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Abstract. Adversarial examples are one of the largest vulnerability of
deep neural networks. An attacker can deceive the classifiers easily with
the malicious inputs (called adversarial examples), which perturbations
are slightly added to benign inputs. Various attack methods have been
studied in both white-box and black-box settings, and some methods
achieve high attack success rates even in the black-box settings; that
is, the attacker is restricted to only query accesses to the target net-
work. In this paper, we propose a simple hyperparameter-free score-based
black-box �∞-adversarial attack using local uniform noises and a random
search. Specifically, we construct adversarial perturbations by combining
local uniform noises such as vertical-wise and horizontal-wise, and incor-
porate this idea into the random search method to update the pertur-
bation sequentially. We evaluate our method in terms of attack success
rates and query efficiency using models that classify common datasets
CIFAR-10 and ImageNet. We show that our method achieves higher
attack success rates and query efficiency than previous attack methods,
especially in low-query budgets on both untargeted and targeted attack
settings. We also examine attacks to adversarially trained models and
discuss the effect of local uniform noises on these models. Furthermore,
we show that our method achieves relatively high attack success rates and
query efficiency on average against input-transformation-based defense
methods, and is virtually unaffected by these defense methods.

Keywords: Black-box adversarial attacks · AI security

1 Introduction

1.1 Backgrounds

Due to recent breakthroughs in deep learning techniques, Deep Neural Net-
works (DNNs) have achieved state-of-the-art classification performance in vari-
ous tasks. However, it has also been shown that the classification models can still
be easily affected by adversarial examples [4,5,7,8,15,28,30,32] which are mali-
cious inputs such that small perturbations are added to benign inputs in order
to fool the classifiers. Adversarial attacks can cause serious security problems
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because DNNs are deployed in the real world in various applications. For exam-
ple, Deng et al. [12] analyze adversarial attacks on driving models, and show that
these regression models are also very vulnerable to adversarial attacks. Sharif
et al. [35] show that it is possible to impersonate another individual by having
the face image wear glasses, as in Adversarial Patch [6]. Therefore, in order to
design robust models, it is necessary to investigate the potential risks and iden-
tify the vulnerabilities of deep learning models. Hence adversarial attacks are an
important research topic.

If an adversarial example of an image x exists, attacking a classifier turns
into a search problem within a small volume around a benign image x. Recently,
several algorithms have been proposed to generate adversarial examples, and
these methods can be classified based on several categories.

Threat Model: One of the key differences in adversarial attacks is the setting
of the attacker, and there are two primary types: white-box and black-box.
In the white-box setting [7,15,28,32], the attacker is assumed to have all the
knowledge about the target model. The main idea of generating adversarial
examples in this setting is to apply a perturbation in the direction of the
gradient of the loss w.r.t. the input x. However, in reality, an attacker is
likely to have access to only a limited amount of information. In the black-
box setting [4,5,8,23,30], the attacker is only allowed query access to the
target model. That corresponds to an attack on a web service using a pre-
trained classifier (e.g., Google Cloud Vision API [2], IBM Watson Visual
Recognition [3], Amazon Rekognition [1]). In this setting, the attacker needs
to compute a perturbation only from the output information obtained by
querying a model, which is thus more difficult setting. The main strategies
for generating adversarial examples in the black-box setting are shown in
Sect. 2.

Adversarial Goal: Another important difference in adversarial attacks is
whether the attacker aims to misclassify the input x to a class other than
the true class y (untargeted), or to misclassify the classification result to a
specific target class t(�= y) (targeted). Targeted attacks, especially on classi-
fiers with a large number of classes, are quite a difficult task.

Distance Metric: Adversarial examples are inputs with slight perturbations
that are carefully crafted to cause the classifier to misclassify them. It is
commonly used �p-distances between adversarial and benign examples with
p ∈ {0, 2,∞}.

We focus on score-based black-box adversarial attacks. Existing query-based
black-box attack methods have already achieved a high attack success rate, and
the main effort is now focusing on reducing the number of queries. Attacks with
low queries, i.e., methods with better query efficiency, can save attackers a great
deal of cost in both time and money. For example, the Google Cloud Vision
API [2] limits the number of requests per minute to 1, 800. High query efficiency
attack methods are also effective in deceiving systems [10] that recognize the
behavior of submitting many similar queries in short time as fraudulent, which
is one of our motivations.
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Fig. 1. Sample images of each random pattern noise (RPN) in our sampling space
(from the left is vertical-wise, horizontal-wise, uniform, diagonal-wise local uniform
noise).

1.2 Our Contribution

In this paper, we propose a simple but effective hyperparameter-free score-based
black-box �∞-adversarial attack in computer vision. The core technique of our
approach is to use susceptibility of Convolutional Neural Networks (CNNs) to
noise with regional homogeneity [24,46], and specifically to construct adver-
sarial perturbations by combining patterned noises such as vertical-wise and
horizontal-wise (see Fig. 1). This idea is incorporated into an iterative random
search method to sequentially update the perturbations. In a pre-specified non-
orthogonal search direction, we modify the perturbation with randomly selected
local uniform noises, check whether it is moving towards or away from the deci-
sion boundary using a confidence score, and repeat the perturbation update.
With each update, the image moves further away from the original image and
towards the decision boundary.

