár et al.

a significantly higher mean score. The number of students with the maximum score in
Cadets predicted this result. Our future analysis about the difficulty level and hardness
of the tasks may explain these results.

6.1 Teachers’ Feedbacks

Teachers were asked to fill a questionnaire about their experiences using the ViLLE
environment. The questions were mostly open ended or scaled by a five-point Likert
scale. About 20% of the teachers (N = 77) answered the questionnaire from a third of
the schools.

96% of the teachers have found the speed of ViLLE environment is very fast or
fast. Comparing to previous years (using the Hungarian platform) percentage increases
more than 20%. The 77 teachers coordinated 645 groups in total (approximately 9600
students based on the average number of students in a group). The highest number of
groups registered by one teacher was 36, the average 8.38 and the median 6. 26 (33.77%)
teachers had more than 10 groups. The registration process for teachers with 1–5 groups
was easier than in previous competitions. The teachers coordinatingmore than 10 groups
found the process more complicated and longer because of separated work processes:
they had an account for each group separately.

The students found that theViLLE environment is easier to use andmore comfortable
and safer. It means if an error (i.e., restarting the browser or the computer, power outage)
occurred, they could continue the work later without losing the answers. They enjoyed
the friendly environment with “smiley” in the feedback.

7 Discussion and Future Work

The feedback and the successful running of the Hungarian Challenge shows that the
ViLLE environment (with Research System built-in) provides a perfect basis to organize
the Bebras Challenge. The users from age 9 to 18 years old used the system without
problem and the teacher’s administration work went smoothly.

From the participated five age groups the three oldest groups’ (IV, V, and VI) scores
show significant differences between boys and girls. Itwas not surprising that the analysis
revealed that boys outperform girls in the Hungarian Bebras Challenge. Hubwieser et al.
[31] noticed the same in the German Bebras Challenge of 2014. Interestingly when
Budinska et al. [32] studied the Slovakian Bebras Challenges of 2012 to 2017 (age
group 7–10), they found out that girls usually perform better in easier tasks, while boys
excel in more difficult tasks. Overall, however, in this age group, the girls achieved
higher scores on average. Both research teams were able to identify features that made
a task more suitable to girls.

Bebras Challenge in a Learning Analytics Enriched Environment 49

The presented analysis of the results (scores) and used times suggest studying the
tasks deeper in view of the age groups and difficulty levels. The second research question
(RQ2) was answered partly, so we are going to finish the third part of the analysis written
in the “Study settings” chapter.

Some improvements can be useful to help teachers with more groups based on the
feedback and integrating the interactivity could open a new horizon for the students. In
the future, we are planning on havingmore countries participating inBebras Challenge in
ViLLE and conducting international research based on the results. Additionally different
types of interactive tasks are going to be used. Next steps of our research can be the study
and analysis of the differences in difficulty levels, the variety of categories of the type, the
cultural background influence and the hardness of a Bebras tasks in multiple countries.

Appendix A - Schemas

The schema for the process of organizing a Bebras Challenge in ViLLE

The process of organizing a Bebras Challenge in ViLLE.

50 Zs. Pluhár et al.

Appendix B - Figures Representing Data in Hungarian Bebras
Challenge 2021

Map of the participation in the Bebras Challenge 2021 in Hungary

The map of schools participating in the Hungarian Bebras Challenge in 2021. The beavers
mark the participating schools.

Participation in Hungarian Bebras Challenge by age group (2011–2021).

The number of participants in each age group in the Hungarian Bebras Challenge from
2011 to 2021.

0

5000

10000

15000

20000

25000

30000

35000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Seniors

Juniors

Cadets

Benjamins

Li�le Beavers

Bebras Challenge in a Learning Analytics Enriched Environment 51

The standard deviations of scores in each age group

Age group Number of participants
(girls/boys)

Mean of scores
(girls/boys)

Standard deviation of scores
(girls/boys)

Little Beavers
(9–10)

1760
(833/927)

66.60
(67.61/65.69)

27.11
(26.64/27.50)

Benjamins
(11–12)

7963
(3859/4104)

104.31
(104.41/104.22)

41.56
(40.56/42.47)

Cadets
(13–14)

8469
(4275/4194)

118.35
(118.30/118.40)

42.09
(40.66/43.51)

Juniors
(15–16)

12491
(5929/6562)

111.25
(110.21/112.20)

35.62
(34.61/36.49)

Seniors
(17–18)

2784
(808/1976)

93.98
(89.06/96.00)

30.80
(28.19/31.59)

References

1. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books Inc., New
York (1980)

2. Wing, J.: Computational thinking. Commun. ACM 49, 33–35 (2006)
3. Román-González, M., Pérez-González, J.-C., Jiménez-Fernández, C.: Which cognitive abili-

ties underlie computational thinking? Criterion validity of the Computational Thinking Test.
Comput. Hum. Behav. 72, 678–691 (2017). https://doi.org/10.1016/j.chb.2016.08.047

4. Selby, C., Woollard, J.: Computational thinking: the developing definition (2013). https://epr
ints.soton.ac.uk/356481

5. Grover, S., Pea,R.:Computational thinking: a competencywhose timehas come. In: Sentance,
S., Barendsen, E., Carsten, S. (eds.) Computer Science Education: Perspectives on Teaching
and Learning in School, pp. 19–38. Bloomsbury, London (2018)

6. Hazzan, O., Ragonis, N., Lapidot, T., Rosenberg-Kima, R.: Computational thinking. In: Guide
to Teaching Computer Science, pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39360-1_4

7. Zhang, L., Nouri, J.: A systematic review of learning computational thinking through Scratch
in K-9. Comput. Educ. 141, 1–25 (2019). https://doi.org/10.1016/j.compedu.2019.103607

8. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about computational
thinking among Italian primary school teachers. In: ICER – Proceedings of ACMConference
International Computing Education Research, pp. 136–144 (2017). https://doi.org/10.1145/
3105726.3106194

9. Tang, X., Yin, Y., Lin, Q., Hadad, R., Zhai, X.: Assessing computational thinking: a systematic
review of empirical studies. Comput. Educ. 148, 1–22 (2020). https://doi.org/10.1016/j.com
pedu.2019.103798

10. Metcalf, S.J., et al.: Assessing computational thinking through the lenses of functionality and
computational fluency. Comput. Sci. Educ. 31(2), 199–223 (2021). https://doi.org/10.1080/
08993408.2020.1866932

11. Basu, S., Biswas, G., Kinnebrew, J.S.: Learner modeling for adaptive scaffolding in a compu-
tational thinking-based science learning environment. User Model. User-Adap. Inter. 27(1),
5–53 (2017). https://doi.org/10.1007/s11257-017-9187-0

https://doi.org/10.1016/j.chb.2016.08.047
https://eprints.soton.ac.uk/356481
https://doi.org/10.1007/978-3-030-39360-1_4
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1145/3105726.3106194
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1080/08993408.2020.1866932
https://doi.org/10.1007/s11257-017-9187-0

52 Zs. Pluhár et al.

12. Arfé, B., Vardanega, T., Ronconi, L.: The effects of coding on children’s planning and
inhibition skills. Comput. Educ. 148, 1–16 (2020). https://doi.org/10.1016/j.compedu.2020.
103807

13. Palts, T., Pedaste, M.: A model for developing computational thinking skills. Inform. Educ.
19, 113–128 (2020). https://doi.org/10.15388/INFEDU.2020.06

14. Curzon, P., Bell, T.,Waite, J., Dorling,M.: Computational thinking. In: Robins, A.V., Fincher,
S.A. (eds.) The Cambridge Handbook of Computing Education Research, pp. 513–546.
Cambridge Univ. Press, Cambridge (2019). https://doi.org/10.1017/9781108654555.018

15. Eickelmann, B., Labusch, A., Vennemann, M.: Computational thinking and problem-solving
in the context of IEA-ICILS 2018. In: Passey, D., Bottino, R., Lewin, C., Sanchez, E. (eds.)
OCCE 2018. IAICT, vol. 524, pp. 14–23. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-23513-0_2

16. Rich, P.J., Mason, S.L., O’Leary, J.: Measuring the effect of continuous professional devel-
opment on elementary teachers’ self-efficacy to teach coding and computational thinking.
Comput. Educ. 168, 104196 (2021). https://doi.org/10.1016/j.compedu.2021.104196

17. Zhang, L., Nouri, J., Rolandsson, L.: Progression of computational thinking skills in Swedish
compulsory schools with block-based programming. In: Proceedings of the Twenty-Second
Australasian Computing Education Conference, pp. 66–75 (2020). https://doi.org/10.1145/
3373165.3373173

18. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development
of computational thinking. In: Proceedings of the 2012 Annual Meeting of the American
Educational Research Association, vol. 1, pp. 1–25, Vancouver (2012)

19. Hromkovič, J., Lacher, R.: The computer science way of thinking in human history and
consequences for the design of computer science curricula. In: Dagiene, V., Hellas, A. (eds.)
ISSEP 2017. LNCS, vol. 10696, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71483-7_1

20. Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of Python with the
simplicity of logo for a sustainable computer science education. In: Brodnik, A., Tort, F. (eds.)
ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46747-4_13

21. Dagienė, V., Stupurienė, G.: Bebras - a sustainable community buildingmodel for the concept
based learning of informatics and computational thinking. Inf. Educ. 15(1), 25–44 (2016)

22. Denning, P.J., Tedre, M.: Inf. Educ. 20(1), 361–390 (2021). https://doi.org/10.15388/infedu.
2021.21

23. Dagiene, V., Futschek, G., Stupuriene, G.: Creativity in solving short tasks for learning
computational thinking. Constructivist Found. 14(3), 382–396 (2019)

24. Bell, T., Vahrenhold, J.: CS unplugged – how it is used, and does it work?. In: Böckenhouer,
H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher Attitudes:
Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, pp. 497–521.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98355-4_29

25. Pluhár, Zs.: Extending computational thinking activities. Olympiads Inf. 15, 83–89 (2021)
26. Laakso, M.-J., Kaila, E., Rajala, T.: ViLLE – collaborative education tool: designing and uti-

lizing an exercise-based learning environment. Educ. Inf. Technol. 23(4), 1655–1676 (2018).
https://doi.org/10.1007/s10639-017-9659-1

27. Kurvinen, E., Dagienė, V., Laakso, M.-J.: The impact and effectiveness of technology
enhancedmathematics learning. In: Dagienė, V., Jasutė, E. (eds.) Constructionism 2018: Con-
structionism, Computational Thinking and Educational Innovation: Conference Proceedings.
Vilnius University, pp. 351–363 (2018)

28. Kurvinen, E., Kaila, E., Laakso, M., Salakoski, T.: Long term effects on technology enhanced
learning: the use of weekly digital lessons in mathematics. Inf. Educ. 19(1), 51–75 (2020).
https://doi.org/10.15388/infedu.2020.04

https://doi.org/10.1016/j.compedu.2020.103807
https://doi.org/10.15388/INFEDU.2020.06
https://doi.org/10.1017/9781108654555.018
https://doi.org/10.1007/978-3-030-23513-0_2
https://doi.org/10.1016/j.compedu.2021.104196
https://doi.org/10.1145/3373165.3373173
https://doi.org/10.1007/978-3-319-71483-7_1
https://doi.org/10.1007/978-3-319-46747-4_13
https://doi.org/10.15388/infedu.2021.21
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/s10639-017-9659-1
https://doi.org/10.15388/infedu.2020.04

Bebras Challenge in a Learning Analytics Enriched Environment 53

29. Dagienė, V., Stupurienė, G., Vinikienė, L.: Implementation of dynamic tasks on informatics
and computational thinking. Baltic J. Mod. Comput. 5(3), 306–316 (2017)

30. Pluhár, Zs., Gellér, B.: International informatic challenge in hungary. In: Auer, M.E., Gural-
nick, D., Simonics, I. (eds.) Teaching and Learning in a Digital World: Proceedings of the
20th International Conference on Interactive Collaborative Learning, pp 425-435. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-73204-6_47

31. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-specific perfor-
mance and motivation in the bebras challenge. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016.
LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-467
47-4_4

32. Budinská, L., Mayerová, K., Veselovská, M.: Bebras task analysis in category little beavers
in slovakia. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 91–101.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7_8

https://doi.org/10.1007/978-3-319-73204-6_47
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-71483-7_8

How is Two Better Than One?
An Observational Study on the Impact

of Working in Pairs When Solving Bebras
Tasks

Carlo Bellettini , Violetta Lonati , Mattia Monga(B) ,
and Anna Morpurgo

Università degli Studi di Milano, Milan, Italy
{bellettini,lonati,monga,morpurgo}@di.unimi.it

Abstract. Every year the Bebras challenge proposes small tasks to stu-
dents, based on CS concepts. In Italy, in 2021 for the first time, it was
possible to choose whether to participate in the challenge individually
or in teams of two students. The team size was expected to affect the
performance of students; in particular working in pairs was expected to
increase the probability of solving the tasks correctly. We carried out an
observational study on the results of the 2021 Bebras challenge in Italy,
aiming at investigating and measuring the effects of team size on the per-
formance. The findings confirm that working in pairs generally improves
the team performance, but the impact is much smaller than expected. We
observed that the positive effect of collaboration is greater with younger
pupils and somewhat decreases when age increases. We identified and
discussed the features of tasks where the impact was more relevant, and
where this trend was more evident. We also propose some hypotheses,
to analyze in future qualitative studies, to interpret the results.

Keywords: K12 · Bebras challenge · Observational studies

1 Introduction

In cognitive theory, many studies suggest that collaboration between peers
enhances learning. This seems particularly true in STEM (Science, Technol-
ogy, Engineering, and Math, including Computer Science1) education, where
several popular methodologies, e.g., collaborative and problem-based learning,
are in fact based on this assumption [7]. Moreover, pair programming is a com-
mon practice in the so called agile approaches to software engineering and is
often also adopted in many educational contexts [9]. Faced with a problem, and
working in a small group to solve it, pupils can explore the problem and its
features, and thus devise, analyse and contrast solving strategies, in a process of

1 See for example https://www.ed.gov/stem.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 54–65, 2022.
https://doi.org/10.1007/978-3-031-15851-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_5&domain=pdf
http://orcid.org/0000-0001-8526-4790
http://orcid.org/0000-0002-4722-244X
http://orcid.org/0000-0003-4852-0067
http://orcid.org/0000-0003-0081-914X
https://www.ed.gov/stem
https://doi.org/10.1007/978-3-031-15851-3_5

How is Two Better Than One? 55

collaborative knowledge building. Collaborative learning is also said to increase
motivation and engagement [4].

For these reasons, since its first edition in our country, the participation
to the Bebras Challenge was organized around teams. The Bebras International
Challenge on Informatics and Computational Thinking2 is a yearly contest orga-
nized in several countries since 2004 [1,3], with almost three million participants
worldwide. The contest, open to pupils of all school levels (from primary up to
upper secondary), is based on tasks rooted on core informatics concepts, yet
independent of specific previous knowledge such as for instance that acquired
during curricular activities. According to the (informal) feedback we received
from many teachers, the Bebras challenge is able to engage pupils — even those
who show less motivation in usual school activities — and to often activate lively
discussions and interesting exchanges within the groups.

In 2021, due to the pandemic and to adhere to the social distancing rules,
the participation in teams could have been problematic. Hence, we allowed par-
ticipation in “teams” of individuals (“singles”) or teams of pairs (“doubles”),
to meet different schools’ needs and organizational constraints. We analyzed the
results of overall 19’490 teams, 11’055 singles, 8’435 doubles, who participated
over 5 different age categories (for a total of 27’925 students). All teams in the
same age category were asked to solve the same suite of tasks, regardless of their
team size, but their results were ranked distinctly. Together with the submitted
answers, the Bebras platform [12] we use collects data concerning the interac-
tions of teams with the platform itself (how much time pupils spend on each
specific task, whether and when they go back and review/change their answer
to an already completed task, whether they perform actions that generate feed-
back from the system, and so on). This offered us the chance to conduct an
observational study about the effects of team size on the performance. Our main
research question is:

RQ - How does the team size affect the performance of Bebras solvers?

Our initial hypothesis was that teams formed by two pupils would perform better
than the individuals. The research question can then be articulated in two further
sub-questions:

RQ1 - For which categories of pupils does working in pairs have the most positive
impact?

RQ2 - For which kinds of tasks does working in pairs have the most positive
impact?

Our findings confirm the initial hypothesis, but show that the effect of team
size on performance is in general less than expected. Moreover we observe that
such effect occurs differently according to the age of pupils and the features of
tasks. We discuss these differences and state some hypotheses that may explain
them. Such hypotheses are to be explored further in a future in-depth qualitative
study.
2 See http://bebras.org.

http://bebras.org

56 C. Bellettini et al.

The paper is organized as follows. In Sect. 2 we present the collected data
and the methods we used to analyze them. In Sect. 3 we present our findings: in
Sect. 3.1 we compare the performances of singles versus doubles, and analyze the
role of age categories on the differences between such performances; in Sect. 3.2
we show which tasks benefit most from collaboration and detect relevant features
of these tasks. In Sect. 4 we acknowledge the limitations of our study. After
discussing some related works in Sect. 5, conclusions are drawn in Sect. 6.

2 Methodology

This is an observational study. This means that the data we analyzed were
not purposely gathered with a designed experiment, instead they were collected
during the Bebras challenge held in November 2021. We first describe the data
set and then present the methods we used for the analysis.

2.1 Dataset

The data were collected in order to manage the participation of schools, adminis-
ter the contest, monitor and possibly fix issues arising during the challenge (e.g.,
malfunctioning, cheating, loss of data), and to perform statistical analyses.

Schools participating in the challenge were informed that students’ data were
collected and they consented to their use for research and statistical presentation
of the results. In fact no national ranking is ever published, only aggregated data
(but the teachers can see the performances of all the teams of their school and the
ranking within an institution). All analyzed data were anonymized by deleting
most of the personal identifying data: we only retained the regional provenance
of teams in order to analyze their geographical distribution (we cover all the
administrative regions of our school system).

The dataset contains information about the performance of each team in
the contest. Each team belongs to one category (among five) according to their
components’ age. Teams can have different sizes, i.e., there are teams formed
by a pair of students (“doubles”) or just a single individual (“singles”). The
numbers of teams considered in our analysis are reported in Table 1, grouped by
category and team size. All teams in the same age category were asked to solve
the same suite of 12 tasks, independently of the team’s size. Some tasks appeared
in more than one category. For each team, we know for which of the tasks
assigned to their category they answered correctly and for which not. Table 1
also presents the average ratio of correct answers to tasks in each category.
Finally, we have data concerning how the teams interacted with the contest
platform while solving the task; the kind of data we can collect are described
in [12]. All the anonymous data we analyzed are available at https://doi.org/10.
13130/RD UNIMI/WT9NHU for independent studies and cross-validation.

https://doi.org/10.13130/RD_UNIMI/WT9NHU
https://doi.org/10.13130/RD_UNIMI/WT9NHU

How is Two Better Than One? 57

Table 1. Number of participants and success ratio (average over all tasks) for each
category and team size. The last column reports the increment in the average success
ratio obtained with doubles compared to singles.

Category N. of teams Success ratio Δ doubles − singles

IV–V grade 2740 45.4% 8.6%

Singles 1092 40.2%

Doubles 1648 48.8%

VI–VII grade 7544 35.1% 5.7%

Singles 4545 32.8%

Doubles 2999 38.5%

VIII grade 3431 32.6% 2.6%

Singles 2031 31.5%

Doubles 1400 34.1%

IX–X grade 3450 32.7% 1.7%

Singles 2245 32.1%

Doubles 1205 33.8%

XI–XIII grade 2325 39.3% 4%

Singles 1142 37.3%

Doubles 1183 41.3%

2.2 Analysis Methods

We considered each task solution as a random event with a binary outcome:
solved or not solved. To simplify the problem, we considered each task as an
independent event. In order to estimate the probability of answering correctly,
we used a Markov chain Monte Carlo approach, then we relied on this estimation
to compare the performances of singles and doubles, and to contrast them with
relevant combinatorial benchmarks.

Estimating the probability of a correct solution. Let us consider the probability
of the event “correctly solving any Bebras task”, that is the probability that
covariate C (as for “correctness”) is 1 (C is 0 if the team gives the wrong answer
to the task). We can estimate such probability by sampling a probabilistic model
in which C is a random variable with a Bernoulli likelihood with an unknown
parameter p, the probability of solving any task (not a specific one); then we
estimated the a posteriori (i.e., having seen the actual data) distribution of p
with a Markov chain Monte Carlo approach (to implement our model we used
the probabilistic programming language Stan3). We used a uniform prior for p:
this assumption is rough (p is certainly different from 0 and 1, for example),
but it matters very little in the process since we have a lot of data and the
estimation of the posterior distribution is in fact rather robust w.r.t. to the
choice of the prior. One could estimate p by simply taking the average success
ratio (see Table 1), but this is a point estimation with no information about the
uncertainty of its value4. The method we followed [5], instead, gives the whole
3 See https://mc-stan.org/.
4 One can estimate also the variance of p in order to have a measure of the variability,

but an estimation of the error with respect to the “true value” needs inevitably some
assumption on the underlying distribution.

https://mc-stan.org/

58 C. Bellettini et al.

distribution of p that we can use to estimate uncertainty intervals (for example
the range in which 99% of the distribution lies), valid under the explicit model
we used (i.e., C is Bernoulli distributed with unknown p).

In particular we used this method to estimate the distribution of probability
psingles of the event “correctly solving any Bebras task” for any singles, and
of probability pdoubles of the event “correctly solving any Bebras task” for any
doubles. More formally,

psingles = p(C = 1 | teamsize = 1)
pdoubles = p(C = 1 | teamsize = 2)

Analysis of the impact of team size on the correctness of answers. We expect that
working in pairs improves the performance of teams. More formally, we expect
psingles < pdoubles. From a purely combinatorial viewpoint, we can say that the
collaboration in a pair is fully successful if the pair is able to answer correctly
whenever there is at least one of its members that would answer correctly alone.
This means that the pair is able to recognize the correct answer even when the
other member, alone, would answer incorrectly. We say that the collaboration
is fully harmful in the opposite, worst-case, scenario, that is if the pair gives a
wrong answer except when both pupils are able to answer correctly alone. This
means that when only one of the pupils, alone, were able to answer correctly,
the pair would not be able to recognize the correct answer and that the wrong
answer always prevails. In general, we expect that the collaboration takes place
at an intermediate level between fully harmful and fully successful. In probability
terms, a pair is right with probability pworst = p2singles if the collaboration is
fully harmful, and with probability pbest = 1−(1−psingles)2 = 2psingles−p2singles
if it is fully successful. We will compare these combinatorial benchmarks with
the actual performance of doubles.

Teams with unusual team size. The size of teams is decided by teachers. Organi-
zational issues (e.g., the availability of a sufficient number of computers) proba-
bly had a relevant role in this choice. Moreover, constraints on the size of teams
were due to the pandemic special regulations, which varied among regions and
school levels (e.g., remote attendance was avoided in primary school, whereas
hybrid attendance was very common in high school); during the contest, some
classes were attending in person, others remotely, and others used hybrid atten-
dance. Besides these external factors, teachers were free to choose between singles
and doubles. For instance they may have built teams randomly, or may have let
their students choose how and with whom to participate, but they may also
have considered students’ prior ability to form balanced teams; in particular,
they may have decided to pair students with special educational needs with a
mate, or to let excellent students compete alone in a single team. We do not
have any direct information about the criteria each teacher used to compose
their teams. However, we know the number of double and single teams for each
teacher, and this allows us to distinguish the cases where the choice of a different
size is dictated by situations like the class having an odd number of pupils from
special cases where the composition of a team turns out to be unusual for that

How is Two Better Than One? 59

teacher, and hence might be related to the ability of its components. We focus
on the set of teams that have a typical composition among those of the same
teacher: these are the singles of teachers who have at least 75% of singles and the
doubles of teachers who have at least 75% of doubles. For these teams (“typical
teams”) we have reasons to believe the composition type is not biased by the
members’ prior ability, whereas the others could have been formed according to
some specific ability-related criterium. In fact, we found 17’871 teams with a
typical composition type, and only a small proportion of all teams (8%) with an
untypical composition type. It is still possible that some criterium to compose
teams was adopted at the school level, but we believe this is improbable in the
general case, since mixing people from different classes is normally quite difficult
in our school system and unlikely for a non competitive contest like Bebras.

The role of content and task features. The difference in performances between
singles and doubles varies from task to task, and we identified the tasks where
the impact of team size on correctness was higher. We analyzed the specific
content and features of those tasks and formulated some hypotheses that would
explain the higher impact for those tasks. We provided some support for these
hypotheses by analyzing the data concerning the interaction of teams with the
contest platform when solving those tasks.

3 Findings

3.1 Comparing Performances of Singles and Doubles

Figure 1 shows the distribution of probabilities psingles and pdoubles together
with the combinatorial benchmarks corresponding to fully successful and fully
harmful collaborations.

The probability of solving a task (any task) for singles is on average 33%.
Our model estimated that 99% of the probability mass (High Density Interval,
HDI) lies between 0.33 and 0.34. Doubles have a higher probability (the mean
of pdoubles is 39%, HDI: 0.39–0.40) and the difference is on average +6% (HDI:
0.054–0.065). However, 39% is much lower than 56%, the value one would have
with fully successful collaborations (pbest = 1 − (1 − psingles)2).

Fig. 1. The distribution of psingles (blue) is less than the distribution of pdoubles

(orange). The figure shows also the benchmarks for fully harmful collaboration (red)
and fully successful collaboration (green). (Color figure online)

60 C. Bellettini et al.

Notice that the diagram represents distributions of probability for pworst,
psingles, pdoubles, pbest, from left to right. According to our model, the estimated
values (their distributions) of psingles and pdoubles do not overlap (in particular
their HDI do not overlap), thus the difference (and its measure) is supported by
a clear evidence, if our statistical model is a sensible abstraction of our domain.

In summary, it is clear that the overall effect of collaboration is positive,
however it is limited with respect to the combinatorial benchmark pbest of the
fully successful collaboration.

Fig. 2. Diagrams showing the differences between actual data (psingles blue, pdoubles

orange) and fully successful collaboration (pbest green); worst-case collaborations are
not shown. (Color figure online)

Figure 2 shows the distribution of probabilities for the five age categories
for the typical teams (see 2.2). We can observe that the improvement from
psingles to pdoubles is greater for the youngest and decreases with age. Such an
improvement is less evident in the categories where psingles is already low; for
IX-X grade, there is even some uncertainty about the actual improvement. The
gap between pdoubles and the best-case benchmark is large for most categories,
except for IV–V grade.

How is Two Better Than One? 61

3.2 Impact of Tasks Content and Features

For each task t of the 60 tasks used in the contest, we computed the probability
distribution of the event “correctly solving task t” for singles and doubles, and
the delta between them. The diagram in Fig. 3 positions all 60 tasks considering
the mean probability for singles (psingles) and the delta pdoubles − psingles. The
more a task is on the right (high psingles), the simpler it resulted (high success
probability by a single solver); the more a task is in the upper part of the
diagram (high delta), the higher was the increase of success probability from
single to double teams.

The red points are those where the delta is positive with high certainty (99%
HDI of psingles and pdoubles do not overlap), whereas the gray ones are those
where the evidence of an increase is not certain enough (99% HDI of psingles
and pdoubles partially overlap, even if sometimes just slightly).

It is worth noticing that the top left part of the diagram is empty; this means
that for hard tasks there is no benefit from working in pairs. Similarly, the most
improvement is measured more often on tasks of medium difficulty. We analyzed
some of the tasks where the improvement was more evident and we made some
hypotheses about the content and features of those task, that would explain such
improvements. Due to space constraints, here we discuss only one of them.

