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1 Introduction

A natural speech production mechanism works with a synchronized harmony of
different human organs. These organs include lungs, larynx, vocal folds, jaw
muscles, tongue, lips, teeth, soft palate, velum amongst others. The output received
from such system is a distinct sound which is complex in nature and intelligible
by the listeners. However, sometimes a disorder in one or more of the sub-systems
results in disruption in the overall speech production mechanism rendering speech
unintelligible and difficult to interpret. This gives rise to a completely different class
of speech signals, which is impaired in general perception, and may not be analyzed
considering normal healthy speech as a basis for comparison.

Dysarthria is one such speech impairment in which the muscles that help in
speaking, such as vocal folds, jaw muscles, throat muscles, etc., becomes weak and
coordination between them becomes difficult. Dysarthria has been rated amongst
one of the most common types of speech impairments. Speech of dysarthric patients
can be characterized as slow, slurry, monotonous, unnaturally whispered, etc. or a
combination of such symptoms [1]. Analysis and classification of dysarthric speech
is finding its applications in fields, such as biomedical speech signal processing
[2], and voice-assisted electronic device manufacturing [3]. Dysarthria is directly
associated with neurological diseases, such as Parkinson Disease, Cerebral Palsy,
etc. Therefore, dysarthric speech analysis can help in the diagnosis and progression
mapping of such diseases. However, the characteristics of dysarthric speech are
different from that of normal speech. Therefore, it has been found that applications,
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such as Automatic Speech Recognition (ASR) systems and Voice Privacy (VP)
systems do not perform even considerably in the case of dysarthric speech [4, 5].
Analysis of dysarthric speech can help in development of more robust systems
targeted at people suffering from dysarthria. This chapter focuses on understanding
dysarthria as a signal processing problem.

Rest of the book chapter is organized as follows. Section 2 presents various
types of dysarthria, whereas Sect. 3 presents time-domain and time-frequency
domain analysis, such as Linear Prediction (LP) spectrum, Teager Energy Operator
(TEO) profiles, spectrograms, waterfall plots, etc., of normal vs. dysarthric speech.
Section 4 gives brief details of some standard and statistically meaningful dysarthric
speech corpora. A discussion on the application of deep-learning methods in
the classification of dysarthric speech from normal speech. Finally, the chapter
concludes with potential future research directions.

2 Types of Dysarthria

Dysarthria shares many of its symptoms with the other neurological diseases,
such as Aphasia, Dysphasia, and Apraxia [6]. However, it is distinct from these
neurological diseases due to the organ of its origin [7]. While Aphasia and
Dysphasia effect the ability of an individual to understand and produce speech,
and Apraxia results from the damage to the parietal lobe of the brain that is
responsible for planning of speech [8]; dysarthria resides in the muscles responsible
for the production of speech. Patients with dysarthria do not show any deviations
in perceptual processing and planning of speech, as compared to a healthy subject.
However, the lack of synchronization amongst muscles causes the output speech to
be damaged and unintelligible. This section describes the types of dysarthria that
are widely recognized in the field of speech impairments:

2.1 Spastic Dysarthria

Spastic dysarthria is caused as a result of some damage to the Central Nervous
System (CNS), which includes brain and spinal cord [9]. It is usually accompanied
by weakening of muscles and abnormal reflexes in the other regions of the body
as well. Hence, phonation is strained-strangled and articulation becomes weak. In
addition, mouth opening seems to be restricted and speech is perceived to come
from the back of the mouth. Furthermore, jaw jerk, gag reflex, and facial reflexes
are also common with the patients of dysarthria.
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2.2 Flaccid Dysarthria

Flaccid dysarthria is usually recognized by the difficulties faced by the patients
in pronouncing consonants. It is caused by the damage to the Peripheral Nervous
System (PNS), which connects brain and spinal cord to the rest of the body [9].
Flaccid dysarthria results in symptoms, such as hypernasality, breathiness in voice,
and weak pressure consonants. Depending on which nerves are damaged, it affects
phonation, respiration, resonance, and articulation.

2.3 Ataxic Dysarthria

Ataxic dysarthria is caused due to a damage to part of the brain called Cerebellum
which is responsible for receiving sensory information and regulating movements
[9]. It results in imprecise articulation with distorted vowels and inaccurate conso-
nant production, disturbed speech prosody, and abnormal phoneme timing. There is
inappropriate stress on syllables, loudness, and the pitch (F0) of the voice is deviant.

