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Preface

The proceedings volume contains the papers presented at the 45th German Conference
on Artificial Intelligence (KI 2022), held as a virtual edition of this conference series
during September 19–23, 2022, and hosted by the University of Trier, Germany.

KI 2022 was the 45th German Conference on Artificial Intelligence organized
in cooperation with the German Section on Artificial Intelligence of the German
Informatics Society (GI-FBKI, Fachbereich Künstliche Intelligenz der Gesellschaft
für Informatik (GI) e.V.). The German AI Conference basically started 47 years ago
with the first meeting of the national special interest group on AI within the GI on
October 7, 1975. KI is one of the major European AI conferences and traditionally
brings together academic and industrial researchers from all areas of AI, providing an
ideal place for exchanging news and research results on theory and applications. While
KI is primarily attended by researchers from Germany and neighboring countries, it
warmly welcomes international participation.

The technical program of KI 2022 comprised paper as well a tutorial, a doctoral
consortium, andworkshops.OverallKI 2022 received about 47 submissions fromauthors
in 18 countries, which were reviewed by three Program Committee members each.
The Program Committee, comprising 58 experts from seven countries, accepted 12
full papers and five technical communications. As a highlight of this year’s edition of
the KI conference, the GI-FBKI and German’s Platform for Artificial Intelligence PLS
(Plattform Lernende Systeme) jointly organized a half-day event on privacy and data
use, consisting of a keynote talk by Ahmad-Reza Sadeghi as well as a panel discussion.
We were honored that very prominent researchers kindly agreed to give very interesting
keynote talks (alphabetical order, see also the abstracts below):

– Bruce Edmonds, Manchester Metropolitan University, UK
– Eyke Hüllermeier, LMU Munich, Germany
– Sven Körner, thingsTHINKING GmbH, Germany
– Ahmad-Reza Sadeghi, TU Darmstadt, Germany
– Manuela Veloso, J. P. Morgan Chase AI Research, USA

As Program Committee (PC) chairs, we would like to thank our speakers for their
interesting and inspirational talks, the Workshop Chair Dorothea Koert, the Doctoral
Consortium Chair Mirjam Minor, the Industry Chair Stefan Wess, and our Local Chairs
Stephanie Rodermund and Lukas Malburg. Our special gratitude goes to the Program
Committee, whose sophisticated and conscientious judgement ensures the high quality
of the KI conference. Without their substantial voluntary work, this conference would
not have been possible.
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In addition the following tutorial and workshops took place:

– Stephan Sahm: Tutorial on Universal Differential Equations in Julia (UDE 2022)
– Christoph Beierle, Marco Ragni, Kai Sauerwald, Frieder Stolzenburg, and Matthias
Thimm: 8th Workshop on Formal and Cognitive Reasoning (FCR 2022)

– Ulrich Furbach, Alexandra Kirsch, Michael Sioutis, and Diedrich Wolter: Robust AI
for High-Stakes Applications (RAIHS 2022)

– Martin Atzmueller, Tomáš Kliegr, and Ute Schmid: Explainable and Interpretable
Machine Learning (XI-ML 2022)

– Mirko Lenz, Lorik Dumani, Philipp Heinrich, Nathan Dykes, Merlin Humml,
Alexander Bondarenko, Shahbaz Syed,AdrianUlges, Stephanie Evert, Lutz Schröder,
Achim Rettinger, and Martin Vogt: Text Mining and Generation (TMG 2022)

– Sylvia Melzer, Stefan Thiemann, and Hagen Peukert: 2nd Workshop on Humanities-
Centred AI (CHAI 2022)

– Lars Schaupeter, Felix Theusch, Achim Guldner, and Benjamin Weyers: AI and
Cyber-Physical Process Systems Workshop 2022 (AI-CPPS 2022)

– Falco Nogatz andMarioWenzel: 36thWorkshop on (Constraint) Logic Programming
(WLP 2022)

– Petra Gospodnetić, Claudia Redenbach, Niklas Rottmayer, and Katja Schladitz:
Generating synthetic image data for AI (GSID-AI 2022)

– Jürgen Sauer and Stefan Edelkamp: 33rd Workshop Planning, Scheduling, Design
and Configuration (PuK 2022)

Furthermore, we would like to thank our sponsors:

– Aimpulse Intelligent Systems GmbH (https://www.aimpulse.com)
– Advancis Software & Services GmbH (https://advancis.net)
– Dedalus HealthCare GmbH (https://www.dedalus.com)
– Empolis Information Management GmbH (https://www.empolis.com)
– Encoway GmbH (https://www.encoway.de)
– German Research Center for Artificial Intelligence (https://www.dfki.de)
– IOS Press (https://www.iospress.com)
– jolin.io consulting (https://www.jolin.io/de)
– Klinikum Mutterhaus der Borromäerinnen gGmbH (https://www.mutterhaus.de)
– Livereader GmbH (https://livereader.com)
– Plattform Lernende Systeme (https://www.plattform-lernende-systeme.de)
– Springer (https://www.springer.com)
– SWT Stadtwerke Trier Versorgungs-GmbH (https://www.SWT.de)
– Verband für Sicherheitstechnik e.V. (https://www.vfs-hh.de)

Last but not least, many thanks go to Silke Kruft for her extensive
support with the organization of the accompanying program as well as to Felix
Theusch and Benedikt Lüken-Winkels for their support for web conferencing
technology. Additionally, our thanks go to Daniel Krupka and Alexander Scheibe from
GI for providing extensive support in the organization of the conference. We would
also like to thank EasyChair for their support in handling submissions and Springer for

https://www.aimpulse.com
https://advancis.net
https://www.dedalus.com
https://www.empolis.com
https://www.encoway.de
https://www.dfki.de
https://www.iospress.com
https://www.jolin.io/de
https://www.mutterhaus.de
https://livereader.com
https://www.plattform-lernende-systeme.de
https://www.springer.com
https://www.SWT.de
https://www.vfs-hh.de
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their support in making these proceedings possible. Our institutions, the University of
Trier (Germany) and the German Research Center for Artificial Intelligence (Germany),
also provided support, for which we are grateful.

July 2022 Ralph Bergmann
Lukas Malburg

Stephanie Rodermund
Ingo Timm
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Prospects for Using Context to Integrate Reasoning
and Learning

Bruce Edmonds

Centre for Policy Modelling, Manchester Metropolitan University, UK

Whilst the AI andML communities are no longer completely separate (as they were for 3
decades), principled ways of integrating them are still not common. I suggest that a kind
of context-dependent cognition, that is suggested by human cognitive abilities could play
this role. This approach is sketched, after briefly making clear what I mean by context.
This move would also: make reasoning more feasible, belief revision more feasible, and
provide principled strategies for dealing with the cases with over- or under-determined
conclusions.



Representation and Quantification of Uncertainty
in Machine Learning

Eyke Hüllermeier

Institute for Informatics, LMU Munich, Germany

Due to the steadily increasing relevance of machine learning for practical applications,
many of which are coming with safety requirements, the notion of uncertainty has
received increasing attention in machine learning research in the recent past. This talk
will address questions regarding the representation and adequate handling of (predic-
tive) uncertainty in (supervised) machine learning. A specific focus will be put on the
distinction between two important types of uncertainty, often referred to as aleatoric
and epistemic, and how to quantify these uncertainties in terms of suitable numerical
measures. Roughly speaking, while aleatoric uncertainty is due to randomness inherent
in the data generating process, epistemic uncertainty is caused by the learner’s ignorance
about the true underlying model. Going beyond purely conceptual considerations, the
use of ensemble learningmethodswill be discussed as a concrete approach to uncertainty
quantification in machine learning.



The First Rule of AI: Hard Things are Easy, Easy Things
are Hard

Sven Körner

thingsTHINKING GmbH, Karlsruhe

Artificial intelligence is not only relevant for high-tech large corporations, but can be a
game changer for different companies of all sizes. Nevertheless, smaller companies in
particular do not use artificial intelligence in their value chain, and effective use tends to
be rare, especially in the midmarket. Why is that? Often, there is a lack of appropriate
know-how on how and in which processes the technology can be used at all. In my talk, I
will discuss, how academia and industry can grow together, need each other, and should
cooperate in making AI the pervasive technology that it already is.



Federated Learning: Promises, Opportunities
and Security Challenges

Ahmad-Reza Sadeghi

Head of System Security Lab, TU Darmstadt, Germany

Federated Learning (FL) is a collaborative machine learning approach allowing the
involved participants to jointly train a model without having to mutually share their
private, potentially sensitive local datasets. As an enabling technology FL can benefit
a variety of sensitive distributed applications in practice. However, despite its benefits,
FL is shown to be susceptible to so-called backdoor attacks, in which an adversary
injects manipulated model updates into the federated model aggregation process so that
the resulting model provides targeted predictions for specific adversary-chosen inputs.
In this talk, we present our research and experiences, also with industrial partners, in
utilizing FL to enhance the security of large scale systems and applications, as well as
in building FL systems that are resilient to backdoor attacks.



AI in Robotics and AI in Finance: Challenges,
Contributions, and Discussion

Manuela Veloso

J. P. Morgan Chase AI Research, USA

My talkwill followup onmymany years of research inAI and robotics andmy few recent
years of research in AI in finance. I will present challenges and solutions on the two
areas, in data processing, reasoning, including planning and learning, and execution.
I will conclude with a discussion of the future towards a lasting human-AI seamless
interaction.
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An Implementation of Nonmonotonic Reasoning
with System W

Christoph Beierle(B) , Jonas Haldimann , Daniel Kollar, Kai Sauerwald ,
and Leon Schwarzer

Faculty of Mathematics and Computer Science, Knowledge-Based Systems,
FernUniversität in Hagen, 58084 Hagen, Germany
christoph.beierle@fernuni-hagen.de

Abstract. System W is a recently introduced reasoning method for conditional
belief bases. While system W exhibits various desirable properties for nonmono-
tonic reasoning like extending rational closure and fully complying with syn-
tax splitting, an implementation of it has been missing so far. In this paper, we
present a first implementation of system W. The implementation is accessible via
an extension of an online platform supporting a variety of nonmonotonic reason-
ing approaches.

1 Introduction

A conditional, denoted as (B|A), formalizes a defeasible rule “If A then usually B”
for logical formulas A,B. Two well known inference methods for conditional belief
bases consisting of such conditionals are p-entailment that is characterized by the
axioms of system P [1,20] and system Z [11,26]. Newer approaches include model-
based inference with single c-representations [15,16], (skeptical) c-inference taking
all c-representations into account [2,5,6], and the more recently introduced system W
[18,19]. Notable properties of system W include capturing and properly going beyond
p-entailment, system Z, and c-inference, and avoiding the drowning problem [9,26].
Unlike c-inference, system W extends rational closure [24], and unlike system Z, it
fully complies with syntax splitting [12,17,25].

While for all other reasoning approaches cited above implementations are available,
for instance in the InfOCF system [3] or in the online reasoning platform InfOCF-Web
[22], so far an implementation of system W has been missing. In this paper, we present
a first implementation of system W. The implementation is realized as an extension
of the Java library InfOCF-Lib [21], and it has also been integrated into InfOCF-Web,
thus providing easy online access for carrying out experiments and supporting direct
comparisons to the other reasoning methods provided by InfOCF-Web.

After briefly recalling the necessary basics of conditional logic in Section 2, we
introduce system W in Section 3. The implementation of system W, some first eval-
uation results, and the created online interface are presented in Section 4. Section 5
concludes and points out further work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bergmann et al. (Eds.): KI 2022, LNAI 13404, pp. 1–8, 2022.
https://doi.org/10.1007/978-3-031-15791-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15791-2_1&domain=pdf
http://orcid.org/0000-0002-0736-8516
http://orcid.org/0000-0002-2618-8721
http://orcid.org/0000-0002-1551-7016
https://doi.org/10.1007/978-3-031-15791-2_1
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2 Background on Conditional Logic

A (propositional) signature is a finite set Σ of propositional variables. The propositional
language over Σ is denoted by LΣ . Usually, we denote elements of the signatures with
lowercase letters a, b, c, . . . and formulas with uppercase letters A,B,C, . . .. We may
denote a conjunction A∧B by AB and a negation ¬A by A for brevity of notation. The
set of interpretations over Σ, also called worlds, is denoted as ΩΣ . An interpretation
ω ∈ ΩΣ is a model of a formula A ∈ LΣ if A holds in ω, denoted as ω |= A, and the
set of models of A is ΩA = {ω ∈ ΩΣ | ω |= A}. A formula A entails a formula B,
denoted by A |= B, if ΩA ⊆ ΩB .

A conditional (B|A) connects two formulas A,B and represents the rule “If A
then usually B”. The conditional language over a signature Σ is denoted as (L|L)Σ =
{(B|A) | A,B ∈ LΣ}. A finite set Δ of conditionals is called a (conditional) belief
base. A belief base Δ is called consistent if there is a ranking model for Δ [11,27].

We use a three-valued semantics of conditionals in this paper [10]. For a world ω a
conditional (B|A) is either verified by ω if ω |= AB, falsified by ω if ω |= AB, or
not applicable to ω if ω |= A.

Reasoning with conditionals is often modelled by inference relations. An inference
relation is a binary relation |∼ on formulas over an underlying signature Σ with the
intuition that A |∼ B means that A (plausibly) entails B. (Non-monotonic) inference
is closely related to conditionals: an inference relation |∼ can also be seen as a set of
conditionals {(B|A) | A,B ∈ LΣ , A |∼ B}. An inductive inference operator [17] is a
function that maps each belief base to an inference relation. Well-known examples for
inductive inference operators are p-entailment [1], denoted by |∼p, and system Z [26],
denoted by |∼z .

3 System W

Recently, system W has been introduced as a new inductive inference operator [18,
19]. System W takes into account the tolerance information expressed by the ordered
partition of Δ that can be used for checking the consistency of Δ [11] and that underlies
the definition of system Z [26].

Definition 1 (inclusion maximal tolerance partition [26]). A conditional (B|A) is
tolerated by Δ if there exists a world ω ∈ ΩΣ such that ω verifies (B|A) and ω does
not falsify any conditional in Δ. The inclusion maximal tolerance partition OP(Δ) =
(Δ0, . . . ,Δk) of a consistent belief base Δ is defined as follows. The first set Δ0 in
the tolerance partitioning contains all conditionals from Δ that are tolerated by Δ.
Analogously, Δi contains all conditionals from Δ\(⋃j<i Δj) which are tolerated by
Δ\(⋃j<i Δj), until Δ\(⋃j<k+1 Δj) = ∅.

It is well-known that OP(Δ) exists iff Δ is consistent [26]. In addition to the toler-
ance partition, system W also takes into account the structural information about which
conditionals are falsified by a world, yielding the preferred structure on worlds.
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Definition 2 (ξj , ξ, preferred structure <w
Δ on worlds [19]). Consider a consistent

belief base Δ = {ri = (Bi|Ai) | i ∈ {1, . . . , n}} with OP(Δ) = (Δ0, . . . ,Δk).
For j = 0, . . . , k, the functions ξj and ξ are the functions mapping worlds to the set of
falsified conditionals from the setΔj in the tolerance partition and fromΔ, respectively,
given by

ξj(ω) := {ri ∈ Δj | ω |= AiBi}, (1)

ξ(ω) := {ri ∈ Δ | ω |= AiBi}. (2)

The preferred structure on worlds is given by the binary relation <w
Δ ⊆ Ω × Ω defined

by, for any ω, ω′ ∈ Ω,

ω <w
Δ ω′ iff there exists m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m + 1 , . . . , k}, and

ξm(ω) � ξm(ω′) . (3)

Thus, ω <w
Δ ω′ if and only if ω falsifies strictly fewer conditionals than ω′ in the

partition with the biggest index m where the conditionals falsified by ω and ω′ differ.
Note that <w

Δ is a strict partial order. The inductive inference operator system W is
based on <w

Δ and is defined as follows.

Definition 3 (system W, |∼ w
Δ [19]). Let Δ be a belief base and A,B be formulas.

Then B is a system W inference from A (in the context of Δ), denoted A |∼ w
ΔB if for

every ω′ ∈ ΩAB there is an ω ∈ ΩAB such that ω <w
Δ ω′.

System W extends system Z and c-inference and enjoys further desirable properties
for nonmonotonic reasoning like avoiding the drowning problem. For more information
on system W we refer to [12,13,19]. We illustrate system W with an example.

Example 1. Consider the belief base Δ = {(b|a), (ab|a ∨ b), (c|	)} over the signature
Σ = {a, b, c}. Because every conditional in Δ is tolerated by Δ, the ordered partition
of Δ is trivial, i.e., OP(Δ) = {Δ}. The preferred structure <w

Δ on worlds is given in
Fig. 1; note that <w

Δ is not a total preorder, and thus, it cannot be expressed by system
Z nor by any other ranking model of Δ.

Let us consider the question whether from ab ∨ ab we can infer ab in the context
of Δ. This inference can not be obtained with p-entailment and neither with system
Z. However, using the preferred structure <w

Δ given in Fig. 1, it is straightforward to
verify that for each world ω′ with ω′ |= ab there is a world ω with ω |= ab such that
ω <w

Δ ω′. Thus, with system W we obtain the inference ab ∨ ab |∼ w
Δab.

4 Implementation and System Walkthrough

InfOCF-Lib [21] is a Java library for representing conditional beliefs and for non-
monotonic reasoning from conditional belief bases. Initially focussed on reasoning with
ranking functions (OCFs), it now contains, among other things, implementations of the
inductive inference operators system P, system Z, and different kinds of c-inference.
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abc

abc abc

abc abc abc

abc abc

Fig. 1. The preferred structure on worlds induced by the belief base Δ from Example 1. Edges
that can be obtained from transitivity are omitted.

Implementation of SystemW. The implementation of system W inference extends the
library InfOCF-Lib. Answering a query q with system W for a given belief base Δ is
done in three steps: First, the inclusion maximal ordered partition OP(Δ) is calculated.
This is done by using the consistency test algorithm given in [11] which is already
implemented in InfOCF-Lib. Then, based on OP(Δ) the preferred structure <w

Δ on
worlds is computed and stored as a directed graph using the graph library JGraphT1.
Finally, <w

Δ is used to answer the query q.
To compute <w

Δ the implementation first calculates the functions ξj for each j ∈
{0, . . . , k} from the previously generated ordered partition OP(Δ) = {Δ0, . . . ,Δk}.
This is done by iterating over all possible worlds ω ∈ ΩΣ and all partitions Δj ∈
OP(Δ) and checking for each combination what conditionals in Δj are falsified by
ω. To represent the functions ξj , a hash map is created for each ω ∈ Ω mapping
j ∈ {0, . . . , k} to ξj(ω). Then a new empty instance of a undirected JGraphT graph
is created and the edges in <w

Δ are added. For each tuple (ω, ω′) ∈ ΩΣ × ΩΣ it is
checked if the edge ω, ω′ is in <w

Δ. This is done by comparing ξm(ω), ξm(ω′) for every
m ∈ {k, . . . , 0} in descending order until ξm(ω) 
= ξm(ω′). For the last considered
m, we have ω <w

Δ ω′ iff ξm(ω) � ξm(ω′) in which case an edge is added to the
directed graph representing the preferred structure on worlds. This approach computes
a directed graph representing the relation <w

Δ. To draw illustrations of this graph, the
library JGraphX2 is used.

To answer a query “Does A entail B?” with A,B ∈ LΣ the set of worlds ΩAB

verifying and the set of worlds ΩAB falsifying the conditional (B|A) are computed first.
After that the system checks if for every world ω ∈ ΩAB there is a world ω′ ∈ ΩAB

such that ω′ <w
Δ ω. This is done by iterating over the set ΩAB of falsifying worlds and

checking if one of its predecessors in the directed graph is an element of the set ΩAB of
the verifying worlds. If for each of the falsifying worlds ω ∈ ΩAB this is the case, the
query is answered with true, otherwise, it is answered with false. Note that this covers
the special cases that ΩAB is empty, in which case the result is true, and also the case
in which a world in ΩAB is minimal and thus has no predecessor at all, in which case
the result is false.

1 https://jgrapht.org/.
2 https://github.com/jgraph/jgraphx.

https://jgrapht.org/
https://github.com/jgraph/jgraphx
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Fig. 2. User interface of InfOCF+W.
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We have successfully applied this implementation to the real life examples for
belief bases presented in [14] as well as to several thousands of automatically generated
belief bases for which complete induced system W inference relations were computed
[7,8,23].

InfOCF+W Online System. For easy experimentation with inductive inference oper-
ators without having to download a Java library, the online reasoning platform InfOCF-
Web was developed [22]. It offers reasoning with system P, system Z, and inference
based on c-representations. We extended InfOCF-Web by our implementation of system
W, yielding the application InfOCF+W. In addition of the functionalities of InfOCF-
Web, InfOCF+W offers answering queries with respect to a belief base with system W;
additionally the preferred structure on worlds <w

Δ for a belief base can be displayed.
The application is available online3.

Figure 2 shows a screenshot of InfOCF+W. The top left box titled “Conditional
belief base” contains a text area for entering the belief base; the syntax used here follows
the syntax of .cl-files for belief bases as sketched in [21, Sec. 4]. The button “Load
Demo” will pre-fill the text area with the belief base from Example 1. It is also possible
to upload .cl-files with belief bases from the local computer.

The top right box allows the calculation of different models of the belief base
entered in the first box. Depending on which of the radio buttons is selected, either
a set of c-representations, the system Z ranking function, or the preferred structure on
worlds <w

Δ for system W is calculated when clicking the button “Compute”.
The box on the bottom of the page is used for answering queries with respect to

the belief base. In the panel with the light blue background, the user can select which
inference operator should be used to answer the query. The first column contains the
checkboxes for enabling system P, system Z, and system W; the other input elements
can be used to select certain modes of c-inference. Multiple inference operators can be
selected at once to simplify the comparison of inference operators. The query itself is
entered using the two text fields under the title “Query”. After clicking on the “Answer”
button, the results of answering the entered query with respect to the selected inference
operators are shown in two tables below the button. The first table is used for displaying
results for system W, system P, and system Z; the second table is used for displaying
the results for the different kinds of c-inference.

5 Conclusions and Further Work

System W is a recently introduced method for nonmonotonic reasoning with condition-
als. In this short paper, we presented a first implementation of system W. Its is realized
as an extension of the library InfOCF-Lib, and it is also accessible via an online reason-
ing platform. In our current work, we further evaluate system W and compare it to other
inference operators empirically using our implementation. By extending our work on
employing SAT solvers for nonmonotonic inference [4], we are also working on using
state-of-the-art SAT solvers for implementing reasoning with system W.

3 http://wbs2.fernuni-hagen.de:18081/systemWTest/InfOCF.jsp.

http://wbs2.fernuni-hagen.de:18081/systemWTest/InfOCF.jsp
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Abstract. Interactive Machine Learning (IML) systems incorporate
humans into the learning process to enable iterative and continuous
model improvements. The interactive process can be designed to leverage
the expertise of domain experts with no background in machine learning,
for instance, through repeated user feedback requests. However, exces-
sive requests can be perceived as annoying and cumbersome and could
reduce user trust. Hence, it is mandatory to establish an efficient dialog
between a user and a machine learning system. We aim to detect when
a domain expert disagrees with the output of a machine learning system
by observing its eye movements and facial expressions. In this paper, we
describe our approach for modelling user disagreement and discuss how
such a model could be used for triggering user feedback requests in the
context of interactive machine learning.

Keywords: Interactive machine learning · Eye tracking · Gaze ·
Confusion detection · Emotion detection · User disagreement

1 Introduction

Applying machine learning to a new problem or a new domain usually requires
a machine learning practitioner to collect a large amount of labelled samples,
select representative/discriminating features, and choose an appropriate learn-
ing algorithm to model the concepts at hand. In contrast, interactive machine
learning enables users, also without a background in machine learning to train
a model in a fast-paced, incremental manner [1]. A user can steer the behaviour
of the machine learning model by continuously providing feedback, e.g., upon
requests from the system. However, repeated feedback queries, such as trivial
yes/no questions, can be perceived as frustrating and annoying [6].

This may lead to reduced user trust in model outputs and deteriorate a user’s
impression of a model’s accuracy [12]. Previous research discussed guidelines and
rules for developing IML systems and their interfaces to avoid such problems
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[8,11,24]. Dudley and Kristensson [8] propose to reduce the number of inter-
actions by triggering feedback requests for questions of high relevance to the
system.

We propose to limit feedback requests to situations in which a user disagrees
with the output of a machine learning models by observing the eye movements
and facial expression of that user. In this work, we specify what user disagreement
with a machine learning model means, we describe our planned user study and
approach for modelling user disagreement based on gaze and facial expressions,
and discuss how interactive machine learning systems may benefit from such a
model.

2 Background

We hypothesise that user disagreement stems from negative affective states such
as frustration, confusion or disappointment. Therefore, we examine the previous
literature on how to detect these affective states using implicit user feedback and
how they relate to user disagreement. Previous research has shown that human
gaze and facial expressions can be used for affect recognition [16,25] and generally
are sources for implicit user feedback [3,4]. Lallé et al. [15] introduce predictors
for the state of confusion leveraging gaze from a user. According to D’Mello
and Graesser [9], confusion “is hypothesized to occur when there is a mismatch
between incoming information and prior knowledge [...], thereby initiating cogni-
tive disequilibrium” (p. 292). Therefore we hypothesize that user confusion can
be an indicator for a user’s disagreement with the output of a model. Pollak et
al. [20] use facial emotion recognition to detect user satisfaction and dissatisfac-
tion where positive emotional feedback corresponds to satisfaction and negative
to dissatisfaction. To detect user disagreement, we look for situations in which
the user is confused or dissatisfied by the model output. We plan an experiment
to where we push the user to disagree with the model’s output while his gaze
and facial expression are recorded.

2.1 Confusion Detection

User confusion occurs when a mismatch exists between prior user knowledge and
incoming information [9]. Early research on confusion detection origins from
the field of educational computing [5,7], where predictors for confusion lever-
age facial expression of students, the posture of students or students interface
actions and their studying behaviour. Pachman et al. [18] propose the usage of
gaze data for confusion prediction in digital learning. In their study, the partic-
ipants are presented with a puzzle, and while solving it, their gaze is recorded.
The authors aim to detect the buildup of confusion during the problem-solving
process. On the other hand, we focus on the immediate affective state of confu-
sion resulting from the user processing the information of the model’s output.
Detecting this type of immediate confusion is especially relevant in the field of
Human-Computer-Interaction (HCI) since user experience and user satisfaction
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decreases when the user is in such a confused state [17]. Pentel [19] introduces a
predictor for confusion, using mouse movement recorded when playing a simple
game. The author show that an SVM model trained on mouse movements can
successfully predict user confusion, but it is restricted to the generated game and
thus difficult to generalise. [21] create a predictor for confusion based on gaze
data on their persona information visualisation tool. The visualisation contains
multiple areas of interest (AOIs) with different types of information about a per-
sona. Their model achieves an accuracy of 80% of confusion predictions using the
number of fixation, the length of transition paths between AOIs, and the user’s
demographic data as features. In a follow-up work, Salminen et al. [22] train a
model using gaze-based data only, achieving an accuracy of 70%. The accuracy
increases to 99% when the model includes demographic data as features. This
indicates that the demographic data correlates with confusion in their recorded
dataset. Including demographic data as features leads to a significant improve-
ment of the model to 99% in accuracy. The authors state that most instances
of confusion occur for non-experienced, old males which indicates that trust
correlates with age and gender (demographic features). However, this suggests
that demographic features can be used to model how often confusion appears in
different user groups but not for real-time monitoring of confusion.

Lallé et al. [15] created a predictor for confusion during interaction with
their interactive data visualisation tool ValueChart. The tool’s goal is to assist
users to make the best suitable decision (finding rental property) based on their
preference. In a study with 136 participants, the authors collect gaze and mouse
movement data while a user performs tasks on ValueChart. The user can report
confusion by clicking a button on the top right corner of the visualisation tool.
Their confusion prediction model achieves a accuracy of 61% using a Random
Forest Classifier. A more recent contribution from the same group [23] uses deep
learning based on eye movements to predict confusion on the same dataset as
[15]. Instead of using features calculated from the eye-tracking data, the authors
suggest using the raw sequential gaze data and feeding it to a Recurrent Neural
Network (RNN), allowing the RNN to pick up discriminators for classifying
confusion that would otherwise be lost when using calculated features. Using
deep learning, their model outperforms their previous work (61% vs 82%), and
their results suggest that deep learning in combination with raw sequential gaze
data is a feasible option for affect recognition. A possible limitation is their self-
report button for reporting instances of confusion. It can influence the user’s gaze
because of its placement in the interface. Therefore it is important to provide a
non-distracting way to self-report confusion. A trigger placed in the hand of the
participants could be a solution.

2.2 Leveraging Emotion Detection for ML

Using implicit emotional feedback for artificial agents is a recent idea, and only
a few publications have explored it. Pollak et al. [20] investigated whether emo-
tional feedback from a user can serve as the reward function for a reinforcement
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learning agent. The reward function corresponds to the user’s level of satis-
faction inferred from facial emotion recognition. The emotions are classified as
negative (‘angry’, ‘disgust’, ‘fear’, ‘sad’), positive (‘happy’) or neutral (‘neutral’,
‘surprise’) [10]. In their experiment, the user controls a drone’s movement, which
then, based on the emotional feedback, learns whether it took the correct cor-
responding action. Their initial finding suggests that incorporating emotional
feedback into the reward function of a reinforcement learning agent can be used
to teach an agent. The author indicate that there is a considerable individual
difference between participants’ strength of emotional feedback, which makes
it harder to differentiate between positive and negative feedback. Therefore, we
plan to gather facial expressions and gaze data in our study to have a multimodal
solution for user disagreement detection.

Krause and Vossen [14] suggest the use of implicit triggers based on user con-
fusion or uncertainty for explanations in human-agent interaction. They argue
that explanations should not only be provided when the user explicitly asks for
it but also when the agent detects that the user is uncertain or confused. Their
work also lists other possible implicit triggers such as conflicts between a user’s
beliefs and the agent or misunderstanding its output. These triggers are similar
to those we propose to detect since they also describe user disagreement with
the model’s output, but instead of triggering an explanation, we query the user
for feedback.

Fig. 1. (1) User interacts with an IML system; (2) our predictor picks up that the
user disagrees with the output; (3) the IML system reacts with returning alternative
solution or (4) triggers a feedback request
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3 Method

In this section we describe our approach, how we plan to collect data for user
disagreement, how we plan to create a predictor for user disagreement and how
the predictor can be leveraged in IML.

3.1 Data Collection

We plan to conduct an experiment to collect the data necessary to create an
effective user disagreement predictor. The experiment will collect the users’ gaze
data using an eye-tracker and simultaneously record their facial expressions using
a video camera. We plan to show a series of images containing an object and its
corresponding label, simulating an output of an object detection model. We will
randomly include images containing objects with wrong labels. These instances
lead to user disagreement. We want to minimise influences on gaze and facial
expression; therefore, the participant uses a trigger placed in his hand to confirm
user disagreement. The participant will see one object-label pair at a time for
a certain amount of time. If the user presses the trigger in his hand, we stop
the image sequence and confirm that he disagrees with the output. A possible
extension of the study is to show an image depicting a scene and a caption
describing it. To robustly record and synchronize the data we intend to use our
multisensor-pipeline (MSP) framework for prototyping multimodal-multisensor
interfaces based on real-time sensor input [2].

3.2 Disagreement Detection Model

The features for our planned detection model will be sourced from the eye-
tracker and the video camera recording the user. Based on previous research, we
list the features we hypothesise to be relevant for user disagreement detection
(see Table 1).

3.3 Application in IML

User feedback is essential for interactive machine learning. It helps IML systems
to become ’lifelong’ learners. Hence the importance to enable users to provide
feedback by creating effective interfaces and human-agent interactions. A crucial
aspect is when to trigger feedback requests since repeatedly asking for feedback
can be perceived as frustrating [6] and also reduces trust and impression of model
accuracy [12]. Therefore, we try to provide implicit user feedback to the IML
system with our proposed user disagreement predictor. The feedback from our
predictor consists of a confidence value of detecting user disagreement and the
gaze scan path leading to his affective state. The IML system then can react
either by showing an alternative solution or triggering a request asking the user
for explicit feedback. Figure 1 depicts an example of such a pipeline with a IML
system for image captioning. When our predictor detects confusion, the IML
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Table 1. List of features collected from previous research relevant for user disagreement
detection

Feature Source

Eye-tracker Number of fixations [15,21]

Fixation durations [15,21]

Length of the transition paths between
AOIs (image and label)

[18,21,22]

Image of the scan path visualising the last
seconds of eye movement before the user
self-reports disagreement

[23]

Raw sequential gaze data as time-series [23]

Video camera Emotion detection based on (FER2013) [7,9,13]

Body posture/movement [5,7]

system gets notified that the user disagrees with the captioning provided for the
image. Further, it also receives the previous scan path leading to disagreement.
The IML system can return an alternative captioning or explicitly ask the user
for correction.

3.4 Limitations

We intend to use a remote eye tracking system for gaze estimation in our dis-
agreement detection system. For this, the interaction screen must be instru-
mented with an additional piece of hardware that requires a user-specific cal-
ibration. Also, individual differences of users’ eye movements when expressing
disagreement need to be considered. They could have a negative impact on the
generalizability of our approach.

4 Conclusion

We have shown the motivation and need for detecting when to ask a user for
feedback. The following steps will be to conduct the planned study, collect the
dataset, and create a user disagreement detection model using the features we
collected from previous works. Further, we will use the detection model as a
trigger for querying feedback by integrating it into an IML system.

Acknowledgements. This work was funded by the German Federal Ministry of Edu-
cation and Research (BMBF) under grant number 01JD1811C (GeAR).
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Abstract. Over-parameterized models can perfectly learn various types
of data distributions, however, generalization error is usually lower for
real data in comparison to artificial data. This suggests that the prop-
erties of data distributions have an impact on generalization capability.
This work focuses on the search space defined by the input data and
assumes that the correlation between labels of neighboring input val-
ues influences generalization. If correlation is low, the randomness of the
input data space is high leading to high generalization error. We sug-
gest to measure the randomness of an input data space using Maurer’s
universal. Results for synthetic classification tasks and common image
classification benchmarks (MNIST, CIFAR10, and Microsoft’s cats vs.
dogs data set) find a high correlation between the randomness of input
data spaces and the generalization error of deep neural networks for
binary classification problems.

Keywords: Deep learning · Label landscape · Generalization

1 Introduction

While deep neural networks (DNN) have gained much attention in many machine
learning tasks [29], there is still only limited theory explaining the success of
DNN. Especially the generalization abilities of DNNs have challenged classical
learning theory as standard approaches like VC-dimension [43], Rademacher
complexity [7], or uniform stability [10] fail to explain the generalization behavior
of over-parameterized DNNs [50]. Most of the existing theory approaches look at
the hypothesis space of the model and the properties of the learning algorithm;
properties of the data distribution (as well as the machine learning tasks) are
addressed to a much lower extent.

Focusing on the data distribution, [50] observed a lower generalization capa-
bility of DNNs when randomizing natural data. Arpit et al. [5] find that learning
on real data behaves differently than learning on randomized data. DNNs seem
to work content-aware and learn certain data points first. Thus, there is evidence
that the properties of the input data distribution have an influence on the gener-
alization capabilities of DNNs and natural data has properties that enable DNNs
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to perform well. This raises the question why DNNs perform well on supervised
learning tasks with natural data signals.

This paper studies how the properties of training data influence the general-
ization capability of DNNs. We assume a label landscape (X, f,N ) with the set
of training data X, the labeling function f : X → Y that assigns a label y ∈ Y
to each training instance x ∈ X, and a neighborhood mapping N : X → 2X

which assigns to each input x a set of neighboring inputs. We suggest that the
properties of the label landscape formed by the training data influences the
generalization behavior of DNNs.

To measure the properties of the training data, we perform a random walk
through the label landscape (X, f,N ). A random walk with N steps iteratively
selects a neighboring training instance xi (based on a distance metric) and
returns the corresponding label yi. Thus, it creates a sequence of labels yN . We
expect that the randomness of yN (for example measured by Maurer’s universal
test) influences the generalization capability of DNNs. If Maurer’s universal test
indicates that yN is a random sequence, then generalization is expected to be
low; in contrast, if yN is non-random (which means the per-bit entropy of the
sequence is low), DNNs are expected to be able to learn well and show high
generalization capability for this particular data distribution. Thus, we suggest
that the randomness of a sequence of binary labels generated by a random walk
through the input data space is a good predictor for the expected generalization
capability of DNNs.

We present evidence and experimental results for four types of problems.
First, we follow the approach suggested by [50] and systematically randomize
the labeling function f : X → Y by assigning the label y independently at ran-
dom with probability v. With stronger randomization of the labels, the resulting
sequence yN created by a random walk has higher randomness according to
Maurer’s universal test and generalization decreases. We present results for dif-
ferent binary instances of synthetic test problems where we know the decision
boundaries (an XOR type problem, a majority vote problem, and a parity func-
tion problem). Second, we study binary instances of MNIST [30] and CIFAR10
[28] using the same randomization method as in the previous experiments and
extend the results with experiments where we randomize the training instances
x ∈ X. For the extension, we consider four different variants. We either perform
a random permutation π : x → x of all input variables of the training data
(PermutGlobal), perform a random permutation of all variables for all training
instances (PermutInd), draw each input value randomly from a Gaussian distri-
bution matching the original distribution of the input values (GaussianInd), or
draw each input value from a white noise distribution (NoiseInd). The results
indicate that Maurer’s universal test applied to the sequence yN is a good pre-
dictor for the expected generalization capability of a DNN. Finally, we focus on
binary instances of the more complex cats vs. dogs data set [15] and distinguish
between training instances that are either easy or difficult to learn by a DNN.
Experimental results confirm that the randomness of yN is a good indicator of
the expected generalization.
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In Sect. 2, we describe preliminaries and present Maurer’s universal as a novel
measure for the randomness of data sets and related supervised learning tasks.
Sect. 3 describes the experimental setting and presents the results. In Sect. 4, we
give an overview of related work before concluding the paper in Sect. 5. Sect. 6
describes the limitations and future research directions.

2 Randomness of Data Spaces

Consider a data set D consisting of a finite number m of pairs (xi, yi) where
x ∈ X and y ∈ Y . xij denotes the value of the j-th input variable of the
vector xi; yi denotes the corresponding label. All pairs are drawn i.i.d. from
the population distribution PXY . The goal of a machine learning model in a
supervised classification task is to find a function h∗ from a hypothesis space H
given a loss function l that minimizes the population risk R(h):

R(h) = E[l(h(X), Y )]

h∗ = arg min
h∈H

R(h)

Usually, the model does not have access to the complete distribution PXY

but rather only to the data set D. Therefore, a common approach in machine
learning is to minimize the empirical risk Remp(h) on the given data D:

Remp(h) =
1
m

m∑

i=1

l(h(xi), yi)

ĥ = arg min
h∈H

Remp(h)

Unfortunately, the empirical risk can be significantly different from the popu-
lation risk. This makes bounding the gap between R(h) and Remp(h), also called
generalization, a central challenge in machine learning [42].

In theory, given a sufficient amount of parameters and training time, a mul-
tilayer neural network can approximate any function h arbitrarily well [13,22].
Thus, any data set D can be learned by a large enough model. This is confirmed
by empirical studies where complex DNN models can fit both data from natural
signals as well as random data [50]. Learning arbitrary h can be achieved by
standard DNN models without changing any hyperparameters, neither for the
model nor for the used learning algorithm. When fitting DNN models to either
natural signals or random data, [50] as well as [5] observed differences in the
generalization error. For natural signals, usually the generalization error is low;
for random or randomized data, generalization error is high.

We believe that the differences in generalization error gerr between different
data sets can be explained by the properties of the label landscape defined on the
data set D. Analogously to fitness landscapes known in other domains, we define
a label landscape (X, f,N ), where the labeling function f : X → Y assigns a
label y ∈ Y to each training instance x ∈ X and a neighborhood mapping
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N : X → 2X assigns to each input x ∈ X a set of neighboring inputs. The
labeling function f is defined by the input data; the neighborhood mapping N
is usually problem-specific and defines which input/training data is similar to
each other [20,49]. Instead of defining N on the raw input data, we can also
define N on an underlying manifold representing the data.

Using a label landscape defined on the input data, we can calculate relevant
properties like the correlation between neighboring data points. Such measures
are relevant for combinatorial optimization problems as problems, where the
objective values of neighboring solutions are uncorrelated, are difficult to solve
[24,39]. If fitness values (labels) of neighbors in the input space are uncorrelated,
the no free lunch theorem holds [45–48] and optimization methods can not beat
random search. The situation is similar for non-parametric machine learning
methods like kernel machines which rely on the smoothness prior h(x) ≈ h(x+ε).
The smoothness prior assumes that the properties of neighboring inputs (either
measured in time or in space) are similar and do not abruptly change. Con-
sequently, kernel machines have problems to learn non-local functions with low
smoothness [9], although deep learning is able to learn some variants of non-local
functions [23].

Algorithm 1. Random walk
1: Select random start point x0

2: Initialize yN = [y0]
3: for z = 1, 2, . . . , N do
4: Select xz randomly from the neighborhood N (xz−1)
5: Append yz to yN

6: end for

We suggest to capture the correlation between labels of neighboring input
values (taken from the given data set D) by performing a random walk through
(X, f,N ) and analyzing the resulting sequence yN of labels. Algorithm 1 shows
the random walk as pseudo-code. We initialize yN with the label y0 of a random
start point x0 (lines 1–2) and perform N times a step of the random walk
appending the label yz of a randomly selected xz from the neighborhood N (xz−1)
(lines 3–6).

We expect that the randomness of yN influences the generalization ability
of DNNs trying to learn the properties of D. For example, we assume a binary
classification problem that can easily be learned and linearly separated (see
Fig. 1a). When performing a random walk through the space of input values,
the value of the corresponding label yi rarely changes and the randomness of
the resulting sequence yN is low. Situation is different, if we assign random
labels to the input data points (Fig. 1c). Then, the resulting sequence yN is
random. In contrast, Fig. 1b shows the landscape of the parity problem, which
can be well learned using DNN [23] but is a non-local problem. When performing
a random walk through such a landscape, the resulting sequence yN is non-
random but highly structured as the labels of neighboring input data points are
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(a) Local pattern. (b) Non-local pat-
tern.

(c) Random pattern.

Fig. 1. Resulting landscapes for different example binary classification problems. Each
input data has four neighbors. (a) easy problem with high correlation between labels of
neighboring input data (b) non-local, but easy problem with low randomness in yN (c)
non-local and difficult problem, where each input data has a randomly chosen label.

always different. This property of the classification problem can be learned by
an appropriate model.

To measure the statistical randomness of a binary sequence yN , we suggest
using Maurer’s universal test TU [12,33]. The purpose of Maurer’s universal test
is to measure the entropy in the sequence yN . Other possibilities to measure
the statistical randomness of a sequence are the Wald-Wolfowitz runs test [44],
which measures the number of label changes, or autocorrelation tests [11]. We
choose Maurer’s universal test as it is able to detect also high-order as well as
non-linear dependencies in a sequence.

We use the statistical test Maurer’s universal TU to test if the source process
of the sequence is random [12,33]. Maurer’s universal takes the sequence yN

of binary labels y (from B = {0, 1}) as input. The test has three parameters
{L,Q,K}. It partitions the sequence in blocks of length L with Q blocks used
for initializing the test and K blocks to perform the test. Thus, N = (Q + K)L
and bn(yN ) = [yL(n−1)+1, . . . , yLn]. The test function fTU

: BN → R measures
the per-bit entropy and is defined as

fTU
(yN ) =

1
K

Q+K∑

n=Q+1

log2 An(yN ),

where

An(yN ) =
{

n , if ∀a < n, bn−a(yN ) �= bn(yN )
min{a : a ≥ 1, bn(yN ) = bn−1(yN )} , otherwise.

This test function can be used to compute the p ∈ [0, 1] value

p = erfc
(∣∣∣∣

fTU
− expectedValue(L)√

2σ

∣∣∣∣

)
,
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where erfc is the complementary error function. expectedValue(L) and σ are pre-
computed values [33]. The p value measures the confidence whether the process
is non-random. Thus, low values of p indicate a high probability that the process
is non-random.

If Maurer’s universal test indicates that yN is a random sequence (high values
of p), then the generalization capability of a DNN applied to this data set D is
expected to be low; in contrast, if yN is non-random (which means the per-bit
entropy of the sequence is low), DNNs are expected to be able to learn well
the structure of D and show high generalization capability. Thus, we suggest
that the randomness of a sequence of binary labels generated by a random walk
through the input data space is a good predictor for the expected generalization
capability of DNNs learning the input data.

3 Experiments and Discussion

To study how the properties of input data influences the generalization capability
of DNNs, we randomize all studied data sets to different degrees as suggested
by [50] and perform random walks through the label landscapes (X, f,N ) as
described in Algorithm 1. For all considered data sets, we perform 30 random
walks with N = 1, 000, 000 steps and calculate the confidence p for the resulting
sequence yN of labels. As data sets, we use synthetic classification tasks as well
as on the common classification benchmarks MNIST [30], CIFAR10 [28], and
the cats vs. dogs data set [15]. For each test problem, the input data is split into
80% train and 20% test data.

For the synthetic classification tasks as well as MNIST, we train a multilayer
perceptron (MLP) consisting of two hidden layers with 4,096 neurons each and
ReLU activation functions. For CIFAR10 and the cats vs. dogs data set, we
use a small convolutional network (CNN) with three convolutional layers with
32/64/64 filters of kernel size 3 × 3 followed by a dense layer with 256 hidden
neurons. After each convolutional layer we use 2× 2 MaxPooling and all layers
use ReLU activation functions. The models are trained with the Adam optimizer
[26] until convergence to 100% accuracy on the train data. Thus, test error is
identical to the generalization error gerr.

All experiments were conducted on a workstation using an AMD Ryzen
Threadripper 3990X 64× 2.90 GHz, an NVIDIA GeForce TITAN RTX and
128 GB DDR4 RAM. The DNNs were implemented using Tensorflow 2 [1].

3.1 Synthetic Classification Problems with Known Decision
Boundaries

To analyze whether the suggested measure p properly captures the randomness
of a problem for both, local and non-local patterns, we first study problems where
we already know the classification problem’s decision boundaries. We select three
synthetic d-bit binary classification problems. The first one is a XOR type prob-
lem with binary input vectors xi (xij ∈ {0, 1}). The label of each vector xi
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Fig. 2. (1− p) over the randomization level v and generalization error gerr over (1− p)
for all studied synthetic classification problems (XOR, majority vote, and parity) for
d = 11 and d = 15. The dashed line indicates performance of random guessing. All
results are averaged over 30 runs.

depends on the first two input variables while the remaining features hold no
explanatory power:

yi =
{

1 for xi,1 = xi,2

0 for xi,1 �= xi,2

The second test problem uses the same binary input vectors xi. The label is
determined by the majority vote over the elements xi,j :

yi =

{
1 for

∑d
j=1(xi,j) ≥ d+1

2

0 for
∑d

j=1(xi,j) < d+1
2

The third test problem also uses binary input vectors xi. The label of each vector
is determined by the parity function:

yi =
{

1 if
∑d

j=1(xi,j) is even
0 otherwise

For all synthetic classification tasks, we study instances of different size
d ∈ {11, 15} and corrupt the labeling processes by changing each label y with
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probability v to a random class in the training and test set (see [50]) to construct
different instances of the tasks with varying degrees of structure. The used data
set D consists of all possible input vectors, as we assume that X = D. The
neighborhood function N (x) maps each input xi ∈ X to a set of inputs x ∈ X
that are different from xi in one position xi,j . We measure the randomness of
yN (constructed by the random walk) using Maurer’s universal and compare it
to the generalization performance of the MLP/CNN.

Figure 2 plots the measure (1 − p) over the randomization level v and the
generalization error gerr over (1 − p) for all studied synthetic classification prob-
lems for d = 11 and d = 15. For comparison, the dashed line indicates the
performance of random guessing. All results are averaged over 30 runs.

We expect that for higher values of v (which leads to a higher randomness of
yN and a lower correlation between neighboring inputs) the inherent structure
of the classification problem sets declines which leads to lower generalization.
The results confirm this expectation, as we can observe lower values of (1 − p)
for larger values of v as well as a lower generalization error gerr for high values of
(1−p). For the considered test problems, the measure (1−p) is a good predictor
for generalization as Pearson’s r correlation coefficient between generalization
error gerr and (1− p) is lower than −0.94 for all studied problem instances. This
holds not only for small problems (d = 11) but also for larger problem instances
(d = 15). Furthermore and contrary to the smoothness prior, the measure (1−p)
correctly detects structure (non-randomness) not only in local (XOR, majority
vote) but also in non-local (parity) patterns.

3.2 Natural Data with Unknown Decision Boundaries

To verify whether our findings also hold on natural data, we extend our experi-
ments to the MNIST and CIFAR10 data sets. We consider a binary classification
version of those problems and (as before) corrupt the labeling function f by ran-
domizing each label y with probability v. Again, we study the randomness of
yN (created by a random walk) and compare it to the generalization capability
of MLP/CNN. However, since the true decision variables for the MNIST and
CIFAR10 problems do not lie in the raw input matrix but rather are repre-
sented by latent variables in an underlying manifold [18], we first approximate
such manifold by reducing the dimension of the input data with a variational
autoencoder [21,27]. Consequently, we define the neighborhood N (x) on D as the
set of k nearest data points measured by Euclidean distance inside this manifold.
In our experiments, we chose k = 10.

Figure 3 plots the measure (1 − p) over the randomization probability v and
the generalization error gerr over (1 − p) for the binary versions of MNIST and
CIFAR10. The dashed line indicates the generalization error gerr of random
guessing. Again, all results are averaged over 30 runs.

As expected, we also find a strong correlation between p and gerr for natural
signals. Again, we observe lower values of (1−p) for larger values of v and a lower
generalization error gerr for high values of (1 − p). The Pearson’s r correlation
coefficient between generalization error gerr and (1 − p) is lower than −0.97 for
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Fig. 3. (1 − p) over the randomization level v and the generalization error gerr over
(1 − p) for the binary versions of MNIST and CIFAR10.

Fig. 4. (1 − p) over four variants of randomization (PermutGlobal, PermutInd, Gaus-
sianInd and NoiseInd) and generalization error gerr over (1−p) for the binary versions
of MNIST and CIFAR10.

both problem sets indicating that (1−p) is a good approximation of the expected
generalization error also on natural data.

To study the effects of different types of randomization of f , we now permu-
tate the inputs x ∈ X instead of the labels y ∈ Y . We consider four different
variants: 1) a random permutation π : x → x of all input variables xij of the
training data (denoted as PermutGlobal), 2) a random permutation of all vari-
ables for all training instances (PermutInd), 3) replacing a variable value by a
random input value from a Gaussian distribution matching the original distribu-
tion of input values (GaussianInd), and 4) replacing a variable value by a value
randomly drawn from a white noise distribution (NoiseInd). As before, we study
whether the randomness of yN is related to the generalization error.

Figure 4 plots (1−p) over the four different variants of randomization and the
resulting generalization error gerr over (1 − p). Again, the dashed line indicates
the performance of random guessing. All results are averaged over 30 runs.

Again, we find a strong correlation (Pearson coefficient < −0.99) between
generalization error gerr and (1−p). For PermutGlobal, we observe a lower effect
of randomization for MNIST in comparison to CIFAR10 as the neighborhood of
the input data space is more relevant for CIFAR10 than MNIST. For MNIST,
the value of a pixel xij also has a meaning independently of its neighboring
pixels (e.g. some pixels are always activated for a specific label). In contrast for
CIFAR10, destroying the neighborhood of a pixel xij by placing it next to other,
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Fig. 5. (1−p) for the easy and hard data samples with the corresponding generalization
error gerr.

randomly selected pixels makes it much more difficult for the DNN to build a
meaningful model. As a result, (1 − p) is lower for CIFAR10. For PermutInd,
results are different as the only signal that is left after randomization is the
difference in mean and standard deviation of input variables. The differences are
higher in CIFAR10 training instances which makes the problem more structured
(leading to a lower generalization error) in comparison to MNIST. Both cases
are properly captured by (1 − p).

