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Abstract. Machine Learning (ML) has provided promising results in
recent years across different applications and domains. However, in many
cases, qualities such as reliability or even safety need to be ensured. To this
end, one important aspect is to determine whether or not ML components
are deployed in situations that are appropriate for their application scope.
For components whose environments are open and variable, for instance
those found in autonomous vehicles, it is therefore important to monitor
their operational situation in order to determine its distance from the ML
components’ trained scope. If that distance is deemed too great, the appli-
cation may choose to consider the ML component outcome unreliable and
switch to alternatives, e.g. using human operator input instead. SafeML
is a model-agnostic approach for performing such monitoring, using dis-
tance measures based on statistical testing of the training and operational
datasets. Limitations in setting SafeML up properly include the lack of a
systematic approach for determining, for a given application, how many
operational samples are needed to yield reliable distance information as
well as to determine an appropriate distance threshold. In this work, we
address these limitations by providing a practical approach and demon-
strate its use in a well known traffic sign recognition problem, and on an
example using the CARLA open-source automotive simulator.

Keywords: Machine Learning · Monitoring · Safety · Uncertainty

1 Introduction

The continuous expansion of the application fields of Machine Learning (ML)
into safety-critical domains, such as autonomous vehicles, entails an increasing
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need for suitable safety assurance approaches. One key aspect in this regard is
getting a grasp on the confidence associated with the output of an ML compo-
nent. While some ML models provide a probabilistic output that can be inter-
preted as a level of confidence, such output alone is not sufficient to establish
overall trust. Significant progress has been made towards addressing this ques-
tion, with approaches that introduce more sophisticated evaluation of a given
model’s outputs. Model-specific approaches base their evaluation on understand-
ing of the internals of the given ML model, e.g. [23] focus on the second-to-
last layer of a given deep neural network. On the other hand, model-agnostic
approaches treat models as black-boxes, basing their evaluation on properties
that can be examined externally, e.g. in [16], surrogate models are constructed
during training to later provide uncertainty estimates of the ML model in ques-
tion. An additional concern for evaluating ML models, is that the evaluation
must also satisfy the application requirements, in particular with regards to
performance. For instance, the authors of [25] propose auxiliary networks for
evaluation, but the computational capacity needed to estimate them hinders
their roll-out into real-time systems. On a general note, A safety argument for a
system with ML components will typically be very specific for a given application
and its context and comprise of a diverse range of measures and assumptions,
many of which we would expect to include both development-time approaches
and runtime approaches, with ours falling under the latter category.

SafeML, proposed in [2] and improved in [1], is a runtime approach for eval-
uating ML model outputs. In brief, SafeML compares training and operational
data of the ML model in question and determines whether they are statistically
‘too distant’ to yield a trustworthy answer. The work in [1] further demon-
strates a bootstrap-based p-value estimation extension to improve confidence in
measurements. However, the existing literature does not explain how to address
specific challenges for practical application of SafeML.

Our contribution is to identify these limitations and propose an approach that
enables a systematic application of SafeML and overcomes these limitations. In
the remainder of Sect. 1, we provide a more detailed description of previous
work on SafeML. We then discuss what its practical limitations are, provide the
motivation behind our approach, and then further detail our contributions.

1.1 SafeML

SafeML is a collection of measures that estimate the statistical distance between
training and operational datasets based on the Empirical Cumulative Distribu-
tion Function (ECDF). In [2], the estimated distance has been shown to nega-
tively correlate with a corresponding ML model’s accuracy. In the same paper,
a plausible workflow of applying SafeML for monitoring ML was also proposed.
The workflow allows an ML task to be divided into two phases, an offline/training
phase and an online/application phase. In the training phase, it is assumed that
we have a trusted dataset and there is no uncertainty associated with its labels.
An ML model, such as a deep neural network or a support vector machine, can
be trained using the trusted data for classification or regression tasks.
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After its validation, in the online/application phase, the same trained model
and a buffer are provided to gather a sufficient number of samples from inputs.
The number of buffered samples should be large enough that the distance deter-
mination can be relied upon, but the existing approach does not provide further
guidance on how this number should be specified. When a large enough number
of samples is obtained, the ECDF of each feature and each class is calculated
based on the trained classifier decisions. The ECDF-based statistical distance
measures are used to evaluate the differences between the trusted dataset and
the buffered data. To ensure that the statistical measures are valid, a bootstrap-
based p-value evaluation method is added to the measurements, as in [1]. The
user of the method must then specify a minimal distance threshold (and option-
ally additional ones) for the distance measures. The proposed workflow suggests
that if the outcome is slightly above the minimal threshold, additional data can
be requested. On the other hand, if the outcome is significantly above the thresh-
old value (or a specified additional threshold), alternative actions can be taken,
e.g. operator intervention. If the outcome is below the minimal threshold (or a
specified additional threshold), the decision of the Machine Learning algorithm
can be trusted and the statistical distance measures can be stored to be reported.

