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Abstract. Interactive Oracle Proofs (IOPs) are a new type of proof-
system that combines key properties of interactive proofs and PCPs:
IOPs enable a verifier to be convinced of the correctness of a statement
by interacting with an untrusted prover while reading just a few bits of
the messages sent by the prover. IOPs have become very prominent in
the design of efficient proof-systems in recent years.

In this work we study succinct IOPs, which are IOPs in which the
communication complexity is polynomial (or even linear) in the original
witness. While there are strong impossibility results for the existence of
succinct PCPs (i.e., PCPs whose length is polynomial in the witness), it
is known that the rich class of NP relations that are decidable in small
space have succinct IOPs. In this work we show both new applications,
and limitations, for succinct IOPs:

– First, using one-way functions, we show how to compile IOPs into
zero-knowledge proofs, while nearly preserving the proof length.
This complements a recent line of work, initiated by Ben Sas-
son et al. (TCC, 2016B), who compile IOPs into super-succinct zero-
knowledge arguments.
Applying the compiler to the state-of-the-art succinct IOPs yields
zero-knowledge proofs for bounded-space NP relations, with com-
munication that is nearly equal to the original witness length. This
yields the shortest known zero-knowledge proofs from the minimal
assumption of one-way functions.

– Second, we give a barrier for obtaining succinct IOPs for more general
NP relations. In particular, we show that if a language has a succinct
IOP, then it can be decided in space that is proportionate only to
the witness length, after a bounded-time probabilistic preprocessing.
We use this result to show that under a simple and plausible (but
to the best of our knowledge, new) complexity-theoretic conjecture,
there is no succinct IOP for CSAT.

1 Introduction

The study of proof-systems has played an incredibly influential role in the devel-
opment of theoretical computer science at large and complexity theory and
cryptography in particular. Some of the most important results, concepts and

c© International Association for Cryptologic Research 2022
Y. Dodis and T. Shrimpton (Eds.): CRYPTO 2022, LNCS 13507, pp. 504–532, 2022.
https://doi.org/10.1007/978-3-031-15802-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15802-5_18&domain=pdf
http://orcid.org/0000-0002-7388-3858
http://orcid.org/0000-0001-5481-7276
https://doi.org/10.1007/978-3-031-15802-5_18


Succinct Interactive Oracle Proofs 505

open problems in this field revolve around efficient proof-systems. These include
the P

?= NP question, results such as the IP = PSPACE and PCP theorems, and
the notion of zero-knowledge proofs.

Interactive Oracle Proofs (IOP) [BCS16,RRR21], are a recently proposed
type of proof-system that is playing an important role in the development of
highly efficient, even practical, proofs. An IOP can be viewed as an interactive
analogue of a PCP, that is, an interactive protocol in which the prover can send
long messages, but the verifier only reads a few bits from each of the prover’s
messages. A recent exciting line of research initiated by Ben Sasson et al. [BCS16]
(following [Kil92,Mic00]) compiles highly efficient IOPs into highly efficient zero-
knowledge argument-systems that are now also being developed and deployed in
practice.

One of the intriguing aspects of IOPs is that, by leveraging interaction, they
allow us to circumvent some inherent efficiency barriers of PCPs (in which the
interaction is just a single message). In particular, it has been known for over a
decade [KR08,FS11] that SAT (the Boolean satisfiability problem) does not have
a PCP whose length is polynomial only in the length of the original satisfying
assignment (assuming the polynomial hierarchy does not collapse). In contrast,
Kalai and Raz [KR08] showed that SAT (and more generally any bounded depth
NP relation) does have a succinct IOP.1 A more recent work of Ron-Zewi and
Rothblum [RR20] gives such a succinct IOP for SAT, and more generally any
bounded-space relation, in which the communication approaches the length of
the unencoded witness.

In this work, we aim to better understand the limitations, and applications,
of succinct IOPs. In particular we would like to understand the following two
questions:

1. The results of [KR08,RR20] give succinct IOPs for either bounded-space or
bounded-depth relations. But what about general2 NP relations? For example,
does the circuit satisfiability problem (CSAT) have a succinct IOP, or is the
limitation to small depth/space in [KR08,RR20] inherent?

2. So far the applicability of succinct IOPs has been limited. This seems to
mainly be due to the fact that the main bottleneck in the compilers of IOPs
to efficient arguments is not the communication complexity.3 This begs the
question of what other applications can succinct IOPs be used for?

1 Actually, [KR08] consider the model of interactive PCP, which in modern terminol-
ogy, is a special-case of an IOP.

2 Note that even though SAT is NP-complete, a succinct IOP for SAT does not auto-
matically yield a succinct IOP for every NP relation, because the Cook-Levin theorem
produces a formula whose length is polynomial in the complexity of the original NP
relation, rather than just its witness.

3 The key bottlenecks seem to be the prover’s runtime and the communication com-
plexity of the resulting argument-system. The IOP’s communication complexity is
a lower bound on prover runtime. The argument’s communication complexity only
has a logarithmic dependence on the IOPs communication.
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1.1 Our Results

1.1.1 Succinct Zero-Knowledge Proofs from Succinct IOPs
As our first main result, we show how to compile IOPs into zero-knowledge proofs,
under the minimal [OW93] assumption of one-way functions. We consider IOPs
which consist of two phases: there is an interaction phase where the prover
sends messages and the verifier only replies with random coins (without reading
anything), then there is a local computation phase where the verifier queries
the prover messages and applies a decision predicate on those query values (see
Definitions 3 and 4). Our compiler transforms IOPs into zero-knowledge proofs
in a way that preserves the communication complexity up to an additive factor
which depends on the size of the verifier’s decision predicate (as well as the
security parameter).

Theorem 1 (Informally Stated, see Theorem 5). Suppose the language
L has an IOP with communication complexity cc and where the verifier’s deci-
sion predicate has complexity γ. If one-way functions exist, then L has a zero-
knowledge proof of length cc+poly(γ, λ), where λ is the security parameter. The
zero-knowledge proof has perfect completeness and negligible soundness error.

The proof of Theorem 1 is a relatively simple extension of the classical “notarized
envelpoes” technique of Ben-Or et al. [BGG+88]. Indeed, our main contribution
is in observing that this technique can be adapted to the IOP setting in a manner
that very nearly preserves the communication complexity.

Using the compiler of Theorem 1, we are able to derive the shortest known
zero-knowledge proofs that are based on one-way functions. In particular, the
aforementioned work of Ron-Zewi and Rothblum [RR20] gives an IOP construc-
tion with proof length that approaches the witness length for any bounded space
NP relation. This class of relations includes a large variety of natural NP rela-
tions such as SAT, k-Clique, k-Coloring, etc. We show that their IOP has very
low verifier decision complexity. Applying the transformation of Theorem 1 to it
we obtain a zero-knowledge proof for any bounded space NP relation, where the
communication complexity in this zero-knowledge proof approaches the witness
length.

Corollary 1 (Informally Stated, see Theorem 7). Let R be an NP relation
that can be computed in polynomial time and bounded polynomial space. If one-
way functions exist, then for any constants β, γ ∈ (0, 1), there exists a (public-
coin) zero-knowledge proof for R with perfect completeness, negligible soundness
error and proof length (1 + γ) · m+ nβ · poly(λ), where n is the instance length,
m is the witness length and λ is the security parameter.

Corollary 1 constitutes the shortest known general-purpose zero-knowledge
proofs under the minimal assumption of one-way functions. Prior to our work,
the shortest zero-knowledge proofs, that were based on one-way functions, had
communication complexity Õ(m) [IKOS09,GKR15]. In contrast, under the much
stronger assumption of fully-homomorphic encryption, Gentry et al. [GGI+15]
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constructed zero-knowledge proofs that are better than those of Corollary 1
in two ways: first, they achieve an even shorter communication complexity of
m+poly(λ) and second, the result holds for any4 NP relation, whereas Corollary
1 is restricted to bounded-space relations.

The fact that the transformation from Theorem 1 can potentially work on
other succinct IOP constructions, further motivates the study of succinct IOPs,
their capabilities and limitations.

1.1.2 Limitations of Succinct IOPs
Given the succinct IOP constructions of [KR08,RR20], as well as known limita-
tions of standard interactive proofs, it is natural to wonder whether the restric-
tion of the [KR08,RR20] succinct IOPs to bounded depth/space relations is
inherent. That is, does a succinct IOP for a given relation imply that the rela-
tion can be decided in small space?

The immediate, albeit highly unsatisfactory, answer to the above question is
(most likely) negative: the class BPP has a trivial succinct IOP (in which the
prover sends nothing and the verifier decides by itself) but is conjectured not to
be contained in any fixed-polynomial space. So perhaps succinct IOPs are limited
to relations computable in small-space or for which the corresponding language
is in BPP? Unfortunately, the answer is again (likely) negative: consider the NP
relation R = {(x,w) : x ∈ L ∧ (x,w) ∈ RSAT}, where L is some P-complete
problem.5 Using [RR20], it is clear that R has a succinct IOP despite the fact
that it is unlikely to be solvable in small space and the corresponding language
is unlikely to be in BPP (assuming NP � BPP).