3.3 Studying Randomness of Input Data Spaces Without
Randomization

While our previous experiments studied the relationship between the randomness
of input data spaces measured by (1 − p) and generalization error for different
degrees and variants of randomization, we now investigate differences in the ran-
domness of input data spaces for easy versus hard data samples. Thus, we do not
randomize neither f (Sect. 3.1) nor X (Sect. 3.2), but create data samples with
different properties from D following an approach suggested by [5]. Consequently,
we first train 100 CNNs for 1 epoch on a large data set (cats vs. dogs). Then, we
select two subsets (easy versus hard) from D by selecting the on average 10,000
best and 10,000 worst classified examples for the easy and hard subset, respec-
tively. We expect that Maurer’s universal is a good indicator for the differences
in randomness of these samples and the resulting generalization error gerr.

Figure 5 plots (1−p) for the easy and hard data samples as well as the corre-
sponding generalization error gerr. The dashed line indicates the performance of
random guessing. Results are averaged over 30 runs. We find that a high value of
(1 − p) (indicating a high randomness in yN ) correspond to a low generalization
error gerr on the easy sample and vice versa on the hard sample confirming the
prediction quality of Maurer’s universal. For the easy sample, the generalization
error is almost zero which corresponds to a high value of (1 − p) ≈ 1 indicating
a low randomness of yN and a high structure of the classification problem. Thus
the easy data set can be learned by a DNN model with low generalization error.
For the hard sample, the randomness of yN is high indicating a low correlation
between the labels of neighboring training points.
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4 Related Work

Bounding the best and worst case for generalization error is a key challenge in
machine learning. Traditional learning theory provides such bounds either from
a complexity point of view [7,43] or using a stability based approach [10]. How-
ever, studies suggest that these generalization bounds might not be sufficient
to capture the generalization problem, especially in an over-parameterized set-
ting [8,34,50]. This leads to work on extending and sharpening the traditional
bounds for neural networks by introducing norms [6,17,25,31,35,37,38] or using
PAC-Bayes approaches [4,14,36,51]. A different direction of research studies the
implicit regularization from gradient descent methods to explain generalization
[2,19,40,41].

However, most of these approaches depend on posterior properties of a
trained neural network. In contrast, [5] find that the data itself plays an impor-
tant role in generalization. Therefore, other work focuses on the properties of
data in context of generalization. Ma et al. [32] provide a prior estimate using
properties of the true target function and [3] derive a data-depended complex-
ity measure using the Gram matrix of the data and [16] analyze the properties
of classification problems using Fourier analysis. The method suggested in this
paper differs as we take a label landscape perspective to derive a generalization
estimate.

5 Conclusion

This paper introduced a landscape perspective on data distributions in order
to explain generalization performance of DNNs. We argued that the input data
defines a label landscape and the correlation between labels of neighboring (sim-
ilar) input values influences generalization. We measure the correlation of the
labels of neighboring input values by performing a random walk through the
input data space and use Maurer’s universal to measure the randomness of the
resulting label sequence yN . A more random sequence indicates a less learnable
structure in the data leading to poor generalization. At the extreme, if there is
no correlation between the labels of neighboring inputs, generalization error is
maximal. We performed experiments for a variety of problems to validate our
hypothesis and found that the randomness (measured by Maurer’s universal) of
the label sequence yN indeed can serve as an a priori indicator of the expected
generalization error for a given data set. We presented results for both synthetic
problems as well as real world data sets and found a high correlation between
the randomness of the label sequence yN and the generalization error. We con-
clude that a label landscape view on the data provides valuable insight into the
generalization capability of DNN.

6 Limitations and Future Work

Our approach provides insights and an a priori indicator for generalization in
a binary classification case. However, there are a few limitations due to the
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use of Maurer’s universal test. As the test is only designed for a binary source
processes, it is not applicable to multi-class problems. Therefore, in future work
we will study randomness measures for integer sequences.

If the decision variables are not known, our method depends on the approx-
imation of the underlying manifold, for which we assume an Euclidean space.
Approximating such a manifold can be challenging for more difficult data sets.
Studying the impact of this approximation and different distance measures for
the neighborhood could lead to a better understanding of our findings.
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Abstract. Artificial intelligence is often used in path-planning contexts.
Towards improved methods of explainable AI for planned paths, we seek
optimally simple explanations to guarantee path safety for a planned
route over roads. We present a two-dimensional discrete domain, anal-
ogous to a road map, which contains a set of obstacles to be avoided.
Given a safe path and constraints on the obstacle locations, we propose
a family of specially-defined constraint sets, named explanatory hulls,
into which all obstacles may be grouped. We then show that an opti-
mal grouping of the obstacles into such hulls will achieve the absolute
minimum number of constraints necessary to guarantee no obstacle-path
intersection. From an approximation of this minimal set, we generate a
natural-language explanation which communicates path safety in a min-
imum number of explanatory statements.

Keywords: Explainable AI · Constraint optimization · Path
planning · Mental model reconciliation · Human-robot interaction

1 Introduction

As autonomous systems make their way from the laboratory to the real world,
automated navigation and path planning have taken on a prominent role in
everyday human-AI interaction. Mutual understanding between human and
robot is key in such motion- and route-planning scenarios, particularly when
a human must interact directly with an autonomous system. In this paper, we
consider a scenario in which a human is shown a proposed route from a start
point to a goal point, supposing that the path must avoid a number of obstacles.
This could represent, for example, an aircraft following a flight plan between mil-
itary threats [1]. In this case, a pilot is taking a path through a region populated
with potentially dangerous obstacles which they aim to avoid.

In our approach, we assume the path planner knows some bounds on the
location of each obstacle, perhaps through inference or observation, and that the
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chosen path successfully avoids all of them. Implicit in this assumption is that
some such obstacle-avoidant path exists. Meanwhile, the human in our scenario
knows a priori (1) the layout of roads on the map, represented in this problem
by horizontal-vertical gridlines, and (2) the locations of various landmarks, or
reference points.

Given this scenario, our task is to reassure the human that the planned
path does not encounter any obstacles. We do this by producing a post-hoc
explanation, which we construct as a set of constraints prohibiting intersection
of the obstacles with the path. Trivially, the explanation could provide all known
constraints on the obstacle locations. However, to reduce the mental load for
a human, we aim to produce an explanation which is as simple as possible,
searching for the smallest set of constraints which, taken together, guarantee
that the obstacles do not intersect with the path.

The two-dimensional grid scenario considered here constitutes a base case for
more complicated problems, such as domains with probabilistic bounds on obsta-
cle locations, where bounds are inferred from a model with uncertain dynamics.
Another natural extension of this case is multi-objective optimization, in which
a path is planned with explanation simplicity as an objective alongside typical
optimization objectives like path speed and length.

2 Previous Work

Explanation for human-robot interaction is a growing pursuit under the umbrella
of explainable artificial intelligence (xAI). xAI as a field recognizes the impor-
tance of AI system transparency in a world where human lives are shaped ever
more by the actions, decisions, and predictions of artificially intelligent systems
[10]. Appropriately, the field has accumulated a substantial body of literature
and continues to grow [9,12].

Explanation is often formulated as a model reconciliation task, whereby
humans incorporate new information into their personal mental models of a
system [4]. Simpler explanations are more easily incorporated, given human sus-
ceptibility to information overload [11]; indeed, complicated explanations tend
to have less of an impact on human decision making [11,13].

Explanation specifically for autonomous path planners has been approached
from several angles. Post-hoc inference of linear temporal logic (LTL) constraints
on system trajectories can generate a list of time- and order-dependent specifi-
cations satisfied by a planner, which may be provided to a human as explanation
[3,5,7]. For Markov decision process based path planning, a tunable model has
been proposed which adjusts emphasis on the mission objectives, the path seg-
ment(s) of current interest, the level of detail, and language abstractness to select
an individualized list from a bank of explanatory statements [2]. The former app-
roach focuses on the extraction of constraints, while the latter ranks an existing
bank of constraints based on their saliency. In both cases, the approach sup-
poses that the bank of explanatory constraints is itself sufficient or optimal, and
explanations are made simple by de-prioritization or outright omission of compli-
cated constraints, regardless of potential relevance [8]. In this paper, we present
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an algorithm which aims to address these issues, beginning with the restricted
setting of path planning in a known two-dimensional environment. Our method
reprocesses a large set of constraints into a smaller set without loss of necessary
information, providing an optimally-simple bank of candidate constraints to be
drawn from for explanation. Thus, our approach is not directly comparable to
current approaches, but rather serves as an intermediate step between constraint
inference and prioritization via saliency.

3 Notation and Preliminaries

3.1 Road Map Domain

Our problem considers a two-dimensional finite grid. Planned paths must follow
grid lines and therefore consist of north-south (vertical) and east-west (horizon-
tal) segments only. When grid lines are interpreted as streets, the obstacles on
the map may represent a road blockage or a military threat; more abstractly,
obstacles may be forbidden regions in any state space through which we wish to
follow a given trajectory. An obstacle i is contained by a set Ωi of four linear-
inequality constraints, denoted ωi1 through ωi4, whose conjunction specify a
closed region. An example domain is shown in Fig. 1.

Fig. 1. The domain, a road map with a suggested route S. Obstacles are shown as
shaded circles and reference points are marked with stars.

On the discrete grid, every set of linear inequality constraints prescribes a
set of grid points. In this paper, we use the bracket notation [ ] to represent the
set of all points p satisfying the conjunction of a set of constraints, for instance
[Ωi] := {p | p |= ωi1 ∧ · · · ∧ ωi4}. We extend this notation to the path S as well,
denoting the set of points in the path by [S].
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3.2 Form of Explanation

We aim to provide human-interpretable explanation as a set of constraints which
satisfies the following general criteria:

1. Safety: the explanation must communicate that the path will safely avoid all
of the obstacles. This relies on the assumption that a feasible (i.e., safe) path
exists and has been selected by the path planner.

2. Simplicity: the explanation should have as few features as possible, so that it
is easier for a human to understand.

To communicate safety, we can provide a human with a list of constraints
on the obstacles which guarantee that no obstacle will cross the path. Obstacles
which remain on one side of any grid lines may be easily bounded using linear
inequalities, for instance, Obstacle o1 stays north of H13 Street represented by
yo1 ≥ 13. Meanwhile, obstacles which stay within some radius of a reference
point may be explained using a nearness constraint, as in Obstacle o4 stays near
Reference Point r2 and |xo4 − xr2 | + |yo4 − yr2 | ≤ 3. Now, towards simplicity,
we observe from Fig. 1 that not all such valid constraints contribute to proving
safety. For example, Obstacle 1 remains south of H15 is true, but it does not
provide any information as to whether Obstacle 1 can intersect with S. An
optimally simple explanation would need to omit such irrelevant constraints.

Linear Inequality Constraints. Towards simplicity, it is useful to create
alternative safety-enforcing sets of constraints which are simpler than the true
sets Ωi. Define Fi be a set of four linear inequality constraints fi1, . . . , fi4, where
fij are expressed as

fij := z ≤ z0 or fij := z ≥ z0 (1)

for some constant z0 ∈ Z. Here, horizontal and vertical fij take z to be the y-
and x-coordinate, respectively. Additionally, fi1 ∧ · · · ∧ fi4 forms a closed region
such that [Ωi] ⊆ [Fi]. As long as [Fi] ∩ [S] = ∅, the obstacle remains properly
constrained. Now consider the special case where one or more fij in Fi coincides
with one of the domain boundaries M1, . . . ,M4. Since the domain boundary
constraints are known a priori to any human user, we are able to omit any
fij = Mm from the explanation. This occurs in Fig. 2, supposing that [Ωi] ⊆ [Fi]
for Obstacles 1, 2, and 3. This is a useful simplification which we formalize in
Sect. 4.

Nearness Constraints. Some obstacles may be constrainable by their proxim-
ity to a fixed location on the map. We denote each notable location as a reference
point r, and we define the set [Pr] to be the set of points within a chosen radius
of r. In Fig. 2, Reference Points 1 and 2 are shown with regions of fixed radius
3, prescribed respectively by constraints P1 and P2. Since Obstacle 4 satisfies
[Ω4] ⊆ [P2], it is considered near Reference Point 2.
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Fig. 2. A map showing Fi-constrained regions and relevant fij for Obstacles 1, 2, and
3. Also shown are the nearness neighborhoods of fixed radii around the reference points.

Obstacle Grouping. If obstacles must be individually bounded, an explanation
for L obstacles will necessarily contain L lists of constraints. However, suppose
a set of constraints Fi or Pr is found such that [Ωl] ⊆ [Fi] or [Ωl] ⊆ [Pr] for
multiple obstacles ol. For instance, by Fig. 2, it is true that the constraints shown
for Obstacle 2, f21 and f22, also contain the full region prescribed by f11 and
f12. This means that Obstacles 1 and 2 may be grouped together under the
constraints F2 = {f21, f22, f23, f24}, where f23 = M1, f24 = M2, and the total
number of explanatory constraints for the two obstacles reduces from 4 to 2.
This operation is called obstacle grouping.

Hull-Based Explanation. We now present the structure of the explanation
E, which we define as a set of pairs of sets (Ok, Bk). Here, Ok is a subset of
the obstacles from the domain; Bk is either a Pr or an Fi chosen such that Bk

is satisfied by all ol ∈ Ok. In other words, all obstacles in Ok are contained by
Bk. We will refer to Bk as an explanatory hull, and call this form of explanation
hull-based. Any hull-based E can be expressed as in (2):

E = {ε1, . . . , εK} where εk = (Ok, Bk), ∀k ∈ {1, . . . , K} (2)

Note that, for any safe path S, it is always possible to find fitting Bk for at least
one arrangement of the oi. To see this, consider the arrangement of the obstacles
into singleton sets O1 = {o1}, . . . , OL = {oL}; then a choice of satisfying sets
Bk is simply B1 = F1 := Ω1, . . . , BK = FK := ΩL. Thus, we may always
construct an explanation of the form in (2) for any domain with a safe path.
Such explanations are easily converted into natural language, as in Example 1.
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Example 1 (Natural language explanation from E). Consider an explanation
expressed in the form of (2), E = {(O1, B1), (O2, B2)}, where

O1 = {o1}, B1 = P1 and O2 = {o2, o3, o4}, B2 = F1 = {f11, f12,M1,M2}

where f11 := y ≥ 2 and f12 := x ≤ 4. Then, for ε1, we return One obstacle is
near Reference Point 1 since o1 is in P1. For ε2, we return 3 obstacles are north
of H2 and west of V4, since o2, o3, and o4 are contained within F1, with M1 and
M2 known to the human a priori.

3.3 Constraint Parameterization and Subset Checking

An inequality fij := z ≤ z0 or fij := z ≥ z0 may be written as

fij = (d, z0, p) with d ∈ {−1, 1}, z ∈ N, p ∈ {−1, 1} (3)

where

d =

{
−1 fij horiz.
1 fij vert.

z0 =

{
y0 fij horiz.
x0 fij vert.

p =

{
−1 fij := z ≤ z0

1 fij := z ≥ z0

and we call d the orientation and p the sign of fij . The parameterization in (3)
enables us to introduce the function in (4), which we name the subset function:

μs(f1, f2) := d1(d1 + d2) (p1 + p2) (z01 − z02) (4)

We note that d1 = d2, p1 = p2 for orientation and sign match, respectively, and
d1 = −d2, p1 = −p2 for mismatch. In all, (4) satisfies

μs(f1, f2) > 0 ⇐⇒ [f1] ⊂ [f2] and μs(f1, f2) < 0 ⇐⇒ [f2] ⊂ [f1]

where [fi] denotes the set of points satisfying fi. Meanwhile, μs(f1, f2) = 0
occurs if and only if neither constrained region constitutes a strict subset of the
other. Then, for our F = {f1, . . . , f4}, we see that

[F ′] ⊂ [F ′′] ⇐⇒ ([f ′
1] ⊂ [f ′′

1 ]) ∧ · · · ∧ ([f ′
4] ⊂ [f ′′

4 ]), (5)

and thus [F ′] ⊂ [F ′′] is true if and only if

∀f ′ ∈ F ′,∀f ′′ ∈ F ′′ μs(f ′, f ′′) > 0 (6)

Because F prescribes a rectangular region, we also have the consequence that

μs(f ′, f ′′) ≥ 0 ∀f ′ ∈ F ′,∀f ′′ ∈ F ′′ ⇐⇒ [F ′] ⊆ [F ′′] (7)

since this condition means that all sign- and orientation-matching pairs f ′, f ′′

either coincide or that [f ′] ⊂ [f ′′].
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Path Parameterization. We represent each segment s of S∗ as four linear
inequalities with parameterizations as in (3). The constraints associated with a
single horizontal segment with endpoints (y, x1), (y, x2) where x2 > x1 becomes

s = {s1, s2, s3, s4} = {(−1, y, 1), (−1, y,−1), (1, x1,−1), (1, x2, 1)}. (8)

with a similar parameterization for vertical segments. With this expression for
s, we may consider Proposition 1:

Proposition 1 (Path intersection condition). [F ] ∩ [S] = ∅ is true if and
only if

∀fi ∈ F,∀s ∈ S, ∃si ∈ s such that [F ] ⊂ [si ∧ fi] (9)

Proof. Considering (8), let s1, s2 be the s−parallel linear inequalities and s3, s4

be the endpoint constraints. Take also some F = {f1, . . . , f4} and let each si, fi

pair be such that pfi
= psi

, dfi
= dsi

.
First, suppose there is some segment s which traverses [F ]. This would require

that [F ] lies between zs3 , zs4 , i.e.,

[s3] ⊆ [f3] and [s4] ⊆ [f4] (10)

since (10), by inspection, means that s cannot enter [F ]. Now consider f1, f2 ∈ F
with pf1 = 1, pf2 = −1. If (10) holds, s will enter [F ] only if

zf1 ≤ zs1 ≤ zf2 =⇒ [s1] ⊆ [f1], [s2] ⊆ [f2]. (11)

Altogether, we see that [si ∧ fi] = [si] for i = {1, 2, 3, 4}, and thus, [F ] =
[f1 ∧ · · · ∧ f4] ⊇ [si] where [si] �⊂ [si ∧ fi] for all fi ∈ F .

In the other direction, we have that either (10) or (11) not holding is sufficient
to avoid intersection of s with F , meaning [si] ⊃ [fi] for any si ∈ s, fi ∈ F
prevents intersection. In turn, [si] ⊃ [fi] =⇒ [si ∧ fi] = [fi], and clearly
[F ] ⊂ [fi] for any fi ∈ F . ��

3.4 Largest Possible Hulls

A useful tool for hull-based explanation is the set of largest possible hulls subject
to the domain and the path:

Definition 1 (Largest Possible Hulls H). A largest possible hull is a set
of four linear inequality constraints prescribing a rectangular region, denoted
H = {h1, . . . , h4}, where, for [S] �= ∅,

∀s ∈ S, ∀hi ∈ H, ∃si ∈ s such that [H] ⊆ [si ∧ hi]
[H] ⊆ [M ] (12)

and for all H ′ satisfying (12), [H] ⊆ [H ′] =⇒ H = H ′.

We use H to denote the set of all largest possible hulls subject to the path and
domain. We now examine the properties of these largest hulls.
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Property 1. Let b = (db, zb, pb) denote any constraint such that b = si or b = Mm

for some si ∈ S or Mm ∈ M . Then, for all h ∈ H, there exists a b ∈ S ∪ M such
that h = b.

Proof. Suppose we have a largest possible hull H = {h1, h2, h3, h4} where
h1, h2, h3 = b1, b2, b3, but that h4 �= b for any b. Since [H] ⊆ [M ], we have
μs(h4,M4) > 0. Therefore, we may always choose a b′ where μs(h4, b

′) > 0. For
b′ = M4,

[S] ⊆ [M ] =⇒ [si ∧ M4] = [si] =⇒ [h1 ∧ h2 ∧ h3 ∧ b′] ⊆ [si]. (13)

Meanwhile, for any b′ = s′
i where s′

i is the si ∈ s satisfying dh4 , ph4 = ds′
i
, ps′

i
,

si = s′
i =⇒ [si ∧ s′

i] = [s′
i] =⇒ [h1 ∧ h2 ∧ h3 ∧ b′] ⊆ [s′

i] (14)

and for si �= s′
i, either

[si ∧ s′
i] = [s′

i] =⇒ [h1 ∧ h2 ∧ h3 ∧ b′] ⊆ [s′
i], or (15)

[si ∧ s′
i] = [si] =⇒ [h1 ∧ h2 ∧ h3 ∧ b′] ⊆ [si] (16)

Therefore, we may always take a b′ = s′
i or si such that the alternative hull

H ′ = {h1, h2, h3, b
′} satisfies (12). However, μs(h4, b

′) > 0 =⇒ [H] ⊆ [H ′], but
H = H ′ only if h4 = b′. Thus H is not a largest possible hull. ��
Property 2. For all H ∈ H, there exists an h ∈ H such that h = si for some
si ∈ s ∈ S.

Proof. Suppose H is a largest possible hull with sides h1 = M1, h2 = M2, h3 =
M3, h4 �= si, where there is no si ∈ s ∈ S such that si = M1,M2,M3. By
Property 1, we must take h4 = M4. Clearly, since [S] ⊆ [M ] =⇒ [si∧M4] = [si],
we see that [H] ⊆ [si ∧ M4] if and only if si = M4. This implies that either
M4 = si ∈ H or H cannot be a largest hull. ��
Property 3. Consider F = {f1, . . . , f4} such that [F ] ⊆ [M ] and for all s ∈
S, fi ∈ F, there exists an si ∈ s where [F ] ⊆ [si ∧ fi]. There must exist a largest
possible hull H such that [F ] ⊆ [H].

Proof. Suppose there is some such F which does not satisfy F ⊆ H. Then by
(5), F must contain at least one fi for each H where [fi] ⊃ [h] for some h ∈ H.
However, by the same logic in the proof of Property 1, this would mean that F
either satisfies [F ] ⊆ [H] or F violates the [F ] ⊆ [si ∧ fi] condition. ��

We now claim that there is a surjective relationship from the set of all si

onto H:

Proposition 2 (Surjectivity of si onto H). To each constraint si associated
with a segment s ∈ S, there is a unique H ∈ H such that si ∈ H.
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Proof. Select some si and choose two hulls H ′ = {si, h
′
1, h

′
2, h

′
3}, H ′′ =

{si, h
′′
1 , h′′

2 , h′′
3}. Then, for any pair h′ = (d, zh′ , p), h′′ = (d, zh′′ , p), we have

either h′ = h′′ or zh′ �= zh′′ . By (1), both h′ and h′′ satisfy either h = si or
h = Mm. First suppose h′ = Mm. Then h′′ �= Mm allows for two scenarios:

μs(h′, h′′) < 0 =⇒ [H ′′] ⊂ [H ′]
μs(h′, h′′) > 0 =⇒ [H ′′] �⊆ [M ]

both of which mean H ′′ violates (12). Suppose alternatively that h′ = s′
i for

some other path segment component s′
i; then h′′ �= s′

i allows for

μs(h′′, s′
i) < 0 =⇒ [s′

i ∧ h′′] = [s′
i] ⊂ [h′′] =⇒ [H ′′] �⊆ [s′

i ∧ h′′]
μs(h′′, s′

i) > 0 =⇒ [H ′′] ⊂ [H ′]

Both of these scenarios also produce H ′′ which violate (12). Thus, any pair
H ′,H ′′ of largest possible hulls with si ∈ H ′,H ′′ must satisfy H ′ = H ′′. ��

Finally, we define the explanatory hull of H, a particular variety of the
explanatory hulls Bk introduced in Sect. 3.2.

Definition 2 (Explanatory Hull of H). The explanatory hull of H, denoted
FH , is the set of four constraints f defined by

1. f = h if h = Mm

2. f = (ph, zh + ph, dh) otherwise

for all parameterized constraint pairs f ∈ FH , h ∈ H where pf = ph, df = dh.

One important property of FH is as follows:

Property 4. FH is the largest possible [F ] ⊂ [H] such that [F ] ∩ [S] = ∅.

Proof. For H and corresponding FH , f = h for all h = Mm and f = (ph, zh +
ph, dh) otherwise. Suppose that FH may be enlarged; then, by (5), we must
replace some f ∈ FH with an f ′ satisfying μs(f, f ′) > 0. This is clearly not
possible for any f = Mm. For the latter f , the smallest possible increment
outward, −pf , results in f ′ = (ph, zh + ph − ph, dh) = (ph, zh, dh) = h for some
h ∈ H. However, by (1), we have h �= Mm =⇒ h = si, meaning that f = si.
By (9), this means that the larger F must intersect S. ��

4 Optimal Explanation

4.1 Formal Requirements

Now that we have defined the explanatory form and largest hulls, we may for-
mally express safety and simplicity, the latter of which requires the introduction
of a complexity cost.
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Definition 3 (Safety). Let all Bk satisfy [Bk] ∩ [S] = ∅. Then an explanation
E is safe if and only if, for all obstacles oi in the domain, there exists some
(Ok, Bk) ∈ E where oi ∈ Ok and [Ωi] ⊆ [Bk].

Definition 4 (Complexity cost). The complexity of E is given by

C(E) :=
K∑

k=1

c(εk) where c(εk) := |Bk\{M1, . . . , M4}| and K = |E| (17)

By (17), each c(εk) will equal either |Fk\{M1, . . . ,M4}| or 1 when Bk = Pr.

Definition 5 (Simplicity). The explanation E∗ satisfies simplicity if it is cho-
sen such that

E∗ = arg min
E

(C(E)) (18)

where all E satisfy the safety requirement in Definition 3.

Observe that an E∗ which satisfies (18) will consist of an optimal pairing of
obstacle groups O∗ = {O∗

1 , . . . , O∗
K} and hulls B∗ = {B∗

1 , . . . , B∗
K} to minimize

C(E). We will denote the full set of valid E as Σ, the search space for E∗.

4.2 Reduced Search Space Σsub

A priori, the search space for E∗ contains all safety-enforcing pairs (Ok, Fi) and
(Ok, Pr). To make the optimization task more tractable, we propose a subset of
Σ, which we call Σsub. We first observe that all E ∈ Σ may be organized into
Fi- and Pr-pairs. Thus, we may rewrite (18):

C(E∗) = min
E∈Σ

K∑
k=1

c(εk) = min
E∈Σ

⎛
⎝ ∑

εk=(Ok,Fi)

c(εk) +
∑

εk=(Ok,Pr)

c(εk)

⎞
⎠ (19)

Now, taking εi = (Ok′ , Fi) and εs = (Ok′ , Fs), if we can guarantee that

εi ∈ Σ =⇒ ∃εs ∈ Σsub s.t. c(εs) ≤ c(εi) (20)

for all εi = (Ok′ , Fi) ∈ Σ, we see by (19) that C(ε1, . . . , εK , εs) ≤
C(ε1, . . . , εK , εi), and thus

C(E∗) = min
E∈Σ

C(E) = min
E∈Σsub

C(E). (21)

We now present our candidate for Σsub in Theorem 1.

Theorem 1 (Hull-based Σsub). Consider the set of all largest-possible hulls
H on the domain with boundaries M and path S. Taking ΣP = {εk ∈ Σ|εk =
(Ok, Pr)} and ΣFH

= {εk ∈ Σ|εk = (Ok, FH)}, we have that (21) is satisfied by
the reduced search space

Σsub = ΣP ∪ ΣFH
. (22)
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Proof. Consider (Ok′ , F ) where [Ωk′ ] ⊆ [F ], [F ] ∩ [S] = ∅. Then, by (9) and
Property 3, [F ] ⊂ [H] for some H. Additionally, by Property 4, FH is the largest
F in H such that [F ] ∩ [S] = ∅. Then, [F ] ⊂ [H] =⇒ [F ] ⊆ [FH ], and

[Ωi] ⊆ [F ] ∀oi ∈ Ok′ =⇒ [Ωi] ⊆ [FH ] ∀oi ∈ Ok′ (23)

From (23), we see that any valid pair (Ok′ , F ) in a hull H will always cor-
respond to a valid pair (Ok′ , FH). To meet the conditions of (21), we need now
only check that c((Ok′ , FH)) ≤ c((Ok′ , F )). Since

c((Ok, F )) = 4 − |{f ∈ F |f = Mm}|, (24)

we observe that c((Ok′ , F )) = c((Ok′ , FH)) will only occur when F and FH share
all f ∈ FH for which f = Mm; otherwise, c((Ok′ , F )) > c((Ok′ , FH)). This means
that, for any given hull H with associated FH as described in Theorem 1, FH

will always satisfy
(Ok′ , FH) = arg min

(Ok′ ,F )

c((Ok′ , F )) (25)

for valid (Ok′ , FH) in hull H. Therefore, if we construct Σsub as in (22), we find
that Σsub may be used without loss of optimality. ��

4.3 Solution from Σsub

To construct Σsub, we must first build H, the list of all H. By Proposition 2, this
is possible by iterating through each si ∈ s for all s ∈ S to find every H satisfying
(12); from here, every FH for Σsub is easily calculated from H. Recalling that the
explanatory hull Bk is any FH or Pr, we now describe the steps for optimization:

1. Find all valid εk = (Ok, Bk) pairs, where Ok contains all obstacles oi satisfying
[Ωi] ⊆ [Bk].

2. Identify any ε′
k′ = (Ok′ , Bk′) which, for some oi such that [Ωi] ⊆ [Bk′ ] and

oi ∈ Ok′ , satisfy oi �∈ Ok ∀k �= k′. Form a list ε′
1, . . . , ε

′
N of all such ε′.

3. Include ε′
1 in E∗; for each subsequent ε′

k′ , take Ored = Ok′\{O1 ∪· · ·∪Ok′−1}
and include (Ored, Bk′) in E∗.

4. Choose additional ε until all oi are contained in some (Ok, Bk) pair in E.
5. Optionally, for every (Ok, Fk)-pair in E, we may find a tightened hull Bt

k.
Such Bt

k are found by taking all f ∈ Fk, f �= Mm and replacing f by an
ωij ∈ Ωi, oi ∈ Ok such that all o′ ∈ Ok satisfy [Ω′] ⊂ [ωij ].

Step 1 identifies only those pairs which contain the largest possible Ok for which
(Ok, Bk) is valid. This is acceptable because, by (17), we are able to bound the
final complexity of E∗ by

C((Ok, Bk) ∈ E∗) ≤ C(E∗) ≤ C((Ok, Bk)) + 4|Orem| (26)

where Orem is the set of all obstacles O\Ok. Since C((O′, FH)) is constant for
all O′, our lower bound is unaffected by choice of O′; thus, we always optimally
select (O′, FH) where O′ contains all o ∈ Orem satisfying [Ω] ⊆ [FH ].
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Steps 2 and 3 ensure inclusion of all ε which contain the sole valid constraint
set for a given obstacle, since omission of any such unique ε means that E does
not satisfy safety.

Step 4 guarantees safety of the final E. However, solving for E∗ which mini-
mizes C(E) can be shown to be equivalent to a weighted set coverage problem,
which is NP-hard [6]. For the purposes of this paper, we select a greedy search
heuristic over Σsub to approximate a final E∗. The greedy search iteratively
selects those εk ∈ Σsub satisfying

arg min
εk

(C(arg max
εk

|Ok|)). (27)

The heuristic is given in more detail in the appendix, under Algorithm 1.

Algorithm 1 Greedy Optimization
Input: {M1, . . . ,M4}, reduced (Ok, FH) pairs
Output: Valid E∗

1: toExplain = list of reduced (Ok, FH) pairs
2: oInEachHull = list of obstacles o in each FH

3: hullsWithObstO = list of hulls occupied by each o
4: while max(oInEachHull) > 0 do
5: bestComplexity = 100
6: mostObsts = max(oInEachHull)
7: for all FH ∈hullsWithObstO do
8: if oInEachHull(FH)=mostObsts and C(FH) < bestComplexity then
9: bestComplexity = C(FH)

10: bestHull = FH

11: end if
12: end for
13: Append (oInEachHull(bestHull), bestHull) to E∗

14: Remove all o in oInEachHull(bestHull) from hullsWithObstO
15: Set oInEachHull(bestHull) = [ ]
16: end while
17: return E∗

Step 5 is an optional step which may increase the proximity of the constraints
in ε to the true location of the obstacles O in ε. This is done to improve location
accuracy in the explanation. Crucially, this does not influence optimality, since
Mm-constraints are unaltered and thus C(ε) remains constant.

5 Simulation

Our implementation of the method described in Sect. 4.3 is available on GitHub1.
We present a single example case here on the domain with path, obstacles,
1 https://github.com/n-brindise/plan expl.

https://github.com/n-brindise/plan_expl
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and reference points arranged as in Fig. 3. Taking a nearness radius of 2 for
reference points, we return an approximation for E∗ in natural language in four
statements:

– 4 obstacles are north of H6
– 1 obstacle is west of V6, south of H4, and east of V5
– 1 obstacle is west of V3 and north of H3
– 2 obstacles are near Reference Point 2

Notably, for this 8-obstacle domain, the full constraint set has been reduced
from 8 × 4 = 32 to 7. We see that the four statements indeed guarantee safety:
all 8 obstacles are contained in regions through which the path does not pass.

Fig. 3. Simulated domain for explanation with S shown in blue, reference points
depicted as yellow stars and obstacles shown in orange. (Color figure online)

6 Conclusion and Future Work

Given a two-dimensional, finite domain with path, obstacles, and reference points
as described in Sect. 3, we are able to generate explanations which guarantee no
path-obstacle intersection while significantly reducing the number of explanatory
statements from the nominal number of obstacle constraints. While the approach
shows promise, a more extensive survey of domain types and path shapes will
be necessary to characterize the best use cases for the algorithm.

The expansion of this method to a more general domain also holds promise
for explanation over more realistic scenarios. Interesting cases for considera-
tion include those with probabilistically-bounded obstacles, dynamic obstacles,
or higher-dimensional, non-grid domains. Additionally, the approach may lend
itself well to multi-objective path planning, which would incorporate explanation
simplicity into the optimization process.
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Abstract. Current state-of-the-art methods for text classification rely
on large deep neural networks. For use cases such as product cataloging,
their required computational resources and lack of explainability may be
problematic: not every online shop can afford a vast IT infrastructure
to guarantee low latency in their web applications and some of them
require sensitive categories not to be confused. This motivates alterna-
tive methods that can perform close to the mentioned methods while
being explainable and less resource-demanding. In this work, we eval-
uate an explainable framework consisting of a representation learning
model for article descriptions and a similarity-based classifier. We con-
trast its results with those obtained by DistilBERT, a solid low-resource
baseline for deep learning-based models, on two different retail article
categorization datasets; and we finally discuss the suitability of the dif-
ferent presented models when they need to be deployed considering not
only their classification performance but also their implied resource costs
and explainability aspects.

Keywords: Multi-label text classification · Representation learning ·
Resource awareness · Explainability

1 Introduction

The online shopping expansion from the last years has led to a more varying
product offer so that an automated product cataloguing process is necessary
when the manual maintenance becomes unsustainable. This generally involves
solving a multi-class (eventually multi-label) text classification task based on
the product descriptions, which is challenging due to the often very skewed label
distribution: few categories are dominant, appearing on a majority of products,
while many categories hardly appear on few products. This power-law distribu-
tion that appears on many natural language processing tasks can be extreme
on some datasets. While the current state-of-the-art (SotA) transformer-based
approaches can achieve astonishing results even in such challenging settings,
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these mainly consist of very large models, whose complexity may be problematic
for real-world implementations. Not only are the implementation-related costs
and unexpected high energy consumption generally ignored by machine learn-
ing practitioners [6], but also the current best performing models normally run
on specialized hardware (mostly GPUs or TPUs) to obtain results in a feasi-
ble time. This requirement limits the access to these models and may also be
responsible for a significant carbon footprint [16]. Even ignoring training time,
the computational complexity during the inference phase may be an issue when
it introduces extra latency on web applications, eventually deteriorating user
satisfaction. Furthermore, black-box models are difficult to inspect when issues
arise (“why this unexpected label for this product?”). We present exactly such an
use case where our client required a low-resource solution where some categories
must not be confused (e.g. “sex toys” must not be misclassified as “toys”).

We perceive a “trade-off triangle” of three aspects that we cannot fully
achieve at the same time when choosing a classification model architecture: per-
formance, explainability, and low resource requirements. In this work, we aim
to quantify the performance gap between black-box transformer-based methods
and more lightweight explainable models. For the former, we deliberately omit
to experiment with current SotA deep networks for extreme multi-label clas-
sification. Instead, DistilBERT [15], usually performing slightly worse than its
transformer-based competitors while being significantly more compact, can act
as a “ceiling model” for the presented alternatives in this work. In parallel, we
evaluate a k-nearest-neighbors-based classification pipeline trained on a set of
various text representations of different degrees of computational complexity and
explainability, including topic models and neural language models. We find this
framework explainable since we can trivially show the neighbors (the most simi-
lar product descriptions) as explanations for every classified article. We test our
pipeline on two retail article categorization datasets of different complexity and
compare it with DistilBERT. Although we observe the expected performance
gap, the difference is hardly relevant on the simpler dataset while we measure
much larger CPU times for DistilBERT. We also consider the explainability
aspect, questioning the suitability of huge neural networks as standard option
when they need to be run in a production environment.

2 Related Work

Recent proposals for text classification are generally transformer-based mod-
els [18]. In the particular case of multi-label classification, various deep learn-
ing models are SotA [1]. All these models share a lack of explainability. In the
broader context of (text) sequence classification, some approaches rely on simi-
larity measures to a set of prototypes [4,7,12]. Although there is no consensus
to measure interpretability in machine learning [11], we find these approaches
as inherently explainable since the computed similarities can serve as explana-
tions for the model decisions. Our presented similarity-based classifier fits to this
class of models but we rather focus on evaluating existing representation learn-
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ing methods within our framework. We also evaluate the runtime-related cost,
which only partially correlates to model complexity i.e. to less explainability.

3 Experiments

3.1 Data

German Product Migration (GPM) is an internal dataset used to automate
the product cataloging process for a retail online store, where certain run time
and explainability requirements were requested. Each article contains a title and
a description in German and is assigned a label from a three-level category
hierarchy. For our experiments, we focus on the 599 categories belonging to the
deepest level, ranging from clothing and accessories to health and personal care.
Figure 1 shows the very skewed label distribution.

Fig. 1. Label frequency distribution and tokens per document from GPM.

AmazonCat-13K is an extreme multi-label classification dataset provided by
Amazon. It consists of product reviews tagged with ≈ 13K product categories.
The train split has 1.186.239 instances and the test split has 306.782 instances.
In Fig. 2 we provide visualizations of the distribution of the number of labels
associated to input texts, the distribution of the number of positive training
instances per label and the distribution of the document lengths measured using
a DistilBERT-tokenizer.

3.2 Methods

Nearest Neighbor. We vectorize each article title and description with a
common dimensionality to make them comparable (512 for GPM, 768 for
AmazonCat-13K, both determined by the pretrained models we use). Each rep-
resented article from the test set obtains the label(s) from the training set article
whose vector representation is closest according to cosine distance.

Latent Dirichlet allocation (LDA) [2]. We train a topic model from the
word tokens marked as (proper) nouns by the spaCy POS tagger [8] using the
de core web sm model for GPM and en core web sm for AmazonCat-13K.
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Fig. 2. Distribution of active labels, label frequency, and number of tokens per docu-
ment from AmazonCat-13K.

Anchored CorEx [5]. We train two topic models with the same preprocessing
pipeline as for LDA. The first one is trained in a purely unsupervised fashion.
The other by assigning 10 anchor words to start the topic model training. We
automatically generate anchor words by finding the words that have the high-
est mutual information with each label, as proposed in [9]. In the case of the
AmazonCat-13K, we restrict this procedure to the 768 most frequent labels.

FastText [3]. We train a fastText embedding model for each dataset, whose
obtained article representations are based on the average of N-gram features.

SentenceBERT (SBERT) [13]. We transform each text with a pretrained
model: distiluse-base-multilingual-cased-v1 for GPM, and sentence-
transformers/all-mpnet-base-v2 for AmazonCat-13K.

ML-KNN. We train a ML-KNN model [19] on the same vector representations
presented in Sect. 3.2 with the scikit-multilearn implementation [17]. For each of
the produced representations, we run a 3-fold cross-validation on 100,000 random
articles from the training set to determine the number of neighbors k and the
smoothing parameter s.

DistilBERT. We fine-tune a DistilBERT model. The architecture is given by
DistilBERT as the encoder and a linear decoder with fan-out to all labels, acti-
vated with sigmoid and loss function given by binary cross-entropy.

3.3 Evaluation

Metrics. We evaluate each method applied in the single-label classification
setting (GPM dataset) on the F1-score, both micro-averaged and macro-averaged
on all the classes. For the multi-label setting (AmazonCat-13K), we include not
only the widespread metrics P@k (precision at k) and nDCG@k (normalized
discounted cumulative gain at k) with k ∈ {1, 3, 5} but also their propensity-
scored variants PSP and PSnDCG to better assess the performance on the less
frequent classes as proposed in [10], taking the default propensity values A =
0.55, B = 1.5. We also measure the training time and prediction time of each
method when running on a single CPU.
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Results. The performance results of the evaluated methods are displayed in
Table 1 for the GPM dataset and in Table 3 for the AmazonCat-13K dataset.
As expected, the neural-based methods perform better on both datasets than
the topic models. In particular, DistilBERT performs best on all evaluation met-
rics. However, the performance gap is reduced on the GPM dataset, especially
on micro-averaged precision. We also observe that ML-KNN brings some per-
formance improvement compared to the nearest neighbor baseline, although the
gain is limited in several metrics, in particular when applied to the least perform-
ing topic models. We can see the training and prediction time of the different
methods in Table 2. As expected, DistilBERT takes the longest CPU time.

Table 1. Performance on the GPM
dataset.

Method F-1 score

Macro Micro

avg. avg.

Nearest Neighbor

+LDA 0.65 0.90

+CorEx 0.69 0.92

+Anchored CorEx 0.69 0.91

+SBERT 0.87 0.97

+FastText 0.66 0.94

DistilBERT 0.92 0.98

Table 2. Training and prediction time with
AmazonCat-13K on an IntelR© XeonR© Gold
6226R CPU @ 2.90 GHz.

Method CPU time (in min.)

Training Prediction

Nearest Neighbor 0.05 156

MLkNN 5,000 930

+LDA +1,370 +25.8

+(Anchored) CorEx +1,880 +5.22

+SBERT +0a +29.2

+FastText +86 +9.4

DistilBERT 72,000a 510
aWe omit the needed time for the pre-
trained model due the given CPU-only
setting.

4 Discussion

The results seem to confirm the hypothesized triangular trade-off: the most
complex model (DistilBERT) outperforms by a large margin the simpler
interpretable models (LDA and CorEx), while those in between in terms of
explainability (SBERT somewhat more interpretable than DistilBERT due to
its similarity-based nature) or regarding computational complexity (FastText)
achieve intermediate results. However, the performance gap is notably smaller
in the single-label classification setting of the GPM dataset. Since many online
shops do not handle datasets as complex as AmazonCat-13K but rather like
GPM, we question the convenience of applying the best performing available
model by default disregarding significant computational and implementation
costs. In some cases, the precision gain separating these models from “cheaper”
models is not relevant. The combination of SBERT with a k-nearest neighbor-
based classifier may be a good trade-off: it can perform close to the best model
while keeping explainable predictions (an article gets a label because similar
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Table 3. Performance of the evaluated methods on AmazonCat-13K evaluated as in
[1]. Please note that nDCG@1=P@1 and PSnDCG@1=PSP@1.

Method P nDCG PSP PSnDCG

@1 @3 @5 @3 @5 @1 @3 @5 @3 @5

Nearest Neighbor

+LDA 58.81 52.51 42.31 57.84 56.74 31.53 42.03 46.42 39.74 43.60

+CorEx 56.10 48.47 38.76 54.45 52.94 28.19 36.37 39.96 35.21 38.33

+Anchored CorEx 55.50 48.25 38.22 53.79 52.24 27.95 36.41 39.53 34.87 37.92

+SBERT 75.94 67.92 55.58 74.50 73.45 41.65 55.51 62.18 52.29 57.58

+FastText 67.98 61.54 51.18 67.42 67.31 36.81 49.50 55.96 46.63 51.81

MLkNN

+LDA 60.93 50.87 39.62 39.62 54.36 31.89 39.86 42.57 38.24 40.93

+CorEx 56.27 49.09 38.95 54.67 53.19 28.30 36.96 39.96 35.37 40.17

+Anchored CorEx 55.93 48.52 38.51 54.11 52.62 28.17 36.64 39.84 35.09 38.21

+SBERT 80.14 71.25 57.10 78.14 75.97 42.78 56.88 62.54 53.60 58.32

+FastText 75.56 65.53 51.73 72.49 69.93 38.94 50.35 54.30 47.95 51.71

DistilBERT 95.91 82.21 66.60 90.99 88.93 55.48 68.05 74.98 65.59 71.22

articles have that label). FastText can also be an option in setups where no
GPU is available. Moreover, there are still open options to increase the accu-
racy of the explainable framework. For instance, the SBERT representations do
not incorporate the label information from Amazon-Cat-13K as DistilBERT did
during training. Hence, we may easily improve the SBERT-backed model by
just fine-tuning it. This is in line with some authors claiming that there is not
always necessarily an accuracy-explainability trade-off when standard processes
for knowledge discovery are followed [14]. Although using anchor words within
anchored CorEx improved no model on any dataset (probably because of the
anchor selection method), we value the possibility of selecting anchor words to
control how specific topics are built for use cases where sensitive categories must
not be confused.

5 Conclusion and Future Work

We evaluated several text representations on two datasets for retail product
categorization within an explainable similarity-based framework. We compared
them with a pure neural-based baseline not only on classification performance
but also on the required training and prediction time. We additionally discussed
the trade-off between obtaining a good performance, having some degree of
explainability, and keeping the required computational resources low depending
on the application. For future work, we plan to fine-tune an SBERT model on
Amazon-Cat-13K by assigning product pairs a similarity score. We also envision
a systematic model robustness inspection for specific sensitive labels. Enforcing
separations via anchor words may turn anchored CorEx more valuable than our
work showed.
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Abstract. Insufficient amounts of historical data present a major challenge in real
world supervisedmachine learning projects. Small andMedium-Sized Enterprises
(SMEs) are particularly handicapped regarding the collection of historical data. A
possible solution to this problem is data pooling, where data from different entities
is combined to create larger datasets that are more suitable for supervised machine
learning. In this study, we investigate the potential that data pooling has for six
companies from the service industry located in Germany and Austria. We find
that in the studied scenario each company can benefit from the other companies’
data under certain circumstances. In addition, while most companies benefit from
a model that is trained with the data of all other companies, this is not always the
case. This is because of specific business characteristics that can significantly affect
datasets. In such a case, the key challenge is to determine which companies’ data
to include in the pool, i.e., to define the pooling strategy. Therefore, we analyze
all possible pooling strategies in our scenario and explain selected results with
insights from data distribution and feature importance analysis. We conclude that
the consideration of business and data characteristics is critical to the selection of
an appropriate strategy.

Keywords: Supervised machine learning · Data pooling · Transfer learning ·
Small and medium-sized enterprises · Service industry · Case study

1 Introduction

The hurdle for small and medium-sized enterprises (SMEs) to invest in data science and
data value creation projects is still very high. In their survey on artificial intelligence (AI),
Fuchs et al. [6] examine the current challenges of AI-supported processes in Austrian
companies, finding that the majority of Austrian companies and especially SMEs still
face major challenges with regard to AI. Fuchs et al. describe lack of competencies
(40%), high investment costs (39%), uncertain added value (36%) and deficient data
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(27%) as the prior hurdles that keep SMEs from investing in AI. The challenge of
deficient data, which is particularly relevant for supervised machine learning, may be
solvable by transfer learning, i.e., by leveraging the knowledge from different but related
source domains. One application of transfer learning is data pooling, where similar data
from different entities is combined to build more suitable datasets [17].

2 Current State of Research and Application

State of the art data sharing and data pooling takes place in different fields using dif-
ferent frameworks ensuring the trustworthy exchange of data and data sovereignty for
all participants [11]. In general, we can distinguish between data sharing as cooperation
among companies along value and supply chains to support, enable or optimize on a ver-
tical level, and data sharing as horizontal cooperation among companies to enable new
business models by generating value from data [15]. Data pooling is used, for example,
in healthcare applications to derive information from the huge but distributed amount
of data in this sector [5, 10], for economic and macroeconomic forecasting [1, 2, 9] as
well as for empirical social research [12–14].

3 Methods

Project Framework. Within the scope of a publicly funded research project, Fraun-
hofer Austria and the software and consulting company Poool developed an algorithm
to predict project success based on historical project management data from six SMEs
in the service sector of the marketing and consulting industry located in Germany and
Austria that use Poool’s cloud-based software services. We will denote these companies
with the letters A to F. Although they collected data for roughly three years, the actual
amount of historical data of each company is limited. The reason for this is primarily the
rather small size of the companies (5–50 employees) and the resulting limited number of
completed projects per year. It is well known that an insufficient amount of training data
can reduce the performance of machine learning algorithms. Additionally, the project
success forecast should also work for new Poool customers that do not yet have historical
data. For such cases, the pooling of data from several companies could seem promis-
ing. However, the success of a project depends on many internal and external factors
that can vary substantially from company to company. Therefore, even assuming that
Poool’s customers engage in similar activities and deliver comparable project results, it
is not clear whether the predictive power of a model based on data from one company is
transferable to another. The goal of this study is to assess the potential of data pooling
for predicting project success.

Data Preparation and Description. After combining the datasets from the six com-
panies, general data preparation and feature engineering activities were conducted. All
Poool customers share the same core business processes, but the specific business char-
acteristics of companies influence the characteristics of the data they produce. Company
A focuses on print production, company B has a consulting focus, companies C, E and F
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engage in media production and company D provides services in multiple fields. There-
fore, a set of rules was used to remove outlier projects specific to the respective business
area. The overall dataset consists of 1468 data points (between 97 and 300 data points
for all but one company that has 600 data points) with 10 features and the target class i.e.,
a project with positive or negative financial outcome. Financial outcome is described as
a project’s revenue reduced by all costs for conducting the project. The features used
mainly describe general project characteristics such as budget, team size and duration
and are not company or industry specific. Note that, since all companies have the same
feature and label spaces, this is a case of homogeneous transfer learning [17].

General Setup. Our general setup for the project success prediction is as follows. A
Random Forest Classifier [4] is trained on a fixed training dataset and evaluated on a
fixed, disjoint test dataset. Since the target class distributions of most companies are
imbalanced, we randomly subsample training data points to balance the two classes.
For hyperparameter selection, we perform a grid search with five-fold cross validation
in the training dataset. To account for the inherent randomness of the Random Forest
Classifier and the additional variance due to random subsampling of training data points,
we report the experiment results as the mean and standard deviation of five runs with
different seeds.

4 Results

Pooling Capability Tests. Using the described procedure, six different models were
trained, each time excluding the data of one company, the target company. The target
companies’ data points were used as test dataset and the performance was evaluated
using the weighted average F1 score. In the cases where companies B to F were the
target companies, the F1 scores ranged from 0.66 to 0.79, whereas in the case where
companyAwas the target company, theF1 scorewasmuch lower. In fact, it is comparably
close to the F1 score of a model that predicts by random guessing. In the literature this
phenomenon is referred to as negative transfer [16]. These results can be seen in the right
most column (pool size five) in Fig. 1. The implication of this result is that companies
that have not collected own data so far, can possibly benefit from a model developed
with the data of the others.

