
Improving Deep Learning Based
Password Guessing Models Using

Pre-processing

Yuxuan Wu1, Ding Wang2(B), Yunkai Zou2, and Ziyi Huang3

1 College of Computer Science, Nankai University, Tianjin 300350, China
2 College of Cyber Science, Nankai University, Tianjin 300381, China

wangding@nankai.edu.cn
3 College of Software, Nankai University, Tianjin 300457, China

Abstract. Passwords are the most widely used authentication method
and play an important role in users’ digital lives. Password guessing mod-
els are generally used to understand password security, yet statistic-based
password models (like the Markov model and probabilistic context-free
grammars (PCFG)) are subject to the inherent limitations of overfitting
and sparsity. With the improvement of computing power, deep-learning
based models with higher crack rates are emerging. Since neural networks
are generally used as black boxes for learning password features, a key
challenge for deep-learning based password guessing models is to choose
the appropriate preprocessing methods to learn more effective features.

To fill the gap, this paper explores three new preprocessing methods
and makes an attempt to apply them to two promising deep-learning
networks, i.e., Long Short-Term Memory (LSTM) neural networks and
Generative Adversarial Networks (GAN). First, we propose a character-
feature based method for encoding to replace the canonical one-hot
encoding. Second, we add so far the most comprehensive recognition
rules of words, keyboard patterns, years, and website names into the basic
PCFG, and find that the frequency distribution of extracted segments
follows the Zipf’s law. Third, we adopt Xu et al.’s PCFG improvement
with chunk segmentation at CCS’21, and study the performance of the
Chunk+PCFG preprocessing method when applied to LSTM and GAN.

Extensive experiments on six large real-world password datasets show
the effectiveness of our preprocessing methods. Results show that within
50 million guesses: 1) When we apply the PCFG preprocessing method
to PassGAN (a GAN-based password model proposed by Hitja et al. at
ACNS’19), 13.83%–38.81% (26.79% on average) more passwords can be
cracked; 2) Our LSTM based model using PCFG for preprocessing (short
for PL) outperforms Wang et al.’s original PL model by 0.35%–3.94%
(1.36% on average). Overall, our preprocessing methods can improve the
attacking rates in four over seven tested cases. We believe this work pro-
vides new feasible directions for guessing optimization, and contributes
to a better understanding of deep-learning based models.

Keywords: Password · Deep learning · Preprocessing · Generative
Adversarial Networks · Long Short-Term Memory neural networks

c© Springer Nature Switzerland AG 2022
C. Alcaraz et al. (Eds.): ICICS 2022, LNCS 13407, pp. 163–183, 2022.
https://doi.org/10.1007/978-3-031-15777-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15777-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-15777-6_10

164 Y. Wu et al.

1 Introduction

Although passwords have some security problems and a variety of new authenti-
cation methods are constantly proposed, passwords promise to be the dominant
authentication method in the foreseeable future due to their simplicity to deploy,
easiness to change [2,3]. Thus, it is of great importance to understand password
security, and a number of guessing algorithms have successively been proposed,
such as statistical-based ones (e.g., probabilistic context free grammars (short for
PCFG) [18] and Markov [10,12]) and deep-learning based ones (i.e., PassGAN [5]
and FLA [11]). Password guessing algorithms study password security from the
perspective of attackers who focus on the vulnerability of passwords, and they
in turn can be used to build protection countermeasures, such as constructing
the password strength meter (PSM) to evaluate password strength.

Password guessing attacks can be divided into targeted guessing attacks and
trawling guessing attacks [16]. The former is to crack the password of a given
user as quickly as possible [10], and the latter is to crack as many passwords as
possible in a given password set under the limited guess number [16,19]. This
paper focuses on trawling guessing attacks. A key challenge for trawling guessing
attacks is to extract the password features effectively, and data preprocessing is
a feasible method to improve the effect of the deep learning based models.

1.1 Related Work

Major Password guessing models based on statistical probability include PCFG
[18] and the Markov model [10,12]. The main idea of PCFG is to divide a pass-
word into several segments according to the character types, and these segments
can be regarded as the password features. For instance, the password abc123 is
parsed into the letter segment “abc” and digit segment “123”. PCFG can also be
integrated with other guessing models as a data preprocessing method [9,17,20].
The Markov model records the frequency of different characters after the pass-
word substring in the training phase, and then generates the guessing password
character by character according to the statistical frequency distribution. With
various improvements made on the base of PCFG, Xie et al. [19] focused on the
targeted guessing attack and added the recognition of special dates and names.
Wang et al. [15] added the recognition of Chinese pinyin and the six-digit dates
(e.g., 201862) to further exploit the features of Chinese passwords. Houshmand
et al. [6] added the recognition of keyboard patterns. Yang et al. [21] also stud-
ied keyboard patterns and analyzed the frequency distribution of the keyboard
patterns. However, these PCFG-based methods are not optimal because most
of these added recognition rules only consider the targeted guessing, and are
not comprehensively considered in trawling guessing. In this paper, we focus
on the password features, and add the most comprehensive recognition rules of
keyboard patterns, words, website names, years for trawling guessing.

Recently, deep learning technology provides a new way for password attack-
ing, and the model based on supervised learning was first used. In 2016, Melicher
et al. [11] used Recurrent Neural Network (RNN) to build a password guessing
model (i.e., FLA) which can be considered as a character-level model because the

Improving Password Guessing Models 165

smallest unit it handles is each character in the password. In 2018, Liu et al. [9]
proposed a multi-source PCFG+LSTM model (The LSTM based model using
PCFG for preprocessing, short for PL) with the adversarial generation which
can maintain high accuracy for different datasets. The password guessing model
using PCFG for preprocessing can be regarded as a segment-level model, which
divides passwords into different segments. In 2021, Wang et al. [17] found that
the PL model could crack more passwords than PCFG and Markov within 50
million guesses. However, they only use the original PCFG which can not compre-
hensively extract password features. Xu et al. [20] proposed a new preprocessing
method based on the Byte-Pair-Encoding (BPE) algorithm to divide passwords
into chunks that consist of frequently occurring characters, and then built three
models: the Markov based model using the chunk based preprocessing method,
the model using the Chunk+PCFG preprocessing method, and the LSTM based
model using chunk based preprocessing method. Password guessing models using
the chunk-based preprocessing method are considered chunk-level. In this paper,
we integrate the Chunk+PCFG preprocessing method with neural networks.