As SafeML is model-agnostic, it can be flexibly deployed in numerous appli-
cations. In [1,2], Aslansefat et al. already presented experimental applications of
SafeML for security attack detection [27], and German Traffic Sign Recognition
Benchmark (GTSRB) examples [29]. For security intrusion detection, SafeML
measures were used to compare the statistical distances against the accuracy of
classifier. In the GTSRB example, the model was trained, and the incorrectly
classified set of images was compared against randomly selected input images
from the training set.

1.2 Motivation

As mentioned in Sect. 1.1, applying SafeML requires the specification of the
number of runtime samples that needed to be acquired, and at least the minimal
distance threshold for acceptance/rejection. Both parameters must be defined
during development time, as they need to be known by the time the ML model is
in operation. Existing work on SafeML does not investigate nor provide guidance
for establishing these parameters, leaving it up to the user to find reasonable
values.

However, this is not a trivial matter, as identifying appropriate thresholds
has application-related implications. As will be highlighted further in Sect. 3, an
inadequate number of runtime samples may result in low statistical power of the
SafeML-based evaluation, whereas collecting too many samples can be inefficient
and limit application performance. Addressing these limitations is the focus of
this publication.

Statistical power is the probability of a correctly rejected null-hypothesis
test, i.e., the probability of a true positive, given a large enough population [7].
Conversely, by presetting a required level of statistical power, the population size
needed to correctly distinguish two distributions can be calculated through power
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analysis. Similarly, distance thresholds that are too low can lead to flooding the
host application with false positive alarms, whereas distance thresholds that are
too high can lead to potentially critical conditions being overlooked. Concretely,
we establish the following research questions:

RQ1: Dissimilarity-Accuracy Correlation. Can we confirm that data points
seen during operation that are dissimilar to training data impact the model’s
performance in terms of accuracy?

RQ2: Sample Size Dependency. Can we determine whether the sample size
affects the accuracy of the SafeML distance estimation?

1.3 Paper Contribution and Outline

The contribution of this paper is three-fold. First, we use power analysis to
specify sampling requirements for SafeML monitoring at runtime. Second, we
systematically determine appropriate SafeML distance thresholds. Finally, we
apply the above method in the context of an example automotive simulation.

The remainder of the paper is structured as follows: In Sect. 2, we discuss
background and related work, including approaches both similar to and different
from SafeML. In Sect. 3, we describe our approach for systematically applying
SafeML and determining relevant thresholds, as well as our experimental setup.
In Sect. 4, we discuss our experimental results, before recapping our key points
and discussing future work in Sect. 5.

2 Background and Related Work

To briefly recap, in [1,2] the authors propose statistical distance measures to
compare the distributions of the training and operational datasets; the measures
are based on established two-sample statistical testing methods, including the
Kolmogorov-Smirnov, Anderson-Darling, Cramer von Mises [8], and Wasserstein
methods [24]. The statistical distance measures used by SafeML capture the
dissimilarity between two different distributions, but the approach itself does
not propose an explicit threshold at which those distributions are not equivalent,
nor a means for determining one systematically.

Setting meaningful thresholds is a reoccurring problem in ML and data-
driven applications. A method based on the 3-sigma rule was shown to provide
suitable threshold criteria in Hidden Markov Models under the assumption of
normal distribution [6]. Our approach is similar in the sense that we used the
same principle, but we did not assume that our datasets are normally distributed.
Therefore, instead of a 3-sigma rule, we opted for a gradual increase of the
threshold based on the sigma value. We will elaborate on this further in Sect. 3.