2.4 Hypokinetic Dysarthria

Hypokinetic dysarthria is caused because of the malfunction in the extrapyramidal
systems of brain, which consists of areas of the brain responsible for coordination
of subconscious muscle movement [9]. It is characterized by reduced pitch (F0)
variation, reduced loudness, variable speaking rate, imprecise consonants, breathy
voice, and short rushed of speech. Patients with Hypokinetic dysarthria also have
difficulties in swallowing and sometimes observe drooling.

2.5 Hyperkinetic Dysarthria

Hyperkinetic dysarthria is caused due to the damage to the part of the brain
collectively known as Basal Ganglia, which is responsible for regulating involuntary
muscle movements [9]. It is characterized by abnormal involuntary muscle move-
ments that affect respiration, phonation, and articulatory structure impacting speech
quality.
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2.6 Mixed Dysarthria

Mixed dysarthria represents a heterogeneous group of speech disorders and neu-
rological diseases [9]. Any combination of two or more types of dysarthria
L(discussed above) results in mixed dysarthria. This type of dysarthria is more
common than one kind of dysarthria occurring in a patient. The symptoms of mixed
dysarthria can be a mix of the symptoms discussed above.

Though different types of dysarthria are clearly defined, it is often a difficult
task to distinguish amongst them because of the negligible perceptual differences
in production of output speech. One has to be a trained expert to recognize one
dysarthria type from the other and with a substantial probability of error. These
experts are called Speech-Language Pathologists (SLPs), and they often use the pre-
defined techniques and scales to distinguish between different kinds of dysarthria.

To better understand how dysarthria effects the production of speech and its
intelligibility, acoustic analysis of dysarthric speech becomes necessary. Study of
different acoustic features can help in distinguishing weather the speech is dysarthric
or normal. This can help in early diagnosis of diseases associated with dysarthria.

3 Analysis of Dysarthric Speech

Since in patients with dysarthria, the speech is affected by the weakness in the
muscles of the vocal tract system, a dysarthric speech output is very different from
the speech output of a normal speaker. In addition, the acoustic features change with
different severity of dysarthria from which a patient is suffering from. This section
provides a comparative study of different acoustic features between dysarthric
speech and normal speech and between different kinds of dysarthric speech.

3.1 Time-Domain Analysis

The time-domain waveform of dysarthric speech consists of useful information
for the analysis of dysarthria. The pathological defects in the vocal tract system
can be observed by looking at the time-domain waveform of dysarthric speech.
Figure 1 shows the speech waveform of a normal person and a person suffering from
dysarthria uttering the same word. It can be easily observed from the two waveforms
that the dysarthric speech waveform is much longer as compared to the normal
speech. Moreover, it can be that the variability in the acoustic pressure is more in
dysarthric speech. Dysarthric speech also consists of regions of silence which are
absent in case of normal speech, implying that these silent regions are not necessary
for the speech wave but still exists. These silent regions represent the defects
in motor control mechanism in the speech production system, where the vocal
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Fig. 1 Time-domain waveform. (a) normal, (b) dysarthric speech, and zoomed waveform for (c)
normal, and (d) dysarthric speech

folds involuntary start/stop vibrating creating jitters and shimmers, representing
variations in pitch period and volume airflow velocity, repeated across consecutive
glottal cycles in the speech waveform.

3.1.1 Fundamental Frequency (F0)

The Fundamental Frequency (F0) of a speech signal is the average number of
oscillations per second, in Hertz, of the voiced region of the speech. It arises due
to the vibrations of the vocal folds which in turn oscillates the air flowing through
the vocal tract system. Since the oscillations arise in an organic structure, it consists
of some fluctuations, rather than being perfectly periodic, in particular, jitters and
shimmers as discussed above. Due to the weakening of vocal fold muscles, a patient
with dysarthria has less control over his vocal fold vibrations and hence, these jitters
and shimmers are much more significant in dysarthric speech as compared to normal
speech and can change the overall nature of the fundamental frequency.

