
Towards Causal Model-Based Engineering
in Automotive System Safety

Robert Maier(B) , Lisa Grabinger , David Urlhart , and Jürgen Mottok

Regensburg University of Applied Sciences, 93053 Regensburg, Germany
{robert.maier,lisa.grabinger,david.urlhart,

juergen.mottok}@oth-regensburg.de

Abstract. Engineering is based on the understanding of causes and
effects. Thus, causality should also guide the safety assessment of com-
plex systems such as autonomous driving cars. To ensure the safety of
the intended functionality of these systems, normative regulations like
ISO 21448 recommend scenario-based testing. An important task here
is to identify critical scenarios, so-called edge and corner cases. Data-
driven approaches to this task (e.g. based on machine learning) cannot
adequately address a constantly changing operational design domain.
Model-based approaches offer a remedy – they allow including different
sources of knowledge (e.g. data, human experts) into safety considera-
tions. With this paper, we outline a novel approach for ensuring auto-
motive system safety. We propose to use structural causal models as a
probabilistic modelling language to combine knowledge about an open-
context environment from different sources. Based on these models, we
investigate parameter configurations that are candidates for critical sce-
narios. In this paper, we first discuss some aspects of scenario-based
testing. We then provide an informal introduction to causal models and
relate their development lifecycle to the established V-model. Finally,
we outline a generic workflow for using causal models to identify critical
scenarios and highlight some challenges that arise in the process.

Keywords: SOTIF · Causality · Probabilistic reasoning ·
Model-based engineering · Scenario identification

1 Introduction

“A picture is worth a thousand words”, this saying best describes the idea behind
Model-based Testing (MBT) [16]. In MBT, it is essential to abstract a system,
process, or any other part of reality in a structured and comprehensible man-
ner. This can be achieved with models. They provide a common language for
communicating assumptions, relationships, and concepts among experts [5,16].
MBT is assumed to increase both, the efficiency and effectiveness of test case
specification, through a high degree of automation. It also benefits from the fact
that models can be reused or split into sub-models. This allows to add further
levels of detail iteratively while remaining transparent and modular.
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In the automotive industry, the increasing complexity of modern vehicles
challenges both, engineers and authorities. One of these challenges is how
to ensure system safety. There are standards for managing Functional Safety
(FS) [10] or the Safety Of The Intended Functionality (SOTIF) [11], but their
application in practice is not trivial. In SOTIF, safety assurance is based upon
scenarios. Creating, detecting, or specifying a sufficient set of those scenarios
is an active area of research [1,8,13,17–19,26]. The difficulty lies primarily in
the open-context environment that comes with real-life situations. A test set of
scenarios should include so-called corner and edge cases, critical combinations
of environmental and vehicle conditions. Discovering them by chance from real-
world test drive data is very unlikely. This creates the need for a new approach
to uncover scenarios, which takes multiple sources of knowledge into account.

MBT is very useful for describing and managing test cases during the devel-
opment of a system. Nevertheless, it is missing some capabilities required for
scenario-based approaches. One such capability is being able to reason under
uncertainty. Probabilistic reasoning makes it possible to partially compensate for
imperfect knowledge about an Operational Design Domain (ODD) by providing
likelihoods for a conclusion. Vice versa, statistical learning uses data generated
by real systems to build or improve models [22]. Probabilistic reasoning and sta-
tistical learning, show that models do not only provide a compact representation
of a system. Instead, they also serve to gain valuable insights into a system. Note
that, in both cases, human experts are needed to specify goals or provide missing
domain knowledge.

An implicit assumption for building most models is causality. Many interac-
tions among random variables encoded in a model can be interpreted as cause-
effect pairs. Depending on the use case, these relationships represent trigger-
ing conditions or temporal dependencies. If models obey causality, the insights
derived from them also become causal. This is crucial in the context of ensuring
system safety, where one of the main interests is to gain causal insights, e.g.
about causes of malfunctioning behaviour, triggering events, or the nature of
influences between system components.