Unsupervised learning methods are also used in password cracking. In 2019,
Hitaj et al. [5] first proposed a password guessing model based on Generative
Adversarial Networks (GAN) and named it PassGAN. However, the cracking
result of PassGAN is not ideal, and even lower than the traditional methods.
We apply three preprocessing methods to PassGAN model, and find that using
the basic PCFG for preprocessing can dramatically improve the cracking rate.

1.2 Our Contributions

In this work, we make the following key contributions:

(1) Character feature based encoding method. Character-level models
usually adopt the canonical one-hot encoding method which can not fully
utilize the character features. Therefore, we propose a new approach based
on the type of characters and the corresponding keyboard positions, where
each character is represented as a 4-dimensional vector: (character type,
character serial number, keyboard row number, keyboard column number).
Although this encoding method does not improve the effect, it still provides
a new feasible direction for password guessing.

(2) Refined PCFG. Existing PCFG [6] divides passwords into four segments
(letters, digits, special characters, and keyboard). We propose a refined
PCFG based preprocessing method which adds the recognition rules of
words, website names, and years to enable a more comprehensive password
feature extraction. Inspired by Wang et al.’s work that the distribution of
passwords follows the Zipf’s law [14], we find that the frequency distribution
of extracted segments also follows PDF-Zipf.

(3) An extensive evaluation. We perform a series of experiments on nine
models, including two baseline ones (i.e., the LSTM based model using
one-hot encoding method in Wang’s work [17] and the original PassGAN
model in Hitaj’s work [5]), and seven models using preprocessing(i.e., the

166 Y. Wu et al.

LSTM based model using our new encoding method, the LSTM based
model using basic PCFG for preprocessing [17], the LSTM based model
using our refined PCFG for preprocessing, the LSTM based model using
Chunk+PCFG for preprocessing, the PassGAN model using basic PCFG
for preprocessing, the PassGAN model using our refined PCFG for prepro-
cessing, and the PassGAN model using Chunk+PCFG for preprocessing).
Our empirical results show that character-level models can improve their
effect by using PCFG based preprocessing methods. In particular, the Pass-
GAN model using PCFG for preprocessing can improve the success rates
drastically (avg. 26.79 %) compared to the original PassGAN model.

2 Background

In this section, we briefly introduce the background on deep learning based
password guessing models (i.e., LSTM based models and GAN based models).

2.1 LSTM Based Models

 Bos
[0,0,0,1,0]

 a
[1,0,0,0,0]

 b
[0,1,0,0,0]

 c
[0,0,1,0,0]

 a
[1,0,0,0,0]

 b
[0,1,0,0,0]

 c
[0,0,1,0,0]

 Eos
[0,0,0,0,1]

Fig. 1. The training process
of LSTM based models using
one-hot encoding method. The
character set is {a, b, c, Bos,
Eos}, where Bos represents the
beginning of a password and
Eos repreasents the end of a
password.

Recurrent Neural Network (RNN) and its Vari-
ants, such as Long Short-Term Memory neural
networks (LSTM), can all be used in password
guessing models [11,17]. To avoid gradient vanish-
ing problems [8], we use LSTM instead of RNN.
The one-hot encoding is usually performed on
each character to convert a password string to
a matrix. Moreover, it is necessary to construct
the corresponding label y for the input password
x due to the supervised learning method. We use
an example to illustrate this training process (see
in Fig. 1). Suppose the character set that contains
all the characters appearing in the dataset is {a,
b, c, Bos, Eos}, where Bos represents the begin-
ning of a password and Eos represents the end of
a password. Then the password abc is converted
to a matrix: [[0, 0, 0, 1, 0], [1, 0, 0, 0, 0], [0, 1, 0,
0, 0], [0, 0, 1, 0, 0]]. The corresponding label y is:
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]].

The LSTM based model is a probability model which assigns probabilities
to the guessing passwords. The probability of the next character is obtained by
entering the prefix of the password string into LSTM. For example, a password
generation process could be: B→Ba→Bab→ Babc→BabcE, where each time we
select the character with the highest probability as the next character. The
LSTM based model with this training and generating method is character-level.

Improving Password Guessing Models 167

Generator

Discriminator

Fake Data Fake Score

Real ScoreReal Data

Pssswdd
qweeey
iLaaayyy

...

Pssswdd : 0.3
qweeey : 0.2
iLaaayyy : 0.3
 ...

Password : 0.8
qwerty : 0.9
iLoveyou : 0.7
 ...

Password
qwerty

iLoveyou
...

Fig. 2. The training process of PassGAN model. Passwords are first converted into
matrices and then input to the discriminator. The score is the output of the discrimi-
nator which will be used to calculate the gradient.

2.2 PassGAN

PassGAN, proposed by hitaj [5], is based on WGAN-GP [4] due to the difficulty
of training original GAN. PassGAN consists of a generator and a discriminator.
The generator captures the real data distribution by building a mapping func-
tion from prior noise distribution to real data space and generate fake samples.
The discriminator learns to determine whether a sample comes from the fake
samples or the real data. PassGAN are trained adversarially in this way until
the discriminator cannot identify the source of the data. The main structure of
the PassGAN model is shown in Fig. 2.

Original PassGAN is character-level, but not as effective as LSTM based
character-level models [17]. Another problem of original PassGAN is that it
can not assign probabilities to the generated guessing passwords, so we can not
obtain the priority of different guessing passwords. These problems will all be
solved by using preprocessing methods in this paper.

3 Preliminaries

In this section, we first explicate the datasets used in this paper, including the
basic information, the length distribution, the character composition, and the
top-10 passwords. In addition, since passwords are confidential data related to
personal privacy, ethical considerations are also explained.