Fig. 3. Scatterplot of the tasks according to the success probability for the task and
the size of improvement on the task moving from singles to doubles. For red tasks the
increase has a solid evidence in the estimation (99% HDIs of psingles and pdoubles do
not overlap); for gray tasks 99% HDIs of psingles and pdoubles overlap. The color of the
dot gives the age group. (Color figure online)

62 C. Bellettini et al.

Task 2021-BE-03 (Necklaces instruction). This task proposes a programming
exercise requiring to write a sequence of characters complying with a given syn-
tax. We make the hypothesis that doubles are better able to note and correct
syntax errors that could go unnoticed to an individual. This hypothesis is in line
with the literature, where the fact that syntax is a hurdle in learning to program
is often discussed and where this fact has motivated the development of block-
based programming languages, the use of Parsons problems, etc.. We analyzed
the data for the “IV-V grade” age group, where the collaboration was more
effective. We collected the following measures relevant for the solving process:

Total number of modifications. The times the solvers modified the string
of characters: it happened on average 26.7 (std. dev.: 23.5) times for singles,
27.1 (std. dev.: 20.7) times for doubles.

Number of corrections. The times the solvers modified the string of characters
excluding appends (these insertions or changes are likely to be corrections):
it happened on average 5.6 (std. dev.: 9.5) times for singles, 5.7 (std. dev.:
10.5) times for doubles.

Percent number of corrections. The times the solvers modified the string
of characters excluding appends w.r.t. total modifications: it is on average
13.7% (std. dev.: 0.14) for singles, 14.1% (std. dev.: 0.13) for doubles.

Number of resets. The times the solvers deleted the string of characters: it
happened on average 0.8 (std. dev.: 1.5) times for singles, 0.7 (std. dev.: 1.3)
times for doubles.

Percent times the solution was changed into wrong. How frequently was
a correct solution then changed into a wrong one: it happened for 0.8% of the
singles and for 0.4% of the doubles. Overall it happened only for 0.5% of the
teams.

The two populations differ somewhat and the doubles seem to be slightly
more active with the platform, but no macroscopic differences were found. This
task however shows a remarkable property: solvers are in general very stable on
a correct solution, when it is found. In other words, a correct solution is easy to
recognize as such. This could explain why the doubles improved so much (the
success ratio is 31% for singles and 49% for doubles): it is enough that one of
the two solvers identifies the correct solution, the other will accept it easily; in
fact pdouble = 0.49 is very close to pbest = 0.52. In order to check the validity of
this last observation we analyzed also the data for 2021-EE-01, a task in which,
in the same “IV–V grade” age group the increment for doubles is dubious. The
“Percent times the solution was changed into wrong” for 2021-EE-01 is much
higher than for 2021-BE-03: 22% for singles and 26% for doubles, 25% overall.

4 Limitations and Threats to Validity

Indirect measures of collaboration. The main limitation of this study is that we do
not have any direct data about how teams solve tasks and collaborate. We only
have the measure of their performance in the Bebras challenge, and some indirect

How is Two Better Than One? 63

data provided by log data related to their interaction with the Bebras platform
during the contest. Thus, our findings cannot be considered definitive, and need
to be further checked, e.g., possibly with in-depth qualitative study based on
observing students interacting with a mate when solving tasks. However, the
size of the data set and the rigorous methods used to analyze it supports the
validity of these preliminary findings, which suggest promising directions for
future investigations.

Independence of team size from team ability. If doubles were formed by pupils
with lower prior ability, this would provide some explanation for the limited
improvement observed between the performance of doubles w.r.t. singles. We
addressed this possible bias in two ways. On the one hand we excluded from
the analysis the 8’706 teams whose composition type resulted atypical w.r.t. the
rest of teams of their teachers. The average increment from singles to doubles
computed on the original dataset results to be slightly lower than the one showed
in Table 1. The inclusion of the small proportion of teams (8%) that are possibly
biased w.r.t. ability decreases slightly the advantage of having a second person
in the team, supporting the hypothesis that their teachers assigned the best
students to the single teams. On the other hand, we studied the geographic
provenance of teams and used this as a proxy for their ability; more precisely,
we used the results of standardized tests conducted every year in all schools
of our country5. We found neither evident trends nor correlations between the
proportion of singles in a region and the results in standardized tests in that
region, which suggests that there is no correlation between the prior ability of
teams and their composition. Even though the test results are available also with
finer definition (e.g., by individual school), we conducted our analysis only at
the regional level, since it is not mandatory for registered teams to enter details
about their school. Moreover, an analysis at the school level would pose several
legal problems since we did not ask in advance for an explicit consent and the
data about the standardized tests are not available as open data.

Source for team size data. The team size for each team is entered by teachers
when they register their teams, and we have no direct control on the fact that
the actual size of a team corresponds to the declared one. In particular many
situations may occur (e.g., absence of a mate the day of the contest, odd number
of pupils in a class, . . .) that yield to a team registered as doubles actually
being formed by a single student only. However, in order to produce certificates
for their teams after the challenge, teachers had the possibility to enter in the
system additional information on the teams’ members. Most teachers used this
feature. In order to address the possible bias of false doubles, we did not used the
declared team type but adjusted the team type value in our dataset as follows:
i) we excluded from the analysis all teams without explicit information on their
members, since it is dubious whether they should be indeed considered as doubles
or singles; ii) similarly, we set the team size type according to the number of filled
in members (in some cases this meant to change the composition w.r.t. the one

5 We used the data provided by INVALSI for the school year 2021, taken from https://
invalsi-serviziostatistico.cineca.it/; see also [11] for a previous study.

https://invalsi-serviziostatistico.cineca.it/
https://invalsi-serviziostatistico.cineca.it/

64 C. Bellettini et al.

declared upon teams registration). As a result we ended up considering a dataset
of 19’490 teams, among the larger number of 28’196 teams who participated in
the challenge. The remaining 8’706 teams are not invalid, but their size was
uncertain and we preferred to restrict the analysis to data with some guarantees
to have been curated by the teachers.

Contest aggregation. One could also take into account that the tasks come
packed together in a suite of twelve. We carried out the same analysis by starting
with a model with contest data aggregated by suites, but we did not find any
visible difference. In principle the data observed on suites could fit the model
worse (note that the two models are mathematically equivalent). The difference
in the uncertainty is negligible, therefore considering the tasks independent one
from each other seems to be a viable hypothesis.

5 Related Work

Group work is often proposed as a way for improving learning, and many studied
the social and emotional advantages children can gain from working together [2].
In particular, collaborative learning is an educational approach to teaching and
learning that involves groups of learners working together to solve a problem,
complete a task, or create a product [4]. However, while collaboration in pairs
or small groups can facilitate pupils’ learning and development, many observa-
tions of classroom practice show that group work does not realise the potential
promised by research [10]. Sometimes peer interaction can even result in poorer
learning outcomes [6]. In fact, although collaboration is often considered a ben-
eficial learning strategy, identifying the key factors which make a collaboration
successful or not is still an open issue. [7] studied important features for educa-
tors to consider when deciding when and how to include collaboration in instruc-
tional activities. Our study tries to understand in which context or task the col-
laboration is more effective. In 2015 the Programme for International Student
Assessment (PISA6) launched the first large-scale, international assessment to
evaluate students’ competency in collaborative problem solving. It required stu-
dents to interact in order to solve problems. It included group decision-making
tasks (requiring argumentation, debate, negotiation or consensus to arrive at a
decision), group co-ordination tasks (including collaborative work), and group-
production tasks (where a product must be created by a team, including designs
for new products or written reports). Collaborative problem-solving performance
is positively related to performance in the core PISA subjects (science, read-
ing, and mathematics), but the relationship is weaker than that observed among
those domains. Girls perform significantly better than boys in collaborative prob-
lem solving in every country and economy that participated in the assessment;
students have a generally positive attitude towards collaboration [8].

6 See https://www.oecd.org/pisa.

https://www.oecd.org/pisa

How is Two Better Than One? 65

6 Conclusions

Our observational study confirms that the effect of collaboration is positive, but
it is rather limited compared to what one could expect from a fully successful
collaboration. The positive effect of collaboration seems somewhat to decrease
when the grade increases: this certainly needs further in-depth analysis, it could
be related to some specificity of the age groups, but also to task features, often
rather different for older students. For example, when a correct solution is easy
to recognize, the collaboration seems to work more efficiently. The main limi-
tation of this study is that we did not directly observe how teams solved tasks
and collaborated. Even the interaction data we analyzed are indirect and can
be interpreted in different ways. Our findings, although promising, should be
considered preliminary and we intend to design a follow up qualitative study, in
which we will observe students interacting to solve tasks.

References

1. Dagienė, V.: Sustaining informatics education by contests. In: Hromkovič, J.,
Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 1–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11376-5 1

2. Galton, M., Williamson, J.: Groupwork in the Primary Classroom. Routledge,
London (2003)

3. Haberman, B., Cohen, A., Dagienė, V.: The beaver contest: attracting youngsters
to study computing. In: Proceedings of ITiCSE 2011, pp. 378–378. ACM, Darm-
stadt (2011)

4. Laal, M., Ghodsi, S.M.: Benefits of collaborative learning. Procedia-Soc. Behav.
Sci. 31, 486–490 (2012)

5. McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R and
Stan. Chapman and Hall/CRC, New York (2020)

6. Messer, D.J., Joiner, R., Loveridge, N., Light, P., Littleton, K.: Influences on the
effectiveness of peer interaction: children’s level of cognitive development and the
relative ability of partners. Soc. Dev. 2(3), 279–294 (1993)

7. Nokes-Malach, T.J., Richey, J.E., Gadgil, S.: When is it better to learn together?
Insights from research on collaborative learning. Educ. Psychol. Rev. 27(4), 645–
656 (2015). https://doi.org/10.1007/s10648-015-9312-8

8. OECD: PISA 2015 Results (Volume V) (2017)
9. Williams, L.: Integrating pair programming into a software development process.

In: Proceedings of the 14th Conference on Software Engineering Education and
Training, pp. 27–36 (2001). https://doi.org/10.1109/CSEE.2001.913816

10. Wood, D., O’Malley, C.: Collaborative learning between peers. Educ. Psychol.
Pract. 11(4), 4–9 (1996). https://doi.org/10.1080/0266736960110402

11. Bellettini, C., Lonati, V., Monga, M., Morpurgo, A.: An analysis of the performance
of Italian schools in Bebras and in the national student assessment INVALSI.
In: Fronza, I., Pahl, C. (ed.) Proceedings of the 2nd Systems of Assessments for
Computational Thinking Learning Workshop (TACKLE 2019). CEUR Workshop
Proceedings, vol. 2434 (2019)

12. Bellettini, C., Lonati, V., Monga, M., Morpurgo, A.: Behind the shoulders of bebras
teams: analyzing how they interact with the platform to solve tasks. In: Lane,
H.C., Zvacek, S., Uhomoibhi, J. (eds.) CSEDU 2019. CCIS, vol. 1220, pp. 191–
210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58459-7 10

https://doi.org/10.1007/978-3-642-11376-5_1
https://doi.org/10.1007/s10648-015-9312-8
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1080/0266736960110402
https://doi.org/10.1007/978-3-030-58459-7_10

Assessing Computational Thinking: The
Relation of Different Assessment Instruments

and Learning Tools

Vaida Masiulionytė-Dagienė(B) and Tatjana Jevsikova(B)

Vilnius University Institute of Data Science and Digital Technologies, Akademijos street 4,
08412 Vilnius, Lithuania

{vaida.masiulionyte-dagiene,tatjana.jevsikova}@mif.vu.lt

Abstract. The relevance of computational thinking as a skill for today’s learn-
ers is no longer in question, but every skill needs an assessment system. In this
study, we analyze two validated instruments for assessing computational thinking
- the CTt (Computational Thinking Test) and the CTS (Computational Thinking
Scale). The study involved 49 students in grades 8 and 9 (age 14–16). Prior to the
study, students in both grades were taught computational thinking differently. One
group learned computational thinking by completing tasks and creating projects
in Scratch, the other group learned by completing tasks in “Minecraft: Education
Edition”. The students were asked to take the CTt and CTS tests. The nature of
these tests is different, one is computational thinking diagnostic tool, the other
is a psychometric self-assessment test consisting of core abilities (subconstructs)
important for computational thinking. The aim of this study was to determine how
these tests related to each other and whether students’ gender and the different
tools chosen to teach computational thinking had an impact on the level of compu-
tational thinking knowledge and abilities acquired based on the tests. The results
have shown that the scores of the two tests correlated with each other only for
male students’ subgroup. For a whole group CTt scores correlated only with CTS
algorithmic thinking subconstruct. The results have also shown that teaching tools
do have an impact on the acquisition of different computational thinking concepts
skills: students taught with different tools had different test results. This study pro-
vides useful implications on computational thinking teaching improvement and
its assessment better understanding.

Keywords: Computational thinking · Assessment · Computational thinking
assessment instruments · CTt · CTS · Gender differences · Learning tools

1 Introduction and Background

Computational thinking education is an important component in the process of digi-
talization of society and the economy, as discussed in a recent study organized by the
European Commission [2]. The European Commission encourages this focus by mak-
ing computational thinking education a priority in order to improve digital skills and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 66–77, 2022.
https://doi.org/10.1007/978-3-031-15851-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_6&domain=pdf
http://orcid.org/0000-0002-7755-0428
http://orcid.org/0000-0002-6253-7941
https://doi.org/10.1007/978-3-031-15851-3_6

Assessing Computational Thinking 67

competences as part of the digital transformation. This study highlights that the transfer
of computational thinking into educational subjects is a new field, which poses many
challenges that need to be assessed in educational practice.

Evaluation and measurement of results are important in educational practice when
implementing different teaching methods and tools. In the absence of a single unified
definition of computational thinking, researchers working in this area apply different
definitions [19, 25, 26]. As the result, there is also no single tool to assess computational
thinking. For the assessment of computational thinking, various methods and tools have
been developed today, such as Dr. Scratch, Bebras tasks, Zoombinis, CTt, CTS, etc.

Román-González categorized the tools for assessing computational thinking into
the following groups: diagnostic tools, summative tools, formative-iterative tools, data-
mining tools, skill transfer tools, perceptions-attitudes scales, vocabulary assessment
[20].

Dr. Scratch as formative-iterative tool automatically analyzes Scratch programming
projects and also can be used to develop computational thinking [27, 28]. Dr. Scratch
analyzes code based on these computational thinking concepts: abstraction and problem
decomposition, logical thinking, synchronization, parallelism, algorithmic notions of
flow control, user interactivity, data representation [16].

Bebras tasks are used as another computational thinking assessment tool, classified
as skill transfer tool [4, 5, 14, 20]. It is mentioned that the Bebras challenge tasks refer
to analytics or analytical thinking concept [14], but there is not yet a representative set
of Bebras tasks that has been validated as an assessment instrument for computational
thinking.

Zoombinis [1] is an award-winning educational game from the nineties that has been
rebuilt for modern platforms. It is not only used for learning computational thinking, but
also in recent years for computational thinking assessment as a data-mining assessment
tool. In Zoombinis, all the players actions are logged and then analyzed for the pur-
pose of learning or the assessment. Concepts that are assessed in Zoombinis: problem
decomposition, pattern recognition, abstraction, algorithm design [21].

More approaches to computational thinking assessment appear in recent research,
e.g., CT-cube, a framework for the design, realization, analysis, and assessment of com-
putational thinking activities [17], data driven approaches based on students’ artefacts
[6].

CTt (computational thinking test) was developed and validated by Román-González
et al. [19]. CTt consists of 28 questions, divided in 7 groups: basic directions and
sequences; repeat times; repeat until; simple conditional; complex conditional; while
conditional; simple functions [19]. The test focuses on middle school children (mainly
for 12–14 years old, but it can be used from 5th to 10th grade). Computational concepts
used in the test are aligned with the CSTA (Computer Science Teachers Association)
Computer Science Standards for the 7th and 8th grade [3]. Guggemos [9] mentions the
main computational thinking concepts that CTt covers: abstraction, decomposition, algo-
rithms, and debugging. The CTt has some advantages, like the ability to be conducted
in large groups in pre-test scenarios, allowing for early detection of students with high
abilities (or special needs) for programming tasks; and the ability to collect quantitative

68 V. Masiulionytė-Dagienė and T. Jevsikova

information before the evaluations of the effectiveness of curricula designed to foster
computational thinking [19].

Another validated tool for assessing computational thinking independently of pro-
gramming is the CTS (Computational Thinking Scales) test [13]. This test identifies the
following components of computational thinking based on ISTE (International Soci-
ety for Technology in Education): creativity, algorithmic thinking, critical thinking,
problem solving and collaboration skills [12]. The specificity of this test is that it is a
self-assessment instrument. In this respect, it is completely different from the CTt test,
which is knowledge assessment test.

Since computational thinking is broader than programming as defined in The Euro-
pean Commission’s Staff Working Document accompanying the Digital Education
Action Plan 2021–2027 (DEAP) [7]: “Computational thinking, programming and cod-
ing are often used interchangeably in education settings, but they are distinct activities”,
therefore it is important to pay attention to computational thinking assessment tools that
assess beyond programming or algorithmic skills. Commonly used validated tests for
assessing computational thinking that are independent of programming languages are
the CTt and CTS [10, 15, 18, 24]. Other tools mentioned above are associated with spe-
cific platforms for programming or gaming (e.g. Dr. Scratch, Zoombinis). The Bebras
tasks are tool independent, but not yet validated as a set of tasks for the assessment
of computational thinking. For this reason, the tool-independent tests mentioned above
(CTt and CTS) were chosen for this study. Both CTt and CTS are presented to students
in a form of tests (a set of questions/statements with a set of answer options), while
allowing to assess computational thinking from different points of view.

Due to the complexity of computational thinking, it is also relevant to assess com-
putational thinking in a complex way, using more than one tool or method [22, 28].
According to the beforementioned classification [20], the CTt test falls into the diag-
nostic tools group and the CTS test into the perceptions-attitudes scales group [20].
Guggemos et al. [10] also mention that a system of different assessments is essential
because various computational thinking profiles can be identified using multifunctional
methods. Guggemos et al. [10], in their research for the assessment of computational
thinking, analyze these two tests: CTt and CTS as well. However, researchers do not con-
sider the computational thinking teaching tools used, nor do they differentiate between
students’ computational thinking test scores according to their gender.

The aim of this study is to investigate the relationship between CTt and CTS tests
in relation to students’ gender and the tools used to develop computational thinking.

We pose the following research questions:

RQ1: Is there a relationship between students’ CTt andCTS (including its subconstructs)
scores?
RQ2: How students’ CTt and CTS tests’ results are associated with the learning tool
used to develop CT and differ in gender groups?

Assessing Computational Thinking 69

The paper is structured as follows. First, we present learning methods and tools,
describe respondents, instruments and data analysismethods.Next,we present the results
of the study according to the research questions. Finally,we discuss our findings, describe
limitations and provide directions for future research.

2 Methods

2.1 Learning Tools and Methodology

Students were taught computational thinking using Scratch and “Minecraft: Education
Edition”. The teaching tools were not a part of the study, the computational thinking
knowledge was acquired during the regular computer science lessons using the above-
mentioned tools. Each classwas familiarwith both tools, but themain tool for grade 8was
the Scratch platform, while grade 9 learned in the “Minecraft: Education Edition” envi-
ronment. On the Scratch platform, the students had to do “open” tasks using computer
science concepts, such as cycles, conditions: they wrote programs that draw different
shapes, developed a project with self-created characters, environment and implemented
a created scenario of interaction between the characters. On the “Minecraft: Education
Edition” platform, students learnt from the pre-designed lessons based on CSTA and
ISTE guidelines [3, 12]. They first completed the tasks from the block programming
fundamentals lessons, based on the 5 lessons provided, and then were introduced to the
basics of Python programming (also completing the tasks from the 5 lessons). One les-
son in “Minecraft: Education Edition” required 1 or 2 academic lessons to complete all
the activities. On average, both grades had 12–14 lessons using these tools. As all tasks
were completed individually and there were no team tasks during this learning period,
the concept of cooperativity was removed from the CTS test in this study.

2.2 Respondents

In total, 49 students (51% female and 49% male), studying in school grades 8 and
9 (aged 14–16), took part in the survey. There were 24 students of 8th grade (51%),
learning computational thinking with Scratch as dominating tool, and 25 students of 9th

grade (49%), learning with “Minecraft: Education edition” as a primary tool.
All respondents were informed of the purpose of the study and gave their free will

consent to participate in the study.

2.3 Instruments

In this study, besides the questions on basic demographical information, the two
following instruments were used.

70 V. Masiulionytė-Dagienė and T. Jevsikova

CTt. A validated instrument, consisting of 28 questions [19]. CTt test is claimed to be
unidimensional [10] although addressing 7 cognitive operations (4 items for each cogni-
tive operation arranged in increasing difficulty direction): basic directions and sequences,
loops repeat times, loops repeat until, if simple conditional statement, if/else complex
conditional statement, while conditional, and simple functions. For each question, four
answer options are suggested with only one correct. Each item is rated as 1 (correct) or
0 (incorrect).

CTS. Avalidated computational thinking assessment scale, originally consisting of cre-
ativity, algorithmic thinking, critical thinking, problem solving and cooperativity sub-
constructs, rated on a 5-point Likert scale [13]. In our study,we included all subconstructs
of this scale except for cooperativity, as mentioned before.

2.4 Data Analysis

For the analysis of the collected data, quantitativemethods were used. Data normality for
a whole sample has been checked with Kolmogorov-Smirnov and Shapiro-Wilk tests.
CTt scores were not normally distributed. Due to this reason as well as analysis involving
relatively small subgroup analysis, we used distribution-free non-parametric measures:

• To compare differences between two independent samples, the Mann–Whitney U test
was used, and η2 was used as an effect size measure.

• To test the monotonous relationships between the pairs of variables, Spearman’s rank
correlations were used.

We computed scores of the tests and their parts as a sum of the item scores.
The reliability of CTS psychometric scale subconstructs was examined using Cron-

bach’s Alpha. After evaluating subscale reliability, item 4 from problem solving sub-
construct was dropped to improve subscale reliability. Cronbach’s Alphas for scale sub-
constructs were satisfying (≥0.7): 0.701 for creativity (8 items), 0.765 for algorithmic
thinking (6 items), 0.725 for critical thinking (5 items), 0,703 for problem solving (5
items).

The significance level was set to α = 0.05.
For the statistical analysis, IBM SPSS Statistics 28 software package and MS Excel

were used.

3 Results

3.1 An Association of Students’ CTt and CTS Results

In a whole group of students, the CTt scores ranged from 9 to 27 with mean scores of
21.2, while CTS scores ranged from 57 to 107 with mean value of 77.4. The descriptive
statistics for the results of both tests in general and according to tests’ subscales, are
presented in Table 1.

Assessing Computational Thinking 71

Table 1. Descriptive statistics for test scores (N = 49).

Cognitive operation/construct Score range Min. Max. Mean Std. deviation

CTt 0–28 9 27 21.2 4.5

Sequences 0–4 2 4 3.7 0.5

Loops (times) 0–4 0 4 3.5 0.8

Loops (until) 0–4 1 4 3.2 0.9

If (simple) 0–4 0 4 2.7 1.1

If (complex) 0–4 0 4 2.6 1.1

While 0–4 0 4 2.5 1.3

Functions 0–4 0 4 3.0 1.2

CTS 30–150 57 107 77.4 10.0

Creativity 8–40 19 39 28.2 4.0

Algorithmic thinking 6–30 10 24 17.4 3.5

Critical thinking 5–25 5 22 15.0 3.2

Problem solving 5–25 12 23 16.8 2.6

Table 2. Spearman’s rank correlations between CTS and its subconstructs and CTt scores.

CTS Creativity Algorithmic thinking Critical thinking Problem solving

ρ 0.174 0.000 0.307* –0.034 0.212

p 0.232 1.000 0.032 0.817 0.143
* Significant at 0.05 level (2-tailed)

Spearman’s rank correlations for 49 students have been calculated between CTt
scores and CTS general scores as well as its subconstructs (Table 2).

Significant (at 0.05 level) relationshipwas found between CTt and algorithmic think-
ing scores (ρ = 0.307, p = 0.032). However, there was no significant association
between CTt scores and CTS general results (ρ = 0.174, p = 0.232). Further analysis
on differences between students’ groups is presented in the following section.

3.2 CT Assessment Scores in Learning Tool and Gender Groups

In order to observe the relationships between CTt scores and CTS including its subcon-
struct scores between groups studying with different learning tool (Minecraft: Education
Edition, Scratch) and between male and female students’ subgroups, Spearman’s rank
correlations have been computed (Table 3). We use Minecraft as a shortened name form
of “Minecraft: Education Edition”.

72 V. Masiulionytė-Dagienė and T. Jevsikova

Table 3. Spearman’s rank correlations between CTS and its subconstructs and CTt scores for
Minecraft and Scratch learning groups and gender.

Group Measure CTS Creativity Algorithmic
thinking

Critical
thinking

Problem
solving

Minecraft ρ 0.371 0.216 0.414* 0.206 0.259

(n = 25) p 0.068 0.299 0.040 0.323 0.211

Scratch ρ 0.285 0.103 0.301 0.128 0.307

(n = 24) p 0.178 0.631 0.154 0.550 0.144

Males ρ 0.445* 0.301 0.576** 0.119 0.276

(n = 24) p 0.029 0.153 0.003 0.581 0.191

Females ρ –0.033 –0.188 0.137 –0.138 0.159

(n = 25) p 0.877 0.367 0.514 0.510 0.447
* Significant at 0.05 level (2-tailed); ** significant at 0.01 level (2-tailed)

We found a significant monotonous relationship between CTt and CTS scores in a
subgroup of male students (ρ = 0.445, p= 0.029). However, there were no correlations
between scores in other subgroups (female students or subgroups based on learning tool).
The strongest significantmonotonous relationshipwas found betweenCTS’s algorithmic
thinking and CTt scores in a group of boys (ρ = 0.576, p = 0.003). In a group of
students learning with Minecraft as a primary tool, this relationship was also significant,
but weaker (ρ = 0.414, p = 0.040).

Graphically, the differences in CTt scores between groups studied are presented in
Fig. 1.

Fig. 1. CTt scores for Scratch and Minecraft groups’ male and female students.

Assessing Computational Thinking 73

The mean ranks of scores for different test constructs and subconstructs in groups
studied and results of the Mann-Whitney U tests are presented in Table 4 (light grey
shading for significance at 0.05 level, dark grey for significance at 0.01 level).

Table 4. Differences between groups (Scratch, Minecraft, male and female): Mann-Whitney U
tests’ results.

Loops Until 21.38 28.48 -1.87 0.061 25.15 24.86 -0.08 0.940
If simple 19.67 30.12 -2.68 0.007 25.25 24.76 -0.13 0.900
If complex 23.21 26.72 -0.91 0.363 21.17 28.68 -1.95 0.052
While 20.52 29.30 -2.22 0.027 26.35 23.70 -0.67 0.502
Functions 24.27 25.70 -0.38 0.705 26.65 23.42 -0.86 0.392
CTS total scores 28.27 21.86 -1.57 0.116 26.56 23.50 -0.75 0.453
Creativity 28.35 21.78 -1.62 0.106 23.85 26.10 -0.55 0.581
Algorithmic
thinking

25.71 24.32 -0.34 0.732 29.83 20.36 -2.34 0.020

Critical thinking 30.92 19.32 -2.86 0.004 25.10 24.90 -0.05 0.960
Problem solving 26.23 23.82 -0.60 0.551 24.71 25.28 -0.14 0.887

Cognitive opera-
tion/Construct

Mean rank
Z p

Mean rank
Z p

Scratch Minecraft Males Females
CTt total scores 20.44 29.38 -2.20 0.028 25.67 24.36 -0.32 0.748
Sequences 24.40 25.58 -0.40 0.690 26.35 23.70 -0.89 0.371
Loops Times 24.23 25.74 -0.43 0.665 24.38 25.60 -0.35 0.725

The Mann-Whitney U test confirmed a significant difference in CTt scores between
the groups learning as a primary tool with Scratch (mean rank 20.44) and Minecraft
(mean rank 29.38): Z = –2.20, p = 0, 028. An effect size η2 = 0.1 denotes that 10% of
variance in rank was accounted by the CT learning tool used (Scratch or Minecraft).

Significantly higher scores in critical thinking were observed in Scratch group com-
pared to Minecraft (Z = –2,86, p = 0.004, η2 = 0.17). Interquartile range of the
differences in critical thinking scores, including subgroups of male and female students
are presented graphically in Fig. 2.