In Sect. 4, we conduct comparative experiments with several existing
�∞-attacks using naturally and adversarially trained models and input-
transformation-based defense methods.

In the experiments on the naturally trained models in Sect. 4.1, we use
CIFAR-10 and ImageNet datasets to perform comparative experiments with Par-
simonious, SignHunter and Square Attack. As a result, we show that our method
achieves high attack success rates in both untargeted and targeted attack set-
tings, especially in low query budgets. Specifically, in the untargeted attack on
CIFAR-10, our method achieves the average query efficiency of 1.8 times while
achieving a higher attack success rate than that of Square Attack. In the untar-
geted attack on ImageNet, our method also achieves 1.4 times higher average
query efficiency than that of Square Attack.

In Sect. 4.2, we evaluate our method against several defensive models based on
adversarial training that classify MNIST and CIFAR-10 datasets. In the bench-
mark Madry et al.’s and TRADES models on MNIST, our method achieves
higher attack success rates than the other black-box methods. However, in other
Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) models, the results of our
method are inferior to those of other black-box attacks, especially in terms of
attack success rate. From this result we clarify the effect of local uniform noise
in each defensive model.
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In Sect. 4.3, we show attacks to several input-transformation-based defense
methods that adopt the naturally trained models classifying CIFAR-10 and Ima-
geNet as a backbone. Our method achieves an attack performance of over 90%
on CIFAR-10 and over 70% on ImageNet, despite relatively small query budgets.
Therefore, our method maintains a high attack success rate with or without the
protection of defense methods.

Overall, our method achieves high attack performance on a wide range of
target models in a hyperparameter-free manner, making it a realistic method for
attackers. We also observe that our method suffers from gradient masking, and
our definition of local uniform noise is highly convergent for defensive models
other than gradient masking. Finally, in Sect. 4.4, we experimentally verify the
effectiveness of our definition of local uniform noises and show that all of them
contribute to the attack performance.

2 Related Work

There are a few different settings for adversarial attacks in the black-box set-
ting. This section describes the differences between these settings and the main
strategies. Then, we show our contribution by comparing with them.

2.1 Transfer-Based Black-Box Attacks

Most of the existing adversarial attacks assume the white-box setting, where
the attacker has full access to the model architecture and the ability to perform
backpropagation to obtain gradient information. On the other hand, white-box
attacks can be pseudo-black-boxed by using transferability [38], called transfer-
based black-box attacks. Transferability is a property that adversarial examples
generated for a classifier can be used as for another same type classifiers. Paper-
not et al. [31] proposed a method to learn a surrogate model by querying the
target model. By using the surrogate model with decision boundaries similar
to the target model, they can simulate a white-box adversarial attack [15,32].
However, transfer-based attacks have some problems. First, although transfer-
based attacks are theoretically possible in a decision-based setting, they often
require carefully designed surrogate models, or even require many queries to
extract the target model. Next, the generated adversarial examples do not always
transfer well [36]. Recent studies have also proposed input transformation meth-
ods [13,25,42] to improve the transferability of adversarial examples, and showed
black-box attack performances. Although such a method [25] achieves particu-
larly high transferability, they ignore the task of extracting models and only
show the attack success rates between each network architecture.

2.2 Score-Based Black-Box Attacks

In score-based black-box attacks, the attacker can obtain the predicted proba-
bilities for each class by querying the inputs to the target model. The attacker
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solves an optimization problem to compute the adversarial perturbations while
directly observing the output from the target model.

Gradient Estimation Based Methods. The ZOO method, proposed by Chen
et al. [9], generates adversarial examples by estimating the gradient of the classi-
fier using a coordinate-wise finite difference method. The AutoZOOM, a modified
version of ZOO, was proposed by Tu et al. [39], which uses random gradient esti-
mation and dimensionality reduction techniques to significantly improve query
efficiency while maintaining attack performance. However, it still requires an
enormous number of queries to the target model (13, 525 queries on average for
the targeted attack on ImageNet). Hence, gradient estimation-based methods are
considerably less efficient, especially for models with high-dimensional inputs.

Gradient-Free Methods. The Parsimonious Attack proposed by Moon et al.
[30] solves a discrete optimization problem with local search and the greedy
algorithm. On a perturbation divided into a set of n2 square tiles, Parsimonious
finds the sign of each tile by local search, and then uses the greedy algorithm to
find a better solution. The SignHunter Attack proposed by Al-Dujaili et al. [4]
sequentially estimates the sign of gradient in 1/2n regions of the perturbation in
deterministic order. Several attack methods including these [4,29,30] reduce the
dimensionality of the search space of the perturbation by modifying neighbor-
ing pixels in the perturbation at once, making the computation more efficient.
Andriushchenko et al. proposed the Square Attack [5], which achieved state-of-
the-art attack success rates and query efficiency. Square Attack solves optimiza-
tion problems by random search, which directly updates the perturbation with
randomly generated square-shaped noise, as opposed to methods that invert the
sign of the perturbation, such as Parsimonious and SignHunter. The DeepSearch
proposed by Zhang et al. [47] generates adversarial examples close to the original
images by reducing the �∞ distance of the perturbation, while using hierarchical
grouping strategy like Parsimonious. However, we do not compare our method
with DeepSearch because the attack success rate and query efficiency are not
high (similar to those of Parsimonious) although the �∞ distance of the pertur-
bation generated by DeepSearch is small.

