
HanKA: Enriched Knowledge Used
by an Adaptive Cooking Assistant

Nils Neumann(B) and Sven Wachsmuth

Institute for Cognition and Robotics (CoR-Lab), Universitätsstr. 25, 33615 Bielefeld,
Germany

{nneumann,swachsmu}@techfak.uni-bielefeld.de

Abstract. Cooking a meal is a challenging and recurring task that
requires the consideration of various environmental influences and con-
straints as well as significant domain knowledge. One way to reduce the
complexity is to follow recipes that provide an ordered set of tasks for the
preparation of a dish. This concept was already transferred to cooking
assistants which present the recipe to the cook while adding further assis-
tance like device control or step-by-step visualization. Although recipes
and assistants simplify the cooking process itself, other factors like the
available devices or differences in cooking skills are ignored. Aside from
that, current assistants are often limited to one recipe at a time, ignoring
the regularly occurring requirement to prepare a meal of multiple com-
ponents. Considering these challenges, we propose our adaptive cook-
ing assistant HanKA that considers the individual user skill and envi-
ronmental kitchen setup, while assisting the cook at the preparation of
their freely combined and synchronized recipes. This is achieved through
a modular approach consisting of the automatic detection and control
of the available devices and user interfaces, the scheduling of multiple
recipes based on the distributed knowledge representation, and a devia-
tion management that considers the user experience. Hereby, we created
an adaptive cooking assistant that considers various influences that occur
in a cooking scenario, resulting in a better assistance for the user.

Keywords: AI applications and innovations · Knowledge
representation and reasoning · Planning and scheduling · Human
monitoring · Assisted living · Intelligent assistive environments

1 Introduction

Cooking is a complex instrumental activity of daily living [9], whereby cooking
skills correlate with healthy eating [7]. Hereby, a layperson has to continuously
transfer and coordinate recipe instructions in his individual cooking environ-
ment. Due to an increasing digitization of life, multiple cooking assistants were
developed that assist a cook in the preparation of a dish. Cooking Navi [6]
focuses on the synchronization of cooking recipes, PIC2DISH [3] generates the
cooking instructions from a picture and MimiCook [16] projects the instructions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bergmann et al. (Eds.): KI 2022, LNAI 13404, pp. 173–186, 2022.
https://doi.org/10.1007/978-3-031-15791-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15791-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-15791-2_15


174 N. Neumann and S. Wachsmuth

on the kitchen counter. While these provide a step-by-step assistance for the
cook, they do not provide key characteristics of user assistance systems [11] like
context-awareness and adaptation to the assisted person. In the cooking domain,
this includes the detection, control, and consideration of the available devices.
Although recipes provide step-by-step instructions for the cook, and in some
cases customization features like exchanging ingredients [1,2,12], these are often
limited to a single component. A completely flexible composition of multiple
recipes to an assisted cooking process including an automated sequencing, dis-
tributed device control, and dynamic synchronization of preparation steps has
not been realized so far. Time estimations in traditional recipes do not consider
the skills of the cook and frequently differ greatly from the time actually needed.
Similar to MAMPF [15], we individually measure and adapt the duration time
for each step. Beyond this, we further generalize these time estimates to new
recipes and ingredients. Although various assistive systems for the kitchen exist
that all successfully assist the cook when preparing dishes, most of these focus on
a step-by-step instruction and simplify contextual factors, as shown in Table 1.
However, the consideration of these contextual factors would lead to an individ-
ualized in situ assistance of the user in his regular kitchen environment as an
ultimate goal.

Table 1. Functionality provided by cooking assistants: Asterisk (*) means only build-
in devices are controlled. The first 5 are research prototypes, the next 2 are available
products, followed by our HanKA assistant. “Skill adaptation” means that the cooking
skills of the user are considered while planning, and does not describe if the system
adapts while cooking.