Significant differences for Scratch and Minecraft groups were also found in scores
of CTt cognitive operation “simple If” (Z = –2.68, p = 0.007, η2 = 0.15) and “While
loop” (Z = –2.22, p = 0.027, η2 = 0.1).

Studying the differences between groups of boys and girls, significant differences
were found in algorithmic thinking scores: Z= –2.34, p= 0.020, η2 = 0.12, with mean
rank for female students 20.36 and for male students 29.83.

74 V. Masiulionytė-Dagienė and T. Jevsikova

Fig. 2. Critical thinking (CTS) scores for Scratch andMinecraft groups’male and female students.

4 Discussion and Conclusion

In this study, we examined an association between the results gained by the two compu-
tational thinking assessment instruments and differences in scores based on groups of
learning tool used to develop computational thinking and gender.

4.1 Relationship Between Students’ CTt and CTS Scores

Looking at the results regarding the first research question, there was no significant
relationship found between CTt and CTS general scores. This finding is in line with the
recent study by Guggemos et al. [10] and can be explained by different nature of the
instruments. However, it is interesting to note that analysis of the results of both tests in
separate groups of students by gender has shown that the tests’ scores correlated with
each other in the group of male students.

Analysis, performed on the results for the individual subconstructs of the CTS test,
we also see monotonous positive relationship of the CTt scores with the algorithmic
thinking scores in CTS test, what supports the results of the study by Guggemos et al.
[10]. Thus, in response to the first research question, we can say that the tests do not
correlate from a generic point of view, but that the correlation is influenced by the gender
of the students, and to fully validate this statement, it would require research in a larger
group of students.

4.2 Differences in the CTt and CTS Tests’ Results in Students’ Groups
by Learning Tool and Gender

In response to the second research question, which asks how the test results were influ-
enced by the teaching tools, we can see that students who studied using “Minecraft:
Education Edition” had significantly better CTt test results than those students who

Assessing Computational Thinking 75

studied computational thinking in Scratch. These results could be explained by the fact
that both “Minecraft: Education Edition” and CTt are based on the CSTA [3] teaching
standards. The pre-designed lessons include the same elements as the CTt test (cycles,
conditional sentences, etc.). This is further confirmed by the results of the separate CTt
test groups, cognitive operations such as the “while loop” and the “simple if” conditions.
However, students who had studied in the Scratch environment had better results on the
critical thinking subconstruct of the CTt test. Critical thinking is defined as “the use of
cognitive skills or strategies that increase the possibility of the desired behaviors” [11].
In the context of the definition of critical thinking, the results obtained can be explained
by the fact that, unlike the pre-prepared lessons used in “Minecraft: Education Edition”,
in the Scratch environment, students had to create their own projects and find custom
solutions to achieve the desired outcome. As we can see, different tools develop different
computational thinking skills during the teaching process, and this should be considered
when teaching computational thinking, so that the most versatile computational thinking
skills can be developed and assessed with the widest possible range of assessment tools.
There is also a need for more research in this area on which tools best develop which
computational thinking skills.

In terms of gender, the significant difference was observed in the algorithmic think-
ing subconstruct of the CTS test. Boys showed higher scores in algorithmic thinking
than girls. On a one hand side, this finding reflects the existing stereotype of computer
science and engineering being more male-oriented field [15, 23]. While the findings
of Ma et al. [15] study show that the CTS test algorithmic thinking scores before the
intervention were slightly higher in the girls’ group, after the intervention, the scores
became identical, with a non-significant difference to the boys’ advantage. As Groher
et al. [8] mentions: “diversity among the students calls for diversity among the teaching
and learning materials.” This could be one of the reasons for the different tests results.

4.3 Limitations and Future Research Directions

Themain limitation of this studywas the relatively small sample size of students involved
and obtained by the convenient sampling method. Also, the slightly different age group
of the students (8th and 9th grade) might have had some influence on the results. Nev-
ertheless, the results were in line with the findings of other related studies and provided
interesting insights for further research with greater samples and other methods.

In addition to the test results, one trend was observed during the course of the study
that would allow for improvements in the assessment. When taking the test, students
used their hand or a computer mouse to guide the screen through the picture next to each
test question in order to find the correct answer. However, this process was not logged
anywhere and we only saw one of the selected answers as the test result. However, in
order to assess computational thinking, we should assess the process of thinking itself.
Such approach we may see in the Zoombinis game [21]. It might be possible that the
student’s thinking process was partly correct, e.g. right at the beginning with a slight
mistake at the end, resulting in the wrong answer, but this is not what we see as a test
score for diagnostic test. Such approach could also help to eliminate the cases when the
student clicked the right answer by chance. In future research, we will focus on how to
better assess the process thinking for the task solution, and not just the final result.

76 V. Masiulionytė-Dagienė and T. Jevsikova

References

1. Asbell-Clarke, J., et al.: The development of students’ computational thinking practices in
elementary- and middle-school classes using the learning game. Zoombinis. Comput. Hum.
Behav. 115, 106587 (2021)

2. Bocconi, S., et al.: Reviewing computational thinking in compulsory education. In: Inamorato
Dos Santos, A., Cachia, R., Giannoutsou, N., Punie, Y. (eds.) Publications Office of the Euro-
peanUnion, Luxembourg (2022). https://doi.org/10.2760/126955. ISBN 978-92-76-47208-7,
JRC128347

3. CSTA: K12 computer science standards (2017). https://www.csteachers.org/page/about-csta-
s-k-12-nbsp-standards

4. Djambong, T., Freiman, V., Gauvin, S., Paquet, M., Chiasson, M.: Measurement of com-
putational thinking in K-12 education: the need for innovative practices. In: Sampson, D.,
Ifenthaler, D., Spector, J., Isaías, P. (eds.) Digital Technologies: Sustainable Innovations for
Improving Teaching and Learning, pp. 193–222. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-73417-0_12

5. Dolgopolovas, V., Jevsikova, T., Dagiene, V., Savulioniene, L.: Exploration of computational
thinking of software engineering novice students based on solving computer science tasks.
Int. J. Eng. Educ. 32(3), 1–10 (2016)

6. Eloy, A., Achutti, C.F., Cassia, F., Deus Lopes, R.: A data-driven approach to assess
computational thinking concepts based on learners’ artifacts. Inf. Educ. 21(1), 33–54 (2022)

7. European Commission: Digital Education Action Plan 2021–2027: Resetting education
and training for the digital age (2020). https://eurlex.europa.eu/legal-content/EN/TXT/?uri=
CELEX:52020DC0624

8. Groher, I, Sabitzer, B., Demarle-Meusel, H., Kuka, L., Hofer, A.: Work-in-progress: closing
the gaps: diversity in programming education. In: 2021 IEEE Global Engineering Education
Conference (EDUCON), pp. 1449–1453 (2021)

9. Guggemos, J.: On the predictors of computational thinking and its growth at the high-school
level. Comput. Educ. 161, 104060 (2021)

10. Guggemos, J., Seufert, S.Román-González,M.:Computational thinking assessment – towards
more vivid interpretations. Tech. Know. Learn.https://doi.org/10.1007/s10758-021-09587-2

11. Halpern, D.F.: Thoughts and Knowledge: An Introduction to Critical Thinking. Lawrence
Erlbaum Associates, New Jersey-London (1996)

12. ISTE: Computational thinking: leadership toolkit (2015). https://www.iste.org/computati
onal-thinking

13. Korkmaz, Ö., Çakir, R., Özden, M.Y.: A validity and reliability study of the computational
thinking scales (CTS). Comput. Hum. Behav. 72, 558–569 (2017)

14. Labusch, A., Eickelmann, B.: Computational thinking competences in countries from three
different continents in the mirror of students’ characteristics and school learning. In: Kong,
S.C., et al., (eds.) Proceedings of International Conference on Computational Thinking
Education 2020, pp. 2–7. The Education University of Hong Kong (2020)

15. Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T.W., Liu, J.: Promoting pupils’ computa-
tional thinking skills and self-efficacy: a problem-solving instructional approach. Educ. Tech.
Res. Dev. 69(3), 1599–1616 (2021). https://doi.org/10.1007/s11423-021-10016-5

16. Moreno-León, J., Robles, G., Román-González,M.: Dr. Scratch: automatic analysis of scratch
projects to assess and foster computational thinking. RED-Rev. Educ. Distancia 46, 1–23
(2015)

17. Piatti, A., et al.: TheCT-cube: a framework for the design and the assessment of computational
thinking activities. Comput. Hum. Behav. Rep. 5, 100166 (2022)

https://doi.org/10.2760/126955
https://www.csteachers.org/page/about-csta-s-k-12-nbsp-standards
https://doi.org/10.1007/978-3-319-73417-0_12
https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0624
https://doi.org/10.1007/s10758-021-09587-2
https://www.iste.org/computational-thinking
https://doi.org/10.1007/s11423-021-10016-5

Assessing Computational Thinking 77

18. Poulakis, E., Politis, P.: Computational thinking assessment: literature review. In: Tsiatsos,
T., Demetriadis, S., Mikropoulos, A., Dagdilelis, V. (eds.) Research on e-Learning and ICT
in Education, pp. 111–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-643
63-8_7

19. Román-González, M., Pérez-González, J.-C., Jiménez-Fernández, C.: Which cognitive abil-
ities underlie computational thinking? Criterion validity of the computational thinking test.
Comput. Hum. Behav. 72, 678–691 (2017)

20. Román-González, M., Moreno-León, J., Robles, G.: Combining assessment tools for a com-
prehensive evaluation of computational thinking interventions. In: Kong, S.-C., Abelson, H.
(eds.) Computational Thinking Education, pp. 79–98. Springer, Singapore (2019). https://doi.
org/10.1007/978-981-13-6528-7_6

21. Rowe, E., et al.: Assessing implicit computational thinking in Zoombinis puzzle gameplay.
Comput. Hum. Behav. 120, 106707 (2021)

22. Statter, D., Armoni,M.: Teaching abstraction in computer science to 7th grade students. ACM
Trans. Comput. Educ. 20(1), 8–837 (2020)

23. Stupurienė, G., Jevsikova, T., Juškevičienė, A.: Solving ecological problems through physical
computing to ensure gender balance in STEM education. Sustainability 14(9), 4924 (2022)

24. Sun, L., Hu, L., Zhou, D., Yang,W.: Evaluation and developmental suggestions on undergrad-
uates’ computational thinking: a theoretical framework guided by Marzano’s new taxonomy.
Interact. Learn. Environ. (2022). https://doi.org/10.1080/10494820.2022.2042311

25. Tang, X., Yin, Y., Lin, Q., Hadad, R., Zhai, X.: Assessing computational thinking: a systematic
review of empirical studies. Comput. Educ. 148, 103798 (2020)

26. Tikva, C., Tambouris, E.: Mapping computational thinking through programming in K-12
education: a conceptual model based on a systematic literature Review. Comput. Educ. 162,
104083 (2021)

27. Troiano G., et al.: Is my game OK Dr. Scratch? Exploring programming and computational
thinking development via metrics in student-designed serious games for STEM. In: Pro-
ceedings of the 18th ACM International Conference on Interaction Design and Children
Association for Computing Machinery, New York, NY, USA, pp. 208–219 (2019)

28. Wei, X., Lin, L., Meng, N., Tan, W., Kong, S.-C., Kinshuk.: The effectiveness of partial pair
programming on elementary school students’ computational thinking skills and self-efficacy.
Comput. Educ. 160, 104023 (2021)

https://doi.org/10.1007/978-3-030-64363-8_7
https://doi.org/10.1007/978-981-13-6528-7_6
https://doi.org/10.1080/10494820.2022.2042311

“I Now Feel that this is Unfair” A Case
Study on the Effects of Professional

Development for Debugging in the K-12
Classroom

Tilman Michaeli1(B) and Ralf Romeike2

1 TUM School of Social Sciences and Technology, Computing Education Research
Group, Technical University of Munich, Munich, Germany

tilman.michaeli@tum.de
2 Computing Education Research Group, Freie Universität Berlin, Berlin, Germany

ralf.romeike@fu-berlin.de

Abstract. Finding and fixing errors is an essential skill in learning pro-
gramming in the K-12 classroom. However, most of the time, debugging
only plays a minor role in teachers’ approaches to conveying program-
ming - especially as they themselves rarely learned debugging explicitly
and lack appropriate concepts and content. In consequence, students
often struggle with finding and fixing errors on their own. Professional
development allows for disseminating research findings and correspond-
ing teaching materials to eventually influence the teaching practice. In
this paper, we present a professional development workshop and its theo-
retical foundations, aiming at fostering teachers’ professional competence
with regards to debugging. We investigate changes in teaching practice
and the teachers’ beliefs in reaction to the PD using a case study app-
roach. The results provide insights into impact and effects of professional
development with regards to debugging in the classroom. Furthermore,
our study contributes indications for designing professional development
that fosters actual change in the classroom.

Keywords: Debugging · Professional development · Computing
education · K-12 · Case study · Teaching practice

1 Introduction

Debugging can be considered a core problem in the K-12 classroom: novice pro-
grammers make more programming errors and, compared to experts, spend sim-
ilar high amounts of time debugging [2]. Fixing errors is a significant obstacle to
learning programming [20]. Helplessness and, in consequence, frustration when
confronted with errors is a common phenomenon in the K12 classroom [26].
Accordingly, this is also a major challenge for teachers: They often rush from
student to student, helping and trying to do justice to all of them as much as

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 78–89, 2022.
https://doi.org/10.1007/978-3-031-15851-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_7&domain=pdf
http://orcid.org/0000-0002-5453-8581
https://doi.org/10.1007/978-3-031-15851-3_7

A Case Study on the Effects of Professional Development for Debugging 79

possible [24]. Moreover, teachers - just like professional software developers [27]
- have often not learned debugging systematically themselves and only seldom
explicitly teach debugging [24]. In school practice, learners are therefore often
left alone with their errors and are consequently forced to acquire appropriate
strategies and approaches on their own. Experience has shown that this is a
challenge that is hardly manageable for a large part of students [6]. However,
explicitly teaching debugging has the potential to foster students’ debugging
self-reliance [3,7,25].

As to why they don’t convey debugging skills in their classroom, teachers
report that there is a lack of time - both in the classroom and for preparing
appropriate concepts and materials. At the same time, teachers claim a lack of
existing concepts, best practices, or materials for debugging in the classroom.
Furthermore, they report that debugging is not an explicit part of the curriculum
and therefore often neglected in favor of content explicitly required [24].

A traditional way to transfer educational innovations and achieve a change
in the teaching practice is professional development (PD) for in-service teach-
ers. However, designing effective PD provides a particular challenge, as typically
in limited time, teachers’ content and pedagogical content knowledge as well as
beliefs need to be addressed - while demonstrating direct applications and impli-
cations for their pedagogical practice [22]. Therefore, in this study, we designed
a corresponding professional development workshop and investigate the effects
on the participants’ teaching practice in the form of a case study to gain insights
on how to tackle the core problem of debugging in the classroom.

2 Theoretical Background

The aim of PD is to improve the quality of teaching and thus the students’
learning processes [9]. Research shows that this is highly dependent on teach-
ers’ professional competence which is considered an acquirable disposition [19].
Therefore, expanding teachers’ professional competence is central for PD. It is
comprised of cognitive, motivational and personal components [4]. Cognitive
components are typically distinguished into content knowledge (CK), pedagogi-
cal knowledge (PK) and pedagogical content knowledge (PCK) based upon [31].
Concerning motivational factors of professional competence, teachers’ beliefs in
particular are considered crucial.

In order to achieve a change in professional competence, according to con-
structivism, the teachers’ existing experience has to be taken into account [32].
Debugging describes the process of finding and fixing errors and is dependent on
the underlying error type [15]. Debugging skills differ from general programming
skills [1] and include the application of a systematic process, different debugging
strategies, heuristics and tools [21,24,30]. Teachers themselves typically have
rarely learned debugging explicitly and therefore lack appropriate concepts and
content for teaching in class. Furthermore, they differ in their personal debug-
ging process: While some teachers apply predominantly (basic) strategies such as
print debugging and have little experience with tools such as the debugger, oth-
ers even teach such “advanced” methods to their students [24]. With regard to

80 T. Michaeli and R. Romeike

PCK, teachers hardly use explicit units to teach debugging skills in their lessons.
Predominantly, they try to give the students assistance in individual support.
Despite acknowledging the problem coping with errors provides for students,
teachers lack the means and/or beliefs to eventually address them further in
their classroom [24].

There are some studies investigating explicitly teaching debugging in sec-
ondary or tertiary [3,5,7,8,17,25], but to our knowledge there is no research
done on PD specifically focusing on debugging in the classroom. However, there
are extensive findings regarding PD in [14,23,28,29] and especially beyond
[9,11,19,22] computing education research. In the following, we discuss a selec-
tion of core design principles from literature that seem especially important for
our context.

Research shows that for an actual change in school practice, it is crucial
to create a common problem awareness. To this end, it is important to work
together with teachers on the basis of their teaching practice, instead of merely
providing “top-down” materials. It is essential that the teachers’ own teaching
experiences are taken into account. For the implementation of concepts of the
workshop in teaching practice, it is helpful to provide materials that are as con-
crete as possible, making them more or less directly-usable in the classroom.
This enables teachers to use the materials directly without much effort and thus
reduces the entry barrier. However, teachers typically adapt these concepts and
materials to their specific needs in a second iteration at the latest. Therefore,
teachers should be actively encouraged to experiment and adapt the materials
as a starting point for teaching. Further success factors for PD are an interplay
between theoretical input and practical explorations phases that allow for self-
directed and active learning. Due to the heterogeneity of teachers’ knowledge,
they should be enabled to try out new debugging strategies in a self-determined
way, for example, according to their individual learning requirements. Addition-
ally, collaboration, the exchange of ideas and networking with and between the
participating teachers is essential for a sustainable transfer of the workshop con-
tent into teaching practice.

Those principles derived from research on PD provide hints for designing
general PD. However, designing a successful workshop is highly dependent on
the content and context [22]. Therefore, research in PD on debugging and its
effects on the teaching practice is necessary.

3 A PD Workshop on Debugging

Based on the principles established in research on general PD as well as findings
on teachers’ professional competence with regards to debugging, we designed
and conducted a weekend PD workshop (Friday afternoon to Sunday noon)
in November 2019 with 16 participating CS high school teachers from various
regions of Germany. The event took place in a conference hotel, so that the par-
ticipants stayed overnight. With the workshop, we aimed at fostering teachers’
professional competence regarding debugging (in particular concerning beliefs,

A Case Study on the Effects of Professional Development for Debugging 81

CK and PCK), for eventually influencing their teaching practice. For the class-
room materials used in the workshop, we mainly build upon a teaching concept
for including debugging in the classroom, which effectiveness we investigated
previously [25]. Within this concept, different types of errors are distinguished
and a systematic approach for fixing them is proposed. Furthermore, concrete
methods for the classroom are suggested, such as adapted debugging tasks, ways
to introduce various debugging strategies and tools (such as print-debugging or
the debugger), or an error glossary to help with forming patterns and heuristics
(similar to professionals’ debugging logs [27]).

Before the workshop began, teachers were asked to reflect on their personal
debugging process and how they had learned to debug in the form of “debug-
ging biographies” (see e.g. [18]). The evaluation of these biographies revealed
that the majority of teachers never learned debugging systematically, but had
mostly acquired the relevant skills on their own. Furthermore, it showed a large
amount of heterogeneity with respect to the scope of the debugging strategies
and tools used and also concerning the general programming experience outside
the classroom.

Day 1: Awareness and self-reflection. At the beginning of the workshop, debug-
ging was characterized as a core problem of teaching practice. To this end, the
teachers first reflected how “typical” students proceed with debugging in their
lessons and what problems they have using the persona method from Design
Thinking [10] in groups (see Fig. 1). In doing so, they switched into the per-
spective of the learners to reflect on typical problems (a central component of
PCK). In a second step, the groups exchanged the personas among themselves
and described how they would support the respective student in their current
teaching. This way, teachers should both share existing best practices and reflect
on where they see a need to expand their teaching.

Day 2: Introduction and exploration of CK and PCK on debugging. At first,
a professional software developer reported from his professional experience on
how debugging works in industry, what significance it has and how developers
“learn” debugging. In the next phase, the debugging process was formally intro-
duced and corresponding debugging skills were systematized (CK). Furthermore,
approaches to address respective required skills in the classroom were demon-
strated (PCK). Afterward, the teachers worked through materials for classroom
use. In doing so, they acquired corresponding CK, for example by working on
materials for the introduction of debugging strategies with which they had little
or no experience (such as the debugger). Furthermore, they directly tried out
methods for teaching relevant skills and thus acquired according PCK. All ideas,
suggestions, questions, and comments that arose during this phase were collected
and then discussed in plenary.

Day 3: Transfer into their classroom. On the last day of the workshop, teachers
were given the opportunity to transfer the concepts to their own teaching mate-
rials. Based on the personas, each teacher created a concrete plan of which ideas

82 T. Michaeli and R. Romeike

Fig. 1. Persona from the workshop

they wanted to take from the workshop and use in the classroom. These plans
were then presented and discussed in groups.

Concluding reflection in the workshop. The design of the workshop was gen-
erally viewed positively by the teachers. Among other things, they highlighted
the high proportion of active learning, the expert’s input and the intensive net-
working among the teachers. The opportunity to try out concrete materials for
the classroom was also positively evaluated. A clear consensus for the increased
integration of the topic of debugging into teaching became apparent.

4 Methodology

This study aims to investigate the influence of the PD workshop on the actual
teaching practice. Therefore, we address the following research question. RQ:
How does the teaching of the participants involved in the PD workshop change
with regards to debugging in the classroom?

There are many ways to evaluate the success of a PD workshop. Since we are
explicitly interested in the transfer to teaching practice, we aimed to investigate
the actual change in the teachers’ classrooms – as opposed to an examination of
the change in self-efficacy expectations or professional competence directly at the
end of the training [22]. However, shortly after the workshop in November 2019,
school practice was largely restricted for the survey period due to the Covid-19
pandemic. Given the severe additional challenges and demands for teachers –
not just limited to remote teaching periods –, an in-detail comparative analysis
does not appear to be expedient. Furthermore, it is to be expected that the time
available and willingness to implement new concepts was severely limited.

A Case Study on the Effects of Professional Development for Debugging 83

Therefore, under these special conditions, a qualitative case study method-
ology was chosen to investigate the research question. This allows for a precise
analysis of cases for teachers reporting to have adapted their teaching in conse-
quence of the workshop, despite or even before the pandemic effects on schools.
Furthermore, we can examine the characteristics of the individual cases and the
respective circumstance in detail to comprehensively map the changes in the
teaching practice [33].

Data Collection and Case Selection. Towards the end of the school year, semi-
structured interviews were conducted online with the participants of the work-
shop. In the process, critical cases [33] were selected, which allows to check the
connection between the workshop and changes in the teaching practices. Despite
the Covid-19 pandemic, two of the teachers contacted had already integrated
corresponding content from the PD workshop into their lessons to a significant
extent before the school closures began, or had implemented it in remote teach-
ing despite the corresponding challenges. Both were well-experienced CS high
school teachers from different German states (with different curricula and ways
of anchoring CS as a subject). Within the semi-structured interviews, the teach-
ers were asked whether and how their teaching changed in consequence to the
PD, in particular with regards to their awareness of and reaction to students’
problems, as well as whether they tried out the methods proposed – and if so,
which experiences they made.

Data Analysis. The interviews were first transcribed and evaluated in a case-
by-case analysis (within-case analysis) to develop a deeper understanding of
the respective changes [12]. Subsequently, central cross-case characteristics were
identified.

5 Results

In the following section, the two cases are described in detail, in order to then
identify common characteristics afterwards. All quotes have been translated into
English by the authors with minimal adjustments to improve comprehensibility.

5.1 Teacher I

Teacher I reports that shortly after the end of the workshop, he already imple-
mented the first concepts regarding a systematic debugging approach with year
ten students:

As soon as that was possible, I tried it. [...] We categorized [errors] by type
and also discussed how to cope with them. There were actually two lessons
where that was the topic. The students had a given programming project,
and there were errors built-in, and they had to solve different tasks, [...]
from a semicolon that was missing to semantic errors that appeared at the
end, even though the program was running perfectly.

84 T. Michaeli and R. Romeike

He applied debugging tasks and let the students categorize different error
types and emphasized that a different approach was necessary for different kinds
of errors. In general, categorizing errors with the students represents one of the
central changes in the teaching. The teacher was also able to give his assess-
ment of success and impact on the students before the Covid-19-based distance
learning:

How helpful this is in the long run is difficult to confirm or disprove at the
moment. For the weaker students it has definitely been helpful. They have
at least gratefully accepted this categorization. And they [...] then wrote an
error glossary, and I think they pulled it out again when they had errors
that they didn’t know about at first and had to remember.

With the joint error collection in the form of a “glossary”, another idea of
the workshop was adapted and successfully implemented. The teacher’s experi-
ence indicates that “weaker” students in particular have actually benefited from
the support. In general, the teacher emphasizes that in the future he wants to
introduce the handling of errors at the beginning of the programming lessons.

In addition, the teacher has transferred debugging to the topic of spreadsheets
and also used “debugging tasks” here:

So it was interesting to see what kind of errors there were. They often
have problems there as well. You have to run around because too many
hash marks are displayed, which simply indicates that the columns are
too narrow. Typical errors are division by zero and so on. And the error
messages are quite cryptic.

Dealing with errors is an overarching theme for the teacher after the work-
shop and is not limited to programming. This emphasizes the general educational
importance of debugging beyond programming. As a consequence of the work-
shop, the teacher focuses especially on the error culture in class:

So another aspect we covered in this context in the lesson before Christmas,
but that I have also done occasionally in recent years, is to discuss famous
software bugs. Making errors, Ariane and Mars Lunar Voyager and so on,
all that stuff. These are exciting stories, which also show the students that
even on a large scale, mistakes are made and that errors just happen.

After reflecting his teaching, he assumes that there is a connection between
the opening of tasks and the perception and handling of errors:

The tasks are often such that the students have to solve a problem very
specifically. The task is clearly defined. The students have to solve it and
then stumble somewhere into these mistakes they then make and are then
disappointed because it doesn’t work out right away. [...] This means that in
every lesson you get to the point when the students make mistakes: “Now
I have made a mistake. I didn’t solve the problem the way the teacher

A Case Study on the Effects of Professional Development for Debugging 85

intended.” And this should actually be different in the whole programming
class: that I work more creatively and simply give the students more free-
dom in the exercises.

In the future, he therefore wants to use more open assignments in the initial
lessons to test what influence this has on how students deal with their errors. This
can be described as an productive-failure approach [16]. Overall, the importance
of the topic for teaching has thus increased and is also multiplied in his training
of teachers:

From practice I can still say that I am now also addressing this issue with
teacher trainees. With them, I will cover this as a explicit topic in the next
few weeks, because currently we were hindered by Covid. But now, until
the end of the school year, it is also my goal that we explore approaches
[for debugging in class].

In addition, the teacher also reports that his own approach to debugging has
evolved in the context of programming projects in a newly-learned programming
language:

There I learned something I never did and never needed in Java, which we
discussed at the workshop, namely print debugging. I need it once or twice
for some Java problems, but with the Python problems it was so massive.
[...] That means, you always have to look, what is input, what is output,
what is the current state of the variables? And I did an incredible amount
of print debugging. Which I have never actually done before.

In summary, the teacher reports a significant change in his classroom as a
result of the PD workshop. Coping with errors is now perceived as a content
that spans all topics, students are supported particularly well by systematizing
and collecting various error types, and the teacher tries to create a positive error
culture in the classroom.

5.2 Teacher II

The second teacher also reports that he has integrated debugging more promi-
nently in his teaching as a result of the workshop. Accordingly, he introduced two
debugging strategies for the first time during distance learning. First, a “debug
class”, which logs the calls of the methods of a given project:

I introduced a debug class, because I am looking for errors myself and with
the help of this debug class, traces were created and these traces should be
displayed in sequence diagrams to use the aspect of modeling [...], but also
to make basic mechanisms clear. That means we did not learn from the
error, but from the trace.