A prerequisite for the transition of AI applications to safety- and security-
critical systems is the existence of guarantees and guidelines to assure underlying
system dependability. A method was proposed in [25] to assure a model’s opera-
tion within the intended context in a model-agnostic manner, with an additional
autoencoder-based network being used to detect semantic novelty.
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However, the innate problem of using neural networks, including autoen-
coders, is their black-box nature with respect to explainability, which inhibits
the establishment of dependability guarantees. Hence, the use of a more explain-
able statistical method could serve as a solution to this issue. This includes our
proposed approach, as the ECDF-based distance to the training set could provide
additional insight into the model’s decision.

In [23], the authors propose a commonality metric that, inspects the second-
to-last layer of a Deep Neural Network (DNN). The proposed metric expresses
the ratio between the activation of the neurons in the last layer during training
(across all training instances) versus their activation during operation, for the
given operational input. The approach shares common ideas with SafeML, but
diverges in terms of being model-specific, as the metric directly samples the
last layer’s neurons. In contrast, SafeML does not consider model internals and
makes no assumption on the distribution of the training and operational data.

Efforts have been made to ensure a dependable and consistent behavior in AI-
based applications. These have taken various forms, from providing generative
models, whose outputs can be interpreted as confidence in the predictions, to the
aforementioned novelty detection. Design-time safety measures are introduced in
[28], where the robustness of neural networks could be certified through a novel
abstract domain, before deployment. Similarly, a feature-guided safety testing
method for neural networks is proposed in [30] to evaluate the robustness of
neural networks by feeding them through adversarial examples. Markov decision
processes have also been proposed to be paired with neural networks to verify
their robustness through statistical model checking [12].

Uncertainty wrappers are another notable concept [13–16]. This mathemati-
cal concept distinguishes ML uncertainty into three layers I) model performance,
II) input quality, and III) scope compliance, and provides a set of useful functions
for evaluating the existing uncertainties in each step. The uncertainty wrapper
can be compared to SafeML in the third layer (scope compliance). Both of them
are model-agnostic.

Safeguard AI [17] proposes calculating the likelihood of out-of-distribution
(OOD) inputs and adding it to the loss function of the ML/DL model. This
approach also uses a Generative Adversarial Network (GAN) to produce bound-
ary data in order to create a more accurate OOD. In comparison to SafeML, the
approach is model-specific and cannot be evaluated at runtime.

Another common theme across approaches for safeguarding ML models is the
investigation of all conceivable input perturbations to produce robust, safe, and
abstract interpretable solutions and certifications for ML/DL models [9,10,18–
20,26]. These approaches are also model-specific and do not provide runtime
solutions. Similar to previous approaches, DeepImportance is a model-specific
solution that presents a new Importance-Driven Criteria (IDC) as a layer-wise
function to be assessed during the test procedure and provides a systematic
framework for ML testing [11]. Regarding the reliability evaluation of ML mod-
els, only a small number of solutions have been provided so far. One of these
is ReAsDL, which divides the input space into tiny cells and evaluates the
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Fig. 1. Process flowchart

ML/DL reliability based on the cells’ robustness and operational profile proba-
bility [31,32]. This solution is model-agnostic and focuses on classification tasks
similar to SafeML. The NN-Dependability-kit suggests a new set of depend-
ability measures to assess the impact of uncertainty reduction in the ML/DL
life cycle. The authors also included a formal reasoning engine to ensure that
the ML/DL dependability is guaranteed. The approach can be used for runtime
purposes [3].

3 Methodology

In this section, we present our refined approach for applying SafeML, in the
form of a proposed workflow, and address the question of how to determine the
sampling and distance thresholds. To validate our approach, we applied SafeML
to ML monitoring during simulation and, also used it against an existing dataset,
the GTSRB. In the next section, we will describe the experimental design for
our empirical evaluation of the proposed approach.

