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Preface

This book mainly focuses on advanced techniques used for feature extraction,
analysis, recognition, and classification in the area of biomedical signal and image
processing. This is the era of the Internet of Things, cloud computing, and artificial
intelligence for biomedical signals and images. This book will provide a great
platform to the researchers who are working in the area of artificial intelligence
for biomedical applications. Biomedical data analysis plays a very important role in
research as well as in clinical purpose for different types of diagnosis. Moreover,
processing a huge amount of data is a challenging task that requires parallel
processing. For advanced-level research, deep learning–based approaches have been
adopted by researchers since the last few years. The chapters in this book will cover
all aspects of artificial intelligence, machine learning, and deep learning in the field
of biomedical signal and image processing using novel and unexplored techniques
and methodologies.

Chapter “Voice Privacy in Biometrics” summarizes voice privacy in biometrics.
In this chapter, the design of second-order resonator and the linear prediction
modeling of speech production is exploited to design voice privacy system. The per-
formance of the proposed system is compared with the secondary baseline system
of the INTERSPEECH 2020 voice privacy challenge. Improved performance-wise
EER and WER are achieved for various subsets of the corpora. Furthermore,
anonymization is achieved by cryptography.

Chapter “Histopathology Whole-Slide Image Analysis for Breast Cancer Detec-
tion” lists a novel method for weakly supervised histopathology whole-slide image
(WSI) classification for addressing the breast cancer detection task. Some of the
salient aspects of our approach include extracting embeddings from a pre-trained
CNN network, using a cosine-loss and training schedule for the classification
network, and suggesting an overall decision-making criteria for the WSI based on
intermediate decisions on local random selection. We also provide an extensive
review of closely related methods with an elaborate compression analysis of the
embeddings used in these.

Chapter “Lung Classification for Covid-19” presents a cloud-based lung disease
classification system where medical practitioner can upload their patients’ chest X-
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vi Preface

ray onto the cloud, and the system will classify either disease absent (normal) and
disease present (abnormal). For disease present, the system will then classify into
lung infected with Covid-19 and non-Covid.

Chapter “GRU-Based Parameter-Efficient Epileptic Seizure Detection” presents
a gated recurrent unit–based deep learning architecture for accurate epileptic
seizure detection has been proposed to reduce the burden on the medical and
the paramedical fraternity. The developed model automates the entire process and
circumvents the requirement of deploying any manual feature-extraction steps.

Chapter “An Object Aware Hybrid U-Net for Breast Tumour Annotation”
describes digital examination of histopathological slides, and the pathologist anno-
tates the slides by marking the rough polygonal boundary around the suspected
tumor region. The polygonal boundary covers the extent of the tumor in the slide.

Chapter “VLSI Implementation of sEMG Based Classification for Muscle Activ-
ity Control” presents the real-time classification of EMG-based pattern recognition
using linear discriminant analysis (LDA) and quadratic discriminant analysis.

Chapter “Content Based Image Retrieval Techniques and Their Applications in
Medical Science” addresses the CBIR techniques which are classified into multiple
categories based on the feature extraction and retrieval mechanism. These categories
are feature-based, machine learning-based, and deep learning-based methods. The
pioneer techniques for each category are explained in detail in this chapter.

Chapter “Data Analytics on Medical Images with Deep Learning Approach” dis-
cusses several techniques and decision policies to dynamically decide computation
offloading for smart devices. It adopts a binary offloading policy so that each task
of the smart device is executed onboard or completely offloaded to the Edge Server.
The algorithms jointly optimize the dense network of devices and reduce the overall
latency and increase the battery lifetime.

Chapter “Analysis and Classification of Dysarthric Speech” attempts to under-
stand how dysarthric speech is different from normal speech through various
analyses, such as time-domain representation, linear prediction residual, Teager
energy profile, and time-frequency-domain representation. In addition, this chapter
also explores the deep learning method for the classification of normal vs dysarthric
speech.

Chapter “Skin Cancer Detection and Classification Using DWT-GLCM with
Probabilistic Neural Networks” presents skin cancer detection and classification
using DWTGLCM with probabilistic neural networks. Authors used the maximum
efficiency of the system by using, PNN for classification of skin cancer with the
gray level co-occurrence matrix(GLCM); discrete wavelet transform (DWT) and
statistical color features, respectively.

Chapter “Manufacturing of Medical Devices Using Artificial Intelligence Based
Troubleshooter” discusses a process in which an artificial intelligent (AI) agent,
independent of human skills, would learn the tricks of trade in exactly the same
fashion as a human would. This work showcases an AI agent that gains knowledge
of the manufacturing process exactly the same way as an operator learns on the
production floor.

Chapter “Enhanced Hierarchical Prediction for Lossless Medical Image Com-
pression in the Field of Telemedicine Application” addresses two algorithms
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Preface vii

of MHPCA for high frequency regions which improves coding efficiency and
temporal scalability for Enhanced Hierarchical Prediction for Lossless Medical
Image Compression in the Field of Telemedicine Application.

Chapter “LBP Based CAD System Designs for Breast Tumor Characterization”
proposes an efficient CAD system for characterization of breast ultrasound images
based on LBP texture features and morphological features. The results illustrate that
CAD system based on ANFC-LH algorithm yields optimal performance for breast
tumor characterization.

Chapter “Detection of Fetal Abnormality Using ANN Techniques” proposes an
approach of neural modeling for the diagnosis of fetus abnormality using ultrasound
(US) images. The proposed method is a hybrid approach to image processing
methods and artificial neural network as a classifier to extract fetus abnormality.

Chapter “Machine Learning and Deep Learning-Based Framework for Detection
and Classification of Diabetic Retinopathy” is a review of examining the prior
and recent new algorithms designed to automatically detect and classify diabetic
retinopathy.

Chapter “Applications of Artificial Intelligence in Medical Images Analysis”
discusses how the use of AI has shown promising results in the field of radiology,
where the disease can be diagnosed and assessed accurately for efficient decision-
making and planning of the treatment procedures.

Chapter “Intelligent Image Segmentation Methods Using Deep Convolutional
Neural Network” presents the underlying general mathematical operations com-
bined with the currently used handy performance metrics for Intelligent Image
Segmentation Methods using Deep Convolutional Neural Network.

Chapter “Artificial Intelligence Assisted Cardiac Signal Analysis for Heart
Disease Prediction” discusses a detailed survey of various mathematical and
artificial intelligence (AI)-based cardiac signal analysis models for coronary disease
prediction.

Chapter “Early Lung Cancer Detection by Using Artificial Intelligence System”
is about computer-aided diagnosis (CAD) system used for the prediction of lung
cancer, which helps to attain a high detection rate and reduces the time consumed
for analyzing the sample.

Chapter “An Optimal Model Selection for COVID 19 Disease Classification”
introduces a study for understanding which deep learning models give the best result
when classifying COVID-19 patients using chest CT images.
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Voice Privacy in Biometrics

Priyanka Gupta, Shrishti Singh, Gauri P. Prajapati, and Hemant A. Patil

1 Introduction

The definition of privacy was given first time by Warren and Brandeis in 1890
[1], as “the right to be left alone”. However, apart from the individuals, some
sensitive information can also need protection in such a way that only a certain
set of people are allowed (authorized) to access it. This authorization to access a
specific information is given by a biometric system. Biometric systems are used for
security purposes in a way that they prevent unauthorized access to an important
information or data (information privacy). The access granted by the biometric is
done by capturing traits of humans, which make all human beings unique w.r.t. that
particular trait. This means that no two traits are the same. For example, fingerprints
and iris are the most common physical traits that are captured by a biometric system.
However, forging of such traits is quite prevalent, which poses a great security
threat to the biometric system. We can say a biometric system that acts like a
guard to protect sensitive and confidential information itself suffers from forgeries.
Therefore, the need for privacy preservation in biometrics is all the more important
[2].

Apart from the physical traits, such as fingerprints, hand geometry, and iris, there
are behavioural traits, such as the speech, keystroke, and gait of an individual. One
can recognize a person just by listening to his/her voice. Therefore, speech carries a
lot more information than what it just sounds to be. This means, apart from the
linguistic content of the speech, there are traits of the speaker, such as accent,
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Fig. 1 Applications of voice privacy

pitch (fundamental frequency, Fo), tone, rhythm, idiosyncrasies, etc. Therefore,
speaking of an individual’s identity, it is not just his/her name, but it is also other the
traits captured by the speech signal, such as gender, age, health status, personality,
emotional state, and accent. So far as the practical deployment of Automatic Speaker
Verification (ASV) technology is concerned, for example, banking transactions,
access to restricted buildings, designing a privacy-preserving voice privacy system
is crucial. A voice privacy system can be used for real-world applications, such as
in forensics, voice biometric systems, medical domain, and to study and analyse
attacker’s perspectives to build more secure ASV systems as shown in Fig. 1.

1.1 Motivation for Voice Privacy

The notion of privacy in the field of healthcare is very old. With the advancement
in technology comes the easy data collection and processing technologies [3]. At
the same time, the detail and diversity of information collected in the context of
biomedical research are increasing at an unprecedented rate. The easy availability
of such large amount of data has also raise the concerns of privacy invasions [4]. It is
important to understand the scope and frequency of these invasions. There are cases
where medical records of people are illegally accessed for the purpose of identity
fraud. Due to privacy concerns, people change the behavioural activities, such as
visiting another doctor for check-up, not seeking care when needed in order to avoid
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disclosure of information, self-treating or medicating themselves, not disclosing
full information about their medical history, paying out of pocket despite of being
insured, and hesitate to participate in the surveys that require data from people in the
fear of data getting misused, etc. This privacy-protective behaviour shows the trust
issues of people. Therefore, focus on the privacy preservation technologies should
be given utmost importance to reduce the vulnerability of the data. It becomes all the
more important in the case of patients suffering from speech disorders, and diseases
such as dysarthria, which affect the speech characteristics. In such cases, the medical
practitioner may have to record and save the patient’s speech data (with patients’
consent). However, the risk of availability of patients’ unprotected speech data will
exist. Moreover, this risk will turn severely damaging if the patient is enrolled as a
genuine speaker on a voice biometric (ASV) system. This risk can be mitigated to a
large extent if voice privacy measures are applied to the speech data.

Furthermore, apart from the risk of unprotected speech data, ASV systems are
prone to attacks. With the availability of patient’s unprotected speech data, the
spoofing attacks become easier to mount and can even be specifically targeted at
a particular patient and thus causing more damage. In the ASV literature, there are
various spoofing attacks, such as Voice Conversion (VC) [5, 6], Speech Synthesis
(SS) [7, 8], replay [9–11], twins [12], and impersonation [13] (Fig. 2).

Corresponding to each spoofing attack, there are Spoofed Speech Detection
(SSD) systems. Recently, there have been efforts to develop countermeasures
for replay attack detection on voice assistants or Intelligent Personal Assistants
(IPA) [14, 15]. Furthermore, SSD systems based on the state-of-the-art Constant
Q Cepstral Coefficients (CQCC), and Cochlear Filter Cepstral Coefficients and
Instantaneous Frequency (CFCCIF) features were able to detect attacks by Speech
Synthesis and Voice Conversion [16, 17]. However, the same features performed
poorly in the case of a replay attack [18]. This means that we are far away from
designing a generalized for these attacks on ASV and that there is no versatile
SSD system to prevent all kinds of spoofing attacks. Since SSD systems have been
known to prevent only a specific type of attack, their deployment in the real-world
applications is not suitable. This is because the attacker has the liberty to perform
any kind of attack on the ASV system, irrespective of whether the SSD system

Fig. 2 A conventional voice biometric (ASV) system
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Fig. 3 Significance of proposed voice privacy for ASV system

is prepared for it or not. Therefore, voice privacy brings in the universality in
protection from all the (at least most of the) types of attacks. Hence, the authors
believe that voice privacy system could alleviate in principle, the need of SSD
systems as shown in Fig. 3.

1.2 De-identification vs. Anonymization

The terms de-identification and anonymization are used interchangeably since both
of them aim to protect or hide a person’s identity. However, there is a subtle
difference between them. In particular, de-identification is bi-directional, whereas
anonymization is not. This means that de-identification procedures are reversible in
nature, and hence, the original identity can be recovered from the pseudo-identity.
This usually requires the knowledge of some extra (additional) information, such as
a key. On the other hand, anonymization is irreversible. This means that the identity
transformation is an irreversible function. Another notable difference is that in
case of de-identification, if re-/de-identification (i.e., identification) usually requires
a key. Therefore, de-identification methods are generally based on cryptographic
methods.

Moreover, cryptographic methods fail to retain the intelligibility and the natu-
ralness of the speech, whereas anonymization generally uses Voice Transformation
(VT) techniques, which retain the quality of speech to a certain extent [6]. The VT
approaches usually include anonymization by Voice Conversion, Speech Synthesis,
and the other techniques of speech processing. One such speech processing
technique is using linear prediction of speech, which is discussed in detail in this
chapter.
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2 Voice Privacy and Attacker’s Perspective

In previous years, research has been centred around the issue of security of ASV
systems. This has been done by developing respective countermeasures (CMs), for
each kind of spoofing attack. Speech detection system (SSD) is an anti-spoofing
system that detects the presence of an attack and allows only genuine speech into
the ASV system. SSD was used preliminary to the ASV system, thus making it a
two-class problem, as shown in Fig. 4. The first initiative w.r.t. the defence against
spoofing attacks was in the form of a challenge organized by INTERSPEECH in
2015 [19]. Subsequent challenges were organized in 2017 and 2019, as shown in
Table 1. It is worth noting that in ASVspoof 2015 and 2017, the assessment of CMs
was done using equal error rate (EER), independent of ASV systems [19, 22–29].
However, for real-world applications, this type of assessment is not very useful.

2.1 Target Selection by Attacker and Voice Privacy System

In [30], speakers are classified as lambs, wolves, and goats on the basis of their
effect on the equal error rate (EER). Since each of the type of speakers (i.e., lambs,
wolves, and goats) has a different effect on the EER, they can also be classified in
terms of their vulnerability levels to attacks, as shown in Fig. 5. From an attacker’s
perspective, the lamb type speakers should be the target. The attacker can perform
target selection using an ASV system, to choose the most vulnerable speaker from
the pool of speakers, as the target [31]. However, if voice privacy is used, the target

Fig. 4 Spoofed-speech detection (SSD) for ASV system

Table 1 ASVspoof challenge campaigns, after [19, 21]

INTERSPEECH ASVspoof
2015

INTERSPEECH ASVspoof
2017

INTERSPEECH ASVspoof
2019

Countermeasures were
proposed using various kinds
of feature extraction
techniques

Countermeasures for
real-replay attacks were
proposed

Countermeasures for
simulated replay attacks were
proposed [20]

Signal processing techniques
and Gaussian mixture model
(GMM) were used to classify
a speech as genuine or spoof

Paradigm shift from signal
processing to
deep-learning-based
algorithms

Real physical access (PA)
dataset was released.
Tandem-DCF was used as the
objective metric for joint
evaluation of SSD and ASV
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Fig. 5 Types of speakers on
the basis of their vulnerability
levels and their effect on EER
scores

Fig. 6 Schematic representing effect of voice privacy on target selection. (a) Without voice
privacy, target selection is successful. (b) With voice privacy, target selection gives misleading
results

selection procedure by the attacker will yield incorrect results. Thus, the attacker
will be fooled into selecting a not-so-vulnerable speaker as the target, as shown in
Fig. 6.

2.2 Enrolled Users with Malicious Intent

In principle, an enrolled user has more power to attack than an attacker (usually a
non-enrolled outside entity). An enrolled user with a malicious intent may attempt
to spoof the system, which is all the more, a greater security concern/threat. A real-
world example of this type of attack is the twin fraud in HSBC bank, where the
bank’s voice authentication system was spoofed by a BBC journalist, and his non-
identical co-twin speaker [32, 33].
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Another interesting point to note here is that if an SSD system as a countermea-
sure for twins attack is used, it will prevent malicious twins from impersonating
(which is based on physiological characteristics, in particular, size and shape of
the vocal tract system [34]). However, it will also prevent genuine and zero effort
imposters from verification and hence increasing the False Rejection Rate (FRR).
With the deployment of a voice privacy system instead, this kind of attack will not
be possible. Moreover, the issue of preventing genuine and zero effort imposters
will also be alleviated, and hence, there will be no increase in FRR.

3 Voice Privacy Using Linear Prediction Model

3.1 Speech Production Model

Depending on the signal shape and structure in time domain, speech signal can be
divided into voiced and unvoiced speech. Voiced sounds are produced due to quasi-
periodic vibrations of the vocal folds. These vibrations occur because of the sudden
closing of the vocal folds (causing quasi-periodic vibration). In particular, when the
air rushes from the lungs, it hits the vocal folds making them vibrate, because of the
decrease in air pressure and tension on the vocal folds (i.e., by invoking Bernoulli’s
principle from fluid dynamics). One can actually touch and feel the vibrations of
the vocal folds by placing a thumb near the throat while uttering a voiced sound
such as a vowel (e.g., /a/ ). However, in the case of unvoiced speech, such as /h/,
one does not feel any vibrations of the vocal folds (also called as aspiration). This is
because, for unvoiced sounds, the vocal folds are just lightly open, and therefore, the
air rushing from the lungs produces turbulence at the vocal folds. This turbulence
is modeled as a noisy signal as shown in Fig. 7, which shows discrete-time speech
production model for voiced and unvoiced sounds. For voiced sound, the gain is
Av , which corresponds to the loudness. Similarly, AN corresponds to the loudness
of the unvoiced sound. Considering the voiced case, the overall transfer function of
the speech production model is H(z) = G(z)V (z)R(z), where G(z) is the transfer
function of the glottal system, V (z) is the transfer function of the vocal tract system,
and R(z) is the lip radiation effect. G(z), V(z), and R(z) represent z-domain system
functions. Mathematically, G(z) is given by [35]

G(z) = 1

(1− e−cT z−1)2
, (1)

where c and T denote the velocity of sound and the time period of glottal pulse,
respectively. Furthermore, the vocal tract system V(z) and lip radiation R(z) are
given by [35]
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Fig. 7 Discrete-time speech production model, after [35]

V (z) = G
∏N/2

k=1(1− 2rkcosθkz−1 + r2k z−2)
, (2)

R(z) = Ro(1− z−1), (3)

where G is the gain of V(z); rk and θk are the pole radius and pole angle,
respectively, of kth complex pole pair. If e−cT ≈ 1, then H(z) will be

H(z) = σ

1−∑p

k=1 akz−k
, (4)

where σ is the gain of H(z). Vocal tract system, V(z), is modeled as a linear
time-invariant (LTI) all-pole system by cascading the 2nd-order digital resonators
corresponding to each formant (Fig. 8). As per L. G. Kersta, who reported one of
the first studies in speaker recognition, resonance is defined as reinforcement of
spectral energy at or around a particular frequency [36]. The resonance frequencies
of the vocal tract system are called formant frequencies. The formant frequencies
specify the shape of the vocal tract system, thus forming the spectrum. The peaks in
the spectrum are referred to as formant peaks. The formants change with different
sizes and shapes of vocal tract configurations [37]. Therefore, the vocal tract system
by cascading the four 2nd-order digital resonators (for first four formants) is given
by

V (z) =
4∏

i=1

Hi(z), (5)

where each Hi(z) is a 2nd-order digital resonator. Transfer function for 2nd-order
digital resonator for ith formant is given by
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Fig. 8 Vocal tract system, V(z), modeled by cascading 2nd-order digital resonators

Hi(z) = 1

(1− p1i
z−1)(1− p2i

z−1)
, (6)

where p1 and p2 are the complex conjugate pole pairs of 2nd-order resonator
transfer function. For ith formant, i.e., p1i

= p∗
2i
= rie

±jωoi . Taking discrete-time
Fourier transform (DTFT) of Hi(z) frequency response of ith formant is given by

Hi(z)|z=ejω = Hi(e
jω) = 1

(1− rie
jωoi e−jω)(1− rie

−jωoi e−jω)
, (7)

where ωo is the pole angle and ri is the pole radius. Now, taking magnitude of
Hi(e

jω), we get

|Hi(e
jω)| = 1

|(1− rie
jωoi e−jω)||(1− rie

−jωoi e−jω)| . (8)

For resonance, |Hi(e
jω)| → max, therefore,

d|Hi(e
jω)|

dω
= 0, (9)

solving Eq (9) will give resonant frequency, ωri ,

ωri = cos−1

[
1+ r2i

2ri
cosωoi

]

. (10)

Considering pole radius, ri → 1, then we get

ωri ≈ ωoi
. (11)

Impulse response of 2nd-order digital resonator is given by

hi[n] = Krn
i sinωoi

(n+ 1)u[n], (12)
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where ri is the radius of poles and K is the overall gain. The pole radius is inversely
proportional to the −3 dB bandwidth. When radius = 1 (i.e., bandwidth = 0),
sharp peaks in the spectrum are observed with highest possible (∼∞) quality (Q)-
factor. The change in pole radius will correspond to various energy losses, which is
discussed in Sect. 3.2. Using physics of speech production, due to various sources of
energy losses, dissipation of energy occurs in the system that causes the decrease in
resonant frequencies and leads to the broadening of the −3 dB formant bandwidths.
Thus, the effect of the damping factor rn

i is observed. Using impulse-invariant
transformation (IIT) to map Laplace domain (s-domain) pole to z-domain pole,
relationship between −3 dB bandwidth and pole radius r is given by [38],

ri = e−πBiT , (13)

whereB is the−3 dB bandwidth (inHz) and T is the sampling interval (in seconds).
Therefore, for larger radius, sharp high peaks will be observed at the resonance
frequencies. Hence, to achieve speaker anonymization, radius of the pole should be
decreased, which will eventually lead to the broadening of the bandwidth around
the resonant frequency, causing the energy to get spread. Thus, there will be no
presence of sharp and distinct peaks around formant frequencies, which will make
identification of the speaker difficult.

3.2 Energy Losses

Ideally, the oral cavity is assumed to be a uniform tube with no losses due to the
fact that the poles of corresponding transfer function Eq. 17 (which is the ratio of
DTFT of volume velocities at lips and glottis, respectively) are strictly on jω axis
in s-plane. This oral cavity has roughly constant cross-section area with one end
connected to the glottis and another at the lips [35]. However, in reality, this oral
cavity can be modeled by time-varying and non-uniform cross-sectional area. Due
to these variations, various energy losses occur. These losses affect the formant
frequencies and their −3 dB formant bandwidths, which can be analysed from
frequency response via suitable numerical simulations [39]:

• Viscosity and Thermal Loss:
The air particles’ effects in flowing from glottis to the lips have some friction
with vocal tract walls that resist the air flow from the glottis. This friction can
be introduced as a resistor in an electrical equivalent circuit of the cavity. This
friction represents viscous energy loss. Another loss in the form of heat loss (also
called as thermal loss) is incurred due to the vibrations of the vocal tract walls. A
small decrease in formant frequencies and increase in formant bandwidth can be
observed while considering these losses along with the wall vibration loss. The
increase in bandwidth is more at higher frequencies [40].
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Fig. 9 Mechanical model of differential surface element d� of vibrating wall, after [35, 40]

• Wall Vibrations:
Consider a tube whose cross-section is non-uniform. Furthermore, assume
that the cross-sectional area changes slowly with time and space. The small
differential sections of surface of the wall (d�) are assumed to be independent
by Portnoff [40]. Each of these small sections can be then mechanically modeled
as shown in Fig. 9, where mω = mass, kω = spring constant, and bω = damping
constant per unit surface area.

Considering the two boundary conditions of the volume velocity sources
u(0, t) (known), and the output pressure p(l, t) (where l = length of the vocal
tract modeled as uniform tube), three coupling equations—two for sound wave
propagation and one for 2nd-order differential equation from Fig. 9—can be
approximated as [35].

− ∂p

∂x
= ρ

A0

∂u

∂t
, (14)

.

− ∂u

∂x
= A0

ρc2

∂p

∂t
+ ∂	A

∂t
, (15)

p = mω

d2	A

dt2
+ bω

d	A

dt
+ kw	A, (16)

where A0 = average cross-section (constant), 	A = linear perturbation
about the average cross-section, S0(x, t) is the average vocal tract perimeter at
equilibrium, r is the perpendicular displacement of the wall, and ρ = density
of air particles. For the steady-state condition of the system described above,
assume the system to be an LTI system. An input ug(t) = u(0, t) = U(
)ej
t



12 P. Gupta et al.

Fig. 10 Glottal and lip boundary conditions as impedance loads, after [35]

gives solutions, p(x, t) = P(x,
)ej
t , u(x, t) = U(
)ej
t , and 	A(x, t) =
	Â(x,
)ej
t . Portnoff has used standard numerical simulation techniques to
solve these coupled equations, which results in frequency response as shown in
Eq. 17 [40].

Va(
) = U(l,
)

Ug(
)
. (17)

While producing voiced speech, due to air pressure from the lungs, glottis will
vibrate (by invoking Bernoulli’s principle in fluid dynamics). Since vocal tract
walls are pliant, they will move under pressure induced by sound propagation
in the vocal tract system. These vibrations lead to energy losses in the cavity,
and hence, the poles of Eq. 17 are moved from j
, becoming complex from
only imaginary (ideally). Hence, the −3 dB bandwidth is non-zero, and formant
frequency is increased. At low frequencies, inertial mass of vocal tract walls
results in more motion, making it more dominant at lower frequencies compared
to the higher frequencies.

• Lip Radiation Loss:
The effect of radiation at lips can be analysed by finding the acoustic impedance
seen by the vocal tract from the lip end. This leads to the consideration of glottal
and radiation load (at the lips) in the cavity model, as shown in Fig. 10. Rr is the
radiation resistance due to sound propagation through lips, andLr is the radiation
inductance that is the inertial mass sent out at lips. Parallel combination of them
contributes to the acoustic impedance (Eq.18) [35].

Zr(
) = P(l,
)

U(l,
)
= 1

1
Rr

+ 1
j
Lr

= j
LrRr

Rr + j
Lr

. (18)

For very small 
 ≈ 0, Zr ≈ 0, so the radiation load acts as a short circuit
with pressure at the lips equal to zero, i.e., p(l,t)=0. For very large 
 with
condition 
Lr � Rr , Zr ≈ Rr , making it resistive at higher frequencies. The
radiation energy loss is happened due to real part of the complex impedance Zr ,
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Table 2 Frequency response of uniform tube with various losses with p(l, 0) = 0, after [35, 40]

Vibrating walls, viscus, Vibrating walls, viscus,
Vibrating walls and thermal loss thermal, and radiation loss

Frequency Bandwidth Frequency Bandwidth Frequency Bandwidth

Formants (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

1st 504.6 53.3 502.5 59.3 473.5 62.3

2nd 1512.3 40.8 1508.9 51.1 1423.6 80.5

3rd 2515.7 28.0 2511.2 41.1 2372.3 114.5

4th 3518.8 19.0 3513.5 34.5 3322.1 158.7

which is proportional to Rr from Eq. 18. Thus, more radiation loss will occur at
higher frequencies with monotonic increase in Rr . From this discussion, it can
be observed that this radiation impedance behaves as a high-pass filter (HPF).
Hence, to approximate the lip radiation, we can model the impedance as a HPF
before we apply any algorithm on a speech signal.

Considering all the three losses together shows a slight decrease in formant
frequencies, however a very high increase in −3 dB bandwidth as shown in Table 2,
particularly for higher frequencies [40]. Here, comparison is made to lossless
system’s formant values (i.e., odd multiples of 500Hz) for a particular case when
tube length is 17.5 cm with a cross-sectional area of 5 cm2.

The most important thing to note here is that every human being has different
configurations of vocal tract system. In addition, the size and shape of lips
during speaking vary differently for everyone. These facts connect lip radiation
loss to speaker-specific characteristics of a speech signal. As the speaker-specific
characteristics lie in the higher formants (i.e., F3 and F4), the energy losses become
more important when we deal with the de-identification. In this chapter, authors tried
to validate this conclusion using various experiments that changes−3 dB bandwidth
to change the speaker’s identity.

3.3 Linear Prediction (LP) Model

LP is one of the most powerful methods to analyse speech signals especially in
speech coding for wireless communication services. LP coefficients for speech
implicitly represent time-varying vocal tract area function. It is an iterative method
to find current sample of speech s[n], using past p speech samples because linear
prediction coefficients capture implicitly time-varying area function of vocal tract
during speech production, where p represents predictor memory [41]. With respect
to source-filter model of speech production, LP method decomposes speech signal
into two components: LP coefficients (representing vocal tract system using LP
filter) and LP residuals (representing speech excitation source) [38]. By minimizing
the squared differences between the actual speech samples and the linear predicted
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speech samples, a unique set of predictor coefficients can be obtained. LP model
is based on all-pole model. Generally, the all-pole model is preferred because it is
computationally more efficient and of its acoustic tube model for speech production.
It can model sounds, such as vowels well enough and the other consonants (except
nasal consonants that require zeros in the transfer function). The zeros arise only in
the nasals and in the unvoiced sounds.

In LP analysis, sample at nth instant is represented as a linear combination of
past p samples, i.e.,

s̃[n] = a1s[n− 1] + a2s[n− 2] + ... + aps[n− p], (19)

where a1, a2, ..., ap are called as LP coefficients.
The z-domain system function for pth-order predictor is given as

P(z) =
p∑

k=1

αkz
−k. (20)

The error signal or the LP residual signal, e(n), is the difference between the actual
(true) speech signal and the estimated speech signal. LP residual is given by

e[n] = s[n] − s̃[n] = s[n] −
p∑

k=1

αks[n− k]. (21)

In z-domain, error signal or LP residual e(n) can be seen as the output of the
prediction error filter A(z) to the input speech signal s(n) and is given by

E(z) = A(z)S(z), (22)

where prediction error filter A(z) is defined as

A(z) = 1−
p∑

k=1

αkz
−k = 1− P(z). (23)

The whole LP model can be viewed in two parts, the analysis and the synthesis.
The LP analysis filter suppresses the formant structure of the speech signal and
leaves a lower energy output prediction error that is often called the LP residual. LP
residuals are used as an excitation source for the production of speech. The synthesis
part takes the error signal as an input that gets filtered by the inverse filter, which is
the inverse of the prediction error filter, and gives the speech signal as the output.
When the vocal tract system is modeled as an LTI all-pole system, then a pole at
roi

ejwoi and roi
e−jwoi corresponds to ith formant of vocal tract system. Vocal tract

length has inverse relationship with the formant frequencies. Thus, we can observe
the difference in the formant frequencies between the male and the female speaker
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[42]. In particular, a male speaker (due to larger vocal tract length) tends to have
lower formants than female speakers [35].

In LP model, LP coefficients govern the pole locations that in turn determine
formant frequency and formant bandwidth [43]. Mathematically, formant frequency
is given by Fsθ

2π , where θ is the angle of the pole in radians, given Fs is the sampling

frequency in Hz. The formant bandwidth is given by Fs

π
(−log(r)), where r is the

radius of the pole [35]. As per M.R. Schroeder, human beings emit and perceive
sounds by emitting spectral peaks more dominantly than the spectral valleys [44].
Therefore, we can achieve speaker de-identification by modifying the formant
frequencies leading to the change in the formant spectrum with naturalness and
intelligibility retained in the anonymized speech. Hence, by performing controlled
shift in the pole angle and the pole radius, speaker de-identification can be achieved
without the loss of intelligibility in the anonymized speech signal.

3.4 Experimental Setup

3.4.1 Baseline System

Recently, efforts are made to develop privacy preservation solutions for speech
technology. In the light of moving forward towards this development, the first
voice privacy challenge is being organized in INTERSPEECH 2020 to motivate
researchers in this direction [45, 46]. In the baseline system, provided by the
organizers of the Voice Privacy Challenge 2020, anonymization is achieved by
only modifying the pole angle. It is based on employing McAdam’s coefficient
[47] to the pole angle, which are extracted using linear prediction (LP) method
[48]. The performance of the anonymization is evaluated using these parameters,
namely, equal error rate (EER), calibration cost (Cllr), and word error rate (WER).
Former two objective metrics are based on ASV systems whose higher values are
desired. Whereas, the intelligibility score is determined throughWER, which should
be as low as possible. However, for better anonymization of the speaker’s identity,
improved version of the baseline system has also been discussed in sub-section
“Proposed Voice Privacy System”, in which not only pole angle but radius of the
poles is also modified in order to incorporate effect of various energy losses during
natural speech production.

3.4.2 Corpora Used

For development data, subsets from two corpora, namely, LibriSpeech-dev-clean
and VCTK, are provided [49, 50]. These subsets are further divided into trial and
enrolment subsets. There are 40 speakers in LibriSpeech-dev-clean. There are 29
speakers in enrolment utterances and 40 speakers in trial utterances. From these
40 speakers of trial subset, 29 speakers are also included in the enrolment subset.
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Table 3 Statistics of the development datasets, after [45]

Subsets of corpus Particulars Female Male Total

LibriSpeech: Dev-clean Speakers in enrolment 15 14 29

Speakers in trials 20 20 40

Enrolment utterances 167 176 343

Trial utterances 1018 960 1978

VCTK-dev Speakers (same in enrolment and trials) 15 15 30

Enrolment utterances 300 300 600

Trial utterances (common part) 344 351 695

Trial utterances (different part) 5422 5255 10677

Table 4 Statistics of the evaluation datasets, after [45]

Subsets of corpus Particulars Female Male Total

LibriSpeech: test-clean Speakers in enrolment 16 13 29

Speakers in trials 20 20 40

Enrolment utterances 254 184 438

Trial utterances 734 762 1496

VCTK-test Speakers (same in enrolment and trials) 15 15 30

Enrolment utterances 300 300 600

Trial utterances (common part) 346 354 700

Trial utterances (different part) 5328 5420 10748

In VCTK-dev dataset, there are a total of 30 speakers that are the same for both
trial and enrolment utterances. Furthermore, for trial utterances, there are two parts,
denoted as common part and different part. Both the parts are disjoint in terms of
utterances; however, they have the same set of speakers. The common part of the
trials has utterances from #1 to #24 in the VCTK corpus, which are the same for
all the speakers. The common part of the trials is meant for subjective evaluation of
speaker verifiability/linkability in a text-dependent manner. #25 onward utterances
are distinct and hence are included in the different part of the VCTK-dev dataset.
For evaluation, the structure is the same as that of development set, except for the
number of utterances (Tables 3 and 4).

3.4.3 Proposed Voice Privacy System

At first, speech signal is divided into smaller frames that are fed to LP source-filter
analysis in order to obtain to LP coefficients and residual.

Only LP coefficients are taken into account for further processing, while the
residual is left unchanged. LP coefficients are then employed to obtain pole positions
of the LP model. Poles whose imaginary value is not zero are considered, and their
pole angle “φ” is calculated. Since every complex conjugate pole pair corresponds
to one formant frequency, only one pole out of complex conjugate pole pair is
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Algorithm 1 Voice privacy by LP modeling of speech production
Ensure: Speech is signal is divided into frames.

LP coefficients and residuals are extracted.
LP coefficients are converted to poles.
Radius of the complex poles is shifted to 0.975 of the original value of radius.
Poles φ of the complex poles are shifted to φ0.8.
New LP coefficients are formed.
The new anonymized speech signal is re-synthesized.

Fig. 11 Proposed LP-based anonymization system, after [14, 45, 46]

considered for achieving speaker anonymization [51]. For further improving the
baseline system, pole radius is changed along with the pole angles. The pole angle
is shifted by raising it to the power of McAdams coefficient [47] “α = 0.8”,
i.e., φα . Values of α and φ determine the positive or negative shift in the pole
locations. The pole radius is decreased by 15%, 5%, and 2.5% of original pole
radius [14]. With these new sets of pole radii and angles, a new set of poles are
fabricated therefore forming new LPC coefficients. These new coefficients along
with original LP residuals are used to synthesize new speech signal, hence achieving
the anonymization of speech. Motivated by original studies in the speech coding
literature [52–54], residuals are kept intact because they are used to retain the
naturalness and intelligibility of the speech signal (Fig. 11).

3.4.4 Experimental Results

In the experiments, decreasing the radius of the poles results in the expansion of
the formant bandwidth. On studying the experimental results, it is observed that
2.5% decrease in the radius along with the phase changed to φα=0.8 gave higher
values of %EER and lower values of %WER, which is desired. As discussed
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Fig. 12 %EER (o—original, a—anonymized) for (a) development data, (b) test data, and %WER
(for two trigram LMs: LMs -small LM, and LMl-large LM) for (c) development data, (d) test data
(for radius = 0.975 to its value and α = 0.8), after [14]

earlier, by decreasing the pole radius, the corresponding formant bandwidth will
increase. According to the resonator (theory discussed in Sect. 3.1), increase in
the bandwidth will decrease the Q-factor of the resonator. Spectrum peaks will no
longer be distinctly present causing the loss of speaker-specific information. Hence,
the quality of original speech signal degrades, which contributes to the higher EER
scores. The results of the experiment in terms of %EER and %WER for test data
and development data are shown in Fig. 12a–d [14, 55].

3.4.5 Gender-Based Analysis

From the experimental results obtained for voice privacy, noticeable information
came out to be the higher values of the %EER for the female speakers than the male
speakers under the condition that the anonymization technique on the utterances is
the same for both the female and male speakers as shown in Fig. 12a, b. This result
can be supported by the fact that spectral resolution for female speech is poor as
compared to the male speech [56]. The mass of the vocal folds in female speakers is
less than the male speakers due to which movement of vocal folds becomes sluggish
in male speakers, and hence, the glottal vibrations are more rapid (fast) in female
speakers, and therefore, high pitch frequency is observed for female voice. Hence,
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Fig. 13 Illustration of periodic glottal flow and its spectrum. (a) Higher pitch (female speaker),
(b) lower pitch (male speaker), after [35, 56]

in spectral domain, the pitch-source harmonics are observed to be in larger distance
with each other, which results in the poor spectral resolution of the female speaker.
This can be beneficial for our aim to achieve speaker de-identification because the
perception of the female speech through ASV systems can become difficult. In
addition, in the glottal cycle waveform, glottal closure instant and period during
closure provide characteristics for discriminating speaker’s voice from one another.
Provided the same pitch period and impulse response of the vocal tract system, even
a slight variation in the glottal waveform can result in a considerable amount of
change in the voice characteristics. Therefore, due to the larger pitch duration in
male speakers, they get sufficient time for the closure of the glottis and to perform
activity near the glottal closure. However, in the case of female speakers, the pitch
duration is almost half the pitch duration of the male speakers (near about 10ms

in male speakers and 5ms in female speakers), due to which female speakers do
not have enough time for the closure of the glottis and to perform activity near
the glottis before the glottal opening. This large variation in the glottal waveform
changes the speaker’s characteristics drastically. The speaker recognition techniques
use information based on the 1 − 2ms glottal closure period. Hence, tracking this
large variation in 1 − 2ms of glottal closure period becomes difficult for the ASV
systems, which can lead to the higher %EER values. The illustration of the spectral
resolution problem is presented in Fig. 13. In particular, u[n] represents the glottal
flow waveform model that can be given by

u[n] = g[n] ∗ p[n], (24)

where g[n] is the glottal flow waveform over a single glottal cycle and p[n] is an
impulse train with spacing, P [35]. U(ω) and G(ω) are the Fourier transforms of
u[n] and g[n]. ωk is the harmonics of the glottal flow waveform. The magnitude
of the spectral shaping function, G(ω), is referred as the spectral envelope of the
harmonics.
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Fig. 14 Panel I: Analysis for original speech signal. Panel II: Analysis for anonymized speech
signal. (a) Spectrogram and speech signal for a female speaker, (b) spectrogram and speech signal
for a male speaker

Moreover, the analysis of spectrogram of original and anonymized speech of
both the female and male speakers is done. The original speech of both the male
and female speakers has undergone same anonymization method that was discussed
in sub-section “Proposed Voice Privacy System”. According to the change in the
pole angle φ, corresponding formants will be shifted, i.e., for φ < 1, the formants
will be shifted to a higher value and vice versa. Due to this reason, lower formants
in male speech will shift to a higher value, and high pitch-source harmonics for
female speech will be observed. In addition, more uniform energy distribution in the
spectrum is observed in the male speech as compared to the female speech (Fig. 14).

4 Technological Challenges in Voice Privacy

We have seen how a voice privacy system can alleviate so many issues, and hence,
it can have applications in a large number of domains. However, it should be noted
that there is no algorithm in the world that can extract a speaker’s identity explicitly,
because in a speech signal, the speaker’s identity is embedded implicitly, and thus,
this will be the case for speaker de-identification and voice privacy system as well.
Therefore, there are some technical challenges that if proven to be solvable in the
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near future, then the voice privacy system can actually prove to be a real boon for
the security of ASV systems. In this context, some of the technical challenges are
discussed in this section.

4.1 Evaluation Metrics for Speech Quality

Evaluation metrics for assessment of speech quality are usually categorized as
objective and subjective metrics. Objective metrics result from assessment via
machines, while subjective metrics result from assessment via listening tests done
by different listeners. Though objective metrics, such as EER and WER, can give
us information about the extent of anonymization and intelligibility of the speech,
respectively, these measures are insufficient to measure the naturalness and related
factors. Thus, subjective evaluations are done by performing manual listening tests.
However, subjective tests suffer from inaccuracies because of various following
factors:

• Cognitive State of the Listeners: Cognitive factors of listeners, such as their
attention span, mood, and environmental noise. The output’s accuracy (for
example, Mean Opinion Score (MOS) and Perceptual Evaluation of Speech
Quality (PESQ)) is also affected because the listeners have not understood the
test properly. Hence, they evaluate the speech wrongly. In addition, if naturalness
is not be evaluated, the effect of intelligibility also creeps in due to the way
humans perceive sound. During perception, naturalness and intelligibility cannot
be distinctly separated from each other.

• Correlation Between Objective and Subjective Results: Correlation between
objective and subjective measures is done to check the effectiveness of the used
methodology for voice privacy. Pearson’s Correlation Coefficient (PCC) is used
to find this correlation that is given by

PCC =
∑n

i (Xi − μx)(Yi − μy)
√∑n

i (Xi − μx)2
√∑n

i (Yi − μy)2
, (25)

where Xi are the subjective scores for ith system, μx is the mean of all the
subjective score vectors, Yi are the features values for ith system, and μy is the
mean of all objective scores. It has been observed that PCC between MOS and
PESQ is negative [57].

4.2 Machines vs. Human Perception of Speech

Signals that are perceived as natural and intelligible by the human ear might not
be accepted by the machines (i.e., Automatic Speech Recognition (ASR) system).
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In particular, the factors that are acoustically significant may not be perceptually
detected by our perceptual system. For example, due to non-linear source-filter
interaction of glottal airflow with formants of the vocal tract system, a sinusoid-
like ripple (fine structure) is observed during opening phase of the derivative of
glottal flow waveform. However, perceptual test cannot detect its significance as it
is acoustically significant for speaker identification.

4.3 Robustness vs. Vulnerability

With regards to the usage of a voice privacy system in an ASV, one should also
consider certain feature characteristics that are listed below:

1. Stability over time
2. Robustness under noisy environments
3. Robustness over emotional and health status
4. Robustness over mic distance variability

However, if most of the characteristic requirements are met, it would also pave a
way for the attacker to attempt a successful attack. For example, if robustness under
MIC variability and noisy environment is considered, then the chances of a replay
attack are high. Thus, our good intention of designing robust ASV system makes it
more vulnerable for various spoofing attacks. In particular, distinguishing between
natural vs. replay spoof becomes more difficult due to these robust features.

5 Voice Privacy and Cryptography

Cryptography aims to prevent any malicious usage of data. Two primary types of
cryptographic algorithms are symmetric key (private-key) encryption and asymmet-
ric key (public-key) encryption. Symmetric key encryption itself requires security
for protection of the key. Moreover, the total number of keys required for p

parties should be p(p − 1)/2. Hence, due to these key-management issues, public-
key encryption has taken over most of the security applications. In the following
subsections, we will discuss the most widely used RSA algorithm and its time
complexity.

5.1 Public-Key Encryption

Public-key encryption uses two kinds of keys—public and private. Public keys are
accessible to everyone including the attacker. However, private keys are known only
to a single user. Each user has his own private key, which is not to be shared with
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Fig. 15 Public-key encryption and decryption

Algorithm 2 Key Generation
Require: Two prime numbers, p and q, of roughly equal lengths are generated randomly.

n = p ∗ q

Ensure: Euler’s totient function, 
(n) = (p−1)∗(q−1) Choose an integer e such that it satisfies
the following two conditions:
1<e<
(n)

GCD(e,
(n))=1
Calculate d such that it is the multiplicative inverse of e, i.e., d ≡ e−1(mod 
(n)). This means
e.d ≡ 1(mod 
(n)).
return (e, n) and (d, n) (public key and private key (of the receiver, respectively)).

Algorithm 3 Encryption
Require: The message to be encrypted is represented as an integer m such that m > 0 and m lies
the interval (0, n − 1].

Ensure: The sender has receiver’s public key (e, n).
Sender computes cipher c = me(mod n).
return The cipher c is then sent to the receiver for decryption.

Algorithm 4 Decryption
Ensure: The receiver has received the cipher from the sender.

The cipher will be decrypted as m = cd(mod n), by the receiver.
return Decrypted message m.

anyone. As shown in Fig. 15, the message is encrypted by the sender S, with the help
of receiver’s public key, KR(pub). Examples of public-key algorithms are RSA,
Diffie–Hellman, and El-Gamal encryption [58].

Though key management is not a major issue with such types of algorithms,
however, these algorithms are slower than the symmetric key encryption algorithms
and are mathematically more complex and intensive. As an example, the famous
Rivest–Shamir–Adleman (RSA) algorithm is shown below as [59–61]

Time Complexity
The complexity of the RSA algorithm is majorly contributed by three operations,
which are exponentiation, inversion, and modular operation. Modular operations,
such as modular addition operations, exist, whose complexity is of the order of
O(log n), where n is the size of the input.
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Algorithm 5 Modular multiplication using square and multiply technique
Require: Inputs are 2 numbers A and B, in k-bit binary representation.

Initialise output P = 0
for <i = 0 to k − 1 do

P = 2P + A.Bk−1−i

P = P mod n

end for
return P

Modular multiplication is done using squaring and multiply technique as shown
in the following algorithm: To get me mod n, modular multiplication is used.
Considering the complexity of multiplication O(log n2), i.e., repeated addition of
two numbers of log n bits each, the complexity of the modular exponentiation is
about O(log n3).

Using Euclidean extended GCD from (extended Euclidean algorithm), inverse
of a number can be calculated in O(log n2) [62]. Thus, for N -digit number space,
the overall time complexity of key generation will be O(N2), and the overall time
complexity of encryption and decryption will be of the order of O(N3).

These modular operations are used repeatedly and intensively for the other
cryptographic approaches also, such as homomorphic encryption (HE) [63]. The
size of the key used should be 2048-bits, and therefore, the inputs to the modular
operations are also nearing the same order, which makes the overall computational
overhead high.

5.2 Limitations of Cryptographic Approaches for Voice Privacy

Though cryptographic approaches are meant to be used for security purposes, there
are practical issues with their implementations in already complex systems, such as
ASVs. The limitations are discussed in this sub-section:

• The security of cryptography lies under the concept of computational difficulty
of solving the discrete logarithmic problem. However, the same reason is
responsible for the limitation of cryptographic techniques in deployment to real-
world applications. Therefore, cryptography is costly in terms of both time and
money:

– Addition of cryptographic techniques in the information processing leads to
delay.

– The set-up and maintenance of cryptographic implementations, such as
public-key infrastructure and HE, require a large computing power, varying
overhead of communications and rounds of interactions, and, hence, a big
monetary budget.
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– Most cryptographic techniques use modulo arithmetic operations on integers.
However, given the nature of a speech signal, representation of signals and
computations on them requires modulo arithmetic on floating-point operations
[2].

• Variable speech signal quality should also be reflected in the encrypted output.
However, this requires computations of matrix inversions and log determinants,
which are expensive computations.

• Vulnerabilities and threats can come up because of the poor (hardware) imple-
mentation of systems, protocols, and procedures. A poor hardware implemen-
tation can open the way to many hardware-based attacks, such as side-channel
attack [64].

• Cryptographic implementations can become vulnerable to attacks if they are not
maintained and updated regularly. Since the security lies in the computational
difficulty, regular breakthroughs that solve those computationally difficult prob-
lems keep coming up [58]. Hence, the current implementations should regularly
update their difficulty levels.

• With the advent of quantum cryptography, the existing system whose security
is based on the computational difficulty of solving a mathematical problem
will completely collapse. Therefore, post-quantum solutions in cryptography are
desirable, but they too come with cost in terms of both time and money.

6 Summary and Conclusions

Recent trends in speech technology are making biomedical systems much more
effective than they were previously. However, they also have some challenges of
privacy of patient’s medical data that should be handled carefully. Hence, in this
chapter, we have discussed the importance of a voice privacy system that can be used
to protect patient’s voice data. Voice privacy is secure against attacking approaches,
such as target selection and enrolled users with malicious intent. LP modeling of
speech and the fact that a speaker’s identity is embedded in the energy losses while
speech is produced are used to design a robust voice privacy system. Moreover,
a few technological challenges related to the designing of a voice privacy system
are also listed. Issues arising with the application of cryptographic techniques are
also discussed. In the future, extracting speaker-specific features from the glottal
flow waveform and the associated ripple in it can be done. Moreover, the other
LP models, such as Residual Excited Linear Prediction (RELP) and Mixed Excited
Linear Prediction (MELP), can be used. Apart from signal processing techniques
to design a voice privacy system, deep-neural network techniques can also be used,
in the future. The speech community is developing privacy systems that will ensure
voice data privacy along with data usability.
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Histopathology Whole Slide Image
Analysis for Breast Cancer Detection

Pushap Deep Singh, Arnav Bhavsar, and K. K. Harinarayanan

1 Introduction

Cancer is a group of diseases, distinguished by uncontrollable cell growth, invasion
and spread of cells from primary location, to other locations in the body. In India
according to the fact sheet presented by GLOBOCAN in 2018 [1], total number
of new mammary gland cancer cases were 162,468 and deaths due to this type of
cancer were 87,090 and this disease is having highest number of cases in a year and
most deaths according to the statistics shared in [1].

Adenocarcinoma is a type of cancer which occurs in glandular tissue (e.g.,
mammary gland). Mammary gland cancer is categorized based on the cell structure
which is observed under a microscope. Major portion of mammary gland cancers are
carcinomas, a cancer type that originates in the organ lining. Some of the important
carcinoma types are listed below:

• Ductal carcinoma in situ (DCIS): DCIS is distinguished by degenerated cells
that are restricted to the milk ducts. If DCIS is left unattended for a long time,
the cancer cells may spread to nearby tissue. It is the most common type of
noninvasive cancer. DCIS can be categorized by the appearance of the tumor,
which can be solid, cribriform, micropapillary, papillary, and comedo.

• Invasive ductal carcinoma (IDC): IDC originates from the milk ducts and
expands outside the duct. IDC accounts for 80 percent of the invasive mammary
gland cancer.
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• Lobular carcinoma: Lobular carcinoma originates from the lobes (glands respon-
sible for making milk). The probability of this type of cancer to become invasive
is very low (0.1).

There exists a variety of tests which can be done to screen and diagnose
the mammary gland cancer. These include physical examination of the gland,
mammography, ultrasound of the mammary gland, magnetic resonance imaging
(MRI) of the gland, lymph node biopsy. Among all of these methods, lymph node
biopsy is considered to be the gold standard to detect presence of cancer in the
mammary gland.

1.1 Lymph Node Biopsy and the Need for Computer Aided
Diagnosis

In humans lymphatic system is an important part of the immune and circulatory
system. Lymphatic system is a network of the nodes, vessels, and a special organ
known as spleen. Figure 1 shows the lymphatic system in the human body. The green
colored dots denote the nodes, pink colored region depicts the spleen and remaining
denote the vessels[2]. For detecting cancer one of the methods is the biopsy of the
lymph nodes present near tumor. In detecting mammary gland cancer, samples of
tissue are collected from the auxiliary lymph nodes.

Figure 2 shows the bean shape structured lymph node which holds cells
responsible for the fighting with germs and eliminate harmful cells. The lymph
nodes present near mammary gland, auxiliary lymph nodes, will have cancer cells
if cancer is present in the mammary gland.

The collected tissue samples are carefully observed by a pathologist carefully
under microscope at different resolutions for detecting abnormalities. This is a time-
consuming process, requiring a lot of expertise, and is quite subjective, resulting in
inter-observer variability. Thus, to aid the pathologists in terms of efficient training
to reduce the workload, or to facilitate an objective assessment, computer aided
diagnosis systems (CAD) are gaining importance as an important part of the digital
pathology domain. Such CAD systems can involve machine learning based methods
to assess the histopathology images of the slides containing the tissue samples.

1.2 Whole Slide Imaging, and Weakly Supervised Image
Classification

One of the important challenges in machine learning based methods for classifi-
cation of histopathology images is that the images corresponding to a whole slide
of tissue sample are very large, often consisting of pixels numbering in the order
of many millions or even billion. The sizes of such whole slide image (WSI)—
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Fig. 1 Depiction of the lymphatic system in humans. Green color shows the lymphatic system in
human body. Figure reproduced from [2]
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Fig. 2 Lymph node, a part of the lymphatic system. Figure reproduced from [2]
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Fig. 3 Automated slide analysis platform (ASAP) by computational pathology group at RMUC

also known as gigapixel images—are typically far larger than what are typically
encountered in standard computer vision based applications.

Pioneered by Renato et al. [3], whole slide imaging [4] is an approach to digitize
the slides. In this method of digitizing the slides, authors of [3] used a combination
of robot, microscope and a computer to generate composite image of the slide under
observation. The composite image of the slide was a result of the mosaic pattern
of the image tiles. After this initial work, WS imaging methods have significantly
improved in efficiency and hardware, and the current WSI scanners which take less
than a minute or a few minutes to generate a digitized version of the slide. This can
in turn be viewed on computer with the aid of specialized software. Typical image
viewers in the digital computer can only show the images which are small in size and
can be easily decompressed into the available RAM of the system. These viewers
cannot be used to view the whole slide images as they contain billion of pixels.
Hence, there are special software which are used to view these images. One such
software is associated with the Camelyon17 dataset and is termed as Automated
Slide Analysis Platform ASAP [5]. Figure 3 shows an example of a WSI using
ASAP [5].

To train machine learning classification algorithms, one often requires manual
ground-truth labels about the abnormalities in such large images. However, for such
large WSIs, it is tedious and time-consuming for a pathologist to demarcate and
provide labels for the local abnormal regions in a WSI.

A much easier labeling process for the pathologist is to provide the overall label
for the image, which indicates whether the WSI contains abnormalities or if it
corresponds to a normal sample. This approach of labeling does not involve provide
exact locations of the abnormalities, thus reducing the labeling load significantly.
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Thus, as indicated in [6], image level labels and pixel level labels, and the
underlying machine learning frameworks can be defined as follows:

• Image level labels indicate that the no annotation is provided for pixels. The
region of interest specifying abnormalities is not given but an overall label is
given to the image. Images labeled in this way are termed as weakly labeled or
having a global label. The corresponding machine learning methods using such
a data are also known as weakly supervised.

• Pixel level labels indicate that abnormal region is labeled by an expert. As the
region of interest is known in the given image, all the information required at
each pixel, train a machine learning methods is available. This type of learning
is known as fully supervised learning.

Considering the difficulty of the weakly supervised scenario for the WSI
classification task, it is quite natural that there are various fully supervised methods
reported in literature, but few methods are available for address the weakly
supervised classification task. However, noticing the practical importance of the
weakly supervised classification, in this work we propose a deep learning based
method for the same.

The rest of the chapter is organized as follows. In Sect. 2, we discuss some
existing approaches for WSI classification and highlight our contribution. Section 3
consists of the description of the dataset that we use in this work. In the Sect. 4, we
discuss our methodology in detail, and the results are provided and discussed in the
Sect. 5. In the Sect. 6, we conclude the chapter.

2 Literature Survey

In this section we discuss some related work on WSI image classification which
includes both weakly supervised and fully supervised approaches.

2.1 Weakly Supervised Learning

The proposed work is more closely related to weakly supervised methods. Hence,
below we discuss two contemporary works on weakly supervised methods in
relatively more detail.

2.1.1 Tellez et al. [7]

The work in paper [7] involves unsupervised representation learning algorithms,
to express patches (or tiles) from the gigapixel WSI in a more compact manner,
in an embedded feature space. These embeddings are spatially arranged so as to
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maintain the same ordering of the corresponding tiles in the WSI image. This
representation is then used for classification. The datasets used are CAMELYON16
[8] and TUPAC16 [9]. The embeddings for tiles are computed in different ways, as
summarized below:

• Reconstruction error minimization: Here, an autoencoder(AE) is used to learn
the representation of the data. AE utilizes an encoder-decoder architecture.

• Contrastive training: In this case, a model is trained to learn a feature space
wherein the difference between similar and different images is increased. Such
encodings are then used to represent the WSI image.

• Adversarial feature learning: In this method, a bidirectional generative adver-
sarial network is used, which consists three sub-networks: a discriminator, a
generator, and an encoder. The encoder maps actual image x ε RZ×Z×3 to an
embedding e ε RC . A generator maps z ∼ N (0, 1) to generate an image x

′
ε

RZ×Z×3. A discriminator then tries to discriminate between generated and actual
embedding-image pairs, i.e., {z, x ′ } and {e, x}.

2.1.2 Courtiol et al. [10]

The authors in [10] have used a pretrained model to extract the representation of the
WSI tiles at highest resolution. They have extracted tiles of the size 224× 224× 3
from the dataset provided by the Camelyon16 which results into the total number
of tiles 200,000, which is still quite a large number, leading to total of 200,000
embeddings.

First, the authors have used Otsu algorithm to remove the background from the
whole slide image. Then color normalization of slide is done so as to reduce the
effect of the variation in the H&E staining of the slides.

In the network, a minmax layer is used to get the top R negative and positive
instances from the features extracted. These 2R values are then fed to multilayer
perceptron classifier with 200 and 100 neurons with sigmoid activation. The method
does not involve the spatial arrangement of the tiles, but a number of tiles are
sampled using a sampling formula as is described in the paper [10]. This results
in little compression for the gigapixel image as the volume remains the same. The
authors have mentioned that Resnet-50 can be used for getting representation for
the high resolution images as they have found it gives the best results among other
pretrained models without need for fine-tuning.

2.1.3 Compression Analysis of the Above Weakly Supervised Methods

In this section we provide the compression analysis of the weakly supervised
methods, which we believe is important, both these approaches (and also ours)
involve the feature embeddings of the WSI to better represent the same.
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Let a whole slide image or a gigapixel image c be represented as c ε RAxBx3

where A is number of rows, B is the number of columns and 3 represents color
channels (RGB). Let c

′
be the representation of the gigapixel image after passing

through encoder, each high resolution patch of the gigapixel image, and placing
them in spatial agreement with the patches (tiles) extracted from the gigapixel
image. A two-step process to find the c

′
is described below:

1. From whole slide image c high resolution patches are extracted. Let Z = zi,j

denotes the set of the high resolution patches extracted from c such that zi,j ε

RPxPx3 is sampled from c’s ith row and j th column of a uniform square grid
with patch size P and stride S.

2. After getting the set of patches at the highest resolution(40x) each patch is
independently encoded using an encoder E generating a set of encoding vectors
of a particular length(here it is C) which are placed in agreement with spatial
location of the patches.

c ε RAxBx3 E−→ c
′
ε RXxYxC (1)

In the equation 1, X =
A

S
, Y =

B

S
and C is a constant.

We now discuss below how compression occurs. Let F = AxBx3 and let F
′
=

XxYxC. Dividing F by F
′
gives the following:

F

F
′ = 3

S2

C

⇒ F = 3

S2

C
× F

′
(2)

Now, using the above, for weakly supervised method [7] for S = C = 128 then
F = 384 × F

′
, we compute that the volume reduces by a factor of 384. For weakly

supervised method [10], using S = 224, C=2048 then F = 73.5 × F
′
, the volume

reduces by a factor of 73.5.

2.2 Fully Supervised Learning

While there are many fully supervised learning methods, in this part we discuss the
three best performing algorithms in the Camelyon17 challenge; a challenge that was
associated with the dataset that we are using in this work. For discussion related to
Camelyon16 challenge, refer to [11].

In the paper [12] the authors have used modified Deeplab v3+ network which
is trained using patches, where the patches are annotated. The patches for pixel
level supervision are extracted using the annotations available from Camelyon16
and Camelyon17. At each epoch, the model generates inference for all patches of
whole slide image and accept patch as a part of training whose intersection over
union (IOU) with original mask is less than 0.95.
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In [13] the authors have used Camelyon16 and Camelyon17 dataset which is
annotated for training the network. This work has two steps, involving segmentation
to get the segmentation map of the cancerous region and secondly, extraction of
handcrafted features are extracted from the segmentation map for classification pur-
pose. The authors have proposed an ensemble approach where many segmentation
models learned on different pixel resolutions are combined in a directed acyclic
graph structure. Since the segmentation models perform the pixelwise classification,
this allows the concatenation of different models. The authors in [13] have used
DeepLab models for different pixel resolution to train the pixel wise segmentation.
The segmentation map then is used for prediction of the tumor using random forest.

In [14] authors have used a semi-supervised learning, utilizing whole slide
images from 10 organs. The training of network is divided into 3 parts. In the first
part, cells are independently annotated for fully supervised training. In second part,
new regions are proposed for possible detection by the network and are indeed very
much probable when shown to a pathologist and these new proposed regions are
also added for training. In third part, cooperative training is employed. To mitigate
problem of getting stuck at local minima while self-training, SRCDetectors with
different backbones have been used and are trained on newly generated labels from
other to minimize the problem of self-amplification of error.

In conclusion, while the fully supervised methods show a relatively high
performance, they require detailed manual annotations, which are very tedious to
generate, because of requirement of hours of analysis of whole slide image at
different resolution. Thus, we focus on the weakly supervised methods where only
image level labels are required, are in more preferable by pathologists in practice.

2.3 Contribution of This Work

The overall philosophy of our work closely follows the weakly supervised methods
discussed earlier, of computing a embedded representation, followed by classifica-
tion. However, some specific contributions of our work are as follows:

• First, we have worked out and provided an elaborate compression analysis
of both the weakly supervised methods, which was discussed above. While
providing the comparison with these methods, in the section discussing the
results, we also provide a comparison of the compression achieved in the
proposed approach.

• As a part of the method, we present a simplistic histogram-based algorithm for
removing the patches that do not contribute to information regarding cells while
compressing the whole slide image.

• We show that a pretrained network can be used effectively to get the compressed
map of whole slide images, and such a representation yields encouraging
performance.



Histopathology Whole Slide Image Analysis for Breast Cancer Detection 39

• We also demonstrate that a cosine loss [15] combined with a learning rate
schedule (cosine annealing) can be used for classification task on very small
dataset where total number of samples for training are less than 400.

• We suggest a novel decision making method for the WSI, based on random crops
from the embedded representation, and have also analyzed the impact of random
crops on the accuracy of the model.

• Finally, to our knowledge, we believe that ours is the first work considering
the weakly supervised scenario for the Camelyon17 dataset, and thus, sets the
benchmark for the same.

3 Dataset

We have used the Camelyon16 and Camelyon17 datasets which are publicly
available [16]. These are collected five medical hospitals in Netherlands,

• Radboud university medical center (RUMC)
• Utrecht university medical center (UMCU)
• Rijnstate hospital (RST)
• Canisius-Wilhelmina hospital (CWZ)
• LabPON (LPON)

The most common way to detect cancer in mammary gland is to analyze the
regional lymph node using sentinel lymph node procedure [8]. In this procedure a
blue dye or radioactive material is injected close to tumor and then the lymph node
which receives the dye or material first called sentinel lymph node is operated for
the sample. Now, the sample collected by the procedure described above is sent out
for analysis by a pathologist. The tissue samples are stained with hematoxylin and
eosin solution.

The WSI scanners used by RUMC, CWZ, and RST are 3dhistech pannoramic
flash II 250, whereas UMCU and LPON used Hamamatsu NanoZoomer-XR
C12000-01 scanner and Philips ultrafast scanner, respectively [8]. In these datasets,
the cancerous WSIs can be categorized into three types:

• Isolated tumor cells (ITC): Number of cells in the cluster formed by metastasized
tumor cells is less than 200 or cluster is not greater than 0.2mm.

• Macro-metastasis: If cluster of the tumor cells is greater than 2mm.
• Micro-metastasis: Cluster of cells larger than 0.2mm but smaller than 2mm and

containing cells more than 200.

The distribution of data from the five medical center for the Camelyon17 dataset
is shown in Table 1. Normal column in the table means that the cells in whole
slide image are not cancerous. The images at various resolution are combined and
converted to single file which is TIFF (tagged image file format). Each pixel in
image is composed of three channels which are red, green, and blue. Number of
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Table 1 Distribution of data
from different centers for
Camelyon17

Center Total WSI Normal Macro Micro ITC

CWZ 100 64 15 10 11

LPON 100 64 25 4 7

RST 100 60 11 22 7

RUMC 100 60 19 13 8

UMCU 100 75 15 8 2

Total 500 323 85 57 35

Fig. 4 Pyramid visualization of WSI. Figure reproduced from [17]

bits per channel are 8. The WSI can be visualized as a multi-resolution pyramid as
shown in Fig. 4.

Labelling of the WSI For this work, as in many earlier works, the ITC, macro-
metastasis, and micro-metastasis are commonly labelled as cancerous/abnormal
samples, and the normal are labelled as non-cancerous/normal. Thus, the classifi-
cation considered here is a 2-class classification. For Camelyon17 we have total
179 cancerous and 301 non-cancerous whole slide images. For Camelyon16 we
have total 131 cancerous and 192 non-cancerous whole slide images from training
dataset. We also have 49 cancerous and 80 non-cancerous whole slide images
from the official test dataset of the Camelyon16. This dataset can be found on the
Camelyon17 official website, link is given in [16].

4 Methodology

Our approach involves dividing the complete WSI image into tiles (patches),
processing these patches for classification, and then making a decision for the WSI
based on considering the classification outputs of all the patches.
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Fig. 5 Patient 1. Image size
at 40x: 196,000×97,000×3

Thus, the primary modules in our overall approach, which we describe below
in detail, are as follows: (1) Histogram-based thresholding for removing patches
(tiles) of WSI which do not contain useful cellular information, (2) Extraction of
feature embeddings from the tiles from a convolutional neural network (CNN), (3)
Constructing a compressed version of the input WSI image using the embeddings,
(4) A CNN for classification of the embedded representation, (5) Final decision
making for deciding the WSI class label.

4.1 Histogram-Based Selection of Patches from WSI

We start with dividing the WSI into patches (tiles) of size 960 × 960 × 3 (3 being
the color channels). To remove the patches (tiles) which do not contain cellular
structures, we use an approach involving the histogram analysis of the patches.
Examples of WSI images, in Figs. 5 and 6, depict that some regions on a slide
contains the tissue and many other regions are empty at 6mm resolution. Assuming
that a mask of the regions containing useful information is not available, we suggest
a simplistic approach to select the useful patches.