Fig. 1. The figure shows the impact of the pool size on the performance of the respective best
performing pooling strategy (out of all strategies with the same pool size).
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This observation raises the question whether the performance of the prediction of
companyA’s data in terms of F1 score could be improved by choosing a different pooling
strategy, i.e., a different combination of data in the pool. To test that, a separate model
was trained for every possible combination of the remaining companies and tested on
the data of company A. In fact, the performance of the Random Forest Classifier can be
improved by choosing a different pooling strategy. For predicting data of companyA, the
best pooling strategy can achieve an F1 score of 0.703± 0.007 – an increase of roughly
0.15. Curiously, the strategy, which was used to achieve this result, uses only data points
from company D. This result raises several questions: Can alternative pooling strategies
improve the performance of the classifiers compared to the naive pooling strategy (a
model trained on the data of all source companies) for other target companies as well?
What is the impact of the pool size on the performance of the classifier with respect to F1
score? Is there an optimal pooling strategy1 for every company? To further investigate
the impact of the pooling strategy, we repeated the experiment for all other companies
(as targets). Figure 1 shows the F1 scores of the best performing strategies (out of all
strategies with the same pool size) for each pool size and target company. It can be
seen that company A is the only company, where the performance of the best pooling
strategy varies substantially with the pool size. For all other companies the variation
is rather small compared to its respective F1 score. Furthermore, for all companies
but C, the best performing strategy has a pool size of one or two. This suggests that
the pool size of the best performing strategy and hence the optimal pool size for each
company, is rather small.Note that the only exception, the pool size of the best performing
strategy for predicting data of company C, has pool size three. Despite these findings,
larger pool sizes still have certain advantages. As can be seen in Fig. 2, increasing the
pool size increases the F1 score of the worst performing strategy. At the same time,
it leads to a decrease in the standard deviation of the performances of all strategies
with the same pool size. This means that as pools get larger the average performance
(estimate) of the classifier stabilizes with respect to slightly varying strategies. In other
words, the difference between the best and worst performing strategy with the same
pool size decreases with increasing pool sizes while at the same time the F1 score of the
worst performing strategy increases.While acceptable performance of pooling strategies
with large pool sizes is achieved for almost all target companies, for company A the
performance is still close to the F1 score of a randomly guessing model. Subsequently,
we investigated the best and worst performing strategies in detail. In line with what
one might expect, these strategies show patterns with respect to which company’s data is
used for training.When comparing the four best and worst performing pooling strategies
for predicting company A’s data, it can be seen that while the best performing strategies
used different combinations of the data of companies D and E during training, the worst
performing strategies did not use the data of these companies during training. This
suggests that there exists similarity between the data of company A and the data of
companies D and E. Similar patterns in the best and worst performing pooling strategies

1 Note that since we only consider strategies where a company’s data is not split, we only look at
a small subset of all possible pooling strategies. Moreover, we denote a strategy as “optimal”,
if it achieves the best performance with respect to the subset of strategies we consider, which
will most likely not be the global optimum.
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can be found for the prediction of other companies’ data as well. Interestingly, the
companies that make up a well-performing strategy can be found by evaluating the
predictive performance of a model trained exclusively on the data of a single source
company. When comparing the predictive performances of the single source company
strategies, we find that the best performing pooling strategies for predicting the data of
company A involved only data from companies that have a good single source company
strategy performance, namely companies D and E. Similar results are found for all other
companies. This suggests that the performance of a single source company strategy
can be used as a measure for the predictive power of one company’s data for another
company’s data. In fact, similar methods are used for estimating domain similarity and
for judging the utility of synthetic data [3, 8, 16].

Fig. 2. The left hand side shows the performance of the worst performing strategy for each pool
size. The right hand side shows the deviation of the strategy performances from the mean for each
pool size.

Within the subset of pooling strategies that we considered, there is no single “one-
fits-all” pooling strategy. Using all available source data for training yields acceptable
performance for predicting the data of most companies, however, for company A, this
approach does not work. This indicates that the data of company A is not similar enough
to the data of the other (source) companies for the use of this strategy. However, a model
that is trained using the data of company D predicts the data of company A sufficiently
well, which motivates a further analysis of the data of these two companies.

Table 1. Overview of relative feature importance (FI) and Pearson correlation coefficients

Company A Company D Pooled rest

Feature FI (rank) Pearson FI (rank) Pearson FI (rank) Pearson

Budget/day .33 (1) .12 .23 (1) .28 .12 (5) .089

Budget/empl. .13 (3) .21 .19 (2) .23 .15 (1) .23

External costs .14 (2) −.01 .01 (9) −.13 .12 (4) −.21

Team size .07 (7) −.1 .07 (7) −.14 .14 (2) −.42
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Data Similarity Analysis. To further investigate similarities between companies A and
D and differences between them and the other companies, an in-depth analysis of their
datawas conducted.Table 1presents the relative feature importance [7] of their respective
models and the Pearson correlation of the respective feature with the target class. For
company A, the relative importance of budget per day is significantly higher than for the
other companies under investigation. Yet, budget per day also ranks highest within the
model for company D supporting the evidence that companies A and D share common
characteristics. The cost feature, which is used to describe the proportion of external
costs in a project, a characteristic with usually high values for company A’s business
area (print production), has a high relative importance for companyAwhile beingmostly
irrelevant (company D) or differently correlated with the target feature (pooled dataset)
in other datasets. The relative feature importance scores of the model trained on the
pooled dataset are similarly distributed among most of the features.

5 Discussion and Conclusion

The results show that in the studied scenario all target companies can benefit from the
data of the source companies under certain circumstances. This is particularly interesting
as it demonstrates in a real-life example that SMEs can potentially take advantage of
supervised machine learning even if they do not have own historical data. Furthermore,
using all available data for training yields acceptable performance for predicting the data
of most companies. However, differences in source and target distributions can lead to
failure of data pooling and need to be considered. A potential mitigation strategy is to
find specific pooling strategies for groups of companies that share similar business and
data characteristics. Moreover, performance estimates from evaluating single company
data strategies can be helpful for guessing good pooling strategies as our analysis of
the respective best and worst pooling strategies shows. However, to estimate the sim-
ilarity between the source and target companies’ datasets, at least a small amount of
historical data is needed. In our scenario, the optimal pooling strategy was found by
computing all possible pooling combinations, which is not feasible for a larger number
of companies. In these cases, other transfer learning methodologies may be useful [17].
As project-based work is very common in the service sector of the marketing industry
and the features used for describing projects in this study are not company or project-
type-specific, we assume that the results are largely applicable to the marketing and
project-based industry in general. Poool’s cloud-based software services enabled us to
combine the data of different companies. To benefit from industry-wide and large-scale
data pooling in the future, frameworks that ensure trustworthy data exchange and data
sovereignty are indispensable [10]. The importance of initiatives such as International
Data Spaces and Gaia-X can therefore not be overestimated, when it comes to fully
harnessing the potential of data while addressing the security and privacy concerns of
participants.
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Abstract. Cross-domain alignment plays a key role in tasks ranging
from image-text retrieval to machine translation. The main objective is
to associate related entities across different domains. Recently, purely
unsupervised methods operating on monolingual embeddings have suc-
cessfully been used to infer a bilingual lexicon without relying on super-
vision. However, current state-of-the art methods only focus on point
vectors although distributional embeddings have proven to embed richer
semantic information when representing words. This paper investigates
a novel stochastic optimization approach for aligning word distributional
embeddings. Our method builds upon techniques in optimal transport to
resolve the cross-domain matching problem in a principled manner. We
evaluate our method on the problem of unsupervised word translation,
by aligning word embeddings trained on monolingual data. We present
empirical evidence to demonstrate the validity of our approach to the
bilingual lexicon induction task across several language pairs.

Keywords: Unsupervised alignment · Distributional embeddings ·
Word translation

1 Introduction

Word embedding alignment is a fundamental Natural Language Processing task
that aims at finding the correspondence between two sets of word embeddings.
Word embeddings are vectorial representations of words capable of capturing the
context of a word in a document, semantic and syntactic similarity as well as
its relation to other words. Therefore, each embedding space exhibits different
characteristics based on the semantic differences in the source of information
provided as input. However, it has been first observed in [24] that continuous
word embeddings exhibit similar structures across languages, even for distant
ones such as English and Vietnamese. For this reason, the task of aligning two
clouds of points is a crucial problem in this specific setting.

Often, the set of embeddings to align are in different languages, i.e., we
face the task of cross-lingual alignment. Loosely speaking, given a source-target
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bergmann et al. (Eds.): KI 2022, LNAI 13404, pp. 60–74, 2022.
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language pair, the goal is to find a mapping that goes from the embedding space
of one language to the embedding space of the other language. An example
related to Natural Language Processing (NLP) is the task of unsupervised word
translation. In this setting, the learning process can be seen as a generalization
of the unsupervised cross-domain adaptation problem [5,15,22,31] (Fig. 1).

(a) Point vector embedding alignment.

(b) Distributional vector embedding alignment.

Fig. 1. Unsupervised embedding alignment for two clouds of points in two different
languages (English and French.)

Several early studies have relied on supervision from a bilingual dictionary
in the form of few anchor points in order to induce the learning of the mapping
[2,17,19]. However, recently many unsupervised approaches have been proposed
and have obtained compelling results [1,3,16,18,20,33,34]. The unsupervised
approaches frame the problem as a distance minimization between distributions
using various distances, adversarial training, or domain adaptation. Generally
speaking, all these methods build on the observation that mono-lingual word
embeddings, or distributed representations of words, show similar geometric
properties across languages. Another key point is the nature of the representa-
tion. Like other types of embeddings, word embeddings develop in two directions:
point embeddings and probabilistic embeddings.

Point embeddings are powerful and compact representations that determinis-
tically map each word into a single point in a semantic space, where the semantic
similarity and other symmetric word relations are effectively captured by the rel-
ative position of points. Despite these positive properties, this projection into a
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single point in the embedding space brings also several limitations. Most impor-
tantly, it has been shown that a single point vector struggles to naturally model
entailment among words (e.g., animal entails dog but not vice versa) or other
asymmetric relations. Moreover, point vectors are typically compared by dot
products, cosine-distance or Euclidean distance, which are not well suited for
carrying asymmetric comparisons between objects (as is necessary to represent
relations such as inclusion or entailment). Asymmetries can reveal hierarchical
structures among words that can be crucial in knowledge representation and
reasoning [28]. Additionally, the point vector representation fails to express the
uncertainty about the concepts associated with a specific word (Fig. 2).

Fig. 2. Illustration of diagonal variances.
Each word is defined by the position of its
mean vector in the space and the dispersion
is indicated by the variance. The more spe-
cific word Labrador has a smaller variance
than the more general categories animal or
canine.

On the other hand, distributional
embeddings represent each word as
a probability distribution, such as a
Gaussian. Such a representation is
innately more expressive having the
ability to additionally capture seman-
tic uncertainties of words (as their
geometric shapes) to represent words
more naturally and more accurately
than point vectors [32]. They allow
mapping each word to soft regions
in space in a manner that facilitates
the modeling of uncertainty, inclusion
and entailment. Nevertheless, all the
approaches for unsupervised align-
ment of word embedding focused on
point vector.

In this paper, we propose an approach for aligning embedding spaces for a
source and a target language in an unsupervised manner that is suited for a
large set of embeddings. In particular, our algorithm shares similarities with the
work of [16] where a non-linear transformation and an alignment between two
point clouds are jointly learned. Experiments show the validity of the proposed
approach on the bilingual lexicon induction benchmark.

The paper is organized as follows: we first discuss related works that deal
with point-vector and distributional embedding models as well as alignment
of word embeddings with different degrees of supervision. Then, we formulate
the problem and introduce the necessary notation used throughout the paper.
Finally, we present our experimental setup and discuss the results obtained.

2 Motivation and Related Work

In this section, we briefly review the relevant state-of-the-art in this area, starting
first with point-based and distributional embeddings in NLP, and moving then to
the problem that we study in this paper, namely the alignment of word embed-
dings, where we briefly recapitulate supervised and unsupervised approaches.
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2.1 Point-Based Word Embeddings

One of the key problems in machine learning and natural language processing
has been computing meaningful representation for high-dimensional complex
data. This has been an active research area, from the traditional non-neural
isometric embeddings [6,8] to the more recent and complex methods [23,25,27].
And the most widely used algorithms for learning point-based word embeddings
are the continuous bag of words and skip-gram models [23], which use a series
of optimization methods such as negative sampling and hierarchical softmax
[26]. Another approach for learning word embeddings is through factorization of
word co-occurrence matrices such as GloVe embeddings [27]. This mechanism of
matrix factorization has been proved to be intrinsically linked to skip-gram and
negative sampling.

2.2 Probabilistic Embedding

The work of [32] established a new trend in the representation learning field by
proposing to embed words as probability distributions in R

d. In fact, recogniz-
ing that the point-based world struggles to naturally model entailment among
words (e.g., animal entails cat but not the reverse) or other asymmetric relations,
probabilistic embedding emerges as a method to capture uncertainties of words,
which can better capture word semantics and to express asymmetrical relation-
ship more naturally (than dot product or cosine similarity in the point-based
approach). Representing objects in the latent space as probability distributions
allows more flexibility in the representation and even express multi-modality. In
fact, point-vector embeddings can be considered as an extreme case of probabilis-
tic embeddings, namely a Dirac distribution, where the uncertainty is collapsed
into a single point (Fig. 3).

Fig. 3. Broader and more common terms have a wider dispersion than more specific
ones. This characteristic is lacking in point-vector embeddings.
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2.3 Minimally Supervised Alignment of Word Embeddings

As stated earlier, word embeddings allow representing word relations in a metric
space. Learning the projection of a word embedding space for a given language
into another embedding space is useful in many applications, in particular in
aligning vocabularies for different languages. Learning these cross-lingual map-
pings has initially been done using seed dictionaries. In fact, most early works
assumed some, albeit minimal, amount of parallel data [10,12,24]. [24] proposes
a mapping from one space to the other based on the least-squares objective
whereas [2,12,29] aim at finding an orthogonal transformation. Other works fall
under the minimally supervised category but aim at finding a common space on
which to project both sets of embeddings [11,21].

2.4 Fully Unsupervised Alignment of Word Embeddings

In recent works in the area, it has been shown that fully-unsupervised meth-
ods are able to perform on par with their supervised counterparts. The first
unsupervised bilingual alignment approaches [4,20,33] were based on Genera-
tive Adversarial Networks (GANs) [14]. These methods learn a linear transfor-
mation to minimize the divergence between a target distribution (e.g. Spanish
word embeddings) and a source distribution (the English word embeddings pro-
jected into the Spanish space). In the recent literature, a range of unsupervised
approaches that do not rely on the use of GANs has been proposed [2,16]. Our
approach relates more to those methods. [2] introduced a very simple, related ini-
tialization method that is, like our proposal, also based on Gromov-Wasserstein
distances between nearest neighbors: they use these second-order statistics to
build a seed dictionary directly by aligning nearest neighbors words across lan-
guages. [1] propose to learn the doubly stochastic Y , the matrix that determines
the mapping between the words of the languages to be aligned, as a transport
mapping between the metric spaces of the words in the source and the target lan-
guages. They optimize the Gromov-Wasserstein (GW) distance, which measures
how distances between pairs of words are mapped across languages. In brief,
[1] learn a linear transformation to minimize Gromov-Wasserstein distances of
distances between nearest neighbors, in the absence of cross-lingual supervision.

Another line of work of interest attempts to solve the unsupervised align-
ment problem as a domain adaptation task [31]. Their formulation searches the
optimal permutation matrix for a limited number of items, specifically the 20000
most frequent over the space of doubly stochastic matrices. They rely on a Rie-
mannian solver that allows exploiting the geometry of the doubly stochastic
manifold. Empirically, the proposed algorithm outperforms the GW algorithm
for learning bilingual mappings. Nevertheless, their approach is computationally
more expensive.

However, all these approaches rely on point-vectors. In this paper, we argue
that an unsupervised approach for aligning Gaussian embeddings can be bene-
ficial because these types of embeddings have been proven to encode relations
that normal point-vector fails to encode and could be particularly well suited for
low-resource languages.
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3 Approach

In this section, we describe the unsupervised alignment problem and the solution
strategy for dealing with Gaussian embeddings.

3.1 Problem Formulation

In the cross-lingual alignment problem, we are given a pair of source-target
languages with vocabularies Vx, with |Vx| = n and Vy, with |Vy| = m, respec-
tively. These vocabularies are represented by word embeddings X ∈ R

n×d and
Y ∈ R

m×d. The goal of the problem in its classical form is to find a mapping
between the set of source embeddings and target embeddings without parallel
data. In this work, we tackle the problem of finding a mapping between sets
of embeddings from a pair of languages but the inputs are not point-vectors.
A Gaussian embedding can be seen as a generalization of point embeddings.
Concretely, Gaussian embeddings are the result of representing data points as
probability distributions, namely Gaussian measures in R

d. Each Gaussian rep-
resentation w ∼ N (μ,Σ) is a tuple of a mean μ ∈ R

d (the location vector) and
a covariance matrix Σ ∈ S

d, the set of positive semi-definite d× d matrices. The
covariance matrix can be seen as the dispersion that represents the uncertainty
around the position of the location vector. In this work, we focus on diagonal
Gaussian embeddings, which are most used in the literature on probabilistic
embeddings, but our approach can easily be extended to the general case with
little effort.

The problem, then becomes, given a pair of sets of Gaussian embeddings
from a source language X represented by Mx ∈ R

n×d and Σx ∈ R
n×d
+ and from

a target language Y My ∈ R
n×d and Σy ∈ R

n×d
+ , find a mapping T : X −→ Y

such that T (xi ∈ Mx) ≈ yj ∈ My.
In the next section, we begin by discussing the solution by [16] and then

present our adaptation to deal with Gaussian embeddings.

3.2 Orthogonal Procrustes

The problem of finding a linear mapping between two clouds of matched vectors
is known as Procrustes. In the classical form, it is described as:

min
W ∈R

D ×D
‖XW − Y ‖2F

where W is the learned mapping and ‖·‖F is the Frobenius norm. This technique
has been successfully applied in different fields, from analyzing sets of 2D shapes
to learning a linear mapping between word vectors in two different languages
with the help of a bilingual lexicon [24]. Constraints on the mapping W can be
further imposed to suit the geometry of the problem. An appropriate choice of
the space for the mapping T represented by W in the general case will be the
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space of the orthogonal matrices (rotations and reflections). Hence the problem
becomes Orthogonal Procrustes:

min
Q∈OD

‖XQ − Y ‖2F (1)

where Od is the space of orthogonal matrices defined as :

Od = {W ∈ R
d×d|W TW = I}. (2)

The key advantage is that this problem has a closed-form solution. In fact,
given the singular value decomposition of XY T in UDV T , the optimal solu-
tion is

Qopt = UV T . (3)

3.3 Wasserstein Procrustes

However, the Eq. (1) represents the supervised alignment problem, in which the
learner is given a pair of sets of embedding correctly matched. If we generalize
the problem, to the case in which the learner does not have access to a pair of
matching embeddings, the problem at hand becomes:

min
Q∈OD ,P ∈Pd

‖XQ − PY ‖2F (4)

In this general case, the permutation matrix P that represents the matching
is also unknown. [16] tackle this problem by jointly learning P and W . While the
overall problem is non-convex and computationally expensive, they propose an
efficient stochastic algorithm to solve the problem and a convex relaxation which
is used as an initialization for their algorithm. This convex relaxation, namely
the Gold-Rangarajanng [13] relaxation is a convex approximation of the NP-hard
matching problem and can be solved with the Frank Wolfe algorithm. Loosely
speaking, once an initial transformation is obtained, it is used for learning the
singular value decomposition. Then, the authors propose a stochastic approach
in which a batch of vectors is sampled from both languages, at each step t. This
is motivated by the fact that the dimension of the permutation matrix P scales
quadratically with the number of points n. The approach consists in alternating
the full minimization of Eq. (4) in P and a gradient-based update in Q.

3.4 Wasserstein Procrustes for Gaussian Embedding

In order to adapt the learning problem for Gaussian distributions as inputs, we
re-frame the problem described by Eq. (4):

‖MxR − PMy‖2F + ‖Σx − PΣy‖2F (5)

As stated earlier, Mx and My represent the location (mean) vectors of the
source and target Gaussian embeddings respectively, whereas Σx and Σy are
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Algorithm 1: Unsupervised alignment of Gaussian embeddings
1 for t = 1 to T do
2 Draw X t from Mx and Y t from My , of size b
3 Given the current Rt, compute P t between X t and Y t

4 P t = arg max
P ∈Pb

Tr(RtX tP tY t)

5 Compute the gradient Gt w.r.t Rt:
6 Gt = −2X tP tY t

7 Gradient step:
8 Rt+1 = (Rt − αGt)
9 Project on the set of orthogonal matrices:

10 Rt+1 =
∏

Od
(Rt+1) = UV T

11 for i = 1 to L do
12 Draw X i from X tRt and Y i from P tY t

13 Draw Cx i from Σt and Cy i from P tΣt

14 P i = arg max
P ∈Pb

Tr(Cx
T
i Cy i)

15 Compute the gradient Gi w.r.t Ri:
16 Gi = −2X iP iY i

17 Gradient step:
18 Ri+1 = (Ri − αGi)
19 Project on the set of orthogonal matrices:

20 Ri+1 =
∏

Od
(Ri+1) = UV T

21 end for

22 end for

the diagonal covariance matrices. The transformation R is derived solely from
the first term of the equation. The intuition comes from the fact that the
covariances represent, from a geometrical point of view, the dispersion of the
embeddings. However, the permutation matrix P , which identifies the matching
should be based also on the covariances. This is justified by the fact that mono-
lingual embeddings exhibit similar geometric properties across languages and
taking into account the covariances of the embedding acts as a regularization
of the optimization problem. Concretely, the permutation matrix P t ∈ Pd at
step t is derived from RTXTPY and ΣT

x Σy. The procedure is illustrated in
Algorithm 1.

The second term of Eq. (5) is the contribution of the dispersion term to the
Wasserstein distance of the Gaussian distributions. If we assume that the geo-
metrical similarity of the embedding spaces is maintained across languages, then
we can reasonably expect that corresponding embeddings in different languages
will behave in the same way. As an example, we can consider words that describe
a categorisation of elements such as the words “fruit” or “animal”. We know that
the Gaussian representations of these words have a greater dispersion than their
more specific counterparts, such as “pear” or “dog”. We can reasonably expect
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the same phenomenon to occur across languages. We propose to optimize this
problem in steps:

– First, learn an optimal orthogonal matrix Rt and permutation matrix P t

only using the means of the Gaussian embeddings.
– Then, given this initial mapping and matching applications, refine the per-

mutation matrix P t with few iterations to match also the covariances and
used this new learned P i to derive Ri.

The naive approach to optimize Eq. (5) might be to add a term to take into
account the covariances at step denoted by line 3 in Algorithm 1. However, the
magnitude of the cost matrix derived from the covariances is too small, and
we found that the best approach will be a nested gradient descent. First, we
estimate optimal P and R only from the location vectors, then we refine them
with a few iterations L << T .

In order to quantitatively assess the quality of our approach, we consider
the problem of bilingual lexicon induction for Gaussian embedding. In the next
section, we describe the procedure to generate our mono-lingual probabilistic
embeddings and we investigate the use of the covariance to learn the unsuper-
vised alignment.

4 Experiments

In the following section, we present the experimental evaluation of our approach.
Through this step, we seek to understand the impact of the covariance in the
optimization dynamics and to evaluate the performance of our approach for the
task of cross-lingual word embedding translation.

4.1 Data Generation

The first step for any unsupervised alignment algorithm is to provide the source
and target embeddings. To the best of our knowledge, there aren’t any trained
Gaussian mono-lingual embeddings publicly available. The standard benchmark
dataset for the cross-lingual is from [20] trained with FastText [7] on Wikipedia
dumps and parallel dictionaries for 110 language pairs. The original Wikipedia
dumps were not made available, which would have made it easier to retrain Gaus-
sian embedding. We choose the following solution: we train a model using the
method described in [32] with the exception that the weights for the mean com-
ponent of the model are initialized with FastText embeddings. We fine-tune the
embedding on Wikipedia dumps for each language for 3 epochs, with a learning
rate λr = 0.05 using Adagrad for optimization. We maintain the dimensionality
of the FastText embedding, i.e., 300 dimensions. As generally done for language
modeling, we keep only the tokens appearing more than 100 times in the text
(for a total average number of 210, 000 different words for all languages used).
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Table 1. P@1 on five European languages: English, French, Spanish, German and
Russian. Here “en-xx” refers to the average P@1 over multiple runs when English is
the source language and xx is the target language. We notice, as expected that the
performance is similar for closely related pairs of languages.

en-fr fr-en en-es es-en en-de de-en en-ru ru-en

μ 68.4 69.3 67.4 71.3 62.1 59.8 33.4 49.7

(μ, Σ) 70.5 71.8 70.8 73.2 64.1 60.1 29.6 41.2

4.2 Experimental Setup

After obtaining the required monolingual embeddings we proceed as follows: we
first learn an alignment solely based on the means. This will be considered as
the baseline that will allow us to appreciate the influence of the covariances in
the computation of the alignment. We follow the same training protocol as in
[16]. More precisely, we perform 5 epochs and the batch size is doubled at the
beginning of each epoch while reducing the number of iterations by a factor of 4.
The first epoch of our method uses a batch size of 500 and 5000 iterations. We
also use the Sinkhorn solver of [9] to compute approximate solutions of optimal
transport problems, with a regularization parameter of 0.05. The number of
iterations in the nested step is set at 2 and the learning rate is set at 0.1 times
the learning rate used in the prior step.

Since the bilingual lexicon induction problem can be seen as a retrieval prob-
lem, the standard practice is to report the precision at one (P@1). As a criterion,
we compute a direct nearest-neighbor search on the mean of the Gaussian embed-
dings. We tried computing a distance that will take into account the covariance
matrix but we noticed that the impact on the P@1 score was negligible.

Following [1], we consider the top n = 20, 000 most frequent words in the
vocabulary set for all the languages during the training stage. The inference is
performed on the full vocabulary set. The obtained results are summarized in
Table 1.

4.3 Discussion

In order to qualitatively assess the contribution of the covariance matrix, the
results obtained considering the covariance matrices are compared to the ones
without considering the covariance matrices. Overall, the performance improves
when taking into account the covariances. This can also be explained by the
fact that the terms containing the covariance act as a regularization. Due to the
presence of a nested step, the computational time increases slightly compared
to the point-vector case. However, the number of iterations in the nested loop is
small, between 2 and 5, hence it is not a dramatic increase.

One explanation for the improvement of the results when taking into account
the covariances might be the refinement step. In fact, it has been observed in
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[2,20] that refining the alignments improves the performance by a significant
margin.

A general observation is that similar pairs of languages have similar perfor-
mance overall. However, some interesting points must be taken into account for
the task of unsupervised bilingual dictionary induction:

– Impact of off-the-shelf embeddings: We rely on the FastText embedding
for obtaining the embedding to align for different languages. However, Fast-
Text is trained on approximately 16M sentences in Spanish and 1M sentences
in English. The Gaussian embeddings are induced from the point vector and
the performance can be explained by the quality of the starting embeddings.

– Impact of domain difference: having a large monolingual corpus from sim-
ilar domains across languages is of vital importance. In fact, it is known that
when two corpora come from different topics or domains, the performance
is extremely degraded. The domain dissimilarity computed by metrics such
as the Jensen-Shannon divergence is significant. The term distribution is an
important factor in Gaussian embeddings since the dispersion (the variance)
is the direct result of the uncertainty inherent in the dataset. This is a fac-
tor that must be taken into account for aligning Gaussian embeddings in an
unsupervised manner.

– Impact of language similarity: The morphological typology of the lan-
guage is a factor that should be considered. The main considered are: fusional,
agglutinative, isolating. A fusional language tends to form words by the fusion
(rather than the agglutination) of morphemes so that the constituent elements
of a word are not kept distinct. Notable examples are the Indo-European lan-
guages. An agglutinative language has words that are made up of a linear
sequence of distinct morphemes and each component of meaning is repre-
sented by its own morpheme, for example, Finnish and Turkish. Finally, an
isolating language is a natural language with no demonstrable genealogical
relationship with other languages, examples are Vietnamese and Classical
Chinese. The nature of the language pairs should be considered as it could
have a bigger impact on unsupervised alignment for distributional embedding
rather than the point-vector counterpart.

In general, our results are aligned with the performance shown by [16] for the
same retrieval criterion. It is worth noticing that the embeddings used are the
result of quick fine-tuning, their quality is far lower than the FastText embedding
from the MUSE dataset [20]. This is valid for all pairs of languages besides the
coupling “en-ru”. In this specific case, we observe that the performance of the
covariance approach is worse than the alignment of the only means. This can
be explained by the fact that English and Russian are distant languages and
the relations expressed by the dispersion in the Gaussian embeddings in English
might not correspond to the same relations in Russian. In fact, as stated earlier,
the covariance matrix in Gaussian embeddings from a geometrical point of view
corresponds to the uncertainty in the representation. Hence broad concepts have
large variance and more focused concepts have a smaller variance or dispersion.
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Another explanation can be in the fact that the main assumption for unsu-
pervised alignment approaches is that transformation is isomorphic. However,
as shown in [30] this is not true for all language pairs. And since our approach
is based on enforcing similarity between concepts that might not share the same
dispersion this might be an explanation for the poor performance in this specific
language. A way to overcome this might be to provide a small seed dictionary
and turn the problem into a minimally supervised one. Few key concepts that are
geometrically related even in distant languages might work as landmark points.
In the following section, we present the experimental evaluation of our approach.
Through this step, we seek to understand the impact of the covariance in the
optimization dynamics and to evaluate the performance of our approach for the
task of cross-lingual word embedding translation.

4.4 Data Generation

The first step for any unsupervised alignment algorithm is to provide the source
and target embeddings. To the best of our knowledge, there aren’t any trained
Gaussian mono-lingual embeddings publicly available. The standard benchmark
dataset for the cross-lingual is from [20] trained with FastText [7] on Wikipedia
dumps and parallel dictionaries for 110 language pairs. The original Wikipedia
dumps were not made available, which would have made it easier to retrain Gaus-
sian embedding. We choose the following solution: we train a model using the
method described in [32] with the exception that the weights for the mean com-
ponent of the model are initialized with FastText embeddings. We fine-tune the
embedding on Wikipedia dumps for each language for 3 epochs, with a learning
rate λr = 0.05 using Adagrad for optimization. We maintain the dimensionality
of the FastText embedding, i.e., 300 dimensions. As generally done for language
modeling, we keep only the tokens appearing more than 100 times in the text
(for a total average number of 210, 000 different words for all languages used).

4.5 Experimental Setup

After obtaining the required monolingual embeddings we proceed as follows: we
first learn an alignment solely based on the means. This will be considered as
the baseline that will allow us to appreciate the influence of the covariances in
the computation of the alignment. We follow the same training protocol as in
[16]. More precisely, we perform 5 epochs and the batch size is doubled at the
beginning of each epoch while reducing the number of iterations by a factor of 4.
The first epoch of our method uses a batch size of 500 and 5000 iterations. We
also use the Sinkhorn solver of [9] to compute approximate solutions of optimal
transport problems, with a regularization parameter of 0.05. The number of
iterations in the nested step is set at 2 and the learning rate is set at 0.1 times
the learning rate used in the prior step.

Since the bilingual lexicon induction problem can be seen as a retrieval prob-
lem, the standard practice is to report the precision at one (P@1). As a criterion,
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we compute a direct nearest-neighbor search on the mean of the Gaussian embed-
dings. We tried computing a distance that will take into account the covariance
matrix but we noticed that the impact on the P@1 score was negligible.

Following [1], we consider the top n = 20, 000 most frequent words in the
vocabulary set for all the languages during the training stage. The inference is
performed on the full vocabulary set. The obtained results are summarized in
Table 1.

5 Conclusion

This work presents a method to align Gaussian embeddings in high-dimensional
space. Our approach is motivated by the fact that Gaussian embeddings have
proven to possess characteristics that are not present in normal point-based vec-
tors. We propose to include in the optimization of the Orthogonal Procrustes
method via stochastic optimization a step that takes into account the difference
between matched covariances. We show that our method performs better than
the solely point-vector-based approach. However, we also observed that this app-
roach might lead to a decrease in accuracy when the pair of languages considered
is too distant. In fact, in that case, the approach might force distant concepts
to have similar dispersion. In future work, we would like to extend this to deal
with full covariance Gaussian embeddings as well as other elliptical embeddings
and find a solution to overcome the issue of distant languages.
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Abstract. Many physical processes such as weather phenomena or
fluid mechanics are governed by partial differential equations (PDEs).
Modelling such dynamical systems using Neural Networks is an active
research field. However, current methods are still very limited, as they
do not exploit the knowledge about the dynamical nature of the system,
require extensive prior knowledge about the governing equations or are
limited to linear or first-order equations. In this work we make the obser-
vation that the Method of Lines used to solve PDEs can be represented
using convolutions which makes convolutional neural networks (CNNs)
the natural choice to parametrize arbitrary PDE dynamics. We combine
this parametrization with differentiable ODE solvers to form the Neu-
ralPDE Model, which explicitly takes into account the fact that the data
is governed by differential equations. We show in several experiments on
toy and real-world data that our model consistently outperforms state-
of-the-art models used to learn dynamical systems.

Keywords: NeuralPDE · Dynamical systems · Spatio-temporal · PDE

1 Introduction

Deep learning methods have brought revolutionary advances in computer vision,
time series prediction and machine learning in recent years. Handcrafted feature
selection has been replaced by modern end-to-end systems, allowing efficient
and accurate modelling of a variety of data. In particular, convolutional neural
networks (CNNs) automatically learn features on gridded data, such as images or
geospatial information, which are invariant to spatial translation [7]. Recurrent
neural networks (RNNs) such as long short-term memory networks (LSTMs) or
gated recurrent units (GRUs) are specialised for modelling sequential data, such
as time series or sentences (albeit now replaced by transformers) [16].

Recently, modelling dynamical systems from data has gained attention as
a novel and challenging task [12,15,18,28]. These systems describe a variety
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of physical processes such as weather phenomena [22], wave propagation [12],
chemical reactions [24], and computational fluid dynamics [2]. All dynamical
systems are governed by either ordinary differential equations (ODEs) involv-
ing time derivatives or partial differential equations (PDEs) involving time and
spacial derivatives. Due to their chaotic nature, learning such systems from data
remains challenging for current models [4].

In recent years, several approaches to model dynamical data incorporating
prior knowledge about the physical system have been proposed [3,17,18,20].
However, most of the models make specific assumptions about the type or struc-
ture of the underlying differential equations: they have been designed for spe-
cific problem types such as advection-diffusion problems, require prior knowledge
about the equation such as the general form or the exact equation, or are limited
to linear equations. In current literature only a handful of flexible approaches
exist [1,10,12].

In this work we propose NeuralPDE, a novel approach for modelling spatio-
temporal data. NeuralPDE learns the dynamics of partial differential equations
using convolutional neural networks as summarized in Fig. 1. The derivative
of the system is used to solve the underlying equations using the Method of
Lines [26] in combination with differentiable ODE solvers [5]. Our approach
works on an end-to-end basis, without assuming any prior constraints on the
underlying equations, while taking advantage of the dynamical nature of the
data by explicitly solving the governing differential equations.

The main contributions of our work are1:

1. We combine NeuralODEs and the Method of Lines through usage of CNNs
to account for the spatial component in PDEs.

2. We propose using general CNNs that do not require prior knowledge about
the underlying equations.

3. NeuralPDEs can inherently learn continuous dynamics which can be used
with arbitrary time discretizations.

4. We demonstrate that our model is applicable to a wide range of dynamical
systems, including non-linear and higher-order equations.

2 Related Work

NeuralODEs [5] introduces continuous depth neural networks for parametrizing
an ODE. The networks are combined with a standard ODE solver for solving
the ODE. NeuralODE forms the basis for our method in the same way that
numerical ODE solvers are the basis for one family of numerical PDE solvers.

Many approaches for learning dynamical systems from data operate under
strong assumptions about the underlying data: Universal Differential Equa-
tions (UDE) [19], Physics Informed Neural Networks (PINN) [21], and PDE
Net 2.0 [17] require prior knowledge about the generating equations. UDEs use

1 Our code will be made publicly available upon publication.
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Fig. 1. NeuralPDE: combining the method of lines and NeuralODE. Our model
employs a CNN to parametrize the dynamics of the system ∂U

∂t
. This allows the repre-

sentation of the PDE by a system of ODEs (Method of Lines) which is solved using any
differentiable ODE Solver predicting multiple future states (three in the figure above).
The CNN is trained using adjoint backpropagation.

separate neural networks to model each component of a PDE and have to be
redesigned manually for every new PDE. PINNs are a machine learning tech-
nique for neural networks which design the loss function such, that it satisfies
the initial value problem of the PDE. PDE-Net 2.0 assumes a library of avail-
able components and learns the parameters of the linear combination of these
components using a ResNet-like model. Finite Volume Networks (FINN) [18]
integrate the finite volume method with neural networks, but are strictly lim-
ited to advection-diffusion type equations. Our results show that none of the
restrictions apply to NeuralPDE: we do not need to know the exact PDE that
governed the data and make no assumption about the structure of the governing
PDE.

Flexible approaches include Distana [12], hidden state models [1], and the
approaches proposed by Berg [3] and Iakovlev [10]. Distana [12] describes a neu-
ral network architecture that combines two types of LSTM-based kernels: pre-
dictive kernels make predictions at given spatial positions, transitional kernels
model transitions between adjacent predictive kernels. Distana proved success-
ful in modeling wave equations and is applicable for further problems. Iakovlev
et al. [10] propose using message passing graph neural networks in conjunction
with Neural ODEs for modelling non-equidistant spatial grids and non-constant
time intervals and evaluate their method on generated data. In contrast to our
approach, they use message passing graph neural networks which are inherently
computationally less efficient than our method. We provide a theoretical justifi-
cation for using convolutional filters and use real-world as well as generated data
for our experiments.

Berg [3] introduce a two step procedure: in the first step, the data is approx-
imated by an arbitrary model. In the second step a differentiation operator is
approximated by training a neural network on the data approximator and its
derivatives up to a given order.
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Ayed et al. [1] introduce the hidden state method with a learnable projection
matrix to transform observed variables into a hidden state. The authors apply
their method to training small ResNets as parametrizations of dynamics on
toy data as well as real world data sets. Contrary to their method, we do not
assume an underlying hidden process and instead directly learn the dynamic.
Additionally we do not use residual connections in our parametrization, as our
theoretical results show (Sect. 4) that direct convolutions are the best choice.

3 Task

Dynamical systems can be defined as a deterministic rule of evolution of a state
in time [13]. At any point in time t ∈ T the entirety of the system is assumed
to be completely described by a set of space variables x from the state space X.
The evolution of the system is given by the evolution function:

Φ : T × X −→ X (1)

which describes the how an initial state x0 ∈ X is transformed into the state
x1 ∈ X after time t1 ∈ T as Φ(t1, x0) = x1. An important property of dynam-
ical systems is their time homogeneity, meaning the evolution of the state only
depends on the current state:

Φ(t1, Φ(t2, x)) = Φ(t1 + t2, x) (2)

The main concern of this work is dynamical systems governed by a set of par-
tial differential equations. These are continuous spatio-temporal systems where
the state at each point in time is described by a field of k quantities on a given
spatial domain Ω ⊆ R

n. Examples of dynamical systems that can be described
by PDE include many physical systems such as weather phenomena [22] or wave
propagation [12]. These systems often exhibit chaotic behaviour which makes
them difficult to model with classical machine learning models [11].

We define the task of modeling dynamical systems from data as a spatio-
temporal time series prediction task, where from one or more states used as input
the model should predict the evolution of the state for the next H timesteps.
As opposed to physical simulations (usually used to model such systems) where
the governing equation is known, in this task the equation is assumed to be
unknown. Additionally, retrieving the exact form of the equation is also not part
of the task, which is the task of learning differential operators from data [17].

4 Neural PDE

In this section we describe our method, which combines NeuralODEs and the
Method of Lines through the use of a multi-layer convolutional neural network
to model arbitrarily complex PDEs. Our primary focus lies on modelling spatio-
temporal data describing a dynamical system and not on recovering the exact
parameters of the differential equation(s).
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4.1 Method of Lines

The Method of Lines describes a numerical method of solving PDEs, where all of
the spatial dimensions are discretized and the PDE is represented as a system of
ordinary differential equations of one variable, for which common ODE solvers
can be applied [26]. Given a partial differential equation of the form

∂u

∂t
= f(t, u,

∂u

∂x
,
∂u

∂y
, . . .) (3)

where u = u(t, x, y), x ∈ X, y ∈ Y is the unknown function, the spatial
domain X × Y is discretized on a regular grid X ∼ {x1, x2, . . . , xN} and
Y ∼ {y1, y2, . . . , yM}. The function u can then be represented as N ·M functions
of one variable (i.e. time):

u(t) �

⎡
⎢⎣

u(t, x1, y1) · · · u(t, xN , y1)
...
. . .

...
u(t, x1, yM ) · · · u(t, xN , yM )

⎤
⎥⎦ =: U (4)

From this representation one can derive the discretization of the spatial deriva-
tives:

∂u

∂x
(t, xi, yi) =

u(t, xi+1, yi) − u(t, xi−1, yi)
xi+1 − xi−1

(5)

and
∂u

∂y
(t, xi, yi) =

u(t, xi, yi+1) − u(t, xi, yi−1)
yi+1 − yi−1

(6)

When a fixed grid size is used for the discretization, the spatial derivatives can
thus be represented as a convolutional operation [7]:

Ux = conv(
1

2Δx

⎡
⎣

0 0 0
−1 0 1

0 0 0

⎤
⎦ ,U) Uy = conv(

1
2Δy

⎡
⎣

0 −1 0
0 0 0
0 1 0

⎤
⎦ ,U) (7)

where Δx and Δy are the constant grid sizes for both spatial dimensions:

Δx = xi+1 − xi, i = 1, . . . , N

Δy = yi+1 − yi, i = 1, . . . ,M
(8)

Higher-order spatial derivatives can be represented in a similar fashion by a
convolutional operation on the lower-order derivatives. This can be easily seen
from the representation

∂p+qu

∂xp∂yq
=

∂

∂x

∂p+q−1u

∂xp−1∂yq
=

∂

∂y

∂p+q−1u

∂xp∂yq−1
(9)

as higher-order derivatives are defined as derivatives of lower-order derivatives.
The original PDE can now be represented as a system of ordinary differential

equations, each representing the trajectory of a single point in the spatial domain
(thus the name Method of Lines):
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dU
dt

� f(t,U ,Ux,Uy, . . .) = f∗(t,U) (10)

for which any numerical ODE solver can be used.

4.2 NeuralPDEs

Our method makes the assumption that the spatio-temporal data to be modelled
is governed by a partial differential equation of the form Eq. (3), but by physical
constraints of the measuring process, the data has been sampled on a discrete
spatial grid as in Eq. (4) and depicted in Fig. 1 on the bottom left. We also
assume that the dynamics of the system only depends on the state of the system
itself

f∗(t,U) = f∗(U) (11)

As can be seen from Eq. (7), the spatial derivatives of the discretized PDE
can be represented by a convolutional filter on the values of U and thus the
whole dynamics of the system (which depends on the spatial derivatives) can be
recovered from U .

Figure 1 shows an overview of our model. Given the state of the system U0

at t = t0, our method uses the Method of Lines representation of the underlying
PDE (given by Equation (10)) and employs a multi-layer convolutional network
to parametrize the unknown function f∗ describing the dynamics of the system

dU
dt

� f∗(U) � CNNθ(U) (12)

Similar to NeuralODEs [5], the parametrization of the dynamics is used in
combination with differentiable ODE solvers. Predictions are made by numeri-
cally solving the ODE Initial Value Problem given by

dU
dt

= CNNθ(U)

U(t0) = U0

(13)

for time points t1, . . . , tK . The weights θ of the parametrization CNNθ are
updated using adjoint backpropagation as described in [5].

For higher-order equations our model is augmented with additional chan-
nels corresponding to higher order derivatives. Given the ordinary differential
equation system

dpU
dtp

= f∗(t,U) (14)

we parametrize the lower-order derivatives as separate variables

dV1

dt
:=

dU
dt

dV2

dt
:=

d2U
dt2

· · · dVp−1

dt
:=

dp−1U
dtp−1

(15)

Using these auxiliary variables V1, . . . Vp−1, the original equation Equation
(16) can be rewritten as a system of p first-order ODEs:
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dU
dt

= V1
dV1

dt
= V2 · · · dVp−1

dt
= f∗(t,U) (16)

We implement this augmentation method within NeuralPDE to represent
higher-order dynamics.

5 Data

Our aim for NeuralPDE is to be applicable to the largest possible variety of
dynamical data. For this, we curated a list of PDEs from related work as toy
data, one simulated climate data set (PlaSim), and two reanalysis data sets
(Weatherbench and Ocean Wave).

Toy Data Sets. We use several equation systems that are available from other
publications as toy data sets: the advection-diffusion equation (AD), Burger’s
equation (B), the gas dynamics equation (GD), and the wave propagation equa-
tion (W). The equation systems and the parameters used for data generation are
available from Appendix A. We use 50 simulations for different initial conditions
for training, and 10 for validation and testing each.

Weatherbench [22]. Weatherbench is a curated benchmark data set for learning
medium-range weather forecasting model from data. The data is derived from
ERA5 archives and is accompanied by evaluation metrics, and several baseline
models. Instead of the very large raw data set, we use the data set with a spacial
resolution of 5.625◦ or 32×64. Following the recommendation of Rasp et al. [22],
we use geopotential at 500 hPa pressure and temperature at 850 hPa pressure
as target variables. Data from years 1979 to 2014 is used for training, 2015 and
2016 for validation and 2017 and 2018 for testing.

Ocean Wave 2. The Ocean Wave data set contains aggregated global data on
ocean sea surface waves from 1993 to 2020. The data is on an equirectangular grid
with a resolution of 1/5◦ or approximately 20 km and with a temporal resolution
of 3 h. We regrid the data to a spatial resolution of 32 × 64 to match Plasim
and Weatherbench. We use spectral significant wave height (Hm0), mean wave
from direction (VDMR) and wave principal direction at spectral peak (VPED)
as target variables. Data from years 1993 to 2016 is used for training, 2017 and
2018 for validation and 2019 and 2020 for testing.

PlaSim 3 The Planet Simulator (PlaSim) is a climate simulator using a medium
complexity general circulation model for education and research into climate
modelling and simulation. For simulation, we used the setup plasimt21 as pre-
sented in [25], Sect. 2.1. Our simulation data contains one data point per day
2 https://resources.marine.copernicus.eu/product-detail/

GLOBAL MULTIYEAR WAV 001 032/INFORMATION.
3 https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/

modelle/plasim.html.

https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_WAV_001_032/INFORMATION
https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_WAV_001_032/INFORMATION
https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html
https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html
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for 200 years. We use temperature, geopotential, wind speed in x direction and
wind speed in y direction at the lowest level of the simulation as our target vari-
ables. Data from the first 180 years of the simulation is used for training, the 10
following years for validation and the years 191 through 200 for testing.

Fig. 2. Architecture of our NeuralPDE models. We use four convolutional layers with
k = 16 channels, 3 × 3 kernels, SeLu activation functions, and o as the number of
outputs.

6 Experiments

We train and evaluate NeuralPDE and all selected comparison methods on the
seven datasets as described below.

6.1 NeuralPDE Architecture

Figure 2 shows the NeuralPDE architecture: a four layer CNN. The first con-
volutional layer increases the number of channels to k, the last convolutional
layer reduces the number of channels down to the number of inputs. Then any
number of intermediate layers each with k channels can be used to perform the
main computations. After some primary experimentation we set the number of
intermediate layers to 4 and the number of channels k to 16. The number of
outputs o depends on the choice of equation. We train and evaluate two versions
of our model using a first-order and second order dynamic as described in Eq.
(16). We denote these models as NeuralPDE-1 and NeuralPDE-2 respectively

6.2 Comparison Models

We evaluate our model against several models from related work and simple
baselines. We follow [12] in the selection of our comparison models which we
shortly describe in this section. We omit models discussed in Sect. 2 which require
prior knowledge about the equations.

Baseline. Persistence refers to a model that directly returns it input as output.
It always takes the state at t − 1 as the current prediction.
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CNN. Similar to [12] we use a CNN [14] consisting of multiple convolutional lay-
ers as a comparison model. We use the same architecture as for our NeuralPDE
model.

ResNet. Motivated by the recent success of ResNet type architectures for mod-
elling weather data [23], we include a simple ResNet model using identity map-
pings as proposed in [8]. He et al. [8] use an residual unit consisting of BatchNorm
layer followed by a ReLu activation, linear layer, BatchNorm, ReLu and another
linear layer, which is then connected to the input by an additive skip-connection.
We stack 4 residual blocks preceded and followed by a linear CNN layer during
our experiments.

Distana. [12] propose the distributed spatio-temporal artificial neural network
architecture (DISTANA) to model spatio-temporal data. Their model uses a
graph network with learnable prediction kernels (LSTMs) at each node to learn
spatio-temporal data. We adopt the implementation of Distana from [18].

ConvLSTM. The convolutional LSTM as proposed in [27] replaces the fully con-
nected layers within the standard LSTM model [9] with convolutional layers. It
is well suited for modelling sequential grid data such as sequences of images [29],
or precipitation nowcasting [27]. We thus reason it might provide a strong com-
parison for modelling dynamical data. We stack 4 ConvLSTM layers with 16
channels preceded and followed by a linear CNN layer for our experiments.

PDE-Net. PDE-Net 2.0 [17] is a model explicitly designed to extract governing
PDEs from data. Contrary to our approach it focuses on retrieving the equation
in interpretable, closed form and not on modelling the data accurately. It uses a
collection of learnable convolutional filters, connected together within a symbolic
polynomial network to parametrize the dynamic. Our implementation is adapted
from Long et al. [17] and we use their parameters for our experiments.

Hidden State. Ayed et al. [1] propose a hidden state model, using a learnable
projection to transform the input data into a higher-dimensional hidden state,
where similarily to our approach, a differentiable solver is used to predict the
next states. The predictions are projected again into the observed space by taking
the first o dimensions, where o is the number of observed variables. We adopt
the original parameters from [1] to perform our experiments. We project the
observed data into a hidden state of 8 channels.

6.3 Training

Each model is trained in a closed-loop setting, where only the state of the system
at t0 is used as input for each of the models and the output Ût at step t is fed
again into the model to make the prediction at step t + 1. For the higher-order
models we initialize the higher-order derivatives as zeroes.
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We train all our models using a horizon of 4 time steps with batch size 8, 5000
steps per epoch, and 5 epochs in total for both our NeuralPDE and the Hidden
State model and 20 epochs for all other models. We use the Adam optimizer
with the learning rate of 0.001.

All experiments are performed on a machine with a Nvidia RTX GPU, 16
CPUs and 32 GB RAM.

Table 1. Average RMSE 16-step predictions for all models. For our NeuralPDE model
we only show the better score between the first and second order model. Bold print
denotes the best model for each dataset, 1 denotes NeuralPDE-1, 2 denotes NeuralPDE-
2. AD - Advection-Diffusion, B - Burgers, GD - Gas Dynamics, OW - Ocean Wave, P
- PlaSim, W - Wave Propagation, WB - Weatherbench.

Model AD B GD W OW WB P

Persistence 0.932 0.080 0.220 1.481 0.558 0.114 0.708

CNN 0.113 0.437 0.348 1.016 0.440 0.107 0.573

Distana 0.174 0.102 0.144 0.958 0.440 0.108 0.559

ConvLSTM 0.497 0.079 0.167 1.102 0.463 0.107 0.546

ResNet 0.086 0.314 0.200 1.043 0.427 0.103 0.537

PDE-Net 0.007 0.078 0.112 1.046 0.488 0.100 1.802

Hidden State 0.639 0.066 0.097 1.115 0.482 0.096 0.572

NeuralPDE-* (Ours) 0.0571 0.0631 0.0921 0.8462 0.4351 0.0971 0.5631

7 Results

All models are evaluated using a prediction horizon of 16 time steps, using a
hold-out test set as described in Sect. 5. Table 1 compares the RMSE averaged
over 16 prediction steps and all target variables. Bold entries denote the best
model for any given dataset.

The first four datasets (AD, B, GD, W) represent generated toy datasets of
four different partial differential equations. Our model achieves state-of-the-art
performance on all of these datasets except on the advection-diffusion equation,
where the PDE-Net 2.0 model [17] outperforms all other models by a large
margin. We hypothesize that the very simple dynamic governing this equation
(given by just one linear convolutional filter) makes it very easy for the explicit
approach used by the PDE-Net model to learn the dynamic. On the other hand,
our approach, which parametrizes the dynamic by a multilayer convolutional
network is better at learning more complex systems of equations.

On the real-world datasets (OW, WB, P) NeuralPDE-1 closely matches the
best state-of-the-art models on the Oceanwave and Weatherbench datasets com-
ing in second best. The Plasim dataset shows to be particularily difficult to learn
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for methods which directly parametrize the underlying dynamics (Hidden State,
PDE-Net 2.0, NeuralPDE). Our results show that the ResNet model achieves
best performance on this dataset. We hypothesize that the large time steps of
1 day in the simulated data makes it difficult for a continuous dynamic to be
learned by our model.

Figure 3 shows the comparison of all tested models over increasing prediction
horizons. We only show a selection of different datasets and target variables,
the full overview is available from Appendix B. For all models the prediction
accuracy decreases with increasing prediction horizon.

Fig. 3. Predictions over different horizons. The figure shows the RMSE for four different
datasets and target variables for all tested models as a function of the prediction
horizon.