Cooking assistance Device Recipe Skill adaptation
Control Detection Combination Synchronization

MimiCook [16] - - - - -
CookingNavi [6] - - � � -
PIC2DISH [3] - - - - -
KogniChef [13] � - - - -
MAMPF [15] � - � - �
Thermomix [17] * - - - -
Cookit [4] * - - - -

HanKA � � � � �

In this paper we present our cooking assistant HanKA (German acronym for:
action centered coordination of assistance processes) that provides the follow-
ing contributions: (i) automatic detection and control of available user devices;
(ii) progress detection utilizing device interactions; (iii) combination and syn-
chronization of freely combinable recipes; (iv) adaptation of recipes to available
devices and cooking skills; (v) utilizing a distributed knowledge base for enrich-
ing minimal recipes with general cooking knowledge; (vi) a working cooking
assistant that guides the user, monitors the progress, and adjusts to occurring



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 175

Fig. 1. Visualization of the phases from a cooking session and the assignment of the
procession loops with their related adaptations.

deviations. In this way, the cook can concentrate on the cooking task itself and
entrusts the scheduling of the tasks and managing of the devices to the assistant.

2 Methodology

In order to create a cooking assistant that provides the previously described
flexibility, the provision of multiple adaptations is required (Fig. 1). These adap-
tations are organized in two different processing loops. The outer loop initiates a
configuration at the start of each cooking session and the inner loop repeatedly
applies a process adaptation. Before the adaptation concepts are described in
detail, a brief summery of the underlying knowledge representation is given.

2.1 Underlying Knowledge Representation

In the following, the concepts of the knowledge representation are briefly
described. More details can be found in [14]. The distributed knowledge
representation consists of three sources (component recipes, ingredients,
action_templates) which, when combined, result in the executable recipes for
the cooking assistant. These three knowledge sources are linked by the action
type of each task in the component recipe (Fig. 2). The hierarchical representa-
tions of these knowledge sources allow to reuse and generalize knowledge that
is utilized in the proposed concepts. Action_templates are abstract actions that
are parameterized by the other knowledge sources. They provide all actions exe-
cutable by the cooking assistant with generalized and action-dependent infor-
mation: e.g., whether a user and/or device are required for the execution, the
urgency to proceed with the following action (connection urgency) and all sub-
ordinate (pre/post) actions. The recipe representation contains a set of tasks
with a reference to the corresponding action_template, the logical dependency
between the tasks and all recipe specific information, like ingredients and amount
per serving. The ingredient representation for each usable ingredient contains
actions executable with it, together with their general parameters (e.g. cooking
time). If an information is not defined in the recipe, the missing information is
added from the ingredient representation or, if not available for the ingredient,
from the action_template.



176 N. Neumann and S. Wachsmuth

Fig. 2. Exemplary creation of executable recipe steps (orange) for the single recipe rep-
resentation step cook potato (blue), while leaving out the connection to previous tasks
or the alternative preparation with a hob. The recipe task cook potato is enriched with
information (cooking times) from the cook action of the ingredient representation potato
(green). These combined information parametrize the abstract action_template cook
steamer to create the executable cook potato steamer recipe step (orange). Since the
action_template cook steamer has (sub-)tasks, these executable steps are also gener-
ated with information from the recipe and action_templates, visualized by stick figure.
(Color figure online)

2.2 Configurations per Cooking Session

The configuration per cooking session mostly takes place while creating the exe-
cutable representation of the recipes that are selected by the cook. This provides
the necessary infrastructure to define the inference processes for any configura-
tion or adaptation of the executable recipe proposed in this paper. This repre-
sentation contains all information about the available devices and cook as well
as all recipes that should be cooked together.

Recipe Adjustment to Available Devices. In order to deal with varying
devices in different kitchens, available devices must be discovered and device-
specific programs have to be abstracted to functionalities used by the cook-
ing assistant. Describing the required device-independent functionality in the
action_templates enables the mapping of recipes to devices and the filtering of
executable recipes in the context of the available devices. Through this, only
recipes with executable tasks on the available devices are planned and executed.
Adapting to the devices and utilizing the abstracted device program description
from the action_templates, enables the automatic adjustment to different setups
and allows automated device control in the recipe context.