We show examples of some patches with their histograms in Figs. 7, 8, 9, 10, 11,
12. Our histogram-based selection method considers the histogram bins between a
lower limit (a2) and an upper limit (a1). If the bins are not empty in this range, we
consider the patch for further processing. In our case, we are able to remove most
of the patches which do not contain the cells by setting a1 = 180 and a2 = 30. The
overall algorithm is provided below as Algorithm 1.
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Fig. 6 Patient 45. Image size
at 40x: 83,400×53,000×3

Fig. 7 Grey Patch. Top left is the actual patch, top right is the histogram of red channel, bottom
left is histogram of the green channel, and bottom right is the histogram of blue channel of the
patch
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Fig. 8 Black and white patch. Top left is the actual patch, top right is the histogram of red channel,
bottom left is histogram of the green channel, and bottom right is the histogram of blue channel of
the patch

4.2 Extraction of Feature Embeddings Using a Pretrained
Network

As indicated earlier, in [7], the authors have explored an unsupervised learning
methods for encoding the patches and use the encoded feature embeddings. Unlike
in [7], in this work we have used a pretrained network (Resnet50) to get the patch
embeddings of the high resolution patches. We choose to employ a pretrained
model for extracting the embeddings, as it is shown to be well suited for the
histopathological image analysis as studied by authors of [10].

We extract the patches at highest magnification level which is 40x as shown in
Fig. 4. Before extracting the features from high resolution patch of slide it was
downsampled by a factor of 3 and the size of patch after downsampling is 320 ×
320×3. We extract the embedding of the patch from the pool5 layer of the Resnet-50
architecture which gives a vector of length 2048.

We divide the Whole slide image into grid of the patches where each grid cell
has shape 960 × 960 × 3. A patch is taken from ith grid cell is passed through the
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Fig. 9 No cells. Top left is the actual patch, top right is the histogram of red channel, bottom left
is histogram of the green channel, and bottom right is the histogram of blue channel of the patch

feature extractor and an embedding of the size 2048 is placed at the ith location
in the array of the size A × B × 2048, where 2048 represents the number of the
channels in the new array, A is the total number of the rows and B is the total
number of columns in grid structure of the whole slide image.

4.2.1 Compression of the WSI Images Using the Embeddings

As indicated above, an overall WSI image is now represented by an array of size
A × B × 2048. Note that for encoding the same procedure is adopted as in [7].
However, instead of using P = S = C = 128 as used by authors in [7] we have set
P = S = 960 and C = 2048.

Using the compression analysis shown in Sect. 2, we can deduce that the
compression in our case is increased and is 3.51 more than the compression in [7].
Moreover, since we are using tile size of 960× 960× 3, this also leads to reduction
in encoding time. Increasing the patch size also reduces storage space on disk in
comparison to when the tiles of the size 224 × 224 × 3 (resulting in more number
of patches) are encoded.
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Fig. 10 No cells. Top left is the actual patch, top right is the histogram of red channel, bottom left
is histogram of the green channel, and bottom right is the histogram of blue channel of the patch

Figures 13b and 14b show some example visualizations of the features extracted.
Each image shows some randomly selected channels out of 2048 channels from
the pool5 layer of the Resnet50. Here, a general observation is that, due to the
compressed representation, even though the size of the representation is reduced,
one can still visualize enough textural variations in the feature embeddings, thus
indicating a good quality representability.

4.3 Classification Using the CNN

For classification of the WSIs, we have used the compressed map of the WSI, as
computed above, and use it as an input to a convolution neural network (CNN), the
architecture of which is described next. Specifically, the input to the convolution
neural network is random crops of the compressed map of the size 60× 60× 2048.
These random crops help in preventing the overfitting of the network [7]. Note that
the label associated with each random crop, to train the network, is still the image
level label corresponding the original WSI, thus maintaining the weakly supervised
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Fig. 11 Stain misplacement. Top left is the actual patch, top right is the histogram of red channel,
bottom left is histogram of the green channel, and bottom right is the histogram of blue channel of
the patch

paradigm. The final decision for a WSI image during test time is based on the
decisions from a multitude of such individual random crops, as discussed a little
later.

4.3.1 Network Architecture

We use the classification network as show in Fig. 15. Here, convolution layer is
followed by batch normalization and ReLu activation. The last fully connected layer
is followed by l2 normalization layer.

4.3.2 Cosine Loss

In this study we have used the network shown in Fig. 15. We have used the Adam
optimizer to optimize the model with learning rate schedule (cosine annealing)
adapted from [18] and l2 norm to convert the prediction space to the unit vector
norm space. The final model used for testing was the one which provided the best
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Fig. 12 Cell containing patch. Top left is the actual patch, top right is the histogram of red channel,
bottom left is histogram of the green channel, and bottom right is the histogram of blue channel of
the patch

Algorithm 1 Algorithm to remove patches not containing tissue
� %comment: directory containing patches is known%

y = list(all patches in directory)
leny = length(y)

for i = 0 to leny do
� %comment: calculate the histogram of the file under analysis%

hist = histogram(y[i])
� %comment: now take out the individual histograms of the red, blue and green channels%
histred = hist[0 : 256]
histgreen = hist[256 : 512]
histblue = hist[512 : 768]

� %comment: set upper limit and lower limit to get the patch as containing cell%
a1 = limitupper

a2 = limitlower

� %comment: calculate if bin is empty in the range lower limit
and upper limit of individual histogram%

sumtotal = sum(histred [a2 : a1])+ sum(histgreen[a2 : a1]) + sum(histblue[a2 : a1])
if (sum > 0) then

encodeimage = encode(y[i])
end if

end for
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Fig. 13 Feature space visualization. (a) Actual WSI at 6mm resolution. Image size at 40x:
196,000× 97,000× 3. (b) Channels visualization. Size of each channel is 206× 101× 3

Fig. 14 Feature space visualization. (a) Actual WSI at 6mm resolution. Image size: 123,000 ×
85,000× 3. (b) Channels visualization. Size of each channel is 92× 131× 3

training and validation accuracy. Cosine loss is given in Eq. 3. While calculating
the loss the label given to the random sample from the compressed map is same as
the label of the whole slide image. Since, this is weakly supervised classification,
annotations were not used for giving the label to the sample passed through the
classification network.

loss = 1− < a, b >

||a||2.||b||2 (3)

where a and b can represent the output of the network and the corresponding
ground-truth. We note that in comparison to the standard cross-entropy loss, the
cosine loss exhibits two different properties: First, cosine loss takes value in a
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Fig. 15 Network architecture

bound [0, 2] whereas cross-entropy can take high values. Secondly, cosine loss
only depends upon the direction of the feature vectors not on their magnitude, it
is invariant against scaling of the feature space. These two properties have shown to
improve the accuracies in the small datasets [15].

4.3.3 Learning Rate Schedule

Instead of using a fixed learning rate we have used learning rate schedule . Earlier
works have suggested starting from a high learning rate and decaying it by a constant
factor. Such an approach is vulnerable and is more likely to get stuck at a local
minima. Instead of decaying the learning rate [19] has proposed to overcome the
issue by increasing and decreasing the learning rate periodically.

learningrate(ε) = lrminimum+ 1

2
×(lrmaximum−lrminimum)×(1+cos(

epassed

lcycle

π))

(4)
In Eq. 4, ε denotes the epoch number, lrminimum is minimum learning rate,

lrmaximum is maximum learning rate,epassed is the number of epochs passed after
the cycle started, and lcycle is the length of the cycle. The length of the cycle is
increased by a factor of 2 after each cycle. We have used learning rate schedule
given in Eq. 4 in network architecture given in Fig. 15.
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Table 2 Analysis of the
random crops

Mean Standard deviation Minimum Maximum

61.45% 24.046% 5.82% 100%

4.3.4 Classification Decision for the Whole Slide Image

As indicated above, the training of the network uses random crops from the
embedded representation (compressed map) of the WSI. The testing process also
follows a similar approach, where the network takes intermediate decisions on
random crops (of six 60× 60× 2048 ) extracted from the embedded representation
of a test WSI image, and then the final decision is based on such intermediate
decisions.

More specifically, for the test time classification at the whole slide image level,
we have taken 100 random crops from one compressed map of the whole slide
image. We label the overall WSI sample as abnormal, if the number of random
crops out of 100, predicted by the network as abnormal, is greater than a threshold
T where T lies in the range 0 to 100. In our section discussing the results, we provide
the results for various threshold values T.

4.3.5 Study: Analysis of Random Crops

Indeed to analyze the chances of encountering abnormal regions among such
random crops, we have used the available masks (annotations) for cancer regions
to compute such a percentage. Note that the annotations are used only for this study,
and not in the approach (thus, does not violate the weakly supervised nature of the
method). A total 45 WSI were used in this study. We analyzed 104 random crops
of the size 60 × 60 × 2048 from the compressed map of each of the 45 WSI and
computed the mean, min, max over such 45WSI of the fraction of that we encounter
a cancerous region. Table 2 shows the results of the analysis. Based on such an
analysis we can appropriately choose/justify a range of threshold T, discussed above,
to decide on the label of the WSI.

5 Results

In this section we present a variety of results from our proposed approach. These
include accuracy at various threshold values discussed in Sect. 4.3.4, ROC curves,
and comparisons with other weakly supervised methods discussed earlier.
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5.1 Experimental Details

We have trained and validated our network shown in Fig. 15 separately for
Camelyon16 and Camelyon17 dataset, the samples from two datasets were not
mixed. For Camelyon16, considering both training and test WSI samples given
in the dataset, there are a total of 452 samples. In one of our experiments we
have used a 3-fold cross-validation on this total 452 samples (180 samples are
cancerous and 272 samples are non-cancerous). For each fold test samples are
non-overlapping with the training data. For Camelyon16, we have also carried out
another experiment, where we have used the test data provided officially, separately
for testing. For testing our algorithm with the official test data we have trained our
network only on the training data (131 cancerous samples and 192 non-cancerous
samples). Finally, for Camelyon17 we have done 5-fold cross-validation on the
Camelyon17 dataset (having a total number of 179 cancerous samples and 301 non-
cancerous samples) where each test partition is non-overlapping with the training
partition.

5.2 Accuracy with Varying Threshold T

In this section, we present the accuracy on the Camelyon16 and Camelyon17 dataset
when the threshold T (Sect. 4.3.4) is varied. We consider the complete range of the
threshold T from 0 to 100 with stride of 1. For each fold in cross-validation, we
calculate the accuracy for a particular threshold T and then average the accuracy
over all the folds for that threshold T.

Figure 16a and b shows the average accuracy vs threshold for the Camelyon16
and Camelyon17. Interestingly, in Fig. 16a, which involves the same data as was
used to analyze the threshold in Sect. 4.3.5, it can be seen that our results are
consistent with our analysis given in Sect. 4.3.5 as accuracy is maximum at T=62
for both datasets.

In general, considering the weakly supervised nature of the task, the accuracy in
all cases is quite encouraging. Note that, to our knowledge, this is the first work on
Camelyon17 dataset for the case of weakly supervised learning. Figure 17 shows
the accuracy vs threshold curve for the test dataset of the Camelyon16.

5.3 ROC-AUC Results

The ROC curves are computed using the 100 random samples of the size 60 × 60
× 2048 from a single WSI sample representation, during the test time. ROC curve
is plot of the false positive rate vs true positive rate as the threshold T for sample to
be in a positive class (cancerous) is varied in the range 0 to 100. If the number of
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Fig. 16 Average accuracy vs Threshold curves for cross-validation of Camelyon16 and Came-
lyon17. (a) Camelyon16. (b) Camelyon17

Fig. 17 Camelyon16 test data accuracy vs threshold curve

abnormal random samples predicted for a particular sample is greater than threshold
T then whole slide image is labelled as cancerous (positive class) otherwise it is
labelled as non-cancerous. For each threshold we calculate the true positive, false
positive, true negative and false negative, based upon these values we calculate the
true positive rate and false positive rate for a particular threshold T.

The ROC curves AUC for Camelyon16 can be seen in Fig. 18. From the curves
for the three folds it can be inferred that the change in the true positive rate is
relatively less as compared to the change in the false positive rate in the interval
of 0.2 to 1 of the false positive. Hence, we can say that our algorithm has learned
well to achieve a good true positive of about 0.8, even at a low false positive value.
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Fig. 18 ROC curves for 3 Fold cross-validation and the test dataset of Camelyon16. (a) Fold 1.
(b) Fold 2. (c) Fold 3. (d) Average ROC curve for 3 folds. (e) Test data ROC curve

For blind test data (official test data of Camelyon16), it can be inferred that our
network performs quite well achieving ROC-AUC of 0.79.

The ROC curves of Camelyon17 are shown in Fig. 19. Here, we note that the
Camelyon17 dataset is more difficult to classify as compared to the Camelyon16
dataset. Considering that this is an early weakly supervised work on the Came-
lyon17 dataset, we believe that a ROC-AUC of 0.71 sets an encouraging benchmark
for the future approaches.

As indicated earlier, to best of our knowledge, the weakly supervised prediction
of the metastasis at WSI level is not performed for Camelyon17 dataset earlier.
Thus, in Table 3, we only show our results for the ROC-AUC, over the 5-fold cross-
validation, and their average.

5.4 Comparison

Table 4 presents the results for our model as compared to results presented in [7]
and [10], which are the two state-of-the-art weakly supervised methods reported
on the Camelyon16 dataset. The Test column represents the results for the test
dataset provided in Camelyon16. Note that our method outperforms the neural
image compression work (BiGAN method) in terms of AUC on cross-validation
as well as on test dataset.
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Fig. 19 ROC curves for the 5 fold cross-validation of Camelyon17. (a) Fold 1. (b) Fold 2. (c) Fold
3. (d) Fold 4. (e) Fold 5. (f) Average

Table 3 Camelyon17 metastasis presence prediction at WSI level (ROC-AUC)

Metric 1st fold 2nd fold 3rd fold 4th fold 5th fold Average

ROC-AUC 0.681 0.657 0.743 0.674 0.833 0.718

Table 4 Camelyon16
metastasis presence
prediction at WSI level
(ROC-AUC)

Network Cross-validation Test

[7] 0.725 0.704

[10] 0.903 0.858

Ours 0.854 0.795

While the approach in [10] performs better in terms of the evaluation metrics
on the Camelyon16 dataset, it significantly lags in the compression ability of the
representability, as given below, thus suggesting a practical trade-off.

From the compression analysis given in Sect. 2, [7] achieves a compression of
384 and [10] achieves a compression of 73.5 with respect to whole slide image.
We have achieved the compression of 1350, which is 3.51 times more than [7] and
18.36 times more than [10]. Hence our method achieves higher compression rate
than both [7] and [10], outperforms [7] and achieves the ROC-AUC comparable
to the method given in [10]. Thus, overall, we believe that our approach can be
considered as a competitive method, especially given that such weakly supervised
methods are quite sparse.

Finally, a limited set of experiments suggested that the result from a trained
network in our approach can be obtained within 10 min after a slide is digitized,
which suggests a reasonably good efficiency, considering the purpose of a CAD
system for efficient training.
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6 Conclusion

The focus of this work was two-fold: To highlight the importance and challenges in
the weakly supervised histopathology WSI image classification for breast cancer
detection, and to propose an approach in a direction to address the task. We
provided a detailed overview of a small number of works for weakly supervised
classification in this domain, especially stressing on the compressed representation
of WSI images, which is an important consideration in addition to the classification
performance, from a system perspective. Maintaining the same important philos-
ophy of achieving classification via a compressed representation, we suggested
some new directions for the classification in a deep learning framework including a
patch-based decision criteria, cosine loss based network training, and using a non-
conventional learning rate schedule. We have also shown that instead of training
neural networks from scratch, pretrained networks can also yield useful embed-
dings. Our results on two publicly available datasets are encouraging, and quite
competitive in terms of performance and compressed representation. Considering
that there are few weakly supervised methods in this domain, we believe that the
proposed work also sets a good benchmark in this area.
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Lung Classification for COVID-19

Norliza Mohd. Noor and Muhammad Samer Sallam

1 Introduction

In December 2019, in the city of Wuhan, China, Corona virus Disease 2019
(COVID-19) launched a pandemic, triggering a Public Health Emergency of
International Significance (PHEIC) [1]. The World Health Organization (WHO)
called COVID-19 as a novel infectious disease linked to coronaviruses (CoV)
and hazardous viruses [2, 3]. In some cases, this results in critical respiratory
problems, such as Extreme Acute Respiratory Syndrome (SARS-CoV) and Middle
East Respiratory Syndrome (MERS-CoV), leading inevitably to breathing failure
and death. Currently, the total number of confirmed cases has reached 367,166
cases worldwide with 6 million deaths [4]. Every year, widespread lung infections
such as viral and bacterial pneumonia also result in thousands of deaths [5].
Pneumonia is another form of lung disease that is comparable to COVID-19. Via
the accumulation of pus and other liquids in air sacs, this pneumonia disease causes
fungal infection of one or both sides of the lungs. Viral pneumonia symptoms
develop progressively and they are mild. But bacterial pneumonia, especially among
children, is more severe [6]. Many lobes of the lung may be affected by this
form of pneumonia. The real-time polymerase chain reaction (RT-PCR) assay of
sputum [7] is the gold standard of diagnosis for common pneumonia diseases
and coronaviruses. To confirm positive COVID-19 cases, however, these RT-PCR
tests showed high false negative levels. Alternatively, radiological tests are also
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being used to determine the health status of infected patients, using chest X-rays
and computed tomography (CT) scans [8, 9]. CT scans are an efficient tool for
screening, diagnosis, and evaluation of improvement in patients with COVID-19
[10]. Nonetheless, the modality of CT imaging involves high dose exposure to
patients scanned and also a high hospital bill for CT screening [11]. Conventional
X-ray devices, on the other hand, are still available in hospitals and clinical centers
to provide two-dimensional (2D) images of a rapid scan of the patient’s lungs. Chest
X-ray scans are, therefore, the first method for clinicians to diagnose pneumonia or
confirm cases of COVID-19 [8, 12]. To diagnose most of the patients’ COVID-
19 infected cases, standard Chest X-ray and computed tomography scan images
were used. The limited number of COVID-19 test kits and the lack of accuracy
often lead to specialized physician lakes, especially in remote areas, saving medical
professionals’ valuable time [13]. Due to the rapid rise in COVID-19 cases and
in order to rapidly treat affected patients, the importance of creating an automated
diagnostic assistance system has become an urgent need. These challenges can be
solved and assisted with accurate disease detection by the advent of deep learning as
an artificial intelligence technique. In helping to interpret the computed tomography
scan images, deep learning presented promising results [14–16]. Wang S et al. [17]
provided an automated diagnostic and prognostic analysis of COVID-19 based on
DenseNet121-FPN for raw chest computed tomography scan image segmentation.
Ozturk et al. [18] suggested real-time identification and classification of COVID-
19 using X-ray images for COVID-19. They suggested real-time detection and
classification for COVID-19 from X-ray images based on 17 convolutionary layers
with different filtering on each layer using the DarkNet model. Seung et al. [19]
suggested CNN and the PyTorch frame-dependent deep learning model using three
binary decision-trees as classifiers of infected or uninfected chest X-ray images.
Elaziz et al. [20] indicated that new fractional multi-channel exponent moments
were used to extract the function from chest X-ray images. They proposed that the
multi-core parallel calculation framework was used to speed up the computational
process. Then, the essential characteristics were chosen using a modified manta ray
foraging optimization strategy using differential evolution.

2 Materials and Methods

2.1 Data Collection

In this section, some publicly available COVID 19 datasets used in the development
of the cloud-based lung classification system for COVID–non-COVID lungs are
described in detail. Mainly, the section is divided into two parts. The first section
describes each dataset individually wherein total 17 datasets have been covered.
The second section provides a high-level overview for the available datasets, which
is helpful for the researchers to combine multiple datasets together.
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2.1.1 Description of the COVID-19 Dataset

A total of 17 datasets have been discovered and described on the Internet. The
following list shows all the 17 datasets in which the used name for each dataset
matches exactly the name from the original source:

1. Twitter COVID-19 CXR dataset (twitter.com/ChestImaging)
2. NIH Chest X-rays (www.kaggle.com/nih-chest-xrays/data) [21]
3. Labeled Optical Coherence Tomography (OCT) (data.mendeley.com/datasets/

rscbjbr9sj/2) [22]
4. Kaggle (X-ray images of Pneumonia) (www.kaggle.com/paultimothymooney/

chest-xray-pneumonia) [22]
5. Figure1-COVID-chest X-ray dataset (github.com/agchung/Figure1-COVID-

chestxray-dataset)
6. Dropbox dataset (www.dropbox.com/s/09b5nutjxotmftm/data_upload_

v2.zip?dl=0)
7. COVID19_Pneumonia_Normal_Chest_X-ray_PA_Dataset (www.kaggle.com/

asraf047/covid19-pneumonia-normal-chest-xray-pa-dataset)
8. COVID19_classifier_dataset (www.kaggle.com/rgaltro/newdataset )
9. COVID19 High quality images (www.kaggle.com/theroyakash/covid1 )

10. COVID-Net dataset (https://github.com/ieee8023/covid-chestxray-dataset [23]
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge)

11. COVID-CT dataset (github.com/UCSD-AI4H/COVID-CT) [24]
12. COVID-19 X-rays (www.kaggle.com/andrewmvd/convid19-X-rays )
13. COVID-19 Radiography Database (https://www.kaggle.com/tawsifurrahman/

covid19-radiography-database) [25]
14. Covid-19 Image Dataset (www.kaggle.com/pranavraikokte/covid19-image-

dataset)
15. CoronaHack Chest X-Ray-Dataset (www.kaggle.com/praveengovi/coronahack-

chest-xraydataset )
16. Chest X-ray (COVID-19 and Pneumonia) (www.kaggle.com/prashant268/

chest-xray-covid19-pneumonia )
17. Actualmed-C OVID-chest X-ray-dataset (github.com/agchung/Actualmed-

COVID-chestx-ray-dataset )

2.2 Datasets Summary

This section provides a high-level overview for all the available dataset allowing
researchers to compare the available datasets easily. The following details over
all the datasets will be discussed in this section; datasets sizes, average datasets
images size, number of classes per dataset, number of images per dataset, from
classes perspective, from extensions perspective, from data types perspective, from
average datasets images height perspective, and from average datasets images width

https://twitter.com/ChestImaging
http://www.kaggle.com/nih-chest-xrays/data
https://data.mendeley.com/datasets/rscbjbr9sj/2
http://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
http://github.com/agchung/Figure1-COVID-chestxray-dataset
http://www.dropbox.com/s/09b5nutjxotmftm/data_upload_v2.zip?dl=0
http://www.kaggle.com/asraf047/covid19-pneumonia-normal-chest-xray-pa-dataset
http://www.kaggle.com/rgaltro/newdataset
http://www.kaggle.com/theroyakash/covid1
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Fig. 1 Datasets sizes

perspective. Figure 1 shows that nine datasets have size less than 1000 MB, one
dataset has size more than 20000 MB, and eight datasets are in the range of 1000–
7000 MB. Figure 2 shows that the majority of the dataset have image size less than
1 MB. Figure 3 shows the number of classes per dataset, where one dataset has
one class, one dataset has four classes, seven datasets have two classes, and nine
datasets have three classes. It can be seen from Fig. 4 that one dataset has about
53000 images, ten datasets have 1000 to 18000 images, and seven datasets have less
than 1000 images. Figure 5 shows the class distribution over all the datasets where
pneumonia images and normal images are in majority in these datasets. Figure 6
shows the percentage of images per class, and Fig. 7 shows the number of images
per class. It is clear that the majority of images represent other class, pneumonia
class, and normal class. So far, there are only 4801 COVID images. Figure 8 shows
the number of images per dataset from image type perspective, which includes X-
ray and CT. Figure 9 shows the percentage of images per image type, and Fig. 10
represents the number of images per image type. It is clear that the majority of the
images represent X-ray (99 %). Figure 11 shows that all of the images in the datasets
are JPG and PNG, where 96.8% of the images or 117238 images are JPG images.
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Fig. 2 Average images size per dataset

Fig. 3 Number of classes per dataset
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Fig. 4 Number of images per dataset

Fig. 5 Number of images per dataset from classes perspective

3 Methods

The cloud-based lung COVID–non-COVID classification system developed in this
study consists of two stage classification, where the first stage will classify normal
and abnormal lung using chest X-ray images as shown in Fig. 12. Those classified
as abnormal lung will then be further classified into COVID and non-COVID lungs.
Deep learning approaches, namely, various ResNet and DenseNet neural networks,
were investigated in this study. We utilized the Amazon Web Service (AWS) cloud-
computing service during the development and the testing of the system.
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Fig. 6 Percentage of images
per class

Fig. 7 Number of images per
class

3.1 Normal–Abnormal Lung Classification

For normal versus abnormal lung classification stage, a total of 23838 X-ray images
have been collected from multiple datasets explained in the data collection section.
There were 11838 normal and 12000 abnormal images, where abnormal images
consist of 775 COVID-19 X-ray images, 5000 pneumonia X-ray images, 6225 other
lung diseases X-ray images. The summary of the dataset used in this experiment is
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Fig. 8 Number of images per type per dataset

Fig. 9 Number of images per dataset from image extensions perspective

shown in Table 1. All images have JPG extension and have size dimension greater
than (224, 224). To build the normal vs. abnormal model, the transfer learning
concept has been applied which aims to simply use the acquired knowledge from a
problem and use it to solve another problem. ResNet and DenseNet neural networks
have been tested to build the model.

For all of the models, the final layer of the network has been removed, and a new
layer of two neurons has been added since the problem is a binary classification
problem. The training process is split into two stages:

1. After replacing the final layer, we train just the new layer for four epochs.
2. Training the entire model for 200 epochs.
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Fig. 10 Percentage of
images per extension

Fig. 11 Number of images
per extension

The idea is to avoid getting high gradient values if we train the entire model
directly after adding the new layer. In order to train the model, the following data
augmentation has been used to increase the number of images: random horizontal
flip, random vertical flip, random affine with 180 degrees, and the scale factor in
the range of 0.9–1.1]. The Adam optimizer with learning rates of 0.01, 0.001, and
0.0001 has been tested with 64 as the batch size and cross entropy as the loss
function. The dataset is split to 80% for training and 20% for testing.
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Fig. 12 Flowchart of the cloud-based COVID–non-COVID chest X-ray classification system

Table 1 The dataset used in normal–abnormal lung classification

Dataset name
Normal
images

COVID-19
images

Pneumonia
images

Other disease
images

Actualmed-COVID-chestx-ray-
dataset

53 58 – 127

COVID-19 Radiography Database 1341 219 768 –
COVID-19 X-rays 7 71 – –
COVID-Net dataset 8851 40 – –
COVID-chestx-ray-dataset (GitHub
(Dr. Joseph Cohen))

– 257 – –

Figure1-COVID-chestx-ray-dataset 3 8
Kaggle (X-ray images of pneumonia) 1583 4232
NIH Chest X-rays 6098
Twitter COVID-19 CXR dataset 122
Total 11838 775 5000 6225

3.2 COVID–Non-COVID Classification

For COVID versus non-COVID lung classification stage, a total of 1548 X-ray
images have been collected from multiple datasets explained in the data collection
section. The images were divided into 774 COVID and 774 non-COVID, where
non-COVID images consist of 374 pneumonia X-ray images and 400 other lung
diseases X-ray images. The summary of the data used in this experiment is shown
in Table 2. All images have JPG extension and size dimension greater than (224,
224). ResNet and DenseNet neural networks have been tested to build the model.

Transfer learning concept has been applied, which aims to simply use the
acquired knowledge from a problem and use it to solve another problem. For all
of the models, the final layer of the network has been removed, and a new layer of



Lung Classification for COVID-19 67

Table 2 The dataset used in COVID–non-COVID lung classification

Dataset name
Covid19
images

Pneumonia
images

Other diseases
images

Actualmed-COVID-chestx-ray-dataset 58 – –
COVID-19 Radiography Database 219 – –
COVID-19 X rays 71 – –
COVID-Net dataset 39 2 –
COVID-chestx-ray-dataset(GitHub (Dr. Joseph
Cohen))

257 – 1

Figure1-COVID-chestxray-dataset 8 – –
Kaggle (X-ray images of pneumonia) – – –
NIH Chest X-rays – 372 399
Twitter COVID-19 CXR dataset 122 – –
Total 774 374 400

two neurons has been added since the problem is a binary classification problem.
The training process is split into two stages:

1. After replacing the final layer, we train just the new layer for four epochs.
2. Training the entire model for 200 epochs.

The idea is to avoid getting high gradient values if we train the entire model
directly after adding the new layer. In order to train the model, the following data
augmentation has been used to increase the number of images: random horizontal
flip, random vertical flip, random affine with 180 degrees, and the scale factor in the
range of 0.9–1.1. The Adam optimizer with learning rates 0.01, 0.001, and 0.0001
has been tested, with 64 as the batch size and cross entropy as the loss function. The
dataset is split to 80% for training and 20% for testing.

4 Results and Discussion

4.1 Normal–Abnormal Lung Classification

ResNet18, ResNet34, ResNet50, and ResNet101 were investigated with 0.01, 0.001,
and 0.0001 learning rate. The accuracy results for each network are given in Fig. 13.
The graph shows that ResNet50 with the learning rate of 0.001 gave the highest
accuracy of 88.4% with the 80/20 split for training and testing. We repeat the
experiment using the k-fold cross validation method with k = 5 for ResNet50, and
the average accuracy obtained is 87.62%.

Next, DenseNet neural networks were investigated. In this experiment,
DenseNet121, DenseNet169, and DenseNet201 were applied with 0.01, 0.001, and
0.0001 learning rate. The accuracy results for each network are given in Fig. 14. The
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Fig. 13 The accuracy for various ResNet neural networks with 0.01, 0.001, and 0.0001 learning
rate for normal–abnormal lung classification

Fig. 14 The accuracy for various DenseNet neural networks with 0.01, 0.001, and 0.0001 learning
rate for normal–abnormal classification
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graph shows that DenseNet169 with 0.001 learning rate gave the highest accuracy
of 88% with the 80/20 split for training and testing. We repeat the experiment using
the k-fold cross validation method with k = 5 for DenseNet169, and the average
accuracy obtained is 87.5%.

The best model chosen for the Normal–Abnormal Lung Classification system is
ResNet50 because it achieved the highest test accuracy compared to DenseNet169.

4.2 COVID-Non-COVID Lung Classification

The classified abnormal lung X-ray images will then be fed into the second stage
classification to classify COVID and non-COVID cases. The same neural networks
were applied, which were ResNet18, ResNet34, ResNet50, and ResNet101 with
0.01, 0.001, and 0.0001 learning rate. The accuracy results for each network are
given in Fig. 15. The graph shows that ResNet34 with the learning rate of 0.01,
ResNet50 and ResNet101 with 0.01 learning rate gave the highest accuracy of
99.7% with the 80/20 split for training and testing. We repeat the experiment
using the k-fold cross validation method with k = 5 for ResNet34, ResNet50, and
ResNet101, and all of them gave the average accuracy of 99.4%.

Next, DenseNet neural networks were investigated. In this experiment,
DenseNet121, DenseNet169, and DenseNet201 were applied with 0.01, 0.001,

Fig. 15 The accuracy for various ResNet neural networks with 0.01, 0.001, and 0.0001 learning
rate for COVID–non-COVID lung classification
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Fig. 16 The accuracy for various DenseNet neural networks with 0.01, 0.001, and 0.0001 learning
rate for COVID–non-COVID classification

and 0.0001 learning rate. The accuracy results for each network are given in Fig.
16. The graph shows that DenseNet201 with 0.001 learning rate gave the highest
accuracy of 100% with the 80/20 split for training and testing. We repeat the
experiment using the k-fold cross validation method with k = 5 for DenseNet201,
and the average accuracy obtained is 99.6%.

The best model chosen for the COVID–non-COVID Lung Classification sys-
tem is DenseNet201 because it achieved the highest test accuracy compared to
ResNet34, ResNet50, and ResNet101.

4.3 Testing the Cloud-Based COVID Lung Classification
System

We tested the proposed systems with the unused dataset. For the first stage (normal–
abnormal), transfer learning using ResNet50 deep learning architecture was utilized,
which showed 96% accuracy. For the second stage (COVID–non-COVID), transfer
learning using DenseNet201 deep learning architecture was developed. We tested
using various COVID–non-COVID database available and obtained 70% accuracy.
Lower accuracy may be due to a small number of COVID lung X-ray images
used in the training. For comparison, Chowdhury et al. [25] followed a binary
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classification scheme, normal and COVID using chest X-ray images and they
obtained 99.7% accuracy. They also followed a three-class classification scheme,
Normal/Pneumonia/COVID-19, with 99.7% accuracy.

Our proposed system, a two-stage lung classification system is able to provide
a more systematic differential classification scheme, where normal–abnormal cases
are classified first, and at the next stage, the abnormal cases are then classified into
COVID and non-COVID cases. For future work, the non-COVID cases will then be
classified into various lung diseases such as pneumonia and tuberculosis.

5 Conclusion

This study proposed a two-stage classification approach to classify COVID chest X-
ray images. The first stage is to classify normal–abnormal lung, and the second stage
is to classify the abnormal lung into COVID and non-COVID. For the first stage,
our proposed system obtained 96% accuracy which is on par with other researchers;
however, for the second stage, our proposed system only managed to achieve 70%
accuracy due to low number of COVID lung X-ray images used in the training.
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GRU-Based Parameter-Efficient
Epileptic Seizure Detection

Ojas A. Ramwala, Chirag N. Paunwala, and Mita C. Paunwala

1 Introduction

Epilepsy is a neurological (central nervous system) disorder that affects the brain.
It causes loss of awareness and is characterized by recurrent unprovoked seizures
caused by abnormal brain cell activity. It is one of the most common chronic brain
diseases, with over 50 million people [1] suffering from it worldwide. It can affect
people of any gender and age; however, 80% of them develop epileptic symptoms in
childhood and adolescence [2]. Moreover, the risk of premature death in people who
have epilepsy is three times higher than in the general population [3]. According to
WHO [4], 70% of epileptic patients can be seizure-free if appropriately detected,
properly diagnosed, and treated.

The electroencephalogram (EEG) signals are usually utilized to diagnose
epilepsy since providing a conclusive diagnosis without EEG analysis is considered
to be unfeasible. EEG waveform of a healthy and epileptic person recorded for 100
timesteps at a sampling rate of 173.61 Hz is shown in Fig. 1a, b, respectively.

The manual visual inspection of EEG signals is a strenuous, cumbersome, and
enduring process. Automation of the EEG analysis process can reduce errors and
diagnosis time and improve neurologists’ ability to administer medications. Thus,

O. A. Ramwala (�)
Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat,
India

C. N. Paunwala
Electronics and Communication Engineering Department, Sarvajanik College of Engineering and
Technology, Surat, India

M. C. Paunwala
Electronics and Communication Engineering Department, C. K. Pithawala College Engineering
and Technology, Surat, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Paunwala et al. (eds.), Biomedical Signal and Image Processing with Artificial
Intelligence, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-031-15816-2_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15816-2_4&domain=pdf

 -2016 61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-15816-2_4


74 O. A. Ramwala et al.

Fig. 1 EEG waveform of (a) healthy person and (b) epileptic patient

this work is intended to reduce the burden on the medical and paramedical fraternity
by proposing a deep learning architecture for accurate epileptic seizure detection.

Furthermore, the proposed architecture is parametric efficient and computa-
tionally inexpensive and hence can be deployed on low-power computing and
lightweight devices, including NVIDIA’s Jetson Nano, to develop a low-cost
solution for detecting epileptic seizures in the EEG recordings of susceptible
patients.

2 Related Work

Several attempts have been made to develop accurate epileptic seizure detection
methods. The time-domain-based analysis is one of the most popular epileptic
seizure detection methods. Detection of seizures in the time domain requires the
histogram-based analysis of the discrete-time sequences. Tracing the consecutive
maxima-minima and histogram estimation was proposed [5] for SVM-based clas-
sification [6] to detect neonatal seizures in the patients. However, it was limited
to only one patient. A body sensor network (BSN) was also developed to detect
epileptic seizures based on statistics like variance, entropy, dynamic time warping
(DTW)-based auto-correlation with template signals, mean, and zero-crossing rate
extracted from time-domain signals.

Frequency domain techniques based on the Fourier Transform phase and magni-
tude have also been proposed for EEG seizure detection. A phase-slope index [7] to
compute the interaction between channels of a multi-channel EEG signal has been
utilized to detect seizures. A patient-specific seizure detection method by utilizing
frequency-moment [8] signatures has been developed, where moments of the spectra
are utilized as features to distinguish between normal and seizure activities.

To tackle the difficulty in characterizing EEG signals’ different activities due
to their nonlinearity and non-stationarity, a method based on four entropy features
[9] for classification: phase entropy (S1 and S2), approximate entropy (ApEn),
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and sample entropy (SampEn) was proposed. The extracted features were then
fed to seven different classifiers: SVM, Fuzzy Sugeno Classifier (FSC) [10],
Probabilistic Neural Network (PNN) [11], K Nearest Neighbours (KNN) [12],
Decision Tree (DT) [13], and Gaussian Mixture Model (GMM) [14]. The Fuzzy
classifier showcased improved performance.

Wavelets have also been employed for epileptic seizure detection. The funda-
mental concept behind utilizing the wavelet analysis for EEG seizure detection is
extracting discriminating features from appropriate sub-bands. However, determin-
ing the appropriate wavelet decomposition level is a significant challenge. Bayesian
Linear Discriminant Analysis (BLDA) [15] was proposed as a wavelet-based seizure
detection method that depended on fluctuation index and lacunarity, a measure of
the homogeneity in the fractal analysis as features. BLDA focuses on reducing the
risk associated with the classification decision. Five-level wavelet decomposition
methods [16, 17] for seizure detection have also been proposed. The extracted
features like energy, relative amplitude, standard deviation, coefficient of variation,
entropy, and fluctuation index are then fed to the SVM classifier.

Wavelet Neural Networks (WNNs) [18] have also been implemented by estimat-
ing the wavelet transform of EEG signals and extracting the minimum, maximum,
and standard deviation of the absolute values of the wavelet coefficients in each
sub-band as features that are fed to the trained WNNs to differentiate seizure
activities from normal activities. Nevertheless, determining the apposite wavelet
decomposition level and selecting the features from certain sub-bands is a significant
challenge in wavelet-based EEG seizure detection.

Several machine learning techniques have been explored for automated seizure
detection [19]. Local Binary Pattern (LBP) has also been utilized to classify seizure
and seizure-free EEG signals. The utilization of the K-NN-based classifier for
seizure detection [20] has also been proposed. However, several LBP-based methods
[21, 22] compute LBP at every sample value of the EEG signal. This disadvantage
was addressed by detecting a set of stable key points [23] through multiscale
EEG analysis and computing LBP at those points only. Though, simplifying the
process of detection of key points can enhance the computational performance of
the method. Artificial Neural Networks [24] have been combined [25] with Principal
Component Analysis (PCA) [26] for the diagnosis of epilepsy. Logistic Regression
combined with Artificial Neural Networks has also been developed for epileptic
seizure detection using Multi-Layer Perceptron Neural Network [27].

Deep Learning techniques have also been implemented for epileptic seizure
detection. Two-Dimensional Convolutional Neural Networks (2D-CNN) have been
deployed wherein the one-dimensional (1D) EEG signals are initially transformed
into two dimensions by utilizing several visualization methods. A 2D-CNN model
based on extracting the temporal and spectral characteristics [28] of EEG signals
to learn the seizure’s overall structure had been proposed. SeizureNet [29], a
deep learning framework based on Convolutional Neural Network and Dense
Connections, has also been deployed for epileptic seizure detection. Temporal
Graph Convolutional Network (TGCN) [30] has also been introduced for detecting
epileptic seizures.
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Research on deploying Recurrent Neural Networks for effective epileptic seizure
detection is also being done. LSTM- and GRU-based architectures are being
developed to detect epileptic seizures from EEG signals. Two LSTM architectures
with 3 and 4 layers [31] together with the softmax classifier have been implemented
to get satisfactory results. And 5-layer [32] and 3-layer [33] GRU-based deep
learning architectures were also implemented to achieve good results for epilepsy
detection. Similarly, a 4-layer GRU-based epileptic seizure detection system [34]
was also proposed, which involved splitting the input signals into time windows as
a pre-processing step.

To achieve accurate epileptic seizure detection, this chapter proposes a Gated
Recurrent Unit–based deep learning architecture that circumvents the requirement
of any feature-extraction steps and implements a computationally inexpensive
model that can be deployed even on a resource-constrained embedded platform.

3 Proposed Method

Efficient epileptic seizure detection necessitates a dedicated deep learning archi-
tecture that can be deployed for an accurate diagnosis. This section is intended
to formulate the network designed and implemented for reliable epileptic seizure
detection. Concepts behind Recurrent Neural Networks have been showcased
with mathematical explanation. Gated Recurrent Units that can circumvent the
requirement of discrete memory cells to regulate the passage of information in the
unit have been elucidated. Explanation of the implemented loss function has also
been presented in the subsequent subsections.

3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are considered to be an augmentation of
traditional feedforward neural networks. The activation at each time of the
recurrent hidden state of RNNs is dependent on the preceding activation, which
explains their ability to handle variable-length sequences. For a sequence,
i = [i1, i2, i3, i4, . . . . . . , iN], the recurrent hidden state sn of the RNN is updated, as
shown by Eq. 1, where the nonlinear function is denoted by �, a composition of the
logistic sigmoid with affine transform.

sn =
{

0, if n = 0

G (sn−1, in) , else
(1)

RNNs can have a variable-length output: o = [o1, o2, o3, o4, . . . . . . , on]. For the
smooth bounded function f and parameter matrices and vector W, U, and B, the
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recurrent hidden state can be updated, as shown in Eq. 2.

sn = f (Win + Usn−1) (2)

The probability distribution over the next element is the output of a generative
RNN. The conditional probability distribution is modeled, as shown in Eq. 3.

p (in|i1, i2, i3, i4, . . . . . . , in−1) = f (sn) (3)

However, due to the frequently faced vanishing gradients and seldom encoun-
tered, albeit severely impactful, exploding gradients issues, gradient-based opti-
mization becomes challenging, and training Recurrent Neural Networks turns out
to be complicated. To address this problem, utilizing clipped gradients [35–37]
had been proposed; however, due to its dependency on the identical growth pattern
between the second- and first-order derivatives, it does not yield a guaranteed [38]
solution. Thus, developing an elaborate activation function by utilizing the affine
transform and element-wise nonlinearity becomes essential. Gating units have been
developed to cater to the solution.

LSTM [39, 40] (Long Short-Term Memory) units comprising of an input gate,
an output gate, and a forget gate determine if the existing memory through the
input gates is to be kept or not, rather than content overwriting at each timestep.
With the internal memory state present in the LSTM, it can hold the previous
information that the network has identified before. However, due to the possibility
of developing architecture with better computational efficiency with minimal data,
Gated Recurrent Units have been utilized in the proposed method.

3.2 Gated Recurrent Units

To develop recurrent units that flexibly comprehend reliances of various time scales,
Gated Recurrent Units (GRU) were proposed [41]. To regulate the passage of
information inside the unit without having discrete memory cells, gating units are
provided in GRUs. GRUs utilize Update Gate and Reset Gate to resolve the issue of
vanishing gradients, as shown in Fig. 2.

GRUs devote specialized mechanisms to determine when the hidden state must
be updated and when it should be reset. These gates are engineered to be vectors that
perform convex combinations with inputs in binary: [0, 1], designed and trained to
sustain information.

3.2.1 Reset Gate

The Reset Gate Rn regulates the amount of past information from the preceding time
stamps that are to be neglected. By considering the logistic sigmoid function as σ,
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Reset 
Gate 
[Rn]

Output 
Vector

Update 
Gate 
[Zn]

[sn-1, in] [sn, on]

Fig. 2 A Gated Recurrent Unit

the Reset Gate Rn can be calculated by considering the parametersWir,Wsr and Br,
as shown in Eq. 4.

Rn = σ (inWir + sn−1Wsr + Br) (4)

Nonlinearity in the form of tanh is introduced to constrain the values of the
hidden states in the range of (−1, 1) and make the input mean equal to zero. To
reduce the impact of the previous states, sn − 1 is multiplied element-wise with
Rn. Whenever the Reset Gate Rn is approximately equal to 1, a traditional RNN is
recovered, and with Rn approaching 0, a Multi-Layer Perceptron is enabled. Thus,
a previously extant hidden state is set to the default value.

šn = tanh (Wzin + Uz (Rn 
 sn−1) + Bs) (5)

The candidate recurrent hidden state šn, which has yet not been incorporated
with the action of the update gate, can thus be calculated, as shown in Eq. 5, where
� denotes element-wise multiplication. The Reset Gate thus recognizes short-term
dependencies in the time series.

3.2.2 Update Gate

The Update Gate regulates the amount of past information from the preceding time
stamps that are to be transferred. To address the issue of vanishing gradients, the
model can continue with all the past information without considering the elimination
of any details. By considering the logistic sigmoid function as σ, the Update Gate
Zn can be calculated by considering the parameters Wiz, Wsz, and Bz, as shown in
Eq. 6.

Zn = σ (inWiz + sn−1Wsz + Bz) (6)
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For the Update Gate Zn, the degree to which the current recurrent hidden state sn
resembles the previous hidden state sn−1 can be determined by performing convex
combinations by utilizing the new candidate state šn, as shown in Eq. 7.

sn = Zn 
 sn−1 + (1− Zn) 
 šn (7)

As per Eq. 4, whenever the Update Gate Zn is approximately equal to 1, the
previous state is retained, while information from in is not considered, and, thus,
skipping time step n. Also, whenever the Update Gate Zn is approximately equal to
0, the current recurrent hidden state sn proceeds toward the candidate hidden state
šn. The Update Gate thus recognizes long-term dependencies in the time series.

3.3 Model Architecture

The proposed method implements a Gated Recurrent Unit–based deep learning
architecture. The architecture comprises four Gated Recurrent Unit layers and two
dense layers. As depicted by the flowchart, the number of nodes in each layer gets
reduced by 50 percent, beginning with 512 to 64. The dense layers perform the task
of classifying the EEG signals from the features extracted by the GRU layers and
provide the output as 1 or 0 for epileptic seizure present or absent, respectively, as
shown in Fig. 3.

3.4 Loss Function

The proposed architecture for epileptic seizure detection utilizes the Binary Cross-
Entropy Loss, also known as Log Loss. Considering y as the label (1 or 0
for epileptic seizure present or absent, respectively), and p(y) as the predicted
probability for the particular class, the loss function can be denoted as shown in
Eq. 8.

L = −1
/

N

∑N

i=1
yi. log (p (yi))+ (1− yi) . log (1− p (yi)) (8)

The deployed loss function is also known as Sigmoid Cross-Entropy Loss. It is
a Sigmoid activation plus a Cross-Entropy Loss. Considering f () as the Sigmoid
function and CE as the Cross-Entropy Loss for binary problems, the loss function
can be expressed as:

f (si) = 1

1+ e−si
CE = −ti log (f (s1)) − (1− ti) log (1− f (s1))
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Fig. 3 Proposed architecture for epileptic seizure detection
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The Cross-Entropy Loss can be understood as shown in Eq. 9:

CE =
{ −log (f (s1)) if t1 = 1
− log (1− f (s1)) if ti = 0

(9)

The gradient concerning the score si = s1 can be expressed as shown in Eq. 10:

∂CE (f (si))

∂si
= ti (f (s1) − 1) + (1− ti ) f (s1) (10)

For f () being a Sigmoid function, the expression can be written as shown in
Eq. 11:

∂CE (f (s1))

∂si
=
{

f (si) − 1 if ti = 1
f (si) if ti = 0

(11)

4 Experiments and Results

This section mentions the dataset utilized to train the proposed deep learning
architecture for accurate epileptic seizure detection. Training details have been
elaborated along with the implementation of the model on resource-constrained
hardware, and the performance of the proposed method by demonstrating several
evaluation metrics has been showcased.

4.1 Dataset and the Training Details

The proposed Gated Recurrent Unit–based deep learning architecture must be
trained to classify the EEG signals accurately. The proposed model has been trained
on the University of Bonn EEG Database [42], which has been sampled at the rate
of 173.6 Hz.

The model has been trained, validated, and tested on 320, 40, and 40 samples,
respectively. The proposed architecture has been trained with the following param-
eters on NVIDIA’s Tesla P100 [43] GPU having 16 GB RAM:
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Fig. 4 Convergence of the training and validation loss (best viewed in color)

Fig. 5 Improvement in the training and validation accuracy (best viewed in color)

• Epochs: 20.
• Optimizer: NADAM [42–47].
• Batch Size: 4.
• Learning Rate: 0.001.

The convergence of training and validation loss is demonstrated in Fig. 4, and
the improvement in the training and validation accuracy is demonstrated in Fig. 5.
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Table 1 Confusion matrix Normal Positive

Predicted normal 19 (true positive 00 (false positive)
Predicted positive 01 (false positive) 20 (true negative)

Table 2 Evaluation metrics:
performance of the model

Evaluation metrics Value

Accuracy 0.9750
Sensitivity 0.9500
Specificity 1.0000
Positive predictive value 1.0000
Negative predictive value 0.9524
False positive rate 0.0000
False negative rate 0.0500
F1 score 0.9744
Matthews correlation coefficient 0.9512

4.2 Hardware Implementation

NVIDIA Jetson Nano [48] is a power-efficient and cost-effective embedded devel-
opment kit that is extremely useful for inferencing deep learning models. The
development board has 4GB of system-wide memory utilized by the CPU and GPU.
There are 128 CUDA-supported cores in the GPU.

Since the proposed deep learning architecture has only 1.7 million parameters,
it was possible to perform the model’s inference on the resource-constrained
embedded platform. The computationally inexpensive Gated Recurrent Unit–based
deep learning architecture showcased the real-time performance on NVIDIA Jetson
Nano.

4.3 Evaluation Metrics: Performance of the Proposed
Architecture

It is imperative to carefully examine the deep learning models deployed for medical
diagnosis to ensure a reliable decision-making process. A comprehensive evaluation
of the proposed GRU-based architecture has been performed by considering several
evaluation metrics. During training, the model with the least validation loss was
saved and utilized for testing.

The Confusion Matrix summarizes the model’s prediction results as shown in
Table 1, wherein Normal and Positive indicate the absence and presence of seizure,
respectively.

A holistic understanding of the proposed method’s performance can be gained by
a careful observation of Table 2, which summarizes the values of all the evaluation
metrics and highlights that the model yields reliable performance for accurate
epileptic seizure detection.



84 O. A. Ramwala et al.

5 Conclusion

This chapter proposes a computationally inexpensive deep learning architecture
for efficient epileptic seizure detection to reduce the burden on neurologists by
automating the cumbersome process of manually analyzing the EEG signal to
detect epilepsy in susceptible patients. A Gated Recurrent Unit–based network has
been developed for accurate epileptic seizure detection. A detailed mathematical
explanation of the implemented binary cross-entropy loss function and the NADAM
optimizer has been presented. The proposed model has been comprehensively
evaluated using several metrics by considering all the possible scenarios, including
false positive and false negative rates. Experiments demonstrate the reliability of
the proposed method and showcase the architecture’s parametric efficiency by
deploying it on the resource-constrained NVIDIA Jetson Nano embedded platform.
A future direction of this work could be studying and implementing other loss
functions in place of the binary cross-entropy loss.
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An Object Aware Hybrid U-Net
for Breast Tumour Annotation

Suvidha Tripathi and Satish Kumar Singh

1 Introduction

Accurate segmentation of biological structures and micro-structures visualized in
digitized biopsy images could assist pathologists in measuring the disease extent.
It could also help biomedical researchers around the world by automatically
annotating the huge amount of medical images. In recent times, with the arrival of
deep learning techniques, the methods for image analysis have advanced rapidly,
more so with the easy availability of vast amounts of data such as ImageNet,
Cifar100, COCO, etc. for various applications. The architectures trained on such
huge amounts of dataset a benchmark for similar applications. However, no state-
of-the-art deep learning model except U-Net [29] has been proposed for biomedical
image analysis because of less data volume in the medical domain, high variability
among datasets, and various modalities to address. The huge variations and less
annotated data prevent the generalization of deep learning models. In such a sce-
nario, most of the models proposed in this domain use pre-trained deep architectures
or modify existing ones to suit their application. For segmentation problem, U-Net
has been used extensively as base architecture [3, 7, 11, 14, 20, 26, 27, 31, 35].
U-Net is basically a semantic segmentation architecture. Semantic segmentation
classifies each pixel in a target region as a class or non-class pixel. It is a
supervised learning model whose performance depends on how well the ground
truth is annotated. Ground truth annotation, however, in the case of multi-structural
histopathological images is a tedious task. This is where U-Net gives the advantage
as it is known to produce better results even with limited datasets. The U-Net
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architecture follows the basic encoder-decoder structure with a contracting path on
the left and expanding path on the right. The unique difference between encoder-
decoder architecture and U-Net makes the U-Net network more robust with a limited
dataset. Besides contracting-expanding modules, U-Net preserves the feature lost
during the contracting path by concatenating them with the expanding feature map
in the expanding path of the model. The additional features preserve the quality of
the segmentation.

The dataset used for our work comprises Whole Slide Images with three
annotated tumour classes- benign, invasive, and In situ. The classes are very roughly
annotated by experts to indicate the presence of the disease. The problem aggravates
in the case of invasive carcinoma where it is difficult to draw a boundary to contain
the class. High-grade invasive carcinoma could spread across the WSI and does
not have an epithelial layer boundary to contain the malignant cells. In such cases,
accurate segmentation becomes a challenge. Hence, we aim to develop a rough
segmentation framework to indicate the presence of the tumour in the region.
Rough segmentation of complex tumour regions is an open research problem. The
pathologists themselves do not extensively annotate cells and nuclei to detect a
cancerous region, instead they annotated a rough boundary around the suspected
region to mark the presence of the disease. These rough boundaries often also
contain the cluster of small tumours that are spread across the slide and cannot be
bounded separately for each cluster. Hence, such clusters are generally annotated
as a single region bounded by a rough annotation. The region of interest thus
also, often, contain non-tumorous portions that are found in-between or around
the clusters. In such cases, semantic or instance segmentation models often fail to
precisely separate objects from the background. Hence, we need to develop models
that could know about the possible object location before segmentation.

Therefore, auto-initialized active contours which are initialized using constrained
criteria could be useful for such tasks. Active contours [9] are known to predict high-
level object shapes by finding the possible boundary of the object depending on both
the image features and priors such as length and curvature of the contour and other
forces that drive the contour towards the edge of the object. These local priors are
selected depending upon the application. Active contours find a minimum energy fit
for incrementing contour vertices to the object edges. The energy is defined in such
a way that the contours are attracted towards the minima or where the boundaries of
the object lie. Active contours have an advantage because they are topology-aware
and could also work on high-level image features acquired at low resolution. In
our proposed method, due to space constraints, high-resolution WSI regions were
downsampled to low-resolution small and even dimension images for input into
modified U-Net architecture.

In the proposed work, we tried to amalgamate U-net and active contours to
develop an object aware segmentation network for segmenting breast tumour images
belonging to three different image categories. We modified the U-Net network using
deep network tools such as ResNet [16] and DenseNet [17] blocks to enhance
the efficiency of the segmentation. The U-net base acts as a learning framework
for active contour priors that are responsible for the length and curvature of the
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contours. The priors are learned while the contour moves with each epoch. The
active learning model generates polygons close to ground truth instance. The
network is inspired by the original work [22] that uses custom CNN and Active
Contour Model (ACM). They used structured prediction for optimizing ACM
parameters and SSVM (structured SVM) loss for finding optimal parameters. We
tested our method using the Intersection over Union (IoU) metric with the original
article along with other benchmark methods on the breast tumour dataset. Our
method outperformed all the methods used for a similar task.

We have presented a preliminary analysis on the proposed method and a more
detailed analysis is our future work. The main contributions of the proposed work
are:

• We have applied the state-of-the-art deep structured active contour model on a
challenging medical dataset to imitate pathologist annotations for tumours in the
breast histopathology dataset.

• For the task we introduced semantic segmentation model U-Net enhanced by
ResNet blocks to actively learn local information priors for active contour
inference.

• The active contours are initialized through the robust automatic initialization
method introduced in the chapter.

• The successful implementation of the method and the comparison with con-
temporary state-of-the-art methods highlights the importance of integrating
traditional methods with deep learning methods for better results.

The rest of the chapter is organized as follows. Section 2 familiarizes readers
with state-of-the-art literature for histopathological image segmentation. Followed
by Sect. 2, Sect. 3 explains the methodology of the proposed hybrid network with
subsections that build the theoretical concepts necessary for understanding the
modules of the whole network. Section 4 species the experimental setup required
to implement the model followed by results highlighting the comparison with
recent benchmark models. Section 5 discusses the complete model with detailed
discussions on challenges posed by the dataset and how our model might help
to overcome some of those challenges. The chapter ends after Sect. 6 that briefly
concludes the findings from the proposed model for breast tumour annotation.

2 Related Work

In digital pathology, tissue-wise labelled data is limited because it is very time
consuming and requires expert pathologists. Hence, segmentation outputs are noisy
and affect classification performance if the framework is end-to-end. Inconsistency
in data acquisition methods also makes a limited amount of data even more useless.
Due to these limitations, not much work has been done recently for segmenting
tissue-level regions. The authors in [24] have done a similar work in which they
have taken four classes of breast biopsy tumours, namely benign, atypia, DCIS, and
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invasive. Their work divides WSIs into instances for feeding them into their network
for joint segmentation and classification task. The output of their model produces an
instance-level segmentation mask and instance-level probability map. The combined
discriminative segmentation mask from the two outputs is then used to extract
frequency and co-occurrence features which were then fed into MLP for final cancer
diagnosis. The strength of their work is that they have used general UNeT [29]
architecture for their specific task using simple modifications like adding instance-
level probability map to enhance the features of segmentation mask that helped in
improving classification accuracy of the final diagnosis. Their dataset was heavily
annotated with tissue-level annotation done by 87 pathologists along with extensive
substructures annotation by a pathology fellow. Exhaustive annotation is one of their
most important strengths that aided in producing less noisy segmentation masks.
This also helped them to create an end-to-end learning framework for both of their
tasks. However, this is also the main drawback that without the heavy annotations
their method would not work. The similar BACH dataset which we have used in
the proposed work when tested on their algorithm failed to produce comparable
results. Needless to say that other medical data segmentation algorithms like UNeT
[29], SegNet [6], FCN [21] also failed to perform well on our dataset due to
the same limitation. These pixel classification based segmentation methods have
a fundamental limitation when the target object comprises many heterogeneous
components. For example, a benign tumour at a low resolution not only consists
of nuclei, but structures like papillary, solid, haemorrhagic, and sclerotic growth
patterns are also visible. They are surrounded by well-formed one-two layers of
epithelium cells and a fibrous sheath of connective tissue. At higher magnification,
one can see solid areas composing stromal cells, round nuclei with fine chromatin
and rare nucleoli [1]. Such varied structures in one tumour cannot be individually
annotated for semantic segmentation and hence treating them as one structure as
a whole poses great confusion for such algorithms and therefore, fail to produce
good results. The problem with instance segmentation algorithms like MaskRCNN
[15] is that it requires a complete object to be present in the image for segmentation
and classification. Region Proposal network of MaskRCNN compares the object
characteristics as a whole, with a certain threshold, with the learned instances
to propose a probable bounding box. Whereas in the case of medical histology
images, object characteristics vary widely within classes, and it gets very difficult to
learn all types of object priors for smooth detection and classification. Other recent
detection and classification methods like FastRCNN [13] and [28] also works on
the same theory of instance-level detection and classification. Other works that are
similar to ours are the segmentation based method in [23] and saliency map-based
method in [12]. Mehta et al. [23] developed a CNN-based method for segmenting
breast biopsy images that produces a tissue-level segmentation mask for each WSI.
The histogram features they extracted from the segmentation masks were used for
diagnostic classification. Geccer et al. [12] proposed a saliency-based method for
diagnosing cancer in breast biopsy images that identified relevant regions in breast
biopsy WSIs to be used for diagnostic classification.
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Due to the rough annotation, our work focuses not only on segmenting the
tumour mask from the background but also tried to draw a contour around the
mask for better object boundary visualization. Similar works of literature in the
past have termed such tasks as contour-aware segmentations [10, 18]. Classically,
active contours have been extensively used in histopathology images for segmenting
nuclei and cells [2, 33, 34]. But, using ACM with CNN and for larger tissue regions
like glands remains under-explored. Recently, Xu et al. [32] segmented nuclei from
breast biopsy histopathological images that use CNN for nuclei detection and the
detected nuclei act as initialization for active contour-based ellipse fitting over the
detected nuclei. Khvostikov et al. [19] trained the CNN model for learning active
contour priors for gland segmentation. They also proposed a collision resolution
algorithm as a post-processing step to separate overlapping gland objects. The
dataset used by them was carefully annotated with crisp gland boundaries. However,
in our case, since the annotations are rough and there are no crisp boundaries for
tumours, the task of segmentation becomes even more challenging. Therefore, in
the proposed work, we have performed a preliminary analysis of our model on the
dataset and compared it with recent segmentation benchmarks.

3 Methodology

3.1 Overview

The proposed model segments the roughly annotated breast tumour masks using
the hybrid U-Net Active Contour model. The backbone U-net model is modified by
adding ResNet blocks. The detailed modified U-Net model is illustrated in Fig. 1.
The output map of each upsampling layer is concatenated to produce a concatenated
feature map. This feature map is then further processed with convolution layers to
produce four active contour priors. Each of the feature prior is then used to calculate
active contour energy terms. The active contour energy function equation (refer
Eq. 1) has four local priors, i.e., values that weigh the contour energy terms on a per-
pixel basis. Hence, the priors as calculated as feature maps which are dynamically
learned during backpropagation in an end-to-end model. The block diagram of the
proposed model is shown in Fig. 1. We have modified the methodology used in
DSAC [22]. The difference is that their method uses CNN to learn Active Contour
Model external and internal energy terms [9] while we have used modified U-net
architecture to get the deep learning inference (Sect. 3.2). Furthermore, the strategy
to use automatic multiple initializations has been expanded so that the initial contour
can find the object even if it is not centred (refer to Sect. 3.4). The modified training
algorithm is expressed in Algorithm 1.
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Algorithm 1 proposed model training algorithm. The deep learning backbone
forwards the feature maps learned to ACM inference at every iteration. Then
ACM inference is made for each initialized polygon. The five polygons yield five
polygons. A structured loss IoU is calculated for all the five polygons. After the
training is complete, the maximum IoU is calculated to yield the final polygon

Data : ← X, Y : image/polygon pairs in the training set
y0 ← corresponding polygon initializations
for xi , yi ∈ X, Y do

UNet-ResNet inference: D, α, β, κ ← CNNw(xi)

ACM inference:
for j = 1 : n do

ŷ
j
i ← ACM(D, α, β, κ , yj

i )

∂Lj

∂D
, ∂Lj

∂α
, ∂Lj

∂β
, ∂Lj

∂κ
← ŷ

j
i ,y

j
i

Compute ∂Lj

∂ω
(combined loss) using backpropagation

Update UNet-ResNet: ω ← ω − η( ∂Lj

∂ω
)

Calculate IoUj

Determine max IoU and corresponding index

3.2 Modified U-Net Architecture

Original U-net architecture [29] has an encoding and a decoding branch comprising
a stack of convolution and deconvolution blocks, respectively. The encoder branch
learns input representations while downsampling the input image, whereas the
decoder branch recovers the spatial resolution lost during downsampling. The
spatial information lost due to the downsampling of the input is added back at
the upsampling layer using the skip connections. These skip connections are made
between corresponding layers of encoder and decoder branch. We have added
ResNet identity blocks after the convolution blocks in each layer on both encoder
and decoder branches. The ResNet blocks further help recover spatial information
loss in the whole model. In the decoder branch, the output feature maps from each
layer are then resized to the output size (256 × 256) and concatenated to produce
the final output feature map. This feature map is then further passed through two-
layer MLP with 256 and 64 hidden units to predict four local information priors or
weight maps: Data D(x), α(x), β(x), and κ(x), where x is the input image; x ∈ X.
The active contour inference and the prediction of local priors are followed as in the
literature [29].

3.3 Active Contour

An active contour [9] is a line or a continuous set of points that move over the
image to find the point of minima. In other words, each point in a contour moves
around the image so that the energy function is minimized. An active contour can
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be represented as a polygon y = (u, v) with L nodes. Let each node s is represented
by ys = (us, vs) with s ∈ 1, . . . , L. The polygon y is then deformed such that the
following energy function is minimized.

E(y) =
L∑

s=1

[D(ys) + α(ys) | 	sys

	s
|2 +

β(ys) | 	2
s ys

	s2
|2] +

∑

u,v∈
(y)

κ(u, v)

(1)

D(ys) is the external energy term indexed by the position ys = (us, vs) and means
the value in function D(x), where x is the input image, where D(x) ∈ �(U × V )

of size U × V is the data term, depending on input image x, x ∈ �U×V×d and
U ×V ×d is the image width, height, and depth, respectively. Both α(ys) and β(ys)

are weights associated with feature maps of dimension U × V extracted during
the CNN training, same as D(ys). The terms associated with α and β are first-
order and second-order derivative of the polygon at ys defining length and curvature
terms.

∑
u,v∈
(y) : 
(y) is the notation to represent the pixels enclosed by the

nodes of polygon y.
∑

u,v∈
(y) κ(u, v) is the summation of the pixel values of the
kappa feature map enclosed within the polygon. This defines kappa energy. We have
modified the methodology used in [22]. Their method uses custom CNN to learn
Active Contour Model external and internal energy terms (refer to Eq. 1). They used
the structured loss to train CNN (explained in Sect. 3.5.1). The complete details of
their method, including active contour inference and experimental setup, could be
found in their paper [22].

3.4 Automatic Multiple Initialization

We have modified the initialization of active contours by introducing multiple initial
contours. There is a total of five contours initialized at four corners and one centre
of the image. Each initial contour moves at each active contour inference iteration
towards the minimum energy location. At the end of active contour iterations, the
IoU over all the five predicted contours is calculated with the ground truth. The
maximum IoU we obtain is then projected as the final predicted contour. This
modification has been proposed to enhance the detection of objects that are slightly
shifted towards the boundary of the image window rather than at the centre. This is
explained through the illustration given in Fig. 2.