3.1 Process Workflow

The process workflow for determining the needed number of samples as well as
the distance threshold is divided into three stages, as shown in Fig. 1.
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– Acquisition: In this stage, two datasets are involved, a training dataset and a
testing dataset. In our empirical experiments (see Sect. 3.2), these datasets are
generated from the simulation, but they should generally be derived during
development. At this point, power analysis is used to find the number of
samples to determine the difference between the operational dataset and the
training set. This factor can be calibrated for the application at hand, as it
determines an additional number of samples beyond the minimum needed
to achieve the determined test power. The effect size for the power analysis
is established between the training set and the testing set, using Cohen’s d
coefficient [4].

– Training: The training dataset is processed and split into a training set and
a testing set. A sub-sample of the smaller training set is uniformly sampled
to represent the Training Scope Set (TSS) in the calculation of statistical
distances, which maintain its features in order to reduce computational com-
plexity during runtime. A model is then built from the smaller training set
and used to predict the outputs of the testing set. The result is further dis-
tinguished into correctly and incorrectly classified outputs, where SafeML
measures evaluate the statistical distance between the incorrectly classified
outputs and the TSS. The resulting distances are finally used as the initial
distance threshold. This initial distance threshold is then increased gradually
by a factor of the standard deviation until a user-defined safety performance
level is met.

– Operation: Once the trained model is in operation, the value obtained in
the ‘Acquisition’ stage is used to aggregate operational data points into an
operational set. SafeML measures evaluate the statistical distance between
this operational set and the TSS. If the value falls within the defined thresh-
old, the model continues its operation normally, otherwise, a signal is sent to
run a user-defined action.

3.2 Experiment Setup

We performed experiments on the German Traffic Sign Recognition Benchmark
(GTSRB) [29] and on a synthetic example dataset in the CARLA simulator1 [5]
to evaluate our approach. CARLA is an automotive simulator used for the devel-
opment, training, and validation of autonomous driving systems. The dataset
generated from CARLA was used to evaluate the confidence level of SafeML
predictions and the autopilot decisions of the simulated vehicle. The GTSRB
dataset is a collection of traffic sign images, along with their labels used for
benchmarking the ML algorithms. It was first used in 2011. The dataset is a
good representation of the safety-critical application of ML-components. Hence,
it was also considered in this work for the evaluation of the presented approach.

The CARLA setup allows us to identify a systematic method for estimating
the minimum number of required samples and the distance acceptance threshold
though a fixed-point iteration, as well as to determine their implication on the

1 https://carla.org.

https://carla.org
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model’s prediction and how they correlate to the model’s performance. It also
offers multiple maps called Towns, with different sizes and properties, which
allows for the experiment to be repeated. A simple model was built from a
dataset sampled from CARLA, using a vehicle autopilot with varying driver
profiles (shown in Table 1). This corresponds to the ‘Acquisition’ step in section
Sect. 3.1. Three types of driving profiles were considered: safe, moderate, and
dangerous. We should note that the profiles (and the model) were not designed
with the aim to provide an accurate risk behavior estimation, but rather as a
source of plausible ground truth for evaluating SafeML. A collection of classifiers
were trained as the subject ML models for the CARLA dataset with results
shown in Table 2. The models’ inputs are the three location coordinates and the
outputs are ordinally-encoded speed levels at the given coordinates (0: slow, 1:
moderate, 2: fast).

As the dataset for GTSRB is already available, the creation of the dataset was
assumed to be complete from the ‘Acquisition’ phase. Then a network was built
to classify the GTSRB dataset. We built a simple convolutional neural network,
as such networks are known for their superior performance on image applica-
tions. We then applied the above mentioned approach. This allows obtaining the
minimum number of required samples and the distance acceptance threshold for
this application.