Combination and Synchronization of Recipes. Enabling the user to freely
combine different recipes requires a flexible, automated enriching and scheduling
of instruction steps. In this case, further challenges arise, such as, where recipes
can be interrupted, which tasks are connected time-critically, which tasks can
be parallelized, which tasks require specific devices or the user attention, and
how are all component preparations synchronized to be served hot. Therefor,



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 177

the self descriptive recipe contains all information about the recipe steps that
are utilized by the scheduler to arrange the tasks into a temporal order. In order
to plan the recipes based on the current setup, the scheduler needs the available
devices and information about the cook in addition to the recipes. Based on the
cook and device workload for each task, the scheduler can take the occupancy
into account. This enables the planner to execute tasks in parallel in regard to
the resources, which made it possible to synchronize the recipes. Utilizing the
logical connection between tasks and their connection urgency from the recipes,
enables the scheduler to know which tasks have to be carried out one after the
other and gives an indication where recipes can be interrupted. When alternative
methods of preparation are described by a recipe, further options are available
for the scheduler. The approach described so far leads to a valid plan, but does
not take the synchronization of the serving times into account. Because device
tasks that heat an ingredient are critical for serving everything hot, the last one
of these for each recipe must end as late as possible for all component recipes.

User Dependent Task Duration and Cooking Experience. The duration
of many preparation tasks greatly varies for different cooks. A better prediction
will result in less deviations, less re-planning, and a better estimation of the serv-
ing time. While storing the last time for a recipe task would be sufficient, this
only provides a prediction for the step in the specific recipe. Using a more gener-
alized approach that does not just refer to the recipe but also to general cooking
skills, enables the estimation of preparation time for recipes yet not cooked by
the user. A solution for this is presented by estimating factors that scale the
default task duration appropriately. Such factors can be estimated on three dif-
ferent levels of abstraction utilizing the distributed knowledge representation of
recipes, ingredients, and actions. After each cooking session, these three factors
are updated for each executed step, as further explained in Sect. 3.3. While some
cooking actions scale with improved cooking skills of the user like peeling, others
only depend on the recipe task for actions like cooling. Therefore, it is neces-
sary to know which tasks scale with the cooking skill and which not. Since this
information is action-dependent, it is provided by the action_templates, which
define if an action can adapt to the user. As the duration for some tasks scale
with the number of servings and some have fixed values, these information are
also provided by the action_template. By saving the default user duration of
the task as a factor, this value is independent of the number of servings and
calculated when these are selected.

2.3 Adaptation While Cooking

Based on the initial plan with a complete schedule of tasks, the user starts the
cooking process. Although the plan contains only tasks executable with the given
devices and uses task durations adapted to the user, this does not ensure that
no further adaptations are required. Therefore, a monitoring and re-planning of
the cooking process is implemented.



178 N. Neumann and S. Wachsmuth

Fig. 3. Component overview of the cooking assistant: The user interacts with the
devices and user interfaces which are connected to the corresponding coordination
components (3.1, 3.2). These send the interaction commands to the Monitoring and
Execution (3.4) component, that executes the recipe and detects deviations based on
the scheduled task order from the Planner (3.5), which is calculated on the enriched
knowledge representation from the Knowledge Representation (3.3).

Detection and Adaptation to Deviations from the Plan. While cooking
a meal, the estimated duration of the tasks can differ from the real duration.
Possible reasons are varying attention levels, external distractions or delays from
devices. Examples are the missing confirmation of the device execution or a pro-
longed heating process with larger amounts of water. Therefore, it is necessary
to monitor the cooking session and react to occurring deviations. These devia-
tions can be that a task is not executable because a previous task is not finished,
or that a running task should have ended but the user or a device has never
confirmed it. If a deviation is detected, the discrepancy to the old plan is cor-
rected by re-scheduling critical tasks. By adapting to the current situation, the
cook receives a permanently executable plan and is supported until the dish is
finished.