8 Discussion

Our method uses a multi-layer convolutional network as a generalized approach
to represent differential equations. Our experiments demonstrate that the same
architecture can be applied successfully to learn a wide variety of PDE types,
including linear and non-linear equations, equations in one and two dimensions,
second-order equations, and coupled PDE systems of up to four equations. In our
current setting, NeuralPDE achieves state-of-the-art perfomance on generated
data except for very simple equations, where we hypothesize a much simpler and
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less overparametrized network might perform better. On the real-world datasets
models that do not approximate the dynamic directly (ResNet) outperform our
model and other models of this type, albeit not by a large margin.

One advantage of NeuralPDE over other flexible approaches is its inherent
ability to directly capture the continous dynamics of the system. While Distana
or ResNet [23] can only make discrete predictions at the next point in time,
NeuralPDE can make predictions for any future point in time. This also enables
the modelling of data sampled at non-equidistant points in time. In our exper-
iment we used a fixed-step Euler solver, but in principle our method can be
applied with any black-box numerical solver, including adaptive solvers like the
Dormant-Prince (dopri) family of solvers [6].

Currently, NeuralPDEs only encompass periodic boundary conditions. We
hypothesize that NeuralPDEs can be extended to other boundary conditions by
adapting the parameterization of the convolutional layer, e.g. different padding
types. Moreover, the boundary conditions need to be specified beforehand and
cannot yet be learned directly from data.

The Method of Lines comes with its own set of limitations: most prominently,
it cannot be used to solve elliptical second-order PDEs. These limitations apply
directly to NeuralPDEs as well.

Our model is a black box model that comes with limited interpretability.
While we do not directly learn the parametrization of a PDE, we could in theory
extract the trained filters from the network for simple linear equations similarily
to the PDE-Net [17]. However, as the system of equations grows more complex,
the exact form of the PDE cannot be recovered from the learned weights.

If the order of the underlying system of equations is known, the appropriate
order of our model can be chosen. This is unfortunately not the case for many
real-world applications. However, as our experiments show, the first order model
is a good first choice for a wide range of datasets.

9 Conclusion

In this work we proposed a novel approach to modelling dynamical data. It is
based on the Method of Lines used as a numerical heuristic for solving Partial
Differential Equations, by approximating the spatial derivatives using convo-
lutional filters. In contrast to other methods, NeuralPDE does not make any
assumptions about the structure of the underlying equations. Instead they rely
on a deep convolutional neural network to parametrize the dynamics of the
system. We evaluated our method on a wide selection of dynamical systems,
including non-linear and higher-order equations and showed that it is compete-
tive compared to other approaches.

In our future work, we will address the remaining limitations: First, we are
planning to adapt NeuralPDE to learn boundary conditions from data. Second,
we are going to investigate combining other methods to model spatial dynamics
with neural networks. This includes other arbitrary mesh discretization methods
as well as methods for continuous convolutions which could replace discretization
completely.
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Abstract. Geometric deep learning is a promising approach to bring
the representational power of deep neural networks to 3D data. Explicit
3D representations such as point clouds or meshes can have varying and
often a huge number of dimensions, what limits their use as an input to a
neural network. Implicit representations such as signed distance functions
(SDF) are on the contrary low-dimensional and fixed representations of
the structure of a 3D shape that can be easily fed into a neural network.
In this paper, we demonstrate how deep SDF neural networks can be used
to precisely predict the deformation of a material after the application of
a specific force. The model is trained using a set of custom finite element
simulations in order to generalize to unseen forces.

Keywords: Geometric deep learning · Implicit neural representation ·
Geometric deformation modeling · FEM simulations · 3D data
processing · Signed Distance Functions

1 Introduction

Deep neural networks have shown great potential in processing data such as
images and videos. In contrast, providing the 3D structures to the neural net-
works is still challenging. Geometric deep learning (GDL) is a branch of machine
learning (ML) that deals with 3D data for different purposes such as classifica-
tion, compression, and segmentation. Although 3D models are more informative
to describe the environment, common 3D representations are unfortunately not
easily combined with neural networks, and methods introduced for geometric
deformation processing are still under development.

The most common 3D representations are explicit, such as RGB-depth
images, voxels, point clouds, and meshes. A RGB-depth map simply concate-
nates the depth information to the 2D image grid, which makes it Neural Net-
work (NN)-friendly and an ideal data type for 3D pose estimation; however, the
3D modeling is partial and depends on the camera viewpoint.

Point clouds visualize the object’s shape with a set of unordered 3D points
sampled on the surface. The unstructured point clouds are most favored in the
industry and are easily captured by 3D scanners. As a global descriptor of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Bergmann et al. (Eds.): KI 2022, LNAI 13404, pp. 90–95, 2022.
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shape, they are mostly limited to segmentation and classification tasks [4,5]. A
point cloud does not contain surface information; therefore, dense sampling of
points is usually required. Insufficient point sampling of a shape with fine details
may cause an incomplete description while increasing the number of samples
becomes quickly memory inefficient. By extending the pixels of 2D images to
the third dimension, voxels represent the shape structure in a 3D space. Despite
the regular structure and arrangement of data units in grids that make them NN-
friendly, voxels are memory inefficient and are not suitable for small localized
deformations. As for point clouds, the sampling rate can highly affect memory
consumption.

Polygon meshes define a shape by a set of vertices on the surface and their
neighboring connections as edges. Meshes are generic data structures favored in
3D modeling for being simple, informative, and easy to use. However, bringing
them into the deep learning domain either limits us to the datasets with fixed
topologies [6], or the input size of the network should be equal to the largest
available mesh data sample [1]. In general, methods based on mesh representa-
tions suffer from a large set of features provided for the network as the whole
structure should be fed simultaneously as input. The difficulty in working with
meshes stems from the multitude of possibilities to apply a mesh on a shape, as
many different topologies could be defined for one geometry. Therefore for large
meshes, the network size drastically increases, and training will be computation-
ally expensive.

Recent advances in GDL and challenges of applying explicit representations
to deep networks have shifted attention to implicit ones. For instance, the well-
known representation “Signed Distance Functions” (SDF) refers to a regression
of the 3D space based on the distance from the shape surface. Here, each point
in the 3D space takes a signed value depending on whether they are inside or
outside of the shape. The density of these sample points increases the resolution
of the final shape and could be justified based on the needs of the problem. SDF
representations are a proper feed to deep networks and are highly efficient in
terms of memory consumption.

The idea of combining SDF with deep neural models was first introduced in
2019 [3] and has received significant attention since then. First, they trained a
network to estimate the SDF value of a shape S for each query input position in
the 3D space (Fig. 1-left). This neural network is an embedded representation of a
single shape. To generalize the network to multiple shapes, they add an encoded
shape Si as a condition to the network input and estimate the distance from
the shape Si. This shape encoding is implemented using a layered autodecoder
architecture. Similar to latent codes in autoencoder architecture, the “codes” of
an autodecoder are embedded representations of shapes. For each query point,
the network predicts the SDF value corresponding to the provided condition.
This continuous interpretation of space makes it possible to reconstruct shapes
in any desired resolution and preserves shape deformations without large mem-
ory requirements. This method could effectively address the problem of efficient
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shape embedding, and the network size is comparable to classical approaches for
processing any size of meshes with arbitrary topology.

Fig. 1. Left: DeepSDF network for a single shape. Right: DeepSDF for an encoded
shape and a 3D query point.

2 Shape Deformation Modeling

The term “Deformation” refers to the changes in the geometry of a structural
body. Using Finite Element Analysis (FEA) has been a typical approach for
many years that helps the engineers to investigate the simulation results and
analyze the final product shape before production. However, the simulation pro-
cess is time-consuming for large meshes with fine details and requires high com-
putational power to solve the numerical equations. In addition, handmade tuning
and re-execution of simulations are required to find the proper process parame-
ters.

Most importantly, finding the optimized input parameters that lead to the
desired results in the FEA approaches is only possible through trial and error.
Neural networks can optimize input parameters that result in the desired out-
put where cause-and-effect FE methods could not handle this functionality.
Our research aims at modeling geometry deformations using neural networks.
Inspired by the original DeepSDF paper [3], we designed a model combining
SDF representations and deep networks to parameterize the shape deformation
based on input conditions. Although the primary goal of the DeepSDF method
was the efficient embedding of various shapes from different classes rather than
deformations on one shape, our results showed the effectiveness of the approach
for the shape deformation task.

2.1 Preparation of the Dataset

In order to train our model, we need a large dataset of deformed shapes. The
publicly available datasets are mainly designed for classification or segmentation
tasks and do not contain deformations or variations of shapes. Lacking appro-
priate data, we created our own dataset. For this purpose, we used FreeCAD,
which is an open-source application for CAD design, including packages such
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as FEA. In FreeCAD, we defined a simple cuboid, set the material properties,
and fixed the initial constraints on both ends. We then added force constraints
at different positions on the surface. By also varying the force magnitude, we
obtained 6228 deformed shapes corresponding to each condition. A mesh sample
in the FreeCAD environment is shown in Fig. 2. The generated dataset is freely
available for download1. The meshes then should be converted to the correspond-
ing SDF representation. Each 3D mesh is first scaled into a unit sphere and is
virtually rendered from 100 virtual cameras on the sphere surface. Then the
distance from the closest mesh triangle is calculated. It is important to sample
the points mostly near the surface to have an accurate sampling. We sampled
400000 points for each shape in our dataset.

Fig. 2. Left: the initial shape. Middle and right: resulting deformed meshes affected by
different forces.

2.2 Implementation Results

The neural network using SDF representations with arbitrary mesh topology can
handle large meshes without increasing the network size. We provide the spatial
coordinate and the force vector to the network and predict the corresponding
SDF value as an output. We train a fully-connected neural network with six
inputs (x, y, z coordinates of a sampled point, x, y position of the force applied
on the surface, and force magnitude). After a Bayesian hyperparameter search
using the optuna library, the neural network is composed of 4 hidden layers
(130-118-150-148) using the LeakyRelu activation function and one linear output
neuron. The mean square error loss is minimized using the Adam regularizer and
a learning rate of 0.0005. The network is trained for 150 epochs, with a validation
set composed of 20% of the data. At the end of the training, both the training
and validation losses are below 10−6.

The network provides a continuous function representing the distance values
for each query point in the space, so another step needs to be taken for the
final shape retrieval. Marching cube (MC) [2] is the most common approach for
extracting the mesh in varying resolutions. By modifying the “cube size” as an
input parameter to the algorithm, the SDF values are discretized inside a unit
cube to reconstruct the surface of the shape in different resolutions. In Fig. 3,
1 https://www.tu-chemnitz.de/informatik/KI/projects/geometricdeeplearning.

https://www.tu-chemnitz.de/informatik/KI/projects/geometricdeeplearning
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two generated mesh samples and the corresponding ground truth meshes are
depicted (for cube count = 953).

Fig. 3. The reconstructed mesh from NN prediction (in gray) and the ground-truth
mesh (in color) for two different samples. (Color figure online)

We use a popular metric, the Chamfer distance (CD), to evaluate the quality
of the reconstructed mesh. This metric represents the difference between two
sets of points S1 and S2 sampled from both mesh surfaces. In one variation of
CD, for all S1 points, the closest distance to the S2 points is averaged, and the
same process is repeated in reverse. The sum of these two averages is called CD,
which should be closed to zero. We randomly chose 116 samples from the test
set and reconstructed the mesh from the network predictions. The mean of CDs
for 30000 sample points is shown in Table 1. As expected, increasing the number
of cubes in the MC algorithm (that leads to finer meshes) reduces the Chamfer
distance.

The use of SDF representation has the following advantages: Any simulated
mesh or CAD model could be easily converted to an SDF representation so that
the existing datasets could be used for training. Contrary to explicit represen-
tations, this representation is NN-friendly and handles large-size meshes with
arbitrary topology. Also, a large number of shapes could be stored as a trained
neural network and save storage. After training the network, less computational
power and time are needed to process the large meshes compared with numerical
approaches. To our knowledge, this is the first time that this representation is
combined with neural networks for processing deformable objects.

Table 1. Chamfer distance metric for different resolutions of the MC algorithm.

Cube count Chamfer distance

853 0.0009595

953 0.0009171

1053 0.0008937

1203 0.0008754

1303 0.0008747

Despite these advantages, SDF representations have two major difficulties
to deal with: The 3D mesh samples have to be watertight to divide the 3D
space into inside and outside regions. Unfortunately, many CAD models are not
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watertight, and some modifications in the algorithm are needed to be compatible
with non-watertight meshes. The second issue is the additional step added at the
end to discretize the space and extract an explicit representation of the shape
such as a mesh or point cloud. The final step is, unfortunately, dependent on the
required mesh size.

3 Conclusion and Future Work

In this paper, we showed that implicit representations could be effectively com-
bined with neural networks to predict the shape deformations caused by an
applied force. The designed network is able to be trained on very large meshes,
while the size of the network is kept reasonable. The main advantage is the
independence from mesh size and topology that brings the flexibility to process
3D shapes. However, the shapes provided to the network must be watertight.
Future work could be suggested to find a solution for non-watertight meshes to
generalize the approach. Another improvement could be proposed for the dis-
cretization phase in the end to substitute the current marching cube algorithm,
which highly depends on the mesh size.
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Foundation (DFG, 416228727) - SFB 1410 Hybrid Societies.
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Abstract. One of the major challenges in time series analysis are chang-
ing data distributions, especially when processing data streams. To
ensure an up-to-date model delivering useful predictions at all times,
model reconfigurations are required to adapt to such evolving streams.
For Gaussian processes, this might require the adaptation of the internal
kernel expression. In this paper, we present dynamically self-adjusting
Gaussian processes by introducing Event-Triggered Kernel Adjustments
in Gaussian process modelling (ETKA), a novel data stream modelling
algorithm that can handle evolving and changing data distributions. To
this end, we enhance the recently introduced Adjusting Kernel Search
with a novel online change point detection method. Our experiments on
simulated data with varying change point patterns suggest a broad appli-
cability of ETKA. On real-world data, ETKA outperforms comparison
partners that differ regarding the model adjustment and its refitting trig-
ger in nine respective ten out of 14 cases. These results confirm ETKA’s
ability to enable a more accurate and, in some settings, also more efficient
data stream processing via Gaussian processes.

Keywords: Gaussian process · Time series modelling · Change point
detection · Kernel search · Data stream modelling

1 Introduction

For many applications, accurate real-time analysis of data streams is essential to
guarantee a constant workflow. In order to analyze data streams, incoming data
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points need to be incorporated into an online-generated data model. However,
changing data distributions at so called change points are a common challenge
in data stream modelling [4]. As a consequence, an outdated prediction model
might impair a downstream application. For instance, this could lead to over-
stocking and missed sales in demand forecasting or power supply issues in case
of smart grid systems [2,11,12]. Providing an up-to-date model is therefore a
major objective when modelling data streams. However, identifying the correct
time point for model reconfiguration is challenging. Simply adjusting the current
model periodically bypasses this challenge, but it might lead to prolonged peri-
ods with inaccurate models or increased computational costs due to unnecessary
reconfigurations. Because of these drawbacks, many algorithms aim to detect
change points online and consequently trigger model adjustments [3,18].

A Gaussian process (GP) is a stochastic process based on the Gaussian dis-
tribution and is commonly used as a non-parametric machine learning model
[17]. GPs’ probabilistic nature makes them excel at dealing with small and noisy
datasets. To incorporate knowledge on the general behavior of the data, GPs use
positive semi-definite covariance functions, often called kernels. If no prior knowl-
edge about this behavior is available, an automatic kernel search can determine
a fitting function for the given data [8]. However, this is usually a computation-
ally expensive process and requires the optimization of numerous GP models.
Recently, the Adjusting Kernel Search (AKS) [13] algorithm was introduced to
accelerate this process on data streams. If multiple GP models are used to rep-
resent consecutive segments of a stream, it is often reasonable to assume that
the models’ covariance functions will be similar. AKS enables a search of similar
kernels based on a given kernel expression and circumvents the construction of
novel expressions from scratch.

In this paper, we enhance AKS with a novel GP-based change point detection
(CPD) method in order to propose the Event-Triggered Kernel Adjustments
in Gaussian process modelling (ETKA) algorithm. The major objective of this
algorithm is to deliver an up-to-date GP model describing the current data
behavior at all times. We evaluate ETKA based on simulated as well as real-
world data and compare it to alternatives in CPD and model inference. Beyond
that, we present multiple ways to further expand and improve this method.

The rest of the paper is structured as follows: In Sect. 2, we outline rele-
vant literature about GPs, kernel search algorithms and CPD methods. Sect. 3
introduces the ETKA algorithm. In Sect. 4 we describe our experimental setup.
Afterwards, in Sect. 5, we show and discuss the results, before we conclude our
findings in Sect. 6.

2 Related Work

The research we present in this paper combines the fields CPD and GP-based
data stream modelling. In this section, we briefly introduce relevant works from
these fields. Due to a lack of space, we include a formal introduction of GPs and
kernel search approaches in Appendix 1.
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GPs are commonly used probabilistic machine learning models that mainly
depend on their inherent kernel function. An appropriate kernel expression can
be chosen by an expert based on previous knowledge about the data. Without
such expert knowledge, automatic kernel search algorithms can be employed to
find an optimal fit for the given data [6,8,14,15]. In 2013, Duvenaud et al. [8]
introduced such an algorithm for the first time, i.e. the Compositional Kernel
Search (CKS). Lloyd et al. [15] expanded the method to the Automatic Bayesian
Covariance Discovery (ABCD) by including change point kernels. Since both
algorithms require the exact evaluation of numerous GP models per iteration,
they are restricted to small to medium-sized datasets only.

The problem of scalability was addressed in different ways: Kim et al. [14]
introduced the Scalable Kernel Composition (SKC) in 2018, which performs
model selection via lower and upper bounds for the GPs’ marginal likelihood
instead of the exact evaluations. Berns et al. developed new approaches that use
a prior segmentation of the data to accelerate the search [5] or perform the seg-
mentation themselves [6]. We aim to expand this idea by performing a dynamic
segmentation via online CPD during the modelling process. Recently, Hüwel et
al. [13] introduced the Adjusting Kernel Search (AKS) algorithm, which exploits
prior assumptions about the data without ascertaining the kernel function. More
details about AKS can be found in Appendix 1.

Haselbeck et al. [10] developed EVARS-GPR, a framework to update a GP
model online at certain change points. While this approach is restricted to output
scale changes, it can be seen as a predecessor of this work due to its retraining
of a GP at online-detected change points.

CPD approaches can be separated into offline and online methods. The for-
mer were extensively reviewed by Truong et al. [18]. In this paper, we focus
on online methods to enable real-time model adjustments. Aminikhanghahi and
Cook [3] provided an elaborate overview of available approaches in this area. One
widely-used method is the Bayesian Online Change Point Detection [1]. It uses
Bayes’ rule to determine the number of observations since the last change point
and a hazard function to predict a new one. Another commonly used method
is the cumulative sum (CUSUM) [16]. It tracks an accumulated deviation score
over multiple data points and detects a change point when that score exceeds
a custom threshold. CUSUM’s high potential for adjustments allows us to use
this approach for ETKA.

3 ETKA

Previous applications of AKS employed periodic adjustments of the GP model
[13]. This potentially leads to extended periods of incoming data points being
processed with an outdated model. Contrariwise, unnecessarily frequent model
reconfigurations cause increased computational costs. For this reason, we present
the Event-Triggered Kernel Adjustments in Gaussian process Modelling (ETKA)
algorithm, an enhancement of AKS with a novel GP-based online CPD approach.

The combination of a kernel search algorithm with a CPD method is obvi-
ous, but the nature of GPs results in specific requirements for an optimal CPD
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method. Changes should not be detected in primary statistics of the incoming
data, such as its mean or variance, as a GP model does not need to be adjusted
to regular changes of that kind. Rather, we need to find changes in the abstract
behavior and tendencies underlying the data. For example, if the periodicity
changes, we want to adjust the model to find a new period length value. Aside
from an accurate modelling, there are two additional requirements for CPD: the
method should be simple, computationally efficient and easily comprehensible
in order to maintain high explainability.

Within ETKA, we achieve these goals by employing a CUSUM approach [16]
based on the current GP’s performance. We hypothesize that data that differs
from the current model’s prediction for multiple points in a row signifies a change
point. In this case, a kernel search using AKS is triggered to adjust the model to
the novel data. The exact procedure of ETKA is explained below and presented
in Algorithm 1.

Algorithm 1: The Event-Triggered Kernel Adjustment
Data: D = (xi, yi)i=1,..,N , base kernel set B, window size w, tolerance δ,

threshold ε, CKS iterations iCKS , AKS iterations iAKS

Result: change points CP , kernels K
1 CP ← []
2 K ← []
3 s ← 0
4 k, σ2 ← CKS (D1:w , B, iCKS)
5 for i = w + 1, .., N do
6 ŷi ←

k (xi, xi−w ,...,i−1)
[
k (xi−w,...,w−1, xi−w ,...,w −1) + σ2I

]−1
yi−w ,...,w −1

7 s ← max(0, s + |yi − ŷi| − δ · 2 · σ)
8 if s > ε then
9 s ← 0

10 K ← K ∪ [k]
11 CP ← CP ∪ [xi]
12 k, σ2 ← AKS(Di−w ,..,w , B, iAKS , k)

First, we construct a GP model using CKS on an initial window of w data
points. By using this model with kernel k : R×R → R, we make a prediction ŷi
for the next value starting from i = w + 1 after this initial window of length w
as follows [17]:

ŷi = k (xi,xi−w,...,i−1)
[
k (xi−w,...,w−1,xi−w,...,w−1) + σ2I

]−1
yi−w,...,w−1

(1)
Then, we calculate the absolute deviation |yi − ŷi| between the observed value
yi and our prediction ŷi. Afterwards, the window slides one position further and
the consecutive data points are used for the next prediction step employing the
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current GP. The accumulating error is used together with the GP’s noise σ2 and
a tolerance factor δ ∈ R to compute a change point score s:

s ← max (0, s + |yi − ŷi| − δ · 2 · σ) (2)

If this score surpasses a certain threshold ε ∈ R>0, a change point is detected at
xi and s is reset to zero. With this CPD approach, incoming data points need to
be within the inner 100 · δ% of the GP’s confidence interval in order to count as
accurately predicted. The further a data point is outside this interval, the more
it increases s and the faster a change point is detected. When the need for a
model adjustment is triggered due to a detected change point, the GP’s kernel
is adjusted with AKS on the current window w. Then, the procedure with the
CUSUM-based CPD and a potential trigger of AKS continues with this updated
model. In settings where other kernel search methods are considered more useful,
this step can easily be substituted with the corresponding approach.

4 Experimental Setup

In this section, we present the experimental settings that we employed to produce
the results shown in Sect. 5. All experiments were conducted on an 11th genera-
tion Intel Core i9-11900H processor with 8 cores à 2.50 GHz. For reproducibility,
we published all code and data on GitHub1.

4.1 Simulated Data

For the development and evaluation of ETKA under controlled and predefined
settings, we generated artificial datasets2. The simulations are based on univari-
ate time series of length n with values b ∈ R

n that follow a periodicity of length
nper and have an amplitude of size a. Furthermore, we consider the multiplica-
tive components linear trend l ∈ R

n and random noise η ∈ R
n. The size of the

linear trend l is defined by the coefficient m of a linear model. The random noise
η is sampled from a normal distribution with a mean value of 1 and a standard
deviation s. These components enable the simulation of time series data y ∈ R

n

with
yi = bi · li · ηi (3)

where bi is the value of the base signal b at index i, li the factor of the linear
trend l at index i and ηi the factor of the random noise η at index i. A factor
can be left out to simulate that a component is not present. Finally, we can
generate change points by fading between time series y of different properties.
The abruptness of the change is adjustable via a fading window wfade. We used
this framework to model for instance changes of the period length (parameter
nper of b), the output scale (parameter a of b), the size of the linear trend

1 https://github.com/JanHuewel/ETKA.
2 https://github.com/Nike-Inc/timeseries-generator.
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https://github.com/Nike-Inc/timeseries-generator
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(parameter m of l) or the noise level (parameter s of η). We both considered
time series with single and multiple change points, all having a length of 2000
data points. An overview of all simulation settings can be found in Table 3 in
Appendix 2.

4.2 Real-World Data

We further included 14 real-world datasets from various domains, see Table 4
in the appendix. Besides the different domains, the datasets show a wide range
regarding the number of samples reaching from 180 (Call centre) up to 7718
(Airquality). Examining the minimum (min) and maximum (max) target values
of each time series, we further observe that many datasets have a large value
range. Beyond that, several datasets have a standard deviation (std) that is
rather high relative to their value range, indicating a strong variation in the
time series. In summary, this collection of common time series datasets with
varying characteristics and domains enables a broad evaluation of ETKA.

4.3 Evaluation

As comparison partners in our experiments, we included alternatives to ETKA
in both main aspects: the choices when to adjust the model and how to adjust
the model. Hence, we compare the previously described CPD-based approach
to data-agnostic periodic model adjustments (PER AKS ). These model adjust-
ments are done three times in equidistant intervals within the dataset after the
initial kernel search. Furthermore, only the data in the current window is used,
disregarding everything before that. By doing so, we examine the concept of
CPD-driven adjustments at the cost of frequent model predictions needed to
enable CPD. Furthermore, as mentioned in Sect. 2, different kernel search algo-
rithms exist [6,8,14,15]. For this proof of concept, we included a hyperparameter
optimization (no change of the GP’s kernel expression) after a detected change
point as a comparison partner (CPD HPO). This approach also performs its
retraining on the current window exclusively.

The two evaluation criteria we consider in this work are runtime and the mean
absolute error of the prediction. Regarding the former, we measured the total
runtime for processing each dataset, excluding the initial model construction
as it is identical for all comparison partners. With respect to the prediction
performance, we calculated the mean absolute error 1

N−w

∑N
i=w+1 |yi − ŷi| on

every step after the initial model construction. Finally, we set the results in
relation to all comparison partners. Thereby, a negative value represents a shorter
runtime respective more accurate modelling of ETKA, i.e. an improvement.

For all experiments, we use a window size w equivalent to 20% of the whole
dataset. We allow kernels consisting of up to three base kernels and employ one
iteration of adjustments when using AKS. The base kernel set B consists of the
periodic, the linear and the squared exponential kernel. Before the initial kernel
search with CKS, the data is rescaled using a Z-normalization.
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5 Experimental Results

In this section, we provide an overview of our experimental results, both on
simulated as well as on real-world data, and discuss our findings.

5.1 Simulated Data

As outlined in Sect. 4.1, we conducted experiments based on simulated data to
evaluate ETKA under controlled and predefined settings. We further considered
different configurations of the online CPD integrated in ETKA. These differ with
respect to the defining parameters, i.e. the tolerance factor δ and the threshold
ε. With the former, one can control how strict ETKA’s CPD is, i.e. a higher
value increases the tolerance range for deviations between real and prediction
values. A change point is declared, if the threshold ε is exceeded, so a higher
value allows higher change point scores and leads to a less sensitive CPD.

We show detailed results with absolute evaluation values for all simulated
datasets and CPD configurations in Figs. 2 and 3 in Appendix 3. In Table 1, we
provide a summary of these results. Besides the absolute evaluation values of
ETKA, all results are shown in relation to the comparison partners PER AKS
and CPD HPO. The table shows averaged values over all simulated datasets and
its standard deviations. As CPD HPO also differs based on δ and ε, the values of
the relative comparison with ETKA cannot be compared across CPD settings,
but give an impression which algorithm is in advantage for the specific CPD.

We observe that ETKA constantly outperforms both comparison partners
with respect to the prediction error. The predictions of ETKA tend to be more
accurate with a more sensitive CPD. In comparison with PER AKS, ETKA
shows the largest improvement for δ = 0.5 and ε = 5.0. With respect to CPD
HPO, ETKA’s top result is achieved for δ = 0.5 as well, but with ε = 7.0. In
terms of the absolute prediction error of ETKA, we see that the best overall
result is achieved for δ = 0.5 and ε = 5.0. Regarding the runtime, CPD HPO
is in all cases more computationally efficient, while ETKA is faster or at least
on a par with PER AKS. As expected, we observe that the runtime of ETKA
decreases with a less sensitive CPD due to higher values for δ and ε. This decrease
is larger for an increasing δ with a constant ε than the other way round.

Assessing Fig. 2 in Appendix 3 for the best performing CPD configuration
with δ = 0.5 and ε = 5.0, we observe that ETKA outperforms its comparison
partners on the majority of the simulated datasets (PER AKS is best in 7
and CPD HPO in 4 out of 24 simulation settings). Furthermore, in cases for
which ETKA does not deliver the best outcome, it is generally close to the top
performer. We further see that results for lower noise levels tend to be better
(scenarios with a variable noise are also less noisy than those with s = 0.05 as
the maximum of s is 0.05 for them).

The main goal of ETKA is an up-to-date GP model at all times. For that
reason, the prediction error is more important than the runtime. Consequently,
we set δ to 0.5 and ε to 5.0 at the cost of longer runtimes for the experiments
on real-world data.
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Table 1. Summary of the results on simulated data. The table shows the results
of ETKA in terms of the prediction error respective the runtime, as well as both eval-
uation values of ETKA in relation to PER AKS and CPD HPO. All results are given
for four different configurations regarding the CPD with different tolerance factors
δ and thresholds ε. Each cell shows the mean and standard deviation over all sim-
ulated datasets. For the abolsute ETKA results, a smaller value is better, both for
the prediction error and the runtime. For the relative values, a negative value reflects
an improvement by ETKA. All cases for which ETKA outperforms its comparison
partners are highlighted in bold.

δ ε ETKA results Runtime vs. Prediction error vs.

Prediction
error

Runtime [s] PER AKS CPD HPO PER AKS CPD HPO

0.5 5.0 0.1403
(±0.1120)

1336
(±385)

+0.96%
(±28.70%)

+114.71%
(±105.65%)

−16.68%
(±23.42%)

−16.37%
(±20.73%)

0.5 7.0 0.1413
(±0.1117)

1121
(±316)

−10.79%
(±28.88%)

+92.25%
(±80.69%)

−13.95%
(±23.33%)

−21.40%
(±23.13%)

0.7 5.0 0.1472
(±0.1137)

922
(±288)

−24.86%
(±29.07%)

+56.84%
(±58.70%)

−6.40%
(±32.91%)

−21.02%
(±24.28%)

0.7 7.0 0.1522
(±0.1110)

919
(±317)

−28.21%
(±24.83%)

+49.07%
(±47.07%)

−1.27%
(±33.12%)

−20.17%
(±22.00%)

5.2 Real-World Data

Besides simulated data, we evaluated ETKA on real-world data from different
domains (see Sect. 4.2). An overview of the results with absolute evaluation val-
ues is shown in Fig. 4 in Appendix 3. In Table 2, we provide the comparison
of ETKA with PER AKS and CPD HPO. On average, ETKA outperforms
the comparison partners in terms of the prediction error by 2.73% and 6.19%,
respectively. Considering the individual datasets, ETKA is more accurate than
PER AKS and CPD HPO in 9 out of 14 respective 10 out of 14 cases. For two
respectively three cases, ETKA is only slightly outperformed. Both comparison
partners deliver better predictions than ETKA for Unemployment. Beyond that,
PER AKS is the top performer for Internet and Gas production.

We observe the largest improvement of ETKA over both comparison partners
in terms of the prediction error for Airline, which we show in Fig. 1a. ETKA
detected two change points, so less refittings than for PER AKS were employed.
Furthermore, the reconfigurations that ETKA performed are closer to the actual
changes in the dataset, which leads to advantages regarding the prediction error.
For Gas production shown in Fig. 1b, ETKA performs significantly better than
CPD HPO, but is outperformed by PER AKS. By chance, the periodical refitting
points of PER AKS are accurate, leading to better predictions.

Regarding the runtime overall, both PER AKS and CPD HPO are more
efficient, with the latter requiring the lowest runtimes as expected. Furthermore,
this disadvantage of ETKA is clearer for the real-world data than it was for
simulated data. However, when focusing on the datasets for which the runtime
of ETKA is more than 100% higher than for PER AKS (Wheat, Internet, Radio
and Airquality), we observe lower prediction errors in three out of fourcases.
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Table 2. Results overview on real-world data. The table shows the results of
ETKA in terms of runtime respective prediction error in relation to PER AKS and
CPD HPO. A negative value reflects an improvement by ETKA, both for the runtime
and the prediction error. All cases for which ETKA outperforms its comparison partners
are highlighted in bold.

Dataset Runtime vs. Prediction error vs.

PER AKS CPD HPO PER AKS CPD HPO

Solar irradiance +62.51% +918.00% +1.90% −1.31%

Mauna Loa −86.96% −0.91% −1.07% +0.00%

Airline +0.79% +2059.33% −21.46% −26.37%

Wheat +161.54% +1327.28% −2.83% +2.15%

Temperature −31.83% +159.92% −0.57% −6.66%

Internet +134.97% +183.77% +12.51% −19.76%

Call centre +48.67% +1811.77% −2.39% −1.96%

Radio +228.26% +2458.84% −19.30% −7.51%

Gas production +16.29% +531.39% +8.66% −23.77%

Sulphuric +23.14% +631.26% −6.32% −11.77%

Unemployment −1.81% +760.48% +7.21% +15.44%

Births −38.92% +79.1% −2.47% −1.46%

Wages −59.78% +129.56% +1.27% +0.41%

Airquality +130.22% +37.77% −13.44% −4.19%

Summary +41.93%
(± 91.77%)

+792.03%
(± 819.75%)

−2.73%
(± 9.84%)

−6.19%
(± 11.16%)

In comparison with PER AKS, Radio and Airquality are within the three
datasets with the largest improvement on the prediction error. Internet, which
already was noticeable with respect to the prediction error, is also problematic
regarding the runtime.

5.3 Discussion

With respect to synthetic data, we overall observe a broad applicability of ETKA.
Despite different change point patterns and noise levels, ETKA mostly outper-
forms its comparison partners. We further observe that ETKA does not perform
worse in case of multiple changes in comparison with single changes. This indi-
cates that the CPD within ETKA delivers the intended results and is applicable
on data with multiple change points. Simulation settings B and C (see Table 3
and Fig. 2 in the Appendix) lead to the worst results for all three noise levels,
while ETKA performs best for four of these six datasets. Setting B triggers a
slow change of the periodicity. In contrast, settings E and H contain abrupt
shifts of the periodical length, for which all three prediction models show lower
prediction errors. Furthermore, the slow change of the amplitude a for setting
C is problematic, whereas an abrupt shift of a for setting H is captured better
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Fig. 1. Comparison of the model predictions and segmentation by the three
different approaches for Airline and Gas production . The top-most plot shows
the results of PER AKS, the second row contains CPD HPO ’s results and the final
row ETKA’s outcome. Each plot shows the observed data, mean prediction of the GP
model as well as the confidence intervals. Points at which the model is refitted are
marked with a red vertical line. The confidence interval of the GP is shown in separate
colors for each segment for visual clarity.

by all methods. This lets us assume that slow changes are problematic for all
three prediction models. A potential explanation for this phenomenon for both
CPD-based approaches (ETKA and CPD HPO) is that abrupt changes increase
the change point score s faster. Consequently, this might lead to quicker model
adjustments. In contrast to abrupt changes, slow shifts can lead to prolonged
inaccuracies without triggering the model adjustment.



106 J. D. Hüwel et al.

On real-world data, ETKA still delivered the best performance in terms of
the mean absolute error. However, it comes at the cost of higher runtimes com-
pared to both alternative approaches. The primary goal of ETKA is to deliver an
up-to-date model at all times. As we therefore chose a rather sensitive CPD con-
figuration based on the results on simulated data, higher runtimes were expected.
A notable exception is the Mauna Loa dataset, for which ETKA had the low-
est runtime. The prediction error comparison to CPD HPO let us infer that no
change point was detected. Furthermore, the slightly lower prediction error of
ETKA in comparison with PER AKS indicates that model adjustments are not
beneficial for Mauna Loa. Hence, it might be valid that ETKA does not detect
any change points. On the other datasets, the runtime difference varies greatly,
while the performance improvement is, albeit not constant, more stable. For
Airline, Radio and Airquality, we observe the highest improvement in terms of
the prediction error. As outlined, ETKA detected less change points more accu-
rately than its comparison partners for the former. In contrast to the improved
prediction error, Radio and Airquality lead to higher runtimes for ETKA. Both
datasets contain several change points, which were detected by ETKA and lead
to multiple model adjustments. Consequently, ETKA delivered more accurate
GP models, however at the cost of computational resources. Periodical refittings
highly depend on coincidence regarding an appropriate timing of model recon-
figurations, as for instance observed for Gas production. Not depending on a by
chance well chosen time for refitting is a big advantage of ETKA’s CPD-based
approach. With respect to Internet, we observe both a higher runtime as well
as prediction error for ETKA in comparison with PER AKS. This is probably
caused by poor results of the initial kernel search using CKS, indicating data
that would require a higher complexity of the kernel expression. For such data,
AKS and consequently ETKA might intuitively be advantageous as its search is
based on the current kernel expression instead of restarting from scratch.

In settings focused on fast processing, ETKA has multiple options to
trade potential prediction performance for lowered computational costs, e.g. by
employing a smaller window size w and a reduced set of base kernels. In contrast,
more iterations of AKS per adjustment or a more sensitive CPD can increase the
model quality at the cost of longer processing times. The effect of the CPD con-
figuration can be seen in our results on simulated data, cf. Table 1. As expected,
settings with higher values for δ and ε lead to lower runtimes at the cost of a
higher prediction error.

ETKA’s performance is highly dependent on the integrated CPD and con-
sequently on its parameters. For this study, the CPD parameters were deter-
mined using simulated data. Despite having generated a broad variety of change
point patterns, this might not lead to the optimal parameters for all settings.
Therefore, future work enabling a parameter determination based on the pro-
cessed dataset could improve ETKA and the evaluation of other state-of-the-
art CPD approaches is an interesting point for future research. Beyond that,
for severe changes of the data behavior, a kernel search from scratch might be
more efficient than AKS. A classification of detected change points could enable
ETKA to always choose the most appropriate kernel search approach. A further
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potential improvement could be a dynamically determined window size w in
contrast to the fixed value we applied. This could be beneficial both in terms of
efficiency and prediction performance.

6 Conclusion

In this paper, we enhanced AKS, a recently-introduced kernel search algorithm
for GPs with a novel CUSUM-based CPD approach. The resulting algorithm,
ETKA, offers the ability to automatically deliver an up-to-date GP model for
data streams. In our experiments, ETKA proved to be broadly applicable to
data of different behavior and noise levels. Compared to intuitive alternatives,
ETKA delivered improved predictions. Especially on simulated data, the results
were significantly better. On real-world datasets, the improvement was smaller.
Overall, ETKA reached its main goal of an up-to-date model at all times and is
therefore especially well suitable for applications for which an accurate modelling
is paramount.
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Appendix 1: Background

In the following, we formally introduce the foundations of ETKA, namely GPs
and the AKS algorithm.

A GP is a non-parametric probabilistic machine learning model [9,17]. A
model GP (m, k) is uniquely defined by its mean function m : R → R and its
covariance function or kernel k : R × R → R. While the mean function can
often be set to constant zero [17], the kernel contains assumptions about the
GP’s behavior. There are various kernels that are well understood and describe
specific patterns, like the periodic KPER and the linear kernel KLIN . These
simple kernels will be referred to as base kernels throughout this paper.

Kernels often depend on parameters such as a lengthscale or a period length.
These parameters are referred to as hyperparameters of the GP model and can
be (locally) optimized for given data. One possible measure of performance for
such optimization is the GP’s log marginal likelihood L (GP (m, k),D) on the
data D = (xi, yi)i=1,..,N [17]. While there exist alternative measures [8,17], we
will use the log marginal likelihood for model optimization in our experiments.

Individual base kernels can be combined to more complex kernel expression
via addition or multiplication [8]. This way, a kernel that optimally describes
the data’s behavior can be constructed by experts. Alternatively, an algorithmic
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approach to find such an optimal kernel expression automatically can be
employed. An example for this type of algorithm is CKS [8], which is depicted
in Algorithm 2.

Algorithm 2: Pseudocode of the Compositional Kernel Search
Data: D = (xi, yi)i=1,..,N , base kernel set B, max iterations imax

Result: Kernel expression K
1 K ← argmaxb∈B (L(GP (0, b), D))
2 for i = 1, .., imax do
3 C ← AddV iaAddition(K, B)
4 C ← C ∪ AddV iaMultiplication(K, B)
5 C ← C ∪ ReplaceKernel(K, B)
6 K ← argmaxc∈C (L(GP (0, c), D))

In each iteration, the algorithm adjusts the current best kernel expression K
given a set of base kernels B by

1. adding any base kernel to any subexpression of K,
2. multiplying any base kernel to any subexpression of K or
3. replacing any base kernel in K with a different base kernel from B.

The abstract functions AddV iaAddition, AddV iaMultiplication and
ReplaceKernel in Algorithm 2 correspond to these three options. The best per-
forming candidate from the thus generated set is used as the basis for the next
iteration. This way, the algorithm can build arbitrarily complex kernels at the
cost of multiple model optimizations and evaluations per iteration. Since the
candidate generation can not lower the kernel’s complexity, any searches for new
kernels need to start from scratch.

Our goal is to model consecutive segments of potentially infinite time series.
We utilize the AKS algorithm [13] as it has inherent advantages in this specific
setting. In particular, the AKS algorithm is able to adjust a given kernel to fit
new data instead of starting from zero. This is accomplished by adding a fourth
possibility in the candidate generation: the removal of a base kernel from the
current expression. This procedure is depicted Algorithm 3.

Algorithm 3: Pseudocode of the Adjusting Kernel Search
Data: D = (xi, yi)i=1,..,N , base kernel set B, max iterations imax, starting

kernel K0

Result: Kernel expression K
1 K ← K0

2 for i = 1, .., imax do
3 C ← AddV iaAddition(K, B)
4 C ← C ∪ AddV iaMultiplication(K, B)
5 C ← C ∪ ReplaceKernel(K, B)
6 C ← C sup RemoveKernel(K)
7 K ← argmaxc∈C (L(GP (0, c), D))
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It has been shown before that AKS can lead to a faster modelling process
than CKS [13]. Especially in high-complexity models, the computational cost
of constructing a kernel from zero are much higher than a few iterations of
adjustment. However, for low-complexity models, the larger set of candidates in
AKS can lead to longer processing compared to CKS, even if fewer iterations
are needed.

Appendix 2: Simulated and Real-World Data
Characteristics

Table 3. Overview of simulated datasets. Artificial datasets were generated at
three different noise levels. For the third setting, the standard deviation s changed for
each ηi. Various scenarios with single and multiple changes of the time series compo-
nents as well as several configurations regarding the type of the change were simulated.
We considered both abrupt as well as slower occurring changes.

y1 wfade y2 wfade y3 wfade y4

b l b l b l b l

nper a m nper a m nper a m nper a m

η with

s = 0.01

A0.01 100 0.1 – 500 100 0.1 1

B0.01 100 0.1 – [600, 650] 200 0.1 –

C0.01 100 0.1 – [1000, 1050] 100 0.2 –

D0.01 100 0.1 1 [500, 550] 100 0.1 5

E0.01 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

F0.01 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

G0.01 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

H0.01 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2

η with

s = 0.05

A0.05 100 0.1 – 500 100 0.1 1

B0.05 100 0.1 – [600, 650] 200 0.1 –

C0.05 100 0.1 – [1000, 1050] 100 0.2 –

D0.05 100 0.1 1 [500, 550] 100 0.1 5

E0.05 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

F0.05 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

G0.05 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

H0.05 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2

ηi with

smax = 0.05

Avar 100 0.1 – 500 100 0.1 1

Bvar 100 0.1 – [600, 650] 200 0.1 –

Cvar 100 0.1 – [1000, 1050] 100 0.2 –

Dvar 100 0.1 1 [500, 550] 100 0.1 5

Evar 100 0.1 1 500 200 0.1 2 1250 200 0.1 –

Fvar 100 0.1 – 500 100 0.2 – 1250 200 0.2 –

Gvar 100 0.1 4 500 100 0.1 1 1250 100 0.1 −0.1 1500 100 0.1 0.5

Hvar 100 0.1 2 500 200 0.1 0.5 1250 200 0.2 0.5 1500 100 0.1 0.2
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Table 4. Overview of the real-world data for our experiments. We considered
14 datasets from various domains and show some characteristics below. Most datasets
were obtained from Lloyd et al. [15]. The Airquality data was published by De Vito et
al. [7].

Dataset Length Mean Std Min Max

Solar irradiance 391 1365.82 0.24 1365.52 1366.68

Mauna Loa 702 352.30 26.18 313.21 407.65

Airline 144 280.30 119.97 104.00 622.00

Wheat prices 370 107.88 67.21 11.00 381.00

Temperature 1000 11.21 4.14 −0.80 26.30

Internet 1000 46355.45 22058.93 13486.74 125058.79

Call centre 180 492.50 189.54 161.00 872.00

Radio 240 8.08 2.44 4.30 13.50

Gas production 476 21415.27 18678.34 1646.00 66600.00

Sulphuric production 462 131.34 41.26 42.00 228.00

Unemployment 408 520.28 261.22 122.00 1350.00

Births 1000 248.53 42.06 136.00 366.00

Wages 735 8.76 8.18 2.15 49.99

Airquality 7718 246.90 212.98 2.00 1479.00
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Appendix 3: Results Overviews

Fig. 2. Results overview in terms of the prediction error on all simulated
data and CPD configurations. Each cell shows the result for the model given on
the horizontal axis and the simulated dataset given on the vertical axis. Smaller values
reflect a better performance. The best performing model for each CPD configuration
and dataset is highlighted in bold.
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Fig. 3. Results overview in terms of runtime on all simulated data and CPD
configurations. Each cell shows the result for the model given on the horizontal axis
and the simulated dataset given on the vertical axis. Smaller values are considered
better. The most efficient model for each CPD configuration and dataset is highlighted
in bold.
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Fig. 4. Results overview for real-world data. Each cell shows the result for the
model given on the horizontal axis and the dataset given on the vertical axis. Smaller
values reflect a better performance. The best performing respective most efficient model
for each dataset is highlighted in bold.
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Abstract. Reasoners can be used to derive implicit consequences from
an ontology. Sometimes unwanted consequences are revealed, indicat-
ing errors or privacy-sensitive information, and the ontology needs to be
appropriately repaired. The classical approach is to remove just enough
axioms such that the unwanted consequences vanish. However, this is
often too rough since mere axiom deletion also erases many other con-
sequences that might actually be desired. The goal should not be to
remove a minimal number of axioms but to modify the ontology such
that only a minimal number of consequences is removed, including the
unwanted ones. Specifically, a repair should rather be logically entailed
by the input ontology, instead of being a subset. To this end, we intro-
duce a framework for computing fixed-premise repairs of EL TBoxes. In
the first variant the conclusions must be generalizations of those in the
input TBox, while in the second variant no such restriction is imposed.
In both variants, every repair is entailed by an optimal one and, up to
equivalence, the set of all optimal repairs can be computed in exponential
time. A prototypical implementation is provided. In addition, we show
new complexity results regarding gentle repairs.

Keywords: Description logic · Optimal repair · TBox repair ·
Generalized-conclusion repair · Fixed-premise repair

1 Introduction

Description Logics (DLs) [4] are logic-based languages with model-theoretic
semantics that are designed for knowledge representation and reasoning. Several
DLs are fragments of first-order logic, but with restricted expressivity such that
reasoning problems usually remain decidable. Knowledge represented as a DL
ontology consists of a terminological part (the schema, TBox) and an assertional
part (the data, ABox). The TBox expresses global knowledge on the underly-
ing domain of interest, such as implicative rules and integrity constraints, and
the ABox expresses local knowledge, such as assignment of objects to classes or
relations between objects. DLs differ in their expressivity and there is always a
trade-off to complexity of reasoning. Many reasoning tasks in lightweight DLs
such as EL [3] and DL-Lite [12] are in P and thus tractable, but are N2EXP-
complete in the very expressive DL SROIQ [16,18], which is the logical founda-
tion of the OWL 2 Web Ontology Language.1 However, the latter is a worst-case
complexity, and efficient reasoning techniques [34] can often avoid reaching it.
1 https://www.w3.org/TR/owl2-primer/.
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Reasoners can be used to derive implicit consequences from an ontology.
Sometimes unwanted consequences are revealed, indicating errors or privacy-
sensitive information, and the ontology needs to be appropriately repaired. The
classical approach is to remove just enough axioms such that the unwanted con-
sequences vanish [14,29]. In particular, optimal classical repairs can be obtained
by means of axiom pinpointing [10,11,31,32]: firstly, one determines all minimal
subsets of the given ontology that entail the unwanted consequences (so-called
justifications), secondly, one constructs a minimal set that contains at least one
axiom from each justification (a so-called hitting set) and, thirdly, one removes
from the erroneous ontology all axioms in the hitting set. In a similar way, incon-
sistency or incoherence of ontologies can be resolved—a task also called ontology
debugging [17,22,30,33]. Proof visualizations can be used to guide the process
of ontology repair [1], and it can be distributed and parallelized by means of
decomposition [26]. Furthermore, there are connections to belief revision [13].

The classical repair approach is often too rough since mere axiom deletion
also erases too many other consequences that might actually be desired. The
goal should not be to remove a minimal number of axioms but to modify the
ontology such that only a minimal number of consequences is removed, including
the unwanted ones. Alternative repair techniques that are less dependent on the
syntax should therefore be designed. To this end, a repair need not be a subset
of the input ontology anymore, but must only be logically entailed by it.

A framework for constructing gentle repairs based on axiom weakening was
developed [8]. The main difference to the classical repair approach is that, instead
of being removed completely, one axiom from each justification is replaced by
a logically weaker one such that the unwanted consequences cannot be derived
anymore. The framework can be applied to every monotonic logic, and one only
needs to devise a suitable weakening relation on axioms.2 In terms of belief
revision, gentle repairs correspond to pseudo-contractions [27].

In the DL EL [3], concept descriptions are built from concept names and
role names by conjunction and existential restriction, and a TBox is a finite
set of concept inclusions (CIs), which are axioms of the form C � D where
the premise C and the conclusion D are concept descriptions. For instance,
the CI MountainBike � ∃hasPart.SuspensionFork � ∃ isSuitableFor.OffRoadCycling
expresses that every mountain bike has a suspension fork and is suitable for
off-road cycling. Such axioms can be weakened by specializing the premise or by
generalizing the conclusion. Two weakening relations �syn and �sub for EL CIs
were devised [8], which instantiate the gentle repair framework for EL TBoxes.

Repairs of EL TBoxes can also be obtained by axiomatizing the logical inter-
section of the input TBox and the theory of a countermodel to the unwanted
consequences [15], e.g., by means of the framework for axiomatizing EL closure
operators [19]. Such a countermodel can either be manually specified by the
knowledge engineer or be automatically obtained by transforming a canonical
model of the TBox, e.g., with the methods for repairing quantified ABoxes [9].

2 There is always the trivial weakening relation that replaces each axiom with a tau-
tology, for which each gentle repair is a classical repair.
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The axiomatization method is very precise since it can introduce new
premises in the resulting repair if necessary [15, Example 18]. From a theoretical
perspective, this is a clear advantage simply because thereby a large amount of
knowledge can be retained in the repair. From a practical perspective, however,
this can be seen as a disadvantage as the resulting repairs might get consider-
ably larger than the input TBox. In order to prevent such an increase in size, I
have further proposed to construct a repair from a countermodel J in a slightly
different manner [15]: namely one keeps all premises unchanged and only gen-
eralizes the conclusions by means of J , which yields an approach very close to
the gentle repairs for the weakening relation �sub.

The goal of this article is to elaborate the latter idea in detail. We introduce
a framework for computing generalized-conclusion repairs of EL TBoxes, where
the premises must not be changed and the conclusions can be generalized. We
first devise a canonical construction of such repairs from polynomial-size seeds,
and then show that each generalized-conclusion repair is entailed by an optimal
one and that, up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time.

As an example, consider the TBox consisting of the single concept inclusion
Bike � ∃hasPart.SuspensionFork � ∃ isSuitableFor.OffRoadCycling, which differs
from the above in that the premise is replaced by Bike. It entails the false CIs
Bike � ∃hasPart.SuspensionFork and Bike � ∃ isSuitableFor.OffRoadCycling. The
(unique) optimal generalized-conclusion repair consists of the single CI Bike �
∃hasPart.� � ∃ isSuitableFor.�. In contrast, the classical repair approach deletes
the single CI completely, yielding an empty repair, which only entails tautologies
but does not entail that every bike has a part and is suitable for something.