86 T. Michaeli and R. Romeike

Thus, this debugging strategy was initially not introduced in the context of
error correction, but rather in the context of learning about modeling, and only
then should it be used for debugging. In addition, the debugger was introduced
as an optional task in analogy to the approach of the teaching concept presented
in the workshop, using a project created by the teacher. The teacher emphasized
that these two approaches came from the workshop, since debugging is not an
explicit topic in the curriculum.

He hopes that this change will give the students more autonomy in debugging,
which will also enable them to carry out other kinds of teaching projects – for
which he was unable to gain experience because of distance learning:

This is the innovation in my teaching or in my approach. That was not the
focus in the past. The point was to keep the project so small that I actually
assume that it would be flawless.

In conclusion, the teacher summarizes the changes in his teaching practice,
especially concerning debugging:

What you have done, from my point of view, is you have influenced the
beliefs of our colleagues. In consequence, I see the importance better than
before now. I actually think that it is not quite fair to always reproach the
student for not finding the errors when I have not even shown him what
I normally use. I now feel that this is unfair. That’s why the minimum I
have to show him is what I usually use myself. I usually use tracing, so
that’s what I teach.

This shows a changed view on his teaching, which emphasizes that without
the teaching of adequate strategies, students are not able to deal with errors on
their own. The workshop has thus contributed to changing the teacher’s beliefs
concerning the importance of debugging for programming lessons.

In summary, the importance of debugging in class – although not anchored
in the curriculum – has increased significantly for this teacher. Based on his own
debugging approach, he now systematically introduces debugging strategies to
increase the students’ independence.

6 Discussion

Comparing the two cases concerning the change in teaching, the first thing to be
noted is the increased value of debugging. The importance of debugging in the
classroom – even beyond programming – is reflected in (increased) time spent
on explicitly conveying debugging skills by the teachers.

Neither teacher has directly adopted the materials from the workshop, but
both have adapted them for their own needs (in line with literature [13]). In
doing so, they have set different priorities: For example, teacher I focused partic-
ularly on the aspect of error culture and the categorization of different types of
errors, while teacher II primarily conveyed his personal debugging approach and

A Case Study on the Effects of Professional Development for Debugging 87

strategies to students. In both cases, this results in a extension of the workshop
contents: For example, teacher I transfers the concepts of the PD to the teach-
ing of spreadsheets, while teacher II combined the introduction of appropriate
tracing strategies with teaching modeling.

As a consequence of the workshop, both teachers also reflect their teaching
practice with regard to dealing with errors: They would like to try out more open
tasks in the future. Teacher II hopes improving students debugging skills allows
him to use such open formats. Teacher I suspects a connection between more
open tasks and the perception and handling of errors according to a productive-
failure approach, which he would like to explore in the future.

The basis for these changes in teaching practice is the expansion of pro-
fessional competence in consequence of the workshop: On the one hand, the
teachers have acquired corresponding content knowledge, which even influenced
their personal debugging process. On the other hand, the teachers learned about
different ways to teach debugging skills (pedagogical content knowledge). At the
same time, the beliefs of the teachers have changed towards the explicit teach-
ing of debugging. In both cases, this had hardly played a role in their teaching
practice before.

Limitations. Due to the Covid-19-related teaching situation and the correspond-
ing challenges in the classroom, many participants of the workshop reported that
they had not yet integrated debugging content into their lessons as planned. A
broader evaluation of the PD regarding the transfer into the teaching practice
was not possible. However, the cases of teachers who had already implemented
debugging in their classes before or despite Covid19-circumstances allow for deep
insights into the changes in their teaching and thus implications about success
factors of the workshop.

7 Conclusion

In this paper, we investigated the effects a PD workshop on debugging in the K-
12 classroom has on the teaching practice of attending teachers. For this purpose,
a three-day workshop was designed based on general research findings regarding
PD, as well as research on teachers’ professional competence with regards to
debugging in the classroom. Given the pandemic situation, we conducted a case
study to analyze effects on participants’ teaching. In consequence, our results
provide deep insights into two teachers’ change in practice.

The analysis revealed that the workshop had the intended effect for the two
cases. This was particularly evident in the increased importance of the topic
in teaching practice. In most cases, the materials of the workshop were the
starting point for individual adaptation according to personal needs and different
foci. In addition, the awareness on the significance of errors for the learning
process introduced in the workshop sparked further ideas for extensions, such as
transferring and combining the concepts with other topics.

Furthermore, the results provide indications for designing professional devel-
opment that foster actual change in the classroom. To this end, our results

88 T. Michaeli and R. Romeike

suggest that convincing the teachers of the importance of the topic (teaching
debugging in the classroom) is crucial: even if not explicitly required in the
curricula, debugging is an essential part of the programming process. Fostering
students’ debugging skills even offers teachers the potential to improve their
own teaching practice further, such as by including more open exercises. Fur-
thermore, the teachers’ reports indicate that it is precisely the reflection of their
own teaching practice that has contributed to the creation of an awareness of the
problem and was thus essential for changing teachers’ beliefs towards debugging.
Actual change in practice was supported by the concrete materials as possible
starting points for teaching debugging skills: The teachers adapted the ideas of
the workshop to their personal needs, expanded them and experimented with
them – even beyond the programming classes.

References

1. Ahmadzadeh, M., Elliman, D., Higgins, C.: An analysis of patterns of debug-
ging among novice computer science students. In: Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Educa-
tion, pp. 84–88. ACM, NY (2005)

2. Allwood, C.M., Björhag, C.G.: Novices’ debugging when programming in Pascal.
Int. J. Man Mach. Stud. 33(6), 707–724 (1990)

3. Allwood, C.M., Björhag, C.G.: Training of Pascal novices’ error handling ability.
Acta Physiol. 78(1–3), 137–150 (1991)

4. Blömeke, S., Felbrich, A., Müller, C., Kaiser, G., Lehmann, R.: Effectiveness of
teacher education. ZDM 40(5), 719–734 (2008)

5. Böttcher, A., Thurner, V., Schlierkamp, K., Zehetmeier, D.: Debugging students’
debugging process. In: 2016 IEEE Frontiers in Education Conference (FIE), pp.
1–7. IEEE, Erie, PA (2016)

6. Carver, S., Klahr, D.: Assessing children’s logo debugging skills with a formal
model. J. Educ. Comput. Res. 2(4), 487–525 (1986)

7. Carver, S., Risinger, S.: Improving children’s debugging skills. In: Empirical Studies
of Programmers: Second Workshop, pp. 147–171. Ablex Publishing Corp. (1987)

8. Chmiel, R., Loui, M.C.: Debugging: from novice to expert. ACM SIGCSE Bull.
36(1), 17–21 (2004)

9. Clarke, D., Hollingsworth, H.: Elaborating a model of teacher professional growth.
Teach. Teach. Educ. 18(8), 947–967 (2002)

10. Dahiya, A., Kumar, J.: How empathizing with persona helps in design thinking:
an experimental study with novice designers. In: IADIS International Conference
Interfaces and Human Computer Interaction (2018)

11. Darling-Hammond, L., Hyler, M., Gardner, M.: Effective Teacher Professional
Development. Learning Policy Institute, Palo Alto, CA (2017)

12. Eisenhardt, K.M.: Building theories from case study research. Acad. Manage. Rev.
14(4), 532–550 (1989)

13. Farmer, J., Gerretson, H., Lassak, M.: What teachers take from professional devel-
opment: cases and implications. J. Math. Teacher Educ. 6(4), 331–360 (2003)

14. Goode, J., Margolis, J., Chapman, G.: Curriculum is not enough: the educational
theory and research foundation of the exploring computer science professional
development model. In: Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, pp. 493–498 (2014)

A Case Study on the Effects of Professional Development for Debugging 89

15. ISO, I.: IEEE, systems and software engineering-vocabulary. IEEE Computer Soci-
ety, Piscataway, NJ 8, 9 (2010)

16. Kapur, M.: Productive failure. Cogn. Instr. 26(3), 379–424 (2008)
17. Katz, I., Anderson, J.: Debugging: an analysis of bug-location strategies. Hum.

Comput. Interact. 3(4), 351–399 (1987)
18. Knobelsdorf, M., Schulte, C.: Computer biographies-a biographical research per-

spective on computer usage and attitudes toward informatics. In: Proceedings of
the Koli Calling 2005, pp. 139–142. ACM, NY (2005)

19. Kunter, M., Kleickmann, T., Klusmann, U., Richter, D.: The development of teach-
ers’ professional competence. In: Kunter, M., Baumert, J., Blum, W., Klusmann,
U., Krauss, S., Neubrand, M. (eds) Cognitive Activation in the Mathematics Class-
room and Professional Competence of Teachers. Mathematics Teacher Education,
vol. 8, pp. 63–77. Springer, Boston (2013). https://doi.org/10.1007/978-1-4614-
5149-5 4

20. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice
programmers. ACM SIGCSE Bull. 37(3), 14–18 (2005)

21. Li, C., Chan, E., Denny, P., Luxton-Reilly, A., Tempero, E.: Towards a framework
for teaching debugging. In: Proceedings of the Twenty-First Australasian Comput-
ing Education Conference, pp. 79–86. ACM, NY (2019)

22. Lipowsky, F., Rzejak, D.: Key features of effective professional development pro-
grammes for teachers. Ricercazione 7(2), 27–51 (2015)

23. Menekse, M.: Computer science teacher professional development in the united
states: a review of studies published between 2004 and 2014. Comput. Sci. Educ.
25(4), 325–350 (2015)

24. Michaeli, T., Romeike, R.: Current status and perspectives of debugging in the
K12 classroom: a qualitative study. In: 2019 IEEE Global Engineering Education
Conference (EDUCON), pp. 1030–1038. IEEE, Dubai (2019)

25. Michaeli, T., Romeike, R.: Improving debugging skills in the classroom: the effects
of teaching a systematic debugging process. In: Proceedings of the 14th Workshop
in Primary and Secondary Computing Education, pp. 1–7. ACM, NY (2019)

26. Perkins, D.N., Hancock, C., Hobbs, R., Martin, F., Simmons, R.: Conditions of
learning in novice programmers. J. Educ. Comput. Res. 2(1), 37–55 (1986)

27. Perscheid, M., Siegmund, B., Taeumel, M., Hirschfeld, R.: Studying the advance-
ment in debugging practice of professional software developers. Softw. Qual. J.
25(1), 83–110 (2016). https://doi.org/10.1007/s11219-015-9294-2

28. Qian, Y., Hambrusch, S., Yadav, A., Gretter, S.: Who needs what: recommenda-
tions for designing effective online professional development for computer science
teachers. J. Res. Technol. Educ. 50(2), 164–181 (2018)

29. Ravitz, J., Stephenson, C., Parker, K., Blazevski, J.: Early lessons from evaluation
of computer science teacher professional development in Google’s CS4HS program.
ACM Trans. Comput. Educ. 17(4), 1–16 (2017)

30. Rich, K.M., Strickland, C., Binkowski, T.A., Franklin, D.: A K-8 debugging learn-
ing trajectory derived from research literature. In: Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, pp. 745–751. ACM, NY
(2019)

31. Shulman, L.: Knowledge and teaching: foundations of the new reform. Harv. Educ.
Rev. 57(1), 1–23 (1987)

32. van Dijk, E.M., Kattmann, U.: A research model for the study of science teachers’
PCK and improving teacher education. Teach. Teach. Educ. 23(6), 885–897 (2007)

33. Yin, R.: Case Study Research: Design and Methods, 3rd edn. Sage, London (2003)

https://doi.org/10.1007/978-1-4614-5149-5_4
https://doi.org/10.1007/978-1-4614-5149-5_4
https://doi.org/10.1007/s11219-015-9294-2

Robotics-Enhanced Natural Science in Primary
Schools

Bence Gaál(B)

Faculty of Informatics, Eötvös Loránd University, Pázmány P. sny 1/C, Budapest 1117, Hungary
gaalbence@inf.elte.hu

Abstract. The challenges of the 21st century and themodern age require people to
have knowledge of the natural sciences and information technology [1, 2]. Ideally,
these two disciplines should be combined in everyday life inside classrooms.
However, this is often not the case, and students often only have access to such
activities outside the classroom (e.g.: in workshops). As part of my research, I
develop good practices that allow us to integrate projects from computer science
(digital culture) classes into the natural science classes.

In my article I would like to present the first experiences of the practical
implementation of my doctoral research, in which I am implementing natural
science lessons with 5th grade children, where robotics is used as an illustrative,
and modelling tool for different topics. This method has provided an opportunity
to link information technology (IT) and natural science in primary schools, and to
allow interoperability between the subjects in the framework of different projects.

My class of 22 students and I are using robotics as a visual aid in several
places per topic. The specificity of my model is that students make these teaching
tools themselves during IT lessons. In the process, children also acquire a basic
knowledge of programming. The projects are carried out in groups, which allows
them to develop several soft skills during these IT lessons, this adaptability and
development are also very important skills in this day and age [3]. The natural
science lessons are also carried out in a manner that provides new and exciting
exemplification for all students, which is designed to increase and maintain moti-
vation. In this article I would like to describe the themes of the lessons and the
tools used. I will then describe children’s results and their views on this way of
learning, analysed through questionnaires and interviews.

Keywords: STEM · Robotics · Natural science

1 Introduction

Today, STEM subjects have a high priority in the labour market and unemployment
rates in this field are below the EU average [4]. From the curricula that are built around
and focuses on STEM, the good ones are those that provide opportunities for integrated
education [5]. In Hungary, the National Curriculum and the Framework Curriculum
based on it provide this possibility, but do not give teachers sufficient support or help
in the practical application [6]. Therefore, it is important to develop a methodology

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 90–100, 2022.
https://doi.org/10.1007/978-3-031-15851-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_8&domain=pdf
http://orcid.org/0000-0001-8771-7140
https://doi.org/10.1007/978-3-031-15851-3_8

Robotics-Enhanced Natural Science in Primary Schools 91

that would stimulate children’s motivation in these areas and allow for a high level of
integration in natural science and technology, taking European educational trends into
consideration. This would be necessary also because Hungary is below the EU average
in the number of BA and MSc degrees in STEM subjects [7] and because the number of
students entering higher education in STEM fields is decreasing [8].

Therefore, I would like to present a method that integrates robotics to a high degree
in the natural sciences and uses technology as an illustrative tool in everyday lessons,
but not in a ready-made form, rather prepared by the students. In this way, their skills
in STEM, or more recently STEAM, are strengthened, as their creativity [9] and other
soft skills are developed through design and implementation.

2 Presentation of Lessons and Tools Used

The lessons were implemented in normal classroom conditions in the upper, 5th grade
of public education. It was essential that I taught both the natural science and IT subjects
to the students. The group consisted of 22 students (11 girls, 11 boys). Two important
factors were essential for the implementation. The first was the possibility of cross-
curricular transfer. As I am also the class teacher, I had the flexibility to use the group’s
lessons. The other factor is having the right IT tools. At the moment, I think that this
method can be achieved if one teacher teaches the two subjects. Unfortunately, this kind
of cooperation between teachers is not really present in the Hungarian education. In
the structures of the lessons, I will explain in more details why a very high level of
cooperation would be necessary during these lessons.

2.1 The Tools Used

After reviewing the available IT devices on the market, and considering the feasibility,
I decided to use the BBC micro:bit V2 board (Fig. 1). Several studies in the UK have
demonstrated the effectiveness of these tools, highlighting that they can help girls to
become more involved in IT and that a high proportion of girls would choose this career
[10].

The hardware design of the device also influenced the decision, as the new version
of the micro:bit chip has a speaker and a faster processor, and its energy-saving mode
allows for longer use and also demonstrating the importance of sustainability for the
young generation [11]. Finally, the price/performance ratio and the compactness of the
devicewere considered, allowing the devices to bemoved fromone classroom to another.
The tool was programmed in a block environment by the children.

However, given the specificities of natural science, it was necessary to expand the
number of sensors1 installed, since many of the processes that take place in nature are
due to some other effects. For the extension we used the KS0361 (KS0365) keyestudio
37 in 1 Starter Kit for BBC micro:bit (Fig. 2).

1 The basic device has the following sensors: accelerometer, compass, light sensor, thermometer,
microphone.

92 B. Gaál

Fig. 1. The new BBC micro:bit [11]

Fig. 2. Keyestudio 37 in 1 Starter Kit for BBC micro:bit [12]

2.2 Structure of the Lessons

The first step in delivering robotics-enhanced natural science lessons was to change the
structure of the IT (now called digital culture) lessons. During the first semester, this
was easier because the focus was on programming by default.

Children were introduced to microbits in a special way, as in some cases during the
learning process we made tools with them in the digital culture lesson, which act as
visual aids in the natural science lesson, as tools for independent models or experiments.
And the integration of the use of these tools is and has been ongoing as the science
curriculum has progressed throughout the years.

Considering this, every natural science lesson where we have used or will use the
microbit should be preceded by a digital culture lesson where children could create and
program the tools that we would later use in our learning. So, the subjects had to be in
perfect sync with each other. If it had been implemented with more teachers, it would
have required daily communication, full transparency and interoperability between the
two subjects. I believe that this would only be possible in a few exceptional cases in our
country. The situation is further complicated by the implementation of the digital culture
curriculum at a time when the main focus is not on programming but on other subjects.
In such cases, a flipped classroom approach was adopted, with a focus on independent
task solving, and micro:bit emerged as a recurring curriculum for 1–1 lessons. The
advantage of this is that the children’s programming knowledge is kept up to date. The
disadvantage may be that it requires more effort from the teacher’s point of view to hold
possible consultations and manage the class.

Robotics-Enhanced Natural Science in Primary Schools 93

2.3 Presentation of Specific Topics Processed Using Robotics

During the first semester, two questionnaire surveys and one interview session were
carried out. At the time of writing, three additional curricula have been integrated, but
the results are still to be evaluated and the semester grades will provide a basis for
comparison.

In addition to these, there were two smaller installations of micro:bit, but these were
not surveyed separately. In one case, a purring kitten was implemented at the touch of the
touch sensor, while in the other case I demonstrated the principle of the magnetic doors
using a magnetic sensor, illustrated with an LED bulb. These demonstrations were not
assessed separately because they were not created by the students but were presented as
demonstrations used in a traditional way during lessons, as a simple experiment would
be.

Body Structure of Plants - The Germination Process. In this project, we created a
simulation to show students how the germination process takes place in nature. The
existence of the conditions for the initiation of germination was monitored using a
thermometer (P0) and a moisture sensor (P1). If all the external factors were present,
the micro:bit display showed a plant emerged from the seed (Fig. 3).

The exercise is suitable for demonstrating simple condition checking and logical
relations. Development possibility: to show the wilting process, the plant withers if it
does not get enough light.

Fig. 3. The code of the germination project2

Animals Body Structure - the Honeybee. During the project, we needed two
micro:bits that communicated with each other via a radio link. One device acted as
2 https://makecode.microbit.org/_aVJVcWaEKaMM.

https://makecode.microbit.org/_aVJVcWaEKaMM

94 B. Gaál

the flower and the other as the bee. The micro:bit acting as the bee made a buzzing
sound when it moved, while the display showed an animation of a flying bee (Fig. 4).
The other device initially displayed a flower on a tree, which would turn into a crop if
the bee spent enough time near the flower to pollinate it (Fig. 5).

The exercise is suitable for demonstrating the principles of sending different radio
packets, programming switches, and using variable handling.

A further linkwithmathematicswas the introduction of the concept of absolute value,
which was needed to handle the displacement of the micro:bit, since the acceleration
strength alone did not provide a solution due to the effect of gravity.

Fig. 4. The code of the bee3

Fig. 5. The code of the plant4

3 https://makecode.microbit.org/_Yo3YcKi1MMPf.
4 https://makecode.microbit.org/_hFk4HACXqcRr.

https://makecode.microbit.org/_Yo3YcKi1MMPf
https://makecode.microbit.org/_hFk4HACXqcRr

Robotics-Enhanced Natural Science in Primary Schools 95

Materials and Their Properties - Fire Alarm. In the next project with fire protection,
we created a fire alarm with an LCD display that sends a text message to the user while
a siren sounds if the flame sensor detects a fire.

The exercise is a good way to introduce cycles and to demonstrate how to connect
the device to an external display, and to link the concept of the frequency of sound to
physics. It can also be used to introduce the concept of multithreaded programming
(Fig. 6).

Fig. 6. The code of the flame detector

3 Students’ Results Compared to Previous years

My students’ grades are shown in the graph below in comparison to the results of the
previous year group and the current 5th grade students.

It should be noted that during the school year, the grading options from teacher to
teacher and the content of the end-of-term tests may vary, they are not standardised,
but all classes follow the framework curriculum and use a uniform book on which
teachers base their tests. Although the emphasis may differ in some places, but the
topics and the outcome objectives are in any case the same. Accordingly, I have used
the end-of-semester average rather than the total marks for my comparison (Table 1).

Looking at the trend of the semester averages, the best result is obtained by group
5.a, where the experiment is conducted. In terms of score, they scored 0.25 higher than
any group in the last two years during the semester.

96 B. Gaál

Table 1. Semester averages and class sizes of the examined classes

5.a(2021–22) 5.b(2021–22) 5.a(2020–21) 5.b(2020–21)

Averages 4,64 4,20 4,39 4,11

Headcount 22 15 23 27

However, the groups differ greatly in terms of headcount, so it may be interesting to
examine the proportion of the distribution of each grade5 (Fig. 7).

Fig. 7. Proportional distribution of natural science marks by class for the semester

I think the result is still telling, as more than three quarters of the group scored the
highest marks, and no one scored a 2 compared to the other groups.

4 Feedback from Students

4.1 Feedback Through the Interview

I measured the students’ impressions after the first session through an interview. In this
context, I asked them if they had ever done programming before, how did they like this
type of nature class, if they would like more, and what their feelings were and are before
and after the session.

Of the participants, 5 had prior knowledge of programming. The session was not
considered difficult by the majority, although there were 4 people who considered it
moderately difficult. In the session where the tool was demonstrated, apart from one
person who was not present for the demonstration, everyone gave positive feedback on
how they felt about it. Unanimously, everyone wanted more classes like this. In this
regard, 5 of the children said that the integration of robotics made it easier to understand
the natural science material, 5 found the presentation of the processes interesting and

5 In Hungary, this is on a scale of 1 to 5, with 5 being the best available.

Robotics-Enhanced Natural Science in Primary Schools 97

good, and the rest gave the feedback that they simply liked it or found it exciting. From
these results it seems that for everyone this was a positive experience, which could even
have a positive impact on learning and the learning process. When asked how they felt
before the lesson, most of the answers showed excitement and that they could not quite
imagine how it could be done.

I also discussed the collaborative way of working during the interviews. All the
respondents described positively what it was like to work in a self-organising team. One
team had a problem with a team member with a confirmed attention deficit. The team
was very patient with him, and this was reflected in his perspective as he was having a
good time. Half of the respondents highlighted the fact that they could help each other
and rely on each other. This confirms that the positive effects of this way of working
includes building confidence, self-esteem, and a supportive environment [13].

None of the students would change the implementation of making, programming,
and testing together in computer science class, and then using the tools as a demonstration
tool in science class.

4.2 Results of the Two Questionnaire Surveys

In the following, I would like to review the results of the questionnaires completed after
the two sessions. These questionnaires were conducted after the models were made,
used, and presented. The questionnaires were completed digitally. Anonymity was not
expected, as I developed the lessons based on these questionnaires in the meantime,
however, giving their names was not mandatory. The relevant questions asked during
the research were:

1. How interesting does micro:bit make natural science lessons?
2. How much does micro:bit used in science class help you understand the given part

of the curriculum?
3. How good do you think it is that I present certain parts of science with the help of

robots?
4. Are you looking forward to the next time we use robots in a natural science class?
5. How exciting do you find these natural science lessons?
6. How often should micro:bits be used in natural science lessons?

For question 1, there was one case of negative feedback on the first topic. In both
cases, more than three quarters of the students said that the tool made the lessons inter-
esting. The student who gives negative feedback is the finest student in the class. The
background of the negative feedback was the new kind of tasks. In the process, it was
often necessary to invent the solutions with their own ideas, and it was not possible to
prepare for them at home, so the source of the problem was the fear of uncertainty in his
case. In my opinion, one of the greatest problems of the Hungarian education system
is that it gives little room for creative thinking and it puts more emphasis on lexical
knowledge (Fig. 8).

For question 2, the numbers aremore evenly distributed. Negative feedbackwas also
received from one student, who in this case is the same respondent as the one who gave
negative feedback earlier. At the end of the questionnaire, he commented that natural

98 B. Gaál

1 3

18

5

17

Do not like it Rather do not
like it

Could not decide Rather like it Really like it

Pollina ng Fire alarm

Fig. 8. Question 1: How interesting does micro:bit make natural science lessons?

science is interesting enough without robots. In my opinion, it will not be possible to talk
about trends for this question in the future, since the difficulties of the processed material
are not always the same, in this case the pollination process is much more complicated
than the operation of a fire alarm (Fig. 9).

1 1

9
11

2

12

8

Not at all Rather not I do not know Pre y much Exceedingly

Pollina ng Fire alarm

Fig. 9. Question 2: Howmuch does micro:bit used in science class help you understand the given
part of the curriculum?

For question 3, everyone gave positive feedback in both cases. The first session was
marked in a 18–4 ratio and the second session was marked in a 20–2 ratio with the very
and the quite options.

In question 4, 1 person indicated that they did not want to do more of the pollination
project, 1 that they did not know and 20 that they would like to do more. For fire alarms,
21 people would like more and 1 did not know.

In response to question 5, 1 person also indicated that theywere less looking forward
to the next opportunity. 4 students were mostly looking forward to the next occasion and
17 were very much looking forward to the next occasion. After the fire alarm project,
4 people are “mostly” looking forward to the next robotics-enhanced natural science
lesson and 18 are very much looking forward to the next one (Fig. 10).

According to the answers to question 6, after the pollination lesson, 17 people said
that we should use the tools as often as possible. This number was 19 after the fire alarm.
The monthly option was selected by 4–2 people and every two to three months option
was selected by 1–1 people.

Robotics-Enhanced Natural Science in Primary Schools 99

1
4

17

4

18

Not at all Rather not I do not know Mostly Absolutely

Pollina ng Fire alarm

Fig. 10. Question 5: How exciting do you find these natural science lessons?

5 Summary

Overall, the questionnaires show that, looking at the average of the responses, we can
see the beginning of an upward trend, with one exception. The aim of the sessions is to
keep children’s motivation for natural science and robotics at a high level.

However, the current domestic trends are in the opposite direction, which is why the
survey could be considered successful even if the overall average of the converted value
of the responses were stagnant. This would show that the interest and desire for further
occupations would not wane, and in my opinion, this could be an influential factor in
the direction of students’ further studies. Of course, the integration of robotics is also
important to improve students’ understanding of the material, but it can also be used to
stimulate their attention and motivation.

However, it is important to note that natural science education should not rely exclu-
sively on robotics. The lack of experimentation in the classical sense is also a problem.
It is necessary to find the proportions and to consider when it is worthwhile to approach
the material from a slightly different angle, rather than the usual experiments and videos.
Therefore, there is no concrete suggestion as to the intervals at which these tools can be
used during the lessons. In addition to the above, the structure of the curriculum may
also influence the possibility of integration.

The feedback from the first part of the research shows that it was a success, and an
encouraging sign that robotics does have a positive impact on students, just as much as
non-conventional teaching and learning methods. These include cross-curricular inter-
operability and modern 21st century ways of working, which natural science lessons are
a perfect synthesis subject, offer great opportunities for.