We show that the above example essentially serves as the limit of succinct
IOPs. This negative result is based on a complexity-theoretic conjecture, which,
while to the best of our knowledge is new, seems quite plausible.

In more detail, we prove that if an NP relation RL, corresponding to a lan-
guage L (i.e., L = {x : ∃w, (x,w) ∈ RL}), has a succinct IOP, then there exists
a small space algorithm with probabilistic bounded time preprocessing that can
decide L.

Theorem 2 (Informally stated, see Theorem 4). If a language L has a
k-round IOP with communication complexity cc and query complexity qc, then
L can be decided by a O(cc + k log cc)-space algorithm with probabilistic

(
2qc ·

poly(n, 2k log(cc))
)
-time preprocessing.

By a s-space algorithm with t-time (probabilistic) preprocessing, we mean a
(probabilistic) Turing machine that first runs in time t and outputs some inter-
mediate state c (of size at most t). From there on a second Turing machine,

4 For this result, [GGI+15] need full-fledged (rather than leveled) fully-homomorphic
encryption, which are known only assuming a circular-security assumption on LWE
(see, e.g., [Bra19]) or via indistinguishibility obfuscation [CLTV15].

5 As usual, by P-completeness we refer to log-space reductions. Such languages are
conjectured not to be solvable in small space, see [Sma14] for further discussion.
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which uses s-space, can continue the computation, viewing c as its (read-only)
input tape (see Definition 12 for the formal definition). We emphasize that the
restriction on the second machine is only that it runs in s space (and in particular
can run for 2s time).

Infeasibility of Succinct IOP for NP. Using Theorem 2, we argue that the
existence of succinct IOPs for all of NP would have unexpected, and (arguably)
unlikely, repercussions.

For example, consider the relation RCSAT, consisting of all satisfiable Boolean
circuits and their corresponding satisfying assignment. Given Theorem 2, the
existence of a succinct IOP for RCSAT with, say, constant rounds and logarithmic
query complexity, would mean that the satisfiability of a circuit of size n on m
input bits, can be decided by an algorithm that first runs in time poly(n,m) time
but from there can do arbitrary poly(m)-space computations. We find the exis-
tence of such an algorithm unlikely and in particular point out that the straight-
forward decision procedure for CSAT enumerates all possible assignments, which
takes space m, but also needs to check that each assignment satisfies the given
circuit, which, in general, seems to require additional space n, which our poly(m)-
space algorithm does not have at this point. In other words, the straightforward
algorithm needs to evaluate the circuit for each one of the candidate assignments,
whereas our preprocessing model only allows for a polynomial number of evalu-
ations (which happen a priori). Taking things a little further, we conjecture that
even probabilistic quasi-polynomial time preprocessing would not be sufficient,
and taking things to an extreme, it is (arguably) unlikely that

(
2o(m) · poly(n)

)
-

time preprocessing is sufficient. A more elaborate discussion can be found in the
full version [NR22]. A parameterized version of our conjecture is stated below:

Conjecture 1. For a function class T , the conjecture states that CSAT for circuits
of size n over m input bits cannot be solved by an algorithm that uses poly(m)
space and t(n,m)-time probabilistic preprocessing, for any t ∈ T .

We get stronger bounds on succinct IOPs as we make the function class larger.
Three interesting regimes are stated in the following corollary (ordered from the
weakest bound):

Corollary 2. Assuming Conjecture 1 we have:

– With t(n,m) = poly(n), there is no succinct IOP for RCSAT with a constant
number of rounds and O(log n) query complexity.

– With t(n,m) = 2polylog(m) · poly(n), there is no succinct IOP for RCSAT with
a polylog(m) rounds and polylog(m) + O(log n) query complexity.

– With t(n,m) = 2o(m) · poly(n), there is no succinct IOP for RCSAT with a
o
(

m
log m

)
rounds and o(m) + O(log n) query complexity.

1.2 Related Works

Lower Bounds for IPs and IOPs. Goldreich and Haståd [GH98] showed how
to transform IPs to probabilistic algorithms that run in time exponential in the
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bits sent by the prover. Goldreich et al. [GVW02] showed limits on the commu-
nication complexity of interactive proofs. In particular, their results show that it
is unlikely that NP-complete languages have interactive proofs with communica-
tion that is significantly shorter than the witness length. Berman et al. [BDRV18]
showed that extremely short zero-knowledge proofs imply the existence of public-
key encryption. Chiesa and Yogev [CY20] show that if a language has an IOP
with very good soundness relative to its query complexity then it can be decided
a by small space algorithm. This result is incomparable to Theorem 2, which
shows that languages which have IOPs with short communication can be com-
puted in small space (with preprocessing).

Minimizing Communication in Zero-Knowledge Proofs. Significant effort
has been put into minimizing the proof length of zero-knowledge. Under the
assumption of one-way functions, Ishai et al. [IKOS09] constructed “constant-
rate” zero-knowledge proofs for all NP relations, i.e., the proof length is constant
in the size of the circuit that computes the relation. For AC0 circuits, [IKOS09]
presents a zero-knowledge proof that is quasi-linear in the witness length and
[KR08] presents a zero-knowledge proof that is polynomial in the witness length
for constant depth formulas. Goldwasser et al. [GKR15] significantly improved
the latter and showed a similar result for all of (log-space uniform) NC, again
under the minimal assumption of one-way functions. As previously mentioned,
using fully-homomorphic encryption, Gentry et al. [GGI+15] constructed zero-
knowledge proofs with communication that is larger than the witness by only a
small additive factor.

Another approach to minimize the proof length is to relax the notion
of soundness and settle for computationally-sound proof systems, known as
arguments. Kilian [Kil92] and Micali [Mic00] constructed extremely efficient
zero-knowledge argument systems in which the communication is merely poly-
logarithmic in the witness size. Improving the latter protocol has been the focus
of a major line of research in recent years. However, we stress that in this work,
we focus on proof systems with statistical soundness - that is, soundness is guar-
anteed even against computationally unbounded cheating provers.

1.3 Our Techniques

First, in Sect. 1.3.1 we discuss our compiler for zero-knowledge proofs from IOPs.
In Sect. 1.3.2, we discuss our techniques for compiling IOPs to small space algo-
rithms with bounded time preprocessing.

1.3.1 ZKPs from IOPs

Notarized Envelopes. The zero-knowledge proof of Theorem 1 is constructed
using the “notarized envelopes” technique, first introduced in [BGG+88]. We
start with a high-level overview of their compiler from interactive proofs to zero-
knowledge proofs. The compiler, which is applicable to any public-coin interac-
tive proof, proceeds by emulating the original protocol but instead of having the
prover send its messages in the clear (which would likely violate zero-knowledge),
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the prover sends (statistically binding) commitments to its messages. Leverag-
ing the fact that the protocol is public-coin, the verifier does not have to read
the prover messages before responding with its own random coins and so the
interaction can progress.

At the end of the interaction phase, the verifier would like to actually read
the messages that the prover committed to and to compute some predicate on
the transcript. The key observation is that the latter is an NP statement: since
the verifier is a polynomial-time machine and the computation in the end is
deterministic (since the coins have been tossed already), then the commitments
to the prover messages and the verifier’s randomness define an NP statement,
with the NP witness being the decommitments of those messages; given those
decommitments, it is straightforward to decide the predicate.

At this point [BGG+88] use the fundamental zero-knowledge proof for NP
[GMW86], so that the prover does not have to actually decommit (and reveal
its messages) in order to prove the correctness of the NP statement. Rather can
convince the verifier in zero-knowledge that had it indeed revealed the messages,
the verifier would have accepted.

Locally Notarized Envelopes. The overhead of using the notarized envelopes
technique depends on the overhead that the commitments introduce as well as
the cost of the zero-knowledge proof for the final NP statement. When applied
to a traditional interactive proof, this overhead depends on the total length of
communication from the prover to the verifier.

For IOPs though, the overhead can be much smaller; the IOP verifier is not
interested in the entire transcript but instead only in the locations of its queries.
Therefore, if the prover uses a commitment that allows for a local decommitment
for each bit, then, intuitively at least, the size of the NP statement should depend
only on the number of queries (and the security parameter).

In the computationally-sound setting such a succinct commitment with local
openings is obtained by using a Merkle tree. In our context however, we need a
statistically binding commitment. To minimize the overhead of the commitment
and achieve the desired locality, we use a pseudo-random function (PRF) as a
stream cipher. In more detail, the prover first commits to the PRF seed and then
uses the PRF as a pseudorandom one-time pad to all of the messages. This yields
a length preserving commitment scheme that is also statistically binding, where
the overhead is merely the additional commitment to the PRF seed. Although
this commitment scheme does not support local openings, it allows us to define
an NP statement that depends only on the (short) seed and the desired bits
which the verifier would like to query.