With multiple initializations of snake contour across the image window, there
would be more chances of finding an optimal tumour boundary and minimize the
convergence of snake at local maxima. This method is simple and robust for datasets
with a single object per image.
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Fig. 2 Representation of modification in DSAC algorithm - Initial Polygon Selection Criterion:
The first row comprise the labelled regions and the second row comprise their tumour mask. From
left to right read as region label and the first polygon number with which we get the optimal final
polygon, respectively: 1. Invasive, 5th, 2. Benign, 2nd, 3. In situ, 5th, 4. Invasive, 1st, 5. Benign,
3rd, 6. Benign, 2nd or 4th

3.5 U-Net Training with Structured SVM Loss

In this method, energy terms are learned on the training sets instead of taking
them as constants. Also, the structured loss used in the method is more suited for
such complex datasets where both the target domain and the loss are more or less
arbitrary. This means that the goal is not a simple target like a label or a number,
but possibly a much more complicated object [25]. A non-trivial task of segmenting
tumour boundaries is a suitable problem for structured prediction. Here the target
mask differs significantly in local features such as size, shape, intensity, colour,
and texture. If viewed as a pure segmentation problem, we could see that each
possible snake iteration in the training set is provoked by varied values of internal
and external forces (i.e., without a uniform pattern or range). This has several
drawbacks when the loss is defined by a particular function like softmax, tanh, etc.
Therefore, the structured loss which considers the output (the segmentation mask)
as a whole and not a set of arbitrary snake points is a more preferable choice.
Moreover, structured prediction enables to conform relationship among multiple
output variables (snake points) into a model (one output). Terms:

X—Image space
Y—Output space
yi—Positive ground truth polygon corresponding to ith sample image xi

y—All the negative outputs where y �= yi generated after every Active contour
inference

ŷ—Predicted polygon
ŷi—Predicted polygon for ith sample
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	(y, ŷ) = y∩ŷ

y∪ŷ
—Task loss function or IoU

Energy E(y) corresponding to output polygon y

Given a collection of ground truth pairs (yi, xi) ∈ Y × X, i = 1, 2, . . . , N, and
a task loss function 	(y, ŷ) where y ∈ Y ∧ y �= ŷ, we would like to find CNN
parameters ω such that by optimizing Eq. (1) and thus obtaining the inference result
for ith sample:

ŷi = argmin
y∈Y

E(y;ω) (2)

one could expect a small 	(yi, ŷi ). The problem becomes:

ω̂ = argmin
ω

∑

i

	(yi, argmin
y∈Y

E(y;ω)) (3)

3.5.1 Structured SVM Loss

Since 	(yi, ŷi ) could be a discontinuous function, this loss can be substituted by a
continuous and convex function such as HINGE LOSS.

l(yi;ω) = max(0,	(yi, y) + E(yi;ω) − E(y;ω)) (4)

l(yi;ω) = max(0,max
y∈Y

(	(yi, y) + E(yi;ω) − E(y;ω))) (5)

In Eq. (7) the energyE(y;ω) corresponding to output y decreases with every omega

update such that the difference between energy corresponding to the ground truth
E(yi;ω) and E(y;ω) is minimized. And, max over output space Y is taken to
maximize the margin between two energies such that when the Energy E(y;ω)

decreases the task loss 	(yi, y) increases.
Now adding l2 regularization and summing up for all training samples, hinge loss

becomes the MAX-MARGIN FORMULATION which is our objective function:

L(Y ;ω) = 1

2
‖ ω ‖2 +C

∑

i

max(0,max
y∈Y

(	(yi, y)+E(yi;ω)−E(y;ω))) (6)

where PREDICTION FUNCTION is defined as:

ŷi = argmax
y∈Y

(	(yi, y) + E(yi;ω) − E(y;ω)) (7)
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If the constant (energy corresponding to ground truth E(yi;ω) is dropped from the
above equation, we obtain

ŷi = argmax
y∈Y

(	(yi, y) − E(y;ω)) (8)

Once we obtain ŷi then the Objective with stochastic approx. for randomly chosen
data point i becomes:

L(Y ;ω) = 1

2
‖ ω ‖2 +C max(0,	(yi, ŷi ) + E(yi;ω) − E(ŷi;ω))) (9)

Since L(Y ;ω) is not differentiable, gradients cannot be calculated. Hence, we
compute subgradient as:

∂L(Y ;ω)

∂ω
= ω + C

∂

∂ω
max(0,	(yi, ŷi ) + E(yi;ω) − E(ŷi;ω))) (10)

where

∂

∂ω
(max(0,	(yi, ŷi ) − E(ŷi;ω) + E(yi;ω)))

=

⎧
⎪⎨

⎪⎩

∂E(yi ;ω)
∂ω

− ∂E(ŷi ;ω)
∂ω

; if E(yi;ω) − E(ŷi;ω) < 	(yi, ŷi )

0 ; if E(yi;ω) − E(ŷi;ω) = 	(yi, ŷi )

0 ; if E(yi;ω) − E(ŷi;ω) > 	(yi, ŷi )

(11)

So, following is the subgradient with respect to ω:

{
if E(yi;ω) − E(ŷi;ω) < 	(yi, ŷi ) ; ω + C(

∂E(yi ;ω)
∂ω

− ∂E(ŷi ;ω)
∂ω

)

else ; ω + 0
(12)

Algorithm 2 describes our methods training for U-Net architecture.

4 Experimental Setup and Results

For the segmentation task, the dataset comprises the labelled regions from the WSIs
which were resized to (512×512) for segmenting the suspected tumour. In this case,
normal patches were not included in the segmentation dataset.
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Algorithm 2 U-Net training
X - Image space
Y - Output space
yi - positive ground truth polygon corresponding to ith sample image xi

y - all the negative outputs where y �= yi generated after every Active contour inference
N - total number of samples in a batch.
ω - U-Net parameter to be updated
ŷ - predicted polygon
ŷi - predicted polygon for ith sample
	(y, ŷ) = y∩ŷ

y∪ŷ
- task loss function or IoU

input number of iterations T, step size η for t = 1, . . . , T
Energy E(y;ω) corresponding to output polygon y

Energy E(ŷi;ω) corresponding to predicted polygon ŷi for ith sample
regularizer C

Initialize ω ← 0
for t = 1, . . . , T do

for i = 1, . . . , N do
ŷi ← argmaxy∈Y (	(yi , y) − E(y;ω))

if E(yi;ω)− E(ŷi;ω) < 	(yi, ŷi ) then

vi ← ∂E(yi ;ω)
∂ω

− ∂E(ŷi ;ω)
∂ω

else
vi ← 0

ω ← ω − η(ω + C
N

∑N
i vi)

4.1 Dataset Preparation and Usage

The ICIAR BACH 2018 challenge published a breast WSI tumour dataset [5]. The
dataset is publicly available and has been first reported in [4]. Other publications
using the dataset as benchmark are [30] and [8]. The dataset contains ten annotated
WSIs for training. They did not, however, reveal the test annotation. Therefore, we
have worked only on the tumour regions extracted from the ten WSIs. The WSI
contains three annotated classes- Benign, Invasive, In situ. Using the annotation
coordinates in ground truth files, we calculated the bounding box dimensions around
each annotated tumour region. We then increased the bounding box dimensions of
the annotated regions by 40% to increase the background area around the tumour
mask. From the ten WSIs, a total of 56 Benign, 100 Invasive, and 60 In situ regions
were extracted. Each extracted region was of arbitrary dimensions ranging between
20,000 pixels to 196 pixels across height and width. To reduce the computational
complexity and make the images of even dimensions, all the 216 regions were
resized to 512 × 512 with 3 RGB colour channels. Figure 3 shows the dataset
samples with ground truth and corresponding pathologist annotation in each row,
respectively. The polygonal annotation is expected to be achieved through active
contour inference that moves towards the edge of the tumour while training on a
ground truth mask. From the figure, we could see how arbitrary and heterogeneous
shapes are roughly annotated by the pathologist for only detection purpose.
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Fig. 3 WSI region samples with their corresponding ground truth mask generated through
polygonal annotation by the pathologist [5].

4.2 Experiments

We did several experiments for preliminary analysis of our adopted method for
breast tumour segmentation. The main method has been compared with the original
DSAC method proposed in [22], FCN16, and SegNet. Some ablation studies have
been done to show the variation in results with hyperparameter changes such as
the number of layers, optimizer, and learning rate. In the main method, we used
Adam Optimizer with a learning rate of 104 and five layers in an encoder and
four layers in the decoder branch. We evaluated the performance of the method
on IoU averaged over all test images. IoU is the area of overlap between the
predicted segmentation and the ground truth divided by the area of union between
the predicted segmentation and the ground truth. The dataset is randomly divided
into 150 training images and 66 test images.

The dataset was tested with the original DSAC CNN backbone with and without
multiple initializations. The average IoU obtained validated that with multiple
initializations, the detection performance of active contour has increased. We
then introduced ResNet blocks in the original CNN backbone to test whether
there is an improvement with ResNet identity blocks. We observed that the IoU
has increased from 59.98% to 61.32% with ResNet blocks in the original CNN
backbone architecture followed in original DSAC. The observed results strengthen
the choice of including ResNet blocks and multiple initializations in our framework.
Further, we replaced the CNN model with U-Net and ResNet blocks with multiple
initializations as our final proposed model. The proposed model is tested with
semantic segmentation networks like SegNet, FCN16, original U-Net. The original
U-Net was then further enhanced with ResNet and DenseNet blocks, respectively.
Table 1 shows a comparison between different models with our proposed model.
From the observed IoU, we could deduce that the choice of deep learning backbone
affects the final performance of the active contour inference over the image. When
we compared the results of semantic segmentation models with Active Contour
enhanced hybrid semantic models, except the U-Net + ResNet model, we observed
incremental improvement with hybrid approaches. The results hence strengthen
the idea of annotating medical datasets with such models to imitate pathologist
like annotations instead of using semantic segmentation models which are not
usually useful in clinical settings. Figure 4 shows the results obtained after semantic
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Table 1 Comparative performance evaluation over average IoU on the test set of ICIAR BACH
2018 dataset

Model Method Average IoU(%)

Semantic FCN16 51.72

SegNet 71.65

UNet 44.69

UNet+DenseNet 51.08

U-Net+Resnet 77.13

Hybrid models Original DSAC 56.09

Original DSAC with multiple initializations 58.62

Original DSAC with multiple initializations and ResBlock 60.07

U-Net-ResNet-ACM (ours) 76.45

segmentation of dataset test images using state-of-the-art semantic models. Further,
the results obtained from hybrid segmentation models is illustrated in Fig. 5.

5 Discussion

Through this work, we aimed to apply the deep learning trained active contour
segmentation on a complex histopathology breast tumour dataset. The dataset is
roughly annotated by the pathologists for marking tumour regions. The dataset
is not explicitly annotated for segmentation purpose. This makes the tasks more
challenging. Hence, the base model is enhanced by introducing ResNet blocks for
recovering information loss during the downsampling and upsampling operations
in the network. The final segmentation results, as shown, prove the sensitivity of
the network with ResNet blocks. For marking the boundary of the tumour with a
polygon just like the pathologist does, the active contour algorithm with locally
learned priors is added to the segmentation model. The active contour is moved to
detect the boundaries of the tumour using the strong local priors learned by the U-
Net-ResNet deep learning model. Multiple automatic initializations proved to be the
critical factor to improve the detection performance of the algorithm.

We started experiments with the new state of the art semantic and instance
segmentation algorithms. The results in Table 1 show the comparison of semantic
segmentation methods like UNeT, FCN, and SegNet with our modified model
application on the histopathology dataset. We could see that pixel-wise classification
with pixels as segmenting unit did not work well with our dataset and our
intuition about heterogeneity causing misclassification of such a small unit like
a pixel is correct. The problem of heterogeneity within objects, their shape, size,
coarseness differ so widely in histopathology images that segmentation of coarsely
annotated regions of interest like tumours causes either over-segmentation or under
segmentation of pixels. For example, in the case of Ductal Carcinoma In Situ
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(DCIS) of the breast, there are at least five subtypes, namely DCIS: micropapillary,
DCIS: Cribriform, DCIS: Cribriform with microcalcifications, and DCIS: Apocrine
and DCIS: Comedonecrosis. All these subtypes have different shapes, distribution
of nuclei and the presence of substructures. So, without subtype annotations, a
computer algorithm treats every subtype as a different class. If the matching instance
is not present within that slide, the algorithm fails to recognize the instance of the
DCIS tumour. Therefore, without extensive manual annotation of each substructure,
semantic and instance segmentation models largely fail in such scenarios. Our
method, with active contour inference, increase object awareness through active
feature learning and contour displacement within an end-to-end network. Thus, it
made the overall network more sensitive to object features. And with it, we achieved
our aim of polygonal annotations just as the pathologist would mark for cancer
detection in histopathological images.

The proposed work is, however, only tested for the histopathological domain
of medical images and need to test for other types of image modalities such
as CT, MRI, and Ultrasound images. This poses a constraint for the model’s
implementation for the analysis of a larger group of modalities. Hence, this work
can be extended to other medical image modalities for broader implementation and
better integration with the clinical framework. Moreover, our work does not allow
the active intervention of pathologists which adds another limitation. In the field of
pathological analysis using CAD methods, regular involvement of pathologist is a
must to improve the learning of the ML system. Thus, there is a scope to include an
active learning framework within the model for improved and reliable performance.

6 Conclusion

We have applied the state-of-the-art deep structured active contour model on
a medical dataset to imitate pathologist annotations for tumours in the breast
histopathology dataset. For the task, we introduced semantic segmentation model
U-Net enhanced by ResNet blocks to learn local information priors for active
contour inference actively. The initial active contours acted as object identifiers
which helped to improve the network performance for heterogeneous data. The
future work would be to enhance the segmentation performance at the WSI level so
that the pathologist like annotations could be done for both medical and educational
purposes.
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VLSI Implementation of sEMG Based
Classification for Muscle Activity Control

Amit M. Joshi, Natasha Singh, and Sri Teja

1 Introduction

Electromyography (EMG) is a signal which is coming from muscles and is also
helpful in analysing and detecting of various activities of the body. EMG is
very important bio-potential signal for the prosthesis based applications. Muscle
activation takes place whenever a myoelectric signal is generated [1]. The electric
activity generated in a human body is processed using electromyography [2].

The electric actuation is analysed for muscle activity using electromyography
[3]. Electromyography is also known as myoelectric signal where the actuations are
produced in the form of time variant signal [4]. It has very useful and significant
information of neuromuscular activities. They are non-stationary, nonlinear and
also complex signals [5]. EMG has information which is taken from the features
of signal. There are several feature extraction techniques for accurate pattern
recognition [6]. The brain is involved in the controlling of the movements of the
muscles. Thus electrical activity from the muscle is observed closely for various
activities. An action potential will be coming from the brain that passes through
nerve fibres and they will stimulate the muscle fibres [7]. Electrical signals are
transmitted the motor neurons which cause the muscles contraction for muscle
movement [8]. Motion of humans is due to the integration of muscles central
nervous system and brain. The effort of brain which is organised and controls
28 major muscles and trunk the limb joints to control the gravity and move the
body forward with less energy consumption [9]. The body movements is due to the
coordination of muscles with the brain. The muscle of the body performs a particular
activity. It will send signals through the CNS [10]. Muscles are innervated in groups
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Fig. 1 Recorded EMG signal

called ‘Motor Units’. The junction point where the muscle fibres and motor neurons
meet is a motor unit [11]. After the motor unit is activated a motor unit action
potential is produced. The activities of CNS is performed continuously to generate
required force. This action produces motor unit action potential trains which are pre
impose for obtaining the EMG signal. A large number of muscles take part in the
movement of human body. The total number depends on the activity of the body
[12]. For example, in case of the weightlifting such as small stone which involves
only few muscles compared to lifting a heavy weight like dumbbell’s. Generally
to lift a greater weight the involvement of CNS increase. Hence it results in the
increase in amplitudes of EMG signals. The general EMG signal has been shown in
Fig. 1.

Electromyography is responsible for generating force, creating movements and
allowing us for performing countless other activities for interacting with the
world [13]. EMG is useful bio-potential signal has developed for large number
of applications. Medically EMG is used as a diagnostic tool for diseases and
disorders involving nerves and muscles. It is used mostly for treatments of patients
with neuromuscular diseases, low back pain and few muscular diseases. EMG has
been used in evaluating the applied research in physiotherapy, sports medicine and
rehabilitation. There are some distinct requirements for rehabilitation applications.
First, the system must be small and consume low power. Next, a large rehabilitation
embedded with a computer device should provide communication with other
systems and also providing more features like the possibility of recording data. This
functionality have structures which are very diverse in nature and their usage is
based on different software libraries. Apart all these applications involving different
types of communication (motor control to actuate a device) which are based on
software realisation and can be performed by CPU. There are various machine
learning algorithms to perform real-time analysis of physiological data [14]. It
is computationally very expensive based on amount of data and complexity of
the algorithms. Therefore, it is real challenge to have accurate prediction of the
movement for controlling the therapeutic device with least latency. The paper
presents hardware implementation of classification approaches to have real-time
pattern identification using EMG.
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The organisation of remaining part of the chapter is as follows: Sect. 2 defines
the basic overview of useful electrodes for EMG acquisition. Section 3 explains
the EMG based Pattern recognition method for upper limb prosthetic control.
Section 4 covers machine learning model for upper limb prosthetic control. Sec-
tion 5 describes the basic theory of Linear and Quadratic Discriminant Analysis.
Section 6 emphasises on VLSI Implementation of LDA and QDA along with their
performance measurement.

2 EMG Data Acquisition

The bio electrical activity can be seen using EMG electrodes inside the human body
muscle [15]. These electrodes are of three types as: (1) Inserted electrodes, (2) Fine
wire electrodes, (3) Surface electrodes. Needle Electrodes and Fine wire Electrodes
are of inserted electrodes category. All of these electrodes are explained in detail
whereas surface EMG electrodes are used in our experimental analysis to acquire
the data.

2.1 Needle Electrodes

The needle is used at the surface of the body for signal acquisition (as Fig. 2). The
insulated wire is present in the cannula. The quality of the signal is improved by
the needle electrodes by using it in conjunction with the other types of electrodes.
Needle electrodes are used mainly in neuromuscular evaluations and surgical
procedures. The two main advantages of needle electrodes are, (i) During low force

Fig. 2 Practical EMG needle
electrode
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Fig. 3 EMG fine wire
electrode

contractions, it can be able to detect individual MUAPs because of its relatively
small pickup area (ii) The electrode can be re-positioned after the insertion.

2.2 Fine Wire Electrodes

This type of electrodes are stiff wire of small diameter with non-oxidising property
and insulation (Fig. 3). Ores of Pt, Ag, Ni, and Cr are mostly used. These are very
thin and could be inserted in an easier manner. They can be removed from the
muscles and cause less pain when compared with the needle electrodes.

2.3 Surface EMG Electrode

These type of electrodes enable a very good method for measuring and detecting
the EMG signal which does not involve the introduction of materials into the
human system. The current flow from human body into the electrode is done
through electrolytic conduction [16]. This electrolytic conduction is made possible
with the help of chemical equilibrium formed between human skin and electrodes
(Fig. 4). These electrodes that are used for sEMG are quite easy to implement and
are very simple. The usage of fine wire electrodes and needles electrodes need
to be done under strict medical support and supervision whereas sEMG does not
require such kind of observation. sEMG electrodes have used in studies of motor
behaviour, recordings of neuromuscular activities, evaluating the performances in
sports activities. Along with these the sEMG is mostly used for the detection of
muscular activities and also control the device extension for achieving prosthesis
for the persons with disabilities and amputees. There are some restrictions due to
sEMG. These electrodes are generally applied on superficial muscles so there would
be cross talk from the other muscles, this becomes a serious issue when measuring
the EMG signal. The stability of their position with respect to the skin must be
maintained properly else it results in signal distortion.
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Fig. 4 Surface EMG
electrode

3 EMG Based Pattern Recognition for Upper Limb
Prosthesis

EMG has a different and multiple applications in fields of clinical and medicine.
It is also used in detecting various diseases involving muscles and nerves and also
as an instrument in learning the kinesiology and detecting robotic disorders [17].
Electromyogram signals are used in controlling prosthetic limbs and prosthetic
devices, for example, prosthetic hands, lower limbs and arms etc. [18], EMG
is useful to measure the perfect functioning and conduction of nerves from the
amputees [19].

EMG is recorded and filtered for controlling a prosthetic limb through hands
(upper limb) and legs (lower limb) which is capable of interacting with brain and
the CNS. It is known as Implantable Myoelectric sensor(IMES) [20]. A series of
Implanted myoelectric sensors EMG signal is recorded. The amplitude of the EMG
signal falls between the range of zero to ten milliVolts. The EMG signal is mixed
by various types of noises when passing through various tissues. Observing the
properties and the variations of these unwanted electric signals is very crucial and
plays a major role in acquisition. The filtering technique is applied to remove various
noises before further processing. These signals are then send to distant places where
controller is used for analysing purpose. The allowed data is to be sent to prosthetic
limb controller and is done as the system developed allows it and finally it is able
to move the prosthetic limb towards the direction in which amputees intended. A
USB cable can also be used in monitoring the data from the EMG signal or with
the help of external computer connected to the IMES system. This way it can be
used in controlling the movement of prosthetic limb using the commands which are
coming from the brain and central nervous system. The data acquisition using visual
feedback system is shown in Fig. 5.

For classification of hand gestures and movements sEMG signals are used in
various studies and implemented successfully in the control of prosthetic limbs and
hands for the amputates. For controlling a wearable devices that can assist persons
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Fig. 5 Prosthetic limb
control

Visual-Feed back

Mirro
r

Amputated Limb

with low muscle mass or the persons who are suffering from sarcopenia sEMG can
be used potentially. In position control using sEMG we need to estimate the torque
intended of the user in providing sufficient information for efficient control of force
of the prosthetic hand or assistive device [21].

4 Machine Learning Models for Prosthetic Control Using
EMG Signal

The functioning of the classification of the motion pattern recognition depends
on the extraction of various features [22]. This has a major role in the activities
recognition from sEMG signal. This method is a way of converting the original raw
EMG signal to a vector. The various features of these signals can be categorised into
three main domains, namely that of frequency, time and time-frequency features.
The time domain are computed with the time-changing amplitude. During the
observation process, the signal amplitude depends on types of the muscle and their
conditions. Most of the analyses use time domain due to their low computational
complexity. For the measurements of these signals no additional transformations
are required. The PSD of signals in contained in frequency domain features and
are calculated using a periodogram. Time-frequency features are the features are
the ones which has the information of both time domain and frequency domain. A
varying frequency data at various intervals of time can be obtained by these features
which in turn results in non-stationary data. The present paper is based on time
domain based features extraction method due to less computational burden and for
better real-time performance.
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4.1 Time Domain Based Feature Extraction

These features are utilised in various fields such as in medical and engineering
practices. Time domain features are popular for the purpose of identification of any
intention. Due to their quick and easy implementation these features are used for
signal classification and these features does not require any transformation of the
signal [23]. Most of these are based on raw EMG signal. The variation in statistical
properties of EMG signal which is known as the Non-stationary property of EMG
signal remained to be the challenge of these category of features because they
assume that the data is a fixed signal and more distortions is acquired through it.
Most of the burden of computations rely on the signal amplitude but these features
have been used most extensively due to their performance for signal classification at
low noise environment and low computation time. Total four time domain features
are utilised and are discussed below [24].

4.1.1 Mean Absolute Value (MAV)

It is a very well-known feature used in evaluation of EMG signals. It is same as
integrated EMG feature used in the detection of surface EMG signal. It is also
known as average rectified value (ARV), Integral of absolute value (IAV) or average
absolute value (AAV). The first one is basically a reckon of addition of absolute
measurement value and measurement of level contraction in the signal. It perceives
the mean of the signal amplitude over length of signal as per Eq. (1).

mean(μ) = 1

N

N∑

n=1

xn (1)

4.1.2 Variance (VAR)

Variance of EMG signal (VAR) is another statistical power tool used to measure
EMG signal. Variance is measured as the expectation of average square deviation of
random variable from their mean. Variance is also defining as the measure of power
density of an EMG signal as in Eq. (2).

var = 1

N − 1

N∑

n=1

(xn − μ)2 (2)
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4.1.3 Standard Deviation (SD)

It is a time domain statistical approach to measure the dispersion of data from its
mean (Eq. (3)). It measures the square root of variance by estimating the variation
among data points to its mean. If data are outlying from its mean, then it shows the
higher deviation within the dataset.

std(σ ) =
√
√
√
√ 1

M − 1

M∑

m=1

(pm − μ)2 (3)

4.1.4 Mean absolute deviation (MAD)

It is a statistical approach to find the average interval among each data value of a
dataset from its mean (Eq. (4)). It is utilised to find the variations in given data.

MAD = 1

M

M∑

m=1

[Pm − ORT ] (4)

Once the features have been extracted then they are further applied to recognise
the activities using classification algorithms.

5 Pattern Recognition Through Classification with EMG

The activities are being identified through supervised machine learning technique.
The classification is the widely used machine learning technique which is helpful
to predict the classes for the input data for the pattern recognition [25]. We have
used two types of classification techniques which have provided better accuracy for
our time domain features as: (1) Linear Discriminant Analysis and (2) Quadratic
Discriminant Analysis.

5.1 Linear Discriminant Analysis

It is a supervised machine learning model which is similar to logistic regression
and can be used for Classification. LDA can be useful where frequencies of classes
are different and their performance is evaluated on randomly generated testing
data.LDA gives three benefits over the logistic regression:
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– When there is well-separated classes, it would be difficult to estimate the model
parameter where LDA would provide efficient classification.

– The Linear Discriminant model is more stable for distribution of homogenous
activities.

– LDA would be effective for multi-class classification problems.

LDA has given a better accuracy when compared to ANNs and SVM but in the
looking in the perspective of real-time application the training time for is classifier
in more. The accuracy which obtained was around 85% with time complexity of
around one minute.

The process of algorithm is follows:

– Importing the packages required from sklearn.
– Loading the dataset which is in .csv form using pandas data frame.
– After loading the dataset, we segregate the data into features and labels, since

this is a supervised classification.
– Now the crucial part is training the algorithm through LDA. Below are the steps

for the same:

• Calculating the mean vectors.
• Calculating the Covariance Matrices.

1. The scatter matrix Sw of a class is defined as in Eq. (5)

Sw =
classes∑

i=1

scatteri (5)

where scatteri =∑input∈Di
(input−meani)(input−meani)

T (for every

class) and meani is the mean vector meani = 1
totali

∑n
input∈Di

xk

2. Covariance matrix for between class, where overall mean is represented
by mean, and this of different classes is represented by mi and Ni are in
Eq. (6)

Scatterj =
j=1∑

classes

T otalj (Meanj − m)(Meanj − m)T (6)

• Solving the generalised eigen value problem.
• Choosing K eigen vectors with largest eigen values.
• Transforming onto the new subspace.

– After the training phase, we are onto the testing phase where it randomly selects
the data and tests itself.

– Finally we note down the accuracy.
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5.2 Quadratic Discriminant Analysis

It is used in statistical classification and machine learning model to separate param-
eters of classes of events by a polynomial surface. Linear discriminant analysis
(LDA) applies the generative approach for classification, i.e., a straightforward
method. It is based on the assumption that all the classes have same covariance
matrix and each of the class can be modelled by a gaussian distribution. Quadratic
discriminant analysis (QDA) is same as LDA but without the assumption that the
classes have same covariance matrix, i.e., every class has its own covariance matrix.
So the boundary between the classes becomes quadratic. In practice, LDA requires
very few computations with which it can estimate classifier parameters. These
computations are percentages, matrix inversion and means where QDA has slightly
higher computational cost with higher accuracy.

Another classifier which we have used is QDA (Quadratic Discriminant Anal-
ysis). This classifier has given a better accuracy when compared to LDA and the
important characteristics of this classifier is that it would provide much better
accuracy with good real-time performance. The accuracy which obtained was
around 90% with time complexity of slightly higher than one minute. The process
of algorithm is same as LDA. In QDA, the covariance matrix for every class is
different.

5.3 Mathematical Approach for LDA and QDA

LDA assumes that the data of each class is generated by a Gaussian distribution of
pdf. It follows a generative approach.

P(x|Y=y) = 1

(2π)(d/2)(|∑y |)
1
2

expx (7)

and that the covariance matrix
∑

y is the equal for all the classes:

∀y ∈ Y,
∑

y

=
∑

(8)

The parameters are estimated as follows. The prior probabilities is the probability
for the labelled class in the training data.

∀y ∈ Y, P (Y = y) = Ny

N
, with Ny =

N∑

i=1

1yi
= y (9)



VLSI Implementation of sEMG Based Classification for Muscle Activity Control 117

The means are estimated as:

∀y ∈ Y,μk = 1

Ny

∑

yi=y,

xi (10)

and the covariance matrix by:

∑
= 1

N − |y|
∑

y∈Y

∑

yi=y

(Xi − μy)(xi − μy)
T (11)

This formula comes from the weighted average of the local covariance matrix
estimates within each class:

∑
=
∑

y ∈ Y (Ny − 1)
∑

y
∑

y ∈ Y (Ny − 1)
where N =

∑

y∈Y

Ny (12)

∑

y

= 1

N − |y|
∑

yi=y

(Xi − μy)(xi − μy)
T (13)

By following the same steps Quadratic Discriminant analysis is also obtained but
without the assumption that the covariance matrix is common for all classes: each
class y has a different covariance matrix

∑
y estimated with the formula. So the

boundary between the two classes is not a hyperplane but it is a quadratic surface.

6 VLSI Implementation of a Classification Algorithm for
EMG

The conceptual diagram of hardware implementation for the discriminant analysis
is shown in Fig. 6. The dataset has been divided into 70% for training while 30%
for the testing purpose. In this implementation, we have done the training phase
extracted the parameters like mean, covariance, and priori of the training data
required for classification. These extracted parameters has to be given as input to
the Verilog module. The floating point arithmetic has been performed as per IEEE
754 Single Precision standard.

After implementing those modules, we need to convert the decimal data input
into floating point number. This data is given as input to the main module in
Verilog using file Input/output concept. The QDA algorithm includes a 2D matrix
multiplication but with each value being binary and of 32 bits makes it a 3D
multiplication to be performed on the data. Therefore, for the simplification purpose,
we have converted the 3D into 2D just with MATLAB. In the next step„ we
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Fig. 6 Conceptual diagram of LDA and QDA implementation

Table 1 Comparison of
Performance on various
platforms

Implementation Computational time Accuracy

Python 75 s 85%

MATLAB HLS 60 s 80%

VLSI 50 s 65–70%

Table 2 FPGA Implementation of LDA and QDA

Resources Available LDA QDA

Slice registers 35,200 240 (0%) 289 (0%)

Slice LUT 17,600 4875 (27%) 5217 (29%)

Bounded IOBs 100 28 (28%) 32 (32%)

Block RAM/FIFO 60 14 (23%) 16 (23%)

BUFG/BUFGCTRLs 32 2 (6%) 3 (9%)

calculate the discriminant functions of all the eight classes. Now, of all those values
we find the maximum value. Finally, the function with maximum discriminant
analysis is also the predicted class output. Then this module is simulated and
output can be observed. The accuracy of LDA has been observed around 8090using
python, Matlab HLS synthesis and VLSI. Since the classification needs to be
done in real-time, so we consider the computational time required for the different
implementations. The computational times for different implementation of QDA
algorithm are summarised in Table 1 as above. The reported value of accuracy is
average value for both LDA and QDA.

The LDA and QDA are synthesised on Zybo board FPGA using (Zynq 7000
xc7z010clg400 device). The results for utilisation of resources and hardware blocks
are shown in Tables 2 and 3, respectively. The performance of timing is also
analysed as per Table 4.

VLSI implementation has overall less computational time than others because it
helps to exploit the advantage of parallel processing in FPGA up to a full potential
[26]. With Verilog HDL being a hardware language, it has been used for the concur-
rent execution on FPGA [27] and therefore decreasing the computational time. Since
the simulation is only for few samples, the accuracy could be improved for higher
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Table 3 Hardware Blocks
Utilisation of LDA and QDA

Hardware LDA QDA

Multipliers 5 7

Adders/subtractors 12 14

Registers 475 510

Comparators 40 48

Multiplexers 610 676

Xors 18 22

Table 4 Timing analysis of
LDA and QDA

Parameters LDA QDA

Minimum period, ns 25 30.3

Maximum clock frequency, MHz 40 33

Minimum input arrival time before clock, ns 1.30 1.38

Maximum output required time after clock, ns 0.51 0.48

number of samples in VLSI implementation. Therefore, VLSI implementation has
outperforms other approaches in terms of computational time.

7 Conclusion

The paper presents EMG based pattern recognition for upper limb prosthetic control.
Four different time domain features, MAV, VAR, SD, and MAD have been utilised
for real-time pattern identification. The two discrimination analysis, LDA and QDA,
have been implemented on FPGA for real-time classification. The time complexity
analysis have been performed on Software and hardware platform where hardware
has better performance with good accuracy. The parallel processing of FPGA would
provide edge with concurrent execution therefore increasing the computational time.
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Content-Based Image Retrieval
Techniques and Their Applications
in Medical Science

Mayank R. Kapadia and Chirag N. Paunwala

1 Introduction

Image retrieval is a method to retrieve images from a vast image database. An
image retrieval system is a computer system for browsing, searching, and retrieving
images from an extensive digital image database. Image retrieval has become an
important research area in computer vision due to the continuous advancement in
technology, which caused a significant increase in the number of images worldwide.
With the image processing techniques, the storage of these massive numbers of
images becomes easy. Therefore, there is a need for an efficient image retrieval
technique.

The most common method for retrieving the image from the vast collection of
image databases involves tags, annotation, keywords, or short descriptions through
text-based image retrieval (TBIR). It is an old method, starting in the 1970s. This
technique requires text as an input to search for an image. The very well-known
search engines such as Google and Yahoo are the examples, which are using this
approach. These prominent search engines are robust and fast but sometimes retrieve
irrelevant images. It is shown in Fig. 1.

The irrelevant words in the surrounding textual descriptions and the surrounding
text do not entirely describe web images’ semantic content. Moreover, text for
image labeling and tagging does not portray clearly and definitely what the image
represents. Not only this, even the same word can have several meanings in a
different context. For example, the word “orange” can be an “orange color” or
“orange fruit.” This language ambiguity problem has been shown in Fig. 1.
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Fig. 1 Text-based image retrieval (TBIR)

Fig. 2 Block diagram of CBIR system

Sometimes, to mention more than one object, a similar word can be utilized.
This problem is known as the polysemy problem. Sometimes the English searcher
will not find the image tagged in Gujarati, and a Chinese searcher will not find the
image tagged in English. It indicates that text related to images must be matched
with query text. The query text must match the language. Another problem is the
manual annotation of the massive amount of images. To describe, the image is a
highly subjective task. Hence, the traditional TBIR method relies upon a keyword
search that contains limitations such as a maximum human resources requirement
and dependency requirement. In order to overcome these disadvantages, the content-
based image retrieval (CBIR) method has been utilized [1].

In the late 1990s, CBIR was introduced by T. Kato, and later CBIR becomes a
very active research area. It has been used as an alternative to TBIR. IBM was the
first, who took the initiative by proposing query by image content (QBIC). “Content-
Based” means that the search needs image contents instead of metadata such as
keywords, tags, or descriptions linked with the image. The term “content” can be
features such as color, shape, and texture. CBIR is needed since most web-based
image search engines depend only on metadata. Due to this, a lot of junk in the
results. The basic block diagram of CBIR is shown in Fig 2.
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The CBIR system is beneficial and a useful technique in searching and retrieving
images from a vast database. Similar images are retrieved from the image database.
The CBIR system derived the feature associated with the entered image, and it
will be compared with the features related to the database’s images. The system
displayed the images whose features are closest to the entered image.

2 Classification of CBIR Techniques

The CBIR techniques are classified into three categories based on the feature
extraction and retrieval of the images. Figure 3 shows that CBIR techniques
are classified into traditional feature-based techniques, machine-learning-based
techniques, and deep-learning-based techniques.

2.1 Feature-Based Technique

Feature extraction is a technique of deriving compressed but semantically valuable
information from images. CBIR uses an image’s visual contents such as color,
shape, texture, and spatial layout to represent the image. At the early stage of
the research, a single feature-based image retrieval system was developed. But
one feature is not enough to describe the image since the image contains various
visual characteristics [2]. Hence, to benefit the image’s different visual aspects, the
researcher has started the fusion of the features.

2.1.1 Color Features for Image Retrieval

CBIR is the most basic and most crucial method for image retrieval. It is also an
essential feature of perception. Color features are not susceptible to scale change,
translation, and rotation. It is robust and stable. The computation complexity is
minimum in the color feature. It is an extensively used visual feature in the CBIR
system.

Fig. 3 Classification of CBIR techniques
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• Color Histogram [3–9]
The color histogram usually represents the color. The color histogram is repre-
sented by the bar graph. The height of the bar shows the quantity of the color.
The image can be represented by RGB or HSV color space. It is shown in Fig. 4.

Histogram can be calculated either globally or locally. In a global histogram,
the histogram is calculated on the whole image. In contrast, in a local histogram,
the image is divided into small blocks, and then a histogram is calculated for each
block. A drawback of a global histogram is that it will not preserve a particular
color’s spatial location in an image while possible in a local histogram.

Figure 5 shows the importance of the image’s spatial location, which contains
the sky and sea. The sea must be at the bottom of the image, and the sky must be
at the top of the image.

Fig. 4 Color histogram for an image

Fig. 5 Importance of spatial locations of sky and sea
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Fig. 6 Two semantically different images

Another drawback of the color histogram is that the two semantically different
images can assume a very similar color histogram. Also, the same image taken
under different lighting conditions may produce a different histogram. It is shown
in Fig. 6.

• Color Moments [2, 3, 10–13]
Color moments are the statistical moments. Color moments show the probability
distributions of colors. When an image contains only an object at that time, these
moments are used. The mean and variance have been used to represent the color
distribution of the image. Equations (1) and (2) show the color moments, e.g.,
mean and variance.

μi = 1

N

N∑

j=1

Pij (1)

σi =

√
√
√
√
√

1

N

N∑

j=1

(
Pij − μi

)2
. (2)

Figure 7 shows how the color moments have been derived as a feature for the
CBIR system.

The significant advantages of the color moments are the small feature vector
size and lower computational complexity. Simultaneously, they are unable to
encode any spatial information surrounding the color within the image.

2.1.2 Shape Features for Image Retrieval

Human identifies the object by their shapes. The boundary of the object is referred to
as the shape of the object. Hence, shape features provide vital information about the
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Input Image

Red Plane

�R, �R �G, �G �B, �B

Green Plane Blue Plane

Fig. 7 Color moments for RGB image [13]

Fig. 8 Five types of edges in EDH

image, which helps for the image retrieval. The shape features are derived using the
out boundary or using the entire region of the object. In some cases, the boundary is
not evident, which is a limitation of this method.

• Edge Direction Histogram (EDH) [8–10]
EDH is the most popular technique to capture the shape features of an image.
EDH is used to capture shape features of color images that create a histogram
to simulate the edges’ distribution in an image. It determines the local edge
distribution in an image. EDH is obtained by partitioning the entire image into
small blocks.

The EDH contains five types of edges, e.g., the vertical, horizontal, diagonal,
and non-directional edge. It is shown in Fig. 8.

2.1.3 Texture-Feature-Based Image Retrieval

The texture refers to the repetitive pattern. It has valuable information regarding
the structural arrangement and its relationship with the surrounding pixels. Various
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Fig. 9 Sample images of texture
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0 0,0 0,1 0,2 0,3
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2 2,0 2,1 2,2 2,3
3 3,0 3,1 3,2 3,3

2 2 1 0
0 2 0 0
0 0 3 1
0 0 0 1

Fig. 10 Process of GLCM calculation

parameters can be extracted as a texture feature. Some samples of texture images
are shown in Fig. 9.

• The Gray-Level Co-occurrence Matrix [3, 13]
Gray-level co-occurrence matrix (GLCM) is the most popular technique for
texture analysis. It is utilized to estimate image properties correlated to second-
order statistics. A pixel with a gray-level value i occur horizontally adjacent to a
pixel with the value j creates the GLCM. Each element (i, j ) in GLCM specifies
the number of times that the pixel with a value i occurred horizontally adjacent
to a pixel with value j . The process to calculate the GLCM matrix is shown in
Fig. 10.

Contrast, homogeneity, energy, and correlation are examples of the features
that can be derived from the GLCM. It can be calculated using Eqs. (3), (4), (5),
and (6), respectively.

Contrast =
∑

|i − j |2P(i, j). (3)

Homogeneity =
∑

ij

1

1− (i − j)2
P(i, j). (4)

Energy =
∑

ij

P (i, j)2. (5)
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The contrast is used to find the linear dependency of the neighboring pixels. The
homogeneity measures the closeness of the distribution of pixels. The energy is
utilized to measure the uniformity of the texture. The energy is ranged from 0 to
1, where 1 represents the constant image. The pixel correlation with its neighbor
is calculated using the correlation.

• Wavelet transform [7, 8, 11, 14]
Wavelet transform is the most popular technique for texture feature extraction.
Wavelet transform has a multi-resolution capability. It divides the image into
an approximate and detailed band. So, it provides information regarding the
intensity and edges.

• Gabor filter [7, 9, 11, 12]
Gabor filters consist of a group of wavelets that capture energy at a specific
resolution and orientation. Hence, Gabor filters can catch the local energy of the
whole image. The Gabor filter is the most popular technique for texture features.
The Gabor filter can produce several texture scales and texture orientations.
Gabor filters provide adequate resolution in visual space. Gabor filter helps to
capture granularity and repetitive patterns of the surface. It has significantly
richer information than color histograms and corresponds to human perception.
Gabor filter’s drawback is that it is susceptible to transforms such as scaling
illumination and viewing angle.

The research has used these color, shape, and texture features for image retrieval.
Some researcher has fused these features to improve the retrieval rate of the CBIR
system. Table 1 shows the comparative analysis of the various independent or
feature combined techniques for the well-known Corel-1K dataset. It is also known
as the Wang1000 dataset. This dataset contains 1000 images of 10 different classes.

From Table 1, the average precision rates (APRs) for the individual feature-
based techniques, e.g., color moments (CM), GLCM, local color histogram (LCH),
global color histogram (GCH), edge descriptor histogram (EDH), discrete wavelet
transform (DWT), are below 60%. The combination of the features increases the
retrieval rate. The more feature gives more characteristics of the image and helps to
improve the retrieval rate. Here, the combination of color histogram (CH) and DWT
gives comparatively good results than both the individual techniques. Similarly,
the combination of three different features further increases the retrieval rate. The
combination of color coherence vector (CCV) and Gabor filter gives the best results
among all the mentioned techniques.

As shown in Fig. 11a, an image of the “bus” class is given as a query. The CBIR
system retrieved the images of the buses from the image database. Similarly, in
Fig. 11b, an image of “flower” is provided as a query, and the CBIR system has
retrieved the images of flowers from the image database.
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Table 1 Comparative analysis of various techniques for Wang or Corel-1K dataset

Class
names

CM
[3]

GLCM
[3]

LCH
[3]

GCH
[3]

HSV-
CH
[8]

EDH
[8]

DWT
[8]

CH+
DWT
[8]

CH+
EDH+
DWT
[8]

CCV+
Gabor
[12]

Africa 29 80 26 28 65 65 55 55 85 90

Beach 23 66 38 50 35 20 25 30 50 70

Building 30 50 46 31 45 50 55 75 75 80

Bus 45 50 44 44 75 85 70 80 100 100

Dinosaur 87 85 91 80 95 90 95 100 100 100

Elephant 32 33 30 37 35 15 35 80 55 100

Flower 70 56 66 68 70 65 70 95 95 100

Horse 67 71 48 64 75 60 85 90 90 90

Mountain 57 67 63 65 75 25 30 40 30 80

Food 37 33 44 42 35 30 65 50 55 80

APR (%) 47.7 59.1 49.6 50.9 60.5 51 58.5 69.5 73.5 89

Fig. 11 (a) Image retrieval for the bus class. (b) Image retrieval for flower class [8]

2.2 Machine-Learning-Based Technique

The machine learning technique is generally used for the classification of the image.
Classification is used to categorize the image. Classification is the procedure of
assigning a class label to an image. The classification procedure aims to split the
whole image database into numbers of classes. The classification techniques are
divided into two categories:

• Supervised learning
In the supervised learning, all the input image is used to train the network and is
associated with an output class, e.g., support vector machine, K-nearest neighbor
(KNN), and neural network.

• Unsupervised learning
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In unsupervised learning, the output class is not given to the network. Hence, the
system learns on its own, e.g., K-means clustering.

2.2.1 Support Vector Machine [15–18]

Support vector machines (SVMs) are used to classify both linear and non-linear
data. An image is highly non-linear. Hence, features derived from the images are
also non-linear. SVM utilizes a non-linear mapping to convert the original training
images’ feature into a higher dimension. This new dimension searches for the linear
optimal separating hyperplane, which separates one class from another. In high
dimensions, it is possible to separate two classes using a hyperplane. The SVM
identifies this hyperplane using support vectors and margins.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be the pair of training images’ features and a
class of the images, respectively. The class of the image yi can be +1 or -1, according
to the class. An infinite number of hyperplanes can be possible to separate the
two classes. But the appropriate hyperplane must be selected, which provides the
maximum margin between the separating planes. It is shown in Fig. 12.

Here, the weights “w” can be adjusted to separate data into two classes. The
hyperplanes define the sides of the margin, and it can be written as

H1 : w0+ w1x1+ w2x2 ≥ 1 for yi = +1 (7)

H2 : w0+ w1x1+ w2x2 ≤ −1 for yi = −1. (8)

Any image located on or above H1 is configured as class +1, and features of
any image located on or below H2 are configured as class −1. Combining the two
Eqs. (7) and (8) results in Eq. (9).

yi(w0+ w1x1+ w2x2) > 1. (9)

Fig. 12 Linearly separable
features [13]
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Fig. 13 Linearly
non-separable features [13]

The training features located on hyperplanes H1 or H2 are named support
vectors. It is beneficial for linearly separable features. The non-linear SVM is used
when the features of the images cannot be linearly separable. It is illustrated in
Fig. 13.

If features are linearly non-separable, then the following kernels are utilized for
searching the separating hyperplane.

Polynomial: K(x, y) = γ
(
xT y + c

)d

. (10)

Radial Bases Function (RBF): K(x, y) = e−γ (x−y)2 (11)

Sigmoid: K(x, y) = tanh
(
γ
(
xT y

)
+ c
)

. (12)

Here x and y are the input vectors, d is the polynomial degree, Y is the adjustable
parameters, and c is the constant term. The adjustable parameter Y plays a vital role
in the kernel’s performance, so it must be wisely selected for a better result.

SVM is generally preferable for small datasets. It is also effective in high-
dimensional space. But for a large dataset, it is difficult to identify the hyperplane
even in the high dimension. Also, it will take much time for the large image datasets
for the training. It is less effective on noisier datasets with overlapping classes.

2.2.2 K-Means Cluster [19–21]

K-means cluster is one of the simplest unsupervised learning techniques. It is used
to classify the images based on the feature’s similarity with the “k” centers cluster.
Following are the steps for the K-means clustering technique:

• Initially, select the “k” number of cluster centers randomly.
• Calculate the distance between the features of the image and cluster centers.
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Fig. 14 Machine-learning-based CBIR system

• Based on the distance calculation, assign the image to that cluster whose distance
is minimum from all other cluster centers.

• After assigning the image, again calculate the new cluster center.
• Again, calculate the distance between features of the image and newly obtained

cluster centers.
• Repeat this procedure till the availability of the features.

K-means can easily be implemented and also work well for the large image
dataset. The major drawback of the K-means cluster is to identify the initial value
of “K.” It will not work properly for different cluster sizes and densities.

2.2.3 Machine-Learning-Based Image Retrieval System

Machine-learning-based image retrieval system takes the handcrafted features for
the training of the model. Once the model is trained, the trained model is used to
retrieve similar images from the database. The most popular models in machine
learning techniques are the SVM and K-means cluster techniques. Figure 14 shows
the machine-learning-based CBIR system.

Here, features are extracted from the database images. These features can be
color, shape, or texture features. These handcrafted features will be given to the
machine learning model. This model will be trained. The same features are extracted
from the query image. These features will be provided to the trained machine
learning models such as SVM, K-means, etc. The classifier will give the class of
the query image. Later, the Euclidean distance between the feature of the query
image and the identified class’s images is calculated. Based on the distance, images
of the database are arranged in ascending order, and then most similar images will
be retrieved. Table 2 shows the comparative analysis of feature-based techniques
and fusion of handcrafted features and machine learning technique SVM. This
comparison is made on the Corel-1K dataset, which contains 1000 images of 10
different classes.

As shown in Table 2, feature fusion with machine-learning-based classification
provides better results than the without machine-learning-based technique and
single feature with machine-learning-based technique.
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Table 2 Comparative analysis of feature-based and machine-learning-based techniques

Measurement parameters Average precision rate (%)

Color moments [3] 47.7

Color moments+SVM [13] 86.2

Color moments+GLCM+SVM [13] 89.6

Bus
Not Bus

Input Feature Extraction Classification Output

Machine Learning

Deep Learning

Bus
Not Bus

Input Feature Extraction + Classification Output

Fig. 15 Machine learning vs. deep learning

2.3 Deep-Learning-Based Technique

Research in the field of the CBIR is increased after the advancement in machine
learning algorithms. The CBIR domain gets attention due to the large size of
database availability and the availability of high-speed computing hardware such
as the Graphics Processing Unit (GPU). The latest neural networks are deep neural
networks where the number of hidden layers is more between input and output
layers. Initially, hidden layers are used to extract the low-level features such as color,
edge, or shape from the images. These features are later on provided to the higher-
level hidden layers to derive the high-level features. Hence, such a deep learning
algorithm can extract the high-level features from the images, and thus it is possible
to overcome the semantic gap problem. The deep learning algorithm requires a
massive amount of data for the initial training.

As shown in Fig. 15, in machine-learning-based technology, the features were
extracted and then provided to the classifier. The deep-learning-based method is an
end-to-end process where high-level features are automatically extracted from the
provided data. The deep learning method takes much time for the training data, but



136 M. R. Kapadia and C. N. Paunwala

Fig. 16 Convolution operation

once the network is trained, it will take a reasonable time for the testing data. The
convolution neural network (CNN) is the most popular network of deep learning
technology, widely used for 2-D data-like images.

The CNN has many different layers such as convolution, max pooling, rectified
linear unit (ReLU), and fully connected layers. These layers work as the features
extractor, which links the input image’s pixel information with its category. The
parameters of these layers are tuned and optimized to reduce the misclassification
error.

The convolutional layer has a 2-dimensional matrix, which is known as a filter.
The convolution layer is made up of neurons, which can learn by modifying the
weights and bias. While the neural network is being trained, each filter of this
convolution layer is convolved with the input image, performs the dot product
operation between filter and input image, and generates the 2-dimensional feature
map as a result. It can be mathematically represented by Eq. (13).

g(p, q) = f(p, q)∗ h(p, q) =
∑

n

∑

m

f (n,m)h(p − n, q − m). (13)

Here, filter “h” is convolved with the fragment of the image “f” centered at
(p, q) point and generates (p, q) point of feature matrix g. Figure 16 shows how
convolution operation generates feature maps from the input image.

Here, 3×3 filter is applied over the 6×6 input image. The first point of the feature
matrix is calculated by dot product as follows: (1*1+0*0+0*−1+0*−1+1*1
+1*1+0*1+0*−1+0*1)= 3. The filter is shifted right over the input image by one
pixel, known as the stride of one pixel. The operation is repeated for the remaining
feature matrix calculation by shifting the filter mask in both directions. The size of
the resultant feature matrix is 4×4, as shown in Fig. 16. The appropriate size of the
filter and the stride are selected to improve the result’s accuracy. In general, if image
size is “i x j,” the filter size is “l x m,” and “n” number of the filter is being used,
then the feature matrix “g” generated by the convolution is given by Eq. (14).

g = n × (i − 1+ 1)x(j −m + 1). (14)

ReLU is the non-linear activation function that is used after the convolution
process. The ReLU layer is made up of the activation function f(a) = max (0, a),
where “a” is the layer’s input. This layer improves the non-linear characteristics of



Content-Based Image Retrieval Techniques and Their Applications in Medical Science 137

Fig. 17 ReLU operation

Fig. 18 Max pooling operation

Fig. 19 Flattening operation

the network. Figure 17 shows the ReLU operation on the input matrix of the ReLU
function.

Max pooling layers are utilized to decrease the spatial dimension of the feature
matrix. It is used to decrease the computational cost by directly reducing the number
of parameters. This layer also helps to overcome the chances of the overfitting
problem of the network. The g x h size mask is used over the non-overlapping
area of the input matrix. Here the input matrix is reduced by a factor of g and h
along with both height and width. This layer will not change the deepness. The
maximum activation function provides the output of this layer. Figure 18 shows
how the pooling layer reduces the feature matrix.

The fully connected layer needs the one-dimensional vector as an input. The
last pooling layer’s output is given to the flattening layer, which converts the
multidimensional matrix into the one-dimensional vector. Figure 19 shows the
operation of the flattening layer.

The fully connected layer contains a full connection. So, the output of the
flattening layer is applied as an input to the fully connected layer. The last layer
of the fully connected network performs the classification operation because one
neuron is available for each class in this layer. It uses the softmax activation function
for the classification operation. Figure 20 illustrates the fully connected layer.
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Class-1

Class-2

Classification
Result

Fig. 20 Fully connected layer

Fig. 21 CNN architecture [22]

Apart from this, some additional layers such as dropout layers are used to
overcome the problem of overfitting. In this dropout layer, some neurons are
dropped for the training during the training of the network. Hence, mathematical
complexity is reduced, and it prevents the overfitting issue of the network. The
spatial transformer unit is used to accomplish the geometric transformation of the
provided input images. Hence, there is no need to do data augmentation such as
translation, scaling, rotation, and skewing manually. The batch normalization layer
is used to normalize the layer’s inputs for each mini-batch to stabilize the learning
process, which will reduce the number of epochs required to train the network. In
this way, batch normalization accelerates the training process and minimizes the
generalization error.

Figure 21 shows the basic architecture of the CNN model. There is an “N”
number of convolution layers in between inputs and the flattening layers. The
primary difference between the NN and CNN is that NN uses the shallow network,
while the CNN uses the deep network.

The CNN’s major drawback to train from scratch is that it required a large
image dataset to learn the model. It is not easy to initialize the weights. Another
disadvantage is that the extensive dataset training required a high-speed processor
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such as GPU, which is very expensive. Sometimes it will take a week or a month to
train the model from scratch for the large image dataset. The solution to this problem
is the transfer learning model.

2.3.1 Transfer-Learning-Based Technique

The model learned for one problem can be utilized for another similar problem. For
example, knowledge about the recognition of car can be applied to recognize truck.
This concept is known as transfer learning. In transfer learning, the model is not
trained from scratch. But, the model that was already trained for one problem will
start leaning for the second problem. Some transfer learning models are explained
in this section:

• VGG [23–30]
Karen Simonyan and Andrew Zisserman found the convolutional network
depth’s effect on its accuracy [30]. They increased their architecture depth to
16 and 19 layers with tiny (3x3) convolution filters. These models are known as
VGG16 and VGG19. The full form of VGG is visual geometry group.

VGG16 has a total of 16 layers in its architecture. It contains thirteen
convolutional layers, followed by maximum pooling layers and three fully
connected layers. VGG19 has a total of 19 layers in its architecture. It includes
sixteen convolutional layers, followed by maximum pooling layers, and three
fully connected layers.

• ResNet [25, 31–34]
In the CNN network, the researchers observed that “The deeper, the better.”
But it has been observed that after some depth, the performance degrades in
terms of accuracy. This is a drawback of the VGG network. The solution is
residual network (ResNet). It was designed to enable hundreds or thousands of
convolutional layers. While the CNN architectures’ effectiveness decreases with
the additional layers, ResNet performs well with many layers. The basic block of
the ResNet model is shown in Fig. 22.

In ResNet, the input to the first layer of the model is also added to its last layer.
Due to this, it can solve the vanishing gradient problem. When the network is too

Fig. 22 Residual learning: a
building block [33]
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Fig. 23 Concept of
depthwise separable
convolution

deep, the gradients from where the loss function is calculated quickly shrink to
zero after passing from the several layers. Thus, the weights will not be updated,
and due to that, the learning process is not being performed. With ResNet, the
gradients can pass through the skip connections backward from later layers to
initial filters.

• MobileNet [35, 36]
The convolution layers are necessary for the deep network, but the computational
expense is more. Hence, convolution layers are replaced by depthwise separable
convolution in MobileNet. In this network, the convolution layer is divided into
depthwise and pointwise convolution operation. It is shown in Fig. 23.

In the normal convolution operation, a kernel is applied to all the input image’s
channels. It performs the weighted sum operation, combines all the channels’
value, and generates a single-channel output. It is shown in Fig. 24.

The MobileNet architecture uses normal convolution only in the first layer. In
all the remaining layers, it uses depthwise separable convolution. In depthwise
convolution, it performs convolution operation on every channel separately. For
example, if the numbers of channels in the input are three, then output channels
also remain three. It is shown in Fig. 25a.

A pointwise convolution follows the depthwise convolution. This is the same
as a regular convolution but with a 1×1 kernel. It is shown in Fig. 25b. The
pointwise convolution is used to combine the output of the depthwise convo-
lution. So, the combination of depthwise and pointwise convolutions is known as
depthwise separable convolution. The output dimension of normal and separable
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Fig. 24 Normal convolution
operation

Fig. 25 (a) Depthwise convolution operation. (b) Pointwise convolution operation

convolutions is the same, but the normal convolution required more computation
work and needs to train more weights. Due to less multiplication operation,
separable convolution is faster and effective than the normal convolution.

• DenseNet [37]
In the dense convolutional network (DenseNet), each layer is connected to every
other layer in a feed-forward fashion. DenseNets are the next step in increasing
the depth of deep convolutional networks. DenseNet is a logical extension of
ResNet. The CNN network is deep, and due to that, the information can vanish
during the passing from the first input layer to the last output layer. In ResNet,
every layer has its weight to learn. Due to that, the numbers of parameters are too
large. DenseNet layers are narrow, and it will generate a small set of feature maps.
In DenseNets, each layer directly accesses the gradients from the loss function
and the original input image. Hence, it solved the problem of effective training.

Figure 26 shows the comparison of normal CNN architecture, ResNet archi-
tecture, and DenseNet architecture. As shown in Fig. 26c, in DenseNet archi-
tecture, each layer gets extra inputs from all previous layers and passes on its
feature maps to all succeeding layers. Here, concatenation is used. Each layer is
getting collective information from all previous layers. This architecture solves
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Fig. 26 (a) CNN architecture. (b) ResNet architecture. (c) DenseNet architecture

the problem of gradient vanishing and also reduces the number of parameters to
store. It also effectively propagates and reuses the features.

2.3.2 Deep-Learning-Based Image Retrieval System

The deep-learning-based image retrieval system is shown in Fig. 27. In the training
process, the database images are used to train the deep learning model. The deep
learning model can be any model developed from scratch using CNN or any pre-
trained model. In the testing process, the trained deep model identifies the class
of the unknown query images. The trained deep model also provides the features
of the query image. In the image retrieval process, the Euclidean distance between
the database image’s features and query image’s features is calculated, and images
are arranged in ascending order based on the Euclidean distance. The most relevant
images are retrieved as a result.

Table 3 shows the comparative analysis of feature-based techniques, machine
learning techniques, and deep-learning-based methods. This comparison is made on
the Corel-1K dataset, which contains 1000 images of 10 different classes.
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Fig. 27 Deep-learning-based image retrieval system

Table 3 Comparative analysis of feature-based, machine-learning-based, and deep-learning-
based techniques

Measurement parameters Average precision rate (%)

Color moments [3] 47.7

Color moments+SVM [13] 86.2

Color moments+GLCM+SVM [13] 89.6

Multilayer CNN model [38] 95.32

As shown in Table 3, the deep-learning-based multilayer CNN model provides
better results than the feature-based and machine-learning-based techniques.

2.4 Application of CBIR System

CBIR system can be utilized in many applications. Online image searching using the
image from the extensive image database is one of the CBIR applications. The CBIR
system can also help to find details about the unknown entity or unknown places by
retrieving similar images and relevant information. CBIR can also be useful for
forensic science for retrieving images of the identical body organ from the forensic
image depository. Similarly, it is helpful for criminal identification by retrieving the
images from the criminal database. CBIR can also be useful for Trademark image
registration. The new trademark is compared with the existing trademarks to ensure
no risk of confusion. Copyright protection is also a potentially important application
area. The CBIR system also finds its application in the domain of architectural and
engineering design. The use of stylized 2-D and 3-D models to represent design
objects is needed to manage. The designer needs to be aware of previous methods.
Hence, the ability to search design archives of earlier examples that are similar or
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meet specified suitability criteria can be valuable. The CBIR system is also helpful
for the fashion and interior designer. To find fabrics of a specific combination of
color and texture is increasingly recognized as a useful tool for the design process.
The CBIR system helps teachers and students to retrieve suitable teaching materials.
The image of any movie can help to identify the movie or to retrieve the whole
movie. The most popular application of the CBIR is content-based medical image
retrieval (CBMIR).

2.4.1 Content-Based Medical Image Retrieval (CBMIR)

Due to the medical imaging technology upgradation, many medical images are
generated worldwide in many hospitals, clinics, and laboratories. These images can
be CT scan, X-ray images, MRI images, etc. These images can be helpful for the
doctors to retrieve similar cases from the record. These historical cases can help the
doctor to diagnose the diseases and to identify which treatment will be better in the
patient’s current condition. The image retrieval system for medical images is known
as content-based medical image retrieval (CBMIR). The meaning of similar image
retrieval is that the images of the same type of disease, severity, treatment, and stage.
Medical image retrieval is used for mainly three domains: teaching, research, and
diagnostics.

The professors can utilize the large medical image database to search for mean-
ingful and exciting cases to represent among the medical students. The retrieved
similar images may have different diagnoses. In this way, students can learn about
the various treatments for a similar type of disease. It improves the education
quality. In the online-based teaching system, the CBMIR can help students by
retrieving similar images and cases. The researcher can also take the help of the
CBMIR system for the study purpose and the invention of the new treatment
and medicines. The significant advantage in the domain of medical science is the
diagnose of the disease. It will help doctors make a clinical decision based on the
past treatment by retrieving similar cases and images for the unknown query image.
The major challenge in CBMIR systems is the semantic gap between the low-level
visual information captured by imaging devices and high-level semantic information
perceived by humans [39]. The various medical areas where the CBMIR system can
be helpful are described as below:

• MRI Images of Brain

– A combination of closed-form metric learning (CFML) and VGG19 model
was used to train and retrieve the brain tumor’s images. The dataset comprises
three types of images: pituitary, meningioma, and glioma tumor. CFML is very
efficient memory and computationwise due to its small dimension. It works
well for small medical image datasets [40]. The CBMIR system to retrieve
the brain tumor’s image is shown in Fig. 28.

– Multi-channel 2D CNN model was utilized for the brain image classification.
The 3D-CNN model’s accuracy was better than the 2D-CNN model, but it
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Fig. 28 CBMIR system for brain tumor’s image retrieval[40]

was computationally costly due to extra dimension. M2D-CNN archives better
accuracy with fewer numbers of parameters compared to the 3D-CNN model
[42].

– CBMIR was useful for the early detection of Alzheimer’s disease (AD). It
is an irreversible disorder of the brain related to memory loss. It is usually
seen in the elderly and aged people. Even for small datasets, the CapsNet was
capable of fast learning. It can efficiently handle the transition and rotation
of the image. It was observed that a collective method of a CNN with 3D-
autoencoder and 3D-CapsNets increased the detection performance compared
to the Deep-CNN method alone [43].

• Retinal Diabetic Retinopathy

– Color-histogram-based CBMIR system was used to detect diabetic retinopa-
thy. It helps to prevent blindness. The result has been compared for the HSV
and RGB color histogram. The performance of the HSV color histogram is
better than the RGB color histogram for diabetic retinopathy detection [44].

– Radial inverse force histograms technique was used to detect the diabetic eyes.
CBMIR system helped to diagnosis the retinal disorder to effectively separate
the diabetic retinopathy patients [45].

– A combination of multiple pre-trained model can also be utilized to take
benefits of individual pre-trained model’s ability. A combination of DenseNet,
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Image retrieval through hierarchical deep search

Query Image Coarse-level Search

Fine-level Search

Results

Fig. 29 CBMIR system for retinal image retrieval [41]

ResNet, and VGG16 was used to retrieve similar retinal images for the
treatment based on the severity stage of the disease [41]. The CBMIR system
for retinal image is shown in Fig. 29.

• X-ray images

– IRMA dataset contains 14410 X-ray images of 193 classes. X-ray images
were retrieved based on the X-ray image of the body organ. IRMA dataset
is challenging because of its imbalance; some image classes have hundreds
of examples, whereas others only have a few. The deep CNN network and
Radon transform were used to retrieve the similar X-ray images of semantic
body parts. Radon transformation is very efficient for shrinking the search
space and also for a retrieval system [46, 47].

– Based on the X-ray images, gender of the person can be detected. CNN model
was trained from scratch to identify the gender from the X-ray images of the
spine. Performance of the pre-trained model DenseNet was better than the
CNN model because the bias and weights of the DenseNet models were not
random, while the initial weights and bias of the CNN model developed from
the scratch were random [48].

– The X-ray image can also help to identify the COVID-19. The CBMIR system
was utilized to classify the unknown images into the normal, pneumonia, and
COVID-19 classes. The fusion of Xception and ResNet50 pre-trained models
was utilized to identify the COVID-19 from the chest X-ray images [49].

• Skin images

– The skin disease can also be identified using the CBMIR system. Dermo-
scopic images were utilized for skin lesion analysis and the detection of
melanoma. Skin surface photos were utilized for four diseases, including
eczema, heatrash, subitum, and varicella. The multi-channel ResNet50 models
were utilized to identify the various skin diseases [50].

Hence, the CBMIR technology can be utilized in many medical areas such as
retinal diabetic retinopathy, X-ray images, MRI images for brain tumor detection,
COVID-19 detection, mammography, etc.
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3 Conclusion and Future Scope

In this chapter, a literature survey regarding different methods of CBIR system
using feature-based, machine-learning-based, and deep-learning-based methods is
presented. The CBIR domain’s primary challenge is the semantic gap, which is
the gap between the low-level feature extracted from the image and the high-
level concept understood by the human. The feature-based techniques retrieved
images based on the handcrafted feature. Identifying the useful feature for a
specific dataset is difficult. Hence, the feature-based methods cannot effectively
reduce this semantic gap. The machine-learning-based techniques learn from the
provided input–output training pair. But it also used handcrafted features for the
training of the machine. Hence, it has moderately reduced the semantic gap. The
deep learning techniques are an end-to-end process; therefore, it automatically
extracts the necessary high-level features from the provided input image. Hence,
deep learning methods reduced the semantic gap to a significant extent. Various
pre-trained deep learning models are available to reduce the training time. CBIR
system has a wide range of applications. CBMIR is one of the applications that get
more attention due to the doctor’s supportive tool to diagnose the disease. CBIR
also has scope in many applications such as online searching, crime prevention,
military application, intellectual property, architectural design, engineering design,
fashion design, interior design, journalism, advertising, education, training, cultural
heritage, and medical diagnosis, and advertising, education, training, cultural
heritage, and medical diagnosis.
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Data Analytics on Medical Images
with Deep Learning Approach

S. Saravanan , K. Surendheran , and K. Krishnakumar

1 Introduction

Data collected in the Healthcare domain were varied in types such as images,
sensors text representation, and electronic health records. Temporal data mining
and clinical prediction models are found to be the recent advancement in medical
healthcare analytics. Multiple data sources in healthcare set the need for a wide
variety of techniques drawn toward data analytics. Electronic health records (EHRs)
are one of the popular data sources used in the medical field. The EHR is noted to be
the digitized form of the patient’s medical history. The EHR contains the patient’s
physician observations, history of the illness, lab data, different radiological reports,
graphs, and even billing data. The EHR directly provides an immediate access to
the patient’s medical data from the individual and the organization on a real-time
basis. It also brings much more quality improvement and convenience of patient
participation in healthcare management. Also, it increases the accuracy of diagnosis
and is a great outcome in the health monitoring system.