References

1. Sen, C., Ay, Z.S., Kiray, S.A.: Research Highlights in STEM Education (2018)
2. The 2018 International Computer and Information Literacy Study (ICILS): Main findings

and implications for education policies in Europe
3. Patacsil, F.F., Tablatin, C.L.S.: Exploring the importance of soft and hard skills as perceived

by IT internship students and industry: a gap analysis. J. Technol. Sci. Educ. 7(3), 347–368
(2017)

100 B. Gaál

4. Directorate general for internal policies policy department A: economic and scientific policy
Encouraging STEM studies - Labour Market Situation and Comparison of Practices Targeted
at Young People in Different Member State (2015)

5. Kennedy, T.J., Odell, M.R.: Engaging students in STEM education. Sci. Educ. Int. 25(3),
246–258 (2014)

6. National Curriculum Framework for Natural Science Grade 5–6. https://www.oktatas.hu/
pub_bin/dload/kozoktatas/kerettanterv/Termeszettudomany_5_6.docx

7. Eurostat - Graduates in tertiary education, in science, math., computing, engineering,
manufacturing, construction, by sex - per 1000 of population aged 20–29. - 2012–2019

8. Gaál, B.: Possible ways of integrating robotics in natural science education. In: Szlávi, P.,
Zsakó, L. (eds.) InfoDidact2019. Webdidaktika Alapítvány, pp. 59–72. Zamárdi, Hungary
(2019)

9. Aguilera, D., Ortiz-Revilla, J.: STEM vs. STEAM education and student creativity: a
systematic literature review. Educ. Sci. 11, 331 (2021). https://doi.org/10.3390/educsci11
07033

10. Academic research into the BBC micro:bit - micro:bit. https://microbit.org/research/
11. Meet the new BBC Micro:bit v2. https://microbit.org/new-microbit/
12. Keyestudio 37 in 1 Starter Kit for BBC micro:bit. https://wiki.keyestudio.com/KS0361(KS0

365)_keyestudio_37_in_1_Starter_Kit_for_BBC_micro:bit
13. Laal, M., Ghodsi, S.M.: Benefits of collaborative learning. Procedia Soc. Behav. Sci. 31,

486–490 (2012)

https://www.oktatas.hu/pub_bin/dload/kozoktatas/kerettanterv/Termeszettudomany_5_6.docx
https://doi.org/10.3390/educsci1107033
https://microbit.org/research/
https://microbit.org/new-microbit/
https://wiki.keyestudio.com/KS0361(KS0365)_keyestudio_37_in_1_Starter_Kit_for_BBC_micro:bit

Best Practice, Country, and Experience
Reports

Clear the Ring for Computer Science:
A Creative Introduction for Primary

Schools

Marina Rottenhofer(B) , Lisa Kuka , and Barbara Sabitzer

Johannes Kepler University, 4040 Linz, Austria
{marina.rottenhofer,lisa.kuka,barbara.sabitzer}@jku.at

https://www.jku.at

Abstract. Nowadays, there is a high demand for qualified computer
scientists and thus, it is important to start increasing computer literacy
already at an early age. Although computer science and digital literacy
are already becoming dominant topics and are increasingly anchored
in the curricula, there is still a mismatch between what students and
teachers understand the subjects to be and what they really are. In
computer science, in particular, it is often believed that a computer is
indispensable for teaching. The authors of this study want to change
this picture by conveying basic computer science concepts, which play an
essential role in many everyday situations. Thus, it is important to teach
them from an early age. The challenge here is to find ways to present
these fundamental ideas of computer science creatively so that young
children, as well as laypersons, understand them. This paper introduces
the COOL Computer Science Circus, which links selected core concepts
with a circus show including interactive parts on side of a young audience.
Alternatively, the show can be transformed into a workshop. The target
group consists not only of primary school students aged 9–10, but also
of primary school teachers. The authors describe their experiences and
present first results of an ongoing survey which collects feedback to the
COOL CS Circus as well as information about the teachers’ interest
and perception of computer science and digital education. Moreover, the
paper gives an inspiration on how to present topics such as encryption,
encoding, and algorithms without the need for a computer.

Keywords: Computer science · Creative computer science · Digital
education · Primary education

1 Introduction

As computer scientists are needed in the workforce, it is essential to teach core
concepts from an early age. However, these concepts can also be very handy
in everyday situations. In everyday life, these concepts are often hidden or dis-
guised, but at a closer look, it can be observed that so-called computational

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 103–112, 2022.
https://doi.org/10.1007/978-3-031-15851-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_9&domain=pdf
http://orcid.org/0000-0001-5772-0672
http://orcid.org/0000-0002-0000-5915
http://orcid.org/0000-0002-1304-6863
https://doi.org/10.1007/978-3-031-15851-3_9

104 M. Rottenhofer et al.

thinking (CT) skills are embedded in many areas. CT can be seen as a problem-
solving thought process and thus the basis for computer science. Thus, it can be
observed that digital skills, computational thinking, as well as computer science
concepts find their way into school curricula worldwide and are taught at an
early age. Having the opportunity to welcome a large group of primary school
children at the COOL Lab of the Johannes Kepler University Linz each week for
a half year, the authors had to come up with a creative idea to foster their inter-
est in computer science. As the provided space for these events was the event
hall “Circus of Knowledge” on campus, it inspired the idea to create a circus
show. Thus, the challenge was not only to find a narrative form for computer
science concepts that are suited for a young audience but also to provide inter-
active opportunities for a large group. This paper describes a way to present a
narrative frame for the selected computer science concepts of encryption, encod-
ing, binary numbers, and algorithms as well as to offer a form of interactivity
for a young age group. Furthermore, the circus show was used to gain insights
into the status of computer science in primary school resulting in the following
research questions:

– How do primary school teachers and students perceive the presented circus
show or Workshops?

– Are primary school teachers familiar with the presented computer science
concepts?

– Do primary school teachers need further training to teach these concepts?

This is done via a questionnaire handed out to the teachers accompanying
their students. In the following sections, a brief discussion of the development
of the show is presented as well as a discussion on the preliminary results of the
survey, as it is still going on.

2 Background

Since the focus is on developing a creative approach to introduce basic concepts
of computer science to a young target group, this chapter illuminates the role
of early computer science education in Austria, computer science core concepts,
and their link to creative approaches in STEAM. Moreover, the COOL Lab as
a meeting point for teaching and learning about computational thinking and
computer science creatively is further explained.

2.1 Early Computer Science Education

In primary school, digital competencies are anchored in the curriculum. The
focus is on media education and reflective use of the Internet, as well as a play-
ful approach to technology and problem-solving [5]. Jeannette Wing argued that
“computational thinking is a fundamental skill for everyone, not just for com-
puter scientists. To reading, writing, and arithmetic, we should add computa-
tional thinking to every child’s analytical ability” [12]. Thus, it can be said

Clear the Ring for Computer Science 105

that it is necessary to teach computational thinking concepts from an early age
on. Computational thinking and computer science education go hand in hand,
since “Computational Thinking involves solving problems, designing systems,
and understanding human behavior by drawing on the concepts fundamental to
computer science” [12]. Also, studies confirm that computer science concepts can
be taught successfully at an early age when the learning material and teaching
are created age-appropriately [11].

2.2 Link Between Computer Science Core Concepts and Creative
Approaches in the Field of STEAM

For the planning of the circus show, the authors analyzed several computer sci-
ence core concepts and aimed to find links between these concepts and narrative
situations as well as interactive tasks for a young audience. Four core ideas are
encryption, encoding, algorithms, as well as binary numbers. Computers work
with electrical signals, represented as 0 for power off and 1 for power on. This
binary system is the very basis of a computer system. Encryption is a key-
dependent conversion of data called “plaintext” into “ciphertext”. The plaintext
can be recovered from the ciphertext only by using a secret key. Encoding, on
the other hand, is the process of translating particular data, for example, let-
ters, numbers, punctuation marks, or symbols, into a special format so that it
can be transmitted or stored more efficiently. Often a codebook is used for the
encoding-decoding process. Whereas the focus of encryption lies in a secret and
secure transmission of data, the main purpose of encoding is the protection of
the integrity of data and maintaining its usability. The binary system is often
seen as a code, for example. These concepts are often part of computer science
curricula. An algorithm is often described as a step-by-step guide or recipe.
Usually, its definition is based on five properties - executability, determinism,
determinacy, finiteness, and termination. Each step must be executable. There
is not only a finite number of steps but also always only one next step which
is always uniquely determined. The algorithm itself must also end and produce
a result that is always the same for the same input. Defining an algorithm in
as many precise steps as necessary, but as few as possible is an important skill
[9]. Algorithmic thinking is often described as a part of computational thinking
and, thus, the basis for computer science curricula as well. When learning about
these concepts at an early age, the focus does not lie on knowing the technical
jargon, but rather on putting the knowledge into practice and fostering skills.

Studies have shown that science shows can increase the interest of the audi-
ence on scientific topics as well as educate them on the topics that e.g. include
computer science [1]. The use of magic tricks is also an engaging approach to
foster curiosity in mathematics and computer science alike [7]. Creative com-
puter science activities can motivate young students and hopefully lead to the
idea that they can become digital creators themselves, rather than to stick to
passive consumer behavior [8].

Computer Science Unplugged (CS Unplugged) is an approach to conveying
basic computer science concepts to students without the use of a computer, for

106 M. Rottenhofer et al.

example, by enacting algorithms by students themselves or using games and
magic tricks. The activities created include detailed descriptions and use com-
putational logic in an unplugged environment. It was first introduced by the
University of Canterbury in New Zealand and has recently been adopted inter-
nationally by finding its way into school curricula worldwide. [2,3,13].

What previous approaches have in common is their interactivity. Construc-
tivism is a well-known learning theory that proclaims that learning is not done
via receiving and storing information from teachers, but rather that knowledge
is constructed by students themselves. Thus, learning is an active process, rather
than a passive one [4]. This also shows the main problem of the idea of pack-
ing computer concepts into a play. The solution lies in interactivity. Taking
ideas from science shows, magic tricks, and hands-on material should motivate
a rather passive theater audience to interact with the actors transforming them
into active members of the cast of the play. For example, one of the Computer
Science Unplugged activities transforms a parity-based error-correcting algo-
rithm into a magic trick allowing the magician to identify a change in a card
set that could not possibly be seen by them [6]. As magicians are often part of
circus shows as well, this trick can be easily incorporated into a narrative for the
circus.

2.3 JKU COOL Lab

In 2017, the JKU COOL Lab was developed at the STEM education depart-
ment of the Johannes Kepler University Linz as a meeting point for not only
teaching and learning but also research and practice. It is designed to foster
digital literacy and computational thinking through creative approaches. On the
one hand, it is open for students of all ages starting at kindergarten level offer-
ing workshops and clubs for (gifted) children, on the other hand, it provides
practice opportunities for pre-service teachers as well as in-service training for
experienced teachers. Interdisciplinarity is another aspect that is held high in
the COOL Lab by developing, testing, and evaluating cross-curricula materials.
Thus, using the COOL Lab resources and experience enhanced the process of
creating the COOL Computer Science Circus. The predominant computer sci-
ence expertise paired with pedagogical and didactic know-how was key to the
successful implementation of the circus [10].

3 The COOL Computer Science Circus

The COOL computer science (CS) circus is a project developed by the COOL
Lab of the Johannes Kepler University Linz, Austria. The COOL Lab is a teach-
ing and learning lab for students of all ages as well as (prospective) teachers
and focuses on computer science, computational thinking as well as digital edu-
cation in general. The circus was developed for primary school children as well
as teachers and aims to convey core concepts of computer science in a creative
way and to arouse the interest of the participants. The premiere of the COOL

Clear the Ring for Computer Science 107

CS Circus took place at the beginning of March 2022 at the “Circus of Knowl-
edge”, the event hall of the Johannes Kepler University, and is currently being
performed three times a week as part of the “Linz Aktion” (Linz campaign).
This campaign offers 4th-grade primary school children the opportunity to get
to know the diversity of Linz from different perspectives and shows them the
most important sights and hotspots of the city in a trip of one or two days. The
campaign takes place annually from February to the end of June, however, this
year the start was postponed to March due to COVID-19 restrictions. Depend-
ing on the location at the JKU, the COOL CS circus is offered in two different
variations, as circus show or workshop. The following subsections present the
main demonstrations that are included in the 1-hour circus show and workshop
and describe the core concepts that are conveyed to the students.

Fig. 1. Magic card trick

3.1 Let’s Talk Binary

The circus show as well as the workshop start with the circus director who
welcomes the children by saying “hello” in binary language, not knowing that
they do not understand him. Fortunately, the magician Merlina and the bear are
there in time to stop the circus director calling out ones and zeros and explain
to the children why he is talking so funny. In easy words, the bear talks about
the role of binary language in computer science.

3.2 Toast, Chocolate Cream and Magic Tricks

In the next part of CS Circus, the magician Merlina gives the participants an
insight into detecting errors and algorithmic thinking by showing them some

108 M. Rottenhofer et al.

magic tricks. In the show, Merlina asks for a volunteer to come on stage and
support him while he performs a card trick. With this magic trick, Merlina can
tell exactly which card the volunteer child turned over, even though she turned
around and saw nothing. This demonstrates one of the techniques computers are
using to detect data errors automatically (Fig. 1). In the CS Circus workshop,
on the other hand, not only the card trick is presented, but also the chocolate
cream challenge to teach children the concept of algorithms. In this challenge, the
participants have the task to instruct Merlina to prepare a toast with chocolate
cream on it. The task sounds easy at the beginning, however, the children soon
recognize that many things can go wrong when making a simple sandwich if the
instructions aren’t clearly formulated.

3.3 Save the Bear

Since the bear blew up Merlina’s magic trick by explaining the logic behind it,
Merlina cast a spell on the bear out of anger. Now the task of the children is to
free the bear by cracking the code of the lock and to give the clown clear direc-
tions to get to the bear. The children manage to do this by solving a computer
science quiz and decoding the correct answers with the Caesar cipher. With this
approach, participants are introduced to the concept of encryption and apply
again algorithmic thinking by giving the clown clear instructions. In the work-
shop, the participants also work with the Caesar cipher to solve various tasks
(Fig. 2).

Fig. 2. Save the bear

Clear the Ring for Computer Science 109

3.4 Tame the Bees and Dance

The children perfectly manage to save the bear and all members of the circus
are very relieved that the story has a happy ending thanks to the children. To
celebrate, the circus members demonstrate “dance programming” to the children
and teachers. With the help of various symbols, a dance is rehearsed, and they
then all dance together. During the workshop, the ringmaster acts as a bee tamer
and asks the children to solve various tasks with the Bee-Bots, which are small
robots that help to train estimation, problem-solving, and sequencing (Fig. 3).

Fig. 3. Dance programming

4 Methods and Results

To receive feedback on the COOL CS circus and to gain insights into primary
school teachers’ experiences and attitudes towards computer science and digital
education, a questionnaire was developed and is currently being distributed to
all the teachers who participate in the show or workshop as part of the “Aktion
Linz”. The questions of the survey used a five-point Likert scale including (1) not
true, (2) rather not true, (3) partly true, (4) rather true, and (5) true. The survey
also included open-ended questions, to receive suggestions for improvement of the
COOL circus as well as to find out more about the role of computer science and
digital education in school. Demographic variables included gender and years of
service and the survey was completed anonymously including a unique identifier.
The questionnaire was issued in German and translated for this paper. For the
statistical analysis, the software IBM SPSS Statistics 23 was used.

This paper presents the preliminary answers to the survey related to the
COOL circus starting from the first performance at the beginning of March
until mid-May 2022. Until that time, the questionnaire was administered to a

110 M. Rottenhofer et al.

total of 109 teachers who visited the circus with a total of 1030 children. The
27.5% of the teachers who responded to the questionnaire consisted of 1 male
and 29 females with an average of 14.8 years of service and a standard derivation
of 10.36. Of those teachers, 9 attended the circus performed as a show at the
JKU’s event hall “Circus of Knowledge” with their classes and 21 the workshop.

Table 1. Descriptive statistics.

Item N Mean Std. derivation

I liked the offer “Clear the Ring for IT” 30 4.47 .819

I have the feeling that the offer was well received
by my students

28 4.64 .559

The contents of the offer were understandable for
the students

29 4.38 .862

I already knew the IT concepts and content of
the offer (e.g. algorithm, coding, encryption...)

28 3.14 1.177

The content has already been covered in class 29 1.62 .942

I can imagine implementing this content
WITHOUT training in my own classes

28 2.21 1.134

I can imagine implementing this content
WITH training in my own courses

29 3.52 1.184

I think it makes sense to convey computer
science concepts creatively, e.g. with movement
and dance

29 3.93 .998

The image of computer science has changed for
me after the show/workshop

27 3.30 1.171

The responses to the nine Likert items related to the COOL CS Circus are
visible in Table 1. Overall, the offer was well received by the teachers with a
mean score of 4.47 and a standard derivation of 0.819. Furthermore, 28 teachers
indicated that they have the feeling that the offer was also well received by their
students (mean= 4.64, SD= .559) and that the content was understandable for
them (mean = 4.38, SD= .862). The following items referred to the teachers’
prior knowledge and the implementation of CS in class. When asking whether
the teachers already knew the IT concepts and the content of the offer (e.g.
algorithm, coding, encryption...), 13.3% said “not true”, 6.7% “rather not true”,
36.7% “partly true”, 26.7% “rather true” and 10% “true”. Even though this
indicates that more than 70% is at least partly familiar with the concepts, the
content is hardly implemented in class (56% “not true”, 26,7% “rather not true”,
10% “partly true”, 3.3% “true”). The responses to the questions “I can imagine
implementing this content WITH/WITHOUT training in my own classes” are
shown in Fig. 4. Without training, none of the teachers can fully imagine imple-
menting IT concepts without training in class, 11 of them indicated that they

Clear the Ring for Computer Science 111

would not implement them at all without support. Comparing these answers
with “I can imagine implementing this content WITH training in my class” it is
visible that many teachers are open to incorporating computer science concepts
into their own lessons (7 indicating “true”, 9 “rather true”, 6 “partly true”, 6
“rather not true” and 1 “not true”).

Fig. 4. I can imagine implementing this content with/without training in my own class.

The Likert items were followed by one open-ended question to receive feed-
back for improvement of the COOL CS Circus. The response rate was 36,7%
including plenty of praise for this offer but also constructive criticism. Two of
them were related to the space, noise level, and the obligation to wear masks. For
the workshop, we are allocated different rooms on campus, which are sometimes
not ideal for implementation and thus lead to increased noise levels. Also, due
to COVID-19 regulations, wearing an FFP2 mask was still mandatory, so, it was
sometimes difficult to understand the actors. In terms of content one teacher had
wanted a preparation unit for her own lessons before the performance and simi-
larly, another teacher noted that the term computer science should be brought
closer to the children beforehand. One teacher suggested incorporating addi-
tional material from other institutions and another teacher would wish that this
program could also be offered directly in schools.

5 Conclusion

The COOL CS Circus has demonstrated that it is possible to convey computer
science concepts in narrative form with an interactive circus show as well as in
the form of a workshop. Preliminary results of a survey dedicated to primary
school teachers indicate that computer science concepts are not yet very well
represented in primary school, but that teachers are open to this topic. Many
participants in the survey can even imagine incorporating the content into their
lessons themselves, others would like more external offers and materials on this
topic as well as support. Furthermore, teachers have a positive attitude towards
the use of creative elements to teach computer science.

112 M. Rottenhofer et al.

References

1. Bell, T.: A low-cost high-impact computer science show for family audiences. In:
Proceedings 23rd Australasian Computer Science Conference. ACSC 2000 (Cat.
No. PR00518), pp. 10–16. IEEE (2000)

2. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science without com-
puters: new outreach methods from old tricks. In: Proceedings of the 21st Annual
Conference of the National Advisory Committee on Computing Qualifications, pp.
127–133 (2008)

3. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science unplugged:
school students doing real computing without computers. N. Z. J. Appl. Comput.
Inf. Technol. 13(1), 20–29 (2009)

4. Ben-Ari, M.: Constructivism in computer science education. Sigcse Bull. 30(1),
257–261 (1998). https://doi.org/10.1145/274790.274308

5. BMBWF: Digitale Grundbildung - Digitale Grundbildung in der Pri-
marstufe - Bundesministerium für Bildungswissenschaft und Forschung (2022).
www.bmbwf.gv.at/Themen/schule/zrp/dibi/dgb.html#:∼:text=DigitaleGrundbild
unginderPrimarstufe,ZugangzuTechnikundProbleml{\”o}sung

6. Computer Science Unplugged: Parity magic. https://www.csunplugged.org/en/
topics/error-detection-and-correction/unit-plan/parity-magic/

7. Curzon, P., McOwan, P.W.: Engaging with computer science through magic shows.
In: Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, pp. 179–183 (2008)

8. Giannakos, M.N., Jaccheri, L., Proto, R.: Teaching computer science to young
children through creativity: lessons learned from the case of norway. In: CSERC,
pp. 103–111 (2013)

9. Hare, K.: Computer Science Principles: The Foundational Concepts of Computer
Science, 4th edn. Yellow Dart Publishing, Atlanta (2022)

10. Sabitzer, B., Demarle-Meusel, H., Painer, C.: A Cool Lab for Teacher Education.
Teacher Education for the 21st Century, p. 319 (2019)

11. Schwill, A.: Ab wann kann man mit Kindern Informatik machen? Eine Studie
über informatische Fähigkeiten von Kindern. In: Keil-Slawik, R., Magenheim, J.
(eds.) Informatikunterricht und Medienbildung, INFOS 2001, 9. GI-Fachtagung
Informatik und Schule, pp. 13–30. Gesellschaft für Informatik e. V., Bonn (2001)

12. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006).
https://doi.org/10.1145/1118178.1118215

13. Wohl, B., Porter, B., Clinch, S.: Teaching computer science to 5–7 year-olds: an
initial study with scratch, cubelets and unplugged computing. In: Proceedings of
the Workshop in Primary and Secondary Computing Education, pp. 55–60 (2015)

https://doi.org/10.1145/274790.274308
www.bmbwf.gv.at/Themen/schule/zrp/dibi/dgb.html#:~:text=DigitaleGrundbildunginderPrimarstufe,ZugangzuTechnikundProbleml{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor }sung
www.bmbwf.gv.at/Themen/schule/zrp/dibi/dgb.html#:~:text=DigitaleGrundbildunginderPrimarstufe,ZugangzuTechnikundProbleml{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 o\egroup \spacefactor \accent@spacefactor }sung
https://www.csunplugged.org/en/topics/error-detection-and-correction/unit-plan/parity-magic/
https://www.csunplugged.org/en/topics/error-detection-and-correction/unit-plan/parity-magic/
https://doi.org/10.1145/1118178.1118215

Bebras Tasks Based on Assembling
Programming Code

Jiří Vaníček(B) , Václav Šimandl , and Václav Dobiáš

University of South Bohemia, České Budějovice, Czech Republic
{vanicek,simandl,dobias}@pf.jcu.cz

Abstract. The paper examines the creation and evaluation of so-called situational
informatics tasks based on assembling a program fromblocks. Blockly technology
has enabled us to develop an environment where templates, called “worlds“, can
be created. In these worlds, pupils program a certain sprite to solve a problem
emerging in a described situation. We created two such templates – the world
of Karel the robot and the world of Film animation, differing both in behavior
of sprites and set of commands. Each template was supplied with its own set of
tasks, differing in topic, subject matter and graphics. As they go through each task,
pupils repeatedly run the assembled program, being provided by the system with
feedback. That comprises a visual check of how the programmed sprite behaves as
well as system-generated notifications reporting whether all the requirements for
completing a task have been met. The tasks that were compiled for this purpose
were included in the Bebras Challenge. In our paper, we describe each of the
templates and look at their didactic background as well as examining findings
from the practical use of these tasks in the Challenge and their inclusion in the
informatics curriculum. Results show that tasks created for the world of Karel the
robot used in the Bebras Challenge are no more difficult than other algorithmic
tasks. Moreover, informatics teachers are impressed with these tasks and they find
it of upmost importance that the curriculum includes such tasks in order to advance
pupils’ informatics skills.

Keywords: Computational thinking · Algorithmization · Block programming ·
Primary school · Secondary school · Bebras Challenge

1 Introduction

Programming is generally perceived as a matter of specialized professional training.
However, Gander claims it is an essential part of general public education for the 21st
century [1]. Not only providing us with the opportunity to discover the world from
another perspective and understand how a computer works, programming can also be
perceived as a microworld that can develop an individual’s mental abilities. The direc-
tion of teaching and subsequent choice of appropriate educational content, environment,
motivation and teaching methods all derive from its basic definition. From the perspec-
tive described above, programming is presented in our article as a training ground for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 113–124, 2022.
https://doi.org/10.1007/978-3-031-15851-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_10&domain=pdf
http://orcid.org/0000-0002-2092-6260
http://orcid.org/0000-0002-0652-2446
http://orcid.org/0000-0002-0193-5639
https://doi.org/10.1007/978-3-031-15851-3_10

114 J. Vaníček et al.

developing an individual’s abilities and competences. The same approach is found in
strategic documents like the “Shut down or restart?” study in the United Kingdom [2],
the worldwide ACM computing curriculum [3], CSTAK-12 computer science standards
in the United States [4], our close neighbors’ Štátny vzdelávací program in Slovakia [5]
and Podstawa programowa z informatyki in Poland [6].

If we consider education’s general aim as being to primarily develop personality,
in the field of informatics it is the development of computational thinking [7] as the
ability to find a solution to a problem in a form which could be automatically carried
out by an information-processing agent. Algorithmization, i.e. identifying a method or
process to achieve a goal and formulating it in a way so that such an agent could read
and perform it, is a fundamental part of computational thinking. This term became the
mainstay for defining school curriculum content in the above-mentioned countries as
well as the Czech Republic in its government Strategy of Digital Education [8] and in
its proposal for new General Curriculum programs [9].

According to Cuny, Snyder and Wing, the idea of computational thinking for every-
one involves abilities such as understanding what aspects of a problem are amenable to
computation, evaluating the match between computational tools and techniques and a
problem, using or adapting a computational tool for a new use and identifying opportu-
nities to use computation in a new way [10]. In order to be able to develop these abilities
through programming, we must try to find suitable approaches, situations, tasks and also
environments which will highlight and emphasize these goals. Wittmann defines such
an environment as a set of interconnected situations providing problems which enable a
pupil to identify important thoughts [11].

Xia defines teaching of programming as supporting students to understand the con-
cepts of programming via hands-on experiences and learning as the activity of obtaining
useful programmingknowledge and skills by studying [12].Manyapproaches to teaching
programming favor student activity, active learning, learning by doing, and the construc-
tion of knowledge as a result of active creative work. All this with respect to the fact that
knowledge andknowing are not transmittable.According toPiaget, knowledge is actively
constructed by the learner in interaction with the world, so, as Ackermann [13] suggests,
it is worth providing opportunities for children to engage in hands-on explorations that
fuel the constructive process. Ackermann quoted Piaget’s theory that “children interpret
what they hear in the light of their own knowledge and experience”, and his belief that
“knowledge is formed and transformed within specific contexts, shaped and expressed
through different media” [14]. How one constructs knowledge is a function of the prior
experiences, mental structures, and beliefs that one uses to interpret objects and events
[15].

Two basic types of programming tasks can be found in coursebooks and manuals
for the teaching of programming:

• “Études” lasting several minutes, always focused on a specific skill or programming
concept, their aim being particular knowledge acquisition;

• Bigger “projects”, often in the form of creating stories or games which are more
complex, the outcome being a product.

Bebras Tasks Based on Assembling Programming Code 115

Études allow better detection of a learner’s error and appropriate sorting of such tasks
facilitates the creation of mental models of a learner. Projects require a combination
of more skills at the same time, including planning and creativity; the created longer
programming codes require more knowledge from a learner but this is counterbalanced
by higher motivation, as a learner works towards a final product. For example, études
were used in the textbook [16], projects were used in the textbook [17].

If a learner solves problems by creating software, specifically by assembling a pro-
gram, a teacher can get feedback by analyzing the written program to determine how
a learner has understood the situation which the problem he/she is solving occurs in;
how well he/she understands the concepts he/she uses; what level he/she has reached in
terms of elements of computational thinking like algorithmization, decomposition and
generalization; or the approaches he/she uses to solve problems [18].

The Bebras Challenge has contributed to the development of computational thinking
for a number of years [19], being held in more than 60 countries worldwide [20]. Via
an online test, the tasks put learners in a situation where they have to determine the
corresponding informatics concept and select an answer by applying their computational
thinking. The situational tasks used in the Bebras Challenge – in the Czech version called
Bobřík informatiky [21] – are similar to études in their structure and focus on a particular
informatics concept. The contest consists of an online test so there are multiple-choice,
click on object or drag object tasks. Bebras produces a number of new informatics tasks,
contributing to innovations in the school curriculum, someof the tasks being incorporated
into new Czech informatics coursebooks [22].