IOP Compactness. The size of the NP statement depends also on the size of
the computation that the verifier performs once it receives the queries. Naively,
we can say that the size of the mentioned verifier computation is bounded by
the running time of the verifier, and thus the NP statement is polynomially
related to the running time of the verifier. However, we distinguish between the
total running time of the verifier and the size of the computation it performs
offline after receiving the answers to its queries. We refer to the size of the
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offline computation as the “compactness” of the IOP (verifier). We show that the
additive overhead of using the locally notarized envelopes technique with IOPs
is polynomial in the compactness of the IOP and the security parameter, thus
presenting a potentially efficient transformation from IOPs to ZKPs.

We also analyze an IOP for bounded space NP relations from a previous work
[RR20] and show that it is indeed very compact, thus achieving a very efficient
ZKP for bounded space NP relations as per Corollary 1.

1.3.2 Infeasibility of Succinct IOPs
To show lower bounds for succinct IOPs, it is tempting to utilize existing lower
bounds for either interactive proofs or PCPs. Trying to do so we run into the
following difficulty. First, observe that CSAT has a very succinct interactive proof
- the prover simply sends the witness! Thus, we cannot employ generic lower
bounds for interactive proofs (such as IP ⊆ PSPACE and similar extensions).
Likewise, we cannot use the known lower bounds for succinct PCPs since, for
example, the main lower bound that is known, due to Fortnow and Santhanam
[FS11], also rules out a PCP for SAT, whereas by [KR08,RR20] we know that
SAT has a succinct IOP.

Nevertheless, our approach is inspired by Fortnow and Santhanam [FS11],
who showed that a succinct PCP for SAT collapses the polynomial hierarchy.
Their proof goes through an interesting intermediate step: they show that a suc-
cinct PCP for any language implies a special kind of reduction for that language,
called instance compression, and then prove that if SAT is instance compressible
then the polynomial hierarchy collapses.

Interactive Proofs and Small Space Algorithms. There is a well estab-
lished relationship between interactive proofs and small space algorithms, which
stems from the fact that the optimal prover strategy can be computed in space
that is proportional to the length of the transcript of the interactive proof, if
given oracle access to the verifier’s decision procedure.6 This way, we can com-
pute the probability that the verifier accepts against the optimal prover strategy
and decide accordingly. Notice that this reduction does not require the interactive
proof to have perfect completeness, but rather only a gap between completeness
and soundness.

So the problem now boils down to bounding the space needed to emulate the
verifier’s decision procedure. The problem is that the verifier’s decision procedure
can take space that is polynomial in the instance length. This means that if we
look at the overall space used, it may very well be dominated by the verifier’s
decision procedure (making the succinctness of the proof irrelevant).

IOPs and Small Space Algorithms. When it comes to IOPs, we can leverage
the fact that the verifier queries a small number of bits from the prover messages.
For simplicity, we first consider a non-adaptive IOP which means that after the
interaction is over, the verifier generates a predicate and a set of query locations
(both of which depend only on the instance and the random coins) and outputs
6 See, e.g., [Gol08, Chapter 9].
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the evaluation of the predicate on the query values. If we can compute the
predicates and query locations for all possible random coins of the verifier, then
the verifier’s decision procedure can be emulated by simple oracle access to
those queries and predicates - which does not add any substantial amount of
space to our computation. Let’s analyze the time it takes to generate all such
predicates and queries: assuming the verifier uses rc random coins, we need
to iterate over 2rc possibilities and emulate the verifier on each of them. This
takes 2rc · poly(n) time. Extending this approach to general adaptive IOPs is
not difficult: the predicates and query sets are simply replaced by decision trees.
Computing each decision tree now requires us to iterate over all possible query
values, so we get a total of 2rc+qc ·poly(n) time complexity, where qc is the query
complexity of the IOP. This yields the following lemma:

Lemma 1 (Informally stated, see Lemma 4). If a language L can be
decided by a public coin IOP where the query complexity is qc and the random-
ness complexity is rc. Then all of the verifier’s decision trees can be computed
in 2rc+qc · poly(n) time.

This approach presents another problem: computing all possible decision
trees requires time that is exponential in the randomness complexity. Note that
the exponential dependence on the query complexity does not bother us for two
reasons: the number of queries in common IOP constructions tends to be small
and, moreover, for non-adaptive IOPs this factor vanishes.

Randomness Reduction for IOPs. To address the problem of exponential
dependence on the randomness complexity, we present a transformation that
reduces the randomness complexity of IOPs, at the expense of having a single
long verifier message at the beginning of the interaction.

We remark that a similar type of randomness reduction is known in
many contexts, such as communication complexity [New91], property testing
[GS10,GR18], interactive proofs [AG21], and likely many other settings as well.
Nevertheless we point out the following key feature of our transformation, which
to the best of our knowledge is novel: we reduce the randomness complexity
during the interaction so that it does not even depend logarithmically on the
input size. This is crucial in our context since a logarithmic dependence on the
input size, would translate into a polynomial dependence in the reduction.

The technique, as usual in such randomness reductions is subsampling. In
more detail, for a public-coin IOP, in each round, the verifier simply chooses
a random string from some set U and sends it to the prover. The randomness
complexity required to uniformly choose a string from U is rc = log |U |. Imagine
if a proper subset S ⊂ U was chosen a priori and made known to both the prover
and the verifier, such that the verifier now samples a uniform random string from
S instead of U . This reduces the randomness complexity to log |S|.

But does any subset S preserve the completeness and soundness properties?
For perfect completeness, the answer is yes; any string that the verifier chooses
would make it accept (a “yes” instance), therefore any subset S would preserve
that property. Preserving soundness, on the other hand, is more challenging;
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there is a prover strategy and a fraction of random strings that would make
the verifier accept a “no” instance, and if S contains only such strings, then the
soundness property is not preserved.

Nevertheless, we show that if the verifier generates the set S at random
by choosing poly(cc) strings (where cc is the prover-to-verifier communication
complexity) from U , then the soundness property is preserved with overwhelming
probability. The result is informally stated below.

Lemma 2 (Informally stated, see Lemma 3). If L has a public-coin IOP
where the prover sends cc bits in total and the verifier uses rc random coins, then
L has a public-coin IOP where the verifier first sends a random string of length
rc ·poly(cc) and all subsequent verifier random messages are of length O(log cc).
If the original IOP has perfect completeness, then so does the resulting IOP.

At first glance, it may seem that we have not gained anything. After all,
sampling a multi-set S from U requires more randomness than sampling a single
string from U . However, we observe that this reduction moves up most of the
randomness to the first round, while reducing the randomness complexity in all
subsequent rounds.

Small Space with Probabilistic Preprocessing. Assume L has an IOP and
assume for simplicity that the IOP has perfect completeness.7 We sketch how we
can combine Lemmas 2 and 1 to get a small space algorithm with probabilistic
polynomial time preprocessing that decides L. First, we apply Lemma 2 on
the IOP and get an IOP where each verifier message, except the first one, has
length O(log cc). The preprocessing algorithm starts by sampling the first verifier
message S, and the computes all of the decision trees conditioned on S being
the first verifier message. We note that, overall, the decision tree can be encoded
using a string of length 2qc+k log cc.

Denote by k the number of rounds in the IOP. Given all of the decision
trees, the bounded space algorithm can emulate the optimal prover strategy in
O(cc + qc + k · log(cc)) space, since the length of the remaining transcript is
O(cc + k · log(cc)) and the queries to the decision trees can be computed in
O(qc + k log cc) space. The algorithm then returns 1 if there exists a strategy
that makes the verifier always accept.

Since we assume that the original IOP has perfect completeness, then so does
the new IOP and specifically, for any x ∈ L and any sampled message S, there
exists a prover strategy that makes the verifier accept.

We move on to analyzing soundness. By Lemma 2, the IOP produced by the
randomness reduction in step is sound, so we can assume it has some constant
soundness error ε > 0. Let x be a “no” instance. Soundness error ε implies
that at most ε fraction of the possibilities for the first message might result
in a “doomed state” (i.e., the verifier accepts with probability 1 after that first
message). Therefore, with probability at least 1 − ε over the sampled S, for
any residual prover strategy, there exists a strictly positive probability (over the

7 This assumption is not necessary to achieve the result, see Sect. 4.
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verifier’s randomness) that the verifier rejects. This means that with probability
1 − ε, the small-space algorithm would not a find a prover strategy that always
makes the verifier accept and therefore would reject the instance x. This yields
the desired small-space algorithm with probabilistic preprocessing as stated in
Theorem 2.