On the other hand, several studies have improved query-based attacks, in
which the attacker generates adversarial examples in transfer-based and query-
based manner using a surrogate white-box model that is either pre-trained or
trained by the attacker himself. The Subspace Attack by Guo et al. [18] uses
the gradient of the surrogate model as a heuristic search direction for finite dif-
ference gradient estimation. Huang et al. proposed TREMBA [19], which learns
an embedding space that can generate adversarial perturbations for a surrogate
model, and significantly reduces queries compared to NES and AutoZOOM.
Feng et al. [14] improved the transfer performance from the surrogate model
to the target model. Their proposed CG-Attack is robust to biases between the
surrogate model and the target model by transferring partial parameters of the
adversarial distribution of the surrogate model while learning the untransferred
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parameters based on queries to the target model. The SWITCH proposed by
Ma et al. [27] continues to select loss-maximizing perturbations whenever pos-
sible when images perturbed by gradients generated from a surrogate model do
not satisfy the optimization objective. Yatsura et al. proposed a meta-learning
method [45] to be used in combination with random search based attacks. Their
learned controller improves the attack performance by online adjustment of the
parameters of the proposal distribution at each iterate during the attack. How-
ever as explained in Sect. 2.1, we do not compare our method to these methods
since the attacker needs to construct a surrogate model in advance and the
computational cost is high.

2.3 Defense Methods

As adversarial attacks become more prevalent, many recent studies have also
focused on building defense models against them. There are several lines of
research in the literature, and the defense methods are roughly consisted of two
groups: input-transformation-based defense methods and adversarial training.

The input-transformation-based defense methods include denoising, input
randomization, and input transformation. These methods attempt to mitigate
the effects of perturbations in adversarial examples by adding image processing-
like changes to an input image. Specifically, the denoising methods include low-
pass filtering [34] and autoencoders [16], which attempt to remove adversar-
ial perturbations from adversarial examples. The input randomization meth-
ods including resizing and padding [41] and the input transformation methods
including JPEG Compression [17,26] attempt to mitigate the effect of adversarial
perturbations.

On the other hand, adversarial training [21,28,48] aims to obtain robustness
by training the model with adversarial examples, which is a more costly but
more effective method than image processing defenses. In general, it is known
that adversarial training defenses are more robust than other defenses in the case
of MNIST and CIFAR-10. Furthermore, Madry et al. [28] show that PGD [28] is
a universal first-order adversarial attack, which means that adversarial training
with PGD-generated adversarial examples is resistant to many other first-order
attacks. The PGD-generated adversarial examples are the basis for many adver-
sarially trained models, including [21,28,48]. The model of Madry et al. [28]
provides robust adversarial training by min-max optimization. TRADES [48]
focuses on the trade-off between robust error and natural error and trains to
improve both. Adversarial Logit Pairing [21] learns by matching the logit of a
benign image with the corresponding logit of adversarial examples, while acquir-
ing ancillary information such as their similarity to each other.

2.4 Differences Among Other Black-Box Methods and Our Method

We discuss more about the existing methods presented in Sect. 2.2 and clarify
the differences between them and our method. First, regarding the optimiza-
tion method of the perturbation, it can be observed that Parsimonious [30] has
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Fig. 2. An example of a sequence of adversarial perturbations on ImageNet generated
by our method at each iterate. The left column shows the adversarial perturbation
and the adversarial example for the first query (the attack has not yet succeeded at
this point), and the right column shows those for the 165th query where the attack
was successful (the class changed from altar to vault). In addition, the transition of
adversarial perturbations after the first query is shown between them. The red boxes
indicate the block range b determined by the SplitBlock function, i.e., the region where
the noise is modified at each iterate. In the second query, we change the perturbation
with a randomly picked RPN for a 1 × 1 region, i.e., the entire image region, and if
the loss is lowered, we update the perturbation to this. In the third to sixth queries,
the search is performed in 2 × 2 regions. After that, the perturbation update process
is repeated while gradually increasing the number of segmented regions. (Color figure
online)

many useless queries, partly because it uses the local search. SignHunter [4] is a
deterministic search and can guarantee the attack success rate for the number of
queries, but it is not very efficient. Since the convergence of the iterative random
search used in Square Attack [5] is much higher than that of Parsimonious and
SignHunter, an iterative random search is also used in our method.

As for the components of the perturbation, the perturbation of Parsimo-
nious and SignHunter consist of a uniform noise in a specific segmentation range
(square or rectangle shape), while the perturbation of Square Attack consists of
a vertical-wise initialization and a uniform noise of a square of a certain size.
On the other hand, our method places not only square-shaped but also vertical-
wise, horizontal-wise and diagonal-wise uniform noise on the segmented area
of squares in the image. Furthermore, while Parsimonious and Square Attack
have hyperparameters that need to be tuned depending on the setting of the
attack and the target model, our method does not need any hyperparameters.
This feature is a great advantage in black-box attacks because it can be easily
implemented in any setting.