3.1 Datasets

We compare the password guessing models with different preprocessing methods
based on six large password datasets (see in Table 1) with a total of 57 million
passwords. These datasets are different in terms of service, size, user localization,
and language, which suggests that our models can be used to well characterize
different user-chosen passwords. We name each dataset according to its website’s
domain name. The first three datasets, namely CSDN, YueJunYou, Renren, are
all from Chinese websites. CSDN is a well-known community website of Chinese
programmers, founded in 1999. Renren is a real-name social networking plat-
form, founded in 2005. YueJunYou is a website for making friends and traveling,

168 Y. Wu et al.

Table 1. Basic information about six web services.

Dataset Web service Language When leaked Original PWs After cleaning

CSDN Programmer forum Chinese Dec., 2011 6,428,277 6,427,538

YueJunYou Social forum Chinese May., 2006 5,365,338 5,286,494

Renren Social forum Chinese Oct., 2011 4,733,366 4,662,654

Rockyou Gaming English Dec., 2009 32,581,870 32,573,986

Yahoo Email English Jul., 2012 5,737,797 5,605,985

Youporn Video English Oct., 2017 2,677,951 2,105,452

founded in 2014. The last three datasets, namely Rockyou, Yahoo, Youporn, are
all from English websites. Rockyou is a game website that contains 320 million
passwords, which is the largest dataset among six datasets. Yahoo is a famous
internet portal site in the United States, founded in 1995. Youporn is a video
website only for adults, founded in 2006.

Datasets Cleaning. We note that these original datasets contain some abnor-
mal passwords that are either too long (>40) or too short (<4), which are
unlikely to be user-chosen passwords or simply junk information. Thus, we launch
the work of dataset cleaning before any experiment. We first remove the pass-
words that contain symbols beyond the 95 printable ASCII characters, and then
we also remove the passwords with length <4 or length >30, because these pass-
words do not comply with the password policy of most websites or may not be
considered by the attackers who care about cracking efficiency [1]. Generally, the
removed passwords are less than 1% for each dataset.

Here we also provide a concrete grasp of user-chosen passwords: 1) The length
of most passwords is between 6 and 9, accounting for 62.08%–83.84% of each
web service (see details in Table 7 of Appendix A); 2) Chinese users love to use
digits (avg. 54.64%) and this figure for English users is 18.62%, while English
users love to use characters (avg. 42.79%) and this figure for Chinese users is
15.43% (see details in Table 8); 3) Top-10 passwords account for 7.18% 10.43%
of Chinese users, and this figure for English users is 2.05% 5.29%, indicating
Chinese passwords are more concentrated, as found in [15] (see in Table 9).

3.2 Ethical Considerations

Although these datasets are widely used in the literature [5,10,11,20,21], they
are still private data. Therefore, we only report the aggregated statistical infor-
mation and treat each individual account as confidential, so that using them in
our research will not increase the risk to the corresponding victim. Furthermore,
these datasets may be utilized by attackers as cracking dictionaries, while our
use is both beneficial for the academic community to understand the strength
of users’ password choices, and for security administrators to secure their pass-
words. In addition, we have consulted privacy experts a number of times. Since
our datasets are all available from the Internet, the results in this work are
reproducible.

Improving Password Guessing Models 169

4 Preprocessing Methods

In this section, we describe different preprocessing methods to improve the effect
of the deep-learning based password guessing models.

4.1 Important Abbreviations

To facilitate the reading process, we introduce the important abbreviations used
in this article. GAN means Generative Adversarial Networks; PassGAN is short
for the password guessing model based on GAN; LSTM is short for Long Short-
Term Memory neural networks; PCFG is short for probabilistic context-free
grammars; LSTM/PassGAN+X means the LSTM/PassGAN based password
gurssing model using X for preprocessing.

4.2 Character Feature Based Encoding Method

Canonical one-hot encoding method as used in [11,17,20] only classifies differ-
ent characters, but can not fully reflect other character features. Moreover, the
matrices converted by the one-hot encoding method are sparse [13]. The main
challenge for character encoding is how to distinguish characters and reflect their
features with as little space as possible. Therefore, we comprehensively consider
different kinds of character features and then propose a new character encoding
method that greatly reduces the occupied space.

The password character has two important features, one is the type, and the
other one is the keyboard location since keyboard pattern is also a popular way
in password creation [16]. Thus, we represent each character in four dimensions.
The first dimension represents the type of characters, where we use 1, 2, 3, and
4 to represent digits, uppercase letters, lowercase letters, and special characters.
The second dimension is the serial number of the characters in each type. For
example, a–z can be represented by 1–26 according to the dictionary order, and
the digits can be represented by themselves. The third dimension represents the
keyboard row number, and the fourth dimension represents the keyboard column
number. The row number of the keyboard increases from top to bottom, and the
column number increases from left to right. For example, the string “1234567890-
=” is in the first row, and the string “1qaz” is in the first column according to
keyboard coordinates. Using our new encoding method, the password 1234 can
be converted to a matrix [[1, 1, 1, 1], [1, 2, 1, 2], [1, 3, 1, 3], [1, 4, 1, 4]].

4.3 Refined PCFG

The basic PCFG [18] only divides passwords into letters, digits, and special char-
acters, which may destroy the integrity of some segments and ignore user’s habit
of creating passwords. For example, the string “1!2@3#” should be considered
as a complete segment due to the adjacency of characters on the keyboard, while
it would be converted to D1S1D1S1D1S1 in the basic PCFG. Therefore, we add
the recognition rules of 4 important password features.

170 Y. Wu et al.

Table 2. The proportion of top-10 mostly used years (1900–2100) for each web service∗.

Dataset CSDN Renren YunJunYou Rockyou Yahoo Youporn

Proportion 58.68% 54.74% 64.16% 33.94% 26.19% 32.68%

Unique† 201 201 201 201 201 201

∗ We record the proportion of top-10 year segments in all year segments.
† Unique represents the number of unique years in the web service.

Year Recognition: Years have been found popular in passwords [7,15]. We
count the number of the years (from 1900 to 2100, a total of 201), and record the
proportion of top-10 most widely used years in Table 2. Results show that some
years occupy a large proportion, which indicates users may focus on some years.
However, the basic PCFG would extract years into digits. Thus, we extract digit
segments with length of four and value between 1900–2100 from the passwords.