1.4 Organization

Section 2 includes the preliminaries, definitions and notations. In Sect. 3, we for-
mally state randomness reduction for IOPs. In Sect. 4, we prove that any language
that has an IOP can be decided in space that is proportionate to the communi-
cation complexity after some bounded-time preprocessing. In Sect. 5, we present
the compiler from IOPs to zero-knowledge proofs and apply it to the IOP of
[RR20]. In addition, the full version [NR22], contains further discussion on Con-
jecture 1 and a proof sketch that the IOP of [RR20] is indeed compact (as per
Definition 5).

2 Preliminaries

For any positive integer n ∈ N, we denote by [n] the set of integers {1, . . . , n}.

2.1 Basic Complexity Notations and Definitions

2.1.1 NP Relations
For a language L ∈ NP, we denote by RL an NP relation of L. The relation RL
consists of pairs (x,w) such that x ∈ L and w is a witness that allows one to
verify that x is indeed in L in polynomial time. It holds that x ∈ L if and only
if ∃w such that (x,w) ∈ RL. We denote by n the instance size |x|, and by m the
witness size |w|. Throughout this work, we implicitly assume that m ≤ n.

We extend the definition of NP relations and languages to general relations
and their respective languages.

Definition 1 (Languages and Relations). Let R be a binary relation and
assume that there exists a function m(n) such that if the first element has length
n, then the second element has length m = m(n). We call m the witness length
and n the instance length of the relation. We define L(R) = {x : ∃y ∈
{0, 1}m(|x|) s.t. (x, y) ∈ R} and we call L(R) the the language of the relation R.

2.1.2 Circuit-SAT
In the Circuit-SAT (CSAT) problem, the instance is a Boolean circuit and we
say that it is in the language if there exists an assignment that satisfies that
circuit. We define the natural relation RCSAT as the satisfiable Boolean circuits
and their satisfying assignments.
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2.2 Interactive Proofs and Oracle Proofs

We use the definition and notations of interactive machines from [Gol04].

Definition 2 (Interactive proof). A pair of interactive machines (P,V) is called
an interactive proof system for a language L if V is a probabilistic polynomial-
time machine and the following conditions hold:

– Completeness: For every x ∈ L,

Pr [〈P,V〉 (x) = 1] = 1.

– Soundness: For every x /∈ L,

Pr [〈P∗,V〉 (x) = 1] ≤ 1
2
.

When the language L is an NP language and x ∈ L, it is standard to give
the prover as an input a witness w such that (x,w) ∈ RL. In this case, the
completeness and soundness requirements are stated as follows:

– Completeness: For every (x,w) ∈ RL,

Pr [〈P (w) ,V〉 (x) = 1] = 1.

– Soundness: For every x /∈ L and w∗ ∈ {0, 1}∗,

Pr [〈P∗ (w∗) ,V〉 (x) = 1] ≤ 1
2
.

Definition 3 (Interactive Oracle Proof). A public-coin interactive oracle proof
(IOP) for a language L is an interactive protocol between a prover P and a
probabilistic polynomial-time machine V. On a common input x of length |x| = n,
the protocol consists of two phases:

1. Interaction: P and V interact for k(n) rounds in the following manner: in
round i, P sends an oracle message πi and V replies with a random string ri.
Denote r = r1...rk and π = π1...πk.

2. Query and Computation: V makes bounded number of queries to the ora-
cles sent by the prover and accepts and rejects accordingly.

We require:

– Completeness: If x ∈ L then

Pr [〈P,V〉(x) = 1] = 1.

– Soundness: If x /∈ L then for every prover P∗ it holds that

Pr [〈P∗,V〉(x) = 1] ≤ 1
2
.
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Parameters of IOP. We call cc := |π| and rc := |r| the communication com-
plexity and randomness complexity of the IOP, respectively. The bound on the
number of queries is denoted by qc and called the query complexity of the IOP.
The round complexity is the total number of rounds k = k(n) in the interaction
phase.

Non-adaptive IOPs. Most IOP construction have the useful property of being
non-adaptive, that is, the query locations do not depend on the answers to the
previous queries. Formally:

Definition 4 (Non-adaptive IOP). An IOP is called non-adaptive if the query
and computation phase can be split into the two following phases:

1. Local Computation: V deterministically (based on r and x) produces a
vector qlx,r ∈ [|π|]qc of qc queries and a circuit that evaluates a predicate
φx,r : {0, 1}qc → {0, 1}.

2. Evaluation: V queries π on the locations denoted by qlx,r and plugs the
values into the predicate and outputs φx,r

(
π
[
qlx,r

])
.

Compactness. By definition, the size of the predicate (meaning the circuit that
evaluates the predicate) produced by the non-adaptive IOP verifier is bounded by
the running time of the verifier. However, many concrete IOP constructions have
a predicate that is much shorter than the total running time of the verifier, and
we leverage that property in order to construct succinct proofs. The following
definition captures this property:

Definition 5 (α-uniform γ-compact IOP). For any time-constructible8 func-
tions α(n), γ(n), we say that the IOP is α-uniform γ-compact if for every input
x ∈ {0, 1}n and all random coins r, the size of the circuit that evaluates the pred-
icate φx,r is O(γ(n)). Furthermore, the circuit can be produced in time O(α(n))
given x, r. For simplicity, if α = poly(n), we say that the IOP is γ-compact.

We use “the size of φ” and “the size of the circuit that evaluates φ” inter-
changeably, and denote that value by |φ|.
IOPs for Relations. Given a binary relation R, we define an IOP for R as
an IOP that decides L(R), where the prover additionally receives the witness
as a private input. In these constructions, the prover is usually required to be
efficient, since it has the witness as an input.

Succinct IOPs. An IOP for an NP relation RL is called succinct if the commu-
nication complexity (which can be thought of as the proof length) is polynomial
in the witness size, that is cc = poly(m). Formally:

Definition 6. Let L ∈ NP be a language and RL be a corresponding NP relation
with instance size n and witness size m. An IOP for RL is called a succinct IOP
if the communication complexity is poly(m).
8 A function f(n) is time-constructible if given there exists a Turing machine that

given 1n outputs the binary representation of f(n) in O (f(n)) time.
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2.3 Computational Indistinguishability

We say that a function f : N → R is negligible if for every polynomial p(·) it
holds that f(n) = O(1/p(n)).

Definition 7. Let {Dn}n∈N
, {En}n∈N

be two distribution ensembles indexed by
a security parameter n. We say that the ensembles are computationally indistin-
guishable, denoted Dn

c≈ En, if for any (non-uniform) probabilistic polynomial
time algorithm A, it holds that following quantity is a negligible function in n:

∣
∣
∣
∣ Pr
x←Dn

[A(x) = 1] − Pr
x←En

[A(x) = 1]
∣
∣
∣
∣ .

We use some basic properties of computational indistinguishability such as the
following:

Fact 1 (Concatenation). Let H,H ′, G and G′ be any efficiently sampleable
distribution ensembles such that H

c≈ H ′ and G
c≈ G′. Then (H,G)

c≈ (H ′, G′).

Fact 2 (Triangle Inequality). Let H1,H2,H3 be any distribution ensembles.
If H1

c≈ H2 and H2
c≈ H3 then H1

c≈ H3.

Fact 3 (Computational Data-Processing Inequality). Let H and H ′ be
any distribution ensembles and A be any PPT algorithm. If H

c≈ H ′ then
A(H)

c≈ A(H ′).

2.4 Cryptographic Primitives

2.4.1 Commitment Scheme in the CRS Model
A commitment scheme in the common reference string model is a tuple of proba-
bilistic polynomial time algorithms (Gen,Com, V er) where Gen outputs a com-
mon random string r ∈ {0, 1}∗. The commit algorithm Com takes a message
to be committed and the random string r and produces a commitment c and a
decommitment string d. The verification algorithm takes the commitment c, the
decommitment string d, an alleged committed value y and the random string
r and outputs 1 if and only if it is “convinced” that c is indeed a commitment
of y. We require the commitment to be computationally hiding and perfectly
binding with overwhelming probability over the common random string r. All of
the algorithms also take a security parameter λ ∈ N (in unary representation).
We formally define the commitment scheme:

Definition 8 (Commitment Scheme). A commitment scheme in the com-
mon reference string model is a tuple of probabilistic polynomial time algorithms
(Gen,Com, V er) that with the following semantics:

– r ← Gen
(
1λ

)
where r is referred to as the common reference string.

– For any string y ∈ {0, 1}∗: (c, d) ← Com
(
1λ, r, y

)
.

– For any strings c, d, y ∈ {0, 1}∗: {0, 1} ← V er
(
1λ, r, c, y, d

)
.
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The scheme must satisfy the following requirements:

– Correctness: V er always accepts in an honest execution, i.e., for any string
y and any security λ

Pr
r←Gen(1λ)

(c,d)←Com(1λ,r,y)

[
V er

(
1λ, r, c, y, d

)
= 1

]
= 1.