3 Our Methods

In this section, we first recall the definitions of the threat model in the adver-
sarial attacks and describe an optimization framework for finding adversarial
perturbations against classification models. Then, we describe our black-box
�∞-adversarial attack using random pattern noises and random search.
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3.1 Optimization Framework

Formally, we define a classifier f : X −→ R
K where x ∈ X is the input image,

y ∈ Y = {1, 2, . . . ,K} is the output space and f(x) denotes the predicted score
of each class in Y. In the untargeted setting, the goal of the attacker is to find a
perturbation δ such that an adversarial example (x+δ) is misclassified to classes
other than the true class y, i.e., arg max

k∈Y
fk(x+δ) �= y. Additionally, the attacker

also seeks to minimize �p distance, i.e.,

arg max
k∈Y

fk(x + δ) �= y s.t. ‖δ‖p ≤ ε and (x + δ) ∈ X, (1)

where ‖ · ‖p is the �p-distance norm function and ε is the radius of �p-ball. The
task of finding a perturbation δ can be handled as a constrained optimization
problem. Therefore, �p-bounded untargeted attacks aims at optimizing the fol-
lowing objective:

min
δ:‖δ‖p≤ε

L(f(x + δ), y) (2)

where L is a loss function (typically the cross-entropy loss) and y is the true
label of x. Equation 2 mostly works to minimize the score for label y. We also
study the adversary in targeted setting. In the targeted setting, the attacker aims
arg max

k∈Y
fk(x + δ) = t for a target label t(�= y) chosen from Y and optimizes the

perturbation by minimizing the loss L(f(x + δ), t). A black-box targeted attack
on a network with many output classes (large K) will be a rather difficult task.

3.2 Algorithm

In this section, we present our black-box �∞-attack. We assume that the attacker
has an image x ∈ X and a black-box classifier f . An output f(x) is the predicted
probabilities over K-classes w.r.t. input image x. In the untargeted setting, our
goal is to find a perturbation δ ∈ {−ε, ε}d such that arg max f(x + δ) �= y
under the �∞-perturbation constraint, where ε ∈ R

+ is the radius of �∞-ball. Our
method is based on a random search [33] which is a well known iterative technique
in optimization problems. If we apply this technique to the adversarial attacks,
it acts as sequential updates of the perturbation. If the loss value L(f(x+δ∗), y)
w.r.t. the perturbed image (x + δ∗) with the updated perturbation δ∗ is lower
than the prior loss value L(f(x + δ), y), this update is adopted to the current
perturbation, otherwise it is discarded.

The core technique of our approach is that the perturbation is composed of
noises with regional homogeneity. There are studies [24,46] showing the vulner-
ability of CNNs to local uniform noises. In particular, Li et al. [24] investigate
how effective local homogeneous noise is for defensive models against adversar-
ial attacks. They find that adversarial perturbations made for defensive models
exhibit more homogeneous patterns than those made for naturally trained mod-
els. We therefore investigate whether local homogeneous noises can be applied
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Algorithm 1 . Our Method with
Random Search
Input: classifier f , original image x ∈

X, true class y, image size w, image
channels c, �∞-radius ε, max num-
ber of iterations N

Output: adversarial perturbation δ ∈
{−ε, ε}d

1: δ ← initial perturbation (vertical-
wise),

2: xadv ← (x + δ).Clip(0, 1)
3: l ← L(f(xadv), y), i ← 1
4: if attack is already successful

then
5: break
6: end if
7: B ← SplitBlock(w)
8: while i <

N and attack is not successful
do

9: b ← B(i%len(B))

10: δ∗ ← RPNSampling(δ, b, w, c, ε)
11: xadv ← (x + δ∗).Clip(0, 1)
12: l∗ ← L(f(xadv), y)
13: if l∗ < l then
14: δ ← δ∗, l ← l∗

15: end if
16: i ← i + 1
17: end while

Algorithm 2. RPNSampling
Input: perturbation δ, block area to

be modified b, image size w, image
channels c, �∞-radius ε

Output: new updated δ∗ ∈ {−ε, ε}d

1: δ∗ ← δ
2: sample RPN uniformly γ ∈

{δvert, δhoriz, δuni, δdiag}
3: for i = 1, . . . , c do
4: δ∗

b,i ← γb,i

5: end for

Algorithm 3. SplitBlock
Input: image size w
Output: a sequence of block areas B
1: B = ∅
2: for i = 1, . . . , w do
3: Split the whole area of image

into i2 square shaped blocks
{b1, b2, . . . , bi2} with size w/i

4: B ← B ∪ shuffled
{b1, b2, . . . , bi2}

5: end for

to generate adversarial examples (Note that, they [24] aim to generate universal
adversarial perturbations, which is a deceptive perturbation for arbitrary images,
and is a different objective from ours, so it is not comparable). Specifically,
our method constructs perturbations with four patterned noises: vertical-wise,
horizontal-wise, uniform, and diagonal-wise (henceforth, collectively referred to
as random pattern noise, RPN). This represents a major difference from Square
Attack [5], which updates perturbations only with uniform noise in the form of
squares.