Grouping of Congruent Sub-tasks for Compact User Instructions.
While experienced cooks profit from compact instructions, beginners require
detailed simple cooking instructions. Therefore, we propose an automated strat-
egy to merge congruent cooking instructions. Here, the frequency how often a
user cooked the recipe and the appropriate ingredient-action pair beforehand is
used to determine if tasks are combined. As the final task sequence is a result of
the planning process, the grouping of tasks is considered after planning. Before
executing a task, the following tasks in time are inspected if they are merge-able
with the current task and if the user has enough experience for the combination.
Whether tasks can be combined is decided in regard to the used ingredient,
logical connection, action type and device usage. If a combination of tasks is
possible, the description, title, and images of the tasks are merged, and both
tasks are started. Clustering the task shortly before the execution retains that
scheduling can find the best possible solution, while also providing compact user
instructions in an adaptable manner.



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 179

3 System Description

Creating an adaptive cooking assistant covers a wide set of areas, resulting in
thematically appropriate components roughly following MAPE-K from auto-
nomic computing [8], as shown in Fig. 3. These components are connected with
a customized request/response pattern, based on the MQTT protocol [10] and
communicate with serialized protocol buffer messages. This results in a well-
defined API and clear task areas for each component and allows the decoupling
of components. In the following subsections, the individual components, their
contribution to the overall system, and their adaptation strategies are described.

3.1 Device Coordination

The Device Coordination discovers and provides the available devices, controls
them, and detects process events required in the active device tasks from the
recipe. To keep it flexible, the component abstracts device-specific information
into a device-independent description that is used to describe device tasks inside
a recipe through which a mapping between functionalities in the recipe and
device specific programs is enabled. In addition to information such as operating
mode (e.g. two-sided heat), temperature, and duration, the description contains
the general type of actions (preheat, execute, add, remove). This is utilized by the
individual device controller which interprets the sensor data in the recipe context
and tracks the task progress. Through the additional information the device
functionality is extended and allows a context-aware interpretation of built-in
device sensors. Whereby preheat is finished if the temperature is reached, execute
is finished if the required duration is expired and add/remove are finished if other
device sensors detect the addition or removal of an ingredient at the time of the
task (e.g. door switch sensor for an oven). If the end of a task is detected by
the device, it notifies the Monitoring and Execution, which results in automatic
recipe progress.

3.2 Frontend Coordination

The Frontend Coordination is responsible for the coordination and synchroniza-
tion of the user interfaces and for the generalization of the user input. While the
specific user interfaces are not known beforehand for each setup analogous to
the available devices, they register via a discovery service to the Frontend Coor-
dination. The registered interfaces are connected with and synchronized by the
Frontend Coordination. Hereby, they implement a defined API to interact with
the system that abstracts the user input to commands, relevant for the cook-
ing process. Through this, the assistant can connect to different user interfaces
(tablet, speech interface or several of these) available in the concrete setup (e.g.
Fig. 4). Via the user interfaces the cook can combine recipes into the desired
dish, start and stop the cooking process, add or remove recipes to an active
cooking session, and visualize the planned task order. During cooking, the cook
is always able to finish any running task, select any valid new task, as well as to
preview tasks before they are active.



180 N. Neumann and S. Wachsmuth

Fig. 4. Exemplary cooking scenario, where the user confirms the cooking step cut onion
via a tablet.