Table 3. The proportion of top-10 mostly used websites for each web service.

Dataset CSDN Renren YunJunYou Rockyou Yahoo Youporn

Proportion 15.15% 20.93% 25.25% 15.35% 17.23% 25.44%

Unique† 3,348 3,080 202 6,415 1,109 255

† Unique represents the number of unique websites in the web service.

Website Name Recognition: We for the first time count the number of the
website names in each dataset, and record the proportion of top-10 most widely
used website names in Table 3. Although the website names are less concentrated
than the years, some website names still account for a large proportion, and the
passwords with website name segments may be considered strong passwords
in the basic PCFG. For instance, the password “csdn.net” is converted to the
base structure L4S1L3, and may be assigned a low probability of being cracked
by basic PCFG. To address this problem, we add the recognition of website
names. First, common website name suffixes, such as “.com”, “.net”, are used
to construct a suffix list, and then the complete website segments are extracted
from the passwords according to the suffix list. For example, the website name
segment “csdn.net” is extracted from the password “123csdn.net123”.

Keyboard Pattern Recognition. Since keyboard pattern is also a popular
way in password creation [6,16], we add the corresponding recognition rule.
Furthermore, keyboard patterns with only one character type can be extracted
completely by basic PCFG, so our refined PCFG (i.e., basic PCFG with the
additional recognition rules) focus on the keyboard patterns with multiple char-
acter types. For example, the password q1w2e3 is converted to the base structure
L1D1L1D1L1D1 by basic PCFG, which destroys the integrity of the keyboard
pattern, while it is converted to K6 by our refined PCFG (k represents the
keyboard pattern and 6 represents the length of the segment).

Improving Password Guessing Models 171

Algorithm 1: Dictionary contruction algorithm.
Input: Password set S
Output: Word dictionary D.

1 for pwd in S do
2 letters list = extract letters(pwd);/* extract letter segments in pwd and store

them in a list. */
3 for seg in letters list do
4 if len(seg) > len min then
5 /* len min is the minimum word length. */
6 D[seg]+ = 1;/* D is the initial dictionary to record the frequency of

different words. */

7 for seg in D do
8 if D[seg] < threshold then
9 /* threshold is the minimum word frequency */

10 delete D[seg];

11 return D;

Word Recognition: The keyboard pattern has inherent limitations that may
extract wrong segments [21]. For instance, the segment “password” should be
regarded as a complete segment, but “assw” would be recognized as a keyboard
pattern. Although our keyboard pattern recognition method avoids most of the
error cases, wrong results may still occur. Our solution is to use a dictionary
that contains common words, and extract segments that appear in the dictionary
from the passwords before the keyboard pattern extraction. However, the effect
of this method depends on the quality of the dictionary. Once the dictionary
does not contain the corresponding word, keyboard pattern extraction will still
cause errors. Therefore, we choose to construct the word dictionary through the
training set. This process is described in Algorithm 1.

Frequency Distribution: Wang et al. [14] found that the distribution of pop-
ular passwords follows PDF-Zipf:

fr =
C

rs
(1)

where fr is the frequency of the password, r is the rank of the password, C and
s are constants depending on the datasets. To verify that the data conforms to
this distribution, we use the following equation:

log(fr) = logC − s · log(r) (2)

where log(fr) and log(r) are linearly related. We verify that the extracted seg-
ment meets the Zipf distribution based on Eq. 2. The extracted results are sorted
in descending order of frequency on six datasets and the log(fr)-log(r) graphs
are shown in Fig. 3. Moreover, all the coefficients of determination (R2) which
can measure the fitting degree of the regression line to the sample data are shown
in Table 4. The closer the determination coefficient is to 1, the better the fitting
effect is. The results indicate that the frequency distribution of the keyboard
patterns, words, website names, and years with a frequency of more than five
can meet the PDF-Zipf model well.

172 Y. Wu et al.

Table 4. The coefficient of determination (R2) for fitting different extracted segments.

R2 Keyboard pattern Word Website name Year

CSDN 0.9667 0.9974 0.9791 0.9698

YueJunYou 0.9763 0.9895 0.9697 0.9650

Renren 0.9757 0.9935 0.9764 0.9772

Rockyou 0.9843 0.9973 0.9894 0.9358

Yahoo 0.9687 0.9932 0.9767 0.8710

Youporn 0.9795 0.9949 0.9661 0.9033

Fig. 3. Frequency distribution of different types of extracted segments.

Recognition Order: Some recognition rules may conflict with each other. For
example, “989” in “1989” is recognized as a keyboard pattern, and “csdn” in
“csdn.net” may be recognized as a word. Therefore, it is essential to set a rea-
sonable extraction order and begin with the least conflict one. Since the year
recognition may conflict with the keyboard pattern recognition, and the web-
site name recognition may conflict with the word recognition. Our recognition
order is: year→website name→word→keyboard pattern→basic PCFG recogni-

Improving Password Guessing Models 173

Algorithm 2: Extraction algorithm for our refined PCFG.
Input: Password pw, word dictionary D, website name suffix list web list
Output: handled segment list seg list.

1 seg list=[pw]; /* initial list taking the whole password as a unhandled segment. */
2 kp min=3;/* the minimum length of the keyboard pattern. */
3 for seg in seg List do
4 if type(seg) == string and a year occurs in seg then
5 begin, end = index year(seg);
6 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′Y ′ + str(end− begin), seg[begin : end]), seg[end :]. */

7 for seg in seg List do
8 if type(seg) == string and a website suffix from web list occurs in seg then
9 begin, end = index website(seg);

10 divide seg(seg, begin, end);/* divide seg into
seg[0 : begin], (′E′ + str(end− begin), seg[begin : end]), seg[end :]. */

11 for seg in seg list do
12 if type(seg) == string and a word from D occurs in seg then
13 begin, end = index word(seg);
14 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′W ′ + str(end− begin), seg[begin : end]), seg[end :]. */

15 for seg in seg list do
16 if type(seg) == string then
17 begin, end = index keyboard(seg);
18 if end− begin >= kp min and seg[begin : end] contains more than one

character type then
19 divide seg(seg, begin, end);/* divide seg into

seg[0 : begin], (′K′ + str(end− begin), seg[begin : end]), seg[end :]. */

20 merge unhandled(seg list);/* merge successive unhandled segments in seg list. */
21 PCFG extraction(seg list);/* use original PCFG for extraction. */
22 return seg list;

tion. Overall, our refined PCFG is different from the basic PCFG on the tags
of base structures, where some tags are added, such as K (keyboard patterns),
W (words), E (website names), and Y (years). The complete extraction process
of our refined PCFG is described in Algorithm 2. The structure of the neural
networks using the PCFG based preprocessing method is shown in Fig. 4.