Anatomical internal structures in human beings can be projected as high-quality
medical images. Biomedical imaging plays a vital role in helping the physician
identify the disease and treatment planning. Different medical imaging modalities
are involved in retrieving the clinical region as an image or a slice of images.
Magnetic resonance imaging (MRI) and computed tomography (CT) are found to
be the popular modalities in medical imaging. However, physicians opt to use these
imaging data as a primary step to identify the disease or the problem that occurred
with the internal human part. The analysis’s main phase includes obtaining the
quantitative information and making implications over the medical image for more
insights on the patient’s condition. Medical data analysis has a significant social
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implication as it is the main role in understanding biological systems and solving
health problems.

2 Healthcare Data Sources and Analytics

Electrocardiogram (ECG) and electroencephalogram (EEG) are medical data collec-
tion instruments that work on sensors that collect signals from several parts of the
human body. Retrospective analysis is made using the collected medical sensor data.
Biomedical signal analysis is also one of the important data monitoring systems
used in the healthcare unit. It measures the signals from different biological sources
through different physiological processes. Social media data are found to be an
effective representation of the people’s psychological behavior, which can be mined
to obtain inferences about population health and its monitoring system. Text mining
methods were an innovative way of applying new knowledge discovery methods in
the medical field. These use the long-duration preservation and mobility methods of
digitally available resources for retaining the scientific literature. As an important
form of medical data, clinical notes are encoded with information about patients,
which is also called the healthcare data’s backbone [1]. The set of clinical notes
is classically stored as an unstructured data format. Figure 1 details the types of
medical data used in healthcare department.

Fig. 1 Types of medical data
used in healthcare
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3 Background and Motivation

Data analytics is found to be a rapidly growing field in the evolution of healthcare
research and practices. As the recent trend toward healthcare data analytics brings
in more implementation on hardware and software technologies, it can increase the
ease of the data collection process. Among the different healthcare data, medical
images were found to be the most used data for diagnosis, assessment, and planning
[2]. Medical image data vary from few megabytes (MB) for a single slice of an
image to hundreds of megabytes per slice. A huge data storage device is required in
order to maintain the digital images for a longer-term.Moreover, it needs an accurate
and fast processing algorithm for decision-supporting automation to be used by the
data. Image-processing applications like image enhancement, image segmentation,
and many more are implemented in those algorithms with learning-based methods.
As the data dimension and its size become more, analyzing and interacting with the
algorithm to obtain high accuracy with less computational time reflect an effective
method involving an efficient technique [3].

Incorporating algorithm-based analysis with a low-dimensional size medical
data has the insight to help physicians improve diagnostic accuracy. Combining
medical image data with EHR data and genomic data advances accuracy and
reduces the time taken to diagnose. As the collection of slices in the medical
images is growing exponentially as an instance, the medical image dataset (Image
CLEF) had around 60,000 images for experimentation and analysis around the
year 2005 and 2007, and it had grown up to 4,50,000 images in the year of 2018,
which were stored every day. The vast set of medical data volumes requires an
efficient compression technique, overcoming data storage limitations and network
bandwidth. A lossy image compression methodology results in data loss that cannot
be used in medical image data. For effective retrieval of medical data, a lossless
image compression methodology needs to be brought in to maintain fidelity and
information preservation, which are very important.

Several transform-based algorithms were proposed to attain the lossless image
compression [4] with medical image data. Traditional algorithms such as Wavelet
Transform [5], Discrete Cosine Transform [6], JPEG [7] are widely used for medical
image data analysis. To achieve the compression of medical image data without
degrading the details present over them, a visually lossless or a lossless compression
is attained with a carious hybrid combination of algorithms. Machine learning
algorithms [8] are efficient in achieving a desired resultant value in medical image
data. Automated image analysis methodology using machine learning attains a rich
quality improvement [9]. Deep learning methodology brings a state of art accuracy
over the machine learning method on facilitating identification or any diagnosis
application [10]. Due to the advancement of deep learning algorithms, research has
identified that deep learning-based algorithms will be implemented on all the state
of day-to-day activities over the next few years.

Deep learning-based medical image compression achieves a tremendous reach
through different algorithms such as CNN [11], autoencoders [12], etc. The
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Fig. 2 Architecture of simple autoencoders and variational autoencoders

convolutional neural network algorithm has been implemented in many medical
diagnosis experimentations. Autoencoders are found to be efficient in dimension-
ality reduction applications, which are constructed with three components such as
encoders, codes, and decoders. When the input has a higher dimension than the
code, then it is said as undercomplete. In contrast, when the input has less dimension
than the code, it is said to be overcomplete. A variational autoencoder [13] is found
to be a category in the type of autoencoder. Architecture difference comparing the
simple autoencoder and the variational autoencoder is depicted in Fig. 2.

Dimensionality reduction is a method for reducing the number of features with
some data that can be a subset of the main feature or a combined feature states
an encoder’s process. Autoencoders [14] and their categories are general neural
network architectures combined with an encoder and a decoder to generate a bottle-
neck to observe the data. During the training process, it is trained to lose a minimal
quantity, generally the gradient descent iterations for reducing the reconstruction
error of information during the encoding–decoding process. An autoencoder’s
latent space/code space can be extraordinarily irregular or meaningless due to an
autoencoder’s overfitting process. Variational autoencoders (VAEs) are a type of
autoencoders that solve the latent space irregularity problem. It works on the process
of assigning the encoder to return distribution to the latent space. Involving the
returned distribution on the architecture achieves a better representation in the code
space. When comparing, an autoencoder is found to be a deterministic factor and
the variational autoencoder is probabilistic based.

4 Methodology

In our model, we present a solution for the challenges and a novel framework
for medical image reconstruction is proposed. For efficient medical image recon-
struction, the variational autoencoder is used for testing, and restricted Boltzmann
machines architecture for efficient training is implemented in this proposed model.
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Fig. 3 Single-layer variational autoencoder architecture

A single layer variational autoencoder architecture is depicted in Fig. 3. Variational
autoencoders (VAEs) work on the unique method of separating its property, which
helps the generative modeling. The hidden layer, also called a latent space, works in
continuity and allows random sampling and interpolation. The working module of
the VAE includes two vectors of size (n) from the encoder with the vector of means
(μ) and vector of standard deviations (σ).

4.1 Problem Formulation

In our model, medical images that are used for various diagnosis problems are
considered for significant compression. We reformulate and segment the medical
images as region of interest and non-region of interest using the contextual method
separation. For the various tasks required in medical images, an automated image
analysis tool based on machine learning is needed for improving the quality of image
diagnosis with less storage space. Deep learning is an extensively applied technique
that provides state-of-the-art accuracy.
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Fig. 4 Contextual selection on the sample medical image

4.2 Contextual Selection of Medical Images

Considered medical images from the medical database are segmented using the
region based contour method for region of interest and non-region of interest
separation. In our model, the medical image’s clinical region is considered a region
of interest area, and the background region is considered as a non-clinical region
area. The region-based contour method has been implemented to obtain the proper
region of the clinical area. The sample medical image considered for the contextual
region separation is implemented in Fig. 4. To attain the effectiveness of reducing
the computational complexity, it is implemented with hand-drawn free selection by
the physicians.

5 Experimentation

5.1 Dataset

Medical image datasets are collected from the Harvard medical images database
(http://www.med.harvard.edu/AANLIB). Some of the sample images considered for
experimentation are illustrated in Fig. 5. The collected images are sampled with a
wide variety of CT and MR images and trained the restricted Boltzmann machine
architecture with 100 epochs. Different MRI images are collected as illustrated in
Fig. 5 and are considered to have the dark shade region, bright shaded, T1 tissue, T2
tissue, bleeded, and plaque.

The images are tested using the multilayered variational Autoencoder model that
is depicted in Fig. 6. In our model, a multilayered neural network is built, which
gives an advantage of efficient representation in terms of retrieving the diagnostic
details from medical images. From the multilayered VAE, a parameter of a vector
is obtained for random variables of length n, with the i-th element of (μ) and (σ),
which represents the mean and standard deviation of an i-th random variable.
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Fig. 5 Sample images from the Harvard medical image dataset
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Fig. 6 Multilayered
variational autoencoder
architecture

5.2 Model Selection and Training parameters

Figure 7 represents the methodology implemented in VAE and it specifies the
process of encoders and decoders with the equations. Mean square error (MSE)
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Fig. 7 Encoders and
decoders in VAE architecture

and perceptual metric MS–SSIM to train the network with the loss function as
represented in Eq. 1.

Loss = R + �×D (1)

where D is the distortion measured as ||x− ~x||2 for MSE or MS-SSIM, R is the
entropy of latents ŷ and ẑ. � controls the tradeoff between rate and distortion.
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Fig. 8 Structure of an autoencoder with a restricted Boltzmann machine

For the pre-training process, the restricted Boltzmann machine architecture is
implemented. We can observe that the added network can exactly enhance the
compression quality with a considerable improvement, especially for the multi-
scale encoder. However, when compared with the input image, the complexity of
the proposed model achieves an enhanced output image with better quality. Figure 8
depicts the comparison process of AE implemented on the medical images to
reconstruct using the pre-training architecture called restricted Boltzmann machine
architecture.

Figure 9 depicts the pre-training phase with three hidden layers of learning stack
of the restricted Boltzmann machine. As a stack is composed to form a single model,
the layer copies are removed, and the total inputs coming into the first and second
hidden layers are halved. The pre-training algorithm with a restricted Boltzmann
machine with three layers is illustrated in Fig. 9.

5.3 Evaluation

Performance of the evaluations carried out on the medical images is calculated
as peak signal noise ratio (PSNR), compression ratio (CR), bits per pixel (BPP),
structure similarity index (SSIM), and computational time (CT). Equations of the
different performance metrics are illustrated as follows:

PSNR = 10 ∗ log10
(
2552

/√
MSE

)

(2)
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Fig. 9 Pre-training using the stack of RBM

MSE = 1

N
×
∑

i

∑

j
(f (x, y) − F (x, y))2 (3)

SSIM =
(
2μxμy + C1

) (
2δxy + C2

)

(
μ2

x + μ2
y + C1

) (
δ2x + δ2y + C2

) (4)

Based on the testing carried out with the different medical images, the perfor-
mance of the proposed method is analyzed by comparing the existing architecture
like deep autoencoders, back propagation networks, and convolutional neural
network values are illustrated in Figs. 10 and 11.

As illustrated in Figs. 10 and 11, the proposed method outperforms when
compared with the existing architecture for image reconstruction. The structured
similarity index of the proposed method is high with an average of 0.989 using
the proposed variational autoencoder. Sample compressed images with the input
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images are illustrated in Fig. 12. Thus, results show that a variational autoencoder
with a restricted Boltzmann machine architecture for pre-training attains an efficient
medical image reconstruction.

6 Conclusion

A variational autoencoder proved to be the best autoencoder in achieving an efficient
image reconstruction as compared to the existing state of the art architectures like
backpropagation network, CNN, and deep autoencoders. The pre-training phase of
using the stacked restricted Boltzmann machines helps attain an efficient image
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Fig. 12 Sample input medical images with compressed output images using VAE

output quality among the huge set of input data. Performance analysis proved that
the proposed method outperforms in terms of PSNR, CR, and SSIM. Even though
computational complexity was moderate as compared with the other architectures,
resultant output image quality satisfies the subjective and objective analysis on
the output images. As a future scope, other type of autoencoders can be tested
and trained to analyze the best efficient algorithm for achieving dimensionality
reduction.
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Analysis and Classification Dysarthric
Speech

Siddhant Gupta and Hemant A. Patil

1 Introduction

A natural speech production mechanism works with a synchronized harmony of
different human organs. These organs include lungs, larynx, vocal folds, jaw
muscles, tongue, lips, teeth, soft palate, velum amongst others. The output received
from such system is a distinct sound which is complex in nature and intelligible
by the listeners. However, sometimes a disorder in one or more of the sub-systems
results in disruption in the overall speech production mechanism rendering speech
unintelligible and difficult to interpret. This gives rise to a completely different class
of speech signals, which is impaired in general perception, and may not be analyzed
considering normal healthy speech as a basis for comparison.

Dysarthria is one such speech impairment in which the muscles that help in
speaking, such as vocal folds, jaw muscles, throat muscles, etc., becomes weak and
coordination between them becomes difficult. Dysarthria has been rated amongst
one of the most common types of speech impairments. Speech of dysarthric patients
can be characterized as slow, slurry, monotonous, unnaturally whispered, etc. or a
combination of such symptoms [1]. Analysis and classification of dysarthric speech
is finding its applications in fields, such as biomedical speech signal processing
[2], and voice-assisted electronic device manufacturing [3]. Dysarthria is directly
associated with neurological diseases, such as Parkinson Disease, Cerebral Palsy,
etc. Therefore, dysarthric speech analysis can help in the diagnosis and progression
mapping of such diseases. However, the characteristics of dysarthric speech are
different from that of normal speech. Therefore, it has been found that applications,
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such as Automatic Speech Recognition (ASR) systems and Voice Privacy (VP)
systems do not perform even considerably in the case of dysarthric speech [4, 5].
Analysis of dysarthric speech can help in development of more robust systems
targeted at people suffering from dysarthria. This chapter focuses on understanding
dysarthria as a signal processing problem.

Rest of the book chapter is organized as follows. Section 2 presents various
types of dysarthria, whereas Sect. 3 presents time-domain and time-frequency
domain analysis, such as Linear Prediction (LP) spectrum, Teager Energy Operator
(TEO) profiles, spectrograms, waterfall plots, etc., of normal vs. dysarthric speech.
Section 4 gives brief details of some standard and statistically meaningful dysarthric
speech corpora. A discussion on the application of deep-learning methods in
the classification of dysarthric speech from normal speech. Finally, the chapter
concludes with potential future research directions.

2 Types of Dysarthria

Dysarthria shares many of its symptoms with the other neurological diseases,
such as Aphasia, Dysphasia, and Apraxia [6]. However, it is distinct from these
neurological diseases due to the organ of its origin [7]. While Aphasia and
Dysphasia effect the ability of an individual to understand and produce speech,
and Apraxia results from the damage to the parietal lobe of the brain that is
responsible for planning of speech [8]; dysarthria resides in the muscles responsible
for the production of speech. Patients with dysarthria do not show any deviations
in perceptual processing and planning of speech, as compared to a healthy subject.
However, the lack of synchronization amongst muscles causes the output speech to
be damaged and unintelligible. This section describes the types of dysarthria that
are widely recognized in the field of speech impairments:

2.1 Spastic Dysarthria

Spastic dysarthria is caused as a result of some damage to the Central Nervous
System (CNS), which includes brain and spinal cord [9]. It is usually accompanied
by weakening of muscles and abnormal reflexes in the other regions of the body
as well. Hence, phonation is strained-strangled and articulation becomes weak. In
addition, mouth opening seems to be restricted and speech is perceived to come
from the back of the mouth. Furthermore, jaw jerk, gag reflex, and facial reflexes
are also common with the patients of dysarthria.
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2.2 Flaccid Dysarthria

Flaccid dysarthria is usually recognized by the difficulties faced by the patients
in pronouncing consonants. It is caused by the damage to the Peripheral Nervous
System (PNS), which connects brain and spinal cord to the rest of the body [9].
Flaccid dysarthria results in symptoms, such as hypernasality, breathiness in voice,
and weak pressure consonants. Depending on which nerves are damaged, it affects
phonation, respiration, resonance, and articulation.

2.3 Ataxic Dysarthria

Ataxic dysarthria is caused due to a damage to part of the brain called Cerebellum
which is responsible for receiving sensory information and regulating movements
[9]. It results in imprecise articulation with distorted vowels and inaccurate conso-
nant production, disturbed speech prosody, and abnormal phoneme timing. There is
inappropriate stress on syllables, loudness, and the pitch (F0) of the voice is deviant.

2.4 Hypokinetic Dysarthria

Hypokinetic dysarthria is caused because of the malfunction in the extrapyramidal
systems of brain, which consists of areas of the brain responsible for coordination
of subconscious muscle movement [9]. It is characterized by reduced pitch (F0)
variation, reduced loudness, variable speaking rate, imprecise consonants, breathy
voice, and short rushed of speech. Patients with Hypokinetic dysarthria also have
difficulties in swallowing and sometimes observe drooling.

2.5 Hyperkinetic Dysarthria

Hyperkinetic dysarthria is caused due to the damage to the part of the brain
collectively known as Basal Ganglia, which is responsible for regulating involuntary
muscle movements [9]. It is characterized by abnormal involuntary muscle move-
ments that affect respiration, phonation, and articulatory structure impacting speech
quality.
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2.6 Mixed Dysarthria

Mixed dysarthria represents a heterogeneous group of speech disorders and neu-
rological diseases [9]. Any combination of two or more types of dysarthria
L(discussed above) results in mixed dysarthria. This type of dysarthria is more
common than one kind of dysarthria occurring in a patient. The symptoms of mixed
dysarthria can be a mix of the symptoms discussed above.

Though different types of dysarthria are clearly defined, it is often a difficult
task to distinguish amongst them because of the negligible perceptual differences
in production of output speech. One has to be a trained expert to recognize one
dysarthria type from the other and with a substantial probability of error. These
experts are called Speech-Language Pathologists (SLPs), and they often use the pre-
defined techniques and scales to distinguish between different kinds of dysarthria.

To better understand how dysarthria effects the production of speech and its
intelligibility, acoustic analysis of dysarthric speech becomes necessary. Study of
different acoustic features can help in distinguishing weather the speech is dysarthric
or normal. This can help in early diagnosis of diseases associated with dysarthria.

3 Analysis of Dysarthric Speech

Since in patients with dysarthria, the speech is affected by the weakness in the
muscles of the vocal tract system, a dysarthric speech output is very different from
the speech output of a normal speaker. In addition, the acoustic features change with
different severity of dysarthria from which a patient is suffering from. This section
provides a comparative study of different acoustic features between dysarthric
speech and normal speech and between different kinds of dysarthric speech.

3.1 Time-Domain Analysis

The time-domain waveform of dysarthric speech consists of useful information
for the analysis of dysarthria. The pathological defects in the vocal tract system
can be observed by looking at the time-domain waveform of dysarthric speech.
Figure 1 shows the speech waveform of a normal person and a person suffering from
dysarthria uttering the same word. It can be easily observed from the two waveforms
that the dysarthric speech waveform is much longer as compared to the normal
speech. Moreover, it can be that the variability in the acoustic pressure is more in
dysarthric speech. Dysarthric speech also consists of regions of silence which are
absent in case of normal speech, implying that these silent regions are not necessary
for the speech wave but still exists. These silent regions represent the defects
in motor control mechanism in the speech production system, where the vocal
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Fig. 1 Time-domain waveform. (a) normal, (b) dysarthric speech, and zoomed waveform for (c)
normal, and (d) dysarthric speech

folds involuntary start/stop vibrating creating jitters and shimmers, representing
variations in pitch period and volume airflow velocity, repeated across consecutive
glottal cycles in the speech waveform.

3.1.1 Fundamental Frequency (F0)

The Fundamental Frequency (F0) of a speech signal is the average number of
oscillations per second, in Hertz, of the voiced region of the speech. It arises due
to the vibrations of the vocal folds which in turn oscillates the air flowing through
the vocal tract system. Since the oscillations arise in an organic structure, it consists
of some fluctuations, rather than being perfectly periodic, in particular, jitters and
shimmers as discussed above. Due to the weakening of vocal fold muscles, a patient
with dysarthria has less control over his vocal fold vibrations and hence, these jitters
and shimmers are much more significant in dysarthric speech as compared to normal
speech and can change the overall nature of the fundamental frequency.

3.1.2 Teager Energy Operator (TEO)

Teager Energy Operator (TEO) is a non-linear operator which helps in the analysis
of speech waveform from an energy point of view. For a speech signal s(n), TEO
profile is given by [10]:

TEO{s(n)} = (s(n))2 − s(n− 1) · s(n+ 1). (1)
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Fig. 2 TEO Profile. (a) normal and (b) dysarthric speech

From TEO, we can observe that three consecutive speech samples are required
to find the running estimate of signal energy and thus, it is known to have excellent
time-resolution. TEO is very efficient in capturing the non-linearity in the speech,
which is captured by the airflow in the vocal tract which will change for dysarthric
vs. normal speech. Figure 2 shows the corresponding TEO profile for the normal
vs. dysarthic speech. We can observe from Fig. 2 that, as in LP residual, TEO is
also highly irregular for dysarthic speech, as compared to normal speech, indicating
abnormal changes in pitch period, i.e., T0, and, hence, pitch frequency. In particular,
TEO gives high energy pulses corresponding to GCIs due to its capability to capture
characteristics of impulse-like excitation which are known to have higher signal-to-
noise (SNR) ratios.

3.2 Linear Prediction (LP) Residual

Linear Prediction (LP) residual can be a very good method for the analysis of the
characteristics of the speech excitation source. LP analysis deconvolves the speech
signal into its source excitation and speech system components. For a speech signal
s(n), LP residual [r(n)] is given by [11]

r(n) = s(n) − ŝ(n), (2)

where

ŝ(n) =
p∑

k=1

aks(n− k), (3)

and ak corresponds to kth Linear Prediction Coefficient (LPC).
The speech production system has its own inertia. The Glottal Closure Instants

(GCIs), are the instances when the glottis closes to provide a sudden burst of air
pressure through the vocal folds, act as an excitation signal in the form of input



Analysis and Classification Dysarthric Speech 173

Fig. 3 LP Residual Plot. (a) normal, and (b) dysarthric speech

impulse to the system. Sudden bumps can be observed in LP residual at periodic
locations. These locations are called GCIs. GCIs denote the time instants, where
there is sudden closing of vocal folds, which acts as impulse-like excitation, during
speech production. The GCIs have been estimated using Hilbert transform in [12,
13]. Figure 3 shows the LP residual plot of normal vs. dysarthric speech. It can be
clearly observed from these plots that the LP residual for dysarthric speech is highly
irregular as compared to the LP residual plot for the normal speech signal. This
shows the abnormality in the dysarthric speech signal in terms of pitch period (T0)
and therefore, pitch frequency (F0).

3.3 Time-Frequency Analysis

Due to non-stationary nature of speech signals, spectrograms can be used for the
time-frequency analysis of a speech signal. A spectrogram is a visual representation
of how spectral energy density varies with respect to different frequencies and
time instances. The energy in a spectrogram is computed using Short-Time Fourier
Transform (STFT) on windowed speech signal. Let x(n) be the input signal. STFT
is calculated as :

X(ω, τ) =
∞∑

n=−∞
x(n) · w(n, τ) · e−jωn, (4)

X(ω, τ) =
∞∑

n=−∞
x(n, τ ) · e−jωn, (5)

where x(n, τ ) = x(n) · w(n, τ) is the windowed speech segment. Now spectrogram
(spectral energy densities) is obtained by calculating the magnitude square of
X(ω, τ), i.e.,

S(ω, τ) = |X(ω, τ)|2. (6)
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Fig. 4 Comparison of spectrogram for (a) normal and (b) dysarthric speech vs. LP Spectrum for
(c) normal and (d) dysarthric speech

It can be seen from Fig. 4 that the energy is concentrated in the lower spectrum of
the frequency in contrast with the normal speech, in which the energy is observed to
be spread in the high as well as low frequency spectrum. This is due to the fact that
abnormal functioning of the speech production results in a great amount of energy
loss for higher frequencies [14, 15]. This can be the reason why speaking intelligibly
is a challenging task for a person suffering from dysarthria, which usually comes
very naturally to the normal speakers. Figure 4 show the plot of Short-Time Fourier
Transform (STFT) vs. LP spectrum for the normal vs. dysarthria speech case.
Waterfall plot is also shown in Fig. 5 to emphasize the corresponding joint time-
frequency characteristics during the production of dysarthric speech. From the
waterfall plots, We can observe that the formant structure is severely damaged for
dysarthric speech as compared to its normal counterpart, where formant peaks and
their evolving structures are clearly visible. Thus, the analysis presented in this
section indicates that F0, its harmonics, formants, and their structures are severely
affected due to dysarthria.

4 Datasets on Dysarthric Speech

4.1 TORGO Database

TORGO Database [16] was developed through a collaboration between the
departments of Computer Science and Speech-Language Pathology, University
of Toronto; Holland-Bloorview Kids Rehab Hospital, Toronto; and The Ontario
Federation for Cerebral Palsy with an aim to develop Automatic Speech Recognition
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Fig. 5 Waterfall Plot. (a) normal and (b) dysarthric speech

(ASR) systems for people suffering from dysarthria as the unintelligibility in the
dysarthric speech results in a Word Error Rate (WER) of as high as 97.5% as
compared to a WER of 15.5% for normal speech when both the speech are tested
on modern ASR systems trained on normal speech [17].

The database consists of speech samples from 7 dysarthric subjects (4 males
and 3 females), between the age 16 and 50, who are chosen by a speech-
language pathologist at Bloorview Research Institute, Toronto. Dysarthria of 6
subjects resulted from Cerebral Palsy while 1 subject developed dysarthria due to
Amyotrophic Lateral Sclerosis (ALS), which are two of the most common cause
of speech impairment [18]. The database also includes speech samples from non-
dysarthric subject which were age and gender matched with the dysarthric subjects.

All the subjects were assessed using the standard Frenchay Dysarthria Assess-
ment (FDA) [19] by a speech-language pathologist. The FDA measured 28 percep-
tual dimension of speech production and articulation which are rated on a 9-point
scale. The database is divided into the speech samples of the following categories:

• Non-Words consists of 5–10 repetitions of /iy-p-ah, ah-p-iy and p-ah-t-ah-k-
ah/, respectively. In addition, utterances with high and low pitch vowels are also
recorded, e.g., pronouncing “eee” for 5 s (also used in [20]).

• Short Words consists of repetition of English digits 1–10 along with some other
words like yes, no, left, right, etc. In addition, 50 words from word intelligibility
section of FDA [19] and 360 words from Yorkston-Beukelman Assessment
of Intelligibility of Dysarthric Speech (YBAIDS) [21] are chosen. Ten most
common words from the British National Corpus were also recorded by the
subjects.
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• Restricted sentences consists of preselected phoneme rich sentences, The
Grandfather Passage from Nemours Database [22], 162 sentences from sen-
tence intelligibility section of YBAIDS [21], and 460 sentences from MOCHA
database.

• Unrestricted Sentence consists of unscripted sentences by the subjects recorded
while describing 30 images of interesting situation chosen randomly from
Webber Photo Cards: Story Starters Collection.

4.2 Universal Access (UA) Corpus

The UA database [23] consists of speech samples from 19 dysarthric subjects (15
males and 5 females) [24]. Each subject is scored on a scale of 0–100% on the basis
of their speech intelligibility rated by the human listeners. The recording is done
using an eight-channel microphone arrays.

The database was recorded into three blocks of words. Each block consists of
a total of 255 words, out of which 155 words are repeated across the blocks while
the remaining 100 uncommon words are unique for every block. The repeated 155
words include 10 digits (one, two, etc.), 26 radio alphabets (Alpha, Bravo, etc.),
19 computer commands (enter, delete, etc.) and 100 most common words chosen
from the Brown corpus of written English. The 100 common words (naturalization,
exploit, etc.) were chosen from children’s novels. In this way, each subject was
recorded for a total of 765 speech samples out of which 300 samples are distinct
uncommon words and remaining 465 are 3 repetitions of 155 distinct words across
the blocks.

4.3 HomeService Corpus

The homeService corpus [25] is created as a part of the bigger homeService project,
whose objective is to provide the people with speech and motor disabilities with
the ability to operate home appliances with voice commands [26]. The project is
motivated by the fact that there is a shortage of dysarthric speech data which is
recorded in a real life environment within the research community. The project
enables its user to operate their home appliances, such as TV, lamps, etc. using voice
commands, which are recorded and transferred using a cloud-based environment to
a data collection center. The dataset consists of speech data of 5 dysarthric patients
(3 males and 2 females). The speech samples were recorded with an 8-channel
microphone array at a sampling rate of 16 kHz and consists of two types of speech
data. In particular,

• Enrollment Data—This data is recorded in a controlled research environment
and is used to train the ASR system which the user can use to operate their
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Fig. 6 CNN architecture for classification task. After [27]

appliances. The user was asked to read from a list. Therefore, the speech recorded
is less natural. Annotation is done using the transcriptions in the reading list.

• Interaction Data—This data is recorded at the house of the users while they
control their devices. Identity of each word in this data is not known and is
therefore, annotated by the human listeners. The speech in the data is more
natural.

5 Classification of Dysarthric and Normal Speech

Recently, there has been significant increase in the popularity of deep-learning
based approach to solve complex task by the computers. For that reason, computers
are now able to efficiently perform tasks, such as image classification [28–30],
image recognition [31, 32], computer vision, etc. [33, 34]. Focus of deep-learning
based algorithms are also increasing in Speech recognition and classification.
Convolutional Neural Network (CNN) is one such algorithm which can efficiently
detect complex pattern from a set of matrices, such as images. It can be used to
classify normal vs. dysarthric speech by learning the patterns in the spectrogram of
the speech samples (Fig. 6).

5.1 Experimental Setup

For the experiment, spectrograms were obtained for the speech utterances of both
normal and dysarthric speakers, keeping a window size of 25 ms and an overlap of
10 ms. These spectrograms were stored in the form of images which is to be fed to
network.

Our CNN [35] comprises 4 convolutional layers followed by 3 fully connected
layers. Each convolution layer performs a convolution operation with a kernel size
of 5x5 keeping step size of 1 and no padding. This convolution operation is followed
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by a maxpooling operation with a kernel size of 4x4. The number of output channels
obtained by the 4 convolutions channels are 8, 16, 32, and 64, respectively. The
output of the final convolutional layer is given to the fully connected layer. Sigmoid
activation is used on the final output from the final fully connected layer which
provide us with probabilistic value of the input. The threshold value is kept at 0.5,
i.e., if output value is greater than 0.5 then the input will be classified as dysarthric
speech, and as normal speech if output is less than 0.5. ReLU activation function is
used to activate the hidden layers in the network. In addition, Stochastic Gradient
Descent (SGD) is used as optimization algorithm and binary cross entropy is taken
as the loss function.

5.2 Dataset Used for This Study

UA corpus [24] is used as the dataset for the experiment. Data from one dysarthric
speaker (M07) and one normal speaker (CM01) is used. The data for each speaker
was divided into 3 blocks out of which data from block 1 is chosen for training and
utterances were taken from mic 3 of the 7-channel microphone array. For testing the
accuracy of the model, testing was done with the data from block 3. Specifically,
100 distinct Uncommon Words (UW) were chosen for testing.

5.3 Results and Analysis

It is observed that the model was able to provide an accuracy of 65.68% on
the testing data. The performance of the network is effective given the fact that
the experiments were performed on a small training set. The model was able to
recognize the variability in the spectrogram that differentiates dysarthric speech
from normal speech. In addition, it can be said that the model was also able to
learn that the low energy that is associated with the spectrogram of the dysarthric
speech.

6 Conclusion

In this chapter, we have discussed dysarthria as a speech technology problem. A
number of analysis have been done on normal vs. dysarthric speech, such as F0, TEO
profile, LP residuals, spectrograms, and waterfall plot to provide the reader with an
insight of the difference between normal vs. dysarthric speech. In addition, some
widely used datasets are also discussed along with their key features. Furthermore,
an experiment has also been presented for the classification of normal and dysarthric
speech using a deep neural networks approach based on CNN.
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The effectiveness of the classification task is dependent on the training data
on which it is trained on. A model trained on the speech sample of a speaker
having high severity-level of dysarthria may not be effective for a speaker with
low dysarthria severity-level and vice versa. Therefore, this becomes a promi-
nent limitation of the current methods of classification. Furthermore, research on
severity-based classification of dysarthric speaker are very limited. In the future,
more sophisticated deep neural networks can be used for classification of normal vs.
dysarthric speech and classification based on the severity-level of dysarthria.
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Skin Cancer Detection and Classification
Using DWT-GLCM with Probabilistic
Neural Networks

J. Pandu, Umadevi Kudtala, and B. Prabhakar

1 Introduction

In recent days, skin cancer becomes most affected disease of all the types of
cancers, and it is divided as benign and malignant. In these two types, malignant
is recognized as the deadliest one while comparing with the non-malignant skin
cancers [1]. It is known fact that malignant skin cancer affects more people
every year and early treatment is really important for the survival of the patients.
Inspection of malignant skin cancer needs well-experienced dermatologists. These
people use a computer-assisted system for early detection of malignant [2]. More
algorithms in deep learning models were used for diagnosis of skin cancer diagnosis.
These models are still facing more challenges for achieving the high accuracy
rate, and the drawbacks of conventional models should be overcome. This paper
proposes a novel skin cancer detection approach. Many research papers have utilized
image preprocessing for the identification of the malignant skin cancer at the initial
times, which leads to effective treatment. In this way, it is necessary to broaden
the span of such essential diagnostic care by arranging efficient frameworks for
skin disease classification. Many research papers have utilized image preprocessing
for the identification of the malignant skin cancer at the initial times, which leads
to effective treatment. Proficient dermatologists have set up the ABCDEs [3, 4]
(Asymmetrical shape, Border irregularities, Color, Diameter, and Evolution) as
the standardized descriptions to help with visualizing standard features of severe
malignant skin cancer cases. One of the main challenges of classifying harmful
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skin injuries is due to sheer proportions of varieties over the different skin tones
from people of different ethnic backgrounds. Recently, new accomplishments in the
improvement of convolutional neural networks (CNN) [5] have permitted computers
to beat dermatologists in skin cancer classification tasks. The following phase is to
further improve the accuracy of location of malignant skin lesion. Our strategy for
early diagnosis of skin lesion incorporates deep learning which helps us to enhance
the accuracy of the automated framework compared to methods. In this work, we
proposed our custom network for lesion classification. The major contributions of
this research are as follows:

• K-means clustering-based segmentation mechanism is used to identify the cancer
region from the input test image.

• The network is trained and tested with the GLCM-based texture features, DWT-
based low level features, and statistical color features by using the PNN deep
learning model.

• The proposed classification accuracy is compared with the conventional SVM
[14] and active contour segmentation methods and gives the better results
compared to them.

The remainder of the paper is structured as: Literature survey conducted for the
paper is covered in Sect. 2. Section 3 covers the proposed skin cancer detection
method, while Sect. 4 describes the environment in which experiments were
conducted. In Sect. 5, the results obtained from experimentation and observations
are discussed.

2 Literature Survey

There have been several systems developed for detecting malignant skin lesions
as early as possible using the dermoscopic images. The dermatologists assess the
skin lesions using the “ABCD Rule.” Based on this rule, many methods have been
devised to classify dermoscopic images. Researchers have used extracted features
and attempted to train diverse machine learning classifiers such as k-NN, SVM [6].
In Refs. [6, 7], authors used very deep and machine learning residual networks to
classify the images. In order to cope with degradation and over fitting, first machine
learning is applied. Then, the radial basis function network (RBFN) is constructed so
that skin lesion segmentation can be accurate. Then, this RBFN and deep residual
networks that are used to classify the images are taken together to make a two-
stage framework. In Ref. [8], images have been obtained by epi-luminescence
microscopy, which enhances the chances of early recognition of skin lesions as
malignant or benign. A binary mask is used, and shape and radiometric features
are extracted to detect how malignant a lesion is. After that, the CNN classifier is
deployed for classifying images as malignant or benign.

In Ref. [9], automatic border detection is performed and then shapes are extracted
from these borders. Texture features are then computed using the GLCM and
Euclidean distance transform. Images are then classified using the SVM classifier.
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Refs. [10, 11] use fractional coefficients of a cosine transformed skin image, which
results in better space complexity and optimum performance in malignant skin
cancer identification. The ensemble of “SVM-AD Tree-Random Forest” gave the
superior performance among all the classifiers used. Researchers are now focusing
more on deep learning concepts as there have been significant advancements in deep
learning. They are using the neural network ensemble model, very deep residual
networks, and artificial neural networks. But they might have certain drawbacks
like more processing power is required or more data are required which might be
difficult to find as such datasets are not readily available. In Ref. [12], an overview of
the most important implementations of malignant skin cancer detection is given and
then comparison of the performance of numerous classifiers on the classification of
dermoscopy images as benign or malignant is presented. All the existing approaches
[13] of skin cancer detection can be grouped in three streams as malignant skin
cancer detection with machine learning models using spatial domain features,
malignant skin cancer detection with machine learning models using transform
domain features, and malignant skin cancer detection using unsupervised neural
network models. The transform domain feature-based machine learning models of
malignant skin cancer detection are complex. The SVM models are more complex
and do need heavy hardware as well as huge dataset for getting trained in malignant
skin cancer detection. The spatial domain feature-based machine learning models
are simple, faster, and applicable to any size of skin dermoscopy images.

3 Proposed Method

The proposed research work majorly focuses on detection of the following skin
cancers such as malignant and benign, respectively. The detailed operation of the
skin cancer detection and classification approach is presented in Fig. 1.

Fig. 1 Skin cancer detection and classification



186 J. Pandu et al.

3.1 Database Training and Testing

Database is trained from the collected images of the “International Skin Imaging
Collaboration (ISIC)” archive. ISIC is one of the biggest available collections of
quality-controlled dermoscopic images. The dataset consisted of 15 benign and 15
malignant images. All the images are trained using the PNN network model with
GLCM features, statistical and texture features. And, a random unknown test sample
is applied to the system for detection and classification, respectively.

3.2 Preprocessing

The query image is acquired from the image acquisition step, which includes
background information and noise. Preprocessing is required and necessary to
remove the above-mentioned unwanted portions. The pre-processing stage is mainly
used for eliminating the irrelevant information such as unwanted background part,
which includes noises, labels, tape and artifacts, and the pectoral muscle from the
skin image. The different types of noise that occurred in the mammogram images
are salt and pepper, Gaussian, and speckle and Poisson noise. When noise occurred
in an image, the pixels in the image show different intensity values instead of true
pixel values.

So by choosing the perfect method in the first stage of preprocessing, this noise
removal operation will be performed effectively. Reduction of the noise to a great
extent and avoiding the introduction visual artifacts by the analysis of pixels at
various scales, sharpening and smoothing filter denoising efforts to eradicate the
noise presented in the pixel, as it conserves the image uniqueness, despite its pixel
satisfied. These filters can effectively detect and remove noise and thin hairs from
the image; then we perform top hat transform for removing the thick hairs. Contrast
limited adaptive histogram equalization CLAHE is also performed on the skin lesion
to get the enhanced image in the spatial domain. Histogram equalization works on
the whole image and enhances the contrast of the image, whereas adaptive histogram
equalization divides the whole image and works on the small regions called tiles.
Each tile is typically 8*8 pixels, and within each tile, histogram is equalized, thus
enhancing the edges of the lesion. Contrast limiting is applied to limit the contrast
below the specific limit to limit the noise.

3.3 Image Segmentation

After the preprocessing stage, segmentation of the lesion was done to get the
transparent portion of the affected area of skin. On transformation, the K-means
clustering method is applied to the image to segment the skin lesion area based
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on thresholding. In the K-means clustering algorithm, segmentation is the initial
process of this work; at the cluster centers, cost junction must be minimized which
varies with respect to memberships of user inputs. Image segmentation is the process
of dividing the image into multiple clusters based on the region of interest presented
to detect the skin cancer. Regions of interest are portions of skin images, which are
used by radiologists to detect abnormalities like micro-classifications (benign and
malignant).

The K-means clustering is used in the proposed procedure for segmentation
to a certain extent compared to the active counter clustering approach because
of its speed of operation while maintaining the highest accuracy. The K-means
clustering procedure combines the properties of both possibility and K-means
clustering approaches as shown in Fig. 2. Here, the membership functions are
generated in the probability-based manner to get better detection. Among those
detected tumors, the highest accurate cancer regions are considered as an ROI.
The automatic extraction of the ROI is difficult. So, ROIs are obtained through
possibility cropping, which are based on location of abnormality of original test
images. Here, the membership functions are generated in the probability-based
manner to get better detection. Among those detected cancer regions, the highest
accurate cancer region is considered as the ROI.

3.4 Feature Extraction

Several features can be extracted from the skin lesion to classify the given lesions.
We extracted some of the prominent features, which help us in distinguishing the
skin lesions, these are GLCM-based texture features, DWT-based low level features
and statistical color features, respectively.

Using the GLCM is a texture technique of scrutinizing textures considering
spatial connection of image pixels. The texture of the image gets characterized by
GLCM functions through computations of how often pairs of pixels with explicit
values and in a particular spatial connection are present in images. The GLCM
matrix can be created and then statistical texture features are extracted from the
GLCMmatrix. GLCM shows how different combinations of pixel brightness values
which are also known as grey levels are present in images. It defines the probability
of a particular grey level being present in the surrounding area of other grey
level. In this paper, the GLCM is extracted first from the image for all three-color
spaces, i.e., RGB, CIE L*u*v, and YCbCr. Then, the GLCM matrix is calculated
in four directions which are 135o, 90o, 45o, and 0o degrees as shown in Fig. 3.
In the following formulas, let a, b be number of rows and columns of the matrix,
respectively, Sa, b be the probability value recorded for the cell (a, b), and the
number of gray levels in the image is “N.” Then, several textural features can be
extracted from these matrices; extracted textural features are shown in the following
equations:
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Fig. 2 K-means clustering

GLCM features used are

Contrast =
N−1∑

a,b=0

Sa,b(a − b)2 (1)

Homogeneity =
N−1∑

a,b=0

sa,b

1+ (a − b)2
(2)
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Fig. 3 Orientations and
distance to compute the
GLCM

Fig. 4 2-level DWT coefficients

Correlation =
N−1∑

a,b=0

Sa,b

⎡

⎣ (a − μa) (b − μb)
√(

σ 2
a

) (
σ 2

b

)

⎤

⎦ (3)

Angular Second Moment (ASM) =
N−1∑

a,b=0

s2a,b (4)

Energy = √
ASM (5)

Then, 2 level DWT is also used to extract the low-level features. Initially, on
the segmented output, DWT is applied, which results in the output as LL1, LH1,
HL1, and HH1 bands, respectively. Then entropy, energy, and correlation features
are calculated on the LL band. Then, on the LL output band again, DWT is applied
and results in the output as LL2, LH2, HL2, and HH2, respectively. Again entropy,
energy, and correlation features are calculated on the LL2 band, respectively, as
shown in Fig. 4.
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And finally, mean and standard deviation-based statistical color features are
extracted from the segmented image. They are.

Mean (μ) = 1

N2

N∑

i,j=1

I (i, j) (6)

Standard Deviation (σ ) =
√
∑N

i,j=1 [I (i, j) − μ]2

N2
(7)

Then, all these features are combined using array concatenation and results in the
output as the hybrid feature matrix.

3.5 Classification

Neural networks have been effectively applied across a range of problem domains
like finance, medicine, engineering, geology, physics, and biology. From a statistical
viewpoint, neural networks are interesting because of their potential use in predic-
tion and classification problems. Developing a PNN is a method that involves the
emulation of birth neural scheme.

The neurons are connected in the predefined architecture for effectively perform-
ing the classification operation. Depending on the hybrid features, the weights of the
neurons are obtained. Then, the relationships between weights are identified using
their characteristic hybrid features. The quantity of weights decides the levels of
layers for the proposed network. Figure 5 represents the architecture of artificial
neural networks. A PNN basically consists of two stages for classification such as
training and testing. The process of training will be performed based on the layer-
based architecture. The input layer is used to perform the mapping operation on
the input dataset; the hybrid features of this dataset are categorized into weight
distributions.

The PNN architecture has four hidden layers with weights. The first convolu-
tional 2D hidden layer of the net takes in 224 * 224 * 3 pixels skin lesion images
and applies 96 11× 11 filters at stride 4 pixels, followed by the class node activation
layer and the decision normalization layer. Then, the classification operation was
implemented at the two levels of the class node hidden layer. The two levels of
the hidden layer hold individual normality and abnormalities of the skin cancer
characteristic information. Based on the segmentation criteria, it is categorized
as normal and abnormal classification. These two levels are mapped as labels in
the output layer. Again, the hidden layer also contains the abnormal cancer types
separately; it also holds the benign and malignant cancer weights in the second stage
of the hidden layer. Similarly, these benign and malignant weights are also mapped
as labels into output layers. When the test image is applied, its hybrid features
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Fig. 5 Layered architecture of the PNN model

are applied for testing purpose at the classification stage. Based on the maximum
feature matching criteria utilizing Euclidean distance manner it will function. If
the feature match occurred with hidden layer 1 labels, then it is classified as the
normal skin image. If the feature match occurred with hidden layer C1 labels with
maximum weight distribution, then it is classified as the benign effected cancer
image. If the feature match occurred with hidden layer C2 labels with minimum
weight distribution, then it is classified as the malignant cancer image.

4 Experimentation Environment

4.1 Dataset

The experiments are done using the MATLAB R2018a tool. ISIC is one of the
biggest available collections of quality controlled dermoscopic images. For the
implementation of the proposed method, spatial domain, and frequency domain
of 30 dermoscopic skin lesion images (15-benign and 15-malignant) have been
obtained, respectively, by applying rotations at different angles. Train images of
each label have been used to train the PNN architecture with fifty epochs, whereas
the remaining 20% is used for testing. The features extracted by the GLCM, DWT
future network are used to train the PNN classifier to classify the images into
its respective classes. The efficiency of the model can be computed using various
performance metrics.

From Fig. 6, it is observed that the proposed method can effectively detect the
regions of skin cancers, and it indicates the segmentation done very effectively
compared to the active contour approach. Here, TEST-1 and TEST 2 images are
considered as the benign, and TEST-3 and TEST-4 images are considered malignant
type images, respectively. For the malignant images, the segmentation accuracy is
more.
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Fig. 6 Segmented output images of various methods

4.2 Performance Metrics

For evaluating the performance measure, the proposed method is implemented with
the two types of segmentation methods, they are active contour (AC) and k-means
clustering, respectively. For performing this comparison, accuracy, sensitivity, F-
measure, precision, MCC, dice, Jaccard, and specificity parameters are calculated,
respectively.
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Table 1 Performance comparison

Metric Method Test 1 Test 2 Test 3 Test 4

Accuracy PNN-AC 0.9157 0.78099 0.85796 0.47765
PNN-k means 0.99985 0.99715 0.99999 0.99999

Sensitivity PNN-AC 0.70588 0.90024 0.9166 0.83857
PNN-k means 0.99931 0.99198 1 1

F-measure PNN-AC 0.82207 0.68494 0.79395 0.44602
PNN-k means 0.99965 0.99381 0.99998 0.99998

Precision PNN-AC 0.98404 0.55275 0.70023 0.30381
PNN-k means 1 0.99852 0.99997 0.99997

MCC PNN-AC 0.7869 0.56857 0.70305 0.1835
PNN-k means 0.99956 0.99198 0.99998 0.99998

Dice PNN-AC 0.82207 0.68494 0.79395 0.44602
PNN-k means 0.99965 0.99381 0.99998 0.99998

Jaccard PNN-AC 0.69789 0.52085 0.65831 0.28702
PNN-k means 0.99931 0.9877 0.99997 0.99977

Specificity PNN-AC 0.99564 0.73812 0.83298 0.35685
PNN-k means 1 0.99956 0.99999 0.99998

Table 2 Accuracy comparison

Method Test 1 Test 2 Test 3 Test 4

SVM-Linear kernel [14] 0.4 0.40 0.7 0.7
SVM-RBF kernel [14] 0.4 0.45 0.55 0.6
SVM-Polynomial kernel [14] 0.4 0.3667 0.50 0.5667
SVM-5 fold cross validation [14] 0.6 0.55 0.60 0.45
Proposed PNN-AC 0.9157 0.78099 0.85796 0.47765
Proposed PNN-K-means 0.99985 0.99715 0.99999 0.99999

From Table 1 and Fig. 6, it is observed that the proposed K-means clustering
method along with the PNN gives the highest performance for all metrics compared
to the active counter method.

From Table 2, it is observed that the proposed method gives the highest accuracy
for both benign and malignant diseases compared to the various kernels of SVM
[14] such as SVM-linear kernel, RBF kernel, polynomial kernel, and 5-fold cross-
validation, respectively.

5 Conclusion

This article presented a computational methodology for detection and classifica-
tion of skin cancer from MRI images using the PNN-based deep learning-based
approach. Here, Gaussian filters are utilized for preprocessing, which eliminates
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any unwanted noise elements or artifacts innovated during image acquisition. Then,
K-means clustering segmentation is employed for ROI extraction and detection
of cancerous cells. Then, the GLCM, DWT-based method was developed for the
extraction of statistical, color, and texture features from the segmented image,
respectively. Finally, the PNN was employed to classify the type of cancer such as
either benign or malignant using the trained network model. Thus, upon comparing
with state of art works, we conclude that using the PNN is better than the
conventional SVM method. In future, this work can be extended by implementing
a greater number of network layers into the PNN and can also be applied for other
types of benign and malignant cancers.
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Manufacturing of Medical Devices Using
Artificial Intelligence-Based
Troubleshooters

Akbar Doctor

1 Review of Literature

As discussed by Siirtola et al. (2019) [2], we can have 96.5% recognition rates
for a supervised learning of an AI agent. Rong Zhang et al. [6] also propose
semi-supervised learning, resulting in improved classification accuracy. This in the
context of our AI agent would mean to feed it with known troubleshooting solutions
and then expect it to provide legit and useful outputs. This definitely looks lucrative
but defies the purpose of our agent. The production floor of a complex medical
device is always full of surprises and erratic outcomes, very similar to a road traffic
as researched by Dinithi Nallaperuma et al. [7]. We, therefore, preferred to have an
unsupervised learning of the agent and gauge its outcome accordingly. The AI agent
described in this essay works on a similar approach as a look-up table. We have
linked our problem XML data to an image. Unlike the study by Iulia Alexandra
Lungu et al. [9] wherein the hand recognition symbol algorithm used images, our
AI agent used images to identify the errors/warnings in a medical device. Chang
Huang et al. [11] described the ill effects of boosting, where the AI agent missed
out the benefits of online learning by its offline learnt data. Hence, our AI agent is
implemented in an ever learning mode. It updates its knowledge for every novel data
input received during production. The agent never forgets the learned knowledge,
similar to the approach described by R. Polikar et al. [13]

S Ruping (2001) [1] describes the support vector machine (SVM) for machine
learning. This approach, although well-implemented for large- and high-dimension
data, does not reap benefits for our application. We do understand that our database
of XML files shall grow eventually large enough for the agent to handle with
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the current look-up table mechanism but for this pilot, we have not implemented
SVM. This is something we need to look into for future expansion of our agent’s
capabilities. Ryszard et al. (1986) [20] implemented a multi-purpose learning
system with their TRUNC algorithm. This enables an agent to learn incrementally
disjunctive concepts from noisy and overlapping examples. This is true in case of
our agent as well due to the fact that one problem on the production floor may
have multiple symptoms on the machine and may have multiple solutions. The
way our AI agent handles this overlapping knowledge is by reproducing all the
available solutions to the operator and lets him choose from the best one. Once the
solution works, the agent then specializes its knowledge and hence narrows down
the available options for a particular problem. This generalization and specialization
cycle is never ending for the AI agent until it has a one–one mapping of problems
and solutions. We, therefore, need to pilot this agent for over a year on the floor
which should give us better representation of the learnt knowledge.

Swaroop S et al. [4] discuss about the biologically inspired design, where we
mimic the existing designs in mother nature to create a manufactured design. It
can vary from the propeller to a neural network. Our AI agent also mimics the
abstract learning process of a human. It acquires knowledge through experience and
senses as pointed out by Langley [5]. But our agent stores the data in the form of
XML files as we are in the Pilot state. This makes our data cumbersome to manage
and requires more time to come to a conclusion. We plan to look in to the DeeSIL
method as described by Eden Belouadah and Adrian Popescu [8] to make our agent
more efficient from time efficiency standpoint. Creating a database could also be an
alternative.

The works of Ashok K Goel et al. [3] were studied to understand chunking
as a way to implement knowledge-based AI. The AI agent described in this
chapter learns incrementally. Various works of authors were studied with respect
to incremental learning to arrive upon an optimal implementation. Likes of Marc-
Schoenauer et al. [10], Giraud-Carrier et al. [14], Boon Keat Puah et al. [15],
Chixiao Chen et al. [16], Pramod Sharma et al. [17], Scott H. Clearwater et al.
[18], and Chuan-XianRen et al. [19] were evaluated for batch and unsupervised
learning of the agent. But this was not apt for our agent. Guorui Feng et al.’s [12]
work of incremental learning was also evaluated for this troubleshooting AI agent.
The learning employed for the troubleshooting agent of this chapter is a partial
supervised learning wherein the operator on the production floor declares a failure
which is then used by the agent to learn a new chunk of knowledge. This is described
in great detail in Sect. 3 of this chapter.

2 Introduction

Quality is ingrained in the design of a good product. A lot of companies start looking
into the quality of their product right during its design phase. This same quality is
implemented all the way in production and finally to the release of the product from
the facility.
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In production, the quality is implemented right at the warehouse where all the
raw materials and sub-assemblies are received from the vendors. The incoming
inspection process flushes out any discrepancies in the incoming parts which
eventually become the part of the end product. Once the parts reach the floor, the
sub-assemblies are inspected/tested at every feasible point on the line. This ensures
the integrity of the end product. Finally, when the product is fully built, it is tested
as part of end-of-line testing. This final testing phase ensures the functional aspect
of the product in the field. After passing this particular testing, a product is deemed
capable for release. Various testings on the production floor can be summed up as
follows:

• Incoming Inspection

– FAI—First Article Inspection
– AQL Sampling

• Sub-Assembly Testing
• Functional Test
• End-of-Line Test

Hence, quality is part of the entire production process which is manifested as
testing at various levels in production. Quality is of prime importance for any
company to avoid loss of business, liability, and warranty cost. All the investment in
quality reaps immense amount of benefits when it comes to business and popularity
of a product. But for a medical device, quality has a special attribute to it. Quality
problems for medical devices may have a negative impact on patients. Hence,
when it comes to medical devices, quality directly translates to human lives and
well-being. This makes medical device invest more into testing to ensure a quality
product output.

Investment in design verification and testing on the production floor are two most
important pillars on which the edifice of a quality product is built. Testing starts
right in the design phase for a product. For the medical device, the Design Quality
Assurance (DQA) team leads and qualifies the efforts for design verification. During
a new product development, DQA teams drive the verification efforts which in turn
enable the companies to file 510k for the medical device. 510k approval enables
medical device companies to sell their product in the US market and elsewhere.
Design verification and related testing are important aspects for 510k filing.

After the medical device is in the market, any future design changes also need
to go through the DQA team. If the changes to the design are significant, then
new 510k may need to be filed with FDA for approval. After the design has been
released to manufacturing, R&D (Research and Development) usually released test
specifications which need to be met during the production of the device on the floor.

The manufacturing engineering team takes these test specifications from R&D as
an input and devises a test strategy for the production floor. This strategy includes
various sub-assembly level testing, inspection, and all the way to end-of-line testing.

As a lot of testing is performed on the production floor, it is very likely that this
will also lead to a lot of fall-outs. Medical device industry deals with fall-outs in
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a variety of ways. For sub-assembly level fallouts, some industries would discard
the part while some would implement a rework. But for end-of-line testing, most
of the companies would implement a rework and re-test process as it is not at all
economical to discard and scrap an entire product if it fails testing. This is where
many a time automation is not possible. Troubleshooting and rework in most of the
companies are driven by manual labor. Operators in the troubleshooting area follow
a troubleshooting manual/guide and perform diagnostics. These diagnostics can
sometimes be very structured and process specific but in many cases, the diagnostics
process can also be dependent on tribal knowledge of operators. In such a scenario,
losing a skilled laborer may disrupt the normal operations. In many geographic
locations where unemployment rate is low, attrition rate may be very high. This
leads to high vulnerability of losing skilled labor at regular intervals and hence
disruption of production.

3 Method

Troubleshooting is a skill which is acquired by gaining on the job experience. Every
one of us remembers the story of a mechanic who charged a hefty amount for fixing
a ship by tapping the engine with a hammer. When asked about the amount charged
for just one tap of hammer, the mechanic replied that the money was not about
tapping the hammer but for the knowledge of where to tap the hammer which fixed
the problem.

The above story holds true for repairing/reworking a complex medical device as
well. When a new employee joins a company and starts working on the production
floor, he/she may not have the skill to perform diagnostics and fix the problem.
An operator is trained before starting work on the floor and is provided with a
troubleshooting guide. This enables and kick-starts the operators with the initial
knowledge required to work on the machines. But for a complex machine with
hundreds of sensors and actuators inside, a troubleshooting guide may run from a
couple hundreds to thousands of pages. Surfing through such a huge troubleshooting
guide and getting acquainted with the process take time and hands-on experience.
For such a complex process, an operator may take a couple of months to a year to
claim expertise. Hence, this expertise gaining process requires a huge investment
from time and money perspective but this can all go in vain if the individual leaves
the organization and if a new individual is hired for this position again.

A lot of companies suffer from this issue of high attrition and lose a lot of time
and money in training and re-training the workforce. To combat this, a solution is
desired which will remove the human dependency from this process. We need a
solution which will mimic humans in its learning capability as well as provide a
solution based on that knowledge. Hence, this solution should mimic humans and
learn the skills and know-how of the chore bit by bit as a human would do. At the
same time, when it is presented with a novel problem, it should try everything it
knows and try to solve the problem, but if it cannot, then it should learn a new
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technique and increase its knowledge. The only solution which can achieve and
mimic human intelligence is artificial intelligence. An artificial intelligent agent can
be implemented using incremental learning cognitive capability which may chunk
knowledge bit by bit and gain troubleshooting experience like a human. A clear
advantage of this would be a human-like agent gaining knowledge and retaining it
for life time. This will make a company independent of the tribal knowledge of an
individual which leaves the company along with the individual.

3.1 AI Agent

Hemodialysis is a complex process, which needs to be performed on patients with
end stage renal disease periodically. In dialysis, there are many elements involved
like fistula, bloodlines, dialyzer, and the dialysis machine. A dialysis machine,
in particular, is a very important and perhaps the most complex element of the
dialysis process. A hemodialysis machine performs critical functions of pumping
the blood out of the patient, injecting heparin in it to avoid clotting, maintaining
its temperature while the blood is out of the patient and flowing through the blood
lines and dialyzer. Along with this controlled blood flow, the dialyzer also regulates
the flow of the dialysate fluid through the dialyzer. This dialysate is mixed in real
time from the acid and bicarbonate solution and its flow and temperature are also
maintained by the dialysis machine. Considering this complex functionality, the HD
machine consists of various actuators and sensors making it one of the most complex
machines to troubleshoot and rework if it breaks.

To troubleshoot such a complex machine is a skill, which is acquired by repetitive
execution of the process. Every time a new problem is presented and solved by the
troubleshooter, he or she learns a new thing for that instant. Using this paradigm of
events, we decided to create an AI agent which will also follow the same pattern.

3.2 Human Cognition and the AI Agent

For humans, we have our cognitive capabilities arising from our senses (see, touch,
feel, hear, and smell) and our human brain, which reasons, learns, and stores
memory. For this troubleshooter AI agent, we first had to create these capabilities
in order to mimic human intelligence. For a dialysis machine, all the errors and
fall out information are available on the screen of the HD machine. An operator
reads this information and the DHR (device history record) of the machine in
order to figure out the problem. Once this input is available to the operator, he/she
would surf through the troubleshooting guide to figure out the solution. If a direct
solution is available for a given problem, the operator would execute it and repair
the machine. If there is no direct solution available, then the operator would consult
the engineering and R&D group to figure out the solution and then update the
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troubleshooting guide with this new solution. This process is followed for every
fallout of testing on the production floor.

To mimic this process, an AI agent needs the following capabilities:

• Visually capture the problem by looking at the screen
• Process the image to identify the errors/alarms/warnings on the screen
• Search solution from a database
• Provide the solution to the operator to execute
• If no solution is available, then learn the new solution and store it in a database

(Learn and Memorize)

3.2.1 Capture the Image and Identify the Problem

For the AI agent, we provided the visual sensory capability in the form of a camera
and python code for processing it. The AI agent is basically a python program which
acquires images from a camera mounted on an AIO (all-in-one desktop). This AIO
is part of the troubleshooting area on the production floor. The captured image is
processed to crop out the error message which satisfies the visual aspect of the AI
agent. Figure 1 shows some prospective error messages on the HD machine. The
fallouts/repair messages are highlighted as red- and yellow-bordered pop-ups.

The next task is to identify and understand the messages as a human would do.
To perform this task, we had two options to choose from:

Fig. 1 Fallout/repair messages for the HD machine
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Fig. 2 XOR ➔ Identify the problem

• Image processing and XOR (exclusive OR)
• OCR (optical character recognition)

Image Processing and XOR

For this process, we crop the part of the image which has errors/warnings in it
and then perform an XOR with all the available images from R&D. We store all
the available images from the R&D group in a secured location which are used
to perform this XOR. Once we receive a 98% white image after an XOR, we
determine that as the detected error/warning. Hence, by following this process,
we are able to identify the error on the HD screen as one of our stored images.
This identified image is then used as a pointer toward the potential solution in the
database, described in the next section. Figure 2 shows an example of one of this
process of XOR.

OCR

For this process, we create a bounding box on the captured image and perform
character recognition. This provides us with the exact text of the error/warning
which is then used to point toward the database for solutions. This method requires
creating a bounding box on all images and creating a dictionary file for the fonts in
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Fig. 3 OCR ➔ Identify the problem

the text as well. Figure 3 shows an example for this method. The yellow box is the
bounding box inside which we have the error/warning message.

Both the above methods of identifying the error/warning are equally effective
but there are certain pros and cons to both. OCR is low on storage requirements and
lower processing time in real time. But it requires a lot of time and effort to create a
bounding box for every image inside the image. This is not only labor-intensive for
an engineer but it is also very prone to changes in the future. Whenever a change is
made by the R&D group on the machine software, an engineer shall need to verify
all the position of the bounding box on each image and may need to rectify on
few images where R&D had changes in verbiage or position of the error message.
Hence, if the OCR method is used, the AI agent will be required to be updated every
time with R&D changes related to HD machine software. In any industry, changes
are very common. Given this fact, we leaned toward using the XOR method.

The XOR method as described above follows a simple process to identify the
image on the HD machine screen without any customization. Hence, for XOR, if
R&D changes any image verbiage/message or its position on the screen, we need
not update the AI agent at all. We only need to replace the stored HD machine
software images with the new images from R&D in the secured location. The AI
agent after capturing the HD machine image from the camera will run through all
the images in the secured location and identify a particular image, once it finds a
98% match. This method, therefore, is less prone to changes but requires a longer
processing time as the AI agent needs to run through the entire set of images in the
secured location before it finds a match. As our pilot runs on the production floor,
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the AI agent takes around 42 seconds to identify the image. This is good enough for
the production floor as an operator would take more than a minute to grab his tools
after parking the HD machine in the troubleshooting area.

3.2.2 Search Solution from Database and Provide It to the Operators

For the AI agent to be able to reason, we created a mapping of the stored images
to the possible solutions. These solutions are stored as separate XML (extensible
markup language) files in a secured location. We did not implement a database
during the pilot as playing around with XML files is easier and less programming
intensive. This was also preferred as the DHR of the HD machine is available as an
XML file.

As described in Sect. 3.2.1, after identifying the image on the HD machine
screen, the next step is to search for a solution and provide it to the operators. To
do this, the AI agent searches the XML file associated with the identified image. If
a solution XML file is available with the identified image, then the AI agent would
grab that file from the secured location, decipher it, and present the solution to the
operator. If no file is available, then the AI agent would let that operator know that
it does not know of any solution and will need to learn from this event.

3.2.3 Learn New Solutions

As described in Sect. 3.2.2, if the agent does not find any XML file, then it pops-up a
prompt to the operator to consult the troubleshooting guide or seek assistance from
the engineering or R&D group to solve this problem. As in any troubleshooting
process, a log is created after the problem has been solved. This log is part of the
MES system (Manufacturing Execution System), which stores data in the form of an
XML file. As the agent is in learning routine for this particular HD machine, it will
reach out to MES to grab the XML file for this particular solution and store it in the
secured location. This enriches the database knowledge of the AI agent and enables
it to provide solution next time when a similar problem arises in the troubleshooting
area.

This process is what we call incremental learning. The AI agent collects
knowledge bit by bit very similar to humans and hence becomes more competent as
a troubleshooter.

4 Results

The AI agent was implemented outside the production environment. We started off
with only five solutions provided to the agent as XML files linked to few images
of errors/warnings. The expectation was that the agent will go into learning phase a
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lot more in the initial days and will build up the database (linked XML files in the
secured folder) as it learns more and more.

We monitored the agent and the secured folder for the first 7 days. Considering
the fall-outs on the floor, the agent captured all the learnings and reproduced the
solution second time when the problem occurred. This proved the working of the
incremental learning concept of our agent. It built up 70% of the troubleshooting
guide in relation to the errors/warnings it was exposed to during those 7 days.

The results of the study are promising and motivate us to roll it out to the
production floor.

5 Conclusion

The agent shows promising performance in the troubleshooting area. As expected, it
makes the troubleshooting process independent of the skills of an operator. Once the
AI agent is exposed to a problem and learns the solution, it never forgets it. When
presented with the same errors/warnings on the HD screen, the AI agents present the
operator with all possible solutions/remedies for those errors in the HD machine.

This excites us to implement this as a full-fledged production process. But for
this, the agent will have to be updated to abide by 21-CFR (Code of Federal
Regulation) Part 11 and other cGMP guidelines. For this, the agent will need
to go through complete CSV validation (Computer Software Validation) before
implementing it on the floor.