If the relationships in a model are deterministic and stochastic, it can be
framed as a Probabilistic Graphical Model (PGM) [12,20]. Throughout many
domains, Bayesian Networks (BNs) are the most widely used PGMs. As [3,20]
show, BNs can also represent causality and can be linked to a more generic
representation called Structural Causal Models (SCMs) [20]. Both approaches
are based on sound formalism and an intuitive interpretation of the underlying
formal concepts, such as independence among variables.

In this paper, we propose a novel approach for ensuring automotive system
safety: causal model-based engineering. We use SCMs to specify an ODD and
derive scenario parameters for testing a system according to SOTIF. The paper
is structured as follows: we start by reviewing selected contributions to scenario-
based testing. Thereby, we take a closer look at problems that arise in the open-
context domain of automotive system safety. Next, we focus on the theoretical
foundation of our method. We present how causal probabilistic models are built
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and what constitutes an SCM. With that, we create an intuition for causal model-
based engineering in the automotive area. We proceed by discussing several
touchpoints of our method with FS and SOTIF and give a high-level view of
a modelling process. After outlining a workflow for identifying edge and corner
case scenarios, we point out some challenges in implementing our approach in
practice. Finally, we conclude with a summary as well as suggestions for future
research.

2 Related Work

The development of new techniques for (partial) autonomous driving vehicles
has made enormous progress in the last decade. This is attributable mostly to
the extensive use of software and, more recently, Machine Learning (ML) meth-
ods. It is possible to build a vehicle operating on state-of-the-art technology. To
actually deploy such a system, it has to be proven to be functionally safe [10].
As autonomous driving cars face a versatile and constantly changing environ-
ment [13], the plain validation of technical requirements is not sufficient. In
response, ISO 21448 proposes the concept of desired and predefined intended
functionality and advocates scenario-based testing to complement requirements-
based testing [11]. This renders the definition of appropriate scenarios a key
element for many verification and validation approaches.

2.1 Terminology of Scenarios

Bagschik et al. [2] suggest dividing the level of detail of scenarios into three cat-
egories. Functional scenarios describe the objects and environmental conditions
considered in a scenario – its parameters. Logical scenarios enhance the semantic
definition of these parameters by specifying their potential values. Finally, con-
crete scenarios constitute a specific instantiation of the parameter space defined
by a logical scenario. The particular scenario parameters can be linked to differ-
ent layers of abstraction as discussed in [1,24,28].

Based on a test objective, scenarios can be further categorized into common,
edge, and corner cases [9,14]. The latter two are usually distinguished by their
predictability. While edge cases are rare but often known in advance (e.g. bound-
ary values), corner cases depict unforeseen combinations of several parameters
with non-extreme values. In the context of SOTIF, it is necessary to consider all
three scenario categories. Whereas common scenarios can be easily captured by
a test drive or requirements, the specification of edge and corner cases is more
challenging.

In practice, scenarios are represented in a suitable data format such as traffic
sequence charts [6], ontologies [18], or object-oriented classes [25]. Due to their
widespread use in industry, the ASAM e. V. standardized exchange formats,
OpenDRIVE1 for managing road networks, and OpenSCENARIO2 for describ-
ing dynamic properties of scenario entities, are of particular interest.
1 https://www.asam.net/standards/detail/opendrive/.
2 https://www.asam.net/standards/detail/openscenario/.

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/
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2.2 Sources of Knowledge

A lot of work in scenario-based testing focuses on ML techniques and available
real-life data [4,8,9,26]. These approaches provide promising results, yet they
do not meet the challenge of an open-context environment. If the available data
are too sparse (in either scope or diversity), edge and corner cases can hardly
be detected. Moreover, the identified scenarios may only be valid for existing
systems. When new vehicles with different sensors or algorithms are deployed, the
available data may become obsolete. In other words: data alone is not sufficient
for scenario-based testing.

Neurohr et al. [19] outline, that a reliable safety-case argumentation should
involve human experts and data-driven methodologies. Experts are well suited to
specify causal relationships between scenario parameters on a qualitative level.
These informal descriptions can then be structured using linguistic methods such
as ontologies [1]. In contrast, data constitutes an objective source for a reliable,
quantitative system parametrization. Sampling, clustering, or counterexample
selection among many others are established methods for drawing information
from data [23]. As described before, due to a highly complex ODD, recorded
data will lack information, which can be provided by experts.