In addition to developing the framework of generalized-conclusion repairs,
we introduce fixed-premise repairs. The difference to the generalized-conclusion
repairs is that the conclusions of CIs need not be generalizations anymore; only
the premises must remain the same and the input TBox must entail each CI
in the repair. Thereby even more consequences can be retained. Employing the
same seeds as before, we show that every fixed-premise repair is entailed by an
optimal one and that the set of all optimal fixed-premise repairs can be computed
in exponential time.

Clearly, the above generalized-conclusion repair is not satisfactory if
additional knowledge would be expressed in the given TBox, such as
SuspensionFork � Fork and OffRoadCycling � Cycling. Both additional CIs are
obviously true in real world and should thus be retained in an optimal repair.
Taking this into account, the (unique) optimal fixed-premise repair additionally
contains the CI Bike � ∃hasPart.Fork � ∃ isSuitableFor.Cycling, and it preserves
more consequences than the above generalized-conclusion repair, e.g., that every
bike is suitable for cycling.

An experimental implementation is available.3 In addition, we provide new
complexity results regarding gentle repairs w.r.t. the weakening relation �sub.
Due to space constraints, proofs can only be found in the extended version [20].

3 https://github.com/francesco-kriegel/right-repairs-of-el-tboxes.

https://github.com/francesco-kriegel/right-repairs-of-el-tboxes
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2 Preliminaries

Fix a signature Σ, which is a disjoint union of a set ΣC of concept names and a
set ΣR of role names. In EL, concept descriptions are inductively constructed by
means of the grammar rule C ::=� | A | C � C | ∃r.C where A ranges over ΣC

and r over ΣR. A concept inclusion (CI) is of the form C � D for concept
descriptions C and D, where we call C the premise and D the conclusion. A
terminological box (TBox) T is a finite set of concept inclusions. The set of all
premises in T is denoted by Prem(T ).

The semantics is defined via models. An interpretation I consists of a domain
Dom(I), which is a non-empty set, and an interpretation function ·I that maps
each concept name A to a subset AI of Dom(I) and that maps each role name r
to a binary relation rI over Dom(I). The interpretation function is extended
to all concept descriptions in the following recursive manner: �I := Dom(I),
(C � D)I := CI ∩ DI , and (∃r.C)I := {x | (x, y) ∈ rI for some y ∈ CI }. Fur-
thermore, I satisfies a CI C � D if CI ⊆ DI , written I |= C � D, and I is a
model of a TBox T if it satisfies all CIs in T , written I |= T . We say that T
entails C � D if C � D is satisfied in every model of T , denoted as T |= C � D.
We then also say that C is subsumed by D w.r.t. T and write C �T D. Subsump-
tion in EL can be decided in polynomial time [3]. With C �T D we abbreviate
C �T D and D 
�T C. Given sets K and L of EL concept descriptions, we say
that K is covered by L w.r.t. T and write K ≤T L if, for each K ∈ K, there is
some L ∈ L such that K �T L.

An atom is either a concept name or an existential restriction ∃r.C. Order
and repetitions of atoms in conjunctions as well as nestings of conjunctions are
irrelevant. In this sense, each concept description C is a conjunction of atoms,
which we call the top-level conjuncts of C, and the set of these is denoted by
Conj(C). Furthermore, we sometimes write

�
{C1, . . . , Cn} for C1 �· · ·�Cn. The

(unique) reduced form Cr of a concept description C is obtained by exhaustively
removing occurrences of atoms that subsume (w.r.t. ∅) another atom in the same
conjunction. C is equivalent to Cr, and two concept descriptions are equivalent
iff they have the same reduced form [21]. The subsumption order �∅ restricted
to reduced concept descriptions is a partial order and not just a pre-order [9].

We denote by Sub(α) the set of all concept descriptions that occur as
subconcepts in α, and Atoms(α) is the set of atoms occurring in α. Given a
set K of atoms, Max(K) denotes the subset consisting of all �∅-maximal atoms,
i.e., Max(K) := {K | K ∈ K and there is no K ′ ∈ K such that K �∅ K ′ }. If all
atoms in K are reduced, then Max(K) does not contain �∅-comparable atoms.

Let I be an interpretation and X a subset of Dom(I). A most specific con-
cept description (MSC) of X w.r.t. I is a concept description C that satis-
fies X ⊆ CI and, for each concept description D, X ⊆ DI implies C �∅ D.
The MSC of X w.r.t. I is unique up to equivalence and is denoted as XI .
Due to cycles in the interpretation, MSCs might not be expressible in EL, but
MSCs always exist in an extension of EL with greatest fixed-points, e.g., in
ELsi [23]. The latter DL extends EL with simulation quantifiers ∃sim(I, x) where
the semantics of such concept descriptions is defined by: y ∈ (∃sim(I, x))J if
there is a simulation from I to J that contains (x, y). As shown in [19, Propo-
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sition 4.1.6], the MSC XI is equivalent to ∃sim(℘(I),X), where the powering
P(I) has domain Dom(℘(I)) := ℘(Dom(I)), and A℘(I) consists of all subsets X
such that X ⊆ AI , and r℘(I) consists of all pairs (X,Y ) such that Y is a mini-
mal hitting set of { { y | (x, y) ∈ rI } | x ∈ X }. A CI C � D is satisfied in I iff
CII �∅ D, and X ⊆ CI is equivalent to XI �∅ C for each subset X ⊆ Dom(I)
and for each ELsi concept description C.

A least common subsumer (LCS) of concept descriptions C and D is a concept
description E such that C �∅ E as well as D �∅ E and, for each concept
description F , C �∅ F and D �∅ F implies E �∅ F . The LCS of C and D is
unique up to equivalence and we denote it by C ∨ D. It can be computed as
the product of the graphs representing C and D. In particular, the LCS of an
EL concept description C and an ELsi concept description ∃sim(I, x) is always
expressible in EL and the following recursion allows us to construct it:

C ∨ ∃sim(I, x) ≡∅
�

{A | A ∈ Conj(C) and x ∈ AI }

�
�

{ ∃r.(D ∨ ∃sim(I, y)) | ∃r.D ∈ Conj(C) and (x, y) ∈ rI }.

Furthermore, the MSC XI is equivalent to the LCS of all ∃sim(I, x) where x ∈ X.

3 Generalized-Conclusion Repairs of EL TBoxes

In this section we develop the framework for computing generalized-conclusion
repairs of EL TBoxes. We begin with defining basic notions.

Definition 1. Let T and U be EL TBoxes. We say that U is a generalized-
conclusion weakening (GC-weakening) of T , written T �GC U if, for each CI
C � D in U , there is a CI E � F in T such that C = E and F �∅ D.

GC-weakening is strictly stronger than entailment, i.e., T �GC U implies
T |= U but the converse need not hold. For instance, {A � B � ∃r.(A � B),
C � A � ∃r.A} has the GC-weakening {A � B � ∃r.A � ∃r.B, C � ∃r.A}, and
it entails {A � B � ∃r.(A � ∃r.A)}, which is not a GC-weakening.

Definition 2. A repair request P is a finite set of EL concept inclusions. A
TBox T complies with P if it does not entail any CI in P, i.e., it holds that
T 
|= C � D for each C � D ∈ P. A countermodel to P is an interpretation in
which none of the CIs in P is satisfied.

Definition 3. Given an EL TBox T and a repair request P, a generalized-
conclusion repair (GC-repair) of T for P is an EL TBox U that is a GC-
weakening of T and complies with P. We further call U optimal if there is no
other GC-repair V such that V �GC U but U 
�GC V.

Throughout the whole section we assume that T is an EL TBox and that P
is a repair request, and the goal is to construct a generalized-conclusion repair
(preferably an optimal one). Of course, if P contains a tautology, then no repair
exists. We therefore assume that this is not the case. Without loss of generality,
all concept descriptions in T and P must be reduced.
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Induced Countermodels. In the first step, we transform a canonical model of
the input TBox T into countermodels to P, which are used in the next section to
devise a canonical construction of generalized-conclusion repairs. The construc-
tion of each countermodel is guided by a repair seed.

Definition 4. A repair seed is a TBox S that complies with P and consists
of CIs of the form C � F for a premise C ∈ Prem(T ) and an atom F ∈
Atoms(P, T ) where C �T F .

The completion algorithm for EL is a decision procedure for the subsumption
problem (and also for the instance problem). In the correctness proof a canoni-
cal model of the TBox is constructed that involves all subconcepts occurring in
the TBox [3]. While this algorithm works in a rule-based manner, thus implic-
itly constructing the canonical model step by step, there is also a closed-form
representation [25]. Resembling the latter we define the canonical model I with
domain Dom(I) := {xC | C ∈ Sub(P, T ) } and its interpretation function is given
by AI := {xC | C �T A } for each A ∈ ΣC and rI := { (xC , xD) | C �T ∃r.D }
for each r ∈ ΣR. Then I is a model of T , and xC ∈ EI iff C �T E for each
subconcept C ∈ Sub(P, T ) and for each EL concept description E [20].

The transformation of the canonical model I is based on modification types.
These describe how copies of objects in the domain of I are modified in order
to create objects of a countermodel.

Definition 5. Let xC ∈ Dom(I). A modification type for xC is a subset K of
Atoms(P, T ) where xC ∈ KI for each K ∈ K, and K1 
�∅ K2 for each two
K1,K2 ∈ K. Given a repair seed S, we say that K respects S if additionally
{D} ≤S K implies {D} ≤∅ K for each D ∈ Sub(P, T ) where xC ∈ DI .

Each repair seed S induces a countermodel to P. Its domain consists of
all copies of objects in the canonical model I that are annotated with an S-
respecting modification type. The definition of the interpretation function guar-
antees that each such copy does not satisfy any atom in the modification type.

Definition 6. Let S be a repair seed. The induced countermodel JS has the
domain Dom(JS) consisting of all objects xC,K where xC ∈ Dom(I) and K is a
modification type for xC that respects S, and its interpretation function is defined
by AJS := {xC,K | xC ∈ AI and A 
∈ K } for each concept name A ∈ ΣC and
rJS := { (xC,K, xD,L) | (xC , xD) ∈ rI and Succ(K, r, xD) ≤∅ L } for each role
name r ∈ ΣR, where Succ(K, r, xD) := {E | ∃r.E ∈ K and xD ∈ EI }.

We can show that an object xC,K satisfies an EL concept description E in JS
iff xC satisfies E in I and K does not contain an atom subsuming E [20]. Now
consider an unwanted CI C � D in the repair request P. Since S complies
with P, there is a top-level conjunct D′ in D such that S 
|= C � D′. We can
thus construct an S-respecting modification type K for xC that contains an atom
subsuming D′ but none subsuming C. It follows that the copy xC,K satisfies the
premise C but not the conclusion D, i.e., JS is indeed a countermodel to C � D.

Proposition 7. For each repair seed S, the induced countermodel JS is a coun-
termodel to P.
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Canonical Generalized-Conclusion Repairs. Next, we show how each
repair seed S induces a GC-repair. We obtain it by generalizing each conclusion
according to countermodel JS , namely we take each concept inclusion C � D in
the given TBox T and replace D with the least common subsumer of D and the
most specific concept description E for which the CI C � E is satisfied in JS .

Definition 8. Each repair seed S induces the TBox

repGC(T ,S) := {C � D ∨ CJSJS | C � D ∈ T }.
The following lemma shows that repGC(T ,S) has exactly those TBoxes as

GC-weakenings that are GC-weakenings of T and of which JS is a model.

Lemma 9. repGC(T ,S) �GC U iff T �GC U and JS |= U
As repGC(T ,S) is a GC-weakening of itself, we infer that JS is a model of

repGC(T ,S). According to Proposition 7, JS is a countermodel to P, and so
repGC(T ,S) complies with P. It is further easy to see that repGC(T ,S) is a GC-
weakening of T . We have thus shown that the following holds.

Proposition 10. If S is a repair seed, then repGC(T ,S) is a GC-repair.

If the repair request P does not contain a tautological CI, then the empty set
is already a repair seed, i.e., repGC(T , ∅) is a GC-repair of T for P. Furthermore,
the induced GC-repairs are complete in the sense that every GC-repair is a
GC-weakening of repGC(T ,S) for some repair seed S.

Proposition 11. If U is a GC-repair of T for P, then there is a repair seed S
such that repGC(T ,S) �GC U .

Proof Sketch. Given a GC-repair U , a repair seed S∗
U is obtained as the least

fixed point of the equation S = {C � F | C � D′ ∈ U , F ∈ Atoms(P, T ),
and D′ �S F }. It has the important property that {D′} ≤S∗

U K implies
{C} ≤S∗

U K for each CI C � D′ ∈ U and for each modification type K. With
this property we can easily show that xE,K ∈ C

JS∗
U implies xE,K ∈ (D′)JS∗

U for
each CI C � D′ ∈ U , and thus the induced countermodel JS∗

U is a model of U .
Lemma 9 yields that U is a GC-weakening of repGC(T ,S∗

U ). ��
Each repair seed is of polynomial size, and there are at most exponentially

many seeds. Even with a naïve approach, we can compute all seeds in exponential
time and thus also all induced GC-repairs. Then we must filter out the non-
optimal ones, e.g., by comparing each two repairs w.r.t. �GC. Each comparison
needs polynomial time [3], and we obtain the following main result.

Theorem 12. The set of all optimal GC-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each GC-repair is a GC-
weakening of an optimal one.

In the below example, an optimal GC-repair is not polynomial-time computable.

Example 13. For the repair request {∃r.A � ∃r.B}, the TBox {∃r.A � ∃r.(P1�
Q1 � · · · � Pn � Qn), P1 � Q1 � B, . . . , Pn � Qn � B} has the optimal GC-
repair {∃r.A �

�
{ ∃r.(X1 � · · · � Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} },

P1 � Q1 � B, . . . , Pn � Qn � B}. It has exponential size.
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Computing a Canonical Generalized-Conclusion Repair. In the last step,
we are concerned with the question how the GC-repair induced by a seed S can
efficiently be computed. Recall that, as explained in the preliminaries, each con-
clusion D∨CJSJS can be obtained as the product of the EL concept description
D and the ELsi concept description ∃sim(℘(JS), CJS ), or alternatively as the
product of D and all ∃sim(JS , xE,K) where xE,K ∈ CJS . However, computing
the induced GC-repair repGC(T ,S) in this way is very inefficient since JS has
exponential size.

The first important observation is that the concept description CJSJS is
already equivalent to ∃sim(JS , xC,S[C]) where S[C] is the largest modification
type for xC that respects S and does not contain an atom subsuming C. This
follows from the fact that there is a simulation on JS that contains the pair
(xC,S[C], xE,K) for each object xE,K in the extension CJS . Secondly, in order
to compute the LCS D ∨ ∃sim(JS , xC,S[C]) it is not necessary to start from
xC,S[C] in the product construction, but it suffices to start from xD,S[C�D] where
S[C � D] is the largest modification type for xD that respects S and does not
contain an atom subsuming C. Thirdly, when computing the product of D and
∃sim(JS , xD,S[C�D]) we do not need to consider all objects xE,K that are reach-
able from xD,S[C�D] in JS , but only those where E is a filler of an existential
restriction that occurs in D. As main result we obtain the following proposition.

Definition 14. Given a subconcept E ∈ Sub(P, T ) and a modification type K
for xE that respects S, we define the restriction E�K by the following recursion.

E�K :=
�

{A | A ∈ Conj(E) and A 
∈ K }

�
�

{
∃r.F �L

∣∣∣∣∣ ∃r.F ∈ Conj(E), and L is a ≤∅-minimal mod. type

for xF that respects S and where Succ(K, r, xF ) ≤∅ L

}

Proposition 15. Given a repair seed S, it holds that D ∨ CJSJS ≡∅ D�S[C�D]

for each CI C � D in T , and thus the induced GC-repair repGC(T ,S) is equiv-
alent to the TBox {C � D�S[C�D] | C � D ∈ T }, where the modification type
S[C � D] is defined as Max{K | K ∈ Atoms(P, T ), C 
�S K, and D �T K }.

Two Observations. The below example illustrates that entailment between
repair seeds need not imply entailment between the induced GC-repairs.

Example 16. For the TBox T := {A � B, C � ∃r.(A � B)} and the repair
request P := {C � ∃r.B}, there are two optimal GC-repairs: U1 := {A � B,
C � ∃r.�}, induced by the seed S1 := {A � B}, and U2 := {A � �, C � ∃r.A},
induced by S2 := ∅. Now, U1 does not entail U2, although S1 entails S2.

The next example shows that, possibly contradicting intuition, it does not
suffice that a repair seed consists only of CIs C � F where C � D ∈ T and
F ∈ Atoms(P, T ) such that D �∅ F . We definitely sometimes need CIs C � F
where C �T F , as per Definition 4. Notably, the only optimal repair in the
following example can be described by the latter CIs.
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Example 17. Consider the TBox T := {A � ∃r.∃r.(B � C), ∃r.B � B} and
the repair request P := {A � ∃r.∃r.C}. The unique optimal GC-repair is {A �
∃r.∃r.B, ∃r.B � B}. It is induced only by the seeds {A � ∃r.B, ∃r.B � B}
and {A � B, A � ∃r.B, ∃r.B � B}. Specifically the seed CI A � ∃r.B would
not be allowed if we simplified the definition of a seed as explained above.

Another GC-repair is {A � ∃r.∃r.B, ∃r.B � �}, which is induced by the
empty seed ∅, but also by {A � B}, {A � ∃r.B}, and {A � B, A � ∃r.B}.

The above example also shows that a repair need not entail its seed, and
that a repair can be induced by multiple seeds. Conducted experiments support
the claim that each GC-repair might be induced by a unique seed with minimal
cardinality and such that every CI in the seed is also entailed by the repair.

4 Fixed-Premise Repairs of EL TBoxes

We have seen in the introduction that simply generalizing the conclusions of
the input TBox T might not yield satisfactory repairs. Therefore, we will now
construct repairs that can retain more consequences. It is still required that each
premise in the repair is also a premise in T , but apart from that we do not impose
further conditions except that the repair must, of course, be entailed by T .

Definition 18. Consider TBoxes T and U . We say that T fixed-premise entails
(FP-entails) U , written T |=FP U , if Prem(T ) = Prem(U) and T |= U .

T �GC U implies T |=FP U and the latter implies T |= U , but the converse
implications need not hold. This means that the relation |=FP is between �GC and
|=. Thus, repairs based on this new relation are, usually, better than GC-repairs.

Definition 19. Let T be an EL TBox and P a repair request. A fixed-premise
repair (FP-repair) of T for P is an EL TBox U that is FP-entailed by T and
complies with P. We further call U optimal if there is no other FP-repair V such
that V |=FP U and U 
|=FP V.

Obviously, each GC-repair is an FP-repair but the converse does not hold.
By reusing the notion of a repair seed as well as the results on GC-repairs in

Sect. 3, we obtain the following characterization of (optimal) FP-repairs. First of
all, each repair seed S induces an FP-repair: we take each CI C � D in the input
TBox T and replace the conclusion D with the most specific concept description
E for which the CI C � E is satisfied in the induced countermodel JS . Note
that now D is not generalized anymore by computing an LCS.

Definition 20. Each repair seed S induces the TBox

repFP(T ,S) := {C � CJSJS | C ∈ Prem(T ) }.

Recall that each conclusion CJSJS is equivalent to the ELsi con-
cept description ∃sim(JS , xC,S[C]), where S[C] is the largest modification
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type for xC that respects S and does not cover {C}, i.e., S[C] :=
Max{K | K ∈ Atoms(P, T ), C 
�S K, and C �T K }. Analogously to the GC-
repairs, every TBox repFP(T ,S) is an FP-repair and each FP-repair is FP-
entailed by repFP(T ,S) for some repair seed S.

Proposition 21. For each repair seed S, the TBox repFP(T ,S) is an FP-repair.

Proposition 22. For each FP-repair U of T for P, there is a repair seed S
such that repFP(T ,S) |=FP U .

We obtain the following main result of this section. Its proof is analogous to
Theorem 12, but uses the argument that entailment between ELsi TBoxes can
be decided in polynomial time [23].

Theorem 23. The set of all optimal FP-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each FP-repair is FP-entailed
by an optimal one.

We have seen in Example 17 that a repair seed might not be entailed by its
induced GC-repair. This is not the case for its induced FP-repair.

Lemma 24. Each repair seed S is entailed by its induced FP-repair repFP(T ,S).

Contrary to the GC-repairs, not every FP-repair is an EL TBox but might
require cyclic ELsi concept descriptions [23] as conclusions to be optimal. For
instance, consider the TBox {A � ∃r.A} that is also the repair request. The
unique optimal FP-repair consists of the single CI

A � ∃sim(
A Ar r r ).

If a standard EL TBox is required as result, one might rewrite the repair by
introducing fresh concept names (used as quantified monadic second-order vari-
ables). For the above optimal repair this yields the TBox ∃{X,Y,Z}.{A � X,
X � A � ∃r.Y, Y � ∃r.Z, Z � A � ∃r.Z}. One could also try to compute
a uniform interpolant [24,28] of the latter in order to get rid of the additional
symbols and so obtain a usual EL TBox. Alternatively, one could unfold the
cyclic conclusions into EL concept descriptions up to a certain role-depth bound.

If the TBox T is cycle-restricted [2], then the canonical model I is acyclic
and so is the induced countermodel JS for each repair seed S. The FP-repair
repFP(T ,S) then only has acyclic ELsi concept descriptions as conclusions and
these can be rewritten into EL concept descriptions.

5 Complexity of Maximally Strong �sub-Weakenings

As mentioned in the introduction, a framework for computing gentle repairs
based on axiom weakening was developed, and two weakening relations that
operate on EL CIs were introduced [8]. We briefly recall the modified gentle
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repair algorithm. As input, fix an ontology O that is partitioned into a static
part Os and a refutable part Or as well as an axiom α, the unwanted consequence,
that follows from O but not already from Os. A repair is an ontology O′ such
that O |= O′ but Os ∪ O′ 
|= α. In order to obtain such a repair, we repeatedly
compute a justification J for α and replace one axiom β ∈ J by a weaker one.4
Specifically, a justification for α is a minimal subset J ⊆ Or such that Os∪J |= α.
After at most exponentially many iterations a repair has been obtained.

A weakening relation is a pre-order � on axioms such that β � γ implies
that γ is weaker than β. Such relations are used to guide the selection of a
weaker axiom in the above iteration. Specifically, when processing a justification
J for α and a selected axiom β ∈ J , we should replace β by a maximally strong
weakening, which is an axiom γ such that β � γ and Os ∪ (J \ {β}) ∪ {γ} 
|= α,
but Os ∪ (J \ {β}) ∪ {δ} |= α for all δ where β � δ � γ. This prevents the
loss of too many other consequences (apart from α). However, maximally strong
weakenings need not exist for every weakening relation.

The syntactic weakening relation �syn on EL CIs removes subconcepts from
the conclusions. Maximally strong �syn-weakenings always exist in all direc-
tions,5 all of them can be computed in exponential time, one can be computed
in polynomial time, and recognizing them is coNP-complete.

The semantic weakening relation �sub replaces conclusions of EL CIs by more
general concepts, i.e., C � D �sub C ′ � D′ if C = C ′, D �∅ D′, and C ′ � D′


|= C � D. It has only been known that maximally strong �sub-weakenings always
exist in all directions (see footnote 5) all of them can effectively be computed,
and recognizing them is coNP-hard. As a side result from Sect. 3, we obtain
the following.

Proposition 25. If the unwanted consequence α is a CI, then all maximally
strong �sub-weakenings of an axiom β in a justification J for α can be computed
in exponential time.

The following modification of [8, Example 30] shows that a single maximally
strong �sub-weakening cannot always be computed in polynomial time.

Example 26. Take the ontology O with Os := {Pi � Qi � B | i ∈ {1, . . . , n} }
and Or := {β} for β := ∃r.A � ∃r.(P1 � Q1 � · · · � Pn � Qn), and the
unwanted consequence α := ∃r.A � ∃r.B. Then J := {β} is a justification
for α. There is exactly one maximally strong �sub-weakening of β in J , namely
∃r.A �

�
{ ∃r.(X1 � · · · � Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} }. Since

this weakening has exponential size, it cannot be computed in polynomial time.

Finally, recognizing maximally strong �sub-weakenings is also in coNP.

Proposition 27. The problem of deciding whether an EL CI γ is a maximally
strong �sub-weakening of an EL CI β in a justification J for α is coNP-complete.

4 We say that γ is weaker than β if β entails γ but γ does not entail β.
5 That is, each weakening of an axiom β in a justification J is weaker than a maximally

strong weakening of β in J—where a weakening of β in J is an axiom γ such that
β � γ and Os ∪ (J \ {β}) ∪ {γ} �|= α.
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6 Conclusion

We have introduced a framework for computing generalized-conclusion repairs
of EL TBoxes, where the premises must not be changed and the conclusions can
be generalized. Up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time. Each generalized-conclusion repair
is entailed by an optimal one and, furthermore, each optimal generalized-
conclusion repair can be described by a repair seed that has polynomial size.
In addition, we have extended the framework to the fixed-premise repairs, with
the difference that the conclusions need not be generalizations anymore. This
usually leads to better repairs, but with the disadvantage that the conclusions
in an optimal repair might be cyclic and can thus only be expressed in an exten-
sion of EL with greatest fixed-point semantics or by introducing fresh concept
names. Not affected by the latter, all optimal fixed-premise repairs can be com-
puted in exponential time too, and each fixed-premise repair is entailed by an
optimal one, which is induced by a polynomial-size repair seed. An experimental
implementation is available, which interacts with the user to construct the seed
from which the repair is built.

An interesting task for future research is to combine this approach to repair-
ing TBoxes with the approach to repairing quantified ABoxes [5]. This should be
possible by, firstly, adapting the notion of a repair seed such that it can addition-
ally contain concept assertions and role assertions and, secondly, suitably adapt-
ing the transformation of the saturation/canonical model into a countermodel
from which the final repair is constructed. Another interesting question is how the
approach can be extended to more expressive DLs, such as EL with the bottom
concept ⊥, nominals {a}, inverse roles r−, and role inclusions R1 ◦ · · · ◦ Rn � S.
Ideas from the latest extension of quantified ABox repairs to the DL ELROI(⊥)
might be helpful [6,7]. An extension with nominals would immediately add sup-
port for ABox axioms, since each concept assertion C(a) is equivalent to the CI
{a} � C and each role assertion is equivalent to {a} � ∃r.{b}. Furthermore, it
should not be hard to add support for a partitioning of the TBox into a static and
a refutable part, or for a set of wanted consequences that must still be entailed
by the repair. Also, it would be interesting to find a suitable partial order on
repair seeds such that minimality of the seed is equivalent to optimality of the
induced repair, similar to the qABox repairs [9]. Last, it would be interesting to
investigate whether and how the quality of the repairs can be improved if also
new premises can be introduced by the repair process. Currently, this can be
done by manually extending the input TBox to be repaired.
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Abstract. Data-driven models with weak theoretical foundations for
the examination of interventions and concepts to improve and maintain
health lack explainability of results and suggestions. The use of agent-
based models is a possible approach to remedy this issue. Modelling
behaviour and the formation of habits using established theoretical psy-
chological frameworks is a way of improving the utilisation of agent-based
models when researching health-related questions. This paper proposes
a concept implementing the Health Action Process Approach and the
Social Cognitive Learning Theory to model the process of behaviour
change within the Beliefs-Desires-Intentions Framework. The concept
illustrates how an agent workflow can incorporate these psychological
models and explain how social influence contributes to the formation of
habits.

Keywords: BDI · Health psychology · Cognitive modeling

1 Introduction

Agent-based models (ABM) are a popular means of modeling and simulating
systems across various contexts. These range from self-organising machines in
a factory [1] to people transmitting diseases during a pandemic [2]. When it
comes to health-related questions, ABMs can offer decision support by simu-
lating the impact of different strategies, giving additional justification to ideas
and proposals while reducing strain on potentially affected populations [3]. The
motivation for the usage of simulation to examine health behaviour is based
on the importance of research into successful methods of encouraging positive
changes in health behaviour. Both classical studies using surveys and experi-
ments as well as simulations are used to explore different means of prompting
change [4]. Frequent areas of study include exercise and heart disease preven-
tion [5,6], reduction of smoking [7], improving diet [8] and encouraging weight
loss in overweight patients [9–11]. A variety of different approaches and sugges-
tions to encourage behaviour change exist. How can researchers decide which
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idea should be discarded or pursued? What ideas are useful for specific popula-
tions? Evidence suggests that explicitly integrating behaviour change theories in
intervention design [12] and tailoring interventions to the needs of target groups
is more promising than broad delivery [13]. However, models often reduce the
complexity of behaviour to outcomes (such as calorie consumption and expen-
diture [10]) without examining the underlying processes or simplifying them
to phenomenons spreading through a network. Explicitly modelling the mech-
anisms that lead to change is a way of reducing the opaqueness of simulation
results and justifying the outcomes of a simulation based on the acceptance of
the underlying model.

This paper proposes a theoretical foundation for the modeling of the cognitive
processes that are activated when individuals choose to change behaviours and
the way conscious attempts turn into habitualized behaviour. The concept intro-
duces two psychological theories into an agent-based model based on the Beliefs-
Desires-Intentions Architecture (BDI) [14]. Schwarzer’s Health Action Process
Approach(HAPA) [13] explains the cognitive mechanisms that lead to behaviour
change and the way it transitions into habits. Additionally, Bandura’s Social
Cognitive Learning Theory(SCLT) [15] is an explanatory framework for the way
agents influence each other, elevating the idea of beliefs spreading through net-
works into a more nuanced way of viewing social influences. In this paper, the
concepts are introduced briefly before examining how these theories are con-
nected and how they may be transferred into a BDI-architecture. Additionally,
a concept for an agent workflow implementing these theories is proposed. To
illustrate how these concepts can be used for a real-life use case, the mobility of
heart failure patients in stationary care has been implemented with promising
results in terms of result plausibility.

2 Basics of Behavioural Theory and Agent Modeling

This section offers a small overview of the three key concepts used in this
work: the Health Action Process Approach of behaviour change, Social Cog-
nitive Learning Theory and habits. Additionally, a brief refresher on the concept
of the BDI architecture in the context of agent-based modelling is presented.

2.1 Health Action Process Approach: From Wanting to Doing

Schwarzer [13] describes a way of expressing behaviour change both in differ-
ent stages as well as a continuous process. This approach showcases how the
behaviour of people evolves and how to classify different people along their jour-
ney, allowing interventions tailored to the different needs people experience as
their behaviour and mental factors evolve, displayed in Fig. 1. An important
aspect in this formalisation is the emphasis on deliberation, planning and active
decision-making, which later transforms into habitual behaviours. Throughout
the process, external barriers and resources, such as social support, financial
means or geographic location, are acknowledged as contributing factors in the
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Fig. 1. The health action process approach [13]

formation of intentions and execution of planned behaviours. However, due to
its focus on practical application for intervention design, such external factors
are largely omitted from considerations, since individuals will generally have no
means of changing their circumstances. Instead, there is a strong focus on the
mental factors that can be leveraged to explain behaviour change. People are
divided into three categories according to the specific stage of their behaviour
change process. Preintenders have no interest in behaviour change - either due
to lack of risk perception, no faith in the outcome of a recommended behaviour
or lack of self-efficacy [15], which is a core concept in his approach. It denotes
people’s belief in their ability to do something and moderates their willingness
to attempt actions. Thus, risk perception, outcome expectation and self efficacy
moderate how people develop the intention to change their behaviours. Once an
intention is set, people start forming plans to implement the new behaviours and
how to cope with failures to adherence. In this stage, persons are considered to
be intenders, at which point information delivery won’t offer additional benefits
[13]. Finally, they pass into action and become actors, motivated by successful
maintenance or discouraged by failed attempts. As such, self-efficacy is a govern-
ing variable across the different stages of change: the belief in being able to do
something, to continue doing it and to resume if stopped for any reason. Within a
framework of targeted interventions, action control through healthcare providers
can serve as an additional support in maintaining new habits. Given the model’s
root in intervention design, disengagement is an additional component of this
system: once conscious choices have passed into habitualized behaviours, indi-
viduals will disengage from targeted interventions. The HAPA-Model has been
shown to be an effective means of describing and classifying individuals for differ-
ent health-related contexts such as obesity reduction [9], dental care [16], drunk
driving [17] or cancer screening [18].
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2.2 Social Learning: If You Can Do It, Maybe I Can Do It Too

While the HAPA-Model explains how mental factors are transferred into action,
it relies on external factors to cause changes to these internal states and opin-
ions before any deliberation takes place. This work proposes the inclusion of the
Social Cognitive Learning Theory [15] as an approach to introducing dynamics to
the mental state of individuals. This concept describes the way people learn from
each other and are influenced by their environments. In classical behavioural the-
ory, complex mental mechanisms may be reduced to stimuli and reaction, com-
parable to simple reactive agents in ABMs [19]. SCLT places emphasis on human
cognition as intermediary between experienced stimuli, displayed reactions and
observed outcomes. Is the stimulus perceived at all? Is the outcome that results
from an action perceived, understood and associated with the cause? Thus, a cog-
nitive filter is introduced to all perceptions. More importantly, humans don’t just
learn from their own experiences, but also role models provided by others: observ-
ing the actions of another and learning of the outcome leads to possible adjust-
ment of beliefs and opinions. However, this is not a simple imitation. During the
cognitive process, Social Modelling [20] is employed. People compare themselves
to others, introducing yet another filter to perceptions: is there enough similar-
ity between me and another for my observations of their behaviours to apply to
me?. Similarity may be physical characteristics such as age, sex, and physique
or subjective assessments, such as perceived status or personal relationship [21].
Therefore, SCLT introduces a means of adding dynamics to a closed system like
the HAPA-model: by observing others successfully implementing a change or
suffering the consequences of inaction, the cognitions governing the process of
decision-making are altered.

2.3 Forming Habits

Verplanken & Aarts [22] present an extensive review on the state of research on
habits and how they relate to behaviour, which is the base for this brief overview
of major aspects relevant to this work. Generally, a habit is understood as a
largely automatic execution of an action based on certain cues, such as time,
weather, location, company or other situations [23]. Such habitual behaviours
are exercised without much thought and require little to no mental planning and
evaluation. The paradigm of past behaviour being the main predictor for future
behaviour [24] holds true across a wide range of publications throughout the past
decades. In the absence of habits, implementation intentions gain emphasized
importance and have been proven to be reliable predictors for actual behaviour.
As behaviours are repeated, the cognitive aspects lose importance and habits
are formed. Thus, the more often an action has been repeated in the past, the
more likely it will be performed in the future [22].

2.4 Beliefs-Desires-Intentions Architecture: Assembling Cognition

Agents, as used in multiagent-based systems, represent autonomous entities in a
simulation [25]. In the context of social simulation, agents represent individuals
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with different characteristics, goals and actions. The BDI-architecture is an app-
roach to structure the modelling human-like agents capable of complex decisions
[14] and is one of the most established approaches to agent modeling [26].

Fig. 2. Workflow of an agent in BDI architecture [27]

It has been used successfully in various contexts, such as emergency evacua-
tions [34], negotiation between agents [35] or reactions to disasters such as land-
slides [36]. Terms such as ‘beliefs’ or ‘intentions’ have been mentioned before,
hinting at the intuitive nature of the BDI-architecture: cognition is assembled
from these three components and imitated in a simulation. Figure 2 [27] displays
the general process of agent decisions. Beliefs describe the agent’s knowledge of
itself and its environment - such as sensor input and other observations of the
environment as well as internal states such as opinions, moods, and other aspects.
Based on sensor input, these beliefs are revised and updated in each step. Beliefs
determine possible actions and desires an agent may have. Desires range from
simple target states to complex, mutually exclusive goals that turn decisions
into optimisation problems. These desires act as a filter to possible actions -
agents will act rationally in so far that they will pursue the fulfillment of desires
and discard non-contributing actions. Finally, intentions express the plans of
an agent - be it as simple as the next step to complex plans spanning multiple
actions over a span of time. These intentions become actions, which influence the
environment in return. An important characteristic of the BDI architecture is
its cyclical nature, in which the sensing of the environment, evaluation of beliefs
and adjustment of desires and plans is a recurrent process.

3 Bringing Everything Together: Concept Proposal

This section explains how key concepts of the HAPA-model can be represented
in a BDI-architecture and how SCLT can be used to introduce belief changes
in the system. A concept including both partial concepts is presented to offer a
coherent workflow which describes agent behaviour and habit formation.

3.1 Translating HAPA to BDI

Section 2 has shown a strong overlap between the HAPA-model and the BDI-
architecture, both in terms of ideas as well as terms that are used to describe
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them. The classification of agents is simplified into two categories: pre-intenders
on the one hand and intenders and actors grouped together on the other hand.
Due to the cognitive nature of the model, beliefs are the main focus of this map-
ping. Barriers and resources, setting the frame a person is acting in, are beliefs
about an agent’s environment. Mental factors, such as outcome expectation and
different types of self-efficacy, are beliefs agents hold about themselves. These
beliefs are crucial for the desires of the agents. It is important to note that, while
both concepts use the term intention, different ideas are expressed. The inten-
tions, as understood by the HAPA model, actually denote the agent’s desires,
while the intentions, as used by BDI, actually relate to the planning and actions
of the agent. Given the practical background of the HAPA model, most of its key
features relate to beliefs in the context of BDI: while desires such as a wish for
better health, social needs or external constraints such as social support, finan-
cial means and environment cannot be influenced directly or easily by healthcare
professionals or other methods of intervention delivery. However, attitudes, opin-
ions, knowledge and emotions are more accessible to targeted influences, which
makes them focal points of the mechanisms explicitly included.

3.2 Introducing Influence

The proposed mapping produces a largely static system: without a change of
beliefs due to external influences, no action will be taken. Thus, SCLT is intro-
duced to create dynamics within the model. Figure 3 displays a concept for the
way social observations influence agent beliefs. The graphic covers two different
cases: agents acting and experiencing the outcomes and agents observing and
evaluating. Agent 1 performs an action, leading to an outcome, which is eval-
uated and leads to an adjustment of beliefs - this may be a reinforcement of
outcome expectation or an increase in confidence. Agent 2, in the meantime,
observes and compares themselves to the other based on observable or known
traits. If sufficient similarity is found, the observation is relevant and beliefs may
be adjusted accordingly. If Agent 2 sees no similarity no learning takes place.
Thus, a subjective measure of similarity is necessary for learning - otherwise, an
observation or experience will be considered not applicable and has no effect.

Fig. 3. Observation and evaluation of beliefs in experienced actions and outcomes
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3.3 Forming Intentions and Habits

The aim is to simulate how people establish long-term habits. As such, their
behaviour and planning must extend beyond short-term moods and experiences.
Thus, the proposed workflow takes habits, cognition and social influence into
account to show how health behaviour changes over time. An important feature
of this concept is the possibility of relapse - if agents have no success with their
plans, they adjust their attitudes accordingly and may lose their motivation alto-
gether. Agents follow a loop of behaviour, forming plans based on their current
state, including goals, available resources and other aspects specific to a model.
Plans are stacks of tasks which are executed sequentially. Once a plan, usually
representing a time period of fixed length, such as a week or a month, is fin-
ished, agents evaluate the outcome of the plan and adjust their mental attitudes
accordingly before forming a new plan. During the execution of a task, described
in pseudocode in Algorithm 1, agents follow a series of decision rules. Variables
are introduced to save mental states and express their changes, summarised in
Table 1. The main concepts, adherence, goals and efficacy are altered by vari-
able magnitudes and upon passing variable thresholds, depending on the context
of an implementation. First, agents determine whether a task can be executed
at all. This unassuming condition can mean a variety of sub-conditions, such
as availability of resources and other preconditions as well as the habits of the
agent. Low adherence makes failure more likely. In a case of failure, adhtemp is
reduced.

Given the long term nature of habits, a single failure is merely a setback,
so adhtemp is a temporary summary of adherence in this plan cycle. The
agent chooses an alternative action depending on available resources, current

Table 1. Variables used in the pseudocode descriptions in Algorithm 1 and Algorithm
2

Variable Explanation

adh Adherence: strength of habit in following past plans

adhchange Magnitude of changes to long term adherence

adhtemp Temporary adherence to the current plan

adhmodifier Modifier to the adherence changes

goal Expression of an agent goal, depending on the implemented context

goalprogress Current progress towards increasing the magnitude of a held goal

goalmodifier Modifier to the magnitude of progress towards a goal increase

goalthreshold Threshold goal progress must reach before a goal increase takes place

decidethreshold Threshold that must be passed during deliberation before new goal

efficacy Self-efficacy, held belief in own abilities to perform a desired behaviour

efficacychange Rate at which efficacy increases in case of success

efficacymin Minimum value efficacy must have to maintain a goal

expectation Expression of the agent’s favourable outcome expectation
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Algorithm 1. Attempt Task Execution
if Task executable then

ExecuteTask
adhmodifier ← 1
if Task ∈ TargetBehaviours then

if Task ∈ OriginalP lan then
if TargetBehaviour ∈ AgentGoals then

adhmodifier ← n ∈ (0, 1)
else

goalprogress+ = (goalmodifier × past behaviour)
end if

else
adhtemp+ = (adhchange × adhmodifier)

end if
else

if (TargetBehaviour ∨ Results) ∈ ObservableEnvironment then
if Similarity (self, other agent) > threshold then

adjust (expectation, observation, similarity)
adjust (efficacy, observation, similarity)

end if
end if

end if
else

adhtemp− = adhchange

Plan.add (choose alternative ()) � Execute the other task instead
end if

mood and needs. This model differentiates between spontaneous implementa-
tion of desirable behaviour and planned actions. The lowering of the modifier
adhmodifier for ad-hoc choices ensures that planned actions contribute more
towards forming habits than opportunistic spontaneity. Spontaneous implemen-
tations of unplanned target behaviours still contribute towards goalprogress,
moderated by past behaviour. If the behaviour isn’t part of the targets, agents
examine whether these behaviours (or their results) are observable in the envi-
ronment. This includes direct communication with others reporting their expe-
rience or agents performing these actions in the vicinity. If sufficient similarity is
found between an agent, the observation and its source, relevant mental factors
are adjusted. Once all tasks have been performed, an evaluation takes place,
described in Algorithm 2. This subprocess consist of two branches, depending
on whether the desired target behaviour is part of the goals.

If the agent planned desirable behaviours and has a positive score for adhtemp,
self-efficacy, goalprogress and adherence increase. Additionally, if goalthreshold is
passed, the goal increases. Since this means new planning, adherence is reset, as
the agent now adjusts to altered behaviour. If adhtemp dropped below its initial
value, an agent failed to uphold their plans and loses adherence and efficacy.
If goalprogress drops into negatives and efficacy below its threshold, the agent
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Algorithm 2. Evaluate Plan Outcome
if TargetBehaviour ∈ AgentGoals then

if adhtemp ≥ 1 then
efficacy+ = efficacychange

goalprogress+ = goalmodifier

adh+ = (adhchange × adhtemp)
if goalprogress ≥ goalthreshold then

increase goal ()
adherence ← 1

end if
else

efficacy− = efficacychange

adh− = adhchange

goalprogress− = goalmodifier

if (goalprogress < 0) ∧ (efficacy < efficacymin) then
reduce goal ()

end if
end if

else
adh− = adhchange

efficacy− = efficacychange

if (efficacy + expectation + resources) ≥ decidethreshold then
goalprogress+ = goalmodifier

end if
if goalprogress > goalthreshold then

increase goal ()
adh+ = adhchange

end if
end if
adhtemp ← 0

reduces their goals. Alternatively, if the target behaviour is not planned, residual
adherence and self-efficacy from past success erode. If the combination of efficacy,
expectations and available resources surpasses decidethreshold, a goal is added
to the set of existing goals. With the introduction of adhtemp and the usage
of modifiers to regulate beliefs, behavioural changes are a long-term process
as habits develop and strengthen over time. Success (or lack thereof) lead to
changes in beliefs such as self-efficacy and outcome expectations, reinforced by
experience. A challenge not previously addressed is the calibration of parameters.
For some use cases, such as exercise, correlates between concepts and behaviours
have been measured empirically [38]. Yet even with some aspects quantified, most
variables still need experimental configuration. Therefore, this structure offers a
guide on how mechanisms of behaviour change can be achieved, though it omits
or simplifies several aspects whose applicability depend on the context.
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4 Discussion and Use Cases

The proposed concept combines the two major psychological models presented in
Sect. 2. During interaction with other people or from observation, beliefs change
to create the dynamics necessary to allow for agents that would be classified as
pre-intenders to become intenders and, finally, actors. A major aspect is the inter-
play between the deliberative nature of the HAPA-model, which places emphasis
on plans and evaluation, and the habitualisation of behaviours, which renders
execution of tasks easier as habits strengthen. Different concepts regarding health
behaviour can be addressed with this architecture. Besides, the availability of
resources, such as energy for exercise or accessible vegetarian options for food
choices, is an additional factor that will vary across models.

One possible context is increasing the amount of exercise agents perform
- observing agents of similar physique exercising or interacting with agents
whose health has worsened due to lack of activity can lead towards a change of
behaviour, which improves health and allows for easier execution in the future
[39]. Due to the possibility of short-term observable results, exercise and diet
are a topic easily represented in such a context [40]. Other behaviours, such as
vegetarianism [41], less alcohol consumption [42] or reduction of smoking [43],
do not have obvious short-term outcomes - in such a situation, social influences
gain more importance. As a result, the combination of different psychological
theories lends to a higher degree of reusability of this concept. While contexts
with observable short-term effects can be portrayed well with the HAPA-model
alone, the addition of SCLT ensures that social factors, such as support or per-
ceived norms, can be included to influence long-term decision-making in absence
of short-term feedback and behavioural outcomes. Therefore, this combined app-
roach is well suited as a base for the expression of different issues as ABMs.

4.1 Proof of Concept: Exercise in Heart Failure Patients

With exercise being a major means of preventing heart disease and improving
the wellbeing of diseased patients [5], the mobility of heart failure patients is an
exemplary use case for which a model was implemented using this concept in
a simplified form in NetLogo. Figure 4 illustrates the general sequence of agent
behaviours. The observed target behaviour is patients meeting recommended
exercise quotas - about three units of moderate exercise each week. Since any
amount of exercise is preferable to none, this target is pursued by agents through
their exercise goal, in which their personal target may be below guideline rec-
ommendations at first. This desire is contrasted with social needs, energy and
personal well-being. These desires are addressed by different actions: spending
time alone to recover, socializing with others to fill social needs, exercise or
spend time in a public area where others may be observed. Agents’ days are
structured into four time slots during which actions may be chosen - as such, a
week consists of 28 actions. These actions are planned in advance, using a sim-
plified planning method: agents choose a random plan which incorporates the
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target number of exercise units corresponding to their current goals. This plan
is executed sequentially, as described in Algorithm 1.

Fig. 4. Observation and evaluation of beliefs in experienced actions and outcomes

Personal beliefs and variables such as wellbeing, past behaviour, self efficacy,
outcome expectation and current energy moderate the performance of tasks and
their outcomes. This also allows for the inclusion of mechanisms of evaluation
in social interactions. Agents with strong adherence and positive health out-
comes are more convincing than agents whose past behaviour or current health
does not back up their confidence. In this model, social modeling is not actively
included - agents, residents of a stationary care facility, see enough similarity to
be influenced by observation and communication. To further increase the realism
of the simulation, the detrimental effects of isolation and sedentary behaviour
were included through the diminishing returns of resting - the more often one
chooses to rest within a short period of time, the less beneficial effects will be
gained while attributes such as physical wellbeing and self-efficacy slowly decay
over time with no exercise to counteract the natural decline observed in the
elderly. During the model runs, agents pick up exercise and drop back out in
case of failure, repeating the established pattern that individuals who have been
physically active in the past are most likely to remain active [24]. To verify the
model’s ability to produce realistic behaviour, a calibration was performed with
the objective of an average of 20% [44] of agents meeting the recommended
amount of exercise. The parameters that were calibrated related to the change
rate for different variables as expressed in Table 1, the strength of social influence
during interactions and the rate at which physical and mental variables decayed.
Regardless of whether a group size of 10, 25, 50 or 75 agents was considered,
the recommended parameter configuration remained stable, indicating that this
implementation and its parameters scale well in terms of behavioural stability.
Besides meeting the target behaviour quotes, the configuration also matched the
patterns of correlations observed in empirical research [38]. As such, this imple-
mentation is promising in terms of its ability to reproduce realistic behaviour.
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4.2 Related Works: Behaviour, Social Learning and Habit in ABMs

The integration of psychological theories is not a novel question [28]. Given the
fact that theory-driven models can compete with data-driven models in terms
of results [30], models focused on theory are an important approach. However,
ABMs often lack important features that define behaviour in empirical studies
[29]. Besides, there exist no formal definitions of translating concepts into models.
Some aspects of theories presented in this paper have been used in ABM context
before, such as SCLT, which has been successfully used in the implementation
of generic agents for interventions [4]. Social influences based on SCLT were also
used in the simulation of physical activity [6], women’s career choices [31], lead-
ership roles in disaster management [32] or the cognitive aspects of socially con-
tagious fertility [33]. Another field in which the importance of behaviour change
was identified is sustainability. ABMs have been used successfully to examine the
interplay between behaviour and cultural factors [45] as well as social contagion
of habits [46]. Other models, such as the acceptance of behaviour-changing inter-
ventions [47], have applied ABMs for questions of behaviour change. However,
models often lack explicit mechanisms of habits and habit formation. The novelty
of the approach presented in this work lies in the active deliberation on goals and
habits and the explicit inclusion of habit loss not introduced from social sources.
While some cognitive theories find application in ABMs [28], social factors are
more represented.

5 Conclusion

To increase the explainability and validity of simulations of interventions for
health behaviour, a concept for the cognitive process in behaviour change and
habit formation is presented. This concept offers an explanation and basic imple-
mentation to support the development of models that examine health-related
questions. This is a guide for the inclusion of the HAPA-model and a simplified
take on SCLT, given that many details will be largely specific to individual use
cases. Thus, we present a ‘skeleton’ that can set the general flow of actions and
decision-making in an agent. The major downside of this concept is its greatest
strength too, generality. With the range of aspects to be considered for each
possible use case, researchers and developers will face implementation efforts for
the numerous decisions that are made on a case-by-case base. Key questions
such as similarity assessment, exact attitude adjustment, determining whether a
task can be executed and mechanisms of observation and planning are charged
with open questions of design choice. Still, the process of determining possible
cognitive theories and how to interleave them is simplified by offering this archi-
tecture as baseline. This explanation how habits form using agent-based models
is promising due to the flexibility of modeling and range of questions that can
be addressed. Thus, as a planned future work, the authors intend to develop and
improve ABMs for different health questions using this approach, such as the
model presented in Sect. 4.1. In the context of this use case, validation against
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empirical data from accompanying studies is planned as well as further valida-
tion of the implementation using sensitivity analysis. Additionally, a model of
other health-related questions may be presented to demonstrate another use case
with this architecture to prove the generality of this concept. Given that exer-
cise serves as an example with well-observable short-term benefits, a counterpart
with less obvious outcomes, such as smoking cessation or vegetarian diet, might
be chosen to present another type of problem this architecture can portray.
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Abstract. Knowledge graph embeddings offer prospects to integrate machine
learning and symbolic reasoning. Learning algorithms are designed that map con-
stants, concepts, and relations to geometric entities in a real-valued domain R

n.
By identifying logics that feature these geometric entities as their model, one is
able to achieve a tight integration of logic reasoning with machine learning. How-
ever, interesting description logics are more expressive than current knowledge
graph embeddings, as description logics allow concept definitions using arbitrary
relations, such as non-functional relationships and partial ones. By contrast, geo-
metric models of relations used so far in knowledge graph embeddings such as
translations, rotations, or linear functions can only represent total functional rela-
tionships. In this paper we describe a new geometric model of the description
logic ALC based on cones that exploits reification combined with linear func-
tions to represent arbitrary relations. While this paper primarily describes reifica-
tion in context of a particular model for ALC, the proposed reification technique
is general and applicable with other ontology languages and knowledge graph
embeddings.

