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Abstract. It is known that the use of natural fibers as reinforcement for compos-
ite materials present economic benefits and eco-friendly appeal when compared
to man-made fibers. However, even demonstrating excellent mechanical perfor-
mance due to the strain-hardening behavior, its use for structural applications still
presents a gap in the literature. Therefore, the current work discusses the use
of natural fiber cement-based composites as external strengthening for concrete
structures. For such, curauá natural fibers were used as reinforcement in a cement
composite, which was used as a strengthening material for RC structural beams.
The beams were strengthened for flexural and shear. Both externally reinforced
specimens presented an increase in loading capacity and deflection decrease com-
pared to their respective references, which was associated with a yielding delay
on the rebars in a range between 21% to 34%.
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1 Introduction

The use of natural fibers as reinforcement in cement matrices has a solid economic and
ecological appeal for the newdirections of the construction industry.Mechanically,many
authors [1–9] described the excellent performance of that kind of composite material,
mentioning increases in strength and strain capacity after the first crack due to the
multiple-cracking ability. Souza et al. [10] studied cement composites reinforced by
curauá long fibers in volume fractions of 4%, 7%, 8%, reaching tensile strength up to
14.7 MPa with a strain capacity of 1.6%. d’Almeida et al. [11] also studied cement
composites reinforced by curauá long fibers but under bending testes, which presented
flexural hardening behavior with a strength of 27.5 MPa.

However, even showing exceptional mechanical potential, natural fiber composite
applications are still limited to elements such as tiles [12–14], paving blocks [15, 16], or
non-structural masonry [17–19], while structural applications are commonly associated
to man-made fibers, mainly polymeric and steel. As example, Lima et al. [20] evaluated
short sisal fiber reinforced concrete (SSFRC) block for one-way precast concrete slabs,
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and its behavior under the bending test presented a typical flexural hardening. Compared
to the commercial blocks (ceramic and EPS), the SSFRC showed more than twice their
resistance and non-brittle failure mode, reaching a load capacity 157% higher than the
minimum load required by the standard for these types of blocks.

Therefore, to fill this gap, this work presents the use of a cement-based composite
reinforced by natural curauá fibers as a strengthening system for RC beams. The com-
posite was externally applied on the surface of the beams, focusing on improving the
resistance to shear and bending moments. The beam submitted under flexural tests had
its bottom side covered by the composite material, while for shear tests, the composite
was applied over the specimen on both lateral sides. For comparison, reference beams
were performed during the load tests.

2 Materials and Methods

The curauá fibers were firstly treated with hot water (70± 3 °C) for one hour, aiming to
eliminate the impurities retained on the fiber surface [21]. Under mechanical tests, the
curauá fibers presented a tensile stress equal to 706 MPa at a strain-to-failure of 2.4%
with Young’s modulus of 32 GPa, as presented by Teixeira et al. [22]. The composite
cement matrix was designed for a 1:1:0.4 ratio (cementitious material, quartz sand and
water). The cementitious material was composed in mass by 50% of Portland cement
type CPV [23], 40% of metakaolin and 10% of fly ash; these pozzolans supplementation
aims to produce a calcium hydroxide free matrix [21]. The matrix presented an axial
compressive strength equal to 81.0 MPa after 28 days. The composite manufacturing
consists of a layering process, inwhich amatrix layer was placed in a steelmold followed
by a layer of curauá fibers, one later at a time. The curauá fibers amount per specimen
corresponds to a volume fraction of 5%, divided into three layers longitudinally oriented.
This process resulted in composite laminate plates measuring 500 mm length, 60 mm
width, and 10mm thickness. These specimens presented strain-hardening behavior under
tensile tests, reaching maximum stress equal to 12.8 MPa at a strain-to-failure of 2.7%
with Young‘s modulus of 4.7 GPa, as described by Teixeira e Silva [24].

The concretemix for structuralRCbeams is explained inTable 1, and its average axial
compressive strength after 28 days reached 33MPa. The structural beams were designed
with a flexural reinforcement ratio of 0.55% (two8mmbars),with twodistinctions: 1) the
beams designed for flexural failure presented shear reinforcement stirrups with 125 mm
spacing while 2) the beams designed for shear failure presented no shear reinforcement
along the testing region. For the conventional reinforcement, steel rebarswith the nominal
yield strength of 500 MPa were used, and the beam was cured for 14 days before the
composite application. Figure 1 presents the schematic beam details and dimensions.