– Hiding: For any two strings y1, y2 ∈ {0, 1}∗ and any common reference
string r, the distribution of the commitment of y1 and y2 are computationally
indistinguishable, i.e., if we denote by Comc only the commitment part of
Com then:

{
Comc

(
1λ, r, y1

) }
λ∈N

c≈
{
Comc

(
1λ, r, y2

) }
λ∈N

.
– Binding: For any λ, with probability at least 1−2−λ over the common refer-

ence string, any commitment c∗ has at most one value y that can be accepted
by V er, i.e.,

Pr
r←Gen(1λ)

⎡

⎣∃y1, y2, d1, d2 ∈ {0, 1}∗ :
∧

i∈{1,2}
V er

(
1λ, r, c∗, yi, di

)
= 1

⎤

⎦ < 2−λ.

In this work, we refer to commitment schemes in the CRS model simply as
commitment schemes. We note that due to [Nao91], we have such a commitment
scheme under the standard cryptographic assumption of one-way functions.

2.4.2 Pseudorandom Function
We denote by Fn the set of all functions {0, 1}n → {0, 1}. In what follows, by a
truly random function, we mean a function that is sampled uniformly at random
from Fn.

Definition 9 (Pseudorandom Function). A function F : {0, 1}λ × {0, 1}n →
{0, 1} is a pseudorandom function if for any probabilistic polynomial time oracle
machine A, every polynomial p(·) and all sufficiently large λ it holds that

∣
∣
∣
∣
∣
∣

Pr
s

$←−{0,1}λ

[
AF (s,·) (1n) = 1

]
− Pr

U
$←−Fn

[
AU(·) (1n) = 1

]
∣
∣
∣
∣
∣
∣
<

1
p (λ)

.

For convenience, we denote F (s, x) = Fs(x).

Pseudorandom One-Time Pad. We mat refer to any function f : {0, 1}n →
{0, 1} as a string. For any collection of indices i1 < i2 < ... < iq, we use the nota-
tion f [I] := f(i1)◦ ...◦f(iq) where I = {i1, ..., iq}. When it is clear from context,
we may write f(x) for any integer x ≥ 0 and it should be understood as apply-
ing f on the binary representation of x. In this work, we will use pseudorandom
functions to encrypt messages, so for any PRF F and string y ∈ {0, 1}� (where
	 ≤ 2n), the expression FS

[
[	]

]
⊕y represents encrypting y with a pseudorandom
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one-time pad obtained from F with seed S. A PRF allows us to implement a
stream cipher, e.g. if we want to encrypt the messages y1, y2 ∈ {0, 1}� then we
can use the values FS(1), ..., FS(	) to encrypt y1 and FS(	 + 1), ..., FS(2 · 	) to
encrypt y2.

The following fact implies that the pseudorandom one-time pad reveals no
information about the encrypted string (to any computationally bounded adver-
sary):

Fact 4. Let F : {0, 1}λ × {0, 1}n → {0, 1} be a PRF. For any set I ⊆ {0, 1}n,
the distribution ensemble

{
s

$←− {0, 1}λ : Fs(I)
}

λ∈N
is computationally indistin-

guishable from uniform random strings of length |I|.
As mentioned above, this property immediately implies that for any string y,
the encryption of y using F with key/seed S yields a pseudorandom string.

2.5 Zero-Knowledge Proofs

In this section, we formally define zero-knowledge proofs (ZKP) for NP languages.
In this paper, we focus on computational zero-knowledge. This notion of ZKP
relies on computational indistinguishability between distribution ensembles as
per Definition 7. These ensembles are indexed by a security parameter λ which
is passed to the prover and verifier of the ZKP as an explicit input (in unary
representation). We also require that the zero-knowledge property holds even if
the verifier is given some auxiliary information. Loosely speaking, this means that
any (malicious) verifier does not learn anything from the interaction with the
honest prover P even if the verifier is given some additional a priori information.
For any verifier V∗, input x ∈ {0, 1}∗ and auxiliary input z ∈ {0, 1}∗ (that might
depend on x), we denote by V iew

P(w)
V∗(z)(x, λ) the view of V∗ in the interaction

〈P(w),V∗(z)〉
(
x, 1λ

)
. The view consists of the random coins tossed by V∗ and

the messages it received from the prover (alongside the inputs x, z and λ).

Definition 10 (Zero-knowledge proofs). Let (P,V) be an interactive proof sys-
tem for some language L ∈ NP with security parameter λ. The proof-system
(P,V) is computational zero-knowledge w.r.t. auxiliary input if for every
polynomial-time interactive machine V∗ there exists a probabilistic polynomial-
time machine Sim∗, called the simulator, such that for all x ∈ L and any aux-
iliary input z ∈ {0, 1}poly(|x|), the following distribution ensembles are computa-
tionally indistinguishable:

–
{

V iew
P(w)
V∗(z) (x, λ)

}

λ∈N

where (x,w) ∈ RL.

–
{
Sim∗ (

z, x, 1λ
)}

λ∈N
.

Remark 1. W.l.o.g., we can assume that the malicious verifier V ∗ is determinis-
tic, since coin tosses can be passed as auxiliary input.

Throughout this manuscript, we refer to computational zero-knowledge proofs
w.r.t. auxiliary input simply as zero-knowledge proofs. When the security param-
eter λ is clear from context, we may omit it from the notation.
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2.6 Hoeffding’s Inequality

Hoeffding’s inequality [Hoe63] is a classical concentration inequality which is
widely used in theoretical computer science.

Theorem 3. Let X1, ...,Xn be real random variables bounded by the interval
[0, 1] and denote their sum by S := X1 + ... + Xn. If X1, ...,Xn are independent
then for any ε > 0 it holds that

Pr
[∣∣S − E [S]

∣
∣ > ε

]
< 2e−2 ε2

n .

3 Randomness Reduction

In this section, we show how to reduce the randomness used by an IOP verifier.
While we view this result as being of independent interest, we note that this
randomness reduction will also be useful later on in Sect. 4 when we convert
IOPs to bounded-space algorithms with probabilistic time preprocessing.

The procedure that we introduce achieves a relaxed notion of randomness
reduction: the verifier can use a large (but still polynomial) amount of random-
ness only in the first round of interaction, then uses only O(log cc) random bits in
each subsequent round, where cc is the communication complexity of the original
IOP. Alternatively, we can view this as if before the interaction begins, a trusted
setup samples a uniform random string and then the prover and verifier run an
IOP, where they both have explicit access to that random string. Moreover, as
shown in the full version [NR22], this common random string can also be fixed
as a non-uniform advice.

The following definition captures this special type of IOP:

Definition 11. A protocol (P,V) is a IOP in the common reference string model
(CRS IOP) for a language L ⊆ {0, 1}∗ with CRS-error μ if (P,V) is an IOP as
per Definition 3 with the following modifications:

– Additional Input: In addition to the instance x ∈ {0, 1}n, both the prover
and the verifier get an input ρ ∈ {0, 1}∗.

– Completeness: For any x ∈ L, with probability 1 − μ over ρ
$←− {0, 1}∗, P

makes V accept with probability at least 1 − εc over the verifier’s coin tosses:

Pr
ρ∈{0,1}∗

[
Pr

[
〈P,V〉(ρ, x) = 1

]
≥ 1 − εc

]
≥ 1 − μ.

– Non-adaptive Soundness: For any x �∈ L and every prover strategy P∗,
with probability 1 − μ over ρ

$←− {0, 1}∗, P∗ makes V accept with probability
at most εs over the verifier’s coin tosses. Formally, for every x �∈ L and P∗

Pr
ρ∈{0,1}∗

[
Pr

[
〈P∗,V〉(ρ, x) = 1

]
≤ εs

]
≥ 1 − μ.
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We emphasize that the external probability 1− μ is only over the choice of CRS
ρ whereas the internal probabilistic statement is over all of the verifier’s other
coin tosses.

Remark 2. We say that the CRS IOP has perfect completeness if for any x ∈ L
and any ρ ∈ {0, 1}∗ it holds that Pr

[
〈P,V〉(ρ, x) = 1

]
= 1.

The following lemma shows how to transform any IOP into a CRS IOP with
small randomness complexity:

Lemma 3 (Randomness Reduction for IOPs). Let L be a language that has a
k-round public-coin IOP with constant completeness and soundness errors εc, εs

and communication complexity cc. For any λ and constant ε0 be some constant.
Then L has a CRS IOP with CRS-error 2−λ, completeness error εc + ε0 and
soundness error εs + ε0. The CRS length is poly(cc, rc, λ), the randomness com-
plexity is O

(
k · log(cc ·λ)

)
, and the query complexity, communication complexity

and number of rounds are the same as in the original IOP. Furthermore, if the
original IOP has perfect completeness then the CRS IOP has perfect completeness.