Algorithmic Scheme with Random Search. Our proposed schemes are pre-
sented in Algorithms 1, 2 and 3. First, we set a initial perturbation to the vertical-
wise one. A vertical-wise initialization is a technique used in [5]. Then, we obtain
the current loss by querying the perturbed image (x+δ). Since we are interested
in query efficiency, the algorithm stops as soon as an adversarial perturbation
is found. Therefore, the process is terminated if the attack is already successful
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Table 1. Results of both untargeted and targeted attacks on Madry et al.’s naturally
trained model [28] classifying CIFAR-10. We set the norm bound ε∞ = 0.031 and a
limit of queries to 10 k.

Attack Success rate Avg. queries Med. queries
Untargeted Targeted Untargeted Targeted Untargeted Targeted

Parsimonious [30] 93.3% 97.3% 329 631 244 476
SignHunter [4] 88.9% 95.6% 157 370 73 311
Square Attack [5] 93.0% 96.7% 131 354 67 253
Ours 96.4% 98.3% 72 242 28 132

at the first query point (step 3 in Algorithm 1). After that, we decide the set
of block areas to be modified using the SplitBlock algorithm in Algorithm 3. In
a random search loop, first the algorithm picks a block area b and obtains the
new perturbation δ∗ updated for the area through RPNSampling in Algorithm 2.
Then, an adversarial example xadv is generated by adding the perturbation to
the benign image. Note that, all perturbed images are clipped in the domain
[0, 1]d. If the resulting loss corresponding to the perturbed image (x + δ∗) with
the updated perturbation is lower than the current loss, the change is applied.
The process is performed at most N (the maximum number of iterations) times
and the attack is failure if we cannot find the adversarial perturbation until N
times. Figure 2 shows a sequence of candidates of adversarial examples at each
iterate generated by our method. A candidate is generated at each iterate, and
the perturbation is updated if the loss at that time is lower than the previous
one.

RPN Sampling. Our RPNSampling algorithm presented in Algorithm 2 returns
a new perturbation δ∗ updated for a given block area b to be modified. As
the variation of RPNs, we focus on vertical-wise, horizontal-wise, uniform and
diagonal-wise perturbations. We show the samples of each RPN in Fig. 1. In this
algorithm, one of the four RPNs δvert, δhoriz, δuni, δdiag ∈ {−ε, ε}d, which are
randomly generated each time, is sampled as γ. The algorithm then changes the
new perturbation δ∗ to γ only in the region of block area b. From Fig. 2, it can
be observed that one of the randomly generated RPNs is picked at each iterate
and changed to that RPN only in certain regions. The effectiveness of each RPN
is experimentally verified in Sect. 4.4.

Split Block. The SplitBlock algorithm shown in Algorithm3 returns a set of
elements which are block areas to be modified in the perturbation. The purpose of
this function is to decide a low-dimensional space for a perturbation. In general,
the input space of a deep learning classifier is very high-dimensional. Therefore,
the optimization in the high-dimensional domain requires a very large number of
queries and is inefficient. The optimization can be done efficiently by narrowing



Query-Efficient Black-Box Adversarial Attack with Random Pattern Noises 313

down the search space for solutions by making changes in some regions at a time
as a group. The dimensionality reduction techniques are used in many existing
methods [4,29,30], and we observe that the main difference lies in the number
of region partitions.

Given image size w, the SplitBlock equally divides the perturbation into
n2 (n ∈ {1, . . . , w}) square regions. Then, each divided area including its coor-
dinates is stored in the order of the region size in the set.

While Square Attack [5] updates the perturbation by randomly selecting a
square shaped region s× s of size s(< w) from the image size h×w, our method
updates it regularly for each of the n2 equally divided square regions. After
updating all the n2 regions, we move on to search in (n + 1)2 regions. This can
be observed in Fig. 2. In the testing phase, we show that the non-orthogonal
search direction and n2 partitions provide a wider change area in the low query
budget, which is a factor to achieve high query efficiency.

4 Experiments

In this section, we evaluate our method by comparing it with other �∞-attack
methods: Parsimonious [30], SignHunter [4] and Square Attack [5]. We consider
the �∞-threat model and execute attacks on both untargeted and targeted attack
settings, then quantify the performance in terms of attack success rates, aver-
age queries and median queries. The attack success rate is calculated by the
proportion of adversarial images which successfully fool the model. The mean
and median queries are the mean and median number of queries for successful
adversarial images.

In Sect. 4.1, we show results based on naturally trained models, i.e., models
that are not hardened against adversarial attacks. In Sect. 4.2 and 4.3, we show
results based on robust models of adversarially training and models with input-
transformation-based defenses. In Sect. 4.4, we evaluate our method a little more
by ablation study. Specifically, we experimentally investigate how much each of
our defined RPNs contributes to the attack performance.