5.1 Future Prospects

The AI agent for now learns incrementally, which is mimicking human behavior
of learning the unknowns. But humans do have another capability, which is
extrapolating and guessing a solution when they cannot deduce one. This gives
them a creative attribute and helps them to learn from their experiences. We plan to
assign this same capability to our AI agent by coding and implementing case-based
reasoning in it. This should enable the agent to extrapolate a solution by building
on the knowledge it has and by measuring the difference between the problems
known to it. This could be easily understood by a simple example of going to a
place whose address is unknown to you. Imagine a person knows where restaurant
A is. If someone describes to a person the address of restaurant B by mentioning it as
30 feet from restaurant A, then an individual can navigate to restaurant B by having
restaurant A as the reference. Here the difference of known and unknown is 30 feet.
We can have similar distance in terms of pixel value, problem connection, etc. We
will be excited to see how an AI agent will become closer to human intelligence and
how it will improve the manufacturing floor further.
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Enhanced Hierarchical Prediction for
Lossless Medical Image Compression
in the Field of Telemedicine Application

Ketki C. Pathak, Jignesh N. Sarvaiya, and Anand D. Darji

1 Introduction

The evolution in information intensive multimedia-based web application com-
bined with advancement in the field of picture measuring devices plus processing
components in cell phone has yielded in compactness of multimedia subject
matter pivotal to storage capacity and transmission field. Accurate data with
picture compression algorithms are thus essential in order to reduce expenditure
coupled with requirements particularly concerning gadgets and systems having
constrained assets. Most important techniques are lossy and lossless, for reducing
the information. Depending on application, the lossy technique can be used to
increase channel throughput, and some advanced lossy algorithms also provide a
high compression ratio.

During the image acquisition procedure, there can be higher chances of obtaining
damaged medicinal images due to unknown faults or noise from surroundings,
which may occur in the capturing device. These damaged medicinal pictures
do impact in analysis of the patient [1]. The process involving the elimination
of distortion that occurred on damaged pictures is also a challenging work. In
telemedicine treatments, medicinal pictures have to be collected previously in order
to broadcast them, here arises the requirement of accurate compression algorithms
to transfer them on low bandwidth. Image compression algorithms minimize the
storage necessity and bandwidth of radiocommunication networks. In comparison
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with conventional algorithms for compression, progressive data compression for
medicinal conferencing was not quick in the direction of simulating huge data [2].

In lossless compression, the main concern is to preserve the original visual
quality with some compromise on image size reduction or on compression ratio. In
the medicinal image, the picture condition is the prime concern where minor damage
in visual information cannot be acceptable; therefore, the lossless compression
algorithms are most suitable in this imaging [3, 4]. We proposed a lossless
compression method using Modified Hierarchical prediction with context adaptive
encoding.

As per the theory of the color image, every color image is represented as 24
bits, and each color channel is of 8 bits (RGB color channel). For any color image,
the principle behind the compression algorithm is application of any reversible
color transform on the RGB color channel to minimize the correlation among inter
channels, i.e., luminosity Y channels and chrominance Cu and Cv channels. For
direct color image compression, it is very essential to choose a proper reversible
color transform (RCT) method, as some of the color transformation might not stay
exactly reversible owing to damage of exactness in non-integer computations in
direct and inverse transforms [5].

A variety of lossless algorithms were previously suggested like lossless JPEG [1],
JPEGLS [2], LOCO-I [3], CALIC [4], JPEG 2000 [5], and JPEG –XR [6]. Amongst
them, CALIC outperforms rest of the algorithm at the cost of computational
complexity. In lossless compression, maximum of the hue changes cannot be applied
owing to their invariability by means of numeral calculation. In JPEG 2000, a
revertible type color transform (RCT) has been demarcated [6]. There are many
research papers proposed on RCT methods. Among them, the RCT transform
suggested in [7] is better as it approximates YCbCr transform in a good manner.

For demonstrating higher bit range pictures over lower bit resolution displays,
bit resolution needs to be lowered. In lossless, several methods to estimate are
dependent on the raster calculation which is fruitless on the higher frequency
segment. For fixing this issue, the former study using ordered estimation strategies
which consist of the edge-directed forecaster and context adaptive system and are
found to be good for such application [8].

The conventional prediction-based image compression algorithm, which utilizes
the raster scan-based calculation approach, is probably insufficient at the high
frequency regions where sharpness of the edge is much more important. The hier-
archical prediction algorithm suggested in Ref. [9] uses pixel-based interpolation,
while in the new approach of hierarchical prediction [10], the edge-based adaptive
predictor along with context-based adaptive modeling is analyzed.

In our work, first we have proposed two methods based on hierarchical estimation
and context adaptive coding and evaluated on color medical images, presented in
Sect. 2. Second, we have established a new approach of hierarchical prediction again
using two methods represented in Sect. 3. Section 4 gives the comparative result
discussion on hierarchical prediction with modified hierarchical prediction.
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2 Hierarchical Prediction

Hierarchical prediction is a lossless image compression technique [11–14]. There
are many existing prediction strategies intended for lossless compression; however,
the fundamental issue is the raster scan estimation technique which can be some-
times ineffective in certain circumstances, chiefly at the high frequency sections.

In hierarchical estimation, it is widely applied in several applications for picture
compression. It is meant for picture element interpolation and it is the most precise
de-correlation scheme. Directional estimation pixels are predicted by hierarchi-
cal decomposition. The hierarchical assembly provides more precise framework
patterning of the picture element by means of neighboring picture elements that
have been previously programmed; however solitary fundamental data need to be
operated for the raster scan scheme [3].

The hierarchical forecast method progresses in a random manner, and restoration
of the picture is completed beginning at the lowermost point of the resolution level
till reaching the uppermost point. It is utilized in picture element interpolation and it
is the utmost effective de-correlation scheme. For hierarchical forecast-based image
compression, the image is separated into two sub pictures, an odd sub picture and
an even sub picture. In this prediction-based structure, predictors are used.

Figure 1 demonstrates that the pixel in a sample picture X is split into dual
sub images, one being even sub image Xe and another odd sub image Xo.
Then, Xe gets programmed first and is used to guess the pixels of Xo [1]. A
hierarchical prediction structure provides coding efficiency and temporal scalability.
The following subsections explain this.

A. Coding Efficiency

Coding proficiency depicts pace and program design methodology and reliability
for obtaining a set of instructions meant for applications. It straightaway links
through algorithmic productivity and rapidity of runtime performance intended for

X Xe

Xo

xe(i, j)

xo(i, j)

Fig. 1 Sample image and its disintegration [1]
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the software system. The coding proficiency decreases the source depletion as well
as accomplishment time as much as possible besides a small amount of threat in
commercial or functioning circumstances. The different aspects of programming
efficiency depend on CPU time, data storage, input/output time, and programming
time. The time needed for the CPU for performing the operations that are described
in declarations determines the intricacy of the program. Executing and compiling
programs require time and space. According to reduce CPU time and to make the
program more efficient, one should execute only unavoidable statement, perform
calculations for the mandatory observations, and lessen the number of tasks to be
executed in a specific statement.

Dropping Input/output duration and CPU use is significant although by means
of methods that are productive with respect to the program design duration taken
to progress, mend, and authenticate the code that can be even more overvalued.
More accuracy is achieved by comprehending right computing rehearses aimed at
legibility and maintainability of the code.

B. Temporal Scalability

Time-based quantifiability denotes the capacity to decrease the frame rate of a
prearranged bit stream by means of reducing packets, and in so doing, decreasing
the bitrates of the stream. While fragments of the stream can be detached by means
that the resultant sub stream makes one more acceptable bit stream intended for
some target interpreters, and the sub stream signifies the foundation content with a
frame proportion lesser than the frame rate of the whole original bit stream, then a
cinematic bit stream is called temporal scalability [16].

As shown in Fig. 2, temporal scalability is accomplished via segmenting
access elements of bit stream into a temporal base level. One or more temporal
improvement coatings along the next property: Let the temporal levels be recognized
by a temporal level classifier T, beginning at 0 for the base level, which then
amplified one after one to the next. Subsequent to each natural numeral k, bit stream
gained by eradicating entirely access units of all temporal layers with a temporal
layer identifier T is greater than k and establishes one more effective bit stream for
the given decoder.

30 fps

15 fps

7.5 fps

Fig. 2 Temporal scalability [16]
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Benefits of Temporal Scalability
1. Bit-rate scalability at access by clipping the frame-rate.
2. Power scalability or MHz at decipherer by picking a lower frame-rate to decrypt.
3. Regressive compatible using prevailing H.264/AVC decipherers – not at all any

necessity for an SVC decipherer to decrypt SVC temporal scalability stream.
The supplementary header spaces in the stream for assisting the separator can
be (and are expected to be) securely disregarded by means of the H.264/AVC
decoder. Temporal scalability is easy to accomplish in contrast to other forms of
scalability.

4. Negligible or no loss in coding efficiency: For many platforms with an adequate
search range, there can be gain in coding efficiency.

2.1 Proposed Method for Hierarchical Prediction

For the compression of images, the RGB image is first altered to YCuCv by means
of an alterable color transform technique, and the brightness channel Y channel
is determined using a traditional gray scale image compression algorithm. The
chrominance channels Cu and Cv resulting out of RCT typically have changed
data from Y and are also different from the original color planes R, G, and B. For
encoding chrominance channels (Cu and Cv), the hierarchical prediction method
is used. Figure 3 shows the general block diagram of the hierarchical prediction
scheme for image compression.

Hierarchical prediction and context adaptive coding makes easy uses of left,
upper, and lower pixels for pixel estimation. For efficient lossless compression, a
hierarchical disintegration system is used, showing a picture element for the input
image, where the chrominance image X is divided into two sub images: an even sub
image Xe and an odd sub image Xo.

At that point, Xe gets encrypted initially and utilized to expect the picture
element in Xo. Additionally, Xe is likewise utilized to estimate the information of
prediction errors of Xo. For the compression of Xo pixels using Xe, directional
prediction is used to evade large prediction faults adjacent the boundaries.

One of them is carefully chosen as a predictor for xo (i, j). With these two
probable interpreters, the most communal style to encrypting is “mode selection,”
where the improved interpreter for the individual picture element is carefully chosen
and the mode (horizontal or vertical) too is conveyed as adjacent information. Yet,
the vertical predictor is further often more accurate than the horizontal one because
upper and lower pixels are used for the “vertical,” whereas just a left pixel is used
for the “horizontal.”

For each pixel xo (i, j) in Xo, the horizontal predictor xh (i, j) and vertical predictor
xv (i, j) are defined as follows:

xh (i, j) = xo (i, j − 1) (1)
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Fig. 3 Proposed block diagram of H.P.C.A

xv (i, j) = round

[
xe (i, j) + xe (i + 1, j)

2

]

(2)

The horizontal predictor is more accurate only when there is a strong horizontal
edge. Below steps describes the algorithm flow for hierarchical prediction.
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Algorithm of Hierarchical Prediction
1. The input RGB color image is transformed into YCuCv color space by RCT.
2. The luminance image Y is encoded by the conventional gray scale encoder.
3. The chrominance images Cu and Cv are encoded using the hierarchical predic-

tion method. The chrominance image is separated into two sub images: an even
sub image and an odd sub image. Then even sub image is encoded first and is
used to predict the pixels in the odd sub image.

4. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either horizontal direction (H) or vertical direction (V).

5. Horizontal predictor and vertical predictor take i and j as argument and returns
the left pixel value of average of top and bottom pixel value, respectively.

6. If the direction for left and bottom pixel is H, then it checks the direction for the
current pixel. If the current pixel’s direction is H, then the value of the left pixel
is used as the predicted value, otherwise the average value of top and bottom
pixels is used as the predicted value.

7. In the end, we convert the altered YCuCv image back to the RGB image and save
the image files.

The hierarchical calculation and context adaptive coding make easy uses of left,
upper, and lower pixels for the picture element prediction. We have proposed a
method in which luminance channel Y is also encoded by the hierarchical prediction
method. For the efficient lossless compression, a hierarchical disintegration system
as portrayed in Fig. 4 illustrates the picture element in an input image the luminance
and the chrominance image X is divided into two sub images: an even sub image Xe
and an odd sub image Xo. Then, Xe is encoded first and is used to predict the pixels
in Xo. For the compression of Xo pixels using Xe, steering predictors are employed
to avoid large prediction errors near the edges.

The algorithm flow of this hierarchical decomposition method named as HPCA
(hierarchical prediction and context adaptive coding) method 1 is explained in the
following steps.

Algorithm of Hierarchical Prediction and Context Adaptive Coding Method 1
1. An input RGB color image is transformed into the YCuCv color space by an RCT.
2. The Luminance image is encoded using the hierarchical prediction method. The

luminance image is separated into two sub images: an even sub image and an

Fig. 4 Illustration of hierarchical decomposition (HPCA method 1)
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odd sub image. Then, an even sub image is encoded first and is used to predict
the pixels in an odd sub image.

3. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either horizontal direction (H) or vertical direction (V).

4. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

5. If the direction for left and bottom pixels is H, then it checks the direction for the
current pixel. If the current pixel direction is H, then the value of the left pixel is
used as the predicted value, otherwise the average value of top and bottom pixels
is used as the predicted value.

6. The chrominance images Cu and Cv are encoded using the hierarchical predic-
tion method. The chrominance image is separated into two sub images: an even
sub image and an odd sub image. Then an even sub image is encoded first and is
used to predict the pixels in an odd sub image.

7. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either the horizontal direction (H) or the vertical direction (V).

8. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

9. If the direction for left and bottom pixels is H, then it checks the direction for the
current pixel. If the current pixel’s direction is H as well, then the value of the
left pixel is used as the predicted value, otherwise the average value of top and
bottom pixels is used as the predicted value. In the end, we convert the altered
YCuCv image back to the RGB image and save the image files.

We have proposed the second method for the compression of images, in which
the RGB image is first converted to YCuCv by means of the reversible color
transform method, and luminance channel Y is programmed by a conventional
grayscale image compression algorithm. The chrominance channels Cu and Cv
resulting from the RCT usually have different statistics from Y and are also different
from the original color planes R, G, and B. For encoding chrominance channels (Cu
and Cv), the hierarchical prediction method is used. Each chrominance image is
split into four equal parts. The prediction is then taking place in the z-shape order.
Top left part is predicted first, then top right and bottom left, and lastly bottom right,
which are shown in Fig. 5.

The algorithm flow of this chrominance decomposition method named as HPCA
(hierarchical prediction and context adaptive coding) method 2 is explained in the
following steps.

Algorithm of Hierarchical Prediction and Context Adaptive Coding Method 2
1. An input RGB color image is transformed into the YCuCv color space by an RCT.
2. The luminance image Y is encoded by the conventional gray scale encoder.
3. The chrominance images Cu and Cv are encoded using the hierarchical predic-

tion method. The chrominance image is separated into two sub images: an even
sub image and an odd sub image. Then an even sub image is encoded first and is
used to predict the pixels in an odd sub image.
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Fig. 5 Illustration of
chrominance image
decomposition

4. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either a horizontal direction (H) or a vertical direction (V).

5. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

6. If the direction for left and bottom pixel is H, then it checks the direction for the
current pixel. If the current pixel’s direction is H as well, then the value of the
left pixel is used as the predicted value, otherwise the average value of top and
bottom pixels is used as the predicted value.

7. Each chrominance image is split into four equal parts. The prediction then takes
place in a Z-shaped order. The top left part is predicted first, then top right and
bottom left, and lastly bottom right.

8. In the end, we convert an altered YCuCv image back to RGB images and save the
image files.

2.2 Result and Discussion of Hierarchical Prediction

Performance parameters are inevitable while trying to compress the images using
different technologies. Some of the parameters required to be considered appropriate
to measure the effectiveness of any compression algorithm are bits per pixel (BPP),
compression ratio (CR), peak signal to noise ratio (PSNR), and threshold value.

In this hierarchical prediction, we have considered performance metrices like
BPP, CR, and PSNR. Our proposed schemes mentioned in above algorithms for
hierarchical methods are named as HPCA 1 and HPCA 2. Both these approaches
exist in the direction of refining the performance of medical image compression.
We have conducted experiments on five different medical images, namely, brain,
CT scan of heart, shoulder, wrist joint, and chest X-ray to have better understanding
of flexibility of our proposed methods. From the experimental results, we can see
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Table 1 CR and PSNR values for hierarchical methods

Compression ratio (CR) PSNR (dB)
Medical images HPCA 1 HPCA 2 HPCA 1 HPCA 2

Brain 36.11 55.75 29.53 28.97
CT scan heart 37.88 56.57 29.59 28.95
Shoulder 37.35 55.91 29.61 28.96
Wrist joint 37.91 58.43 29.58 28.98
Chest X-ray 37.89 54.48 29.5 29.08

Table 2 Visualization of compressed medical images using hierarchical prediction methods

Original image YUV image Compressed image
HPCA method 1

HPCA method 2

that HPCA 2 provides with an improved compression ratio compared to HPCA 1
as shown in Table 1. The compression proportion is very little for the prevailing
process of HPCA ciphering compared to HPCA 1. Although the proposed HPCA
2 method has better compression proportion, the peak signal to noise proportion is
low compared to HPCA 1 for all the specified medical images.

Hence, we can conclude that HPCA 2 is not able to preserve the sharpness of
the image, and there is a trade-off between CR and PSNR for the proposed HPCA
methods, which does not suffice the motive of medical image compression, i.e.,
conserving the perceptiveness of the image when reconstructed after compression.
We need to have some solution to preserve the sharpness; hence we proposed a
modified hierarchical scheme as mentioned in the next section.

Table 1 depicts the compression proportion ranges for both planned hierarchical
prediction approaches. The values clearly illustrate that the proposed HPCA 2 has
better CR values, whereas HPCA 1 has better PSNR values. Table 2 shows the
visualization of YUV and compressed medical images for the proposed HPCA
methods.
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3 Proposed Method for Modified Hierarchical Prediction

In order to conserve the clarity of initial image and to lessen the bit rates here
put forward, a novel method is entitled as modified hierarchical prediction. The
calculated image is defined by the horizontal, vertical, and diagonal picture element.
By means of the slanting interpreter, we can expect the precise estimated image.
Then, an even sub image gets separated stake by stake into an even sub image and
an odd sub image. The Xo (2) odd sub image is compressed through which even sub
image Xo (2) is created.

These compressed pictures generally have high excellence with distinctness,
and while decompressing, we yet again apply the left up, left down, and right up
and right down pixels prediction. The proposed block diagram of the modified
hierarchical prediction is shown in Fig. 6.

For each pixel xo (i, j) in Xo, the horizontal predictor xh (i, j), vertical predictor
xv (i, j), and diagonal predictor xd (i, j) are defined as follows:

xh (i, j) = xo (i, j − 1) (6)

xv (i, j) = round

[
xe (i, j) + xe (i + 1, j)

2

]

(7)

xd (i, j) = round

[
xe (i + 1, j − 1) + xe (i − 1, j − 1) + xe (i − 1, j + 1)

3

]

(8)

Below steps describe the algorithm flow for modified hierarchical prediction.

Algorithm of Modified Hierarchical Prediction
1. The given/sample RGB color image is converted into YCuCv color space by RCT.

The luminance image Y is programmed by grayscale image programmers.
2. The chrominance images Cu and Cv are encoded through the modified hierarchi-

cal prediction process. The chrominance image is parted into two sub images: an
even sub image and an odd sub image. Then an even sub image is programmed
first and is used to forecast the pixels in an odd sub image.

3. An inconstant for the direction of the edge at each pixel dir (i, j) is defined, which
is given either a horizontal direction (H) or a vertical direction (V).

4. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

5. If the direction for the left and bottom pixel is H, then it checks the direction for
the current pixel. If the current pixel’s direction is H as well, then the value of
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Fig. 6 Proposed block diagram for M.H.P.C.A

the left pixel is used as a predicted value, otherwise the average value of top and
bottom pixels is used as the predicted value.

6. If the top and left pixel direction is H, then the current pixel’s direction is
calculated. If it is H, then x-horz is used to predict the value; if it is V, x-vert
is used to predict the value, otherwise x-diag is used to predict the value. If the
current and bottom left pixel direction is V, then x-vert is used to predict the
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value. Lastly, if none of the above conditions are met, x-diag is used to predict
the value.

7. In the end, we convert the altered YCuCv image back to the RGB image and save
the image files.

As modified hierarchical prediction and context adaptive coding makes easy uses
of left, upper, and lower pixels for the pixel prediction. We have proposed the image
decomposition method in which luminance channel Y is also encoded using the
modified hierarchical prediction method.

For efficient lossless compression, a hierarchical decomposition arrangement, as
portrayed in Fig. 4, outlines that pixels in an input image represent the luminance,
and the chrominance image X is separated into two sub images: an even sub image
Xe and an odd sub image Xo. Then, Xe is encoded first and is used to predict the
pixels in Xo.

For the compression of Xo pixels using Xe, directional predictors are on duty to
avoid large prediction errors near the edges. The algorithm flow of this hierarchical
decomposition method named as MHPCA (modified hierarchical prediction and
context adaptive coding) method 1 is explained in the following steps.

Algorithm of Modified Hierarchical Prediction and Context Adaptive Coding
Method 1
1. An input RGB color image is transformed into a YCuCv color space by an RCT.
2. The luminance image is encoded using the hierarchical prediction method. The

luminance image is separated into two sub images: an even sub image and an
odd sub image. Then, an even sub image is encoded first and is used to predict
the pixels in an odd sub image.

3. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either a horizontal direction (H) or a vertical direction (V).

4. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

5. If the direction for left and bottom pixels is H, then it checks the direction for the
current pixel. If the current pixel’s direction is H as well, then the value of the left
pixel is used as a predicted value, otherwise the average value of top and bottom
pixels is used as the predicted value.

6. If the top and left pixel direction is H, then the current pixel’s direction is
calculated. If it is H, then x-horz is used to predict the value; if it is V, x-vert
is used to predict the value, otherwise x-diag is used to predict the value. If the
current and bottom left pixel direction is V, then x-vert is used to predict the
value. Lastly, if none of the above conditions are met, x-diag is used to predict
the value.

7. The chrominance images Cu and Cv are encoded using the hierarchical predic-
tion method. The chrominance image is separated into two sub images: an even
sub image and an odd sub image. Then, an even sub image is encoded first and
is used to predict the pixels in an odd sub image.

8. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.



220 K. C. Pathak et al.

9. If the direction for left and bottom pixels is H, then it checks the direction for the
current pixel. If the current pixel’s direction is H as well, then the value of the
left pixel is used as the predicted value, otherwise the average value of top and
bottom pixels is used as the predicted value. If the top and left pixel direction is
H, then the current pixel’s direction is calculated. If it is H, then x-horz is used
to predict the value; if it is V, x-vert is used to predict the value, otherwise x-diag
is used to predict the value. If the current and bottom left pixel direction is V,
then x-vert is used to predict the value. Lastly, if none of the above conditions are
met, x-diag is used to predict the value. In the end, we convert the altered YCuCv
image back to the RGB image and save the image files.

The predicted image is determined by the horizontal, vertical, and diagonal
pixels. Using the diagonal predictor, we can predict the correct predicted image.
In the next section, we have proposed the second method for the compression of
images, in which the RGB image is first transformed to YCuCv using the reversible
color transform method and luminance channel Y is encoded by a conventional
grayscale image compression algorithm.

The chrominance channels Cu and Cv resulting from the RCT usually have
different statistics from Y and are also different from the original color planes
R, G, and B. For encoding chrominance channels (Cu and Cv), the hierarchical
prediction method is used. Each chrominance image is split into four equal parts.
The prediction then takes place in the z-shaped order. The top left part is predicted
first and then top right and bottom left and lastly bottom right parts are predicted
as shown in Fig. 5. The algorithm flow of this chrominance decomposition method
named as MHPCA (modified hierarchical prediction and context adaptive coding)
method 2 is explained in the following steps.

Algorithm of Modified Hierarchical Prediction and Context Adaptive Coding
Method 2
1. An input RGB color image is transformed into the YCuCv color space by an RCT.

The luminance image Y is encoded by grayscale image coders.
2. The chrominance images Cu and Cv are encoded using the modified hierarchical

prediction method. The chrominance image is separated into two sub images: an
even sub image and an odd sub image. Then, an even sub image is encoded first
and is used to predict the pixels in an odd sub image.

3. A variable for the direction of the edge at each pixel dir (i, j) is defined, which is
given either a horizontal direction (H) or a vertical direction (V).

4. Horizontal predictor and vertical predictor take i and j as argument and return
the left pixel value of average of top and bottom pixel values, respectively.

5. If the direction for the left and bottom pixel is H, then it checks the direction for
the current pixel. If the current pixel’s direction is H as well, then the value of
the left pixel is used as the predicted value, otherwise the average value of top
and bottom pixels is used as the predicted value.

6. If the top and left pixel direction is H, then the current pixel’s direction is
calculated. If it is H, then x-horz is used to predict the value; if it is V, x-vert
is used to predict the value, otherwise x-diag is used to predict the value. If the



Enhanced Hierarchical Prediction for Lossless Medical Image Compression. . . 221

current and bottom left pixel direction is V, then x-vert is used to predict the
value. Lastly, if none of the above conditions are met, x-diag is used to predict
the value.

7. Each chrominance image is split into four equal parts. The prediction then takes
place in the z-shaped order. The top left part is predicted first and then top right
and bottom left and lastly bottom right parts are predicted.

8. In the end, we convert the altered YCuCv image back to the RGB image and save
the image files.

3.1 Result and Discussion of Modified Hierarchical Prediction

For the lossless image compression, we have proposed schemes on modified hierar-
chical prediction namely MHPCA 1 andMHPCA 2. The performance metrices used
are BPP, PSNR, and CR. The modified hierarchical prediction and context adaptive
coding method 1 and the modified hierarchical prediction and context adaptive
coding method 2 have been utilized to evaluate the aforementioned performance
metrices.

Table 3 clearly shows the visualization of both the modified methods. From
investigational outcomes, it is observed that the planned scheme for MHPCA
methods produces better PSNR compared to HPCA methods. Table 4 shows the
CR and PSNR values for the proposed MHPCA methods. From the table values,
it is seen that MHPCA 2 is giving a better compression proportion as well as a
better peak signal to noise ratio compared to MHPCA 1. Hence, revised hierarchical
prediction and context adaptive coding method 2 does preserve the sharpness of the
image along with a high compression ratio.

We have conducted another experiment on the sequence of the chest X-ray
medical image to improve the MHPCA 1 method. Table 5 shows BPP, CR, and
PSNR, where threshold values are set to T1 = 2 and T1 = 5. It is seen from the
table values that by manipulating the threshold range, we are able to get a better
compression ratio with reduced bit rates but at the cost of a less PSNR value. Hence,
we can also conclude that MHPCA 1 performs finely when a different data set is
provided.

4 Comparative Result Discussion on Hierarchical Prediction
with Modified Hierarchical Prediction

In this section, we conclude the overall performance of the combinational methods
discussed on hierarchical prediction and context adaptive coding. The performance
matric considered is BPP for all the methods. The experimental results clearly state
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Table 3 Visualization of compressed medical images using the modified hierarchical prediction
methods

Original image YUV Image Compressed image
MHPCA method 1

MHPCA method 2

Table 4 CR and PSNR values for the modified hierarchical methods

Compression ratio PSNR(dB)
Medical images MHPCA 1 MHPCA 2 MHPCA 1 MHPCA 2

Brain 25.59 40.09 29.42 29.49
CT scan heart 20.54 31.91 29.91 29.91
Shoulder 24.01 37.66 28.89 29.09
Wrist joint 26.64 43 33.16 33.20
Chest X-ray 37.89 54.48 29.50 29.08

Table 5 BPP, CR, and PSNR values of the chest X-ray sequence of images for the modified
hierarchical methods with the threshold value set to T1 = 2 and T2 = 5

BPP CR PSNR (dB)
Medical images MHPCA 1 MHPCA 2 MHPCA 1 MHPCA 2 MHPCA1 MHPCA 2

Chest X-ray_01 2.7753 6.1491 53.6945 37.060 29.2718 29.6641
Chest X-ray_02 2.7316 6.1564 53.7134 36.9493 29.3497 29.7494
Chest X-ray_03 2.8283 6.1980 52.5593 36.2500 28.9720 29.3858
Chest X-ray_04 2.7989 6.3110 54.0320 37.1678 29.1087 29.4961
Chest X-ray_05 2.8548 6.3531 54.1454 37.4912 29.1055 29.5123

that the BPP value is significantly reduced for all medical images by using the
proposed MHPCA 2 coding compared to HPCA 1, HPCA 2, and MHPCA 1.

The average bit rate value per pixel is reduced to 2.126 compared to other
proposed schemes. Hence, we can justify that the proposed modified hierarchical
method 2 is best in preserving the sharpness of the image. Table 6 shows the BPP
values for all proposed approaches.
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Table 6 Compressed bit rate (bpp) values among all proposed hierarchical predictions

Medical images HPCA 1 HPCA 2 MHPCA 1 MHPCA 2

Brain 6.68 3.29 12.91 2.96
CT scan heart 6.92 3.53 8.11 1.73
Shoulder 6.86 3.58 14.57 1.93
Wrist joint 6.97 6.49 7.22 1.1
Chest X-ray 6.43 2.91 6.43 2.91
Average 6.772 3.96 9.848 2.126

Table 7 Peak signal to noise ratio (PSNR) values among all proposed hierarchical predictions

Medical images

Proposed
H.P.C.A
Method 1

Proposed
H.P.C.A
Method 2

Proposed
M.H.P.C.A
Method 1

Proposed
M.H.P.C.A
Method 2

Abdomen 33.16 48.67 33.26 48.67
Brain 1 37.01 49.10 37.60 50.15
Brain 2 35.38 48.90 35.83 49.98
Brain 3 36.17 48.91 36.60 49.91
Brain 4 35.59 47.83 35.94 49.63
Brain 5 33.58 50.53 34.03 51.46
MRI brain 37.56 55.11 38.95 57.14
Spine 36.71 54.20 38.25 55.52
Wrist joint 1 36.74 54.45 37.91 55.22
Wrist joint 2 36.99 52.63 38.23 54.49
Average 35.88 51.03 36.66 52.21

Table 7 gives the average PSNR values for all proposed approaches of hierar-
chical prediction, where the experiment is conducted on various medical images,
in which the MHPCA 2 method provides an outstanding result compared to other
proposed approaches. The sharpness of edges as well as visual quality can be
recognized from the images shown in Table 8 and the compression ratio graph of
medical images shown in Fig. 7.

We have conducted the experiment on images other than the medical image,
which are classical images and are evaluated in terms of BPP for all proposed
schemes and compared them with the standard compression methods namely
JPEG 2000 and JPEG- XR. Table 9 shows the comparative table with standard
compression systems. From the table values, it is seen that the proposed MHPCA
methods produce lower BPP than prevailing compression methods.

Figure 8 shows the graph of the compression ratio versus bits per pixel among all
proposed hierarchical predictions with existing hierarchical prediction. This graph
is plotted for classical image data. It is clearly seen that MHPCA 1 and MHPCA 2
are having higher compression ratio compared to those of the existing HPCA and
MHPCA method. Hence, we can conclude that modified hierarchical prediction and
context adaptive coding method 2 satisfies all the needs for lossless medical image
compression.
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Table 8 Visualization of compressed medical images using the proposed hierarchical prediction
methods

Proposed method Method 1 Method 2
HPCA

MHPCA

Fig. 7 CR of all proposed hierarchical methods on medical images

Table 9 Comparison of the proposed modified hierarchical method with other standard compres-
sion methods in terms of compressed bit rates (bpp) on classical images

Classical images JPEG 2000 JPEG-XR MHPCA 1 MHPCA 2

Lena 13.5848 14.0942 18.8383 19.4293
Mandril 14.8000 15.3245 5.6096 6.0537
Peppers 18.0939 18.2553 3.5644 3.8373
Barbara 11.1612 12.1408 15.7797 16.2833
Average 14.40998 14.9537 10.948 11.4009
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Fig. 8 CR of all proposed hierarchical methods on classical images

Comparison of the proposed HPCA and MHPCA methods with other research
paper in term of PSNR is represented in Table 10. From this, we can clearly identify
that the proposed methods HPCA 2 and MHPCA 2 give superior values compared
to the result of the research paper cited in this table. HPCA 2 and MHPCA 2
yield average PSNR values of 41.70 dB and 40.71 dB, respectively, which are high
compared to HPCA and MHPCA methods, as described in Ref. [8].

We have compared our proposed methods with other literature on classical
images as shown in Table 10. We are not able to compare our proposed methods
with other literature on medical images as there is no such literature available,
particularly for the dataset we worked on. Hence, we tried to compare our proposed
methods only with different approaches which could be seen in the abovementioned
tables namely Tables 5, 6, and 7.

5 Conclusion

Modified hierarchical prediction and context adaptive coding scheme is planned
along with the hierarchical prediction and context adaptive coding in this work.
We have presented results for the modified hierarchical prediction algorithms as
well as hierarchical prediction algorithms. The combination of different methods
evolved under hierarchical prediction gives the flexibility of understanding our
method and acquiring the possibility of obtaining better compression proportion
for different images. From all proposed methods, MHPCA method 2 is able to
provide a better compression ratio and a better peak signal to noise ratio upon
preserving the sharpness of the image. MHPCA method 2 also provides lower bits
per pixel. MHPCA 2 performs well on lossless medical image compression. We can
clearly identify that the proposed methods HPCA 2 and MHPCA 2 give superior
values compared to the result of the research paper cited in Table 10. HPCA 2 and
MHPCA 2 yield average PSNR values of 41.70 and 40.71, respectively, which are
high compared to HPCA and MHPCA methods, as described in Ref. [8].
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Further, we shall be implementing a hierarchical quadtree structure with variable
medical image sequence data to have much higher compression ratio and PSNR
value with a low mean square error value.

Appendices

Appendix A: List of Abbreviations

H.P.C.A. Hierarchical Prediction and Context Adaptive Coding
M.H.P.C.A Modified Hierarchical Prediction and Context Adaptive Coding
BPP Bits Per Pixel
CR Compression Ratio
MSE Mean Square Error
PSNR Peak Signal to Noise ratio
PX Pixel

Appendix B: Formula of Performance Parameters

1. A bits per pixel value of an image is the ratio between data size of image in bits
and number of pixels.

Bits per pixel (BPP) = Datasize of Image (in bits)

No. of Pixels

2. Image compression proportion is demarcated as the ratio between the com-
pressed image and the actual Image.

Compression Ratio (%) CR = 100−
[
Compressed image

Original image
× 100

]

3. Peak signal to noise proportion is used for the quality measurement between the
original and a compressed image.

Peak Signal to Noise Ratio : PSNR = 10 log10
R2

MSE
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where R is the maximum fluctuation in the input image data type. For
example, if the input image has a double-precision floating-point data type, then
R is 1. If it has an 8-bit unsigned integer data type, R would be 255.

In this equation L(m,n) and K(m,n) are image sizes of original and compressed
images, respectively. M and N are the number of rows and columns of an input
image, respectively.

4. Thresholding value (T1, T2)
Thresholding is the easiest way of image segmentation. Colored pictures can

be applicable with this kind of thresholding values. This style scheme elects
distinct threshold meant for the individual of the RGB constituents of pictures
and mingles them by means of the AND process. It signifies way toward the
camera mechanism and the manner data are stockpiled in the processor, but then
the problem faced is that the camera does not match to the way that people
identify color [18].
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LBP-Based CAD System Designs
for Breast Tumor Characterization

Kriti, Jitendra Virmani, and Ravinder Agarwal

1 Introduction

The prominently found cancer among women is breast cancer [25]. The prospects of
recovery and survival can be increased if breast cancer is caught at the preliminary
stage. For periodic screening of breast cancer, mammography is the preferred
choice for women over the age of 40 years [16, 17]. However, ultrasonography
has nowadays found prevalent use in breast cancer detection due to (a) ease of
availability and use, (b) low cost, (c) ease in detecting obscured tumors (especially,
in the case of young women having dense breast tissue), and (d) lack of ionizing
radiation (ultrasound is specifically useful for pregnant women as radiations may
adversely affect the fetus). Despite these advantages, the quality of the ultrasound
images is degraded due to speckle noise and artifacts, which make it laborious for
radiologists to make a clear and concise diagnosis. The sample images taken from
the standard benchmark database are used in the present work, indicating that the
sonographic characteristics exhibited by different types of breast tumors are shown
in Fig. 1.

High variability exists among the sonographic appearances of different classes of
breast abnormalities, because of which the differential diagnosis of the tumor types
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Fig. 1 The sample breast ultrasound images indicating the sonographic characteristics exhibited
by different types of tumors

is sometimes difficult even for an experienced radiologist. Accordingly, there has
been an increased amount of interest among the researchers for designing efficient
computer-aided diagnostic (CAD) systems for breast tumor characterization [1, 4,
6, 12, 15, 27, 28, 30, 35, 36, 39, 41, 47, 50, 57, 58].

Zakeri et al., in 2012, reported an accuracy of 95.0% on a set of 80 images using
correlation-based texture features along with morphological features and support
vector machine (SVM) classifier. These features have been computed using images
segmented by applying deformable parts model-based method. Amin et al., in
2015, reported an accuracy of 99.1% using the SVM classifier and a feature set
computed from 112 breast ultrasound images. The feature set contained statistical
texture features combined with morphological features. The images were first
transformed into a neutrosophic domain, and from the resultant images, statistical
texture features have been computed. The optimal features have been selected on
the basis of a Chi-square test. Daoud et al., in 2016, implemented a decision fusion-
based approach for breast tumors characterization by utilizing the SVM reporting
an accuracy of 98.2% using 110 images. For the computation of texture features,
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multiple non-overlapping regions of interest (ROIs) have been taken from inside
the tumors. The gray level co-occurrence matrix (GLCM)-based texture features
have been computed from each ROI, while the morphological features have been
computed using the whole tumor. Each computed feature set has been subjected to a
two-stage feature selection strategy employing backward selection and minimal-
redundancy-maximal relevance (mRMR). Based on texture features, the class
membership of each ROI has been determined, and majority voting has been used to
obtain the final tumor class. The study also determined the tumor class based on the
computed morphological features, and the final tumor class has been obtained by the
decision fusion. The study has also experimented with the conventional method of
combining the computed texture and morphological sets and reported an accuracy
of 90.9%. Takemura et al., in 2009, reported the highest classification accuracy
of 100% using an AdaBoost classifier. The optimal feature set has been obtained
by the application of sequential forward search (SFS) on a feature set formed by
combining statistical texture features and morphological features. Piliouras et al.,
in 2004, used the SVM classifier and a feature set composed of statistical texture
features and morphological features and reported an accuracy of 98.7%. A wrapper-
based method of feature selection has been utilized to find out an optimal feature
subset for breast tumor characterization. Menon et al., in 2015, used a combination
of median, high boost, and sobel filters to pre-process 78 breast images. From the
pre-processed images, tumor regions have been segmented using the deformable
parts model, and a feature set has been formed by combining statistical texture
features and morphological features. The texture features have been computed using
the first order statistics (FOS), GLCM and covariance-based methods. An accuracy
of 95.7% has been reported using the SVM and an optimal number of principal
components (PCs) obtained by applying principal component analysis (PCA) to the
computed feature set. Uzunhisarcikli and Goreke, in 2018, reported an accuracy of
99.3% for classifying 153 breast ultrasound images using a type-2 adaptive neuro-
fuzzy inference system (ANFIS) and an optimal feature set containing GLCM and
morphological features, computed using ROIs extracted using the lesion contour
marked by the radiologist and pre-processed using the Gaussian filter and contrast
limited adaptive histogram equalization (CLAHE). Nemat et al., in 2018, reported
an accuracy of 97.1% using the stepwise logistic regression (SLR) classifier using
104 breast ultrasound images pre-processed by CLAHE and anisotropic diffusion
(AD) filter and segmented using watershed transform. From the segmented tumor
images, a combined feature set has been formed comprising of texture features
computed using Gabor filters and morphological features.

The study carried out by Cheng et al., in 2016, reported a classification accuracy
of 82.4% using 520 full images and stacked denoising autoencoders (SDAEs) for
breast tumor characterization. Lee et al., in 2018, used 250 full-size ultrasound
images pre-processed by CLAHE for breast tumor characterization using the SDAE
reporting an accuracy of 83.0%. In a study by Zhang et al., in 2020, 160 full
images and 295 tumor images segmented using watershed transform were used for
breast tumor characterization using the stacked convolutional autoencoder (SCAE)
followed by the softmax classifier, and images were pre-processed using a distance-
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transformation coupled Gaussian filter (DTGF). Accuracies of 92.0% and 83.9%,
respectively, were reported.

For the CAD system based on original as well as pre-processed ultrasound
images, a machine learning-based study has been previously reported by the authors,
wherein the original images have been used to compute texture features, while pre-
processed images have been used to compute morphological features. Exhaustive
experimentation was carried out for assessing the effect of different despeckling
filters on the performance of CAD systems for breast tumor characterization and
it was validated that texture information is effectively quantified using original
images, while efficient morphological features are computed using images pre-
processed by the DPAD filter [27].

For computing the features from original or despeckled images, most of the
studies have made use of statistical texture features along with morphological
features. It should be noted that the performance of local binary pattern (LBP)
texture features combined with the morphological features has not been tested
for breast tumor characterization using ultrasound images which have otherwise
yielded good results in the case of other medical images [13, 24, 38]. However,
it has also been noted that the potential of LBP features has been explored by
very few studies in the case of breast ultrasound images for quantification of
texture [1, 6, 35]. As seen from the authors’ previous study [27], it has been
experimentally verified that optimal results are obtained when the original images
are used for quantifying texture features, and the morphological information of
the tumors has been quantified by using images pre-processed by the DPAD filter.
Accordingly, four different CAD system designs have been compared in the present
work for breast tumor characterization based on LBP texture features computed
using original images and morphological features computed using the ultrasound
images pre-processed by the DPAD filter.

2 Methodology

The experimental workflow adopted for the design of an efficient LBP-based CAD
system for breast tumor characterization is presented in Fig. 2.

2.1 Dataset Description and Bifurcation

The description of the dataset and its bifurcation is presented in Fig. 3.
The images have been taken from an online repository of ultrasound images

available at (ultrasoundcases.info). The protocol for the selection of images has been
kept same as in the previous study carried out by the authors [27].

http://ultrasoundcases.info
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Fig. 2 The experimental workflow adopted for the design of an efficient LBP-based CAD system
for breast tumor characterization. (Note: LBP Local binary patterns, TFS Texture feature set,
RTFS Reduced texture feature set, MFS Morphological feature set, CFS Combined feature set,
OFS Optimal feature set, LH Linguistic hedges, GA Genetic algorithm, PCA Principal component
analysis, SAE Stacked autoencoder, ANFC Adaptive neuro-fuzzy classifier, SVM Support vector
machine, SM Softmax)
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Fig. 3 Dataset description and bifurcation

2.2 Despeckling

The sonographic features of the breast tumors as visible on ultrasound are con-
sidered to be significant for clear discrimination between different tumor types.
However, the presence of speckle noise and low image contrast severely hampers
the ultrasound image quality due to which the diagnosis becomes difficult. The
visual interpretation of the radiologist is negatively affected due to low image
contrast and the presence of speckle noise as it masks the diagnostically important
detailed structures in the image. For filtering out the speckle noise, a controlled
despeckle filtering is desired such that homogeneous areas are smoothened and
the edge/structure information is preserved, thereby enhancing the image quality,
resulting in improved interpretation and increased accuracy of computer-assisted
segmentation and classification algorithms [26, 27, 31, 59].

In the authors’ previous study [26], it was validated that the DPAD filter yielded
the best performance for efficient edge and structure preservation in images. Thus,
in the present work, the DPAD filter [2] has been employed for the pre-processing
of breast ultrasound images. For further details on the performance of despeckle
filtering algorithms and parameters used for each filter, the readers are directed to
[26].
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2.3 Segmentation

Segmentation is used to separate out a region of interest from an image with the
help of a computer-assisted algorithm. Segmentation techniques have widely been
employed in the case of medical images to separate out the tumor region from the
background [26]. Out of a myriad of computer-assisted segmentation algorithms,
an active contour method has found prevalent use for separating out the tumor
region from medical images [14, 26, 32, 34]. In the authors’ previous work [26],
the performance of the Chan and Vese method of segmentation [10] for extracting
the tumors from breast ultrasound images has been assessed. For further details on
the effect of despeckle filtering algorithms on segmentation of breast tumors, the
readers are directed to [26].

Accordingly, the present work uses the Chan and Vese method to extract out the
breast tumors from original images as well as images despeckled by the DPAD filter,
with the number of iterations and initial rectangular bounding box (mask) given as
the input.

The sample images indicating the tumor contour marked by the participating
radiologist and the tumor contour obtained after applying the segmentation algo-
rithm for original and despeckled images are shown in Fig. 4.

Fig. 4 Application of the segmentation algorithm to ultrasound images. (a) Original malignant
image, (b) despeckled malignant image, (c) image indicating a tumor contour marked by the
radiologist, (d) original malignant image with the tumor contour obtained using the active contour
method, (e) despeckled malignant image with the tumor boundary obtained by the active contour
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2.4 Combined Feature Set Generation

Feature extraction converts the perceptible information of an image into mathe-
matical descriptors based on intensity distribution of the image or on the shape of
the tumor or on the color features. According to the type of tissue being observed,
different sets of features are significantly studied for diagnosis. In the previous study
by authors [27], the performance of texture and morphological features extracted
using original and pre-processed breast ultrasound images was exhaustively tested,
and it was validated that the texture features are aptly quantified through original
images, while for extracting morphological features, images pre-processed by the
DPAD filter yielded an optimal performance. Accordingly in the present work,
original images have been used to extract LBP-based texture features forming a
texture feature set (TFS), and the morphological features have been computed using
images despeckled by the DPAD filter form a morphological feature set (MFS). The
process of combined feature set generation is presented in Fig. 5.

There are a large number of features in the TFS obtained by using LBP which
may be redundant, thus to remove these redundant features, correlation-based
feature selection (CrFS) has been employed forming a reduced texture feature set
(RTFS). Finally, RTFS and MFS have been fused serially, thus forming a combined
feature set (CFS).

Fig. 5 Combined feature set generation. (Note: LBP Local binary pattern, TFS Texture feature
set, RTFS Reduced texture feature set,MFSMorphological feature set, CFS Combined feature set)
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Fig. 6 Steps followed for the implementation of the LBP algorithm. (Note: H1 Histogram of first
window, Hn Histogram of nth window)

2.4.1 LBP-Based Texture Feature Extraction

The texture features are used to quantify gray-level distribution statistics in an
image. In the present work, a uniform LBP has been used to compute the texture
information from the original ultrasound images. Ojala et al. [40], introduced
the LBP for image texture quantification of local neighborhood. In the LBP
algorithm, the pixels of an image are labeled using a threshold value for each
pixel neighborhood, and the final result is considered as a binary number. The steps
followed for computing the LBP feature set are shown in Fig. 6.

The length of the final LBP feature vector is given as:

NumCells = prod

(

floor

(
image size

C

))

= prod

(
512

64

)

= prod(8) = 64 (1)

B:No. of histogram bins = N × (N − 1) + 3 = 16 (16− 1) + 3 = 243 (2)

LBP(l) = NumCells× B = 243× 64 = 15552 (3)
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where C is the cell size and N is the number of neighbors within a radius R. From the
segmented original images, a texture feature set (TFS) is formed containing 15,552
LBP features computed at R = 1, N = 16, and C = 64.

2.4.2 Correlation-Based Feature Selection

The redundant features in the computed feature set sometimes degenerate the
classification performance of the CAD system. Therefore, it becomes essential that
relevant features are selected. Due to feature selection, the training time, overfitting,
and complexity of the classification model get reduced.

In CrFS, the best feature subset is chosen on the basis of the correlation
coefficient [22, 37, 46]. The optimal feature subset is selected on the basis of the
computed score that is used as a threshold and is given as:

S = n × rcf
√

n + n (n− 1) rff

(4)

where n is the number of features, rff is the mean inter-correlation between features,
and rcf is the mean correlation between the feature and the class.

In the present work, the TFS having a length of 15,552 is subjected to CrFS
yielding RTFS having length 104.

2.4.3 Morphological Feature Extraction

The shape and margin characteristics of a tumor can be efficiently represented
by morphological features as they are considered to be clinically significant in
discriminating the benign and malignant tumors. The benign tumors have a regular
shape (round or oval), while malignant tumors are irregularly shaped. The computed
morphological features are: area, perimeter, circularity, equivalent diameter, convex
area, solidity, Euler number, length of major axis and minor axis, LS ratio,
orientation, eccentricity, and extent of the tumor region [27].

The sample images representing the tumor boundary along with the convex hull
boundary, bounding rectangle, and ellipse of the tumor are shown in Fig. 7.

The computed morphological features have been aggregated to form a morpho-
logical feature set (MFS).

2.4.4 Serial Feature Fusion

Using feature fusion techniques, a single feature set is obtained by aggregating
multiple feature sets. In serial feature fusion, a combined feature set is obtained
by simply concatenating different features one after the other (union operation) [3,
53]. In the present work, the CFS is formed by serially fusing the reduced texture
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Fig. 7 Sample malignant breast ultrasound image, indicating (a) tumor boundary, (b) tumor
boundary and convex hull boundary, (c) tumor boundary and bounding rectangle, (d) tumor
boundary and ellipse of the tumor

feature set and morphological feature, i.e., RTFS (104) and MFS (13) are combined
serially as: CFS (117) = [RTFS: MFS] (104 + 13).

2.5 Optimal Feature Set Generation

The obtained CFS has been subjected to two feature selection and two feature
space dimensionality reduction methods to obtain optimal feature sets. For selecting
optimal features, a fuzzy feature selection technique based on an adaptive neuro-
fuzzy classifier using the linguistic hedge (ANFC-LH) algorithm, and a feature
selection technique based on the genetic algorithm (GA-SVM) has been employed.
For finding the optimal attributes, feature space dimensionality reduction methods
based on the PCA-SVM algorithm and the stacked autoencoder (SAE) with the
softmax classifier (SAE-SM) have been used. The description of the optimal feature
sets is given in Table 1.

2.5.1 ANFC-LH Algorithm-Based Feature Selection

In the ANFC-LH algorithm, linguistic hedges (LHs) have been used to bring out the
importance of fuzzy rules. The flexibility of fuzzy sets is improved by tuning the
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Table 1 Description of optimal feature sets

Original feature set
(l)

Feature selection/Feature space
dimensionality reduction method

Optimal feature set
(l)

CFS (117) ANFC-LH algorithm OFSLH (27)
GA-SVM algorithm OFSGA (65)
PCA-SVM algorithm OFSPCA (14)
SAE with softmax classifier OFSSAE (25)

Note: l Length of the feature set, CFS Combined feature set, ANFC-LH Adaptive neuro-fuzzy
classifier using linguistic hedges, OFSLH Optimal feature set obtained by using the ANFC-LH
algorithm, GA Genetic algorithm, SVM Support vector machine, OFSGA Optimal feature set
obtained by using the GA-SVM algorithm, PCA Principal component analysis, OFSPCA Optimal
feature set obtained by using the PCA-SVM algorithm, SAE Sacked autoencoder, OFSSAE
Optimal feature set obtained by using the SAE-SM

Fig. 8 General layer architecture of ANFC-LH

values of LHs such that the ambiguity of the overlapped classes is removed [8, 9,
54–56]. For further details on the explanation of fuzzy rules and their modification
through LHs, refer to [28].

The general architecture of ANFC-LH is presented in Fig. 8 having two inputs
in the feature space to be separated into two classes with each input being described
by two linguistic variables, thus giving a total of four fuzzy rules.

From the CFS having 117 features, on the basis of linguistic hedge values, a
total of 27 optimal features have been selected, thus forming an optimal feature set
represented as OFSLH. The relationship between input features and their respective
power of the LH value is represented in Fig. 9.

2.5.2 GA-SVM Algorithm-Based Feature Selection

The genetic algorithm is an evolutionary search procedure inspired by the biological
evolution model. In GA, the features are represented as binary vectors, and the



LBP-Based CAD System Designs for Breast Tumor Characterization 243

Fig. 9 The relationship between input features and their respective power of the LH value

Fig. 10 General schematic for the implementation of the GA-SVM algorithm. (Note: CFS
Combined feature set, OFSGA Optimal feature set obtained by applying the genetic algorithm)

feature search space is considered to be an n-dimensional Boolean space. The GA
selects a random set of individuals from the given population and works toward
producing the offsprings for the next generation. Three main operators used in
GA are selection, crossover, and mutation to create the successive generation using
current population on the basis of a fitness function.

This process of fitness-dependent selection is repeated multiple times till an
optimal solution is found [20, 45, 52]. In the present work, the initial population is
defined as a set of 117-bit binary-coded chromosomes. The classification accuracy
obtained by the SVM classifier is then used to evaluate the fitness of a chromosome.
The general schematic of the genetic algorithm applied to the CFS to generate an
optimal feature set obtained using GA (OFSGA) is shown in Fig. 10.

The different parameters used during the run of GA are number of variables:
117, population size: 200, mutation rate: 0.01, selection function: Roulette, scaling
function: Rank, crossover function: single point, and crossover fraction: 0.7. The
algorithm is terminated when the maximum iteration count is reached or no
improvement is witnessed in the fitness value.
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2.5.3 PCA-SVM Algorithm-Based Dimensionality Reduction

The PCA-SVM algorithm is used to find an optimal number of principal components
(PCs) to design efficient CAD systems for classification [27, 33, 36, 51]. No
significant information is provided by the redundant features present in the CFS,
which helps in discriminating the breast tumor types. Therefore, to remove this
redundancy, the features in the CFS are converted to optimal attributes using the
PCA–SVM algorithm. The optimal number of PCs to be retained has been decided
empirically by conducting recurrent experiments and stepping through first few PCs
∈{2, 3, . . . 15} [26, 51].

2.5.4 SAE-SM Algorithm-Based Dimensionality Reduction

Autoencoders (AEs) come under the class of generative deep models useful for
unsupervised learning. The output of the AE is the same as the input. First, the input
data are compressed by AEs into a latent space representation, and then the output
is reconstructed from this representation. Thus, an AE can be viewed to have two
parts: (i) encoder function, (ii) decoder function. The general architecture of an AE
is shown in Fig. 11.

Fig. 11 General architecture of an autoencoder
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The encoder maps the input vector x to another vector y using a transfer function
h as

y = h (wix + bi) (5)

where wi is the weight matrix at the encoder side and bi is the bias vector.
The function of the decoder is to reconstruct vector y to estimate the original

input vector.

x′ = h′
(
wjy + bj

)
(6)

where wj is the weight matrix at the encoder side and bj is the bias vector.
When the encoding layer’s output is connected to another encoding layer’s input,

then the resultant architecture is called a stacked autoencoder (SAE), allowing for
several layers of abstraction. The general architecture of an SAE is pictorially shown
in Fig. 12.

When multiple hidden layers are used, a greedy layer-wise approach is used for
initializing the hidden layers. This process is called pre-training, wherein the input
training data train the first hidden layer. The output from the first hidden layer is
then used for training the second hidden layer and so on till all the hidden layers of
the network have been trained. The hyperparameters of an SAE are the weights and
bias of the network, number of hidden layers, and number of hidden units present
in each layer. For getting the final network structure used in the present work, a

Fig. 12 General architecture of a stacked autoencoder
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random search was exhaustively used to select the parameters that produced the
best performance [7, 18, 19, 23].

2.6 Classification

Classification is a supervised learning approach, wherein a computer program learns
the underlying properties of the input data fed to it and on the basis of the gained
knowledge tries to classify the new data instances into discrete classes.

2.6.1 Adaptive Neuro-fuzzy Classifier

A neuro-fuzzy classifier is a combination of the fuzzy inference system and neural
networks. In order to deal with imprecise problems, a fuzzy inference system can
be used, wherein non-linear functions are approximated using a set of fuzzy IF–
THEN rules. However, these systems are unable to adaptively adjust themselves as
they cannot learn from their environment. Neural networks have a self-organizing
capability and can learn adaptively from their environment. Therefore, the respective
advantages of the fuzzy inference system and neural network are integrated in
a neuro-fuzzy classifier [21, 29, 43, 44, 48, 50]. The neuro-fuzzy network is
made up of multiple nodes interconnected via directional links. The node output
depends on the node parameters that can be fine-tuned while training the network
in order to minimize the error, making the network adaptive and is thus called an
adaptive neuro-fuzzy classifier (ANFC). The layer architecture of the ANFC used is
presented in Fig. 13.

Fig. 13 The layer architecture of ANFC used in the present work
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During the training of the ANFC, the center and width values of the Gaussian
membership function, power value of LHs, and connection weights between fuzzi-
fication and defuzzification layers need to be optimized for finding the optimum
fuzzy region. In order to form the fuzzy IF–THEN rules, the initial parameters
are obtained using k-means clustering. For the parameter optimization, the scaled
conjugate gradient (SCG) algorithm has been used as it has shown to produce the
lowest error rate for optimization [5].

2.6.2 Support Vector Machine Classifier

This classifier has been a popular tool for a wide variety of machine learning tasks,
especially involving the characterization of medical images [20, 27, 36, 51]. In
the SVM, a kernel-based approach has been used to separate the instances into
disjoint classes using the hyper-plane that maximizes the margin between two
classes. Non-linear data from the input feature space have been mapped into a
linear higher dimensionality feature space using the Gaussian radial basis function
(GRBF) kernel. For the implementation of the SVM algorithm, the LibSVM library
has been used [11]. The classification steps along with the optimal values of (C, γ)
are shown in Fig. 14. For a detailed study on the working of the SVM classifier,
readers are directed to [27, 51].

2.6.3 Softmax Classifier

A softmax classifier is stacked on top of a trained SAE network to represent the
class labels of the input data. The number of units in the softmax layer is the same
as the classes of the classification problem. The final network thus formed consists
of a stack of all the hidden layers and the softmax layer as shown in Fig. 15.

It can be noted that the SAE with three hidden layers stacked with a softmax
classifier has been used for breast tumor characterization. The input layer consists
of 117 units representing the size of the input feature set. The three hidden layers
have 100, 50, and 25 nodes, respectively, and the softmax layer consists of two
units corresponding to the benign and malignant classes in the present work. The
hidden layers and the softmax layer were trained for 2000 epochs each. This final
network is then trained as a whole in a supervised manner to achieve the final
classification performance. To fine-tune the network and update the parameters,
error back-propagation and scaled conjugate gradient have been used.
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Fig. 14 Steps followed in the SVM algorithm (a) Using optimal feature set generated using GA,
(b) using the optimal feature set generated using PCA. (Note: SVM Support vector machine, OFS
Optimal feature set, GA Genetic algorithm, PCA Principal component analysis)

Fig. 15 Architecture of the final network made up of the SAE with the softmax classifier

3 Results and Discussion

3.1 Experiments and Classification Results

The experiments conducted in the present work for breast tumor characterization
are described in Table 2.
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Table 2 Description of
experiments

Experiment No. CAD system design

Experiment 1 LBP-based CAD system using ANFC-LH
Experiment 2 LBP-based CAD system using GA-SVM
Experiment 3 LBP-based CAD system using PCA-SVM
Experiment 4 LBP-based CAD system using SAE-SM

Note: LBP Local binary pattern, CAD Computer aided diagnos-
tic, ANFC-LH Adaptive neuro-fuzzy classifier using linguistic
hedges, GA Genetic algorithm, SVM Support vector machine,
PCA Principal component analysis, SAE Sacked autoencoder,
SM Softmax

Table 3 Classification results obtained for the LBP-based CAD system using the ANFC-LH
algorithm

Classifier (FS: l) CM Acc. (%) ICAB (%) ICAM (%)

B M
ANFC (OFSLH: 27) B 19 2 96.0 90.4 100

M 0 30

Note: FS Feature set, l No. of optimal features, CM Confusion matrix, Acc Accuracy, ICA
Individual class accuracy, B Benign class, M Malignant class, ANFC Adaptive neuro-fuzzy
classifier, OFSLH Optimal feature set obtained by using the ANFC-LH algorithm

3.1.1 Experiment 1: LBP-Based CAD System Using the ANFC-LH
Algorithm

In this experiment, the CFS (117) containing both texture and morphological
features is subjected to the ANFC-LH algorithm generating OFSLH (27) that is
further fed to the ANFC for breast tumor characterization. The classification results
obtained for the LBP-based CAD system using the ANFC-LH algorithm are shown
in Table 3.

The results in Table 3 demonstrate that the 27 optimal features yielded an
accuracy of 96.0% with an individual class accuracy (ICA) value of 90.4% for the
benign class and 100% for the malignant class. It is worth noting that only two
benign instances out of 51 testing instances have been wrongly classified, while all
the malignant cases have been classified correctly.

3.1.2 Experiment 2: LBP-Based CAD System Using the GA-SVM
Algorithm

In this experiment, the CFS (117) containing both texture and morphological fea-
tures is subjected to a feature selection technique, GA-SVM algorithm, generating
OFSGA (65) that is fed to the SVM classifier for the characterization of breast tumor
types. The classification results obtained for the LBP-based CAD system using the
GA-SVM algorithm are shown in Table 4.
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Table 4 Classification results obtained for the LBP-based CAD system using the GA-SVM
algorithm

Classifier (FS: l) CM Acc. (%) ICAB (%) ICAM (%)

B M
SVM (OFSGA: 65) B 19 2 92.2 90.4 93.3

M 2 28

Note: FS Feature set, l No. of optimal features, CM Confusion matrix, Acc Accuracy, ICA
Individual class accuracy, B Benign class, M Malignant class, SVM Support vector machine,
OFSGA Optimal feature set obtained by using the GA-SVM algorithm

Table 5 Classification results obtained for the LBP-based CAD system using the PCA-SVM
algorithm

Classifier (FS: l) CM Acc. (%) ICAB (%) ICAM (%)

B M
SVM (OFSPCA: 14) B 19 2 94.1 90.4 96.6

M 1 29

Note: FS Feature set, l No. of optimal features, CM Confusion matrix, Acc Accuracy, ICA
Individual class accuracy, B Benign class, M Malignant class, SVM Support vector machine,
OFSPCA Optimal feature set obtained by using the PCA-SVM algorithm

The results in Table 4 demonstrate that the 65 optimal features yielded an
accuracy of 92.2% with an ICA value of 90.4% for the benign class and 93.3%
for the malignant class. A total of four instances out of 51 testing instances have
been wrongly classified.

3.1.3 Experiment 3: LBP-Based CAD System Using the PCA-SVM
Algorithm

In this experiment, the CFS (117) containing both texture and morphological
features is subjected to a feature space dimensionality reduction technique by using
the PCA, generating an optimal feature set OFSPCA (14). The obtained optimal PCs
are then further used to train an SVM classifier for the characterization of breast
tumor types. The classification results obtained for the LBP-based CAD system
using the PCA–SVM algorithm are shown in Table 5.

The results in Table 5 demonstrate that the 14 optimal PCs yielded an accuracy
of 94.1% with an ICA value of 90.4% for the benign class and 96.6% for the
malignant class. A total of three instances out of 51 testing instances have been
wrongly classified.
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Table 6 Classification results obtained for the LBP-based CAD system using the SAE-SM
algorithm

Classifier (FS: l) CM Acc. (%) ICAB (%) ICAM (%)

B M
SM (OFSSAE: 25) B 17 4 92.2 80.9 100

M 0 30

Note: FS Feature set, l No. of optimal features, CM Confusion matrix, Acc Accuracy, ICA
Individual class accuracy, B Benign class, M Malignant class, SM Softmax, OFSSAE Optimal
feature set obtained by using the SAE-SM algorithm

3.1.4 Experiment 4: LBP-Based CAD System Using the SAE-SM
Algorithm

In this experiment, the CFS (117) containing both texture and morphological
features is subjected to a feature space dimensionality reduction technique using the
SAE, generating an optimal feature set OFSSAE (25) that is used to train a softmax
classifier for the characterization of breast tumor types. The classification results
obtained for the LBP-based CAD system using the SAE-SM algorithm are shown
in Table 6.

The results in Table 6 demonstrate that the 22 optimal attributes yielded an
accuracy of 92.2% with an ICA value of 80.9% for the benign class and 100%
for the malignant class. It is also noted that four benign instances out of 51 testing
instances have been wrongly classified, while all the malignant cases have been
classified correctly.

3.2 Discussion

The classification performance of four LBP-based CAD system designs using (a)
ANFC-LH algorithm, (b) GA-SVM algorithm, (c) PCA-SVM algorithm, and (d)
SAE-SM algorithm for breast tumor characterization using ultrasound images has
been compared. The analytical comparison of the results obtained for each CAD
system is shown in Table 7.

From the analytical comparison of the results presented in Table 7, it can be
noted that all four CAD system designs have achieved comparable classification
accuracy for breast tumor characterization. The highest accuracy of 96.0% has
been achieved using the CAD system based on ANFC-LH followed by the CAD
system design based on the PCA–SVM algorithm that achieves an accuracy of
94.1%. A comparable classification accuracy of 92.2% has been obtained for the
other two CAD system designs, the difference being in the misclassified cases.
For CAD systems based on the GA-SVM algorithm, a total of four instances have
been wrongly classified out of 51 testing instances, with ICA values for benign and
malignant classes being 90.4% and 93.3%, respectively. For the CAD system based
on the SAE with the softmax classifier, even though the number of misclassified
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Table 7 Analytical comparison of the results obtained for each CAD system designed for breast
tumor characterization

Classifier (FS: l) CM Acc. (%) ICAB (%) ICAM (%)

B M
ANFC (OFSLH: 27) B 19 2 96.0 90.4 100

M 0 30
SVM (OFSGA: 65) B 19 2 92.2 90.4 93.3

M 2 28
SVM (OFSPCA: 14) B 19 2 94.1 90.4 96.6

M 1 29
SM (OFSSAE: 25) B 17 4 92.2 80.9 100

M 0 30

Note: FS Feature set, l No. of optimal features, CM Confusion matrix, Acc Accuracy, ICA
Individual class accuracy, ANFC Adaptive neuro-fuzzy classifier, OFSLH Optimal feature set
obtained by using the ANFC-LH algorithm, SVM Support vector machine, OFSGA Optimal
feature set obtained by using the GA-SVM algorithm, OFSPCA Optimal no. of PCs obtained
by using the PCA-SVM algorithm, SM Softmax, OFSSAE Optimal feature set obtained by using
the SAE-SM algorithm, B Benign class,M Malignant class

Fig. 16 ROC curves for experiments and their AUC values

instances is 4 out of 51, the advantage of this system is that all the malignant cases
are being correctly classified with ICA values for benign and malignant being 80.9%
and 100%, respectively.

The ROC curves along with the corresponding area under the curve (AUC) values
for the four CAD system designs are presented in Fig. 16. The ROCR library of the
R package has been used [42].
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Fig. 17 Proposed ANFC-LH-based CAD system design for breast tumor characterization. (Note:
LBP Local binary pattern, TFS Texture feature set, RTFS Reduced texture feature set, MFS
Morphological feature set, CFS Combined feature set, OFSLH Optimal feature set obtained by
applying the ANFC-LH algorithm)

An ideal CAD system design is the one that increases the sensitivity of correctly
identifying the malignant instances; thus the present work proposes the use of the
ANFC-LH model for breast tumor characterization as presented in Fig. 17.