Table 1. Properties of driver profiles

Property/driving profile Safe Moderate Dangerous

Max speed 30% below limit At limit 30% above limit

Traffic signs Abide by all Ignore 50% Ignore 100%

Automatic lane-change No Yes Yes

Distance to other cars 5 m 3 m 0 m

Table 2. Performance of trained models on the simulated CARLA dataset

Model Class Recall Precision F1-Score

kNN 0 0.89 0.95 0.92

1 0.96 0.90 0.93

2 0.96 0.95 0.96

Random Forest 0 0.83 0.52 0.64

1 0.81 0.88 0.84

2 0.72 0.92 0.81

LSTM 0 0.92 0.99 0.96

1 0.99 0.91 0.95

2 1.00 1.00 1.00
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We trained a CNN network. The network was able to achieve an accuracy
of around 99.73%. We remind readers that SafeML is model-agnostic, and other
ML models could also have been used. This high accuracy resulted in very few
incorrect samples for testing SafeML. Thus, one of the minority classes was
excluded in order to be considered as an out-of-scope class, reducing accuracy
to 97.5%. This added greater disparity to enable validation of SafeML.

In [2], SafeML distance measures have been shown to negatively correlate
with the accuracy of the model. From this fact, and according to the first research
question established in Sect. 1.2, we hypothesize that misclassified points would
have a higher distance than correctly classified data points due to their dissimi-
larity to the training set.

Furthermore, from principles of statistical analysis, it is established that,
if an insufficient number of samples is used during hypothesis testing, there is
a risk of the statistical tests not achieving sufficient power. According to our
second research question in Sect. 1.2, our corresponding hypothesis is that the
number of samples correlates with confidence of dissimilarity (the magnitude of
the distance).

The experiment concluded by following the ‘Operation’ step of the process
workflow explained in Sect. 3.1. In the CARLA example, the same experiment
was reproduced in different environment setups to ensure consistency of the
results. In GTSRB, this was performed on the test set, which can be replaced
by runtime dataset, at runtime.

Table 3. Mean and standard deviation of the statistical distances of the entire test
set (CVM: Cramer von Mises, AD: Anderson-Darling, KS: Kolmogorov-Smirnov, WS:
Wasserstein)

Prediction CVM AD KS WS

kNN Correct 1569.71, 617.60 8.577, 3.03 0.0193, 0.0043 3.192e−05, 1.153e−05

Incorrect 5743.45, 2085.75 35.35, 11.12 0.083, 0.0139 1.430e−04, 5.264e−05

Random Forest Correct 3780.74, 227.29 18.59, 0.97 0.0341, 0.0007 1.238e−04, 1.875e−05

Incorrect 10478.63, 1147.64 56.73, 4.78 0.1068, 0.0161 4.368-04, 6.654e−05

LSTM Correct 2744.89, 895.56 13.63, 3.26 0.0578, 0.0034 4.356e−05, 2.276-05

Incorrect 7892.06, 1033.94 43.24, 3.23 0.1772, 0.0871 2.134e−04, 1.033e−04

4 Results

4.1 Preliminary Findings

Before continuing with the workflow of the simulation, an analysis of the trained
model was used to test the hypotheses predefined in Sect. 3.2, namely:

RQ1: Dissimilarity-Accuracy Correlation was tested by calculating the sta-
tistical distance between the correctly classified data points and the TSS, as
well the incorrectly classified data points and the training scope. Table 3 shows
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the mean and standard deviation of each of the statistical distance measures
used. It shows that the incorrectly classified points are highly dissimilar to
the TSS (higher distance), supporting the corresponding hypothesis.

RQ2: Sample Size Dependence: Due to the model’s accuracy of 95%, the
number of correctly classified data points was significantly larger than that
of incorrectly classified points when the distances in Table 3 were calculated.
To account for the number of samples, the distances were calculated over
a varying number of randomly sampled points of each group. As shown in
Fig. 2, the distance of incorrectly classified points is always larger than the
distance of correctly classified points and increases with increasing number
of samples. This can be attributed to several factors, such as: (a) increased
distinction between the distributions and (b) a shift of the average value of
the distances when the number of available samples increases, which removes
skewness in the distribution.

4.2 Experiment Results

Following the process workflow presented in Sect. 3.1, each stage produced its
corresponding values after being executed on the “Town 1” standard map from
CARLA. In the ‘Acquisition’ stage, power analysis was used on each of the driver
profiles. The highest number of samples returned was 91. Multiplying this by an
additional factor of 1.3 yielded a final number of samples of 120, which aligned
with our sampling batches; the operational samples were collected in batches
over 4 s with a simulation resolution of 30 frames per second. The performance
of the trained model is shown in Table 2, where the kNN model was used in the
evaluation of the results due to its simplicity and high reported performance.
The resulting threshold values for SafeML are shown in Table 4.