4.4 PassGAN Using PCFG for Preprocessing

The result of PassGAN [5] is worse than the LSTM based models within 107

guessing passwords, so we infer that the ability of GAN to learn text features is
weaker than LSTM. Character-level passwords are relatively complex for GAN
due to the length and the multiple character types. Therefore, we use PCFG
based preprocessing method to simplify the data, and train the model with the
base structures obtained from PCFG. In the generation process, PassGAN would
generate duplicate base structures without probability, so we count the number
of different base structures until the number of unique base structures reaches the
target value. Then we assign each base structure with the probability fi/total,
where fi represents the frequency of the corresponding base structures, and total
represents the total number of all base structures.

174 Y. Wu et al.

Original passwords

abc123!!
1!2@3#
1q2w3e
password
dearbook
 ...

PCFG_Extraction

 ...

Base structures Neural networks

{abc : 1}; {123 :1}; :{!! : 1};
{1!2@3# : 1, 1q2w3e : 1};
{password : 1, dearbook : 1};

 ...

Training

 ...
Guesses

abc123
1!2@3#
1q2w3e
password
dearbook
 ...

Filling

Segment results

Generation

Fig. 4. An illustration of deep learning based model using PCFG based preprocessing
method. K represents the keyboard pattern and W represents the word.

Algorithm 3: The process of Chunk+PCFG preprocessing method
Input: Password dictionary with the corresponding frequency pwd dict
Output: Processed Dictionary pwd dict.

1 while true do
2 (Pairs, avg len)=get pairs(pwd dict);/*Take two consecutive chunks as a pair and

record the frequency of pairs in Pairs, avg len is the avg len of chunks.*/
3 if avg len > threshold then
4 /*threshold stands for the minimum average-length of chunks. */
5 break;

6 best pair = max(Pairs, key = Pairs.get); /*find the most frequnt pair. */
7 pwd dict = merge chunk(bestpair, pwddict);

8 PCFG extraction(pwddict);/* perform PCFG on each chunk of passwords.*/
9 return pwd dict;

4.5 Chunk+PCFG Preprocessing Method

We adopt Xu et al.’s PCFG improvement with chunk segmentation at CCS’21
[20], and integrate the Chunk+PCFG preprocessing method with LSTM and
PassGAN separately. Byte-Pair-Encoding (BPE) algorithm is used to divide
passwords into chunks, and then the chunk-level passwords are converted to the
base structures by performing PCFG on each chunk of the passwords. Since
chunk-level passwords are fine-grained enough, we only use the basic PCFG and
a chunk can be represented as L (with only letters), D (with only digits), S
(with only special characters), Two (with two character types), Three (with
three character types). For example, the password iloveu4ever can be firstly
converted to the chunk-level password [“iloveu”, “4ever”], and then converted
to the base structure L6Two5. The process of the Chunk+PCFG preprocessing
method is shown in Algorithm 3. The remaining training and generation process
is the same as that of the LSTM based models using PCFG for preprocessing.

Improving Password Guessing Models 175

5 Experiments

In this section, we first describe the attacking strategies, and then evaluate the
result of five different preprocessing methods combined with neural networks on
multiple datasets. The details of datasets are described in Sect. 3.1.

5.1 Attacking Strategies Design

The combination of five different preprocessing methods with two leading deep-
learning models gives rise to a total of ten guessing strategies, and we focus on
seven promising ones: the LSTM based model using one-hot encoding method
[17], the LSTM based model using our new encoding method, the LSTM based
model using the basic PCFG for preprocessing (short for PL) [17], the LSTM
based model using our refined PCFG for preprocessing, the LSTM based model
using Chunk+PCFG for preprocessing, PassGAN using the basic PCFG for pre-
processing, PassGAN using our refined PCFG for preprocessing, and PassGAN
using Chunk+PCFG for preprocessing. Here LSTM includes a hidden layer that
contains 128 neurons and a softmax layer, and the structure of GAN is the same
as the original PassGAN model which is described in Sect. 2.2. For chunk-level
models, the minimum average length of chunks is 3.0. All models are trained and
tested on six datasets, which are divided into the training set, test set, validation
set according to 8:1:1 as recommended in [17].

5.2 Evaluation Results

To extensively evaluate the effect of five different preprocessing methods, 50 mil-
lion guessing passwords are generated from each model and sorted by probability
in order to obtain a smooth curve of the result. We use the guess-number-graph
and record cracking results to intuitively reflect the effects of different models.

Overall Analysis. Table 5 and 6 and Fig. 5 and 6 show that, with 50 million
guessing passwords: (1) The LSTM based model using one-hot encoding out-
performs using our new encoding by 4.22% on average; (2) The LSTM based
model using the basic PCFG for preprocessing (short for PL) outperforms the
LSTM based model using one-hot encoding by 7.85% on average; (3) Refined
PL model outperforms the basic PL model by 1.36% on average; (4) The basic
PL model outperforms the LSTM based model using Chunk+PCFG for prepro-
cessing (short for CKPL) by 6.49% on average; (5) The PassGAN model using
the basic PCFG for preprocessing (short for PCFG+PassGAN) outperforms the
original PassGAN model by 26.79% on average; (6) The PCFG+PassGAN model
outperforms refined PCFG+PassGAN model by 1.41% on average; (7) The orig-
inal PassGAN model outperforms the PassGAN model using Chunk+PCFG for
preprocessing (short for CKP+PassGAN) by 13.85% on average.