4.1 Experiments on Naturally Trained Models

Datasets and Target Models. We evaluate our method on CIFAR-10 [22]
and ImageNet [11] datasets. CIFAR-10 is 32× 32× 3 dimensional images having
10 classes. For CIFAR-10, we randomly choose 1, 000 images from the test set
for evaluation, all of which are initially correctly recognized by the target model.
ImageNet has 1, 000 classes. Since the size of images of ImageNet dataset is not
fixed, we re-scale these images to 299 × 299 × 3 (default input size of Inception-
v3 model explained below). For ImageNet, we randomly choose 1, 000 images
belonging to 1, 000 categories from ILSVRC 2012 validation set, all of which are
initially correctly recognized by the target model. All images are normalized in
[0, 1] scale, and for all experiments, we clip the perturbed image into the input
domain [0, 1]d for all algorithms by default.
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Fig. 3. Cumulative distribution of the
number of queries required for untargeted
attacks on CIFAR-10.

Fig. 4. Cumulative distribution of the
number of queries required for targeted
attacks on CIFAR-10.

Table 2. Results of both untargeted and targeted attacks on Inception-v3 classifying
ImageNet. We set the norm bound ε∞ = 0.031 and a limit of queries to 10 k.

Attack Success rate Avg. queries Med. queries
Untargeted Targeted Untargeted Targeted Untargeted Targeted

Parsimonious [30] 96.1% 78.4% 1082 3495 389 2807
SignHunter [4] 94.9% 72.4% 966 3656 204 3222
Square Attack [5] 98.5% 90.9% 568 2592 96 1716
Ours 98.6% 90.2% 416 2116 49 1312

For the experiments on CIFAR-10, we use Madry et al.’s naturally trained
model [28]. The model architecture and weights are available at here1. For the
experiments on ImageNet, we use the pre-trained model provided as an applica-
tion in Keras2. We select the Inception-v3 [37] pre-trained model in our exper-
iments because we can see in [5] that it is robuster than some other models for
ImageNet against adversarial attacks.

Method Setting. Since it is standard in the literature, we give a budget of 10 k
queries per image to find an adversarial perturbation. We set the maximum �∞-
perturbation of the adversarial image to ε = 0.031 (≈ 8/255) on both CIFAR-10
and ImageNet. Query budgets and the maximum distortion ε are parameters
specific to the threat model of adversarial attacks, so they are generally not
considered as hyperparameters. In targeted attacks, we set the target class to
ytarget = (ytrue + 1) mod K, where ytrue is the true class, and K is the number
of classes.

1 https://github.com/MadryLab/cifar10 challenge.
2 https://keras.io/api/applications/.

https://github.com/MadryLab/cifar10_challenge
https://keras.io/api/applications/
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Fig. 5. Cumulative distribution of the
number of queries required for untargeted
attacks on ImageNet.

Fig. 6. Cumulative distribution of the
number of queries required for targeted
attacks on ImageNet.

Results on CIFAR-10. We show the results in Table 1. Our method achieves
the highest attack success rates on both untargeted and targeted settings. Also at
the same time, we improve the number of queries required to fool the classifiers
compared to other three methods. Compared to the state-of-the-art method,
Square Attack, our method achieves a higher attack success rate, 1.5 to 1.8
times higher average query efficiency, and 1.9 to 2.4 times higher median query
efficiency. We also plotted the cumulative success rates in terms of the required
budget in Figs. 3 and 4. Especially in low-query budgets, our method remarkably
outperforms the other methods. Additionally, the success rates of Square Attack
and our method at 1 query indicate the strength of the vertical-wise initialization.
As hyperparameters for the comparison methods, we set block size = 4 and
batch size = 64 for Parsimonious and p = 0.05 for Square Attack by default.

Results on ImageNet. The results are presented in Table 2, and Figs. 5 and
6. Although our method does not achieve the highest attack success rate in the
targeted attack setting, it achieves higher attack success rate and query efficiency
in the untargeted attack setting. As Figs. 5 and 6 show, our method achieves the
highest attack success rate up to 55 queries in both untargeted and targeted
attack settings. Additionally, we can see from Table 2 that more than half of the
images are successfully attacked for the untargeted attack with 49 queries, which
is about half of the median query of Square Attack. These results indicate the
high query efficiency in low query budgets of our method. As hyperparameters
for the comparison methods, we set block size = 32 and batch size = 64 for
Parsimonious and p = 0.05 for Square Attack.
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Table 3. Results on adversarially trained models of Madry et al. [28], TRADES [48],
CLP and LSQ [21] on MNIST, and CLP and LSQ [21] on CIFAR-10. We set the
norm bound ε∞ and a limit of queries to 0.3 and 10 k respectively for MNIST and
0.062 (≈ 16/255) and 10 k respectively for CIFAR-10. The percentages in the model
column indicate the natural accuracy in the test data for each model.