Keywords: Knowledge-graph embedding · Ontologies · Explainable AI

1 Introduction

Knowledge graph embeddings (KGEs) offer prospects of a true integration of machine
learning and symbolic reasoning, given that models acquired by means of machine
learning can also serve as models in a logic sense. Until now, several properties of
prominent ontology languages for representing non-trivial concepts are beyond what
can be grounded in machine learning models. In this paper we develop an approach
using reification to advance the expressiveness of relations in KGEs. In knowledge
graph embeddings, concepts are commonly represented as geometric entities (e.g., balls
[9], boxes [14], or cones [2,13,18]), constants as points, and relations as geometric
operations. TransE [3] continues to be the classical reference for a knowledge graph
embedding of relations, drawing its charm from a simple geometrical representation of
relations that can be learned efficiently. Indeed, TransE represents relations as vector
translations, and hence embedding a triple (s R o) (stating that a subject s stands in
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relation R to an object o, also written R(s, o)) into a continuous space is easily inte-
grated with a loss function used for learning the embedding. The downside of this sim-
ple representation is TransE’s limited expressivity [11]: only binary relations that are
functional in their first argument can be modeled. Such considerations on expressivity
have lead to many other embedding approaches that rely on more complex represen-
tations of relations. Most of them are in the tradition of TransE—some more such as
TransH [17], TransR [10] that rely on representing relations as translation, and some
less, relying on other, more involved geometrical operations such as SimplE [11] or
Rescal [12].

Still, all these approaches share the limitation of being restricted to relations that are
total and functional. Important features like partiality or non-functionality of relations
cannot be modeled correctly. What we mean by correct modeling is not going beyond
acceptable performance in some combinations of datasets and tasks, but to give a proper
logic-like Tarskian semantics to relations. By doing so, one does not only pave a more
solid theoretical foundation but also establishes the basis for KGEs associated with a
background ontology which states axiomatically constraints on the entities, concepts,
and relations to be embedded. For example, a background theory may state that certain
concepts are mutually exclusive (e.g., familyMovie and horrorMovie are disjoint) or
that some elements of a concept are related (e.g., hasChild as a partial, non-functional
relation on the concept class human). In [7] this logic-like representation is expressed as
the suggestion to represent (subjects and objects in triples) as vectors (this is represented
as arbitrary n-ary relations as subsets of the n-cartesian product over the embedding
space). An obvious downside of that approach is the high increase in dimensionality
required with adverse effects on learning. In this paper we take a middle-road: We insist
on representing concepts (unary relations) as sets of vectors but allow representations
of arbitrary binary relations in mathematically well-behaved operations.

In this paper we propose the idea of reification to be applied in KGEs to repre-
sent relations. We adopt the idea of relying on matrix multiplication to represent rela-
tions previously used in KGEs, but we rewrite relations into equivalent structures which
allows us to model arbitrary relations, including partial and non-functional ones. The
idea of reification is to represent relations as objects in the embedding space. In our
case, e.g., a triple (a R b) would be represented by an object cR(a,b) and functions
stating that its “arguments” are a and b: π1,R(cR(a,b)) = a, π2,R(cR(a,b)) = b. The
only relations πi,R that have to be represented and learnt, then, are functional relations,
namely projections of triples to its subject and its object. In context of an approach to
cone-based embeddings we are able to show that the set of triples cR(a,b) for a particular
relation R forms a well-behaved object too, namely a cone itself. In order to achieve
partiality, we develop a semantics that allows the projections π1, π2 to project pairs
(a, b) outside the domain, thus representing non-existence.

While reification is a well-known approach in logic modeling, the technical chal-
lenge tackled in this paper is to develop a geometric model that can link machine learn-
ing (by using feasible ingredients such as convex sets and simple geometric operations)
and ontologies (by defining a model for a logic). While we believe the idea of reifi-
cation to be compatible with a range of approaches in KGEs, we have opted in this
paper to extend an approach using linear functions as projections similar to TransR
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[10] as building blocks for relations and convex cones [13] which have already been
shown to support full concept negation in background knowledge. Taken together, we
can give a feasible geometric model for the well-known description logic ALC and
thereby advance expressivity of KGEs.

In summary, the key contribution of this paper is to give an embedding of ALC-
ontologies based on generalized cones with a novel interpretation of relations based on
reification having the ability of representing partial and non-functional relations.

The remainder of this paper is structured as follows. In Sect. 2 we introduce notation
and summarize relevant properties of ontologies. Section 3 presents the proposed reifi-
cation approach for cones. In Sect. 4 we show how a geometric model for the descrip-
tion logic ALC can be constructed and discuss its properties. Section 5 presents related
works. The paper concludes with a brief résumé and outlook.

2 Preliminaries

In order to define embeddings of knowledge graph triples with respect to background
knowledge, we first introduce a suitable language to model such background knowl-
edge, usually referred to as ontology. Description logics (DLs) [1] are formal languages
tailored towards representing ontologies and they thus present themselves as a basis.
DLs provide a clear distinction between factual knowledge (expressed in the so-called
abox) and terminological knowledge (expressed in the so-called tbox). In context of
KGEs, the abox provides specific data instances and the tbox provides background
knowledge. We note that one may be interested in semantics beyond classical DLs and
as we will discuss later this is indeed possible. For example, one may be interested in
some settings to account for partial information, say there may be elements that are
neither known to be members of a concept C nor of its negation C⊥. This may be
accomplished by choosing the appropriate semantics. To keep our approach general,
we first describe semantics for a very general orthologic and then refine it to the classic
semantics of the well-known and widely used DL ALC.

2.1 Ortholattice and Orthologic

In short, ortholattices are structures similar to Boolean algebras but with fewer proper-
ties, e.g., no distributivity.

An (algebraic) ortholattice is a partially ordered set L with functions defined on it,
namely a structure (L,∧,∨, ·⊥, 0, 1) fulfilling the following properties:

– a ∨ a = a, a ∧ a = a. (idempotence)
– a ∨ b = b ∨ a, a ∧ b = b ∧ a. (commutativity)
– (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c) (associativity)
– a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a (absorption)
– a ∧ 0 = 0, a ∨ 0 = a, a ∨ 1 = 1, a ∧ 1 = a
– a⊥⊥ = a (double negation elimination)
– 0 = a ∧ a⊥ (intuitionistic absurdity)
– (a ∨ b)⊥ = a⊥ ∧ b⊥, (a ∧ b)⊥ = a⊥ ∨ b⊥ (De Morgan)
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Intuitively, ·⊥ represents negation, more precisely called orthocomplement in ortho-
logics, and partial order ≤ on L corresponds to concept inclusion � in the ontology
language. Logics defined on ortholattices (as opposed to Boolean algebras) are called
orthologics. Classical logics like propositional logics are also orthologics, albeit ones
that satisfy additional, stronger properties.

2.2 Background Logic

As the basic logical syntax we consider that of ALC [1]. The syntax of ALC promises
to provide operators to express non-trivial background knowledge. This language is
neither trivial nor too complex to distract from developing the main points in this paper.
The ALC syntax rests on a DL vocabulary V given by a set of constants Nc, a set of role
names (binary relation symbols) NR, and a set of concept names NC . The set conc(V)
of ALC concepts (concept descriptions) over NC ∪ NR is described by the grammar

C −→ A | ⊥ | 	 | ¬C | C 
 C | C � C | ∃R.C | ∀R.C

where A ∈ NC is an atomic concept, R ∈ NR is a role symbol, and C stands for
arbitrary concepts. An ontology O is defined as a pair O = (T ,A) of a terminological
box (tbox) T and an assertional box (abox) A. A tbox consists of general inclusion
axioms C � D (“C is subsumed by D”) with concept descriptions C,D. For ease of
notation, we write C = D instead of C � D and D � C. An abox consists of a finite
set of assertions, i.e., facts of the form C(a) or of the form R(a, b) for a, b ∈ Nc. We
define the notion of an interpretation as usual:

Definition 1. A structure (Δ, ·I) is called an interpretation I for a given ALC vocab-
ulary of constants, concept and role symbols V = Nc ∪ NC ∪ NR iff Δ, the so-called
domain, is a set and ·I is the denotation function defined for all b ∈ Nc, A ∈ NC , R ∈
NR and concepts C,D over V such that the following conditions are fulfilled:

bI ∈ Δ, (C 
 D)I = CI ∩ DI ,
AI ⊆ Δ, (C � D)I = CI ∪ DI ,
RI ⊆ Δ × Δ, (¬C)I = Δ \ CI ,
	I = Δ, (∃R.C)I = {x ∈ ΔI | There is y ∈ ΔI s.t.
⊥I = ∅, (x, y) ∈ RI and y ∈ CI},

(∀R.C)I = {x ∈ ΔI | For all y ∈ ΔI:
If (x, y) ∈ RI , y ∈ CI}

An interpretation I models a GCI C � D, for short I |= C � D, iff CI ⊆ DI .
An interpretation I models an ABox axiom C(a), for short I |= C(a), iff aI ∈ CI

and it models an ABox axiom of the form R(a, b) iff (aI , bI) ∈ RI . An interpretation
is a model of an ontology (T ,A) iff it models all axioms appearing in T ∪ A.

We now discuss embeddings of cones in Rn before turning our attention to ALC.

3 Cone Embedding

Our approach is based on a geometric interpretation function I that represents concepts
and relations as convex cones in R

n. Cones satisfy the property that if x, y are inside a
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cone, then λx + μx, λ, μ ≥ 0 is also inside that cone. We make use out of this property
to construct the reification. We adopt the approach of [13] in using polarity (·)◦ derived
from the scalar product in R

n to construct a negation of concepts. The polar of a cone
C, written C◦, is defined as the set {x ∈ R

n|∀y ∈ C.xT · y ≤ 0}, i.e., the set of all
vectors being rotated at least 90 degrees away from any element of C. For all points
neither belonging to a cone C nor to its polar C◦, no statement about membership to
concepts C, ¬C can be made – the model is thus capable of representing uncertainty
and thus is able to cope with the open world assumption.

Definition 2. A convex cone is a set C ⊆ R
n with the property ∀x, y ∈ C.∀λ, μ ∈

R.(λ ≥ 0 ∧ μ ≥ 0) → λx + μy ∈ C. For readability, we refer to convex cones simply
as cones. We define Hm as the m-dimensional hyperoctant cone Hm ⊂ R

m generated
by m vectors {(1 0 · · · 0)T , (0 1 0 · · · 0)T , (0 0 1 0 · · · 0)T , . . . , (0 · · · 0 1)T }.

Closed convex cones are closed under set intersection, so ∩ is a meet operator ∧
wrt. ≤ but not closed under set union. Instead they have to be closed up by the conic
hull operator. The conic hull of a set b, for short ch(b), is the smallest convex cone
containing b. So, we can define the join operation ∨ by a ∨ b = ch(a ∪ b). Considering
R

n as the largest lattice element 1 and the empty set as the smallest lattice element 0
makes the resulting structure a bounded lattice.

The polarity operator for closed convex cones fulfills properties of orthocomple-
ment. Hence the set of all closed convex cones (over Rn) forms an ortholattice. As de
Morgan’s laws hold in any ortholattice, one gets in particular the following characteri-
zation of the conic hull: ch(a ∪ b) = (a◦ ∩ b◦)◦. We denote the set of all closed convex
cones in Rn by Cn. Then the following fact holds: For any n ≥ 1, Cn is an ortholattice.

Hm

C

D

π2,R

π1,R

C
C◦

Fig. 1. Left: Reification of relation R is based on linear functions π1,R, π2,R that project relation
concept Hm to its arguments. Right: Illustration for reification requiring Hm with m > n.

We now define reification as illustrated in Fig. 1 left to relate two concepts C, D.
Relations are represented like concepts, i.e., by convex sets of specific geometric shape,
and projections π1, π2 are introduced that link the embedded relations with the corre-
sponding concepts. The main advantage of this over previous attempts is that the use of
projections allows non-functional and partial relations to be represented. Approaches
representing relations by geometric transformations in the embedding space such as
TransE [3] are attractive as they also do not require further dimensions to be intro-
duced, yet at the severe cost of being only able to represent functional relations, i.e.,
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any x is always related to exactly one y. Several work aimed to remedy this severe limi-
tation, but no general cure is possible when relying on a single geometric transformation
function.

Definition 3. We say a reification of a binary relation R between two cones C, D is
given by a hyperoctant Hm and two linear functions π1,R and π2,R given as matrices
M ∈ R

n×m.

Let us now complement the geometric model. A cone interpretation for ALC maps
symbols and formulae to cones in R

n. The definition is as usual for interpretations,
except that we exclude the origin �0 from the domain. This creates a convenient way for
projections in the reification of relations to map subspaces to a well-defined ‘nirvana’ �0
whenever a mapping to the empty set is required. For example, the formula ∀R.	 � ⊥
saying that nothing is reachable by role R can elegantly be represented by setting π2,R

to 0 ∈ R
n×n, the projection to �0.

Definition 4. A cone interpretation for a given ALC vocabulary V = Nc ∪ NC ∪ NR

of constants, concept and role symbols is a structure (Δ, ·I) where Δ = R
n \ {�0} for

some n ∈ N and ·I is the denotation function defined for all b ∈ Nc, A ∈ NC , R ∈ NR

and concepts C,D over V such that the following conditions are fulfilled:
bI ∈ Δ, (C 
 D)I = CI ∩ DI ,
AI ∈ Cn, (¬C)I = C◦,
RI ⊆ Δ × Δ, (C � D)I = (¬(¬C 
 D))I ,
	I = Δ, (∃R.C)I = π1,R

(
π−1
2,R(CI) ∩ Hm

)

⊥I = ∅, where Hm, π1,R, π2,R are a reification of relation R

and π1,R

(
π−1
2,R(CI) ∩ Hm

)
is a convex cone.

(∀R.C)I = (¬∃R.¬C)I
The notion of a cone interpretation being a model (of an abox, tbox, ontology) is

defined in the same way as for classical interpretations according to Definition 1.

We now show that arbitrary ALC knowledge bases KB = (A, T ) consisting out
of abox A and tbox T are representable by a cone interpretation. First, we define how
relations on the abox level are modeled.

Definition 5. Given an ALC vocabulary with concept symbols C, constant symbols A,
and role symbols R, and ALC knowledge base KB, we say that the roles in KB are
representable if there is a geometric interpretation (Δ, I) that is a model of KB and
KB |= R(a, b) if and only if b ∈ π1,R(π−1

2,R(a) ∩ Hm) for some hyperoctant Hm.

Proposition 1. A cone interpretation of concepts maps all concept descriptions to
closed convex cones.

Proof. This is clear for atomic concepts, intersection, and for the polar operator. Dis-
junction is defined by de Morgan via intersection and polarity. But this is the conic hull,
hence a mapping to a closed convex cone. Linear mappings also preserve cones, as they
distribute over arbitrary linear combinations (not only those with positive scalars). For
the existential, being a convex cone is enforced directly by the definition.
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Note that enforcing closed convex cones for the embedding of existentials is not a strong
constraint. Taking the null vector into account one can show that the inverse preserves
cones: Let X be a cone and M be a linear mapping as used in reification. Let v ∈
M−1[X], then M(v) = w ∈ X . Then for λ > 0 due to linearity M(λv) = λM(v) =
λw and λw ∈ X due to the fact that X is a cone. Let v, v′ ∈ M−1[X], then M(v) =
w ∈ X,M(v′) = w′ ∈ X (for some w,w′). Now M(v + v′) = M(v) + M(v′) =
w + w′ ∈ X , so v + v′ ∈ M−1[X].

Reification employs matrix multiplications like several previous approaches, but
it employs an ‘in-between stop’ at Hm which is the central trick to represent 1-to-k
relations by making π1 a k-to-1 mapping. Let us consider a simple example shown in
Fig. 1 to see that a stop Hm is necessary and that even m > n may be necessary.

Example 1. We consider the cone C generated by vectors {(0 1)T , (0 − 1)T , (1 0)T }
in R

2 shown in Fig. 1 right. Its negation given by the polarity operator C◦ is the cone
generated by {(−1 0)T }. Now consider background knowledge ∃R.C = 	 saying that
any entity is reachable from C by means of relation R. 	 is interpreted as R2 \ {�0} and
it requires four independent rays λici, λi > 0, ci ∈ C to span R2, more than offered by
C. It requires at least H4 to achieve the desired mapping:

π1,R :=
(

0 0 1 −1
1 −1 0 0

)
, π2,R :=

(
0 0 1 0
1 −1 0 0

)

For any point �x = (x1 · · · x4)T in H4 we have π2(�x) = x1

(
0
1

)
+x2

(
0

−1

)
+x3

(
1
0

)

and since x1, . . . , x4 ≥ 0 we have π2(�x) ∈ C and π1(�x) covers R2 for �x ∈ H4. In
general, Hm with m > n is required when concept C is a sub-space of lower dimen-
sionality than the concept it is related to.

Let us discuss a more involved example showcasing the ability to model complex
relationships.

H2

• CI
π1,R =

(
1 0
0 0

)

π2,R =

(
1 1
0 0

)
π−1
2,R(C

I)

π−1
2,R((¬C)I)

(¬C)I

Fig. 2. Example for the construction of a geometric model of a tbox consisting of ∃R.C = C and
∃R.¬C = ⊥

Example 2. Consider concept CI represented as the positive x-axis, the complement
(¬C)I is the negative halfspace in R

2 shown in Fig. 2. This model fulfills the two tbox
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axioms ∃R.C = C and ∃R.¬C = ⊥. The first axiom is fulfilled, as π−1
2,R(CI) is the

region marked with arrows in the figure. The intersection with the region of possible
relational facts H2 results in H2, the upper right quadrant. This is mapped to CI by
π1,R. As π−1

2,R(¬C)I does not intersect with H2, ∃R.¬C = ⊥ is valid.
Therefore, partiality is obviously given. To show non-functionality, the instances

need to be considered. Assume cI = (λ 0)T for an arbitrary λ > 0. π−1
1,R(cI) =

{(λμ)T | μ ≥ 0} and π2,Rπ−1
1,R(cI) = {(λ + μ 0)T | μ ≥ 0}. Thus, a cI = (1 0)T has

a relation to all bI = (γ 0)T for γ ≥ 1.

A property of our approach, besides its non-distributivity of ∩ over ∪, is its non-
distributivity of ∃ over ∨, meaning (∃R.(C � D))I �= (∃R.CI � ∃R.D)I . Despite this
is not classical, e.g. different from ALC-semantics, it may be quite useful in model-
ing: Assume a binary relation E is introduced to model whether a person is examined
to have a specific disease. Thus, by asserting E(person, disease) medical knowledge
about a person at a specific point in time is reported. Now, it might be the case that an
examination is not exact and thus results in the knowledge that the person could have
disease A or disease B. However, assuming ∃E.(A�B) = ∃E.A�∃E.B would result
in the conclusion that at this stage of examination it is already known which exact dis-
ease the person has. However, this exact specification was presumed not to be possible,
and therefore, the instance representing the person should be placed in the embedding
of ∃E.(A � B) but neither in the embedding of ∃E.A nor in the embedding of ∃E.B
because for both of them there is no justification in the examination. Thus, a lack of
distributivity can be helpful to bridge gaps in semantics.

4 Distributive Embedding

The approach described so far leads to a possibility of expressing relational knowledge
in general orthologics, which may be relevant for some applications as we have argued
above. However, many knowledge bases consider stronger orthologics, i.e., expect dis-
tributivity to hold, which include all classical logics.

One prominent example is ALC with classical semantics. Here one requires the
ortholattice also to be a Boolean algebra. In fact, classical ALC-tboxes are character-
ized according to [15] by the fact that the existential is a strong operator, i.e., the exis-
tential quantifier with classical ALC semantics satisfies the following two properties:
(∃R.⊥)I = (⊥)I and (∃R.(C � D))I = (∃R.C � ∃R.D)I .

Therefore, to adapt our approach to ALC, distributivity of 
 over � and distribu-
tivity of ∃ over � must be achieved. The first property can be met by restricting cones
to so-called axis-aligned cones (al-cones) as introduced in [13] since geometric models
based on al-cones are distributive. Al-cones have a finite basis and their generating vec-
tors only consists out of components +1, −1, and 0. The second property can be met
by restricting the modeling of relations in form of the role distributivity property.

Definition 6. Role distributivity property RDP: if x ∈ (C � D)I and π−1
2,R(x) ∩ Hm �=

⊥I , then it exists xc ∈ (C)I and xd ∈ (D)I with x = xc + xd and π−1
2,R(xc) ⊆ Hm

and π−1
2,R(xd) ⊆ Hm.
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Each two concepts C and D must fulfill the RDP to regain distributivity of the
∃-operator.
Proposition 2. ∃R.(C � D) = ∃R.C � ∃R.D is valid if RDP is fulfilled.

Proof. ∃R.C � ∃R.D � ∃R.(C � D) holds in any case. Therefore, it is sufficient to
show ∃R.(C � D) � ∃R.C � ∃R.D. Therefore, for all y ∈ (∃R.(C � D))I it needs
to follow that y ∈ (∃R.C � ∃R.D)I . Let y �∈ (∃R.C)I , y �∈ (∃R.D)I , as trivial in the
other cases. Therefore, y = π1,R(π−1

2,R(xc + xd) ∩ Hm) for a xc ∈ C and a xd ∈ D.

With linearity of π2,R it follows that y = π1,R((π−1
2,R(xc) + π−1

2,R(xd)) ∩ Hm) and

y ∈ ∃R.C � ∃R.D means y = π1,R((π−1
2,Rxc ∩ Hm) + (π−1

2,Rxd ∩ Hm)). With RDP
follows equality.

Having this property, it is possible to show that all ALC knowledge bases are rep-
resentable by a geometric interpretation based on al-cones.

Proposition 3. All ALC knowledge bases are representable by a geometric interpreta-
tion.

Proof. We show that an al-cone interpretation of a ALC knowledge base without roles,
i.e., only considering the Boolean part, can be extended to a model for roles as well.

Since ALC features the finite model property we may assume that the geometric
model is finite and represents all facts following from a given knowledge base KB.
Hence assume all concepts to be represented by cones and all constants by vectors in
R

n. We write aIB to refer to the vector obtained for constant a in the Boolean embed-
ding and we write aI for its embedding we seek to construct.

We iteratively construct a geometric model from a Boolean geometric model based
on al-cones and a corresponding ALC model by processing role after role in a two-
step process. Initially, we initialize ·I by setting ·I to the Boolean-only model ·IB . In
the first step, we consider a role R with |{(a, b)|KB |= R(a, b)}| = m and assume
R = {(a1, b1), . . . , (am, bm)} in the finite model. We extend the dimensions of our
model from n to n(m + 1) by cloning the components of all vectors �x that generate
some concept. Let 0k denote k consecutive zero components in a vector, then we can
describe the modification of the embedding cI for any constant c as follows:

φ(c) =
∑

i=1,...,m,c=ai∨c=bi

(0n·i (cI)T 0m−i)T (1)

cI ←
{

φ(c) φ(c) �= 0n(m+1)

((cI)T 0n·m)T otherwise
(2)

Note that φ(c) �= 0n(m+1) occurs exactly if there is at least one ai or bi with c = ai or
c = bi. Doing so, we separate all entities in dom(R)∪ Img(R) that occur in the model.
In particular, we achieve that λaI

i ∈ dom(R), λ > 0 if and only if aI
i ∈ dom(R) and

likewise for Img(R). We repeat the process for all roles.
In the second step, we need to construct the reification of any role R which can be

done as follows. Assume again R = {(a1, b1), . . . , (ap, bp)} and then define a reifica-
tion based on hyperoctant Hp embedded in the model using projections

π1 =
[
aI
1 · · · aI

p

]
, π2 =

[
bI
1 · · · bI

p

]
,
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where [· · · ] represents a matrix composed out of column vectors. By construction of
aI
i , b

I
i , we have cR(a,b) = (0i−1 1 0n−1)T ∈ Hl which corresponds to R(ai, bi) since

π1(cR(a,b)) = aI
i and π2(cR(a,b)) = bI

i . It thus follows π1(Hp) ⊇ dom(R) and
π2(Hp) ⊇ Img(R), respectively. Also by construction, for any c �∈ dom(R) we have
cI �∈ π1(Hp) since aI

i and cI reside in mutually exclusive sub-spaces according to (2).

We note that this proof, albeit constructive, is of theoretical nature since it exploits
a large amount of dimensions for Hp to ease the construction.

It is not only possible to represent each ALC knowledge base with such a geometric
interpretation, it is also possible to interpret each geometric model based on the axis-
aligned cones introduced in the above proposition as an ALC-ontology.

Proposition 4. A geometric interpretation based on al-cones fulfilling RDP, where
π1,R(π2,R(C) ∩ Hm) maps to an al-cone for each half-axis C, represents an ALC
knowledge base.

Proof. A geometric interpretation without considering roles is shown in [13]. There-
fore, it is sufficient to show that the relational part also fulfills the restrictions of ALC.
∃R.⊥ = ⊥ is fulfilled by construction. The distributivity of ∃ over ∨ is ensured by
RDP, as shown in Proposition 2.

As each half-axis is mapped to an al-cone, because of linearity of π, each concept
is mapped to a union of al-cones, which is still an al-cone. Also because of linearity,
it is ensured that the properties needed for roles, e.g. ∃R.C � ∃R.	 are fulfilled. The
negation of ∃R.C is given by polarity (as it would not be a geometric model otherwise).
Therefore, the resulting geometric model represents a ALC knowledge base.

5 Related Work

The approach presented in this paper is a contribution to recent efforts on combining
knowledge representation (KR) and machine learning (ML). Roughly, those approaches
use ML algorithms to learn an ontology or to exploit the ontologies as constraint speci-
fications in order to get more accurate models or in order to optimize statistical models.
Our work and many of the recent KGE approaches (see below) tackle the problem
of building accurate models in the sense that these are compatible with the background
knowledge expressed in an ontology. But there is also relevant work outside of the KGE
community which incorporates ontologies into standard statistical models. An example
is the approach of Deng and colleagues [5] in which pairwise conditional random fields
are optimized by incorporating knowledge of the background as additional factors.

Earlier approaches to knowledge graph embedding—including TransE [3]—were
motivated by efficient learning algorithms, hence resolving the expressivity vs. feasi-
bility dilemma strictly in favor of feasibility. For example, consider the notion of “full
expressivity” in [11] which only states that an approach is able to differentiate between
all class members and non-members of a concept. In those approaches—including the
well-known TransE [3]—heads and tails of KGE triples are represented as real-valued
vectors and relations are represented as vectors, matrices or tensors, i.e., simple geo-
metric operations. In many occasions, the geometric operations lead to relations that
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are functional, total or are constrained by other means. But the resulting simple mathe-
matical operations (for representing relations) provide not much expressivity from a KR
point of view. Even in later approaches, e.g. [16], functionality is not dealt logically but
rather by relying on thresholds. In order to illustrate our point, consider an object rep-
resented by a vector x. A relation R is represented in [16] by a rotation MR. The vector
y := MRx gives only some “prototypical” object to which x stands in R-relation. Other
objects y′ to which x might stand in R-relation are given by ‖MRx− y′‖ ≤ λ for some
threshold λ. In particular, this means that all objects to which x is R-related are close
to MRx. In consequence, x can not be related to some objects y′ and y′′ that are quite
different in that they belong to complementary concepts, y′ ∈ CI and a y′′ ∈ (¬C)I .

Table 1. Comparison of approaches for embedding with the approach of this paper in bold font

Geometrical structure Logic Concept
lattice

Negation Approach/Reference

Concepts Relations

Convex sets Pairs Quasi-
chained
Datalog±

Distr Atomic [7]

Hyperspheres Translation EL++ Distr Atomic [9]

Axis-aligned
Cones

Pairs Rank-
restricted
ALC

Distr Full Boolean [13]

Axis-aligned
Cones

Cones ALC Distr Full Boolean This paper

Closed
subspaces in
Hilbert space

Pairs Minimal
Quantum
Logic

Orthomodular Orthonegation [6]

Hyperbolic
cones

Rotation Logics
for tax-
onomies

Distrib Atomic (?) [2]

Cartesian
products of
2D-cones

Rotation +
volume
change

FOL
queries
(?)
(without
∀)

Distrib Negation as
failure

[18]

In the following we discuss only those KGE approaches that explicitly mention
the kind of geometries used for embedding and the logic that characterizes them
(see Table 1). Table 1 considers in particular the question how concepts and roles are
embedded, whether distributivity of 
 over � is fulfilled, and what kind of negation is
expressed. We note that there are good reasons for considering non-distributive logics
for the investigation of concept hierarchies as discussed in [4]. Non-distributive logics
are investigated thoroughly by Hartonas in [8].
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[7] identify a fragment of existential Datalog (fulfilling the quasi-chainedness prop-
erty) as an appropriate logic for arbitrary convex regions in euclidean spaces. [9] finds
a correspondence for hyperspheres and the lightweight description logic EL. [13] iden-
tifies axis-aligned cones as an appropriate geometrical class for embedding concepts
of the semi-descriptive logic ALC. While [7,9] do not allow for full negation of con-
cepts to be represented, [13] define negation for the model of axis-aligned cones that
uses polarity, which possibly gives rise to some interesting logic structure. On the other
hand, in [13] binary relations are allowed to be arbitrary pairs of vectors, whereas [7]
models also relations (of any arity) by convex regions. The approach of this paper shares
the property with [13] of providing full (Boolean) negation. But our approach deviates
from [13] in the interpretation of roles—with consequences at three columns of the
table: Our approach does not consider arbitrary set of pairs as possible embeddings of
roles. In [13], this generality is possible by restricting the quantifier rank of the concepts
in the ontology. In contrast, our approach interprets roles by reifying concepts, that are
allowed to be (arbitrary) cones. This also allows handling arbitrary (non quantifier-
restricted) ALC ontologies as background knowledge.

In all three approaches the expressible concept hierarchy fulfills distributivity of
conjunction over disjunction. The approach of [6] considers minimal quantum logic
which does not fulfill distributivity but (only) a weakening: orthomodularity. Relations
are handled in [6] by doubling the dimension of space where the concepts are embedded
and by treating R(a, b) as a vector [a b]T in this higher-dimensional space.

The approach of [2] uses hyperbolic cones for modelling relation hierarchy graphs
and to grasp properties that follow by traversing the edges. The exact logic captured by
this approach is not clear (to us), as the authors allow next to subclass relations also
part-of relations. Quantifiers, negation (and other Boolean operators) are not handled
explicitly in this approach. One can think of antinomies being used in the hierarchy—
but this rather correspond to atomic negation. Hence we describe the logic as taxonomic.

The approach of [18] also uses the idea of [13] to handle negation of concepts
by using cones. But they do not consider negation as polarity, but negation as set-
complement in 2D and cartesian products to embed concepts. Relations in [18] are
handled by rotating the support point and changing the volume of a cone. The authors
claim to embed FOL queries. Interestingly, they exclude the universal quantifier ∀ form
their considerations. Given the fact that ∀ is dual to ∃ via negation we consider this
as a sign that negation is not treated in its full expressivity. In particular, they cannot
fully account for de Morgan rules since negation as used there is a form of negation as
failure.

6 Conclusions and Outlook

Algorithms involving computations over some declarative specification of the world
have to trade-off between expressivity and feasibility. Feasibility of embeddings has
been traditionally favored over expressivity, because many works are governed by prac-
tical implementations. Current investigations now try to push the expressivity envelope
and to strive for a better alignment between expressivity provided by an embedding and
the expressivity required for sound representation of some domain knowledge. Achiev-
ing a true alignment of the geometric structures determined in learning methods with
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logical models is necessary to exploit embeddings in hybrid AI approaches, in particu-
lar with reasoning beyond link prediction. This paper shows how the idea of reification
can be applied to knowledge graph embeddings and presented the first geometric model
of full ALC which is based on feasible structures previously employed in knowledge
graph embedding, namely convex sets (cones) and linear functions (matrix multiplica-
tion). Our approach is not tailored to ALC but may be useful to a much larger family
of orthologics. As this paper has been taken the second roadway of pushing forward
expressivity in geometric models, future work will aim to complement these funda-
mental findings with a learning method to acquire an embedding with reification of
roles.
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Abstract. This work presents solutions to the Traveling Salesperson
Problem with precedence constraints (TSPPC) using Deep Reinforce-
ment Learning (DRL) by adapting recent approaches that work well for
regular TSPs. Common to these approaches is the use of graph models
based on multi-head attention layers. One idea for solving the pickup and
delivery problem (PDP) is using heterogeneous attentions to embed the
different possible roles each node can take. In this work, we generalize
this concept of heterogeneous attentions to the TSPPC. Furthermore, we
adapt recent ideas to sparsify attentions for better scalability. Overall,
we contribute to the research community through the application and
evaluation of recent DRL methods in solving the TSPPC. Our code is
available at https://github.com/christianll9/tsppc-drl.

Keywords: Deep Reinforcement Learning · Traveling salesperson
problem with precedence constraints · Heterogeneous attention

1 Introduction

The Traveling Salesperson Problem (TSP) is an NP-hard problem. Many prac-
tically relevant operations research problems are formulated as variants of the
TSP. In this work, we focus on the TSP with precedence constraints (TSPPC),
a variation of the TSP that enforces special ordering constraints, i.e., node i
has to be visited before node j. Similar to the regular TSP, the TSPPC can
be applied to many practically relevant problems, such as scheduling, routing,
process sequencing, etc.

There has been a great deal of attention to the TSP and also work on the
TSPPC, discussed in more detail in Sect. 2. In this work, we solve the TSPPC
with Deep Reinforcement Learning (DRL) methods. Despite a large number of
contributions to the TSP and the rising number of works that applies DRL
methods to combinatorial optimization problems, to the best of our knowledge,
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there do not exist any DRL approaches to the TSPPC yet. Due to the NP-hard
nature of the problem, it is not feasible to obtain optimal solutions within a
reasonable computational time for large-size problems. Therefore, applying DRL
is desirable, as Machine Learning models offer a fast inference time in addition
to the ability to generalize and be used on different problem settings.

Building on the approach of Li et al. [12] we adapt their model to cope with
precedence constraints. For that, we modify their heterogeneous attention layers
to deal with precedence constraints as well as chains of precedence constraints.
This enables the model to learn the constraints intrinsically. Furthermore, we
sparsify the attentions and show that this not only leads to a better run time
performance but also increases the overall performance of the model (cf. Sect. 4).

The rest of the paper is structured as follows. Section 2 highlights some of
the most important related work. In Sect. 3, the problem setting is defined,
while Sect. 4 describes our methodology. Our experimental setup and results are
presented in Sects. 5 and 6, respectively. In Sect. 7, we end with some concluding
remarks and thoughts on future work.

2 Related Work

The TSPPC has been dealt with in a more generalized form in the field of opera-
tions research. It is termed Sequential Ordering Problem (SOP), which is another
name for the asymmetric TSPPC. The SOP was initially presented as an opera-
tions research problem by [5], who proposed a heuristic method to solve it. The
first work to introduce an algorithm to the SOP for exact solutions [1] formu-
lates it as a mixed-integer linear programming problem and uses a branch-and-
cut algorithm. Later several exact branch-and-bound algorithms were proposed
[10,15,17], improving the results of [1]. In [9] the authors improve on their previ-
ous work [17] by enhancing the lower bound method for the branch-and-bound
approach. One of the best heuristic solvers for the traveling salesperson problem
is the Lin-Kernighan traveling salesman heuristic (LKH) algorithm [8]. LKH-
3 is an extension of the LKH algorithm for solving constrained TSP problems
including SOPs.

The TSPPC and the more general TSP belong to the broader family of
Vehicle Routing Problems (VRP). A number of works have applied combinato-
rial optimization using DRL to solve these problems. [3] produced one of the
significant works in this regard. They used the Pointer Network of [19] that con-
sists of an LSTM-based encoder-decoder architecture and applied an actor-critic
algorithm. They achieve better results in comparison to the supervised learning
of [19] and the heuristics library OR-Tools [7]. Kool et al. [11] adapted the Trans-
former Model of [18] to solve multiple routing problems. They used multi-head
attention layers, where multiple heads are concatenated and then transformed to
perform message passing between nodes. Furthermore, they trained the model
using the REINFORCE algorithm with a greedy rollout baseline and outper-
formed several TSP and VRP models, including [3].
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[2] and [6] adapt the model from [11] to improve the performance on the
Capacitated Vehicle Routing Problem (CVRP) and the CVRP with Time Win-
dows respectively by making the feature embeddings more informative. [13] went
one step ahead and utilized a consecutive improvement approach using a model
partially based on the Transformer Model of [18]. They developed a DRL-based
controller that iteratively refines a random initial solution with an improvement
operator. Their model outperformed [11] and other state-of-the-art models.

[14] introduced Graph Pointer Networks based on the Pointer Network of
[3]. They combined it with a hierarchical policy gradient algorithm to achieve
new state-of-the-art results. Although their model lags behind the attention
model of [11] for small-scale TSPs, it outperforms every model as the scale
increases. Moreover, they also conducted experiments for TSP with time window
constraints showing new state-of-the-art results.

[21] presented a Multi-Decoder Attention Model based on [11]. Instead of
focusing on only one policy, their model learns multiple diverse policies and then
utilizes a special beam search to pick the best of them. They also introduced an
Embedding Glimpse layer to add more embedding information and thus improve
each policy. [16] solved the CVRP in a supervised fashion and outperforms [11]
and [21] for fixed vehicle costs.

Recently, [12] developed a DRL model using heterogeneous attentions for
the pickup and delivery problem (PDP), which is a special case of the TSPPC
[4]. Here, every node is either a pickup or a delivery node, and every node is
part of exactly one precedence constraint. Their model builds extensively on the
attention model of [11] and also uses a greedy rollout baseline together with the
REINFORCE algorithm. They conducted experiments using randomly generated
data and achieved a smaller total tour length than [11] and OR-Tools. Since the
PDP is a special case of the TSPPC, we build on the work of [12] and adapt
their model to cope with precedence constraints.

3 Problem Setting

The TSP, at its core, is concerned with finding the shortest route between a
given set of nodes X while visiting each node only once and returning to the
starting node. In addition, with precedence constraints, the starting point is
prescribed. Furthermore, each route has to satisfy given precedence constraints.
These constraints generally state something comparable to a visiting order. One
node can be subject to many constraints. For example, i has to be visited, before
j, k and l. The distance from node i to j is given by the distance matrix D. We
want to find an optimal permutation σ over the nodes, such that the total travel
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length L is minimal. Adapted from [14], we can formulate a TSP with n nodes:

min L(σ,D) = min
n∑

t=1

Dσt,σt+1

σ1 = σn+1

σt ∈ {1, ..., n}
σt �= σt′ ∀ t �= t′

(1)

where t is the current node and τ(i) returns the ordering of node i in the sequence
according to the permutation σ, so that i = στ(i). P is the set of all precedence
constraints. If i has to precede j this is represented by the pair (i, j). Following
this notation we can model the precedence constraints like:

τ(i) < τ(j) ∀ (i, j) ∈ P (2)

4 Methodology

The proposed model builds on the work of [11] and [12]. We modify their Trans-
former model by restricting specific attentions. Similar to [11], each problem
instance s can be considered as a graph with n nodes (see Sect. 3) having fea-
tures xi, where xi are the 2D coordinates. Our graph would be fully connected
in case of the unconstrained TSP. However, for the TSPPC, we use restricted
attentions to let the model learn precedence constraints intrinsically [12]. Given
a problem instance s, we sample the solution σ from a stochastic policy p(σ|s)
determined by our Transformer model [11]:

pθ(σ|s) =
n∏

t=1

pθ(σt|s, σ1:t−1) (3)

where the parameters θ describe the model. The encoder generates latent embed-
dings for all nodes using the coordinates as input features. These embeddings
along with context are fed in to the decoder. The decoder works iteratively by
decoding one state at a time to build the tour σ.

4.1 Encoder

The 2D input xi is embedded as dh-dimensional vector h
(0)
i = W xxi + bx, where

dh = 128, W x is the weight matrix and bx is the bias term. Then, multiple
stacked multi-head attention layers aggregate the embeddings. The output of
the final layer hN

i is used to compute a graph embedding h̄N = 1
n

∑n
i=1 hN

i ,
which can be interpreted as context.
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Heterogeneous Attentions. In order to solve the PDP, the concept of het-
erogeneous attentions was introduced by [12]. In addition to the attentions from
n nodes to n nodes, they introduce attentions (1) from every pickup/delivery
node to its corresponding delivery/pickup node, (2) from every pickup/delivery
node to all pickup nodes, and (3) from every pickup/delivery node to all delivery
nodes.

In the TSPPC, one node could have the role of a delivery of multiple pick-
ups or a delivery and a pickup simultaneously. These are the cases that cannot
occur in the PDP and therefore are not handled by [12]. To generalize their
model to the TSPPC, we speak therefore of predecessors instead of pickups and
successors instead of deliveries. Additionally, we restrict certain attentions from
predecessors to successors (ps) and from successors to predecessors (sp).

The TSPPC can also include chains of precedence constraints, which is
another aspect that makes the TSPPC different from the PDP. For example,
we could model a problem as follows: Node k can only be visited after node j,
which itself can only be visited after node i. All three nodes (i, j, and k) build
a chain. So far, there are no specific attentions from k to i or vice versa. Thus,
we add a third kind of heterogeneous attentions to our model, where we restrict
attentions from and to all members (mm) of a chain of precedence constraints.
We define M as the set of all chains, where every node can be a member of
a maximum of one chain. The function chain(i) returns the chain of node i.
Figure 1 illustrates the different heterogeneous attentions within the encoder.

Sparse Attentions. Sparsifying a graph can improve the run time performance
for large-scale problems. To achieve this, we restrict the attentions between all
nodes so that node i ∈ X can only reach its neighborhood Ni. This adds a
fourth kind of heterogeneous attentions to the model, namely attentions from
neighbors to neighbors (nn). The black lines in Fig. 1 illustrate the attentions
between neighbors for the first three nodes.

The neighborhood is calculated using two different approaches. First, we
mask every attention between nodes, where the euclidean distance is larger than
a fixed value dt. The second approach uses the euclidean k-NN algorithm. Here,
we mask all attentions to nodes that do not belong to the k nearest neighbors.
We discuss both approaches in Sect. 5.

Formalization. In total, we use four kinds of heterogeneous attentions U =
{nn, ps, sp,mm} within each layer l ∈ {1, ..., N} of our encoder. The kind of
attention u ∈ U is characterized by its own trainable weights for queries, keys
and values (WQu ,WKu ,WVu). Following loosely the notation of [11], we can
calculate the values for every node i ∈ {1, . . . , n} and every layer l:

qu
i = WQuhi, ku

i = WKuhi, vu
i = WVuhi (4)
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Fig. 1. Heterogeneous attentions between two consecutive multi-head attention layers
within the encoder. Black lines show attentions from neighbor-to-neighbor (nn) (for
illustration reasons, only the first three nodes were used). Orange lines show attentions
from predecessors to successors (ps) and green lines from successors to predecessors
(sp). Blue lines show attentions to all other members of the same constraint group
(mm).

When calculating the compatibilities cu
ij , we mask some with −∞ to restrict the

corresponding attention:

cnn
ij =

{
qnn

i
ᵀ knn

j√
dk

, if j ∈ Ni

−∞, otherwise
(5)

cps
ij =

{
qps

i
ᵀ kps

j√
dk

, if (i, j) ∈ P

−∞, otherwise
(6)

csp
ij =

{
qsp

i
ᵀ ksp

j√
dk

, if (j, i) ∈ P

−∞, otherwise
(7)

cmm
ij =

{
qmm

i
ᵀ kmm

j√
dk

, if chain(i) = chain(j) ∧ chain(i) ∈ M

−∞, otherwise
(8)

To get the the attention weights au
ij we apply the softmax function on the com-

patibilities.
au

ij = softmax(cu
i )j (9)

The attention weights au
ij are multiplied with values vu

j and then added to get
the embeddings for each head as:

h′
i =

∑

u∈U

∑

j∈n

au
ijv

u
j (10)

We summarize the aforementioned calculations as applying the multi-head atten-
tion function MHA with B = 8 heads on the embeddings h:

MHA(h)i =
B∑

b=1

WO
b h′

ib (11)
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where WO is a trainable weight matrix. Overall, each attention layer l consists
of an MHA function, a feedforward layer, skipped connections and a batch nor-
malization (BN) function, which is applied twice to calculate the embedding hl

i

of node i:

ĥl
i = BNl(h(l−1)

i + MHAl(h(l−1))i) (12)

hl
i = BNl(ĥl

i + FFl(ĥl
i)) (13)

We follow [11] and use the same graph embedding as the mean of all final node
embeddings, which is used by the decoder for context.

h̄N =
1
n

n∑

i=1

hN
i (14)

4.2 Decoder

Our decoder is similar to [12], where it generates a probability vector based on
the graph and node embeddings from the encoder. At the beginning, context hc

is created by concatenating the graph embedding and the last node embedding:

hc = Concat(h̄N , hN
σt−1

) (15)

where Concat denotes concatenation.
Similarly, the glimpse hg = MHA(WQ

g hc,WK
g hN ,WV

g hN ) is used for informa-
tion aggregation. With the values q(c) = WQhg and ki = WKhN

i , we can com-
pute the compatibility as:

ĥt = C · tanh(ht), (16)

where

ht
i =

{
qT
(c)ki√

dk
, if i /∈ σ1:t−1 ∧ pred(i) ⊆ σ1:t−1

−∞, otherwise
(17)

Here, pred(i) is a function returning the set of predecessors of node i. All visited
nodes and all successors are masked until their corresponding predecessors are
visited. C is a hyperparameter used for clipping and is set to 10. Finally, we
chose the next node to be visited based on the probability vector calculated as:

p(σt|X,Lt−1) = softmax(ĥt) (18)

Similar to [12], we optimize the loss L using gradient descent. We use the
REINFORCE [20] algorithm with the greedy rollout [11] baseline b(s):

∇L(θ|s) = Epθ(σ|s)[(L(σ) − b(s))∇ log pθ(σ|s)] (19)

5 Experiments

In order to fairly compare whether the models could generalize well across smaller
and larger instances than those seen in training, we set up controlled experiments
with fixed configurations.
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5.1 Training and Datasets

We train on fixed graph sizes TSPPC20 (ntrain = 20), TSPPC50 (ntrain =
50), TSPPC100 (ntrain = 100), with |P | = 0.33n precedence constraints. Each
TSPPC instance consists of n nodes sampled uniformly in the unit square S =
[xi]

n
i=1 and xi ε [0, 1]2. Each model is trained for 150 epochs with 102,400 TSPPC

samples each, which are randomly generated for each epoch with the batch sizes
of 512 (TSPPC20, TSPPC50) and 256 (TSPPC100) and a validation size of
10,240.

5.2 Model Adaptations and Sparsification

To evaluate the usefulness of our adaptations, we train different versions of our
model. First, we use the original model by Kool et al. [11] and adapt only the
masking within the decoder so that all tours are feasible solutions for the TSPPC.
Additionally, we train a model with and without attentions to the precedence
chain members (mm). All these three models are trained on a dense graph
without sparsification (i.e., dt = ∞ ∧ k = ∞).

Moreover, we try two approaches of sparse attentions. First, by restrict-
ing every attention between nodes, where the Euclidean distance is larger
than a particular threshold value dt. Threshold values are chosen to be dt ∈
{0.3, 0.5, 0.7, 0.9}. The second approach uses the euclidean k-NN algorithm,
whereby all attentions to nodes, which do not belong to the k ∈ {5, 10, 20}
nearest neighbors, are restricted.

5.3 Evaluation and Baselines

All models are evaluated for problem sizes n ∈ {20, 50, 100, 150, 200}. We com-
pare them against the simple Nearest Neighbor heuristic and the LKH-3 algo-
rithm.

LKH-3 is a powerful, near-optimal solver for the TSPPC. Other work in the
field of Reinforcement Learning often uses this solver and reports its results as
the best-found solution, but consistently presents slow inference times [3,11,14].
Although not reported specifically, this suggests the use of LKH-3’s standard
parameter setting without variation. We analyzed the influence of LKH-3’s max-
trials parameter on its cost-effectiveness. It can be observed that the standard
setting of maxtrials = 10,000 is not the most efficient choice. Based on this
finding, we report differently parametrized versions of LKH-3 in Sect. 6.

6 Results

We compare our best performing models for the problem sizes n = 20 and
n = 50 with the aforementioned baselines in Table 1. It is worth noting that
the results of the sampling approaches come quite close to those of the LKH-3.
The default configuration of LKH-3 (with maxtrials = 10,000) has undoubtedly
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Table 1. Average tour length and run time in seconds evaluation of the best performing
models vs. baselines of 1,000 TSPPC samples for the problem sizes n = 20 and n = 50.
Note that bold figures in each problem size represent the lowest tour length among
baselines and models.

Method n = 20 n = 50

Obj . Gap Time Obj. Gap Time

LKH-3 (maxtrials = 1) 4.48 3.23% 0.041 7.13 9.86% 0.078

LKH-3 (maxtrials = 10) 4.36 0.46% 0.047 6.71 3.39% 0.090

LKH-3 (maxtrials = 10 k) 4.34 0.00% 1.160 6.49 0.00% 4.007

Nearest Neighbor 5.33 22.81% 0.001 8.61 32.67% 0.005

Kool et al. [11] (greedy, masked) 5.12 17.97% 0.007 8.41 29.58% 0.021

Ours (greedy, dense) 4.65 7.14% 0.008 7.76 19.57% 0.028

Ours (greedy, k = 5) 4.61 6.22% 0.005 7.66 18.03% 0.012

Ours (sampling = 1 k, k = 5) 4.40 1.38% 0.034 7.15 10.17% 0.085

Ours (sampling = 10 k, k = 5) 4.38 0.92% 0.123 7.07 8.94% 0.483

the best performance in finding the shortest tour but also has the longest run
time across all problem sizes. Nevertheless, by using a different configuration,
LKH-3 is still able to compete against all sampling approaches in tour length
and run time. On the other hand, the Nearest Neighbor baseline gives the worst
tour length performance but the fastest run times. Furthermore, we can see that
using heterogeneous attentions can achieve better results compared to a masking
approach based on the model by [11].

The sparse model (where k = 5) outperforms its dense counterpart not only
in terms of run time but also achieves a shorter average tour length. The reason
for this might be that sparsification forces the model to search for optimal follow-
up nodes in the proximity of the current node. The hypothesis that the optimal
next node lies close to the current node intuitively makes sense. By enforcing
this assumption through sparsification, the model focuses on the most promising
next candidate nodes, thus achieving better performance.

To evaluate the ability to generalize, we show the results of our models
for different problem sizes in Table 2. Comparing TSPPC20, TSPPC50, and
TSPPC100 models, the common observation is that models trained at a par-
ticular problem size perform better when evaluated on the same problem size
they are trained on. Furthermore, TSPPC50 models tend to scale better when
evaluated on larger problem sizes (i.e., n = 100, 150, and 200). Focusing on
TSPPC50 models, the sparse k-NN k = 5 model outperforms all other dense
and sparse models in all problem sizes they are evaluated on. Moreover, it is also
the only model that beats the Nearest Neighbor baseline at n = 200, indicating
the scalability of this sparse model to larger problem sizes. Note that the results
for other model parameters can be found in appendixA Table 3.
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Table 2. Comparison of average tour length and run time (in seconds) between multiple
models vs. baselines on the evaluation of 1,000 TSPPC samples at each varying problem
size. Bold figures represent the lowest tour length among baselines and models.