176 Y. Wu et al.

Table 5. Cracking results of LSTM based models with five different preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language LSTM
one-hot [17]

LSTM
4-dim

LSTM
b PCFG
[17]

LSTM
r PCFG

LSTM
CK PCFG

CSDN Chinese 39.81% 37.73% 43.54% 43.89% 37.30%

YueJunYou Chinese 60.72% 59.53% 78.29% 78.93% 61.78%

Renren Chinese 50.72% 48.01% 46.11% 47.27% 53.41%

Rockyou English 52.40% 46.71% 63.17% 67.11% 46.22%

Yahoo English 40.66% 35.31% 44.37% 45.04% 48.62%

Youporn English 50.42% 42.11% 66.36% 67.76% 55.53%

† LSTM 4-dim means using our new encoding method; b PCFG means with basic
PCFG for preprocessing [17]; r PCFG means with our refined PCFG; CK PCFG means
with the Chunk+PCFG method. The results show that our refined PCFG method
increases the effect by 9.21% on average for original model [17].

Encoding Method. The experimental results on six datasets show that our new
encoding method does not perform well, which can be attributed to two reasons.
First, the sparsity problem caused by the one-hot encoding may not have serious
side effects because passwords are generally short in length. Second, since our
new encoding method is only used to represent each character, its advantage
which reflects multiple character features has not been fully utilized.

Table 6. Cracking results of GAN based models with four different preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language PassGAN [5] PassGAN
b PCFG

PassGAN
r PCFG

PassGAN
CK PCFG

CSDN Chinese 27.47% 42.14% 27.58% 11.87%

YueJunYou Chinese 49.35% 78.88% 62.01% 19.72%

Renren Chinese 36.17% 49.99% 33.20% 19.65%

Rockyou English 31.25% 64.41% 18.35% 15.58%

Yahoo English 24.74% 53.38% 21.04% 23.96%

Youporn English 38.07% 76.88% 34.31% 31.11%

† PassGAN b PCFG means with basic PCFG for preprocessing; Pass-
GAN r PCFG means with our refined PCFG; CK PCFG means with the
Chunk+PCFG method. The results show that the basic PCFG method
increases the effect by 26.79% on average for PassGAN model [5].

PCFG Based Preprocessing Method. Using PCFG for preprocessing can
improve the effect, and the LSTM based model with our refined PCFG is even
better than with the basic PCFG, which indicates that the fine-grained rules

Improving Password Guessing Models 177

Fig. 5. Cracking results of LSTM based models with five different preprocessing meth-
ods (Guess number = 5∗107). The training set and test set are from the same dataset,
with a division ratio of 8:1. LSTM one-hot represents the original model using one-
hot for encoding [17]; LSTM 4-dim means using our new encoding method; b PCFG
means with basic PCFG for preprocessing [17]; r PCFG means with our refined PCFG;
CK PCFG means with the Chunk+PCFG method. The results show that our refined
PCFG method increases the effect by 9.21% on average for original LSTM model [17].

can extract more effective features. However, PassGAN with our refined PCFG
decreases the effect due to the complexity of our method. Furthermore, since the
Chunk+PCFG method first performs PCFG on each chunk of the passwords, it

178 Y. Wu et al.

Fig. 6. Cracking results of GAN based models with four preprocessing methods (Guess
number = 5 ∗ 107). The training set and test set are from the same dataset, with a
division ratio of 8:1. PassGAN represents the original model in [5]; b PCFG means
with basic PCFG for preprocessing; r PCFG means with our refined PCFG; CK PCFG
means with the Chunk+PCFG method. The results show that using basic PCFG for
preprocessing increases the effect by 26.79% on average for PassGAN model [5].

would generate even more complicated base structures than our refined PCFG,
which can be the reason why all models using the Chunk+PCFG preprocessing
method do not perform well compared to the original models. To explore the
impact of different extraction rules added to the basic PCFG, we set up a series

Improving Password Guessing Models 179

of experiments where only one extraction rule is added each time. The results
(see deatails in Table 10 of Appendix B) indicate that word recognition has the
best performance among all four rules and using separate recognition rules is
not as good as our refiend PCFG (i.e., with all four rules).

Limitations. Firstly, our new encoding method can not improve the perfor-
mance of the LSTM based models compared with the one-hot encoding, which
may indicate that password guessing models can not be improved only by the
character encoding. Secondly, we only improve the effect of PassGAN from the
aspect of preprocessing, but not change the structure of PassGAN.

Future Directions. Firstly, new training methods to match up with our new
encoding method can be a viable direction due to the underutilization of charac-
ter features. Secondly, the research on PCFG based preprocessing method should
be more fine-grained. One viable direction is to add more fine-grained recognition
rules based on our refined PCFG, and another direction is to apply natural lan-
guage processing(NLP) technology to extract the characteristics of passwords.
Thirdly, this paper contributes to a better understanding of deep-learning based
guessing models in that: preprocessing indeed can effectively enhance the use of
the neural networks’ learning ability, which is in turn intrinsically determined
by the deep-learning model’s network structure. For instance, the text learning
ability of GAN is weaker than that of LSTM, which leads to the poor effect
of fine-grained preprocessing methods integrated with GAN. Thus, the ability
of GAN to learn text features may be improved by changing its structure, for
example, using LSTM to compose the generator of GAN.

6 Conclusion

This paper studies the deep-learning based password guessing models from the
aspect of preprocessing. Firstly, considering the limitations of the one-hot encod-
ing method, we propose a new encoding method that comprehensively reflects
the character features. Secondly, considering that basic PCFG does not fully
extract the password features, we propose a refined PCFG with comprehensive
recognition rules. Thirdly, we adopt the idea of chunk segmentation at CCS’21,
and apply the chunk+PCFG preprocessing method to LSTM and GAN.

Extensive experimental results show that: 1) Our refined PCFG outperforms
the basic PCFG by 1.36% on average when integrated with LSTM; 2) Using basic
PCFG for preprocessing improves the effect of the PassGAN model drastically
by 26.79% on average; 3) Although our new encoding method does not improve
the effect compared with the one-hot encoding, it still provides a feasible new
research direction; 4) The performance of Chunk+PCFG preprocessing method
is not ideal due to the complexity of its base structures.