The idea that underlies the proof of Lemma 3 is to use the CRS to shrink the
probability space and then argue that the resulting space is a good representative
of the original space. To formalize this idea, we make use of the game tree
of a proof system defined by Goldreich and Håstad [GH98]. The CRS defines
an approximation of the tree, and both parties interact with respect to the
approximated tree. Due to page constraints, the proof is deferred to the full
version [NR22].

4 Limitations of Succinct IOPs

In this section, we show limitations on the expressive power of succinct IOPs.
Here we consider general, adaptive IOPs (which only strengthens the negative
result).

Loosely speaking, we show that if a language has an IOP then it can be
decided by a bounded-space algorithm with bounded-time preprocessing. The
amount of space used is closely related to the communication complexity of the
IOP. When applying this result to a succinct IOP for an NP relation RL (as per
Definition 6) with instance length n and witness length m we get a poly(m)-space
algorithm with poly(n)-time preprocessing that decides the language L.

We start by formally defining what it means for a relation to be decidable
by a bounded-space algorithm with a bounded-time preprocessing:

Definition 12. Let R be a relation with instance length n and witness length m
and L = L(R) the corresponding language (see Definition 1). We say that R can
be decided in s(n,m)-space with t(n,m) preprocessing with soundness error εs

and completeness error εc if there exists a t(n,m)-time probabilistic algorithm
A1 and a s(n,m)-space (deterministic) algorithm A2 such that:
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– If x ∈ L then Pry←A1(x)

[
A2(y) = 1

]
≥ 1 − εc.

– If x /∈ L then Pry←A1(x)

[
A2(y) = 1

]
≤ εs.

In what follows we refer to A1 as the preprocessor and A2 as the decider. We
also note that, as usual, the soundness error can be reduced by repetition, while
increasing the time (and space) complexities accordingly. Observe that we can
reduce it to negligible simply by repeating the preprocessing a polynomial num-
ber of times, while almost preserving the space used by the decider.

The main result shown in this section is the following theorem:

Theorem 4. If a language L has a k-round IOP with communication complexity
cc, query complexity qc and verifier run-time TV , then L can be decided in O(cc+
k · log cc)-space with

(
2qc+O(k·log cc) · TV

)
preprocessing with completeness and

soundness errors 2−cc. Furthermore, if the IOP has perfect completeness, then
the algorithm has perfect completeness as well.

As an immediate corollary, we obtain the following:

Corollary 3. Let RL be an NP relation with instance size n and witness size m.
If RL has a succinct constant-round IOP with perfect completeness and O(log n)
query complexity then L can be decided in poly(m)-space with poly(n) preprocess-
ing. Similarly, if RL has a succinct o

(
m

log m

)
-round IOP with perfect completeness

and o(m) + O(log n) query complexity then L can be decided in poly(m)-space
with 2o(m) · poly(n) preprocessing. The soundness error in both algorithms is
2−poly(m).

4.1 Handling Small Randomness

Given an IOP and an input x, each string of random coins r defines a decision
tree of the verifier, which dictates which queries to make and what value to
output. The idea is to encode all of these decision trees, and generate a large
string that represents all of them. This string can be used to implement the
verifier in very small space, simply by reading a few locations of the string to
determine what queries to make (to prover messages) and decide the output.
This resulting verifier runs in very small space, and the final step is to convert
this resulting IOP to a small-space algorithm using the following fact9:

Fact 5. For any IP (P, V ) there exists an algorithm A1 s.t. A1(x) =
Pr[(P, V )(x) = 1] for any x ∈ {0, 1}∗. In addition, A1 runs in O(cc + rc + S)
space, where cc is the communication complexity, rc is the randomness complex-
ity and S is the verifier’s space complexity.

Hence, going back to the terminology of Definition 12, the preprocessor is respon-
sible for generating the string and the decider is simply an algorithm for com-
puting the probability that the verifier accepts and deciding according to that
probability. The following lemma captures the main property of the preprocessor:

9 See, e.g., [Gol08, Chapter 9].
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Lemma 4. Let (P,V) be an IOP with communication complexity cc, randomness
complexity rc, query complexity qc and verifier run-time TV > log cc. Then there
exists a function f : {0, 1}n → {0, 1}O(2rc+qc·log cc) that can be computed in
O (TV · 2rc+qc) time s.t. for any x, the query and computation phase of V can be
implemented in O(rc + qc + log cc) space given f(x).

Proof (of Lemma 4). Let (P,V) be an IOP as stated in the lemma. Denote by
k the number of communication rounds in the IOP, and for all i ∈ [k] let cci

and rci be the length of the prover message and verifier message in round i,
respectively.

Encoding a Computation Path: On input x ∈ {0, 1}n and randomness r ∈
{0, 1}rc, the verifier V performs a local deterministic computation that depends
on x, r and the values of the queries it makes. Fixing x and r, a function fr(x)
computes a decision tree for the possible executions of the verifier by feeding it
every possible value of each query it makes (one by one, since the verifier might
be adaptive). Since there are qc binary queries, then the decision tree is a binary
tree with depth qc, where each internal node contains location of the next query
and each leaf contains the verifier’s output given the values of the queries. Each
query location can be represented using log cc bits, so the tree can be encoded
using a string of length O(2qc · log cc). Each leaf in the tree (along with the path
leading to it) takes at most TV time to produce. Therefore, it can be produced in
O(2qc ·TV) time. In total, the function f(x) computes fr(x) for each r ∈ {0, 1}rc,
so the size of the string that contains all of the decision trees is O(2rc+qc · log cc),
and it can be computed in O(2rc+qc · TV) time.

Space-Efficient Construction of the Verifier: Given this string, we can
build an IOP verifier Vs that interacts the prover the same way that V does.
However, in the query and computation phase, Vs does not have to preform any
actual computation. Instead, Vs looks at f(x) whenever it makes a query to the
prover messages and finally outputs the value of the leaf it reaches in the decision
tree. The total space used by Vs is the space required to make the queries to
f(x) and prover messages π1, ..., πk, which is O(rc + qc + log cc).

Correctness: For any x, it is easy to see that for any random coins r and any
prover messages π, both V and Vs make the same decision: the decision tree of V
is encoded in f(x), and Vs simply behaves according to the instructions in f(x).

�

4.2 Handling Larger Randomness

Looking at Lemma 4, we note that the time it takes to compute f(x) grows
exponentially with the randomness complexity of the IOP, so for an IOP with
ω (log n) randomness complexity, the running time jumps to super polynomial.
In order to solve this problem, we use the randomness reduction stated in Lemma
3. After getting the input x, we let the preprocessor sample a random CRS ρ,
and then apply Lemma 4 on both of x and ρ and the IOP that takes them as an
input. By setting λ = cc in Lemma 3, we get the following properties:
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1. The preprocessor that computes f(x) would run in 2qc · TV · poly(cc)k time.
2. The string f(x) would have length 2qc · poly(cc)k.
3. If the original IOP has probability p < 1 of accepting an input x, then with

probability 1 − 2−cc of the CRS, the new IOP has probability p − ε0 < p′ <
p + ε0 of accepting x. If p = 1 then the new IOP accepts x with probability
1 as well.

We are now ready to prove Theorem 4 using Lemma 4 and Fact 5.

Proof (of Theorem 4). Let (P,V) be an IOP for the language L as stated in
the theorem, and assume without loss of generality that the completeness and
soundness errors are 0.3. By applying Lemma 3 with λ = cc and ε0 = 0.1,
there exists a CRS IOP (P ′,V ′) for L with CRS-error 2−cc and completeness
and soundness errors 0.4. On any input x, the preprocessor A1 generates a
random CRS which we denote by ρ. By Lemma 4, there exists a function
f : {0, 1}n+|ρ| → {0, 1}O(2qc·poly(cc)k) s.t. the query and computation phase
of V ′ with the fixed ρ can be implemented by an oracle machine Vs that has
oracle access to f(x, ρ) and runs in O(qc + k · log cc) space. The preproces-
sor A1 computes and outputs this f(x). With probability 1 − 2−cc over ρ,
it holds that if x ∈ L then Pr[(P ′,V ′)(ρ, x) = 1] ≥ 0.6 and if x /∈ L then
Pr[(P ′,V ′)(ρ, x) = 1] ≤ 0.4. By Fact 5, the value Pr[(P ′,V ′)(ρ, x) = 1] can be
computed in O(qc+cc+k log cc) = O(cc+k log cc) space. The decider algorithm
A2 simply computes p = Pr[(P ′,V ′)(ρ, x) = 1] and accepts if and only if p ≥ 0.6.