4 Conclusion

In the present work, the authors have designed different CAD systems based on
different feature sets that are composed of the LBP texture features along with
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the morphological features. On the basis of the results obtained for the conducted
experiments, it is seen that the CAD system based on the ANFC-LH algorithm
yielded an accuracy of 96.0% and an ICA value of 100% for the malignant class
utilizing LBP texture features extracted using original breast ultrasound images and
morphological features extracted using despeckled images.

The proposed CAD system differs from the other related studies as the majority
of the conducted studies consider either original or pre-processed images alone for
the analysis of breast abnormalities; however, in the proposed CAD system, the
authors have considered a combination of features extracted from both original
as well as pre-processed images. These promising results are indicative of the
usefulness of the proposed CAD system in routine clinical practice.
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Detection of Fetal Abnormality Using
ANN Techniques

Vidhi Rawat, Vibhakar Shrimali, Alok Jain, and Abhishek Rawat

1 Introduction

Accurate fetal parameter measurement plays a significant role in obstetrics and
gynecology for the assessment of proper fetal development. Nowadays, many
women suffer from high-risk pregnancy. In this case, continuous and accurate
monitoring is required for the proper diagnosis of fetal health. But the accurate
evaluation of fetal growth during pregnancy is difficult with ordinary 2D US Images
[1]. Recent image processing techniques involving the artificial neural network
(ANN) can improve this important aspect of obstetrics and gynecology.

The role of intelligent techniques is very important to detect fetal abnormality
in ultrasound images. Fetal abnormality is detected on the basis of fetal biometric
parameters [2–6]. These fetal biometric parameters are extracted and measured
through segmentation techniques. The extracted features from 2D US images using
the segmentation technique form the database of the ANN network. The artificial
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Fig. 1 Block diagram of the proposed approach

neural network (ANN) model is designed for the analysis and classification of fetus
status. Figure 1 indicates the block diagram of the proposed approach.

Many diverse neural network designs are offered for biomedical imaging appli-
cations. Out of them, a feed-forward network is found to be the most successful
one for medical imaging. In this approach, the neurons in each layer are solitarily
associated with neurons in the next layer. Signals or information passes through the
input layer, hidden layer, and then to the output layer. In this network, normally, a
back propagation (BP) algorithm is applied to adjust each neuron’s weight and bias
values.

In this algorithm, the value of the weight is iteratively modifying based on the
error. Error is the comparison between the actual and the target output value. In
the network, real alteration of weights is done using a gradient descent algorithm.
The neural model is applied to fetus images in two phases. In the first phase, data
collection of fetal biometric parameters by the segmentation technique; then in the
second phase, a suitable neural network learning algorithm is applied on those data
for fetal classification. There are several learning algorithms that can be applied in
the detection of fetal abnormality.

2 Artificial Neural Network

ANN is a key intelligent technique used for nonlinear mapping based on the
human brain. There are several ANN techniques that can be applied for fetal
abnormality detection applications. In this chapter, feed-Forward back-propagation
neural network (FFBPNN) has been applied for the detection of fetal abnormality
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Fig. 2 Proposed feed-forward neural network architecture

because the back-propagation learning approach has been found suitable for fetal
abnormality detection. Network FFBPNN is one of the prevalent methods in the area
of ANNs. The multilayer perceptron (MLP) involves three or more layers within
which each layer is completely associated with the next layer. Basically, MLP is
a FFBPNN model that maps input data onto output data [7]. These are unequal
connections in which each connection may have a diverse weight. These weights of
particular connections encrypt the information of a network. The network works out
weights that can be used to regulate the output from a node that is subsequently fed
by the next layer.

In the FFBPNN, the input layer consists of the number of I/P neurons, which is
equal to the number of selected specific features (GA, FL, BPD, HC, and AC). The
output layer determines the anticipated output class. The intermediate hidden layer
may rise the fitness of the FFBPNN with nonlinear systems as shown in Fig. 2.

In the literature, various types of back-propagation learning algorithms are
described [8–11]. But, it is difficult to find the best one for a specific prob-
lem. Generally, Levenberg Marquardt (LMBP), Scale Conjugate Gradient (SCG),
Bayesian Regularization (BR), Broyden Fletcher Goldfarb Shanno Quasi-Newton
Back-propagation (BFGS), and Conjugate Gradient Back-propagation with Polak-
Ribiére updates (CGP) are used in the FFNN. But literature shows that LMBP, SCG,
and BR are successfully applied in biomedical applications, while the rest of the
methods have not been found to be suitable for medical imaging applications. So,
all fetal biometric parameters are trained with BPNN and LMBP [12–14], SCG [15],
and BR algorithms [16].

In this chapter, the use of the artificial neural network (ANN), especially the
feed-forward and back-propagation architecture, for fetus abnormality detection has



262 V. Rawat et al.

been made. In the first phase, two biometric parameters, AC and HC, have been
used to detect the abnormality of the fetus by a back-propagation algorithm [17].
Furthermore, five biometric parameters are involved in fetus abnormality detection
by LMBP, SCG, and BR algorithms [18]. The proposed neural model will help the
radiologist in early and accurate detection of fetal abnormality. The simulation result
shows close confirmation with real-time radiologist observations.

3 Experimental Setup for Fetal Abnormality Detection

Fetal images in the DICOM format, with marked and unmarked FL, BPD, HC,
and AC region, were obtained from the Peoples Medical College, Bhopal (M.P),
India. Then, all processing has been done with the MATLAB release 2.7 version
using image processing and the neural network toolbox. Median filters were
applied initially to these raw images for preprocessing [19]; then segmentation
and measurement of fetal parameters like FL, AC, and HC [20, 21] by the GVF
algorithm were performed. All fetal biometric parameters were used to train with
the ANN for classification [22].

3.1 Description of Data

Total 500 fetal biometric data of 11–40 weeks have been used for training the
neural network. Some fetal biometric data have been extracted from US images,
and the remaining data were taken from the radiologist and from the patient’s
records. The BP neural network has been used on 50 normal and abnormal fetuses
for training fetus data and recognizing the fetal status. The result shows that the
proposed method can classify the fetus abnormality effectively. Tables 1 and 2 show
the value of head and abdominal circumferences corresponding to gestational age.
These results are applied to the ANNmodel for training and validation. All 500 fetal
biometric data have been used for training the neural network with LMBP, SCG, and
BR algorithms. Fetal biometric features like FL, BPD, AC, and HC have been used
for fetal abnormality classification; in all 500 data, some data are given in Table 3.

Standard deviations (std.) and statistical mean are deliberately used to normalize
the data. Discrepancies of these parameters provide tentative insinuation about the
abnormality. The statistical feature of the fetus is given in Table 4. Statistical mean
and standard deviations can be found by the succeeding set of equations:

x = 1

MN

M∑

i=1

N∑

j=1

xi,j (1)
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Table 1 Examples of the
values corresponding to the
head circumference with
gestational age

S. no Gestational age (weeks) Head circumference (mm)

1 12 80
2 14 108
3 16 128
4 18 120
5 20 170
6 22 188
7 24 220
8 25 231
9 26 200
10 30 210
11 32 288
12 34 305

Table 2 Examples of the values corresponding to the abdominal circumference with gestational
age

S. no Gestational age (weeks) Abdominal circumference (mm)

1 12 63
2 14 84
3 15 96
4 16 106
5 18 131
6 20 151
7 24 201
8 25 212
9 26 223
10 30 262
11 32 283
12 34 305

where M, N represents a spatial row-column variable.

std =
√

1

(N − 1) (M − 1)

∑(
xi,j − x

)
(2)

4 Results Using Back–Propagation Algorithm

Total 50 US images have been used for the proper estimation of the training and
testing of the ANNmodel. The data set was acquired by appropriately preprocessing
of US images and then computing the structures from images. The actual output and
the target value of the network are compared and the error has been calculated as
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Table 3 Fetal biometric parameters of different images

S. no.
Gestational
age (weeks)

Femur
length
(mm)

Biparietal
diameter
(mm)

Head
circumference
(mm)

Abdominal
circumference
(mm)

1 12 08 15 80 63
2 14 12 24 108 84
3 15 14 32 128 96
4 16 23 38 170 106
5 18 34 49 188 131
6 20 42 57 208 151
7 24 48 53 220 201
8 25 49 66 231 212
9 26 54 71 200 223
10 30 59 79 210 262
11 32 63 80 288 283
12 34 70 89 305 305

Table 4 Statistical features regarding the normalization of the fetal biometric parameters

Fetal biometric parameters No. of sample Mean Std. Max Min

GA 500 25.48 5.929 32 11
FL 500 44.57 25.09 125 01
BPD 500 58.75 28.26 150 10
HC 500 214.87 90.23 425 32
AC 500 208.03 93.18 410 18

given in Tables 5 and 6. The error minimization curve for each epoch of the neural
network during learning is shown in Fig. 3. As we increase the number of neurons,
the mean square error reduces. The final parameters of the successfully trained
neural network are shown in Table 7. Experimental fetal US images with numerical
data findings have been divided by an expert radiologist into two states of fetus like:
abnormal and normal fetus. Investigational outcomes showed good accuracy and
efficiency of the algorithm in clinical applications. After the appropriate training of
the ANN model, normal and abnormal fetuses can be rapidly distinguished.

5 Results Using LMBP, SCG, and BR Algorithm

A total of 500 fetal data were applied for the assessment of the training and testing
of the ANN models. Fetal data are separated into three sets, correspondingly for
training, 70% and 15% each for testing and validation. For proper learning, the
FFNN with a back-propagation algorithm is used. Two hidden layers and five input
nodes are applied in the proposed ANN model. The ANN model architecture is
given in Fig. 4.
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Table 5 Target and actual output with the error of HC

S.no
Gestational
age(weeks)

Head
circumference
(mm)

Target output
(1- normal
0-abnormal) Actual output Error

1 12 80 0 0.047 −0.047
2 14 108 1 0.789 0.211
3 16 128 1 0.656 0.343
4 18 120 0 0.021 −0.021
5 20 170 1 0.612 0.387
6 22 188 1 0.797 0.202
7 24 220 1 0.923 0.076
8 25 231 1 0.894 0.105
9 26 200 0 −0.129 0.129
10 30 210 0 −0.125 0.125
11 32 288 1 0.752 0.247
12 34 305 1 0.912 0.087

Table 6 Target and actual output with the error of AC

S. no
Gestational
age (weeks)

Abdominal
circumference
(mm)

Target output
(1- normal
0-abnormal) Actual output Error

1 12 63 0 0.027 −0.027
2 14 84 1 0.6784 0.3216
3 15 96 1 0.7568 0.2432
4 16 106 1 0.7881 0.212
5 18 131 1 0.7456 0.2544
6 20 151 1 0.6879 0.3121
7 24 201 1 0.8765 0.1235
8 25 212 1 0.8190 0.181
9 26 223 0 0.2340 −0.234
10 30 262 0 0.245 −0.245
11 32 283 1 0.8764 0.1236
12 34 305 1 0.8224 0.1776

Table 7 Neural network
final training parameters

Input nodes 2
Hidden nodes 100
Output nodes 1
Learning rate 0.4
MSE 0.0001
Iterations 6000
Training time (seconds) 2015
Run time (seconds) 0.01

A total of three training algorithms are applied to the given input, targets, and
the number of neurons. The target matrix consisted of zero and one; zero for fetal
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Fig. 3 The neural network learning curve

Fig. 4 Block diagram of the FFNN architecture

abnormality and one for the normal fetus. The normal and abnormal status of the
fetus can be detected by the output of the ANN model. Every algorithm is applied at
least ten times, and the best performance results of LMBP, SCG, and BR algorithms
are saved, as shown in Figs. 5, 6, and 7. These figures also show the number of
epochs required corresponding to a certain mean square error.

Training performance shows a mean square error with the corresponding epoch.
Low MSE gives optimized weights and biases values.

The final neural network parameters, like the number of nodes, the number of
neurons, and mean square error (MSE), are given in Table 8. Percent of accuracy is
given by:

%of Accuracy = accurate cases

total cases
× 100 (3)
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Fig. 5 Training performance of the Levenberg–Marquardt algorithm

Fig. 6 Training performance of the SCG algorithm

The complexity of the system depends on the number of neurons and hidden
layers. The data set is randomly classified into two fetus states (abnormal and
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Fig. 7 Training performance of the Bayesian regularization algorithm

Table 8 Performance comparison of algorithms

Algorithm No. of neurons Epochs MSE Percent of accuracy

BR 10 409 0.03209 100
SCG 20 50 0.09165 60
LMBP 10 31 0.0789 68

normal) after taking proper comments from expert radiologists. These data are
applied for training, validation, and testing. The results found in the testing phase
are cross-verified with expert radiologists. Proper training of the ANN model can
separate the fetus status as the case may be.

6 Comparision of LMBP, SCG, and BR Algorithms

The fetal biometric parameters have been used to train these three algorithms, and
the comparison is based on their respective performance. The output, MSE, and
training time of each network are calculated. Computational speed and MSE are
the key parameters on the basis of which comparison has been made, as given in
Table 8. The training methods are completed on the accomplishment of itemized
iterations or on the failure of validity, or on the accomplishment of the performance
target. Results show that the output of a network with ten neurons is good in the case
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of LMBP and BR algorithms and with 20 neurons in the SCG algorithm case. The
target of training is to achieve an optimal weight of each connection of neurons using
LMBP, SCG, and BR algorithms. After that validation and testing of the proposed
ANN, the model is verified with AC, BPD, HC, and FL of 28–32 weeks of fetus.

As per Table 8, the Bayesian regularization algorithm provides an anticipated
output with 10 neurons and the SCG algorithm with 20 neurons. In view of com-
plexity and speed, lesser neurons are desirable. Hence, the Bayesian regularization
algorithm is good for the fetal parameter analysis. The mean square error has been
found to be minimum in the Bayesian regularization algorithm and the highest
in the case of the SCG algorithm. Testing results of the neural model show that
the Bayesian regularization algorithm has the highest accuracy in detecting fetal
abnormality.

7 Conclusion

In the first part, BPNN-based neural models have been applied for the analysis and
detection of fetal abnormality using two biometric parameters. Furthermore, in the
second part, LMBP, SCG, and BR algorithms in feed-forward back-propagation
modes have been applied using five fetal biometric parameters. This approach could
offer a real-time and accurate analysis of fetus status and, thus, improved quality of
life. The BPNN is suitable for two fetal parameters but its computational speed is
low with five fetal parameters.

Hence, the fetal abnormality is detected using three neural network learning
algorithms LMBP, BR, and SCG of the FFNN and is compared for the best
assessment of fetus growth. Performance of the training algorithm is case sensitive
and closely dependent on training parameters. A wide range of training parameter
variations has been made, which tested the performance for each case. The result
shows that the Bayesian regularization algorithm is the most suitable choice for
fetal abnormality detection. Therefore, the Bayesian regularization algorithm-based
neural model could offer the best prediction for the patient in real-time, accurate
fetal status, and hence improved quality of life is possible. This neural model is
reliable and highly adaptable in any environment. It can be incorporated into the
software of US machines to provide the best prediction.
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Machine Learning and Deep
Learning-Based Framework for
Detection and Classification of Diabetic
Retinopathy

V. Purna Chandra Reddy and Kiran Kumar Gurrala

1 Introduction

Over the last decade, the analysis of high-resolution colour digital photography
has received the attention of researchers. Due to different modalities of images,
the investigation of digital images is a challenging task [1]. With the help of a
conventional digital camera, images of the retina of an eye can be easily captured.
High-quality data of the retina’s appearance can then be preserved. In the long run,
it has been observed that storage, retrieval and transmission without degrading the
image quality are not feasible [2]. DR is one of the more recent applications of
retinal digital imaging. It is the most common cause of vision loss among working-
age people. In recent times, the UK government has suggested that diabetic patients
above 12 years old get annual eye screenings using digital retinal photography [3].
It is a unique feature that these images may be captured from anywhere, regardless
of time and place. Henceforth, quality assurance of those captured images must be
ensured, which is also an integral component of the screening programs. The main
causes of diabetes are physical inactivity, increased levels of obesity and ageing.
The report states that diabetes rates are predicted to slowly increase from 2.8% of
the population in 2000 to 4.4% by 2030. Figure 1 presents the detailed view of
regions of a human eye affected by DR.

Due to the increasing diabetic population, the quality assurance of these images
must be ensured within a limited time and rapidly investigated with the help of
pattern recognition algorithms [4, 5]. It is observed that the process of identifying
the lesion data and their decision variables in a retinal image is a non-trivial task,
due to several sets of operations involved in low-level as well as high-level image
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Fig. 1 Detailed view of DR-affected regions

processing [6]. In the algorithmic operation performed on digital retinal images, it
composes of different stages that are linked together to achieve efficient outputs.

1.1 Symptoms of DR

As we know that microaneurysms and neovascularisation, intra-retinal haemor-
rhages, exudates, red lesion, area, perimeter, width and branching angles, etc. are
important DR clinical geometrical and haemodynamic features [7]. Let us see
detailed data of DR features.

(a) Microaneurysm: It is the deformation formed near the walls of the blood
vessels. It is represented as balloon-shaped that degraded the walls of the
vasculature [8]. Several microaneurysms were formed for finding the levels (or)
stages of DR. Their default size is of 1–3 pixels.

(b) Haemorrhage: It is formed due to the overflow of blood from infected
capillaries. It is further divided into three categories, namely, dot, flame, and
blot. Each category has distinguished itself from its red spots. It has a larger
size than MA, and it has a flame shape. When the blood vessels damage with
nerve fibres, then haemorrhages are easily formed [9].

(c) Hard exudate: It is in bright yellow- (or) white-coloured objects formed near
the retinal region. It has a waxy outlook with sharp edges over the background
from blood vessels. It is also developed due to the leakage of blood from veins
and its nearby vessels.

(d) Soft exudate: It occurs due to the occlusion of the arteriole. Due to the reduced
blood flow near the retinal region, it causes ischemia near the retinal nerve
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fibre layer [10] that causes ganglion cells around the retinal regions. This debris
detection is a trivial task.

1.2 Types and Levels of DR

Based on the formation of several microaneurysms and haemorrhages near the
retinal images, there exist different stages of DR [11] which are explained as
follows:

• Normal: If the signs/symptoms of the DR are absent, it falls under the class of
normal.

• Mild: If the signs/symptoms of the microaneurysms are present, it falls under the
class of mild.

• Moderate DR: If the signs/symptoms of the microaneurysms and haemorrhages
are presently less than 20 in each quadrant, it falls under the class of moderate
DR, i.e. hard exudates.

• Severe DR: If the signs/symptoms of the microaneurysms and haemorrhages are
presently more than 20 in each quadrant, it falls under the class of severe DR, i.e.
soft exudates.

The proliferates of DR are mostly characterized by neovascularization (NV),
which is formed from infected blood vessels [12]. Henceforth, investigation of MA
and NV is of prime importance in finding out the type of lesions and differentiating
exudates from non-exudates.

1.3 DR-Computer-Aided Diagnosis (CAD)’s Perspective

By analyzing the fundus eye images, the level of DR shall be obtained. An intelligent
process of detecting and classifying the DR via image processing methods is an
integral part of the medical image system [13]. To obtain the information from low,
middle and high images, some image processing techniques on segmentation and
localization are performed over OD, blood vessels, microaneurysms, haemorrhages,
vessels branching angles and other features. Optical features of microaneurysms,
haemorrhages and vessels are extracted for the experimental purpose. Based on the
size of blood vessels, the classification algorithms are used. Several CAD systems
[7] are invented to detect, classify and predict the DR and its level. With the
assistance of previously selected features space, the classification of DR is then
made. A possible combination set of features helps define the grade of DRs. Several
CAD models have been available in the literature to detect DR and classify its level
of lesion [14]. Feature extraction and classification algorithms are the key indicators
of the algorithmic part. The efficiency of the feature extraction process is directly
proportional to the efficiency of the classification algorithm.
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2 Detection of DR Using Image Processing

The detection process of DR using image processing techniques consists of stages
like pre-processing, segmentation, feature extraction and classification stages as
shown in Fig. 2 [15]. The pre-processing stage depicts the normalization of the
fundus images like brightness, contrast enhancement, etc. The segmentation stage
portrays the segmenting of the infected retinal regions from deformed blood vessels,
nerves and pathologic lesions. The task of feature extraction is to estimate the
required quantitative information of the feature space [16]. Finally, the selected
features are given as an input to classification algorithms and thus, the performance
of the systems is computed. Quality of the fundus images alters due to various
factors such as different movements of the eye, the opacity of an eye, pupils’
changes, brightness and intensity of an eye. Henceforth, pre-processing of images
is a mandatory task. The following are the steps of image pre-processing explained
below [17]:

Fig. 2 General block diagram for the detection and classification of DR images
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• RGB space: Here, the green plane surface depicts the prominence of the blood
vessels, and noise is represented as red and blue pixels. These red and blue pixels
are improved for efficient segmentation outcomes. In this, the RGB image is
transformed into several spaces to pre-process the acquired image [18].

• Enhancement of contrast and denoising models: It is helpful to improve the
quality of an image. It is purely based on enhancing the images. Sample
algorithms consist of the Contrast Limited Adaptive Histogram Equalization
(CLAHE), mode, median and Gaussian filters.

• Segmentation: Here, some morphological operations are performed over an
image via mathematical operators [19].

• Structural elements: Grey-level images are performed by analyzing their struc-
tural elements. These also differ in terms of size, shape and orientation. Here, all
sorts of the circular, elliptical and linear structures were analyzed.

• Dilation: It is the easiest operator that translates the pixel values.
• Erosion: It depends on the structure of the element. It just erodes the foreground

pixels, like the background pixels. It is mostly used for preserving the edges and
boundaries detection.

• Opening: It is used for shape filters and eliminates smaller objects.
• Closing: It is the dual operator, which preserved the background region on its

matching shapes.

3 Related Work

The section presents reviews of existing techniques suggested by various
researchers. Nadeem Salamat et al. [20] presented a review of DR using retinal
images. They reviewed about merits and demerits of 79 algorithms that are subjected
to the detection and classification of DR. It is observed that feature selection acts as
the main key indicator to classify the process. In [21], authors presented a CANet
algorithm that detects both the DR and diabetic macular oedema (DME) grading.
The relationship between diseases at the image level was analyzed using deep
network features. Two modules, disease-specific and disease-dependent features
were collected and trained for classifiers. Authors in [22] presented a deep learning
model that detected DR at various stages. Prior research stated that low accuracy was
obtained during the classification stage. Therefore, convolutional neural network
(CNN) models like Resnet50, Inceptionv3, Xception, Dense121 and Dense169
were employed to select the relevant features, and then the classification tasks were
processed. In [23], a binocular Siamese-like CNN via a transfer learning process
has been addressed. With the help of Inception V3, instead of feeding a single eye
as an input, a group of fundus images was given. By doing so, the authors have seen
remarkable results in classification accuracy.

In [24], authors presented a multiple instance learning (MIL) model, which
leveraged the discontinued information in the image annotations, which inclined
the error rate. Here, the joint optimization encoding scheme was also explored
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using pathological images with the medium features set. It depicted the importance
of the decision-making process. In [25], a super-pixel multi-feature classification
on digital colour fundus images is presented, where 19 multi-channel intensity
features are taken to characterize the candidates, and classification results have
maximized between the class-scatter and the within-class scatter. Authors in [26]
explored the non-proliferative framework to detect the symptoms of retinopathy
using neural networks. A novel morphological algorithm was designed to segment
the retinal lesions of an eye. Then, a set of 19 features is collected and learned
via artificial neural networks. Finally, the outputs are classified into normal, mild,
moderate and severe. With the help of a back-propagation network, features are
easily trained for the ANN. In [27], authors discussed the significance of converging
the local features. They introduced automatic detection using hybrid sampling and
boosting classifiers that discriminated the microaneurysm from non-microaneurysm
candidates. It is observed that the convergence of intensity and shape descriptor
features developed different modalities. An automatic classification system on red
lesions in longitudinal fundus images is addressed in [28]. The authors have found
that due to the differentiation in the illumination and the contrast of a retinal feature
lowered the performance of the system. Here, the SVM classifier was employed
to train the intensity and shape features. Due to small changes in the lesions, the
classification rate may vary, which causes high modalities. In [29], authors presented
a Multi-Sieving deep learning algorithm that detected the retinal microaneurysm via
hybrid text/image mining. They provided a semantic solution between images and
diagnostic information. It also additionally detected the unbalanced microaneurysm
via a CNN that leveraged all sorts of supervised information. It aimed to remove the
research gap of low-level image features for diagnostic information.

In [30], authors suggested a leakage detection model for diabetic and malarial
retinopathy. Authors have observed the image modalities in fluorescein angiog-
raphy. Here, saliency maps were generated between intensity and compactness
of the images which helped for differentiating the superpixel of all images. An
averaging operator is a unique feature employed in the generation of saliency
maps. If two saliency maps share a similar pixel-wise multiplication operator, then
it is considered as leakage regions. Furthermore, graph-cut segmentation models
were employed over different saliency cues. In [23], a Siamese-like CNN for the
detection of DR is explored. Initially, a Siamese-like architecture was trained using
transfer learning. Then, whole binocular fundus images were given as an input to
the network model and their correlation was studied. Along with this inception,
V3 was also used for discovering the pre-processing modules of the binocular
designs. Authors in [31] presented a reliable detection model that localized the
microaneurysms via singular spectrum analysis. Here, dark objects are removed
using the filtering process. The images are analyzed via multiple directions via a
singular spectrum model. Then, the correlation coefficient is estimated between the
observed profile and the actual profile measured from its shape scale factors. In
[32], a microaneurysm detection model using PCA and machine learning methods
is presented. Images are arranged into 25 by 25 patch pixels and classified via the
random forest, neural networks and support vector machine. The system has reduced
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the dimensionality of the inputs. In [33], the morphology mean shift algorithm,
which recognized the exudates of retinal images, was presented. The images are pre-
processed by normalization, contrast enhancement and the removal noise. Finally,
the mean shift process is applied for defining the coarse information analysis. At
last, the morphology algorithm is used for classification that contains exudates
pixels. Recently, a deep multiple instance learning mode by image level annotation
features is presented in [34]. It helped to learn the features via improvement of
DR images via lesions analysis. Some features space was independent of instances.
Authors in [35] presented a model to label the DR images by using the modified
AlexNet architecture. The severity of the diseases is found and then classified into its
level using SoftMax and the Rectified Linear Activation Unit (ReLU). The system
has improved the learning parameters.

4 Comparative Analysis

In this section, a comparative table is developed based on the studies discussed
above. The table is developed based on the performance evaluation parameters and
the merits and drawbacks of the methods (Table 1).

5 Experiments and Results

5.1 Datasets

For performing the various kinds of experiments, Indian Diabetic Retinopathy
Image Dataset (IDRID) along with the ISBI 2018 sub-challenge 2 dataset is
considered. It consists of 5 class DR with 5 levels of grades for classification
operation ranging from 0 to 4 along with DME grading ranging from 0 to 2.
The dataset contains 103 images available for testing purpose, and 413 images are
considered for training operation.

5.2 Performance Evaluation

Table 2 demonstrates the performance of various classifiers with different quan-
titative evaluation. The accuracy of the CNN is 85.48%; this is higher than the
other classifiers. The precision rate of a Naive Bayes classifier is 94.31%, and
the CNN framework achieves 95.16%, which is higher than the other classifiers.
The recall rate for the Naïve Bayes classifier is 92.16%, which is also higher than
the other classifiers, and the CNN ensemble learner attains the value of 93.33%.
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Table 2 Performance analysis, comparison with the existing methodologies

Method Accuracy Precision Recall F-measure

SVM [25] 71.62 67.3 86.03 72.1801
Decision Tree [27] 75.66 77 89.49 81.1452
Naïve Bayes [35] 80.53 94.31 92.16 80.0425
Adaboost [41] 84.69 94.18 66.12 75.0446
CNN [42] 85.48 95.16 93.33 87.71
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Fig. 3 Graphical representation of quality parameters obtained using various classification meth-
ods

The F-measure and the mean square error also relatively provide 87.71% and
0.105%, respectively. From this analysis, it is clear that both Naïve Bayes and
Adaboost outperform the other classifiers, and also the CNN ensemble classifier
provides better performance than the other classifiers. The graphical representation
is presented in Fig. 3.

6 Conclusion and Future Scope

DR is the prime reason behind the vision loss among the working-age population.
Medical practitioners have identified that the changes in clinical, geometrical and
haemodynamic features are the main causes of DR. The distortions in features like
blood vessel area, exudates, microaneurysm, haemorrhages and neovascularization,
etc. are the main symptoms of DR. This paper is a review of techniques of low,
middle and high-level vision for detecting and classifying DR. Several recent
works are collected and their techniques are reviewed. Simultaneously, numerical
comparative analysis of their suggested techniques is also discussed. It is observed
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from the review that further clinical research on detecting/predicting DR needs to be
performed. Feature extraction and classification are an integral part of the detection
algorithms for earlier detection of DR.

As future work, we are planning to design an efficient recommendation frame-
work from the DR detection process. Though a variant study has been conducted
to detect DR by statistical features of abnormal blood vessels, the concept of
neovascularization methodology is least focussed while observing abnormal blood
vessels. Since it includes the analysis of high-risk statistical features, it will be a
challenging and innovative task for researchers.
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Applications of Artificial Intelligence
in Medical Images Analysis

Pushpanjali Gupta and Prasan Kumar Sahoo

1 Introduction

The visual representation of a human perception, which can be depicted through
two-dimensional (2D) or three-dimensional (3D) display is referred to as an image.
Image could be a photograph captured by camera or a hologram created using
lenses. The image can be captured using different devices such as microscopes,
telescopes, cameras, lenses, mirrors, etc. Based on the capturing device, the image
could be static or moving, where a static image is obtained from a single frame. In
contrast, the moving images are obtained from multiple frames, and therefore are
called video. However, when an image is stored and handled using digital devices
such as computer, the image termed as “digital image” is organized as a finite 2D
array of picture elements called pixels. Each pixel of a digital image represents a
number or set of numbers, describing the gray level intensity or color intensity,
where the row and column of 2D array correspond to the vertical and horizontal
spatial location of the pixels in the image, respectively [1]. Digital images have
several characteristics such as the type of image that could be black and white,
where the pixels values are either 0 or 1, determined based on the illumination of
light on the pixel of image. Another type of image is the colors image consisting of
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three colors, red, green, and blue (RGB), used in computer monitors and scanners
or image consisting four colors cyan, magenta, yellow, and black (CYMK), which
are generally associated with color printers.

1.1 Medical Images

The digital images can also be obtained from non-optical sources such as X-ray,
ultrasound, electromagnetic radio wave, where instead of light, the intensity of X-
rays or sound or radio waves are recorded. The conveniences provided through
storage, instantaneous flow, and digital images transfer have led to the wide
use of digital imaging in the medical field. The digital medical images can be
obtained using several diagnostic imaging tools such as X-rays machines, ultrasound
machines, Computed tomography (CT) machines, Magnetic Resonance Imaging
(MRI) machines, Positron Emission Tomography (PET) machines, etc. The medical
images obtained using the diagnostics tools reveal the internal part of the human
body to the medical practitioner for diagnosis of diseases, examining of injury and
deciding the treatment procedures [2]. The advancements of health care system
and increase in the availability of medical imaging equipment have led to the
global increase in the quantity and quality of the medical images. However, the
medical images obtained are highly unstructured data, which makes it difficult for
inexperienced medical practitioner to derive value out of such unstructured data.
Consequently, the use of artificial intelligence (AI) in diagnostic medical imaging is
extensively suggested [3], where AI can be applied to denoise the raw digital data
produced during the scan and automatically recognize complex patterns in imaging
data to provide physicians with insights on patients’ medical needs.

1.2 Artificial Intelligence

As soon as there was successful progress made towards the possibility of load-
ing and scanning the medical images into the computer, there have been many
researches carried out for digital image processing consisting of edge and line
detector filters, and region growing models from 1970s to the 1990s. Further, the
rule-based systems were also modeled to solve particular tasks. However, in case of
complex objects such as in medical field, it is complicated job to build a rule-based
model for such complex objects with a large number of parameters. As a result,
the uses of machine learning and deep learning in computer-aided diagnosis have
gained importance in determining the objects of interest in medical images, such
as organs and lesions, which are mostly irregular objects. There are various ML
algorithms which can be used for classifying or clustering the objects of interest
in medical images. In traditional computer vision approach, using standard feature
input such as intensity the lesions can be separated from the organ. However, in ML
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model such as support vector machine (SVM), multilayer perceptrons (MLP) and
random forests, the manually extracted features of lesions are fed to the ML models
for training the model to differentiate the lesions optimally. Nonetheless, feature-
based ML requires feature engineering, which is a tedious and error prone job.
Besides, the feature extraction is a challenging task, as the manual procedure may
not have the distinguishing power that is sufficient for classifying objects of interest
[4, 5]. The end-to-end ML approach termed as deep learning, created by Geofrey
Hinton in 2007, can automatically learn high-level representations of objects from
large numbers of data instead of using a set of handcrafted features. The deep
learning was not recognized widely, until the introduction of convolutional neural
network (CNN), a deep learning based approach, which won victory in ImageNet,
the best-known computer vision competition. In short, the CNN, an approach of
deep learning takes the image as input and gives the output in the categories of
classes such as lesion and no lesion in an image. This form of learning is made
possible with multiple nonlinear layers used to acquire a high-level representation
of image without feature engineering [6, 7].

Rest of this chapter is organized as follows. In Sect. 2, various medical image
modalities used for diagnosing and monitoring diseases are discussed. Various
image processing methods used for making the medical images suitable for AI-
based analysis are elucidated in the Sect. 3. In Sect. 4, surveys of related works
used for performing AI-based analysis, especially classification on medical images
of different modalities are discussed. The concluding remarks are given in Sect. 5.

2 Medical Imaging

Medical imaging, also called diagnostic imaging refers to several technologies
used for producing images of internal structure of the human body for facilitating
accurate diagnosis, intervention, prognosis, assessment of injury, and function of
some organs or tissues. Efficient decision making crucially depends on correct
diagnosis when disease diagnosis or prevention, as well as curative and palliative
care are considered. Although the clinical judgment of practitioner may be sufficient
prior to treatment of some medical conditions, the use of medical imaging confirms
the clinical judgment. Furthermore, the medical imaging assists in the correct
assessment of diseases for providing proper treatment and follow-up strategies. In
clinical context, medical imaging is roughly equivalent to radiology which uses
radiation to diagnose and treat diseases. Nonetheless, other techniques such as
soundwaves or radio waves also can be used to view tissues. Moreover, other
medical imaging techniques also include endoscopy and colonoscopy, where a
flexible instrument is equipped with a camera for obtaining image. Although, in
recent years images of removed tissues or organs are also digitalized for medical
study, such procedures are still considered pathology instead of medical imaging.
However, in this chapter the digital pathology is considered as one of the medical
imaging modalities.
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Fig. 1 Various modalities in medical imaging

2.1 Imaging Modalities

The imaging modalities refer to the different types of medical imaging techniques,
as shown in Fig. 1, those utilize certain physical mechanisms such as sound, light,
or electromagnetic wave to detect patient’s internal signals that reflect either the
anatomical structures or physiological events. Due to the numerous varieties of
disease and abnormalities affecting all regions of the human body, it is scientifically
impossible to use a single imaging modality for providing the uniquely desired
understanding and/or discrimination of the disease type or abnormality. As a result,
the different imaging modalities instead of being considered as substitute, work as
complementary, providing a powerful and synergistic armamentarium of clinical
diagnostic, biomedical, and therapeutic research capabilities. Although the different
imaging modalities have significant disparity in scale and/or characteristics features,
each of them has the potential to significantly advance the practice of medicine.

2.1.1 Conventional X-Ray

X-ray is the oldest and most commonly used imaging modality, as shown in Fig. 2a,
which uses ionizing radiation to visualize patients’ internal structures by sending
beams of x-rays through the body [8]. Based on the density of tissues the beams are
absorbed at different levels. Considering the anatomical locations of different parts
of body, the x-ray can be used for analyzing the abnormalities in skeletal systems,
lungs, teeth, digestive system or any ingested substance. However, conventional
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Fig. 2 Examples of various modalities in medical imaging, (a) X-ray [9], (b) Fluoroscopy [10, 11],
(c) Angiography [12–14], (d) CT, (e) MRI [15, 16] (f) Mammography [17, 18], (g) Ultrasound, (h)
Nuclear medicine, (i) Endoscopy, and (j) Digital pathology

x-ray produces static images. In order to have moving images, another form of
imaging modality, namely fluoroscopy can be used.

2.1.2 Fluoroscopy

The fluoroscopy, as shown in Fig. 2b, uses x-rays at a lower dose, to have a real-
time visualization of body structures. During the procedure, contrast media such as
iodine, barium, and air are used to view movement of tissues, or to guide a medical
intervention such as pacemaker insertion or joint replacement/repair. The common
clinical applications of fluoroscopy are Barium studies, where barium meal, barium
swallow and barium enema are used for evaluation of the gastrointestinal tract.
Moreover, other applications include the evaluation of fistulae, and reduction of
fractures under image guidance. In addition, the fluoroscopy is also used to monitor
the throat during the process of food swallowing.
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2.1.3 Angiography

The angiography is used for visualizing the inside or lumen of blood vessels,
especially the veins, arteries, and the heart chambers. In this imaging modality,
contrast media is injected into the blood vessels for the study, and x-rays are used for
visualization of obstruction. The common clinical applications of angiography are
diagnosis of aneurysms, particularly the intracranial aneurysm, Fig. 2c, diagnosis of
obstructive vascular disease, diagnosis of bleeding vessels, diagnosis of arteriove-
nous malformations, image guided interventional procedures, and assessment of the
vascularity of malignant tumors. Conventionally, the angiography was performed
employing simply angiography or digital subtraction angiography (DSA). With the
advancement of technology, current procedure of angiography replaces conventional
x-rays with Computed Tomography (CT) scan, Magnetic Resonance (MR) Imaging
scan, where the angiography is clinically termed as CT angiography (CTA) and MR
angiography (MRA), respectively. In the case of both CTA and MRA, the images
can be reconstructed in 3D to have better visualization of vessels and accompanying
pathology can be viewed from different angles.

2.1.4 Computed Tomography (CT)

The CT scan is a noninvasive diagnostic procedure which uses multiple x-ray images
captured from different angles and reconstructed for the creation of 2D and 3D
images on the film. The images produced during this procedure are referred to
as non-contrast CT scan (NCCT) or C-images. The elements that make up the
image are displayed as a 2D pixel, where each pixel carries a value for density or
attenuation, represented by a Hounsfield Unit (HU). In addition to being noninvasive
procedure, CT scan can also be used in scenario where contrast media can also
be injected during a CT study to distinguish structures of similar density in the
body. The contrast media contains iodine, a substance which can block x-rays thus
allowing the proper visualization of tissue of interest. The images obtained from
contrast CT scan are termed as CCT or C+ images. The most common clinical
applications of CT imaging are in brain for both with and without contrast, head
and neck CT, chest/mediastinum CT, abdominal and pelvic CT, Fig. 2d. In addition
the CT is preferred for urography, colonography, angiography for determination of
complications if any. As discussed earlier, when CT scan is preferred for performing
angiography, it is referred to as CTA. On the other hand, when CT scan is used for
examining the blood flow in the blood vessels, it is called CT perfusion (CTP),
which is functional imaging technique. The CTP is primarily used for determining
the blood flow volume in heart and brain.
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2.1.5 Magnetic Resonance Imaging (MRI)

The magnetic resonance imaging technique in radiology is used to visualize the
detailed internal structure of human body using magnetic radiation. Based on the
dominant influence on the appearance of tissues, the MRI are divided into different
sequences, namely T1 weighted, T2 weighted, diffusion weighted imaging (DWI),
fluid attenuated inversion recovery (FLAIR), and Apparent Diffusion Coefficient
(ADC); those are ordered combination of radiofrequency pulses and gradient pulses
designed to obtain the data for the formation of an image. In order to have a detailed
study of smaller organs or vessels, the MRI technique may be combined with
intravenous contrast media injection where gadolinium based contrast agents are
used in the MR image. The common applications of MRI include brain MRI with
diffusion studies, Fig. 2e, spinal MRI, neck MRI, cardiac MRI, chest/mediastinal
MRI. The abdominal MRI is used for assessment of liver, spleen, kidneys, and
extremities for joints, muscles, and bone disorders. Although MRI is safe for
patients, injuries or death may be caused to patients with metallic implants, as
the foreign metallic objects may cause injury through projectile motion into the
magnet. When MRI scan is used for determining the health of blood vessels, as
discussed in angiography, it can be referred as MRA. Similarly, when it is required
to determine the blood flow at capillary level in tissue, using functional imaging
method, perfusion studies can be done using MRI, thereby referring to the imaging
method as magnetic resonance perfusion (MRP). Like CTP, MRP is also primarily
used for study of perfusion in brain tissues.

2.1.6 Mammography

The mammography uses low energy x-rays for imaging of breast tissue specifically.
Using mammography in practice, standardized views of the breasts can be obtained
for the assessment of breast lesions along with detection of early breast cancer.
During the procedure, each breast is compressed against the film and examined
separately to obtain maximum visualization of calcification or masses. The common
clinical applications of mammography include screening mammography to detect
early cancer in asymptomatic women, diagnostic mammography to obtain the image
of breast for diagnosis of a previously identified suspicious breast lesion, Fig. 2f,
surveillance mammography to assess recurrence of malignancy in women with
known breast cancer, and needle localization to obtain tissue samples from breast
masses that appear suspicious on screening or diagnostic mammography, and tumor
marking for surgery.

2.1.7 Ultrasound

This imaging modality utilizes high-frequency sound waves instead of x-rays for
obtaining cross-sectional images of the body. The ultrasound could be conventional
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or Doppler. The Doppler ultrasound uses Doppler shift phenomenon for vascular
studies. Besides, the ultrasound is a cheap procedure, which does not require
ionizing radiation. However, the outcome of this easy and safe procedure is operator
dependent. The most common clinical applications are abdominal ultrasound which
is performed to visualize the pathology and anatomy of liver, gallbladder, spleen,
kidneys, lymph nodes, retroperitoneum, and abdominal structures. The pelvic
ultrasound is carried out to assess the urinary bladder, reproductive organs, prostate,
vascular structures, lymph nodes, and adnexal masses. In case of cardiovascular
ultrasound including echocardiography, the assessment of heart, and peripheral
vascular structures is made, whereas the intraluminal ultrasound assesses the
gastrointestinal tract and the blood vessels. The transfontanelle ultrasound helps
visualize the intracranial structures before the closure of the fontanelles in pediatric
patients. The obstetric ultrasound is primarily used to examine the fetus and related
structures in pregnant women as shown in Fig. 2g.

2.1.8 Nuclear Medicine

This imaging modality involves the inhalation or injection of radioactive tracers to
visualize the various organs. The radioactive tracer or radiopharmaceutical tracers
is formed by the addition of a radioactive isotope with a pharmaceutical specific to
the part of the body being examined. The image obtained in this technique is taken
using a gamma camera that captures the gamma radiation emitted by the radioactive
tracers injected into a patient body. In the gamma camera, there is radiation sensitive
crystal which detects the distribution of the tracer within the patient’s body. All the
detected distribution of tracers are collected and converted to a digital format to
produce 2D or 3D images on the monitor. This form of imaging is referred to as
positron emission tomography (PET) scan, which mainly focuses on disease on
cellular level. In recent years, the PET scan is combined with CT (PET-CT) or
MRI (PET-MRI) to obtain macro and micro level detailed study of the organ to be
studied. The common clinical application of nuclear medicine includes bone scan
to assess metabolic activity of the bones, specifically for oncology staging, arthritis,
and fractures, as shown in Fig.2h. The myocardial perfusion scan application is
used to compare the blood flow to the myocardium at exercise and rest allowing
the differentiation of infarction and ischemia. In the renal scan, the perfusion and
drainage of the kidneys are determined to calculate the renal function. In lung
scan, the PET allows comparison of ventilation and perfusion of the lungs to
diagnose pulmonary embolism; and in thyroid scan the assessment of appearance
and functionality of thyroid gland can be made.

2.1.9 Endoscopy

The endoscopy imaging modality involves the insertion of long, thin, flexible tube
called endoscope, to view the insides of different organs of human body; for
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instance, colon as shown in Fig. 2i. The endoscope comprises a camera and light,
which are responsible for capturing the images of insides of organs [19]. During
endoscopy the endoscope can be put into the body through mouth, anus, urethra,
and sometimes through a small incision made near the organ of interest. In recent
years, new endoscopy techniques are included such as virtual endoscopy and capsule
endoscopy. In virtual endoscopy, the endoscope is not inserted into the body; instead
CT scans are obtained for thin segment of the body and images are reconstructed
using computer to obtain complete view of insides of organ. However, in case of
capsule endoscopy, a small vitamin-capsule sized camera is swallowed by patient.
The camera takes pictures of insides of esophagus, stomach, and intestine. Later,
after 8 hours the camera is excreted and doctors review the images.

2.1.10 Digital Pathology

In recent years, with the advancement of cost-effective whole slide scanners, tissue
histopathology slides are now digitized and stored in digital image form [20]. The
availability of sophisticated, high-performance imaging and analysis platform can
rapidly replace traditional paradigm of a pathologist-microscope with pathologist-
large flat screen panel to view and rapidly analyze digitized tissue sections. As a
result, the digital pathology uses computer workstations to view digital whole slide
images (WSIs), as shown in Fig. 2j, obtained from scanner such as NanoZoomer
digital slide scanner, Aperio digital pathology slide scanner, Glissando digital
pathology scanner, etc. These scanners scan the glass microscope slides of tissues
with high resolution and produce the image of size greater than 1 Gigabytes.
Along with the image file, the associated metadata, including the specimen ID,
specimen type, patient information, and the relevant staining information are also
obtained in digital format. Digital pathology and image analysis can be used to
have greater diagnostic accuracy, reproducibility and standardization of inclusion
criteria and prediction of outcomes. Currently, there is no standardization in the
file format for digital pathology. However, the stored digital pathology images can
be retrieved using the different image management systems for viewing, annotating,
and analyzing images. The common applications of digital pathology are the clinical
laboratory areas including histology, cell biology, medical biology, hematology, and
most importantly oncology. However, digital pathology has not yet received Food
and Drug Administration (FDA) approval in broader areas. The transition from
pathologist-microscope to pathologist-flat screen panel is a major step towards the
growth and development of pathology as a scientific discipline.

2.2 Image Formats

The images obtained using different imaging modalities, including conventional
radiography, ultrasound, CT, MRI, fluoroscopy, angiography, mammography,
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endoscopy, and nuclear medicine are stored in PACS (Picture Archiving and
Communication System). The PACS is a medical technology used primarily to
store significantly largest of image files in the routine course of diagnosing and
treating the patients. In PACS, the images can be stored in both 2D and 3D form
with slice thickness 1mm, 3mm, or 5mm, using a standard protocol named DICOM
(Digital Imaging and Communications in Medicine) which is used by medical
professionals for the transmission and management of medical images and related
data. Nevertheless, in case of the digital pathology there is no standard for storing
the images obtained by digital pathology slides scanner. As a result, the format
of images obtained is proprietary file format. For instance, the digital pathology
image of WSI obtained using a Nano Zoomer Digital Pathology Scanner is in the
proprietary file format, NanoZoomer Digital Pathology (NDP) image, which is
vendor dependent; therefore requires special software to view the image [21].

When obtaining image using different modalities for different parts of human
body, the human is exposed to different dose of radiation, which could have harmful
effect in the body. In order to measure the impact of intensity of radioactive
emissions on the human tissues and health, sievert (Sv) and millisievert (mSv) are
used. The Sv and mSv are used for estimating “equivalent dose” by comparing
imaging procedures, taking into consideration the biological effect of radiation,
which varies with the type of radiation used and vulnerability of the exposed body
tissue. Similarly, in case of MRI, instead of using radiation, magnets are used for
acquiring image. The strength of magnet used in MRI is represented as 1.5T or
3T, where T stands for Tesla, the unit of measurement for determining the strength
of magnet. Currently, in hospitals the MRI scanner uses magnetic strength of 1.5T
or 3T. In October 2017, MRI scanner with magnetic strength 7T was cleared for
clinical use, and in December 2017, MRI scanner with magnetic strength 10.5T was
approved for clinical use in United States and Europe. Nonetheless, it is not widely
available [22].

3 Image Processing Methods

When the images are obtained in different modalities such as CT and MRI, they
may contain artifacts in the form of noise, which must be removed to improve the
quality of the image. In addition, the image data obtained are highly unstructured.
Therefore, different image processing methods such as smoothing [23], sharpening
[24], and morphological techniques can be applied on the images as discussed
below.
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3.1 Smoothing

The image represented in the form of matrix of pixels may contain random
variation in the pixel content called noise, which might be caused during acquisition,
transmission, and/or digitization process. Although, all the noise cannot be removed
altogether, the noise can be reduced using the smoothing process. One way of
smoothing the image for noise reduction is to normalize the neighboring pixels value
and averaging the pixel by converting the image to grayscale. In case of averaging,
each pixel is replaced by the average of its neighboring pixels in the considered
sliding window. Another way of replacing the pixels value in the sliding window is
to replace the pixel value with median of its neighboring pixels value.

As given below, there are few predefined filters that can be applied for achieving
the image smoothing.
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3.2 Sharpening

When it is required to have enhanced edges, image sharpening technique is applied
using high-pass filters. The sharpening focuses on removing blur and de-hazing an
image while emphasizing on the texture of the image. While sharpening an image,
the resolution and acutance of an image is considered. The resolution represents the
size of an image in pixels. The greater the number of pixels, the higher the resolution
and sharpness of the image. On the other hand, acutance refers to as the subjective
measurement for contrast of an edge. Edges that have more contrast appear to be
more defined to the human eye. Therefore, sharpening defines the details of an
image, especially the small details. It is often applied to overcome the blurring effect
introduced by capturing device during image acquisition to increase the legibility,
and focus on certain areas.

There are few predefined high-pass filters that can be used for producing the
sharpening effect as discussed below.
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3.3 Morphological Transformations

The morphological transformations [25] are some simple image processing tech-
niques mainly applied in images. In image processing, the morphological operations
are used for extracting information about shapes and structures of objects in the
image. The morphological operation needs two inputs, firstly the input image and
secondly the kernel or structuring element based on which the nature of operation
such as erosion, dilation, opening, closing, etc. is decided. The structuring element
is a small matrix of pixels, which is positioned to slide over at all possible locations
in the image and the corresponding neighboring pixel values are compared. The size
of the structuring element is specified by the dimension of matrix and the shape of
the structuring element is specified by the spatial organization of the pixel values. In
image processing, some morphological operations check if the structuring element
fits exactly to the image, while others check if structuring elements intersects the
neighboring pixels in the image. Some of the morphological transformations are
described below.

3.3.1 Erosion

Similar to soil erosion, the erosion [26] erodes away the boundaries of foreground
objects. When the kernel slides through the image, all the pixels near the boundaries
are discarded depending on the size of the kernel. The erosion is useful for removing
the small unwanted noises in the output image and detaching two connected
components. When a structuring element Y is used to erode an input image X, the
erosion can be denoted as X � Y . In order to produce a new image Z, the erosion
checks if the structuring element Y fits in to the input image X, repeating for pixel
coordinates (x,y). The erosion operation removes the foreground structures that are
smaller in size than that of the considered structuring element. Therefore, it helps in
reducing the noisy connection between two foreground objects. When the unwanted
noisy pixels are removed, the resultant output is the sharpened object in the image.
However, the erosion also reduces the size of the region of interest.

3.3.2 Dilation

The dilation [27] acts as opposite of erosion. It increases the size of the foreground
object. Generally, the erosion is followed by dilation to increase the area of the
foreground object, which was shrunk due to erosion. It is also useful in connecting
broken parts of an object in the image. When a structuring element Y is used to
dilate an input image X, the dilation can be denoted as X ⊕ Y . The new image Z

is produced when structuring element Y hits the input image X repeating for all
coordinates (x,y). Contrary to the erosion operation, the dilation operation adds a
layer of pixels to the outer and inner boundaries of the region of interest, which
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results in filling the holes within a region and reducing the gaps between different
regions where smaller gaps are filled in.

3.3.3 Opening

The opening procedure involves the erosion followed by dilation in one step [28].
Opening opens up the gap between the regions connected by a thin connectivity of
pixels. During opening, any regions that are not eliminated by the erosion operation
are restored to their original size by the use of dilation. The opening of an image
X by element Y is denoted as X ◦ Y = (X � Y ) ⊕ Y . The opening operation
is idempotent. Once opening is applied to an image X with a structuring element
Y , subsequent opening with the same structuring element has no further effect on
the image X. Therefore, (X ◦ Y ) ◦ Y = X ◦ Y . However, opening smoothes the
boundary of the object and eliminates the thin bulges appearing on the boundary
of the object. Opening is dual of closing; closing the background pixels with a
particular structuring element Y is equivalent to opening the foreground pixels
with the same structuring element Y . When opening is applied to an image, all
pixels those are belonging to the foreground object and are covering entirely by the
structuring element will be preserved, failing to which the foreground object will be
eroded away. After the erosion, the new boundaries of the foreground are formed in
such a way that the structuring element Y fits inside the image X.

3.3.4 Closing

The reverse of the opening is closing, where dilation is followed by the erosion. The
closing of imageX with the structuring element Y is denoted asX•Y = (X⊕Y )�Y .
The closing is suitable when it is required to close the small holes in the inside of
the foreground object along with preservation of the background regions those have
a similar shape of structuring element. The most common application of closing is
to fill in the small holes in the regions of interest. If only dilation is applied to fill
in the holes, all regions of pixels are distorted indiscriminately. In order to reduce
such distortion effect, dilation is followed by erosion in the closing operation. The
effect of closing can be observed when a structuring element Y slides-over each
foreground region of interest. For every pixel point in the image X, it is checked if
the structuring element X can touch the background point without being inside of
any part of the foreground region. If it is possible, the pixel value of the considered
point is set to the background, else it is set to the foreground region of interest. Once
the closing is carried out covering all points in an image, application of closing in
an image X with the same structuring element Y will have no effect. Therefore, like
opening, closing is also idempotent operator (X • Y ) • Y = X • Y .
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4 Medical Image Analyses

There are various applications of artificial intelligence in the field of medical data
analysis such as classification, detection, and segmentation. Out of various appli-
cations, our scope includes the classification of medical images. The classification
focuses on classifying objects of interest within an image into two or more classes.
When using traditional image classification, the low-level and mid-level features
are extracted from an image and then, a ML based trainable classifier is used
for performing label assignment. However, with the advancement of research in
machine learning, the high-level features in deep learning classifiers have proven
to be superior to handcrafted low-level features. In convolutional neural network
(CNN) [29], end-to-end training is performed combining both feature extraction
and classification networks.

In 2012, the deep learning based image classification achieved a milestone
when AlexNet [30] achieved top-5 error of 15.3%, resulting the top performance
in the annual competition of ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). The ILSVRC considers roughly 1000 images in each of 1000 classes
from the ImageNet dataset. Overall, the training set consists of around 1.2 million
images, validation set consists of 50,000 images, and testing set consists of
150,000 images. ImageNet is a dataset comprising over 15 million categorized high-
resolution images belonging to roughly 22,000 categories [31]. Later on, a very
deep convolutional network, known as Visual Geometry Group network [32] gained
popularity after becoming 1st Runner up in ILSVRC-2014. The top position was
achieved by GoogLeNet [33]. Later, the ResNet [34] won 1st position in ILSVRC-
2015. All these popular deep learning algorithms have obtained state-of-the-art
classification accuracy in ImageNet.

4.1 Radiography Image

The deep learning based image analysis of x-ray images are widely discussed
in different literatures as follows. In the work [35], a deep CNN model called
Decompose, Transfer and Compose (DeTraC) is developed for the determination of
COVID-19 in chest x-ray (CXR) images. The designed model comprised of several
phases, where the first phase consisted of the pretrained CNN model, required
for extracting deep local features from each input image. This is followed by
the class decomposition layer, which is primarily used for simplifying the local
structure of the data distribution. In the second phase, the training is performed
using a popular optimization method, namely gradient descent. Finally, a class-
composition layer is used to refine the resultant classification of the images. The
class decomposition and composition components were appended before and after
knowledge transformation from an ImageNet pretrained CNN model. The class
decomposition layer partitioned all the classes belonging to the image dataset into
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k number of independent subclasses. Each of the subclasses was assembled back
using the class-composition component for obtaining the resultant classification
of given image dataset. In the stage I, a pretrained CNN (AlexNet, VGG19,
ResNet, GoogLeNet, and SqueezeNet) model was used for feature extraction for
constructing a deep feature space from input CXR images followed by use of
principal component analysis for dimension reduction. In the stage II, transfer
learning was adapted where the final classification layer of an ImageNet pretrained
CNN model was fine-tuned to classify the decomposed classes. In the stage III, the
labels associated with decomposed classes were predicted, and final classification
were refined using error-correction criteria. The main contribution of DeTraC was
the way the algorithm dealt with the most challenging problem of data irregularities,
class imbalance. There were 19 cases, comprising both normal and SARS cases
used for this experiment, with 80 samples of normal CXR images (4020 * 4892
pixels) and CXR images containing 105 samples of COVID-19 and 11 samples of
SARS with 4248 * 3480 pixels. All the experiments were carried in MATLAB [36]
2019a on a 3.7 GHz Intel(R) Core(TM) i3-6100 Duo, Nvidia Corporation and 8 GB
RAM. The DeTraC model achieved 98.23% accuracy and AUC 0.96 with VGG19
pretrained model.

The CheXNet [37] is a popular model with 121 layers trained on 112,120 frontal
view x-ray images of 30,805 unique patients with 14 diseases; namely atelectasis,
cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, con-
solidation, edema, emphysema, fibrosis, pleural thickening and hernia. The model
achieved F-score of 0.435 as compared to F-score of 0.387, achieved by radiologist.
The work used CNN for the identification of vessel regions in angiography images,
which is crucial for the early diagnosis of the coronary artery disease. A fixed-
size window was used for extracting patches from the input image. The position
of central pixel of the patch whether it was located inside or outside the vessel
was also indicated in the output. Finally, the trained CNN was used to divide
the image in two regions comprising the vessel and the background. In [38],
DarkCovidNet was designed for identification of COVID-19. There were total
1125 images used consisting of 500 Pneumonia, 125 COVID-19(+), and 500 No-
Findings. The model achieved 98.08% accuracy and 87.02% accuracy, for binary
and three-class classification, respectively. The designed deep learning model is
built with 17 convolutional layers. For each input image “X” and kernel “K,” the
convolution operation in the convolutional layer can be performed using the Eq. 1.

X(X ∗ K)(i, j) =
∑

m

∑

n

K(m, n)X(i −m, j − n) (1)

where ∗ is used to apply the convolution operation. The activation function used
after convolution is the Leaky ReLU calculated using Eq. 2.

f (x) =
{
0.01x x < 0

x x ≥ 0
(2)
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When considering MR images, there have been several studies performed for
different organs of the human body. For instance, in [39], 3D deep learning
convolutional neural network architecture was presented for brain extraction of MR
images. The proposed method can be used for both non-enhanced and contrast-
enhanced scans. The model used brain tumor dataset and achieved dice coefficient
score of 95.02. A different study was made for prostate cancer management
considering the MR images [40]. The study aimed to assess the early changes
in femoral heads in prostate cancer patients. The T1, T2 and Apparent Diffusion
Coefficient (ADC) sequences were used to extract 34 radiomics features. Sixty
femoral heads were analyzed. Postradiotherapy, it was observed that there were no
changes in features extracted from ADC. However, the features obtained from T1
and T2 had significant changes postradiotherapy with p-value < 0.005.

In the study made in [41], 446 lesions for hepatocellular carcinoma (HCC) and
hepatic hemangioma (HH) were considered from 369 patients. 1029 radiomics
features were obtained from T2 weighted imaging and DWI. There were four
classifiers used, namely decision tree, random forest, K-nearest neighbors and
logistic regression. The best model logistic regression obtained testing AUC of
0.89, sensitivity of 0.822 and specificity of 0.714, which was better than less
experienced radiologist, where AUC was 0.702, p < 0.005. A combined study
was made for handcrafted feature analysis and deep learning analysis considering
brain tumor MR images [42]. Using the handcrafted classifier; the model achieved
96.10% accuracy. With only deep learning model the accuracy achieved was
97.8% accuracy. However, when both deep learning and handcrafted feature were
combined, the model achieved 99.3% accuracy.

4.2 Ultrasound Image

Considering the use of ultrasound image, there have been several works performed
in the field of artificial intelligence. One such work focusses on fecal retention
assessment, where absence or presence of rectal feces was analyzed in 42 patients
[43]. Among 42 patients, 31 patients had the presence of rectal feces, and 11 had no
feces in rectal area. considering the presence of feces in rectum, further classification
of positive feces cases was also performed. Therefore, three-class classification
was performed using deep learning for identifying classes such as absence of
feces, hyperechoic area, and strong hyperechoic area in the rectum. The designed
model achieved sensitivity of 100% and specificity of 100% in binary classification.
However, when three-class classification was performed, the model achieved 85.7%
accuracy in identifying strong hyperechoic area and 88.2% accuracy in identifying
hyperechoic area.

Another important analysis was performed in [44], where robust pattern classifier
was built for diagnosing children with posterior urethral valves (PUV). The devel-
oped multiple-instance learning model was designed to distinguish 71 children with
unilateral hydronephrosis from 86 children with PUV. Total number of ultrasound
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images obtained were 3504 images in sagittal view, and 2558 images in transverse
view. The designed multiple-instance deep learning model provided extraction of
information features automatically based on kidney ultrasound images. The model
achieved AUC of 0.961±0.026, with sensitivity of 0.873±0.120, and specificity of
0.986±0.032.

In order to have deep learning based classification of thyroid nodules using
ultrasound images, retrospective study was performed considering 1040 cases which
consisted of 1841 benign nodules and 1393 malignant nodules [45]. Although,
transverse and longitudinal views were scanned for each patient, only longitudinal
view ultrasound images were chosen for further investigation, since the transverse
view contained small background for images with thyroid nodules. In addition,
the images were taken from same ultrasonic system. The whole dataset was
divided in the ratio of 80:20 for training and testing, respectively, using pretrained
VGG16 model with fine-tuning. The performance of deep learning based model was
compared with radiomics-based methods which used 302 features such as intensity
difference, gray scale histogram, Gabor filters, and wave features extracted manually
from region of interest, marked by radiologists. The radiomics method used SVM
as the classifier. The designed model achieved an accuracy of 74.69%, whereas the
radiomics method achieved an accuracy of 66.81%, proving the better performance
of deep learning based model.

The advancement of technology has made it possible to study fetal brain in
ultrasound images. Considering the use of deep learning for fetal brain analysis,
the work [46] proposed the classification of normal and abnormal sonographic
images in standard axial planes. The work used dataset collected from affiliated
hospital of Sun Yat-Sen University, China. There were 12,780 cases of women
who underwent prenatal examination between 18 and 32 weeks of pregnancy with
twins or singleton. The dataset contained 12,682 ultrasound images from 10,251
normal cases in standard axial neurosonographic (SAN) planes, obtained following
International Society of Ultrasound in Obstetrics & Gynecology guidelines. In
similar method 2529 abnormal cases consisting of 3277 images were also obtained
with abnormality like neural tube defect, lissencephaly, midline structural anomaly,
space-occupying lesion, ventriculomegaly, microcephalus, intracranial hemorrhage,
holoprosencephaly or posterior fossa anomaly. In addition, 3D ultrasound dataset
were also included consisting of 1922 3D volume dataset from 961 normal cases,
and 4843 3D volume dataset from 1051 cases with abnormality. Before classify-
ing the images as abnormal or normal, segmentation was performed to remove
distracting areas and find possible candidates for region of interest. The region of
interest candidates were classified into normal and abnormal, and the localization of
abnormal region was performed using heat maps, and overlay images. The dataset
were augmented using random rotation of angle between 0◦ and 60◦, vertical or
horizontal flipping for simulating different fetal positions. All training procedures
were implemented using Keras with TensorFlow as backend with four Nvidia
GeForce GTX 1080Ti graphics processing units. The classification model achieved
an average accuracy of 96.3%, with sensitivity of 96.9%, specificity of 95.9% and
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AUCwas 0.989. The use of AI in prenatal ultrasound can assist sonologists in earlier
and better diagnosis of fetal abnormality.

4.3 Endoscopy Image

Considering the use of AI in endoscopy imaging, there have been few works
proposed for identification and detection of polyps in colon or rectum using CNNs.
For instance, 41 cases of colon endoscopies consisting of 190 colon lesions images
collected from February 2015 until October 2016 were used for training CNNs
to assist in cT1b diagnosis [47]. The retrospective study used unenhanced colon
endoscopy white light images with dimension 520*520 pixels. The considered cases
included 14cTis cases with endoscopic resection and 14cT1a and 13cT1b cases
with surgical resection. The types of lesions analyzed were protruding, flat, and
recessed. Caffe was used as implementation framework and AlexNet was used as
the CNN. Augmentation of data in the form of oversampling was performed to
avoid impartiality in image numbers. The model achieved sensitivity, specificity,
and accuracy of 67.5%, 89.0%, and 81.2%, respectively, with AUC 0.871 in the
determination of cT1b. The work tried to minimize the workload of endoscopists by
developing quantitative diagnostic support system. Another work aimed to develop
a fully automatic algorithm for detection and classification of hyperplastic and
adenomatous colorectal polyps. The work used transfer learning application which
utilizes features learned from nonmedical dataset with 1.4–2.5 million images using
deep CNN. There were 1104 endoscopic non-polyp images taken under both white
light and narrow band imaging (NBI) endoscopy.

In addition, 826 NBI endoscopic polyp images consisting of 263 hyperplasia
images, and 563 adenoma images were also considered. The proposed method
contributed with sensitivity of 87.6%, precision of 87.34%, and accuracy of 85.9%
in the identification of polyps those are adenomatous but have been incorrectly
judged as hyperplasia and therefore, the automatic algorithm can assist endoscopists
in timely resection of polyp at an early stage before the polyps develop into
invasive cancer [48]. The proposed work aimed to construct an AI system which
can be used for accurate automatic detection and classification of colon polyps
using retrospective images obtained during colonoscopy. The work used 16,418
images, where the training was performed using 4752 colon polyps and 4013 images
of normal colon and rectum. The performances of model were validated using
remaining 7077 colonoscopy images. The model achieved sensitivity of 92% and
positive predicted value (PPV) of 86%, wherein case of white light images the
sensitivity and PPV were 90% and 83%, respectively, and in case of narrow band
images the sensitivity and PPV were 97% and 98%, respectively [49].
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4.4 Digital Histopathology Image

When considering digital pathology, authors in [50] used CNN to extract the features
automatically and the extracted features were used for classification of breast and
colon cancer into benign and malignant tumor. The CNN model consisted of 5
layers architecture similar to LeNet and achieved 99.74% accuracy for binary
classification. The works in [51, 52], and [53] focused on deep learning analysis
for omitting the feature engineering and performing the classification of colorectal
cancer into benign and malignant based on tumor differentiation, classifications
of brain tumor and colorectal tissues into normal and abnormal considering 717
patches, using AlexNet architecture. The work in [51] achieved 99.6% accuracy,
[52] achieved 97.5% accuracy for classification and the work in [53] achieved 96%
accuracy with VGG16 architecture. A different contribution was made in [54],
where the authors attempted to predict the 5 years Disease Free Survival in case
of patients with CRC. The work used VGG16 for feature extraction and LSTM for
predicting the 5 years survival probability. The work achieved an accuracy of only
69%when performing the DFS prediction directly from the image. Recently, in [55],
the authors trained CNNs and RNNs on WSI of stomach and colon for performing
multiclass classification into three categories, namely adenoma, adenocarcinoma,
and non-neoplastic. They achieved AUCs up to 0.99 and 0.97 for gastric adenoma
and adenocarcinoma, respectively. While, on the other hand for colonic adenoma
and adenocarcinoma, they achieved AUC 0.99 and 0.96, respectively.