Fig. 2. Statistical distance over varying sampling sizes
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Table 4. Threshold parameters used for Town 1 (CVM: Cramer von Mises, AD:
Anderson-Darling, KS: Kolmogorov-Smirnov, WS: Wasserstein)

Prediction CVM AD KS WS

Mean 387.83 9.64 0.087 1.38e−4

Standard deviation 171.57 3.61 0.02 6.22e−5

The acceptable performance of the ML-model is a design decision obtained
from the application requirements specified. In our example, let us consider the
correctness over a batch. Since each batch contains multiple frames, let us assume
a batch is considered correctly classified if its overall accuracy is 0.8 (96 correct
points out of 120). Consequently, a batch is assumed to be incorrectly classified
if its overall accuracy is 0 (focusing on worst-case scenarios), with all of its
members being misclassified. This high limit was chosen to represent an extreme
scenario that minimizes the number of false alarms.

The performance of each of the distance measures in SafeML was evaluated
on different driver profiles as shown in Figs. 3 and 4, where the true positive
rate (batches with 0 accuracy that were above the threshold) and the false positive
rate (batches with 0.8 accuracy that were above the threshold) were plotted over
a varying increase in the threshold in increments of 0.1 of the standard deviation.

Figure 3 shows the standard deviation factor by which the threshold should be
increased to yield reliable identification by SafeML. The plot compares incorrect

Fig. 3. SafeML performance on Town 1 with moderate driver profiles
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(i.e., false positive rate) versus correct SafeML alarms (true positive rate), set
to a threshold of 0.8 (as mentioned previously, this threshold can be determined
based on application-level requirements). Through this method, a suitable factor
for the distance measures was found, with the exception of Kolmogorov Smirnov,
where a similar percentage of false positive rates was achieved for the distance
measures.

The same process was repeated for the dangerous driver profile shown in
Fig. 4, where similar plot curves were observed, and the threshold points could
be established following similar steps as for the moderate profile. However, the
performance ratio between true and false positive rate is exceptionally bad. The
experiment was repeated on “Town 2” and “Town 4” with similar results.

Repeating the process workflow on the GTSRB shows quite a similar trend,
where the correct classification and the incorrect classification are completely
separable by setting a suitable distance threshold, as shown in Fig. 5. The number
of samples (with each sample being an image) required can be seen on the x-axis.
In this case, the majority of the incorrect classifications represent an out-of-scope
class. The distance was calculated using features derived from the last layer of
the CNN instead of from the raw pixels. More detailed results can be found in
the git repo.

Fig. 4. SafeML performance on Town 1 with dangerous driver profiles
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Fig. 5. Statistical distance over varying sampling sizes for GTSRB

5 Conclusion and Future Work

In this paper, we addressed the challenge of determining sampling and distance
thresholds for SafeML, a model-agnostic, assessment tool for scope compliance.
Our approach incorporates power sampling during the development stage of the
subject ML model in order to determine the number of samples necessary to
achieve sufficient statistical power while applying the SafeML distance evalua-
tion during the runtime stage. Furthermore, we proposed means of identifying
appropriate distance thresholds, based on the observed performance of the ML
model during development-time simulation. We validated our approach exper-
imentally, using a scenario developed in the CARLA automotive simulator as
well as the publicly available GTSRB dataset.

Apart from the SafeML applications discussed earlier in Sect. 2, at the time
of writing, additional examples are being researched, such as using SafeML for
cancer detection via x-ray imaging as well as for pedestrian detection, financial
investment, and predictive maintenance.

Regarding future work, we are considering further directions to improve
SafeML, including investigating the effect of outlier data’ and the effect of dataset
characteristics (see [22]), using dimensionality reduction, accounting for uncer-
tainty in the dataset labels (see [21]), and expanding the scope towards graph,
quantum, and time-series datasets.

Code Availability

Regarding the reproducibility of our research, codes and functions supporting
this paper have been published online at: https://tinyurl.com/4a76z2xs.

https://tinyurl.com/4a76z2xs
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