3.3 Knowledge Representation

The Knowledge Representation provides the executable and combinable recipes
by utilizing the distributed knowledge sources (recipe representation, ingredient
representation and action_templates), as summarized in Sect. 2.1. The enriched
recipes provide the required information for scheduling (Planner), visualization
(Frontend Coordination), device controlling (Device Controller) and monitoring
(Monitoring and Execution). As the recipe should be cookable in the individual
kitchen, the created executable recipe representation also contains the regis-
tered devices with their functionalities from the Device Coordination and the
registered cook from the Frontend Coordination. Based on the available devices,
non executable recipes are removed. If an unknown user starts cooking with
the assistant, the system creates a user-specific ontology that stores the cooking
experience and duration factors for each recipe step in reference to the recipe,
ingredient, and action. Due to the different levels of abstraction and the more fre-
quent use of more generalized actions, a weight factor X is added in regard to the
referred knowledge source. In the ontology, the cooking skill of the user is saved
regarding the recipe step (R (X=5)), the ingredient-action pair (I (X=10)),
and the action type itself (A (X=20)). After each cooking session, these three
factors (R,I,A) are updated for each executed step (Eq. 1), with the correspond-
ing X-value for R,I,A.

newFactor(R, I,A) =
X ∗ oldFactor(R, I,A) + measuredTime

defaultT ime

X + 1
(1)

userTaskDuration =
R+ I +A

3
∗ taskDuration (2)

When a new recipe is generated, the duration for each task that the user can
perform is calculated by Eq. 2, with a factor of 1 if no value was saved before.
Even though the R value has no impact for recipes the user has never cooked,
the I and A values are recipe independent, allowing a prediction for recipes that



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 181

are unknown to the cook. Through the recipe representation, Monitoring and
Execution also receives information how often the cook executed certain recipes
and utilized ingredients in order to merge tasks into more compact instructions.

3.4 Monitoring and Execution

The Monitoring and Execution component connects all components of the cook-
ing assistant. However, the main task is the monitoring of the cooking process
and the execution of the active tasks. Therefore, the execution of tasks and
the detection of deviations is split into multiple conditions and actions that are
repeated in an adaptation loop. While the Monitoring and Execution component
detects the deviations, the adjustment of the task schedule is carried out by the
Planner component.

– Task removal: Checks if the Device or Frontend Coordination finished a
task and removes it from the active tasks.

– Active task verification: Checks if an active task should have been ended
but is still running. If a task is still running with an end time in the past it
is extended.

– Task start: If the time for a new task to run has been reached, it is verified
that there are no resource conflicts resulting from an extended step. It is
further checked whether all logically connected previous tasks are finished.
When all tasks are finished and no resource conflicts are found, the task is
added to the active tasks. If not, a re-planning is necessary due to a deviation.

– Execution triggering: If the list of active tasks changes, they are send to
the Device- and Frontend Coordination in regard to the required resources.
If the cook has experience with the recipe or ingredient, it is checked if the
task can be combined with the following tasks, based on the ingredient, task
connection and action type of the tasks. If detected they, are combined and
communicated as one task with merged content information.

– Planning: If any of the previous steps detects a deviation, a planning request
with the actual state, available devices and cook is send to the Planner. The
solved response is used as the new plan for execution.

While the initial combination and synchronization of recipes is performed before-
hand, the combination of recipes can be changed while cooking, e.g. removing,
replacing or adding a component recipe. In this case, the appropriate action is
executed and the new recipe combination in regard to the progress of the already
running recipes is synchronized. This enables an even greater adaptability of the
cooking process for the cook.

3.5 Planner

The scheduling is considered as an optimization problem, where the domain,
rules and moves are defined and implemented in a way that the optaplanner [5]
engine can be utilized to combine and synchronize the recipes with the available



182 N. Neumann and S. Wachsmuth

Fig. 5. Simplified planning structure with two recipes and nine tasks: The end time of
a task is the earliest successor start time together with a variable delay, changeable by
the planner. The task 4 has a delay to his successor task (3) as the user attention is
required for tasks 7/8. In contrast, the user tasks 5/6 are parallel to the device task
2, because it only needs a device and no user. The urgent connection between 1/2 and
2/3 urges the planner to prevent a delay. For the synchronization of the recipes, the
planner minimizes the delay (* ). Since it is a planning request in a running state, task
9 is executed by the user at the moment. Therefore, if the task is moved, the time till
cooking is finished also changes, resulting in a changed serving time.