1.1 Motivation and Aim

Situational “Bebras” tasks should develop various aspects of computational thinking
including algorithmization. Typical algorithmic tasks used in the contest include identi-
fying start and end state after applying a particular algorithm, comparing several algo-
rithms with a task assignment, considering rules for carrying out a computation, identi-
fying an error in an algorithm or its optimalization. The contest did not include tasks to
be answered by assembling a program, which restricted the variety of informatics tasks
in the contest.

We tried to find a solution that would enhance the existing contest to include tasks
where, just like in the programming environments used in schools, contestants could
assemble a program from blocks. This would involve using the widespread concept of
block programming, known from programming environments like Scratch, Blockly or
MakeCode, which learners are familiar with from informatics or robotics coursebooks.
Such a solution will bring innovation into the Bebras Challenge which will benefit from
this newly developed type of tasks.

2 Methods

Solutionmethodology proceeds from design-based research as per Trna [23]. To develop
the software module, we first analyzed familiar open source block programming envi-
ronments (e.g. Scratch, Blockly, MakeCode) to determine whether they could be used

116 J. Vaníček et al.

to create the software module, primarily in terms of pedagogy and implementation. We
then analyzed familiar “worlds” which the programming tasks would be created in (e.g.
Karel the Robot, turtle graphics, Baltie the magician) in terms of:

• their ability to cover the curriculum range (minimum of pre-entry knowledge,
maximum of educational aims),

• their suitability for the creation of a set of tasks that progress in small steps with
regards to acquired knowledge

• their suitability for the creation of particular “contest” tasks, considering the specific
nature of each one.

2.1 Design

We designed and developed a software environment where interactive situational pro-
gramming tasks can be created. A learner solves a problem in it by assembling a program
from blocks and is given the possibility of testing and debugging his/her program. We
implemented a modified module of Blockly [24] into our environment.

The advantage of block programming is that it prevents syntax errors. In our imple-
mentation, it also has a limited set of programming commands, which encourages learn-
ers to think rather than searching for a tool that could conveniently solve the problem
for them.

As they go through each task, pupils repeatedly run the assembled program, being
provided with feedback by the system. That comprises a visual check of how the pro-
grammed sprite behaves as well as system-generated notifications as to whether all the
requirements for completing a task have been met. The environment enables the creation
of sets of tasks that follow on as the learner progresses, similar to Hour of Code activities
[25], resulting in tasks of increasing difficulty with the progressive employment of more
complex concepts and situations.

Each time a learner asks for a program to be run by clicking on Run button, the
system simultaneously saves the learner’s program along with information as to whether
his/her solution hasmet all assigned requirements and the number of attempts the learner
required to create the right program.

To accompany this software environment, we developed two templates of program-
ming tasks, so-called “worlds”, each having program-controlled sprites that behave dif-
ferently and each having different sets of basic commands. Each template was supplied
with its own set of tasks, differing in topic, subject matter and graphics.

1st World: Controlling the Robot.
Thefirst template simulated “theworld ofKarel the robot” [26], a sprite thatwalks around
a system of squares picking up and putting down objects. The basic set of commands
can move the programmed sprite around the game board one square at a time, make a
quarter turn in both directions, detect objects on the square where the sprite is located
and remove such an object from a square or place an object on a free square. It can
also detect an obstacle on an adjacent square in the direction the sprite is facing. The
basic language commands were supplemented with a Repeat structure, constituting a
loop with a fixed number of repeats (see Fig. 1).

Bebras Tasks Based on Assembling Programming Code 117

Fig. 1. The world of Karel the robot and the task in which learners are assigned to collect gears.
The program created by a learner to complete the task is in the middle.

We chose “the world of Karel the robot” as it is simple enough for a learner to under-
stand and manage the basics of the language so that he/she can quickly move on to more
complicated tasks. The advantages of this “world” include the possibility to create real
situations, the visual clarity of the sprite’s status, facing one of the four main directions
so not requiring a turning angle parameter as well as the limited number of basic lan-
guage commands (step forward, turn, pick, put). Another advantage is the absence of
more complicated terms like object, coordinates, procedure or variable. This reduces the
amount of time needed to get acquainted with the environment, meaning that learners
can soon progress onto and concentrate more intensively on the algorithmic core of the
solved problems.

Typical tasks in this world were to go to a particular place, avoid an obstacle, pick up
equally distributed objects or find a way composed of multiple parts. In this world, we
have created a set of programming tasks which gradually increase in difficulty. The loop
programming concept was used to repeat one block, assemble a program with blocks
preceding and/or following a loop; with several blocks in the loop body; with several
loops following each other in a program and find a way to complete a task using the
shortest possible programming code. From the 4th task on, the number of blocks that
could be used in a program was limited, forcing learners to shorten code and use the
loop.

2nd World: Animation
The other developed template was the so-called “World of Film”, in which a sprite is
programmed to change its position and size over time. The sprite has four parameters:
position X, position Y, size and rotation (as opposed to one basic direction). The pro-
gramming language has one basic command Sprite, which draws a sprite on the game

118 J. Vaníček et al.

board in the place given by the parameters of X, Y positions, its size given by a param-
eter and rotated by a given number of degrees. This command was supplemented with a
block for creating mathematical expressions with basic arithmetic operations and the If
structure controlling the time condition (e.g. whether time has exceeded a certain value).

Fig. 2. The World of Film. Learners are assigned to animate an apple falling from a tree (the
situation in the picture having a time value of 70). The correct solution to the task can be seen in
the middle, the time variable having been used in the expression.

Animation is carried out in such a way that when the program is run, the time variable
continuously changes its value from 0 to 100 and the Sprite command is performed for
each of these values. The time variable can be used as a parameter in a command. If the
value of the X position parameter is set equal to the time variable, the X position will
continuously change from 0 to 100 and the sprite will move uniformly from left to right
over the whole game board.

The learner is assigned the programming task by running animation of the pro-
grammed sprite’s shadow. The learner’s task is to create a program (i.e. assemble param-
eters of the Sprite block) to make his/her sprite behave in the same way as its shadow,
i.e. both objects should overlap each other throughout the animation (see Fig. 2). The
learner has the possibility of running the program repeatedly, animation having the time
value of 0 to 100. He/she can also use a scroll bar to manually set any value of the time
variable and analyze the situation at a given time (see Fig. 3).

Whereas the didactical aim of the world of Karel the robot is to get fluent with loops,
the world of Film aims to understand procedures with parameters. The world of Film is
based on the parameter concept, working with the variable and primarily with expres-
sions. The method of programming in this world is close to functional programming.
Consisting of more complicated concepts than the world of Karel the robot, it is more
suitable for learners at high school or in their final years of lower secondary school.

Bebras Tasks Based on Assembling Programming Code 119

Fig. 3. Phased animation of a task requiring a spaceship to land on a planet in time values of 0,
25, 50, 75, 100, showing the shadow of the planet getting closer and bigger over time.

In this world, learners were typically assigned to move a sprite horizontally or vertically
in uniform motion (motion from right to left is more complicated than motion from
left to right due to position becoming smaller as against time), to move it around more
slowly and more quickly, to combine motion in those directions, to make the sprite grow
or shrink over time and to combine growth with the motion of the sprite. In this world,
we created a set of programming tasks which gradually increase in difficulty. More
simple tasks include placing a sprite in a specific position in the coordinate system or
increasing one of its coordinates in relation to time. More complicated tasks include the
use of expressions to decrease one of the sprite’s coordinates or its size as time increases,
the combination of several parameters dependent on time (e.g. motion on the diagonal
or simultaneous motion and shrinking of a sprite). The most difficult tasks combined
several motions over time (e.g. motion there and back during one animation), applying
decision-making.

2.2 Evaluation

The created environment for assembling programs from blocks was implemented as a
module in the Czech edition of Bebras Challenge.We used the created tasks in twoways.

As programming is not a compulsory part of Czech Informatics curricula, we sup-
posed that many pupils have no programming skills. Thus, we created a special set of
tasks called Blocks which contained tasks from the world of Karel the robot. We offered
this set of tasks to schools as preparation for the national round of the contest. During
September and October 2021, this test of 11 questions was taken by 45 000 learners
at lower secondary and high schools. Having examined findings drawn from feedback
from schools and from a consulting expert’s review, we made improvements to the
environment and tasks. Problems with graphics not working properly in some tasks in
some browsers were most common. There were also reports of difficulties in transition
between task 4 and 6, caused by a very large cognitive step. We solved this problem by
inserting another task 5 and adding explaining elements to the task questions.

The national round of the Bebras Challenge was another iteration for verification.
Each of the 109 442 contestants worked on 3 completely new tasks from the world of
Karel the robot (the total number of tasks being 12). Tasks in older age categories were
based on more complex algorithmic situations. This iteration allowed us to determine to
what extent these new tasks are more difficult than other algorithmic tasks and to what
extent they are more difficult than the average task (see Results for further details).

120 J. Vaníček et al.

Verification of the world of Film was also carried out in two iterations, despite fewer
contestants having participated. During January and February 2022, a set of 12 tasks of
this type served as a practice set for contestants that had qualified for the central round
in the category for the oldest pupils. 546 learners worked on this set of tasks.

The second iterationwas carried out in the central round itself, which 358 contestants
took part in. The test was made up of 15 tasks, 3 of which were from the world of Film
(one of them is shown in Fig. 4) and another 3 from the world of Karel the robot. It
means that 40% of the tasks involved programming by assembling programming code
from blocks. Verification showed that these tasks can be used at such a high level as the
central round of a nationwide contest.

Fig. 4. A complex task where the sprite first moves closer and then moves away, taken from
the central round of the contest, using program branching depending on the time parameter. The
correct solution being on the left, its phased animation is on the right in time values of 10, 30, 50
and 80 (at time 0 and 100, the flying saucer measured zero).

Following verification, we had to improve the method of the learner’s data evaluation
while solving a task. There were deviations in computations when using parameters in
combination with multiplication and division (e.g. multiplication by 0.001 and division
by 1000 did not give the same result), which, in rare cases, led to incorrect evaluations
of learners’ solutions.

It also emerged that rotating a sprite visually by angular degrees is not optimal as it
had rotated the sprite by 100° by the end of the animation. Learners can easily recognize
a 90° rotation but for the sprite to rotate by 90° during a time interval of 100, it would
have to be rotated in grades rather than in angular degrees, i.e. in units that learners are
not acquainted with in schools. For that reason, we finally decided not to use the rotation
parameter in tasks.

3 Results

In order to compare the difficulty of programming tasks involving assembling blocks as
against other algorithmic task, we worked with proportion of contestants that had been
able to solve a task, which is the factor for describing task difficulty [27]. While devising
tests for the Challenge, we made efforts to create programming tasks which difficulty
coincided with the overall difficulty level of algorithmic tasks. A verification process
was used to ascertain whether we had managed to do so.

Bebras Tasks Based on Assembling Programming Code 121

First, we used the Anderson-Darling test to ascertain whether success rates for pro-
gramming tasks and other algorithmic tasks are normally distributed. The hypothesis for
testing normality of data was rejected at a significance level of 0.05. We then tested the
equality of variances of both samples. At the level of 0.05 the null hypothesis was not
rejected. Therefore, it can be claimed that variances of both samples are equal.

We subsequently used the two-sided non-parametric Wilcoxon test to ascertain
whether the means of both samples are equal. Since the null hypothesis was rejected at
a significance level of 0.05, we used the one-sided non-parametric Wilcoxon test. This
enabled us to verify whether the mean of the success rate for the programming tasks was
equal to or lower than for the other algorithmic tasks. As this hypothesis was rejected at
a significance level of 0.05, it can be claimed that the success rate for programming tasks
involving assembling blocks is significantly higher than for other algorithmic tasks.

Fig. 5. A comparison of the difficulty level of all tasks included in the 2021 national round of the
contest; tasks that involve assembling programming code are marked in a light color.

When comparing programming tasks with all contest tasks in this year’s national round,
we discovered that, apart from two exceptions, all of these tasks from all age categories
were placed in the top half according to the proportion of correct answers (see Fig. 5). In
this figure, programming tasks involving assembling blocks are marked in a light color.
To confirm a statistically significant difference in the difficulty of programming tasks as
against other task, a verification process was used.

First, we used the Anderson-Darling test to ascertain whether success rates for pro-
gramming tasks and other tasks are normally distributed. The null hypothesis for testing
normality of data was not rejected at a significance level of 0.05. We then tested the
equality of variances of both samples. At a significance level of 0.05 the null hypothesis
was not rejected. Therefore, it can be claimed that variances of both samples are equal.
We subsequently used the two-sided Student’s t-test to ascertain whether the means of
both samples are equal. Since the null hypothesis was rejected at a significance level
of 0.05, we used the one-sided Student’s t-test. This enabled us to verify whether the
mean of the success rate for the programming tasks was equal to or lower than for the
other tasks. As this null hypothesis was rejected at a significance level of 0.05, it can
be claimed that the success rate for programming tasks is significantly higher than for
other tasks.

122 J. Vaníček et al.

It means that programming tasks involving assembling blocks can be declared as
being demonstrably easier for learners. Thismay be due to the fact that the tasks provided
feedback and learners could have several attempts to iterate their answers, unlike in
regular Bebras tasks, where they click on objects or answer multiple choice questions
without receiving any feedback. The attractiveness of this new type of tasks is another
factor that has to be taken into account.

In November 2021we asked 939 school coordinators whowere responsible for orga-
nizing the contest in their school to fill in a questionnaire. 199 replies were received,
representing a 20% rate of return. Therefore, it can be regarded as a statistically
representative sample and the views expressed can be taken into consideration.

One of the questions referred to how teachers rated the new type of Bebras tasks,
based on assembling a program from blocks. Using the Czech school grading system,
almost three quarters of them rated this type of tasks “excellent”, one sixth “very good”
and the remaining tenth “good”, “satisfactory” or “unsatisfactory”.

Fig. 6. Results of the poll question asking teachers whether and how they gave their learners the
opportunity to play the Blocks preparatory test in the world of Karel the robot.

Another question inquired into the extent teachers used their lessons to give learners the
opportunity towork on the type of tasks used in theworld ofKarel the robot. Results show
that almost two thirds of schools involved in the poll had given pupils the opportunity to
prepare for the contest during lessons (for details see Fig. 6). Schools can therefore be
regarded as perceiving this type of tasks to be an appropriate innovation to the curriculum
for advancing learners’ informatics skills.

4 Conclusion

We introduced a new type of informatics tasks into the Czech edition of the Bebras Chal-
lenge, not having previously been used in that informatics contest. The tasks involve the
use of blocks to assemble programming code. Considering the potential of the block envi-
ronment, such tasks are of value both from a motivational and a pedagogical respect.
Apart from their significance in the Bebras Challenge, they will also be of vital impor-
tance in the teaching of computing in primary and secondary schools. The developed tool
can be used to create and test sets of tasks focusing on one concept or one programming
skill, with the possibility of later implementing them into the school curriculum. In the
future the developed module can be enhanced by adding more “worlds” such as turtle
graphics or the world of Baltie the magician.

Bebras Tasks Based on Assembling Programming Code 123

Being able to continuously save created programs, the environment allows monitor-
ing of the way a learner deals with a programming task or the way he/she progresses in
a set of tasks. That will enable future research to examine the programming mistakes a
beginner might make, what kind of instructions might contribute to or eliminate their
occurrence or to reveal misconceptions that might prevent beginners from solving pro-
gramming tasks in a block environment. This could be useful for future compilation
of the programming curriculum for beginners, where appropriate tasks could be cho-
sen either to prevent typical mistakes or, contrarily, to lead a learner into making them,
allowing the potential of failure to be used to develop a learner’s understanding.

Acknowledgement. The research was supported by the project TAČR TL03000222 “Develop-
ment of computational thinking by situational algorithmic problems”.

References

1. Gander, W.: informatics and general education. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP
2014. LNCS, vol. 8730, pp. 1–7. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09958-3_1

2. The royal society: shut down or restart? The Way Forward for Computing in UK Schools.
The Royal Society, London (2012). https://royalsociety.org/~/media/royal_society_content/
education/policy/computing-in-schools/2012-01-12-computing-in-schools.pdf

3. K-12 Computer Science Framework Steering Committee: K-12 Computer Science Frame-
work. ACM, New York, NY (2016). https://dl.acm.org/doi/book/10.1145/3079760

4. CSTA: K-12 Computer Science Standards (2011)
5. Blaho, A.: Informatika v štátnom vzdelávacom programe (Informatics in a state educational

programme). In: Kalaš, I. (ed.) DidInfo 2012, pp. 7–14.Matej Bel University, Banská Bystrica
(2012). http://www.didinfo.net/images/DidInfo/files/didinfo_2012.pdf

6. Sysło, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum for all
school levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378,
pp. 141–154. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25396-1_13

7. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006). https://doi.org/
10.1145/1118178.1118215

8. Ministry of education, youth and sports of the Czech Republic: Strategie digitálního
vzdělávání (Strategy of digital education). Ministry of education, youth and sports of the
Czech Republic, Praha (2014). https://www.msmt.cz/uploads/DigiStrategie.pdf

9. Ministry of education, youth and sports of the Czech Republic: Rámcový vzdělávací program
pro základní vzdělávání (Frame educational programme for basic education – basic version).
Ministry of Education, Youth and Sports of the Czech Republic, Praha (2021). https://www.
edu.cz/wp-content/uploads/2021/07/RVP-ZV-2021.pdf

10. Wing, J.M.: Computational thinking: what and why? Carnegie Mellon University, Pittsburgh
(2010). https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

11. Wittmann, E.H.: Developing mathematics education in a systemic process. Educ. Stud. Math.
48(1), 1–20 (2001). https://www.jstor.org/stable/3483113

12. Xia, B.S.: A pedagogical review of programming education research: what have we learned.
Int. J. Online Pedagog. Course Des. 7(1), 33–42 (2017). https://doi.org/10.4018/IJOPCD.201
7010103

https://doi.org/10.1007/978-3-319-09958-3_1
https://royalsociety.org/~/media/royal_society_content/education/policy/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://dl.acm.org/doi/book/10.1145/3079760
http://www.didinfo.net/images/DidInfo/files/didinfo_2012.pdf
https://doi.org/10.1007/978-3-319-25396-1_13
https://doi.org/10.1145/1118178.1118215
https://www.msmt.cz/uploads/DigiStrategie.pdf
https://www.edu.cz/wp-content/uploads/2021/07/RVP-ZV-2021.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.jstor.org/stable/3483113
https://doi.org/10.4018/IJOPCD.2017010103

124 J. Vaníček et al.

13. Ackermann, E.: Constructivism(s): shared roots, crossed paths,multiple legacies. In: Clayson,
J.E., Kalaš I. (eds.) Constructionism 2010: Constructionist Approaches to Creative Learning,
Thinking and Education: Lessons for the 21st Century: Proceedings for Constructionism
2010. Comenius University, Bratislava (2010)

14. Ackermann, E.: Piaget’s constructivism, Papert’s constructionism: what’s the difference?
(2001). http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf

15. Jonassen, D.H.: Objectivism versus constructivism: do we need a new philosophical
paradigm? Educ. Tech. Res. Dev. 39, 5–14 (1991). https://doi.org/10.1007/BF02296434

16. Kalaš, I.: UCL Scratchmaths curriculum. University College London, London (2017). http://
www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials

17. The LEAD Project: Easy LEAD: Super Scratch programming adventure! No Starch Press,
San Francisco (2012)

18. Chao, P.-Y.: Exploring students’ computational practice, design and performance of problem-
solving through a visual programming environment. Comput. Educ. 95, 202–215 (2016).
https://doi.org/10.1016/j.compedu.2016.01.010

19. Dagienė, V.: The bebras contest on informatics and computer literacy – students drive to
science education. In: Joint Open and Working IFIP Conference, ICT and Learning for the
Net Generation, pp. 214–223. Kuala Lumpur (2008). https://www.bebras.org/sites/default/
files/documents/publications/DagieneV-2008.pdf

20. Bebras Challenge. https://www.bebras.org/
21. Bobřík informatiky (Beaver of Informatics). https://www.ibobr.cz/english-uk
22. Berki, J., Drábková, J.: Základy informatiky pro 1. stupeň ZŠ (Basic of informatics for primary

school). Textbook. Technical University of Liberec, Liberec (2020). https://imysleni.cz/uce
bnice/zaklady-informatiky-pro-1-stupen-zs

23. Trna, J.: Konstrukční výzkum (design-based research) v přírodovědných didaktikách. Scientia
in educatione. 2(1), 3–14 (2011). https://ojs.cuni.cz/scied/article/view/11/12

24. Blockly. https://developers.google.com/blockly
25. Hour of code. https://hourofcode.com/
26. Pattis, R.E.: Karel the Robot: Gentle Introduction to the Art of Programming with Pascal.

Wiley, Hoboken (1981)
27. Vaníček, J., Šimandl, V.: Participants’ perception of tasks in an informatics contest. In: Kori,

K., Laanpere, M. (eds.) ISSEP 2020. LNCS, vol. 12518, pp. 55–65. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63212-0_5

http://learning.media.mit.edu/content/publications/EA.Piaget%20_%20Papert.pdf
https://doi.org/10.1007/BF02296434
http://www.ucl.ac.uk/ioe/research/projects/scratchmaths/curriculum-materials
https://doi.org/10.1016/j.compedu.2016.01.010
https://www.bebras.org/sites/default/files/documents/publications/DagieneV-2008.pdf
https://www.bebras.org/
https://www.ibobr.cz/english-uk
https://imysleni.cz/ucebnice/zaklady-informatiky-pro-1-stupen-zs
https://ojs.cuni.cz/scied/article/view/11/12
https://developers.google.com/blockly
https://hourofcode.com/
https://doi.org/10.1007/978-3-030-63212-0_5

Design and Analysis of a Disciplinary
Computer Science Course for Pre-service

Primary Teachers

Jean-Philippe Pellet(B) , Gabriel Parriaux , and Morgane Chevalier

University of Teacher Education, Lausanne, Switzerland
{jean-philippe.pellet,gabriel.parriaux,morgane.chevalier}@hepl.ch

Abstract. According to new curricula being introduced in Switzerland,
primary teachers have to teach concepts related to computer science
(CS), but most of them have never been through a CS course them-
selves. At our university of teacher education, we have introduced a new
disciplinary CS course for pre-service teachers, aiming to provide them
with basic CS foundations to better grasp, contextualize, and explain the
CS topics they will bring to their classrooms. This “experience report”
paper describes the structure and design choices of the new disciplinary
course. We propose a thematic split of the relevant topics to discuss
and highlight strategies to make the course relevant for our audience.
The declared and effective learning outcomes are then analyzed, topic
by topic, through crossing survey responses and exam data. We also use
survey data from a year later, polling the same participants again for
relevance of their learnings in the disciplinary course after being in class-
rooms and conducting activities in CS. Through this, success points and
improvement areas of the new course as well as changes to be made for
the next occurrences are identified.

Keywords: Teacher education · Computer science education ·
Disciplinary course

1 Introduction and Context

In the French-speaking part of Switzerland, the K–12 curriculum for digital
education was updated in 2021. Next to the already existing axes “media” and
“ICT”, a new “computer science” axis (CS) was introduced. The new curriculum
was presented with the main objective of developing so-called digital citizenship
and digital culture of pupils. Prior to this reform, political changes had brought
the topic of digital education in general—and CS in particular—in the spot-
light. There seemed to be a general preoccupation in the economic, scientific,
and political spheres, relayed by the media, that children in our country would
not receive sufficient education in the digital domain. In canton Vaud (one of
the French-speaking Swiss cantons), digital education was elected as one of the
main projects of the government and an ambitious pilot project was launched

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 125–137, 2022.
https://doi.org/10.1007/978-3-031-15851-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_11&domain=pdf
http://orcid.org/0000-0001-7559-397X
http://orcid.org/0000-0002-8921-5459
http://orcid.org/0000-0002-9115-1992
https://doi.org/10.1007/978-3-031-15851-3_11

126 J.-P. Pellet et al.

to introduce the new curriculum of digital education and a teaching of CS in
eleven schools starting from primary level [8].

Our university of teacher education has thus had to adapt its own curricu-
lum to give primary pre-service teachers (hereafter referred to as “students”)
the competencies needed to teach the content mentioned in the new school cur-
riculum, in particular CS. As those students had never had the opportunity to
study CS in their school career, most of them needed education not only on the
didactical side of CS, but first and foremost on its disciplinary aspects. Hence,
a special course has been set up in our university of teacher education, focusing
especially on disciplinary content of CS. Participation is optional, but all stu-
dents have to go through the assessment at the end of the course. It is followed
a semester later by a didactical course (not further discussed here).

In our educational system, universities of teacher education rarely provide
disciplinary courses to pre-service teachers. For most of primary school disci-
plines, students’ knowledge acquired during past school years is sufficient to
follow the linked didactics courses (or else they join a regular university to study
disciplinary content). Because of its novelty, and also to better understand what
happened with teachers’ knowledge in CS, we framed this new disciplinary teach-
ing with a research setup capable of providing us with the information necessary
for its regulation. This paper presents our setup and our main results.

Our main research questions are:

RQ1: How did students view CS before the course and has this view evolved?
RQ2: How did students self-assess their mastery of various subfields of CS before

and after the course, and how accurate is this self-assessment?
RQ3: A year later, after trying out CS activities in the classroom, how did

student retrospectively view this disciplinary new course?

This paper has the following structure: in Sect. 2, we mention analyses of
similar initiatives or approaches to CS education of future teachers. In Sect. 3,
we detail the structure of our new course and justify the design decisions. We
talk about the source of the data we collected to answer our research questions
in Sect. 4 and analyze it in Sect. 5. We conclude finally in Sect. 6.

2 Related Work

CS is relatively recent compared to other sciences, and this is even more true
for its teaching. Only recently did it enter compulsory-school curricula in several
countries (e.g., New Zealand, 2011 [2]; Estonia, 2012 [16]; the U.K., 2014 [15];
etc.). Most CS core knowledge is as new for the students as for their teachers.
Despite this, teachers must be able to carry out a didactic transposition [4]. On
the one hand, this professional gesture implies acquiring knowledge in CS (first
level of transposition) and, on the other hand, reflecting/planning/proceeding to
the transmission of this knowledge to their students (second level of transposi-
tion) [4]. In this study, we are interested in this first level of transposition on the
part of the pre-service teachers and, as such, many researches have looked into

Design and Analysis of a Disciplinary Computer Science Course 127

the CS conception among teachers. For instance, Funke et al. [10] interviewed six
primary-school teachers on their opinions towards CS courses at primary schools.
Results unsurprisingly showed that teachers need to be trained to access the core
CS concepts. This kind of need has also been reported in another similar study
[13], in which educators could improve upon teachers’ misconception about CS in
only three training days. Besides, more and more recommendations to decision-
makers in education systems encourage pre-service teachers to take CS courses
as part of their teaching degree programs [5] to meet minimum content and
knowledge requirements.

Moreover, a survey [7] among 116 secondary-school CS teachers about the
integration of CS in primary education showed that essential topics for primary
school should be introduced into primary-teacher training to ensure that they do
not pass on their misconceptions to students. In this spirit, Repenning et al. [14]
designed and experimented with a core CS course among pre-service primary
teachers (n = 600). Results showed that teaching a mandatory CS class for pre-
service teachers helps change the representations of these actors (particularly
women) regarding CS and digital technologies. Nevertheless, results still reported
a lack of confidence in implementing CS concepts in the classroom.

Another study [17] investigated the lack of confidence of in-service K–12
teachers concerning their self-efficacy in assessing Digital Technologies against
the Australian Teacher Professional Standards and various assessment practices.
Teachers reported that they need time and support to develop assessment strate-
gies for this new area.

This raises the question of the perceived usefulness of CS knowledge to pri-
mary school teachers. Unfortunately, to our knowledge, no study reports the
needs and feedback of in-service and pre-service teachers regarding the transfer
of core CS knowledge that they have been able to carry out in class with their
pupils.