5 Conclusions

Applications of artificial intelligence are the most useful use case for medical image
analysis in healthcare. AI could be used to decode the complex unstructured image
data obtained from different imaging modalities such as CT, MRI, endoscopy, etc. It
can extract meaningful information for better decision making with better precision
in applications such as cancer detection and pneumonia diagnosis. Since medical
imaging technology is advancing abruptly; human cannot keep pace with the
advancement. As a result, the use of machine learning can process the information
faster than human to provide accurate and contextual information to the experts. It
can improve the jobs of the clinicians by enabling them to focus on most complex
cases, resulting in acceleration of the diagnostic and treatment process as a whole.
Consequently, medical image analysis can move away the trend from reactive
healthcare and shift to support the informed and predictive digital healthcare. In
this chapter, the use of AI in medical image analysis is discussed when different
imaging modalities such as CT, X-ray, MRI, and nuclear medicine are considered.
We present review of related literatures showing the use of AI considering different
modalities such as analysis of CT or endoscopy images to design the prognosis
models for the diseases like cancer, tumor, and diabetes.
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Intelligent Image Segmentation Methods
Using Deep Convolutional Neural
Network

Mekhla Sarkar and Prasan Kumar Sahoo

1 Introduction

The modern era of Artificial Intelligence (AI) has emerged as an absolute revo-
lutionary maneuver that has become a fundamental constituent in all present-day
software. AI incorporates those computational mechanisms that can mimic human-
like intelligence and can minimize human intervention. These mechanisms mainly
involve Machine Learning (ML) and Deep Learning (DL) methodologies. But, DL-
based methods have gained much popularity owing to their superior performance
concerning model accuracy with the handling of large-sized data. Besides, the
DL method does not require hand-crafted feature engineering techniques, unlike
traditional ML algorithms. These DL characteristics have greatly influenced the
development of robust architectures applicable across multiple domains, such as
image data analysis, natural language processing, grid signal analysis, etc. However,
in this article, we will mainly focus on image data analysis using DL.

The extensive involvement of the camera in day-to-day life, as noticed in the
case of autonomous driving, surveillance maintenance, or healthcare management,
generates a bulk amount of data in the form of images. Images are nothing but an
artifact representing and depicting human perception of any physical object/objects
in either two-dimensional (2D) or three-dimensional (3D) form. These image data
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require continuous analysis for extracting meaningful information. But, manual
inspections of these data are challenging, laborious, and time-consuming. Besides,
human intervention is erroneous and subjected to inter and intra-observer variability.
Thus, computerized digital image processing becomes vastly essential. DL methods
are used tremendously in solving problems related to digital image processing such
as image classification, colorization, detection, localization, segmentation. Amidst
several DL techniques, such as DCNN, LSTM (Long Short Term Memory), Deep
Boltzmann Machines (DBM), Recurrent Neural Network (RNN), Auto Encoder
(AE), Deep Neural Networks (DNN), particularly DCNN, from 2012 onwards, have
received much attention owing to the proposed AlexNet. AlexNet has successfully
reduced the error rate from 25.8% to 16.4% [1] in ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset. The DCNN models have the potential
ability to learn complex non-linear functions along with self-evaluation over end-to-
end training of features generates superior results in comparison to the traditional
ML algorithms. The self-evaluation and learning method helps in capturing data
variations through backpropagation, where DCNN tries to minimize the differences
among ground truth and predicted data. The in-built invariance of DCNN generates
advisable results for image classification tasks but failed for dense prediction tasks
as in image segmentation due to the presence of undesired spatial information [2].

Image segmentation is the approach for separating the digitized image into
multiple visually distinct sub-regions having similarities in properties, such as color,
texture, gray level, brightness, and contrast which have a semantic meaning for the
given problem. Formally, image segmentation can be defined as [3]

the partition of an image into a set of non-overlapping regions whose union is the entire
image.

Therefore, the main goal of image segmentation lies in simplifying the image
constituents, into a more eloquent and easily comprehensible form. Mathematically,
the segmentation of an image can be represented as in Eq. 1 [4]

Ns⋃

i=1

Si = I, Si ∩ Sj = ∅, i �= j (1)

The application of image segmentation varies widely. For example, in Computer-
Aided Diagnosis (CAD) for tumor lesions, tumor cell segmentation from the
non-tumor cell becomes the initial step. In the case of Context-Based Image
Retrieval (CBIR) methods, segmentation helps in extracting the essential and
informative features which are relevant to the query. Image segmentation also plays
an active role in self-driving cars, video surveillance, augmented reality systems,
robotic cognizance, scene parsing, etc. 3D reconstruction, a rudimentary outline,
and an object appearance detector can also be constructed from the segmentation
result using interpolation algorithms such as marching cubes, tetrahedrons, and
so on. Therefore, the diverse problem statements coupled with a wide variety of
datasets require different image segmentation models. These models have distinct
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network architectures. Therefore, this chapter focuses on some popular DL models
commonly used in solving image segmentation tasks.

2 Image Segmentation

Image segmentation assists in extracting the Region of Interest (RoI) present within
an image. The extracted region contains information about the RoI boundaries
as well as their location in the image. This information is necessary for object
recognition. For instance, a food identification system requires the knowledge of
each item present on a plate. The identified food aids in nutrition value calculation
which is very helpful for people suffering from obesity. Therefore, segmentation
becomes the primary driving component for solving a wide range of image
processing tasks. Despite being several years of research, segmentation models still
require thorough structural improvement to achieve condescending performance
than human analytics. Thus, before proceeding further in structural analysis,
comprehensible knowledge regarding different available datasets, the purpose of
segmentation, typical operations used in DL models for image segmentation, and
performance metrics towards the successful evaluation of the segmentation model,
is needful.

2.1 Image Database Domain Types

The plethora of datasets, competitions, and challenges have greatly influenced
and encouraged researchers to propose miscellaneous state-of-the-art segmentation
architecture which can be applicable across a wide range of domains. These domains
include distinct challenges which are disjoint from each other. The categorized
domains are conveyed below in Fig. 1.

• Natural scenes (NS): NS databases used for scene recognition-related tasks,
mainly contains details of labeled photographs of street view, mountain areas,
indoor scenes like in-home, museum, etc. For example, a scene-centric new
database called “Places” fromMIT Computer Science and Artificial Intelligence
Laboratory offers 2.5 million images of 205 scene categories along with labels
of each category [5]. Other popular NS dataset includes Berkley Segmentation
Dataset, PASCAL VOC, Microsoft COCO, MIT Scene Parsing Data, etc. [6].

• Medical Imaging Modalities (MIM): MIM describes dataset which contains
information related to the human body. These images are typically used to
visualize the interior of the body without surgical intervention. Corresponding
datasets are brain-related neuro-modalities: Computerized Tomography (CT),
Magnetic Resonance Imaging (MRI), scan images, Digital Subtraction Angiog-
raphy (DSA), and so on; liver tumor segmentation; breast cancer histology
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Fig. 1 Describes the different available image domain types for image segmentation

images, etc. The notable datasets are BraTS (Brain Tumor Segmentation Chal-
lenge 2020: Data), LiTS (Liver Tumor Segmentation Challenge), DRIVE (Digital
Retinal Images for Vessel Extraction), SCR (Segmentation in Chest Radiographs)
[6].

• Arial Imaging (ArI): ArI mainly includes satellite images or drone images.
Therefore, ArI can be grouped into Satellite Imagery (SI) and Drone Dataset
(DD). The significant dataset corresponding to SI and DD are:

– SI: SI covers images from satellite. Some notable databases include COWC
(Cars Overhead with Context) [7], Microsoft Canadian Building Footprints
[7], DSTL Satellite imagery Feature Detection [7], DeepGlobe [6], Google
Open Street Map [6].

– DD: DD describes images captured through drones and a few remarkable
datasets of DD are Stanford Drone Dataset [7], Vertical Aerial Photography
[7], etc.

• Video Segmentation Dataset (VSD): Apart from images, video sequences
can also be segmented. DL model trained on video data can be applied in
surveillance, object motion detection. The popular VSD dataset is YouTube-
Video Object segmentation, VSB100 (Video Segmentation Benchmark), etc. [6].

• Salient Object Detection Database (SODD): The term “saliency” refers to the
“most noticeable” or “most featured” or “most important” object present in an
image. The rose in Fig. 2a(A) and the white and pink daffodils in Fig. 2b are
the most noticeable elements. Thus, rose and daffodils can be regarded as the
“salient” objects with respect to Fig. 2a and b.
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Fig. 2 Signifies the presence of salient objects in image. (a) Image with one salient object. (b)
Image with multiple salient objects

• Food Database (FD): This database mainly consists of different food images
which are being served generally in the restaurants or the individual food habit
of human beings as seen in UNIMIB2015 Food Database [8], UEC Food 256
Dataset [9], and so-forth.

• Text-based Image Segmentation Database (TISD): TISD mainly consists
of scene text (Street View Text Dataset, ICDAR Robust Reading compe-
titions, etc.), machine-printed documents (PRImA Layout Analysis Dataset,
IMPACT Database, etc.), graphical documents (Braille Dataset, Trademarks
image dataset), handwritten documents (UNIPEN database, Rimes Database, so-
forth) [10].

2.2 Purpose of Image Segmentation

Image segmentation has ushered in a revolutionary change in providing flexibility
in image editing to concluding robust prediction in uncertain, real-time robotic
environments. The low granular level analysis provides more meaningful insights
and an easy understanding of digitized images. Therefore, the various fields where
image segmentation has been adopted considerably, have been explained below:

• RoI Detection: The detection of RoI plays a fundamental role in recognition
systems, like, human face recognition systems. Human faces have distinct color
range along with varied texture among different races. Therefore, in a complex
scenario like in a busy street or crowded place, it becomes very difficult
to identify each person separately using physical methods. Another example
could be, due to the Covid-19 pandemic situation, many public places have
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restricted social gatherings to a definite limit. But, the manual headcount is not
possible when the place is overcrowded. In such scenarios, segmentation helps
by separating the human faces from the background. The segmentation results
obtained then can be used by an automated person verification system or tallying
the headcounts. The similar application includes fraud detection, fingerprints
identification, brake light detection.

• Biomedical Image Segmentation: Image segmentation has made an immense
impact on the CAD system. For instance, in the case of vessel segmentation,
particularly for the retina, where the vessel structure gets affected due to diseases
such as diabetics, muscular degeneration due to age, glaucoma. Manual artery
delineation in such cases becomes a strenuous and tedious job for the physician.
Thus, AI-enabled CAD helps in easy vessel structure analysis.

• Real-time Road Segmentation: This type of real-time-based application is
mainly useful for traffic control systems, autonomous cars, which require prompt
image analysis. Delay in image processing in such scenarios can be fatal.
Besides, road quality assessment can be done where the physical investigation
is not always feasible.

• Food Identification: The increasing trends towards individual health concise-
ness have triggered the calculation of nutritional value present in a single food
serving. The naked human eye fails to predict food quantity along with the
accurate nutritional value. In such cases, segmentation defines the boundaries
of each food item. Thereby, assists the necessary algorithms in performing
automated analysis.

• Text Recognition: “Text” segmentation from the image is the key mechanism for
applications where it is mandatory to detect the presence of possible manuscripts
in the text area. It is also widely used in handwriting detection and identification.
Besides, house plate number, street number, electronic meter readings are some
popular applications.

The varied application has been explained diagrammatically in Fig. 3 with the
help of images collected from the MS-COCO dataset [11] for RoI segmentation,
Food item detection, DRIVE dataset [12] for biomedical image segmentation, and
CamVid [13] for road surface segmentation.

2.3 Operations involved in Image Segmentation

Typically, DL-based segmentation models involve several operations such as con-
volution, pooling, etc. which will be discussed in this section. Understanding
each of these operations is necessary to decipher the requirement of different
segmentation models and their evolution over the years. The different operations in
each layer, which include convolution, atrous convolution, transposed convolution,
max-pooling, upsampling, pixel-wise softmax layer, and so on used on those
models, have been explained with minimal complex mathematics along with a



Intelligent Image Segmentation Methods Using Deep Convolutional Neural Network 315

Fig. 3 Purpose of image segmentation in application point of view

Fig. 4 Graphical representations of different operations in each layer for subsequent DL-based
segmentation architecture analysis

common graphical appearance as indicated in Fig. 4. Furthermore, the knowledge
will help in designing DL-based customized segmentation architectures.

Generally, segmentation models involve two distinct networks: encoder network
and decoder network, as illustrated in Fig. 5. The encoder networks act as feature
extractors. It downsamples the spatial resolution of the input image while increasing
the channel number in the feature maps. Subsequently, the decoder network
functions as a shape generator by upsampling back the obtained feature maps from
the encoder network back to the initial input image size. Thus, the principal purpose
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Fig. 5 Displays the typical DL-based image segmentation model architecture

of the decoder network lies in generating a segmentation mask. Therefore, the
decoding operation expresses the inverse working procedure of encoding.

• Convolution Layer: Convolution is a product (*) of the pixel value at any
position of image or feature map and kernel (filter) which is depicted as an array
of numbers. The output (or feature map) o(t) is described by Eq. 2 where input
y(t) ∈ Y has undergone convolution operation using a filter or kernel ω(c) [14].

o(t) = (y ∗ ω)(t) (2)

When it takes only integer values, the discretized convolution is given by
Eq. 3:

o(t) =
∑

cy(c) ∗ ω(t − c) (3)

This type of convolution is also known as a one-dimensional convolution
operation. Moreover, one-dimensional convolution is very effective in extracting
features from a fixed-length segment of the overall dataset, where the location
of features in the segment is not important. A two-dimensional convolution
operation can be defined as in Eq. 4 for input y(r, s) ∈ X and a kernel ω(c, d)

[14].

o(t) =
∑

c
∑

d[y(c, d) ∗ ω(r − c, s − d)] (4)

By using the commutative law, Eq. 4 can be modified to Eq. 5 after flipping
the kernel

o(t) =
∑

c
∑

dy(r − c, s − d) ∗ ω(c, d) (5)

• Rectified Linear Unit Layer: Generally, each convolution layer is followed by
a Rectified Linear (ReLu) layer which converts negative input values to zero.
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It helps in avoiding vanishing gradient problem [14]. Mathematically, it can be
expressed as in Eq. 6

f (yi) = max(0, yi) (6)

where yi ∈ y is the value of a particular location in input feature map.
• Atrous Convolution Layer: The term “atrous” has been coined from the French

word àtrous which means “hole.” Atrous Convolution (AtC) is also known as
“hole convolution,” or “dilated convolution” [2] is based on dilation rate (r).
“r” signifies the hole (space) among the values present inside a kernel. For
example, a kernel of 3X3 having r as 2 will have a field view of 5X5, but, AtC
will only consider 9 values from the kernel. Thus, AtC offers a broader field
view with the same computational cost. And, AtC is mainly popular with real-
time segmentation where latency along with accuracy is vital as in the case of
autonomous driving cars.

• Pooling Layer: The pooling operation is done by sliding a two-dimensional filter
over each channel of the feature map and then summing up the features lying
within the covered region. It minimizes the feature map size (height and width,
but not depth) along with the number of parameters required for calculation.
There are three types of pooling available:

– Max-pooling (most frequently used)
– Average-Pooling
– L2-normalization

Max-pooling works by extracting the maximum input value inside a filter and
discards the rest of the values. Whereas, Average-pooling takes the average
of all elements present inside a filter. Max-pooling effectively summarizes the
strongest activations over a neighborhood. However, if the position of the feature
is important in any particular analysis, then Average-pooling gives better results
compared to Max-pooling.

The series of successive convolution and pooling operations in the encoder
results in a subsequent reduction in the spatial dimensions of the input image as
it goes deeper and deeper, thereby creating an abstract representation of the input
image. This reduced abstract feature is useful for performing image classification
tasks. But, image segmentation requires output to be of the same dimension of
the input image having distinct spatial information instead of mere feature maps.
This led to the concept of upsampling whose main purpose is to bring back the
resolution of the current (reduced) feature map to the resolution of the previous
layer. Several methods exist like nearest neighbors, bi-linear interpolation, bed
of nails, max un-pooling, transposed convolutions. Among the several methods
available for upsampling, the decoder mainly uses max un-pooling and transposed
convolutions.

• Max-Pooling Layer: During the pooling operation, a matrix is created for
storing the location of maximum value within the filter. The un-pooling operation
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uses those locations of max pooled values and inserts the pooled value in the
original place, with the remaining elements being set to zero. Therefore, by
tracing the original locations, un-pooling captures example specific to structures
with strong activations back to image space. Also, it can reconstruct the detailed
structure successfully.

• Transposed Convolution Layer: Transposed convolutions are also known as
“fractionally strided convolutions,” “deconvolutions,” or “upconvolutions” [15].
It operates by switching the forward and backward passes of a convolution.
Although kernel defines a convolution, but forward and backward pass calcula-
tion determines direct convolution or transpose convolution. For example, direct
convolution calculates the product of forwarding pass (C) and backward pass
(CT ) with kernel ω. However, using the same kernel ω, transposed convolution
is calculated as the product of CT and (CT )T = C. Practically, Transposed
Convolution operation can be thought of as the gradient of convolution operation
concerning its input [15].

• Pixel-wise Softmax Layer: The softmax activation function is normally present
in the last layer of the decoder network. The objective of softmax is to normalize
the output vector (containing “M,” real values) to a probability distribution over
the predicted output classes so that, the sum of the resultant vector (containing
“M,” real values) always sums to 1. Applying softmax pixel-wise helps in
generating the segmented output in the same size as the input image.

• Fully Connected (FC) Layer: FC layers present only in the decoder network
of some DL-based segmentation models like DeepMask, Mask R-CNN (Mask
Recurrent Convolutional Neural Network). FC layers help in pixel-wise clas-
sification and localization. For DeepMask, the FC layers do not contain ReLu
(activation function) as ReLu neglects the negative value and works only on
positive values that may generate poor segmentation results. However, Mask R-
CNN uses FC layers for predicting the output mask.

2.4 Performance Metrics for Segmentation Models

Normally, the number of classes present in an image characterizes image segmen-
tation as the binary-class image (if only a single RoI class present along with
background class) and multi-class image (if more than one RoI class exists along
with background class). Thus, in this section, we delineate the commonly used
metrics used for evaluating the performance of segmentation models concerning
binary and multi-class image segmentation. Theoretically, a segmentation model
can be evaluated based on different characteristics including accuracy, speed,
memory, time, and power consumption [16]. However, speed and time are directly
dependent on hardware associated with the experiment. Besides, the visual quality
of the segmented output is still considered an important factor in deciding the
best segmentation model considering any given problem. The different quantitative
metrics available in favor of evaluating segmentation models are described below
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Fig. 6 Describes the
overlapping scenario for
binary-class image
segmentation model
performance analysis. In
Fig. 6d, “cyan,” indicates TP,
“red,” shows FP, “green,”
signifies FN and “black,”
specifies TN. (a) Input image.
(b) Ground truth of input
image. (c) Predicted output of
input image. (d) Overlapped
result of ground truth and
predicted image

with the help of Fig. 6. Figure 6a describes the input (binary-class) image where
Fig. 6b indicates the corresponding ground truth image of Fig. 6a and the final
predicted image after segmentation is Fig. 6c. Furthermore, to visualize the overall
performance of the binary segmentation model, Fig. 6d has been formed by overlap-
ping ground truth images on the predicted output. The purpose of overlapping the
image is to identify the wrongly predicted regions in the output image. However,
different colors have been introduced to explain the incorrect predictions. For
instance, “cyan” signifies True Positive (TP) meaning that the region has been
correctly predicted as RoI, while “green” indicates False Negative (FN) as the RoI
region has been mistaken as background. On the other hand, False Positive (FP)
marked as “red” specifies those background regions which has been misidentified as
RoI. Finally, “black” reveals True Negative (TN) demonstrating background class.
The model performance assessment metrics are discussed further using the TP, FP,
FN, TN.

2.4.1 Accuracy

The accuracy metrics signifies the correlation among the appropriately segmented
regions and the ground truth regions. For binary-class segmentation, accuracy can
thus be explained through the Eq. 7.
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Accuracy = T P + T N

T P + T N + FP + FN
(7)

2.4.2 Pixel-Wise Accuracy (PA)

It detects the proportion of correctly classified pixels over total number of pixels
present in an image. Thus, PA forN+1 classes (“N” indicates number of foreground
classes and “1” indicates the background class) can be described as [17] in Eq. 8.

PA =
∑N

i=0 pii
∑N

i=0
∑N

j=0 pij

(8)

where indicates the number of pixels of class i predicted as belonging to class j .
However, PA produces inappropriate results when the dataset is unbalanced (that is,
when a single class dominates largely in entire image) [17].

2.4.3 Mean Pixel Accuracy (MPA)

MPA is mainly used for multi-class segmentation model analysis. MPA is the
measure of class-wise correctly segmented pixels which is then averaged over the
combined classes (N) present, as shown in Eq. 9.

MPA = 1

N + 1

N∑

i=0

pii
∑N

j=0 pij

(9)

2.4.4 Precision

Precision, also known as positive predictive value, describes the relation between
TP and all element classified as positive [17]. It can be defined as in Eq. 10.

Precision = T P

T P + FP
(10)

2.4.5 Recall

Recall, also known as sensitivity, indicates the correctness of the predicted seg-
mented mask for each class [17]. Recall is defined as in Eq. 11.

Recall = T P

T P + FN
(11)
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2.4.6 Specificity

Specificity, also known as selectivity or true negative rate, signifies the ratio of
negatives which has been segmented correctly. Specificity can be described as in
Eq. 12

Specif icity = T N

T N + FP
(12)

Moreover, for binary image segmentation, the background class signifies the
negative class. As a result, specificity and pixel accuracy are generally ignored [18].

2.4.7 Intersection over Union (IoU) and Dice Coefficient (Dice)

Popular metrics based on overlap are particularly IoU or the Jaccard Index (Jaccard),
F1-score or Dice, and Mean IoU (MIoU). However, in the case of segmentation, the
Dice score is generally written instead of F1-score. For, binary-class segmentation
analysis, IoU/Jaccard and Dice can be calculated as in Eq. 13 and Eq. 14, respec-
tively.

IoU = Jaccard = T P

T P + FP + FN
(13)

Dice = 2T P

2T P + FP + FN
(14)

However, in case of multi-class segmentation, given any predicted segmented class
matrix (A) and the ground truth class matrix (B), IoU or Jaccard [19] can be defined
as Eq. 15, Dice can be defined as Eq. 16.

Jaccard(A,B) = |A ∩ B|
|A ∪ B| (15)

Dice(A,B) = |A ∩ B|
|A| + |B| (16)

Moreover, Jaccard and Dice can be related by the Eq. 17. Dice can also be defined
in terms of precision and recall using Eq. 18 [17]. And MIoU can be described as
the average IoU overall classes [19].

Jaccard = Dice

2− Dice
(17)
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Dice = 2 ∗ Precsion ∗ Recall

P recsion + Recall
(18)

3 Types of Image Segmentation

There exist different types of image segmentation. But, these distinct segmentation
types prevail due to the presence of diversified disproportionate contents such as
trees, humans, and so on, present in an image. Thus, in this section, we will look
over different contents of an image, current image segmentation types. Furthermore,
we will also investigate some popular existing segmentation models developed so
far.

3.1 Segmentation Concepts

The basic segmentation concepts are based on components present within an image.
The entire image components can be broadly classified into two classes namely:
“things,” and “stuff.” The “things,” and “stuff,” are determined on the basis of five
characteristics: (1) shape, (2) size, (3) parts, (4) instances, and (5) textures [20]. A
contrasting study will be performed in Table 1 on the basis of point of differences
(PoD) between “things,” and “stuff.”

However, there are some scenarios such as huge crowd where both “things,”
and “stuff,” classes can be recognized as one class. Furthermore, the “things,” and
“stuff” are explained using Fig. 7a [11] where “things,” class indicates the person,
car, street light, bench, etc., as shown in Fig. 7b, and “stuff,” class considers the sky,
grass, and road as in Fig. 7c.

Based on the image contents (“things” and “stuff”), image segmentation types
can be widely categorized into Semantic Segmentation (SS), Instance Segmentation
(IS) and Panoptic Segmentation as shown in Fig. 8.

Table 1 Comparative study to differentiate “things,” and “stuff” classes in image

PoD “Things” “Stuff”

Shape Objects are of specific shape.
(E.g.: cat, car)

Objects are nebulous.
(E.g.: river, grass)

Size Distinct with moderate
variation in size

Irregular with high variation
in size

Parts Possesses identifiable parts Has inconspicuous parts

Instances Countable in nature Uncountable in nature

Textures Have varying textures. (E.g.:
skin)

Have consistent textures.
(E.g.: sky, tree) [21]
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Fig. 7 The components of an image. (a) Input image. (b) “things” in input image. (c) “stuff” in
input image

Fig. 8 Signifies the image segmentation types

SS refers to the task where each pixel of an image is associated with a class
label for easy differentiation between “things,” and “stuff,” contents of an image.
However, SS does not differentiate multiple instances of the same class. On the other
hand, IS detects and delineates each object of interest in the image. Specifically, IS
is concerned with the individual distinction of “things.” PS, on the other hand, is the
unification of both SS and IS. In other words, PS associates each pixel with its class
label and instance number. Therefore, each “stuff” classes and the “things” classes
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Fig. 9 Explains the visible differences in output for SS, IS, PS, respectively. (a) Input image. (b)
Output of SS. (c) Output of IS. (d) Output of PS

are separated and multiple individuals of the “things” classes are also separated from
each other [11]. Moreover, the scope of this chapter is limited to SS and IS only.

The various classes generate different results with respect to SS, IS, and PS.
Therefore, an input image Fig. 9a after performing SS separates “things” (roses and
mugs) and “stuff” (wall, leaves, and table) classes and generates output as in Fig. 9b.
But, in the case of IS, only the individual “things” (roses and mugs) got segmented
as shown in Fig. 9c and PS shows both the “things” (individual roses and mugs) and
“stuff” (wall, leaves, table) classes as explained in Fig. 9d.

3.2 Semantic Segmentation

Let us consider y ∈ Y = R
HXWX3 is composed of a set of pixels I with constant

cardinality |I | = N , xs ∈ Xs = R
HXWXC denotes the corresponding ground

truth of y, where C is the number of classes present in the ground truth and XN ,
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denotes the output space which is the product set of N -tuples with elements in
a label space X. Here, H and W represent the height and width of the image,
respectively. Mathematically, the goal of semantic segmentation is to assign each
pixel yi ∈ y, a label xj ∈ X [21] based on xj ∈ xs . Thus, a fully convolutional
neural network trained in a supervised manner with Y produces softmax output
volume of size indicating predicted semantic class probabilities [22, 43]. Therefore,
SS can be stated as labeling each pixel of an input image in the output image.

Several progressions have been made in SS so far. Some existing popular
semantic segmentation models have been explained according to their years of
development. For instance, in 2015, FCN (Fully Convolutional Neural Network)
[16], encoder-decoder based symmetric UNet [16] and SegNet [16] were devel-
oped. In 2016, attention-based FusionNet [23], asymmetric DeepLab [16] and
faster inference concluder for low-latency based operation, ENet (Efficient Neural
Network) [16] were proposed. And during 2017, AdaptNet was proposed where
the architecture of ResNet-50 was adapted in which an additional convolutional
kernel was introduced before the first convolution layer of ResNet. AdaptNet
also instigated the idea of the convoluted mixture of deep experts (CMoDE)
fusion scheme [16]. Besides, FC-DenseNet (Fully Convolutional DenseNet) [16],
RefineNet [16], WNet [24], RedNet [25], LinkNet [25] also evolved during 2017.
FC-DenseNet was formed by the addition of skip-connection and upsampling layer
to the already established Densely Connected Convolutional Networks (DenseNets).
RefineNet, on the other hand, was developed using residual connection design.
It also contains Residual Convolution Unit (RCU), Multi-resolution fusion, and
Chained residual pooling. Whereas in 2018, LadderNet [26], BiseNet (Bilateral
Segmentation Network) [27], ERNNet (Edge Loss Reinforced semantic segmenta-
tion network) [28] came up. Besides, O-Net [29], LED Net [19], Fickle Net [19]
emerged in 2019, while, T-Net [30] (Fully tensorized FCN architecture), MED-
Net (Multiscale Encoder-Decoder Network) [31] and EF-Net (Enhancement and
Fusion Network) [32] was developed in 2020. The timeline of the evolution of the
SS models has been described in Fig. 10.

3.2.1 Fully Convolutional Networks

The success of convolutional networks in performing classification tasks lead to
the proposal of FCN in 2015, [16] for pixel-wise SS of an image. FCN considered
contemporary classification networks such as AlexNet, VGG net, and GoogLeNet
as the backbone. FCN accepts the input image of random size and generates an
output of corresponding input size with efficient inference and learning. However,
for preserving the contextual spatial information within an image, the output of the
upsampling layer was fused with the previous layer’s output as shown in Fig. 11.
The author has further considered three variations of FCN, namely FCN-8, FCN-
16, FCN-32 based on the fusion layers. However, object boundaries are seen as
poorly localized in the segmentation results of FCNs as FCN considers usage of
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Fig. 10 Timeline of different
SS architectural development

Fig. 11 FCN architecture in graphical form

many pooling layers and large receptive fields that produces low spatial resolution
and blurring in the deep layers.

3.2.2 SegNet

SegNet [16], is a popular encoder-decoder-based SS model which uses max pooled
indices from the encoder to perform non-linear upsampling in the decoder as shown
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Fig. 12 Graphical architecture of SegNet

Fig. 13 Graphical representation of UNet architecture

in Fig. 12. Each convolution layer in the encoder is followed by a Rectified Linear
(RL) layer and Batch Normalization layer. They have used the VGG-16 network in
the encoder where they have removed the fully connected layers to further reduce
the number of parameters.

3.2.3 UNet

In 2015, UNet was proposed [16] for biomedical image segmentation which consists
of a contracting path to capture context information which is followed by a
symmetric expanding path for precise localization. Instead of using max pooled
indices only, as in case of SegNet, UNet concatenates previous tensor information
and upsampling tensor instead of element-wise addition as shown in Fig. 13.

3.2.4 DeepLab

Apart from symmetric SS models, there exists some asymmetric encoder-decoder
SS networks such as E-Net [16], DeepLab [16], etc. Nevertheless, the performance
of pixel-wise segmentation suffers greatly because of kernel size. Smaller kernel
size fails to capture the contextual information present in an image, whereas large
kernel size produces slower results due to the presence of numerous trainable
parameters. Drawbacks of smaller kernel sizes are outperformed in classification
problems with the introduction of pooling layers which increases the sensory area
of each kernel. However, additional pooling layers decrease the sharpness in the
segmented output image. To counteract these issues, DeepLab family, proposed and
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Fig. 14 DeepLabv3+ model
explained graphically

open-sourced by Google, has introduced the concept of AtC, Conditional Random
Field (CRF), and spatial pyramidal pooling layers in DeepLabv1. For improving
the performance of DeepLabv1 further, DeepLab v2 was proposed which focuses
mainly on the problem of the existence of objects at multiple scales. Here, they have
fused the output of multiple AtC operations obtained by varying sample rates. But,
the architecture fails to capture object boundaries precisely. However, DeepLabv3,
adopts depth-wise separable convolution for enhancing the segmentation output
further along with increasing computational efficiency. Even so, the most popular
DeepLab architecture is DeepLabV3+ as shown in Fig. 14, which uses Xception
architecture as the backbone in the encoder part coupled with removing max-
pooling operations with depth-wise separable convolutions [2].

3.3 Instance Segmentation

Let y ∈ Y = R
HXWX3 be an image and i ∈ I = {1, . . . , H }X{1, ..,W } indicates a

pixel. The goal of instance segmentation is to map the image to a collection Ay =
{A1, . . . , Aky } ⊂ 2I of image regions, where each region represents the occurrence
of an object of interest. The symbol A0 = I − ∪kAk denotes the background
[33]. IS can be broadly categorized into CNN-based approach, relative positioning
of object instance, multiscale feature incorporation and bounding-box proposal
approach. CNN-based approach includes models such as DeepMask [34], Sharp-
Mask [35], Instance Cut [34], TernausNetV2 [36], TensorMask [34], CenterMask
[34], PolarMask [34]. While, IFCN (Instance-sensitive Fully Convolutional Neural
Network) [37], MaskLab [38], FCIS (Fully Convolutional Instance-aware Semantic
Segmentation) [39], MaskPlus [40], SOLO (Segmenting Objects by Location) [34]
falls under relative positioning of object instance. However, Multipath Network
[34], PANet (Path Aggregation Network) [34] and MEIst (Mask Encoding for
Single Shot Instance Segmentation) [41] uses multiscale feature incorporation for
performing IS. Finally, Mask R-CNN [34], MS-R-CNN (Mask Scoring R-CNN)
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Fig. 15 Timeline of IS
architecture development

[42] and BlendMask [34] uses bounding-box proposal approach. The gradual
advancement of IS algorithms has been explained in Fig. 15.

3.3.1 DeepMask

Facebook AI Research (FAIR) has proposed DeepMask [34] as shown in Fig. 16
based on traditional feed-forward neural network architecture callable of performing
multitasking. Here, DeepMask focuses on generating a segmentation proposal
region instead of a bounding box as in the case of object detection. The feature
extraction part consists of VGGNet where the last FC layer along with the last
max-pooling layer has been removed. The architecture consists of two approaches:
mask generation and score generation. Mask generation consists of an FC layer
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Fig. 16 DeepMask architecture in details

along with upsampling layer for generating a class-agnostic segmentation mask.
While the score generation network assigns a score relative to the probability of the
patch-containing object. Thus, specifying a patch as an input, DeepMask generates
a segmentation mask along with showing the probability of the mask being centered
on a full object present in the input patch. It is successful in generating “coarse
object masks,” but fails in “pixel-accurate segmentations,” due to the presence of
bi-linear upsampling in the architecture.

3.3.2 Mask R-CNN

The concept of Instance segmentation can also be summarized as object detection
followed by semantic segmentation. Particularly, Mask R-CNN is one of the
most remarkable architecture in this consideration. Mask R-CNN is basically an
extension of Faster R-CNN where pixel-level object-specific binary classification
was performed in parallel for providing accurate segmentation results. Mask R-
CNN works in two stages after feature extraction. The first stage produces proposals
regarding the probable regions containing any object. Whereas the second stage
focuses on predicting the object class, refining the generated bounding-box, and
finally generating the segmented mask for the object based on the proposal in the
first stage. The detailed transition of Mask R-CNN [34] has been explained in
Fig. 17.

4 Research Challenges in Image Segmentation

In spite of several decades of research work, automated segmentation methods have
received much attention owing to the existing challenge across different domains.
The challenges are a resultant of several factors.
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Fig. 17 Mask R-CNN explained using graphics

4.1 Complexity and Computation of DL Segmentation Models

DL-based segmentation models involve a huge number of operations for con-
cluding inference. As a result, those models require sufficiently large memory
and computation speed. This makes DL models inappropriate for deployment on
resource-constrained devices such as embedded systems. Besides, the compression
operation or one-shot decomposition operation decreases feature map redundancy.
But, the feature map redundancy reduction may reduce model prediction accuracy
for some architecture. Therefore, an adequate investigation is required which can
minimize the number of operations without affecting model accuracy [16].

4.2 Variability in Object Appearance

Obscured RoI boundaries, inconsistent object shape, or similar adjacent area
generates low-quality segmentation results. The presence of image artifacts, varied
imaging conditions due to low image contrast, noise and other pathological reasons
such as partial volume effect creates additional problems for segmentation in
the medical domain. However, in the case of scene parsing, the unpredictable
mobility and location of objects (humans, animals, and cars) also produce improper
segmentation.

4.3 Requirement for Huge and Highly Defined Labeled Dataset

Present-day DL models require a sufficiently large dataset along with respective
high-quality labeled data in their training phase. But, data annotations being
laborious and time-consuming, these large-scale data annotations are not easily
available. Thus, DLmodels try to use semi-supervised or weakly supervised datasets
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but fail to achieve good performance. Moreover, manually annotated data often
suffer from; intra and inter-observer variability as it relies completely on expert
knowledge, resulting in erroneous output [16].

4.4 Overfitting Issue

Most of the available datasets are relatively small resulting in an overfitting issue.
The overfitting issue arises due to less number of training images in any particular
domain as DL models fail to capture all useful information. Generally, data
augmentation (augmentation methods: rotation, translation, horizontal and vertical
flipping, etc.) is used to solve the overfitting problem because it increases the
training dataset by generating synthetic images. But, data augmentation sometimes
produces poor segmentation results. Thus, data augmentation is not a solution
optimal solution.

4.5 Class Imbalance

Class imbalance occurs when data of a particular class is more prevalent than
other classes. For example, in the case of brain tumor segmentation using MRI,
brain tumor only appears in very few slices. Therefore, the segmentation model, if
not trained with sufficient brain tumor images, will generate segmentation results
containing background class only.

4.6 Issues with Real-Time Segmentation

Real-time segmentation is mainly applicable for autonomous driving, mobile
computing, robot interaction, where execution time plays a crucial role in evaluating
the performance of DLmodels. However, most of the segmentation models are time-
consuming. To reduce the time several CNN models have been proposed where
they have tried to effectively use convolution operations. But, more research is still
required to improve the accuracy of the model in the real-time analysis along with
maintaining well trade-off between accuracy and execution time [16].

5 Conclusion

Regardless of the development of substantial segmentation architectures, image
segmentation still remains a challenging task because of the existing challenges
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in terms of preserving contextual information, loss calculation over the predicted
image, lack of well-defined labeled dataset, diversified domains along with different
RoI, and complexity of different algorithms. Based on the state-of-the-art model
performance, image segmentation has been classified broadly into three categories:
SS, IS, and PS. SS classifies object features present in an image, IS identifies
each instance of an object whereas PS classifies as well as identifies each object
instance. However, the success of the model depends largely on the dataset and
corresponding annotations, loss function, hyper-parameters, data pre-processing
methods. In this chapter, we have tried to highlight different types of available
datasets, segmentation methods, existing state-of-the-art DCNN models, and finally
existing challenges. Image segmentation has a vast application area, and thus it
becomes difficult to conclude any optimal DCNN model for solving every problem.
Moreover, some domain-specific fine-tuning might result in producing near-optimal
segmentation results for some problems. Altogether, this article provides different
existing segmentation models which might help researchers in further proceedings.
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Artificial Intelligence Assisted Cardiac
Signal Analysis for Heart Disease
Prediction

Prasan Kumar Sahoo, Sulagna Mohapatra, and Hiren Kumar Thakkar

1 Introduction

In the current age of digitalization, the individual workload is increasing. Simul-
taneously, personal health is degrading drastically due to the unhealthy lifestyle,
irregular sleeping pattern and unnecessary stress. According to the World Health
Organization [1], cardiovascular disease (CVD) is one of the leading causes of
death among the people across all age groups. In case of a healthy person, the
series of cardiac events such as opening and closing of the heart valves, blood
flow into vessels, and contraction-relaxation of ventricular walls are occurred in
a predefined order or at a regular interval. In contrast, in case of any coronary heart
disease (CHD) like myocardial ischemia, infarction, arrhythmias, etc., hamper the
normal cardiac activities and can lead to heart attack if those abnormalities are not
detected in an early stage. There is a huge need for constant monitoring of cardiac
abnormality symptoms like dizziness, nausea, and chest pain as shown in Fig. 1.
However, those symptoms are not well differentiable and sometimes misdiagnosed
as the normal disease. Mostly, the irregular heartbeats known as ectopic heartbeats
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Fig. 1 Common symptoms of cardiovascular disease

appear periodically without showing any serious indication and are often getting
unnoticed [2].

1.1 Diagnosis of Heart Diseases

In clinical diagnosis, the cardiac irregularities are mostly determined either in
time series signal or image format. Although different imaging methods such
as Magnetic Resonance Imaging (MRI), Computerized Tomography (CT) scan,
Echocardiography (Echo), Nuclear myocardial perfusion scan, etc., provide reliable
and accurate outcomes related to cardiac abnormalities, the acquisition method
is time-consuming, labor-intensive, expertise-based and costly [2, 3]. In contrast,
diagnosis through the Electrocardiography (ECG), Seismocardiogram (SCG), and
Ballistocardiogram (BCG) those represent the activity of the heart in the form of
signals are inexpensive, faster, and easily doable.

1.1.1 Diagnosis Through ECG Cardiac Signal

To monitor the physiological activities of the heart, ECG is considered as a well-
accessible and widely adopted inter-mediator, where the signals can be easily
captured through body sensors [2–5]. Those signal patterns help the clinicians to
verify various cardiac electrical activities such as the movement of heart valves,
blood circulation into ventricles, suppression-relaxation of ventricle walls, etc.
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Fig. 2 Normal Vs. abnormal ECG and SCG signals [3]

However, based on the collected evidence, ECG provides the least information on
the functioning of various cardiac events related to complex CVD problems such as
ischemia, arrhythmias, and infarction that distorts the predefined cardiac sequence
as well as the rhythm [2, 3]. In contrast, such deformities even at a mild intensity
level, can be well determined using different cardiac mechanical activity recording
modalities like BCG and SCG. An example of normal vs. abnormal cardiac ECG
and SCG signals is represented in Fig. 2.

1.1.2 Diagnosis Through SCG and BCG Cardiac Signal

The dual modalities like BCG and SCG can measure the vibrations generated from
various cardiac mechanical activities in successive heartbeats [6–11]. The SCG data
can be acquired from an inexpensive accelerometer sensor placed over a person’s
body without direct contact with the skin. As far as BCG is concerned, the data
acquisition or recording is quite different in terms of sensor placement. For example,
BCG sensors can be wrist-worn for a regular interval of data acquisition or can be
fitted in objects like bed, chair, weighing scale to acquire the signal at a specific
interval [7]. Further, previous literate studies [6–9] have given more attention to
SCG than the BCG as there is growing confidence in the accuracy and applicability
of SCG in clinical practice. Moreover, the SCG is much popular in research and
implementation in compared to BCG as it is inexpensive, non-invasive, convenient
and adopts hassle-free data collection methods through wearable devices [10, 11].

Apart from the individual analysis, many researchers have designed the cardiac
abnormality prediction models considering both electrical and vibrational signal
recording modalities, i.e., ECG and SCG, respectively. Like ECG, SCG signals can
be collected through single or multiple channels based on the number of deployed
sensors in the body [2, 3]. In case of single channel, the body sensors are only
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Fig. 3 Single channel Vs. multi-channel SCG signal

deployed in one location of the heart, i.e., Tricuspid valve. For multi-channel SCG
signals, the sensor data are collected from different locations such as Aortic valve,
pulmonic valve, Tricuspid valve, and Mitral valve as shown in Fig. 3.

1.2 Early Detection Through Smart IoT Devices

Recently, the Internet of Things (IoT) has made tremendous progress in healthcare,
especially for providing early warning via various smart wearable devices such as
smart watch, smart t-shirt, smart belt, etc., in case of any cardiac issues [12]. Those
smart IoT devices are attached with a person’s body for continuous monitoring of
the heart rate, rhythm, and state of the heart muscle tissue. Currently, one can see the
electrical activity of the heart on the screen of the smart watches like Apple smart
watch, Fitbit Sense or Samsung’s ECG-packing. In addition, its associated APP will
help to know whether the rhythm of heartbeat is normal or abnormal [13]. Besides,
the deadly atrial fibrillation (abnormally fast heartbeat) condition can be easily
identified using such powerful smart devices. The usability of those smart systems is
too simple where a person only needs to press the touch-sensitive button for 30 sec
to know the behavioral pattern of the heartbeat. Apart from the smart wristwatch
solution, the researchers in [14] have developed a smart shirt named S-WEAR
using the concept of AI for monitoring cardiac ECG. The intelligent framework is
responsible to collect the data from the body-embedded sensors and send them to the
S-BOX database via different low-power wide-area network (LPWAN) technology
such as LoRa, NB-IoT, and Sigfox. The S-WEAR and S-BOX both are having
Artificial Intelligence (AI) components for quick local prediction and determination
of anomalous using historical data. Upon finding any abnormalities, the analyzed



Artificial Intelligence Assisted Cardiac Signal Analysis for Heart Disease Prediction 341

data and its corresponding values are transmitted to the consulting person through
the APIs.

1.3 Role of AI in Cardiac Abnormality Detection

In recent years, Artificial Intelligence (AI) has been widely adopted in the medical
field for developing the clinical expert system by processing a large amount of data
and inferring meaningful outcomes. Those inferred clinical results assist clinicians
in making accurate and quicker decisions for better treatment and follow up
strategies [15]. With the involvement of AI learning models in the form of Machine
Learning (ML), Deep Learning (DL), the workload of the cardiologist is decreased
and at the same time computation efficiency and disease diagnosis accuracy are
increased. The conventional methods of cardiac abnormality detection are mostly
time-consuming, error-prone, and experience-based. The powerful, intelligent ML
algorithms such as Support Vector Machine (SVM), Decision Tree (DT), Logistic
Regression (LR) are used for the analysis of the influential clinical parameters and
their combinations for the design of prognosis models. Those intelligent frameworks
will be helpful for disease prediction, medical knowledge extraction, outcome
prediction, therapy planning, patient support, and data management [16]. DL is a
part or subset of ML comprises various advanced algorithms such as Convolutional
Neural Network (CNN), Recurrent Neural Network (RNN), Auto Encoder (AE),
Deep Boltzmann Machines (DBM), Deep Neural Networks (DNN), etc. [17],
which operate on multiple levels of abstraction, and automatically extract features
from a large set of medical images assisting doctors for faster diagnosis of the
cardiovascular diseases.

The rest of this chapter is organized as follows. A detailed study of cardiological
signal acquisition methods is introduced in Sect. 2. Section 3 highlights the analysis
of a wide range of mathematical and intelligent AI models for cardiac abnormality
prediction considering both ECG and SCG signals. Summary of the literature related
to the current development in the cardiac data analysis is presented in Sect. 4 and
concluding remarks are made in Sect. 5.

2 Cardiac Signal Data Acquisition

For continuous monitoring of the cardiac activities, the ECG and SCG data need
to be recorded continuously either using smart wearable devices, body sensors
or in the laboratory via different hardware modules [18]. Generally, the ECG
and SCG body sensors transmit their data to any cardiac health analytic platform
(HAP) through Body Area Network (BAN) as shown in Fig. 4. In wearable
sensors, the sensing cardiac data are transmitted to an upper layer for analysis and
feedback via various wireless communication technologies such as Bluetooth, Near
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Fig. 4 Communication framework for cardiological signal transmission [3]

Field Communication (NFC), ZigBee, Cellular, and Wi-Fi [3]. Normally, a data
communication module acts as a local gateway and is responsible for coordinating
the communication between the BAN and HAP. To transmit the cardiac data without
any interruption and with utmost reliability, the authors in [3] have considered two
scenarios based on the user’s current location such as (a) Within Internet range: if
the user is within the Wi-Fi connectivity or cellular network coverage; (b) Outside
the Internet range: if the user is within the communication range of Bluetooth but
out of range from the Wi-Fi access point or cellular coverage. To prevent any data
loss in case of an Internet outage scenario, the raw data are stored in the user’s
private smart phone or tablet device temporarily. The stored data will be transmitted
immediately upon establishing the internet connectivity. Currently, there are lots of
open cardiological data sources are available for analysis and experiment purposes.

2.1 Data Acquisition Through Wearable Gadgets

Recently, there are several small and energy-efficient wearable devices such as smart
band, smart belt, smart cloth and smart helmet as shown in Fig. 4 are available
[3], which can retrieve the cardiological data during different physical activities
and predict the abnormality. The smart devices are well-equipped and beneficial
for monitoring purposes such as heart rate or blood pressure. However, they have
limited accuracy in complex cardiac abnormality prediction such as ischemia,
arrhythmias as they do not consider the location-specific data.
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Fig. 5 Location of body sensors and data acquisition framework [2, 3]. (a) Location of ECG &
SCG sensors. (b) ECG/SCG data acquisition method

2.2 Data Acquisition Through Body Sensors

To acquire qualitative and accurate cardiological data, the appropriate selection of
the body sensor’s location is highly important. Hence, it is necessary to pay extra
attentiveness while choosing the sensor location during data collection. Generally,
the location of the sensors is selected under the supervision of an expert cardiologist.
In case of ECG data collection as shown in Fig. 5a, the body sensors in form of
electrodes are placed on the left arm, right arm, and left leg, respectively [3]. On the
other hand, four accelerometer sensors are placed at different valvular auscultation
sites such as Aortic, Pulmonic, Tricuspid, and Mitral valves for multi-channel SCG
data collection as depicted in Fig. 5a [3, 19].

2.3 Data Acquisition in Laboratory

An architectural view of single-channel ECG and SCG data collection procedure in
the laboratory is shown in Fig. 5b [2]. In order to collect single-channel SCG signal,
the accelerometer sensing module LIS331DLH from STMicroelectronics is placed
on the Tricuspid valve region, whereas the single electrode H135SG Covidien from
Biomedical Instruments is located at the right arm to acquire the ECG data. Besides,
the bandpass filter with frequency 0.5Hz–50Hz is applied to obtain the required SCG
and ECG signals at a sampling frequency of 100Hz. Further, the communication
between ECG/SCG sensing module and the Analog-to-Digital convert (ADC)
circuit is established through the micro-controller system. In addition, the primary
job of the attached synchronous data logger is to further amplify and filter the
concurrent signals transmitted from the ADC circuit. Sometimes, there is a high
chance of signal distortion due to mechanical noise during the signal transmission,
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which can be taken care of using nonlinear filters. During the entire data acquisition
procedure, it is necessary to monitor the subject’s stability by constantly monitoring
the heart and respiration rate. In the laboratory, generally, the respiration rate is
checked manually, whereas the heart rate is observed using a fingertip senor such as
PAH8001EI-2G.

2.4 Open Source Data

Currently, several public data sources related to ECG/SCG based cardiological data
analysis are available apart from the real experimental data. The open availability
of data helps the researchers to expedite the research and innovation. The popular
publicly available data sources for ECG/SCG data analysis are MITDB database
[4], European ST-T Database [20], and PhysioBank [21] that comprises several
other databases such as MIT-BIH Arrhythmia, QT database, American Heart
Association ventricular arrhythmia, INCART, Long-Term-ST, UCI Machine Learn-
ing: Arrhythmia dataset, Breathing and Seismocardiograms (CEBS) dataset. Each
database contains thousands of ECG/SCG data with several features, attributes and
correlations for precise prediction of any cardiological abnormalities. In addition,
several universities such as Huazhong University, iRhythm Technologies/Stanford
University, University of California, other institutions like Telehealth Network of
Minas Gerais, Mayo Clinic, Geisinger, Health eHeart Study, China Physiological
Signal Challenge 2018 and Cleveland Clinic from USA are published their data
banks open and available to make the AI-based analysis more reachable and
applicable [22].

3 Cardiac Signal Data Analysis

The conventional methods of cardiac data analysis for predicting the abnormalities
are mostly tedious, time-consuming, error-prone and intuition-based. Therefore,
many researchers have developed novel ways of automatic heart disease prediction
using robust mathematical and intelligent AI models [2, 3, 23–30]. In this section,
several methods related to feature point delineation and abnormality prediction from
ECG and SCG signal data are discussed as follows.

3.1 ECG Signal Data Analysis

Although, the signal pattern of ECG is not complicated, the detection of the
signal irregularity considering those feature points is challenging especially when
the abnormality is mild. It is always difficult for the experts to determine those
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depression and elevation points manually, which is also time-consuming and
tedious. Therefore, mathematical algorithms and AI models need to be developed
for automatic ECG based feature points delineations and cardiac health monitoring.

3.1.1 Mathematical Model Based Prediction

To predict the cardiovascular abnormalities from the ECG, it is necessary to extract
the valuable feature points that can help in correct differentiation of normal and
abnormal cardiac activities.

1. Feature Point Delineation in ECG Signals: Generally, ECG represents differ-
ent activities of the heart in terms of electrical signals. Commonly, the normal
functioning of the heart is determined via five important points described as P,
Q, R, S, and T delineated from a complete ECG cycles as shown in Fig. 6a.
The accurate determination of any cardiac abnormalities highly depends on
the precise and accurate delineation of the successive changes in the above
mentioned primary points. However, the correct identification of those important
points is really challenging due to the presence of signal artifacts and the
variability in the position of the points in the ECG plot. Therefore, currently
many researchers have proposed automatic methods for detection of those five
meticulous points and the deviation of the ECG signal continuity [2, 3, 23].

The authors in [3], have developed a novel way of automatic feature point
extraction using the sliding window (SW) concept. The SW(X) contains a
set of feasible data points as X = {P,Q, S, T } considering the point R
as the reference, which is having the maximum positive amplitude in the
ECG cycle. The points like P, Q, S and T are fetched from consecutive
R − R duration considering the referenced SW(X). After the capture of
those primary points, another set of markers comprising set of onset range
{Rangeonset (P ), Rangeonset (QRS),Rangeonset (T )} and set of end range
{Rangeend(P ), Rangeend(QRS),Rangeend(T )} are retrieved. Those marker
points are derived from set of candidate points like Ponset , QRSonset , Tonset

Fig. 6 Example of various cardiac abnormalities in ECG [3]. (a) Normal ECG. (b) Abnormal
ECG
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Fig. 7 Example of different onset and end points of ECG [3]

and set of end points Pend , QRSend , Tend noticed in normal ECG cycles as
shown in Fig. 7. To design a robust cardiac abnormality detection method,
other valuable features are designed considering the location and order of
the feature points in terms of interval such as PR Interval, QT Interval,
RR Interval and segments, i.e., PR Segment , ST Segment , respectively.
The retrieved value from those intervals is compared with the standard values
to find out any abnormality. Different abnormal cardiac activities considering
various features of ECG data represented in Fig. 6b. For example, the normal
PR Interval lies in between the range 100 ms to 200 ms in case of a healthy
patient, however, the interval value longer than 200 ms signifies the first degree
of heart blocking and shorter than 100 ms indicates pre-excitation syndrome.
Besides, different depression and elevation features of ECG signal curve such as
ST Depression, ST Elevation, T Point raise Abnormality, Longer RR Interval
and Ventricular fibrillation as shown in Fig. 6b are also considered during the
analysis. Considering the amplitude, areas and angles of those depressed or
elevated points, the authors in [3] have designed novel mathematical models to
detect the cardiac abnormality.

Another notable feature generation and selection method is proposed in
[2], where different ECG data points P ,Q, R, S, and T are collected in the
form of vectors Vecg , where the sampling rate Sr and mean heart rate Hr are
already known. Each retrieved ECG feature point in Vecg signifies particular
amplitude value in terms of millivolts (mV). Those feature points are selected
from consecutive cardiac cycles, where the feature points of one cardiac cycle
is separated from another with a cardiac cycle length CL. The value of the CL

can be calculated as CL = 1

Hr

∗ Sr . Especially, the Hr parameter is retrieved

continuously considering the successive RR interval duration. In the process of
feature point extraction, first the candidate R point is detected considering the
following analysis. In the first step, the peak with maximum amplitude ζpt is
identified from all the considered cardiac cycles. In the next phase, the obtained
peaks with amplitude value greater than σRpt × ζpt are selected and defined as



Artificial Intelligence Assisted Cardiac Signal Analysis for Heart Disease Prediction 347

cnRpts . The other feature points such as Qrg , Prg , Srg , and Trg are calculated
considering the candidate R point. The points, which are appeared before R
is formulated as (Rpt − Y,Rpt ) and the points appeared after R defined as
(Rpt , Rpt + (Y + α)). Here, Y signifies the set of data points, which is equal
to the normal signal wave duration of the related feature points. For example, for

the formulation of feature point Q, the value of Y is defined as =
	QRSwv ∗ Sr

2
.

Here, 	QRSwv signifies the time duration of the QRS wave in case of normal
case. The constant α is added as a precautionary measure to minimize the
estimation error of Y . In the similar way, the rest of the feature points are
extracted considering their minimum (e.g., points Q and S) and maximum peak
characteristics (e.g., points P and T ) as shown in the Fig. 8. In addition, the
authors have also considered the set of start points {Ponset ,QRSonset , Tonset },
and set of end points {Poff set ,QRSoff set , Toff set } corresponding to the feature
points P wave, QRS wave and T wave, respectively.

A real-time ECG feature points R and QRS detection method is proposed in
[23] considering the concept of derivative filters. The designed system consists
of several modules such as R-point detection module, then a module for noise
or artifact detection, a detected R − R point connection module, and finally
an elimination module for inaccurate RR determination. First, the referenced
R point is delineated considering two types of first order derivative filter such as
[1,−1] and [−1, 1]. The filter [−1, 1] is responsible to detect the rising interval
ofQRS wave while the sudden falling interval is determined by the filter [1,−1].
Through the individual multiplication of each derivative filter, the P and T

waves along with the noise is suppressed with an enhancement of QRS interval.
Finally, the normalized max filter is applied with those multiplied derivative filter
outcomes to detect the QRS interval and R peak by keeping the threshold value
= 0.3.

2. Detection of Abnormalities in ECG Signals:
The cardiac abnormalities from the ECG data can be identified considering
prominent features such as ST Depression, ST Elevation, T Point raise those
appeared in the ECG curve [3].

Fig. 8 Example of important points delineation in ECG wave
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Fig. 9 Abnormality detection in ST Segment (a) Normal ST Segment; (b) ST Depression; (c) ST
Elevation [3]

• ST Segment Abnormality Detection:
In case of a normal ECG, the ST segment is defined as an isoelectric flat
portion joining the offset part (end part) of the S wave, i.e., J point with
onset point of T wave (start point) as shown in Fig. 9a. Generally, the slope
of the ST portion in a normal ECG is equal to 0 as it is a flat isoelectric line.
However, in case of any abnormal circumstance, the ST segment bow towards
downward (depression) or upward (elevation) direction with a changing in the
default slope value to -ve (mst < 0) or +ve (mst > 0), respectively. Different
types of ST depression and ST elevation examples are shown in Fig. 9b.1–b.3.

The mst value is calculated considering the angle θ between the standard
line and ST segment, which is defined as mst = tan(θ). With the use of this
slop concept, the physicians can ascertain majority of ST segment related
abnormalities. However, in some cases the changes in the slop value is almost
negligible (remains zero) in spite of ST depression or elevation as shown
in Fig. 9c. To handle such type of scenario, the authors have used another
parameter, i.e., the area (σst ), which is obtained due to curvature of ST

segment with respect to the baseline. The area (σst ) can be calculated by
applying the mathematical tool of definite integration between J point and
onset point of T wave as formulated in Eq. 1.

σst =
∫ b

a

f (x)dx (1)

Here, f (x) signifies the nature of ST segment curve while a and b are points
equivalent to offset part of the S wave and the onset point of T wave.

• T-Wave Abnormality Detection:
The cardiac abnormalities like coronary ischemia, hyperkalemia and left
ventricle hypertrophy disorder are mostly occurred due to ventricle re-
polarization. In ECG, this re-polarization process can be determined con-
sidering the morphology of T wave as shown in Fig. 10b.1–b.3 in the form
of T point raise, flattened T wave and inverted T wave, respectively. It is
very difficult to uncover those T wave deviations using manual approach,
therefore, the authors have developed a novel approach combing three primary
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Fig. 10 Different abnormality detection from T Wave (a) Normal T-Wave; (b) Various T Wave
abnormalities [3]

Table 1 The predefined normal values for different ECG wave types [3]

Notation Definition

DPwave Normal P wave Duration (80 ms)

APwave Normal P wave amplitude (0.1 mm, 0.2 mm)

DQRSwave Normal QRS wave Duration (80 ms, 100 ms)

AQRSwave Normal QRS wave amplitude (≤1 mm)

factors such amplitude, area, and angle related to T wave. It can be observed
from Fig. 10b.1, the values of amplitude, area, and the associated angle are
abnormally higher in comparison to the values obtained from normal T wave.
In contrast, a relative smaller amplitude, area and angle are obtained due to
flatten T waves in Fig. 10b.2 and the inverted T-wave can be marked when
amplitude and angle of the T-wave gives value < 0 as shown in Fig. 10b.3.

• RR Interval Abnormality Detection:
The accurate determination of RR interval plays an important role for cardiac
abnormality detection as in case of any irregularity the duration of RR interval
goes longer. The usual RR Interval duration in a healthy heart ranges between
600 ms to 1000 ms. Any RR Interval duration longer than 1000 ms and shorter
than 600 ms can be classified as abnormal. Although, during some activities
like sleeping or sitting the RR interval duration is greater than 1000 ms, which
is quite normal. However, such values in case of walking or running are not
acceptable.

• Other Abnormalities Detection:
It is also observed that any changes in amplitude and the duration of the
P and QRS wave triggered the cardiac abnormalities. Those amplitude
and duration parameters can be calculated as APwave , AQRSwave and duration
DPwave ,DQRSwave considering the time stamp and location of the primary
feature points P , Q, R, and S. Whenever the calculated values either related
to the amplitude or duration differs significantly corresponding to the normal
values given in Table 1, the abnormality associated with the concern wave is
noted.

• Abnormality Detection in ECG Morphology:
The authors in [2], have developed a mathematical model to detect the
cardiac abnormality considering the reference amplitude and duration of the
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Fig. 11 ECG P point abnormality detection

feature points related to P wave, QRS complex, and T wave. In this work,
instead of monitoring the individual cardiac cycle, the authors considered a
group of k-number of cardiac cycles to design a robust cardiac abnormality
detection method without being misguided with false abnormalities or bad
signal quality. First, in each cardiac cycle, different potential parameters
such as signal amplitude, wave segment, and interval duration related to
each primary feature point is measured and compared with the corresponding
normal values. Let us consider the methods of identifying the abnormality in
the feature point P . In order to find out any deviation from the normal value,
the current captured value of amplitude θPwv and wave duration ψPwv are
compared with the reference minimum (
Pwv) and maximum (ωPwv) value
of amplitude as well as wave duration (i.e., 	Pwv and δPwv), respectively,
as represented in Fig. 11. An abnormal morphology counter named as cPwv

is maintained related to P wave and the value of the counter is increased by
one in each time upon finding any of the measured amplitude θPwv or wave
duration ψPwv falls outside the reference normal values. In the similar way,
the abnormality related to Q, R, S, and T wave can be calculated considering
the morphology of QRSwv , Twv and RRinv .

3.1.2 AI-Based Abnormality Prediction

In order to minimize the workload of the cardiologists and to increase computational
efficiency, computer-aided systems have been developed using the concept of AI.
Generally, the intelligent system is embedded with powerful ML or DL algorithms
that can extract the hidden features and convert those salient features into useful
insights that will benefit for heart disease prediction and severity analysis. Besides,
as CVD is considered as one of the deadly chronic disease, an accurate and faster
diagnosis is necessary.

An effective intelligent model has been developed for the prediction of heart
disease using the concept of ML in [24]. The overall framework of the proposed AI
model is given in Fig. 12. In the proposed work, the authors have used open data set
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Fig. 12 Proposed ML framework for heart disease classification

named “Heart Disease Dataset” from the UCI Machine Learning Repository. The
considered dataset contains in total 74 independent features such as blood pressure,
heart rate and many other features related to ST depression, etc. Those data which
are extracted from different races like Cleveland, Hungarian, and a combination of
both called CH (Cleveland-Hungarian). After the necessary data collection, the raw
data are preprocessed as it contains missing values, duplicate records and irrelevant
data which might affect the prediction accuracy. Therefore, to make a complete and
relevant data set, different cleaning process is performed such as (i) the categorical
values like Yes or No changed into numerical 1 and 2 (ii) the null values are included
with a unique level (iii) any zero value is changed to null and so on.

In the next step, the high dimensionality of the feature set, i.e., 75, is reduced
to 13 important features using the concept Principal Component Analysis (PCA).
In the ML, the high dimensionality of the data set is one of the biggest problems.
The huge number of multi-variant features results unnecessary memory wastage
and sometimes leads to overfitting issues. For dimensionality reduction, the authors
have used PCA where the eigenvalue factor is considered as the criteria for effective
feature selection. Any component value with an eigenvalue greater than 1.00 is
included in the selected feature list. In contrast, any components with eigenvalues
less than 1.00 were deleted from the analysis as their contribution is less. In the
final step, for the prediction of the heart disease, the selected features are given
as input to six different classifiers such as Decision Tree (DT), Gradient-boosted
Tree (GBT), Logistic Regression (LOG), Multilayer Perceptron (MPC), Naïve
Bayes (NB) and Random Forests (RF), respectively. It is found that among all the
considered classifiers, the RF is performed better, with 98.7% accuracy.

The ML algorithms are used in all the fields of medicine, such as drug discovery,
clinical decision making, significantly altering the way medicine is practiced.
However, the ML algorithms use the numeric data as input; therefore, all types of
data must be converted to numeric form. This is achieved by extracting the features
manually from the data, which is tedious, manual, and error-prone. In addition to
this, when only known features are extracted manually, some important unknown
feature might be lost such as the spatial relationship between two adjacent pixels.
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Fig. 13 CNN framework for cardiac abnormality detection

Therefore, the automatic feature extractor, DL is used to overcome the limitations
of traditional ML algorithms.

Upon understanding the benefits of the DL, the authors in [25] have developed
a CNN-based classification network that can classify the cardiac abnormality
in different classes such as “normal,” “atrial premature beat,” and “premature
ventricular contraction ” using ECG. The authors have considered 48 numbers ECG
recordings collected from the PhysioNet database. The proposed CNN network
comprises convolutional layers, batch normalization layers, pooling layers and
finally, the Softmax classification layer. In each layer, the Rectified Linear Units
(ReLU) is used as the activation function. As shown in Fig. 13, the collected ECG
image is given as input to the designed CNN model.

The hidden layers perform the convolution, subsampling, pooling and finally,
the output is forwarded to a fully connected layer. Here, all neurons in the fully
connected layer vote for whether the input image is “normal” or suffered from
“atrial premature beat” or “premature ventricular contraction”. After that, the voting
is passed through the Softmax classification layer to classify a patient’s percentage
being normal or abnormal. Even with the fewer number of the dataset and simple
CNN network, the proposed model is achieved 98.33% mean accuracy for the
validation set.