devices. Hereby, each planning request is stateless and utilizes the cooking state
of the request, which can only have small deviations for re-planning requests. The
main planning entity of the domain is the task. Each task is assigned to a recipe.
Since the planner synchronizes the recipes, all recipes have to be finished around
the same time. Therefore, the synchronization point of our planning problem
is the serving time, with the serving time defining the origin and the time axis
representing the time till the cooking process is finished, as shown in Fig. 5. Uti-
lizing this time representation, the first two optimizing criteria are the difference
between the finished menu and the actual time (cook as fast as possible) and the
distance from the last recipe step to the finished menu (synchronized serving).
The logical dependency of the tasks is modeled as a built-in constraint, because
any deviation from the logical order results in an invalid plan. Therefore, the
tasks are connected as a chain where the end of a task is the earliest start time for
all its successor tasks. This includes a delay that is used as a planning variable,
allowing the planner to change the time between tasks. Using the time repre-
sentation with the chain connection creates the advantage that if a deviation
occurs in the cooking process, only the ends of the chain have to be adjusted,
resulting in an easy re-planning. Solving the logical dependency with the built-in
constraint, the main constraint remaining is the consideration of the workload
for the user and devices. These are assigned based on the functionalities required
by the task. In order to not exceed the maximum workload for user and devices,



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 183

Fig. 6. Left: Distribution of the relative duration for the 153 combinations in regard
to their serialized execution duration. Right: User Adaptation over multiple cooking
sessions. The single recipes are executed by a new simulated user that validates each
user task after 70% of the required duration defined in the base recipe. The device
tasks are executed normally. The recipes, with their IDs were executed from left to
right. Hereby, 100% is the necessary duration without user adaptation and the blue
bar is the required duration the simulated user actually needed. As the system adjusts
to the user skills, the deviation between initial plan and required duration (orange)
reduces, while the deviation between the initial plan and the required duration without
user adaptation increases (green). This happens especially strong if a known recipe is
repeated (ID 11) due to the different factor (Sect. 3.3). (Color figure online)

their workload is calculated over all tasks and if the maximum value is exceeded,
a hard constraint is detected which results in a penalty that outranks all other
scores. In order to ensure that action sequences requiring the same device, e.g.,
adding multiple ingredients, are still consistently assigned, device groups are
formed that treat them as a single compound task. For the creation of a plan
that is acceptable for the user, the logical dependency/cohesion is considered
as soft constraint. This takes the urgency of the connection into account where
delays between tasks with a high urgency result in higher penalties. Neverthe-
less, tasks with a low urgency connection are still sticked together if possible.
Since the planner should not always move all tasks in the chain, a custom move
was implemented that moves a single task in the range between the next task
and the following task, which expands the possibilities of the planner. Based on
the described domain, rules, and scores, the tasks are ordered, deviations are
solved, and an executable plan is returned.

4 Evaluation

The flexibility of the HanKA cooking assistant is provided by multiple adapta-
tions. Therefore, they are evaluated individually as far as that is possible in a
quantitative evaluation. Unless otherwise stated, a kitchen setup consisting of a
steamer, oven and hob is used. The evaluation is based on 18 recipes, each con-
sists of 6 to 64 tasks (avg. 19.6). Hereby, 1/3 of the recipes has two options of