Only by relying on both, data and domain experts, a comprehensive test
database can be created. Ideally, these two sources of knowledge should be con-
sulted iteratively. As either semantic frameworks or plain data suffer from includ-
ing complementary information, a new methodology for describing a large and
constantly evolving ODD is needed.

3 Causal Models

All model-based approaches use some notation as a common language to convey
information about a system. In PGMs, this information consists of a set of
random variables, their stochastic information (e.g. probability distribution) as
well as their probabilistic relationships graphically represented as nodes and
edges [12,20]. PGMs like BNs not only provide a graphical notation, but also
define a mathematical framework for making use of the structural information
encoded in the model.

3.1 Terminology of Causal Models

The edges in a BN represent relationships of random variables. Thereby, they
encode additional information, such as dependencies and (conditional) indepen-
dencies among model elements. If two random variables are directly connected
by an edge, they are dependent. For non-adjacent nodes, the structure of sub-
graphs (so-called junctions, i.e. chains, forks, and colliders) needs to be consid-
ered. The corresponding concept is referred to as d-separation [7]. In short:
the random variables in a BN influence each other based on the respective



120 R. Maier et al.

graph topology. If data is consistent with this topology, dependence between
random variables found as correlation can also be identified graphically (i.e. d-
separation). Any inference (i.e. calculating probabilistic information) in BNs is
based on Bayes’ rule [12]. Independencies among random variables may simplify
inference. Because of the link between graph topology and independencies, the
joint probability distribution P (X) entailed by the model may be factorized as
a special case of the chain rule of probability as shown in formula 1. The oper-
ator pai (“parents of the variable xi”) refers to all random variables, which are
directly connected to xi by an edge pointing into xi in the graph.

P (X) =
∏

i

P (xi|pai) (1)

BNs can be created by algorithms working on data [27] or by human experts [15].
In the case of algorithmic model creation, the link between (in)dependency
assumptions in the data and their interpretation as junctions is exploited (i.e.
d-separation).

The graphical representation of a BN is built upon directed edges and repre-
sents a Directed Acyclic Graph (DAG). Whereas BNs by definition only model
associational relationships [3], they can also be used for modelling cause-effect
relations. In this case, the directed edges are given a causal interpretation [20]
and their graphical representation is called a causal diagram. Stochastic informa-
tion linking parent nodes to their children (i.e. the configuration of the parent
states affects the resulting conditional distribution of the child node) is then
considered as a probabilistic causal mechanism [3,20].

SCMs formalize a causal mechanism between a random variable xi and its
parents pai by so-called structural equations xi := fi(pai, ui) [3,20]. A formal
definition of SCMs can be given as:

Definition 1 (Structural Causal Model (SCM) [20, p. 203]).
A SCM is a triple M = 〈U,V,F〉 where:

1. U is a set of background variables (also called exogenous), that are determined
by factors outside the model;

2. V is a set {V1, V2, ..., Vn} of variables, called endogenous, that are determined
by variables in the model – that is, variables in U ∪ V; and

3. F is set of functions {f1, f2, ..., fn} such that each fi is a mapping from (the
respective domains of) Ui ∪ PAi to Vi, where Ui ⊆ U and PAi ⊆ V \ Vi and
the entire set F forms a mapping form U to V. In other words, each fi in
vi = fi(pai, ui), i = 1, ..., n ,assigns a value to Vi that depends (on the values
of) a selected set of variables in V ∪ U, and the entire set F has a unique
solution V (u).

Figure 1 exemplary visualizes the graphical notation of a causal diagram: three
junctions, an exemplary DAG, and its corresponding representation by structural
equations.
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Fig. 1. On the left side, the junctions chain, fork, and collider are depicted. In the
middle, an exemplary causal diagram (i.e. a BN structure) is shown including exogenous
influences ui of each random variable. On the right side, this diagram is represented
by its structural equations.

3.2 Inference in Causal Models

The probabilistic definition of a system (e.g. by an SCM) together with the
causal diagram (implied by this definition) forms a causal model. Causal models
define how the probability distributions of random variables change, if causal
mechanisms are modified. With that, causal models enable causal reasoning (i.e.
estimating causal effects of random variables among each other) [3,20].