�

5 Succinct Zero-Knowledge Proofs from OWF

In this section we show how to construct succinct zero-knowledge proofs from
succinct IOPs. Intuitively, the idea is to run an “encrypted” version of the commu-
nication phase of the IOP, where the prover sends a commitment of each oracle,
instead of the oracle itself, and the verifier replies with the usual random coins.
At the end of the interaction, rather than having the prover “reveal” the queries
that the verifier asks, the prover proves in zero-knowledge that if it would have
revealed the queries then the original IOP verifier would have accepted.

The technique of committing to messages in a public-coin protocol and then
proving in zero-knowledge that revealing them would make the verifier accept
dates back to [BGG+88]. This technique is called “notarized envelopes”, where
we can think that each bit of the messages is put in a secure envelope and
then a “notary” proves something about the contents of those envelopes without
actually opening them. But here, we leverage the fact that the verifier only cares
about the values of its queries rather than the entire transcript. Therefore, the
statement which the prover has to prove in zero-knowledge is much smaller than
the IOP transcript and, in fact, depends mainly on the complexity of the IOP
verifier.
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Leveraging the small query complexity of the IOP is inspired by [Kil92,
Mic00]: there, the notarized envelopes technique is applied to PCPs to achieve
very efficient computationally sound interactive proofs, i.e., protocols that are
only sound against computationally-bounded cheating provers. In Sect. 5.1, we
modify this approach in two ways: we apply the notarized envelopes to IOPs
instead of PCPs and we achieve unconditional soundness instead of computa-
tional soundness. We can think of this as a transformation from IOPs to ZKPs.
Our contribution is implementing this transformation in a way that preserves
the original communication complexity of the IOP up to an additive overhead.
More precisely, the additive overhead depends on the security parameter and the
complexity of the IOP verifier (or more precisely, its “compactness”, see Definition
5). Furthermore, we do so under the minimal [OW93] cryptographic assumption
of one-way functions.

In Sect. 5.2, we apply the transformation to the succinct IOP of [RR20].
This yields a succinct zero-knowledge proof for a rich sub-class of NP relations.
Namely, for bounded-space relations, we construct zero-knowledge proofs with
communication complexity that is arbitrarily close to the witness length - with
the small additive overhead we mentioned earlier.

5.1 Communication Preserving ZKP

In this subsection, we prove the following general theorem that shows how to
construct a ZKP from an IOP while nearly preserving the communication com-
plexity, i.e., the transformation discussed above:

Theorem 5. Assume the existence of one-way functions. Let L ∈ NP. If
(PIOP, VIOP) is a TV -uniform γ-compact IOP for L, with soundness error εIOP,
communication complexity cc = cc(n) and query complexity qc = qc(n) where
the prover runs in TP time given the witness for x, then L has a public-
coin zero-knowledge proof with soundness error εIOP + 2−λ and proof length
cc + poly(λ, γ, log cc), where λ > 0 is the security parameter. Furthermore, the
running time of the ZKP verifier is TV + poly(λ, γ, log cc) and the running time
of the prover is TP + poly(λ, γ).

5.1.1 The Transformation
The existence of one-way functions implies the existence of the following cryp-
tographic tools:

– A pseudorandom function F : {0, 1}λ × {0, 1}∗ → {0, 1} [GGM86,HILL99].
– A commitment scheme (Gen,Com, V er) [Nao91,HILL99] as defined in

Sect. 2.4.
– For any security parameter λ > 0, a public-coin ZKP with an efficient prover

for any language L ∈ NP with perfect completeness, soundness error 2−λ and
proof length poly(λ, n) [GMW86].
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We describe how to use those components to transform (PIOP, VIOP) to a pair of
interactive machines (P, V ).

Let x be the input. For 〈PIOP(w), VIOP〉(x), denote by k the number of rounds
and by πi (resp. ri) the prover message (resp. verifier public-coins) sent in round
i. Recall that at the end of the interaction phase of the IOP, the verifier VIOP has
an oracle access to the prover messages π = (π1, ..., πk) and full access to its own
random coins r = (r1, ..., rk). In the local computation phase, VIOP produces a
predicate φx,r : {0, 1}qc → {0, 1} and query locations Qx,r ∈ [cc]qc and it accepts
if and only if φx,r (π [Qx,r]) = 1.

As discussed above, rather than sending πi, the prover P sends a commitment
αi to the message πi. The commitment is computed as follows: first, P commits
to a PRF seed S, then uses FS to encrypt each πi using FS as a pseudorandom
one-time pad. The prover P then convinces V , in zero-knowledge, that if the
query locations of the messages were revealed then VIOP would have accepted.
In particular, P proves that it knows some seed S such that the decryption of α
w.r.t. FS in the query locations specified by Qx,r would satisfy the predicate φx,r.

For that purpose, we define the language L′, consisting of tuples
(
φ, ρ,Q, y, c

)
,

where φ : {0, 1}qc → {0, 1} is a predicate, ρ ∈ {0, 1}poly(λ) is a (common ref-
erence) string, Q ⊆ [cc] is a set of qc query locations, y ∈ {0, 1}qc is a
vector of encrypted query values (supposedly taken from the transcript) and
c ∈ {0, 1}poly(λ) is the commitment of some seed. The tuple is in the language if
and only if there exists a seed S ∈ {0, 1}λ that can be revealed from c and ρ such
that the decryption of y w.r.t. S and Q satisfies the predicate. For simplicity, we
assume that the security parameter λ can be inferred from ρ and furthermore, is
polynomially related to |ρ| (which is indeed the case in [Nao91]). For simplicity,
we refer to FS as a string and use the notation FS [Q] to access the Q coordinates
from FS . Formally:

L′ =
{(

φ, ρ,Q, y, c
)
: ∃d, S s.t. V er(1λ, ρ, c, S, d) = 1 and φ(y ⊕ FS [Q]) = 1

}
.

The length of an instance (φ, ρ,Q, y, c) is |φ| + poly(λ) + qc · O(log cc). The
language L′ is clearly in NP since given S and d (which have poly(λ) length), a
verifier can verify that V er(1λ, ρ, c, S, d) = 1 in poly(λ) time, compute y⊕FS [Q]
in poly(λ, qc, log cc) time and verify φ (y ⊕ FS [Q]) = 1 in O(|φ|) time. Therefore,
L′ has a ZKP with an efficient prover which we denote by (PL′ , VL′). Thus, the
final step of the protocol is to have P and V emulate (PL′ , VL′) to prove (in zero-
knowledge) that the tuple is in L′. Note that P can perform this step efficiently
since it has the NP witness S, d. The protocol is presented in Fig. 1.

We prove the protocol is a zero-knowledge proof in two steps: first we prove
that it is an interactive proof for L with the desired complexity properties and
then we prove that it is computational zero-knowledge w.r.t. auxiliary input.
This is captured by the following two lemmas:

Lemma 5. The protocol in Fig. 1 is a public-coin interactive proof for L. The
proof length is cc+poly(λ, γ, log cc), the soundness error is εIOP+2−λ, the verifier
runs in time T + poly(λ, γ, log cc) and the prover runs in time TP + poly(λ, γ).
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Communication Preserving ZK Protocol

1. V generates a reference string ρ ← Gen
(
1λ+1

)
for the commitment scheme

and sends it to P .
2. P generates a random PRF seed S ∈R {0, 1}λ, commits to it using

(com, dec) ← Com
(
1λ+1, ρ, S

)
and sends the commitment com to V .

3. P initializes � ← 0, p = FS([cc]) then performs with V the following
“encrypted” version of the IOP:
For i = 1, . . . , k:

– P sends an encryption of the ith PIOP’s message πi by XORing it with
fresh bits from p, i.e., sends αi = p[�, .., � + |πi| − 1] ⊕ πi and updates
� ← � + |πi|.

– The verifier replies with the usual random coins ri as in the IOP.
Denote α = (α1, . . . , αk) and r = (r1, ..., rk).

4. P and V emulate (PL′ , VL′) with
(
φx,r, ρ, Qx,r, α [Qx,r] , com

)
as common

input and where PL′ further uses (S, dec) as its witness, with security param-
eter λ + 1 and V answers accordingly.

Fig. 1. The ZK protocol from Theorem 5

Lemma 6. The protocol in Fig. 1 is computational zero-knowledge w.r.t. auxil-
iary input.

Due to page constraints, the proof is deferred to the full version [NR22].

5.1.2 Proof of Lemma 6
We now move on to proving that the protocol (P, V ) of Fig. 1 is computational
zero-knowledge w.r.t. auxiliary input.

By definition of zero-knowledge, we need to show a simulator for the interac-
tion (P, V ∗), where V ∗ is an arbitrary (malicious) verifier. The idea is to simulate
the IOP phase by replacing the honest prover messages with truly random mes-
sages and simulate the ZKP phase using the simulator for (PL′ , VL′).

In the following discussion, for readability, we often omit the security param-
eter λ from the notation. However, formal claims and proofs that follow do
mention the security parameter explicitly.