As a result, given state of the art, it seems necessary to offer training to pre-
service teachers on the core CS knowledge—ideally, spread out over time and of
at least three days. Concrete links with society should be emphasised in such
training to enable pre-service teachers to foresee a transfer of this knowledge and
a didactic transposition appropriate to the maturity of their pupils.

3 Structure and Content of the New Disciplinary Course

The time slots obtained for this course encompassed 6 half days over the course
of one semester, which is equivalent to Prieto et al.’s three full days [13].

3.1 Syllabus

The syllabus of the disciplinary course, according to our institution’s policy,
should be based on the high-school syllabus of the same topic. However, at the
time of course preparation, there was no mandatory CS course in high schools
yet;1 our own syllabus was then based on circulating unofficial drafts.
1 Such a course is actually due to be introduced in 2022–2023.

128 J.-P. Pellet et al.

There is a general trend in CS education to move away from a coding-centric
approach [1,9]. We thus wanted to ensure that we were not only focusing on
programming and ended up with the following three main subfields: (a) data
representation; (b) algorithms and programming; (c) machines and networks.

As mentioned in the introduction, mandatory CS in schools, in the view of
our minister of education, should serve a “digital citizenship” goal rather than
a mainly technical goal. According to this point of view, while the basis of data
representation and programming should be taught, it is equally important that
the societal implications linked to the usage of technology in the general public
be exposed and discussed [11]. To embody this perspective in the new course, we
discussed societal issues linked to the technical topics in each of the 6 sessions
and made them an integral part of the syllabus.

We also strongly felt that we needed a common thread along the course. The
bigger part of our audience has no special appetency for technical matters: we
could not just place next to each other a series of themes deemed relevant by
us without a strong, visible link between them. We thus picked web search as a
common thread, and arranged the conceptual topics of the syllabus around the
exploration of what really happens at various stages of running a web search.

Here is the final six-session syllabus, formulated in terms of the common
thread and linked to societal issues:

1. Data representation. “Computers work with 1s and 0s. When you do a
web search, the search terms are also 1s and 0s—so are the results you get, be
them text or images. Let’s find out how we can represent such data with bits.”
⇒ Binary representation of positive integers; representation of text, basics of
bitmapped images. Societal issues: Energy consumption of storage systems
and large communication infrastructure in response to growing usage.

2. Computer architecture. “We now know how our web request will be rep-
resented. Let’s now look at how these 1s and 0s travel through the electronics
inside a computer and how that electronics can be build to process that infor-
mation.” ⇒ Basic logic gates; high-level view of components such as CPU,
storage devices, and sensors. Societal issues: History of CS and automated
machines; influence of war-time goals (deciphering, ballistic computations) on
the development of computers.

3. Network and cryptography. “After exiting our computer, our web search
goes through the internet to reach the search provider’s servers. How it is
relayed by the intermediaries involved? How can I prevent these relays from
reading what’s in my request?” ⇒ Packet switching, basic routing and idea of
protocol; examples of symmetric ciphers, common attacks, and principles of
asymmetric cryptography. Societal issues: Disparities in the world for internet
access; pros and cons of strong ciphers and end-to-end encryption.

4. Programming I. “Our request has reached the remote server. To be
answered, it is processed by the searched company’s software. What is software
and how do you instruct a machine what to do? Through programming.” ⇒
Using Python’s turtle module: simple movement, simple loops, simple func-

Design and Analysis of a Disciplinary Computer Science Course 129

tion definitions, without or with one parameter. No variables at this point.
Societal issues: Open source/free software, licensing (not limited to software).

5. Programming II. “The previous examples have showed us how to give
instructions to a computer; this session will make more explicit the way data is
referenced and handled in programming languages through variables that can
represent values that are still unknown when the software is written.” Same
programming environment: variables, if statements and conditions with vari-
ables, simple lists (definition and iteration). Societal issues: Data collection,
profiling, recommendation algorithms, and third-party cookies.

6. More algorithms and AI. “CS is more than web searches. Let’s examine
graphs, which allow us to model many problems, and a related algorithm,
which is used in our GPS but not only there. Finally, let’s talk about AI: what
it is, what it isn’t, and a little bit of how it works.” ⇒ Without programming:
concept of graph, tracing of Dijkstra’s algorithm, applications. AI: high-level
principles of a rule-based classification algorithm. Societal issues: Importance
of training data for AI systems and awareness of bias-reproducing systems.

There were many other topics (technical or societal) we had deemed worthy
of interest that did not end up making it into the syllabus for time constraints.
Many steps in the web-search-processing story are still missing. The goal of the
common thread is to arrange the selected topics in a tractable sequence rather
than provide a full explanation of the chosen phenomenon.

3.2 Operational Planning

The course ended up being given entirely remotely due to COVID-19. We pre-
pared 4 to 6 videos of between 5 and 15 min for each of our 6 sessions, for a total
never surpassing 60 min. Our aim was to keep the video time at a maximum of
60% of what the actual lecture time would have been.

We made a creative use of the Label element in Moodle to structure the sub-
sections, link each of them with a short list of expected learning outcomes, and
added to each of them practical exercises, the solutions to which were available
to students and explained in details, sometimes with more videos.

Societal issues cannot readily be linked to practical exercises. In order not
to limit ourselves to videos on these issues, questions were asked at the end of
each videos, in a “food for thought” way—with no correct or incorrect answer.
Arguments serving these discussions were provided in the “solutions” part.

In addition to the material on the Moodle page, we opened for each session
a Zoom room for 120 min, creating several breakout rooms which corresponded
to the session’s subsections. This always included a room to discuss the open
questions related to the societal issues. Each breakout room was staffed with one
instructor and the students could thus freely navigate between them according
to the concepts they were stuck with or wanted to discuss.

As a last means of interactions, a traditional Moodle forum was made avail-
able for public, asynchronous questions and answers about the course.

130 J.-P. Pellet et al.

3.3 Evaluation

Evaluation was done during an open-book 90 min Moodle quiz comprising 28
multiple-choice (MC) questions (which were corrected automatically) and 4
open-text questions (which were corrected manually).

The MC questions were “rich” in the sense that they were not only text, but
embedded images and (with the help of HTML iframes) interactive logic dia-
gram or code editors. The open-text questions asked the students to describe,
with a few sentences of their own writing, their understanding of the societal
issues discussed in the course and short analysis of a small related example situ-
ation. Typically, such topics cannot adequately be assessed with MC questions.

We insisted on the open-book policy, convinced that, especially in the field of
CS, any evaluation requiring students to learn certain things by heart was assess-
ing capabilities related to the lower levels of the cognitive domains of Bloom’s
taxonomy (Comprehension and Understanding), and we were trying as much as
possible to focus on the higher levels (more specifically, Application and Analysis
for technical topics, and Analysis and Evaluation for societal issues).

4 Data Collection and Methodology

To answer our research questions, we used data from the following sources:

– A survey given before the beginning of the new course, which contained ques-
tion about age, gender, previous education, and included a section meant to
capture their representation of CS and their declared a priori mastery of the
main subtopics of the course (see details below);

– A post-course survey, with the same questions about their representation of
CS and their declared a posteriori mastery of the same subtopics;

– Grades from the examination described above, given at the end of the course,
with a detailed split of the points among the same subtopics whose declared
mastery was asked about in the surveys;

– A survey given a year later to the same students, asking if they viewed what
they had learned in the new course as useful for the following didactics course
and for the classroom activities they had conducted in the meantime.

The grade records were anonymized and uniquely identified by some Moodle-
generated ID. The same ID was automatically filled out in the pre- and post-
course surveys, enabling us to automatically link the survey responses while
keeping them anonymous.

4.1 Common Pre- and Post-Course Survey Questions

To address RQ1, both pre- and post-course surveys included questions to depict
the students’ view of CS before and after the course. They were asked to rate
these statements on a Likert scale ranging from 1 (disagree completely) to 6
(agree completely): “To me, computer science...”2 [12]:
2 Students were also asked to answer an free-text question on how they would describe

CS. Size constraints do not allow the inclusion of the analysis of those results here.

Design and Analysis of a Disciplinary Computer Science Course 131

1. is mainly applied mathematics
2. does not really have permanent components and is constantly evolving
3. changes rapidly but rests on stable notions
4. has theoretical foundations
5. is mainly about learning how to use office software
6. is primarily about practical knowledge rather than concepts and notions
7. is the major science of the 21st century

To address RQ2, students were also asked to rate their mastery of the follow-
ing subtopics on a scale ranging from 1 (no mastery) to 5 (excellent mastery):
1. binary data representation; 2. CPU and computer architecture; 3. cryptogra-
phy; 4. programming; 5. algorithms and AI; and 6. computer networks.

The survey enabled us to observe how each student changed their view of
CS and how their declared mastery evolved. Moreover, we could determine the
correlation between the declared post-course mastery and the actual exam results
for first 5 subfields listed above (subfield 6 was made optional and was absent
from the final exam).

4.2 Year-After Survey

In the year after the disciplinary course, student have followed a didactics course
and have had the opportunity to conduct a CS-related activity in a classroom.
Since the new course was supposed to provide the foundations for the didactics
course, we were interested in asking students’ opinion through these two ques-
tions to address RQ3 : (a) How useful did you find the disciplinary course for the
activity you conducted? (rated on a 7-point Likert scale), and (b) Retrospec-
tively, how adequate did you find the level of the disciplinary course? (rated on
a 5-point scale: way too hard/too hard/adequate/too easy/way too easy).

We were especially interested in the year-after (rather than the right-after)
opinion since it would be difficult for students to evaluate the adequacy of such
a course without practical experience with actual classroom activities.

5 Analysis and Discussion

357 students were registered for the course and obtained a grade. Out of them,
284 filled the pre-course survey; 130 filled the post-course survey (114 filled them
both); and 117 filled the year-after survey. The Demographics subsection thus
rests on the 284-sample dataset; the analysis covering pre/post comparisons and
the year-after opinion use the 114- and 117-sample datasets, respectively.

5.1 Demographics

About 65% of the respondents are between 18 and 22 years old; 22% are between
23 and 30; 8% between 31 and 40, and the rest 5% are older. 85% are female.

The highest degree of 85% of the respondents is a high-school degree. About
12% have a college degree; about 3% have another degree (professional or other).

87% of all students passed the exam on the first attempt.

132 J.-P. Pellet et al.

Fig. 1. Shift of opinions on what CS is according to the students, following the 7 ques-
tions described in Sect. 4.1, rated on a 6-level Likert scale. Red bars indicate (center-
to-left) “somewhat disagree”, “disagree”, and “strongly disagree”; green bars indicate
(center-to-right) “somewhat agree”, “agree”, “strongly agree”. (Color figure online)

5.2 Representation of Computer Science

We now analyze students’ views of CS through their compared (pre- and post-
course) opinion on the 6 assertions listed in Sect. 4.1, shown on Fig. 1.

Students are almost evenly split on whether CS is mainly applied mathe-
matics. After the course, they tend to reject this assertion more (even if the
shift is on the verge of being significant at the .05 threshold: Mann–Whitney’s
U = 20568, p = .0537). The diversity of the subtopics and the discussion of the
societal issues were meant to favor such a shift and a conceptual separation of
math and CS.

Although CS is still viewed by the majority as constantly evolving with no
permanent components, there is a significant shift (U = 21749, p = .0029)
occurring. In hindsight, we should have phrased this question differently, as it
mixes two dimensions (having permanent components and evolving constantly,
both of which can be argued to be true) into a single statement.

More than 75% of respondents agree that CS has stable notions (this does
not change between pre and post). Even more agree that CS has theoretical
foundations. We were surprised to see more students disagreeing on this after
the course. Even though the difference is not statistically significant, we ideally
would have liked to see the opposite shift: we believe this is due to our very

Design and Analysis of a Disciplinary Computer Science Course 133

practical approach which tried to include as little theory (and as little math) as
possible.

We were pleased to see significantly more disagreement on CS being mainly
software usage (U = 21507, p = .0055), even though a majority still agrees.
There was no significant shift on the two remaining questions of our surveys.

Fig. 2. Declared pre- and post-course mastery of CS subfields taken from surveys,
compared to the performance on the final exam.

5.3 Declared and Assessed Mastery Levels of Subtopics

The results shown on Fig. 2 show, for each of the 6 subfields, a distribution of
declared mastery on a scale ranging from 1 (no mastery) to 5 (excellent mastery).
Pre-course data is shown first (yellow), then post-course data (green), and last
(blue), we show the scores obtained by averaging over the grades of the relevant
questions in the final exam and rescaling to reach the same 1-to-5 range. Subtopic
6 was made optional and no exam question was asked on it. The vertical grey
bars show the mean of each distribution.

The declared pre-course level was almost the same for subtopics 1, 3, and
5, and the means of the declared post-course levels are very close to the final
grades. Some students slightly overestimated their understanding of binary data
representation and slightly underestimated that of algorithms of AI. On the two
subtopics 2 and 4, students significantly underestimated their understanding
with respect to our exam questions. These are the two topics where our course
exercises included synthesis questions—small logic circuits in an interactive tool

134 J.-P. Pellet et al.

for subtopic 2 and short Python programs with turtle for subtopic 4. These
were experienced as difficult by students. On our final exam, these subtopics
were addressed with multiple-choice question, which definitely made them easier
to achieve than if they had also been synthesis questions.

Fig. 3. Perceived adequation of the level of the course a year later.

Fig. 4. Perceived usefulness of the course, a year later, split according to conducted
classroom activity.

5.4 Year-After Opinion

A year later, 43% of the students who expressed their opinion said the course
had been too hard, 11% too easy, and 46% adequate, as shown in Fig. 3. The
imbalance between the two extremes has since then made us reconsider the
inclusion of some more involved notions, especially in programming (Python’s
lists) and algorithms (some properties of graphs).

About half of the students found the disciplinary course had been useful to
them (Fig. 4, first row). We were nevertheless surprised that almost a third said it
had not been useful, so we split the analysis according to the type of activity the
students had conducted in the classroom (filtering out activity types with fewer
than 5 instances). The next rows in the same figure show the significant differ-
ences between them. The negative ratings mostly come from students who have
conducted programming activities, while those having dealt with cryptography-
related activities had unanimously found the course useful.

The main difference between these two subtopics is how closely what we
do in the new course is related to what they can actually conduct as activity
in the classroom. The programming activities are quite different: the course

Design and Analysis of a Disciplinary Computer Science Course 135

uses Python, but they will use robots or Scratch Jr in classrooms—which is
quite different, even though underlying concepts may coincide. For cryptography,
we begin with Caesar’s cipher and, although we also discuss more advanced
polyalphabetic ciphers and several attack types, they can directly conduct a
classroom activity based on Caesar’s cipher, making the link immediately clear.

While research shows that being correctly educated about the disciplinary
content is crucial for teachers, it also highlights the fact that it is not necessary
to go far beyond the level of corresponding knowledge that they teach in their
class. The more one goes beyond a minimal base of disciplinary knowledge as
taught at a given level, the less added value this disciplinary knowledge brings
to teaching [6]. But we also know from Bruner [3] that a knowledge of individual
concepts is not sufficient. There must be an understanding of the way concepts
are organized together, of the underlying principles that support them.

Let us be reminded that a subsequent mandatory didactics course exists to
precisely present classroom activities. We have no clear way of actually know-
ing that the basics of programming they acquired in the new course did not
make them more effective programming teachers. But seeing how closeness to
classroom activities is beneficial to perceived usefulness has made us change the
design of future occurrences of the course so as to always start with a motivating
example very closely linked to an activity they will be able to conduct.

6 Conclusion

We have described the primary-teacher-education context in which we deemed
necessary to introduce a new introductory course to CS. We have outlined its
specificity and its syllabus, highlighting our common-theme approach and the
discussion of the broader societal issues. We explained the all-remote modalities
related to the COVID-19 situation.

We have analyzed data from pre- and post-course surveys, from the final
exam, and from a year-later survey, after the students had conducted CS activ-
ities in actual classroom. Data shows that they view CS differently on a subset
of statements on which we asked them to express agreement; notably, that CS
is not about software usage and does have permanent components, although it
evolves constantly. We noted that our theory- and math-poor approach has not
reinforced much the impression that CS has theoretical foundations, although
the course was also meant to convey the idea that CS is science indeed.

Declared mastery and exam questions show that topics treated with exercises
involving creating programs or small logic circuit (where synthesis is needed)
reduce the perceived mastery compared to other topics like data representation
and cryptography (where exercises rather test understanding and analysis than
synthesis).

Finally, the year-after survey showed greatly different perceived usefulness
of the new course depending on the type of conducted classroom activity, even
though all such activities were conceptually linked to the course. Perceived use-
fulness was maximal when the course not only conceptually coincided with the

136 J.-P. Pellet et al.

conducted activity, but also directly treated (and expanded on) scenarios that
could form a direct basis for that activity.

These results have enabled us to make data-driven adjustment to the new
course so as to better highlight some fundamental aspects of CS as well as
increase the perceived usefulness of the course.

References

1. Astrachan, O., Briggs, A.: The CS principles project. ACM Inroads 3(2), 38–42
(2012)

2. Bell, T., Andreae, P., Robins, A.: A case study of the introduction of computer
science in NZ schools. ACM Trans. Comput. Educ. (TOCE) 14(2), 1–31 (2014)

3. Bruner, J.S.: The Process of Education. Harvard University Press, Cambridge
(2009)

4. Chevallard, Y.: On didactic transposition theory: some introductory notes. In:
Proceedings of the International Symposium on Selected Domains of Research
and Development in Mathematics Education. pp. 51–62. Comenius University
Bratislava, Czechoslovakia (1989)

5. Computer science teachers association, code.org advocacy coalition: state of com-
puter science education (2018). https://code.org/files/2018 state of cs.pdf

6. Darling-Hammond, L.: Teacher quality and student achievement. Educ. Policy
Anal. Arch. 8, 1 (2000)

7. Dengel, A.: Opinions of CS teachers in secondary school education about CS in
primary school education. In: Proceedings of the 12th Workshop on Primary and
Secondary Computing Education, pp. 97–98 (2017)

8. El-Hamamsy, L., et al.: A computer science and robotics integration model for
primary school: evaluation of a large-scale in-service K-4 teacher-training program.
Educ. Inf. Technol. 26(3), 2445–2475 (2020). https://doi.org/10.1007/s10639-020-
10355-5

9. Fincher, S.A., Robins, A.V.: The Cambridge Handbook of Computing Education
Research. Cambridge University Press, Cambridge (2019)

10. Funke, A., Geldreich, K., Hubwieser, P.: Primary school teachers’ opinions about
early computer science education. In: Proceedings of the 16th Koli Calling Inter-
national Conference on Computing Education Research, pp. 135–139 (2016)

11. Paoletti, F.: Épistémologie et technologie de l’informatique. Revue de
l’Enseignement Public et Informatique 71, 175–182 (1993)

12. Parriaux, G., Pellet, J.-P.: Computer science in the eyes of its teachers in French-
speaking Switzerland. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol.
9973, pp. 179–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46747-4 15

13. Prieto-Rodriguez, E., Berretta, R.: Digital technology teachers’ perceptions of com-
puter science: it is not all about programming. In: 2014 IEEE Frontiers in Educa-
tion Conference (FIE) Proceedings, pp. 1–5. IEEE (2014)

14. Repenning, A., Lamprou, A., Petralito, S., Basawapatna, A.: Making computer
science education mandatory: exploring a demographic shift in Switzerland. In:
Proceedings of the 2019 ACM Conference on Innovation and Technology in Com-
puter Science Education, pp. 422–428 (2019)

15. Sentance, S., Csizmadia, A.: Computing in the curriculum: challenges and strate-
gies from a teacher’s perspective. Educ. Inf. Technol. 22(2), 469–495 (2017)

https://code.org/files/2018_state_of_cs.pdf
https://doi.org/10.1007/s10639-020-10355-5
https://doi.org/10.1007/s10639-020-10355-5
https://doi.org/10.1007/978-3-319-46747-4_15
https://doi.org/10.1007/978-3-319-46747-4_15

Design and Analysis of a Disciplinary Computer Science Course 137

16. Shin, S., Bae, Y.: Study on the implications about curriculum design through the
analysis of software education policy in Estonia. J. Korean Assoc. Inf. Educ. 19(3),
361–372 (2015)

17. Vivian, R., Falkner, K.: A survey of Australian teachers’ self-efficacy and assess-
ment approaches for the K-12 digital technologies curriculum. In: Proceedings of
the 13th Workshop in Primary and Secondary Computing Education, pp. 1–10
(2018)

Textbooks and Materials for Teaching
Computer Science in Slovenia

Špela Cerar1(B) , Matija Lokar2 , Gregor Anželj3 , Andrej Brodnik4 ,
and Irena Nančovska Šerbec1

1 Faculty of Education, University of Ljubljana, Ljubljana, Slovenia
{spela.cerar,irena.nancovska}@pef.uni-lj.si

2 Faculty of Mathematics and Physics, University of Ljubljana,
Ljubljana, Slovenia

matija.lokar@fmf.uni-lj.si
3 Gimnazija Bežigrad, Ljubljana, Slovenia

gregor.anzelj@gimb.org
4 Faculty of Computer and Information Science, University of Ljubljana,

Ljubljana, Slovenia
andrej.brodnik@fri.uni-lj.si

Abstract. In Slovenia, the RINOS working group has proposed changes
to the curriculum and the introduction of computer science (CS) as a
compulsory subject in accordance with the K12CS framework. An impor-
tant step in the introduction of the subject is the development of new
teaching materials and environments for teaching CS. Currently, most
Slovenian materials for teaching CS are collected in the Lusy library.
These include e-textbooks, materials for teaching CS, booklets of tasks
and solutions, systems for various CS competitions, and platforms sup-
porting practice of programming. Good teaching materials for CS should
be relevant, interactive, easy to navigate, and promote active learning.
Because CS education is a relatively new field, its didactics is almost con-
stantly improving. Therefore, it is necessary to prepare teaching mate-
rials that can be easily modified, adapted and used for active learning.
Various teaching materials with these properties can be found in the
Lusy library. We conducted a qualitative survey among teachers of CS
to assess the usefulness of existing materials and environments for teach-
ing selected thematic units and to gain insight into teachers’ needs. Our
findings will provide the basis for developing useful practical teaching
materials and activities for a future compulsory subject.

Keywords: Teaching materials · I-Textbooks · Interactive learning
materials · Learning environments · Assessment platforms

1 Introduction

The first e-textbooks were digital copies of printed textbooks with easier naviga-
tion via hyperlinks and the ability to search the content [21]. Nowadays however,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bollin and G. Futschek (Eds.): ISSEP 2022, LNCS 13488, pp. 138–149, 2022.
https://doi.org/10.1007/978-3-031-15851-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15851-3_12&domain=pdf
http://orcid.org/0000-0003-0229-9539
http://orcid.org/0000-0003-0407-9177
http://orcid.org/0000-0001-8740-1728
http://orcid.org/0000-0001-9773-0664
http://orcid.org/0000-0003-0934-3125
https://doi.org/10.1007/978-3-031-15851-3_12

Textbooks and Materials for Teaching Computer Science in Slovenia 139

a good e-textbook differs significantly from a printed textbook. The digital for-
mat makes it easier to update the content, allows the use of multimedia and
interactivity, and enables customisation to an individual or target a group of
learners [15]. When creating e-textbooks, the advantages of their digital format
must be properly exploited. The quality of an e-textbook is measured by how it
contributes to the understanding of the topic presented. Technological advances
have enabled new pedagogical approach. The ease of updating and customization
is especially useful in the field of CS, because of the rapid development of CS
curricula and its didactics. It is also useful that e-textbooks provide support for
interactive elements, interactive tasks with instant feedback, and enable various
analytics. Such e-textbooks are often referred to as i-textbooks [18].

Today, we can use various tools to develop i-textbooks and materials, such
as free platforms openDSA [9] or Runestone, or payable platform zyBook [16].
These platforms not only support the creation of new materials, but also include
examples of learning materials and a set of tasks with immediate feedback. Use
of these platforms, makes it possible to use images, assess the knowledge through
closed-ended questions, animate the implementation of the program code, write
the code and check its correctness, etc. Studies have provided evidence that i-
textbooks improve student performance and engagement compared to traditional
textbooks [5,6]. Also a recent study by a research group at Aalto University
found that the use of i-textbooks improved student motivation and learning
compared to the use of static e-textbooks [19].

The development of textbooks and materials is influenced not only by the
didactics of the subject, but also by the position of the subject in the curriculum.
Currently, in Slovenia, CS is taught in basic education as an elective subject in
grades 4–9. In the gymnasium it is taught as a compulsory subject in the first
year, and as an elective matura subject in subsequent years. The current curric-
ula are written openly giving teachers the freedom in teaching the subject and
the selection of topics. On one hand, this freedom is beneficial, but on the other,
it introduces problems. For example, the basic education curriculum lists many
learning objectives without specifying which ones are fundamental and must
be achieved by every student. As a result, teachers choose learning objectives
according to their own preferences, which, unfortunately, most frequently only
contain digital literacy.

In the elective CS courses in grades 4–6, the groups may consist of students
of different ages, from different grades, and with different levels of knowledge,
which makes the teaching even more challenging. In grades 7–9, the curriculum
is still the same as in 2002 and is mainly based on digital literacy.

We are currently in the phase of introducing a new compulsory subject CS
throughout the educational vertical. Namely in 2017, the Ministry of Education,
Science and Sport of Slovenia set up an expert group RINOS. In Slovene RINOS
stands for Strokovna delovna skupina za analizo prisotnosti vsebin Računalnǐstva
in INformatike v programih Osnovnih in Srednjih šol ter za pripravo študije o
možnih spremembah, which translates to English as an Expert working group for
analysis of Computer Science topics presence in primary and secondary schools,

140 Š. Cerar et al.

and for a preparation of proposal of possible changes. In 2018 [3], the RINOS
Expert Group made a proposal, that was also approved by the The Slovenian
Academy of Sciences and Arts, to change the curricula by introduction of the
compulsory subject CS into primary and secondary schools. Following the K12CS
framework, the proposed curriculum covers the following topics: data and analy-
sis, algorithms and programming, computer systems, networks and the Internet,
and the impacts of computing [12]. However, shifting the focus from digital liter-
acy to core CS concepts requires a change in teaching methods and the creation
of appropriate instructional materials.

In the rest of the paper we introduce some textbooks and materials for teach-
ing CS in Slovenia, which is followed by the presentation of survey results on
the use of and need for textbooks and materials for learning and teaching CS. It
was conducted among CS teachers in Slovenian primary and secondary schools.
Finally, we summarise the findings from the literature and the research men-
tioned above.

2 Textbooks and Materials for Computer Science
Teaching

In recent years, numerous e-materials and e-textbooks for CS education have
also been created in Slovenia. Most of them can be found at the Lusy library1

(Fig. 1).

2.1 Materials and Platforms

In this section we present some of the most popular and widely used online
materials used by Slovenian teachers.

Vidra - CS Unplugged. The portal Vidra contains a collection of free learning
materials for learning CS with games and puzzles, using cards, strings, crayons,
and lots of movement. The Slovenian adaptation is based on the well-known
CS Unplugged [2]. The materials provide CS teachers with interesting ideas and
descriptions of activities. They can also be used in other subjects, especially
mathematics, in clubs and as extracurricular activities. The materials cover top-
ics such as binary numbers, graphs, sorting algorithms, and artificial intelli-
gence [4].

Code.org. This is a website for learning CS fundamentals and includes online
and hands-on activities. It teaches students computational thinking skills, prob-
lem solving, programming concepts, and digital citizenship. The developers have
created learning paths that allow students to solve problems on their own. Sub-
stantial part of Code.org is translated into Slovene and is used by teachers mostly
as additional material in class.

1 https://lusy.fri.uni-lj.si/ucbenik/.

https://lusy.fri.uni-lj.si/ucbenik/

Textbooks and Materials for Teaching Computer Science in Slovenia 141

Fig. 1. Lusy library, central access point for i-textbooks and e-materials for CS.