Depending on the type of model used (e.g. BN, causal BN, or SCM), dif-
ferent levels of causal expressiveness [3] can be addressed. This is commonly
pictured as the “ladder of causation” [21]. The three distinct levels are defined
as associational (i.e. insights gathered by “seeing”), interventional (i.e. insights
gathered by “doing”), and counterfactual (i.e. insights gathered by “imagining”)
reasoning. For our application, results gained by counterfactual queries are of
great interest. Counterfactual metrics such as the probability of necessity (PN)
or the probability of sufficiency (PS) allow distinguishing the kind of cause-effect
relationship between (non-adjacent) random variables based on a likelihood [20,
p. 283].

4 Causal Models and Scenario-Based Testing

In the following, we examine the link between the normative regulations ISO
26262 and ISO 21448, causal models, and scenario-based testing. Moreover, we
present a possible approach for deriving corner and edge cases.

4.1 Models in Automotive Safety Engineering

The term model can be interpreted differently depending on the context of use.
In model-based design, models specify the functional properties of a system and
therefore are the central element of a development cycle. In software develop-
ment, models are often associated with MBT. There, one of the central goals “is
to formalize and automate as many activities related to test case specification
as possible” [16, p. 2]. In automotive system safety, models are often used to
describe the dynamic behaviour of a component (e.g. Markov-Model, Petri Net)
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Fig. 2. A causal model interacts with different knowledge bases: data, experts, and
normative regulations such as ISO 26262 or ISO 21448. Their modelling approaches
and promoted artefacts contribute to building a model of an ODD. On the other hand,
the knowledge bases benefit from the causal insights gained through the model.

or a logical connection of events (e.g. Fault Tree Analysis (FTA), Event Tree
Analysis (ETA)). Thereby, the focus is on decomposing a complex system or
process into tractable components or events and their interactions. Across all
areas, models can be viewed as a standardized way of describing a use case. As a
common language (i.e. visual representation and/or mathematical specification),
they simplify and improve engineering.

While standards like ISO 26262 rely on requirement-based testing and anal-
ysis methods such as Hazard Analysis and Risk Assessment (HARA) or Failure
modes, effects, and diagnostic analysis (FMEDA), ISO 21448 advocates giving
attention specifically to the ODD. Systems are typically designed, developed,
and tested with an ODD in mind. Yet, there is no model-based framework for
explicitly specifying elements of an ODD and their interactions. Following the
considerations in Sect. 2, such a model-based framework should take into account
different sources of knowledge and allow for an iterative construction and con-
tinuous adaptation of models. Causal models as described in Sect. 3 meet those
demands.

Figure 2 visualizes the different knowledge bases that interact with a causal
model. These interactions are two-sided. Data, expert knowledge, ODD specifi-
cations, and artefacts from standard-encouraged analysis approaches (e.g. results
of an FMEDA) can help to build a causal model. A model may then be used
as an approximation of an ODD, or provide insights to improve data collection,
fault management, or the design of associated systems.

4.2 Development of Causal Models

Causal models follow an iterative development lifecycle [15], as outlined in Fig. 3.
This process can be roughly divided into the following steps:

Desired Insight (step 1): The intended use of the causal model is specified.
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Fig. 3. On a high-level view, the iterative development lifecycle for causal models can
be divided into distinct steps. The outlined process can be related to the established
V-model (grey envelope) approach as specified by ISO 26262 and ISO 21448.

Modelling Scope (step 2): Depending on the use case, the required expertise
of domain experts and potential data sources are identified. Target variables
(i.e. effects of interest) are identified.

Knowledge (step 3): Domain experts are introduced to the use case and the
basic concepts of causal modelling. This includes organizing an introduc-
tory session, creating a first model draft through guided creativity techniques
(e.g. brainstorming), and enabling access to relevant data. As mentioned in
Sect. 4.1, many artefacts of normative modelling approaches (e.g. results of an
FMEDA, HARA, or FTA) might be re-used as sources of knowledge. Already
generated insights can speed up the process of causal model creation. More-
over, they allow uncovering gaps in the system and ODD specifications.

Topology (step 4): Relevant random variables, their properties (e.g. value
types, units, or ranges), and their relationships with each other are identi-
fied. A causal diagram representing this information is created either through
expert elicitation, algorithmic approaches [27], or a combination of both.