3.2 SCG Signal Data Analysis

The signals obtained from ECG sensors are enriched with in-depth cardiac infor-
mation. However, there is a need for a detailed study related to different SCG
features and their correlation for cardiac abnormality prediction. Currently, several
mathematical and AI models have been developed to extract the candidate features
automatically and to identify the morphological abnormalities in the retrieved
cardiac SCG signals.
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3.2.1 Mathematical Model Based Prediction

It is difficult for the physicians to draw any outcome from the raw SCG signal that
requires proper annotation considering the cardiac cycle’s beat-by-beat. Besides,
proper identification of the candidate feature points can result in efficient abnor-
mality prediction as those features will ultimately use in various intelligent models.
The manual annotation of feature points is tedious, experience-based, and time-
consuming process. Therefore, there is a requirement for an automatic feature
extraction paradigm.

1. Feature Point Delineation in SCG Signals:
A mathematical model for delineation of the feature point considering single-
channel SCG is discussed in [2]. The feature points are collected in the form of
a vector and is defined as Vscg with known sampling rate Sr and mean heart rate
Hr . For SCG data analysis, generally nine important points related to various
cardiac mechanical activities such as peak of atrial systole (AS), closing of
mitral valve (MC), isovolumic movement (IM), opening of aortic valve (AO),
isovolumic contraction (IC), peak of rapid systolic ejection (RE), closing of
aortic valve (AC), opening of mitral valve (MO), and peak of rapid diastolic
filling (RF) are considered as shown in Fig. 14.

Out of those primary points, the data point AO is considered as the candidate
points as it exhibits high amplitude in a cardiac cycle. At first, the maximum
amplitude peak ζpt from the set of cardiac cycles is located. After that, for each
cardiac cycle a set of candidate peaks are located as cnAOpts with amplitude
more than σAOpt × ζpt . Considering AO as the candidate point, a sliding win-
dow SW(X) is derived, where X = {AS,MC, IM, IC,RE,AC,MO,RF }.
After the delineation of AO in each cardiac cycle, the remaining feature points
are captured for each AO − AO duration using the sliding window SW(X).

In the next phase, individual feature points (Xrg) is identified accord-
ing to their morphological maxima (+ve) or minima (−ve) characteristic.

Fig. 14 Delineation of SCG feature points
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Fig. 15 SCG AC point abnormality detection

Fig. 16 Candidate feature variables of SCG derived from TV location [2]

Here, Xrg is defined as the range of points to locate point X, where X ∈
{AS,MC, IM, IC,RE,AC,MO,RF }. Let us consider an example as shown
in Fig. 15, where to delineate the feature point AC, probable data points (ACrg)
with respect to AO at distance SW(AC) is formulated. Finally, the signal peak
with maximum amplitude falls within the range of ACrg +α is nominated as one
of the candidate feature point (ASpt ) as depicted in Fig. 15.

2. Abnormality Detection in Single-Channel SCG Signals:
To determine the cardiac abnormalities from the single-channel SCG signal
generated from Tricuspid valve, the authors in [2] have considered six SCG
feature variables (FVSCG) such as �MC,AO , �AO,AC , �MC,MO , �AC,MO ,
�RBE , and �RBF as shown in Fig. 16. As described in Table 2, the mentioned
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Table 2 Description of single-channel SCG signal’s feature variables [2]

Notation Meaning

�MC,AO Time Duration from closing of mitral to opening of aortic

�AO,AC Time duration between opening and closing of aortic

�MC,MO Time duration between closing and opening of mitral

�AC,MO Time duration from closing of aortic to opening of mitral

�RBE Time duration of ventricle blood ejection

�RBF Time duration of diastolic blood filling

FVscg = {�MC,AO,�AO,AC,�MC,MO,�AC,MO,�RBE,�RBF }

feature variables signify the duration of different cardiac mechanical activities in
a cardiac cycle.
The entire process of cardiac abnormality detection is divided into two phases
such as estimation phase and evaluation phase. The estimation phase is mainly
focused on the time series analysis of data in order to smoothen any kind of signal
fluctuation and measure the accurate trend of six feature variables. In the analysis,
the behavioral changes factor such as respiration and body movement is also
added by assigning certain weights in a decreasing order to the cardiac cycles.
The weighted moving average duration WavgDi and weighted moving standard
deviation duration WstdDi are quantified for individual feature-variable-i,
where i ∈ FVscg . At the end of the η number (let) of cardiac cycles, the
calculated value of WavgDi and WstdDi are used as the decision maker
variables for early cardiac abnormality detection. The derivations of estimation
and evaluation phases are given details in [2].

3. Abnormality Detection in Multi-channel SCG Signals:
In order to predict the cardiac abnormality in multi-channel SCG, six SCG
features such as DMC-AO , DRBE , DAO-AC , DMC-MO , DRBF and DAC-MO are
identified as shown in Fig. 17 based on the order and position of nine SCG
important points [3]. The six candidate feature points represent the different
Cardiac Mechanical Activities (CMAs), such as opening and closing duration
of the aortic and mitral valve, time for systolic blood ejection and diastolic
blood filling, etc. In the case of a healthy person, the CMAs takes place in a
regular pattern. However, in a patient with coronary diseases such as myocardial
ischemia, infarction and arrhythmias, irregular pattern of CMAs are found
with significant changes in the regular time interval of different SCG features.
In Table 3, the definition of each SCG feature and their involvement in different
cardiac activities are listed.
Unlike ECG, SCG does not carry any predetermined time interval for the signal
waves. Therefore, for each SCG feature i, where 1 ≤ i ≤ 6, a reference value
of duration, i.e., Di is estimated considering δ > 0 (let us say δ = 20) number
of cardiac cycles. A reference moving average duration μ(Dk

i ) and reference
moving standard deviation σ(Dk

i ) is estimated from δ number of cardiac cycles,
where 1 ≤ i ≤ 6 and 1 ≤ k ≤ δ. The derivations of σ(Dk

i ) and μ(Dk
i ) are given
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Fig. 17 Identification of SCG multi-channel feature points [3]

Table 3 Definition and cardiac activities associated with multi-channel SCG features [3]

Notation Cardiac activities

DMC-AO Time interval from closing of mitral valve to opening of aortic
valve

DAO-AC Time interval between opening and closing of aortic valve

DMC-MO Time interval between opening and closing of mitral valve

DAC-MO Time interval from closing of aortic valve to opening of mitral
valve

DRBE Time interval of systolic blood ejection

DRBF Time interval of diastolic blood filling

in [3]. In case of multi-channel SCG, the general estimation way of μ(Dk
i ) and

σ(Dk
i ) are extended for multi-location SCG values that are placed in different

valves such as T V , MV , PV , and AV , respectively.
For the SCG signals obtained from different locations, the reference moving
average duration μ(Dk

i )T V , μ(Dk
i )AV , μ(Dk

i )MV , μ(Dk
i )PV and the reference

moving standard deviation σ(Dk
i )T V , σ(Dk

i )AV , σ(Dk
i )MV , σ(Dk

i )PV could be

calculated [3]. Finally, ̂μ(Dk
i ) and

̂σ(Dk
i ) are obtained by averaging the value of

μ(Dk
i )T V ,μ(Dk

i )AV ,μ(Dk
i )MV ,μ(Dk

i )PV and σ(Dk
i )T V , σ(Dk

i )AV , σ(Dk
i )MV ,

σ(Dk
i )PV , respectively, which is given in [3]. The final estimated values such as

̂μ(Dk
i ) and

̂σ(Dk
i ) are considered as the decision makers to determine the abnor-

malities in successive cardiac cycles. In the evaluation phase, each individual
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SCG feature D
j
i is compared to the range (̂μ(Dk

i ) + ̂σ(Dk
i ),

̂μ(Dk
i ) − ̂σ(Dk

i ))

during each subsequent cardiac cycles j . If the measured value of D
j
i falls out

the range of (̂μ(Dk
i ) + ̂σ(Dk

i ),
̂μ(Dk

i ) − ̂σ(Dk
i )) for any cardiac cycle j , the

concerned ith SCG feature is considered as potential outlier and the considered
j th cardiac cycle is taken as potential abnormality.

3.2.2 AI-Based Abnormality Prediction

Currently, the concept of ML and DL is very much popular in healthcare especially
in biomedical signal processing, including SCG analysis to design various predictive
models. Intelligent algorithms can be employed to recognize the underlying salient
features automatically without the need for any cumbersome manual feature
extraction. Considering SCG as the primary modality, various ML models such
as SVM, LR can be used in detection of coronary heart diseases in a cardiac
cycle. However, the efficiency of a robust model solely depends on effective feature
annotation and extraction.

1. Automatic SCG Feature Annotation:
Unlike ECG, the SCG morphology is highly complicated and incomprehensible.
Generally, the SCG possesses high inter variability of signal types among
multiple subjects. In addition, the signal generated from SCG due to vibration
is highly susceptible to external noise. Besides, it is always challenging to
distinguish the peaks of candidate feature points accurately. In some cases like
the feature point set {AO, RE} and {IM , IC}, exhibit similar amplitude as
shown in Fig. 14, hence difficult for the accurate feature delineation. Therefore, it
is highly essential to design concrete automatic feature annotation method using
AI that can learn the underlying feature from dynamic SCG signal [26].
The authors in [26] have developed an AI-based automatic SCG annotation
framework, which is broadly divided into three phases such as preprocessing,
training, and testing, as shown in Fig. 18. The preprocessing phase is focused
on the identification of candidate features and peaks of SCG signal. During the
training phase, based on the retrieved features, the selected classifiers are trained
and learned the hidden features. Finally, in the testing phase, the undesired peaks
(candidate points) are filtered out using the well-trained ML classifier. In order
to train the classifiers, the authors have considered three morphological features
as Amplitude, Time of appearance and Count derived from the SCG signal.
The feature amplitude is defined with +ve (high) or −ve (low) value based on
the maxima or minimal signal wave nature. For example, as shown in Fig. 14,
the point AO and AC in one cardiac cycle are associated with high and low
amplitude, respectively. Similarly, the feature Time of appearance is measured
taking AO as the candidate. Based on the defined rule, the points which appeared
beforeAO are assigned with−ve value and the coming points afterAO assigned
with +ve value in each cardiac cycle. The innovative feature count is described
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Fig. 18 Overview of SCG annotation framework [26]

as the number ofUpslopes andDownslopes away fromAO at a particular SCG
peak.
In the preprocessing phase, to reduce the search area and to determine the
candidate peaks, each cardiac cycle is divided into three zones as Zone 1, Zone
2, and Zone 3, respectively. The respective zones are constructed by comparing
the electrical morphology of ECG with the mechanical morphology of SCG by
mapping the associate points as shown in Fig. 19. The purpose of Zone 1 is to
identify the feature point AS by aligning the ECG Poff set to QRSonset with
SCG. The other primary SCG points such as MC, IM , IC, and RE are detected
by placing the ECG QRSonset to Tonset with SCG. Finally, the other SCG points
AC, MO, RF are determined by mapping the ECG Toff set to Ponset of the next
cycle as represented in Fig. 19. After the division of zones and detection of the
feature points, associate candidate peaks are identified as max_peak (e.g., AS,
MC) or min_peak (e.g., IM and IC) based on the maxima or minima.
For the training purpose, three machine learning classifiers, such as NB, SVM,
and LR, are employed by the authors to learn the morphological changes in
signals and to capture the irregularity of the signal peaks. The reason to select
NB, SVM, and LR is that they are less computer-intensive and highly robust
against overfitting, making it beneficial for continuous cardiac monitoring. The
considered ML classifiers require only a few parameters to tune, which helps in
faster training and quick learning. An example of automatic candidate feature
point detection using LR classifier is described as follows. Let us consider there
are k numbers of training data samples are for a SCG peak x ∈ SCGPs, the set
Zx = {zi

x |i = 1, 2, . . . , k}, where zi
x ∈ Zx is an ith training data sample. Each

training sample zi
x is comprised of feature vector F i

x = {Ci
x, T

i
x , Ai

x}. A logistic
linear function L(zi

x) can be defined as shown in Eq. 2.
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Fig. 19 The zones formation and candidate peaks identification [26]

L(zi
x) = β0 + (β1 × Ci

x) + (β2 × T i
x ) + (β3 × Ai

x) (2)

= βT × F i
x, ∀zi

x ∈ Zx

Here, β0, β1, β2, and β3 are the earning parameters related to specific classifiers.

σ(L(zi
x)) = σ(βT F i

x) =
1

1+ exp−(βT F i
x)

(3)

For testing purpose, let us consider there are n number of candidate peaks
(i.e., test data samples) for an SCG peak x, which is defined as CPx =
{cp1

x, cp
2
x, . . . , cp

n
x }. Using the trained logistic regression model defined in Eq. 3,

to predict the likelihood of each candidate peak cpi
x ∈ CPx to be classified in

class selected considering the Eq. 4

p(selected|cpi
x) = σ(L(cpi

x)) = σ(βT F i
x) (4)

= 1

1+ exp−(β0+β1C
i
x+β2T

i
x+β3A

i
x)

One candidate peak with maximum likelihood out of the n is selected as desired
SCG peak x as shown in Eq. 5.
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x = max

(

p(selected|cp1
x), p(selected|cp2

x), .., (5)

p(selected|cpn
x)

)

2. Cardiac Abnormality Prediction:
When huge numbers of complex multi-parametric biosignal data are generated,
it becomes a tedious job to correlate those parameters for deciding the cardiac
condition of a person. Any error in diagnosis could be fatal for the patients.
Therefore, potential ML and DL algorithms are used in all the fields of
biomedical signal analysis to predict any kind of abnormalities rapidly and to
assist the cardiologist in making faster treatment decisions. For multiple or binary
classification, Artificial Neural Networks (ANNs) is the best option as it works
pretty well if data is of huge size. ANNs are also a nonlinear model which
makes it easy to use and understand, compared to statistical methods. ANNs are
especially useful if the outputs are inter-related. ANNs learn on how to associate
each of the inputs with the corresponding output, by modifying the synaptic
weights of connections between neurons. The ANN, which is employed in this
study consist of an input layer, two hidden layers, and an output layer.
In order to classify absence (binary 0) or presence (binary 1) of the Cardiac
Artery Disease (CAD), the authors in [27] have used the concept of ANN
considering the SCG modality. The authors have extracted 48 features (F1, F2,
. . . , F48) during three activities like rest, immediate post-exercise and recovery
considering six candidate points such as MC, AO, AC. MO, RE, and AS,
respectively. For example, systolic interval Q to AC is considered as one of
the parameters and this interval value is recorded for the three actions like rest,
immediate post-exercise and recovery to generate three features such as F1, F2,
and F3. In a similar way, by considering 16 SCG signal parameters for the
three activities, 48 numbers of features are recorded. For the model training and
testing in total, a population of 114 patients are considered, out of which 57
are diagnosed with CAD and the rest 57 are normal category. Those extracted
features are given as input to the ANN composing input layer, an output layer
and intermediate hidden layer for feature learning, as shown in Fig. 20.
In order to get the correct output, the back-propagation learning is employed
where the weights (wxa , wab, wby) are updated. The Boolean values for each of
the two outputs are responsible for predicting the presence or absence of CAD.
The proposed model has achieved impressive results with 80% sensitivity and
70% specificity on the unseen testing set.
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Fig. 20 ANN to predict the presence or absence of CAD

3.3 Combined Analysis of Multichannel ECG and SCG Signals

The prediction of cardiac abnormalities considering only a single modality of
cardiac signal type, either ECG or SCG, is not sufficient as each signal type has
its limitations. Although the ECG signal analysis is efficient for daily monitoring of
cardiac activities, critical heart diseases like ischemia, angina, and blockage usually
do not appear in the ECG. Unlike ECG, SCG can give depth knowledge related
to mechanical functionalities of the heart. However, the analysis using SCG is not
well-studied especially, the extraction of different features in case of abnormalities
related to hypertensive heart disease. Therefore, there is a need for a detail combined
study of electrical and mechanical activities of the heart through ECG and SCG.
This combined study might bring out some additional information that will help
early prediction of abnormalities and continuous monitoring of heart disease.

3.3.1 Mathematical Model Based Prediction

A combined analysis of ECG and multi-channel SCG is performed in [3], where
the authors have designed a probability-based mathematical model to predict the
abnormalities as represented in Fig. 21. In order to determine the severity over a
period of time, the probability of abnormality as shown in Fig. 22 for a Group of π

number (where π ≥ 1) of Cardiac Cycles (GCCs) is considered. In the initial phase,
the abnormality related to individual cycles is calculated, which is then averaged
over π numbers of GCCs. The maximum probability value considered for any
abnormality is 0.5 irrespective of ECG and SCG modality. In SCG, the maximum
probability value of 0.5 is distributed over the four channels such as AV, MV, PV, TV
and assigned 1

4 × 0.5 = 0.125 to individual channels. During the prediction of the
abnormality, the probability value of ECG and the SCG is summed up. As shown
in Fig. 22c, in the cardiac cycle 3 (CC3), the output probability of ECG is = 0.5;
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Fig. 21 Proposed framework for combined analysis of ECG and multi channel SCG [3]

Fig. 22 Combined analysis of ECG and multichannel SCG [3]

however, in case of SCG the probability value = 0.125 + 0.125 + 0.125 = 0.375 is
obtained from affected TV, PV, and MV channels. In the next step, the probability of
abnormality for GCCs (PGCCs) is determined by averaging the attained value from
each individual cycle over GCC (π = 1) i.e., 0.625+0.25+0.875

3 = 0.58 (Fig. 22). In
the final step, to categorize the abnormality as mild or severe, the PGCCs value is
compared with predefined threshold values βM and βS , where βM, βS ∈ [0, 1]. The
mild severity is confirmed if βM ≤ PGCCs ≤ βS and in case of higher severity the
PGCCs > βS .
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Fig. 23 Abnormality visualization module [3]. (a) ST-depression. (b) T-wave raise. (c) Bradycar-
dia. (d) ST elevation. (e) Ventricular fibrillation

For visualization of the abnormality, the authors in [3] have developed an early
warning system comprised of dual LEDs to predict mild and severe abnormality.
Based on the probabilistic-based combined analysis, upon finding mild abnormality
the Yellow LED glows up along with the attached motor’s vibration. Similarly, in
severe cardiac health abnormality, the red LED will flash with a buzzer sound alert
as shown in Fig. 23.

3.3.2 AI-Based Abnormality Prediction

The design of robust heart disease prediction model requires beat-by-beat anal-
ysis combing the outcome of both ECG and SCG as depicted in Fig. 24. The
conventional methods mostly depend on the hand-crafted mathematical features,
which is time-consuming, tedious, labor-intensive as they are trial-and-error based.
Besides, there is a high chance of mistakes in the manual calculation of the abnormal
probability especially a higher number of cardiac cycles. Therefore, there is a high
requirement for intelligent models that can correlate the multiple parameters from
both the ECG and SCG modalities to produce more accurate outcomes within less
time.

An intelligent Naïve Bayes probability model is designed to combine the
morphological features of both ECG and SCG by the authors in [2] to classify
each cardiac cycle to be normal or abnormal. To construct the probabilistic
model, the authors have considered a set of ECG features represented as
FVecg = {�Xwv,ψXwv,ψRRinv} and set of SCG features defined as
FVscg = {�MC,AO,�AO,AC,�MC,MO,�AC,MO,�RBE,�RBF }, where X ∈
{P,QRS, T }. The terms � and ψ signify the value of wave amplitude and duration.
The probability of an ECG cardiac cycle (Let us say k) to be normal or abnormal
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Fig. 24 Feature point mapping considering both ECG and SCG

can be defined in Eq. 6.

p(ϕl |FV k
ecg) =

p(ϕl) × p(FV k
ecg|ϕl)

p(FV k
ecg)

, where l ∈ {1, 2} (6)

Here, the output class normal and abnormal is signified by ϕl=1 and ϕl=2,
respectively. The probability of kth cardiac cycle to be normal or abnormal for
a given ECG feature set FV k

ecg is determined by the variables p(ϕl=1|FV k
ecg) and

p(ϕl=2|FV k
ecg). The p(ϕl |FV k

ecg) can be simplified as shown in Eq. 7.

p(ϕl |FV k
ecg) = p(ϕl |�Xk

wv, ψXk
wv, ψRRk

inv) (7)

Each feature xi ∈ FV k
ecg is considered to be conditionally independent to every

other features xj ∈ FV k
ecg for j �= i under conditional independence assumption the

Naïve Bayes theorem. Based on the maximum a posteriori decision rule, the ECG
classifier can be defined as given in Eq. 10.

The normal or abnormal classification of SCG signal can be derived using the
Naïve Bayes conditional probability classifier as given in Eq. 8.

�scg = argmax
l∈{1,2}

p(ϕl) ×
i=7∏

i=1

p(yi |ϕl) (8)

Here, �ecg and �scg is assigned with class label ϕl for some l (i.e., binary 0 or 1)
based on the maximum a posteriori probability. Accordingly, if the output of both
the ECG and SCG modality is abnormal (e.g., binary ‘1’), then based on Eq. 9, the
concerned cardiac cycle is classified as abnormal with the rule, e.g., 1 ∧ 1 = 1.
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Fig. 25 Combined performance evaluation of ECG and SCGmodalities [2]. (a) ECG/SCG normal
morphology detection. (b) ECG abnormal, SCG normal morphology detection. (c) ECG/SCG
abnormal morphology detection

Joutcome = CCk
ecg ∧ CCk

scg (9)

The outcome from any modality normal (binary 0) means the corresponding cardiac
cycles are normal. Here, CCk

ecg and CCk
scg signify individual classification results

of kth cardiac cycle of ECG and SCG. The authors in [2] have performed rigorous
experiments to determine the cardiac health of a person considering the analysis of
both ECG and SCG modalities as shown in Fig. 25. From Fig. 25a, it is observed
that the morphology of the cardiac cycle in both ECG and SCG is normal, resulting
in the patient is normal, i.e., Cardiac Abnormality Index (CAI) = 0. Although, the
ECG shows cardiac abnormalities, based on the SCG, the cardiac rhythm is normal
with CAI = 0 in Fig. 25b. It could be concluded that the patient is normal and the
ECG might be affected by external noise. In the third case as the morphology of
both ECG and SCG show abnormality (CAI = 1) as shown in Fig. 25c, it indicates
that the person suffers from severe cardiac abnormalities.

�ecg = argmax
l∈{1,2}

p(ϕl) ×
i=6∏

i=1

p(xi |ϕl), where xi ∈ FV k
ecg (10)

4 Comparison of Related Literature

Currently, several literature have proposed the cardiac abnormality diagnosis using
ECG or SCG modalities. A detailed comparative study of different related works
along with their limitations is presented in Tables 4 and 5. The analysis of feature
point-based prediction without using AI is presented in Table 4, whereas Table 5
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is summarizes the work of various ML and DL prognosis models related to the
coronary diseases.

5 Conclusions

The application of ECG and SCG in coronary disease prediction is vast but
much needed for the early abnormal sign determination. Efficient mathematical
models and AI algorithms are designed for relevant cardiac feature extraction
automatically, where the manual method of delineation is tedious. Moreover, the
combined analysis of both ECG and SCG modality for each cardiac cycle reduces
the individual error chances and increases the prediction confidence. The design of
early warning modules can be useful for sending emergency alerts to the concerned
person so that life can be saved. However, there is also a need for extensive research
especially to analyze the combination of cardiac signals and images considering a
person’s physiological factors.
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Early Lung Cancer Detection by Using
Artificial Intelligence System

Fatma Taher

1 Chapter 1: Introduction

According to the World Health Organization, Lung cancer is the major cancer killer
in both men and women [1]. For the early diagnoses of lung cancer, chest x-ray
and sputum cytology techniques are used [2]. Therefore, by employing the sputum
color images, a new CAD system is developed for the prediction of lung cancer.
A computer-aided diagnosis system is a computing system meant for automated
detection and diagnosis of abnormalities in medical images [3]. A successful system
will have two main advantages:

1. Reduce time and resources dedicated to manual examination.
2. The amount of data that could be handled by CAD-systems would be much

higher compared to the cases that can be investigated manually.

CAD detection is different from CAD diagnosis where the detection is part of
the diagnosis. Thus, CAD detection usually refers to the process of automatically
detecting the diseased areas. CAD diagnosis is contained in the classification part
where the system can classify the subjects to normal and abnormal classes after
applying a well-known classification algorithm such as rule-based, artificial neural
network or support vector machine [4]. The procedures of the CAD system are
represented by the analysis and the diagnostic parts. In the analysis part, the region
of interest (ROI) is extracted that includes the nuclei and cytoplasm regions, and
image processing techniques are also used. In the diagnosis part, diagnostic rules
are applied to detect the abnormal cases based on these rules. Due to the noisy
and cluttered background patterns of the sputum images, automatic detection of
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Fig. 1 Diagnosis process of the CAD system

the cancerous cells becomes highly problematic. The proposed methods introduce a
new system for early detection, segmentation, and extraction of normal and cancer
cells. 100 sputum color images were used for the testing of new system, and its
results were evaluated based on the sensitivity, precision, specificity, and accuracy.
The entire diagnosis process of the proposed CAD system is depicted in Fig. 1.

2 Chapter 2: Cell Detection and Extraction

Color information is used for the detection of cancer cell. In this work, we used
rule-based algorithm and the Bayesian classification.

2.1 Rule-Based Algorithm

This algorithm is based on a heuristic rule-based on the chromatic disparity between
the sputum cell and the background in the stained images.

The rule used to extract sputum cell pixels for the blue dye-stained image is
explained as follows. Let I(x, y) be an image pixel:

If (B (x, y) < G (x, y) + θ) then I (x, y) is sputum else I (x, y) is non sputum
(1)

where B(x, y) and G(x, y) represent the pixel blue and green values in the RGB color
space and θ is a threshold parameter set empirically. Figure 2 depicts the result of
applying Eq. (1) to the raw image stained with blue dye (Fig. 2a). The nuclei and
cytoplasm are not correctly detected as depicted in Fig. 2b. However, a bunch of
debris cells are identified. This happens because of incorrect value of the threshold
parameter. On the other hand, the image in Fig. 2c depicts the correct result, after
determining the appropriate threshold value.



Early Lung Cancer Detection by Using Artificial Intelligence System 375

Fig. 2 (a) Blue dye-stained image. (b) The nuclei and cytoplasm are not correctly detected. (c)
The correct result

Fig. 3 (a) Image stained with red dyes, (b) the result of applying Eq. (2) with erroneous threshold
value, (c) the result of applying same equations with appropriate threshold value

Between the sputum cells and the background, red color dye is used; the rule is
as follows:

Let I(x, y) be an image pixel

If ((2 ∗G(x, y)+ θ ) < (R (x, y)+ B (x, y))) then I (x, y) is sputum else I (x, y) is non− sputum

(2)

where G(x, y), R(x, y), and B(x, y) represent the pixel green, red, and blue values in
the RGB color space and θ is a threshold parameter set empirically. Figure 3 depicts
the result of applying Eq. (2). Figure 3b shows that the nuclei and cytoplasm are not
correctly detected. Figure 3c depicts the correct result.

2.1.1 Experiments

The performance of the proposed rule-based algorithm can be analyzed by conduct-
ing a series of experiments. In this study, 100 images were used. Ground-truth data
were obtained manually. For testing, the rule-based algorithm was applied to the
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Fig. 4 (a) Raw images, (b) ground-truth images, (c) proposed rule-based results

test images, and then the resulted image was compared to the ground-truth data.
Figure 4 depicts the result of applying the proposed rule-based algorithm, where
it can be seen that the sputum cells are detected with reasonable accuracy. Figure
4a depicts the raw images, Fig. 4b depicts the ground-truth images which contain
the sputum cells, and Fig. 4c depicts the result of applying the proposed rule-
based algorithm. The ground-truth cells are employed for evaluating the rule-based
resulted images for correctly detecting the ROI. After that, the correctly detected
pixels will be obtained. Therefore, after performing a series of trial-and-error tests
using an optimization program, the threshold θ parameter was determined which is
explained in [5]. The values were found to be in the range from −35 to −15. The
segmentation becomes more selective as the threshold θ value increases.
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Fig. 5 The percentage of the sensitivity, specificity, and accuracy of the rule-based algorithm

Figure 5 depicts the percentage of the specificity, sensitivity, and accuracy
mapped in the function of the threshold θ during the detection and extraction
processes. This algorithm achieves best sensitivity of 82%, specificity of 99%, and
accuracy of 98%.

2.2 Bayesian Classification

A probabilistic method is used to address the cell detection problem based on the
Bayesian classification [6]. Instead of using trial-and-error testing, the threshold
parameters are estimated using a systematic method.

While considering this method, a pixel x is used as a part of the sputum region if:

p (bg|x) < p (sp|x) (3)

where sp denotes the sputum and bg the background, respectively.
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Using the classification approach, Eq. (3) can be written as:

μsp

μbg

p(bg)

p(sp)
<

p (x|sp)

p (x|bg)
(4)

where μsp denotes the loss weight attained when the sputum class is selected and
μbg,when background is selected. p(bg) is the prior probabilities of the background,
and p(sp) is the prior probabilities of sputum classes. The following equations are
used for estimation of these parameters:

p(sp) = Tsp

Tsp + Tbg

(5)

p(bg) = Tbg

Tsp + Tbg

(6)

where Tsp denotes the number of sputum cell pixels and Tbg denotes the background
pixels. The setting of the ratio λ = μsp

μbg
is explained in [7]. Figure 6 shows samples

of sputum cell extraction results. Samples of sputum cell detection are depicted in
Fig. 6a–d.

2.2.1 Experiments

The performance of Bayesian classifier can be evaluated by conducting a series of
experiments with the histogram analysis in terms of color representation and color
quantization on the detection of sputum cell. The performance of the system was
compared in terms of sensitivity, specificity, and accuracy as were explained earlier.
We also used receiver operating characteristics (ROC) curves for the performance
assessment. For the training, manually obtained data was used. Then the Bayesian
classifier was used to test images. Sputum image data partition was used for training
and testing as explained in [7]. In the detection process, the ROC curves are
computed for the four-color representations for five histogram resolutions, and then
to test images, Bayesian classifier was applied. Across all the resolutions, we found
that the HSV and the RGB maintains a strong performance.

2.3 Bayesian Classifier vs. Rule-Based Algorithm

After trying the rule-based algorithm and a Bayesian classification technique, we
found that the Bayesian classifier with the analysis of the histogram outperforms the
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Fig. 6 Examples of detection of sputum cell. (a) Input images. (b) Manually obtained data. (c)
Using the Bayesian classifier with λ = 2, and (d) with λ = 7

rule-based technique. While considering the color quantization, as the color space
resolution increases, accuracy of the classification will also increase. Finally, the
Bayesian technique showed better results which is highly satisfying.
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Fig. 7 Performance accuracy
of the color spaces

Fig. 8 Accuracy
measurement of the
rule-based algorithm

Quantitatively, Fig. 7 shows the accuracy criterion variation for the Bayesian
classifier for different color spaces for 64-histogram resolutions as a function of the
ratio λ.

Figure 8 depicts the accuracy measurement of the rule-based method. The
rule-based algorithm and the Bayesian classification exhibits 98% accuracy and
99% specificity. Its sensitivity is 82% and 89%, respectively. This shows that the
Bayesian classification has showcased better results.

By comparing the ROC-curves obtained in both methods, it is clear that the
Bayesian technique outperforms the other.

3 Chapter 3: Image Segmentation

The mean shift algorithm is the segmentation method used in our proposed system.
In this method, the candidate solutions in the feature space are shifted towards the
maximum density points by using this algorithm. In our experiment, the pixel’s
gray level and the pixel spatial coordinates define the feature space. An appropriate
kernel is required to find the desired modes for obtaining good density estimation.
The kernel (known as the Parzen window technique in the pattern recognition
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literature [7]) was used to find the modes in our distribution. For a distribution with
d dimensions and a set of data points xi with i= 1 . . . n is distributed over that space.

The density function is given as follows:

f (x) = 1

n

n∑

i=1

|H |− 1
2 KH (x − xi) (7)

where the number of cell pixels is denoted as n and xi defines the feature vector.
The profile of the kernel function is denoted as KH . The Epanechnikov kernel is one
example of such kernel [8]. In this work, we used the normal kernel. The bandwidth
matrix is represented as H. The normal function in Eq. (7) can be written as:

f (x) = 1

n

n∑

i=1

(2π)−3/2|H |−1/2e−(x−xi )
T H−1(x−xi ) (8)

3.1 Mean Shift Procedure

By using the mean shift algorithm, the local maxima in the feature space are
obtained. We need to find the modes and their distribution first. Across the
convergence path, the different mode locations are given as follows:

yj+1 =
∑n

i=1 xig
((

yj − xi

)T
H−1

(
yj − xi

))

∑n
i=1 g

(
(yi − xi)

T H−1
(
yj − xi

)) j = 1, 2, .. . . . (9)

where the kernel function derivative is denoted as g.
The procedure is composed of the following steps:

1. Select a starting point.
2. Set starting point. Apply kernel Eq. (8) with starting center.
3. Update the candidate center, according to the mean shift Eq. (9).
4. Repeat steps 3–5 until convergence.

The different stages of mean shift segmentation are depicted in Fig. 9. The
sputum cells are shown in Fig. 9a. The contrast of the images is enhanced in
Fig. 9b. Figure 9c shows the final results. We found that non-compact regions are
produced as a result of this. Therefore, region merging is performed. Firstly, the
largest connected patches are extracted from each region. Then, region merging is
performed and it is calculated as follows:

Dist (mode) = 1

n

∑

pmode

∣
∣
∣
∣

(
xcentre

ycentre

)

−
(

xp

yp

)∣
∣
∣
∣ (10)
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Fig. 9 Different stages of
mean shift segmentation. (a)
Sputum cells. (b) Contrast of
the image is enhanced. (c)
Mean shift segmentation. (d)
Mode merging. (e) Region
refinement

Then the nucleus is considered as the mode with the minimal distance. A rule-
based region merging (Fig. 9d) is performed to get a connected nucleus. Then,
region refinement is done [9] as depicted in Fig. 9e.
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Table 1 Performance matrix

Performance measurements HNN (%) Gray mean shift (%) Gray-space mean shift (%)

Sensitivity 73.77 92.7 93.40
Precision 70.31 82.50 88.21
Accuracy 65 85 87.11

3.2 Experiments

A series of experiments are conducted to evaluate our cell segmentation method. The
performance was evaluated by comparing the mean shift segmentation results with
the ground-truth data. We used the following assessment criteria for performance
measurement: sensitivity, precision, and accuracy. In our experiments, the Hopfield
neural network (HNN) [10] is used for evaluating the performance of the mean shift
in gray-level feature space. Table 1 shows the performance matrix.

From the table, it is clear that the best performance is shown by the gray-space
mean shift and the performance of HNN is low when compared with the other
methods. Therefore, the gray-level density estimation is the perfect method for
nucleus segmentation.

4 Chapter 4: Feature Extraction

Different features [11] are extracted after detecting the nucleus and cytoplasm area
in the cell which helps in the diagnostic process. The ability of the CAD system
to identify the normal and abnormal cells is the major issue faced by any CAD
systems. We can solve this problem by using the correct features. These features are
explained as follows. The first feature is the NC ratio, which is computed as [11]:

NC ratio = Area (Nucleus)

Area (Cytoplasm)
∗ 100 (11)

The extracted nuclei and cytoplasm samples are depicted in Fig. 10a. The black
and white areas in Fig. 10b represent the nucleus and the cytoplasm respectively.
The nucleus area is shown in Fig. 10c. The next feature is the nucleus perimeter
defined by:

P (Nucleus) =
∫

t

√

x2(t)+ y2(t)dt (12)

where the parameterized contour point coordinates are represented as x(t) and y(t).
Figure 10d shows the nuclei cell perimeter (green color). The mean value [12] of
the nucleus is the next feature used which is calculated as follows:
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Fig. 10 Samples of the extracted nuclei and cytoplasm. (a) Input image, (b) nucleus and
cytoplasm extraction, (c) nucleus area, and (d) the perimeter of the nucleus area (green color)

Mean (Nucleus) =
∑N

i=1 Intensity(i)

Area (Nucleus)
(13)

where the intensity color value is given as i and N denotes the number of pixels in
the nucleus region. Figure 11 shows the value of mean intensity for both cancerous
and non-cancerous cells. In the figure, benign cells are represented in red color
and malignant cells as blue. BD refer to the benign density and MD, malignant
density. In our system θ = 128. Sometimes, misclassification [13] occurs. In this
case, the intensity feature cannot be considered alone. The curvature is the next
feature defined as the rate of change in the edge direction. Adjacent tangent line
segments will define the curvature at a single point in the boundary. In order to
find the curvature at that point of intersection, and difference between slopes of two
adjacent straight-line segments is measured [14]. The slope is obtained as:
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Fig. 11 The nuclei cells intensity variances

ϕ(t) = tan−1
(

ẏ(t)

ẋ(t)

)

(14)

where the derivatives of x (t) and y(t) are denoted as ẋ(t)and ẏ(t). For each point in
the nucleus contour, difference between adjacent slopes (δθ) is computed.

If malignant cells are considered, δθ will be higher than the estimated threshold
i.e. 50. Figure 12 shows the benign cell curvature extraction (δθ). The benign sputum
cell is shown in Fig. 12a, d depicts the boundary. Figure 12e depicts the curvature.
Figure 13 shows the malignant cell curvature extraction. The fifth feature is called
the circularity:

Circularity = 4πArea (Nucleus)

Perimeter(Nucleus)2
(15)

When the circularity value is higher, the cells in cleavage are normally round. On
the other hand, it will be lower as the normal-growing cells are irregular. The Eigen
ratio is the last feature [15]. In our system, irregular cells are long, which is having
a high Eigen ratio. Therefore, identifying cancerous and non-cancerous cells using
this feature is easy by an appropriate threshold value. The Eigen ratio is calculated
as follows [16]:
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Fig. 12 A benign cell curvature extraction. (a) Sputum cell. (b) Nucleus and cytoplasm segmen-
tation. (c) Extraction of nucleus. (d) Nucleus boundary

Fig. 13 A malignant cell curvature extraction. (a) Sputum cell. (b) Nucleus and cytoplasm
segmentation. (c) Extraction of nucleus. (d) Nucleus boundary

Eigen_ratio =
a
b
+ b

a

2
(16)

where the eigenvalues of the covariance matrix C are defined as (a, b) [17]:

C = 1

N

N∑

i=1

pip
T
i , (17)

where pi denotes the point in the nucleus area. The distribution of cell in the nucleus
region in both directions (horizontal and vertical) is denoted by the eigenvalues (a,
b). The mean and standard deviation (std) for the benign and malignant cells are
explained in [12].

The mean and standard deviation bar charts for cancerous and non-cancerous
cells for all the features explained are shown in Figs. 14, 15, and 16.

5 Chapter 5: Classification

Classification is a critical task for computer-aided diagnosis system (CAD), because
it is the last step in the CAD system. Therefore, the best outcomes are obtained
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Fig. 14 Mean and standard deviation for the (a) NC ratio and (b) perimeter feature
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Fig. 15 Mean and standard deviation for the (a) density feature and (b) curvature feature
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Fig. 16 Mean and standard deviation for the (a) circularity feature and (b) Eigen ratio feature
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depending upon the features that are available. Basically, classification is considered
as the heart of pattern recognition and the basis of any diagnostic system. In
this work, different classification techniques such as rule-based, artificial neural
network (ANN), and support vector machine (SVM) are explained and compared
their performances.

5.1 Rule-Based Method

For classification, one of the widely used technique is rule-based method [18]. A
set of rules have been used in this CAD system to identify the cancerous cell
regions and eliminate those with non-cancerous cell regions. Six diagnosis rules
are implemented based on the medical knowledge which is explained in [5]. In the
experiments, rule-based method performance is evaluated using individual rules and
combined rules.

5.2 Artificial Neural Network

A series of experiments were conducted to evaluate our cell segmentation method.
The performance was evaluated by comparing the mean shift segmentation results
with the ground-truth data [12]. We used the following assessment criteria for
performance measurement: sensitivity, precision, and accuracy.

Artificial neural network (ANN) is one of the significant methods used in the
medical field. In this proposed CAD system, to the input data sets, neural network-
supervised learning is applied [19]. ANN input data has been normalized in the
range of 0–1. ANN algorithm is explained in detail in [12]. The flow chart for the
ANN analysis is shown in Fig. 17.

Fig. 17 Flowchart for ANN analysis
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Fig. 18 SVM learning
approach

Table 2 Performance matrix

Performance/rules Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule-based

Sensitivity 94% 89% 91% 92% 94% 86% 89%
Precision 95% 95% 86% 86% 87 92% 87%
Specificity 91% 92% 71% 71% 74 86% 79%
Accuracy 93% 90% 84 85% 87% 86% 85%
Error 7 10 16 15 13 14 15

5.3 Support Vector Machine

Support vector machine (SVM) was first introduced by Vapnik [20]. In order to
segregate the data used for training, an optimal separating hyperplane (OSH) is
defined. It also used a supervised learning approach [21]. As SVM simultaneously
minimize the empirical risk, it is also known as maximum margin classifiers.
SVM algorithm is explained in detail in [12]. Figure 18 depicts the SVM learning
approach.

5.4 Experiments

A series of experiments were conducted to assess the classification techniques
explained previously. The three classifiers discussed above were applied to the input
data sets [22]. For these classifiers, sensitivity, specificity, and accuracy have been
computed.

Table 2 depicts the results of rule-based classifier. Highest accuracy of 94% is
obtained by using rule1.

The next experiment was assigned to the ANN classifier. Tenfold cross-validation
[23] was used to validate the output results [24]. The data sets are divided into ten



392 F. Taher

Fig. 19 Performance matrix
of ANN
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blocks which consist of the detected features. For all hold out blocks, the testing
and training of the system is done on the remaining blocks. The performance can
be evaluated by averaging the results over all test blocks. By varying the number
of hidden nodes and number of epochs, the best optimized ANN is obtained. The
performance criteria [25] of ANN are shown in Fig. 19.

The last experiment is assigned to the SVM classifier. Here also, tenfold cross-
validation is used for training and testing. The performance results [26] for SVM
are depicted in Fig. 20.

5.5 Comparing Rule-Based, ANN, and SVM Classifiers

After trying different classification techniques: rule-based method, ANN, and SVM
classifiers are used for the classification of the sputum cells. We found that the
SVM outperforms other classifiers. For the classification of cells into cancerous and
non-cancerous, SVM classifier shows the best performance and less classification
errors which proves to be a stable and reliable technique for our CAD system. The
performances of all the classifiers discussed are shown in Table 3.

We also compared the performance of the rule-based, ANN, and SVM classifiers
using the ROC curves [27] with respect to decision threshold as parameter. Figure
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Table 3 Performance
measurements of the classifier
techniques

Performance Rule-based ANN SVM

Sensitivity 89% 94% 97%
Precision 87% 92% 98%
Specificity 79% 83% 96%
Accuracy 85% 90% 97%
Error 15 10 3
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Fig. 21 ROC curve obtained using rule-based classification

21 shows the ROC curves obtained from rule-based, Fig. 22 for ANN and Fig. 23 for
SVM classifier. From the ROC curves, SVM shows a clear superiority with highest
accuracy.

6 Chapter 6: Performance Evaluation with Previous CAD
Systems

The new proposed CAD system uses sputum color images for the prediction of lung
cancer at its earlier stage. The proposed CAD system is compared with the previous
one as explained in [28]. Our CAD system shows better results with an accuracy and
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Fig. 22 ROC curve obtained using ANN classification

sensitivity of 97%, precision of 98% and specificity of 96% when compared with
the previous CAD system with an accuracy of 85%, sensitivity of 93%, precision of
86%, and specificity of 70%.

7 Chapter 7: Conclusions and Future Works

The following conclusions can be drawn:

1. A new CAD system for detecting lung cancer has been developed and tested
successfully on 100 sputum images. The proposed CAD system analyzes the
sputum images for classification. The detection and extraction of the sputum
cell becomes more accurate if the color space resolution is high. The Bayesian
classification achieved an accuracy of 98%. The mean shift approach exhibits
better performance with an accuracy of 87% when compared with the HNN
technique in the segmentation process. The performance of SVM is found to
be superior compared to other classifiers in the detection of cancerous and non-
cancerous cells with an accuracy of 97%. The proposed CAD system obtained
better accuracy, sensitivity, precision, and specificity.
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Fig. 23 ROC curve obtained using SVM classification

2. During the implementation of the CAD system, several challenges were faced
such as irregularities in the cytoplasm. The current techniques are not suitable for
some types of sputum cells, such as dysplastic cells. Therefore, further methods
are needed for diagnosing these cells. Active contour method can be used for
the segmentation in order to solve this problem. Otsu’s method is also preferred.
These issues can be overcome by using a large data set.
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An Optimal Model Selection for COVID
19 Disease Classification

Pramod Gaur, Vatsal Malaviya, Abhay Gupta, Gautam Bhatia,
Bharavi Mishra, Ram Bilas Pachori, and Divyesh Sharma

1 Introduction

Coronaviruses belong to a large family of viruses that are in turn responsible for
causing respiratory infections ranging from a mild cold to some severe diseases
such as middle east respiratory syndrome (MERS) [1] and severe acute respiratory
syndrome (SARS) [2]. The most recently discovered coronavirus causing coron-
avirus disease is named COVID-19. The coronavirus disease COVID-19 turned out
to be a global pandemic [3, 4] as declared by World Health Organization (WHO)
as on 11th March, affecting more than 188 countries and causing deaths of more
than 5,02,000 people worldwide as on date 29th July. The outbreak was first seen
in Wuhan, China in December ’19. Multiple parameters have been studied by [5]
to impact analysis of COVID-19 disease. The virus is currently reported to transmit
between people in close contact making it a type of communicable disease [6]. Also,
the current research as of July 2020 reported that virus droplets [7] generated while
taking remains active for around ten minutes. This communicable nature of COVID-
19 makes it an even harder disease to tackle making pandemic global, social, and
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economic disruption. Common symptoms include cough, fever, fatigue, breathing
problems followed by loss of senses of taste and smell [8, 9]. There is no known
vaccine or cure so the primary treatment is only supportive therapy. With the regular
increase in the spread, the main problem faced by doctors and medical staff is the
unavailability of a quick reporting mechanism that can report a person’s COVID
report. With the currently available equipment, it takes around 24 h after the sample
is given, and because of virus communicable nature, a suspected person has to be
quarantined making quarantine centers to be completely filled. Hence, the world is
currently facing a great depression with an overload of work on medical staff and
doctors.

This chapter covers the variation in performance of COVID-19 identification
model with change in optimizer and architecture of models. Stochastic gradient
descent and Adam [10] optimizer have been used for the study with architectures
such as basic convolutional neural network (CNN), residual networks (ResNet), and
densely connected networks (DenseNet). This chapter revolves around the quest
of finding the right set of parameters, optimizer algorithm fitting in the set of
architectures. It will cover the change in performance with smallest details such
as hyper-parameter value, to the change in optimizer algorithm, covered across all
the model architectures and applying different deep learning techniques to cook a
model with best performance.

The aims of this chapter are:

1. To overcome the less sensitivity of RT-PCR, chest CT images are used in this
chapter to detect and diagnose COVID-19.

2. To identify the best deep learning models for classification of COVID-19 (+) and
COVID-19 (−) patients.

3. To perform optimization of various hyper-parameters such as learning rate, batch
size for mini-batch gradient, a beta for momentum, RMSprop (root mean square
propagation) in Adam algorithm, and weight decay.

4. The proposed model has been utilized for feature extraction by changing and by
optimizing its learned weights and learning rate on the ImageNet dataset in a
convolutional neural structure.

5. To compare the proposed work with other state-of-the-art methods in terms
of various performance metrics such as accuracy, F1 score, AUC measure,
sensitivity, and specificity.

The rest of the chapter is organized starting with related works followed by
explanation of dataset, optimization algorithms, deep learning architectures (CNN,
ResNet, and DenseNet), transfer learning, and finally results and discussion with
conclusion followed by references ending the chapter.
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2 Related Works

Several approaches have been used for classifying COVID-19 positive patients
through chest CT scan [11–15]. Deep learning along with some image pre-
processing is the most popular way that is being used. In year 2020 [16], research
group in their work applied CNN for feature selecting and fully connected network
for classifying COVID-19 patients. They build a transfer learning neural network
that was based on an inception network [17]. Their network can be divided into
parts where the first part uses the inception network for generating feature vectors
from the images and the second part for prediction and classification. Their model
was able to achieve a total accuracy of 83% with 80.5% specificity and 84%
sensitivity for validation. Although with external testing, the total accuracy dropped
to 73%. Similarly, another research group in year 2020 [18] adopted various deep
transfer learning models for the detection of COVID-19 from chest CT scan images.
The dataset used for this work consists of 742 CT images that were organized
into 3 folders train, validation, and test. In their work, they compared AlexNet
[19], VGGNet16 [20], VGGNet19 [21], GoogleNet [22], and ResNet50 [23] for
classification of COVID-19 and claimed ResNet50 to be the best for classification if
data augmentation was applied. In their work, they claimed 82.91% testing accuracy
with ResNet50. Without data augmentation, they claimed a testing accuracy of
67.34% for AlexNet, 72.36% for VGGNet16, 76.88% for VGGNet19, 75.38% for
GoogleNet, and 76.38% for ResNet50.

3 Dataset

For this study, we are using a publicly available SARS-COV-CT dataset that
contains 1252 CT scan images of positive and 1230 negative SARS-CoV-2 (COVID-
19) CT scan images. This data was collected from real patients in hospitals in Sao
Paulo, Brazil. The details of each patient are skipped for each patient due to the data
privacy of patients. The dataset is also available on Kaggle (https://www.kaggle.
com/plameneduardo/sarscov2-ctscan-dataset).

Figure 1 shows some sample images from the dataset where the first two rows
show CT scan images suffering from COVID-19 and the last two show normal CT
scan images with no COVID-19. These images are randomly picked from the dataset
itself.
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Fig. 1 Sample images of CT scans from dataset

4 Optimization Algorithms

4.1 Stochastic Gradient Descent (SGD) [24]

SGD is used because gradient descent is slow when working on a big dataset with
many parameters. It is especially useful when there is redundancy in data because
it looks at only one sample or a small subset or mini-batch at a time for each step.
The main objective of SGD is to minimize the sum of squared residuals. In SGD,
a random point is used to calculate parameters until the minimum point is reached.
Whenever a new point is encountered, parameters are calculated again, and then it
is multiplied with the learning rate after that new parameters are acquired using the
difference between the old parameters and the newly calculated one to get the newly
updated parameters. This process is repeated until the gradient is almost zero. Due
to random point selection, the computation is reduced significantly. Equations (1, 2)
are used to update parameters where W represents the weight and b represents bias
value for each layer weight and bias updated with gradients of weight (dW) and bias
(db).

W = W − α ∗ dW (1)

b = b − α ∗ db. (2)
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4.2 Adam

It is a method that computes adaptive learning rate for each algorithm. It is a com-
bination of AdaGrad and RMSprop [25] algorithm. Momentum is calculated using
Eqs. (3, 4); in these equations, Adam keeps an average of previous gradients (dW,
dB) with β1 hyper-parameter for weight momentum (vdW) and bias momentum
(vdb). Adam is used for various deep learning projects, and some recent works are
[10, 26]. RMSprop is calculated using Eqs. (5, 6); in these equations, Adam keeps
an average of past squared gradients and stores in the variables RMSprop weight
(sdW) and RMSProp bias (sdb). Usually, in initial time, they are biased toward 0.
For this, bias correction is done using Eqs. (7, 8, 9, 10), where t is the number of
iterations, and now the corrected momentum value and RMSprop value for weights
and bias are stored in vdWc, vdbc, sdWc, and sdbc. After this, with use of corrected
momentum and RMSprop values, the final values of weight and bias are calculated
using Eqs. (11,12), and here the value of ε is taken as 10−8 for this study. ε prevents
from divide-by-zero exception.

vdW = (β1 ∗ vdW) + (1− β1 ∗ vdW) (3)

vdb = (β1 ∗ vdb) + (1− β1 ∗ vdb) (4)

sdW = (β2 ∗ vdW) + (1− β2 ∗ vdW) (5)

sdb = (β2 ∗ vdb) + (1− β2 ∗ vdb) (6)

vdWc = vdW

(1− β1)t
(7)

vdbc = vdb

(1− β1)t
(8)

sdWc = sdW

(1− β2)t
(9)

sdbc = sdb

(1− β2)t
(10)

W = W − α ∗ vdWc

√
sdWc + ε

(11)
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b = b − α ∗ vdbc

√
sdbc + ε

. (12)

5 Deep Learning Architectures

5.1 CNN

Convolutional neural network (CNN) [27] is an artificial neural network that is most
commonly used for image analysis. It is basically an artificial neural network with
some type of specialization to detect patterns and make sense from them. CNN
consists of an input layer that receives the raw input, followed by some hidden
layers known as convolutional layers (Fig. 2), which is also referred to as a learning
layer that is from where its name derived from. A convolution layer neuron receives
the input, applies some transformation (convolutional operations Fig. 2) to it, and
transfers it to the next layer. A convolutional operation is the dot product between
the filter and image whose size is the same as that of the filter. As we go deep into the
layers, the filters are able to detect more sophisticated objects. For activation, many
methods are used, two of them are sigmoid [28] and rectified linear unit (ReLU).
ReLU is a threshold layer that applies max(0,x) as its activation function [29] for
spatial dimension reduction of the data max-pooling layer is used [30]. To normalize
the data between 0 and 1, a normalized exponential function in the softmax layer is
used. After all the hidden layers, an output layer is there that provides the output of
the CNN along with loss function and labels.

5.2 Residual Neural Network (ResNet)

The ResNet [31, 32] was proposed in 2015 and is one of the most famous
architectures. In ResNet, skipping a step and taking a shortcut method came out to
be different than the previously existing architectures. Due to this feature, it can help
in training huge layers faster. The basic version of ResNet includes double or triple
skips. These skips consist of nonlinearities and normalization (batch normalization).

5.3 Densely Neural Network (DenseNet)

To overcome the problem of gradient vanishing due to passage through many layers
in CNN, DenseNet was developed [33]. DenseNet is a deeper version of CNN that
gives more accurate and efficient results. DenseNet helps in reducing the number of
parameters, and also it encourages the reusability of the features. In DenseNet, each
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Fig. 2 CNN architecture

layer is connected to another layer in a feed-forward method. In DenseNet, feature
maps from previous layers are concatenated onto the inputs of future layers, which
makes a very deep feature map in the spatial resolution. Each layer receives signals
from all its preceding layer; this input is connected channel-wise, which makes each
layer thinner and provides computational efficiency. To perform downsampling on
the feature map, pooling layers are used. The pooling layer reduces the feature map
size. DenseNet strengthens the feature propagation. There are different types of
DenseNet architectures—DenseNet 121, DenseNet 169, DenseNet 201.

6 Transfer Learning

It is a technique in which a model is designed for one task and then reused as
the starting point for the other tasks. Figure 3 elaborates the difference between
traditional machine learning techniques and transfer learning. In the proposed study,
since there is a limited amount of dataset and hardware architecture, pre-trained
transfer learning models trained for classification on similar tasks are used. Transfer
learning can be used in two ways by either fine-tuning or freezing the gradients.
In the fine-tuning approach, the gradients of pre-trained models are also updated,
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Fig. 3 Transfer learning

while in freezing the gradients other than the top layer that is newly added to the
layer (which are not pre-trained, added for customization for the task) therefore in
the training procedure in the top layer are updated. In this chapter, sufficient dataset
size and also hardware requirements were provided, which allowed us to use the
fine-tuning approach. Usage of transfer learning in this study is a case of inductive
transfer learning.

7 Learning Rate Scheduler

With constant learning rate, training models to global minima in loss could be very
difficult. It is quite intuitive to speed up the process at first, while distance is large
at first, and as distance to target reduces, speed should also be reduced to prevent
overstepping. This idea is implemented with the help of learning rate schedulers
[34, 35]. In this project, ReduceLROnPlateau has been used for modifying learning
rate as model reaches toward plateau, and learning rate is reduced by a factor of
2–10 as the performance (loss is used to monitor model performance in this study)
stagnates with patience in terms of the number of epochs.

8 Results

8.1 Experimental Setup

The baseline setup used for this study is a mobile GPU RTX 2060. PyTorch and
OpenCV libraries are used for implementing the algorithm, on Python 3.6.5.
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8.2 Training

For every experiment, accuracy, recall, F1 score, and AUC metrics are used for
the evaluation of different methods in this study. In this study, different methods
are applied to find the best procedure for the identification of COVID-19 patients
using CT scans. Data augmentation is employed, and each image was resized to
(256, 256), which undergoes random crop of size (224, 224) and horizontal flip
for populating the dataset while training procedure. Basic CNN was trained on the
dataset with binary cross-entropy loss and Adam optimizer. The training procedure
for each model for COVID-19 identification faced a major setback due to the lack of
good-quality large dataset. To overcome this problem, transfer learning was applied,
and pre-trained models of architecture AlexNet [19], VGG-19 [36], ResNet50 [23],
ResNet101 [37], DenseNet121 [38], DenseNet169 [39], and DenseNet201 [40] were
fine-tuned to get the best results. For loss, binary cross-entropy loss was used in
combination with Adam optimizer for faster convergence, with a learning rate of
1e-4 and value of betas equal to 0.9 and 0.999, and weight decay of 1e-5 for
preventing the model from overfitting. ReduceLROnPlateau was used as a learning
rate scheduler for better convergence.

8.3 Results

In this chapter, a comparison between the performance of the different state-of-
the-art deep learning techniques is used to create models for the identification of
the COVID-19 using CT scan images. The above-mentioned models were used
for this comparative study. The basic results of any model consist of true positive
(TP), false positive (FP), false negative (FP), and true negative (TN). The evaluation
metrics used for the study were accuracy, recall, F1 score, and AUC. Accuracy is
the closeness of the measurements to ground truth, and it is calculated using the
following formula (13).

The recall (14) is also used as an evaluation metric for this study, and in binary
classification, recall is called sensitivity. The recall is the ratio of correctly predicted
positive values to the actual positive values. The recall is an important criterion
for deep learning in the field of healthcare. The best model used in the field of
healthcare miss-classifies actual positive patients as negative the minimum number
of times. Every miss-classification of actual positive patients can create dangerous
scenarios even more in terms of COVID-19 disease that spreads in a very rapid
manner. Precision (15) is the measure to detect if the false positives are high or not.

AUC measures how well a model is able to distinguish classes. It also tells about
the separability of the positive and negative classes. F1 score (16) is the function of
precision and recall and is calculated to check the balance between precision and
recall.
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Accuracy = T P + T N

T P + FP + FN + T N
(13)

Recall = T P

T P + FN
(14)

Precision = T P

T P + FP
(15)

F1-score = 2 ∗ precision ∗ recall
precision+ recall

. (16)

All the results achieved in this study are represented in Table 1. The comparison
is based on the accuracy achieved, AUC, F1 score, recall, and precision.

The best results were achieved by the DenseNet169 with an accuracy of 96%,
AUC 0.99, F1 score 0.96, recall 99%, and a precision of 94%. DenseNet169 got the
best overall performance by maintaining precision too with recall, and other models
achieved excellent recall scores but lacked in terms of precision. The worst results
were achieved by CNN with an accuracy of 82% and a F1 score of 84. ResNet50
and ResNet101 have achieved the accuracies of 87% and 90%, AUC as 0.96 and
0.97, recall as 96.5% and 97.5%, F1 scores of 0.87 and 0.90, precision as 85%
and 83%, respectively. Other two DenseNet variants 121 and 201 have achieved
accuracy between 90% and 91%, AUC between 0.97 and 0.98, recall between 97%
and 99%, and precision around 85% in both the variants (Table 2).

Proposed method has found significant increase in performance from other
related works. With the help right of a combination of set of hyper-parameters,
optimizer algorithm, model architecture, with of help transfer learning, study has
found performance jump of around 10% from the state-of-the-art methods.

Table 1 Results computed with the proposed method

Model name Accuracy (in %) AUC F1 score Recall (in %) Precision (in %)

CNN 82 0.90 0.84 85 82

ResNet50 87 0.96 0.87 96.5 85

ResNet101 90 0.97 0.90 97.5 83

DenseNet121 90 0.97 0.90 97 85

DenseNet169 96 0.99 0.96 99 94

DenseNet201 90 0.98 0.92 99 84.5

Table 2 Comparison among
the existing methods and the
proposed method

Model Accuracy (%) F1 Score AUC

DenseNet-169[30] 79.5 0.76 0.90

Transfer learning [30] 87.1 0.88 0.95

Proposed method 96 0.96 0.99

The best results are shown in bold
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There are numerous signal decompositions studied to decompose physiological
signals. Few of the modalities to record the physiological signals are electrocar-
diogram (ECG), electroencephalogram (EEG), and electromyogram (EMG). To
decompose these physiological signals, there are advance signal decomposition
techniques such as empirical mode decomposition (EMD) [41], multivariate EMD
(MEMD) [42], EWT [43], and 2-D EWT[44]. Filtering techniques based on the
EMD andMEMDmethods are used in brain–computer interface (BCI) to handle the
inherent non-stationarity nature of the data [45–50]. In future, it will be interesting to
study these advance decomposition techniques with the existing models to improve
the performance of the system.

9 Discussion

COVID-19 is a global pandemic and therefore also a center of concern for the whole
world. During this period, all the doctors are working day and night to resolve this
situation; meanwhile, every help that can automate the most vital process can ease
the work of all already exhausted doctors and all the front line warriors for the
past 7 months. CT scans are the key to automation in the identification of disease-
infected patients, and deep learning is the way to achieve this task. Image processing
fields have been dominated by the deep learning (DL) models for many times now.
Great research opportunities are presented by the development of image processing
and DL for the classification of COVID-19 disease using images of CT scans on
the chest area of a person. In this chapter, an extension of the state-of-the-art deep
learning models for the detection of COVID-19 using chest CT scans is performed,
and a comparative study is performed to evaluate the working of different models.

CNN is one of the key factors in the revolution in the deep learning field; using a
CNN model in COVID-19 identification training, an accuracy of 85% was acquired
and the final accuracy of 82%. But shallow networks were not enough to extract finer
details of CT scan, deep CNNs need to be used to overcome this problem. But with
vanishing gradients problem and losing many important features in the way deep
CNN was not as effective to its potential to overcome this, residual networks should
be used. Therefore, ResNets are used in the study to improve performance, and a
pre-trained version enabled faster convergence and experience from the previous
task to even boost more performance. ResNet is a state-of-the-art techniques with
the first to introduce the importance of the residual network in deep neural networks.
ResNet50 and ResNet101 are used to identify COVID-19 disease using a CT scan
of the chest area of the patient.

ResNet50 and ResNet101 converged at 16 epoch at 0.98 and 0.97, yet they
showed clear signs of overfitting, validation accuracy improved till 8–12 epochs
up to 90%, and an average around 90% with ResNet101 getting a better score than
ResNet50 and later accuracy was declined for both architectures due to overfitting.
Figure 4 represents the accuracy vs. epochs curve for ResNet model.
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Fig. 4 ResNet, the
smoothened curve for training
accuracy vs. epochs
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Fig. 5 DenseNet, the smoothened curve for accuracy vs. epochs. (a) Training accuracy vs. epochs.
(b) Validation accuracy vs. epochs

DenseNet architecture has been proven to better in performance as well as
fast with significantly less computational parameters. This study has found out
DenseNet variations to give the best performance among the rest of the models.
Figure 5a represents the evolving performance with epochs for models of DenseNet
architectures (i.e., DenseNet121, DenseNet169, DenseNet201) during the training
period, while the validation period is covered by Fig. 5b. All the DenseNet variants
showed similar promising results, while training, with DenseNet169 and Dense201
taking lead in showing convergence with little delay DenseNet121, also converged.

But the case during validation was slightly different. Pre-trained models are used
for faster convergence, and DenseNet169 is the best model that converged at 12
epochs with validation accuracy, topping up to 94% and followed by DenseNet121,
DenseNet201 at 90%.

Figure 6 shows the performance in an unaltered stage to better represent the
history in an accurate fashion. With DenseNet169 scoring the highest overall per-
formance among all the other models when compared to the rest of the architectures
and its variants, it will prove to be a vital architecture for further study in future
work. With the current settings, it scored an average performance of 93%. Adam
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Fig. 6 DenseNet169:
accuracy vs. epochs
(un-smoothened)
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Fig. 7 Recall curve for all the models in training phase (a) and validation phase (b). (a) Training
phase: recall vs epochs. (b) Validation phase: recall vs epochs

optimizer with binary classification loss and ReduceLROnPlateau as learning rate
scheduler under PyTorch framework DenseNet 169 was able to shine up among the
rest.

Deep learning in the medical field also has to focus on recall. If a COVID-19
positive patient is given a green flag, then a spontaneous and hazardous situation
follows with him infecting all the other person who comes in contact and hence
starting an unstoppable chain. All the models have been designed to focus on recall
in recall vs. precision trade-off. Almost all except basic CNN have shown recall
above 95% and up to 99% during the training phase represented in Fig. 7a, and for
validation Fig. 7b. The validation phase has also maintained recall above 95% and
DenseNet201 with the best recall of 99.95% for data containing CT scan images of
chest area for 200 COVID-19 positives and 200 COVID-19 negative patients.

Selection of just architecture is not enough to get best model; more fine-tuning
has to be done to get better performance. DenseNet169 model will undergo different
fine-tuning techniques. For better performances, different optimization algorithms
can be applied for better and quicker convergence. Study has experimented with
SGD and Adam optimizer, results can be seen in Fig. 8, and accuracy vs. epochs plot
shows the difference between the two optimizer algorithms. Adam has performance
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improvement of 5–10% from SGD optimizer and quicker convergence; SGD shows
traces of no convergence in 32 epochs, while Adam optimizer found convergence at
15th epoch.

Hyper-parameters also play a big role in DL; some of the most important
parameters are learning rate, batch size for mini-batch gradient, beta for momentum,
RMSprop in Adam algorithm, and weight decay. Figure 9 shows the change in
performance of model with different learning rates. Optimal value of learning rate
is most important for any training session in DL. Model is trained on 1e-2, 1e-
5, 1e-6, and big learning rate does not allow model to find global minima due to
big jumps taken by big learning rate, while too small learning rates have risks for
sticking to local minima rather than exploring for global minima. After fine-tuning
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in DenseNet169 architecture model with Adam optimizer, and 1e-5 learning rate, a
final accuracy of around 96% has been achieved.

10 Conclusion

In this task, the fine-tuning of DL models for COVID-19 disease identification is
performed. The architectures that were evaluated include ResNet 50, ResNet 101,
DenseNet 121, DenseNet 169, and DenseNet 201. From this experiment, we can
conclude that DenseNet 169 tends to yield the best results when classifying COVID-
19 CT scan images with a testing accuracy of 96% for the 20th epoch, beating the
rest of the architectures. Therefore, DenseNet 169 is a good choice for COVID-
19 identification with the CT scan images. However, DenseNet requires a sensible
computing time to achieve best in class classification, so future research needs to be
done for improving its performance time.
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