Bober. The ACM Slovenia Bober Competition (from here on Bober) is a part of
the International Challenge on Informatics and Computational Thinking Bebras.
It is aimed at students from the 2nd grade of primary school to the end of sec-
ondary school. A very important result of this activity is the booklet with tasks
and their solutions, published annually under the CC BY-SA license. It serves
as a teaching material widely used to promote development of computational
thinking and as a preparation for the competition. The booklet contains tasks
and correct solutions with a detailed explanation of the correct solutions. For
each task there is also a description of the CS background.

Pǐsek. The Pǐsek platform supports learning introductory block-based program-
ming. It was created in 2018 based on the French system Algorea [10]. The por-
tal contains a collection of tasks to be solved using the programming language
Blockly and gives the user immediate feedback on the correctness of the solution.
There are three main types of tasks in Pǐsek: tasks on the grid, tasks with turtle
graphics, and “classic input/output” tasks. Tasks have different approaches to
solutions: assembling a program, correcting a program, completing the program,
and Parsons-type tasks. The platform is used on a national level for the ACM
Slovenia Pǐsek competition, which annually wraps up with a booklet of tasks
and their solutions.

142 Š. Cerar et al.

Project Tomo. Project Tomo provides a rich library of tasks. When solving tasks,
Tomo provides students with an immediate feedback on the correctness of the
code. Teachers can set up their own “classrooms” with a selection of program-
ming tasks for their students. They can use tasks from a library or create their
own. Practical experience of high school teachers show that Tomo is particularly
useful when teaching groups of students with heterogeneous knowledge [11,14].
Teachers pointed out that the system helps them prepare learning materials,
monitor students’ progress, and analyse their work. It facilitates teachers to
individualise instruction and enable students to progress faster.

Putka. The set of platforms concludes Putka that is used predominantly for
competitive programming on a national (ACM Slovenia RTK - national level
Olympiad in informatics, ACM Slovenia UPM - national level of ICPC compe-
tition) and international level (CEOI, CERC). It also contains a rich collection
of tasks that is accompanied with their solutions and explanations in Zbirka
rešenih nalog (Booklet of solved tasks).

2.2 I-Textbooks

Due to changes in the curricula in 2013, it was necessary to write a new text-
book for Informatics that replaced the old one, which was oriented very strongly
towards computing literacy. Authors decided to write an interactive textbook
that would be accessible online free of charge [17]. The i-textbook Informat-
ics 1 covers four topics: programming and algorithms, systems, networks and
distributed systems, and informatics and society [1]. It is well received by teach-
ers, especially since it is constantly updated, mostly through teachers’ input
(e.g. errors discovered, suggestions). At the moment, the i-textbook Informatics
2 is also being developed, covering topics of information presentation, knowl-
edge technology, and object-oriented programming. The authors plan to give
teachers even greater opportunities to actively participate in the creation of the
i-textbook, especially by providing opinions and evaluations of the content itself.

I-textbook is designed so that one can create different sequences of learning
units and add own learning units as needed. The modularity and the possibility
to adapt the i-textbook to one’s own needs are considered a great advantage.

Since the i-textbook can be used also offline, it is designed as a series of
interconnected static web pages. Interactivity is implemented using JavaScript,
which allows for a single web page to be executed locally in a browser. In addition
to the content, the authors also focused on the use of i-textbooks on different
devices. This was mainly achieved by automatically adapting most of the content
to the screen size.

On the other hand, when the i-textbook is used online, it provides a rich set
of hyperlinks to other materials and platforms. For the former the inclusion of
appropriate matura examination tasks with each learning unit is being imple-
mented. Each learning unit is linked to the national SIO.si platform with class
materials, and to the Tomo platform.

Textbooks and Materials for Teaching Computer Science in Slovenia 143

The chapter on programming and algorithms was reused in the i-textbooks
Slikovno programiranje about block-based programming and Malina in piton on
physical computing. The first uses Blockly instead of Python as the programming
language and links to Pǐsek instead of Tomo. The second i-textbook uses the
physical computing as a means to learn programming.

All of the available i-textbooks are released under Creative Commons license,
more specifically they are released under CC BY-NC-SA 2.5 SI.

The usefulness of Informatics 1 i-textbook was evaluated with a survey of
61 CS teachers [17]. More than 90% of the teachers felt that the content was
well explained. The interactive elements were also highly rated, especially the
animations, the integrated Python interpreter, and the tasks with immediate
feedback. Figure 2 shows the most frequent uses of the textbook.

Fig. 2. Frequency of different uses of i-textbook in lessons.

3 Research on Teacher’s Opinions on Existing
E-Materials and I-Textbooks for CS

Through a survey of CS teachers, we aimed to assess the usefulness of existing
materials and environments for teaching selected topics. The study was based
on a combination of qualitative and quantitative research methods. As part of
the survey, we were interested in what materials teachers use, how often they
use them, and in which grades. We wanted to know what their needs were for
materials on various topics: computer systems, data and analysis, algorithms
and programming, networks and the Internet, and the effects of computing. We
also investigated what features of e-materials are most important to teachers,
what their experiences have been with using them, and what requirements they
have for the materials.

3.1 Sample Description and Analysis of Responses

CS teachers were invited to complete the survey in early 2022. Responding 156
teachers were of different age groups and have been teaching CS and informat-
ics subjects for different periods of time. All age groups were well represented,

144 Š. Cerar et al.

with the majority of teachers (83%) having up to 25 years of teaching experi-
ence. The majority of teachers surveyed teach or taught various CS subjects at
basic education. Computer club was run by 53% of the teachers surveyed. High
school subject Informatics was taught by 29% of the teachers. Computer science
subjects in vocational high school were taught by 16% of the respondents.

The sample of teachers surveyed seems to be very motivated to improve their
teaching: 57% attend PD programs more than once per year and 28% attend
PD at least once a year. 76% of respondents are mentors to students in the
computational thinking competition Bober, 32% mentor students in the ACM
Slovenia Pǐsek competition and 11% mentor students in the high school program-
ming competition ACM Slovenia RTK. 19% of respondents are not mentors to
students in CS competitions.

Fig. 3. Frequency of use of existing materials in lessons.

Teachers use a variety of materials in their teaching (Fig. 3), but most fre-
quently they use tasks from the Bober competition. They most often use mate-
rials for learning Scratch, which is likely because basic education teachers com-
monly use Scratch in their classes, as it can be derived from their responses.
Materials from Code.org, and Vidra are also popular. Teachers also use the Pǐsek
portal, i-textbooks from the Lusy library, and educational computer games. Old
matura tasks and the Project Tomo system are used by majority of high school
teachers. Those teaching physical computing, use special learning materials for
this purpose.

For practicing, teachers mostly use tasks from the Bober competition (62%),
Scratch materials (61%), materials from Code.org (57%), and the Pǐsek portal
(48%). Secondly, for frontal teaching they use Scratch materials (45%), materials
from the portal Vidra (40%), i-textbooks from Lusy library (40%), tasks from

Textbooks and Materials for Teaching Computer Science in Slovenia 145

the Bober competition (34%), and the portal Pǐsek (32%). Finally, as additional
teaching materials, teachers use tasks from the Bober competition (45%), Scratch
materials (27%), materials from Code.org (27%), portal Pǐsek (25%), materials
from the Vidra portal (24%), i-textbooks on Lusy library (24%), and educational
computer games (23%).

We also surveyed teachers on their needs and current situation of instruc-
tional materials. The teachers’ answers show that Algorithms and Data Struc-
tures is the most well covered topic and that there are enough high-quality
materials for this topic (29% of respondents agree). The greatest need for new
high-quality learning materials is on the topic Networks and the Internet. The
biggest gap between the need and the current situation is in the topics of Com-
puter Systems and Impact of Computing. There is also a need to create addi-
tional high-quality materials for Data Science.

CS teachers stress the importance of integrating interactive tasks into i-
textbooks (88%) and aligning content with the curriculum (82%). Three quarters
of respondents deem automatic verification of task solution correctness an impor-
tant part of i-textbooks. 65% of respondents indicate that ease of navigation in
the e-textbook and inclusion of multimedia elements are also important. Nearly
half (45%) of respondents would like e-textbooks to be customizable, to have
content added to them, or to have certain parts removed or changed.

The question about experiences with using existing e-textbooks and interac-
tive materials was answered by 67 primary education teachers, 30 high school
teachers, and 10 vocational high school teachers. The opinions of primary edu-
cation teachers are divided: 23 of them had good experiences, 17 had mixed
experiences, and 11 had bad experiences. As an example of a good resource,
teachers highlighted the portal Pǐsek and the interactive tasks on Code.org.

A very important comment was the observation that a number of high-quality
interactive materials have been produced through different projects in the past,
but these are no longer maintained and are consequently outdated. They also
point out that many learning materials are not adapted to the basic education
level and are therefore unsuitable for students at this age. The problems are
non-systematic escalation of the complexity of tasks, and for students in grades
4–6 the lack of learning materials in Slovene. Teachers noted that there are many
high-quality teaching materials in foreign languages. Many of them translate the
resources, but due to an uncoordinated approach, their efforts are unnecessarily
multiplied.

Most high school teachers had good (14 teachers) or mixed (13 teachers) expe-
riences with e-textbooks and interactive learning materials. Only one teacher
expressed the opinion that the available materials were inadequate and that she
has to create them herself. The most frequently used resource for high school
teachers is the i-textbook Informatics 1. It is perceived by teachers as useful,
professionally relevant and also interesting for students. They also emphasise
the importance of interactive tasks with immediate feedback.

The teachers in the secondary CS schools had good experiences with the
use of e-textbooks and interactive learning materials. Only one teacher had a

146 Š. Cerar et al.

decidedly bad experience. As a disadvantage, they pointed out that e-textbooks
are sometimes too in-depth for the level of knowledge they require from their
students. The main positives they expressed are ease of use, and the interactive
tasks that allow students to get real-time feedback.

Teachers of other secondary schools pointed out that there is a good i-
textbook for high schools, but not for other secondary schools. A significant
number of them use at least part of this i-textbook for their work. They miss a
list of different learning materials to help them design their own learning mate-
rials for the students. They also pointed out the need for regular updates of
i-textbooks and other learning materials.

Teachers pointed out the following reasons for integrating interactive learning
materials into CS lessons:

– “Interactive materials are more attractive to students because they provide
a sense of involvement.”

– “E-textbooks are very welcome in classroom, because they allow the teacher
to let students work at their own pace.”

– “In high school, the e-textbook is excellent and students get the full support
they need in the subject of informatics. The students themselves were very
complimentary about the i-textbook in the surveys we conducted at the end
of the school year.”

At the same time, teachers emphasize the importance of direct contact between
students and teachers and are not “afraid” that modern i-textbooks and
resources will make the teacher’s job obsolete. E-textbooks and interactive mate-
rials are useful as supporting material for learning new topics, consolidating
knowledge, providing immediate feedback on solutions of various tasks, and for-
mative knowledge assessment.

Teachers were also asked what they miss in existing e-textbooks and interac-
tive teaching materials. Basic education teachers pointed out that many of the
resources are not updated (10 teachers). Teachers would like to see a collection of
materials (9 teachers) to assist them in teaching CS subjects in basic education.
They also wish to have exemplary lessons and useful advice for teaching indi-
vidual content areas (7 teachers). They would like to see high-quality interactive
learning materials with tasks that are adapted to the knowledge and interests of
basic education children (8 teachers) and allow for differentiation.

Among high school teachers, we see a slightly lower demand for new interac-
tive materials, which might be related to the fact that the i-textbook Informatics
1 is available. However, teachers pointed out that not all learning objectives are
covered (15 teachers). 9 teachers would like to see more tasks or collections of
tasks, and would also like the tasks to allow for differentiation between students
(3 teachers) and for the tasks to be more practical (2 teachers).

4 Conclusions and Plans

According to [8,15,20] the desired characteristics of a good e-textbook or e-
material are:

Textbooks and Materials for Teaching Computer Science in Slovenia 147

– Online availability: the e-textbook/material should be available online, with
the ability to download and use it without an internet connection.

– Flexibility: it must be flexible to meet the needs of individual teachers, stu-
dents and groups of students.

– Cost-effectiveness: developing e-textbook is more expensive than developing a
traditional textbook due to the additional features and technological require-
ments. However, considering the entire life cycle of the textbook, with all
updates, corrections, and the possibility of using certain components in other
e-textbooks and other teaching materials, the total cost should be comparable
or even lower.

– Sustainability: the e-textbook/material must allow adaptation to technologi-
cal changes.

– Interoperability: the e-textbook should be accessible in different learning envi-
ronments and with different tools.

– Usefulness in different pedagogical situations: In addition to use in face-to-
face teaching, laboratory exercises, group work, flipped learning, homework,
it is important to use and adapt individual parts of several e-textbooks to
create a customised version of the e-textbook.

The following recommendations are well considered when creating e-textbooks
[7,8,13]:

– Content and format must be separate.
– The material that is part of the e-textbook must be modular, allowing content

to be added and removed.
– It is desirable that the technologies used are based on open source code.
– E-textbooks and all their parts must be transferable to different learning

environments (e.g., online classrooms, learning management systems).
– E-textbooks within a given school environment should have a simple and

consistent user interface.

We can conclude that the e-textbooks and e-materials used by teachers and
students learning and teaching CS in Slovenian schools, presented in this paper,
take into account most of the features and recommendations mentioned above.
To a lesser extent, these materials can be adapted to individual needs and context
of use [13,15].

CS teachers emphasize the importance of integrating interactive tasks into
e-textbooks and the alignment of the content of textbooks with the subject cur-
riculum. They believe that e-textbooks and interactive tutorials help them teach
the subject matter, consolidate knowledge, check students’ knowledge, as well
as provide immediate feedback. Teachers miss high-quality materials for teach-
ing and learning the elective CS subjects in the second educational cycle and
materials for data and analysis, and CS effects on society, especially on popular
topics such as artificial intelligence, security, and cryptography. Teachers would
like to get examples of lesson plans for individual topics and more materials in
Slovenian. Teachers would also like to see more examples and exercises of varying
complexity.

148 Š. Cerar et al.

In the future, e-textbooks and interactive materials in Slovenian should be
provided, covering all topics from the curricula and regularly updated in line
with the research in Computer Science education.

References

1. Anželj, G., Jerše, G., Lokar, M.: Blockly, pǐsek in poučevanje programiranja =
blockly, pǐsek and teaching programming. In: Rajkovič, U., Batagelj, B. (eds.)
Education in information society - VIVID 2018: Conference Proceedings of the 21st
International Multiconference Information Society - IS 2018, pp. 11–19. Založba
UL FRI (2018). http://zalozba.fri.uni-lj.si/VIVID2018.pdf

2. Bell, T., Vahrenhold, J.: CS unplugged—how is it used, and does it work? In:
Böckenhauer, H.-J., Komm, D., Unger, W. (eds.) Adventures Between Lower
Bounds and Higher Altitudes. LNCS, vol. 11011, pp. 497–521. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98355-4 29

3. Brodnik, A., et al.: Snovalci digitalne prihodnosti ali le uporabniki?: poročilo
strokovne delovne skupine za analizo prisotnosti vsebin računalnǐstva in infor-
matike v programih osnovnih in srednjih šol ter za pripravo študije o možnih
spremembah (RINOS). Ministrstvo za izobraževanje, znanost in šport, Ljubljana
(2018)

4. Demšar, I., Demšar, J.: Računalnǐstvo brez računalnika. In: Jurǐsevič, M. (ed.)
Motiviranje nadarjenih učencev za učenje naravoslovja: zbornik povzetkov. p. 38.
Pedagoška fakulteta (2013)

5. Edgcomb, A., Vahid, F., Lysecky, R., Lysecky, S.: Getting students to earnestly
do reading, studying, and homework in an introductory programming class. In:
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2017, pp. 171–176. ACM, New York (2017). https://doi.org/
10.1145/3017680.3017732

6. Edgcomb, A.D., Vahid, F.: Effectiveness of online textbooks vs. interactive web-
native content. In: 2014 ASEE Annual Conference & Exposition, pp. 24.460.1-
24.460.10. ASEE Conferences, Indianapolis, Indiana (2014). https://doi.org/10.
18260/1-2-20351

7. Ericson, B.: An analysis of interactive feature use in two ebooks. In: Sosnovsky,
S.A., Brusilovsky, P., Baraniuk, R.G., Agrawal, R., Lan, A.S. (eds.) Proceedings
of the First Workshop on Intelligent Textbooks co-located with 20th International
Conference on Artificial Intelligence in Education (AIED 2019), vol. 2384, pp. 4–17.
CEUR-WS.org, Ulm (2019)

8. Ericson, B.J., Rogers, K., Parker, M., Morrison, B., Guzdial, M.: Identifying design
principles for CS teacher ebooks through design-based research. In: Proceedings of
the 2016 ACM Conference on International Computing Education Research, pp.
191–200. ACM, New York (2016). https://doi.org/10.1145/2960310.2960335

9. Fouh, E., et al.: Design and architecture of an interactive etextbook-the opendsa
system. Sci. comput. Program. 88, 22–40 (2014). https://doi.org/10.1016/j.scico.
2013.11.040

10. Jerše, G., Koren Ošljak, K., Lokar, M.: Poučevanje programskih konceptov: spletna
zbirka nalog s samodejnim preverjanjem = teaching basic programming concepts:
Online handbook with automated verification. In: Rajkovič, U., Batagelj, B. (eds.)
Education in Information Socienty - VIVID 2019: Conference Proceedings of 22nd
International Multiconference Information Society - IS 2019, vol. J, pp. 106–111.
Institut ”Jožef Stefan” (2019)

http://zalozba.fri.uni-lj.si/VIVID2018.pdf
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1145/3017680.3017732
https://doi.org/10.1145/3017680.3017732
https://doi.org/10.18260/1-2-20351
https://doi.org/10.18260/1-2-20351
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1016/j.scico.2013.11.040
https://doi.org/10.1016/j.scico.2013.11.040

Textbooks and Materials for Teaching Computer Science in Slovenia 149

11. Jerše, G., Lokar, M.: Providing better feedback for students solving programming
tasks using project tomo. In: Krusche, S. (ed.) Software Engineering Workshops
2018: SE-WS 2018: combined proceedings of the Workshop of the German Software
Engineering Conference 2018 (SE 2018), pp. 28–31. CEUR-WS (2018)

12. K-12 computer science framework. https://k12cs.org/. Accessed 12 May 2022
13. Korhonen, A., et al.: Requirements and design strategies for open source inter-

active computer science ebooks. In: Proceedings of the ITiCSE Working Group
Reports Conference on Innovation and Technology in Computer Science Education-
Working Group Reports, pp. 53–72. ACM, New York (2013). https://doi.org/10.
1145/2543882.2543886

14. Kotnik, K., Lasič, N., Lokar, M., Vogrinčič, R., Zdovc, M.: Praktične izkušnje
pri poučevanju programiranja v srednji šoli z uporabo storitve projekt tomo =
practical experiences in teaching high school programming with the projekt tomo
platform. In: Rajkovič, U., Batagelj, B. (eds.) Education in Information Socienty -
VIVID 2018: Conference Proceedings of 21st International Multiconference Infor-
mation Society - IS 2018, pp. 143–150. Založba UL FRI (2018)

15. Lokar, M.: The future of e-textbooks. Int. J. Technol. Math. Educ. 22(3), 101–106
(2015)

16. Miller, B.N., Ranum, D.L.: Beyond pdf and epub: toward an interactive textbook.
In: Proceedings of the 17th ACM Annual Conference on Innovation and Technol-
ogy in Computer Science Education, pp. 150–155. ITiCSE 2012, ACM, New York
(2012). https://doi.org/10.1145/2325296.2325335

17. Mori, N., Lokar, M.: A new interactive computer science textbook in Slovenia. In:
Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 167–178. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 14

18. Pesek, I., Zmazek, B., Mohorčič, G.: Od e-gradiv do i-učbenikov. In: Pesek, I.,
Zmazek, B., Milekšič, V. (eds.) Slovenski i-učbeniki, pp. 8–16. Zavod Republike
Slovenije za šolstvo, Slovenski i-učbeniki (2014)

19. Pollari-Malmi, K., Guerra, J., Brusilovsky, P., Malmi, L., Sirkiä, T.: On the value
of using an interactive electronic textbook in an introductory programming course.
In: Proceedings of the 17th Koli Calling International Conference on Computing
Education Research, pp. 168–172. ACM, New York (2017). https://doi.org/10.
1145/3141880.3141890

20. Shaffer, C.A., Naps, T.L., Fouh, E.: Truly interactive textbooks for computer sci-
ence education. In: Rößling, G. (ed.) Proceedings of the Sixth Program Visualiza-
tion Workshop, pp. 97–103. Darmstadt, Germany (2011)

21. Zhang, Y., Kudva, S.: Ebooks vs. print books: readers’ choices and preferences
across contexts. In: Proceedings of the American Society for Information Sci-
ence and Technology, vol. 50, no. 1, pp. 1–4 (2013). https://doi.org/10.1002/meet.
14505001106

https://k12cs.org/
https://doi.org/10.1145/2543882.2543886
https://doi.org/10.1145/2543882.2543886
https://doi.org/10.1145/2325296.2325335
https://doi.org/10.1007/978-3-319-46747-4_14
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1002/meet.14505001106
https://doi.org/10.1002/meet.14505001106

Author Index

Anželj, Gregor 138

Bellettini, Carlo 54
Bergner, Nadine 3
Brodnik, Andrej 138

Cerar, Špela 138
Chevalier, Morgane 125

Dagienė, Valentina 40
Dobiáš, Václav 113

Gaál, Bence 90
Garcha, Sonia 40
Gülbahar, Yasemin 27

Jevsikova, Tatjana 66

Kaarto, Heidi 40
Kuka, Lisa 103

Laakso, Mikko-Jussi 40
Lokar, Matija 138
Lonati, Violetta 54

Marbach, Jeremy 15
Masiulionytė-Dagienė, Vaida 66
Maximova, Alexandra 15
Michaeli, Tilman 78
Monga, Mattia 54
Morpurgo, Anna 54

Nančovska Šerbec, Irena 138
Nenner, Christin 3

Parriaux, Gabriel 125
Parviainen, Marika 40
Pellet, Jean-Philippe 125
Pluhár, Zsuzsa 40

Romeike, Ralf 78
Rottenhofer, Marina 103

Sabitzer, Barbara 103
Shah, Vipul 40
Šimandl, Václav 113
Staub, Jacqueline 15
Stupurienė, Gabrielė 27

Vaníček, Jiří 113

	 Preface
	 Organization
	 Contents
	State of Research
	Informatics Education in German Primary School Curricula
	1 Introduction
	1.1 International State of Informatics Education in Primary Schools
	1.2 CSTA K-12 Computer Science Standards

	2 Description of Research Object
	2.1 German Education System
	2.2 Overview of Primary School Curricula
	2.3 Research Questions and Design

	3 Results
	4 Interpretation of the Results
	5 Discussion of the Research Methodology
	6 Outlook
	References

	A Tool to Create and Conduct Custom Assessments in Turtle Graphics
	1 Programming Assessment – A Teacher's Nightmare?
	2 A Programming Curriculum for Grades 3–4
	2.1 The Idea Behind the Turtle
	2.2 The Vocabulary
	2.3 The Curriculum

	3 Defining a Data Structure for Task Representation
	3.1 Pixels and Lines – The Atomic Structures of the Turtle Universe
	3.2 Introducing the Concept of Color
	3.3 Preparing Student Programs for Verification
	3.4 How to Verify the Correctness of Student Solutions
	3.5 The Problem of Comparison on a Pixel Level
	3.6 Introducing Constraints

	4 The Spectrum Between Right and Wrong
	5 Conclusion
	References

	Informatics at Primary Education: Teachers' Motivation and Barriers in Lithuania and Turkey
	1 Introduction
	1.1 Informatics in Primary Education in Lithuania
	1.2 Informatics at Primary Education in Turkey
	1.3 Summary of Two Countries Situation

	2 Research Methodology
	3 Results
	3.1 Case of Lithuania
	3.2 Case of Turkey

	4 Discussions and Conclusion
	References

	Bebras Challenge in a Learning Analytics Enriched Environment: Hungarian and Indian Cases
	1 Introduction
	2 Bebras and ViLLE in Connection to Computational Thinking
	2.1 The Bebras Challenge
	2.2 ViLLE Learning Environment

	3 Study Settings - The Research and Methodology
	4 Bebras Challenge in Hungary and India
	5 The Pilots in Hungary and India
	5.1 Process of the Piloting
	5.2 Results of the Pilots

	6 Results in Hungarian Challenge
	6.1 Teachers’ Feedbacks

	7 Discussion and Future Work
	Appendix A - Schemas
	Appendix B - Figures Representing Data in Hungarian Bebras Challenge 2021
	References

	How is Two Better Than One? An Observational Study on the Impact of Working in Pairs When Solving Bebras Tasks
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Analysis Methods

	3 Findings
	3.1 Comparing Performances of Singles and Doubles
	3.2 Impact of Tasks Content and Features

	4 Limitations and Threats to Validity
	5 Related Work
	6 Conclusions
	References

	Assessing Computational Thinking: The Relation of Different Assessment Instruments and Learning Tools
	1 Introduction and Background
	2 Methods
	2.1 Learning Tools and Methodology
	2.2 Respondents
	2.3 Instruments
	2.4 Data Analysis

	3 Results
	3.1 An Association of Students’ CTt and CTS Results
	3.2 CT Assessment Scores in Learning Tool and Gender Groups

	4 Discussion and Conclusion
	4.1 Relationship Between Students’ CTt and CTS Scores
	4.2 Differences in the CTt and CTS Tests’ Results in Students’ Groups by Learning Tool and Gender
	4.3 Limitations and Future Research Directions

	References

	``I Now Feel that this is Unfair'' A Case Study on the Effects of Professional Development for Debugging in the K-12 Classroom
	1 Introduction
	2 Theoretical Background
	3 A PD Workshop on Debugging
	4 Methodology
	5 Results
	5.1 Teacher I
	5.2 Teacher II

	6 Discussion
	7 Conclusion
	References

	Robotics-Enhanced Natural Science in Primary Schools
	1 Introduction
	2 Presentation of Lessons and Tools Used
	2.1 The Tools Used
	2.2 Structure of the Lessons
	2.3 Presentation of Specific Topics Processed Using Robotics

	3 Students’ Results Compared to Previous years
	4 Feedback from Students
	4.1 Feedback Through the Interview
	4.2 Results of the Two Questionnaire Surveys

	5 Summary
	References

	Best Practice, Country, and Experience Reports
	Clear the Ring for Computer Science: A Creative Introduction for Primary Schools
	1 Introduction
	2 Background
	2.1 Early Computer Science Education
	2.2 Link Between Computer Science Core Concepts and Creative Approaches in the Field of STEAM
	2.3 JKU COOL Lab

	3 The COOL Computer Science Circus
	3.1 Let's Talk Binary
	3.2 Toast, Chocolate Cream and Magic Tricks
	3.3 Save the Bear
	3.4 Tame the Bees and Dance

	4 Methods and Results
	5 Conclusion
	References

	Bebras Tasks Based on Assembling Programming Code
	1 Introduction
	1.1 Motivation and Aim

	2 Methods
	2.1 Design
	2.2 Evaluation

	3 Results
	4 Conclusion
	References

	Design and Analysis of a Disciplinary Computer Science Course for Pre-service Primary Teachers
	1 Introduction and Context
	2 Related Work
	3 Structure and Content of the New Disciplinary Course
	3.1 Syllabus
	3.2 Operational Planning
	3.3 Evaluation

	4 Data Collection and Methodology
	4.1 Common Pre- and Post-Course Survey Questions
	4.2 Year-After Survey

	5 Analysis and Discussion
	5.1 Demographics
	5.2 Representation of Computer Science
	5.3 Declared and Assessed Mastery Levels of Subtopics
	5.4 Year-After Opinion

	6 Conclusion
	References

	Textbooks and Materials for Teaching Computer Science in Slovenia
	1 Introduction
	2 Textbooks and Materials for Computer Science Teaching
	2.1 Materials and Platforms
	2.2 I-Textbooks

	3 Research on Teacher's Opinions on Existing E-Materials and I-Textbooks for CS
	3.1 Sample Description and Analysis of Responses

	4 Conclusions and Plans
	References

	Author Index