Parameterization (step 5): The causal diagram is enhanced by the prob-
ability distributions of its random variables and by structural equations as
a formalization of causal mechanisms. This is done based on either expert
knowledge, data, or a combination of both. Since any change in the model
topology requires a re-evaluation of the parameters, the causal diagram should
be developed as far as possible before starting the current step.

Verification (step 6): The current version of the causal model is tested for
internal consistency. This includes checking the (in)dependence assumptions
implied by the model against the data and comparing inference estimates to
expected results.

Validation (step 7): The current version of the causal model is tested for its
fit to the use case. With regard to the intended use, the completeness and
level of detail are examined.
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Causal Model (step 8): Based on the findings of the verification and vali-
dation step, a new iteration of the entire process may be triggered. When a
causal model adequately addresses a use case, it becomes the artefact of the
development lifecycle and is ready for productive use.

In the automotive industry, an established development process is given by the V-
model [10,11]. Creating causal models as described above can be easily adapted
to fit into this established scheme, as suggested in Fig. 3.

4.3 Towards Discovering Edge and Corner Cases

As described in Sect. 2, identifying edge and corner cases is important for
scenario-based testing. A common approach to find suitable scenario candidates
is to use ML methods [9,29]. Due to their data-driven nature, three major prob-
lems arise. First, because of an open-context environment, a full description of
an ODD is not possible. Second, even with a constrained model, the number of
potentially relevant combinations of scenario parameters is intractable. Finally,
the available data may not be suited to the use case: for example, real-world test
drives carried out by human drivers may encounter critical situations, which are
not necessarily relevant for autonomous systems. Those problems already show
that purely data-driven methods are not enough to identify edge and corner
cases. Instead, different sources of domain knowledge are to be used.

As argued before, SCMs constitute a suitable framework for modelling an
ODD from different knowledge sources. Above that, SCMs allow for causal rea-
soning (e.g. computing counterfactual estimates such as PS and PN) [20]. Recall
that those causal metrics can provide information about the causal relationships
of random variables in the model. This allows exploring, which random variables
(i.e. scenario parameters) influence a variable of interest (i.e. the effect we care
about).

Edge or corner cases are not limited to one influencing factor, but can result
from a combination of two or more parameters. Moreover, only certain value com-
binations of contributing parameters may result in a critical scenario. Because
of that, we need to consider each configuration of parameters (tuple) in the
model. By using causal metrics, all tuples and their respective parameter spaces
are evaluated. The resulting hot spots (i.e. local and global extrema) can be
interpreted as candidate areas for edge or corner case parameter combinations.
Figure 4 builds intuition for the overall process.

To better understand the potential of our approach, suppose we are inter-
ested in whether a sensor system can detect an obstacle or not. Based on domain
knowledge, we can build a causal model that describes the impact of environ-
mental effects, occlusions, or hardware failure rates on this system. Finding a
critical scenario (i.e. detection failed) amounts to finding a configuration of model
parameters that causally affect the modelled detection capability.

The presented approach can be framed by the engineering process shown in
Fig. 5. The individual steps are defined as follows:
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Fig. 4. A fully specified causal model (i.e. an SCM) is queried with regard to a param-
eter of interest (e.g. ability to detect an obstacle). The estimates of these queries relate
to a parameter space for every combination of parameters. Hot spots in these parameter
spaces can be interpreted as candidates for edge or corner cases.

Causal Model (step 1): Based on a use case (e.g. investigating detection
issues), a relevant part of the related ODD is modelled in an iterative process
(see Sect. 4.2) or an already available causal model (i.e. an SCM) is selected.

Target Variable (step 2): According to the present use case, a suitable random
variable (i.e. the parameter of interest) is chosen. This random variable will
serve as a query target, for which all causal metrics are evaluated.

Tuples (step 3): A sub-set of random variables (i.e. parameter tuple) is chosen
based on the causal diagram and the testing scopes. By selecting the parame-
ter combinations to be considered, we implicitly specify functional scenarios.
Since an underlying SCM assigns value ranges for the selected parameters,
we additionally gain potential logical scenarios [2].