Our results suggest that using PCFG for preprocessing is an effective way
to improve the deep-learning based guessing models. Still, it should be used
with care: although more fine-grained PCFG (e.g., our refined PCFG and
Chunk+PCFG) extracts the passwords more comprehensively, it also generates

180 Y. Wu et al.

more complicated base structures, which increases the training complexity for
neural networks, and may even reduce the cracking rates for these neural net-
works with weak text feature learning ability.

Acknowledgment. The authors are grateful to the anonymous reviewers for their
invaluable comments. Ding Wang is the corresponding author. This research was in
part supported by the National Natural Science Foundation of China under Grant
No.62172240, and by the Natural Science Foundation of Tianjin, China under Grant
No. 21JCZDJC00190. There is no competing interests.

Appendix 1 Some Statistics About User-Chosen Passwords

The length distributions of each dataset are shown in Table 7. Most passwords’
length are between six and nine (avg. 73.81%). The length distribution is affected
by the password policy. For example, CSDN dataset has much fewer passwords
of length under eight as compared to other datasets, which may be caused by the
fact that CSDN website changed the password policy to a more strict one. The
character composition information is summarized in Table 8. Chinese users prefer
to use digits in passwords, while English users prefer to use letters. This may
be caused by cultural differences because most Chinese users use more digits in
their daily lives than English words. In addition, English users prefer lowercase
letters rather than uppercase letters. The top-10 passwords information is shown
in Table 9. The password “123456” is the most commonly used password except
for CSDN (due to its password policy). It is also interesting to see that the top-10
passwords in Chinese datasets are almost all pure digits.

Table 7. Length distribution information of each web service.

Dataset 1–5 6 7 8 9 10–16 17–30 30+

CSDN 0.63% 1.29% 0.26% 36.38% 24.15% 36.98% 0.32% 0.00%

YueJunYou 3.09% 24.00% 22.59% 24.13% 13.12% 13.05% 0.01% 0.00%

Renren 6.63% 25.36% 18.18% 20.24% 12.05% 17.20% 0.32% 0.00%

Rockyou 4.31% 26.04% 19.29% 19.98% 12.11% 17.86% 0.40% 0.01%

Yahoo 10.33% 17.86% 14.36% 25.03% 12.39% 20.04% 0.00% 0.00%

Youporn 11.44% 26.66% 16.17% 20.40% 10.82% 14.26% 0.22% 0.02%

Avg-CN† 3.45% 16.89% 13.68% 26.92% 16.44% 22.41% 0.22% 0.00%

Avg-EN 8.69% 23.52% 16.60% 21.80% 11.77% 17.39% 0.21% 0.01%

Avg-total 6.07% 20.20% 15.14% 24.36% 14.11% 19.90% 0.21% 0.01%

† Avg-X stands for the average proportion of X datasets. For example, where CN stands
for three Chinese datasets and EN stands for three English datasets.

Improving Password Guessing Models 181

Table 8. Character composition information of each web service∗.

Dataset [a-z]+ [A-Z]+ [A-Za-z]+ [0-9]+ [a-zA-Z0-9]+ [a-z0-9]+ [a-z]+1 [0-9a-z]+

CSDN 11.64% 0.47% 12.35% 45.01% 96.31% 26.14% 0.24% 5.88%

YueJunYou 12.94% 0.23% 13.39% 65.86% 99.38% 13.10% 0.25% 2.88%

Renren 19.06% 0.64% 20.55% 53.05% 97.79% 17.83% 1.24% 2.80%

Rockyou 41.68% 1.50% 44.04% 15.93% 96.19% 27.69% 4.55% 2.53%

Yahoo 32.51% 1.70% 35.90% 19.80% 97.99% 27.14% 3.47% 3.32%

Youporn 45.94% 1.04% 48.42% 20.12% 96.50% 20.59% 2.75% 1.91%

Avg-CN† 14.55% 0.45% 15.43% 54.64% 97.83% 19.02% 0.58% 3.85%

Avg-En 40.04% 1.41% 42.79% 18.62% 96.89% 25.14% 3.59% 2.59%

Avg-total 27.30% 0.93% 29.11% 36.63% 97.36% 22.08% 2.08% 3.22%

∗ Note that the first row is written in regular expressions. For instance, [a-z]+ means passwords

composed of lower-case letters; [A-Za-z]+ means passwords composed of letters; [a-z]+1 means

passwords composed of lowercase letters, followed by the digit 1.

† Avg-X stands for the average proportion of X datasets, where CN stands for three Chinese datasets

and EN stands for three English datasets.

Table 9. Top-10 password information of each web service.

Rank CSDN YueJunYou Renren Rockyou Yahoo Youporn

1 123456789 123456 123456 123456 123456 123456

2 12345678 111111 123456789 12345 123456789 123456789

3 11111111 0 111111 123456789 password 12345

4 dearbook 123456789 0 password null 1234

5 00000000 123123 123123 iloveyou 12345 password

6 123123123 5201314 5201314 princess 12345678 qwerty

7 1234567890 wangyut2 12345 1234567 1234567 12345678

8 88888888 12345678 12345678 rockyou iloveyou 123

9 111111111 123 123 12345678 qwerty 1234567

10 147258369 123321 123321 abc123 comeon11 111111

Top-1 % 3.66% 4.78% 3.74% 0.89% 0.86% 2.57%

Top-3 % 8.15% 7.11% 4.99% 1.37% 1.35% 3.71%

Top-10 % 10.43% 9.99% 7.18% 2.05% 2.13% 5.29%

Top-10 % 670,881 535,884 339,639 669,126 119,864 113,702

Total num 6,428,277 5,365,338 4,733,366 32,603,388 5,626,485 2,148,224

† Top-x per means the percentage of Top-x passwords, top-10 num means the total
number of top-10 passwords.