3.1.2 Teager Energy Operator (TEO)

Teager Energy Operator (TEO) is a non-linear operator which helps in the analysis
of speech waveform from an energy point of view. For a speech signal s(n), TEO
profile is given by [10]:

TEO{s(n)} = (s(n))2 − s(n − 1) · s(n + 1). (1)
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Fig. 2 TEO Profile. (a) normal and (b) dysarthric speech

From TEO, we can observe that three consecutive speech samples are required
to find the running estimate of signal energy and thus, it is known to have excellent
time-resolution. TEO is very efficient in capturing the non-linearity in the speech,
which is captured by the airflow in the vocal tract which will change for dysarthric
vs. normal speech. Figure 2 shows the corresponding TEO profile for the normal
vs. dysarthic speech. We can observe from Fig. 2 that, as in LP residual, TEO is
also highly irregular for dysarthic speech, as compared to normal speech, indicating
abnormal changes in pitch period, i.e., T0, and, hence, pitch frequency. In particular,
TEO gives high energy pulses corresponding to GCIs due to its capability to capture
characteristics of impulse-like excitation which are known to have higher signal-to-
noise (SNR) ratios.

3.2 Linear Prediction (LP) Residual

Linear Prediction (LP) residual can be a very good method for the analysis of the
characteristics of the speech excitation source. LP analysis deconvolves the speech
signal into its source excitation and speech system components. For a speech signal
s(n), LP residual [r(n)] is given by [11]

r(n) = s(n) − ŝ(n), (2)

where

ŝ(n) =
p∑

k=1

aks(n − k), (3)

and ak corresponds to kth Linear Prediction Coefficient (LPC).
The speech production system has its own inertia. The Glottal Closure Instants

(GCIs), are the instances when the glottis closes to provide a sudden burst of air
pressure through the vocal folds, act as an excitation signal in the form of input
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Fig. 3 LP Residual Plot. (a) normal, and (b) dysarthric speech

impulse to the system. Sudden bumps can be observed in LP residual at periodic
locations. These locations are called GCIs. GCIs denote the time instants, where
there is sudden closing of vocal folds, which acts as impulse-like excitation, during
speech production. The GCIs have been estimated using Hilbert transform in [12,
13]. Figure 3 shows the LP residual plot of normal vs. dysarthric speech. It can be
clearly observed from these plots that the LP residual for dysarthric speech is highly
irregular as compared to the LP residual plot for the normal speech signal. This
shows the abnormality in the dysarthric speech signal in terms of pitch period (T0)
and therefore, pitch frequency (F0).

3.3 Time-Frequency Analysis

Due to non-stationary nature of speech signals, spectrograms can be used for the
time-frequency analysis of a speech signal. A spectrogram is a visual representation
of how spectral energy density varies with respect to different frequencies and
time instances. The energy in a spectrogram is computed using Short-Time Fourier
Transform (STFT) on windowed speech signal. Let x(n) be the input signal. STFT
is calculated as :

X(ω, τ) =
∞∑

n=−∞
x(n) · w(n, τ) · e−jωn, (4)

X(ω, τ) =
∞∑

n=−∞
x(n, τ ) · e−jωn, (5)

where x(n, τ ) = x(n) · w(n, τ) is the windowed speech segment. Now spectrogram
(spectral energy densities) is obtained by calculating the magnitude square of
X(ω, τ), i.e.,

S(ω, τ) = |X(ω, τ)|2. (6)
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Fig. 4 Comparison of spectrogram for (a) normal and (b) dysarthric speech vs. LP Spectrum for
(c) normal and (d) dysarthric speech

It can be seen from Fig. 4 that the energy is concentrated in the lower spectrum of
the frequency in contrast with the normal speech, in which the energy is observed to
be spread in the high as well as low frequency spectrum. This is due to the fact that
abnormal functioning of the speech production results in a great amount of energy
loss for higher frequencies [14, 15]. This can be the reason why speaking intelligibly
is a challenging task for a person suffering from dysarthria, which usually comes
very naturally to the normal speakers. Figure 4 show the plot of Short-Time Fourier
Transform (STFT) vs. LP spectrum for the normal vs. dysarthria speech case.
Waterfall plot is also shown in Fig. 5 to emphasize the corresponding joint time-
frequency characteristics during the production of dysarthric speech. From the
waterfall plots, We can observe that the formant structure is severely damaged for
dysarthric speech as compared to its normal counterpart, where formant peaks and
their evolving structures are clearly visible. Thus, the analysis presented in this
section indicates that F0, its harmonics, formants, and their structures are severely
affected due to dysarthria.