Causal Metrics (step 4): Causal metrics like PN and PS are computed for the
selected parameter tuples (i.e. potential causes) with regard to the selected
target variable (i.e. effect of interest).

Relevant Tuples (step 5): The evaluated tuples are post-processed. This
includes the detection of edge and corner cases (see Fig. 4) as well as the
evaluation of the involved parameters in the context of safety (e.g. SOTIF
relevance). Critical candidates implicitly describe concrete scenarios, as they
represent a specific instantiation of the modelled parameter space.

In the automotive domain, elements of a scenario (as defined by [11]) can be
broken down into several layers [2]. Each layer comprises different scenario enti-
ties, ranging from road networks to environmental influences. Various exchange
formats for automated testing (e.g. [18,25]) build on this decomposition. Ideally,
we want to provide scenario parametrizations for use in e.g. simulations. The
results obtained with the above methodology must therefore remain compatible
with the layer decomposition. This can be achieved by adjusting the modelling
scope.

In general, the random variables in a causal model can be specified arbitrarily.
Because of that, parameter configurations discovered from causal models can
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Fig. 5. The causal model-based scenario parameter detection can be represented as an
engineering process. Relevant parameter tuples (i.e. sub-sets of random variables) are
evaluated and post-processed. Several intermediate process artefacts can be related to
functional, logical, or concrete scenarios.

usually not be linked directly to a specific exchange format (e.g. OpenDRIVE or
OpenSCENARIO). This is in large part a semantic problem. To solve it, causal
models need to be developed with the scenario layer entities in mind.

As exchange formats usually define a set of parameters, it is enough to simply
include those defined parameters as required building blocks of the causal model.
The parameter configurations resulting from such scenario-centric causal models
can then be mapped automatically to a common scenario exchange format.

With that, our approach bridges the gap to model-based testing by provid-
ing a model-driven parametrization for executable scenarios (e.g. for simulation).
This allows a joint evaluation and verification of a system. Figure 6 depicts the
resulting adjustment of the engineering process with a focus on executable sce-
nario exchange formats.

Fig. 6. In the automotive domain, scenario entities can be categorized into several
layers [2]. To allow scenario-based testing according to [11], causal models need to
include those entities. This allows mapping generated results to established exchange
formats, which can then be used for system simulation and verification.
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5 Conclusion

Causal models can be used to abstract an ODD. When they are described with
probabilistic frameworks like SCMs, causal inference is enabled. Various sources
of information (e.g. data, experts) can be jointly used for the creation of causal
models, compensating for the limitations of using a sole knowledge source. As the
associated development lifecycle can be related to the V-model, causal model-
based engineering can be integrated into established industrial processes.

Scenario-based testing is considered an integral part of evaluating SOTIF.
Scenarios can be described and abstracted in different ways. Besides the demand
to cover a wide range of common situations (e.g. by a scenario database), critical
scenarios are of great interest. Discovering such critical scenarios (i.e. edge and
corner cases) is non-trivial.

In this paper, we outline an approach for identifying edge and corner cases
based on causal models. We propose to use causal metrics such as the prob-
ability of necessity or the probability of sufficiency to identify critical param-
eter configurations. Ideally, discovered candidate tuples can serve as an input
for simulation environments. This requires that the causal model itself contains
scenario-centric entities. Once these random variables match with the parame-
ters defined in model exchange formats like OpenDRIVE or OpenSCENARIO,
an automated mapping of results becomes feasible.

When using causal models, the common problem of test case explosion based
on potential parameter combinations remains. Even though concepts like d-
separation seem promising to restrict some combinatorics, an evaluation of can-
didate tuples still suffers from the curse of dimensionality. Furthermore, in our
approach, the decision for or against critical candidate scenarios is based on
thresholds for causal metrics. The exact definition of these thresholds is an open
research topic. Above that, in the context of automotive systems, additional
safety considerations (e.g. severity, exposure, controllability, or potential result-
ing loss) of contributing factors must be taken into account. Additional research
is needed to refine the proposed process with regard to these open challenges.

With this paper, we hope to encourage researchers to participate in the devel-
opment of causal model-based engineering – a methodology where all types of
knowledge contribute to a better understanding of safety issues.
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