For the composite application as external strenghening layer, 10 mm thick laminate
plates were manufactured over the beams‘ surfaces. The composite plates were fabri-
cated with three curauá fiber layers (volume fraction of 5%). For the external flexural
strengthening layer, the composite was applied at the bottom of the beams, while for the
shear the application was at both lateral sides. To achieve the desired length, fibers over-
laps of 70 mmwere adopted for continuity. The tests on structural beams were carried in
an MTS servo-hydraulic system (500 kN load capacity) with deflection values acquired



64 F. P. Teixeira and F. de Andrade Silva

Table 1. Concrete mix proportions.

Materials Kg/m3

Portland cement (CPII-F32) 336.0

Natural sand 642.0

Coarse aggregate (9 mm) 441.0

Coarse aggregate (19 mm) 782.0

Water 168.0

Superplasticizer (PLASTOL® 4100) 0.5

Fig. 1. Schematics of beams details and dimensions: flexural specimens (a) and shear specimens
(b).

by three LVDTs arranged at the beam’s bottom, aligned with the load points and at its
center part. The strain measurements were read by strain gauges on the steel rebars,
placed on each rebar. The test displacement rate was 1.0 mm/min over an 1100 mm span
between end supports.

3 Results and Discussions

Both structural beams strengthened for flexural and shear presented an increase in loading
capacity and a decrease in deflection range compared to their respective references. The
flexural reference specimen presented a load peak of 36.0 kN, while its externally rein-
forced counterpart showed amaximum load capacity of 41.9 kN (16% higher). The same
occurred to the shear specimens, which the externally reinforced beam demonstrated a
strengthening increase of 28% over its reference (37.5 kN over 29.3 kN, respectively), as
well as a higher stiffness. Figure 2 show the failure of both externally reinforced beams
and Fig. 3 present the mechanical behavior of flexural and shear specimens.

About the deflection at maximum load, the shear specimens presented a reasonable
variation, in which the externally reinforced beam exhibited a decrease of 4.5% com-
pared to its reference (6.6 mm to 6.3 mm). On the other hand, the deflection decrease
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Fig. 2. The externally reinforced beams: flexural failure (a) and the shear failure (b).

Fig. 3. Mechanical behavior of specimens under flexural tests (a) and shear tests (b).

demonstrated by the externally reinforced beam under the flexural test was expressive,
reaching 43.2% (16.2 mm of the reference beam against 9.2 mm of its externally rein-
forced counterpart). The same load capacity increase with deflection decrease was pre-
sented by Schladitz et al. [25] in textile high-performance carbon-composite as concrete
slabs reinforcement. It is possible to assume that these decreases in deflection range are
associated with a yielding delay on the rebars caused by the composite strengthening
contributions, resulting in stiffness gains. Figure 3 shows a comparison of the rebars
yielding progress (measured by the strain gauges) at different loading stages up to the
maximum strength of each reference specimen, under flexural and shear tests (Fig. 4).

In general, the reference specimens showed higher rebar strains at all known loads,
from 5 kN up to each respective maximum strength, which indicates a relevant contribu-
tion of the longitudinal continuous curauá fibers to resist the forces at the tension zone.
The strain measurements on the rebars were reduced 34% for the flexural reinforced
specimen and 21% for the shear reinforced one, compared to their respective refer-
ences at its maximum loading. It is worth mentioning that, even different from usual
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Fig. 4. Correlation between rebars yielding progress and load capacity: flexural specimens (a)
and shear specimens (b).

wrapping techniques or transverse external reinforcements, the proposed shear strength-
ening system (sideways applied over almost the total length of the beam) also had a
valuable contribution to flexural resistance and stiffness. Furthermore, in both cases the
longitudinal rebars did not reach their nominal yielding at failure.

4 Conclusions

The developed natural curauá fiber-reinforced composite demonstrated an excellent
behavior as a structural component, providing a higher load and strain capacity to the
externally strengthened RC beam. The following are some highlights of present work:

• The natural fiber composite as a structural reinforcement provided an increase in the
ultimate strength of the structural beams before its maximum deflection, about 16%
and 28% for flexural and shear specimens, respectively;

• The adopted application method proved to be effective, presenting no signs of failure
due to delamination or displacement, providing stiffness enhancement to the beams;

• The stiffness increase and deflection decrease can be associated with the yielding
delay on the rebars caused by the composite strengthening contributions.
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