184 N. Neumann and S. Wachsmuth

preparation, e.g. cooking noodles with a hob or steamer. The initial scheduling
of a single recipe requires 2474 ms on average. The average planned execution
time for a recipe with 4 servings is 46min. and 39 s. and 38min. and 15 s. for 1
serving. Resulting in a duration increase of 22.09% on average between 1 and 4
servings, not evenly distributed over the recipes, due to differences in task scaling
(min. cooked noodle 0%/max. cabbage turnip 94%). On average the recipes have
an idle time of 40.98% (4 serv.) that describes, how much of the time the cook
does not perform a task. This ranges from 0% for vegan mayonnaise to 81.69%
for burger buns with dough resting time. The idle time indicates optimization
possibilities when combining recipes and thus is a valuable scoring criteria to
evaluate the recipe combinations. For the evaluation of the recipe combination,
all 153 2-pair combinations of the 18 available recipes were calculated with an
average initial planning time of 3394 ms. Hereby, the planned cooking duration
is reduced to 83.68% of the time that is required to cook these successively, as
shown in Fig. 6 (left) for all combinations. The longer duration in 6/153 cases
is noticeable and results from changing types of preparation, that take longer
but provide a better synchronization at the end. For a single component, the
time between heating the last heating task and serving was 129.44 s, while for
the combined recipes the average for each component was 229.64 s. In this dura-
tion, the user removes the components from the devices and performs the last
tasks that are only executable afterwards. The lower idle time of 25.52% for two
recipes in contrast to 40.98% for a single recipe indicates a useful combination
of the recipes.

The cooking skills are evaluated with a simulated user, visualized in Fig. 6
(right). This user operates the assistant including devices just as a normal user,
but takes over the user interface due to the well-defined API. Hereby, the initially
estimated duration approaches the required duration over multiple cooking ses-
sions, especially if the recipe was cooked before, but also for completely unknown
recipes (e.g. ID 9). Due to varying amounts of user tasks, the possible adapta-
tion varies depending on the recipe. While executing the recipes, the average
adaptation time to deviations was 908.27 ms, which happened 24.14 times per
cooking process on average.

5 Conclusion

While supporting a cook at the preparation of a meal, cooking assistants and
recipes focus mostly on the cooking process itself. Although the cooking pro-
cess is the most important part, ignoring various other influences prevents the
exploitation of the full potential. Therefore, we identified these influences, pre-
sented approaches that take these into account, and combined them into our
adaptive cooking assistant HanKA.

As a result, the cooking assistant combines and synchronizes multiple recipes,
and considers the available devices while also controlling these in the context of
the task. It considers the cooking skills of the user, adjusts the granularity of
steps based on the user experience, and adapts the cooking process in case of



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 185

deviations. Due to the adaptation of the system, the workload for the cook is
reduced whereby the user no longer has to check and control the available devices
or merge the recipes by hand. Through this, the cook can focus on the cooking
process itself.

References

1. Innit - Your food. Simplified and solved (2021). https://www.innit.com/. Accessed
02 Nov 2021

2. Plantjammer: Dynamic recipes (2021). https://www.plantjammer.com/dynamic-
recipes. Accessed 02 Nov 2021

3. An, Y., et al.: PIC2DISH: a customized cooking assistant system. In: Proceedings
of the 25th ACM International Conference on Multimedia, pp. 1269–1273. MM
2017, Association for Computing Machinery, NY (2017). https://doi.org/10.1145/
3123266.3126490

4. Bosch: Cookit - küchenmaschine mit kochfunktion - bosch hausgeräte (2021).
https://www.bosch-home.at/shop/kuechenmaschine-mit-kochfunktion1. Accessed
02 Nov 2021

5. De Smet, G., Open Source Contributors: OptaPlanner User Guide. Red Hat, Inc.
or third-party contributors (optaPlanner is an open source constraint solver in
Java) (2006). https://www.optaplanner.org

6. Hamada, R., Okabe, J., Ide, I., Satoh, S., Sakai, S., Tanaka, H.: Cooking navi:
assistant for daily cooking in kitchen. In: Proceedings of the 13th Annual ACM
International Conference on Multimedia, pp. 371–374. MULTIMEDIA 2005, Asso-
ciation for Computing Machinery, NY (2005). https://doi.org/10.1145/1101149.
1101228