4 Datasets on Dysarthric Speech

4.1 TORGO Database

TORGO Database [16] was developed through a collaboration between the
departments of Computer Science and Speech-Language Pathology, University
of Toronto; Holland-Bloorview Kids Rehab Hospital, Toronto; and The Ontario
Federation for Cerebral Palsy with an aim to develop Automatic Speech Recognition
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Fig. 5 Waterfall Plot. (a) normal and (b) dysarthric speech

(ASR) systems for people suffering from dysarthria as the unintelligibility in the
dysarthric speech results in a Word Error Rate (WER) of as high as 97.5% as
compared to a WER of 15.5% for normal speech when both the speech are tested
on modern ASR systems trained on normal speech [17].

The database consists of speech samples from 7 dysarthric subjects (4 males
and 3 females), between the age 16 and 50, who are chosen by a speech-
language pathologist at Bloorview Research Institute, Toronto. Dysarthria of 6
subjects resulted from Cerebral Palsy while 1 subject developed dysarthria due to
Amyotrophic Lateral Sclerosis (ALS), which are two of the most common cause
of speech impairment [18]. The database also includes speech samples from non-
dysarthric subject which were age and gender matched with the dysarthric subjects.

All the subjects were assessed using the standard Frenchay Dysarthria Assess-
ment (FDA) [19] by a speech-language pathologist. The FDA measured 28 percep-
tual dimension of speech production and articulation which are rated on a 9-point
scale. The database is divided into the speech samples of the following categories:

• Non-Words consists of 5–10 repetitions of /iy-p-ah, ah-p-iy and p-ah-t-ah-k-
ah/, respectively. In addition, utterances with high and low pitch vowels are also
recorded, e.g., pronouncing “eee” for 5 s (also used in [20]).

• Short Words consists of repetition of English digits 1–10 along with some other
words like yes, no, left, right, etc. In addition, 50 words from word intelligibility
section of FDA [19] and 360 words from Yorkston-Beukelman Assessment
of Intelligibility of Dysarthric Speech (YBAIDS) [21] are chosen. Ten most
common words from the British National Corpus were also recorded by the
subjects.



176 S. Gupta and H. A. Patil

• Restricted sentences consists of preselected phoneme rich sentences, The
Grandfather Passage from Nemours Database [22], 162 sentences from sen-
tence intelligibility section of YBAIDS [21], and 460 sentences from MOCHA
database.

• Unrestricted Sentence consists of unscripted sentences by the subjects recorded
while describing 30 images of interesting situation chosen randomly from
Webber Photo Cards: Story Starters Collection.

4.2 Universal Access (UA) Corpus

The UA database [23] consists of speech samples from 19 dysarthric subjects (15
males and 5 females) [24]. Each subject is scored on a scale of 0–100% on the basis
of their speech intelligibility rated by the human listeners. The recording is done
using an eight-channel microphone arrays.

The database was recorded into three blocks of words. Each block consists of
a total of 255 words, out of which 155 words are repeated across the blocks while
the remaining 100 uncommon words are unique for every block. The repeated 155
words include 10 digits (one, two, etc.), 26 radio alphabets (Alpha, Bravo, etc.),
19 computer commands (enter, delete, etc.) and 100 most common words chosen
from the Brown corpus of written English. The 100 common words (naturalization,
exploit, etc.) were chosen from children’s novels. In this way, each subject was
recorded for a total of 765 speech samples out of which 300 samples are distinct
uncommon words and remaining 465 are 3 repetitions of 155 distinct words across
the blocks.

4.3 HomeService Corpus

The homeService corpus [25] is created as a part of the bigger homeService project,
whose objective is to provide the people with speech and motor disabilities with
the ability to operate home appliances with voice commands [26]. The project is
motivated by the fact that there is a shortage of dysarthric speech data which is
recorded in a real life environment within the research community. The project
enables its user to operate their home appliances, such as TV, lamps, etc. using voice
commands, which are recorded and transferred using a cloud-based environment to
a data collection center. The dataset consists of speech data of 5 dysarthric patients
(3 males and 2 females). The speech samples were recorded with an 8-channel
microphone array at a sampling rate of 16 kHz and consists of two types of speech
data. In particular,

• Enrollment Data—This data is recorded in a controlled research environment
and is used to train the ASR system which the user can use to operate their
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Fig. 6 CNN architecture for classification task. After [27]

appliances. The user was asked to read from a list. Therefore, the speech recorded
is less natural. Annotation is done using the transcriptions in the reading list.