Let V ∗ be a polynomial time verifier as per Remark 1, and denote by
V ∗

L′ the residual verifier strategy10 that V ∗ uses in step 4. Let x ∈ L be an
instance, z ∈ {0, 1}poly(|x|) be some auxiliary input and w be the NP wit-
ness for x. The view of V ∗ when interacting with the prover P on common
input x and prover input w, denoted by V iewV ∗(z)(x) := V iew

P (w)
V ∗(z)(x), con-

sists of x,z, the commitment com, the encrypted messages α and the view

10 This strategy might depend on the view of V ∗ up to that point, but this can be
passed to V ∗

L′ as an auxiliary input as we show later on.
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of V ∗
L′ in step 4, denoted by V iew′ (φx,r, ρ,Qx,r, α[Qx,r], com, zL′ , (S, dec)) :=

V iew
PL′ (S,dec)
V ∗

L′ (zL′ ) (φx,r, ρ,Qx,r, α[Qx,r], com) where zL′ = (x, z, r, α) is the auxil-
iary input for V ∗

L′ and S, dec are the witness for tuple being in L′. Since zL′

contains α and the instance contains com that is, everything in the view of V ∗

up to that point, we can assume that

V iewV ∗(z)(x) = V iew′ (φx,r, ρ,Qx,r, α[Qx,r], com, zL′) .

By the zero-knowledge property of (PL′ , VL′), there exists a simulator Sim′
V ∗

L′
that can simulate V iew′ with auxiliary input zL′ . We observe that w.l.o.g., the
input of Sim′

V ∗
L′

can simply consist of (x, r, z, α, ρ, com) - this is due to the fact
that Sim′

V ∗
L′

can compute φx,r and Qx,r on its own and there is no need to
pass the bits α [Qx,r] twice. Recall that we assume (PIOP, VIOP) has perfect com-
pleteness, therefore for any verifier messages ρ, r and honestly generated prover
messages com and α, it holds that (φx,r, ρ,Qx,r, α [Qx,r] , com) ∈ L′. Therefore,
it holds that Sim′

V ∗
L′
(x, r, z, α, ρ, com) and V iew′(φx,r, ρ,Qx,r, α[Qx,r], com, zL′)

are computationally indistinguishable.
We now describe a simulator SimV ∗(x, z) that simulates V iew

P (w)
V ∗(z)(x). We

start with a high-level description. Given as input x, z, the simulator emulates
step 1 of of the protocol from Fig. 1 exactly as V ∗ would, namely, it runs V ∗(x, z)
to generate the CRS ρ. For step 2, the simulator commits to a string of zeros
and “sends” the commitment to V ∗, leveraging the hiding property of the com-
mitment scheme. For step 3 , the simulator “sends” random messages to V ∗,
this time leveraging the pseudorandomness of the PRF. Finally, for step 4, the
simulator simply runs Sim′

V ∗
L′

on the instance that V ∗ sees - which includes the
commitment to zeros and the subsequent random messages. Since the output
of Sim′

V ∗
L′

includes its input, specifically the auxiliary input, then SimV ∗ can
just output the output of Sim′

V ∗
L′

. The simulator SimV ∗ is formally described
in Fig. 2.

ZK Simulator for Thoerem 5
Input: x ∈ L, z ∈ {0, 1}∗, 1λ

1. Generate a reference string ρ ← V ∗(x, z).
2. Compute a commitment to zeros (c0, d0) ← Com

(
1λ, ρ, 0λ

)
. “Send” c0 to V ∗.

3. For i = 1, .., k: Generate a random βi and “send” it to V ∗ and get in response
ri.
4. Output Sim′

V ∗
(
x, r, z, β, ρ, c0, 1

λ
)
.

Fig. 2. The simulator SimV ∗ for Theorem 5
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At first glance, the zero-knowledge property of (PL′ , VL′) does not necessarily
hold in this case since the “mock” instance on which we run Sim′

V ∗
L′

is (almost
definitely) not a “yes” instance. However, we observe that this “mock” instance
and a “yes” instance are computationally indistinguishable; the commitment to
zeros is indistinguishable from that of a randomly generated seed due to the
hiding property of the commitment scheme and the truly random messages are
indistinguishable from the encrypted messages used in the protocol due to the
pseudorandomness of the PRF. Therefore, we can apply the computational data
processing inequality (as stated in Fact 3) to deduce that the outputs of Sim′

V ∗
L′

on both instances are indistinguishable, which are in turn indistinguishable from
the view VL′ . This yields the following proposition:

Proposition 1. For all x ∈ L and auxiliary input z ∈ {0, 1}poly(|x|),
{

SimV ∗
(
x, z, 1λ

)}

λ∈N

c≈
{

V iewV ∗(x, λ)
}

λ∈N

.

Due to page constraints, the proof is deferred to the full version [NR22].

Proof (of Lemma 6). Let x ∈ L and w be the corresponding witness. Fix some
polynomial time verifier V ∗ and auxiliary input z. By Proposition 1, the out-
put of the simulator SimV ∗ on input (x, z, 1λ) is computationally from the view
V iew

P (w)
V ∗(z)(x, λ). In addition, SimV ∗ runs in polynomial time because it only

generates random strings of polynomial size and runs the polynomial time algo-
rithms V ∗, Com and Sim′

V ∗ . This gives us the zero-knowledge property of the
protocol. �

In total, Lemma 5 and Lemma 6 complete the proof of Theorem 5.

5.2 Constructing Succinct ZKPs

Our next step is to use Theorem 5 to construct succinct zero-knowledge proofs
for NP relations that can be verified in bounded space. We rely on the following
result by [RR20]:

Theorem 6 (Extension of [RR20]). Let L ∈ NP with corresponding relation RL
in which the instances have length m and witnesses have length n, where m ≥ n,
and such that RL can be decided in time poly(m + n) and space s ≥ logm.
For any constants β, γ ∈ (0, 1), there exists a β−O( 1

β )-round IOP for L with
soundness error 1

2 and (γβ)−O( 1
β ) query complexity. The communication consists

of a first (deterministic) message sent by the prover of length (1+ γ) ·m+ γ ·nβ

bits followed by poly
(
nβ , (γβ)−

1
β , s

)
additional communication. In addition, the

IOP is
(
Õ(n)+poly

(
nβ , (γβ)−

1
β , s

))
-uniform poly

(
nβ , (γβ)−

1
β , s

)
-compact and

the prover runs in poly(n) time.
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Remark 3. The theorem statement in [RR20] does not include the compact-
ness property. Nevertheless, it is relatively straightforward to show that the
construction is indeed compact. In addition, [RR20] assumes that the instance
length is polynomially related to the witness length and as a result, the length
of the fist message only depends on the witness length, whereas we do not
make that assumption and therefore Theorem 6 introduces a small dependence
on the instance length. In our context, we can afford this dependence since it
will anyhow appear in our ZKP construction due to the compactness property.
Given these differences, for completeness, Theorem 6 is proved in the full version
[NR22].

The soundness error in Theorem 6 can be reduced by parallel repetition while
observing that since the first prover message is deterministic, so it does not need
to be repeated. In addition, if we choose a sufficiently small β and the space s
in which we can decide RL is sufficiently small (but still polynomially related to
n), then we get the following corollary:

Corollary 4. There exists a fixed constant ξ > 0 such that the following holds.
Let L ∈ NP with a corresponding relation RL in which the instances have length
n and witnesses have length m such that m ≤ n and RL can be decided in
poly(n) time and nξ space. Then for any constants γ ∈ (0, 1) and any function
ε = ε(m) ∈ (0, 1) there exists a constant β′ such that for any β ∈ (0, β′) there
exists an IOP for L with communication complexity (1+γ) ·m+O

(
log 1

ε

)
·γ ·nβ,

query complexity O(log ε) and soundness error ε. In addition, the IOP is Õ(n)-
uniform nβ-compact and the prover runs in poly(n) time.

Corollary 4 captures a rich class of NP relations (e.g. SAT or any other
relation that can be decided in polynomial time and polylogarithmic space). We
now apply Theorem 5 on the IOP from Corollary 4 and get a succinct ZKP for
all languages in that class. This yields our main theorem:

Theorem 7. There exists a fixed constant ξ > 0 such that the following holds.
Let RL be an NP relation, in which the instances have length n and witnesses
have length m such that m ≤ n, that can be decided in poly(n) time and nξ space.
Assuming one-way functions exist, then for any constant γ ∈ (0, 1) and security
parameter λ > 1, there exists a constant β′ such that for any β ∈ (0, β′) there
exists a public-coin zero-knowledge proof for RL with (1 + γ) ·m+γ ·nβ ·poly(λ)
proof length, perfect completeness and soundness error 2−λ. Furthermore, the
verifier runs in time Õ(n) + nβ · poly(λ) and the prover runs in poly(n) time.

Due to page constraints, the proof is deferred to the full version [NR22].
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