Dataset Model Attack Success rate Avg. queries Med. queries

MNIST Madry et al. [28]
(99.0%)

Parsimonious 11.0% 310 58
SignHunter 7.5% 217 28
Square Attack 11.1% 496 204
Ours 11.3% 504 73

TRADES [48]
(100.0%)

Parsimonious 7.4% 338 60
SignHunter 5.5% 198 53
Square Attack 7.5% 450 228
Ours 7.5% 296 81

CLP [21]
(99.3%)

Parsimonious 87.3% 581 65
SignHunter 24.2% 741 6
Square Attack 92.8% 353 63
Ours 80.1% 638 122

LSQ [21]
(99.1%)

Parsimonious 83.8% 418 79
SignHunter 23.0% 852 7
Square Attack 90.1% 248 68
Ours 74.3% 666 117

CIFAR-10 CLP [21]
(74.2%)

Parsimonious 99.5% 285 117
SignHunter 99.9% 109 39
Square 99.5% 186 41
Ours 99.7% 178 33

LSQ [21]
(85.5%)

Parsimonious 77.5% 960 199
SignHunter 83.4% 354 34
Square 85.0% 533 29
Ours 80.5% 627 26

4.2 Experiments on Adversarially Trained Models

Here we evaluate our method to robust models based on adversarial training.

Datasets and Target Models. We use some robust models classifying
MNIST [44] and CIFAR-10 datasets as the same as the experiment of Square
Attack [5]. MNIST is 28 × 28 × 1 dimensional grayscale handwritten numeric
dataset. In the experiments on MNIST, we randomly sample 1, 000 images from
the test set, all of which are initially correctly recognized by Madry et al.’s natu-
rally trained model [28]. In the experiments on CIFAR-10, we use the same test
data in Sect. 4.1.
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In line with the experiments in [5], we use the �∞-adversarially trained models
of Madry et al. [28], TRADES [48], Clean Logit Pairing (CLP) [21] and Logit
Squeezing (LSQ) [21] for MNIST, and the �∞-adversarially trained models of
CLP and LSQ for CIFAR-10.

Method Setting. We give a budget of 10 k queries per image to find an adver-
sarial perturbation. We set the maximum �∞-perturbation of the adversarial
image to ε = 0.3 on MNIST, and ε = 0.062 (≈ 16/255) on CIFAR-10. All
experiments in this section are done in the untargeted setting.

Results on MNIST. Table 3 shows the results. In Madry et al.’s and TRADES
models, SignHunter achieves better query efficiency, but has a lower attack suc-
cess rate on average than the other methods. Comparing the methods with sim-
ilar attack success rates, our method achieves higher attack success rates and
better query efficiencies. Although our method does not achieve better perfor-
mance than other methods in CLP and LSQ models, our method achieves better
performance in Madry et al.’s and TRADES models, where the original robust
accuracy is higher. This indicates the potential attack power of our method. As
the hyperparameter for Parsimonious, we set block size = 4 and batch size = 64.
As the hyperparameter for Square Attack, we set p = 0.8 for Madry et al.’s and
TRADES models and p = 0.3 for CLP and LSQ models.

Results on CIFAR-10. The results are shown at the bottom of Table 3. All
methods have high attack success rates overall, and there is not as large a dif-
ference in attack performance due to the shape of the uniform noise as for
MNIST. In both models, our method achieves the highest median query effi-
ciency, although not the highest average query. This suggests that the query
efficiency in low query budgets of our method is high. As hyperparameters for
the comparison methods, we set block size = 4 and batch size = 64 for Parsi-
monious and p = 0.3 for Square Attack.

On the Difference in Attack Success Rates in CLP and LSQ Models.
It may be concluded that the difference in the attack performance of the meth-
ods in CLP and LSQ models classifying MNIST comes from the form of local
uniform noise generated by each method. SignHunter considers the image as a
one-dimensional vector and flips the sign in a particular segmentation range, so
that a rectangular noise can be seen in the image. On the other hand, Parsi-
monious and Square Attack make most of the noise consist of square shaped
uniform noise. The results in Table 3 show a large margin in terms of attack suc-
cess rate of the attacks between these two patterns. This suggests that CLP and
LSQ models are particularly vulnerable to square shaped uniform noise, which
causes the large differences.
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Table 4. Results on input-transformation-based defenses: Bit-Red [43], JPEG [17],
FD [26], and ComDefend [20]. Each defense method adopts the backbones of Madry et
al.’s naturally trained model classifying CIFAR-10 and Inception-v3 pre-trained model
classifying ImageNet, respectively. We use 50 randomly selected images and set a limit
of queries to 200, the norm bound ε∞ to 0.031 for CIFAR-10 and 0.062 for ImageNet.

Dataset Defense Attack Success rate Avg. queries Med. queries

CIFAR-10 Bit-Red [43]
(78.0%)

Parsimonious 71.8% 61 71
SignHunter 84.6% 32 16
Square Attack 92.3% 27 14
Ours 92.3% 23 12

JPEG [17]
(82.0%)

Parsimonious 48.8% 95 75
SignHunter 73.2% 63 52
Square Attack 85.4% 31 19
Ours 92.7% 29 12

FD [26]
(86.0%)

Parsimonious 81.4% 73 70
SignHunter 83.7% 38 28
Square Attack 97.7% 28 8
Ours 100.0% 24 6

ImageNet Bit-Red [43]
(78.0%)

Parsimonious 51.3% 86 74
SignHunter 74.4% 60 35
Square Attack 84.6% 35 22
Ours 82.1% 33 12

JPEG [17]
(82.0%)

Parsimonious 41.7% 82 69
SignHunter 66.7% 89 73
Square Attack 77.1% 37 13
Ours 83.3% 36 8

FD [26]
(86.0%)

Parsimonious 66.0% 55 67
SignHunter 74.5% 35 18
Square Attack 93.6% 27 7
Ours 97.9% 21 4

ComDefend [20]
(94.0%)

Parsimonious 27.7% 80 78
SignHunter 61.7% 72 61
Square Attack 74.5% 45 25
Ours 74.5% 37 13

4.3 Experiments on Input-Transformation-Based Defenses

In this section, we attack against input-transformation-based defense methods
other than adversarial training.