7. Hartmann, C., Dohle, S., Siegrist, M.: Importance of cooking skills for balanced
food choices. Appetite 65, 125–131 (2013). https://doi.org/10.1016/j.appet.2013.
01.016

8. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50
(2003). https://doi.org/10.1109/MC.2003.1160055

9. Lawton, M.P., Brody, E.M.: Assessment of older people: self-maintaining and
instrumental activities of daily living. Gerontologist 9(3_Part_1), 179–186 (1969)

10. Light, R.A.: Mosquitto: server and client implementation of the MQTT proto-
col. J. Open Source Softw. 2(13), 265 (2017). https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265 https://doi.org/10.21105/joss.00265

11. Maedche, A., Morana, S., Schacht, S., Werth, D., Krumeich, J.: Advanced user
assistance systems. Bus. Inf. Syst. Eng. 58(5), 367–370 (2016). https://doi.org/10.
1007/s12599-016-0444-2

12. Müller, G., Bergmann, R.: CookingCAKE: a framework for the adaptation of cook-
ing recipes represented as workflows. In: ICCBR (Workshops), pp. 221–232 (2015)

13. Neumann, A., et al.: “KogniChef”: a cognitive cooking assistant. Künstl. Intell.
31(3), 273–281 (2017). https://doi.org/10.1007/s13218-017-0488-6

14. Neumann, N., Wachsmuth, S.: Recipe enrichment: knowledge required for a cooking
assistant. In: Proceedings of the 13th International Conference on Agents and
Artificial Intelligence - vol. 2: ICAART, pp. 822–829. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010250908220829

https://www.innit.com/
https://www.plantjammer.com/dynamic-recipes
https://www.plantjammer.com/dynamic-recipes
https://doi.org/10.1145/3123266.3126490
https://doi.org/10.1145/3123266.3126490
https://www.bosch-home.at/shop/kuechenmaschine-mit-kochfunktion1
https://www.optaplanner.org
https://doi.org/10.1145/1101149.1101228
https://doi.org/10.1145/1101149.1101228
https://doi.org/10.1016/j.appet.2013.01.016
https://doi.org/10.1016/j.appet.2013.01.016
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://doi.org/10.1007/s12599-016-0444-2
https://doi.org/10.1007/s12599-016-0444-2
https://doi.org/10.1007/s13218-017-0488-6
https://doi.org/10.5220/0010250908220829


186 N. Neumann and S. Wachsmuth

15. Reichel, S., Muller, T., Stamm, O., Groh, F., Wiedersheim, B., Weber, M.:
MAMPF: an intelligent cooking agent for zoneless stoves. In: 2011 Seventh Inter-
national Conference on Intelligent Environments, pp. 171–178 (2011). https://doi.
org/10.1109/IE.2011.18

16. Sato, A., Watanabe, K., Rekimoto, J.: MimiCook: a cooking assistant system with
situated guidance, pp. 121–124 (2014). https://doi.org/10.1145/2540930.2540952

17. Thermomix: Thermomix R© das original | vorwerk thermomix R© (2021). https://
www.vorwerk.com/de/de/c/home/produkte/thermomix. Accessed 02 Nov 2021

https://doi.org/10.1109/IE.2011.18
https://doi.org/10.1109/IE.2011.18
https://doi.org/10.1145/2540930.2540952
https://www.vorwerk.com/de/de/c/home/produkte/thermomix
https://www.vorwerk.com/de/de/c/home/produkte/thermomix

	HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant
	1 Introduction
	2 Methodology
	2.1 Underlying Knowledge Representation
	2.2 Configurations per Cooking Session
	2.3 Adaptation While Cooking

	3 System Description
	3.1 Device Coordination
	3.2 Frontend Coordination
	3.3 Knowledge Representation
	3.4 Monitoring and Execution
	3.5 Planner

	4 Evaluation
	5 Conclusion
	References