Appendix 2 Exploratory Experiments

In Sect. 4.3, Probabilistic context-free grammars (i.e., PCFG) [10,18] can be
used for data preprocessing when integrated with neural networks. Our refined
PCFG are based on the basic PCFG with four additional recognition rules,
including keyboard pattern, word, website and year. The experiment result in
Sect. 5.2 has already shown that our refiend PCFG can improve the performance

182 Y. Wu et al.

by 1.36% on average compared to the basic PCFG when integrated with Long
Short-Term Memory neural networks (i.e., LSTM) [17]. To explore the impact
of different recognition rules on the experiment results, we evaluate the perfor-
mance of LSTM based models using PCFG for preprocessing, where only one
recognition rule is added to basic PCFG each time.

The result in Table 10 shows that compared to the LSTM based model with
basic PCFG for preprocessing: (1) Using PCFG with additional word recognition
for preprocessing has a 0.26% improvement on average; (2) Using PCFG with
additional keyboard recognition for preprocessing has a 0.06% improvement on
average; (3) The remaining recognition rules (i.e., website and year) have little
improvement on the results (less than 0.01% on average). In general, adding one
recognition rule to the basic PCFG [10] alone is not as effective as adding all
the rules (i.e., our refined PCFG) when integrated with LSTM. The reason why
the year recognition rule has the worst performance can be can be attributed
to two reasons. Firstly, years are part of birthdays and birthdays vary widely
among users, which has little effect on trawling password guessing attack. Sec-
ondly, individual year segments can be replaced by digit segments. Moreover, the
promotion effect of different recognition rules to some extent reflects the pattern
that users tend to use when creating passwords.

Table 10. Cracking results of LSTM based models using PCFG based preprocessing
methods (Guess number = 5 ∗ 107)†

Dataset Language Basic [17] Keyboard Word Website Year

CSDN Chinese 43.54% 43.68% 43.63% 43.55% 43.36%

YueJunYou Chinese 78.29% 78.85% 78.84% 78.84% 78.34%

Renren Chinese 46.11% 45.99% 46.58% 46.05% 46.46%

Rockyou English 63.17% 63.10% 63.15% 63.11% 63.09%

Yahoo English 44.37% 44.38% 44.57% 44.19% 44.53%

Youporn English 66.36% 66.20% 66.65% 66.18% 66.13%

† Basic means the LSTM based model with basic PCFG for preprocessing
[17]; Keyboard means adding keyboard recognition rule to the basic PCFG;
Word means adding word recognition rule to the basic PCFG; Website
means adding website recognition rule to the basic PCFG; Year means
adding year recognition rule to the basic PCFG. The experiment setup is
the same as Sect. 5.

References

1. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking. In:
Proceedings of IEEE S&P 2018, pp. 853–871 (2018)

2. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The request to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: Proceedings of IEEE S&P 2012, pp. 553–567 (2012)

Improving Password Guessing Models 183

3. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78–87 (2015)

4. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Proceedings of the NIPS 2017, pp. 5769–5779
(2017)

5. Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: PassGAN: a deep learning app-
roach for password guessing. In: Proceedings of the ACNS 2019 (2019)

6. Houshmand, S., Aggarwal, S., Flood, R.: Next gen PCFG password cracking. IEEE
Trans. Inf. Forensics Secur. 10(8), 1776–1791 (2015)

7. Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: Proceedings of the USENIX Security 2014, pp. 559–574 (2014)

8. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

9. Liu, Y., et al.: GENPass: a general deep learning model for password guessing
with PCFG rules and adversarial generation. In: Proceedings of ICC 2018, pp. 1–6
(2018)

10. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
Proceedings of IEEE S&P 2014, pp. 689–704 (2014)

11. Melicher, W., Ur, B., Komanduri, S., Bauer, L., Christin, N., Cranor, L.F.: Fast,
lean and accurate: modeling password guessability using neural networks. In: Pro-
ceedings of the USENIX SEC 2017, pp. 1–17 (2017)

12. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proceedings of the ACM CCS 2005, pp. 364–372 (2005)

13. Rodŕıguez, P., Bautista, M.A., Gonzàlez, J., Escalera, S.: Beyond one-hot encoding:
lower dimensional target embedding. Image Vis. Comput. 75, 21–31 (2018)

14. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)

15. Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: under-
standing passwords of Chinese web users. In: Proceedings of the USENIX SEC 2019
(2019)

16. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the ACM CCS 2016, pp.
1242–1254 (2016)

17. Wang, D., Zou, Y., Tao, Y., Wang, B.: Password guessing based on recurrent neural
networks and generative adversarial networks. Chin. J. Comput. 1519–1534 (2021)

18. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proceedings of the IEEE S&P 2009, pp.
391–405 (2009)

19. Xie, Z., Zhang, M., Yin, A., Li, Z.: A new targeted password guessing model. In:
Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 350–368. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 18

20. Xu, M., Wang, C., Yu, J., Zhang, J., Zhang, K., Han, W.: Chunk-level password
guessing: towards modeling refined password composition representations. In: Pro-
ceedings of the ACM CCS 2021, pp. 5–20 (2021)

21. Yang, K., Hu, X., Zhang, Q., Wei, J., Liu, W.: Studies of keyboard patterns in pass-
words: recognition, characteristics and strength evolution. In: Gao, D., Li, Q.,
Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 153–168. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86890-1 9

http://arxiv.org/abs/1506.00019
https://doi.org/10.1007/978-3-030-55304-3_18
https://doi.org/10.1007/978-3-030-86890-1_9

	Improving Deep Learning Based Password Guessing Models Using Pre-processing
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Background
	2.1 LSTM Based Models
	2.2 PassGAN

	3 Preliminaries
	3.1 Datasets
	3.2 Ethical Considerations

	4 Preprocessing Methods
	4.1 Important Abbreviations
	4.2 Character Feature Based Encoding Method
	4.3 Refined PCFG
	4.4 PassGAN Using PCFG for Preprocessing
	4.5 Chunk+PCFG Preprocessing Method

	5 Experiments
	5.1 Attacking Strategies Design
	5.2 Evaluation Results

	6 Conclusion
	1 Some Statistics About User-Chosen Passwords
	2 Exploratory Experiments
	References