• Interaction Data—This data is recorded at the house of the users while they
control their devices. Identity of each word in this data is not known and is
therefore, annotated by the human listeners. The speech in the data is more
natural.

5 Classification of Dysarthric and Normal Speech

Recently, there has been significant increase in the popularity of deep-learning
based approach to solve complex task by the computers. For that reason, computers
are now able to efficiently perform tasks, such as image classification [28–30],
image recognition [31, 32], computer vision, etc. [33, 34]. Focus of deep-learning
based algorithms are also increasing in Speech recognition and classification.
Convolutional Neural Network (CNN) is one such algorithm which can efficiently
detect complex pattern from a set of matrices, such as images. It can be used to
classify normal vs. dysarthric speech by learning the patterns in the spectrogram of
the speech samples (Fig. 6).

5.1 Experimental Setup

For the experiment, spectrograms were obtained for the speech utterances of both
normal and dysarthric speakers, keeping a window size of 25 ms and an overlap of
10 ms. These spectrograms were stored in the form of images which is to be fed to
network.

Our CNN [35] comprises 4 convolutional layers followed by 3 fully connected
layers. Each convolution layer performs a convolution operation with a kernel size
of 5x5 keeping step size of 1 and no padding. This convolution operation is followed
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by a maxpooling operation with a kernel size of 4x4. The number of output channels
obtained by the 4 convolutions channels are 8, 16, 32, and 64, respectively. The
output of the final convolutional layer is given to the fully connected layer. Sigmoid
activation is used on the final output from the final fully connected layer which
provide us with probabilistic value of the input. The threshold value is kept at 0.5,
i.e., if output value is greater than 0.5 then the input will be classified as dysarthric
speech, and as normal speech if output is less than 0.5. ReLU activation function is
used to activate the hidden layers in the network. In addition, Stochastic Gradient
Descent (SGD) is used as optimization algorithm and binary cross entropy is taken
as the loss function.

5.2 Dataset Used for This Study

UA corpus [24] is used as the dataset for the experiment. Data from one dysarthric
speaker (M07) and one normal speaker (CM01) is used. The data for each speaker
was divided into 3 blocks out of which data from block 1 is chosen for training and
utterances were taken from mic 3 of the 7-channel microphone array. For testing the
accuracy of the model, testing was done with the data from block 3. Specifically,
100 distinct Uncommon Words (UW) were chosen for testing.

5.3 Results and Analysis

It is observed that the model was able to provide an accuracy of 65.68% on
the testing data. The performance of the network is effective given the fact that
the experiments were performed on a small training set. The model was able to
recognize the variability in the spectrogram that differentiates dysarthric speech
from normal speech. In addition, it can be said that the model was also able to
learn that the low energy that is associated with the spectrogram of the dysarthric
speech.

6 Conclusion

In this chapter, we have discussed dysarthria as a speech technology problem. A
number of analysis have been done on normal vs. dysarthric speech, such as F0, TEO
profile, LP residuals, spectrograms, and waterfall plot to provide the reader with an
insight of the difference between normal vs. dysarthric speech. In addition, some
widely used datasets are also discussed along with their key features. Furthermore,
an experiment has also been presented for the classification of normal and dysarthric
speech using a deep neural networks approach based on CNN.



180 S. Gupta and H. A. Patil

The effectiveness of the classification task is dependent on the training data
on which it is trained on. A model trained on the speech sample of a speaker
having high severity-level of dysarthria may not be effective for a speaker with
low dysarthria severity-level and vice versa. Therefore, this becomes a promi-
nent limitation of the current methods of classification. Furthermore, research on
severity-based classification of dysarthric speaker are very limited. In the future,
more sophisticated deep neural networks can be used for classification of normal vs.
dysarthric speech and classification based on the severity-level of dysarthria.
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