Datasets and Target Models. Since the basic input-transformation-based
defense methods are input-independent, they can be applied to various models to
easily improve the defense performance against adversarial attacks. We consider
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four defense methods: Bit-Depth Reduction (Bit-Red) [43], JPEG Compression
(JPEG) [17], Feature Distillation (FD) [26], and ComDefend [20]. All of these
defense methods are input-transformation-based methods that apply a transfor-
mation to the input image to mitigate the effects of adversarial perturbation. We
conduct attack experiments on models applying each defense method to Madry
et al.’s naturally trained model for classifying CIFAR-10 and Inception-v3 pre-
trained model for classifying ImageNet, respectively. Since ComDefend requires
a separate pre-trained model for defense and is not available in CIFAR-10, we
only consider ImageNet for this method. For the test data on both CIFAR-10
and ImageNet, we randomly sample 50 images from those used in Sect. 4.1, and
we generate adversarial examples of these images.

Method Setting. Considering a more realistic setting, we give a budget of
200 queries, which is much less than the number of queries in the experiment
in Sect. 4.1. We set the maximum �∞-perturbation of the adversarial image to
ε = 0.031 (≈ 8/255) on CIFAR-10, and ε = 0.062 (≈ 16/255) on ImageNet. The
amount of perturbation distortion on ImageNet is based on VMI-CT-FGSM [40].
All experiments in this section are done in the untargeted setting.

Results on CIFAR-10. The results are shown in upper part of Table 4.
Our method outperforms the other black-box attacks against all three input-
transformation-based defenses. Our method achieves an attack success rate of
more than 90% for all defense methods, and when compared to the results for
the case without defense methods in Sect. 4.1, it can be seen that our method is
almost unaffected by these defenses. Overall, our method achieves better perfor-
mance in situations where the attacker is given only a small query budget. As
hyperparameters for Parsimonious, we set block size = 4 and batch size = 64.

Results on ImageNet. The results are shown in the lower part of Table 4.
Our method achieves better attack performance except the attack success rate
on Bit-Red. In particular, the median query of our method is about half that of
Square Attack in most settings, which indicates a relatively high query efficiency
of our method. The defense methods such as input transformation are very easy
to apply to ImageNet with high dimensionality and are considered more realistic
than adversarial training. However, such a simple defense method is not sufficient
to prevent adversarial attacks. In terms of the amount of perturbation distortion
in the adversarial image, these defense methods may be more robust for smaller
amounts of that. As hyperparameters for Parsimonious, we set block size = 32
and batch size = 64.

4.4 Ablation Study

In this subsection, we evaluate our methodology a little more. We perform a
simple ablation study to show how the individual RPNs (in Sect. 3.2) improve
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Table 5. Ablation study of our method which shows how the individual RPNs (in
Sect. 3.2) improve the performance. Our final method is highlighted in blue, and the
results are shown below when each RPN was removed from the “All” sampling space.

Sampling space Success rate Avg. queries Med. queries

All 90.2% 2116 1312
All − vertical-wise 88.7% 2208 1366
All − horizontal-wise 89.8% 2263 1390
All − uniform 88.8% 2237 1314
All − diagonal-wise 88.2% 2271 1468

the performance of our attack. The comparison is done for an �∞-threat model
of radius ε = 0.031. We use 1, 000 test images and carry out targeted attacks
against the Inception-v3 model pre-trained on ImageNet with a 10 k query bud-
get. Results are shown in Table 5. The “All” in sampling space column means
that the RPN is sampled from the all sampling space (vertical-wise, horizontal-
wise, uniform and diagonal-wise), which is our final method we used in our exper-
iments. The results when each RPN is removed from the all sampling space are
shown below that. In terms of attack success rate and query efficiency, we can
see that all RPNs contribute to the attack performance. In particular, when the
diagonal-wise pattern is removed, the attack success rate and query efficiency are
greatly degraded. In addition, based on the results, further analysis of the noise
patterns will be a future challenge, assuming that the addition of new RPNs will
improve the attack performance.

5 Conclusion

We proposed a query-efficient black-box attack using an iterative random search
and random pattern noises. In our experiments, we show that our method
achieves higher success rates than existing methods in both untargeted and tar-
geted attacks, especially in low-query budgets. In the experiments on defensive
models, we show that our method achieves high attack performance in most set-
tings. Since our method is hyperparameter-free, it is practical and easy to apply
for attackers.
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