Method n = 20 n = 50 n = 100 n = 150 n = 200

Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

Baselines

LKH-3 (maxtrials = 1) 4.48 0.041 7.13 0.078 10.49 0.096 13.27 0.175 15.75 0.274

LKH-3 (maxtrials = 10) 4.36 0.047 6.71 0.090 9.57 0.126 12.03 0.204 14.15 0.321

LKH-3 (maxtrials = 10 k) 4.34 1.160 6.49 4.007 8.93 12.160 11.99 22.928 12.42 36.086

Nearest Neighbor 5.33 0.001 8.61 0.005 12.31 0.022 15.16 0.065 17.54 0.124

TSPPC20

Greedy Evaluation

Kool et al. [11] (masked) 5.12 0.007 8.51 0.021 12.93 0.077 16.66 0.257 20.05 0.345

Ours (dense, without mm) 4.63 0.008 7.99 0.026 13.50 0.093 19.72 0.267 26.38 0.444

Ours (dense) 4.65 0.008 7.92 0.028 13.43 0.101 18.85 0.285 24.18 0.505

Ours (dt = 0.5) 4.63 0.008 7.80 0.023 12.46 0.079 16.91 0.240 20.99 0.364

Ours (k = 5) 4.61 0.005 7.86 0.015 12.75 0.049 17.09 0.103 21.09 0.176

Ours (k = 20) 4.61 0.006 10.35 0.020 26.37 0.057 40.00 0.120 53.29 0.193

Sampling (1000)

Ours (dt = 0.5) 4.41 0.041 7.32 0.087 13.18 0.246 20.07 0.507 27.32 0.858

Ours (k = 5) 4.40 0.034 7.26 0.085 12.41 0.247 17.67 0.519 22.90 0.825

Ours (k = 20) 4.41 0.027 9.56 0.086 29.33 0.246 50.82 0.482 72.01 0.781

Sampling (5000)

Ours (dt = 0.5) 4.39 0.066 7.18 0.232 12.83 0.894 19.07 1.741 25.23 3.119

Ours (k = 5) 4.38 0.078 7.16 0.272 12.20 0.803 17.38 1.737 22.54 3.015

Ours (k = 20) 4.39 0.063 9.27 0.254 28.53 0.852 49.76 1.784 70.68 3.127

TSPPC50

Greedy Evaluation

Kool et al. [11] (masked) 5.27 0.007 8.41 0.021 12.45 0.077 15.70 0.257 18.44 0.345

Ours (dense, without mm) 5.09 0.008 7.76 0.026 11.52 0.093 14.94 0.267 18.19 0.444

Ours (dense) 5.00 0.008 7.76 0.028 11.50 0.101 14.85 0.285 17.99 0.505

Ours (dt = 0.5) 5.00 0.008 7.70 0.023 11.46 0.079 14.85 0.240 18.10 0.364

Ours (k = 5) 4.95 0.004 7.66 0.012 11.30 0.050 14.54 0.108 17.47 0.175

Ours (k = 20) 5.02 0.005 7.76 0.019 11.71 0.062 15.65 0.122 19.48 0.202

Sampling (1000)

Ours (dt = 0.5) 4.67 0.030 7.16 0.080 10.83 0.238 14.61 0.553 18.51 0.863

Ours (k = 5) 4.64 0.027 7.15 0.085 10.83 0.234 14.60 0.531 18.41 0.845

Ours (k = 20) 4.70 0.031 7.23 0.086 11.31 0.276 16.18 0.494 21.49 0.806

Sampling (5000)

Ours (dt = 0.5) 4.62 0.059 7.14 0.268 10.79 0.819 14.58 1.720 18.53 3.001

Ours (k = 5) 4.61 0.073 7.09 0.250 10.68 0.827 14.38 1.749 18.16 3.037

Ours (k = 20) 4.66 0.069 7.17 0.246 11.14 0.804 15.92 1.694 21.16 3.256

TSPPC100

Greedy Evaluation

Ours (dt = 0.5) 5.18 0.004 7.87 0.020 11.32 0.072 14.22 0.159 16.91 0.299

Ours (k = 5) 5.28 0.004 8.01 0.015 11.41 0.047 14.45 0.106 17.26 0.175

Ours (k = 20) 5.35 0.006 7.94 0.020 11.30 0.058 14.27 0.123 17.02 0.194

Sampling (1000)

Ours (dt = 0.5) 4.71 0.027 7.29 0.078 10.63 0.232 13.84 0.524 17.05 0.827

Ours (k = 5) 4.81 0.031 7.49 0.087 10.77 0.236 13.94 0.507 17.13 0.815

Ours (k = 20) 4.81 0.031 7.35 0.077 10.68 0.237 13.95 0.482 17.33 0.840

Sampling (5000)

Ours (dt = 0.5) 4.66 0.056 7.21 0.253 10.51 0.852 13.65 1.727 16.84 2.993

Ours (k = 5) 4.76 0.057 7.41 0.264 10.67 0.792 13.79 1.724 16.94 2.950

Ours (k = 20) 4.76 0.058 7.27 0.260 10.55 0.846 13.77 1.738 17.10 2.943
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During our experiments, we observed unusual behavior regarding the scala-
bility of some of our models. For instance, the TSPPC20 k-NN k = 20 model in
Table 2 exhibits significantly worse results when scaled to higher problem sizes.
TSPPC20 with 20 nearest neighbors means that the model has access to all
nodes of the graph during training, which essentially makes it a dense model.
Thus, it should also scale in a similar way as the dense model. We hypothesize
that the reason behind the poor scalability is the fact that the model is prac-
tically trained as a dense model and then evaluated with sparse attentions for
larger problem sizes. Hence, we conclude that a model needs to be trained on
sparse attentions if it is to be evaluated on sparse attentions.

While the k-NN k = 5 model achieved the best performance for both,
TSPPC20 and TSPPC50 models, we can see that the threshold-based sparse
TSPPC100 model (where dt = 0.5) gives a slightly better tour length than
the corresponding k-NN models. Therefore, we would say that no single sparse
model works best for all problem sizes. Hence, the sparsity level should be care-
fully selected since it is not a trivial task. Interestingly, we can see that the effect
of sampling methods shrinks when increasing n, because the solution space grows
exponentially. For n = 200, the greedy approach already beats the sampling of
1000 tours.

7 Conclusion and Future Work

In this paper, we successfully deploy a DRL-based training method using a
Transformer model to solve the TSPPC. Furthermore, we sparsify our attentions,
achieving not only faster computation time but also a gain in performance. Our
model achieves better results than the model from Kool et al. [11] with a simple
masking adaptation for the TSPPC. However, the scalability of our model to very
large sizes was lacking in our experiments, which can be an aspect to concentrate
on in future work.

We analyze the LKH-3 heuristic algorithm and, unlike most other publi-
cations, also report results for non-standard LKH-3 settings. This shows that
LKH-3, while still having outstanding performance, can be very fast in inference
as well.

It can be said that DRL methods applied to the TSPPC have shown promis-
ing results, notably when evaluated on the same problem size as seen in training
or similar.
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Education and Research (BMBF) via the project “Learning to Optimize” (L2O) under
grant no. 01IS20013A.
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Table 3. Average tour length (and run time in seconds) comparison of all TSPPC20
and TSPPC50 models vs. baselines evaluated on 1,000 TSPPC samples at each varying
problem sizes. The number of precedence constraints is fixed at |P | = 0.33n. For a
better comparison of the effects caused by using different model parameters, we show
only the greedy evaluation.

Method n = 20 n = 50 n = 100 n = 150 n = 200

Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

Baselines

LKH-3 (maxtrials = 1) 4.48 0.041 7.13 0.078 10.49 0.096 13.27 0.175 15.75 0.274

LKH-3 (maxtrials = 10) 4.36 0.047 6.71 0.090 9.57 0.126 12.03 0.204 14.15 0.321

LKH-3 (maxtrials = 10 k) 4.34 1.160 6.49 4.007 8.93 12.160 11.99 22.928 12.42 36.086

Nearest Neighbor 5.33 0.001 8.61 0.005 12.31 0.022 15.16 0.065 17.54 0.124

TSPPC20

Greedy Evaluation

Kool et al. [11] (masked) 5.12 0.007 8.51 0.021 12.93 0.077 16.66 0.257 20.05 0.345

Ours (dense, without mm) 4.63 0.008 7.99 0.026 13.50 0.093 19.72 0.267 26.38 0.444

Ours (dense) 4.65 0.008 7.92 0.028 13.43 0.101 18.85 0.285 24.18 0.505

Ours (dt = 0.3) 4.63 0.006 7.88 0.189 13.20 0.062 19.05 0.178 24.75 0.303

Ours (dt = 0.5) 4.63 0.008 7.80 0.023 12.46 0.079 16.91 0.240 20.99 0.364

Ours (dt = 0.7) 4.64 0.008 7.96 0.026 13.19 0.089 18.28 0.312 23.20 0.445

Ours (dt = 0.9) 4.63 0.008 7.92 0.028 13.08 0.095 17.98 0.277 22.50 0.500

Ours (k = 5) 4.61 0.005 7.86 0.015 12.75 0.049 17.09 0.103 21.09 0.176

Ours (k = 10) 4.62 0.005 8.13 0.016 14.13 0.050 19.63 0.112 24.74 0.190

Ours (k = 20) 4.61 0.006 10.35 0.020 26.37 0.057 40.00 0.120 53.29 0.193

TSPPC50

Greedy Evaluation

Kool et al. [11] (masked) 5.27 0.007 8.41 0.021 12.45 0.077 15.70 0.257 18.44 0.345

Ours (dense, without mm) 5.09 0.008 7.76 0.026 11.52 0.093 14.94 0.267 18.19 0.444

Ours (dense) 5.00 0.008 7.76 0.028 11.50 0.101 14.85 0.285 17.99 0.505

Ours (dt = 0.3) 4.97 0.006 7.66 0.188 11.37 0.062 14.76 0.178 17.96 0.302

Ours (dt = 0.5) 5.00 0.008 7.70 0.023 11.46 0.079 14.85 0.240 18.10 0.364

Ours (dt = 0.7) 5.02 0.008 7.72 0.026 11.47 0.089 14.97 0.312 18.28 0.445

Ours (dt = 0.9) 5.01 0.008 7.69 0.028 11.39 0.095 14.66 0.277 17.68 0.500

Ours (k = 5) 4.95 0.004 7.66 0.012 11.30 0.050 14.54 0.108 17.47 0.175

Ours (k = 10) 5.05 0.005 7.73 0.014 11.61 0.054 15.18 0.110 18.50 0.187

Ours (k = 20) 5.02 0.005 7.76 0.019 11.71 0.062 15.65 0.122 19.48 0.202
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Abstract. Cooking a meal is a challenging and recurring task that
requires the consideration of various environmental influences and con-
straints as well as significant domain knowledge. One way to reduce the
complexity is to follow recipes that provide an ordered set of tasks for the
preparation of a dish. This concept was already transferred to cooking
assistants which present the recipe to the cook while adding further assis-
tance like device control or step-by-step visualization. Although recipes
and assistants simplify the cooking process itself, other factors like the
available devices or differences in cooking skills are ignored. Aside from
that, current assistants are often limited to one recipe at a time, ignoring
the regularly occurring requirement to prepare a meal of multiple com-
ponents. Considering these challenges, we propose our adaptive cook-
ing assistant HanKA that considers the individual user skill and envi-
ronmental kitchen setup, while assisting the cook at the preparation of
their freely combined and synchronized recipes. This is achieved through
a modular approach consisting of the automatic detection and control
of the available devices and user interfaces, the scheduling of multiple
recipes based on the distributed knowledge representation, and a devia-
tion management that considers the user experience. Hereby, we created
an adaptive cooking assistant that considers various influences that occur
in a cooking scenario, resulting in a better assistance for the user.

Keywords: AI applications and innovations · Knowledge
representation and reasoning · Planning and scheduling · Human
monitoring · Assisted living · Intelligent assistive environments

1 Introduction

Cooking is a complex instrumental activity of daily living [9], whereby cooking
skills correlate with healthy eating [7]. Hereby, a layperson has to continuously
transfer and coordinate recipe instructions in his individual cooking environ-
ment. Due to an increasing digitization of life, multiple cooking assistants were
developed that assist a cook in the preparation of a dish. Cooking Navi [6]
focuses on the synchronization of cooking recipes, PIC2DISH [3] generates the
cooking instructions from a picture and MimiCook [16] projects the instructions
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on the kitchen counter. While these provide a step-by-step assistance for the
cook, they do not provide key characteristics of user assistance systems [11] like
context-awareness and adaptation to the assisted person. In the cooking domain,
this includes the detection, control, and consideration of the available devices.
Although recipes provide step-by-step instructions for the cook, and in some
cases customization features like exchanging ingredients [1,2,12], these are often
limited to a single component. A completely flexible composition of multiple
recipes to an assisted cooking process including an automated sequencing, dis-
tributed device control, and dynamic synchronization of preparation steps has
not been realized so far. Time estimations in traditional recipes do not consider
the skills of the cook and frequently differ greatly from the time actually needed.
Similar to MAMPF [15], we individually measure and adapt the duration time
for each step. Beyond this, we further generalize these time estimates to new
recipes and ingredients. Although various assistive systems for the kitchen exist
that all successfully assist the cook when preparing dishes, most of these focus on
a step-by-step instruction and simplify contextual factors, as shown in Table 1.
However, the consideration of these contextual factors would lead to an individ-
ualized in situ assistance of the user in his regular kitchen environment as an
ultimate goal.

Table 1. Functionality provided by cooking assistants: Asterisk (*) means only build-
in devices are controlled. The first 5 are research prototypes, the next 2 are available
products, followed by our HanKA assistant. “Skill adaptation” means that the cooking
skills of the user are considered while planning, and does not describe if the system
adapts while cooking.

Cooking assistance Device Recipe Skill adaptation
Control Detection Combination Synchronization

MimiCook [16] - - - - -
CookingNavi [6] - - � � -
PIC2DISH [3] - - - - -
KogniChef [13] � - - - -
MAMPF [15] � - � - �
Thermomix [17] * - - - -
Cookit [4] * - - - -

HanKA � � � � �

In this paper we present our cooking assistant HanKA (German acronym for:
action centered coordination of assistance processes) that provides the follow-
ing contributions: (i) automatic detection and control of available user devices;
(ii) progress detection utilizing device interactions; (iii) combination and syn-
chronization of freely combinable recipes; (iv) adaptation of recipes to available
devices and cooking skills; (v) utilizing a distributed knowledge base for enrich-
ing minimal recipes with general cooking knowledge; (vi) a working cooking
assistant that guides the user, monitors the progress, and adjusts to occurring
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Fig. 1. Visualization of the phases from a cooking session and the assignment of the
procession loops with their related adaptations.

deviations. In this way, the cook can concentrate on the cooking task itself and
entrusts the scheduling of the tasks and managing of the devices to the assistant.

2 Methodology

In order to create a cooking assistant that provides the previously described
flexibility, the provision of multiple adaptations is required (Fig. 1). These adap-
tations are organized in two different processing loops. The outer loop initiates a
configuration at the start of each cooking session and the inner loop repeatedly
applies a process adaptation. Before the adaptation concepts are described in
detail, a brief summery of the underlying knowledge representation is given.

2.1 Underlying Knowledge Representation

In the following, the concepts of the knowledge representation are briefly
described. More details can be found in [14]. The distributed knowledge
representation consists of three sources (component recipes, ingredients,
action_templates) which, when combined, result in the executable recipes for
the cooking assistant. These three knowledge sources are linked by the action
type of each task in the component recipe (Fig. 2). The hierarchical representa-
tions of these knowledge sources allow to reuse and generalize knowledge that
is utilized in the proposed concepts. Action_templates are abstract actions that
are parameterized by the other knowledge sources. They provide all actions exe-
cutable by the cooking assistant with generalized and action-dependent infor-
mation: e.g., whether a user and/or device are required for the execution, the
urgency to proceed with the following action (connection urgency) and all sub-
ordinate (pre/post) actions. The recipe representation contains a set of tasks
with a reference to the corresponding action_template, the logical dependency
between the tasks and all recipe specific information, like ingredients and amount
per serving. The ingredient representation for each usable ingredient contains
actions executable with it, together with their general parameters (e.g. cooking
time). If an information is not defined in the recipe, the missing information is
added from the ingredient representation or, if not available for the ingredient,
from the action_template.



176 N. Neumann and S. Wachsmuth

Fig. 2. Exemplary creation of executable recipe steps (orange) for the single recipe rep-
resentation step cook potato (blue), while leaving out the connection to previous tasks
or the alternative preparation with a hob. The recipe task cook potato is enriched with
information (cooking times) from the cook action of the ingredient representation potato
(green). These combined information parametrize the abstract action_template cook
steamer to create the executable cook potato steamer recipe step (orange). Since the
action_template cook steamer has (sub-)tasks, these executable steps are also gener-
ated with information from the recipe and action_templates, visualized by stick figure.
(Color figure online)

2.2 Configurations per Cooking Session

The configuration per cooking session mostly takes place while creating the exe-
cutable representation of the recipes that are selected by the cook. This provides
the necessary infrastructure to define the inference processes for any configura-
tion or adaptation of the executable recipe proposed in this paper. This repre-
sentation contains all information about the available devices and cook as well
as all recipes that should be cooked together.

Recipe Adjustment to Available Devices. In order to deal with varying
devices in different kitchens, available devices must be discovered and device-
specific programs have to be abstracted to functionalities used by the cook-
ing assistant. Describing the required device-independent functionality in the
action_templates enables the mapping of recipes to devices and the filtering of
executable recipes in the context of the available devices. Through this, only
recipes with executable tasks on the available devices are planned and executed.
Adapting to the devices and utilizing the abstracted device program description
from the action_templates, enables the automatic adjustment to different setups
and allows automated device control in the recipe context.

Combination and Synchronization of Recipes. Enabling the user to freely
combine different recipes requires a flexible, automated enriching and scheduling
of instruction steps. In this case, further challenges arise, such as, where recipes
can be interrupted, which tasks are connected time-critically, which tasks can
be parallelized, which tasks require specific devices or the user attention, and
how are all component preparations synchronized to be served hot. Therefor,
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the self descriptive recipe contains all information about the recipe steps that
are utilized by the scheduler to arrange the tasks into a temporal order. In order
to plan the recipes based on the current setup, the scheduler needs the available
devices and information about the cook in addition to the recipes. Based on the
cook and device workload for each task, the scheduler can take the occupancy
into account. This enables the planner to execute tasks in parallel in regard to
the resources, which made it possible to synchronize the recipes. Utilizing the
logical connection between tasks and their connection urgency from the recipes,
enables the scheduler to know which tasks have to be carried out one after the
other and gives an indication where recipes can be interrupted. When alternative
methods of preparation are described by a recipe, further options are available
for the scheduler. The approach described so far leads to a valid plan, but does
not take the synchronization of the serving times into account. Because device
tasks that heat an ingredient are critical for serving everything hot, the last one
of these for each recipe must end as late as possible for all component recipes.

User Dependent Task Duration and Cooking Experience. The duration
of many preparation tasks greatly varies for different cooks. A better prediction
will result in less deviations, less re-planning, and a better estimation of the serv-
ing time. While storing the last time for a recipe task would be sufficient, this
only provides a prediction for the step in the specific recipe. Using a more gener-
alized approach that does not just refer to the recipe but also to general cooking
skills, enables the estimation of preparation time for recipes yet not cooked by
the user. A solution for this is presented by estimating factors that scale the
default task duration appropriately. Such factors can be estimated on three dif-
ferent levels of abstraction utilizing the distributed knowledge representation of
recipes, ingredients, and actions. After each cooking session, these three factors
are updated for each executed step, as further explained in Sect. 3.3. While some
cooking actions scale with improved cooking skills of the user like peeling, others
only depend on the recipe task for actions like cooling. Therefore, it is neces-
sary to know which tasks scale with the cooking skill and which not. Since this
information is action-dependent, it is provided by the action_templates, which
define if an action can adapt to the user. As the duration for some tasks scale
with the number of servings and some have fixed values, these information are
also provided by the action_template. By saving the default user duration of
the task as a factor, this value is independent of the number of servings and
calculated when these are selected.

2.3 Adaptation While Cooking

Based on the initial plan with a complete schedule of tasks, the user starts the
cooking process. Although the plan contains only tasks executable with the given
devices and uses task durations adapted to the user, this does not ensure that
no further adaptations are required. Therefore, a monitoring and re-planning of
the cooking process is implemented.
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Fig. 3. Component overview of the cooking assistant: The user interacts with the
devices and user interfaces which are connected to the corresponding coordination
components (3.1, 3.2). These send the interaction commands to the Monitoring and
Execution (3.4) component, that executes the recipe and detects deviations based on
the scheduled task order from the Planner (3.5), which is calculated on the enriched
knowledge representation from the Knowledge Representation (3.3).

Detection and Adaptation to Deviations from the Plan. While cooking
a meal, the estimated duration of the tasks can differ from the real duration.
Possible reasons are varying attention levels, external distractions or delays from
devices. Examples are the missing confirmation of the device execution or a pro-
longed heating process with larger amounts of water. Therefore, it is necessary
to monitor the cooking session and react to occurring deviations. These devia-
tions can be that a task is not executable because a previous task is not finished,
or that a running task should have ended but the user or a device has never
confirmed it. If a deviation is detected, the discrepancy to the old plan is cor-
rected by re-scheduling critical tasks. By adapting to the current situation, the
cook receives a permanently executable plan and is supported until the dish is
finished.

Grouping of Congruent Sub-tasks for Compact User Instructions.
While experienced cooks profit from compact instructions, beginners require
detailed simple cooking instructions. Therefore, we propose an automated strat-
egy to merge congruent cooking instructions. Here, the frequency how often a
user cooked the recipe and the appropriate ingredient-action pair beforehand is
used to determine if tasks are combined. As the final task sequence is a result of
the planning process, the grouping of tasks is considered after planning. Before
executing a task, the following tasks in time are inspected if they are merge-able
with the current task and if the user has enough experience for the combination.
Whether tasks can be combined is decided in regard to the used ingredient,
logical connection, action type and device usage. If a combination of tasks is
possible, the description, title, and images of the tasks are merged, and both
tasks are started. Clustering the task shortly before the execution retains that
scheduling can find the best possible solution, while also providing compact user
instructions in an adaptable manner.
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3 System Description

Creating an adaptive cooking assistant covers a wide set of areas, resulting in
thematically appropriate components roughly following MAPE-K from auto-
nomic computing [8], as shown in Fig. 3. These components are connected with
a customized request/response pattern, based on the MQTT protocol [10] and
communicate with serialized protocol buffer messages. This results in a well-
defined API and clear task areas for each component and allows the decoupling
of components. In the following subsections, the individual components, their
contribution to the overall system, and their adaptation strategies are described.

3.1 Device Coordination

The Device Coordination discovers and provides the available devices, controls
them, and detects process events required in the active device tasks from the
recipe. To keep it flexible, the component abstracts device-specific information
into a device-independent description that is used to describe device tasks inside
a recipe through which a mapping between functionalities in the recipe and
device specific programs is enabled. In addition to information such as operating
mode (e.g. two-sided heat), temperature, and duration, the description contains
the general type of actions (preheat, execute, add, remove). This is utilized by the
individual device controller which interprets the sensor data in the recipe context
and tracks the task progress. Through the additional information the device
functionality is extended and allows a context-aware interpretation of built-in
device sensors. Whereby preheat is finished if the temperature is reached, execute
is finished if the required duration is expired and add/remove are finished if other
device sensors detect the addition or removal of an ingredient at the time of the
task (e.g. door switch sensor for an oven). If the end of a task is detected by
the device, it notifies the Monitoring and Execution, which results in automatic
recipe progress.

3.2 Frontend Coordination

The Frontend Coordination is responsible for the coordination and synchroniza-
tion of the user interfaces and for the generalization of the user input. While the
specific user interfaces are not known beforehand for each setup analogous to
the available devices, they register via a discovery service to the Frontend Coor-
dination. The registered interfaces are connected with and synchronized by the
Frontend Coordination. Hereby, they implement a defined API to interact with
the system that abstracts the user input to commands, relevant for the cook-
ing process. Through this, the assistant can connect to different user interfaces
(tablet, speech interface or several of these) available in the concrete setup (e.g.
Fig. 4). Via the user interfaces the cook can combine recipes into the desired
dish, start and stop the cooking process, add or remove recipes to an active
cooking session, and visualize the planned task order. During cooking, the cook
is always able to finish any running task, select any valid new task, as well as to
preview tasks before they are active.
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Fig. 4. Exemplary cooking scenario, where the user confirms the cooking step cut onion
via a tablet.

3.3 Knowledge Representation

The Knowledge Representation provides the executable and combinable recipes
by utilizing the distributed knowledge sources (recipe representation, ingredient
representation and action_templates), as summarized in Sect. 2.1. The enriched
recipes provide the required information for scheduling (Planner), visualization
(Frontend Coordination), device controlling (Device Controller) and monitoring
(Monitoring and Execution). As the recipe should be cookable in the individual
kitchen, the created executable recipe representation also contains the regis-
tered devices with their functionalities from the Device Coordination and the
registered cook from the Frontend Coordination. Based on the available devices,
non executable recipes are removed. If an unknown user starts cooking with
the assistant, the system creates a user-specific ontology that stores the cooking
experience and duration factors for each recipe step in reference to the recipe,
ingredient, and action. Due to the different levels of abstraction and the more fre-
quent use of more generalized actions, a weight factor X is added in regard to the
referred knowledge source. In the ontology, the cooking skill of the user is saved
regarding the recipe step (R (X=5)), the ingredient-action pair (I (X=10)),
and the action type itself (A (X=20)). After each cooking session, these three
factors (R,I,A) are updated for each executed step (Eq. 1), with the correspond-
ing X-value for R,I,A.

newFactor(R, I,A) =
X ∗ oldFactor(R, I,A) + measuredTime

defaultT ime

X + 1
(1)

userTaskDuration =
R+ I +A

3
∗ taskDuration (2)

When a new recipe is generated, the duration for each task that the user can
perform is calculated by Eq. 2, with a factor of 1 if no value was saved before.
Even though the R value has no impact for recipes the user has never cooked,
the I and A values are recipe independent, allowing a prediction for recipes that
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are unknown to the cook. Through the recipe representation, Monitoring and
Execution also receives information how often the cook executed certain recipes
and utilized ingredients in order to merge tasks into more compact instructions.

3.4 Monitoring and Execution

The Monitoring and Execution component connects all components of the cook-
ing assistant. However, the main task is the monitoring of the cooking process
and the execution of the active tasks. Therefore, the execution of tasks and
the detection of deviations is split into multiple conditions and actions that are
repeated in an adaptation loop. While the Monitoring and Execution component
detects the deviations, the adjustment of the task schedule is carried out by the
Planner component.

– Task removal: Checks if the Device or Frontend Coordination finished a
task and removes it from the active tasks.

– Active task verification: Checks if an active task should have been ended
but is still running. If a task is still running with an end time in the past it
is extended.

– Task start: If the time for a new task to run has been reached, it is verified
that there are no resource conflicts resulting from an extended step. It is
further checked whether all logically connected previous tasks are finished.
When all tasks are finished and no resource conflicts are found, the task is
added to the active tasks. If not, a re-planning is necessary due to a deviation.

– Execution triggering: If the list of active tasks changes, they are send to
the Device- and Frontend Coordination in regard to the required resources.
If the cook has experience with the recipe or ingredient, it is checked if the
task can be combined with the following tasks, based on the ingredient, task
connection and action type of the tasks. If detected they, are combined and
communicated as one task with merged content information.

– Planning: If any of the previous steps detects a deviation, a planning request
with the actual state, available devices and cook is send to the Planner. The
solved response is used as the new plan for execution.

While the initial combination and synchronization of recipes is performed before-
hand, the combination of recipes can be changed while cooking, e.g. removing,
replacing or adding a component recipe. In this case, the appropriate action is
executed and the new recipe combination in regard to the progress of the already
running recipes is synchronized. This enables an even greater adaptability of the
cooking process for the cook.

3.5 Planner

The scheduling is considered as an optimization problem, where the domain,
rules and moves are defined and implemented in a way that the optaplanner [5]
engine can be utilized to combine and synchronize the recipes with the available
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Fig. 5. Simplified planning structure with two recipes and nine tasks: The end time of
a task is the earliest successor start time together with a variable delay, changeable by
the planner. The task 4 has a delay to his successor task (3) as the user attention is
required for tasks 7/8. In contrast, the user tasks 5/6 are parallel to the device task
2, because it only needs a device and no user. The urgent connection between 1/2 and
2/3 urges the planner to prevent a delay. For the synchronization of the recipes, the
planner minimizes the delay (* ). Since it is a planning request in a running state, task
9 is executed by the user at the moment. Therefore, if the task is moved, the time till
cooking is finished also changes, resulting in a changed serving time.

devices. Hereby, each planning request is stateless and utilizes the cooking state
of the request, which can only have small deviations for re-planning requests. The
main planning entity of the domain is the task. Each task is assigned to a recipe.
Since the planner synchronizes the recipes, all recipes have to be finished around
the same time. Therefore, the synchronization point of our planning problem
is the serving time, with the serving time defining the origin and the time axis
representing the time till the cooking process is finished, as shown in Fig. 5. Uti-
lizing this time representation, the first two optimizing criteria are the difference
between the finished menu and the actual time (cook as fast as possible) and the
distance from the last recipe step to the finished menu (synchronized serving).
The logical dependency of the tasks is modeled as a built-in constraint, because
any deviation from the logical order results in an invalid plan. Therefore, the
tasks are connected as a chain where the end of a task is the earliest start time for
all its successor tasks. This includes a delay that is used as a planning variable,
allowing the planner to change the time between tasks. Using the time repre-
sentation with the chain connection creates the advantage that if a deviation
occurs in the cooking process, only the ends of the chain have to be adjusted,
resulting in an easy re-planning. Solving the logical dependency with the built-in
constraint, the main constraint remaining is the consideration of the workload
for the user and devices. These are assigned based on the functionalities required
by the task. In order to not exceed the maximum workload for user and devices,
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Fig. 6. Left: Distribution of the relative duration for the 153 combinations in regard
to their serialized execution duration. Right: User Adaptation over multiple cooking
sessions. The single recipes are executed by a new simulated user that validates each
user task after 70% of the required duration defined in the base recipe. The device
tasks are executed normally. The recipes, with their IDs were executed from left to
right. Hereby, 100% is the necessary duration without user adaptation and the blue
bar is the required duration the simulated user actually needed. As the system adjusts
to the user skills, the deviation between initial plan and required duration (orange)
reduces, while the deviation between the initial plan and the required duration without
user adaptation increases (green). This happens especially strong if a known recipe is
repeated (ID 11) due to the different factor (Sect. 3.3). (Color figure online)

their workload is calculated over all tasks and if the maximum value is exceeded,
a hard constraint is detected which results in a penalty that outranks all other
scores. In order to ensure that action sequences requiring the same device, e.g.,
adding multiple ingredients, are still consistently assigned, device groups are
formed that treat them as a single compound task. For the creation of a plan
that is acceptable for the user, the logical dependency/cohesion is considered
as soft constraint. This takes the urgency of the connection into account where
delays between tasks with a high urgency result in higher penalties. Neverthe-
less, tasks with a low urgency connection are still sticked together if possible.
Since the planner should not always move all tasks in the chain, a custom move
was implemented that moves a single task in the range between the next task
and the following task, which expands the possibilities of the planner. Based on
the described domain, rules, and scores, the tasks are ordered, deviations are
solved, and an executable plan is returned.

4 Evaluation

The flexibility of the HanKA cooking assistant is provided by multiple adapta-
tions. Therefore, they are evaluated individually as far as that is possible in a
quantitative evaluation. Unless otherwise stated, a kitchen setup consisting of a
steamer, oven and hob is used. The evaluation is based on 18 recipes, each con-
sists of 6 to 64 tasks (avg. 19.6). Hereby, 1/3 of the recipes has two options of
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preparation, e.g. cooking noodles with a hob or steamer. The initial scheduling
of a single recipe requires 2474 ms on average. The average planned execution
time for a recipe with 4 servings is 46min. and 39 s. and 38min. and 15 s. for 1
serving. Resulting in a duration increase of 22.09% on average between 1 and 4
servings, not evenly distributed over the recipes, due to differences in task scaling
(min. cooked noodle 0%/max. cabbage turnip 94%). On average the recipes have
an idle time of 40.98% (4 serv.) that describes, how much of the time the cook
does not perform a task. This ranges from 0% for vegan mayonnaise to 81.69%
for burger buns with dough resting time. The idle time indicates optimization
possibilities when combining recipes and thus is a valuable scoring criteria to
evaluate the recipe combinations. For the evaluation of the recipe combination,
all 153 2-pair combinations of the 18 available recipes were calculated with an
average initial planning time of 3394 ms. Hereby, the planned cooking duration
is reduced to 83.68% of the time that is required to cook these successively, as
shown in Fig. 6 (left) for all combinations. The longer duration in 6/153 cases
is noticeable and results from changing types of preparation, that take longer
but provide a better synchronization at the end. For a single component, the
time between heating the last heating task and serving was 129.44 s, while for
the combined recipes the average for each component was 229.64 s. In this dura-
tion, the user removes the components from the devices and performs the last
tasks that are only executable afterwards. The lower idle time of 25.52% for two
recipes in contrast to 40.98% for a single recipe indicates a useful combination
of the recipes.

The cooking skills are evaluated with a simulated user, visualized in Fig. 6
(right). This user operates the assistant including devices just as a normal user,
but takes over the user interface due to the well-defined API. Hereby, the initially
estimated duration approaches the required duration over multiple cooking ses-
sions, especially if the recipe was cooked before, but also for completely unknown
recipes (e.g. ID 9). Due to varying amounts of user tasks, the possible adapta-
tion varies depending on the recipe. While executing the recipes, the average
adaptation time to deviations was 908.27 ms, which happened 24.14 times per
cooking process on average.

5 Conclusion

While supporting a cook at the preparation of a meal, cooking assistants and
recipes focus mostly on the cooking process itself. Although the cooking pro-
cess is the most important part, ignoring various other influences prevents the
exploitation of the full potential. Therefore, we identified these influences, pre-
sented approaches that take these into account, and combined them into our
adaptive cooking assistant HanKA.

As a result, the cooking assistant combines and synchronizes multiple recipes,
and considers the available devices while also controlling these in the context of
the task. It considers the cooking skills of the user, adjusts the granularity of
steps based on the user experience, and adapts the cooking process in case of



HanKA: Enriched Knowledge Used by an Adaptive Cooking Assistant 185

deviations. Due to the adaptation of the system, the workload for the cook is
reduced whereby the user no longer has to check and control the available devices
or merge the recipes by hand. Through this, the cook can focus on the cooking
process itself.
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Abstract. As we grant artificial intelligence increasing power and inde-
pendence in contexts like healthcare, policing, and driving, AI faces moral
dilemmas but lacks the tools to solve them. Warnings from regulators,
philosophers, and computer scientists about the dangers of unethical
AI have spurred interest in automated ethics-i.e., the development of
machines that can perform ethical reasoning. However, prior work in
automated ethics rarely engages with philosophical literature. Philoso-
phers have spent centuries debating moral dilemmas so automated ethics
will be most nuanced, consistent, and reliable when it draws on philo-
sophical literature. In this paper, I present an implementation of auto-
mated Kantian ethics that is faithful to the Kantian philosophical tradi-
tion. I formalize Kant’s categorical imperative in an embedding of Dyadic
Deontic Logic in HOL, implement this formalization in the Isabelle/HOL
theorem prover, and develop a testing framework to evaluate how well
my implementation coheres with expected properties of Kantian ethic.
My system is an early step towards philosophically mature ethical AI
agents and it can make nuanced judgements in complex ethical dilem-
mas because it is grounded in philosophical literature. Because I use an
interactive theorem prover, my system’s judgements are explainable.

Keywords: Automated ethics · Kant · Isabelle · Ai ethics

1 Introduction

AI is making decisions in increasingly important contexts, such as medical diag-
noses and criminal sentencing, and must perform ethical reasoning to navigate
the world responsibly. This ethical reasoning will be most nuanced and trustwor-
thy when it is informed by philosophy. Prior work in building computers that
can reason about ethics, known as automated ethics, rarely capitalizes on philo-
sophical progress and thus often cannot withstand philosophical scrutiny. This
paper presents an implementation of philosophically faithful automated ethics.

Faithfully automating ethics is challenging. Representing ethics using con-
straint satisfaction [20] or reinforcement learning [1] fails to capture most ethi-
cal theories. For example, encoding ethics as a Markov Decision Process assumes
that ethical reward can be aggregated, a controversial idea [47]. Even once ethics
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is automated, context given to the machine, such as the description of an ethical
dilemma, plays a large role in determining judgements.

I implement automated Kantian ethical reasoning that is faithful to philo-
sophical literature.1 I formalize Kant’s moral rule in Dyadic Deontic Logic
(DDL), a logic that can express obligation and permissibility [15]. I implement
my formalization in Isabelle, an interactive theorem prover that can automati-
cally generate proofs in user-defined logics [40]. Finally, I use Isabelle to auto-
matically prove theorems (such as, “murder is wrong”) in my new logic. Because
my system automates reasoning in a logic that represents Kantian ethics, it
automates Kantian ethical reasoning. It can classify actions as prohibited, per-
missible or obligatory with minimal factual background. I make the following
contributions:

1. In Sect. 4.1, I formalize a philosophically accepted version of Kant’s moral
rule in DDL.

2. In Sect. 4.2, I implement my formalization in Isabelle. My system can judge
appropriately-represented actions and show the facts used in the proof.

3. In Subsects. 1 and 2 of Sect. 4.2, I use my system to produce nuanced answers
to two well-known Kantian ethical dilemmas. Because my system draws on
Kantian literature, it can perform sophisticated moral reasoning.

4. In Sect. 4.3, I present a testing framework to evaluate how faithful my system
is to philosophical literature. Tests show that my implementation outperforms
two other formalizations of Kantian ethics.

2 The Need for Faithful, Explainable Automated Ethics

AI operating in high-stakes environments like policing and healthcare must make
moral decisions. For example, self-driving cars may face the following moral
dilemma: an autonomous vehicle approaching an intersection fails to notice
pedestrians until it is too late to brake. The car can continue on its course,
running over and killing three pedestrians, or it can swerve to hit a tree, killing
its single passenger. While this example is (hopefully) not typical of the oper-
ation of a self-driving car, every decision that such an AI agent makes, from
avoiding congested freeways to carpooling, is morally tinged.

Machine ethicists recognize this need and have made theoretical [8,19,26,53]
and practical progress in automating ethics [6,16,30,54]. Prior work in machine
ethics using deontology [2,4], consequentialism [1,3,17], and virtue ethics [13]
rarely engages with philosophical literature, and so misses philosophers’ insights.
The example of the self-driving car is an instance of the trolley problem [24], in
which a bystander watching a runaway trolley can pull a lever to kill one and save
three. Decades of philosophical debate have developed nuanced answers to the
trolley problem. AI’s moral dilemmas are not entirely new, so solutions should
draw on philosophical progress. The more faithful that automated ethics is to
philosophy, the more trustworthy and nuanced it will be.

1 Source code can be found at https://github.com/lsingh123/automatedkantianethics.

https://github.com/lsingh123/automatedkantianethics
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A lack of engagement with philosophical literature also makes automated
ethics less explainable, as seen in the example of Delphi, which uses deep learning
to make moral judgements based on a training dataset of human decisions [30].
Early versions of Delphi gave unexpected results, such as declaring that the user
should commit genocide if it makes everyone happy [52]. Because no explicit
ethical theory underpins Delphi’s judgements, we cannot determine why Delphi
thinks genocide is obligatory. Machine learning approaches like Delphi often can-
not explain their decisions. This reduces human trust in a machine’s controversial
ethical judgements. The high stakes of automated ethics require explainability
to build trust and catch mistakes.

3 Automated Kantian Ethics

I present a faithful implementation of Kantian ethics, a testing framework to
evaluate how well my implementation coheres with philosophical literature, and
examples of my system performing sophisticated moral reasoning.

I formalize Kant’s moral rule in a semantic embedding of Dyadic Deontic
Logic in HOL [10,15]. Deontic logic can express obligation, or binding moral
requirements and is often an extension of a modal logic. Modal logics include
the necessitation operator �, where �p is true at world w if p is true at all worlds
that neighbor w [18]. Modal logics also contain operators of propositional logic
like ¬,∧,∨,→. Some deontic logics replace the � operator with an obligation
operator O. I use Carmo and Jones’s Dyadic Deontic Logic (DDL) [15], which
uses the dyadic obligation operator O{A|B} to represent the sentence “A is
obligated in the context B.”

Because this work is an early step towards faithful automated ethics, I use
Kantian ethics, a theory that is amenable to formalization. I do not argue that
Kantian ethics is the best theory, but that it is the most natural to automate.2

I automate the Formula of Universal Law (FUL), a version of Kant’s moral rule
which states that moral principles can be acted on by all people without contra-
diction. For example, if everyone falsely promises to repay a loan, lenders will
stop offering loans, so not everyone can act on this principle, so it is prohibited.

Prior work by Benzmüller et al. [10,12] implements an embedding of DDL
in HOL using Isabelle. I add the Formula of Universal Law as an axiom to
their library. The resulting Isabelle theory can automatically generate proofs in
a new logic that has the categorical imperative as an axiom. Because interactive
theorem provers are designed to be interpretable, my system is explainable.
Isabelle can list the facts used in a proof and construct human-readable proofs.
In Sect. 4.2, I use my system to generate sophisticated solutions to two ethical
dilemmas. Because my system is faithful to philosophical literature, it produces
nuanced judgements.

I also contribute a testing framework that evaluates how well my formal-
ization coheres with philosophical literature. I formalize expected properties of

2 The full argument is in Appendix A.
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Kantian ethics as sentences in my logic and run the tests by using Isabelle to
automatically find proofs or countermodels for the test statements. My system
outperforms two other attempts at formalizing Kantian ethics [36].

Given an action represented as a sentence in my logic, my system proves that
it is morally obligatory, permissible, or prohibited. My system serves as one step
towards philosophically sophisticated automated ethics.

4 Details

4.1 Formalizing the Categorical Imperative in DDL

The Formula of Universal Law reads, “act only according to that maxim by which
you can at the same time will that it should become a universal law” [31]. To
formalize this, I represent willing, maxims, and the FUL in Benzmüller, Farjami,
and Parent’s [10] semantic embedding of DDL in HOL. This allows me to use
quantifiers and worlds3, which don’t exist in the object level of DDL. This detail
does not affect the correctness of my implementation, which operates on top of
Benzmüller, Farjami, and Parent’s implementation of their embedding.4 Prior
work formalizing Gewirth’s ethics also adopts this approach [25].

Willing a Maxim. Kantian ethics evaluates “maxims,” which are “the sub-
jective principles of willing,” or the principles that the agent understands them-
selves as acting on [31]. I adopt O’Neill’s view that a maxim includes the act, the
circumstances, and the agent’s purpose of acting or goal that the maxim seeks
to achieve [42]. The maxim’s goal is the end that the agent seeks to achieve by
acting on the maxim.

Definition 1 (Maxim). A circumstance, act, goal tuple (C, A, G), read as “In
circumstances C, do act A for goal G.”

For example, one maxim is “When strapped for cash, falsely promise to repay
a loan to get some easy money,” with goal “to get some easy money.” A maxim
includes an act and the circumstances5 under which it should be performed.
It must also include a goal because human activity, guided by a rational will,
pursues ends that the will deems valuable [31].

I define “willing a maxim” as adopting it as a principle to live by.
3 The embedding of DDL in HOL operates only over sets of worlds, but I abbreviate

singleton sets as a single world to make the presentation clearer.
4 I reproduce the relevant sections of their embedding, as implemented in Isabelle, in

Appendix B.
5 The inclusion of circumstances in a maxim raises the “tailoring objection” [33,55],

under which maxims are arbitrarily specified to pass the FUL. For example, the
maxim “When my name is John Doe, I will lie to get some easy money,” passes the
FUL but should be prohibited. One solution is to argue that the circumstance “when
my name is John Doe” is not morally relevant, but this requires defining morally
relevant circumstances. The difficulty in determining relevant circumstances and
formulating a maxim is a limitation of my system and requires that future work
develop heuristics to classify circumstances as morally relevant.
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Definition 2 (Willing). For maxim M = (C,A,G) and actor s,

willM s ≡ ∀w (C −→ A (s))w

At all worlds w, if the circumstances hold at that world, agent s performs act A.

If I will the example maxim above about falsely promising to repay a loan, then
whenever I need cash, I will falsely promise to repay a loan.

Practical Contradiction Interpretation. My project uses Korsgaard’s
canonical practical contradiction interpretation of the FUL [22,34].

The logical contradiction interpretation prohibits maxims that are impossible
when universalized. Under this view, falsely promising is wrong because, in the
universalized world, the practice of promising would end, so falsely promising
would be impossible. This view cannot handle natural acts, like that of a mother
killing her crying children so that she can sleep [21,34]. Universalizing this maxim
does not generate a contradiction, but it is clearly wrong. Killing is a natural
act, so it can never be impossible so this view cannot prohibit it.

As an alternative to the logical contradiction view, Korsgaard endorses the
practical contradiction view, which prohibits maxims that are self-defeating, or
ineffective, when universalized. By willing a maxim, an agent commits themselves
to the maxim’s goal, so they cannot rationally will that this goal be undercut.
This can prohibit natural acts like that of the sleep-deprived mother: in willing
the end of sleeping, she is willing that she is alive. If all mothers kill all loud
children, then she cannot be secure in the possession of her life, because her
mother could have killed her as an infant. Willing this maxim thwarts the end
that she sought to secure.

Formalizing the FUL. The practical contradiction interpretation interprets
the FUL as, “If, when universalized, a maxim is not effective, then it is prohib-
ited.” If an agent wills an effective maxim, then the maxim’s goal is achieved,
and if the agent does not will it, then the goal is not achieved.

Definition 3 (Effective Maxim). For a maxim M = (C,A,G) and actor s,

effectiveM s ≡ ∀w (will (C,A,G) s ⇐⇒ G)w

A maxim is universalized if everyone wills it. If, when universalized, it is not
effective, it is not universalizable.

Definition 4 (Universalizability). For a maxim M and agent s,

not universalizableM s ≡ [∀w (∀pwillM p)w −→ ¬ effectiveM s]

Using these definitions, I formalize the Formula of Universal Law.
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Definition 5 (Formula of Universal Law).

∀M, s (∀wwell formedM sw) −→ (not universalizableM s −→ ∀w prohibitedM sw)

For all maxims and people, if the maxim is well-formed, then if it is not
universalizable, it is prohibited.6

Definition 6 (Well-Formed Maxim). A maxim is well-formed if the circum-
stances do not contain the act and goal. For a maxim (C,A,G), and subject s,

well formed (C,A,G) s ≡ ∀w (¬(C −→ G) ∧ ¬(C −→ As))w

For example, the maxim “When I eat breakfast, I will eat breakfast to eat
breakfast” is not well-formed because the circumstance “when I eat breakfast”
contains the act and goal. Well-formedness is not discussed in the literature,
but I discovered that if the FUL holds for badly formed maxims, then it is
not consistent.7 The fact that the FUL cannot hold for badly formed maxims is
philosophically interesting. Maxims are an agent’s principle of action, and badly-
formed maxims cannot accurately represent any action. The maxim “I will do X
when X for reason X” is not useful to guide action, and is thus the wrong kind
of principle to evaluate. This property has implications for philosophy of doubt
and practical reason. The fact that I was able to derive this insight using my
system demonstrates that, in addition to guiding AI agents, automated ethics
can help philosophers make philosophical progress.

4.2 Isabelle/HOL Implementation

I implement my formalization in Isabelle8, which allows the user to define types,
axioms, and lemmas. It integrates with theorem provers [39,43] and counter-
model generators [14] to automatically generate proofs.

I use Benzmüller et al.’s implementation of DDL [10]. They define the atomic
type i, a set of worlds. Term t is true at set of worlds i if t holds at all worlds in
i. I add the atomic type s, which represents a subject or person. I also introduce
the type abbreviation os ≡ s → term, which represents an open sentence. For
example, run is an open sentence, and run applied to the subject Sara produces
the term Sara runs, which can be true or false at a world.

I define the type of a maxim to be a (t, os, t) tuple. Circumstances and goals
are terms because they can be true or false at a world. In the falsely promising
example, the circumstance “when I am strapped for cash” is true in the real
world and the goal “so I can get some easy money” is false. An act is an open
sentence because whoever wills the maxim performs the action. “Falsely promise
to repay a loan” is an open sentence that, when applied to a subject, produces
a term, which is true if the subject falsely promises.
6 The definition of prohibition is given in Appendix C and uses the dyadic obligation

operator.
7 See Fig. 10 for the experiment that tests consistency of an implementation.
8 For further implementation details, see Appendix C.
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I add the definitions from Sect. 4.1 as abbreviations, include logical back-
ground to simplify future proofs, and add the FUL as an axiom. I use counter-
model checker Nitpick [14] to show that my formalization of the FUL does not
hold in DDL, so adding it as an axiom will strengthen the logic. After I add the
FUL as an axiom, I use Nitpick to find a satisfying model, demonstrating that
the logic is consistent. The results of these experiments are in Figs. 9 and 10.

Application: Lies and Jokes. I demonstrate my system’s power on two ethical
dilemmas. First is the case of joking. Many of Kant’s critics argue that his
prohibition on lies includes lies told in the context of a joke. Korsgaard [35]
responds by arguing that there is a crucial difference between lying and joking:
lies involve deception, but jokes do not. The purpose of a joke is amusement,
which does not rely on the listener believing the story told. Given appropriate
definitions of lies and jokes, my system shows that jokes are permissible but lies
are not. Because my system is faithful to philosophical literature, it can perform
nuanced reasoning, demonstrating the value of faithful automated ethics.

Fig. 1. The proof that lying is prohibited. This proof relies on some technical details,
a definition of lying, and the convention of trust assumption.

First, I implement the argument that lies are prohibited because they require
deception. The goal of a maxim about lying requires that someone believe the
lie. This is a thin definition of deception; it does not include the liar’s intent. I
also assume that if everyone lies about a particular statement, then people will
no longer believe that statement. This is the uncontroversial fact that we tend
to believe people only if they are trustworthy in a given context. I call this the
“convention of trust” assumption. The full proof is in Fig. 1.

Next, I use my system to show that jokes are permissible. Korsgaard notes
that the purpose of jokes “is to amuse and does not depend on deception” [35].
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The goal of a joke does not require that anyone believe the statement. As in the
case of lying, this is a thin definition; it does not involve any definition of humor.
With this definition of a joke and with the convention of trust assumption above,
my system shows that joking is permissible. The full proof is in Fig. 2.

My system can show that lying is prohibited but joking is not because of
its robust conception of a maxim. Because my implementation is faithful to
philosophical literature, it is able to recreate Korsgaard’s solution to a complex
ethical dilemma that philosophers debated for decades. Moreover, the reasoning
in this section requires few, uncontroversial common sense facts. The deepest
assumption is that, if everyone lies about a given statement, no one will believe
that statement. This is so well-accepted that most philosophers do not bother
to justify it.

Fig. 2. The proof that joking is permissible. This proof relies on technical assumptions,
a definition of joking, and the convention of trust assumption.

Fig. 3. The proof that lying to the murderer is permissible. This proof relies on tech-
nical assumptions, specification of the example, the convention of belief assumption,
and the universalizability assumption.
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Application: Murderer at the Door. My system can also resolve the paradox
of the murderer at the door. In this dilemma, murderer Bill knocks on your door
asking about Sara, his intended victim. Sara is at home, but you should lie to
Bill and say that she is away to protect her. Critics argue that the FUL prohibits
you from lying; if everyone lied to murderers, then murderers wouldn’t believe
the lies and would search the house anyways. Korsgaard resolves this debate by
noting that the maxim of lying to a murderer is actually that of lying to a liar.
Bill cannot announce his intentions to murder; instead, he “must suppose that
you do not know who he is and what he has in mind” [35].9 Thus, the maxim of
lying to the murderer is actually the maxim of lying to a liar.

My system correctly shows that lying to a liar is permissible. Implementing
this argument requires formalizing Korsgaard’s assumptions. First, she assumes
that Bill believes you, so he won’t search your house if he thinks Sara isn’t
home. Second is what the convention of belief assumption: if X thinks Y utters
a statement as a lie, X won’t believe that statement. For example, if you say
that it is raining, but I think that you are lying, I will think that it is sunny.
This assumption is almost definitional; if you think someone is lying, you won’t
believe them. Third, she assumes that if a maxim is universalized, then everyone
believes that everyone else wills it. For example, if the falsely promising maxim
is universalized, everyone notices that people who are strapped for cash falsely
promise to repay loans. This is the heaviest assumption of the three; if you
observe that many do X in circumstances C, you will assume that everyone
does X in circumstance C. I call this the universalizability assumption.

Using these assumptions, my system proves that lying to a murderer is per-
missible. The full proof is in Fig. 3. These examples show that, even with uncon-
troversial assumptions, my system can make nuanced moral judgements.

4.3 Testing Framework

I contribute a testing framework to evaluate how well my implementation coheres
with philosophical literature. These tests make “philosophical faithfulness” pre-
cise. Each test consists of a sentence in my logic, such as that obligations cannot
contradict each other. The rest of the tests are presented in Appendix E.

To run the tests, I prove or refute each test sentence in my logic. Because
these tests are derived from moral intuition and philosophical literature, they
evaluate how reliable my system is. As I implemented my formalization, I checked
it against the tests, performing test-driven development for automated ethics.
My testing framework shows that my implementation outperforms DDL with no
other axioms added (a control group) and Kroy’s [36] prior attempt at formal-
izing the FUL, which I implement in Isabelle. My implementation outperforms
both other attempts. Full test results are summarized in Fig. 4.
9 Korsgaard assumes that the murderer will lie about his identity in order to take

advantage of your honesty to find his victim. In footnote 5 of [35], she accepts that
her arguments will not apply in the case of the honest murderer who announces his
intentions, so she restricts her focus to the case of lying to a liar. She claims that in
the case of the honest murderer, the correct act is to refuse to respond.
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Test Naive Kroy Custom

FUL Stronger than DDL × � �
Obligation Universalizes Across People × � �
Obligations Never Contradict × × �
Distributive Property for Obligations × × �
Prohibits Actions That Are Impossible to Universalize × × �
Robust Representation of Maxims × × �
Can Prohibit Conventional Acts × × �
Can Prohibit Natural Acts × × �

Fig. 4. Table showing which tests each implementation passes. The naive interpretation
is raw DDL and the custom formalization is my novel implementation.

5 Future Work

My implementation can evaluate sentences represented in my logic but it is not
yet ready for deployment. Like much work in automated ethics [1,30], it uses a
rigid representation for its inputs (i.e., sentences in my logic) and outputs (i.e.,
proof of judgement). A deployment-ready ethics engine requires an input parser
to translate moral dilemmas into my logic and an output parser to translate
judgements into action. Figure 5 depicts this example ethics engine .

Fig. 5. An ethics engine that passes a moral dilemma through an input parser, applies
the automated Kantian ethics test, and then processes the output using an output
parser. I contribute the automated Kantian ethics component.

Future work must solve the open problem of translating real-life situations
to a structured, logical representation (e.g., a maxim). For example, consider
an AI-operated drone deciding whether to bomb a weapons factory, knowing
that shrapnel could likely harm civilians. The input parser must translate this
potential action into the maxim, “When I am at war, I will bomb a factory next
to civilians in order to end the war soon,” and evaluate its moral status. Defining
a maxim is a central challenge in Kantian ethics because it requires deciding
which circumstances are morally relevant, a decision that must be informed by
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social context.10 Future work could address this limitation by defining “moral
closeness” heuristics or using machine learning to learn maxims.

This work uses Kantian ethics. Like any ethical theory, there are objections to
Kantian ethics, such as the assumption of an ideal moral society [35].11 Moreover,
some argue that human ethics cannot apply to AI [49]. The use of Kantian ethics
does not impact the central contribution of this work, which is demonstrating
that philosophically sophisticated automated ethics is possible.

This work does not address all of AI’s ethical harms. Much harm is caused by
the decisions that humans make while building AI. For example, biased datasets
are responsible for biased algorithms, and automated ethics cannot resolve this
problem [23]. This work, like other work in automated ethics, addresses the
specific challenge of dynamically resolving the moral dilemmas that AI faces as
it navigates the world.

6 Related Work

Automated ethics is a growing field, spurred in part by the need for ethically
intelligent AI agents. Tolmeijer et al. surveyed the state of the field of machine
ethics [50] and characterized implementations in automated ethics by (1) the
choice of ethical theory, (2) implementation design decisions (e.g. logic program-
ming), and (3) implementation details (e.g. choice of logic).

Two branches of automated ethics are top-down and bottom-up ethics.
Top-down automated ethics begins with an ethical theory, whereas bottom-up
automated ethics learns ethical judgements from prior judgements (e.g., using
machine learning to make ethical judgements as in [30]). Bottom-up approaches
often lack an explicit ethical theory explaining their judgements, so analytically
arguing for or against their conclusions is impossible. Top-down approaches, on
the other hand, must be explicit about the underlying ethical theories, and are
thus more explainable.

In this paper, I use a top-down approach to formalize Kantian ethics. There
is work automating other ethical theories, like consequentialism [1,3] or partic-
ularism [7,28]. Kantian ethics is a deontological, or rule based ethic, and there
is prior work implementing other deontological theories [2,4,27].

There has been both theoretical and practical work on automating Kantian
ethics [37,44]. In 2006, Powers [44] argued that implementing Kantian ethics pre-
sented technical challenges, such as automation of a non-monotonic logic, and
10 Many misconceptions about Kantian ethics arise from misreading social context. For

example, critics of Kantian ethics worry that the maxim, “When I am a man, I will
marry a man because I want to spend my life with him” fails the universalizability
test because if all men marry men, sexual reproduction would stop. Kantians often
respond by arguing that the correct formulation of this maxim is, “When I love a
man, I will marry him because I want to spend my life with him,” which is univer-
salizable. Arriving at this correct formulation requires understanding the social fact
that marriage is generally driven by love, not solely by the gender of one’s partner.

11 Philosophers call Kantian ethics an “ideal theory,” or one that functions best when
everyone behaves morally.
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philosophical challenges, like a definition of the categorical imperative. I address
the former through my use of Dyadic Deontic Logic, which allows obligations to
be retracted as context changes, and the latter through my use of the practi-
cal contradiction interpretation. There has also been prior work in formalizing
Kantian metaphysics using I/O logic [48].

Kroy [36] presents a formalization of the first two formulations of the cate-
gorical imperative, but does not implement it. I implement his formalization of
the FUL to compare it to my system. Lindner and Bentzen [9] presented one of
the first formalizations and implementations of Kant’s second formulation of the
categorical imperative. They present their goal as “not to get close to a correct
interpretation of Kant, but to show that our interpretation of Kant’s ideas can
contribute to the development of machine ethics.” My work builds on theirs by
formalizing the first formulation of the categorical imperative as faithfully as
possible. Staying faithful to philosophical literature makes my system capable of
making robust and reliable judgements.

The implementation of this paper was inspired by and builds on Benzmüller,
Parent, and Farjami’s foundational work with the LogiKEy framework for
machine ethics, which includes their implementation of DDL in Isabelle [10,12].
The LogiKEy project has been used to study metaphysics [11,32], law [56], and
ethics [25], but not Kant’s categorical imperative.

7 Conclusion

In this paper, I present an implementation of automated Kantian ethics that is
faithful to philosophical literature. I formalize Kantian ethics in Dyadic Deontic
Logic, implement my formalization in the Isabelle/HOL theorem prover, and
use my system to make nuanced ethical judgements. I also present a testing
framework that evaluates how faithful an implementation of automated ethics
is to philosophical literature. Tests show that my system outperforms two other
implementations of Kantian ethics.

This paper contributes a proof-of-concept system that demonstrates that
automating philosophically sophisticated ethics is possible. Ethics is the study
of how best to navigate the world, and as AI becomes more powerful and indepen-
dent, it must be equipped with ethical reasoning. Growing public consciousness
about the dangers of unregulated AI is creating momentum in automated ethics;
the time is ripe to create usable, reliable automated ethics. This paper is one
step towards building computers that can think ethically in the richest sense of
the word.
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manuscript.
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A Why Automate Kantian Ethics

T.M. Powers posits that Kantian ethics is an attractive candidate for formaliza-
tion because of its emphasis on formal rules, which are generally computationally
tractable [44]. In this section, I extend this argument and argue that Kantian
ethics is more natural to formalize than the two other major ethical traditions,
consequentialism and virtue ethics, because it requires little data about the world
and is easy to represent to a computer. Given that this work is an early step in
philosophically-sophisticated automated ethics, I automated an ethical theory
that is amenable to formalization, but application-ready automated ethics may
be best served by using a different ethical theory. Full discussion of the bene-
fits and limitations of Kantian ethics is outside the scope of this paper. First
I present the challenges of automating consequentialism and virtue ethics, and
then I describe how Kantian ethics overcomes these challenges.

A.1 Consequentialism

A consequentialist ethical theory evaluates an action by evaluating its conse-
quences. Some debates in the consequentialist tradition include which conse-
quences matter, what constitutes a “good” consequence, and how we can aggre-
gate the consequences of an action over all the individuals involved [47].

Because consequentialism evaluates the state of affairs following an action,
it requires more knowledge about the world than Kantian ethics. Under naive
consequentialism, an action is judged by all its consequences. Even if we cut
off the chain of consequences at some point, evaluating a single consequence is
data-intensive because it requires knowledge about the world before and after the
event. As acts become more complex and affect more people, the computational
time and space required to calculate and store their consequences increases.
Kantian ethics, on the other hand, does not suffer this scaling challenge because
it merely evaluate the structure of the action itself, not its consequences. Actions
that affect one person and actions that affect one million people share the same
representation.

The challenge of representing the circumstances of action is not unique to
consequentialism, but is particularly acute in this case. Kantian ethicists robustly
debate which circumstances of an action are “morally relevant” when evaluat-
ing an action’s moral worth.12 Because Kantian ethics merely evaluates a sin-
gle action, the surface of this debate is much smaller than the debate about
circumstances and consequences in a consequentialist system. An automated
consequentialist system must make such judgements about the act itself, the
circumstances in which it is performed, and the circumstances following the act.
All ethical theories relativize their judgements to the situation in which an act
is performed, but consequentialism requires far more knowledge about the world
than Kantian ethics.
12 Powers [44] identifies this as a challenge for automating Kantian ethics and briefly

sketches solutions from O’Neill [41], Silber [46], and Rawls [45]. For more on morally
relevant circumstances, see Sect. 4.1.
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A.2 Virtue Ethics

Virtue ethics centers the virtues, or traits that constitute a good moral character
and make their possessor good [29]. For example, Aristotle describes virtues as
the traits that enable human flourishing. Just as consequentialists define “good”
consequences, virtue ethicists present a list of virtues. Such theories vary from
Aristotle’s virtues of courage and temperance [5] to the Buddhist virtue of equa-
nimity [38]. An automated virtue ethical agent will need to commit to a partic-
ular theory of the virtues, a controversial choice. Unlike Kantian ethicists, who
generally agree on the meaning of the Formula of Universal Law, virtue ethicists
robustly debate which traits qualify as virtues, what each virtue actually means,
and what kinds of feelings or attitudes must accompany virtuous action.

The unit of evaluation for virtue ethics is a person’s moral character. While
Kantians evaluate the act itself and utilitarians evaluate the act’s consequences,
virtue ethicists evaluate how good of a person the actor is, a difficult concept to
represent to a machine. Formalizing the concept of character appears to require
significant philosophical and computational progress, whereas Kantian ethics
immediately presents a formal rule to implement.

A.3 Kantian Ethics

Kantian ethics is more natural to formalize than the traditions outlined above
because the FUL evaluates the form or structure of an agent’s maxim,13 or
principle of action as they themselves understand it. For example, when I falsely
promise to repay a loan, my maxim is, “When I am strapped for cash, I falsely
promise to repay a loan to make some easy money.” Evaluating a maxim has
little to do with the circumstances of behavior, the agent’s mental state, or
other contingent facts; it merely requires analyzing the hypothetical world in
which the maxim is universalized. This property not only reduces computational
complexity, but it also makes the system easier for human reasoners to interact
with. A person crafting an input to a Kantian automated agent needs to reason
about relatively simple features of a moral dilemma, as opposed to the more
complex features that consequentialism and virtue ethics base their judgements
on.14

B Relevant Features of the Embedding of DDL in HOL

In this appendix, I present some of the relevant features of Benzmüller, Far-
jami, and Parent’s [10] semantic embedding of DDL in HOL. The semantic
13 For a more detailed definition of a maxim, see Sect. 4.1.
14 As is the case with any ethical theory, Kantians debate the details of their theory.

I assume stances on debates about the definition of a maxim and the correct inter-
pretation of the Formula of Universal Law. Those who disagree with my stances will
not trust my system’s judgements. Unlike consequentialism or virtue ethics, these
debates are close to settled in the Kantian literature, so my choices are relatively
uncontroversial [22].
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embedding consists of types, constants, and axioms. Figure 6 introduces the
semantic embedding.

1 typedecl i <type for a set of worlds>

2 type_synonym t = "(i -> bool)" <a set of DDL formulas>

3 <A set of formulas is defined by its truth value at a set of worlds.>

4 (...)

5 consts ob::"t -> (t -> bool)"

6 <ob (context) (term) is true if term is obligated in this context>

7 <this is the neighborhood function for DDL’s neighborhood semantics>

8 (...)

9 axiomatization where

10 (...)

11 and ax_5d: "∀ X Y Z. ((∀w. Y(w) -> X(w)) ∧ ob(X)(Y) ∧ (∀w. X(w)-> Z(w))

12 -> ob(Z)(λ.(Z(w) ∧ ¬ X(w)) ∧ Y(w))"

13 <If some subset Y of X is obligatory in the context X, then in>

14 <a larger context Z, any obligatory proposition must either be>

15 <in Y or in Z \ X. Expanding the context can’t cause>

16 <something unobligatory to become obligatory.>

Fig. 6. Example types, constants, and axioms in Benzmüller et al.’s implementation
of DDL.

This semantic embedding requires defining a set of worlds. I use this concept
heavily in my formalization of the FUL as presented in Sect. 4.1.

In my implementation, I use the syntax of DDL, which Benzmüller et al.
define as abbreviations using the semantic axioms above. In Fig. 7, I present
some of the most important syntactic symbols and operators for my purposes.

C Additional Implementation Details

In Sect. 4.1, I present my formalization of the FUL in a semantic embedding of
DDL in HOL. I then implement this formalization in Isabelle/HOL on top of
prior work implementing DDL [10]. The code for my implementation is given in
Fig. 8.

D Experimental Figures

Figs. 9 and 10 depict the Nitpick output showing the FUL does not hold in DDL
and that the FUL is consistent.

E Additional Tests

Below I present details and philosophical justification for the individual tests in
my testing framework.
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1 abbreviation ddlneg::"t->t" ("¬")
2 where "¬A ≡ λw. ¬A(w)" <DDL contains propositional logic operators>

3 abbreviation ddlbox::"t->t" ("�")

4 where "� A ≡ λw.∀y. A(y)" <and modal logic operators>

5 abbreviation ddlob::"t->t->t" ("O{_|_}")

6 where "O{B|A} ≡ λw. ob(A)(B)" <the dyadic obligation operator>

7 <O{B|A} can be read as "B is obligatory in the context A">

8
9 <In some cases, a monadic obligation operator suffices.>

10 abbreviation ddltrue::"t" ("�")

11 where "� ≡ λw. True"

12 abbreviation ddlob_normal::"t->t" ("O {_}")

13 where "(O {A}) ≡ (O{A|�})"

14 <True is the widest context because it holds at all worlds>

15 (...)

Fig. 7. Examples of syntactic operators and symbols from Benzmüller et al.’s imple-
mentation of DDL.

FUL Stronger Than DDL. The base logic DDL does not come equipped
with the categorical imperative built-in. It defines basic properties of obligation,
such as ought implies can, but contains no axioms that represent the formula of
universal law. Therefore, if a formalization of the FUL holds in the base logic,
then it is too weak to actually represent the FUL. The naive control group
definitionally holds in DDL but Kroy’s formalization does not and neither does
my implementation.

Obligation Universalizes Across People. Another property of the Formula
of Universal Law that any implementation should satisfy is that obligation gen-
eralizes across people. In other words, if a maxim is obligated for one person, it is
obligated for all other people because maxims are not person-specific. Velleman
argues that, because reason is accessible to everyone identically, obligations apply
to all people equally [25,51]. When Kant describes the categorical imperative as
the objective principle of the will, he is referring to the fact that, as opposed to
a subjective principle, the categorical imperative applies to all rational agents
equally [16,31]. At its core, the FUL best handles, “the temptation to make
oneself an exception: selfishness, meanness, advantagetaking, and disregard for
the rights of others” [30,34]. Kroy latches onto this property and makes it the
center of his formalization, which says that if an act is permissible for someone,
it is permissible for everyone.15 While Kroy’s interpretation clearly satisfies this
property, the naive interpretation does not.

Distributive Property. A property related to contradictory obligations is the
distributive property for the obligation operator.16 The rough English transla-
15 Formally, P{A(s)} −→ ∀p.P{A(p)}.
16 Formally, O{A} ∧ O{B} ←→ O{A ∧ B}.
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tion of O{A∧B} is “you are obligated to do both A and B”. The rough English
translation of O{A}∧O{B} is “you are obligated to do A and you are obligated
to do B.” We think those English sentences mean the same thing, so they should
mean the same thing in logic as well. Moreover, if that (rather intuitive) prop-
erty holds, then contradictory obligations are impossible, as shown in Fig. 11.
This property fails in the base logic and Kroy’s formalization, but holds in my
implementation.

Un-universalizable Actions. Under a naive reading of the Formula of Univer-
sal Law, it prohibits lying because, in a world where everyone simultaneously lies,
lying is impossible. In other words, not everyone can simultaneously lie because
the institution of lying and believing would break down. More precisely, the FUL
should show that actions that cannot possibly be universalized are prohibited,
because those acts cannot be willed in a world where they are universalized. This
property fails to hold in both the naive formalization and Kroy’s formalization,
but holds in my formalization.

Conventional Acts and Natural Acts. A conventional act like promising
relies on a convention, like the convention that a promise is a commitment,
whereas a natural act is possible simply because of the laws of the natural world.
It is easier to show the wrongness of conventional acts because there are worlds
in which these acts are impossible; namely, worlds in which the convention does
not exist. For example, the common argument against falsely promising is that
if everyone were to falsely promise, the convention of promising would fall apart
because people wouldn’t believe each other, so falsely promising is prohibited. It
is more difficult to show the wrongness of a natural act, like murder or violence.
These acts can never be logically impossible; even if everyone murders or acts
violently, murder and violence will still be possible, so it is difficult to show that
they violate the FUL.

Both the naive and Kroy’s interpretations fail to show the wrongness of
conventional or natural acts. My system shows the wrongness of both natural
and conventional acts because it is faithful to Korsgaard’s practical contradiction
interpretation of the FUL, which is the canonical interpretation of the FUL [34].

Maxims. Kant does not evaluate the correctness of acts, but rather of maxims.
Therefore, any faithful formalization of the categorical imperative must evaluate
maxims, not acts. This requires representing a maxim and making it the input
to the obligation operator, which neither of the prior attempts do. Because my
implementation includes the notion of a maxim, it is able to perform sophisti-
cated reasoning as demonstrated in Sect. 4.2. Staying faithful to the philosophical
literature enables my system to make more reliable judgements.
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1 abbreviation will :: "maxim -> s-> t" ("W _ _")

2 where "will ≡ λ(c, a, g) s. (c -> (a s))"

3 <subject S wills maxim (C, A, G) if, in circumstances C, S performs A.>

4 abbreviation effective :: "maxim->s->t" ("E _ _")

5 where "effective ≡ λ(c, a, g) s. ((will (c, a, g) s) ≡ g)"

6 <a maxim is effective if willing it is a necessary and>

7 <sufficient condition for achieving the goal>

8 abbreviation universalized::"maxim->t" where

9 "universalized ≡ λM. (λw. (∀p. (W M p) w))"

10 <a maxim is universalized at a world if everyone wills it at that world.>

11 abbreviation not_universalizable :: "maxim->s->bool" where

12 "not_universalizable ≡ λM s. ∀w. ((universalized M) -> (¬ (E M s))) w"

13
14 abbreviation prohibited::"maxim->s->t"

15 where "prohibited ≡ λ(c, a, g) s. O{¬ (will (c,a, g) s) | c}"

16 <the unit of evaluation is willing a maxim, not merely the maxim itself>

17 abbreviation permissible::"maxim->s->t"

18 where "permissible ≡ λM s. ¬ (prohibited M s)"

19
20 abbreviation well_formed::"maxim->s->i->bool"

21 where "well_formed ≡ λ(c, a, g). λs. λw. (¬ (c -> g) w) ∧ (¬ (c -> a s) w)"

22 abbreviation FUL

23 where "FUL ≡ ∀M::maxim. ∀s::s. (∀w. well_formed M s w) ->

24 (not_universalizable M s -> ∀ w. (prohibited M s) w )"

25 <the consistent version of the FUL only holds for well-formed maxims>

26
27 abbreviation non_contradictory where

28 "non_contradictory A B c w ≡ ((O{A|c} ∧ O{B|c}) w) -> ¬(A ∧ (B ∧ c)) w -> False)"

29 <obligations are noncontradictory in circumstances>

30 <if their conjunction with the circumstances does not lead to a contradiction>

31
32 axiomatization

33 where no_contradictions:"∀A::t. ∀B::t. ∀c::t. ∀w::i. non_contradictory A B c w"

34 <all obligations must be non-contradictory in all circumstances>

35 and FUL:FUL

Fig. 8. Implementation of the FUL

Fig. 9. Nitpick output showing that the FUL does not hold in DDL.
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Fig. 10. Nitpick model showing that the FUL is consistent.

Fig. 11. The proof that the distributive property implies that contradictory obligations
are impossible.
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Abstract. Bias evaluation methods focus either on individual bias or on
group bias, where groups are defined based on protected attributes such
as gender or ethnicity. More generally, however, descriptively relevant
combinations of feature values in the data space (profiles) may serve also
as anchors for biased decisions. This paper introduces therefore a semi-
hierarchical clustering method for profile extraction from mixed datasets.
It elaborates on how profiles can be used to reveal historical, representa-
tional, aggregation and evaluation biases in algorithmic decision-making
models, taking as example the German credit data set. Our experiments
show that the proposed profile-based evaluation method for bias assess-
ment on mixed datasets (PEBAM) can reveal forms of bias towards pro-
files expressed by the dataset that are undetected when using individual-
or group-bias metrics alone.
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1 Introduction

The wider introduction of machine learning algorithms in decision-making pro-
cesses feeds an ongoing debate over algorithmic decision-making (ADM). To pre-
vent or correct ADM from taking biased decisions several fairness-aware machine
learning algorithms have been proposed [8]. However, these algorithms are not
always accessible to practitioners due to their ‘black-box’ nature [2]; they are
highly dependent on the data preprocessing phase [8]; and, at more fundamental
level, fairness and bias can be given technical meanings but cannot be captured
by one single definition [14,16]. Contemporary bias evaluation methods used
for fairness analysis generally focus either on individual bias or on group bias,
where groups are defined based on protected attributes such as gender or eth-
nicity, but this is not without drawbacks. For instance, analysing the German
credit dataset—a real world dataset1 collecting features of loan applicants and
a credit risk label good or bad assigned to them—the group of young individuals
1 Available at: https://www.kaggle.com/uciml/german-credit.
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R. Bergmann et al. (Eds.): KI 2022, LNAI 13404, pp. 209–223, 2022.
https://doi.org/10.1007/978-3-031-15791-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15791-2_17&domain=pdf
https://www.kaggle.com/uciml/german-credit
https://doi.org/10.1007/978-3-031-15791-2_17


210 M. Wilms et al.

(age below 25) obtains more often a false negative label than the group above
25, hence young individuals are discriminated when applying for a loan [11]. The
simplest solution would be to take this sensitive attribute out of consideration,
however there are multiple attributes that correlate with the “age” attribute (e.g.
“own house” [12]). From a more general standpoint, one may ask whether there
exist relevant descriptive combinations of feature values in the data space, that
we will call here profiles, which may act as anchors for (assessing the presence of)
biased decisions. As an additional source of complexity, we need also to take into
account that data is commonly presented in form of mixed datasets (i.e. includ-
ing both categorical and numeric features). Discretization of numeric dimensions,
or embedding of categorical dimensions, add further complexity and potentially
undesired effects. Given this context, we address the following research questions:
How can profiles be defined? How can we extract profiles from mixed datasets?
How can profiles be used to assess biases? How does a profile-based assessment
compare with existing individual- or group-based methods?The goal of this paper
is to develop and test a Profile-based Evaluation method for Bias Assessment
of algorithmic decision-making on Mixed datasets (PEBAM). Our contribution
is twofold: (i) we present an effective and computationally efficient method for
profile extraction on mixed datasets based on clustering; (ii) we show how pro-
files can be utilized to evaluate various forms of biases—most of them associated
to trained ADM models. The paper is structured as follows. Section 2 provide a
brief overview of relevant concepts. Section 3 presents the proposed methodol-
ogy. Section 4 elaborates on the experiments and results on the German credit
dataset. A note on future work ends the paper.

2 Theoretical Background

Types of Bias. Several types of bias have been identified in the literature (see
e.g. the 23 types in [14]), but for the scope of this research we will focus in
particular on biases that can arise during a ML-product lifecycle (see e.g. [16]).
For instance, during the data generation process, we may have: historical bias,
produced by the world as it is, and occurring even if data is perfectly measured
and sampled; representation bias, occurring when the training data for the ML
model under-represents parts of the population the algorithm will be used on.
During the model building and implementation phases, we may have: aggregation
bias, arising when a general model is used for all groups, while in reality different
groups have a different mapping from input features to labels (e.g. some ethnic
groups can have different indicators for a disease than others); evaluation bias,
occurring when the data on which the model is evaluated is a misrepresentation
of the target population. These four types of bias do not cover all possible sources
of bias, but they will be used as relevant examples about how to set up a profile-
based evaluation.



PEBAM: Profile-Based Evaluation of Bias on Mixed Datasets 211

Bias Evaluation Methods for Algorithmic Fairness. In their extensive literature
review, Mehrabi et al. [14] give an overview of the most widely used definitions
of fairness within machine learning, providing 3 definitions focused on individual
fairness, 6 on group fairness, in which groups are defined by protected attribute
classes (e.g. sex, ethnicity, etc.), 1 on subgroup fairness. In this work we will
build upon two (group-fairness) measures. The first is equal opportunity [10], a
criterion for fairness in binary algorithms. Reading the outcome y = 1 as the
“advantaged” outcome, and A as the protected class attribute, we have:

Definition 1. Equal opportunity A binary predictor ŷ satisfies equal opportu-
nity w.r.t. attribute A and ground truth y iff: Pr{ŷ = 1A = 0, y = 1} = Pr{ŷ =
1A = 1, y = 1}.

The second is contextual demographic (dis)parity (CDD)—based on conditional
(non-)discrimination by [12]—a measure found to be the most compatible with
the decisions of the European Court of Justice on cases of discrimination [18].

Definition 2. Conditional Demographic Disparity Let R be a given set of
attributes, Ar be the proportion of people belonging to a protected class in the
advantaged group and with attribute r ∈ R, and let Dr be the proportion of people
of protected class in the disadvantaged group with attribute r. A decision-making
process exhibits conditional demographic disparity iff: ∀r ∈ R : Dr > Ar

The conditions r in R should be explanatory [12], i.e. they should hypothetically
explain the outcome even in the absence of discrimination against the protected
class (e.g., different salaries between men and women might be due to different
working hours). Under this view, R is derived from domain expert knowledge.

Clustering Algorithm for Mixed Data. In ADM one very often has to deal with
mixed datasets, i.e. datasets that consist of both categorical and numerical fea-
tures. Various solutions have been proposed in the literature to the known diffi-
culty to capture distributions on mixed datasets [15]; the present work will rely in
particular on k-medoids clustering [5]. The main benefit of k-medoids clustering
over k-means is that it is more robust to noise and outliers; we also do not have
to come up with a measure to compute the mean for categorical features. On the
other hand, the k-medoids clustering problem is NP-hard to solve exactly. For
this reason, in our work we will make use of the heuristic Partitioning Around
Medoids (PAM) algorithm [4].

3 Methodology

PEBAM (Profile-based Evaluation for Bias Assessment for Mixed datasets) is
a method consisting of three main steps: (1) a profile selection—based on the
iteration of clustering controlled by a measure of variability—to extract pro-
files representative of the target domain from an input dataset; (2) profiles are
evaluated in terms of stability over repetitions of extractions; (3) a given ADM
classification model is evaluated for bias against those profiles.
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3.1 Profile-Selection Based on Clustering

Informally, profiles can be seen as relevant descriptive elements that, as a group,
act as a “summary” of the data space. Because individuals sharing to an ade-
quate extent similar attributes should intuitively be assigned to the same profile,
clustering can be deemed compatible with a profile selection task. We consider
then three different clustering algorithms to implement profile selection: (i) sim-
ple clustering ; (ii) a form of hierarchical clustering based on the iteration of the
first; and (iii) a novel semi-hierarchical clustering method based on adding static
and dynamic constraints to control the second. The first two algorithms will be
used as baselines to evaluate the third one, and will be described succintly.

(a) (b) (c)

Fig. 1. Schematic overview of the simple clustering algorithm with k = 4 (a), the
hierarchical clustering algorithm with k = 2 and l = 2 (b) and a possible outcome of
the semi-hierarchical clustering algorithm (c).

The simple clustering algorithm consists in the application of the chosen
clustering algorithm (in our case, k -medoids, Sect. 2), and results in a flat parti-
tion of the sample space (see e.g. Fig. 1a). The challenge is to determine the right
number of clusters k. Hierarchical clustering consists in the nested iteration
of the previous algorithm set with k clusters over l layers (see e.g. Figure 1b).
The benefit of this method is that the resulting tree-based structure gives further
insight on the basis of which feature clusters are created. The downside is that
we have to tune an extra hyperparameter besides k: the number of layers l.

The semi-hierarchical clustering algorithm is an automatically controlled
version of the second algorithm. It is based on performing iteratively two opera-
tions. First, we apply a clustering method with k = 2, i.e. at every step we divide
input subsets into two new subsets (clusters). Then, we test each new subset to
decide whether we should continue clustering by looking at the variability of the
features it expresses, or at its cardinality. For variability of a feature f w.r.t. a
dataset D we intend a measure between 0 and 1 that indicates to what extent
the feature f is varying within D. A value close to 0 indicates that f is rather
stable over D, and a value close to 1 indicates that f mostly varies in D (and so
it is not relevant for describing it). The intuition behind using this measure is
that stable (i.e. not varying) features help to discriminate a profile over another
one. For instance, coffees are characterized by a black (or dark brown) colour,
so the colour feature is very stable to support discriminating coffee from other
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drinks; in contrast, colour is not a relevant feature to discriminate books from
other objects. In general, any feature can then be: (1) an irrelevant feature, when
the variability of a feature exceeds an upper bound cu, is deemed not to be a
characteristic property of the cluster; (2) a relevant feature: when the variabil-
ity of a feature is smaller than a lower bound cl, it means that the feature is
strongly characteristic of that cluster. When all features expressed by a subset
satisfy either case (1) or case (2), or the subset has less than a fixed amount of
elements nstop, there is no need to continue further clustering the input subset,
and therefore it is selected as a profile. The resulting structure is then a binary
tree, possibly unbalanced (see Fig. 1c), whose leaves are the selected profiles. The
benefit of semi-hierarchical clustering over simple and hierarchical clustering is
that we do not have to decide the numbers of clusters and layers in advance,
but requires setting the variability thresholds values cu and cl, as well as the
threshold cluster cardinality nstop.

In quantitative terms, when numerical features are not significant, we expect
that their distribution should approximate a uniform distribution. Let us assume
we have a numerical non-constant feature X; we can normalize X between 0
and 1 via (X − Xmin)/(Xmax − Xmin), and then compute the sample stan-
dard deviation s from the normalized samples. Theoretically, for a random
variable U ∼ Uniform(0, 1), we have μ = 1/2, and V ar(U) = E[(U − μ)2] =∫ 1

0
(x − 1/2)2dx = 1/12. Thus, the standard deviation of a random variable uni-

formly distributed is
√

1/12 ≈ 0.29. Therefore, if the sample standard deviation
s approximates 0.29, we can assume that the feature X is uniformly distributed
across the given cluster and is therefore not a unique property of species within
the cluster. On the other hand, when the standard deviation is close to zero,
this means that most sample points are close to the mean. This indicates that
feature X is very discriminating for that specific cluster. To obtain a measure of
variability, we need to compute the standardized standard deviation ss = s/0.29.

For categorical features, we consider the variability measure proposed in [1].
Let X a n-dimensional categorical variable consisting of q categories labelled
as 1, 2, ..., q. The relative frequency of each category i = 1, ..., q is given by
fi = ni/n, where ni is the number of samples that belongs to category i and n =
∑q

i=1 ni. Let �f = (f1, f2, ..., fq) be the vector with all the relative frequencies. We
define the variability of X as: vq = 1−||�f ||q. Allaj [1] shows that the variability is
bounded by 0 and 1 − 1/q, where an outcome close to 1 − 1/q associates to high
variability. We can also compute the standardized variability: vq,s = vq

1−1/
√
q ,

such that the variability lies between 0 and 1 for all number of categories q
where again a variability close to 1 implies a high variability and hence a non-
characteristic feature. A variability close to 0 indicates that the feature is highly
characteristic for that sample set.
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3.2 Evaluation of Clustering Methods for Profile Selection

Given a clustering method, we need to evaluate whether it is working properly
with respect to the profile selection task. Unfortunately, since this task is an
unsupervised problem, we do not have access to the ground truth, but we can
still focus on a related problem: Is our method stable? The stability of a clus-
tering method towards initialization of the clusters can be tested by running
the algorithm multiple times with different initial cluster settings (in our case,
different datapoints selected as the initial medoids), and check whether we end
up with the same sets of clusters (hereby called cluster combinations). When
the stability analysis results in two or more different cluster combinations, we
want to know how similar these combinations are, and for doing this, we will
introduce a measure of inter-clustering similarity.

Inter-clustering similarity is a similarity score that tells to what extent
different outcomes of clustering are similar, by comparing how many elements
clusters belonging to the two clustering outputs have in common with each other.
This score can be computed by comparing the distribution of the elements over
the clusters of two combinations. We present the process through an example:
Example: Let us consider a dataset with 20 data points. Suppose the clustering algo-
rithm returns the following two different cluster combinations C1 and C2: where
C1 = (c11, c

1
2, c

1
3) = ((1, 4, 6, 7, 13, 17, 18, 20), (3, 5, 11, 12, 15, 16), (2, 8, 9, 10, 14, 19)), and

C2 = (c21, c
2
2, c

2
3) = ((1, 4, 6, 7, 13, 17, 18, 20), (3, 11, 12, 14, 15, 16, 19), (2, 5, 8, 9, 10)). For

every cluster c1i in C1 we compute its overlap with each cluster c2j in C2. For instance,
for the first cluster of C1, c11 = (1, 4, 6, 7, 13, 17, 18, 20) the max overlap is 1, since c12 of
C2 is exactly the same. For the second cluster c12 we have:

max
( |c12 ∩ c21|

|c12|
,
|c12 ∩ c22|

|c12|
,
|c12 ∩ c23|

|c12|
)

= max(0/6, 5/6, 1/6) = 0.83

Applying the same calculation on c13 returns 0.67. The similarity score of cluster-

combination C1 with respect to cluster-combination C2 is given by the mean over

all the three maximum overlap values, which in this case is 0.83.

3.3 Profile-Based Evaluation of a Given Classifier

By means of profiles, we can assess the historical, representational, aggregation
and evaluation biases (Sect. 2) of a certain ADM classification model.

Historical bias arises on the dataset used for training. We measure it using
conditional demographic disparity (Def. 2); however, the resulting value may be
wrong if an attribute r is not a relevant characteristic for grouping individu-
als. Therefore, we consider a profile-conditioned demographic disparity, differing
from [12,18] in as much each profile label ci acts as attribute r. In this way we
capture behavioural attitudes (w.r.t. assigning or not an advantageous label) of
the labeller-oracle towards elements belonging to that profile.
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For Representational bias, by clustering the dataset around profiles, we
may get insights if there are parts of the population which are overrepresented
and parts which are underrepresented. A domain expert can compare the result-
ing distribution of profiles with the expected distribution for the population on
which the decision-making algorithm is going to be used. When these two distri-
butions differ much from each other, one can bootstrap sampling from profiles to
get a more correct distribution in the training dataset. If no domain expertise is
available, one can consider using this method during deployment. By collecting
the data where the algorithm is applied on, once the dataset is sufficiently large
(e.g. about the size of the training dataset), one can divide the samples of the
collected dataset over the different known profiles based on distance towards the
medoids associated to profiles. If the distribution of the collected dataset over
the profiles relevantly differs from the distribution of the training dataset, we
can conclude that there is representation bias. Alternatively, one can repeat the
profile selection on the collected data, and evaluate how much they differ from
the ones identified in the training dataset.

In order to evaluate Aggregation bias, we need a good metric to evaluate
the performance of the trained model under assessment. Our goal is to evaluate
the model against all profiles, i.e. to test whether the model works equally well
on individuals with different profiles (i.e. individuals from different clusters). We
start from the definition of equal opportunity (Def. 1), but we reformulate it in
a way that equal opportunity is computed with respect to profiles instead of the
protected class:
Definition 3 (Equal opportunity w.r.t. a single profile). We say a binary
predictor ŷ satisfies equal opportunity with respect to a profile C equal to i and
outcome/ground truth y iff: Pr{ŷ = 1|C = i, y = 1} = Pr{ŷ = 1|C �= i, y = 1}
Definition 4 (General equal opportunity). A binary predictor ŷ satisfies
general equal opportunity iff it satisfies equal opportunity with respect to all pro-
files C ∈ {1, .., k} and ground truth y. In formula: Pr{ŷ = 1|C = 1, y = 1} =
. . . = Pr{ŷ = 1|C = k, y = 1}
In some cases, it might be that getting a wrong prediction for a ground truth or
positive outcome label occurs more often than with a negative outcome label,
and may be more valuable (e.g. in some medical disease treatment); looking at
distinct values of y may give insights on the overall functioning of the model.

Evaluation bias arises when the model is evaluated on a population which
differs in distribution from the data that was used for training the model. It
has been shown [8] that fairness-preserving algorithms tend to be sensitive to
fluctuations in dataset composition, i.e. the performance of the algorithms is
affected by the train-test split. To ensure that we do not have evaluation bias,
we run a Monte Carlo simulation of the decision-making algorithm. This means
that we make M different train-test splits of the dataset. For each train-test split,
we train the decision-making algorithm on the train set and use the test set for
evaluation. For the model-evaluation, we use general equal opportunity (Def.
4). This gives us insights on which profiles are more sensitive towards train-test
splitting (and thus to evaluation bias).
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4 Experiments and Results

We conducted two experiments to evaluate PEBAM.2 In the first, we considered
a small artificial dataset to test the processing pipeline in a context in which
we knew the ground truth. In the second, we focused on the German credit
dataset, used in multiple researches on fairness [7,8,11,13]. This dataset contains
8 attributes (both numerical and categorical) of 1000 individuals, including an
association of each individual to a credit risk score (good or bad). For the sake of
brevity, we will limit our focus here on the German credit dataset. All Python-
code that we run for obtaining the results is publicly available.3

Table 1. Stability analysis of the cluster combinations for all three clustering algo-
rithms applied on the German credit data set with varying parameter settings. ∗For
the semi-hierarchical clustering the number of clusters is not fixed, we reported the
number of clusters for the cluster combination that occurs most.

Algorithm l k # Clusters # Cluster comb Freq. most occurring comb Running time

Simple 1 20 20 15 43 3.956 ± 0.376 s

Simple 1 30 30 50 9 8.170 ± 0.777 s

Simple 1 40 40 17 26 12.068 ± 0.875 s

Hierarchical 2 4 16 31 24 1.119 ± 0.078 s

Hierarchical 2 5 25 21 28 1.152 ± 0.077 s

Hierarchical 2 6 36 18 32 1.298 ± 0.113 s

Hierarchical 3 3 27 54 12 1.144 ± 0.047 s

Hierarchical 4 2 16 18 29 1.450 ± 0.083 s

Hierarchical 5 2 32 39 20 1.614 ± 0.071 s

Semi-hierarchical – – 34∗ 47 23 2.264 ± 0.112 s

4.1 Evaluation of Clustering for Profile Selection

We evaluate the three clustering algorithm for profile selection specified in
Sect. 3.1 following the method described in Sect. 3.2. For all three clustering
algorithms, we used a k-medoids clustering algorithm with the Gower distance
[3,9]. The simple algorithm and the hierarchical clustering require the tuning
of hyperparameters as k (number of clusters), and l (number of layers), and
therefore have a fixed number of final clusters (in this context seen as profiles).
Since we do not know the correct number of profiles in advance, we tried several
hyperparameters. The semi-hierarchical clustering algorithm needs instead three
other parameters: cu, cl (upper and lower bounds of variability), and nstop (the
threshold for cluster cardinality). For our experiments, we chose to set cu = 0.9,

2 Experimental setup: Intel Core i7-10510u, 16 GB RAM, Windows-10 64-bit.
3 https://github.com/mcwilms/PEBAM.

https://github.com/mcwilms/PEBAM
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cl = 0.1, and nstop to 5% of the size of the dataset (i.e. 50 for the German credit
dataset).

As a first step, we test if clustering methods are stable enough. Table 1 gives
a summary of the stability analysis performed for all three clustering methods on
the German credit dataset, reporting (when relevant) the parameters l and c k,
the number of clusters (e.g. kl), the number of different outcomes after running
the clustering algorithm 100 times with different random initializations, how
often the most occurring cluster combinations occurs in these 100 runs, and the
mean running time. Amongst other things, Table 1 shows that, when running the
stability analysis with semi-hierarchical clustering, the German credit dataset
produces 47 different cluster combinations. However, several combinations occur
only once, and only one of the combination (number 0, the first one) occurs
significantly more often than the other combinations, see Fig. 2a.

As a second step, we compute the inter-clustering similarity to test if the
different cluster combinations are adequately similar. Figure 2b shows the inter-
clustering similarity of the different cluster combinations we obtain on the Ger-
man credit dataset via the semi-hierarchical clustering algorithm, showing only
the cluster combinations that occur more than once. A dark blue tile means that
two clusters are very similar (max 100%), and a white tile means that they have
50% or less of the clusters in common.

(a) (b) (c)

Fig. 2. Stability and variability analysis of the semi-hierarchical clustering algorithm
applied on the German credit dataset: (a) frequency of each clustering outcome (or
cluster combination) obtained over 100 runs; (b) inter-clustering similarity for cluster
combinations that occur more than once; (c) variability of the different features for
each profile in the most recurrent cluster combination.

As a confirmation that the algorithms end up on profiles which are descrip-
tive attractors, we compute the feature variability of each cluster (supposedly
a profile) within the most occurring clustering outcome. The variability plot of
Fig. 2c shows for each profile (columns) the variability of the features (rows),
where dark blue indicates a low variability and dark red a high variability. In
tendency, qualitative features becomes stable, whereas numerical features show
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still a certain variability at the level of profiles. For each profile, however, the
majority of features becomes stable.

4.2 Profile-Based Evaluation of Bias

We now apply the bias evaluation methods described in Sect. 3.3 with the profiles
obtained by applying the semi-hierarchical clustering algorithm on classifiers
trained on the German credit data set via three commonly used machine learning
algorithms: logistic regression classifier, XGboost classifier, and support vector
machine (SVM) classifier (e.g. [2]).4 Following the standard practice of removing
protected attributes (gender, ethnicity, etc.) as input features during training, we
do not use the feature “Sex” provided by the German credit dataset for training
the classifiers.

For Representational bias, Fig. 3 gives an overview of the presence of
the identified profiles within the German credit dataset. We see that not all
profiles are equally frequent; this is not necessarily an error, as long as this
profile distribution is a good representation of the data on which ADM will be
applied in practice. Expert knowledge or actual data collection can be used to
test this assumption.

Fig. 3. Absolute frequencies of profiles obtained after performing the semi-hierarchical
clustering algorithm on the German credit dataset.

To assess Historical bias, we first test for (general) demographic disparity
with respect to protected attributes. A disadvantaged group with attribute x
(DGx) is the group with risk-label ‘bad’ and attribute x, whereas an advantaged
group with attribute x (AGx) is the group with risk-label ‘good’ and attribute
x. Denoting with A the proportion of people from the full dataset belonging to
the protected class (female) in the advantaged group over all people (female and
male) in the advantaged group, and D for the proportion of people belonging to
the protected class in the disadvantaged group over all people, we find:

D =
#DGf

#DGf+m
= 0.36 > 0.29 =

#AGf

#AGf+m
= A

and hence we conclude that, at aggregate level, the German credit data exhibit
demographic disparity. We now will do the same computation for each profile
4 Note however that the same approach will apply with any choice of profile selection

method or of ML method used to train the classifier.
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subset of the German credit dataset, to test whether there is demographic dis-
parity for profiles. We write Ac for the proportion of people belonging to the
protected class (female) in the advantaged group of cluster c over all people in
the advantaged group of cluster c, and Dc for the proportion of people belonging
to the protected class in the disadvantaged group of cluster c over all disadvan-
taged people in cluster c. Table 2 shows that there are 3 profiles (7, 20 and
28) that show demographic disparity. The fact that profiles show demographic
disparity indicates that it might be possible that for some profiles other (not-
protected) attributes correlate with the protected attribute, and so the protected
attribute can indirectly be used in the training-process of the model.

In the computation of the (dis)-advantage fraction of Table 2 we still looked
at the protected group female, however, we can also compute the measures A∗

c

(D∗
c ) as the fraction of (dis)advantaged individuals in a profile c over the total

individuals within that profile (without distinguishing the protected class in it):

A∗
c =

#AGc

#AGc + #DGc
D∗

c =
#DGc

#AGc + #DGc

By doing so, we get an indication of how informative a profile is for belonging
to the (dis)advantaged group. Table 3 shows the fraction of advantaged and
disadvantaged individuals for each profile. Note that there are profiles for which
the majority of the samples is clearly advantaged (e.g. 0, 1, 2, ...), a few have
some tendency towards disadvantaged outcomes (e.g. 3, 15), but in comparison
could be put together with other profiles that have no clear majority (e.g. 9,
10, ...). Plausibly, for profiles exhibiting a mixed distribution of the risk label,
there may be factors outside the given dataset that determine the label. Since
the ADM models also do not have access to these external features, it may be
relevant to evaluate performance on these profiles to evaluate this hypothesis.

Table 2. Fractions of disadvantaged (D) and advantaged (A) individuals with pro-
tected attribute female in each profile c.

c Dc Ac c Dc Ac c Dc Ac c Dc Ac c Dc Ac

0 0.00 0.00 7 0.36 0.25 14 0.00 0.19 21 0.00 0.03 28 0.96 0.90

1 0.00 0.00 8 0.00 0.00 15 1.00 1.00 22 0.00 0.00 29 0.00 0.00

2 0.00 0.00 9 0.00 0.00 16 1.00 1.00 23 0.00 0.00 30 1.00 1.00

3 0.00 0.00 10 1.00 1.00 17 1.00 0.86 24 0.00 0.00 31 1.00 1.00

4 0.00 0.07 11 0.00 0.00 18 0.00 0.00 25 0.00 0.03 32 0.00 0.00

5 1.00 1.00 12 0.00 0.00 19 0.06 0.06 26 1.00 1.00 33 0.00 0.09

6 0.00 0.08 13 0.00 0.00 20 0.24 0.00 27 0.00 0.00
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Table 3. Fractions of disadvantaged (D∗) and advantaged (A∗) individuals in each
profile c.

c D∗ A∗ c D∗ A∗ c D∗ A∗ c D∗ A∗ c D∗ A∗

0 0.00 1.00 7 0.58 0.42 14 0.09 0.91 21 0.05 0.95 28 0.52 0.48

1 0.11 0.89 8 0.58 0.42 15 0.62 0.38 22 0.36 0.64 29 0.40 0.60

2 0.14 0.86 9 0.47 0.53 16 0.38 0.62 23 0.15 0.85 30 0.09 0.91

3 0.62 0.38 10 0.53 0.47 17 0.25 0.75 24 0.37 0.63 31 0.22 0.78

4 0.12 0.88 11 0.18 0.82 18 0.19 0.81 25 0.20 0.71 32 0.13 0.87

5 0.12 0.88 12 0.35 0.65 19 0.50 0.50 26 0.45 0.55 33 0.06 0.94

6 0.32 0.68 13 0.52 0.48 20 0.52 0.48 27 0.14 0.86

For the Aggregation bias we look at the blue dots in Fig. 4a, which indicate
the mean performances of the algorithm over training the algorithm 100 times
on different train-test splits. Looking at performance over each profile gives us
a visual way to see to what extent general equal opportunity (Def. 4) is satis-
fied; we consider the average to provide a more robust indication. We see that
the XGboost classifier performs the best of the three algorithms with respect
to predicting the labels correctly, however we also observe some difference in
performance depending on profile. In contrast, the SVM classifier has very low
probabilities of getting an unjustified disadvantage label (Fig. 4b), while the
probability of getting a correct label is not very high.

For the Evaluation bias, we look at the performance ranges of the different
classification methods (visualized in terms of standard deviations). We see that
the SVM classifier is the least sensitive towards the train-test split. The logistic
regression classifier is already slightly more sensitive, however the XGboost clas-
sifier is by far the most sensitive towards the train-test split. All three algorithms
are equally sensitive towards small profiles as much as larger profiles.

5 Conclusion

The paper introduced PEBAM: a new method for evaluating biases in ADM
models trained on mixed datasets, focusing in particular on profiles extracted
through a novel (semi-hierarchical) clustering method. Although we have proven
the feasibility of the overall pipeline, several aspects need further consolidation,
as for instance testing other measures of variability (e.g. to be compared with
entropy-based forms of clustering, e.g. [6]), similarity scores, and distance mea-
sures. Yet, the method was already able to find biases that were not revealed by
most used bias evaluation methods, since they would not test for biased decisions
against groups of individuals that are regrouped by non-protected attributed val-
ues only. For instance, profile 7, exhibiting demographic disparity against women
as historical bias, refers to applicants with little saving/checking accounts and
renting their house, who are asking credit for cars (see Appendix for details).
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Why, ceteris paribus (all other things being the same), men are preferred to
women for access to credit for buying cars, if not in presence of a prejudice?

(a) (b)

Fig. 4. (a) Probability of getting a correct prediction label. (b) Probability of getting
a disadvantage (‘bad’) label when the true label is the advantage (‘good’), for logistic
regression classifier, XGboost classifier, and SVM classifier on the different profiles.

At a technical level, although the proposed semi-hierarchical clustering algo-
rithms has shown a shorter running time than the baseline on the German credit
dataset, the PAM algorithm does not scale well to larger datasets. Tiwari et al.
propose BanditPAM as alternative for PAM [17], a method that reduces the com-
plexity of each PAM iteration from O(n2) to O(n log n). When using PEBAM
on large datasets one might consider using BanditPAM over PAM. This will be
investigated in future work.
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A Profiles on the German Credit Dataset

The following table reports the profiles selected on the German credit dataset
by applying the semi-hierarchical clustering proposed in the paper, as described
by their medoids:
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Profile Age Sex Job Housing Saving accounts Checking account Credit amount Duration Purpose Sample

0 26 Male 2 Rent Moderate Unknown 3577 9 Car 859

1 37 Male 2 Own Unknown Unknown 7409 36 Business 868

2 39 Male 3 Own Little Unknown 6458 18 Car 106

3 26 Male 2 Own Little Little 4370 42 Radio/TV 639

4 31 Male 2 Own Quite rich Unknown 3430 24 Radio/TV 19

5 38 Female 2 Own Unknown Unknown 1240 12 Radio/TV 135

6 43 Male 1 Own Little Little 1344 12 Car 929

7 36 Male 2 Rent Little Little 2799 9 Car 586

8 39 Male 2 Own Little Little 2522 30 Radio/TV 239

9 31 Male 2 Own Little Moderate 1935 24 Business 169

10 33 Female 2 Own Little Little 1131 18 Furniture/equipment 166

11 26 Male 1 Own Little Moderate 625 12 Radio/TV 220

12 23 Male 2 Own Unknown Moderate 1444 15 Radio/TV 632

13 42 Male 2 Own Little Little 4153 18 Furniture/equipment 899

14 29 Male 2 Own Unknown Unknown 3556 15 Car 962

15 37 Female 2 Own Little Moderate 3612 18 Furniture/equipment 537

16 27 Female 2 Own Little Little 2389 18 Radio/TV 866

17 26 Female 2 Rent Little Unknown 1388 9 Furniture/equipment 582

18 29 Male 2 Own Little Unknown 2743 28 Radio/TV 426

19 53 Male 2 Free Little Little 4870 24 Car 4

20 36 Male 2 Own Little Little 1721 15 Car 461

21 38 Male 2 Own Little Unknown 804 12 Radio/TV 997

22 29 Male 2 Own Little Moderate 1103 12 Radio/TV 696

23 43 Male 2 Own Unknown Unknown 2197 24 Car 406

24 27 Male 2 Own Little Little 3552 24 Furniture/equipment 558

25 30 Male 2 Own Little Moderate 1056 18 Car 580

26 24 Female 2 Own Little Moderate 2150 30 Car 252

27 34 Male 2 Own Little Unknown 2759 12 Furniture/equipment 452

28 24 Female 2 Rent Little Little 2124 18 Furniture/equipment 761

29 34 Male 2 Own Little Moderate 5800 36 Car 893

30 34 Female 2 Own Little Unknown 1493 12 Radio/TV 638

31 30 Female 2 Own Little Unknown 1055 18 Car 161

32 35 Male 2 Own Little Unknown 2346 24 Car 654

33 35 Male 2 Own Unknown Unknown 1979 15 Radio/TV 625
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